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1 Prerequisites and central notions

In the year 1900 David Hilbert posed 23 mathematical problems to be solved in the twentieth cen-
tury. The tenth of these problems and its variants are the subject of this thesis. In the classical setting
it asks to find an algorithm that can decide upon receiving a multivariate polynomial p with integ-
ral coefficients, whether p has integral roots. One immediately obtains variants of the problem by
letting the coefhicients and solutions range over different commutative rings with unity.

To tackle Hilbert’s tenth problem over rings of algebraic integers we need to define three central
notions. Firstly, we will formalize what we mean by an algorithm; secondly, it will be defined what
it means to decide a problem; and thirdly, we will define the rings we are interested in.

The first section of the preliminaries will settle our first task and give a definition of computabil-
ity. The second section will provide the techniques required to encode polynomials with roots and
helps us derive further variants of Hilbert’s tenth problem. The third section of the preliminaries is
devoted to defining algebraic integers and will remind the reader of some of their important proper-
ties.

Throughout this thesis the symbol N shall denote the set of non-negative integers {0, 1, 2, ...}.

1.1 Prerequisites from computability theory

Fuelled by the task of deciding another problem stated by Hilbert—the so-called Enzscheidungs-
problem— Austrian mathematician Godel [if], American mathematician Church [f, §], and British
mathematician Turing [48] developed very different formalizations of the intuitive notion of com-
putation.

Godel’s approach can be seen as an algebraic one. He defines ‘[ primitive] recursive functions’ as
the smallest class of functions containing initial functions closed under composition and recursion.
Based on a suggestion of Herbrand in a letter of April 1931, Godel [i4] later extended this class to
‘general recursive functions’ by closing them under minimization (cf. Lem. f.1.7) as well. Church
introduced ‘A-definable functions’ to capture the notion of ‘effective calculability’. His A-calculus
is still used as the formal basis of functional programming languages like Haskell. Turing took a
‘purely mechanical’ approach. His ‘computability machines’ are the very foundation of the prin-
ciples today’s computers are based on. Being aware of each others work Church [3], Kleene [1], and
Turing [48] proved the equivalence of the three models of computability.

Maybe a bit ironically for an Austrian student writing on a topic of algebra, I will make use of Tur-
ing’s definition of computability. The three main goals for this section are formalizing and defining
the notions of Turing machines and decidabiliry, as well as providing a more or less natural example
of an undecidable problem. To this end, I will loosely follow the lecture notes on the subject by
Miiller [28] and present some results of the textbook [14].
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Figure 1.1: Two strings encoding two isomorphic graphs

1.1.1 Turing machines, problems, and decidability

DEFINITION. We consider the set of finite 0-1-strings w = {0, 1}*, where we include the empty
string A € w, and define a (decision) problem to be a subset of w. The set{0, 1} is called alphaber and
its elements O and 1 are called bits.

One immediate objection against this definition is that not all problems arise as subsets of these
strings. However, such problems Q are captured up to an encoding.

DEFINITION. Let Q be a set. An encoding of Q is an injective function
ra: 90 - ow.

Remark. Since the set of finite strings @ is countable, each and every subset Q of w is either finite
or countable. Thus, problems are by definition at most countable. Note however, that there are
uncountably many—2%0 to be precise—many subsets of @ and therefore uncountably many prob-
lems.

One usually does not concern oneself with the details of this encoding. However, the encoding
should capture the structure of the problem—a notion that will be made precise in Section [.2.3.

EXAMPLE L.LI. Consider the set Q C w of strings of the form

X .= b1,2 b1’3 bl,l’l
b2’3 bz’n
bn—l,na

of length n(n — 1)/2. We can consider each x € Q as the encoding of an undirected graph without
multiedges or loops on 1 vertices, where vertex i and vertex j are adjacent if and only if b; ; = 1 (for
1 <i < j £ n). Inother words, x encodes the right-upper triangle of the adjacency matrix.

Note however that two differentstrings x, y € Q can encode two isomorphicgraphs. For example
x :=101andy := 011 encode two isomorphic graphs (cf. Fig. [..1).



1.1 Prerequisites from computability theory

As anextstep, we want to formalize the intuitive notion of ‘computation’. As was remarked above
we will use a variant of the machine model of Turing [48]. Specifically, our machines will consist of
a read-write head and a storage tape. This storage tape consists of discrete cells stretching infinitely
in one direction.The head will read at every step of the computation one symbol written on the tape
and change the state of the machine, write a new symbol to the tape, and move to the left, right, or
stay on the current cell. An end of tape symbol § will tell the head not to move too far to the left and
all but finitely many cells will contain the blank symbol _. More formally a Turing machine can be
described as follows.

DEFINITION. A Turing machine A on the alphabet A = {§, _, 0, 1} is a tuple (S, ), where S is a
finite set, called ser of states, that contains at least the states Sy, Spql; and a function

§:SXA->SxAx{-1,0,1},

called transition function. If (s, a) = (s’, b, m), one demands that the following axioms are satisfied

(i) a = §ifandonlyifb = §,
(ii) ifa = §thenm # —1,and
(iii) if § = Spaic then s’ = Sy, @ = band m = 0.

The transition function should be understood as the logic behind the actions of the machine. Itis
applied at every step of the computation. Its arguments are the current state of the machine and the
symbol currently read by the head. The image of the transition function determines the new state,
the symbol written to the tape, and the movement of the head. From this intuitive view the axioms
of a Turing machine state

(i) that the end of tape symbol § may never be written to nor deleted from the tape,

(ii) that the end of tape symbol marks the left-most cell of the tape, and

(iii) that once the halting state Sy, is reached, the machine remains in this state and does not
move anymore.

Let us look at the example of the Turing machine in Fig. [.7. During the run of the machine the
head reads the symbol 0 at the current position and the machine evaluates the transition function §
at 0 and the current state S, e;qow- INOW assume that

5(Soverﬂow’ 9) = (Sreturn’ 19 _1)

One interprets this in the following way: The Turing machine changes its state to Seqm, the head
writes 1 in the current cell and moves one cell to the left. The movement is determined by the last
item of the triple §(Soyerfiow> ©), where —1 indicates moving to the left, 1 indicates moving to the
right, and 0 indicates not moving at all. This notion of step-wise computation is formalized in the
subsequent definitions.

DEFINITION. Let A = (S, ) be a Turing machine. A configuration of A is a triple (s, j,c) €
S x N x AN, Tt reflects the current state § of A, the current position j of its head, and the content ¢
of its work-tape.
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Figure 1.2: A Turing machine

A configuration of the form (Sy,y,, 0, ¢) is called halting. A start configuration is of the form
(Sgtare> 0, €) such that ¢(0) = § and there exists an n € N such that c(i) = _ifand only if i > n.
This means that in a start configuration the work-tape reads

§c(1)c(2)...c(n)__...

It will be very convenient to identify the finite string c(1)c(2)...c(n) € w with this tape content.
Note however, that albeit every string can be associated with a tape content, the converse is not true,
for instance

§001_0__...

is a valid tape content but we cannot interpret it as a finite string in the alphabet {0, 1}. Nevertheless,
if reference is clear, the symbols by b,...b,, € w shall denote both the string and the tape content

§ ifi=0
(i) :=1b;, ifl<i<n
otherwise

DEFINITION. Let (s, j,c)and (s, j’, ") be configurations of a Turing machine A = (S, §). One
writes (s, j,¢) 1 (s', j',¢') and calls (s', j’, ¢") a successor configuration of (s, j, ¢) if there exists an
m € {—1,0,1} such that

= 8(s,c(j)) = (5, c'(j), m),
* j'=j+m,and
« /(€)= c(€)forall € # j.

This relation makes the set of all configurations of A into a directed graph, called computation
graph. A run or computation of A on X € w is a path in this directed graph starting at the start
configuration (S, 0, X). A run of A on X is halting or complete if it reaches a halting configuration
(Spate» 0, ¥) with y € w. In this case I write A(x) = y. If A does not halt on input x, the symbol
A\(x) shall be undefined.

I will describe Turing machines using listings, where the fact that Sy, (Sitate> ) = (Sqtarer> b’ 1)
is encoded by

delta "state" b = ("state'", b', m)

Variables match all possible states or characters in the alphabet respectively. However, I follow
the convention that if an assignment of variables matches more than one pattern, the first matching
pattern is chosen. This means that
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Listing 1.1: A Turing machine adding one ro the input string

-- start by entering the "overflow" state

addl "start" '§' = ("overflow", '§', 1)
-- ... and stay in this state, as long as you read only '1l'-s
add1l "overflow" '1' = ("overflow", '0', 1)

-- if you read the first '0' or an empty cell replace it by '1'
-- and enter the "return" state to move the head to the first cell
addl "overflow" 'O’ ("return", '1', -1)

addl "overflow" ' _' = ("return", '1', -1)
-- we finish if we read '§' again or
add1l "return" 's! = ("halt", 's', 0 )

-- ... continue to move to the left and don't change the cell

-- content. Here "b” matches '0' or '1'

addl "return" b = ("return", b , -1)

addl _state _char = ("error", Y, 0 )
delta "state" 1 = ("state'", b', m)
delta "state" b = ("state''", b'', m')

should be interpreted as

5(5" b) = (Sstate” b,,: m), lfS = Sstate A b =1 )
(Sstate”’ b ,m ) ifs = Sstate ADb ?é 1

This kind of pattern matching may seem unconventional at first glance but yields mutually exclusive
definitions of the cases and is standardized in the specifications of the Haskell zo10 programming
languagel. See Appendix [A.] on how to simulate Turing machines using these listings.

EXAMPLE 1.1.2. Consider the Turing machine A 44, = ({Ssart> Shales Soverflows Sreturn> Serror > Oaddr) that
adds 1 to a (possibly zero-patched) binary representation of a natural number 7. Its transition func-
tion is described in Listing [.]. The last line of the program ensures, that § is a total function, as it
matches all remaining pairs of states and characters and lets the machine enter the state S,

The complete run of A 44, on 1101can be seen in Fig. [.3. To ease readability the binary represent-
ation of natural numbers is reversed. Thus, the string 1101 does in fact encode 11 = 23 421 420,

DEFINITION. Let A be a Turing machine.

(i) A computes the partial function that maps each x € w with a complete run to the output
A(x) and is undefined for all other strings in .
(ii) A accepts all x € w such that A(x) = 1 and rejects them if A(x) = 0.
(iif) A partial function on {0, 1}* is computable if there exists a Turing machine computing it.
Sometimes computable functions are referred to as recursive or efficient functions.

'see https://www.haskell.org/onlinereport/haskell12010


https://www.haskell.org/onlinereport/haskell2010
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(d) 5(ssmrt’ §) = (Soverﬂaw’ §, 1)

oo

§1111101]1

(b) 5(Soverﬂowa 1) = (Soverﬂow’ o, 1)

e o

s§loj1jo]1

(C) 5(Soverﬂow’ 1) = (Saverﬂow7 o, l)
slojojo]1

(d) 5(Souerﬂow’ 0) = (Srerurm 1, _1)
§lojo]1]1

(6’) 6(Sremrn’ 0) = (Sreturn’ 0, _1)

regn

sjojoj1]1

sljlojoj1]1

hate

09 6(Sreturn7 0) = (Sreturn’ 0, _1)

@) 5(Srzmrns §) = (Shalta §, 0)

wn

01011 ]1

(1) 8(Spaies §) = (Spatr» §,0)

Figure 1.3: The complete run of A 444, on 1101
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(iv) Asubsetofw = {0, 1}*,i.e. a problem, is decidable if there exists a Turing machine computing
its characteristic function.

(v) A problem is called semi-decidable or computably enumerable if there exists a Turing machine
accepting precisely the elements of the problem.

The last item of the definition above means that a problem is semi-decidable if there is a Turing
machine affirming membership of the corresponding set but the machine might not be able to refute
membership.

EXAMPLE L.L3. Let Q beafinite problem then Q is decidable. To see thislet n be the maximal length
of a string in Q and construct a Turing machine A with the states

S= {Sstart’shalt’ Saccept> Sreject} U {Sbl...bk : bl-'-bk €Ewfor0<k < I’l} ’
where LI denotes the disjoint union. As for the transition function &, we define

O (Sseares §) 1= (52,8, 1) (A denotes the empty string as above)

(Sbl...bkl9 1, 1) ifk <n
(Srejccu ) _1) OtherWiSC

6(Spy..by> 1)

,0,1) ifk <

(Srejecta — _1) otherwise

(Saceqprs - —1)  ifby..b € Q

S )= ’
(Sby...bye ) {(Sreject,_,_l) if by...bx & Q

where the schemes in the last three lines should be understood as one instruction per string by ...by, €
w for 1 < k < n. This way we obtain

n
1+3> 2 =143(2"1-1)
i=0

equations for . The idea of this machine is that it enters the state that corresponds to the string on
the tape that the machine has read so far. Now one of three things can happen:

* either the input string continues and we have read less than n symbols so far, then the machine
continues reading (first case of lines 2 and 3); or

* the machine reads a blank symbol _, then we must check if the string is in Q and accept or
reject accordingly (line 4); or

* we have already read n symbols, then we can reject for sure as Q contains no string with more
than n symbols (second case of lines 2 and 3).

It is now easy to extend & into a total function S X A — S X A X {—1,0, 1} such that once A
reaches S;ccep> the machine clears the tape except for a single 1, and if A reaches e, it clears the
tape except for a single 0, and halts.
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Note that the construction above fails if Q is infinite because in this case the set of states S is
infinite. However, if Q is co-finite we can exchange Syccepe and Syejece in the construction above to
obtain a Turing machine deciding Q. In Prop. we will see that the complements of decidable
sets are decidable in general.

Before we can prove that further sets are decidable we need a bit more theory of computable func-
tions.

LEMMA LL4. Let Ay = (S1,61) and Ay = (S,,08,) be Turing machines computing the functions
fi : Dy = wand f . Dy = w respectively, where Dy, D, are subsets of w. Then there exists a
Turing machine A ¢, ¢, computing the partial function f o fy © Dy N fi{(D,) = w obtained by
composing fi and f>.

Proof. If Sqare = Spai then machine A; and machine A, compute the identity function on w and
the claim is trivial. Similarly, if 61 (Sqare> 8) = (Shale> 85 0), then A computes the identity and the
claim is proven by setting A ¢, ¢, = A,.

We can therefore assume that we are not in these trivial cases and construct A ¢, ¢, from A; and
A, as follows: Let S] := S \ {Ssares Shate} a0d S5 1= S5 \ {Setares Shatc}> then set S = {Seare Share} U
SiusS;u {Scompose}7 where LI denotes the disjoint union. Now for a state s € S and asymbol b € A
we define

8:(s,b) if s € S7 U {Sgtare}
3(s,b) := (Scompose> D, M) if's € Sy and 8,(s, b) = (Spare, b, m)
T ]6,(s,b) if s € S5 U {8y}
52(Sstart’ b ) its = Scompose

Then Ag,.r, = (S,6) computes f; o f; because § is defined to first run the program of A; and if
this machine reaches a halting state run A,. ]

EXAMPLE L.I.5. One can encode a natural number n

(1) in tally notation

n— 1.1, ifn>0,

n-times

0~ A;
(2) by its (reversed) binary representation

k-1
n=2K+> b2l by.bp_11, ifn>0
i=0
0+~ 0; or
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Listing 1.2: A Turing machine checking whether the input is tally-encoded

-- start by entering the "check" state and

tally "start" '§' = ("check", '§', 1)

-- ... stay in this state while reading only '1'-s

tally "check" "1 = ("check", "1', 1)

-- on reading '_' accept the input and clear the tape ...
tally "check" ' = ("accept", Y, o-1)

tally "accept" 1! = ("accept", Y, 1)

-- ...except for cell c(1), where you write a '1'

tally "accept" '§’ = ("accept", 's', 1)

tally "accept"” v = ("halt", '1', -1)

-- however, if you read a '0' first, reject the input
-- by moving to the end of the input string ...
tally "check" ‘0’ = ("rejectMrR", '0', 1)

tally "rejectMR" '_' = ("reject", Y, o-1)
tally "rejectMR" b = ("rejectMrR", b, 1) -- “b” matches '0' or '1'

-- ... and clear the tape except for cell c(1) where you
-- write a '0'

tally "reject" '§’ = ("reject", 's', 1)
tally "reject" v = ("halt", '0', -1)
tally "reject" b = ("reject", "', -1) -- “b” matches '0' or '1'
tally _state _char = ("error", Y, 00)

(3) by ashifted and truncated form of its binary representation

k
n=1+ ) b2l by.b, ifn>0,
i=0
0~ A

In other words, n is mapped to the n-th string if one orders {0, 1}* lexicographically. I will write
<Jex for the lexicographical ordering of w = {0, 1}, Asw traditionally denotes the non-negative
integers in the fields of logic and especially set theory, this last encoding is the reason why I am using
the symbol w to denote the set of finite strings {0, 1}

In either case the set obtained by encoding N is easily seen to be decidable. In the case of the tally
notation (1), check that the string contains only copies of the bit 1. Indeed, this can be achieved by
the Turing machine

Atally = ({Sstart’ Shalt> Schecks Saccept’ Sreject’ SrejectMR’ Serror}’ 5)’

whose transition function is displayed in Listing [.2]. As for the binary representation (2), it suffices to
check that the string has length 1 or ends in a 1, and in the third encoding (3) every string is accepted.
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Remark. Let Qg be a decidable problem and Q € Qq a subset. If there exists a Turing machine
A that upon receiving x € Qg as input decides whether x € Q, then Q is decidable. To obtain a
Turing machine deciding Q we first run the Turing machine deciding Qq and reject x if Qp(x) = 0
otherwise we run A on X.

To see the usefulness of this technique consider the set of even non-negative integers Q encoded
in binary encoding. Taking Qy 2 Q to be the set of all non-negative integers N encoded in binary
encoding, Q is easily seen to be decidable by checking whether the first bit of a given string x € Qg
is 0.

Taking another look at the definition of computability, one sees that only functions in one ar-
gument defined on subsets of w mapping to subsets of @ can be computable. However, one can
easily extend this to functions on multiple arguments. To do this, one uses an injective function
(-,-) : D* > w, where D C w is decidable and encodes tuples by elements of w in such a way, that
the image

{(x1,x3) © x1,x, € D}

is decidable and the projections p;({x1, X;)) = X; fori € {0, 1} are computable. This means, there
are Turing machines Py, P, computing p; or p, respectively.

EXAMPLE L.1.6 (PAIRING FUNCTIONS). (1) Using tally notation (cf. Example [.1.5.(1]) one can en-
code (n, m) € N? by
(Tn7,"m7y = 1.10 2.1 .
n-times  M-times
To test, whether a given string X € w encodes a pair of non-negative integer, one only needs to check
whether x contains a single 0 and all other symbols are 1-s. As for the projections, machine Py clears
everything after the first 0 on the tape and P, deletes everything up to the first zero and then moves
the second block of 1-s cell by cell from left to right.
(2) A simple pairing function encodes the pair (b b,...b,,, ¢1¢;...c,) € w? by

(blbz...bn,clcz...cm> = blblebZ"'bnbn 01 C1C3...Cp-

Again it is easy to check whether a given string encodes a tuple. The second projection in this encod-
ing is obtained completely analogously as in the previous example. As for the first projection, the
machine P; first moves to the right, deleting every second symbol until it reaches the substring 01
indicating the end of the first component. At this point, the machine deletes all symbols to its right
until it reaches the first blank symbol and returns to the left until it reads by, in cell 2n — 1. The tape
will now look like the one in Fig. [.44.

Next it starts shifting the content of all cells one cell to the left until it reaches the end of tape
symbol § (cf. Fig. and c). The machine can find the end of the string by moving to the right
until it finds two consecutive blank cells (cf. Fig. [.4d). At this point the whole process starts over,
except when shifting left, the machine must check, if the cell it wants to write to is empty. If it is not
empty, it starts moving right again to find two consecutive blank cells. The process stops if it reads
two consecutive blank cells before reading a single blank cell.

By applying a pairing function iteratively one obtains an n-ary pairing function. The projections

10
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find non—emptyl

§ bl b2 e bn72 bnfl bn

(ﬂ) The machine finds the first non-empty cell.
shift left b,
A4

§ bl b2 e bn—2 bn—l bn

(b) The machine shifts the content of each cell one cell to the left ...

shift left b

N
§ | b1 | b2 by |-~ bn—1 bn
(C) ... until it reaches the end of tape symbol §.
§ bl b2 b3 e bn—l bn

(d) The machine finds two consecutive blank cells and starts over.

Figure 1.4: A schematic run of the first projection associated to the pairing function in Example

4

need to be composed accordingly. For example

(X1, X2, X3) B> (X1, (X2, X3))

yields a ternary pairing function and 7, o 7, is the projection onto x,. Using any of the pair-
ing functions above, one can consider n-ary computable functions by providing the encoded pair
(X1, X3, ..., X,) as the single argument of a Turing machine A. If the context is clear, I will write
A(xy, ..., X)) in this situation. Furthermore, these pairing functions allow us to define decidable
relations on w".

DEFINITION. LetR € w" be an n-ary relation on w. Then R is called (semi-)decidable if the set
X5 s Xp) ¢+ X1y e s Xy € W, R(Xq, .., X))}
is a (semi-)decidable subset of w.

When trying to find solution of equations or witnesses for relations the concept of efficient search
is very important. In the theory of computability it is modelled by a minimization operator.

DEFINITION. Let R C w? be a semi-decidable relation. We say f : Dr — w is obtained from R via
minimization and write

f) = py  R(x,y)
if
Dr ={x € w : 3y € w withR(x, y)},

II
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there exists a Turing machine A semi-deciding R, such that for all x € Dy the machine A can refute
R(x,y),ie. A(x,y) = 0, forall y <j,,, f(x),and R(x, f(x)) holds.

LEMMA 1.1.7. If f : Dg = w is obtained from a semi-decidable relation R C w? via minimization,
then f is computable.

Proof. Let x € Dg. We will start by trying whether the empty string 4 satisfies R(x, ). If this
is the case, then f(x) = A and we are done. Otherwise, the Turing machine semi-deciding R can
refute R(x, 4) and we move on to try the next string in lexicographical order. By definition of D,
there exists a string y € w such that R(x, y) holds and this string will appear in our listing of w after
finitely many steps. Thus, f is computable.

More formally, such a Turing machine computing f can be obtained as follows. First apply a
Turing machine that transforms a string by b,...b,, € w into the tape content

§b,__b, _..b,

Starting to count at index 0, the cells whose index is congruent 2 modulo 3 encode the empty
string A. We apply a Turing machine that computes the pairing (b, b,...b,,, 1) as in Example
from the cells whose index is congruent 1 or 2 modulo 3 and writes only to the cells whose index is
congruent 0 modulo 3. Then the tape will read something like

§ b,_b, by_by bs_b,....

Now transform the Turing machine Ag used in the definition of minimization into one that only
uses cells congruent 0 modulo 3 and apply it to the tape content. If Ag accepts we have found f(x).
Otherwise, we use a slight modification of the Turing machine of Example [.1.2], to obtain a Turing
machine thatupon receiving X asinput, outputs the next string in lexicographical order and uses only
cells whose index is congruent 2 modulo 3. At this point, we start the next iteration. O

We are now able to state equivalent definitions of decidable and semi-decidable sets.

PROPOSITION L1.8. Let Q be a problem. The following properties are equivalent.

(i) Q is semi-decidable.

(i1) Q is the domain of a (partial) computable function.
(iii) Q is the image of a (partial) computable function.
(iv) There exists a decidable relation R C w? such that

xXeEQ << 3Ty€ew: R(x,y).

Proof. (i)=> (ii): Let A be a Turing machine witnessing that Q is semi-decidable. Then A halts on
all x € Q and returns 1. If on the other hand x & Q then A outputs an arbitrary string y # 1, or
does not halt on x.

Consider the Turing machine Ajeck; defined in Listing [.3. It outputs 1 on input 1 and does
not halt on any other input. The machine obtained by composing A and A, peck1 does halt on x if
and only if x € Q.

12



1.1 Prerequisites from computability theory

(ii)=> (iit): Let A be a Turing machine, that halts on x € w if and only if x € Q. We construct
a Turing machine B that outputs x whenever A halts on x. Then Q is the range of the computable
function computed by B. Machine B will perform the following three operations.

Firstly, it transforms the string x = b;...b,, € w into the tape content

§b,by...bb, ...

In a second step, the machine checks by a modification of Turing machine A that only uses cells with
an even index, whether cells with even index correspond to an element in Q. If x was indeed con-
tained in Q, then the machine will stop after finitely many steps and can transform the tape content

back to
§b,...b,_.

This can be achieved by a slight modification of the machine computing the first projection in Ex-
ample [.1.6.(2).

If on the other hand x is not contained in Q, then in the second step of the computation the
machine will not stop. Thus X is not in the image of the function computed by B.

(i1i) = (iv): Let f be a computable function with image Q and let A be a Turing machine com-
puting f. For each non-negative integer n € N and all strings x := b;...b;,y = ¢j..¢inw, I
consider the relation R C w? defined by

R(n,x,y) :© Ahaltsonxinatmostn steps; i, j < n; and f(x) = y.

Note that for a fixed integer n the relation can contain at most 2%n triples. Thus, R is decidable for
fixed n. However, using induction on n one sees easily that R is decidable as a ternary relation. (If
R(n, x,y) holds, so does R(m, x,y) for all m > n. If R(n, x,y) does not hold, then either x or y
contains more than 7 bits; or A did not halt on x in 1 steps; or A(x) is not y. In the last two cases,
we perform one more step of the computation and can check whether A outputs y.) Finally, we
obtain

YEQ & 3Jze€w: Rm(2),m(2),y),

as claimed.

(iv)=> (i): By Lem. the function f(x) = uy : R(x,y) is computable. Compose f with a
function that returns 1 on all inputs to obtain a computable function that outputs 1 forall x € Q
and is undefined otherwise. [

Remark. The third equivalent property (iii) in the proposition above is the reason why semi-decid-
able sets are also called listable or computably enummerable sets.

The following proposition—which is sometimes referred to as Post’s theorem—is intuitively clear.
It states that if we have an algorithm that can affirm membership of a problem Q and if there is an
algorithm that can refute membership, then we can decide Q. However, a formal proof is technically
quite intricate.

PROPOSITION 1.L9. Let Q be a problem. Then Q is decidable if and only if Q and w \ Q are
semi-decidable.

3



1 Prerequisites and central notions

Listing 1.3: A Turing machine that balts and accepts only on inpur 1

-- start by entering the "check" state

checkl "start" 's! = ("check", '§', 1)
-- if you read a 1, check that the next cell is blank, and accept
checkl "check" "1 = ("check_blank", "1', 1)
checkl "check_blank" '_' = ("accept", Y,o-1)
-- if either of these conditions is not the case, reject
checkl "check" b = ("reject", b, 1)
checkl "check_blank" b = ("reject", b, 1)
-- accepting and rejecting actions

checkl "accept" 1 = ("halt", 1, -1)
checkl "reject" b = ("error", b, 1)
checkl _state _char = ("error", Y, 0)

Proof. Assume Q to be decidable by the Turing machine A, then Q is in particular semi-decidable.
Now compose A with a Turing machine B with the property B(1) = 0 and B(0) = 1. One obtains
a Turing machine deciding the complement of Q and w \ Q is thus semi-decidable, as claimed.

If on the other hand, Q and w \ Q are semi-decidable, then there are Turing machines A and A€
semi-deciding Q and w \ Q respectively. By Prop. we may assume that these machines only halt
on strings contained in Q or @ \ Q respectively, and that their only outputis 1.

We want to run these Turing machines in parallel. As each string X € w is either contained in Q
or not, one of these machines will halt and output 1, indicating whether x belongs to Q or not.

To this end, construct a Turing machine A py4 that transforms an input string X1 X;...X, € @

to
10100x;0x;0x,0x,...0x,,0x,.

Starting to countat 1, cellswithanindexi =1 mod 4 indicate if the head of machine A is currently
reading the cell with index i + 1, in this case a 1 is placed inside this cell, © otherwise; cells with an
indexi = 2 mod 4 represent the tape of machine A; and cells with indices congruent 3 or 0 modulo
4 represent the corresponding information for machine A°. The first block of 4 bits represents the
ends of the tapes of machine A and A€ respectively.

Now construct a Turing machine D whose states S = S; X S, X S, are triples of states of
machine A, states of machine A€, and some auxiliary states Sy, .

Say machine D is in state (5, 5, S4). At odd stages of the computation of D the head rests at the
end of tape symbol § and starts moving to the right until it finds the first 1 in a cell with an index
i =1 mod 4. All computation steps necessary for this will only effect s, and preserve 51 and s,.
Next the machine will mark cell i with 0 and will then carry out one step of the computation of A,
reading the cell with index i + 1 and writing in one of the cells with indices i — 3,i + 1, or i + 5.
Thereby the state 57 will be changed to the state dictated by the transition function of machine A.
Finally, the head moves one cell to the left, marks by writing a 1 the last position of its head, and
moves back to the end of the tape.

At even stages the head moves to the right undil it finds the first 1 in a cell with an indexi = 3
mod 4 and carry out the analogous steps for machine A€ as in the even case.
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1.1 Prerequisites from computability theory

At some point either the computation of A or the computation of A€ will halt. Then D has
reached a state where either the first or the second component of (sy, 53, 5,) € S is a halting state.
Then D can clear the tape and write 1 or 0 to the cell with index 1 to indicate whether 57 equals sy,
or s, does. O

1.1.2 Church-Turing thesis and the halting problem

In the remainder of this thesis I will make use of the following meta-mathematical thesis, which
cannot be mathematically proven but has been heuristically justified for all of the generally accepted®
formalizations of computation. It allows one to state properties of computability without referring
to a specific model.

CHURCH-TURING THESIS. The class of intuitively computable functions coincides with the class of all
Turing computable functions.

In his foundational paper [48] Turing proved a crucial result for the whole field of computability
theory and its practical applications. He noted

It is possible to invent a single machine which can be used to compute any computable sequence.

This may seem not surprising to the reader of the twenty-first century, who is used to being surroun-
ded by machines that can carry out nearly all tasks imaginable, but the insight, that it is possible to
build a single machine that can carry out all computations, can hardly be overestimated.

THEOREM LLI0. There exists a Turing machine U that computes upon receiving the tuple ("A7, x)
as input the output of Turing machine A on X, i.e.

UFA,x)=y < AMXx)=y

As a final task of this section we want to find a set K C w that is semi-decidable but not decidable.
This set will be the key ingredient in the task of settling Hilbert’s tenth problem. Note that it is not
hard to see that an undecidable problem exists, as there are only countably many Turing machines!
but uncountably many problems. However, to find such a set within the semi-decidable ones we
turn our attention to a problem that quite naturally arises in computability theory.

HALTING PROBLEM. Given a machine A and a string X. Does A halt on x?
The contradiction to the existence of a Turing machine deciding this problem is obtained by a diag-
onalization technique that is also present in Cantor’s proof that the power set of the integers is un-

countable or Russel’s paradox. However, the idea is best encapsulated by the self-referential nature
of the Pinocchio paradox, whose illustration by Carlo Chiostri is displayed in Fig. [..§.

THEOREM LLI1L. The halting problem is undecidable.

Proof. Assume there exists a Turing machine B that decides the halting problem, i.e. for all Turing
machines A and all strings x

1 if Ahaltsonx

B("AT, x) =
0 if A does not halton x

*The interested reader should find the comment [{] on hyper-computation by Davis quite revealing.
¥To be precise, there are countably many non-isomorphic computation graphs.
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1 Prerequisites and central notions

Figure 1.5: Pinocchio says a lie and stretches bis nose. What happens if be says ‘My nose grows now’? Does it grow, or does
it shrink?4

holds. Now using B construct a Turing machine B’ that simulates B("A™,"A™) on its input "A™
and enters an infinite loop if B(TA7,TA™) = 1. Expressed more formally this means

B’ haltson™A7 <« A doesnothalton ™A™,

Setting A = B’ yields the desired contradiction. O]

For a more detailed proof of this theorem and a lot more information on computability see [4].

As the halting problem is undecidable the halting ser defined by
K ={"A7, x) : A haltson x}

is undecidable. However, using the universal Turing machine it is seen to be semi-decidable.
COROLLARY L.L12. The balting set is semi-decidable but not decidable.

Remark. Note that the halting set contains the information of 4/l semi-decidable sets in the follow-
ing sense: Given a semi-decidable set Q, there is a total computable function f : @ — @ such
that

xXeE & f(x)eX. (rL1)

Indeed, since Q is semi-decidable, by Prop. there exists a Turing machine A that halts on x if
and only if x € Q. This means that

xeQ o ((Ax)eX.

Setting f(x) :=(TA7, x) yields the claim.

We say a problem Q is many-one reducible to a second problem Q" if there exists a total computable
function f : w — wasin (f.L1), i.e.

xXeEQ & f(x)eq.

*Own svG-tracing, derived of an illustration by Carlo Chiostri published in Collodi, Carlo. Le avventure di Pinocchio :
Storia di un burattino. Firenze Bemporad & Figlio, 1901.
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1.2 Prerequisites from model theory

One writes Q <,,, Q' in this situation. In the previous remark we have seen that all semi-decidable
sets are many-one reducible to K. The key step in settling Hilbert’s tenth problem is proving that
X is many-one reducible to a collection of sets which are definable by polynomial equations. This
suffices to prove the undecidability of Hilbert’s tenth problem, since we have the following properties
of many-one reducibility.

PROPOSITION L.L.13. (1) Let Q,Q" C w be problems such thar Q <,, Q'. Then if Q" is (semi-)de-
cidable, so is Q.
(i) If problem Q is many-one reducible to problem Q', and Q' is many-one reducible ro Q" , then Q

is many-one reducible to Q". In other words the relation of many-one reducibility is transitive.

Proof. (i) Let f © w — w be the computable function witnessing many-one reducibility of Q
to Q" and assume that Q’ is the domain of the computable function g. Then Q is the domain of
the computable function g o f. Indeed, assume that x € Q, then f(x) € Q' and thus g(f(x)) is
defined. Otherwise, f(x) € Q' and thus g(f(x)) is undefined.

To see the claim for the case of Q" being decidable, note that f witnesses many-one reducibility of
w\ Qtow \ Q" aswell. By Prop. both Q" and w \ Q' are semi-decidable and thus Q and w \ Q
are semi-decidable by the case that was just proven. Now Prop. implies that Q is decidable.

(i) By assumption there exist computable functions f : @ — wand g : w — w such that x is
in Q precisely if its image f(x) is contained in Q" and x is in Q" precisely if g(x) is in Q". Consider
the composition g o f. Itis a total computable function by Lem. [.1.4, and has the property that x
isin Q if and only if (g o f)(x) is contained in Q". Thus, Q is many-one reducible to Q" as claimed.

H

1.2 Prerequisites from model theory

Theidea of model theory is to differentiate between the statements we can make about mathematical
objects and the implementation of these mathematical objects. We will define langnages and their
syntax and will describe what it means for a mathematical object to model a theory. In this section I
will closely follow Chapter 1 of the textbook [24].

1.2.1 Formulae and models

Informally, a first-order formula is just a string of symbols that signify distinguished constants, func-
tions, and relations. We demand that a formula is well-behaved according to the interpretability of
constants, functions, and relations. We do however not make any assumptions on the implementa-
tion of these symbols. So a formula captures the syntax of a collection of mathematical objects. A
model, on the other hand, describes the semantics of an object. It gives concrete interpretations of
the symbols of a language and tells us, how the formulae are to be understood.

DEFINITION. A langnage £ isa quadruple (F,R,C,ar : F UR — N\ {0}), where F is a set of
function symbols, R is a set of relation symbols, and € is a set of constant symbols, such that all of
these sets are pair-wise disjoint. The function ar : F U R — N assigns to every function symbol
f € F and every relation symbol R € R the arity ny or ng respectively.
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1 Prerequisites and central notions

By the the arity n¢ of a function symbol f we describe that f should eventually be interpreted
as a function on n ¢ variables. Analogously, the arity ng of a relation symbol R describes that R will
denote an ng-ary relation.

It is customary to denote the language £ = (F, R, C,ar : F UR = N\ {0}) by

L={feF,ReR;ceC}

and thereby drop the arity function from the notation.

EXAMPLE 1.2.1. Examples of languages include

(1) the language of pure sets £ = ;

(2) thelanguage of (reflexive) orderings £ = {<}, where < is a binary relation symbol;

(3) the language of groups Lgroup = {-,71; e}, where - is a binary function symbol, = is an
unary function symbol, and e is a constant; and

(4) the language of rings with unity £ ring = {+,—,, 0,1}, where 4+, —, and - are binary func-
tion symbols and 0, 1 are constants.

These languages allow for various interpretations—not all of them might be the intended ones—
and each of these interpretations is called a model. More formally, we have the following definition.

DEFINITION. Let £ = {f € F;R € R;c € C}be alanguage. A model A of L is a non-empty set
A, called the universe or carrier set of 2, together with

(i) afunction f¥ : A" — A for every function symbol f € ¥,
(ii) a relation R¥ C A"R for every relation symbol R € R, and
(iii) a constantc® € A for every constant symbol ¢ € €.

We will use the notation
A=(A; e F;R* e R;c* € @)
to denote this model.
A model in a language without relation symbols is called algebraic structure.

EXAMPLE 1.2.2. We list some examples of models for the languages defined above.

(1) In the language of pure sets £ = @, every non-empty set S gives rise to a model & = (S).

(2) An example of a model in the language of (reflexive) orderings £ = {<}is M. 1= (N, <),
where < denotes the usual ordering of the non-negative integers.

(3) Asfor Lgroup = {-, -1 e}, any group G induces a model. Indeed, consider the algebraic

structure ® 1= (G;-®, 71 ; e®), where -® denotes the binary group-operation, -19 denotes inver-
sion, and €® € G is the neutral element of G. However, Neg = (N;+,0;0), where 0 : N — Nis
defined by n = Oforalln € N, is an L4y p-structure as well.

(4) Let R be a ring with unity, then R := (R; +R] R KRR 1Y where 4%, %, R are
the respective binary ring-operations and 0%, 1% are the neutral elements with respect to addition
and multiplication, is a model in £,;y,4. Of special interest to us will be the £, 4-structures 3 :=
(Z;+,—,+;0,1)denoting the structure of rational integers and Ok : = (Ok; +,—, -; 0, 1) denoting
the structure of algebraicintegers (cf. Section ). However, we will also consider the £,;,¢-structure
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N = (N;+,=,-;0,1) of the non-negative integers, where = : NXN — Nisdefinedbyn ~m =
max(0,n — m).

As a next step we want to define the syntax of formulae but at first we consider terms.

DEFINITION. Let £ = {f € F;R € R;c € C}bealanguage. The set of £-terms is the smallest set
T(L), such that

(i) every constant symbol ¢ € Cis a term,
(ii) every variable symbol Xy, X,, X3, ... is a term, and
(i) iftq, ..., tn, € T(L) are terms then f(tq, ..., tnf) is a term for all function symbols f € F.

For example +(+(-(X1, X1), *(X2, X)), 1) is an £,,4 term. It is more conventional—and more
legible—to write this term in infix-notation to obtain the ‘polynomial’

X1 X1+ XX, +1,

Using the very important technique of structural induction, we can show thatevery terminan £, ,6-
structure is a polynomial (see Lem. [.2.3). In order to do this we need to consider terms as functions.
There is just a little technicality in our way, that can be avoided by defining S° : = {@} for every set
S and interpreting a constant ¢ as a 0-ary functionc : S 05 S,

DEFINITION. Let £ := {f € ;R € R;c € C} be a language and let A be a model of £ with
universe A. Fora term t(Xq, ..., X) € T(£) that contains at most the variables X1, ..., X, we define
the term function t* © A" — A associated to t(Xy, ... , X,,) recursively as follows:

(i) Ift(Xq,...,X,) = ¢ € C, then t*(ay, ..., a,) = X forall oy, ..., @, € A.
(i) Ift(Xy, ..., Xp) = X for1 < i < n,thent® := 7" is the projection onto the i-th coordinate.
(iii) Ift(xq,..., X, ) is of the form

E(Xqy e s Xp) = fE(Xy ey Xy ens tnf(xl, s X))

for some basic function f € F and some terms t1(Xq, ... , Xp)s «ev) tnf(Xl, we s Xp), then

2y, . a) t= FRER (A, e ),y e t?,[f(ocl, )

In other words, the set of term functions of a given model 2 is the smallest set of functions, that
contains all projections, all constants, as well as all basic functions of 2, and is closed under compos-
ition. If 2 is an algebraic structure, the set of term functions of 2 is sometimes called the function

clone of .

LEMMA 1.2.3. Let R be a ring with unity and R its associated Lyipg-structure. The set of term
[functions of R is the set of polynomial functions with integral coefficients Z[X1,X,, ...].

Proof. Lett € T(Lying) be a term. We argue by structural induction, that is induction on the
number of symbols appearing in .

(i) Ift = cisaconstant, then t = 0 or 1. Both are constant polynomials with integral coefh-
cients.
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(i) Ift = x5 for somei € N\ {0}, then t® = X; is a monomial.

(iif) Finally,ift = f(f1,t,), where f € {+, —, -} and t;, , are terms, then we can assume that R
and t;n are polynomials with integral coefficients and as Z[X;, X,, ...] is closed under sums, differ-
ences and products of polynomials, the term functions are indeed contained in Z[ X1, X5, ...]

To see the converse inclusion note that every positive integer 1 can be expressed as the £,.j,¢-term

1+1+..+1

n-times

and every non-positive integer 1 can be expressed as

0-1-1—-..-1.
|n|-times

Then a monomial aX;,..X;, € Z[X;,X5,...], with iy, ..., ig € N\ {0} not necessarily distinct, can
be expressed as the term

a 'xil 'xid,
where a is the term representing the integer a. Finally, since every polynomial p is a finite sum of
monomials p = m; + ... + My we can find a term

f=Mmy 4 ... +m,
where m; is the term representing m; (1 < i < k), such that t® = p. [
In the lemma above I have considered the polynomial functions
p1:R—-R, p(X)):=X?+1 and p,:R?>->R, p,(X1,Xy) ;=X +1

as the same polynomial function. This can be justified by identifying all polynomials in the ring
Z[X1,X>, ...] with functions p : RY — R depending only on finitely many arguments.
Finally, we have all tools at hand to formally define formulae in a language.

DEFINITION. Let£ :={f € ;R € R;c € C}bealanguage. We call a string ¢ aromic L-formula
if
(i) there exist £-terms ty, t, such that ¢ = t; = t,, ord

(ii) there exist £-terms fy, ..., £, and a relation symbol R € R such that ¢ = R(fy, ..., t,,,).

The set of formulae in £ is the smallest set ®(£) containing all atomic £-formulae that is closed
under the following constructions:

(iii) If ¢ € ®(L)isaformula, so is its negation ~p € P(L).
(iv) If ¢y, P € P(L) are formulae, then their conjunction (¢ A ¢,) € P(L) is a formula.

SNote the difference between the two symbols = and = in this equation. While = denotes an equality on the meta-
level, i.e. it denotes that both strings contain the same symbols in the same order, = is just a symbol contained in the
strings.
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(v) If (x) € ®(L) is a formula containing at least the variable x in one of its terms, then 3x :
d(x) € ®(L) is a formula.

Just for convenience we define the following abbreviations:

(vi) If ¢y, ¢, € P(L) are formulae, we define their disjunction (P, V ¢,) by =(=¢; A —¢p,).
(vii) If ¢y, P, € ®(L) are formulae, then ¢p; — ¢, is short for ~(¢; A ~,).
(viii) If p(x) € P(L) is a formula containing at least the variable x, then we abbreviate =3x :

=¢(x) by Vx : ¢(x).

Note that formulae as defined above are just strings and do not inherit any meaning or truthful-
ness.B However, once we interpret a formula in a model, we can say whether the formula is true or
false. Let us consider some examples in the language £,;y,4 of rings with one.

EXAMPLE 1.2.4. The following are £, 4-formulae:

(1) X1-X3 = X3
(2) IXy 1 Xy-Xy, =1
(3) VX12VX2 :VX3:(X1+X2)‘X3iX1'X3+X2'X3

Intuitively, the formulae above can be interpreted as

(1) Xq times X; equals X3,
(2) X4 isinvertible with inverse X5, and
(3) the ring operations satisfy the distributivity condition.

In the formulae of the previous example one technical obstacle becomes apparent. While the
formula of Example is either true or false in a given £, g-structure, the formulae in (1) and
(2) depend on the choice of elements for X1, X, and X3. For this reason we must distinguish between
two kinds of appearances of variables.

DEFINITION. Let X be a variable and let ¢ be a formula containing x. If ¢ contains 3x : (x) asa
sub-formula for some formula 1, we call this appearance of x bound appearance. All appearances of
x that are not of this shape are called free appearances.

In Example all appearances of X1, X; and X3 are bound. In (2) variable X, appears bound-
ed while X, is free and in (1) all variables appear freely. For a formula ¢ we will write $(X, ..., X,)
to emphasize that at most the variables X1, ..., X, appear freely in ¢.

DEFINITION. Let £ be a language and let 2 be model of £ with universe A. For a formula ¢ =
$(Xq, ..., Xp) and elements ay, ..., a, € A we say that ¢(ay, ..., a,) is true in A or A models
¢(aq, ..., ;) and write

AE p(ay,...,q)

if the following recursively defined conditions are met:

(i) Ifp =t; =t, for two terms ty, t5, then A F p(atq, ..., ox,,) if

ey, ., o) = BAg, e Q).

®Note however, that there are formulae that are true in all models, for instance VX1 : X; = X is easily seen to hold in
all models.
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(ii) If ¢ = R(ty, ..., typ) for a relation symbol R and terms £y, ..., £, then A F p(ay, ..., ay) if

Sl GG AV RO . (- SV %))

(iii) If ¢ = 79 foraformulayp, then A F p(ay, ..., ay,) if A F P(ay, ..., &) does not hold.
(iv) If ¢ = (; AY,) for two formulae Py, P,, then A F ¢(ay, ..., ay) if both A E P, (ay, ..., )
and A E P,(ay, ..., &) hold.
(v) If p(Xq, ., Xp) = Ix ¢ P(X, Xq, o, X), then A F Py, ..., qp) if there existsan x € A
such that A F ¥(a, ay, ..., ;).

Remark. (1) Ileave it as an exercise to check that our abbreviations V, — and V have their inten-
ded interpretation of disjunction, implication and universal quantification.
(2) Note that variables can have both free and bound appearances in the same formula, for ex-
ample X, in
(IXy 1 Xq - Xy = X9) A(Xy + X3 = Xq).
By the definition of what it means that a formula is true in a model, we can restrict our attention
to formulae, such that all variables appear eirher freely or bounded but not both, and if a variable

appears bound, then it is bound by a single quantifier. For instance, it is easy to check that the
formula above is true in a model if and only if the following formula is true

(Ixy 1 Xq Xy =X3) A (X4 + X3 = Xq).

Variables that appear freely in a formula are also called free variables.

A formula without free variables is called a sentence. In a fixed model a sentence is either true or
false. This follows easily form the definition of truth in a model.

1.2.2 Morphisms, theories, and decidability

In this section I introduce some very important notions from model theory and universal algebra. I
start with the concept of morphism. The reader should already have encountered morphisms in basic
lectures on abstract algebra. They are just mappings that respect the basic operations of structures.
More formally, one defines a morphism as follows.

DEFINITION. Let £ = {f € F;R € R;c € C} be a language and A, B two models in £ with
universes A and B respectively. A function ¢ : A — Bis called L-morphism if

(1) o(f*ay, ..., ocnf)) = 3(p(ay), ..., qo(ocnf)) holds forall f € F and all ay, ..., A, € A,
(i) R¥(ay, ..., Opg) implies R3(p(ay), ..., p(a,,)) forallR € Randall ay, ..., @, € A;and
(iii) @(c*) = cBforallc € C.

Remark. (1) Despite the similarity of the definition of £,;,g-morphisms to ring-morphisms in
the sense of abstract algebra, not every £, 4-morphism is a ring-morphism and vice versa. Consider
for example the identity idy on the £,;,g-structure ¢. As N is not a ring in the sense of abstract
algebra, idy is not a ring-morphism, but it is clearly an £,;,,g-morphism.
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1.2 Prerequisites from model theory

On the other hand, the mapping ¢ : Z — Z X Z defined by

p(a) = (0,a)

is a ring-morphism that is not an £,,4-morphism, as 1 is not mapped to the neutral element (1, 1)
inZxZ.

(2) As in abstract algebra, an injective morphism is called monomorphism, a surjective one epi-
morphism, and a bijective morphism is called isomorphism.

DEFINITION. Let £ be alanguage.

(i) A setof L£-sentences is called an £-theory.
(i) Let A beamodelin £. We say U satisfies a theory T and write 2 F T if % models all sentences
inT.
(iii) A class of models M in £ is called elementary class if there exists an £-theory T such that for
all models 2 the following equivalence holds

AeM < AET.

(iv) An elementary class V of algebraic structures is called universal variety if the defining theory
T does only include universally quantified atomic formulae.

EXAMPLE 1.2.5. The class of groups forms a universal variety with respect to L gy p- Thisis the case
since the group axioms

VX1 Xq € = Xq,
VX1 €+ Xy = Xq,
VX1t VX, @ VX3 0 (Xq - X3) - X3 = Xq - (X5 - X3),

Vx;: Xg- X7l =e, and

1
Vxpi xpteoxg =e

characterize groups completely. Another example of a universal variety are rings with unity. Note
however, that fields do not form a universal variety with respect to £,,4, as we demand that elements
unequal to 0 are invertible which can be expressed by the sentence

VXy 1 (AX; =0) > (IX, : X1+ X, =1)

containing both universal and existential quantifiers.

Universal varieties are useful, as substructures can be characterized by embeddings, e.g. we have
that a subset S of a ring with unity R is a sub-ring if and only if S carries an £, 4-structure & such
that the embedding

t:S—>R, (a)=a«a

is an £,j,g-morphism between @ and the £,;,g-structure of R. Moreover, we have the following
important result.
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1 Prerequisites and central notions

THEOREM 1.2.6. Let A and B be two L-structures, with universe A and B respectively, and let
@ A = B be a bijective L-morphism. Then U and B are elementary equivalent, ze. for all
L-sentences ¢, A models ¢ if and only if B models ¢.

A proof of the theorem using induction on the structure of formulae can be found in the text-
book [29, Thm r.r.10]. For the reader who wants to learn more about universal algebra the text-
book [[] is an excellent reference.

To conclude this section we describe theories of special importance to our task of settling Hilbert’s
tenth problem and define what it means to decide a theory.

DEFINITION. Let £ be alanguage and let 2 be a model with universe A in £.
(i) The full theory of U is the set
Th(A) :={p € D(L) : pisasentenceand A F ¢}

of all sentences true in 2.

(i) The purely Diophantine theory of U is the set
H10™(A) := {¢> € (L) | ¢ = 3Ixy, : ..3xy, P(Xi,, .. X4, ), P is atomic, and A F ¢}

of all fully existentially quantified atomic formulae that are satisfied by 2.
(iii) The primitive positive theory of U is the set

Ths, (20 = {¢ € o) [P75si-Smici Aimy Wiy

; is atomic for 1<j<m, and AF$
of all fully existentially quantified conjunctions of atomic formulae that are satisfied by 2.

Let us take a look at some examples to get a better understanding of these abstract definitions.

EXAMPLEL2.7. (1) LetRQ :=(Q;+,—,;0,1)be the £,;,4-structure of the rationals. Then
QFVXl . (_'Xlie)—)(HXZ . Xl'Xzil)

and therefore this sentence is contained in Th(Q). However, 2 € Z \ {0} is not invertible in Z.
Thus, the sentence is not in Th(3).

(2) Consider ¢ := Ix, : Xi + 1 = 0. Then ¢ can be satisfied by the witnessi € Cin € :=
(C;+4,—,-0,1)asi?>+ 1 = 0 holdsin €. Thus, ¢ is contained in H10*(C), but the sentence is not
contained in H10™(3).

(3) Consider the directed graph & := ({1, 2, 3,4}; E) below.

/]
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1.2 Prerequisites from model theory

Here E denotes the binary adjacency relation, where for instance E(1, 2) holds but E(2, 1) does not.
The following sentence intuitively says that a graph contains a cycle of length 3.

¢ 1= 3xq : 3Ix, : 3IXg ¢ (E(Xq, X) A E(Xy, X3) A E(X3,X1))
Using 1 as witness for X1 and 2, 4 as witnesses for X,, X3, we obtain that ¢ is contained in Th3 (®),

and it is not difficult to find a directed graph that does not model ¢.

While we can already state a lot of properties in the languages we have considered so far, we can
for instance not formulate a sentence in the language £, that says a specific polynomial has a
root. Take for instance the £,;,g-structure € of C, we cannot formulate a sentence that says the

olynomia —1i asarootin C. To get around this limitation we define diagrams.
poly 1X?—ieC[X]h tin C. To get d this limitat define diag

DEFINITION. Let £ be alanguage and 2 a model in £ with universe A. We define the A-language

as
Ly :=LU{c,|aeA}

the union of £ and a constant symbol for each element of A.
Clearly, 2 is also a model in £ 4 by additionally interpreting ¢ := a foralla € A.

DEFINITION. Let £ be alanguage and let ¥ be a model with universe A in £. We define the follow-
ing £ 4-theories.

(i) The complete diagram of U is the set
DE(A) :={p € D(L,) | ¢ isasentence and A F ¢}

of all £ 4-sentences true in 2.

(i) The Diophantine theory of U is the set
H10(2[) = {¢ S (I)(»CA) | ¢ = ElXil . ...ElXik :'(,b(Xil, ey Xik),l,b is atomic, and A E (}5}

of all fully existentially quantified atomic £ 4-formulae that are satisfied by .
(iii) The primitive positive diagram of U is the set

D5+(2[) = {qﬁ e q)(L) ' ¢=HX11 :"'3Xik:/\j:1¢j(xil ,,,,, Xik)’}

; is atomic for 1<j<m, and AF$

of all full existentially quantified conjunctions of atomic £ 4-formulae that are satisfied by 2.
(iv) The atomic diagram of U is the set

. there exists an atomic formula 3 with
D(A) := {¢ € D(Ly) | $=1, or p=-1p and Ak¢p }
of all atomic £ 4-sentences and negations of atomic £ 4-sentences that are satisfied by 2.

Of special interest to us is the Diophantine theory of rings with unity. The name can be justified
by the following lemma.

THEOREM 1.2.8. Let R be a ring with unity and let R be its Lipq-structure.
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1 Prerequisites and central notions

(i) The set of term functions associated to Lg-terms is the set of polynomial functions R[ X1, X, ...].
(ii) Let P C ®(Lg) be the set of all existentially quantified atomic Lg-formulae. There exists a
surjection
7 i P — R[Xy, Xy, ]

such that for all sentences ¢ € P we bave
¢ € HIO(R) <  7(¢p) has roots in R.

Proof. (i) Lett be an Li-term. One proves completely analogously to the proof of Lem. [.2.3,
that t* € R[X;, X5, ...] is a polynomial function. The only difference is that constants now range
over all of R instead of {0, 1} thus yielding the different coefhicients.

To see the converse inclusion we note that monomials aX; ...X;, € R[X;, X, ...], with indices
i1,...,ig € N'\ {0} not necessarily distinct, correspond to terms

Cq 'Xi1 '...‘Xid.

Since every polynomial p is a finite sum of monomials we obtain a term representing p by joining
the terms representing the monomials using the symbol +.
(i) Let¢ € P beasentence. By definition of P there exists an atomic £ g-formula ) such that

¢ = ElXil . ...ElXik :l,b(Xil,...,Xik).

Since £ contains no relation symbols, all atomic £ g-formulae are identities of terms. Thus, there
exist terms ty, t, such that

lp:tlitz.

By part (i) of the theorem, the term functions R and £ are polynomial functions in R[X7, X5, ...].
We set m(¢) =t — £},

To see that 7 is surjective let p € R[X7, X5, ...] be a polynomial. Then by (i) there exists a term ¢
such that t® = p. Now set

¢ L= ElXj_1 . ...ElXik :t(Xil,...,Xik) =0,

where X;_, ..., X;,_are all variable symbols appearing in ¢. Then 7(¢) = p as claimed.
Let now ¢ € H10(R) be a sentence that is true in R. By the discussion above we find that

¢ = ElXi1 . ...ElXik :tl(Xil,...,Xik) = tz(Xil,...,Xik),

for some L g-terms 1, t,. Using the definition of truth in a model this is the case if and only if there
exist elements @; , ..., &;, € Rsuch that
R —_ R
tl (Olil, ceey Ofik) = t2 (C(il, veey ccl-k).

But this identity holds if and only if 77(¢) = t; — t; has roots in R.
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1.2 Prerequisites from model theory

To finish our last task of this section we have to overcome once more a technical difhiculty: If we
want to define what it means to decide a theory, we must identify the theory with subsets of w. To
this end, Godel [fif] introduced a method that is today commonly known as Gidelization.

DEFINITION. Let £ be an at most countable language and let
i Luf=,A3,:50), %> N\ {0}

be an injective function such that i(s) > 9 forall s € £ and the image of i is an initial segment of
the usual order of N '\ {0}.

The Gidel number gn(¢) of a formula ¢ € P(L) is obtained by first replacing every variable
symbol X5 in ¢ by the string

J-times
x 7.
Say the resulting string is
S = S152...Sn,

where s; is a symbol contained in £L U {=,~, A, 3,(,), X,'} then

i(s2) i(sn)
2 ..Pn ,

gan(¢) := piVpi? p

where p; € N is the i-th prime.

By the uniqueness of the prime factorization in N, two different formulae cannot have the same
Godel number. Finally, one obtains an encoding ™7 : ®(L) — w by composing gn with an
encoding of the natural numbers (see Example [.1.5.(3)).

EXAMPLE 1.2.9. To get a feeling for how fast the Gédel numbers grow let us consider the Gédeliza-
tion of the following £, ;,4-formula
dxq, X =0.

We choose the function i as described in the table below.

S = - A3 : ()y)x "+ = - 0 1

i(s) 1 234567 8910 11 12 13 14

Using the notation from the definition we obtain

yielding the Godel number
gn(¢) = 2438597°11813°1711913,

which already has 52 decimal digits.

DEFINITION. Let £ be an at most countable language. An L-theory T is decidable (semi-decidable)
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1 Prerequisites and central notions

DE(A)
Th(2r) — T
T / DEH‘_I‘(QI)

Th3, ()
T H10(A)
H10™(2A) D(A)

Figure 1.6: The theories defined in Section may be ordered by set-inclusion (arrows pointing from sub- ro super-sets)
and many-one reducibility

if the set
{f¢7: €T}
is decidable (semi-decidable).

Remark. Let A be a model. If one orders the theories defined above with respect to set-inclusion,
the interrelations depicted in Fig. .4 hold.

If the language and the universe of 2 are at most countable then we can Gédelize these theories
and identify them with their set of Gdel numbers. In this setting it is not hard to see that the
theories

* S(Th(A)) :={¢p € P(L) | ¢ is a sentence},

* S(H107(W) :={p € ©(L) | ¢ = Ixy, 1 .3%5, 1P(Xi, ...y X1, ), P is atomic}

 S(Ths, () 1= ¢ € @(e) [P=H bt Ay By ki)

; is atomic for 1<j<m

* S(DE(A)) :={¢p € P(L,) | ¢ isasentence},

* S(H10() :={p € (L) | ¢ = Ixy, ¢ ..3xX5, P(Xy,, ..y X3, ), P s atomic},

. S(DEH_(%[)) = {¢ = @(L) ‘ ¢=E|Xil 5...3Xiki /\j:1 lpj(xil ..... Xik),}, and

z[)j is atomic for 1<j<m

SN 1= {p € B(e ) | oot
are decidable. A Turing machine deciding these theories must only check whether a string encodes
a syntactically valid sentence using the allowed symbols [cf. 4, Chap. 8.1].

Let now T € {Th(2),H10™(A), Tha, (A), D(A), H10(A), D3, (A), D(A)} be a theory and
U C T asubtheory contained in {Th(%[), H10™(20), Thy (1), DE(A), H1O(), D3+(2[),D(2[)}.
We prove that U <,,; T holds. For this purpose note that U = T N S(U) holds and consider the
sentence

¢J_::0i1,

2.8



1.2 Prerequisites from model theory

D¢(Ok)
Th(Ok) T
T D3, (0x)

Tha, (D) ;j)/ I
<

I // H10(Dg)

H10"(Dk) D(Ok)

Figure 1.7: For models of algebraic integers O the diagram collapses w.r.t. many-one reducibility if X <z, D3, (D)

which is contained in S(T') but not in T. The function f : @ — w defined by

1 r B
) = {;: ifx € .S(U)
¢, otherwise

is computable, as S(U) is decidable. Additionally, it has the property that a string X is contained in
FUTif and only if f(x) is contained in T'. Indeed if x encodes a sentence ¢ that is part of S(U) then
f(x) = x. In this case, x isin T if and only if x is in S(U) N T = U. If on the other hand x is not
in "S(U)™ then x is surely not contained in "U™ and f(x) = "¢, " which is not turn contained in
TT7. Thus proving the claim.

Concerning rings of algebraic integers (incl. Z) and their models O, we will see in Lem.
that Thy, (D) is many-one reducible to H10"(Dg) and that D3, (Ok) is many-one reducible
to H10"(Og) In order to settle Hilbert’s tenth problem we will show for some rings of algebraic
integers that the halting set XK is many-one reducible to D3, (k) and vice versa. However, even
more is true as we will show that this is sufficient for the interrelations—with respect to many-one

reducibility—depicted in Fig. [.7 to hold between the theories.

1.2.3 Computable structures and decidable models

Up to this point the encoding of problems was treated as some kind of black-box. This subsec-
tion takes a categorical view on computability and ensures us, that—up to a sensible definition—
encodings of the rings we concern ourselves with do not matter. The interested reader may whish
to consult the excellent textbook by Stoltenberg-Hansen and Tucker [4G] on this subject. However,
I am using the notation of the paper [20] and the textbook [4, Chap. 16].

Throughout this section I will identify the set of non-negative integers N with the set of strings w
via the encoding described in Example [.1.5.(3).

DEFINITION. Let £ be an at most countable language. We say £ is computable it we can Godelize
the set of £-formulae ®(£L) in such a way, that gn(®(£L)) is decidable.

Note that we can only change the function i described in the definition of the Gédelization. Thus,
we can rearrange the symbols of our language to simplify our computations. In this view, a language
L ={f € F;R € R;c € C}is computable if we can encode its basic symbols in such a way that
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1 Prerequisites and central notions

1. thesets i(F), i(R), and i(C) are decidable; and
2. the function ar : i(F) Ui(R) — w defined by i(€) — ar(€) is computable.

Indeed, if this is the case, we can use the properties of the Godelization to obtain from an encoded
formula gn(¢) the sequence of symbols that ¢ contains and then check efficiently using structural
induction, whether ¢ is a well-formed formula.

LEMMA 1.2.10. Let £ be a computable language. For a fixed Godelization, the following numbers are
computable for every L-formula ¢ from the Gidel number gn(¢).

(i) The length In(¢) of ¢, which is the number of symbols appearing in ¢.
(it) For everyi € {1, ...,In(@)}, the code i(s) of the symbol s appearing in the i-th position of ¢.
(iii) The number of quantifiers appearing in ¢ and the number of free variables.
(iv) The Godel number of the negation of ¢.
(v) If a second formula 1 is given, one can efficiently obtain the Godel number of the conjunction
of ¢ and .
(vi) If §(X) contains the free variable X and the Gidel number of a term t is given, one can effi-
ciently obtain the Gidel number of $(t), i.e. the Godel number of the formula, where each free
appearance of X is replaced by t.

The lemma is easily proven using that the prime factorization of a positive integer is computable.
All of the numbers above can then be computed by manipulating the factorizations.

Of course, all languages we will consider—and have considered so far—are computable. In fact,
they are all either finite, or contain only finitely many non-constant symbols.

DEFINITION. Let £ beacomputable language andleti : £ — Nbe the function used to Godelize
L.

(i) A model U in £, with universe A C w, is called computable if A is decidable and there exist
two computable functions F, C and a decidable relation R such that

F(l(f)’ <OCI, see anf>) = fg[(al’ sty anf)

holds for all function symbols f € F and all elements ay, ..., ay, . € A,

RGR), (a1, s dp)) € R¥(aty, .o, Q)
holds for all relation symbols R € R and all elements a, ..., U, € A, and
C(i(c)) =c¥

holds for all constant symbols ¢ € €. As before angled brackets (-) in the expressions above
indicate pairings like in Example [.1.6.(2]).

(i) A model A with universe A is called efficiently presentable if U is isomorphic to a computable
model with universe Q 4 C w in the same language.

(iii) A morphism between computable models is called computable morphism if it is computable
as a partial function.
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1.2 Prerequisites from model theory

Remark. (1) An efficient presentation of a ring R is a ring-homomorphism -7 : R — Qg of R,
where Qg C w is decidable and all operations of Qp are computable functions.

(2) Stoltenberg-Hansen and Tucker [46] use a slightly modified definition of computable rings.
They consider effective enumerationsag : Qr — R, where Qg C wisacomputable £,;,4-structure
in the sense of the definition above and ag is an £,;,g-epimorphism. Then the ring R is called
computable if there exists an effective enumeration ag : Qr — Rsuch that the equivalence relation

X) Sqp X, ©  ag(xy) = ag(x;)

is decidable on Qp.

This definition can have slight technical advantages. But note that in this case Qg need not be
aring in the sense of abstract algebra, an £, 4-structure in the sense of universal algebra suffices.
Let lag'({n})] € Qg denote the smallest element of ag*({}) in lexicographic order. By setting
7 = lag'({n})] for each 7 € R one obtains a ring-isomorphism R — Qp that gives rise to an
efficient presentation of R. So R is computable in the sense of Stoltenberg-Hansen and Tucker [46]
if and only if it is efficiently presentable in the sense of this thesis.

The following alternative characterization of efficiently presentable models can easily be proven
via structural induction.

LEMMA 1.2.11. Let £ be an at most countable language and W a model in £ with universe A. Then
the following are equivalent.

(i) U is efficiently presentable as a model in L.
(ii) U is efficiently presentable as a model in L 4.
(iii) The atomic diagram of U is decidable.

EXAMPLE 1.2.12. (1) Every finite structure (S; f1, ..., f) with S C w is computable. The set S is
decidable as it is finite and the domain of each operation f; for 1 < i < nis finite as well. A Turing
machine computing f; can store the images of all elements in the domain in memory.

(2) InExample the non-negative integer n was encoded by a string of 1 consecutive 1-s. I
have also already presented the algorithm deciding "N7 C @ with respect to this encoding. Consid-
ering N asan £,;,g-structure, one finds that the tally encoding gives rise to an efficient presentation
of N.

The constants 0 and 1 are trivially computable, by clearing the tape in the first case and writing a
single 1 in the second case. Using the pairing function of Example the binary operations +,
=, and - are also easily seen to be computable. As for + the algorithm takes the input

1..101..1

and replaces the 0-symbol by an 1 and deletes the rightmost 1.

(3) IfRisacomputable integral domain, then the polynomial algebras R[X7, ..., X}, ] in arbitrary
many indeterminates and R[ X7, X, ...] in countably many indeterminates are efficiently presentable
R-algebras.

A possible implementation starts by implementing the monoid (M; -; X; | i € N) and extends it
to the R-algebra R[X1, X, ...]. Within R[X7, X5, ...] the domain of every subalgebra R[X7, ..., X}, ]
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is decidable and therefore the structure is computable. See the textbook [46, Sec. 4.4] for a more
detailed discussion and Appendix [A.2] for a sample implementation based on this idea.

(4) Ingeneral Z and every finitely generated free Z-algebra viewed as £, 4-structure is efficiently
presentable. As for integers, one extends the presentation of N by a sign-bit.

To present free Z-algebras one uses a basis, say &1, ..., §,. Then any element 7) can be encoded as
an n-tuple of integers. Addition and subtraction are defined coordinate-wise. To implement the
multiplication one stores the finite multiplication table of the basis elements

& & . &

3 § 65 - &&
S S SHE S S 1

gn gngl fnfz grzz

in memory and extends it to all of the Z-algebra linearly.

(5) (N, <)isefficiently presentable using the tally encoding and n < mifand onlyif n = m = 0.
So deciding n < m boils down to applying floor subtraction and checking whether the tape is empty.
Both operations are clearly computable.

It is a natural question whether two efficient presentations of the same model are computably
isomorphic, i.e. if there exists a computable isomorphism between them. We will see that the last
example differs from the others in this regard. But before studying computable isomorphisms we
need a lemma.

LEMMA 1.2.13. Let f 1 Q = Q' be a computable bijection between the problems Q,Q" C w. Then
the inverse mapping f~1 1 Q" — Q is computable as well.

Proof. Let x € Q' be given. To find f71(x) one lists all elements of @ and checks for every y € w
whether y is contained in Q. Since Q is decidable, this can be carried out efficiently. If y is not
contained in Q, we try the next element in w. Otherwise, we compute f(y) and check whether
f(¥) = x holds. In this case, we set f~1(x) := y and are finished. If f() does not equal x we take
the next element of w and start over. The process will stop at some pointas f is surjective. O

DEFINITION. Let £ be a computable language. A model is called computably categorical it it is efh-
ciently presentable and every pair of efficient presentations is computably isomorphic.

In the case of rings of algebraic integers (see Cor. [.3.12)) the following theorem applies and assures
us that the decidability of HIio does in fact not depend on the encoding chosen.

THEOREM 1.2.14. Let R be a finitely generated, efficiently representable ring. Then R is computably
categorical.

This theorem follows from a more general result of Mal'cev [24]. The idea of the proofis to let
&1, ..., &y € Rbeaset of generators of R over Rand let ¢; : R = Ry, ¢, : R = R, be the effi-
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cient representations of R together with the respective ring isomorphisms. Then ¢;(&}), ..., 1(§,)
generate Ry over Ry and (1), ..., 92(&,,) generate R, over R,. Storing these finitely many values
of the isomorphism @, o ¢! in memory one can use the computability of R, and R, respectively to
extend the partial mapping in a natural way.

As for the decidability of Hio over some ring of algebraic integers O this means, that if we have
two encodings of Ok that allow to evaluate polynomial expressions, then we can efficiently trans-
form a statement in one encoding into a statement in the other encoding and vice versa.

EXAMPLE1.2.15. Another example of acomputably categorical structureis i, the £, ¢-structure of
N. To see this let 9, and N, be two computable representations of N. A computable isomorphism
J between the two structures can be obtained by defining f(0%1) := 0" and then recursively

fleqpa™) 1= fey™) + 1%,

where C,, is as before the constant representing the integer n.

Note however, that there are structures where the choice of presentation matters. In fact, (N, <)
is not computably categorical. A proof using the undecidability of the halting problem can be found
in the paper [4s, Prob. 1.6].

LEMMA 1.2.16. Let R be a computable, commutative ring with unity and R its £ipg-structure. Then
the Diophantine theory H1O(R) is semi-decidable.

Proof. Since R is computable, L is computable and as a consequence the set of (Gédel numbers
of) tully existentially quantified atomic £ g-formulae is decidable.

Letnow ¢ = 3IxXq © ... & 3IX, 1P(Xq, ..., Xy) be a fully existentially quantified £g-formula. By
Thm there exists a polynomial p € R[X7, ..., X}, ] such thatforall ay, ..., &, € R we have that

REYP(ag,..,a,) < plag,..,a,)=0.

In fact, the polynomial p can be obtained from the Gédel number gn(¢) efficiently. Thus, the
relation H C w? defined by

H(En(@), (@1 s @) 19 (@, s @y) = 0

is computable and the Diophantine theory H10(®R) is semi-decidable by Prop. [.1.. O]

1.3 Prerequisites from number theory

1.3.1 Number fields and rings of algebraic integers

In this section I will closely follow Chapter 1 of the German textbook [29]. However, the content is
also present in the English reference [27, Chap. 2], and sometimes the presentation of this reference
will be recited. We start with a series of definitions and remind the reader of some important results
from algebraic number theory and commutative algebra. Butat firstlet us fix an important notation.

Let R and S be commutative rings with unity. Let¢ : R — S bearing-homomorphism mapping
1 to 1g, then S is called an R-algebra and we write aa as a short form for ¢(a) - a« (a € R and
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a € S). We are especially interested in the case where R C S and ¢ is chosen to be the embedding
of R into S. In this situation we denote by R[aj, ..., &y, ] the smallest ring inside S containing R
andall ay, ..., a, € S. Then R[ay, ..., &y ] contains all polynomial expressions in oy, ..., &, with
coefhicients in R, i.e. all elements of the form

i i
Z ail,.__,in(x 1.amn,
(il,...,in)ENn

where only finitely many a; | ; € R are non-zero.

DEFINITION. A finite field-extension K of the rationals Q is called algebraic number field. This
means that K is a field and at the same time a Q-algebra, that is finite-dimensional viewed as a Q-
vector space. The degree [K © Q] is the dimension of K viewed as a Q-vector space.

For convenience we will always assume that K is a subset of the complex pane C.

EXAMPLE 1.3.1. (1) Qis (up to isomorphism) the only algebraic number field of degree 1.
) Q2] = {a +bV2:abe @} is an algebraic number field of degree 2. The inverse of

a+ b\/g, where not both a and b are 0, is given by Zz__bz\ff

(3) @.[%] = {a + b% + CVZ a,b,ce Q} is an algebraic number field of degree 3.

Let K/M be an extension of number fields, then K/M is in fact an algebraic extension. This means
that every x € K is the root of some non-zero polynomial with coefficients in M. We denote by
Mpr,x € M[X] the monic polynomial with root x dividing (in M[X]) all other polynomials with
root X. The polynomial ups  is called minimal polynomial of x over M. By the minimality condi-
tion (w.r.t. divisibility in M[X]) on tpy , this polynomial must be irreducible.

In fact, every element x in K is algebraic over the rationals Q. Note that the field of all algebraic
elements Q—called algebraic closure of Q—is however not a number field, as the extension Q/Qis
(countably) infinite.

DEFINITION. LetR C S be commutative rings with unity. Then a € S is called integral over R if
it is the root of a monic polynomial with coefficients in R, i.e. if a satisfies an equation of the form

a +a, a1+ .. 4+a,=0

for some n > 1 and some ay, ..., a,_; € R. If all elements of S are integral over R then S is called
integral over R. If R is an integral domain then R is integrally closed if for all elements x € Quot(R)
being integral over R implies x € R.

Of course, if one wants to use tools from algebra some structure on the considered sets is needed.
Thus, the following theorem, implying that if o, 8 € S are algebraic over S, so are their sum and
product, is very desirable.

THEOREM 1.3.2. LetR C S be commutative rings with unity. Then the elements of S that are integral
over R form a subring of S.

Richard Dedekind gave a proof of this theorem using the following proposition.

34



1.3 Prerequisites from number theory

PROPOSITION 1.3.3. Let R C S be commutative rings with unity. Then o € S is integral over R if
and only if there exists a finitely generated non-zero R-module M C S such that aM C M, in fact
M = R[a] can be chosen.

Proof of Thm [.3.3. Leta, B € S beintegral over Randlet M and N be finitely generated R-modules
contained in S such thataM € M and BN C N hold. We define the product of the two modules

as
k

MN := Zmini tkeN,my,..,meM,ny,...,n, €Ng.
i=1
Clearly, MN contains 0 as M (and N contains 0. Furthermore, it is closed under addition, and the
inverse of an element in MN can be found by inverting all m; € M (or n; € N) in the sum. Thus,
MN forms a subgroup of S. Note that am; is contained in M for all a € R and m; € M since M is
an R-module. As a consequence,

k k
az min; = Z am; n;
—
i=1 i=1 eM

is contained in MN foralla € Rand all my, ..., my € M, ny, ..., n; € N, and we can deduce that
MN is an R-module.
Let{ey, ..., ey} © M generate M and {fi, ..., f,} € N generate N. Then it is easily seen that the
finite set
{eiff 11<i<m,1<j<n}CMN

generates MN.
We finish the proof by showing that af and a + satisty af MN € MN and (e =B)MN C MN
respectively. Then the proposition implies the claim. But this is the case since

k k
oc,BZ min; = Z am; pn; € MN
i=1 i=1 eM eN

holds for all my, ..., m; € M and all ny, ..., n € N, and

k k

k
(fxiﬁ)z min; = Zcxmi n; iZmi pn; € MN
i=1 i=1 ent i—1 &N

holds as well. O

Similarly, one can deduce from Prop. that being integral is a transitive relation on rings. More
formally, we have the following proposition.

PROPOSITION 1.3.4. Let R C© S C T be commutative rings with unity. If' S is integral over R and
a € T is integral over S, then & is integral over R.

The set RS of all elements of S that are integral over R is called integral closure of R in S. By the
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theorem above RS is a subring of S.

We will now return our attention from the general case to our specific situation and consider the
elements of C that are integral over Z. These elements are called algebraic integers and the integral
closure of Z in C is denoted by O. Given a number field K, we denote by Ok the intersection of O
with K. In other words, O is the integral closure of Z in K. To emphasize that we are considering
the ring Z and not any O, we call Z the ring of rational integers.

We have that Z2 = O N Q = Z. Thus, Z is integrally closed. This follows from a more general
result stating that factorial rings are integrally closed. By Prop. this property of Z extends to all
rings of algebraic integers, formally we have OxX = Og. To make the analogue complete we prove
that K is the fraction field of O (see Thm [.3.6). However, even more is true, as one can choose the
denominator in the quotient to be a rational integer. More precisely, the following holds.

PROPOSITION 1.3.5. Let K be a number field and Oy its ring of algebraic integers. For all x € K
there exists a non-zero rational integer n € Z \ {0} such that their product nx is an algebraic integer.

THEOREM 1.3.6. The quotient field of Ok is (isomorphic to) K for all number fields K.

Proof. By the proposition above every x € K can be written as x = an™!, where a € O is an

algebraicand n € Z \ {0} is a rational integer. If x = Bm ™! is another representation of this form,
then am = fn must hold in Og and thus we can embed K into the quotient field Quot(Ox ) by
mapping X = an™! to the representative [, n] € Quot(Ox).

If on the other hand [a, 8] € Quot(Og) with B # 0 is given, then ™! an element of K.
Thus, there existy € Og andn € Z \ {0} such that yn™ = aff~!—or put differently, such that
[¥,n] € Quot(Ok) is in the same equivalence class as [a, B]. As a consequence, the embedding
defined above is surjective. [

We can now deduce that an element X € K is an algebraic integer if and only if its minimal
polynomial ug , has rational integral coefficients. Indeed, if x is a root of the monic polynomial
p € Z[X] then ug x divides p and thus every root of fiq y is an algebraic integer as well. Now
decompose

:u@,x(X) = H(X - ap),
i=1

for some ay, ..., &, € K, then since Ok is a ring, the minimal polynomial must have coefficients in
Ok N Q = Z and the claim is proven. In fact, we can always find an algebraic integer & € K that
completely determines the number field K.

THEOREM 1.3.7 (PRIMITIVE ELEMENT THEOREM). Ler L/K be an extension of number fields then
there exists a primitive element & € Op such that L = K[a]. Moreover, if ug o € K[X] is the
minimal polynomial of & over K then the degree of g o and the degree of the field extension L/K
coincide. A K-basis of L is given by {1, a, ..., oc”_l}, wheren = [L : K].

Important tools for studying number fields and algebraic integers are given by the norm and trace,

which are defined below.

DEFINITION. For an extension L/K of number fields and a fixed element x € L we consider the
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linear transformation Ay, : L — L defined by 4,(z) = xz and define the #7ace of x as
Trx(x) 1= Tr(4y)

as well as the norm of x as
NL/K(x) = det(/lx)

By basic facts from linear algebra, we find that the trace Trx : L — K is in fact a homomorph-
ism between the additive groups of the number fields and the norm N g : L* — K* isin facta
homomorphism between the groups of units.

From the view of Galois theory one can reinterpret the norm and trace as follows.

THEOREM 1.3.8. Ler L/K be an extension of number fields of degree n. Then there exist exactly n
embeddings 0, ...,0, . L = C that fix K point-wise. Furthermore, for all x € L we bave that

(i) Tryg(x) = Y, 0i(x), and
(it) Nip(x) = [T, o:(x).

One calls an extension L/K of number fields normal extension if the embeddings o; : L — C
that fix K point-wise are in fact automorphisms of L. We do however have the following equivalent
characterizations as well.

PROPOSITION 1.3.9. For an extension LK of number fields the following properties are equivalent.

(i) L/K is a normal extension.
(ii) If an irreducible polynomial p € K[X] has one root in L, then p splits in linear factors over L.
(ii) L is the splitting field of some irreducible polynomial p € K[X].

From the proposition above we see immediately that every extension K/Q of degree 2 is normal.
Moving on to degree 3 this changes as for instance @[%] /Q is not normal. The irreducible poly-
nomial X3 — 2 € Q[X] has the root ’VE in Q[VE], but both of the other non-real roots are not
contained in the number field. One can however enlarge @[3\/5] to obtain a normal extension. More
generally, if L/K is an extension of number fields, then there exists (up to isomorphism) a unique
number field N D L, such that the extension N/K is normal. We call N the normal closure of the
extension. In fact, if L = K[a] then N is the splitting field of ug . Using the normal closure of
L/K one can show that norm and trace behave well w.r.t. towers of field extensions.

COROLLARY 1.3.10. Let K C© M C L be a rower of extensions of number fields. Then we bave

T”L/K = T”M/K o T”L/M di’ld NL/K = NM/K ONL/M'

We fix an extension L/K of number fields and take another look at Thm [.3.8. Then we find for
an algebraic integer & € O, thatits norm Ny i (a) and trace Ty k (a) are in fact products and sums
of algebraic integers and thus algebraic integers themselves. Now since norm and trace are mappings
from L to K we can deduce that both Np i (a) and Try /() are contained in O. In particular, we
find foralla € O that N ,g(«) and T1y () are rational integers.

Furthermore, one finds that an algebraic integer & € O is a unit if and only if its norm Nk (@)
is a unitin Og. Indeed, if BN k() = 1 holds for some algebraic integer 8 € O, we can rewrite
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the norm to find that

l=af ﬁ oi(a)
i=2

N———m,—
€0y,

holds, where id = oy, ..., g;, denote all the complex embeddings of L that fix K point-wise. In the
special case that K = Q we find that @ € O is a unit if and only if Ny g(a) is +1.
As a next step we will further investigate the algebraic structure of Og.

THEOREM 1.3.11. Let K be an algebraic number field. Then Ok is a finitely generated free Z-module.

We call a module-basis of O, over Ok an integral basis of L over K. In particular, we can deduce
that Of is a finitely generated free Z-module by setting K = Q in the theorem above. Every integral
basis {&1, ..., §,} € Op is in fact a vector space basis of L over K as well, thus its cardinality must
coincide with the degree of the extension. Note however, that not every K-basis of L containing only
algebraic integers is an integral basis of L over K. In full generality it is hard to find an integral basis,
but once the basis is known the structure of O, behaves very nicely with respect to computability,
which is the content of the following corollary.

COROLLARY 13.12. Let K be a number field and Oy its ring of algebraic integers. Then O is an
efficiently presentable and computably categorical L g-structure.

Proof. By the theorem above Oy is a finitely generated free Z-module. In fact, it even carries a Z-
algebra structure. Thus, it is efficiently presentable by Example [.2.12.(4). Since Ok is a ring with
unity, it is finitely generated and as a consequence of Thm O is computably categorical. [

1.3.2 Ideals of O

We view algebraic integers as generalizations of rational integers. Given a fixed algebraic integer
one can show using induction on the absolute value of its norm Nk g (o) that & decomposes into a
product of irreducible elements. However, unlike in the case of rational integers this decomposition

is not unique. Indeed, in Q[i\/g] one can decompose

21=3-7=(1+i2V5)- (1 —i2\/5),

where 3,7,1 + i2\/§ and 1 — i24/5 are irreducible and pair-wise non-associated algebraic integers.ﬂ
It was the idea of German mathematician Ernst Eduard Kummer to generalize the prime decom-
position to ‘ideal numbers’. In his view, there should be ideal primes p;, p,, p3 and p, such that

3=piPs 7=P3ps 1+2V=5=pps, and 1 —2v/=5=p,p,

then

21 = (P1p2)(P3Pha) = (P1P3)(P2P4)

and the decomposition is again unique.

7For full details see the first example in [29, Chap. 1, § 3].
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Since divisibility by a fixed number n € Z gives rise to a congruence relation m; = m, mod n
defined by n | my — my, it is quite natural—and was indeed carried out by Richard Dedekind—to
view these ‘ideal numbers’ as congruence relations on Og. Then the equivalence class containing 0
is an ideal in the sense of modern abstract algebra and ‘divisibility’ of ideals a by b can be replaced
by the inclusion of sets a € b. On the other hand, for a given ideal a we get back to the congruence
if wedefinea = mod abya —f € a.

Compare this to the well known case of rational integers. Here every ideal is a principal ideal.

Thus, there exist o, § € Z such thata = (a) and b = (f) and « is divisible by (3 if and only if
aCh.

As with rational integers, one can define addition and multiplication of ideals by

a+b:={a+pf:a€a,fp€b}, and
n

ab 1= Zaiﬁi :neN,ay,ay,...,0, €a,Bo,P1,s > Pn € bt
i=0

It is easy to prove that sums and products of ideals are again ideals. In fact, the set of all ideals of
Ok is a monoid with respect to multiplication, where the neutral element is given by O = (1).
However, unlike in the case of rational integers we have that

abCa,bCa+b

and thus that
a,blab and a+b|a,b.

Before we can further study divisibility of ideals, we need to investigate the algebraic properties of
rings of algebraic integers O.

DEFINITION. An integral domain D is called Dedekind domain if D is Noetherian—i.e. every ideal
of D is finitely generated—integrally closed, and every non-zero prime ideal p € D is a maximal

ideal.
To study the ideals of algebraic integers the following theorem is essential.

THEOREM 1.3.13. Let K be a number field. Then its ring of algebraic integers Ok is a Dedekind
domain.

Note that for two ideals (0) € a,b C O, the sum a + b is the smallest (w.r.t. set-inclusion) ideal
containing both a and b. Indeed, if ¢ contains a and b then it contains all sums of elements in a and
b. Asa consequence, we call a + b the greatest common divisor of a and b.

Similarly, the intersection a N b is the greatest ideal of O contained in both a and b. Thus, we
call a N b the least common multiple of the ideals a and b. Before we study the role of prime ideals
with respect to this notion of divisibility, an example is in order.

EXAMPLE1.3.14. Consider the ring of rational integers Z and fix two integers ny, n, € Z. We denote
by d their greatest common divisor and by m their least common multiple. As for their principal
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ideals the following hold

m)nny)=mZnnyZ={nezZ:.n |nandn,|nt=nezZ:mjn}=(m),

n
(n)n,) = iz aifi - neN,ag, oy, ..., 0, € 01Z, Loy, P1s s Pn € NZ
i=0

n
{Z nlkl‘nzgi . ne N, kO’kl""’kn’€0’€l""’gl’l S Z = (nlnz),

i=0

and using Bézout’s identity
(m)+ ) ={a+f:aem)fem={mk+nt keezZr=(d.

Thus, in the case of rational integers greatest common divisor and least common multiple have their
intended meaning if one replaces integers n with their respective principal ideals (n).

THEOREM 1.3.15. Ler Ok be the ring of of algebraic integers in some number field K and lera C Ok
be a non-zero ideal. Then there exist up to reordering unique prime ideals py, ..., 9, € Ok such that

a= plpn

Combining multiple occurrences of the same prime ideal in the decomposition described in the

a= I | pvp,
pCOk
p prime ideal

theorem, one writes

where all Y}, are a non-negative integers and all but finitely many exponents are zero B Using this
product notation of the prime decomposition of ideals, one obtains for

a= H p®» and b= H pHe,

POk pSOk
Pp prime ideal Pp prime ideal

that their greatest common divisor has the factorization

a+b= [ pmnCea),

POk
P prime ideal

Thus, if a + b = (1), we say a and b are relative prime.

If we notice that the product of ideals a = a;...a,,, where the a; are pair-wise relative prime, is

3The constructivist reader will be pleased to hear that since all ideals of O are finitely generated by Thm [3.13, the
ring O contains only countably many prime ideals. Thus, one can fix a linear order on the set of prime ideals, such
that for all ideals a C Ok all non-zero exponents ¥y, appear in a finite initial segment of the order.
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equal to the intersection

n
i=1

we have all the tools at hand to restate another important property of the integers.

THEOREM 1.3.16 (CHINESE REMAINDER THEOREM). Let ay,...,a, C O ideals, which are pair-
wise relative prime, and let a = N}y a;. Then the following isomorphism of rings bolds

n
Ogla = @OK/(Ii.
i=1

Proof. We consider the ring-homomorphism ¢ : Og — @?ﬂ Ok/a; defined by
a (o +a)k,.

Its kernel is given by a = N{; a;. Thus, it suffices to prove that ¢ is surjective. For this we proceed
by induction on n. If n = 1, then the claim is trivial. Thus, we consider the case n = 2. Then we
can find §; € a; and 3, € a, such that1 = B; + ;. In other words, we find 5;, B, € Ok such
that

fi=1 modas;_; and B;=0 mod aq;
hold simultaneously fori € {1, 2}. If now an arbitrary element (x; +ay, X, +a;) € Og/a; X0/ a,
is given then

X 1= x5 + X2

has the property that x = x; mod a; holds for i € {1, 2}. Thus, we have found that ¢ is surjective
forn = 2.

Let now n > 2 and note that we have the isomorphism of direct sums

n—1

n
@ Ogla; = Ogla, X @ Ok/a;.
i=1

i=1

If wesetb := aj...a;,_; then by the induction hypothesis the factor rings Og /b and @in:—ll Ok/a;

are isomorphic. Thus, we can deduce that

n
@OK/ai >~ Ogl/a, X Og/b

i=1

holds. To conclude the proof note that the ideals a, and b := aj...a,,_; are relative prime. Now by
our observation for the case n = 2, we find that the mapping @ : Ox — Og/a;, X Og/b defined
by

ar (a+a,,a+b)

is surjective and has kernel a,; N b = a. By the reduction steps observed above the claim holds. [
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Remark. Let ay, ..., a, be pair-wise relative prime. Then the Chinese remainder theorem tells us,
that the collection of congruences

Xx=a; moday, .., x=a, moda,

can be solved simultaneously. Indeed, in the proof of the theorem we have shown that the ring-

homomorphism ¢ : O — @?:1 Ok /a; defined by
x e (x+a)t,

is a surjection and thus the n-tuple (a; + ay, ..., a, + a,) is the image of some x € O. In other
words, there exists an x € Ok such thatx = a; mod q; forall1 <i < n.

In the field of rational numbers one can extend the prime decomposition of integers to a com-
position of positive rationals by allowing for negative powers of primes. As for ideals there exists a
similar construction.

DEFINITION. A Og-submodule m of K is called fractional ideal of K if there exists an algebraic
integer &« € Ok \ {0} such thatam C O.

Letx := a/f € K, wherea, € Og and B # 0, then xOg := B~} aOk) is called the
principal fractional ideal generated by x.

As with usual ideals every non-zero fractional ideal m can be written as
m = | | pvl”

POk
p prime ideal

where V EZ and all but finitely many exponents are zero.
To conclude this subsection we consider the principal ideals (p) generated by rational primes p €
Z. But first let us have a look at an example. It is easy to deduce that the equality

1) = (3)(7) = (1 + i2v/5)(1 — i2V/5),

of principal ideals holds in K = @[i\/g] by plugging-in the definition of products of ideals. Thus,
neither (3) nor (7) can be prime ideals in Og. We do however know that no other rational prime
can divide these principal ideals. More formally we have

PROPOSITION 1.3.17. Let p # (0) be a prime ideal in the ring of algebraic integers of some number
field K. Then there exists a unique rational prime p € Z such that p divides the principal ideal

(p) = pOk.

For a short argrument proving the proposition see the proof of Thm 3.1 in the textbook [29].
1.3.3 Geometry of numbers

In this section we want to study approximations of real numbers by rational quantities. The first
main result will be Minkowski’s theorem on convex bodies ([.3.18), which can be applied to prove Di-
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Figure 1.8: A lattice in R2 and its [fundamental parallelepiped D

richlet’s unit theorem ([.3.21). The second main result is Kronecker’s approximation theorem ([.3.29),
whose proof is presented as in Chap. 2 of the textbook [i9].
Letey,...,e, € R" be a collection of linearly independent vectors over R, then the free abelian

group
N=Ze+ ..+ Ze,

is called a lartice and its elements are lattice points. The set of generators {ey, ..., e, } is called basis of
A. Note that Z + \/EZ is not a lattice in this sense, because 1 and \/E are linearly dependent over R.
The basis {ey, ..., e,} of a lattice A is not unique. For instance, a second basis is given by the

elements {e; + €5, €,, ..., €,}. However, if {f}, ..., f,} is another basis then the n X n-matrix C :=
(cij)lsi,jgn defined by

n
fi= 2, cie
j=1

has rational integral coefficients and is invertible. Thus, the determinant of C is either —1 or 1.
Let Vol be the measure corresponding to the usual euclidean volumef on R”. Then for a fixed
lattice A = Zey + ... + Zey, in R" the fundamental parallelepiped

n
D= Zoc,-ei . q; € [0, 1];
i=1

has the volume

Vol(D) = |det(ey, ..., ey) |-

Note that the fundamental parallelepiped D does depend on the choice of basis, whereas its volume
Vol(D) is an invariant of the lattice. This is because the determinant of the matrix for change of
bases has absolute value one. A lattice A in R? and its fundamental parallelepiped are depicted in
Fig. [.§. All elements of A appear at intersection of the lines.

We have now all tools at hand to state our first main result. The following proofis presented as in
Thm. 4.4 of the textbook [24].

THEOREM 1.3.18 (MINKOWSKI’S THEOREM ON CONVEX BODIES). Let A = Zey + ... + Ze,, be a

“More specifically, Vol denotes the Lebesgue measure on R". Since the Lebesgue measure is translation invariant, Vol
is also the Haar measure with respect to the locally compact, abelian group (A, +).
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lattice in the n-dimensional R-vector space V. and ler D denote its fundamental parallelepiped. If
T C V is convex and symmetric in the origin, i.e. « € T implies —a € T, and

Vol(T) > 2" Vol(D).
Then T contains a non-zero lattice pointy € A \ {0}.

Proof. We prove that there exist two distinct lattice points 74, € A such that the intersection of
sets

1 1
(GT+n)n(5T+n)
is non-empty. If this is the case then there exist X1, x, € T such that
i =X+
SXiTh =X 7702
and thus .
0Fy:i=n—-n= E(xz_xl)

liesin T N A, since it is the centre of the line segment between x; and x, € T.

. . . . 1 .
To obtain a contradiction assume that the members of the family of sets (ET + )/) are pair-
yeA

wise disjoint. Then their intersections D N (%T + J/) with the fundamental parallelepiped D are
pairwise disjoint as well. It follows that

Vol(D) > ;\Vol (D n (%T + y)) .

On the other hand, since the euclidean volume is invariant under translation, we find that
1 1
Vol (D (5T +7)) = Vol (D -y)n (5T))

Furthermore, the sets D — ¥ cover all of R" and therefore all of éT as well. Finally, we conclude that

Vol(D) > Y Vol ((D —9)N GT)) = Vol (%T) = zin Vol(T),
YEA
which contradicts our assumption on the volume of T. O

Note that the approximation of Vol(T') cannot be improved as for instance the open square
{(x,y) € R? : |x|,|y| < 1}has volume 22 but contains no non-zero lattice point of the two-dimen-
sional lattice (1,0)Z + (0,1)Z.

We will now use Minkowski’s theorem to reprove an old result of Lagrange, that is of utmost
importance to our task of settling Hilbert’s tenth problem. The proof is taken from Remark 4.20 of
Milne’s lecture notes [27]. But first we need a lemma.
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LEMMA 1.3.19. Let A C N be two lattices in R"™ and let D and D' be one of their respective funda-
mental parallelepipeds. Then
Vol(D) = Vol(D)[A’ : A]

holds, where [N : A] = |N'/\| denotes the index of A in .

For the proof of the proposition it will be convenient to identify the free abelian group a;Z X
... X a,Z with the lattice generated by the basis {a; ey, ..., aye,} © R", where e; denotes the i-th
vector of the standard basis of R".

PROPOSITION 1.3.20 (LAGRANGE’S FOUR-SQUARE THEOREM). FEvery non-negative integer is the
sum of four squares of integers.

Proof. The integers 0, 1 and 2 can be written as
0=024+024+0%+0% 1=1240*40240% and2=1>+12+ 0%+ 0%

Thus, we may assume that n > 2. Furthermore, the set of integers representable as sum of four
squares is closed under multiplication as

(a? + a3 + a2 +a?)(bf +b% + b3 +b3) =
(ayby — ayb; — azb; — ayby)? + (a1by + a,by + asby — agbs)*+
(aybs — ayby + asby + a4by)? + (ayby + aybs — azb, + auby)?

holds. Hence, all that is left is to prove the claim for odd primes.
For a fixed odd prime p the squares of an integer m take exactly (p + 1)/2 distinct values modulo
p when m runs through 0, 1, ..., p — 1. Indeed, note that

=—(p—m) modp and m?=(p—m)> modp

hold forallm € {0, 1, ..., p — 1}. Thus, we obtain (p — 1)/2 pairs of numbers (m, p — m) with the
same square modulo p, plus the value 0 = 02 when m runs through0,1,...,p — 1.
By the same argument —n? — 1 runs through exactly (p + 1)/2 distinct values modulo p for 0 <
n < p — 1 as well. Hence, by the pigeonhole principle there exist integers m,n € {0,1, ..., p — 1}
solving the congruence
m?>+n’+1=0 mod p.

For a fixed solution (m, n) of the above congruence, we consider the set A of all integral solutions
(a,b,c,d) € Z* of the simultaneous congruence

c=ma+nb modp and d=mb-—na mod p.

It is not hard to see, that A is in fact a (free abelian) subgroup of Z* of rank 4 and thus can be
considered as an lattice. As (p, p, p, p) is a solution of the congruences, we find that pZ* C A'is
a subgroup of A. Considering the quotient A/pZ* we note that a and b can be chosen arbitrarily
modulo p, but then ¢ and d are uniquely determined. Thus, the index [A : pZ*] equals p>. We
conclude that the index [Z* : A] equals p? as well and by the previous lemma the volume Vol(D)
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of a fundamental parallelepiped D of Ais 1 - p.
Consider the closed four-dimensional ball T of radius r around the origin. Its volume is 2rt)2

and if we choose 2p > r? > 4\/§p/71' then
Vol(T) > 16p? = 24 Vol(D)

holds. By Minkowski’s theorem there exists a non-zero lattice point (a,b,c,d) € (AN T) \ {0}.
Since (a, b, ¢, d) is in A, we know that

a’ + b% +c? + d?> = a? + b? + (ma + nb)?> + (mb — na)?
=a’!m?+n®’+1)+b*m?+n*+1)=0 mod p

holds. On the other hand, since (a, b, ¢, d) is in T, we have that
a’+b*+c*+d*<2p
and p = a® + b? + ¢? + d? is the desired representation. O

We now want to give a structural description of the group of units Ug : = O of a number field
K. Itis easy to see that all algebraic integers { € Ok with finite order, say k € N, are roots of unity.
Indeed, the property ¢¥ = 1 shows that ¢ is a k-th root of unity. The set of all roots of unity ¢ € Uy
is denoted by u(K). If one can show, that u(K) is finite then u(K) is a cyclic subgroup of K*.

By the fundamental theorem of finitely generated abelian groups, we know that every finitely
generated abelian group G isisomorphic to G;o,s X Z", where G o is the finite subgroup of elements
with finite order, called the rorsion part of G, and t € N is called the free rank of G, denoted by
rk G = t. Thus, if Uk is finitely generated then its torsion part is u(K) and all that is left to fully
describe Uk is finding its free rank. This classification is the content of the following important
theorem.

THEOREM L.3.21 (DIRICHLET’S UNIT THEOREM). Let K be a number field of degree n over the
rationals Q. If'r is the number of real embeddings c © K — R of K then s 1= (n —r)/2 is the
number of pairs of complex-conjugate embeddings 0,0 . K — C. In this case the group of units U
is isomorphic to

/"(K) X ZH'S_I.

In other words, Dirichlet’s theorem states that there exists a collection of units Uy, ..., Uy 5_1 €
Uk, called fundamental system of units, such that every unit u € Uy can be written as

—_ my Myys—1
u= gul < Upps—1

where § € u(K) is a root of unity and m; € Z is a rational integer foralli € {1, ...,r + 5 — 1}.

A full proof of the theorem exceeds the scope of this thesis, but among others Chap. 5 of the
textbook [27] and Chap. 1, §7 of the German reference [29] contain proofs based on Minkowski’s
theorem. The idea is to consider the mapping X : K — R" X C® defined by

Z(x) 1= (01(X), ovry G (X), Gy 41(X); oovs Gy 5(X)),
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where 0y, ..., 0, are all real embeddings of K and 0y 41,041, ..., Op45, Or 45 are all non-real embed-
dings. Then X preserves sums and we obtain a group-homomorphism by taking logarithms. More
formally, we consider L : K* — R"** defined by

L(x) 1= (10g]oy ()], -, 10g [0, (X)], 108 0y 41 (), s 0g |07 4 5 CO.

Now, since the norm N ,q(u) is +1 for every unit u € Uy, we know that
101 ] G )Gy 1 QPG5 (P = 1
and upon taking the logarithm we have that
log |oy(u)| + ... + log |o,.(u)| + 21log |0y 41 ()| + ... + 2|0, 45(u)| = 0.
In other words, the image L(Uy ) is contained in the hyperplane H defined by
H: X1+ ..+X +2Xp 41+ ... + 2%, =0,

which is an 7 + s — 1-dimensional R-vector space. The key to proving Dirichlet’s theorem is showing
that L(Ug ) can be considered as an r + s — 1-dimensional lattice in H.

We will now turn our attention to approximations of real numbers by the rationals and start with
a result of Dirichlet. Dirichlet’s direct proof makes use of the pigeonhole principle. In fact, it was he
who popularized this simple combinatorial fact by giving it its German name ,,Schubfachprinzip®.
However, we base our proof on Minkowski’s theorem.

THEOREM 1.3.22 (DIRICHLET’S APPROXIMATION THEOREM). For each real number o € R and
each integer N > 1 there exist integers n, p € Z with0 < n < N such that

|no — |<l
PI=N

holds.

Proof. Consider the set

. 5. 1 1 1
T ._{(x,y)eR PN -2 <x SN+ fax - sﬁ}.
If we can prove that T contains a non-zero integral tuple (1, p) € Z?2, we are done, asif n < 0 we
can replace p by —p as well as n by —n and have found the claimed approximation. Note that n
cannot be zero, as otherwise since 1/N is smaller than one, p must be zero as well.

As was mentioned before, we want to apply Minkowski’s theorem and thus need to check that T is
convex and symmetricin the origin. Symmetry is satisfied as the first condition on x is symmetric and
the second condition is invariant under replacing (x, y) by (—x, —y). Geometrically, T is a ribbon
of width 2/N around the graph of f(x) = ax between the perpendicular lines at +(N + 1/2). In
Fig. |.g the set T is represented by the shaded area, the thick line represents the function f and the
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dashed lines mark the area where the condition
1 1
—N—-<x<N+-
2 2

is met.ld We need to prove that T contains a non-zero lattice point y € Z2. But this is now easy as
by our geometrical observation T is convex and its area is equal to

2 2
Vol(T) = ©(2N +1) =4+ - > 4

and Minkowski’s theorem implies the existence of the claimed lattice point. O]

Using the set

1
T ;:{(x,yp...,yk)eR”k : —Nk — <x§Nk+§,|OCiX—Yi| =N

1 }

2 = - N)’

one proves completely analogously the multidimensional version of Dirichlet’s approximation the-
orem.

THEOREM 1.3.23 (MULTIDIMENSIONAL DIRICHLET APPROXIMATION THEOREM). Given k real
numbers &y, ..., € R and a fixed integer N > 1. There exist integers py, ..., pg,n € Z with
0<n < N¥such that for all 1 < i < € we bave that

1
oan—n;| < —
| 1 pll—N

bolds.

Intuitively, Dirichlet’s approximation theorem tells us that an for « € R can be made arbitrarily
close to an integer by varying n € N. The closely related approximation theorem by Leopold Kro-
necker tells us, that we cannot only approximate integral values, but if « is irrational then an — p
can be made arbitrarily close to a fixed 8 € R if we vary the integers n and p.

If we identify two real numbers x, y whenever there exists an integer p with the property that
X + p = y then we have constructed the additive quotient group R/Z. Geometrically, this con-
struction can be seen as rolling up the half-open unitinterval [0, 1) to form a unit circle (cf. Fig. f.1d).
Considering the quotient topology on R/Z, Dirichlet’s theorem tells us that an can be made arbit-
rarily close to 0 + Z, while Kronecker’s theorem states that every point of the unit circle is a cluster
point of the sequence (an), ¢ if @ is irrational.

In the following I will recite the presentation of the proof of Kronecker’s theorem from Chap. 2 of
the textbook [I9]. Note however that the material is also presented in Chap. 23 of the reference [i4]
and the remark following the theorem stems from this book.

THEOREM 1.3.24 (KRONECKER’S APPROXIMATION THEOREM). For all irrational numbersa € R\
Q, all real numbers B € R, all integers N > 1, and all € > 0 there exist integers p,n € Z with
|n| > N such that

lan— B —p| <e

*In the example depicted N equals 3.
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Figure 1.9: The convex set T (shaded area) contains the lattice point y

e—0O 0+Z=1+Z

Figure 1.10: The balf-open unit interval is rolled up to form a unit circle. Both can be seen as representations of the factor

group R/Z
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holds.

Proof. By Dirichlet’s approximation theorem there exist integers g, g € Z with 0 < g such that
0<|ag—g|l<e

holds. Indeed, for the left inequality we notice that « is irrational and the right inequality follows by
setting N > ¢~1. Now we setn := kq and p := kg + ¢, where the exact values of k and ¢ will be
determined in the course of the proof.

We transform the expression of interest

B+c
aq — 8

(1.3.1)

an — = pl = lk(@q — )~ § — ¢l =laq — gl [k -

and set

+c

k= 4 J+L
agqg—§8

where [ x| denotes the greatest integer smaller than x. This ensures that the last factor in ([.3.1) re-

mains < 1. Choose ¢ to be any integer with the same sign as aq — g that satisfies

lc| =2 Nlag — gl + 6]

and set k accordingly. Then

R =

aqg—§ ag—g 1ag—§

(o) oo
aq—g8 aq—§g

and therefore n = kq > k > N. From ([.3.1) we can now deduce that

_ B+c

lan — B8 — p| = |ag — g| ‘k ‘<E

<E ‘—a“ul/
<1
is fulfilled, which was to be shown. ]

Remark. Note that the condition on a being irrational in Kronecker’s theorem is necessary. Indeed,
if we assume otherwise that @ = a/b € Q then an — |an] runs only through the values

12 b-1
07573,-"1T

forall n € N. Thus, if we choose any 8 € [0, 1) that is not among these values, then

ﬂ%—d:03r<ﬂ
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has a positive maximum, say  and the condition
lan — B —p| <e

cannot be satisfied for € < §.

As with Dirichlet’s approximation theorem there is a multidimensional version of Kronecker’s
theorem as well. To state this theorem we need a definition.

DEFINITION. A set of real numbers ay, ..., @, € Ris called linearly independent over Z if for all
integers ¢y, ..., ¢, the fact that

n
2,
i=1

is an integer implies thatc; = ¢, = ... = ¢, = 0.

Note that a set of real numbers {a, ..., a,} € R is linearly independent over Z if and only if
{1, a1, ..., a,} is linearly independent over Q in the sense of linear algebra. Indeed, if {at, ..., a,} is
linearly independent over Z and there are rationals X, X1, ..., X, € Q such that

¢
Zx&:mml
i=1

then upon multiplying with the least common multiple of the denominators of the non-zero x;-s we
obtain a Z-linear combination of the &;-s with an integral value and thus all the x;-s must be zero.
If on the other hand, {1, ay, ..., &,} is linearly independent over Q then

e
quzaez
i=1

for some ¢y, ... ,¢, € Z implies that all of the ¢; (and a) must be zero. Thus, {a, ..., a,} is linearly
independent over Z.

THEOREM 1.3.25 (MULTIDIMENSIONAL KRONECKER APPROXIMATION THEOREM). Let Ay, ...,y
be real numbers that are linearly independent over Z. Then for all real By, ..., 3, € R, alle > 0, and
all integers N > 1 one can find integers n, py, ..., pp € Z with |n| > N such that for alli € {1, ..., €}
the inequality

lain — B — pi| <¢
is satisfied.

As did Hlawka, Schoissengeier, and Taschner [19]] I will present the inductive proof of Estermann
(12] published in 1933.

Proof. For ¢ = 1 we have already carried out a proof in the previous theorem, as for a single real
number a to be linearly independent over Z is the same as being irrational. Thus let us assume
that € > 1 and that the claim holds true for all collections of less than € linearly independent real
numbers.
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We set § := €/2 and apply the multidimensional Dirichlet approximation theorem ([.3.23) to
obtain integers q, g1, ..., & € Z with q > 0 such that

0 <loiq—gil <6

holds forall i € {1, ..., €}. Again, the left inequality holds since a; is irrational.

As in the one-dimensional case we set n = kq and p; = kg; + ¢; for1 < i < € and integers
k,cy, ..., ¢, whose values will be determined later. Considering the expression of interest we can
again obtain

K — Bi +ci

|a; Bi — pil = |k(aiq — g1) — Bi — ¢ = |aiq — gil g — g

foralll <i <#.Nowif

K ::l Be + ce

+1 and |cy| > Nlay,q — g.| +
| el 2 Nlagq - gl + 16|

are satisfied then one obtains analogously to the one-dimensional case that
lapn — By —pel <6 and |n| >N (1.3.2)

hold.

Letusdenoted :=k — (B, + c,)/(ap,q — gp). For1 < j < € we consider

an = fj — pj = ajkq — B — kg — ¢ =

:ajq(m+8)—<m+8>gj—ﬁj—cj:

xXeq — 8p Apq — 8¢ (1.3.3)

aq — g ) ( Be(oiq — gj))
=cC L A R e _c.+19a. — O
g(“eq—ge J Xed — 8¢ J (Jq g])
and definefor1 < j < €
a;q — gi - a:q — 9O;
S T R AP 4G T k)
Ueq — 8e deq — 8¢

I claim that the real numbers &j, ..., &,_; are linearly independent over Z, so that the induction
hypothesis can be applied to the &; and 3. Indeed, if we have integers f;, ..., fy € Z such that

o-1
2. %=~
j=1
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holds. We can transform this identity to the expression

0= ff"'zf“] (Zf“ﬂ ngf)qu 2’

which is equivalent to
¢

£
2 fwa=2 fg ez
j=1

Jj=1
Now since q is a non-zero integer and ay, ..., &, are linearly independent over Z, we find that f; =

.. = fp_1 = f, = 0and thus the claim holds true.
Wich these definitions for & and f5; we can deduce from ([:3.) that

ogn == pil < leed = — gl +|egq — gl < leedy — fr— g +8  (13.4)

holds forall 1 < j < €. We apply the inductive assumption to obtain an estimate of the left term in
the last expression. More formally, there exists an integer 7 with the property

|7l > Nla,q — gl + |5,

and integers Py, ..., Py_1, such thatforall j € {1, ..., € — 1} we have that

Since ¢, needs only to satisfy
|ce| = Nlaeq — ge| + 1B

wecanset ¢, (= rfand¢ 1= pP; (1 < j < €)and therefore
(7 —ﬁj —¢| < 6.
Then we find not only that [n| > N and
lagn — B, —pol <8 <e
are satisfied by ([.3.2)) but also that
lggn — B — pjl <26 =¢

holds true for all 1 < j < € by (f.3.4)). Thus, the proof is concluded. [

1.3.4 Absolute values and local fields

In this section we introduce some notions required to formulate an important principle of Helmut
Hasse and Hermann Minkowski. We will only briefly discuss these topics and refer the reader to
Chap. 3 of the textbook [29] or Chap. 7 of the reference [27] for a more rigour discussion.
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DEFINITION. An absolute value onafield K isafunction|-| : K = R, x = |x| with the properties

(i) |x| > 0forall x € K and |x| = Oif and only if x = 0;
(i) |xy| = |x||y|forall x,y € K;and
(iii) |x +y| < |x| + |y|forallx,y € K.

If additionally the stronger condition
(iv) |x + y| < max(|x|, [y])

holds forall x, y € K then | - | is called a non-archimedian absolute value.

For notational convenience we introduce the function ord,, for all non-zero prime ideals p C Ok
mapping a non-zero fractional ideal m C K to the power of p in its prime decomposition and
ord,(0) := oo. IfK = Q we write ord, instead of ord ) for all primes p € Z.

EXAMPLE 1.3.26. Let K be a number field. Then K has the following absolute values

(1) atrivial absolute value defined by |0]; := 0and |x|; := 1forall non-zero x € K \ {0};

(2) one absolute value for each embedding o : K — C by setting |x| := |o(a)|c, where | - |¢
denotes the complex modulus; and

(3) one p-adic absolute value for each non-zero prime ideal p defined by

1 Ordp(on)
heslm)

where Np :=[Og : p].

LEMMA 1.3.27. Let K be a number field and x € K. Then X is an algebraic integer if and only if
| x|y < 1 for all prime ideals p C Ok.

Proof. If x € Ok is an algebraic integer, then xOg € Oy is a principal ideal. Thus, in the factoriza-
tion of xO into a product of prime ideals (cf. Thm [.3.19) all exponents are non-negative. In other
words, ord,(xOg) > 0holds for all prime ideals p. Since Np > 1 for every prime ideal p, the p-adic
absolute value | x|, can at most equal 1.

If, on the other hand, |x|,, > 1 holds for some prime ideal p C Ok, then ord,(xOg) must
be negative and thus xOg 2 O is a proper fractional ideal. Hence, X cannot be an algebraic

=

integer. L]

Note that an absolute value | - | defines a metric on K by setting
d(x’y) L= |X _y|

Thus, we can view K as a topological space and define two absolute values to be equivalent if they
induce the same topology on K. An equivalence class of absolute values is called a prime or place of
K. The completion of a number field with respect to a prime v is the completion of K with respect
to the topology induced by v. More formally, we consider first the set Ck of all Cauchy series in K
with respect to the prime v and notice that C;, forms a ring with respect to pointwise addition and
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multiplication. A maximal ideal M}, is given by the set of null sequences in K. Thus, we can define
the completion of K with respect to v to be the quotient ring

K :=C,/M,.

It is easy to check that this field is indeed topologically complete. Note that one can identify x €
K with the equivalence class of the constant sequence (X, X, X, ...). A completion is called non-
archimedian if it is induced by a non-archimedian absolute value. As for number fields the archime-
dian completions are precisely those induced by the embeddings o of K into C. If the embedding
o is real, one obtains R as an completion of K, while non-real embeddings yield C as a completion.
The completions of number fields are examples of so called local fields.

We say a multivariate polynomial p is homogeneous if all non-zero monomials appearing in p have
the same degree. Thus, Y7 + 2Y7Y$ — 7Y, Y53 is homogeneous while Y3 — Y£Y is not. We call a
polynomial g € R[Y7, ..., Y, | a guadratic form over an integral domain R if q is homogeneous and
has degree 2. If F is a field of characteristic unequal to two, one can alternatively define a quadratic
form as a polynomial q(Y7, ..., Y},) that can be written in the form

Y
q(Yl""’ Yl’l) = (Yl""’ Yn)A ,
Yl’l

where A € M, (F) is a symmetric n X n-matrix over F. If A is non-singular, we call q a regular
quadratic form. We say x € R is represented by q over R if there exist yy, ..., ¥, € R such that
X =g, ..., Yn)- Wecallaquadraticformq € R[Y7, ..., Y}, | universal if it represents every element
of R. As for representabilty in a number field K we have the following theorem.

THEOREM 1.3.28 (HASSE-MINKOWSKI THEOREM). A number x € K is represented by a regular
quadratic form q in a number field K if and only if x is represented by q in all completions of K.

A proof of this theorem can be found in §66 of the textbook [30]. With regard to universal quad-
ratic forms we have furthermore, that if the regular quadratic form g has at least four indetermin-
ates then q is universal in all non-archimedian completions of K. A direct application of the Hasse-
Minkowski theorem is the following lemma, taken from [l44, Lem. s.r.1].

LEMMA 1.3.29. Let K be a number field and fix x € K. Furthermore, let X = X1, ..., X, be all the
conjugates of X over Q. Then the quadratic form

q(Y1,Y5,Y3,Yy) = Y2+ YF +cYE+ Y7

represents X over K if ¢ = ¢y, ..., ¢, are all the conjugates of ¢ € K \ {0} over Q and c; < 0 whenever
x; <0.

Proof. Note that q can be written as (Y7, Y, Y3, Y,)A(Y7, Y5, Y3, Y,)!, where A is a non-singular
diagonal matrix. Hence, g is regular. Since q has four indeterminates it suffices to check that g
represents x; over C and R. Then the Hasse-Minkowski theorem implies that g represents x over

55



1 Prerequisites and central notions

K. Butssince C is algebraically closed, the polynomial X* — x; has a root y;; in C. Thus,
X; = Y4 + 0% + ¢; 0% + 0?

is the desired representation. On the other hand, in the case of R we distinguish two cases. If x; > 0
then we can proceed as in the case of C. If x; < 0 then X;/c; is positive and thus a square in R. Now

set Vi3 - = 1/ X;/c; and notice that

x; = 0%+ 0% +¢; y4 + 02

Furthermore, the following theorem will be useful.

THEOREM 1.3.30 (STRONG APPROXIMATION THEOREM). Let K be a number field, let My be the
set of all the absolute values of K, let Fg = {| - |1, ..., | |0} © My be a non-empty finite subset, and
let ay,...,ap_1 € K. Then for any € > 0 there exists an X € K such that the following conditions are
satisfied.

(i) For1 <i <€ —1 we bhave that |x — a;|; < €.
(ii) For any absolute value | - | not contained in Fx we bave that |x| < 1.

For a proof of this theorem see §21 of the textbook [3o].
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2 Hilbert's tenth problem

2.1 Different perspectives on an old problem

2.1.1 Diophantine equations and sets

In 1900, David Hilbert held his famous lecture [i8] before the International Congress of Mathem-
aticians in Paris. During the talk entitled ,Mathematische Problemel“ Hilbert posed ten mathemat-
ical problems left for the twentieth century to solve. Hilbert’s list of problems was later amended to
contain twenty-three problems. The tenth of these questions and its variants are the subject of this
thesis. The problem states

10. ENTSCHEIDUNG DER LOSBARKEIT EINER DIOPHANTISCHEN GLEICHUNG. Eine Diophantische
Gleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoeflicienten sei vorge-
legt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl von Operatio-
nen entscheiden lift, ob die Gleichung in ganzen rationalen Zahlen 1gsbar ist.E (8]

A Diophantine equation—in the classical sense—is of the form

p(ay,....,a,) =0,

where p € Z[X1, ..., X, ] isa polynomial and one only allows rational integral solutions &, ..., &, €
Z. Using the tools developed in Sections .2l and [.3, we will exchange one or both occurrences of the
rational integers by values from other rings. It took until the 193Hos to formalize what Hilbert meant
by a ,Verfahren [mit] einer endlichen Anzahl von Operationen®* to the notion of computation that
was defined in Section [.3. In the same section we have also defined what it means to decide a problem,
so we are left with the task of identifying Hilbert’s question with a set of strings. In a first approach
one could reformulate the tenth problem as

Hro. For a fixed polynomial p € Z[X;, X3, ...] does there exist a Turing machine A, that returns 1 if
P hasarootand 0 otherwise?

This formalization is however trivially solvable. Note that the subset of w associated with this prob-
lem
{x € w : phasaroot}

is either empty (if p has no roots) or all of w (if p hasa root). Turing machines with constant output
0 or 1 respectively compute the characteritic function of the problem and thus show that our first
formulation of Hilbert’s problem is decidable.

“mathematical problems’

*10. DETERMINATION OF THE SOLVABILITY OF A DIOPHANTINE EQUATION. Given a diophantine equation with
any number of unknown quantities and with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

[translation published in [7]

*process [with] a finite number of operations’
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For this reason we must exchange the quantifiers and ask

Hio. Does there exist a Turing machine A and an encoding ™7 such that for all polynomials p €
Z[X1,X,,...] the output A("p™) is 1, if p has integral roots, and 0 otherwise.

We will see that if we restrict ourselves to encodings -7 that allow to efficiently obtain the evaluation
Fp()™ from "pTand T, then the answer to the question above is negative. In fact, for all rings
of algebraic integers O, that we will consider, we will find a single multivariate polynomial py €
OklX, Y1, ..., Yy, ] such that for all Turing machines A there exists an algebraic integer & € Ok with
the property that A cannot correctly decide whether the partially evaluated polynomial

Dac(et, Yq,..., Yy)
has roots in Og. The index X of the polynomial above is not chosen at random. Indeed, the polyno-
mial py represents an encoded version of the halting set XX in the sense of the following definition.

DEFINITION. Let R be a commutative ring with unity. A set S € R" is said to be Diophantine over
R if there exists a polynomial p € R[X, ..., X, Y1, ..., Yy, ] in n + m indeterminates (m,n > 0)
such that

(al,...,(xn) eSs =4 3‘81,...,6m ER: p(CC1,---, ana;gls-"’ ﬁm) =0

A polynomial p € R[X7, ..., X,] as above defines an n-ary relation 72 on R by

n(ey,...a,) < plag,..a,) =0.

In this sense a set S C R is Diophantine if there exists a polynomial p € R[X}, ..., X},] such that

(OCl,...,OCi) es < 3:81’---’6n—i €ER: 7:1(0(1,...,ai,ﬁl,...,ﬁn_i).

If the ring R is computable, it is immediate that the relation 72 is computable. Thus, we have the
following lemma.

LEMMA 2.1.I. Let R be a computable commutative ring with unity. Then every Diophantine subset
of R is semi-decidable.

Viewing n-ary relations as subsets of R", I will sometimes refer to Diophantine sets as Diophantine
relations. A function R" — R™ is called Diophantine if it is Diophantine viewed as an (n + m)-ary
relation. Geometrically, Diophantine subsets are precisely the projections of roots of polynomials.
Consider for instance the unit circle defined as the roots in R? of the polynomial X 24+Y%2—-1.The
projection onto the first coordinate can be defined in a Diophantine way by

{x € R : Jy € Rsuchthatx? + y? — 1 = 0}

and is easly seen to be the interval [—1, 1]. The situation is depicted in Fig. p.-J.

EXAMPLE 2.1.2. (1) Let R be an integral domain. Then every finite subset S of R is Diophantine
because the roots of

pX) :=[J&x -9

seS
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x2+y?=1

)
AN

-1<x<1

Figure 2.1: Diophantine sets are projections of roots of polynomials

are precisely the elements of S.
(2) Let R be an integral domain. Then for every polynomial p € R[Xj, ..., X}, ] the associated
polynomial function p : R"™ — R is Diophantine. To see this we set

41 s X Xny1) 1= PO e, X) = X1,

and notice that g has aroot (ay, ..., &, &y 41) € Rif and only if p(ay, ..., &) = a4 as claimed.
(3) LetRbeacommutative ring with unity. Then divisibility in R is Diophantine. Indeed & | &,
in R precisely if
A6 ER : a1 = a,.

(4) LetK beanumber field and Oy its ring of algebraic integers. Then Ok \ {0} is Diophantine
over O . I extend the hint stated in [[o, Prop. 1] and claim that

a#z0 < 3JB,yeOg :af=Q2y—-1QBy—-1).

Firstly, note that the polynomial on the right hand side has the roots 1/2 and 1/3 in Q. As the
intersection Og N Q equals Z for all number fields K, one obtains that the polynomial identity can
only be satisfied for a # 0.

Let now o # 0. We can decompose the ideal (o) = #,#3 such that

(2)+# =0k, B+ =0gand ¥, + 3 = O

hold. This is because 2 and 3 are rational primes and therefore (2) and (3) are relative prime. In
other words, we find

dx, €¥5,3Y, €O : 2y, + X, =1 and Ax3 € ¥3,IY; €O : 3y3+x3=1
As a consequence of the Chinese remainder theorem ([.3.1G) the congruences
y=)y, modg, and y=y; mod ¥;
are simultaneously solvable. This implies that

2y=2y, =1 modg, and 3y=3y;=1 mod ¥;.
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This can be rewritten as
2y—1€%, and 3y—1€z%;.

We deduce that (2y —1)(3y —1) is contained in %3 = (@), or put differently, there existsa § € Ok
such that

aff =2y -Gy - D).
(s) Let R be a commutative ring with unity. The set of units U in R is Diophantine over R. This

can be seen by the polynomial equation

xeU & dyeR:xy=1.

In the examples above we have seen that many sets and relations are Diophantine. Before we go
on proving some structural results for Diophantine sets, we turn our attention to the classical case
of Diophantine subsets of Z and study their relations with subsets of N.

EXAMPLE2.1.3 (DIOPHANTINE SUBSETS OF N). If one wants to study sets thatare Diophantine over
N, one runs into the problem that N is not a ring. An approach that has been carried out [cf. e.g.
§] is considering sets S € N" that are Diophantine over Z and allow only for witnesses in N. I will
show that this construction can be carried out in a Diophantine way.

First, we note thatif S}, S, € Z" are Diophantine over Z, then their intersection is Diophantine
over Z as well. This is because if p; € Z[Xj, ..., Xy, Y1, ... , Vi, | represents Sy via

(C(l,...,OCn) S S] < 351,---76}7‘[1 : pl(ala-'-’an’ﬁ]_y-"ugml) = 0

and p; € Z[X;, ..., Xy, Y1, ..., Y, | represents S, we set m := my + m; and consider p; and p,
as polynomials in n 4+ m indeterminates, where for alli € {n + 1, ..., m} indeterminate Y; either
appears in p; or p, but notin both. Then (ay, ..., &y, By, ..., B) € Z™ " isaroot of

qX1, s X Y1, o, V) i= p1(Xq, o, X0 Y, o, Yo )2 + po(X s o, X, Y1, o, Vi )?
if and only if (aty, ..., &y, B, - s By) is a root of p; and p,. Thus, we find that

Sl ﬂSz = {al,... ,an (S Z . Hﬁl"“ ,ﬁm (S Z . q(al,...,an,‘gl,... ,ﬁm) = 0}

By Lagrange’s four-square theorem (Prop. [.3.2d) we know that every non-negative integer o is
the sum of four squares and as a consequence

xeN & 3BLBuBuPEZ  fi+Bi+Pi+PFi=a

is a Diophantine definition of N over Z. Therefore, we can check for a given polynomial equation
whether all variables take only non-negative values in a Diophantine way. More formally, we say that
asubset S © N" is Diophantine over N if there exists a polynomial p € Z[X, ..., X, Y7, ..., Yy, ]
such that

(aj,..,xp,) €S < 3B, ., Bm EN: plag, ..., Ay, Prs oo s Pm) = 0.
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If this is the case, we find that S is Diophantine over Z as well, by conjugating the identity with the
clause

n 4 m 4
(/\ ity Via EZ ¢ o; = Z J/j) A (/\ 36i1, 0 €EZ 1 B = Z 512])
i=1 Jj=1 i=1 Jj=1

We now list some examples of sets that are Diophantine over N.

(1) The set of composite numbers is Diophantine over N, as a € N is composite if and only if
B, B EN 1 x = (B +2)(B; + 2).
Here adding 2 to 8; and 3, ensures, that both factors are greater than 1. Choosing
pX,Y,Y,) : =X —(Y; +2)(Y, +2)

yields the claim. To transform this into a Diophantine definition over Z, we must conjugate the
clauses stating that a, 8; and 8, are non-negative. Thus, we obtain

3B1, Bas Vs wves Vas O115 s 6145 821, s 824 € Z 2 (X = (B1 + 2)(B2 + 2)A
X=1+73+7 +rA
1 = 811 + 81, + 613 + S
By = 83 + 0%, + 633 + 834),

which can be rewritten as the single Diophantine identity
3,81, ‘82,)/1, veey 7/4, 611, ceey 614, 621, veey 524 (S Z .

2
(G = B+ 2068s 4 207+ (x = 0 + 22+ 22 + 1Y)

2\2 2
+(BL— (8% + 8% + 05+ 6%)) ) + (B — (64 + 0% + 6% +83)) .
(2) The usual order relation < on N is Diophantine over N. Indeed a7 < a, in N if and only if
BeN:a+p=a.

We will now see how one can describe Diophantine sets from the view of model theory.

LEMMA 2.1.4. Let R be a commutative ring with unity and let R be its L g-structure. Then S C R"
is Diophantine if and only if there exists an atomic Lg-formula $(Xq, ..., Xp, Y1, e s Vi) Stich that

(a, e, ap) €S RETy; @3y, tp(ag, e, X Vs o> Vi)

holds.
Proof. By Thm the formula ¢(aty, ..., Ay, By, -, By) is true in R if and only if the polynomial
associated with ¢ has a root at (atq, ..., &y, P15 -+ » Prm)- ]
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Note that even more is true as a partially evaluated polynomial with coefficients in R is still a
polynomial. Thus, one can decide membership in all Diophantine sets if and only if one can decide
for all polynomials whether they have roots in R. As a consequence, we will identify Hilbert’s tenth
problem over R with the set of Gédel numbers of H10(2R ) if R is a countable commutative ring with
unity, and restate Hilbert’s problem as

Hio. Is the Diophantine theory H10(R) decidable?

In some cases we can modify Hilbert’s question even more and allow for disjunctions and conjunc-
tions to appear in our theory.

LEMMA 2.1.5. Let R be an integral domain, whose quotient field QuotR is not algebraically closed.
Then if S1,S, C R are Diophantine so are

Sl N Sz ﬂnd Sl U Sz.

If R is computable, then there is an algorithm that derives the defining polynomial equations for union
and intersection efficiently from the equations of Sy and S,.

In other words, conjunctions and disjunctions of existentially quantified atomic formulae can be
replaced by a single existentially quantified atomic formula. Or again put differently, conjunction A
and disjunction V are Lg-definable, efficiently computable predicates.

Proof. Let p(X1q,..., X, Y1, ..., Yy, ) and q(X7, ..., Xy, Y71, ..., Yy ) give Diophantine definitions
of S; and S, respectively. Then as in Example we set m = m; + M, and interpret p, q as
polynomials in n 4+ m indeterminates such that foralli € {n + 1, ..., m} indeterminate Y; appears
either in p or @ but not in both.

Now set

h := pq.

Then h vanishes if and only if p or q vanishes. As a consequence, the n-tuple (ay, ..., a,) € R™ is
in the union of S; and S, if and only if

361, ,‘Bm ER . h(al, ey Ocn,,[i’l, ,ﬁm) =0.

To make notation easier when proving the claim for intersections, I will assume thatn = 1 and
m = 2. The general cases follows analogously. Let then

WT) = ayT*+ ...+ a;T + ao € R[T]

be a polynomial of degree k > 0 without roots in Quot R. Then E(T) = Tkh(T~1) does not have
roots in Quot R either. Asif @ € QuotR is a root of h then
0=h(@) = ay + ag_;a + ... + a;a*"! + gy

1

and a = 0 implies that a; = 0. Otherwise, @ ™! is a root of ¥ h and therefore of h.

Now consider

k
H(at, B1. B2) = D, a;p(a, B qlax, Bo)< .
i=0
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I will prove for all &, 81, B, € R that H(«, 81, 8,) = 0if and only if p(a, B;) and q(«, ;) vanish.

Then H represents the intersection via
CCESlnSz < 3,81,‘82€R ZH(O(,ﬁl,,Bz)=O

If H(a, 1, B>) = 0 but p(a, B;) # 0 then

H i (4
= B = o A2 Z ap(en faten B! = (e fu ).

which isa contradiction to A not having roots. If on the other hand H(«, 81, 8,) = Obutq(a, ;) #
0 one finds

H i p
0= @ huB) = oo S Z ap(a frYa(a B~ = b (Bt . o).

The converse direction is clear as the powers of p and q sum up to k for each summand in the defin-
ition of H.

To prove the effectiveness of these methods one observes, that the defining equations contain only
polynomials in p and q. Thus, Example implies that the polynomial equations for union

and intersection of Diophantine sets can be computed from the polynomials p and q. O

Note that the algorithm presented above does not depend on the initial equations p and g but
it does depend on the integral domain R. We might need different polynomials & without roots for
each ring R in the case of conjunctions.

Remark. Using h(X) = X*+1 as the polynomial without roots in Z for the construction described
in the proof of Lem. p.1.4, one obtains

H=p*+¢*

precisely as in Example p.1.3. However, we could also have chosen h(X) = X? — 2X — 2 as a poly-

nomial without rational roots—#h has the irrational roots 1 + \/g—and obtain
H = p?> —2pq + 2¢>.

Using induction and the lemma above, one immediately obtains that arbitrary finite unions and
intersections of Diophantine sets are Diophantine. For the special case that R is computable, one
can thus deduce that Hilbert’s tenth problem is essentially the same as the primitive positive diagram

D3, (R).

COROLLARY 2.1.6. Let R be a computable integral domain and R its L g-structure. Then D34 (R)
is many-one reducible to HLO(R).

Proof. This follows immediately from the lemma above and the properties of the G6delization. [
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One is tempted to consider Hilbert’s tenth problem over the complex plane C. By a corollary of
Hilbert’s Nullstellensatz we know that for every non-constant polynomial p € C[X3, ..., X, ]\ C
there exist complex numbers zy, ..., z, € C such that p(zy, ..., z,) = 0 vanishes. Thus, one might
believe that Hilbert’s tenth problem over C is decidable. There is however a technicality in the way:
As C is uncountable, the ring of polynomials C[X7, X, ...] is uncountable as well—even the subset
of polynomials with roots is uncountable as it contains {z — X; : z € C}. Hence, the analogue of
Hilbert’s tenth problem over C cannot be captured by the formalization of decision problems we
gave in Section [L.]. For this reason it we consider purely Diophantine sets.

2.1.2 Purely Diophantine sets

DEFINITION. LetR beacommutative ring with unit. A set S € R" is said to be purely Diophantine
over Rif there exists a polynomial p € Z[X}, ..., X, Y1, ..., Y}, ] in n4+m indeterminates (m, n > 0)
such that

(aj,eay) €S < 3By, P €ER & p(ay, e, 4, B1yoes Pin) = 0

By demanding that the coefhicients are rational integers, we immediately obtain that there can only
be countably many purely Diophantine sets over a fixed ring with arbitrary cardinality. Whilst the
choice of coefhicients may seem random to the algebraist, it is perfectly natural from the perspective
of model theory, as is shown in the following lemma.

LEMMA 2.1.7. Let R be a commutative ring with unity and let R be its Lipg-structure. Then S € R"
is purely Diophantine if and only if there exists an atomic Lyipg-formula (X1, ..., Xn, Y1505 Y)
such that

(aj,,ap) €S < RETy; .3y, (g, e, X Vs oo s Vi)
holds.
Proof. The claim follows from Lem. and the analogue of part (ii) of Thm [.2.§. O

At second sight, the construction is even less surprising, as for every ring R with 1 there exists
exactly one ring-homomorphism ¢ : Z — R mappingl € Zto1l € R. Looking back at Ex-
ample p.1.2, we note that the Diophantine sets of (3), (4), and (s) are in fact purely Diophantine,
whereas finite sets (1) are in general not. As for polynomial functions p : R" — R, we obtain that
they are purely Diophantine if and only if the coefficients of p are rational integers. Note however
that a partially evaluated polynomial with rational integral coefficients need not be a polynomial in
Z[X1,X,, ...]. Thus, one needs to be a bit more careful when dealing with purely Diophantine sets.
However, the analogue of Lem. holds for purely Diophantine sets.

LEMMA 2.1.8. Let S1,S, C O% be purely Diophantine subsets of a ring of algebraic integers of some
number field K. Then their union and intersection are purely Diophantine. The defining equations
for union and intersection can be obtained effectively.

Proof. 1 claim that there exists a polynomial h € Z[X] without roots in K. Then we can use the
same construction as in Lem. to prove the lemma.
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Such a polynomial h € Z[X ] must exist in every number field K, as otherwise the normal closure
of K contains all algebraic integers and thus is the algebraic closure of Q (in C) by Thm [.3.7. But
the degree [Q : K] is finite, implying that [K : Q] is infinite, which is a contradiction. O

We now want to identify the purely Diophantine sets of algebraic integers within the Diophantine
subsets. For this purpose we reformulate a result of R. M. Robinson [38]. But before we state his

result let us look at a simple example: In @[%] the polynomial p(X) := X2 — 2 does not give rise
to a purely Diophantine representation of /2 because —/2 is a root of p as well. We can however

represent \/E as follows:

a=vV2 o 3Beai2]:@B*=2Ap2=q).

This is because @[%] C R is real and the square of a real number is non-negative. In general, we
have the following proposition.

PROPOSITION 2.1.9. Let K be an algebraic number field. If x € K is fixed by all automorphisms of
K, then there exist polynomials p,q € Z[X] and a constant ¢ € Z such that x is the only element
of K satisfying

Jy € O : (p(») =0Aq(y) = cx).

If x is an algebraic integer, then {x} is purely Diophantine over O.

Proof. By the primitive element theorem (|.3.7) there exists an algebraic integer § € Ok such that
K = Q[6]. Let ugs € Z[X] be the minimal polynomial of & over the rationals Q and let § =
81, ..., 0k € Ok be the roots of ug s that are contained in K. Since every z € K can be written as
z = f(8), where f(X) € Q[X] and the rationals are fixed by all automorphisms o of K, we find
that 0(z) = f(0(6)) holds for all automorphisms. Thus, idg = o1, ..., 0, where 6;(5) = §;, are
all automorphisms of K.

As x is fixed by all of the g;, we find that

f(6) = x = ci(x) = 6;(f(6)) = f(c:(8)) = f(6)
holds forall 1 < i < k. Now since Ug 5 defines {4y, ..., 8 } in a Diophantine way, we obtain that
a=x <« 3Jy€Ok: (ugs®)=0Af()=x).

To finish the proof set ¢ to be the least common multiple of all denominators of coefhicientsin f and
multiply the right equation with c. Since 3, ..., 6y € Ok are the only roots of iq s, the singleton
{x} is in fact purely Diophantine over Ok as claimed. [

Note that the assumption of x € K being fixed by all automorphisms is necessary. Indeed, if
p(X,Y) € Z[X,Y]isapolynomial with rational integral coefficients such that there existsay € K
with p(x, y) = 0, then for every automorphism o, we find that

p(a(x),a(y)) = a(p(x,y)) =0,
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and thus, o(x) satisfies the same relation. Building on this result for singletons, Davis, Matijasevic,
and ]J. Robinson [[1] gave the following characterization of purely Diophantine sets within Diophant-
ine sets over rings of algebraic integers.

THEOREM 2.1.10. Let Ok be the ring of algebraic integers of a number field K. A set S C O is
purely Diophantine if and only if S is Diophantine and self-conjugate, i.e. for all automorphisms
0K = Kandal(ay,..,a,) €S we have that the image (o(ay), ..., o(ay,)) is contained in S.

Proof. We may assume that S is Diophantine, as being purely Diophantine clearly implies the former.
Thus, let p € Og[X3, ..., X,, Y1, ..., Yy, | be a polynomial witnessing that S is Diophantine i.e. we
have that

(agysap) €S < 3B, € Ox & p(Ayy e s Ay Prs oo s Pm) = 0.

To simplify notation I will assume that n = m = 1 and thus that p(X, Y) is bivariant. The general
case follows analogously.

To see the first direction, we assume that p has in fact rational integral coefficientsand leta be in S.
Then there existsan integer § € Ok such that p(«, 8) = 0. Letnow o, ..., 0k be allautomorphisms
of K. Since each g; preserves Z point-wise (1 < i < k), we know that

p(oi(a),0;(B)) = g;(p(a, B)) = 0

and g;(a) € S as claimed.
Conversely, let S be self-conjugate and let p; for 1 < i < k denote the polynomial obtained from
D by replacing the coefficients of p by their images under o;. We define

k
q(x,Y) := [ [ piX,Y)
i=1

and note that the coeflicients of q are preserved by all automorphisms ;. As a consequence of
Prop. we can find for all coeficients a € Ok of g, polynomials B;,Q, € Z[Y] and a con-
stant ¢, € Z such that

a=a & 3Be0k: HPB)=0AQ(B)=cqa).

Therefore, the relation defined by q can be rewritten in a purely Diophantine form. To see this, we
assume that J C N2 is finite and

X, Y)= D, a;X'yl.
(i.)el

Then, we have the following equivalence for alla € Ok

P ek :qla,p)=0<
3B, (Bij),j)er € Ok -
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D¢(Dg)
Th(Qk) T
T I D34 (Qk)
Thss(Dx) I
I K 1000
H10(Ok
/’
H10"(Dk) D(Qk)

Figure 2.2: Reducibility relations holding between the theories of arbitrary rings of algebraic integers Og

Z ﬁijociﬁj = 0A

@i,j)et

/\ ;€ 0k By (i) = 0 A Qay, () = Bij)-
(i,j)eJ

All that is left to prove is that g and p represent S i.e. that
B0k : pla,f)=0 <« 3IBe€0k:q(@p)=0

holds for all algebraic integers &« € O. To see this, first assume that p(a, ) = 0 holds. Then since
the identity is an automorphism of K, we find that one factor of

k
q(a. B) := [ ] pi(a. B)
i=1

is zero, and thus that g(a, f) = 0. If on the other hand, g(a, ) = 0 then one of the factors of q
must be zero. Say p;(a, §) = 0 and let gj be the inverse of 6;. Then we find that

0 = gi(pi(a, B)) = p(g;(a), 5(B))

and therefore gj(a) € S. Now since S is self-conjugate by assumption, we can deduce that & =
0i(gj(a)) is contained in S as claimed. [

The diagram in Fig. p.2 summarizes all the reducibility relations between the theories of rings of
algebraicintegers that we have proven so far. By the transitivity of many-one reducibility all thatis left
to prove is many-one reducibility of the halting set X to the purely Diophantine theory H10*(Dg).
Then the diagram collapses as depicted in Fig. p.2].

2.1.3 Related problems

The beauty of the model theoretic approach to Hilbert’s tenth problem is that it directly gives rise to
various generalizations. To conclude this section I will list some results on variants of the problem.
In 1936 Rosser [39] proved—extending a result of Godel [fg]—that the full first order theory
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Th(M) of the natural numbers is undecidable.d Asa consequence, the full first order theory of Z is
undecidable, as one can translate a sentence in N to an equivalent sentence in Z via the construction
described in Example p.1.3. Considering the full first order theory of O, J. Robinson [37] proved
as early as 1959 that Th(g) is undecidable. In 1970 Matijasevi¢ [2G] showed—building on the
work of Davis, Putnam, and J. Robinson—the undecidability of Hilbert’s tenth problem over Z.
More specifically, he provided the last piece of the proof of the Davis-Putnam-R obinson-Matijasevi¢
theorem (DPRM).

THEOREM 2.1.11 (DPRM-THEOREM). A subset of the natural numbers is semi-decidable if and only
if it is Diophantine over N.

This result is remarkably similar to the key theorem (7) of Godel’s proof [i5] of his celebrated first
incompleteness theorem. Quite in his spirit [cf. i, Thm. 9] we can deduce

COROLLARY 2.L12. The halting set K is many-one reducible to H10(3). Thus, Hilbert’s tenth prob-
lem over Z is undecidable.

Proof. Throughout this proof I will identify Z with the domain of one of its computable represent-
ations. Then N € Z is decidable. Indeed, for a given integer n € Z we know that

neN & 3x,X,X35,X,€EZ i n=Xx]+x3+x3+x3
and
ngN o 3x,Xx,x3x€Z:n=—(x{+x3+x3+x;+1)

hold by Prop. and Nis decidable by Prop. [.1.d. Asa consequence, we have found a computable
representation of the £, q-structure of the non-negative integers and by Example there exists
a computable bijection f* : @ — N with an computable inverse.

Now consider f(X) C Z. Then the inverse mapping f~! witnesses that f(X) is many-one redu-
cible to K. Thus, f(X) is semi-decidable and by the pPrRM-theorem f(X) is Diophantine over N
and therefore Diophantine over Z as well. Hence, there exists a polynomial ps € Z[X, Y7, ..., Yy, ]
with the property that

a€ f(X) & 3B, ,Pm €Z : py(at,Bs-Bm) =0.

Finally, we find for all x € w that the £ 7-sentence

Ay, ¢ L3y (), Y1, e Ym) =0 (2.1.1)

is contained in H10(3) precisely if x € XK. Thus, the function mapping x € w to the Gédelization
of (p.1.1) witnesses that K is many-one reducible to H10(3).
Now Prop. implies that H10(3) is undecidable, as X is undecidable. O

*At this point I should mention that I assume throughout this thesis that the Peano arithmetic is consistent. See e.g.
Chap. 8 of the textbook [|4] for a more rigorous discussion of Gédel’s results.
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In 1986, Rumely [4d] published his surprising result that Hio is solvable over O, the ring of all
algebraic integers. Van den Dries [1] extended this result to the full first order theory of O in 1988.

Probably the most prominent open problem in this area is the case of Q. A positive answer to
Hio over Q would imply that there is a universal algorithm deciding whether a variety over Q has
a rational point. By giving a first order definition of Z over Q, J. Robinson [36] could derive the
undecidability of the full first order theory of Q from the undecidability of the theory of Z in 1949.
But her definition involves universal quantifiers and cannot be used for inferring to Hro. Park [51]
strengthend the results of J. Robinson [6, 57] by providing a universal first order definition of Ok
over an arbitrary number field K in 2013. Again moving to larger rings proves to be easier. Tarski
[47] showed in 1931 using the method of guantifier elimination that the full £,;,,-theory of the real
numbers is decidable. For complex numbers the tools for proving the analogous result were already
known in the nineteenth century.

The surveys [22], 33] offer a more extensive overview of problems related to undecidability in num-
ber theory.

2.2 Some structural results

Before tackling Hilbert’s tenth problem over selected rings of algebraic integers, I list some struc-
tural results and methods used within the subsequent proofs. For further structural results see the

study [43].
LEMMA 2.2.1. Let Ry C R, be integral domains such that the quotient field of R, is not algebraically
closed. If'S C RY" is Diophantine over Ry and Ry has a Diophantine definition over R, then S is

Diophantine over Ry. If Ry is computable, then the defining equation of S over Ry can be obtained
efficiently from the equation over R;.

Proof. Let f(X, Y7, ..., Yy) give rise to a Diophantine definition of Ry over R, and let S C RY" be
Diophantine over R;. Then there exists some polynomial

p € Ry[Xy, oo Xy Yis oo Yo

witnessing that S is Diophantine. To make notation clearer, I assume £ = m = n = 1. The general
case follows completely analogously. Then

S={a €R, : 3B, N, 1, € Ry with p(a, ) = 0 A f(a,71) = 0A f(B, 1) =0}

is a Diophantine definition of S over R;. O

Shlapentokh [43] notes that the previous lemma and its corollary are ‘the only tool[s] successfully
used to show the undecidability of Hio for various subrings of the number fields’. They explain the
usefulness of Diophantine definitions.

COROLLARY 2.2.2. Let R 2 Z be a computable integral domain, whose quotient field is not algebra-
ically closed. If Z has a Diophantine definition over R then the Diophantine theory HLO(R) of the
ring-structure R of R is undecidable.
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Proof. Since the non-negative integers are Diophantine over Z and Z is Diophantine over R, we
know by the lemma above that N is Diophantine over R and thus N C R is semi-decidable. However,
the complement Z \ N is Diophantine over Z as well, and thus N C R is decidable.

As in the proof of Cor. p.1.13, we can embed the halting set X C w by a computable bijection
f i+ w—= N CR. Again, f(X) is semi-decidable and thus Diophantine over the rational integers Z.
By the lemma f(X) is Diophantine over R. Thus, there exists a polynomial py € R[X, Y7, ..., Y}, ]
such that

xeX < 3y,...ymE€R: pi(f(x), V15 sYm) =0, (2.2.1)
and as before the computable function mapping x € w to the Gédelization of the equation above
witnesses many-one reducibility of K to HLO(R). Il

Note that this corollary applies to Ok for each algebraic number field K since the quotient field of
Ok is (isomorphic to) K. In fact, in the case of algebraic integers one can prove that if Z is Diophant-
ine over O, then the purely Diophantine theory of Ok is equally hard to decide as the Diophantine
theory and the halting set.

COROLLARY 2.2.3. Let K be a number field such that the rational integers Z are Diophantine over its

ring of algebraic integers Og. Then the halting set X is many-one reducible to the purely Diophantine
theory H10™(Dk) of Ok.

Proof. As in the proof of Cor. one finds a computable bijection f : @ - N € Og and
considers f(X). Since Z is fixed point-wise by all automorphisms of K, in particular f(J) is fixed
point-wise, and by Thm the set f(X) is in fact purely Diophantine.

This means that the polynomial py in (p.2.1) can be chosen to have rational integral coefficients.
Now since f(K) is a subset of N, we deduce that the partially evaluated polynomial

pr'(f(x)a Yl’ seey Ym)

still has rational integral coefficents. It follows that the Gédelization of (p.2.1) is contained in the
theory H10"(Dg) if and only if x € X, which concludes the proof. O

One can even strengthen the result of the corollary to obtain the full analogue of the pPRM-
theorem (p..1.11) for rings of algebraic integers. This was shown by Davis, Matijasevi¢, and ]. Robinson

[7: §H]'

THEOREM 2.2.4. Let K be an algebraic number field and Oy its ring of algebraic integers. Then every
semi-decidable subset of Og is Diophantine if and only if the rational inregers Z are Diophantine
over Ok.

Proof. Asthe £y, -structure of Ok is computable, the interpretations of the constants —1, 0, 1 and
addition are computable. As a consequence, the surjective function f : w — Z C O defined by

k-times
0+1..+1 ifn =2k
f(n™) =
0+(—1)..+(-1) ifn=2k+1
k-times
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is computable and Z is semi-decidable. Thus, it suffices to prove that if Z is Diophantine over Ok,
then every semi-decidable set is Diophantine over Ok .

Let A C (91k< be semi-decidable and let {£;, ..., §,,} be an integral basis for O over Z. We define
the set of all coefficients of elements in A by

n
S 1= (11, s Q1pys ooy A1y oons Apeyy) € ZFM (Z aij§i> S A;.
i=1 1<j<k

As A is semi-decidable so is S. Note that this is exactly how we efficiently represent finitely gener-
ated free Z-algebras and thus Ok in Example [.2.12.(4). By the brRM-theorem (p.1.11) the set S is

Diophantine over Z, i.e. there exists a polynomial p with coefficients in Z such that

(Q115 ooy Q1pgs ooy A1 -0 Q) €E R &
AB1, s B €E Z 2 pP(A11s ey Qs oos Qkcls ++os Qs Pis o> Pm) = 0.

It immediately follows that

(o1, , ) EAS
311, e A1pps ves A1y s Ay Pis o s P € Z

p(au, ceey aln, ceey akl, ceey akn, ‘81, ceey ﬁm) = O
o = apéy + .+ aé,

ak = A1 &1 + o + Agnén

By assumption there exists a Diophantine definition of Z over Ok. So by the procedure described
in the proof of Cor. p.2.3, one can translate the conditions above into a Diophantine definition of A
over Og. O

Given the tools and structural results that we have just introduced, all that is left to prove the
undecidability of Hilbert’s tenth problem over a fixed ring of algebraic integers Ok, is showing that
Z has a Diophantine definition over Ok. This task will fill the remainder of this thesis. But before
moving on to the case of specific number fields, I will present an important tool in proving that a field
extension L/K has a Diophantine definition of Og over Of. This so called strong vertical method
was formalized by Denef and Lipshitz and successfully applied over various number fields [e.g. 8-o,
32, 42l]. T do however present a version of this result that can be obtained from Lem. 1 of [io] and
Lem. 8 of [8] and is similar to Lem. 7.1.3 of [l44]].

THEOREM 2.2.5. Let L/K be an extension of number fields andn = [L : Q). If x,y € Op, y #0,
and a € O satisfy

1
I6,(x)| < %|NL/@(y)|E foralll <i<n, (2.2.2)

1
10:(a0)| < %|NL/Q(y)|Z foralll <i<n, and (223)
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x=a mod (y)in Oy, (2.2.4)
where 01, ..., 0y, denote the embeddings of L into the complex pane C. Then
x=a € Og.

Proof. By (p.2.4) we know that there exists an integer 8 € Of such that x — a = By. Asa con-
sequence, either X = a or

INL/o(x — )| = [NLio(BY)] = [N

holds. However, (p.2.2) and (p.2.3) imply that

INLo(x — )| = [ ] loitx — )l < [ ] 2max(jo;(x)], [o()]) < [No)-
i=1 i=1

Unlike Shlapentokh’s formulation, if y € O then the conditions on the embeddings are easily
seen to be Diophantine [cf. §, Lem. 8].

LEMMA 2.2.6. Let K be a number field of degree n over Q and let oy, ..., 0y, be its embeddings into
the complex pane. Ler a, B € Ok be algebraic integers with 8 # 0 such that

n-—1
2 T[(a+ )" | B.
i=0

Then |oj(at)| < 1/2|Ng,o(B)IV" for all1 < i < n.

Proof. Fix some j € {0,1,...,n — 1} and notice that 2"+ (a + j)" divides 8. From this it follows
that

Nk a + ™) < [Ng,oB)l,
or put differently

1
1 < |Ngjgla+ j)| < INg,g27"1B)|n.
Setc ;= |NK/Q(2—}1—16)|1/11 then

n
INgja(a + )l =[] loi(@) + jl <c.

i=1

I claim that this implies that |g;(a)| < 2"¢ = 1/2|Ng o (B)|¥'™.

Indeed, this follows from a more general property of complex numbers. Namely, ifay, ...,a,, € C
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are fixed complex numbers with the property that

n
[[la+jl<cC
i=1

for a fixed constant C > 1and all0 < j < n —1then|a;| < 2"Cforalll <i < n.

Note thatif 0 < jj, j, < n — 1 have the property that |a; + ji| < % then

) ) ) . 1 1
|J1—Jz|§|ai+J1|+|ai+J2|<§+§=1

and thus j; = j,.

We will argue by induction on n and notice that the claim is trivial for n = 1. Thus, we may
assume that n > 1 and that the claim is proven for all smaller collections of complex numbers. We
will distinguish two cases.

Firstly, let us assume that
. . . 1
Vj€{0,..,n—-1} 1 3 €{l,...n} ¢ a; + j| < 5
Since we allow only n values for both j and ij and we know by the observation that two difterent

values of j must have two different witnesses ij, we find that there must exist a bijective function
f:10,..,n—1} = {1, ..., n} with the property that

. 1
|le(j) +]| < 5
Then for all indices j* # j we must have
o 1
|af(j) +j'| > 3
Setiy := f(n — 1) then we know forall 0 < j < n — 2 that |a;, + j| > 1/2 and therefore that
n 1 n
C>[[la+jl2 5[ [lai+ijl
= ti0
Thus, aj, ..., Qjy—1, Ajy 415 ---» Ay satisfy the assumption of the induction hypothesis (w.r.t. C" =

2C) and hence
la;| < 2"~12C.

To reach a contradiction assume that |a; | > 2"C. But then
1 n n
§>|ai0+n—1|2|ai0|—|n—1|22 C—n+122"-n+12>2

holds, thus, concluding the first case.
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As for the second case, let us assume that

1
dj, €4{0,...,n—1} : Vie{l,..,n} : |a; + jo| > 5

Then we have forall 1 < k < n that

n
. 1 .
C> ] lai+Jjol = ka + Jol-
i=1

From this it is immediate that
lax + jo| < C2" L.

Now a simple application of the triangular inequality yields

lax| = |ak + jo — Jol < lak + Jjo| + ljo| £ 2" 1C+n—1<2"1C +2"~1C = 2"C.

If o; is a real embedding, the following lemma [cf. 8, Lem. 9] could have been used as well.

LEMMA 2.2.7. Let K be a number field and o © K — R be a real embedding. Then the relation
o(a) > 0 is Diophantine over Ok.

Proof. 1 claim that there exists an algebraic integer ¢ € Ok such that g(c) > 0and 7(c) < 0 for all
other real embeddings 7 # o. Indeed leto = oy, ..., o - K > Rbe the real embeddings and

Orc+1> Org 412 = Org s> Org+s¢ - K — C be the complex embeddings of K. Then the mapping
Og — R" (withn =g + 2sg = [K : Q]) defined by

X = (O-l(x)a (L33 O'rK(X), 2RO—;"K%-I(-X:)s SO}K+1(X), LREE) ERO-FK+SK(->C)a SO'P'K+SK(-X:))

maps Ok to alattice A of rank n in R" [see g, Chap. I, §5]. The claimed conditions on the sign of
o(c) and 7(c) respectively correspond directly to the sign of the first i coordinates with respect to
the standard basis of R™. They can clearly be satisfied as all of R™ can be covered by translating the
fundamental parallelepiped of A allong the lattice points of A.

Let @ € Og be such that o(ar) > 0. Then byLem. there exist zy, 25, Z3, 24 € K such that
X =z +2z%+czi+z5

Since K is the fraction field of O, there exists an algebraic integer y, such that yyz; is an algebraic
integer for 1 < i < 4. We conclude that

30, V1, V2s V3. V4 € Ok = (Vo #OAYEX =y + y3 + cyi +Y3)

is a Diophantine representation of a set containing x. To finish the proof note that if x satisfies the
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representation above then
2 2 y 2 2
olx) = a<&> +a(&) +ca<—3> +o<y—4> > 0.
Yo Yo Yo Yo

]

Note that we can exchange the bound 0 to any value in the image 0(K) C R. Indeed, for a given
bound o(a/b), where a, b € Ok (cf. Thm [.3.), this can be achieved by the relation

a
3B € O : (o(,@)ZO)A(ﬁ:oc—B>
which is equivalent to the Diophantine relation
38 € Ok : (6(B) > 0) A (bB = ba — a).

Similarly, one can obtain upper bounds by replacing x by —x.

2.3 Hilbert’'s tenth problem over totally real number fields and
number fields with one pair of non-real embeddings

I will closely follow the papers of Denef [8] and Pheidas [32]], whose structure in turn heavily de-

pends on the article ‘Hilbert’s tenth problem is unsolvable’ by Davis [5]. This way, one can prove

the undecidability of Hilbert’s tenth problem over rings of algebraic integers in totally real number

fields and number fields with one pair of non-real embeddings and at least one real embedding in

one go. This approach is also present in Sections 6.3 and 7.2 of the study [44] by Shlapentokh. The
same author has proven the second result independently of Pheidas in her thesis [42]].

2.3.1 Finitely many easy lemmas
We start by defining two sequences, that satisfy Pell’s equation stated below.

x2—dy*=1 (2.3.1)

Using modified versions of the techniques presented by Matijasevi¢ [26], it will be shown that the
index m can be obtained in a Diophantine way fromy,,, (a) for certain subsequences of the sequences

defined below.

DEFINITION. Let K be an algebraic number field, Ok its ring of algebraic integers and fix a € Ok.

One defines 8(a) :=Va? —1ande(a) := a+ (a), where we demand that —7/2 < argd(a) <
/2. 1f 8(a) & K one defines X,,,(a), ¥, (a) € Ok form € N by

Xm(@) + 8(a)ym(a) = (e(a))™. (23.2)
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This definition includes the case K = Q with Og = Z of [{f]. However, I am using the slightly
modified notation of 8, 2/]. Under the assumptions of the definition, §(a) is a root of the monic

quadratic polynomial
X2 —a?+1 e 0g[X].

Therefore, the extension K[8(a)]/K is quadratic and §(a) € Ok|s(q) in an algebraic integer. The
sequences X,,,(a) and y,,,(a) are well defined for each m € N as they correspond to the coefficients
of (e(a))™ in K[8(a)]/K with respect to the basis {1, (a)}. If the reference is clear, I will omit the
dependency on a writing 9, €, X;,, and Yy, instead. In the following the number field K[8(a)] will
be denoted by L.

Remark. AsL/K with L = K[J] has degree two, there is exactly one pair of field automorphisms on
L preserving K point-wise, namely of(a+8B) = a+8Band o (a+68B) = a—8B fora, B € Ok.
The latter will be denoted by )" = oX(n) to emphasize the analogy of complex conjugation.

EXAMPLE 2.3.1. Consider the number field K := @[\/5] It is not hard to check that {1, \/5} is an
integral basis for Og. We may choose a = 2 as the integer in the definition of the sequences. Indeed,

wefindd =Va2—-1= \/E and if \/5 were contained in K then it would be an algebraic integer in
Ok. Thus, there exist m, n € Z such that

V3=m+n/2.

Now since neither v/ 3 nor v/ 3/2 are rational integers, we may assume thatboth m and n are non-zero.
But then
3 =m? 4 2mnV2+2n?

which is equivalent to

3 —m? —2n?
V2o=2127T""°" cq.
2mn

Notethate =a+6 =2+ \/5 then by definition of the sequences we have for all m € N that

X + O = €™ = (24 \E)m = i (’;7)2'"—1\/5

j=0
& (m . J = (m . J1
= ( .)2'"—132 +V3 Y ( .)2'"—13 >
j:O ] j:O ]
J even Jjodd

Thus, we have found that
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and

m m Rt
ym= 2 |23
j=o \J
jodd

Let me now collect some properties of these sequences. The proofs are generalized versions of the
ones given in Davis’ paper [§].
LEMMA 2.3.2. Let K be an algebraic number field and a € Oy such that (a) & K. Then

(i) € is a unit in Oy, its inverse is given by e~ = a — 6 = ()", and

(1) Xp» Yim satisfy Pell’s equation (p.3.3) for allm € N, using d = 55(a)2 as parameter.

Proof. (i) Wehavee (a—6) =(a+95)(a—9) = a? — 82 =1 as desired.

(i) One uses induction on m. If m = 0, the pair Xy = 1 and yy = 0 yields a trivial solution
to equation (p.3.1). Let the claim be proven for all pairs x,,,y,, with n < m. Then rewriting the
definition of X;,, 41, Vi 41 One obtains

Xmt1 + Yme1 = €™ = Xy, + Sy e
Applying the automorphism ) implies
Xmy1 + C"‘}’m+1)* = Xm+1 = OYms1 = X — 8Ym)e

and multiplication of both equations yields

X%n+1 - dYr2n+1 = Xm+1 + Ym+1)Ems1 — OYms1) = 1,

as claimed.

The defining equation
Xm + 5Ym =" = (Xl + 5YI)m

can be seen as an analogue of the trigonometric identity
. . ; . . m
cosm+isinm =e™ = (cosl+isinl) ,

where X, plays the role of cos m, y,, the one of sinm, and i is replaced by 8. In this view Pell’s
equation (p.3.1) is the analogue of the Pythagorean identity

cos(m)2 + sin(m)2 =1.

The next lemma proves the identities corresponding to cosm = Re'™, sinm = Je'™, and the
addition formulas.

LEMMA 2.3.3. Let K be an algebraic number field and a € Oy such that § = 6(a) & K. Then for
allm, k € N one has

77



2 Hilbert’s tenth problem

(i) Xp = (€M +7™)/2 and y,, = (€™ — e™™)/(20), as well as,
(ii) Xm+k = XmXk £ 52YmYk) and Ym+k = XkYm £ XmYk-

Proof. (i) InLem. we have seen thate™! = (¢)" and therefore e™™ = ((E)*)m Observe
that for arbitrary o, § € Ok we have

a+B5+(@+8B8) =2a and a+p5—(a+38B) =258.

Now, setting & + 63 = € yields the claim.
(ii) By the defining equation for Xy, +x and Y, x we have

Xm+k + 5Ym+k =Mtk = (Xm + 5Ym)(Xk + 5Yk) =
= XmXk + 82YmYk) + Xk + XiYm)
and thus
Xm+k = XmXk + 52YmYk,
Ym+k = XmYk + Xk Ym-

The identities for X,;,_x and ¥y, follow analogously.

O

Setting k = 1 in the lemma above, one obtains X,,,; = aX, + 62¥y, and Y1 = QY £ Xppe A
further immediate consequence of this lemma is the subsequent one, which brings divisibility into

play.

LEMMA 2.3.4. Let K be a number field and a € Ok such that 6 = 8(a) &€ K. Then for all
m,k € N, k # 0 we bave that

(i) Yy, divides Vi in Ok,
(i) Yk = kxK 1ty mod (ya,) in O, as well as
(iii) the principal ideals (X,) and (Yy,) are relative prime in Ok for allm € N

Proof. (i) Targue by induction on k. The claim is trivial if kK = 1 and Lem. implies that

Ym(k+1) = Xm¥Ymk + xkam‘

If the claim is proven for all factors up to k, one finds that y,, | Yk and yy,, | ¥y, trivially. Asa

consequence, Vi, | Ym(k+1)-

(ii) Again the defining equation yields

k
k e
Xmk + 6Ymk = Emk = (Xm + SYm)k = Z (])Xllfn 1%51
j=0
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and

k
k s X
Vik = Z ()Xﬁ1 Iy i1,
j=o \J
jodd

In the equation above all terms for j > 1 are divisible by y;, and thus vanish modulo (y3,). The
only term remaining is kxk—1y, as claimed.
(iii) Since (Xp,, Yim) is a solution to bells equation, we know that

1 =x3, — (a® — Dyz.

is contained in the sum of ideals (X,;) + (¥y,) and thus the ideals are relative prime as claimed.

]

The next lemma even though being easy to prove provides a valuable tool in studying the se-
quences X, and yy,. It derives a recursive definition and lets one prove properties of the sequences,
by proving them for m € {0, 1} and inferring the properties for m + 1 from m and m — 1.

LEMMA 2.3.5. Let K be a number field and a € Og such thar § = 6(a) & K. For m > 1 the
Jfollowing recursive conditions hold in Ok.
Xma1 = 20X — Xm—1» X;1=a,Xg=1

Ym+1 = 20Ym — Ym—1> Nn=L%=0

Proof. The initial conditions follow from ¢ = a + & and e = 1. To prove the the difference
equations one uses Lem. p.3.3.(ii] and obtains

Xm+1 = Xy + 52Yms Ym+1 = AYm + X
_ 2 _
Xm—1 = AXyy — 6 Ym Ym-1 = AYm — Xm-
Summation yields X, 41 + X —1 = 20Xy, and Yy 41 + Yin—1 = 2aYp,. ]

One applies the previous lemma to prove some congruence conditions.

LEMMA 2.3.6. Let K be a number field and a,b,c € Ok such that 5(a), 5(b) & K. Then for all
m € N the following congruences hold in Ok.

() Ym(@) = m mod (a —1)
(ii) Ifa =b mod (c), then x,,(a) = x,,(b) mod (¢) and y,,(a) = y,,(b) mod (c).

Proof. Both congruences become equalities if m = 0. As for m = 1, the first congruence is again an
equality as y;(a) = 1 independently of a. The second claim is trivial since x; () = nandy;(n) = 1
forn € {a, b}. At this point one proceeds inductively and assumes the claims to be proven for all
indices lower than m + 1.
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(i) Notethata =1 mod (a — 1) and thus by Lem.
Vima1 =20Ym —Ym—1 =2m—(m—-1)=m+1 mod (a —1)

as claimed.
(ii) Using Lem. again, we see that for fixed m the coefficients X,,,(7) and y,,,(7) can be ex-

pressed as some fixed polynomial in 7). For the congruence this means
Xm+1(a) = 2aXp,(a) = Xpy_1(a@) = 2%, (D) — X_1(b) = Xppp41(b) mod (c)
and for y,, 1 completely analogously.

]

LEMMA 2.3.7. Let K be a number field and a € Oy such thar § = 5(a) & K. Then for m,k € N
such that m + k > 0 the following congruence holds in O.

Xomek = —Xi  mod (X,)

Proof. By applying the addition formulas of Lem. twice and using that X, and y,, solve
Pell’s equation (p.3.1) one obtains

Xom+k = XmXm+k T 52YmYmik = 52Ym(Yka + XpmYi)
= 8%y2x, = (X3, — Dxp = —x;, - mod (X,,,).

]

At this point for the first time in this section I state a result that is no direct generalization of a result
of Davis ] and present proofs given in [8] or [44]. Note however that the results are nevertheless
true for the case K = Q and Og = Z.

LEMMA 2.3.8. Let K be a number field and a € Ok such that § = 8(a) & K. Then for all
non-negative integers k, m € N the following congruence holds in Ok.

Xakm = (=D mod (x,,)

Proof. If k = 0the congruence becomes and identity and if k = 1 the claim follows directly from the
lemma above. Assuming the claim to be proven for all integers lower than k, we find—by applying

Lem. twice—that

Xokm = Xo(k-1)m¥Xom + 52Y2(k—1)m}’2m = (-DF + 52Y2(k—1)m}’2m
= (_1)k + 52Y2(k—1)m 2XmYm = (‘Dk mod (X,,)

O

LEMMA 2.3.9. Let K be a number field and a € Oy such that 5 = 8(a) & K. Then for all
1 € Ok \ {0} there exists an m € N such thatn |y, in Ok.
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Proof. 1 claim that the factor ring O /(267), where (267) denotes the principal ideal generated by
2577 in OL = OK[5]> is finite.

To show thisleta € (267) \ {0} and let ay € Z be the constant term of its minimal polynomial
Mo,aX) 1= am+..+a;a+ag € Z[X]. Since a is non-zero and pq g isirreducible, ag is non-zero
as well. Furthermore, note that ay = —a — ... — gy € (a) and thus we have the inclusion of
Oy -ideals

(0) € (ag) C () € (267).

If we can show that O /(ay) is finite, then the Op /(ag)-ideal (261)/(ay) is finite as well. Observing

0L/(26n) = (Or/(ao)) / (26m)/(ao))

will prove the claim. Let ¢, ...,$, € Op with€ := [L : Q] be an integral basis of Op over Q.
Then every 8 € Of can be written as § = k;{; + ...k,§, for some kq, ..., k, € Z. But every k;
must belong to one of at most |agy| many congruence classes modulo ayZ C a0 = (ag). Thus,
k; must belong to one of at most |ag| cosets of Op/(ayp). Since ky, ..., k, determine every 8 € O,
uniquely, the factor ring Or /(@) can have at most cardinality |aol.

Let m be the order of the group of units in the finite ring Or/(267). Thene*™ =1 mod (267).
Hence, 267 | €™ — ™™ in Oy, and therefore

gm — g—m
7|7 28
in Op, where the right hand side equals y,,, by Lem. p3:3.(i). Thus, there exists { € O such that

¢ = y,,. Now since ) is non-zero, it is invertible in K. Hence, ¢{ = y,,,n ™! is contained in K. In

fact, since O is integrally closed, we even find that { is contained in Ok and 7 divides ¥, in Ok as
claimed. O

LEMMA 2.3.10. Let K be a number field and a € Ok such that § = 6(a) & K. Then the set
G:={a+88:(a,p) € O% is a solution to (23.1) with parameter d = 5}

is a subgroup of the kernel of the norm map Ny . Uy — Uy, where Ug and Uy, denote the groups
of units in Og and Oy, respectively.

Proof. First of all, note that, if « + 68 € G,sois (@ + 6B)" = o — 8 € G because
o —d(—p)Y =a?—df?=1.
Now let a + 68 be an arbitrary element of G, then
Np (o +6B) = (a+88)(a+8B) =a®—dB? =1.

This implies that @ + 68 € ker Ny k but also that o + & is a unit, as &« — & is its inverse. The
product of two arbitrary elements a; + 631, a, + 66, € G is

(ay + 8By + 8B,) = (a0 + 6251 82) + (a1 By + a2B1).
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We apply the automorphism (-)* and multiply to obtain

(a0, + 6%B1B2)* — 641y + aufr)? = (ay + 8B1)(a + 8B,) ((ay + 8B (ay + 6Ba))" =
= (o + 8Bty + 8B1) (ay + 8Bo) (e, + 8B,)" = 1.

As a consequence, G is closed under multiplication and the claim is proven. O

LEMMA 2.3.11. Let L and K be number fields as defined above. The image Ny jx (Up) < Uy has
finite index in Ug.

Proof. 1 claim that Ny (Uy) contains a? for every @ € Ug. This is because the restriction ok log
is just the identity on O for i € {1, 2} and therefore, Ny /x (a) = a? foralla € Uy C Uj.

Let now k := rk Ug and identify Uy = u(K) X Z¥, where u(K) is the finite cyclic group of
roots of unity in K (cf. Thm [.3.21). Consider the following k elements

([o],1,0,...,0), ([0],0,1,0,...,,0), ..., ([O],0,...,0,1)
contained in Ug. By the claim their ‘squares’ are contained in Ny (Up) i.e.
(0], 2,0, ...,0), ([0],0,2,0,...,0), ..., ([0],0,...,0,2) € Ny (Uy).
As a consequence, the direct product

G :={0]} X2Z X ..X2Z

k-times

is a subgroup of N,k (Up) and therefore
[Ug : Npgx (Up)] £ [Ug @ G] < c0.

]

As for the free ranks of Uy, Up, N1k (Ur) and G the lemma above implies that rk Ny (Up) =
rk U and therefore, as an immediate consequence of the first isomorphism theorem [see 23, II §r,
p- 89] the following inequality holds

rk G < rkker N g = rk Uy, — rk Ug. (2.3.3)

Before proving the main result of this section (Cor. p.3.28) I sketch how Davis [[f] establishes the
DPRM-theorem.

THEOREM 2.L.1I (DPRM-THEOREM). A subset of the natural numbers is semi-decidable if and only
if it i Diophantine over N.

First he proves using the sequences above that the exponential function is Diophantine over N [f,
Thm 3.3]. Then he is able to extend the language of Diophantine predicates by bounded existential
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and bounded universal quantifiers, i.e. by

@A), $(x,y) & Ty (Y < x AP, y),
(M) #(x,y) & Vy(y>xVe(x,y))

where ¢ is a positive existential formula [§, Thm s.1]. The first one is easily seen to be Diophantine
as the order relation on N is Diophantine. Proving the second claim takes the rest of the section.
Now using this result together with the sequence number theorem [§, Thm 1.3] Davis proofs that a
function is Diophantine over N if and only if it is computable [5, Thm 6.1].

This already implies the DPRM-theorm as Davis has introduced Diophantine pairing functions
in [§, Thm 1.1] and therefore all ranges of Diophantine—and therefore all computable functions—
are Diophantine over N. But the ranges of computable functions are exactly the semi-decidable

subsets of w by Prop. [.1.§, thus proving the claim of the theorem.

2.3.2 Diophantine definition of Z over K

For the remainder of this section let K # (@ be a totally real number field or a number field with
exactly one pair of non-real embeddings of degree n := [K : Q] > 3 over the rationals Q. For
any number field K we set 1¢ to be the number of real embeddings of K and si to be the number
of pairs of complex-conjugate embeddings of K. Then the conditions on the number fields we are
considering in this section can be restated as gy = n > l,orig = n—2 > Oandsg = 1
respectively. As before we set L = K[8(a)], where 8(a) & Ok is a root of X?> — a® + 1 and
—m/2 < argd(a) < /2.

Furthermore, let us assume that o7 = idg, 03, ...,0, : K — C are all embeddings of K into
the complex pane C. If sy = 1 we demand without loss of generality that K, 0,(K) ¢ R and that
oy(a) = oy(a) forall ¢ € K. In other words, (07, 03) is the pair of complex embeddings and all
other morphisms embed K into the reals R.

LEMMA 2.3.12. Let K # Q be a number field of degree n over Q. If a € Ok satisfies

k=n>1 k=n—2>0
a > 22 o a@]>22) friefl,2},  (23.4)
0<sz(a)<§ for1<i<n 0<ai(a)<§ for2<i<n

then 8(a) = \ a2 — 1 is not contained in K.

Proof. By assumption we have 0 < 0,,(a) < 1/2 and therefore 6,,(a)* — 1 < 0 cannot be a square
in the real number field 0,(K) € R. As K is isomorphic to 0,,(K), the algebraic integer 6(a) =

vV a? — 1 cannot be contained in K. O

LEMMA 2.3.13. Let K # Q be a number field of degree n over Q and sg € {0, 1} the number of pairs
of non-real embeddings o . K — C. Then there exists an algebraic integer a € Oy that satisfies

(34
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Proof. We will apply the strong approximation theorem ([.3.3d) to prove the existence of such an al-
gebraicinteger a. To this end, we consider the set of absolute values F 1= {| - |1,] - o415 -+ | - In}
where | - |; denotes the absolute value defined by

xli := o(0)le.

By the strong approximation theorem there exists b € K such that

1 1 1 .
Ui(b)—f‘ = o (b—§)| <5 forsg +1<i<nand  (235)
bl, <1 for every prime ideal p (2.3.6)

holds. Note that (p.3.G) implies that b € Oy is an algebraic integer by Lem. [.3.27. Form (p.3.4) we

firstly conclude, that b is non-zero as

1 1 1
o = 35 = 35> 56

Secondly, we find that for all sg + 1 < i < n we have

1 1 1 1 1 1 1
|O'l(b)| = |O'l(b)— E + f’ < O'i(b) — f‘ + f < i + E < 2—4
Now since b is non-zero, we know that
Sg+1 n
1< [Ngig®)l = [] la@l J] lo(@)l < [ey(b)|sct12=4n=sx+2),
i=1 i=sg+2

We conclude that
24(n+1) < 4n—sg+2) o |ol(b)|SK+1 < |U1(b)|2-

Setting a := b finishes the proof for the case ry = n — 2. If all embeddings are real, we seta :=
D] O

EXAMPLE 2.3.14. Consider again the case of K := Q[\/E] Since both embeddings of K into C
are uniquely determined by G(\/E) = i\/a it suffices to find two integers k,€ € Z such that
|k + €\/§| > 2%2%2 = 64 and |k — €\/§| < 1/2. Thenwecanseta :=k + 6\/5 and the a fulfils
(B-3.4)). Such a pair of integers is given by a = 34 + 244/2. In this case

2

5= \/4(12\/§+ 17) ~1.

Remark. As the expansion L/K is quadratic by Lem. p.3.13, every o; can be extended to exactly two
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embeddings 0;; and oy, of L into the complex plane C by ‘composing’ with o or o This yields

(e + 8B) = gi(@) + 1/ 6i(@)’ —16;(B) and s
2.3.7
o + 8B) = gi(a) —\/ ai(@)* — 1 6;(B)

foralla, B € Ogandalll <i < n.
I will identify the field L with its embedding oy1 (L) and write x instead of 07, (x) for its elements.

LEMMA 2.3.15. Let K # Q be a number field of degree n over Q and let a € Ok be such that (p.3.4)
is satisfied. Then

(i) if rx = n, only oyy and oy, embed L into the reals, and
(ii) if tx = n — 2, the field L is totally complex.

Proof. (i) If K is totally real and i > 1, then 0 < g;(a) < 1/2 and therefore the radicands in
(B-3.7) are both negative. As a consequence, (01, 0;,) is a pair of non-real embeddings.

On the other hand, ifi = 1 thena > 22"*D > 1 and the radicands are both positive. We deduce
that g7 and o0y, are both real embeddings and L is a subfield of the reals by our identification.

(i) As oy and o, are already non-real embeddings and ok preserve 0;(K) point-wise (1 < i, j <
2), 011, 012, 021 and 0, are non-real as well. For the remaining embeddings one argues completely
analogously to (i).

]

LEMMA 2.3.16. Let K # Q be a number field of degree n over Q and let a € Ok be such that (p.3.4)
is satisfied. If Sk is the number of pairs of non-real embeddings of K, then

(i) 0i1(e)™t = 0y,(e) forall1 < i < n,
(ii) 031(€) and 0y,(€) are complex conjugates for sx +1 < i < n, and
(iii) |11 ()| = |opa(e)| = 1 forsg +1 <i < n.

Proof. In Lem. we have seen, that the claim holds true for i = 1. We extend this method to
obtain the results for the other cases. Forall 1 < i < n we have

01(e)oi2(e) = (63(a) + 611(8))(0;(a) — 0;,(8)) =
= 0i(a)* = 0;,(8)* = gi(a)* = gy(a)* +1 = 1.

Forall sg + 1 < i < nwehavedefinedo; : K — C to be a real embedding. Thus o;(a) is a real
number and as 0 < o;(a) < 1/2, we find that ;;(8) is purely imaginary. Hence, we deduce that
0i1(€) and 0y, (€) are complex conjugates. But then the complex moduli of these algebraic integers
must coincide, leaving no other option than |oj;(¢)| = |oj2(e)| = 1. O

Before we can start proving some approximations for the complex moduli of €, § and a, we need
to fix some notations.

DEFINITION. Let K # Q be a number field of degree n over Q and let a € Ok be such that (2.3.4))
is satisfied. For 1 < i < n we set
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(i) a; :=gi(a),
(i) & 1= ogy1(e)if|oj1(e)] = 1 and ¢; : = 0,(€) otherwise, and
(111) o; := 0,-1(5).

Remark. (1) Inthedefinition above we could have equivalently defined ¢; := g;;(€) forsg +1 <

i < n,asby Lem. the complex modulus of 03, (€) is 1.
(2) Note that by (.3.7) we have 0;,(8) = —9; and therefore |§;| = |0;,(5)| forall1 < i < n.

We will use the following result by Kronecker.

LEMMA 2.3.17. If a non-gero algebraic integer 1) and all its conjugates have complex modulus not
exceeding 1, then 1) is a root of unity.

Proof. Let M := Q[n]andn :=[M : Q]. Since 1,7,n%,%>, ... is a sequence contained in M, all
minimal polynomials {4g ,x have at most degree n. As all of the conjugates of 7) lie within the closed

unit disk, so do all the complex conjugates of n* (for k € N). This implies that all the coefficients of
the minimal polynomials ug ,« lie bertween + max {(:l) :0<j< n}. We deduce that the sequence

1,1,792%,13, ... can at most have finitely many distinct terms and 7) is a root of unity. O

LEMMA 2.3.18. Suppose K # Q is a number field of degree n over Q and let a € Og be such that
(.3.4)) i satisfied. Then the following inequalities bold.

@) la;|l/2 <|&| < aj| +1for1 <i<sg+1
(i) 1/2 < |6;| <1forsg +1<i<n.
(iii) Ifn € ker Ny g then |0;;(n)| = 1 for sg +1 <i < nand j € {1,2}. Furthermore, |n| =1
if and only if 1) is a root of uniry.
(iv) la| —+/|a?2 —-1| < 1L
() |a| < |&| < 2|a] + 1.
(vi) € is not a root of unity.

Proof. (i) By assumption we have |a;| > 22(n+1) and therefore

3|a;]? 3
= la2 = 24 < g - 200 <2 1

<16 =laf — 1| < |a;* + 1 < (|a;| + 1)?

|a;|?
4

(ii) Again by our assumption |a;| < 1/2. Thus, we find

1 3
Z<z<1—ai2:|5i|2<1.

(iii)) As in Lem. one uses that 0;;(8) = 03(8) forall sg + 1 < i < n and finds for
n=a+0d B € ker Nk that

a1(m) = gi(a) + 6;1(6)0;(B) and
0i2(n) = 6i(a) + 012(8);(B) = gy(@) — 611(8)0i(B)
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2.3 Hio over totally real number fields and fields with one pair of conjugate embeddings

are complex conjugates. Now one can deduce,

1 = Np,x(m) = 6 ()oi(n) = |oy;(m)|?

for both j = 1and 2.

To prove the second part of the claim, we notice that all roots of unity have complex modulus 1, so
one direction is trivial. Letnow? = a + 68 € ker Ny i and additionally || = 1, we differentiate
two cases. If K is totally real, then all embeddings of the algebraic integer 7 have complex modulus
1. Therefore, 7 is a root of unity.

If on the other hand, sx = 1, then note firstly, that the complex conjugate & is a root of the
polynomial

X2-a+1=X? —oy(a)® + 1.

As a consequence, 0,(8) = (—1)1+jg for j € {1, 2}. We deduce that

o1(n) =1 =a+ 6 = 0y(a) + 0,1(6)a(B) = 551()

and

012(n) = a = 8 = gx(a) — 521(6)72(B) = 021(n) = T2(a) + T2,(8) T (B) = T2,(7M).

Thisimplies that |01 (1)| = |9| = 1and |05,(n)| = |012(n)|. Finally, note that N ;g = Ng/q°oN/x
and therefore

1 = [Ngo(D)| = INgjg o Nyg@)| = | [ 01;m)| = lor.Mllon®m)| = lo1(m)I*.
1<i<n
1<j<2

la| —4/la2—-1] <1

is equivalent to |a|> — 2|a| + 1 < |a? — 1|. But this inequality can easily seen to be satisfied, as

(iv) The inequality

lal> +1 < |a|* +2|a| — 1 < |a® — 1| + 2|q|

and the claim is proven.
(v) Consider the inequality

ler|? = |a + 6,2 = |a® + 2a8; + 62| > |2a® + 2a8,| — 1 = 2al|g| — 1

which can be rewritten as

0< |e12 - 2lalley| + 1 = (|s1| —la| = /}aP - 1) (|s1| —la] ++/lal? - 1)

87



2 Hilbert’s tenth problem

Thus, either both factors are non-positive real numbers or both are non-negative. In the first case

by (iv)
0<leg| <lal—=4/la]2-1 < 1,

which is impossible. Hence, both factors are non-negative and

ler] > laf ++/lal* =1 > |a],

proving the first estimate. The second inequality follows from |e;| = |a + &;| < 2|a| + 1 by (i).
(vi) Note that by (v), |€;| > |a| > 22(n+1) > 1 and therefore the complex modulus of € cannot
be equal to 1. The claim follows from (ii).

]

Asanext step, we want to show that we have essentially found all solutions of Pell’s equation (p.3.1).
For this we need some lemmas.

Recall the group G < ker Ny defined in Lem. p.3.1d. We have seen in Lem. and the
subsequent inequality (p.3.§) that the free rank of G can be bound from above by rk Uy, — rk Uk.
I claim that this difference of ranks is equal to 1 in both cases of algebraic number fields we are
considering.

If K # Q is totally real, then by Dirichlet’s unit theorem ([.3.21) we find thattk Uy = n — 1 and
by Lem. that rk Uy, = n. If on the other hand, K satisfiesr = n —2 > Othentk Uy = n —2
and by Lem. we haverk Uy, = n — 1.

Note that€ is contained in G and by the previouslemma, € is nota root of unity. Asa consequence,
the group (€) < G has free rank at least equal to 1. We deduce that

rk(e) =1k G = 1.

Thus, there exists a unit €y € G such that forall) € G there exists a root of unity { € Op and an
integer k, such thatn = ¢ Elg. However, even more is true, as one can set € = gy, but before we can
prove this, we need a lemma.

LEMMA 2.3.19. Let K # Q be a number field and let a € Uy, satisfy (p.3.4). Furthermore, let €y be
a generator of the torsion free part of G. Then 26 | (€9 — &g Y and

(i) if K is totally real, then
INL)o(28)| > a®>  and  |Npo(eo —egt)| < 22M|eo|%
(ii) if [K : Q] > 3 and K has exactly one pair of non-real embeddings, then
INL)o(28)| > a*  and  |Npjoleg —egh)| < 22go|*.
Proof. Letey = a + 6f forsome a, f € Ok, then ey’ = a — 5B (cf. Lem. b-3.1d) and

€0 — &5 =26,
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proving that 26 | (g9 — &g b,
We assert without loss of generality thate = ¢ Eg , where |gg| > 1. Then forall1 < i < nandall
1< j <2,wehave
|6:;(e)| = |0y (e)| = oy (o),
and thus, |&;| = |go|¥ > |go| > 1. Furthermore, by Lem. the following inequality holds

|oi1(e0) — 011 (eg Dl |oia(e0) — oia(g )| < 4 (23.8)

forallsgy +1<i<n.

(i) IfK # Qis totally real, then by Lem. and (ii) we find that

22n |a|2 B a2

n
— N2 2
INL/@(28)] = 2" 111 81" > s =

To see the second inequality, we use (p.3.8) to find

INLa(eo — oDl = ] loij(eo) — oijlea™)
1<i<n
1<j<2

< 22M720gy — g5 2 < 22172 (Jgg| + 1)? < 22 gp|?

as claimed.
(i) Completely analogously using the fact, that

|lon1(e0) — o11(5 Dl o12(€0) — T12(E5 D021 (80) — 021 (€5 DI 022(0) — a5 )

= |o11(e0) — o11(e5 DI |oa1(E0) — 021(eg DI? = o1 (g0) — o1 (eg M.
]

PROPOSITION 2.3.20. Let K # Q be a number field and let a € Oy satisfy (p.3.4). Then for every
N € G there exists an integer k and a root of unity { € L such tharn = § ek,

Proof. By the discussion above all that is left to prove is that in the equation
e =¢ 5’5
with |eg| > 1 the integer k is 1. Then
go=¢leg = ¢!

and the proposition is proven.
Assume to the contrary, that k > 2, then |g;| > |¢9|* > 1. By the lemma above 26 | (gy — 5%)
and therefore

INL/a(28)] < |NLa(E — €5V
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The previous lemma implies now that 1 < |a|?™o < 22"|gy|2™Mo, where my = sg + 1 € {1, 2} is
chosen accordingly. Applying Lem. yields

|al?™o < 227[gg [P0 < 227[gy ™0 < 227 Mo(ja] + 1) < 22nH I+ |g| Mo,

If my is one then the inequality above reads |a|* < 22"*2|a|, which is a contradiction to (g3.4). If
on the other hand my = 2 holds then we obtain |a|* < 22"*3|a|?. But this can be transformed
upon dividing by |a|? and taking square roots to |a] < 2"*3/2, which is again a contradiction to

(23.4). 0

Recall the sequences (X, )men and (Vi )men defined in (p.3.2)). If K is totally real we can conclude
from the proposition above that all solutions of Pell’s equation with the parameter d = a? — 1 are
of the form

(£xm(a), £ym(a))

for some integer m € N. This is because L = K [\/E] has two real embeddings (0; ; and o )
and the only real roots of unity are +1. If K has one pair of non-real embeddings and at least one
real embedding. This argument can no longer be used as L is totally complex in this case. One can
however impose a Diophantine condition on the solutions of Pell’s equation to force them to be of
this shape [cf. 52, Lem. 3].

COROLLARY 2.3.21. Let K be a number field of positive degree n over Q and let a € Oy satisfy
(B-3-4). Then there exists a constant v € N \ {0} with the property, that if x" + 8y’ € G and

(x'+68y) =x+06y (23.9)
for two algebraic integers x,y € Ok then there exists an index m € N such that

(x, y) = (iXm’ iYm)-

In particular, (x,y) is a solution to Pell’s equation.

Proof. Setv := |u(K)| which is finite by Dirichlet’s unit theorem (.3.21). By the proposition there
exists a root of unity { € L and an integer m; € N such that {¢" = x’ 4+ §y’. We conclude that

X+06y =(x"+6y) = (M) = VeV =MV

and therefore that (X, y) = (£X,,7> ¥m,»)- The claim follows from Lem. p.3.2.(if}. O

Note that (p.3.9) is nota Diophantine relation over Ok as & is not contained in K. We can however
use the binomial theorem to rewrite the identity as

4
) .
x+8y=(x"+6y) = (,)x”’_lcSly"
i:Z() l
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and by equating coefhicients of § we get the two Diophantine definitions
v 7V i
— W—i(~2 _ 1\5 /1
X = Z (i>x (a®—1)2y
and

v . i'_l .
oot

As a next step we derive further properties of the sequences (Xy;)men and (Y men-

LEMMA 2.3.22. Let K # Q be a number field and let a € Oy satisfy (p.3.4). Then the following
inequality holds
m < |Gi(Xm)|

for all non-negative integers m € N and all1 <i < sg + 1.

Proof. By Lem. we know that |¢;| > |a| > 1 and since &; = ¢*!, Lem. p-3:3.(1) implies

| = AT Al o il S
mi— 2 2 2

If sg = 1, then 05(X,,) is the complex conjugate of 01(X,,) = X;,. As a consequence, their
moduli must coincide. O

LEMMA 2.3.23. Let K # Q be a number field and let a € Oy satisfy (p.3.4). There exists a constant
C > 0 depending on K and a such that for all k € N \ {0} there exist m,h € N with k | m and
k| h, and

1
5 C<m)| > 3,

|o:(yn)| > C

_fO}"SK+1<l.Sn.

Proof. Fix any positive integer k. By Lem. p.3.16.(iii) we know that |gj| = 1forsg +1 < j < n. It
follows that there exist arguments 19sK+2, wrs I, € Rsuch that

_ in9;

Ej =e J.

Let A = {«9]-1, v Sjs} be a maximal Z-linear independent subset of {«9SK+2, e I }. Since € is not
a root of unity by Lem. p.3.18.(vi}, none of the J; can be rational. Indeed, if § = p/q then Equ =

ei™2P = 1 and g isaroot of unity. Hence, A contains at least one element.
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LetJy :={j1, ..., Js} be the set of indices of elements in A, then the construction implies that for
all s + 1 <r < n there exist integers by, b,j € Z with b, # 0 such that

For otherwise, 1, 8;,, ..., 9, 9, would be Q-linear independent, contradicting the maximality of A.
In other words, we have that

J€Jo
Weseth := Hf:sK+2 b, # 0and find forall s + 1 <r < nintegers ¢,; € Z with
b _ Crj
& = g .
Jj€lo

We exponent this expression by a multiple ¢ € kZ of k, whose value will be fixed later, and
rewrite it to obtain

OCyj iy, . tcpid;
0,(X¢p) + 01 (&), (yp) = 0 = [ [ & ™ = & Zero “ri®s
J€Jo
(2.3.10)
=cos|(7m Z ¢c, 9 | +isin| 7w Z €c, 9 |-
jEJO je]o

By continuity of | cos(78)| in §, we can find a constant 4 > 0 such that 1 — | cos(78)| < 1/2
whenever |8] < A. Or put differently, | cos(r9)| > 1/2.

Let ¢g = max, j(|c,j|). Setting; := k&, fj = 0,and N = 1 we obtain by Kronecker’s
theorem ([3.29) integers £, &; with £ > 0 such that

e s A
10k8 =G| < 5o

holds for all j € J; simultaneously. But then

~ ~ A

holds as well and we set € : = 28k and €j = 2€~j. This does not only implies that
2 Cer = 2 Gierj| <2
J€Jo J€Jo

but also by the choice of the ¢; that ). _; #jc,; € Zis divisible by 2 forall sg + 1 < r < n. From

J€Jo
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(k-3:1d) we conclude that

cos (7‘[ Z €crj19j>

J€Jo

1
loy(Xep)| = > 5

cos (n‘ Z 0c % — 1 Z €jcrj)

J€Jo J€Jo

Setting m := €b proves the first claim as € is divisible by k.
To prove the claimed bound fory, let C, := zjejo crjforallsg +1 < r < nand fixaconstant

Co € Nsuch that Cy > max,(|C;|) and in the prime factorization of Cy appear at least as many
twos as in all the prime factorizations of the C,.. In other words,

ord, Cy > ord, C;, forallsx +1<t<n.

As | sin(7r9)| is uniformly continuous on the compact interval [—1, 1] we can find for all positive
A1 > Oarealnumber 0 < A, < 1/4 such that|| sin(73)| —| sin(wg)|| < A1 whenever |§ —¢| < 4,
and 8,9 € [—1,1] are satisfied. We apply Kronecker’s theorem again with the parameters o :=
kS, B :=1/(4Cp),and N := 1 to obtain integers £, £; with £ > 0 and the property that

A
2Cyn

. ~ 1
‘eksj -3

holds for all j € Jy simultaneously. We again multiply by 2 to obtain

1
2C,

<t

208 - 24 &

and set € := 2@k and ¢ 1= 2€~j forall sg + 1 < r < n. Hence, we can deduce that

C crj
2 (Cer§ = iery) = 52| = | (”ocrﬂgj = bjcrj = f) <4
J€lo J€lo 0
and again that D, jer, Gicriis divisible by 2 for all s + 1 < r < n. Set now
. nC,
|S11’1<2C )
S 0
A= —
then we can use (.3.1d) to obtain
) i C [l = |lsi éc, iS5 i Cr
|6,1(8)a(Vep)| — [sin ﬂZCO = ||sin| 7 Z ¢S || — |sin 7T2C0
J€Jo
= ||si ec, ;9 ¢ in (25
= [|SIn 77.'2 erj—ﬂz jc,,j — (SIn 7T2CO
J€Jo J€Jo
1. [ C
<A = 5 ’sm <7T2C0)
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2 Hilbert’s tenth problem

forall sg + 1 < r < n. Thus, we can conclude that |0,1(8)o,(Vep)| > 44.
Note that sin(7C,/(2Cy)) # 0as C,./(2C) cannot be an integer by the choice of Cy. Now set

. c,
Sin 77.';
C :=min 0

r 2|04(9)|

then C satisfies the claim. O

LEMMA 2.3.24. Let K be a number field of degree n > 0 over Q and let a € Oy satisfy (p.3.4).
If Yep, satisfies Lem. for an arbitrary but fixed positive integer k € N\ {0} dividing h, where

e € N is an integer such that
sg+1| S [Sg+1
2°KT2 6, K

e
lex]® > T Cn—sx-1 (2.3.11)

holds for the constant C of the same lemma, then

() Yen | Yeo in Ok implies h | € in Z and
(ii) Y2n | Yee in O implies hy,p, | € in O.

Proof. Note that such an integer e must exist as |e;] > 1 by Lem. p.3.18.(v). Let now r € N be
such that 0 < r < h. Asbeforelet L := K[8]. Considering the field norm Np,q of Y, we use

Lem. p.3.3.(i) to obtain
n 2 ger — g—er
|NL/@(Yer)| = H H Gij ( )
_ —erllg—er _ Egrl n

i=1 j=1
+
H el 11
B 4|5i|2 i:sK+2| i|2
4SK+1|€1|2€I’(SK+1)

- 4SK+1|NK/Q(a2 — 1)|

< |81|2er(sK+1),

where the approximations follow completely analogously as in the proof of Prop. p.3.2d. As Y, isin
Ok we deduce that
Nk /Q(er)| < le|7CK+D.

On the other hand, by our assumption on |0;(Yp, )| we know that

n sg+1
INgioGen)l = [ lo:er)l = €51 T l0iGen)
i=1 i=1
SK+1 eh —eh|

_ on-sk-1 H 5 cnose (1l =1
o2l 2|8,

|eh(sK+1)

Sg+1

n-—s 1|E
> O o T

94



2.3 Hio over totally real number fields and fields with one pair of conjugate embeddings

where the second inequality follows from |e;!| < 1. Using our assumption on e, it follows that

INk/0Yen)| > INk/@(Yer)|- (2.3.12)

LetVop, | Vep and set € = th + r fort,r € Nwith 0 < r < h. Assume to reach a contradiction

thatr > 0, then

Lem. p33.(31)
Yee = Yeth+er = YethXer + XethYer-

By Lem. we know that ., | Yerp, and consequently Yy, | XernYer in Ok . But by part (iii) of
the same lemma the principal ideals (X¢;p) and (Yesp,) are relative prime in Og. Now Lem.
implies that (X;p,) and (Yep,) are relative prime as well. And therefore Yo, | Yer, contradicting (p-3.12)).
Consequently,r =0and h | € in Z.

To see the second divisibility condition we assume y2, | Ve, in Og. Then by the first part of the
lemma, we know that there exists an integer ¢ such that £ = th. Using the binomial formula we
obtain

Xeth + SYeth = (Eeh)t = (Xeh + 5Yeh)t =

U\ t—isioi U\ t—isio1i
= Z (l-)xeh alyeh +46 Z i Xeh g Yen
o<i<t o<i<t
2 even 2 odd

and, since (X, ) and (Y, ) are relative prime, we can conclude that

0 = Yot = Xgp Yen = Ve, mod (¥75,)-
It follows thaty,y, | t and therefore hy,j, | € (both in Ok). ]

As a next step we prove a similar result for X,,.

LEMMA 2.3.25. Let K be a number field of degree n > 0 over Q and let a € O satisfy (p.3.4). If
Xy, Satisfies
1
0105 > 2
Jorsg + 1 <i < nthen for all integers €, j € Z and some sign ¢ € {—1, 1} we have that X, = X;¢

mod (x,,) in Ok implies € = +j mod m in Z.

Proof. Set€ = 2mé+n aswellas j = 2mj,+1r, with—m < r, , < m. Withoutloss of generality
we may assume that 0 < r;,7, < m holds, since we have

Xo = Xomeyar, = —Xp, MOd (Xp,) and  Xj = Xppj,4r, = =X, mod (X,)

by Lem. p.3.7. Thus, we can deduce thatx,, = X,,¢ mod (X,,). We will prove that X, = X,,¢
and will deduce ; = 5. Assume otherwise thatr; # r, and X, # X,,¢ then from the congruence
it follows that

INk/@(Xm)| < [Nk/o(Xr, — Xp,6). (23.3)

To reach a contradiction we assume without loss of generality that; < 1, and apply Lem. p.3.3.(i}
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2 Hilbert’s tenth problem

t0 eXpress Xp,, X, and X, as the ‘real part’ of a power of €. Now as in the proof of Lem. p.3.24), we
have that

Sg+1 n

1
INgaG&m)l = [ 1@l [T loGml > Wl%(xmw"“
i=1

i=sg+2 (2.3.14)
1 sg+1

T on-sg-1

et +er™

m _ 1\Sg+1
s > (e 1)

n

Again the last inequality follows from the triangular inequality and the fact that |ej'| < 1. To
estimate the norm of X, — X,.,¢ we note that by Lem. we know forall sg + 1 < i < n that

ri

e! ra —r2 r —r r —r
.- —E.: + c.° —¢. g 1+ g l+ fof 2+ o 2
) — o150 < 1TSS — e+l 4

2 - 2

Thus, we can conclude that

n

INgjaGr, = %, = [ [ 16:xr) — 6%, 9| < 27567 g3(x,,) = 03Xy, 6|6+
i=1

el + |7 + e + |a1|—’2>SK“ (2315)
2

< 2n—sK—1 (
S 2n—sK—l(|€1|r2 + 1)SK+1.

We know by Lem. p.3.18.(v] that |€;| > 2. So |g1|"2 + 1 < 2|€;]"? and we have that

erl™ = 1> ey,

Now notice that Sg < 1 and thus we can deduce from (2.3.14) and (p.3.15) that

|£1|m(sK+1) |€1|m(sK+1)
INko(Xpm)| 2 n+sg+l = on+2 (2.3.16)
and
INgja(Xp, = Xp,§)| < 27|gy 26K+, (23.17)

We will now distinguish two cases. Either , < m then we have that

22n+2 < |a| < |€1| < |£1|SK+1 < |El|(m—r2)(sK+1),

which together with the inequalities in (2.3.16) and (g.3.17) implies

INg/aXm)l > INk/o(Xr, = Xr,6)|-

Thus, we have reached a contradiction with (g.3.13) and we must assume that , = m holds. But this

96



2.3 Hio over totally real number fields and fields with one pair of conjugate embeddings

implies that X,,, actually divides X, , yielding

INk ja(Xm)| < [Ngjo(Xr)l-
As for the norm of X, we find that

n

Nk /oG )l = lo1 G I [T o)l
i=sg+2
n
e +leil "
<l T EAal™
i=sg+2
€ ry € —r SK+1
< (| 1 +2| 1 ) <

r Sg+1
< (lgﬂ%l) < gy |"1Gx+D

holds. Remember that we are assuming thatr; # r, and we have already shown , = m. Thus, we
can conclude that 2"*2 < |¢;|™~"1. But then the inequality above implies together with (p-3.16)
that

INk/a(Xm)l > [Ng/o&r)l,

which is again an contradiction.

As a consequence, our assumption that both 1 # 1, and X, # X,.,§ are true cannot hold. So the
only thing left to check is that X, = X, ¢ implies ; = £, which yields the desired congruence of
rational integers. We know that X, = X, ¢ implies €t + &1 = (¢"2 + ¢7"2)¢. If ¢ = 1 we find
that this is equivalent to

0=c(e+e M —cl—g2)=¢¥1 +1 112 -T2 = (Nt — 1)(g"~"2 - 1).
Hence, ; = +5, as claimed. If on the other hand, ¢ = —1 holds we find
0=—c(e" +e —g2—gT2)= =2t — g 4 g22 4 1 = (2% — 1)1 - 1),

yielding, = +p. 0

LEMMA 2.3.26. Let K be a number field of degree n over Q and let a € Ok satisfy (r.3.4). Then for
all positive m € N\ {0} and all constants C1,Cy > O there exists an algebraic integer b such that

(1) b=1 mod (yn(a)),
(ii) b =a mod (x,,(a)), and
(iii) b satisfies |o;(b)| > Cy for all 1 <i < sg + 1 and |o;(b)| < C, forallsx +1 < i< n. In
particular, we may whish that b satisfies the approximations of the embeddings of a in (p.3.4).

Proof. Set

b := (xm(@)? + Ym(@?(@ = 1)) (xm(@)* + @ (1 = xp(a?)")
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2 Hilbert’s tenth problem

for some positive integer s, whose value will be determined later. Note that since X,,,(a) and y,,(a)
solve Pell’s equation, we have

Xm(a)z - (a2 - 1)Ym(a)2 =1,

which implies that (a? = Dy,(a)?> = =1 mod (%,,(a)). Thus, condition (ii) is satisfied. As for
condition (i), we note that by the same argument x,,,(a)* =1 mod (¥,,(a)) holds.
To prove the last claim note that for all positive m, we have

(@)™ +¢i(a)™™ < lei (@)™ + |ei(a)| ™™

6:0tm(@))] = . < s “1

forall sg + 1 < i < n. The only way equality can be reached in the inequality above is if |¢;(a)™ +
gi(a)™™| = |g(a)]™ + |g;(a)|~™. But this can only happen, if their arguments coincide, which
implies that both &;(a)™ and ¢;(a) ™™ are real numbers with complex modulus 1. Hence, ¢;(a)*™ =
1 and e(a) would be a 2m-th root of unity, contradicting Lem. p.3.18.(vi}. We conclude that the
approximation of the modulus |0;(X,,,(a))| < 1 holds forall sg + 1 < i < n. Butsince

INgjaEm(@)] = o1 Gm(@)<* T loiGm(@))]

i=Sg+2

is a positive integer we must also have |oy(x,,(a))| > 1.

As for the embeddings of b we have

6i(b) = (6% (@) + G ¥m(@)(@} — 1)) (Gixm(@)* + @; (1 = Gi(xpn(@))?)])

where |a;| > 1forall1 <i < sg +1and|a;| < 1forallsy +1 < i < nby (p3.4). Let us first
consider the case for1 <i < sg + 1. Then

|6:(xm(@))? + 0i(Ym(@))?(af — D)| = 20i(xpm(@))? — 1] 2 2|oi(Xpm(a)) =1 > 1

holds and thus |o;(b)| is strictly increasing in 5. On the other hand, if s + 1 < i < n we note that
0i(Xy,) is areal number as 0; : K — R isareal embedding and conclude that both

i (xm(@))? — 6 (¥m(a))*(1 — a}) < gi(x,(@))* < 1
as well as

0;(Xm(@))* — 0i(¥m(@))*(1 — a?) = 20;(x(a))* — 1 > —1

hold. As a consequence, the modulus |o;(b)] is strictly decreasing in 5. Hence, we can arrange for
loy(b)| > Cy and |gj(b)| < Cytohold (1 <i < sg +1 < j < n),as claimed. O

Finally, we have all the tools at hand to present a Diophantine representation of Z over O.

THEOREM 2.3.27. Let K be a number field of degree n > 0 over Q and ler a € Ok satisfy (p.3.4).
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2.3 Hio over totally real number fields and fields with one pair of conjugate embeddings

Let 0y, ..., 0y be all embeddings of K into C, where we demand that o; is a non-real embedding if

and only if i < 25g. Furthermore, let C be the bound defined in Lem. e defined as in (p.3.11),
and v = |u(K)|. Then the set S defined by the following relations is Diophantine over O and

satisfis YN C S C Z.

teS o 3IAx,y,w,z,u,v,stx,y,w,zu,v,s,t',be Ok :

(x'2 —(a®?=1)y? =1

w?—(a®*-1z? =1

3 W (- 12 = 1 (2.3.18)

s2—(B*-1t"? =1
(x + 8y = (x' +8(a)y’)’

Ju+8v = +8u)’ (2.3.19)
s+ 8y = (5" +5b)t")’
w+ 6z = (W' + 8(a)z')”* (2.3.20)
0<oi(b) <2 forallsx +1<i<n (2.3.21)
6,(2)| > C, |o;(w)| > ; forallsg +1<i<n (2.3.22)
V#O (2.3.23)
z*|v (2.3.24)
b=1 mod(z), b=a mod (u) (2.3.25)
s=x mod (u) (2.3.26)
t=¢ mod (2) (2.3.27)
n-—1
HTTE+ DM (x+D" | z (2.3.28)
i=0

Proof. Note that the set S defined by the relations above is indeed Diophantine since

* (p-3.19) as well as (p.3.2d) can be rewritten in a Diophantine form (over Ok ) as was demon-
strated below the proof of Cor. p.3.21;

* (p-3.21) as well as (p.3.22]) can be rewritten in a Diophantine form by Lem. p.2.7; and

* (p-3-29) is Diophantine by Example p.1.2.(4).

Finally, the conjunction of all of these Diophantine relations is Diophantine by Lem. p.1.§.

First suppose that the relations above have a common solution £. We need to show that § is a
rational integer. To see this I first claim that b satisfies (.3.4). Indeed, the part for the embeddings
oj(b) with sg +1 < i < nare guaranteed by (p.3.21). For the embeddings 0;(b) with1 <i < sg+1
we note that since b is an algebraic integer, its norm N q(b) must have an absolute value of at least
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2 Hilbert’s tenth problem

one. Thus, we have

n

1 < [Ngjo)| = o) T lai(b)] < |oy(b)x+127180=sk=1),

i=sg+2

which implies
n—sK—l

lov(b)| =2 sx*' .

Now if sg = 0, then n > 2 and since 18(n — 1) > 2(n + 1) the claim holds. If on the other hand
Sk = 1, then we have demanded that n > 3 holds and again since 9(n — 2) > 2(n + 1) the claim

holds true.

Now (p.3.1§), (2.3.19), and (p.3.2d) imply by Cor. that there exist integers kK, h,m, j € N

such that
x = +x¢(a), y = ty(a),
w = +X.p(a), z = +yep(a),
u= ixm(a)9 L= iYm(a),
s = +x;(b), and t = +y;(b).

We can thus rewrite conditions (p.3.22)) to (£.3.27) to obtain

01 Gen(@)| 2 €, loixm(@)] 2 > forallsg +1<i<n,

ym(a) # 0,

Yen | Ym(@),
b=1 mod (y,,(a)), b=a mod (x,(a)),

xj(b) = +x¢(a) mod (x,(a)), and
+y(b)=¢ mod (Yen(a)).

Now from Lem. we can conclude that
yj(b)=j mod (b-1).

By (2.3.32]) this implies that
y(b) =j mod (v.n(a))

holds. Now from condition (p.3.34) we can deduce that the congruence
j=#£§ mod (Yen(a))
must be satisfied. Furthermore, from (p.3.32) and Lem. we can infer that

xj(b) = xj(a) mod x,,(a)

100
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holds, implying together with (p-3.33)
xj(a) = +x(a) mod (x,,(a)).
Now we can use Lem. p.3.24, whose assumption on X, is satistied by (p.3.29), to deduce that
k=+j mod m. (2.3.36)
Again (p3.29) allows us to apply Lem. so that we can infer
Yen(a) | m in Og
from Eq. (g-3.31). We use this relation and find from (p3.3§) that
k=+j mod (yen(a))
must hold. We can now infer from (p.3:39) that
k=x{ mod (Yer(a))

holds. From (p.3.28) it follows by Lem. that

6] < LN en(@)

forall 1 <i < n. Analogously, one can deduce from the same condition that

6100 = k < Jou(xe(@))] < [N aGen (@]

holds, where the first inequality follows from Lem. p.3.22. Thus, all the conditions of the strong
vertical method (Thm p-29) are satisfied for k and & and we find

E=+keZ

as claimed.

To show the other direction let § = €v € YN be given. Wesetk 1= &, x 1= xi(a), x’ :=
xp(a),y :=xg(a)andy’ := x,(a), then the parts of (p.3.18) and (p.3.19) involving x, X", y and y’
can be satisfied. By Lem. we can find an index h" € N such that

n-—1

2T+ D"+ D)™ | ywr(@).
i=0

By Lem. we can set b 1= vh' and z : = y,p(a) then (p.3.28) is satisfied. Now Lem.
implies that |0;(z)| = |6;(Yen(a))] = Cforsg +1 < i < n. Setw = X,p(a) then the parts
of (.3.18), (2-3.2d), and (p.3.22]) involving z, z’, w and w' can be satisfied, by setting z’ : = yy/(a)
aswell as w’ := xp/(a). To obtain algebraic integers u, u’, v and v’ satisfying the respective parts
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of (r.3.22)), (2-3.2), and (.3.24)) we appeal to Lem. to find an index m’ € N such that Yeh(a)2
divides yy,s(a). Now apply Lem. to find an index m € N that is divisible by vm’, such that
loi(xp(a)] > 1/2forallsg+1 < i < n. By Lem. p.3.4.(i) we have that yeh(a)2 dividesy,,(a). Thus,
we can set U = X(a) and v = yy(a) (and u’, v’ accordingly). By Lem. we can find an
algebraicinteger b € Ok satistying (p.3.21), (2-3.29), and (.3.4). Finally, sets := x(b), t := yi(b),
and §',t" accordingly. From (p.3.29) and Lem. it follows that (p.3.2d) holds. Condition
(.3.27)) follws completely analogously as in the first part. O]

COROLLARY 2.3.28. Let K be a totally real number field or a number field with exactly one pair of
non-real embeddings and at least one real embedding. Then Z is Diophantine over Ok.

Proof. By the theorem there exists a Diophantine set S € Ok with the property YN € S C Z,
where v := |u(K)|. Thus, Z can be defined in a Diophantine way as follows

a€eZ < 3P, PPz € Ok -

a =P+ B3
BiES

By €{~1,1DA(Bs €10,1,...,v —1}) = 0.
O

We have just seen that the rational integers are Diophantine over rings of algebraic integers Ox
if the number field K # Q is totally real, or [K : Q] > 3 and there is exactly one pair of complex
embeddings. From our observations in Cor. Hilbert’s tenth problem over these rings is not
decidable. The restriction on the degree in the second case can be omitted, since Denef [9] showed
in 1975 that Z is Diophantine over rings of algebraic integers in quadratic number fields. This result
was further strengthened by Denef and Lipshitz [19]. They proved that Z is Diophantine over Ok
if K/M is a quadratic extension of a totally real number field M. Shapiro and Shlapentokh [k41]
used these results to deduce that all cyclotomic fields posses a Diophantine definition of Z over their
rings of algebraic integers. More generally, they deduced this result for all fields K, for which K/Q is
normal and the Galois group of the extension is abelian.

All these results make the conjecture of Denef and Lipshitz [d], that such a Diophantine defini-
tion of Z over O exists for all number fields K, very plausible. This is especially true since promising
techniques using elliptic curves have been developed, for instance by Poonen [34].

Notice however that a Diophantine definition of Z might not be necessary for the Diophant-
ine theory H10(®k ) to be undecidable. Indeed, there might exist rings of algebraic integers whose
Diophantine theory forms a kind of set that Post [5] calls ‘creative’. Then H10(Og ) would be un-
decidable as well, but the halting set is not many-one reducible to this Diophantine theory. As a
consequence of Thm p.2.4, such a ring of integers cannot posses a Diophantine definition of Z.
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A.1 Simulating Turing machines

I have published a simulator of Turing machines implemented in Haskell athttps://github.com/
tim6her/h10-turing-machines. To obtain a copy of the source code and build it using GHC and
cabal run

git clone https://github.com/tim6her/h10-turing-machines.git
cd h10-turing-machines
cabal setup &5 cabal build && cabal install

To run the example codes for Turing machines enter the folder ‘listings’ and start ghci. The fol-
lowing listing shows how to run the Turing machine deciding the tally encoding of non-negative
integers. It might be necessary to turn on Unicode printing in your GHC installation.

>>> import Automaton.TuringMachine

>>> :1 tally

>>> let d = toTransition tally "error" -- mark the errornous state
>>> let turing = TuringMachine "start" '_' "halt" d

>>> "§1111" >>> turing -- Tally encoding of 4

Just "§1"

>>> "81011" >>> turing -- Not tally encoded

Just "§0"

A full documentation of the Turing machine simulator is available on the GitHub repository.

A.2 Polynomials

The following listings show a Haskell implementationf the monoid of monomials and the algebra
of polynomials in countably many indeterminates. Note that the axioms of monoids and algebras
respectively are only heuristically verified but not formally proven.

Listing A.1: A Haskell implementation of monomials in countably many indeterminates

{-# LANGUAGE RebindableSyntax #-}
module Monomial

( Monomial
y (<x>)

, idt

, mfromList
, clean

) where
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import NumericPrelude

import Data.Map (Map, delete, empty, foldrWithKey, fromList, member, insert,
insertWith, (!))

import Algebra.Monoid as Monoid

import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck as QC

-- | Monomials are mappings from ZZ to NN with finite support
newtype Monomial = Monomial (Map Integer Integer) deriving (Eq, Ord)

instance Monoid.C Monomial where
idt = Monomial empty
(<*>) = mmul

instance Show Monomial where
show (Monomial m)
| m == empty = "1"
| otherwise = foldrWithKey
(\x e sh -> "X" ++ show x ++

nAm

++ show e ++ " " ++ sh)
m

-- | Creates monomials from list of tuples

-- Left entry is index of indeterminate, right index is power of the

-- indeterminate

-- === Example

-- >>> mfromList [(1, 2), (0, 3), (4, 7)1

-- X073 X172 X4"7

mfromList :: [(Integer, Integer)] -> Monomial
mfromList 1 = clean $ Monomial $ fromList 1

-- | Multiplies two monomials
-- === Example

-- >>> mmul (mfromList [(1, 2), (2, 4)]) (mfromList [(2, 1), (3, 2)1)
-- X172 X2"5 X3"2

mmul :: Monomial -> Monomial -> Monomial
mmul xx@(Monomial m1) yy@(Monomial m2)

| m1 == empty = yy

| m2 == empty = xx

| otherwise = clean $ Monomial $ foldrWithKey
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(\x em -> if x “member  m
then insertWith (+) x e m
else insert x e m)

m2 ml
clean :: Monomial -> Monomial
clean (Monomial m)
| m == empty = (Monomial m)

| otherwise = Monomial $ foldrWithKey
(\x em -> if e <= 0
then delete x m
else m)

-- x Testing

main :: IO ()
main = defaultMain tests

tests :: TestTree
tests = testGroup "Tests" [properties, unitTests]

properties :: TestTree
properties = testGroup "Properties" [qcProps]

qcProps = testGroup "Axioms of monoids"
[ QC.testProperty "left multiplication by identity" $
\x -> (let m = mfromList (x :: [(Integer, Integer)])
in idt <*> m == m)
, QC.testProperty "right multiplication by identity" $
\x -> (let m = mfromList (x :: [(Integer, Integer)])
in m <*> idt == m)
, QC.testProperty "associativity" $
\x y z -> (let m1 = mfromList (x :: [(Integer, Integer)])
m2 = mfromList (y :: [(Integer, Integer)])
m3 = mfromList (z :: [(Integer, Integer)])
in (m1 <*> m2) <*> m3 == ml <*> (M2 <*> m3))
, QC.testProperty "commutativity" $
\x y -> (let m1 = mfromList (x :: [(Integer, Integer)])
m2 = mfromList (y :: [(Integer, Integer)])
in ml <*> m2 == m2 <*> ml)

unitTests = testGroup "Unit tests"
[ testCase "show X073 X172 X&"7" $

show (mfromList [(1, 2), (0, 3), (4, 7)1) @?= "X0"3 X1"2 X&"7 "

A.z Polynomials
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, testCase "sample multiplication" $
show (mmul (mfromList [(1, 2), (2, 4)]) (mfromList [(2, 1), (3, 2)])) @?=
"X1%2 X2"5 X3"2 "

, testCase "test clean" $
mfromList [(1, 0), (2, 0), (3, 1)] @?= mfromList [(3, 1)]

Listing A.2: A Haskell implementation of polynomials in countable many indeterminates

{-# LANGUAGE RebindableSyntax #-}

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}
import NumericPrelude

import qualified Monomial

import qualified Data.Map as Map
import Algebra.Monoid as Monoid
import Algebra.Ring as Ring

import Algebra.Module as Module
import Algebra.Additive as Additive

import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck as QC

-- | Polynomials over a ring R are finitely supported functions
-- from the set of monomials to R
newtype Polynomial a = Polynomial (Map.Map Monomial.Monomial a)

-- | Polynomials form an additive (abelian) group

instance (Ring.C a, Eq a) => Additive.C (Polynomial a) where
zero = Polynomial Map.empty
(+) = padd
negate (Polynomial m) = Polynomial $ Map.map negate m

-- | Polynomials from an R-module

instance (Ring.C a, Eq a) => Module.C a (Polynomial a) where
(#>) 0 _ = zero
(#>) a (Polynomial m) = Polynomial $ Map.map (a*) m

-- | Polynomials form a ring with unit

instance (Ring.C a, Eq a) => Ring.C (Polynomial a) where
one = pfromList [(1, []1)]
(*) pa(Polynomial m1) q
p == zero = zero

| g == zero = zero
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| p
I q
| otherwise = Map.foldrWithKey
(\mono coeff poly -> (coeff *> mono “mmul” g) + poly)
0 ml

one = q
one = p

-- | Two polynomials are equal if their difference is zero
instance (Ring.C a, Eq a) => Eq (Polynomial a) where
(==) p q = let (Polynomial m) = p - g in m == Map.empty

instance (Show a, Eq a) => Show (Polynomial a) where
show (Polynomial p)
| p == Map.empty = "0"
| otherwise = Map.foldrWithKey
(\m a sh -> show a ++
""p

++ show m ++ "+ " ++ sh)

-- | Adds two polynomials over the same ring
-- If a coefficient of a monoid equals 0 the monoid is dropped out of the map
padd :: (Ring.C a, Eq a) => Polynomial a -> Polynomial a -> Polynomial a
padd p@(Polynomial m1) g@(Polynomial m2)
| ml1 == Map.empty = q
| m2 == Map.empty = p
| otherwise = clean $ Polynomial $ Map.foldrWithKey
(\mono coeff poly -> if mono “Map.member poly
then Map.insertWith (+) mono coeff poly
else Map.insert mono coeff poly)

m2 ml
mmul :: (Ring.C a, Eq a) => Monomial.Monomial -> Polynomial a -> Polynomial a
mmul mono poly@(Polynomial mp)
| mono == Monomial.idt = Polynomial mp
| poly == zero = zero

| otherwise = Polynomial $ Map.mapKeys (mono Monomial.<*>) mp

-- | Generate polynomials from lists

pfromList :: (Ring.C a, Eq a) => [(a, [(Integer, Integer)])] -> Polynomial a

pfromList [] = zero

pfromList ((a, m):1) = deepClean . clean $ (Polynomial $ Map.singleton
(Monomial.mfromList m) a) + pfromList 1

-- | Comfort function for creating polynomials

-- === Example
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- >>> 2 %> ((x 1+ x2)»(x1-x%x2))==2=*x»>x1""2-2*x»>x2"2
-- True

x :: (Ring.C a, Eq a) => Integer -> Polynomial a

x i = pfromList [(1, [(i, 1)1)]

-- | Remove monoids with coefficient zero from support
clean :: (Ring.C a, Eq a) => Polynomial a -> Polynomial a
clean (Polynomial m) = Polynomial $ Map.foldrWithKey
(\mono coeff poly -> if coeff ==
then Map.delete mono poly
else poly)

-- | Remove variables with power zero from monomials

-- This function runs in 0(n log(n)) so use it sparsely

deepClean :: (Ring.C a, Eq a) => Polynomial a -> Polynomial a
deepClean (Polynomial m) = Polynomial $ Map.mapKeys Monomial.clean m

-- % Testing

main :: I0 ()
main = defaultMain tests

tests :: TestTree
tests = testGroup "Tests" [properties, unitTests]

properties :: TestTree

properties = testGroup "Properties" [qcAddProps, qcModProps,
localOption (QuickCheckTests 5) qcRingProps,
qcAlgebraProps]

gcAddProps = testGroup "Group axioms for addition"
[ QC.testProperty "addition is commutative" $
\x y -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
q = pfromList (y :: [(Int, [(Integer, Integer)])])
inp+q==q+p)
, QC.testProperty "addition is associative" $
\x y z -> (let p1 = pfromList (x :: [(Int, [(Integer, Integer)])])
p2 pfromList (y :: [(Int, [(Integer, Integer)])])
p3 = pfromList (z :: [(Int, [(Integer, Integer)])])
in (p1 + p2) + p3 == p1l + (p2 + p3))
, QC.testProperty "addition by zero" $
\x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in p + zero == p)

, QC.testProperty "addition with inverse" $
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\x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in p - p == zero)

gcModProps = testGroup "Module axioms"
[ QC.testProperty "first distributive law" $
\a x y -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
q = pfromList (y :: [(Int, [(Integer, Integer)])])
in (a :: Int) > (p + ) == a *> g + a *> p)
, QC.testProperty "second distributive law" $
\a b x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in (@ + b :: Int) > p == a *> p + b *> p)

, QC.testProperty "multiplications commute" $
\a b x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in (a * b :: Int) *> p == a *> (b *> p))
, QC.testProperty "multiplication by one" $
\x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in (one :: Int) *> p == p)

gcRingProps = testGroup "Ring axioms"
[ QC.testProperty "multiplication is associative" $
\x y z -> (let p1 = pfromList (x :: [(Int, [(Integer, Integer)])])
p2 = pfromList (y :: [(Int, [(Integer, Integer)])])
p3 = pfromList (z :: [(Int, [(Integer, Integer)])])
in (p1 * p2) * p3 == pl » (p2 * p3))
, QC.testProperty "left multiplication by one" $
\x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in one * p == p)
, QC.testProperty "right multiplication by one" $
\x -> (let p = pfromList (x :: [(Int, [(Integer, Integer)])])
in p * one == p)
, QC.testProperty "distributive law" $
\x y z -> (let p1 = pfromList (x :: [(Int, [(Integer, Integer)])])
p2 = pfromList (y :: [(Int, [(Integer, Integer)])])
p3 = pfromList (z :: [(Int, [(Integer, Integer)])])
in pl = (p2 + p3) == pl % p2 + pl * p3)

gcAlgebraProps = testGroup "Algebra axioms"
[ QC.testProperty "multiplications commute" $
\x y a -> (let p1l = pfromList (x :: [(Int, [(Integer, Integer)])])
p2 = pfromList (y :: [(Int, [(Integer, Integer)])])
in (a :: Int) *> (p1 * p2) == (a *> pl) = p2)

A.z Polynomials
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unitTests = testGroup "Unit tests”
[ testCase "sample polynomial" $
show (pfromList [(1, [(1, 2), (3, 4)1), (-4, [(1, 4), (2, 3)])]
:: Polynomial Int) @?= "1 X172 X3%4 + -4 X1™4 X2"3 + "
, testCase "test equality" $
pfromList [(0, [(1, 1)]1)] @?= (zero :: Polynomial Int)
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B.1 Zusammenfassung

Hilberts zehntes Problem fragt, ob ein Algorithmus existiert, der zu gegebenen multivariaten Po-
lynom mit ganzzahligen Koeffizienten entscheiden kann, ob dieses ganzzahlige Nullstellen besitzt.
Obwohl das Problem breits im Jahr 1900 von Hilbert [18] formuliert wurde, dauerte es bis 1970, bis
Matijasevi¢ [2g] beweisen konnte, dass es keinen solchen Algorithmus geben kann. Das Problem
lisst sich direkt auf andere kommutative Ringe R mit 1 iibertragen, indem Koeffizienten aus Z oder
R und Nullstellen aus R gewihlt werden. In dieser Masterarbeit werden wir uns vor allem mit dem
Fall von Ringen ganzalgebraischer Zahlen beschiftigen. Wie eng Hilberts zehntes Problem mit ande-
ren Entscheidungsproblemen verwandt ist, kommt allerdings erst dann zu Tage, wenn wir Hilberts
Problem als die Frage der Entscheidbarkeit einer Theorie auffassen. Wir werden zum Beispiel er-
kennen, dass Matijasevic’ DPRM-Theorem (p.1.11) sehr dhnlich zu Gédels Haupttheorem in seinem
Beweis [g] des ersten Unvollstindigkeitssatzes ist.

Um Hilberts Problem in dieser Allgemeinheit verstehen zu kénnen, werden im ersten Abschnitt
Grundlagen der Berechenbarkeitstheorie und der Modelltheorie vorgestellt. Dabei werden wir auf
das Halteproblem stof3en, dessen Unentscheidbarkeit die Schliisselzutat fiir alle unsere Beweise der
Unentscheidbarkeit sein wird. Weiters werden wir die fiir uns relevanten Begriffe und Resultate der
algebraischen Zahlentheorie sowie der Geometrie der Zahlen wiederholen und teilweise beweisen.

Nach diesen einfithrenden Kapiteln werden wir im zweiten Teil der Arbeit Hilberts zehntes Pro-
blem formalisieren und eine ausftihrlichere Betrachtung verwandter Probleme und der historischen
Entwicklung dieser anstellen. Um das Problem schliellich negativ fiir ausgewihlte Ringe zu ent-
scheiden, werden wir diophantische Mengen tiber kommutativen Ringen mit 1 einfithren und eini-
ge wichtige strukturelle Eigenschaften diophantischer Mengen beweisen. Das Hauptresultat dieser
Arbeit ist, dass tiber einem Ring ganzalgebraischer Zahlen Ok, tiber dem die ganzen Zahlen Z eine
diophantische Menge bilden, unabhingig davon, ob Koefhizienten aus Z oder O gewihlt werden,
das zehnte hilbertsche Problem unentscheidbar ist.

Im letzten Abschnitt der Arbeit werden die Resultate von Denef [8], Pheidas [32] und Shlapen-
tokh [42]] prisentiert. Diese konnten im Fall von total-reellen algebraischen Zahlkérpern K # Q
und algebraischen Zahlkérpern K mit mindestens einer reellen und genau einem Paar komplexer
Einbettungen zeigen, dass Z tiber O eine diophantische Menge ist. Damit ist Hilberts zehntes Pro-
blem tiber Ok in diesen Fillen unentscheidbar. Fir allgemeine Zahlkorper steht noch nicht fest, ob
Hilberts Problem entscheidbar ist. Die Vermutung von Denef und Lipshitz [1d], dass fur alle Zahl-
korper K Hilberts zehntes Problem tiber Ok unentscheidbar ist, ist noch unbewiesen.
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B.2 Summary

Hilbert’s tenth problem asks, whether there exists an algorithm that can decide for a given multivari-
ate polynomial p with integral coeflicients, if p has integral roots. Even though the problem was
already posed in 1900 by Hilbert [[8], it took until 1970 til Matijasevi¢ [26] could prove that such
an algorithm cannot exist. The problem can be translated directly to other commutative rings R
with 1 by letting the coefficients range over Z or R and consider roots in R. In this thesis we put
special interest on the case of R being a ring of algebraic integers. How closely Hilbert’s tenth prob-
lem is related to other decision problems, will however only become apparent when we consider the
problem as a question of decidability of a theory. For instance, we will see that Matijasevi¢’ DPRM-
theorem (p.1.11) is very similar to G6del’s central theorem in his proof [i5] of the first incompleteness
theorem.

To understand Hilbert’s problem in this general setting, we introduce the basics of computability
theory and model theory in the first part of this thesis. During these introductory sections we will
present the halting problem. The undecidability of this fundamental problem will be the key in-
gredient in every proof of undecidability we will encounter. Furthermore, we will remind the reader
of the relevant results of algebraic number theory and geometry of numbers.

In a second step we will formalize Hilbert’s tenth problem and will extensively study related prob-
lems and their historical developments. In order to eventually answer the problem to the negative
for selected rings, we will define Diophantine sets over commutative rings with 1 and prove some
of their important structural properties. The main result of this thesis is, that Hilbert’s tenth prob-
lem is unsolvable over a ring of algebraic integers Ok if Z is Diophantine over Og. This statement
remains true whether we allow the polynomials to have coefhicients in Z or Ok.

In the final section of this thesis we will present the results of Denef [8], Pheidas [32]], and Shlapen-
tokh [42]]. They where able to prove in the case of totally real number fields K # @Q and number
fields of degree atleast 3 over Q with exactly one pair of non-real embeddings, that Z is Diophantine
over Ok. As a consequence, Hilbert’s tenth problem is undecidable over O. For general number
fields it is not known whether Hilbert’s tenth problem is decidable over their ring of algebraic in-
tegers. The conjecture by Denef and Lipshitz [1d], that Hilbert’s tenth problem is undecidable over
Ok for all algebraic number fields K, is still unproven.
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