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“Unmindful of the proud world’s pleasure,
But friendship’s claim alone in view,
I wish I could have brought a treasure
Far worthier to pledge to you:
Fit for a soul of beauty tender,
By sacred visitations taught
To blend in rhyme of vivid splendor
Simplicity and lofty thought;
Instead—to your kind hands I render
The motley chapters gathered here,
At times amusing, often doleful,
Blending the rustic and the soulful,
Chance harvest of my pastimes dear,
Of sleepless moods, light inspirations,
Fruit of my green, my withered years,
The mind’s dispassionate notations,
The heart’s asides, inscribed in tears.”

Alexander Pushkin, Eugene Onegin, dedication.
Translation by Walter Arndt.

“Nicht, um die Welt zu amüsieren,
Nein, weil mir Freundschaft teuer ward,
Wünscht’ ich Dir hier zu präsentieren
Ein Pfand von würdigerer Art,
Der schönen Seele wert vor allem,
Die heilig träumend sich erfreut
An dichterischen Widerhallen
Und hochgesinnter Einfachheit;
Statt dessen muß Dir nun gefallen
Dieser Kapitel Bunterlei,
Die, halb zum Lachen, halb zum Weinen,
Volkston und Ideal vereinen,
Sorglose Frucht von Spielerei,
Schlaflosen Nächten, Inspirierung,
Unreifer, welker Jahre Sinn,
Verstandes kalter Registrierung
Und Herzens schmerzlichem Gewinn.”

Alexander Puschkin, Eugen Onegin, Widmung.
Übersetung von Rolf-Dietrich Keil.

“Не мысля гордый свет забавить,
Вниманье дружбы возлюбя,
Хотел бы я тебе представить
Залог достойнее тебя,
Достойнее души прекрасной,
Святой исполненной мечты,
Поэзии живой и ясной,
Высоких дум и простоты;
Но так и быть — рукой пристрастной
Прими собранье пестрых глав,
Полусмешных, полупечальных,
Простонародных, идеальных,
Небрежный плод моих забав,
Бессонниц, легких вдохновений,
Незрелых и увядших лет,
Ума холодных наблюдений
И сердца горестных замет.”

Александр Сергеевич Пушкин, Евгений Онегин, Вступление.
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Abstract

An algebraic power series is a formal power series f(x) for which a non-zero polyno-
mial P (x, t) exists, such that P (x, f(x)) = 0 holds. These elements play a significant
role in various fields of mathematics and are applied and studied in algebraic geom-
etry and combinatorics. In recent decades, many new fascinating properties of this
ring of algebraic power series have been found, proven and conjectured. Very deep
algebraic techniques are often used to tackle these explicit functions and outstanding
aptitude is required not only for the specialized implementations of difficult theo-
rems, but also for ability to go back to the concrete and particular. In the beginning,
this thesis provides an explicit introduction to the ring of algebraic power series K〈x〉
as an extension of the polynomials and a subring of formal power series. Thereafter
a completely different view is revealed to the protagonist: algebraic power series can
be viewed as the Henselization of the localization of the polynomial ring. The assem-
bly of the Henselization as a direct limit of so-called pointed étale extensions then
yields a new construction of K〈x〉. We will use this known construction to explain
the famous proof of Denef and Lipshitz regarding the presentation of algebraic power
series as diagonals of rational series on the one hand and introduce a new theorem
on the other.
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Zusammenfassung

Algebraische Potenzreihen sind formale Potenzreihen f(x), für die ein nicht triviales
Polynom P (x, t) existiert, sodass P (x, f(x)) = 0 gilt. Diese Reihen spielen fürwahr
eine solide Rolle in unterschiedlichen Gebieten der Mathematik und finden ihre größte
Bedeutung und ihr Studium in der algebraischen Geometrie und der Kombinatorik.
In den letzten Jahrzehnten wurden ständig neue faszinierende Eigenschaften des
Ringes der algebraischen Potenzreihen K〈x〉 gefunden, bewiesen und vermutet. Um
diese expliziten Akteure in Griff zu bekommen, wird teilweise auf sehr tiefliegende
Techniken der Algebra zurückgegriffen. Die Kunst besteht sodann nicht nur in der
gezielten Anwendung schwieriger Theorie, sondern auch in der Fähigkeit, zurück an
die Oberfläche des Handfesten und Expliziten zu kommen. Diese Arbeit bietet zuerst
eine konkrete Einführung in den Ring der algebraischen Potenzreihen als Oberring
der Polynome und Unterring der formalen Potenzreihen, dann wird jedoch eine ganz
andere Sichtweise auf den Protagonisten offenbart: Algebraische Potenzreihen kön-
nen nämlich auch als die Henselisierung der Lokalisierung des Polynomringes betra-
chtet werden. Nachdem wir die Henselisierung auch als einen direkten Limes von
bestimmten Ringerweiterungen ansehen können, liefert uns das eine neue Konstruk-
tion für K〈x〉. Schließlich wollen wir diese Konstruktion benutzen, um einerseits den
berühmten Beweis von Denef und Lipshitz über die Darstellung von algebraischen
Potenzreihen als Diagonalen von rationalen Reihen zu erklären, und andererseits ein
neues Korollar vorstellen.
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Chapter 1

Introduction

“Daß ich nicht mehr mit saurem Schweiß
Zu sagen brauche, was ich nicht weiß;

Daß ich erkenne, was die Welt
Im Innersten zusammenhält”

Johann Wolfgang von Goethe, Faust - Der Tragödie erster Teil, Nacht.

While giving a presentation at the University of Vienna in spring 2019, the famous
French-Vietnamese mathematician Ngô Bảo Châu said:

“Mathematics can be described as the study of specific functions: Set the-
ory is examining all functions, topology deals with continuous functions,
analysis is about differential functions, etc. Then algebraic geometry is
the study of polynomial functions.”

Indeed, like a doctor tries to understand the human, an algebraic geometer attempts
to master the polynomial. The definition of such a function is quite painless: for
some variables x1, . . . , xn it is a finite sum of the form∑

i1,...,in

ai1,...,inx
i1
1 · · ·x

in
n , (1.1)

where the ai1,...,in ’s are fixed elements in a fixed set R. Interesting questions arise
when considering the zero-set of such a function or systems of polynomials. The
study of elliptic curves and the corresponding cryptography started with the poly-
nomial equation y2 = x3 +ax+ b, the last theorem of Fermat is about the zero-set of
a polynomial function or the still unsolved Jacobian conjecture: these are just some
examples of the richness and mysteriousness of the world that algebraic geometry has
to offer. Of course, numerous approaches were developed throughout many decades
and centuries for dealing with these objects. Like a medic or biologist, when trying
to examine a person, will compare his or her symptoms to other human beings, a
mathematician will consider the set of all polynomials R[x1, . . . , xn] when developing
theorems about them. However, medicine would still be in the medieval period if
the comparison stopped here: a very powerful idea is to enlarge the collection of pa-
tients, to contrast humans not only with other humans but, for example, with other
mammals. While studying the much bigger group of these animals, the scientist can
get a better understanding of the Homo sapiens by fathoming out the similarities as
well as the differences between them. Transferring this idea to the world of math-
ematics, one asks the natural question: to which superset of R[x1, . . . , xn] should
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we expand, in order to understand it better? One intuitive and also mathematically
justified answer is to take all sums like in (1.1) and not only the finite ones. This
set is known under the name formal power series and is denoted by R[[x1, . . . , xn]].
Indeed, it has amazing properties which help understanding the polynomials, and
we will define these objects properly and work with them in this chapter.

However, there is an immense drawback of this approach and answer to the
natural question of how to enlarge R[x1, . . . , xn]: the set of formal power series is
too immense. To develop the analogy to other sciences further, it is as if we have
taken all the possible living beings in consideration in order to study the human.
Of course, this is convenient in the sense that one does not have to bother with
the definition of mammals, the group that would most often fit best for scientific
purposes: in this view it is easier to just consider all animals. On the other hand,
this is of course not the correct approach in the long run as this huge superset is just
too broad and we are not capable of understanding it at once. We need another,
more manageable, extension of our set of patients R[x1, . . . , xn] in order to study it
properly. This is where the set of algebraic power series, denoted by R〈x1, . . . , xn〉,
comes into play: it consists by definition exactly of those elements of R[[x1, . . . , xn]]
which satisfy an algebraic property and we also have the required

R[x1, . . . , xn] ⊆ R〈x1, . . . , xn〉 ⊆ R[[x1, . . . , xn]].

The purpose of this thesis is to define this set of algebraic power series properly and
to work with it, proving theorems and discovering other viewpoints.

In the first chapter we will define the objects mentioned above and prove funda-
mental results about them. After demonstrating the Weierstrass theorems, we will
see that both, the formal and algebraic power series, satisfy the so-called Henselian
property. To conclude this chapter, we open a short discussion about the impor-
tance of this property, indicating that there is more to it than just a fact about
lifting certain factorizations.

The second chapter is dedicated to the study of Henselian rings. Using some
facts from Nagata’s book “Local Rings” we will be able to prove that under some
assumptions a Henselian ring is algebraically closed in its completion. This is the
exact same property by which algebraic power series are defined. This will bring us to
the topic of Henselization, that we shall define and study. By employing the first part
of this chapter we will conclude that under the hypothesis that the Henselization of
the localization of the polynomial ring exists, it must be equal to the ring of algebraic
power series. This gives a completely different viewpoint on our protagonist.

Chapter III is not only intended to close the gap about the existence in the
previous chapter by providing an explicit construction of the Henselization, but it
also deals with the shape of this construction. Citing a famous structure theorem,
we will see that the Henselization of a ring is given by a direct limit of so-called
pointed étale extensions. This gives an algebraically simple description of the ring
of algebraic power series.

Found ourselves in a very deep algebraic environment, we want to take a step
back to use the fourth chapter and the gathered theory, theorems and knowledge to
provide explicit results about algebraic power series. Denef and Lipshitz used the
construction of the Henselization as a direct limit of pointed étale extensions to prove
an influential result about the representation of algebraic power series as diagonals of
rational power series. Beside explaining this proof, we will use their ideas to improve
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on the so-called Artin-Mazur lemma.
Finally, since some definitions and results were rather technical or lengthy, they

were deported to the appendix, in order to not disturb the flow of reading. The
interested reader will find there the definitions of the direct and inverse limits to-
gether with the explanation of the concept of completion. A short passage about the
resultant and a few of its properties may also be found there.

1.1 Notation

In order to create a homogeneous work, we will try to stick to a non-changing notation
over the whole thesis which we shall briefly explain now. By default, N,Q,R and
C are sets (equipped with the appropriate algebraic structure) of natural numbers
(including 0), rationals, reals and complex numbers respectively. If not indicated
otherwise, x = (x1, . . . , xn) is a vector of n variables and x′ = (x1, . . . , xn−1). In
contrast, the variable t is always one-dimensional and when we write xt, we mean
(x1t, . . . , xnt). For an n-dimensional index α ∈ Nn we have the natural |α| :=
α1 + · · ·+ αn and xα := xα1

1 · · ·xαnn .
When talking about fields, we will normally use the letters K and L and always

mean fields of characteristic 0, whereas rings are usually denoted by R, S or T .
A ring is always commutative with 1 and a ring homomorphism is always unital;
isomorphisms are indicated with ∼=. For ideals of rings the letters a, m, n, p and q
are reserved and whenever R is a ring, the set R∗ denotes the units of R. The arrows
� and ↪→ indicate surjective and injective maps respectively. Finally, when talking
about index sets we will use I, J or even A.

1.2 The Ring of Formal Power Series

Let x = (x1, . . . , xn) and set R = K[x](x), the ring given by be the localization of
the polynomial ring at the maximal ideal (x) = 〈x1, . . . , xn〉. The resulting ring is
local with maximal ideal m = (x)R. It is usually called the ring of rational power
series. Define the ring of formal power series to be the m-adic completion of R:
K[[x]] := R̂. The meaning of completion, its construction as an inverse limit and
the most important of its properties are explained in Appendix A.1. This algebraic
definition implies many facts about formal power series immediately.

Recall that one may as well construct the ring K[[x1, . . . , xn]] by first prescribing
the set and then providing a ring structure for it. An element f(x) ∈ R[[x]] can be
then identified with a formal sum of the form

f(x) =
∑
α∈Nn

cαx
α,

where cα ∈ K for each α ∈ Nn. The constant coefficient c0,...,0 of a formal power
series f(x) as above often plays an important role and is denoted by f(0). Multi-
plication and addition are naturally inherited from the polynomial world and it is
easy to see that f(x) is invertible if and only if f(0) 6= 0. Note that for an element
f(x) ∈ K[[x]] we will sometimes drop the argument and write f ∈ K[[x]] in order to
simplify notation.

3



As already explained in the introduction, the ring defined above is a central ob-
ject in algebra. However, it turns out that in many applications one has to work in
a subring of the formal power series. In analysis one is mostly interested in K{x},
the ring of convergent power series, and in algebraic geometry the natural object to
consider is the so-called ring of algebraic power series K〈x〉. The goal of the next
section is to define this ring properly.

1.3 The Ring of Algebraic Power Series

Definition. Let K be a field and x = (x1, . . . , xn). A formal power series h(x)
is called algebraic if there exists a non-zero polynomial P (x, t) ∈ K[x, t] such that
P (x, h(x)) = 0. The set of algebraic power series is denoted by K〈x〉.

Let us consider some examples in order to get a feeling for algebraic power series:

Example 1: Any polynomial p(x) ∈ K[x] is an algebraic power series since we may
chose P (x, t) := t− p(x).

Example 2: Let x = x1 and recall that char(K) = 0. Then the power series given by

(1 + x)r =

∞∑
k=0

(
r

k

)
xk,

for some rational number r ∈ Q is algebraic. This holds true, because when r =
p/q for non-zero integers p, q, we may choose P (x, t) = tq − (1 + x)p if p, q > 0
and P (x, t) = tq(1 + x)−p − 1 if p happens to be negative. We obtain again that
P (x, (1 + x)r) = 0.

Example 3: Again let x = x1, assume K = Q and consider the exponential function:

exp(x) =
∑
k≥0

xk

k!
.

We claim that this power series cannot be algebraic: assume it is, then we would
have a non-zero polynomial P (x, t) = p0(x) + · · ·+ pm(x)tm with P (x, exp(x)) = 0.
Note that without loss of generality we may choose P (x, t) irreducible. Plugging in
x = 1 gives

p0(1) + · · ·+ pm(1)em = 0,

for some constants pi(1) ∈ Q for i = 0, . . . ,m. Note that we cannot have that
pi(1) = 0 for all i, because then the irreducible P (x, t) would be divisible by x − 1.
This means that we found a non-zero polynomial in Q[t] annihilating e, which is a
contradiction to the transcendence of this number.

Example 4: Let K = C and x = x1. The function f(x) =
√
x is not an algebraic

power series, because it is not a formal power series.

Example 5: Let again x = x1 and K any field of characteristic 0. Set f(x) =
√
x+ 1

and g(x) = 3
√
x+ 1; we already saw in Example 2 that both f(x), g(x) ∈ K〈x〉. One
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can convince oneself that f(x) + g(x) =
√
x+ 1 + 3

√
x+ 1 is algebraic as well: the

polynomial

P (x, t) = −x3−2x2 − x+ t6 − 3xt4 − 3t4 − 2xt3 − 2t3

+ 3x2t2 − 2t3 + 3x2t2 + 6xt2 + 3t2 − 6x2t− 12xt− 6t

indeed satisfies P (x, f(x) + g(x)) = 0. However, we see that finding P (x, t) is not
straightforward and may require some work.

As we saw in the last example, it is not clear from the definition that K〈x〉 is a
ring, but it is very natural to conjecture it. In fact, we will have to work a little bit
to see this:

Proposition 1.3.1. The set K〈x〉 of algebraic power series is a subring of K[[x]].

There are two approaches to prove the above proposition. Either one constructs
for given algebraic power series f(x) and g(x) polynomials P (x, t) and Q(x, t) such
that P (x, f(x) + g(x)) = Q(x, f(x)g(x)) = 0, or one proves that K〈x〉 is given by
the intersection of two rings, hence again a ring. Even though the first approach
is constructive, in the sense that one has a formula for P (x, t) and Q(x, t), we will
follow the second path, as it is more conceptual and explains the proposition in a
more general way.

Definition. Given any extension of domains R ⊆ S, define AlgR(S) ⊆ S to be the
set of elements of S that are algebraic over R, i.e. those elements s ∈ S, for which
there exists a non-zero polynomial P (t) ∈ R[t] with P (s) = 0.
If AlgR(S) = S we will say that S is algebraic over R or that R ⊆ S is an algebraic
extension.

Given an s ∈ S which is algebraic over R, there exists a unique (up to R-constant
multiplication) non-zero polynomial P (t) ∈ R[t] of minimal degree that satisfies
P (s) = 0. We call it the minimal polynomial of s. Recall that given a field extension
K ⊆ L, one may consider L as a vector space over K. The dimension of this
vector space is denoted by [L : K] and is called the degree of the field extension. If
[L : K] < ∞, we say that the field extension is finite. Finally, recall that for some
a ∈ L, one writes K(a) for the smallest subfield of L, containing K and a, whereas
K[a] denotes the smallest subring of L containing those two. It turns out that all
these terms are interacting with each other, as the following well-known lemma tells
us:

Lemma 1.3.2. Let K ⊆ L be a field extension and a ∈ L be algebraic over K.
Then it holds that

(1) K[a] = K(a).

(2) K ⊆ K(a) is a finite extension. In fact, [K(a) : K] = d, where d is the degree
of the minimal polynomial of a.

Proof. Let p(t) ∈ K[t] be the minimal polynomial of a. Take some f(t) ∈ K[t], such
that f(a) 6= 0. To prove (1) it suffices to argue that f(a) is invertible, since then any
non-zero element in K[a] will be, which will prove that it must be a field. Note that
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p(t) does not divide f(t) and is irreducible. Hence, these polynomials are coprime
and we may find g(t), h(t) ∈ K[t] such that:

g(t)p(t) + h(t)f(t) = 1.

Plugging in a into this equation yields h(a)f(a) = 1, thus we found an inverse to
f(a) proving (1).

Now let d = deg(p(t)) and consider the elements

1, a, . . . , ad−1.

They are clearly linearly independent, since if we had some relation, then we would
have found a polynomial of smaller degree than p(t) also killing a, contradicting the
minimality of p(t). Finally, to see that the elements above generate K[a], assume we
are given some f(a) ∈ K[a]. Then dividing f(t) by p(t) with the division algorithm,
yields polynomials q(t), r(t) ∈ K[t] such that deg(r(t)) < d and

f(t) = q(t)p(t) + r(t).

Again after plugging in a, we see that f(a) = r(a) is generated by 1, a, . . . , ad−1,
justifying also the second part of the lemma.

Now we prove the following statement of commutative algebra, explaining the
interplay between our terms even more. The first two parts are very well-known
results and the third part is the one we are mainly interested in.

Lemma 1.3.3. Let K ⊆ L be an extension of fields and R ⊆ S be an extension of
integral domains. Then:

(1) If [L : K] <∞, then this extension is algebraic.

(2) AlgK(L) is a subfield of L.

(3) AlgR(S) is a subring of S.

Proof. (1) If for some field extension [L : K] < ∞, then L is finite-dimensional as
a vector space over K. Take some a ∈ L. If a was not algebraic over K, then
{1, a, a2, . . . } ⊆ L would be an infinite K-linear independent set, but this is impos-
sible.

(2) To show that AlgK(L) is a field, it suffices to show for any a, b ∈ AlgK(L),
b 6= 0, that a− b and a/b are both in AlgK(L). Consider K ⊆ K(a, b) ⊆ L. Since a
is algebraic, [K(a) : K] is finite by the previous lemma. Also [K(a, b) : K(a)] < ∞
and it follows from the tower law that:

[K(a, b) : K] = [K(a, b) : K(a)] · [K(a) : K] <∞,

hence this extension is algebraic by (1). As a− b and a/b are both in K(a, b), which
is algebraic over K, we have proven that a − b and a/b are algebraic elements over
K.

(3) Now let R ⊆ S be an extension of integral domains and let K,L be the
corresponding fields of fractions:

K AlgK(L) L

R AlgR(S) S

6



We claim that AlgR(S) = S ∩ AlgK(L). Then we have expressed AlgR(S) as the
intersection of a subring and a subfield of L, so it will be a ring.
One inclusion is straightforward: take s ∈ AlgR(S), then s is algebraic over R and so
clearly also algebraic overK. Hence, s ∈ S∩AlgK(L) and so AlgR(S) ⊆ S∩AlgK(L).
Conversely, take any s ∈ S∩AlgK(L). As s is algebraic over K, there exist an n > 0
and for 0 ≤ i ≤ n elements ai ∈ R, not all zero, and bi ∈ R \ {0} with:

n∑
k=0

ak
bk
sk = 0.

Multiplying with b =
∏n
k=0 bk 6= 0 gives:

n∑
k=0

(ak b̂k)s
k = 0,

where b̂k := b/bk ∈ R. This proves that s is algebraic over R and consequently
s ∈ AlgR(S).

Applying the third part of this lemma to R = K[x] and S = K[[x]] for some field
K and x = (x1, . . . , xn), we see that the set of algebraic power series AlgR(S) = K〈x〉
is indeed a subring of K[[x]]. This proves Proposition 1.3.1.

Analysing the proof of (3) in the Lemma above yields another non-trivial fact
about algebraic power series:

Corollary 1.3.4. Let f(x), g(x) ∈ K〈x〉 be two algebraic power series such that
f(x)/g(x) ∈ K[[x]] is a formal power series. Then f(x)/g(x) ∈ K〈x〉 is again an
algebraic power series.

Proof. We showed in the proof of (3) that if R ⊆ S is an extension of integral
domains then AlgR(S) = S ∩ AlgK′(L′), where K ′ and L′ are the quotient fields
of R and S respectively. Applying this to R = K[x] and S = K[[x]], we have
by construction f(x)/g(x) ∈ K ′ ⊆ AlgK′(L′) and by assumption f(x)/g(x) ∈ S.
Therefore, f(x)/g(x) is in AlgR(S): it is an algebraic power series.

Finally, at some point, we will need the notion of integral extensions together
with a simple fact connecting them to algebraic ones. Given an extension of rings
R ⊆ S, we call an element s ∈ S integral over R if there exists a monic polynomial
P (t) ∈ R[t] with P (s) = 0. We say that the extension is integral if this holds for
any s ∈ S. The only difference to the notion of algebraic is that we require the
polynomial to be monic in the integral case. Naturally, we have the following lemma
connecting these notions:

Lemma 1.3.5. Let R ⊆ S be an extension of rings and a ∈ S algebraic over R.
Then there exists a non-zero b ∈ R such that c := ab is integral over S.

Proof. Let P (t) = pnt
n + · · · + p0 ∈ R[t] be a minimal polynomial of a of degree

n ≥ 1. Take b = pn and consider

Q(t) = tn + pn−1t
n−1 + pnpn−2t

n−2 + · · ·+ pn−2
n p1t+ pn−1

n p0.
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We clearly have that Q(t) is monic and

Q(c) = Q(apn) = pnna
n + pn−1

n an−1pn−1 + pn−1
n an−2pn−2 + · · · pn−1

n p1a+ pn−1
n p0

= pn−1
n P (a) = 0,

since P (t) annihilates a. Therefore, we found a monic polynomial that kills c = ab
and proved the lemma.

1.4 Weierstrass Theorems

The Weierstrass division theorem (WPT) and the preparation theorem (WPT) are
important fundamental results about the ring of formal power series. WDT is a form
of the Euclidean division algorithm, but requires an extra property on the divisor.
Recalling how many applications and implications the division algorithm has for the
polynomial ring, we can only imagine at this point how meaningful the Weierstrass
division theorem will be for K[[x]]. For example, it implies directly that the ring
of formal power series is Noetherian, Henselian and a unique factorization domain
(UFD). However, our main interest lies in the fact that both WDT and WPT hold
true for algebraic power series with the same implications for this ring. In order to
prove this fact, we will first have to justify the validity of these theorems for formal
series and then argue that their legitimacy is inherited.

Recall that x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1), therefore we may identify
K[[x]] = K[[x′]][[xn]]. Moreover, K is, as always, a field of characteristic 0.

Before starting with the actual theorems of Weierstrass, we state a theorem
about formal power series that follows from their definition of being the completion of
K[x](x). The following theorem does not only have a similar flavour as the statements
of Weierstrass, but it will also accompany us along the whole thesis:

Theorem 1.4.1 (Hensel’s Lemma). Let f(x, t) ∈ K[[x]][t] be a monic polynomial in
the variable t over the ring of formal power series. Assume f(0, t) = p̄(t)q̄(t) factors
into two monic coprime polynomials. Then there exist two unique monic polynomials
p(x, t), q(x, t) ∈ K[[x]][t] with p(0, t) = p̄(t), q(0, t) = q̄(t) and f(x, t) = q(x, t)p(x, t).

Proof. In the appendix we prove a more general statement: any complete local ring
satisfies Hensel’s lemma (Theorem A.1.3). To see that the statement above follows
from the general one, note that setting x = 0 in a polynomial f(x, t) ∈ K[[x]][t] over
the ring of formal power series is equivalent to considering f(x, t) mod mK[[x]][t],
where of course m = (x1, . . . , xn). Moreover, the ring of formal power series is
indeed complete with respect to the m-adic topology, as it is the completion of the
Noetherian ring K[x](x).

Now we will dive into the world of the theorems of Weierstrass, but first we need
the notions of order, xn-regularity and distinguished polynomials:

Definition. We introduce the following notation and object:

(1) The order of a non-zero formal power series f =
∑

α∈Nn aαx
α, denoted by

ord(f), is the smallest integer d ≥ 0 such that aα 6= 0 for some α ∈ Nn with |α| = d.
For f = 0 we say that ord(f) = +∞.
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(2) A power series g(x) ∈ K[[x]] is called xn-regular of order d if g(0, . . . , 0, xn) =
xdnf(xn) for some power series f(xn) ∈ K[[xn]] with f(0) 6= 0.

(3) A polynomial p ∈ K[[x′]][xn] is called distinguished if it is of the form p =
xdn + ad−1(x′)xd−1

n + · · ·+ a0(x′) for some power series ai(x′) ∈ K[[x′]] with ai(0) = 0
for i = 0, . . . , d− 1.

Theorem 1.4.2 (WDT). Let g ∈ K[[x]] be an xn-regular power series of order d. For
any f ∈ K[[x]] there exist uniquely a power series q ∈ K[[x]] and an r ∈ K[[x′]][xn]<d
which is a distinguished polynomial in xn of degree less than d with coefficients given
by power series in x′, such that f = qg + r.

There are several different known ways to prove this theorem. The probably
most famous proof is in the book “The Basic Theory of Power Series” by J. M. Ruiz
[Rui93], a more recent and very short one can be found in [Hau17]. We follow the
approach of S. Lang [Lan05] since it is very explicit:

Proof. First, let us define α, τ to be the projections on the beginning and tail end of
a series viewed as an element in K[[x′]][[xn]], given by:

α : K[[x]]→ K[[x]]∑
i≥0

bi(x
′)xin 7→

d−1∑
i=0

bi(x
′)xin = b0(x′) + b1(x′)xn + · · ·+ bd−1(x′)xd−1

n ,

and

τ : K[[x]]→ K[[x]]∑
i≥0

bi(x
′)xin 7→

∞∑
i=d

bi(x
′)xi−dn = bd(x

′) + bd+1(x′)xn + bd+2(x′)x2
n + · · · .

Immediately we see that τ(hxdn) = h for any h ∈ K[[x]] and also α(h) + τ(h)xdn = h.
Moreover, it holds that h is a polynomial in xn of degree less than d if and only if
τ(h) = 0. Because of the last fact, the existence of q and r in the statement of the
theorem is equivalent to the existence of q such that

τ(f) = τ(qg).

In order to solve this equation and prove the uniqueness of the solution, we rewrite
it first. Since τ is obviously linear and because of the facts above, this equality is
equivalent to

τ(f) = τ
(
qα(g) + qτ(g)xdn

)
= τ

(
qα(g)

)
+ qτ(g).

Now, because g is xn-regular of order d, we must have that τ(g) is invertible. Finding
q is therefore equivalent to finding the formal power series qτ(g) =: q̃. After rewriting
the equation above once again, we end up with

τ(f) = τ
(
q̃
α(g)

τ(g)

)
+ q̃ =

(
IdK[[x]] + τ ◦ α(g)

τ(g)

)
◦ q̃,
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where IdK[[x]] is the identity operator on K[[x]] and

φ := τ ◦ α(g(x))

τ(g(x))
: K[[x]]→ K[[x]]

h(x) 7→ τ
(
h(x)

α(g(x))

τ(g(x))

)
.

However, α(g)/τ(g) ∈ (x′) = (x1, . . . , xn−1), the ideal generated by x1, . . . , xn−1,
because α(g(0, . . . , 0, xn)) = 0, so we get that φ maps any h ∈ K[[x]] to φ(h) ∈
(x′)K[[x]]. Moreover, it is also clear that for k ≥ 0 if h ∈ (x′)k, then φ(h) ∈ (x′)k+1.
It follows by induction that φk(h) ∈ (x′)k for any h ∈ K[[x]]. Therefore, we see that
the formal inverse of the operator IdK[[x]] + φ, which is given by

(IdK[[x]] + φ)−1 =
∑
i≥0

(−1)iφi,

is well-defined, as K[[x]] is complete in the (x)-adic topology and (x′) ⊆ (x). Hence,
we can find q̃ in a unique way:

q̃ =
(
IdK[[x]] + φ

)−1 ◦ τ(f).

Then also q = q̃/τ(g) and r = f − qg are obtained uniquely and the proof is finished.

Theorem 1.4.3 (WPT). Let g ∈ K[[x]] be an xn-regular power series of order d.
Then there exist a unique p ∈ K[[x′]][xn]=d which is a distinguished polynomial in xn
of degree d with coefficients given by power series in x′ and a unique unit u ∈ K[[x]]∗,
such that g = up.

Proof. The idea here is to use the previous theorem and to divide the power series
f = xdn by g, which is xn-regular by assumption:

xdn = ũg + p̃,

for unique formal power series ũ and p̃ = p0(x′) + p1(x′)xn + · · · + pd−1(x′)xd−1
n ∈

K[[x′]][xn]<d. Now, plugging in (0, . . . , 0, xn) yields

xdn = ũ(0, . . . , 0, xn)g(0, . . . , 0, xn) + p0(0) + p1(0)xn + · · ·+ pd−1(0)xd−1
n .

However, since g(0, . . . , 0, xn) = xdnv(xn) for some v(xn) ∈ K[[xn]] with v(0) 6= 0,
we see by comparing coefficients of xn that p0(0) = · · · = pd−1(0) = 0 and that
ũ(0, . . . , 0, 0) 6= 0. Therefore, ũ(x) is a unit in K[[x]] and also the polynomial p :=
xdn − p̃ is distinguished. Finally, setting u := ũ−1 ∈ K[[x]] and rearranging gives

g(x) = u(x)p(x),

as requested. Note that uniqueness follows easily from the uniqueness of ũ(x) and
p̃(x).

Having proved WDT and WPT for formal power series, we now want to address
the ring K〈x〉 and we will see that analogous statements hold. We start by proving
the algebraic version of the Weierstrass preparation theorem as it is done in [LT70]:

10



Theorem 1.4.4 (Algebraic WPT). Let g ∈ K〈x〉 be an xn-regular algebraic power
series of order d. Then there exist a unique p ∈ K〈x′〉[xn]=d which is a distinguished
polynomial in xn of degree d with coefficients given by algebraic power series in x′

and a unique unit u ∈ K〈x〉∗, such that g = up.

Proof. We note immediately that uniqueness is guaranteed by uniqueness of Weier-
strass formal preparation. Moreover, assume that the statement of the theorem
holds for g1, g2 ∈ K〈x〉, both algebraic and xn-regular of order d1 and d2 respec-
tively. Then we have g1 = u1p1 and g2 = u2p2 for u1, u2 ∈ K〈x〉∗ and polynomials
p1, p2 ∈ K〈x′〉[xn] of degrees d1 and d2 respectively. We obtain

g := g1g2 = u1u2p1p2.

Of course, u1u2 is again a unit and an algebraic power series, and d1 +d2 is both the
degree of p1p2 ∈ K〈x′〉[xn] and the order of g. This shows that we may assume that
g is irreducible as a power series.
We apply the formal version of Weierstrass preparation to get

g = up,

with u ∈ K[[x]]∗ and p ∈ K[[x′]][x] a distinguished polynomial of degree d. We need
to show that both are algebraic power series. As we assumed that g is irreducible as
a series, it follows that p is also irreducible as a polynomial in K[[x′]][xn]. Therefore,
and because zero characteristic of K implies separability, p has d distinct roots in
an algebraic closure of the quotient ring of the formal power series Ω = Frac(K[[x′]]),
say α1, . . . , αd. Hence:

g(x) = u
d∏
j=1

(xn − αj).

Now, let G(x, t) = G0(x) +G1(x)t+ · · ·+Ge(x)te ∈ K[x, t], G0 6= 0 be the minimal
polynomial of g, i.e. we have

0 = G(x, g(x)) = G0(x) +G1(x)g(x) + · · ·+Ge(x)g(x)e.

For every i = 1, . . . , d we can replace x by (x′, αi) and, using the fact that g(x′, αi) =
0, we obtain for every of those i’s:

0 = G(x′, αi, g(x′, αi)) = G0(x′, αi).

As 0 6≡ G0(x′, t) ∈ K[x′, t] ⊆ K(x′, t) and annihilates αi, we get that αi is algebraic
over K(x′). It follows that xn − αi is algebraic over K(x′, xn) = K(x). Therefore,
p =

∏d
j=1(xn − αj) is an algebraic power series and, using Corollary 1.3.4, the same

holds for u = g/p.

Now we can use this theorem and the formal Weierstrass division to prove WDT
for algebraic power series:

Theorem 1.4.5 (Algebraic WDT). Let g ∈ K〈x〉 be an xn-regular algebraic power
series of order d. For any f ∈ K〈x〉 there exist uniquely an algebraic power series
q ∈ K〈x〉 and an r ∈ K〈x′〉[xn]<d which is a distinguished polynomial in xn of degree
less than d with coefficients given by algebraic power series in x′, such that f = qg+r.
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Proof. Again, uniqueness is clear by the formal WDT and we want to argue that
one may assume that g is irreducible. However, now the argument requires a little
bit more work:

First note that by the algebraic Weierstrass preparation theorem, we may assume
without loss of generality that g ∈ K〈x′〉[xn] is a distinguished polynomial of degree
d. This is because we can write g = up as in the theorem above. Then, if we are
able to divide by distinguished polynomials, we will arrive at

f = qpp+ r =
qp
u
g + r,

and as we wanted r ∈ K〈x′〉[xn] is a distinguished polynomial of degree less than d
and q := qp/u is an algebraic power series. Assume therefore that g is a distinguished
polynomial.
Now we will show that one may also assume that g is irreducible. Suppose that the
statement of the theorem holds for some g1, g2 ∈ K〈x′〉[xn] with degrees d1 and d2

respectively. We want to show the division theorem for g = g1g2 ∈ K〈x′〉[xn], a
distinguished polynomial of degree d1 + d2. We divide f by g1 to get f = q1g1 + r1,
where r1 ∈ K〈x′〉[xn] of degree less than d1 and q1 ∈ K〈x〉. Then divide q1 by g2

to obtain q1 = q2g2 + r2, with q2 ∈ K〈x〉 and r2 ∈ K〈x′〉[xn] of degree less than d2.
Combining these equations yields

f = q2g1g2 + g1r2 + r1

= q2g + g1r2 + r1.

Now, because g1 is a distinguished polynomial of degree d1, it follows that g1r2 is a
polynomial in xn of degree less than d1 + d2. Hence, g1r2 + r1 ∈ K〈x′〉[xn] is also of
degree less than d1 + d2. Therefore, we may indeed assume that g(x) is irreducible.

Given an irreducible algebraic distinguished polynomial g ∈ K〈x′〉[xn] of degree
d and an algebraic f , we can divide formally:

f = qg + r = qg +

d−1∑
j=0

bj(x
′)xjn, (1.2)

for q ∈ K[[x]] and b0(x′), b1(x′), . . . , bd−1(x′) ∈ K[[x′]] formal power series. We need
to show that all of these are algebraic power series.
Because g is a distinguished polynomial, we may write

g =
d∑
j=0

cj(x
′)xjn

for some c0(x′), c1(x′), . . . , cd(x
′) ∈ K〈x′〉 algebraic power series. As we assumed

that g is irreducible, it follows that it is also irreducible as a polynomial in K[[x′]][xn].
Similarly to the argumentation in the algebraic WPT we get that g has d distinct
roots in Ω = Frac(K[[x′]]), say α1, . . . , αd. From (1.2), by replacing xn with αi, we
get for every i = 1, . . . , d that

f(x′, αi) =

d−1∑
j=0

bj(x
′)αji .
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This can be rephrased in terms of a matrix multiplication:

f(x′, α1)
...

f(x′, αd)

 =


1 α1 · · · αd−1

1

1 α2 · · · αd−1
2

...
...

. . .
...

1 αd · · · αd−1
d


b1(x′)

...
bd(x

′)

 .

Now note that the matrix above is the Vandermonde matrix and since the αi’s are
pairwise different, we know that it is invertible. Therefore, each bi(x

′) is uniquely
given by some polynomial expression in the f(x′, αj)’s and αk’s for j, k ∈ {1, . . . , d}.
We want to make sure that each bi(x′) is an algebraic power series in x′.
By the same argument as in the proof of the algebraic WPT, we obtain that each
αi is algebraic over K(x′). Moreover, by assumption f = f(x′, xn) is algebraic over
K(x′, xn). By applying Lemma 1.3.2 twice, it follows that both field extensions
K(x′) ⊆ K(x′, αi) and K(x′, αi) ⊆ K(x′, αi, f(x′, αi)) are finite. Hence, K(x′) ⊆
K(x′, f(x′, αi)) is finite and by the first part of Lemma 1.3.3, we see that f(x′, αi)
is algebraic over K(x′). As this holds for every i = 1, . . . , d, it follows that also any
polynomial expression in the f(x′, αj)’s and αk’s for j, k ∈ {1, . . . , d} is algebraic over
K(x′). Recall that each bi(x′) is such an expression, therefore each bi(x′) is algebraic
over K(x′) and hence an algebraic power series. It follows that r =

∑d−1
j=0 bj(x

′)xjn
is an algebraic power series and finally, using Corollary 1.3.4, the same holds for
q = (f − r)/g.

We will encounter the situation where f in the theorem above is a distinguished
polynomial itself. For this case we have a somewhat stronger version of the WDT:

Lemma 1.4.6. Let g ∈ K〈x′〉[xn] be a distinguished polynomial of degree d. For
any f ∈ K〈x′〉[xn] there exist uniquely an algebraic power series q ∈ K〈x′〉[xn] which
is a polynomial in xn and r ∈ K〈x′〉[xn]<d which is a distinguished polynomial in xn
of degree less than d with coefficients given by algebraic power series in x′, such that
f = qg + r.

In other words, if g in the Weierstrass division theorem is distinguished and f a
polynomial in xn, then q must also be a polynomial in xn. The proof is an easy
combination of WDT and the polynomial division over the ring K〈x′〉:

Proof. Dividing f ∈ K〈x′〉[xn] by g ∈ K〈x′〉[xn] as polynomials in the ring K〈x′〉
gives

f = q̃g + r̃,

with q̃, r̃ ∈ K〈x′〉[xn] and r̃ of degree less than d in xn.
However, similarly dividing f by g with the algebraic WDT yields:

f = qg + r.

for some algebraic power series q and r ∈ K〈x′〉[xn] of degree less than d. By
uniqueness of the Weierstrass division, it follows that q̃ = q and r̃ = r, hence
q ∈ K〈x′〉[xn].
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Now, the following lemma implies that the condition on xn-regularity in all the-
orems above is in praxis not too restrictive, since we can make any non-zero power
series xn-regular by a certain linear transformation of the variables. More precisely,
we have the following lemma from [Rui93]:

Lemma 1.4.7. Let f(x) ∈ K〈x〉 be an algebraic power series of order d <∞. Then
there exist c1, . . . , cn−1 ∈ K such that the algebraic power series

g(x) := f(x1 + c1xn, . . . , xn−1 + cn−1xn, xn)

is xn-regular of order d.

Proof. We have f(x) =
∑

α∈Nn aαx
α, so set

fd(x) :=
∑
α∈Nn
|α|=d

aαx
α,

the homogeneous part of f(x) of degree d. There exist c1, . . . , cn−1 ∈ K with c :=
fd(c1, . . . , cn−1, 1) 6= 0, because otherwise the homogeneous polynomial fd(x) would
be divisible by xn − 1. Now deploying these ci’s, we have that

g(0, . . . , 0, xn) = f(c1xn, . . . , cn−1xn, xn) = cxdn + higher order terms,

exactly what we wanted. Note that the linear coordinate change of course preserves
algebraicity of the power series.

Note that the this proof uses the fact that the characteristic of K is zero, as this
implies that K must have infinite cardinality. There is a trick by which one can
avoid this assumption, however then one cannot assume a linear transformation any
more.

Corollary 1.4.8. The ring of algebraic power series over a field of zero character-
istic is Noetherian.

Proof. We argue by induction on n, the number of variables. If n = 0, the result is
trivial, so let n > 0 and assume that K〈x1, . . . , xn−1〉 = K〈x′〉 is Noetherian. Given
a non-zero ideal n ⊆ K〈x〉, we want to find finitely many generators of it. Take
g ∈ n, g 6= 0. According to the lemma above, we may assume that g is xn-regular
of order, say d. By the algebraic Weierstrass division theorem, it follows that the
ring K〈x〉/(g) is generated by 1, xn, . . . , x

d−1
n as a K〈x′〉-module. However, K〈x′〉

is Noetherian by the induction hypothesis, hence K〈x〉/(g) is a Noetherian K〈x′〉-
module. It follows that n/(g) is finitely generated as a K〈x′〉-module, say by the
classes of f1, . . . , fs ∈ n. Then f1, . . . , fs, g generate n.

Corollary 1.4.9. The ring of algebraic power series over a field of zero character-
istic is factorial.

Proof. Let g ∈ K〈x〉 be a non-zero algebraic power series, which we want to factor
uniquely into irreducible components up to a unit. The existence of a factorization is
easy: every time one has h = h1h2 for some reducible h and h1, h2 ∈ K〈x〉 non-units,
one must have that ord(h1) < ord(h) and ord(h2) < ord(h). Since the order of g is
finite, we must arrive at some finite factorization into irreducible factors.
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To prove uniqueness, we proceed again by induction on n, where the case n = 0
is obvious and we can assume that K〈x1, . . . , xn−1〉 = K〈x′〉 is factorial. Once
again, by Lemma 1.4.7, we may assume that g is xn-regular. Then, by the algebraic
Weierstrass preparation theorem, we may write g = up for some unit u ∈ K〈x〉∗ and
a polynomial p ∈ K〈x′〉[xn]. Now, becauseK〈x′〉 is factorial by induction hypothesis,
we have that K〈x′〉[xn] is also a factorial ring [Lang, 2.3]. Hence, we can write p
uniquely up to units as a product of irreducible elements p1, . . . , ps ∈ K〈x′〉[xn]. This
gives the unique factorization:

g(x) = p1(x) · · · ps(x)u(x).

Now we will prove a version of Hensel’s lemma for algebraic power series, following
[Rui93].

Theorem 1.4.10 (Hensel’s Lemma). Let f ∈ K〈x〉[t] be a monic polynomial in t
over K〈x〉. Assume α ∈ K is a root of multiplicity d of the polynomial f(0, t) ∈ K[t].
Then there exist unique monic polynomials p, u ∈ K〈x〉[t] with u(0, α) 6= 0, p of degree
d in t, p(0, t) = (t− α)d and f = up.

Proof. After the change of the variable t to t′ = t − α, we may assume that α = 0
and, since α is a d-th root of f(0, t), it follows that f(x, t) is t-regular of order d. By
the algebraic WPT in n+ 1 variables we may write uniquely

f(x, t) = u(x, t)p(x, t), (1.3)

where p(x, t) ∈ K〈x〉[t] is a distinguished polynomial in t of degree d and u(x, t) ∈
K〈x, t〉∗ a unit, hence u(0, α) = u(0, 0) 6= 0. Moreover, since p(x, t) is distinguished
of degree d it follows by definition that p(0, t) = td = (t− α)d. To see that u(x, t) is
a polynomial in t we apply Lemma 1.4.6. Uniqueness follows from the uniqueness of
the algebraic Weierstrass division theorem and concludes the proof.

The statement above ensures that a root α ∈ K of f(0, t) gives rise to a fac-
torization f(x, t) = u(x, t)p(x, t). One calls this factorization the lifting of α. We
can prove a different and seemingly stronger version of Hensel’s lemma, which states
that we can lift coprime factorizations and not only d-th roots. In Chapter III we
will see that these two versions of Hensel’s lemma are equivalent in a very general
ring-theoretic setting.

Theorem 1.4.11 (Hensel’s Lemma). Let f ∈ K〈x〉[t] be a monic polynomial in t
over K〈x〉. Assume f(0, t) = p̄(t)q̄(t) factors into two monic coprime polynomials.
Then there exist two unique monic polynomials p, q ∈ K〈x〉[t] with p(0, t) = p̄(t),
q(0, t) = q̄(t) and f = qp.

Proof. First we prove the existence of the factorization in the ring K〈x〉[t], where K
is the algebraic closure of K. As p̄(t), q̄(t) ∈ K[t], we may write

f(0, t) = p̄(t)q̄(t) =

d1∏
j=1

(t− αj)Pj
d2∏
j=1

(t− βj)Qj

= (t− α1)P1

d1∏
j=2

(t− αj)Pj
d2∏
j=1

(t− βj)Qj ,
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for α1, . . . , αd1 , β1, . . . , βd2 ∈ K pairwise different and P1, . . . , Pd1 , Q1, . . . , Qd2 ∈ N.
By the previous theorem we can lift the root α1 to get f = p1q1, where p1, q1 ∈
K〈x〉[t] and p(0, t) = (t− α1)p̄1 . Considering then just q1(x, t), we can do the same:

q1(0, t) =

d1∏
j=2

(t− αj)Pj
d2∏
j=1

(t− βj)Qj

= (t− α2)P2

d1∏
j=3

(t− αj)Pj
d2∏
j=1

(t− βj)Qj .

Lifting α2 gives a factorization q2 = p2q2 with p2(0, t) = (t − α2)p̄2 , which we can
use to write f = p1p2q2. After repeating this process in total d1 times, we will
arrive at f = p1 · · · pd1qd1 =: pq. Of course p, q ∈ K〈x〉[t] and clearly p(0, t) =∏d1
j=1(t − αj)Pj = p̄(t) and similarly q(0, t) = q̄(t). Hence, we found a factorization

when working with the algebraically closed K and we wish to show that both p
and q lie in K〈x〉[t]. However, this follows from the uniqueness in Hensel’s lemma
for the formal case (Theorem 1.4.1): the formal liftings of p̄ and q̄ in K[[x]][t] and
K[[x]][t] have to agree, and because a lifting in K〈x〉[t] is also a formal lifting, it is
the same again by uniqueness. We obtain that p, q ∈ K〈x〉[t] ∩K[[x]][t] = K〈x〉[t].
This concludes the proof.

The theorem above is crucial for this work, as it does not only present an impor-
tant fact about the ring of algebraic power series, it also motivates us to define an
interesting class of rings: we will call a ring Henselian if it satisfies Hensel’s lemma.
Before we make this idea precise, we shall give an explanation why the property of
lifting factorizations is of immense importance for algebraic geometry [Eis95].

1.5 The Importance of Hensel’s Lemma

Consider the nodal plane cubic curve over a field K (of zero characteristic as always)
given by the equation t2 − x2(1 + x) = 0 for x = x1:

Figure 1.1: The node: R[x, t]/(t2 − x2(1 + x)).
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The associated affine coordinate ring is S = K[x, t]/(t2 − x2(1 + x)). Of course, the
curve is irreducible and S is a domain. When looking at the picture over R (Figure
1.1), one may think that localizing S at the maximal ideal m = (x̄, t̄) will make the
ring have zero divisors, however this is not the case: every Zariski neighbourhood
of 0 of the node is irreducible. The reason is that over the complex numbers a
neighbourhood of 0 of the omitted origin is a punctured disc and therefore the curve
remains irreducible. We would still like to factor t2 − x2(1 + x) somehow, in order
to study the easier rings into which S will decompose. Examining a “really small
neighbourhood” of the node, we would expect the curve to become reducible there:
for example over the ring of formal power series the expression t2 − x2(1 + x) is
in fact reducible. This comes from the fact that 1 + x has a square root in K[[x]]
and we may therefore write t2 − x2(1 + x) = (t − x

√
1 + x)(t + x

√
1 + x). One

can argue that the reason why it is immediately clear that 1 + x is a square over
K[[x]] is that this ring satisfies Hensel’s lemma! More precisely, considering the
polynomial f(x, t) = t2 − (1 + x) we see that f(0, t) = (t − 1)(t + 1) = p̄(t)q̄(t)
and these polynomials are coprime. Therefore, by Hensel’s lemma, this factorization
must admit a lifting and therefore

√
1 + x ∈ K[[x]]. This is also the reason why we

explicitly do not allow the characteristic ofK to be 2: in this case p̄(t) and q̄(t) would
not be relatively prime and the lifting would not be guaranteed, in fact it would not
exist. However, we also see that in order to make the node reducible, we do not have
to go from K[x, t] all the way up to the polynomial ring over the completion K[[x]][t]:
it suffices to take any Henselian ring extension of S or of K[x](x). This is exactly
the idea and motivation for defining the Henselization.
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Chapter 2

Algebraic Power Series and
Henselization

“One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them”
J.R.R.Tolkien, The Lord of the Rings, Book I, Chapter 2.

2.1 Henselian Rings

In this chapter we will work with local rings, i.e with those rings R, which have
exactly one maximal ideal. Usually we will denote this maximal ideal by m and
let K := R/m be the residue field with respect to m. Sometimes, we write triples
(R,m,K) when talking about local rings, combining these three objects. It is imme-
diate to see that R has only one maximal ideal m if and only if R∗ = R \m. Recall
that given two local rings (R,m,K), (S, n, L), a homomorphism φ : R → S is called
local if φ(m) ⊆ n holds and this condition is equivalent to φ−1(n) = m. This notion is
very natural, since it describes those maps between local rings, which are continuous
with respect to the induced topologies, explained in the appendix A.1. As always, we
require every field to have zero characteristic. Note that both, the rings of formal and
algebraic power series, are local with maximal ideal m = (x) = (x1, . . . , xn), because
K[[x]]∗ = K[[x]]\ (x) and similarly K〈x〉∗ = K〈x〉 \ (x). We also see immediately that
K[[x]]/(x) ∼= K〈x〉/(x) ∼= K. Given a p(t) ∈ R[t], we will denote by p̄(x) ∈ K[x] the
reduction of f(x) mod mR[t], given by reducing all coefficients of f(t) mod m.

In the spirit of the last Theorems (1.4.10 and 1.4.11), we introduce the notion of
Henselian rings:

Definition. A local ring (R,m,K) is called Henselian if the following property holds:
Let f(t) ∈ R[t] be a monic polynomial. Assume that f̄(t) = p0(t)q0(t) holds for two
monic coprime polynomials p0(t), q0(t) ∈ K[t]. Then there exist two unique monic
polynomials p(t), q(t) ∈ R[t] satisfying p̄(t) = p0(t), q̄(t) = q0(t), deg p(t) = deg p0(t),
deg q(t) = deg q0(t) and f(t) = p(t)q(t).

The property above is usually referred to as “Hensel’s lemma” even though is actually
a definition. One often reads in the literature “A ring is called Henselian, if Hensel’s
lemma holds [in this ring]”. To avoid confusion, we will call the statement above
Hensel’s property. The actual “lemma” of Hensel is the following theorem:
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Theorem 2.1.1 (Hensel’s lemma for complete rings). Let (R,m,K) be a complete
local ring. Then R is Henselian.

The proof of this statement can be found in the appendix, Theorem A.1.3. Note
also, that we already used this fact when proving Theorem 1.4.1.

For the purpose of this work, a very significant fact is that Theorem 1.4.11 implies
the following:

Theorem 2.1.2. The ring of algebraic power series K〈x〉 is Henselian.

Proof. Note that since m = (x1, . . . , xn), it follows that considering some f(x, t) mod
mK〈x〉[t] in K〈x〉[t] means setting x = 0. Then, the statement of Theorem 1.4.11
becomes Hensel’s property.

A rather useful implication of Hensel’s property is the following lemma, which
states that any integral extension of a Henselian ring must be local. Its statement
and proof appear in [Nag75] and give an introductory flavour of the next section:

Lemma 2.1.3. Let R be a Henselian integral domain and R′ an integral extension
of R. Then R′ is a local ring.

Proof. Let m be the maximal ideal of R and assume that R′ has two maximal ideals
m′1 6= m′2. Take some a ∈ m′1, which is not in m′2. Since a ∈ R′ and R′ is an integral
extension, we have an irreducible monic polynomial

f(t) = tn + cn−1t
n−1 + · · ·+ c0,

which has a as root and ci ∈ R for 0 ≤ i ≤ n − 1. Now, as a ∈ m′1, we must have
c0 ∈ m′1 ∩R ⊆ m. We also have that an 6∈ mR[a], because a 6∈ m′2, hence there must
be a ci which is not in m. Take j ∈ N such that cj 6∈ m but cj−s ∈ m for 0 < s ≤ j.
Clearly 1 ≤ j ≤ n− 1 and we have

f(x) ≡ (xj + cn−1x
j−1 + · · ·+ cn−j)x

n−j mod mR[x].

But this means that the image of f(x) is reducible mod mR[x] and using that R is
Henselian we obtain that f(x) must be reducible in R[x]. This is a contradiction and
the assertion is proved.

Our next step is to study Henselian rings in a purely algebraic way, like M. Nagata
already did in the middle of the last century.

2.2 Henselian Characterization of Algebraic Power Se-
ries

The main goal of this chapter is stressing the connection between the property of
being Henselian and the algebraic closure in the completion. We will be able to
prove that under certain conditions any Henselian ring is algebraically closed in its
completion, that is, if a ∈ R̂ is algebraic over a Henselian R then it must hold that
a ∈ R. These conditions may appear technical at first sight, however they have the
purpose of excluding pathologies while still allowing for a large class of rings. First,
recall the notions of analytically irreducible and analytically normal:

19



Definition. A local ring R is called analytically irreducible if its completion R̂ is a
domain. R is called analytically normal if R̂ is normal.

Recall that a normal ring is a domain R that is integrally closed in its field of
fractions, which we will denote by Frac(R). It is a fact that a ring is a domain (re-
spectively normal), if it is analytically irreducible (respectively analytically normal).
Moreover, it is clear that our main object of interest, K[x](x), is analytically normal,
as its completion K[[x]] is factorial and therefore normal. In this section we heavily
follow the approach of M. Nagata [Nag75] and therefore we need the notion of a
Nagata ring1 for which we first define Japanese rings:

Definition. Let R be an integral domain with quotient field L. R is called Japanese2

if it satisfies the so-called finiteness condition for integral extensions. This means,
for every finite extension L′ of the quotient field L, the integral closure of R in L′ is
a finitely generated R-module.

Now we can define Nagata rings:

Definition. A ring R is called Nagata (or pseudo-geometric) if R is Noetherian and
for every prime ideal p ⊆ R, the ring R/p is Japanese.

The category of Nagata rings is reasonably large and closed under many opera-
tions. In order to justify this, we present some statements from M. Nagata’s “Local
Rings” [Nag75], H. Matsumura’s “Commutative Algebra” [Mat80] and the Stacks
Project [Stacks]:

Proposition 2.2.1. If R is a Nagata ring, then every ring which is a finite module
over R or a ring of quotients of R is also Nagata.

This is statement (36.1) in [Nag75].

Proposition 2.2.2. If R is a Nagata ring, then any localization of R is also Nagata.

The proof can be found in [Stacks, Tag 032U].

Proposition 2.2.3 (Nagata). If R is a Nagata ring, then any finitely generated
R-algebra is Nagata.

For a proof of this proposition see [Nag75, (36.5)], or [Stacks, Tag 0334].

Note that obviously any field is Nagata, therefore by the proposition above
K[x1, . . . , xn] is also a Nagata ring. Then K[x](x) is again Nagata, since it is just a
localization.

For our purposes we will also need the following version of Zariski main theorem,
which can be found in [Nag75] as Theorem 37.8.

Lemma 2.2.4. Let R be an analytically normal ring. If a normal and local Nagata
ring S is of finite type over R, then S analytically irreducible.

1This notion first appeared in Nagata’s book “Local Rings” in the year 1962 under the name
“pseudo-geometric”.

2According to [Stacks] this name was first used by Grothendieck in EGA [DG67] in order to
contribute to Nakayama, Takagi, Nagata and many others.
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We are ready to prove one central theorem of this chapter, connecting the Henselian
rings with the property of being algebraically closed in the completion. This theorem
explains why the study of algebraic power series essentially comes down to studying
Henselian rings.

Theorem 2.2.5. Let R be a Henselian, analytically normal Nagata ring. Then R
is algebraically closed in its completion, i.e. if a ∈ R̂ algebraic over R, then a ∈ R.

Proof. Let a be an element of R̂ which is algebraic over R. Then, by Lemma 1.3.5,
we can find b 6= 0 in R such that the element ab = c is integral over R. We want
to prove that R[c] = R, because then we will be able to conclude that also a ∈ R.
Assume otherwise and let f(t) ∈ R[t] be the minimal polynomial of c. We wish to
use the lemma above on R[c], but we lack the assumption of normality. So we define
R′ to be the integral closure of R[c] in L[c], where L = Frac(R), so R′ is normal by
definition.

L L[c] L[c] L̂

R R[c] R′ R̂

=

We claim that R′ is also the integral closure of R in L[c], which we denote by R′′.
Obviously, R′′ ⊆ R′ and to see the other inclusion take an r ∈ R′; then r ∈ L[c] and
is integral over R[c], but since R[c] is an integral extension of R, we must have that
r is integral also over R as well. Hence we obtain R′ ⊆ R′′, proving equality.

Now, since R is analytically normal, it is a domain and therefore the ideal (0)
is prime. By the definition of a Nagata ring, it follows that the integral closure of
R = R/(0) in any finite extension of L is a finitely generated R-module. Since c is
integral and in particular algebraic, it follows by Lemma 1.3.2 that L[c] is a finite
extension of L and therefore R′ is a finitely generated R-module.

Furthermore, R′, being finitely generated of a Nagata ring, is still Nagata by
Proposition 2.2.1 and also R′ is indeed local by Lemma 2.1.3 (this is where we
use the Henselian assumption), hence we may apply Lemma 2.2.4 to get that R′

is analytically irreducible. However, we have that R̂′ = R′ ⊗R R̂ by Lemma A.1.5
and this must be a domain because of the consideration before. Now look at the
completion of R[c], which is again given by R[c]⊗R R̂, also by Lemma A.1.5. Because
R → R̂ is flat, we have the inclusion R[c] ⊗R R̂ ⊆ R′ ⊗R R̂ and hence R̂[c] must
also be a domain. On the other hand, we have R̂[c] = R[c] ⊗R R̂ = R̂[t]/(f(t)),
identifying f(t) with its image in R̂[t]. However, since c ∈ R̂ annihilates f(t), we get
that f(t) = (t− c)g(t) for some non-zero g(t) ∈ R̂[t]. Hence, R̂[t]/(f(t)) can not be a
domain, which is a contradiction. So we get c ∈ R and hence a ∈ Frac(R). Because
R = Frac(R)∩ R̂ by Lemma A.1.6 and since a is in both rings, we get that a ∈ R as
wanted.

We see that Henselian rings are closely connected to algebraic closures in the
completion. In particular, at this point, one may conjecture that for some, not
necessarily Henselian, ring R, if we can define the “smallest” Henselian extension of
R, it will be exactly the algebraic closure of R in R̂. Since the algebraic power series
are by definition the algebraic closure of K[x](x) in its completion, this approach will
also give a different view point on our main ring of interest.
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Definition. Let (R,m,K) be a local ring. We say, a Henselian ring Rh together
with a local homomorphism i : R → Rh is the Henselization of R, if any local
homomorphism from R to a Henselian ring factors uniquely through i.

In other words, the Henselian ring Rh together with i : R→ Rh is the Henseliza-
tion of R, if for any Henselian ring H and local ψ : R → H there exists a unique
local φ such that the following diagram commutes:

R Rh

H

i

ψ
φ

Note that from the definition it follows that if Rh exists, then it must be unique up
to isomorphism. For: Assume Rh′ is another Henselization of R. Then, by defini-
tion, we have that the map R→ Rh′ factors uniquely as R→ Rh → Rh′. Similarly,
R → Rh factors as R → Rh′ → Rh. It follows that we can compose the maps
Rh → Rh′ and Rh′ → Rh and get the identity on Rh and Rh′ respectively because
of the uniqueness of φ in the definition. Hence, Rh ∼= Rh′ and we obtain that the
Henselization is indeed unique up to isomorphism.

Even though we have not proven anything about the Henselization of a ring (in
fact up to now it is even not clear that it exists), we can already formulate the goal
of this chapter:

Theorem 2.2.6. Let R = K[x](x) be the localization of K[x] at the maximal ideal
(x). Assume that the Henselization of R exists. Then it is given by the ring of
algebraic power series: Rh = K〈x〉.

In the next chapter we will construct the Henselization of R as a direct limit of
certain extensions of R, proving existence. However, before doing so, we first explain
what results one may extract directly from the definition of Rh.

Lemma 2.2.7. Let Rh together with i : R→ Rh be the Henselization of a Noetherian
local ring R. Then i is injective.

Proof. We choose in the universal property of the Henselization H = R̂, which is
Henselian by Lemma A.1.3. Then ψ : R ↪→ R̂ is injective (since R is required to be
Noetherian) and local. As we have a map φ : Rh → R̂ with ψ = φ ◦ i, we must have
that i : R ↪→ Rh is injective.

Note that it is not clear that φ : Rh → R̂ is injective, in fact it is quite hard to prove
that Rh is a subring of the completion. However, this fact becomes evident in the
next chapter.

Lemma 2.2.8. Let Rh be the Henselization of a local ring R and assume the exis-
tence of a Henselian ring R′ such that R ⊆ R′ ⊆ Rh. Then R′ = Rh.

In other words, there cannot be any Henselian ring between R and Rh: A property
one would expect from the “smallest” Henselian extension of R.
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Proof. The universal property of Rh gives for any Henselian ring H and any local ψ:

R R′ Rh

H

i1

ψ

i2

φ

Where φ is the unique local map Rh → H such that ψ = φ ◦ i2 ◦ i1. As i2 is just
an inclusion, we may consider φ|R′ : R′ → H, the unique local factorization of ψ
through R′. This means, R′ also satisfies the universal property of the Henselization
of R. Because the Henselization is unique we must have R′ = Rh.

Lemma 2.2.9. Let Rh be the Henselization of a Noetherian local ring R. Then
R̂ ⊆ R̂h.

It is a fact that the completions of any local Noetherian R and its Henselization
Rh agree. However to see this, one needs the construction we will give in the next
chapter. Up to now, the fact above is enough to prove the main theorem of this
chapter.

Proof. From the universal property we have the factorization of the injective map
j : R ↪→ R̂ as follows:

R Rh

R̂

i

j
φ

Because φ is local, we have for every n ∈ N that (mh)n ⊆ φ−1(m̂n), where mh is the
(unique) maximal ideal of Rh and m̂ is the maximal ideal of R̂. Similarly, one has
mn ⊆ i−1((mh)n). This gives us maps

R/mn → Rh/(mh)n → R̂/m̂n.

Now note that the composition of the maps above is the canonical isomorphism
R/mn → R̂/m̂n. In particular it is injective, therefore the first map must be injective
as well. Hence, R/mn ↪→ Rh/(mh)n for every n. We can apply Lemma A.1.2 from
the appendix to obtain R̂ ∼= lim←−R/m

n ↪→ lim←−R
h/(mh)n ∼= R̂h. This proves the

assertion.

Lemma 2.2.10. Let R be a local Nagata ring. Then its Henselization Rh is also
Nagata. Moreover, if R is also analytically normal then so is Rh.

For the proof see [Nag75, (44.2, 44.3)].

Hence, assuming K[x]h(x) exists, then it is both, analytically normal and Nagata.
Now we are able to prove the following result, which is the main step on the way of
proving Theorem 2.2.6:

Proposition 2.2.11. Let R = K[x](x) be the localization of K[x]. Then, if the
Henselization of R exists, it contains the ring of algebraic power series: Rh ⊇ K〈x〉.
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Proof. Let f(x) ∈ K〈x〉 be a formal power series, which is algebraic over R = K[x](x).
We want to show that f(x) ∈ Rh. By the Theorem 2.2.5 and because Rh is Henselian,
Nagata and analytically normal (by definition and by the lemma above), it suffices
to prove:

a) f(x) is algebraic over Rh,

b) f(x) ∈ R̂h.

Now, a) holds true, because from f(x) algebraic over R it follows that f(x) is alge-
braic over Rh, since R ⊆ Rh. And b) holds true, because f(x) ∈ K[[x]] = K̂[x](x) ⊆
K̂[x]h(x) by Lemma 2.2.9.

For R = K[x](x), we have shown K〈x〉 ⊆ Rh. Using the fact that K〈x〉 is
Henselian (Theorem 2.1.2) and applying Lemma 2.2.8, we obtain that K〈x〉 = Rh,
which finally proves Theorem 2.2.6.

In order to prove existence and some important results about the Henselization,
we will have to construct it. For that we need the notion and some theory of étale
maps, which brings us to the next chapter.
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Chapter 3

Étale Ring Maps and
Henselization

“La mer était étale, mais le reflux commençait à se faire sentir;”
Victor Hugo, Les Travailleurs de la mer, Deuxième partie, Livre II 1

3.1 Motivation for Étale Ring Maps

Before giving the rigorous definition of an étale map R → S for rings R,S, we will
try to explain the motivation behind it. J.S. Milne writes in his lecture notes [Mil13]:

“An étale morphism is the analogue in algebraic geometry of a local iso-
morphism of manifolds in differential geometry, a covering of Riemann
surfaces with no branch points in complex analysis, and an unramified
extension in algebraic number theory.”

Of course, the importance of these objects makes it clear that one needs a definition
in the setting of algebraic geometry and that this definition might be involved. There
are many equivalent ways to define these analogues and we will try to motivate the
one that comes most from geometry and is closest to a universal property.

Consider the case of two affine algebraic varieties X = V (f1, . . . , fr) ⊆ Kn, Y =
V (g1, . . . , gs) ⊆ Km and a morphism fφ : X → Y coming from φ : R→ S, where

R := K[Y ] = K[y1, . . . , ym]/(g1, . . . , gs) and
S := K[X] = K[x1, . . . , xn]/(f1, . . . , fr)

are the corresponding coordinate rings. Recall that a local diffeomorphism is char-
acterised by its bijective differential. We want to archive an analogous property for
fφ by putting only algebraic conditions on φ.

By definition fφ maps any K-point a = (a1, . . . , an) ∈ X to a K-point b =
(b1, . . . , bm) ∈ Y . To formulate this in an algebraic way, we can require the following
diagram to commute:

S = K[X] K

R = K[Y ]

φ

1“The sea, indeed, was calm, but the ebb had begun.”, Victor Hugo, Toilers of the Sea, Part II,
Book II.
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To see that this algebraic formulation indeed corresponds to the geometric view-
point of sending a ∈ X to some b ∈ Y , note that the map K[X] → K defines
a K-point of X, since it maps each xi to ai for some a := (a1, . . . , an) ∈ Kn

with the condition that each fj(a1, . . . , an) = 0, 1 ≤ j ≤ r, hence, by definition,
a ∈ X. Similarly, K[Y ] → K is a K-point, say b = (b1, . . . , bm) ∈ Y , because
gj(b1, . . . , bm) = 0 for j = 1, . . . , s. The commutativity of the diagram means that
sending (y1, . . . , ym) 7→ (b1, . . . , bm) by the diagonal map is the same as sending
(y1 . . . , ym) 7→ (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)) 7→ (φ1(a), . . . , φm(a)): K-points
are sent to K-points.

Now we want to describe the behaviour of fφ on tangent vectors. We can for-
mulate this in an algebraic way, by requiring the commutativity of the following
diagram, adding the ring K[ε]/(ε2) to the above:

S = K[X] K

R = K[Y ] K[ε]/(ε2)

φ

Since

K[Y ] −−−−→ K[ε]/(ε2) −−−−−→ K

(y1, . . . , ym) 7→ (b1 + εc1, . . . , bm + εcm) 7→ (b1, . . . , bm),

we see that this intermediate ring does not destroy the considerations above. More-
over, we claim that the map K[Y ] → K[ε]/(ε2) corresponds to a tangent vector of
Y : say, we have

K[Y ] = K[y1, . . . , ym]/(g1, . . . , gs)→ K[ε]/(ε2)

yi 7→ bi + εci, 1 ≤ i ≤ m,

for some b := (b1, . . . , bm) ∈ Km and c := (c1, . . . , cm) ∈ Km. Then it must hold
that gj(b1 + εc1, . . . , bm + εcm) = 0 for 1 ≤ j ≤ s. Using Taylor expansion and the
fact that ε2 = 0 in K[ε]/(ε2), we obtain:

0 = gj(b1 + εc1, . . . , bm + εcm) = gj(b) +
m∑
i=1

∂gj
∂yi

(b)ciε.

Comparison of the coefficients in ε gives that gj(b1, . . . , bn) = 0 for each j, i.e. b is a
K-point of Y (what we already knew), and that

m∑
i=1

∂gj
∂yi

(b)ci = 0, 1 ≤ j ≤ s.

This is of course equivalent to c · ∇gj(b) = 0, i.e. c is a tangent vector of Y at b and
we may even say c ∈ TbY , the tangent space of Y at b.

Up to now, we have reformulated the property of fφ to map K-points to K-points
and added the potential of considering tangent vectors in terms of a commutative
diagram. We can now add the final requirement to φ, making it the analogue of a local
diffeomorphism: we want its “differential” TaX → Tfφ(a)Y = TbY to be bijective.
Surprisingly, this condition is very easy to add in our commutative diagram: we
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require additionally the existence and uniqueness of the diagonal arrow, preserving
commutativity:

S = K[X] K

R = K[Y ] K[ε]/(ε2)

φ

By the same argument as above, we can easily convince ourselves that this diagonal
map K[X] → K[ε]/(ε2) : xi 7→ ai + εdi for i = 1, . . . , n and some d := (d1, . . . , dn)
corresponds to a tangent vector of X. The commutativity of the upper-right trian-
gle just means that this vector is in the tangent space TaX. Finally, consider the
commutativity of the lower triangle. On the one hand, we can map by the horizontal
homomorphism yj 7→ bj + εcj , 1 ≤ j ≤ m as we already saw. On the other hand,
going the other path, we have again by Taylor’s expansion for j = 1, . . . ,m:

yj 7→ φj(x1, . . . , xn) 7→ φj(a1 + εd1, . . . , an + εdn) = φj(a) +

n∑
i=1

∂φj
∂xi

(a)diε.

Since the lower-left triangle commutes, we have by comparison of the coefficient of ε
that

cj =

n∑
i=1

∂φj
∂xi

(a)di, 1 ≤ j ≤ m.

To put these m equations into one, we define the Jacobian matrix

Jφ(a) :=

(
∂φj
∂xi

(a)

)
1≤i≤n
1≤j≤m

.

Then, the equation above is, of course, equivalent to Jφ(a)d = c.
Hence, the existence of the diagonal arrow makes sure that for any tangent vector

at b ∈ Y , we have at least one tangent vector at a ∈ X mapping to it, in other words
it ensures the surjectivity of Jφ(a). Analogously, the uniqueness of the diagonal map
translates into injectivity of the differential. Equipped with this good understanding
of what it means to define the algebraic analogue of a local diffeomorphism, we can
step forward to its rigorous definition.

3.2 Étale Ring Maps

Definition. Let S be an R-algebra. For any pair (T, n) of an R-algebra T and an
ideal n ⊆ T such that n2 = 0 consider the map

ΘT,n : HomR(S, T )→ HomR(S, T/n)

f : S → T 7→ π ◦ f : S → T/n,

where π : T → T/n is the natural surjection. We say the R-algebra S is formally
smooth if ΘT,n is surjective for all pairs (T, n). S is a formally unramified R-algebra
if ΘT,n is injective for all (T, n). Finally by a formally étale R-algebra we mean an
R-algebra S for which ΘT,n is bijective for all T and n.
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Hence, given an R-algebra map S → T/n with n2 = 0, if S is formally smooth,
there is a lifting to an R-algebra map S → T . If S is formally unramified, there is
at most one lifting and if S is formally étale, there is a unique lifting. Some authors
call a formally smooth (respectively unramified, étale) R-algebra an “extension” of
R, however this is badly justified since φ : R→ S does not have to be injective.

Note that usually, when dealing with a formally smooth (respectively unramified,
étale) S, we will call the map φ : R → S formally smooth (respectively unramified,
étale) rather than the R-algebra itself.

Rephrasing this definition, we can find the motivation explained in the section
above: given an R-algebra S with the homomorphism φ : R → S, we call S (or the
map φ) formally smooth/formally unramified/formally étale if the following condition
is satisfied:

Suppose that T is an R-algebra, n ⊆ T an ideal with n2 = 0 and the following
diagram of R-algebra maps commutes:

S T/n

R T

ū

φ π

Then there is at least/at most/precisely one R-algebra morphism u : S → T , which
lifts ū, i.e. the following diagram also commutes:

S T/n

R T

ū

uφ π

This property is known under the name infinitesimal lifting. As we saw in the
previous section, it reflects the definition of a submersion, immersion and local dif-
feomorphism inside of algebraic geometry.

To go from formally smooth (respectively unramified, étale) to smooth (respec-
tively unramified, étale) ring map, we need to recall the notion of finitely presented
algebras. It is evident that an R-algebra S is always of the form

S ∼= R[xi : i ∈ I]/a,

for some index set I and an ideal a ⊆ R[xi : i ∈ I]. In practice we are often interested
in a finite number of generators and a finitely generated ideal, hence we define:

Definition. Let R be a ring. We say an R-algebra S is finitely presented if it is of
the form

S ∼= R[x1, . . . , xn]/(f1, . . . , fm),

for fi ∈ R[x1, . . . , xn], i = 1, . . . ,m.

Naturally, we have the following fact about transitivity immediately:

Lemma 3.2.1. If S if finitely presented over R and T is finitely presented over S,
then T is finitely presented over R.
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Proof. We have

S ∼= R[x1, . . . , xn]/(f1, . . . , fm) and T ∼= S[y1, . . . , yk]/(g1, . . . , gs).

Consider R[x1, . . . , xn, y1, . . . yk]. Each gj ∈ S[y1, . . . , yk] can be lifted to some hj ∈
R[x1, . . . , xn, y1, . . . yk]. Then clearly

T ∼= R[x1, . . . , xn, y1, . . . yk]/(f1, . . . , fm, h1, . . . , hs),

as required.

Note that a localization of R at one element, say a ∈ R, is finitely presented:
Ra ∼= R[t]/(at− 1). It follows therefore directly that a localization at finitely many
elements is still finitely presented. This does not have to be true for any multiplicative
system.

Now we can define what we mean by a smooth, unramified and étale ring map:

Definition. Let S be an R-algebra. S is called smooth (respectively unramified,
étale) if it is formally smooth (respectively unramified, étale) and finitely presented.

This concludes the definitions connected to the notions of smooth, unramified and
étale and brings us to the section where we prove and mention the most important
consequences of these definitions. Note that we will present the most results with the
focus on étale ring maps, rather than on smooth or unramified ones, since the étale
algebras are the ones we are mostly interested in. We start with a natural property:

Lemma 3.2.2. Let S be an R-algebra and S′ an S-algebra. Assume that R → S
and S → S′ are (formally) étale, then the induced map R → S′ is also (formally)
étale.

Proof. Note first that S′ is indeed finitely presented over R if S is, by Lemma 3.2.1.
Hence, we only need to justify the universal property in the definition of formally
étale. However, this is straightforward: consider an R-algebra T and n ⊆ T with
n2 = 0 and the commutative diagram

S′ T/n

S

R T

Since R→ S is étale, we find a unique S → T . Then, since S → S′ is étale, we find
a unique S′ → T .

Another important fact states that the property of being étale is stable under
base change. Before proving this statement, we want to recall the definition and add
a simple remark: let S be an R-algebra with φ : R→ S the corresponding map and
let R → R′ be any ring homomorphism. Then the base change of φ by R → R′ is
the ring map R′ → R′ ⊗R S =: S′.

S S′ = R′ ⊗R S

R R′

φ base change of φ
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To understand this notion, we note that the explicit description of a base change
is very natural when a presentation is given: we already saw that since S is an
R-algebra, it is of the form

S ∼= R[xi : i ∈ I]/(fj : j ∈ J ),

for some index sets I,J and polynomials fj ∈ R[xi : i ∈ I]. Then, for the base
change one has

R′ ⊗R S = R′[xi : i ∈ I]/(f ′j : j ∈ J ),

where each f ′j is the image of fj under the map R[xi : i ∈ I]→ R′[xi : i ∈ I] induced
by the map R → R′. In [Stacks, Tag 05G3] this fact is described as “the key to
understanding base change”. Now let us state the lemma and its proof:

Lemma 3.2.3. Let R→ S be étale and R→ R′ be arbitrary. Then R′ → R′ ⊗R S
is étale.

Proof. The proof is straightforward: By the consideration above, we see that R′⊗RS
is finitely presented over R since S is. Hence, we just have to justify formally étale.
We have the following commutative diagram for an R-algebra T and an ideal n ⊆ T
with n2 = 0:

S R′ ⊗R S T/n

R R′ T

The goal is to find a unique map R′ ⊗R S → T preserving the commutativity of the
diagram. Since R→ S is étale and the horizontal maps above create a commutative
square as in the definition, we have a unique u : S → T preserving commutativity.
But then, having fixed R′ → T and found a unique S → T , we will have of course a
unique map R′ ⊗R S → T by the property of the tensor product.

Corollary 3.2.4. Let R→ S and R→ S′ be étale. Then R→ S ⊗R S′ is étale.

Proof. By the previous lemma it follows that S′ → S⊗RS′ is étale. Then we conclude
by Lemma 3.2.2.

One can use the next result to produce formally smooth, unramified and étale R-
algebras easily. The proof shows that applying the somewhat involved definition of
these terms correctly, can yield many facts about them in a direct fashion.

Proposition 3.2.5. Let S be an R-algebra with φ : R→ S. Then:

(1) Let S be a polynomial ring over R in arbitrary many indeterminates, i.e. S =
R[xi : i ∈ I]. Then S is formally smooth over R. If in this case |I| <∞, then S is
smooth over R.

(2) Let W ⊆ R be a multiplicative system and S = W−1R. Then R → S is
formally étale.

(3) If a ⊆ R is an ideal and S = R/a, then S is formally unramified over R.
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Proof. To justify (1), consider the commutative diagram

R[xi] T/n

R T

ū

For any t̄i := ū(xi) ∈ T/n, we choose some representative ti ∈ T . Consequently, the
map R[xi] → T sending xi to ti clearly lifts ū and preserves commutativity. Note
that we did not even use n2 = 0 here.

In (2) we have to prove existence and uniqueness of the dashed map:

W−1R T/n

R T

ū

g

i π

Consider g : R→ T . There is a lifting through W−1R if and only if g maps W ⊆ R
to units of T . However, since W−1R→ T/n must map i(W ) to units and projecting
nilpotents with π does not affect invertibility, we see that this condition on g must
hold. Therefore we can find the sought map. It is clearly unique by the universal
property of W−1R.

Finally for part (3): assume that R/a→ T/n has two different liftings to R/a→
T . Then we may compose R � R/a → T and get two different maps R → T ,
contradiction.

Proposition 3.2.6. Let R be a ring, S = R[x1, . . . , xn]g/(f1, . . . , fn) for g ∈
R[x1, . . . , xn] and f1, . . . , fn ∈ R[x1, . . . , xn]g. If the image of the Jacobian deter-
minant det(

∂fj
∂xi

)1≤i,j≤n is invertible in S, then S is étale over R.

In particular, setting n = 1, it follows that R→ R[t]g/(f) is étale for some f, g ∈ R[t],
if f ′, the derivative of f , is invertible in R[t]g/(f).

Proof. First note that

S = R[x1, . . . , xn]g/(f1, . . . , fn) ∼= R[x1, . . . , xn, xn+1]/(f1, . . . , fn, xn+1g − 1),

and after setting fn+1 = xn+1g − 1, one has det(
∂fj
∂xi

)1≤i,j≤n+1 = ±g det(
∂fj
∂xi

)1≤i,j≤n.

Since g is a unit in S, this is invertible if and only if det(
∂fj
∂xi

)ni,j=1 is. Therefore, we
can assume that S = R[x1, . . . , xn]/(f1, . . . , fn).
Now suppose we are given a pair (T, n) with n2 = 0 together with the commutative
diagram:

S = R[x1,...,xn]
(f1,...,fn) T/n

R T

ū

φ π

We seek to find the lifting u : S → T preserving the commutativity of the dia-
gram. Let x̄ = (x̄1, . . . , x̄n) be the image of x = (x1, . . . , xn) in S. Taking some
representatives y1, . . . , yn ∈ T of ū(x̄1), . . . , ū(x̄n), we have yi ≡ ū(x̄i) mod n for
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all i = 1, . . . , n. It follows that fj(y1, . . . , yn) ∈ n for all j = 1, . . . , n. In order to
construct a factorization map u : S → T we need to have fj(y1, . . . , yn) = 0 for all
j = 1, . . . , n. Of course, we cannot take any y1, . . . , yn which lift ū(x̄1), . . . , ū(x̄n),
in fact we want to assure that the choice is unique. The existence and uniqueness of
such yi’s are justified with an ansatz: We prove that there are unique δ1, . . . , δn ∈ n
such that fj(y1 + δ1, . . . , yn + δn) = 0 for all j = 1, . . . , n. After applying Taylor’s
formula and using the fact that n2 = 0, we see that this condition is equivalent to
the system of equations:

fj(y1, . . . , yn) +
n∑
i=1

δi ·
∂fj
∂xi

(y1, . . . , yn) = 0. (3.1)

Let J =
(
∂fj
∂xi

∣∣
x=y

)
1≤i,j≤n

∈Mn(T ) be the n×n Jacobian matrix at x1 = y1, . . . , xn =

yn. The determinant of J is a unit mod n, hence it is also a unit in T . It follows
that J is an invertible matrix. Rewriting eq. (3.1) in terms of J yields

F + J∆ = 0,

where F = (f1(y1, . . . , yn), . . . , fn(y1, . . . , yn))t and similarly ∆ = (δ1, . . . , δn)t. Evi-
dently , this equation has a unique solution for ∆ given by ∆ = −J−1F . Moreover,
the entries of ∆ are indeed in n because all entries of F are. This proves the existence
and uniqueness of δ1, . . . , δn.

We have as an immediate consequence that localizations at elements are necessary
étale. Of course, this also follows from Proposition 3.2.5, but here we see a nice way
of using the statement above.

Corollary 3.2.7. Let a ∈ R be a non-nilpotent element. Then the canonical map
R→ Ra is étale.

Proof. Note that Ra ∼= R[t]/(at− 1) and the derivative of f(t) = at− 1 is given by
f ′(t) = a. It is clearly invertible in Ra, hence R→ Ra is étale.

When working over fields, the primitive element theorem implies:

Corollary 3.2.8. A finite separable algebraic extension L of a field K is étale over
K.

Proof. By the primitive element theorem, it follows that L = K[θ] for an algebraic
element θ. The minimal polynomial f(t) of θ is separable over K and therefore the
image of f ′(t) in L does not vanish. Hence, we have L ∼= K[t]/(f(t)) where f ′(t) is
invertible in L. This is étale by the proposition above.

Definition. A finitely presented R-algebra S is called standard étale if it is of the
form S = R[t]g/(f) for some monic polynomial f ∈ R[t] and g ∈ R[t], such that f ′

is invertible in S.

Note that again by Proposition 3.2.6, it follows that a standard étale algebra is indeed
étale.

There exists a structure theorem of étale algebras, making sure that any étale
algebra is locally standard étale. In [DG67, (IV), p. 120] A. Grothendieck attributes
this fact to C. Chevalley and so shall we.
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Theorem 3.2.9 (Chevalley). Let S be a finitely presented R-algebra. Then S is
étale over R if and only if for every prime ideal q of S with contraction p to R there
exist b ∈ S \ q and a ∈ R \ p such that Sb is isomorphic to a standard étale algebra
over Ra.

The proof is an application of Zariski’s main theorem, a form of which we already
mentioned in Lemma 2.2.4. Also Nakayama’s lemma and the primitive element the-
orem for separable field extensions, which we already used in Corollary 3.2.8, play a
role in the proof. In his lecture notes [Hoc17] M. Hochster points out that “additional
trickery” is required as well. Therefore the proof is very lengthy and technical and
shall not be provided in this work. We refer to [Hoc17, pp. 27] as well as [Stacks,
Tag 00UE], [DG67, (IV), pp. 120] or [Mil80, pp. 26].

This structure theorem concretely describes étale algebras locally. Thus, it has
many applications, for example using it, we can easily prove a non-trivial fact that
an étale R-algebra S is necessarily flat over R. Recall that an R-algebra S is called
flat, if tensoring any short exact sequence 0 → T1 → T2 → T3 → 0 of R-modules
with S preserves exactness, in the sense that 0→ S⊗RT1 → S⊗RT2 → S⊗RT3 → 0
is still exact. S is called faithfully flat, if taking the tensor product with a sequence
produces an exact sequence if and only if the original sequence is exact.

Corollary 3.2.10. Let R→ S be étale. Then R→ S is a flat ring map.

Proof. First, we prove that R→ T for a standard étale R-algebra is flat. This is easy,
since T ∼= (R[t]/(f))g for f ∈ R[t] monic, say of degree d, such that f ′ is invertible
in T and g ∈ R[t]/(f). Then we have

R→ R[t]/(f) ∼= R⊕Rx⊕ · · · ⊕Rxd−1 → (R[t]/(f))g.

Both maps are flat and therefore also their composition is. Now, it also follows that
R → S for S any étale R-algebra is flat, because flatness is a local property on
the one hand and because of the structure theorem above on the other [Stacks, Tag
00H9].

3.3 Construction of the Henselization

We want to construct the Henselization of a local ring (R,m,K) and prove exis-
tence and some desirable properties of it. For that we define the notion of étale
neighbourhoods like Milne in his book “Étale Cohomology” [Mil80]:

Definition. Let (R,m,K) be local. A pair (S, q) is called an étale neighbourhood
of R if S is an étale R-algebra and q is a prime of S lying over m, such that the
induced map between the residue fields K = R/m→ Sq/qSq is an isomorphism.

In order to save notation in our setting, it is more useful to work locally and to use
the notion of pointed étale extensions, as does Hochster in his lecture notes [Hoc17]:

Definition. A local ring T is called pointed étale extension of (R,m,K) if T = Sq
for some étale neighbourhood (S, q).
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By Proposition 3.2.5 we immediately see that R → Sq = T is formally étale,
however it is not étale in general since Sq does not have to be finitely presented over
R. Moreover, it follows from Corollary 3.2.10 that S is flat over R. Localization
preserves flatness, therefore also R → Sq = T is flat. Since R and Sq = T are local
and the map between them is local as well, we see that it must be faithfully flat
and in particular injective. This justifies the word “extension” when talking about
pointed étale R-algebras. Moreover, it follows directly from the definition of étale
neighbourhoods that Sq/qSp ∼= K, therefore the residue field of a pointed étale alge-
bra T of (R,m,K) is isomorphic to K.

The property of being Henselian can be expressed in terms of pointed étale ex-
tensions. More precisely, we will see soon that a ring R is Henselian if and only if it
does not have any proper pointed étale extension. However, first we have to prove
that there is at most one local R-algebra map between two pointed étale R-algebras:
a fact we will use several times. For that purpose, for a given R-algebra S, we want
to study the multiplication map, given by the linear extension of

µ : S ⊗R S � S

s⊗ s′ 7→ ss′,

and its kernel a := ker(µ). The following proposition is the starting point of our
study.

Proposition 3.3.1. Let S be an R-algebra and a = ker(S ⊗R S � S). Then a is
generated by the elements s⊗ 1− 1⊗ s for s ∈ S.
Proof. Call µ : S ⊗R S � S and let a′ = 〈s ⊗ 1 − 1 ⊗ s : s ∈ S〉 ⊆ S ⊗R S, the
ideal generated by all elements s⊗ 1− 1⊗ s. The goal is to prove that a′ = a. Since
µ(s⊗1−1⊗s) = s−s = 0, we have that a′ ⊆ a. To see the other inclusion, consider
an element a ∈ a; it is a finite sum of the form

a =
n∑
i=1

risi ⊗ s′i,

for some ri ∈ R and si, s′i ∈ S for 1 ≤ i ≤ n, such that µ(a) = 0. This condition is
clearly equivalent to

n∑
i=1

risis
′
i = 0.

We want to see that a ∈ a. An explicit trick solves this problem very fast:
n∑
i=1

ri(si ⊗ 1)(1⊗ s′i − s′i ⊗ 1) =

n∑
i=1

ri(si ⊗ s′i − sis′i ⊗ 1)

=
n∑
i=1

risi ⊗ s′i −
n∑
i=1

risis
′
i ⊗ 1

=
n∑
i=1

risi ⊗ s′i −
( n∑
i=1

risis
′
i︸ ︷︷ ︸

0

)
⊗ 1

=
n∑
i=1

risi ⊗ s′i = a.
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Since the left-hand side is obviously in a′, we are done.

Theorem 3.3.2. Let S be a formally unramified R-algebra and denote by a =
ker(S ⊗R S � S). Then a = a2.

In [Hoc17] it is proven that this implication is in fact an equivalence, however here
we only explain the direction we are interested in.

Proof. Obviously a2 ⊆ a and we have to justify the other inclusion. Consider the
universal property of formally unramified, set T = (S ⊗R S)/a2 and n = a/a2 ⊆ T .
We have two maps S → S ⊗R S given by f : s 7→ s⊗ 1 and g : s 7→ 1⊗ s, hence we
have also two maps f̄ , ḡ : S → T , which, of course, agree on T/n ∼= S:

S T/n = (S ⊗R S)/a ∼= S

R T = (S ⊗R S)/a2

ḡ

f̄

Since R→ S is formally unramified, we have that ḡ = f̄ . This means that s⊗1−1⊗s
vanishes in T = (S⊗RS)/a2 for any s ∈ S, i.e. s⊗1−1⊗s ∈ a2. But these elements
generate a by the previous proposition, therefore we obtain that a ⊆ a2.

For the next theorem we have to state Nakayama’s lemma first. It is a standard
algebra tool, obtained from the theorem of Cayley-Hamilton and has many different
versions and numerous applications. In his book “Commutative Algebra” [Mat80]
H. Matsumura wrote “This simple but important lemma is due to T. Nakayama, G.
Azumaya and W. Krull” describing this theorem. For the proof we refer to [AM69,
pp. 21], [Mat80, p. 11] or [Stacks, Tag 00DV].

Lemma 3.3.3 (Nakayama). Let M be a finitely generated module over a local ring
R. If mM = M for the unique maximal ideal m ⊆ R, then M = 0.

Theorem 3.3.4. Let (R,m,K) be a local ring and T a pointed étale extension.
Denote Q = ker(T ⊗R T � K ⊗K K ∼= K). Then (T ⊗R T )Q ∼= T via the obvious
map (t⊗ t′)/1 7→ tt′.

Moreover, assume T ′ is another pointed étale extensions of R. Then there is at
most one local R-algebra homomorphism from T to T ′.

Proof. It is clear that the map µ : T ⊗R T � T sends Q onto the maximal ideal of
T . By the previous theorem, we see that for a = ker(T ⊗R T → T ) we have a = a2,
since T is formally étale. Moreover, note that a is finitely generated, since T is a
localization of a finitely presented R-algebra. Let A := a(T ⊗R T )Q be the kernel of
the map (T ⊗R T )Q � T . Then A is finitely generated (since a is), contained in the
maximal ideal (since (T ⊗R T )Q is local) and A2 = A. By Nakayama’s lemma, for
M = A, we obtain that A = 0 and therefore (T ⊗R T )Q ∼= T . This verifies the first
claim.

For the second part, suppose there are two local R-algebra maps f, g : T → T ′.
Then there is an R-algebra homomorphism T⊗RT → T ′ that sends t⊗t′ 7→ f(t)g(t′)
and carries Q into the maximal ideal of T . Hence we have a local map ψ : (T⊗T )Q →
T ′. Now the image of t⊗ 1/1 under ψ is given by f(t) and the image of 1⊗ t/1 is of
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course g(t). However, we saw that (T ⊗R T )Q ∼= T and this isomorphism identifies
t⊗ 1/1 = t = 1⊗ t/1:

T T ′

(T ⊗R T )Q

f

g

∼=
f=g

Hence f(t) = g(t), and since this holds for any t ∈ T , we are done.

Note that a simple corollary arises from this lemma, namely the fact that for some
pointed étale T , the identity id: T → T is the only local R-algebra homomorphism
from T to itself.

Now we are ready to state and prove a powerful theorem, connecting étale ex-
tensions and Henselian rings. Its statement and proof can be found in [Mil13] and
[Hoc17]. We note that both use Theorem 3.2.9 and that we will follow the second
reference.

Theorem 3.3.5. Let (R,m,K) a be local ring. The following conditions are equiv-
alent:

(1) R is Henselian.

(2) If f ∈ R[t] is a monic polynomial whose reduction mod m, f̄ ∈ K[t], has a
simple root λ ∈ K, then there exists an element r ∈ R such that r ≡ λ mod m and
f(r) = 0.

(3) If R→ T is a pointed étale extension, then R ∼= T .

(4) If f1, . . . , fn ∈ R[x1, . . . , xn] are n polynomials in n variables whose images
fj mod m vanish simultaneously at (λ1, . . . , λ) ∈ Kn and the Jacobian determinant
det(

∂fj
∂xi

) does not vanish mod m at x1 = λ1, . . . , xn = λn, then there are unique
elements r1, . . . , rn ∈ R such that for all i, ri ≡ λi mod m and fj(r1, . . . , rn) =
0, 1 ≤ j ≤ n.

This theorem gives a deep insight into Henselian rings. In particular, the equiva-
lence of conditions (1) and (2) implies that it suffices to lift only simple roots in order
to be able to lift coprime factorizations. In the special case of the ring of algebraic
power series we have proved this fact in the first chapter when we derived Theorem
1.4.11 from Theorem 1.4.10. Now we will see that this equivalence holds in a more
general setting. A common theme in the literature is to define Henselian rings with
the condition (2) as above. However, it turns out that there is no known easy way
to see the equivalence of (1) and (2): we will have to prove (2) ⇒ (3) ⇒ (4) ⇒ (1)
and use Theorem 3.2.9 on the way to establish it. Since (1) ⇒ (2) is very simple,
the reader-friendly approach is to do it like in this thesis.

Moreover, condition (4) is a multidimensional version of Hensel’s lemma for n
polynomials and n variables; if the fi’s were also allowed to be power series, one
would recognize the Implicit Function Theorem. The equivalence (1) ⇔ (4) states
that a ring is Henselian if and only if this algebraic version of the this analytic
theorem holds over this ring. For example, applying this equivalence for the ring of
convergent power series yields that this ring is Henselian.
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Proof. We will show that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).
(1) ⇒ (2): Suppose R is Henselian and we have a monic f ∈ R[t] such that

the image f̄ mod m has a simple root λ ∈ K. We may factor f̄(t) = (t − λ)ḡ(t).
Since λ is a simple root, it follows that ḡ(λ) 6= 0 and therefore we obtain that the
polynomials t − λ and ḡ(t) are relatively prime. Using that R is Henselian we find
a lifting of the factorization to f(x) = (x− r)g(t) for r ≡ λ mod m. It follows that
f(r) = 0, which shows (2).

(2) ⇒ (3): Let φ : R → T be a pointed étale extension, so a localization of
an étale neighbourhood. By Theorem 3.2.9 it follows that the étale neighbourhood
is locally standard étale, hence we may write T ∼= (R[t]g/(f))q for a prime ideal
q ⊆ R[t]g/(f) lying over m and g, f ∈ R[t] such that f ′ is monic and invertible in T .
We have the following commutative diagram:

R R[t] R[t]g/(f) (R[t]g/(f))q ∼= T

K K[t] K[t]ḡ/(f̄) K

Denoting by λ the image of t ∈ T in K, it follows that f̄(λ) = 0. Moreover, because
f ′ is invertible in T , we must have that f̄ ′(λ) 6= 0, hence λ is a simple root of f̄ .
Using (2), we can find an r ∈ R for which f(r) = 0. Therefore, there exists an
h(t) ∈ R[t] such that f(t) = (t − r)h(t) and h(t) is invertible in T , because λ is a
simple root of f̄ . It follows that

T ∼= (R[t]g/(f))q ∼=
(
R[t]g/((t− r)h(t))

)
q
∼= (R[t]g/(t− r))q ∼= Rφ−1(q).

However, since φ and R are local we have that T ∼= Rφ−1(q)
∼= R, what was to be

shown.
(3) ⇒ (4): Assume we have a system of equations f1, . . . , fn ∈ R[x1, . . . , xn]

like in (4) with (λ1, . . . , λn) ∈ Kn solution of all f̄1, . . . , f̄n and suppose that (3)
holds. We want to lift the λi’s and may use the fact R has no proper pointed étale
extension. Let Q be the kernel of π′ : R[x1, . . . , xn] → K, where we choose π′ such
that π′(xi) = λi. We have the commutative diagram

R R[x1, . . . , xn]

K

π
π′

By Proposition 3.2.6 and the assumption on the Jacobian of the f1, . . . , fn in (4),
we have that T := R[x1, . . . , xn]Q/(f1, . . . , fn) ∼= (R[x1, . . . , xn]/(f1, . . . , fn))Q̄ is a
pointed étale extension of R. We can apply (3) to obtain that we must have that
R ∼= T .
Now, solving the equations f1, . . . , fn and lifting the λi’s is equivalent to giving
an R-algebra map R[x1, . . . , xn]/(f1, . . . , fn) → R such that under the composite
R[x1, . . . , xn]/(f1, . . . , fn) → R � K the elements xi map to λi. This is in turn
equivalent to giving a map that maps Q to m, hence giving a local R-algebra map
T → R. But we have that R ∼= T , hence the local map exists and is unique by
Theorem 3.3.4. It provides us with a unique solution to the equations.
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(4)⇒ (1): Let f = tn+ cn−1t
n−1 + · · ·+ c1t+ c0 ∈ R[t] be a monic polynomial of

degree n and suppose that we have a factorization f̄ = ḡh̄ for some monic coprime
polynomials ḡ, h̄ ∈ K[t] of degrees d and e respectively. Let g =

∑d
i=0 αit

i and
h =

∑e
i=0 βit

i for some αi, βi ∈ K and αd = βe = 1. We seek a lifting of the
factorization to f = gh for monic polynomials g, h ∈ R[t]. Let the coefficients of g
and h be unknowns y0, . . . , yd−1 and z0, . . . , ze−1, henceforth we want to solve the
equation:

tn+cn−1t
n−1+· · ·+c1t+c0 = (td+yd−1t

d−1+· · ·+y1t+y0)(te+ze−1t
e−1+· · ·+z1t+z0),

for the unknowns over R such that the residue classes the polynomials g and h agree
with ḡ and h̄. Comparing coefficients leads to a system of n = d + e polynomial
equations in as many variables:

y0z0 = c0,

y0z1 + y1z0 = c1,
...
yd−1ze + ydze−1 = cn−1.

This system has a solution mod m coming from the factorization f̄ = ḡh̄ given by
α0, . . . , αd−1, β0, . . . , βe−1 =: (α, β). In order to use (4) and to lift this solution to
R we have to verify that the Jacobian determinant of this system of equations does
not vanish, i.e. that the matrix

J(y, z) =



z0 z1 z2 · · · ze−1 1 0 · · · 0
0 z0 z1 · · · ze−2 ze−1 1 · · · 0
...

. . . . . .
...

0 · · · 0 z0 z1 · · · ze−2 ze−1 1
y0 y1 y2 · · · yd−1 1 0 · · · 0
0 y0 y1 · · · yd−2 yd−1 1 · · · 0
...

. . . . . .
...

0 · · · 0 y0 y1 · · · yd−2 yd−1 1


is invertible at (y, z) = (α, β). However, J(α, β) is the (transpose of the) Sylvester
matrix of the polynomials ḡ and h̄, as explained in Appendix B. Since the polynomials
are relatively prime by assumption, we obtain by the theory briefly discussed there
that J(α, β) is invertible. This shows that the assumptions of (4) are satisfied and
hence we find a unique solution for the unknowns y0, . . . , yd−1, z0, . . . , ze−1. This
gives a unique factorization f = gh we were looking for.

Having in mind that (1) ⇔ (3) in the previous theorem, we come back to our
goal of constructing the Henselization. We see that it may be a good idea to try to
combine all possible pointed étale extensions of R into one bigger ring. If we can do
this rigorously, then we might argue that this ring does not have any proper pointed
étale extensions any more, which will mean that it will be Henselian. Finally, we
might be able to verify the universal property of the Henselization and conclude that
we indeed found the correct object. Let us start executing this plan.
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Given a local ring R, we wish to define a set of pointed étale algebras of R, say
R, that contains exactly one representative from each isomorphism class of pointed
étale extensions. It is not trivial that R is a set, since it might turn out “too large”.
However, we have the following result bounding the cardinality of a pointed étale
extension from above and allowing us to define R properly.

Lemma 3.3.6. Let R be a local ring and T a pointed étale extension. Then T is
finite if R is finite. In the other case, the cardinalities of R and T agree.

Proof. By definition, T = Sq for some prime q ⊆ S and an étale R-algebra S. Since
S is finitely presented over R, we have |S| ≤ |R|n for some n ∈ N, where | · | denotes
cardinality. The localization is parametrized by pairs in (S \ q) × S and therefore
|Sq| ≤ |S|2. We have

|R| ≤ |T | = |Sq| ≤ |R|2n,
proving the assertion.

Now, from the axiom of choice, it follows that the set R exists, since it is a subset
of the set of all ring structures on a set with similar cardinality as R. Moreover, let
A be an index set of R, whereby “index set” means that each i ∈ A corresponds
bijectively to a Ti ∈ R and we can write therefore R = (Ti)i∈A.

Our goal is to define a suitable preorder ≤ on A and then prove that R together
with some maps φ : Ti → Tj , i, j ∈ A fulfils all necessary properties in order to form
a direct limit, see Appendix A.2. We will then call this limit Re and prove that it
is the Henselization of R. First we introduce and prove a proposition which assures
the validity of the claims above.

Proposition 3.3.7. For i, j ∈ A define i ≤ j if and only if there exists a local
R-algebra map φi,j : Ti → Tj. Then (A,≤) is a directed set.

Proof. Obviously, A is not empty since R contains R. Clearly, ≤ is reflexive, as one
always has the identity map id : Ti → Ti for all i. Moreover, if we have φ : Ti → Tj
and ψ : Tj → Tk both local R-algebra maps then ψ ◦φ : Ti → Tk is a local R-algebra
map. This implies that ≤ is transitive. Finally, we have to prove that for any two
Ti, Tj ∈ R, there exist Tk ∈ R and two local R-algebra maps Ti → Tk and Tj → Tk.
As Ti, Tj are pointed étale, they are localizations of some étale R-algebras Si, Sj .
By Corollary 3.2.4 we immediately have that R → Si ⊗R Sj is étale. Consider the
composite map

R→ Si ⊗R Sj � K ⊗K K
∼=−→ K,

which sends r 7→ r · (1Si ⊗ 1Sj ) 7→ r̄ · (1K ⊗ 1K) 7→ r̄ and is thus precisely the
quotient map R � R/m ∼= K. It follows that by letting Q be the kernel of the map
Si ⊗R Sj � K ⊗K K, we must have that R → (Si ⊗R Sj)Q is local and of course
the residue class field of (Si ⊗R Sj)Q is K. Set Tk = (Si ⊗R Sj)Q which is now by
definition a pointed étale extension of R and we have maps Ti → Tk and Tj → Tk.
This shows the existence of a k ∈ A for given i, j ∈ A such that i, j ≤ k and finishes
the proof.

Following the notions of Appendix A.2, this proposition shows that (R, {φi,j :
Ti → Tj}i,j∈A,i≤j) forms a direct system of rings. Note that because of Theorem
3.3.4, we even know that the φi,j ’s are actually unique, justifying that the construc-
tion is canonical. The fact that R together with these maps forms a direct system
of rings allows us to define the direct limit:
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Definition. For a local ring (R,m,K) we denote Re := lim−→T∈R T .

Recall that in Theorem 3.3.5 we showed that a local ring is Henselian if and only
if it has no proper pointed étale extensions. Now, given a local ring R, we combine
all pointed étale extensions of it to the ring Re in a rigorous way using the direct
limit in the definition above. Therefore, it is natural that Re is Henselian and also
the “smallest” extension of R that is admits this property. We prove both statements
below using ideas from [Ive73] and [Hoc17].

Lemma 3.3.8. Let (R,m,K) be a local ring. Then Re is local with maximal ideal
mR and residue field is K. Moreover, Re is Henselian.

Proof. Locality, the statement about the maximal ideal and the condition on the
residue field follow by construction, since every pointed étale R-algebra T is local
with maximal ideal mT and residue field K, see Lemma A.2.2 and [stacks?, Iversen].

By Theorem 3.3.5 we only have to check the lifting of simple roots in order to
verify the Henselian property. Let f ∈ Re[t] be monic and λ ∈ K a simple root of
f̄ ∈ K[t]. Since Re = lim−→T∈R T , there exists some pointed étale R-algebra T such
that all coefficients of f lie in T . We define T ′ := (T [t]/(f))q, where q = (t̄ − λ).
The residue field of T ′ is K and because λ is a simple root, it follows that f ′ is
invertible in T ′ and therefore T ′ is a pointed étale extension of R by Lemma 3.2.2
and Proposition 3.2.6. However, f has clearly a root in T ′ and it lifts λ. This gives
rise to an element r ∈ Re such that f(r) = 0 and r̄ = λ.

Theorem 3.3.9. Let (R,m,K) be a local ring. The Henselization of R is given by
the direct limit as in Definition 3.3: Rh = Re.

Proof. We will verify the universal property. From the lemma above we already
have that Re is local and Henselian. Let ψ : R → H be a local map from R to a
Henselian ring (H,mH , L). To show that this map factors uniquely through Re, it
suffices to show that it factors uniquely through every (T, qT,K), where T = Sq is a
pointed étale extension of R, by the property of the direct limit. Now, consider the
commutative diagram of the base change:

R S

H S ⊗R H

ψ

étale

Since R → S is étale, we obtain by Lemma 3.2.3 that H → S ⊗R H is also étale.
Moreover, there exists a canonical map S ⊗R H → K ⊗K L ∼= L. Denote its kernel
by Q. It follows that H → (S ⊗R H)Q is a localization of an étale extension. Since
L ∼= K ⊗K L, we obtain that the residue fields agree and hence this extension is
pointed étale. But H is Henselian, hence H ∼= (S ⊗R H)Q by (1)⇒ (3) of Theorem
3.3.5 and therefore we found a local map φ : S → (S⊗RH)Q ∼= H, the map we were
looking for:

R S

H S ⊗R H

(S ⊗R H)Q

ψ

étale

étale

∼=
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Finally, because H is pointed étale over itself as well as over (S ⊗R H)Q, we obtain
that this map is unique by Theorem 3.3.4.

This theorem does not only ensure that the Henselization of a local ring exists, but
shows that it comes with a construction as a direct limit of pointed étale extensions
of the ring. This fact concludes the chapter on étale algebras and brings us to the
next section where we shall exploit it extensively.

41



Chapter 4

Explicit Implications

“The museum is always big, and you are
always small, an art historian told me.”

Nora Schultz, Proposal, Secession, Vienna, 2019

In this chapter we will study explicit facts about the ring of algebraic power
series by applying the theorems we proved. The ring R = K[x](x) is now fixed,
where x = (x1, . . . , xn) and K a field of characteristic zero.

We have seen in Theorem 2.2.6 that if the Henselization of R exists, then it must
be equal to K〈x〉. In the previous chapter, we constructed Rh and not only proved
its existence, but also the fact that it is given as the direct limit of pointed étale
extensions of R (Theorem 3.3.9). Now we will be able to apply this fact, proving a
theorem of Denef and Lipshitz from 1987 in [DL87]. Then we will use it in two ways:
on the one hand, we present a new result, Theorem 4.1.2, improving the so-called
Artin-Mazur lemma and on the other hand, explain another theorem by Denef and
Lipshitz about the representation of algebraic power series as diagonals of rational
series.

Definition. An algebraic power series h(x) ∈ K〈x1, . . . , xn〉 = K〈x〉 with minimal
polynomial P (x, t) ∈ K[x, t] is called étale-algebraic if h(0) = 0 and ∂tP (0, 0) 6= 0.

Theorem 4.0.1 (Denef & Lipshitz). Let f ∈ K〈x〉 be an algebraic power series.
Then there exist an étale-algebraic power series h and polynomials ai, bj ∈ K[x] for
0 ≤ i ≤ r, 0 ≤ j ≤ s, r, s ∈ N, where b0(0) 6= 0, such that

f =
a0 + a1h+ · · ·+ arh

r

b0 + b1h+ · · ·+ bshs
. (4.1)

Proof. We have seen that K〈x〉 = Rh = lim−→T∈R T , where the limit is taken over
all pointed étale extensions up to isomorphism. It follows that there exists a ring
T ⊆ K〈x〉 which is a pointed étale extension of R = K[x](x) and which contains f .
Hence, T = Sq for an étale R-algebra S and a prime ideal q ⊆ S lying over m ⊆ R.
We know furthermore by Theorem 3.2.9 that S is locally standard étale over R; since
R is local, this means that we have an isomorphism

α : Sb
∼=−→ R[t]g/(p)
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for some b ∈ S \q, g ∈ R[t] and p ∈ R[t] monic such that its derivative p′ is invertible
in Sb. Writing the right hand side differently, gives the isomorphism

α̃ : Sb
∼=−→
(
R[t]/(P̃ )

)
g̃
,

for some P̃ ∈ R[t] such that P̃ ′ 6∈ α̃(q) and g̃ ∈ R[t]/(P̃ ) with g̃ 6∈ α(q) Furthermore,
localizing in q and α̃(q), respectively, yields

T ∼=
(
R[t]/(P̃ )

)
α̃(q)

.

Finally, we can rephrase the isomorphism above as

T ∼=
(
R[h̃]

)
α̃(q)

,

where h̃ ∈ R̂ = K[[x]] is an algebraic element over R whose minimal polynomial is
exactly P̃ . In fact, it has to hold P̃ ′ 6∈ α̃(q) and therefore ∂tP̃ (0, h̃(0)) 6= 0. Now,
any element f ∈ T ∼=

(
R[h̃]

)
α̃(q)

is of the form a/b, for a, b ∈ R[h̃] and b 6∈ α̃(q),

hence we have

f(x) =
a(x, h̃(x))

b(x, h̃(x))
,

for a, b ∈ K[x](x)[t] such that b(0, h̃(0)) 6= 0. Finally, to achieve the condition
h(0) = 0 as in the definition of étale-algebraic, we define h(x) = h̃(x) − h̃(0). It is
easy to verify that the derivative of the minimal polynomial P (x, t) of h(x) does not
vanish at the origin, ∂tP (0, 0) = ∂tP̃ (0, h̃(0)) 6= 0, and that we have again

f =
a0 + a1h+ · · ·+ arh

r

b0 + b1h+ · · ·+ bshs
,

for polynomials ai, bj ∈ K[x] such that b0(0) = b(0, h̃(0)) 6= 0.

4.1 Codes of Algebraic Power Series

The following fact was explained in [AM65, pp. 88] and became later known under
the name Artin-Mazur lemma (see for example [BCR98] or [AMR92]).

Theorem 4.1.1 (Artin & Mazur). Let f ∈ K〈x1, . . . , xn〉 = K〈x〉 be an algebraic
power series with f(0) = 0. Then there exists an k ∈ N and a vector of k polynomials
P (x, y1, . . . , yk) ∈ K[x][y1, . . . , yk]

k with the following properties:

(1) P (x, f, h2, . . . , hk) = 0 for some algebraic power series h2, . . . , hk ∈ K〈x〉 with
hi(0) = 0 for i = 2, . . . , k.

(2) The Jacobian matrix JP (x, y1, . . . , yk) of P (x, y1, . . . , yn) with respect to the
variables y1, . . . , yk at x = y = 0 is invertible: JP (0, 0) ∈ GLk(K).
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In other words, given f(x) ∈ K〈x〉, one can find k − 1 algebraic power series
h2, . . . , hk ∈ K〈x〉 and a k-dimensional vector of polynomials P (x, y1, . . . , yk) ∈
K[x, y]k, such that P (x, f(x), h2(x), . . . , hk(x)) = 0 and the Jacobian of P (x, y)
with respect to y at x = y = 0 is invertible. Similarly to the previous theorem, this
implies that one can repair the problem of an algebraic power series of not being
étale-algebraic, now by appending k − 1 other power series and considering the k-
dimensional analogue of the definition of étale-algebraicity. This polynomial vector
P (x, y) ∈ K[x, y]k is referred to as the (mother) code of the algebraic series f(x) in
[ACH14],[Hau17] and [AMR92]. The authors M.E. Alonso, F.J. Castro-Jimenez and
H. Hauser of the first reference point out that “The advantage of this code in compar-
ison with taking the minimal polynomial lies in the fact that the latter determines
the algebraic series only up to conjugation, so that extra information is necessary to
specify the series, typically a sufficiently high truncation of the Taylor expansion. In
contrast, the polynomial code determines the series completely and is easy to handle
algebraically”.

With the help of the theorem of Denef and Lipshitz we can improve the Artin-
Mazur lemma, proving that it is always possible to choose k = 2:

Theorem 4.1.2. Let f ∈ K〈x1, . . . , xn〉 = K〈x〉 be an algebraic power series with
f(0) = 0. Then there exists a vector of two polynomials P (x, y1, y2) ∈ K[x][y1, y2]2

with the following properties:

(1) P (x, f, h) = 0 for some étale-algebraic power series h ∈ K〈x〉.

(2) The Jacobian matrix JP (x, y1, y2) of P (x, y1, y2) with respect to y1 and y2 at
0 is invertible: JP (0, 0, 0) ∈ GL2(K).

Note that in the two-dimensional square matrix JP (0, 0, 0), the first 0 means
setting the variables x1, . . . , xn all to 0 in JP (x, y1, y2), whereas the other two zeros
are both one-dimensional and advert to y1 and y2.

Proof. Let Q(x, y1) be the minimal polynomial of f . If ∂y1Q(0, 0) 6= 0 then we can
simply choose P (x, y1, y2) = (Q(x, y1), y2) to get P (x, f(x), 0) = 0 and, of course,

JP (0, 0, 0) =

(
∂y1Q(0, 0) 0

0 1

)
has det(JP (0, 0, 0)) = ∂y1Q(0, 0) 6= 0. Hence, we are done in this case.

We are left with the more challenging case ∂y1Q(0, 0) = 0. By the previous
Theorem 4.0.1, we may write for some étale-algebraic power series h ∈ K〈x〉

f =
a0 + a1h+ · · ·+ arh

r

b0 + b1h+ · · ·+ bshs
, (4.2)

for r, s ∈ N and ai(x), bj(x) ∈ K[x] with 0 ≤ i ≤ r, 0 ≤ j ≤ s and b0(0) 6= 0. Define
the polynomials

T1(x, y2) := a0(x) + a1(x)y2 + · · ·+ ar(x)yr2,

T2(x, y2) := b0(x) + b1(x)y2 + · · ·+ bs(x)ys2,
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to get the relationship T1(x, h(x)) = f(x)T2(x, h(x)) from identity (4.2). Let also
S(x, y2) be the minimal polynomial of the étale-algebraic h(x), so ∂y2S(0, 0) 6= 0.
Now we put

P (x, y1, y2) :=

(
y1T2(x, y2)− T1(x, y2)

S(x, y2)

)
.

A simple computation confirms that this choice of P satisfies all required properties:

P (x, f(x), h(x)) = 0 and

JP (0, 0, 0) =

(
T2(x, y2) ∗

0 ∂y2S(x, y2)

)∣∣∣∣∣
(0,0,0)

=

(
T2(0, 0) ∗

0 ∂y2S(0, 0)

)
.

Clearly, det(JP (0, 0, 0)) = T2(0, 0)∂y2S(0, 0) 6= 0, because both factors are different
from 0 and so we are done.

4.2 Representation of Algebraic Power Series as Diago-
nals

Recall that if not indicated otherwise, x = (x1, . . . , xn) is a vector of n variables and
t = t is a single variable. We define the diagonal of a power series as follows:

Definition. Let g(x), f(x, t) be any formal power series:

g(x) =
∑
i1,...,in

gi1,...,inx
i1 · · ·xin ∈ K[[x]],

f(x, t) =
∑

i1,...,in,j

fi1,...,in,jx
i1 · · ·xintj ∈ K[[x, t]].

Then the small diagonal ∆(g) of g(x) is the formal power series given by:

∆(g(x)) = ∆(g(x))(t) :=
∑
j≥0

gj,...,jt
j ∈ K[[t]].

The big diagonal D(f) of f(x, t) is given by the formal power series:

D(f(x, t)) = D(f(x, t))(x) :=
∑

i1+···+in=j

fi1,...,in,jx
i1 · · ·xin ∈ K[[x]].

We shall always refer to the big diagonal whenever we do not specify which
diagonal we use.

Example 1: Let x = x1 be one-dimensional and f(x, t) = 1/(1− x− t). Then

D(f(x, t))(x) = D
( 1

1− x− t

)
(x) = D

∑
k≥0

(x+ t)k

 (x)

=
∑
k≥0

D
(

(x+ t)k
)

(x) =
∑
k≥0

∑
j≥0

(
k

j

)
D
(
xjtk−j

)
(x).
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However, in order to have D(xjtk−j)(x) 6= 0, we must have j = k − j, i.e. j = k/2,
and in particular k must be even, say k = 2n. In this case, D(xjtk−j)(x) = xk/2 and
we obtain:

D(f(x, t))(x) =
∑
n≥0

(
2n

n

)
xn =

1√
1− 4x

.

This function is an algebraic power series with minimal polynomial

P (x, t) = t2 − 4xt2 − 1.

Example 2: Recall that xt := (x1t, . . . , xnt). For any f(x) =
∑

α∈Nn cαx
α ∈ K[[x]] ⊆

K[[x, t]] it holds that

D (f(xt)) (x) =
∑
α∈Nn

cαD ((x1t)
α1 · · · (xnt)αn) (x)

=
∑
α∈Nn

cαD
(
xαtα1+···+αn) (x)

=
∑
α∈Nn

cαx
α = f(x).

Hence we may represent f(x) as the diagonal of f(xt).

Example 3: Define the Hadamard product of two power series f(x) =
∑

α∈Nn fαx
α

and g(x) =
∑

α∈Nn gαx
α as the series

(f ∗ g)(x) =
∑
α∈N

fαgαx
α.

Let x = x1 be one-dimensional and f(x, t) =
∑

i,j≥0 ci,jx
itj . Define D := {(i, j) ∈

N2 : i = j} and its indicator function 1D : N2 → {0, 1}, then we obtain:(
f(x, t) ∗ 1

1− xt

)
(x, t) =

(∑
i,j≥0

ci,jx
itj ∗

∑
k≥0

(xt)k
)

(x, t)

=
(∑
i,j≥0

ci,jx
itj ∗

∑
i,j≥0

1Dx
itj
)

(x, t) =

=
∑
i,j≥0

ci,j1Dx
itj =

∑
n≥0

cn,n(xt)n

= D(f(x, t))(xt),

the diagonal of f(x, t), where one substituted xt into x. This gives another view point
on the diagonal operator. There is a generalization of this idea to a multidimensional
x, but we shall not examine it here.

Example 4: 1 Consider the well-known transcendental G-function

f(t) =
∑
n≥0

j∑
k=0

(
n

k

)2(n+ k

k

)2

tn ∈ Z[[t]] ⊆ C[[t]].

1This example is taken from [AB13].
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This series appears in Apéry’s proof of the irrationality of ζ(3). It also known
to satisfy a Picard-Fuchs differential equation. Furthermore, a lengthy but simple
computation shows that f(t) is the small diagonal of the rational power series

1

1− x1
· 1

(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3
∈ Z[[x1, x2, x3, x4, x5]].

There are many theorems in the literature connecting algebraic power series and
diagonals. For example, in 1922 Pólya proved that the diagonal of any rational power
series in two variables is necessarily algebraic. Fürstenberg proved in 1967 that if
f(x) is an algebraic power series and x = x1 one-dimensional, then there exists a
rational power series R(x, t) with D(R(x, t)) [Fur67]. In the same paper, he proved
that a small diagonal of any rational power series over a finite field is algebraic. In
1984, Deligne improved the second result: the small diagonal of any algebraic power
series over a finite field is algebraic [Del84]. Note that for fields of characteristic 0
neither Deligne’s nor Fürstenberg’s statements hold, as it is evident from example
4 above. Denef and Lipshitz gave a simpler proof for the last statement in 1987
and generalized the first theorem of Fürstenberg to several variables in [DL87]. This
generalization uses the fact that K〈x〉 is given by a direct limit of pointed étale
extensions of K[x](x) and we will present its proof now. However, we need the
following technical lemma first:

Lemma 4.2.1. Let h(x) ∈ K〈x〉 be étale-algebraic with minimal polynomial P (x, t) ∈
K[x, t]. Then it holds that:

(1) The following rational function is a power series:

t
∂tP (xt, t)

P (xt, t)
∈ K[[x, t]].

(2) If i ∈ Nn and j ∈ N, then

D
(

(xt)itj+1∂tP (xt, t)

P (xt, t)

)
= xih(x)j .

(3) More generally, if W (x, t) ∈ K[[x, t]] is a power series, then

D
(
W (xt, t)t

∂tP (xt, t)

P (xt, t)

)
= W (x, h(x)).

Proof. Since h(x) is a root of P (x, t), we can write

P (x, t) = (t− h(x))Q(x, t),

for some Q(x, t) ∈ K[[x]][t]. Differentiating both sides with respect to t gives

∂tP (x, t) = Q(x, t) + (t− h(x))∂tQ(x, t), (4.3)

hence, after dividing through by P (x, t) we obtain

t
∂tP (x, t)

P (x, t)
=

t

t− h(x)
+ t

∂tQ(x, t)

Q(x, t)
. (4.4)
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Plugging (0, 0) into (4.3) and using the assumptions on P (x, t) and h(x), we get that
Q(0, 0) 6= 0, therefore Q(x, t) is a unit in K[[x, t]] and so the second summand in the
equation above is a power series. Furthermore, we have

t

t− h(xt)
=

1

1− t−1h(xt)
∈ K[[x, t]].

We conclude the proof of (1) by putting together:

t
∂tP (xt, t)

P (x, t)
=

t

t− h(xt)︸ ︷︷ ︸
∈K[[x,t]]

+t
∂tQ(xt, t)

Q(xt, t)︸ ︷︷ ︸
∈K[[x,t]]

.

For (2) we use that D is linear and (4.4) to arrive at

D
(

(xt)itj+1∂tP (xt, t)

P (xt, t)

)
= D

( (xt)itj+1

t− h(xt)
+ (xt)itj+1∂tQ(xt, t)

Q(xt, t)

)
= D

( (xt)itj+1

t− h(xt)

)
+D

(
(xt)itj+1∂tQ(xt, t)

Q(xt, t)

)
.

The second summand is equal to 0, since the degree of t is always strictly larger then
the sum of the corresponding degrees of the xi’s. Thus, it remains to compute

D
( (xt)itj+1

t− h(xt)

)
= D

(
(xt)itj

1

1− t−1h(xt)

)
= D

(
(xt)i

∑
k≥0

tj−kh(xt)k
)

= D
(
(xt)ih(xt)j

)
= xih(x)j .

This proves also the second part of the lemma.
For (3) let W (x, t) =

∑
i,j∈Nn×N ai,jx

itj . A simple computation using (2) yields:

D
(
W (xt, t)t

∂tP (xt, t)

P (xt, t)

)
= D

( ∑
i,j∈Nn×N

ai,j(xt)
itjt

∂tP (xt, t)

P (xt, t)

)
=

∑
i,j∈Nn×N

ai,jD
(

(xt)itj+1∂tP (xt, t)

P (xt, t)

)
=

∑
i,j∈Nn×N

ai,jx
ih(x)j

= W (x, h(x)).

Now we are ready to prove the theorem of Denef and Lipshitz:

Theorem 4.2.2. Let f(x) ∈ K〈x〉 be an algebraic power series, x = (x1, . . . , xn)
and K a field of characteristic 0. Then there exists a rational power series in n+ 1
variables R(x, t) ∈ K[x, t](x,t) such that

f(x) = D(R(x, t)).
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Proof. Using Theorem 4.0.1, it follows that there exist r, s ∈ N and ai(x), bj(x) ∈
K[x] for 0 ≤ i ≤ r, 0 ≤ j ≤ s with b0(0) 6= 0 such that

f(x) =
a0(x) + a1(x)h(x) + · · ·+ ar(x)h(x)r

b0(x) + b1(x)h(x) + · · ·+ bs(x)h(x)s
, (4.5)

where h(x) ∈ K〈x〉 is étale-algebraic. Define

W (x, t) :=
a0(x) + a1(x)t+ · · ·+ ar(x)tr

b0(x) + b1(x)t+ · · ·+ bs(x)ts
∈ K[x, t](x,t),

and let

R(x, t) := W (xt, t)t
∂tP (xt, t)

P (xt, t)
.

From part (1) in the previous lemma, we know that R(x, t) is a rational power series.
Therefore, R(x, t) ∈ K[x, t](x,t) and we conclude using part (3) from that lemma:

D(R(x, t)) = W (x, h(x)) = f(x).

This is exactly what we wanted.
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Appendix A

Direct and Inverse Limits

“No one is ever satisfied where he is.”
Antoine de Saint-Exupéry, The Little Prince, Chapter 22

The direct and the inverse limits are important algebraic tools that can be used for
creating new algebraic structures such as groups, rings or modules from a collection
of existing ones. To form these objects, we will need the definition of a directed set:

Definition. A directed set is a non-empty set A together with a reflexive and tran-
sitive binary relation ≤, with the additional property that every pair of elements has
a common upper bound.

Recall that ≤ is reflexive if i ≤ i for all i ∈ A, it is transitive if i ≤ j and j ≤ k
for some i, j, k ∈ A implies that i ≤ k. Finally, the condition on the upper bound
means that for any pair i, j ∈ A there exists a k ∈ A such that i ≤ k and j ≤ k.

A.1 Inverse Limit and the Completion

Definition. Let (A,≤) be a directed set. By an inverse system of rings over (A,≤)
we mean a pair

({Ri}i∈A, {fi,j : Rj → Ri}i,j∈A,i≤j),

where each Ri is a ring and the fi,j are ring homomorphisms satisfying fi,i = idRi
and fi,k = fi,j ◦ fj,k for all i, j, k ∈ A with i ≤ j ≤ k.

Now we are ready to define the inverse limit:

Definition. Given a directed set (A,≤) and an inverse system of rings like above,
we define the inverse limit of this system to be the pair

(R, {πi : R→ Ri}i∈A),

where R is a ring and the πi are homomorphisms satisfying fi,j ◦ πj = πi for all
i ≤ j. Moreover, we require the pair (R, {πi}i∈A) to be universal in the sense that
for any other pair (S, {ψi}i∈A) satisfying all above, there exists a unique morphism
u : S → R such that πi ◦ u = ψi for all i ∈ A.
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The universal condition above implies the existence of a unique u : S → R such
that the following diagram commutes:

S

R

Rj Ri

u
ψj ψi

πj πi
fi,j

Of course, the universal property also implies uniqueness of the inverse limit. The in-
verse limit is often denoted by lim←−Ri with the underlying inverse system ({Ri}, {fi,j})
being understood. For the existence and the explicit description we have the follow-
ing theorem identifying lim←−Ri with a subring of

∏
i∈ARi, see [Bou89, pp. 118]:

Theorem A.1.1. Let ({Ri}, {fi,j}) be an inverse system of rings. Then

R = lim←−Ri =
{
a ∈

∏
i∈A

Ri

∣∣∣ai = fi,j(aj) for all i, j ∈ A and i ≤ j
}
.

The maps πi : R → Ri are the natural projections which pick the i-th component of
the direct product for each i ∈ A.

The following fact is easy to prove and we use it at some point. It gives a good
flavour of the work style with inverse systems and limits.

Lemma A.1.2. Assume {An}n≥1 and {Bn}n≥1 are inverse systems of rings and
An ⊆ Bn for every n. Then lim←−An =: A ⊆ B := lim←−Bn.

Proof. For every n we have an injective map An ↪→ Bn describing the inclusion, hence
we have a natural map A→ B and we want it to be injective as well. Consider the
commutative diagram which exists for every n:

A B

An Bn

Take f ∈ ker(A → B). Then f maps to 0 in B, which then projects to 0 in every
Bn. Call fn the image of f in An. As An ↪→ Bn maps fn to 0 and is injective we
obtain that fn = 0 for every n. But then f = 0, because A = lim←−An. This shows
that A ↪→ B is injective and proves the claim.

We use the notion of the inverse limit mostly for defining the m-adic completion
of a local ring R at the maximal ideal m ⊆ R and we will follow [Eis95]. In order to
define the completion, we take the directed set (N,≤) with the usual ≤. Then, after
defining Ri := R/mi, we see that one has obvious projections

fi,j : R/mj → R/mi, for j ≥ i,

because mj ⊆ mi for a pair i, j like above. Since the fi,j ’s are projections, it follows
that ({Ri}i∈N, {fi,j : Rj → Ri}i,j∈N,i≤j) is an inverse system of rings and we may
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form an inverse limit. Then, we set R̂ := lim←−Ri = lim←−R/m
i. This object is called

the m-adic completion of R.
From Theorem A.1.1 we immediately get the description of R̂ in terms of sequences:

R̂ = {a = (a1, a2, . . . ) ∈
∏
i≥1

R/mi : ai ≡ aj mod mi, for all j > i}.

Defining
m̂i = {a = (a1, a2, . . . ) ∈ R̂ : aj = 0 for all j ≤ i},

it follows from the definition that R̂/m̂i ∼= R/mi. We claim that R̂ is local with
maximal ideal m̂ := m̂1: If a = (a1, a2, . . . ) ∈ R̂ \ m̂, it follows easily that b =
(a−1

1 , a−1
2 , . . . ) exists and is the inverse of a, proving the claim. To explain the term

“complete” we need to talk a little bit topology: we say that a sequence of elements
a1, a2, · · · ∈ R̂ converges to an a ∈ R̂ if for every integer n there is an integer i(n) so
that a− ai(n) ∈ m̂n. It follows that a sequence (ai)i≥1 of elements of R̂ converges if
and only if it is a Cauchy sequence, in the sense that for every integer n there is an
integer i(n) such that

ai − aj ∈ m̂n for all i, j ≥ i(n).

The limit of a convergent sequence (ai)i≥1 is given by the element a ∈
∏
iR/m

i = R̂
whose n-th component is the same as that of ai(n). Then we write a = limi ai.
Because the m̂i are ideals, it follows that addition and multiplication are continuous
in R̂, in the sense that if a = lim ai and b = lim bi then both ai + bi and aibi are
convergent sequences, which converge to a+ b and ab respectively.

We say a local ring R with maximal ideal m is complete if the natural map
R→ R̂ is an isomorphism. Note that ∩imi goes to zero under this mapping, therefore
completeness implies ∩imi = 0. Because of Krull’s intersection theorem, we see that
the completion of a Noetherian ring is indeed complete.

Finally we note that all these definitions and results are very natural: taking
for an element a ∈ R̂ the sets (a + m̂i)i≥1 to be the base of open neighbourhoods
of a, one arrives at the so-called Krull topology, in which our definition of Cauchy
sequences agrees with the usual one.

The following facts about the completion of rings are of importance for this work
and also interesting on their own. First we give a detailed proof of Hensel’s lemma:

Theorem A.1.3 (Hensel’s lemma). Let (R,m,K) be a complete local ring and
f(t) ∈ R[t] a monic polynomial of degree n ≥ 1. Denote f̄(t) ∈ K[t] to be the
reduction of f(t) mod mR[t] and suppose there exist monic coprime polynomials
G(t), H(t) ∈ K[t] of degrees d, e ≥ 0 respectively such that

f̄(t) = G(t)H(t).

Then there exist unique monic polynomials g(t), h(t) ∈ R[t] of degrees e and d such
that g(t) ≡ G(t) mod mR[t], h(t) ≡ H(t) mod mR[t] and f(t) = g(t)h(t).

Proof. In order to simplify notation in this proof, we will drop the variable t, when
referring to f, g, h ∈ R[t], G,H ∈ K[t] and other polynomials still to appear. More-
over, we denote mi[t] := miR[t].

The idea of the proof is to construct by induction unique monic polynomials
gi, hi ∈ R[t] such that f ≡ gihi mod mi[t] for all i ≥ 1, such that gi ≡ G mod m[t]
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and hi ≡ H mod m[t]. Then, we will prove that limi gi =: g and limi hi =: h satisfy
the requested properties and are unique.

The induction basis is done immediately by the hypothesis of the theorem: we
can choose g1 = G and h1 = H, then obviously g1 ≡ G mod m[t], h1 ≡ H mod m[t]
and f ≡ g1h1 mod m[t]. Note that this choice is of course unique and the degrees of
these polynomials are d and e.

Now assume that gk and hk have been constructed and shown to be unique for
some k ≥ 1. We must construct gk+1 and hk+1 and prove their uniqueness. We will
do this by finding γ, η ∈ mk[t] of degrees less than d and e such that gk+1 := gk + γ
and hk+1 := hk + η satisfy the necessary properties. Since G,H are coprime, they
generate the unit ideal in K[t]. Therefore, there exist polynomials γ̃, η̃ ∈ K[t] with

1 = η̃G+ γ̃H ≡ η̃gk + γ̃hk mod m[t].

By the induction hypothesis, we have ∆ := f − gkhk ∈ mk[t]. Multiplying the
equation above with ∆ yields ∆ ≡ ∆η̃gk + ∆γ̃hk mod mk+1[t]. Now we are nearly
done, however ∆η̃ and ∆γ̃ may have incorrect degrees. Therefore, we apply the
division algorithm dividing ∆η̃ ∈ mk[t] by hk ∈ R[t] which is monic by assumption.
This gives us α, η ∈ R[t] with deg(η) < e and ∆η̃ = αhk + η. We claim that
α, η ∈ mk[t]. To see this note that we must have 0 ≡ αhk + η mod mk[t] since
∆η̃ ∈ mk[t]. Moreover, hk ∈ (R/mk)[t] is monic of degree e, therefore by uniqueness
of the division algorithm in (R/mk)[t] we obtain the validity of the claim. Now, we
are ready to set γ = αgk + ∆γ̃ ∈ mk[t] and to obtain

ηgk + γhk = (∆η̃ − αhk)gk + (αgk + ∆γ̃)hk = ∆η̃gk + ∆γ̃hk ≡ ∆ mod mk+1[t].

Since deg(∆) < n and deg(ηgk) < n, it follows that the degree of γ is smaller than d.
Finally, setting gk+1 = gk + γ, hk+1 = hk + η, we convince ourselves that gk+1 ≡ G
mod m[t], hk+1 ≡ H mod m[t] and calculate mod mk+1[t]:

gk+1hk+1 ≡ gkhk + hkγ + gkη + γη

≡ gkhk + ∆

≡ f.

This proves the existence of gi, hi ∈ R[t] for all i ≥ 0 with the wanted properties. To
see uniqueness, we again argue by induction. For k = 1, we have already seen that
g1, h1 are unique. Assume the obtained gi, hi are unique up to some k ≥ 1 and let
g′, h′ ∈ R[t] be monic polynomials of degrees d, e such that g′ ≡ G mod m[t], h′ ≡ H
mod m[t] and f ≡ g′h′ mod mk+1[t]. Define γ′ = g′ − gk and η′ = h′ − hk. By the
induction hypothesis we get that γ′, η′ ∈ mk[t]. Then it follows easily that we must
have

η′gk + γ′hk ≡ ∆ mod mk+1[t].

Now set γ̂ = γ−γ′ = gk+1−g′ and η̂ = η−η′ = hk+1−h′. It follows that 0 ≡ η̂gk+γ̂hk
mod mk+1[t]. Multiplying by γ̃ and using the fact that γ̃gk + γ̃hk − 1 =: m ∈ m[t],
we have

η̂ ≡ (η̂η̃ − γ̃γ̂)hk − η̂m mod mk+1[t].

However, η̂ ∈ mk[t] andm ∈ m[t], therefore η̂ must be a multiple of hk in (R/mk+1)[t].
But deg(η̂) < e and deg(hk) = e, hence η̂ ≡ 0 mod mk+1[t] and similarly γ̂ ∈ mk+1[t].
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It follows that

h′ ≡ hk+1 mod mk+1,

g′ ≡ gk+1 mod mk+1,

which concludes the proof of uniqueness of gi, hi for every i ≥ 1.
Now, if 1 ≤ i < j then f − gjhj ∈ mj [t] ⊆ mi[t], so f ≡ gjhj mod mi[t]. By

uniqueness, it follows that gi ≡ gj mod mi[x] and hi ≡ hj mod mi[x]. Looking at the
coefficients of the polynomials, this implies that the sequences of those are Cauchy
and therefore converge in R, because it is a complete ring by assumption. Set

g := lim
i≥1

gi = lim
i≥1

a
(i)
0 + a

(i)
1 t+ · · ·+ a

(i)
d−1t

d−1 + td =: a0 + a1 + · · ·+ ad−1t
d−1 + td,

h := lim
i≥1

hi = lim
i≥1

b
(i)
0 + b

(i)
1 t+ · · ·+ b

(i)
d−1t

e−1 + te =: b0 + b1 + · · ·+ bd−1t
e−1 + te.

It is easy to see that g ≡ G mod m[t] and h ≡ H mod m[t]. A small straightforward
computation also verifies that (gihi)j → (gh)j for every 0 ≤ j ≤ n − 1 as i → ∞.
However

fj − (gh)j = fj − (gihi)j + (gihi)j − (gh)j ,

and fj − (gihi)j ∈ mi by construction. It follows that fj − (gh)j ∈ ∩kmk = 0, by the
considerations about complete rings. We see that all coefficients of f and gh agree
and conclude that the polynomials are equal.

Lemma A.1.4. Let R be a Noetherian local ring. Then R̂ is also Noetherian.

See [Eis95, p. 185] for a proof.

Lemma A.1.5. Let R be a local Noetherian ring and M a ring that is a finite
R-module. Then the completion of M is given by M ⊗R R̂.

The proof can be found in [Nag75] or [Stacks, Tag 00MA]

Lemma A.1.6. Let R be a local Noetherian ring and R̂ its completion. Then the
map R→ R̂ is flat. If R is a domain then Frac(R) ∩ R̂ = R.

For the first statement see [Stacks, Tag 00MB]. The second one follows from [Nag75,
(18.4)].

A.2 Direct Limit

Definition. Let (A,≤) be a directed set. By a direct system of rings over (A,≤)
we mean a pair

({Ri}i∈A, {fi,j : Ri → Rj}i,j∈A,i≤j),

where each Ri is a ring and the fi,j are ring homomorphisms satisfying fi,i = idRi
and fi,k = fj,k ◦ fi,j for all i, j, k ∈ A with i ≤ j ≤ k.

Now we are ready to define the direct limit:
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Definition. Given a directed set (A,≤) and a direct system of rings like above, we
define the direct limit of this system to be the pair

(R, {φi : Ri → R}i∈A),

where R is a ring and the φi are homomorphisms satisfying φj ◦ fi,j = φi for all
i ≤ j. Moreover, we require the pair (R, {φi}i∈A) to be universal in the sense that
for any other pair (S, {ψi}i∈A) satisfying all above, there exists a unique morphism
u : R→ S such that u ◦ φi = ψi for all i ∈ A.

The universal condition above implies the existence of a unique u : R → S such
that the following diagram commutes:

Rj Ri

R

S

fi,j

ψi

φi

ψj

φj

u

Note that this is the same commutative diagram as for the inverse limit, but with
all arrows reversed. Of course, the universal property again also implies uniqueness
of the direct limit. The direct limit is often denoted by lim−→Ri with the underlying
direct system ({Ri}, {fi,j}) being understood. For the existence and the explicit
description we have the following theorem identifying lim−→Ri with the disjoint union⊔
i∈ARi modulo an equivalence relation, see [Bou89, pp. 120]:

Theorem A.2.1. Let ({Ri}, {fi,j}) be a direct system of rings. Then

R = lim−→Ri =
⊔
i∈A

Ri

/
∼,

where for xi ∈ Ri and xj ∈ Rj we say xi ∼ xj if and only if there exists some k ∈ A
with i ≤ k and j ≤ k and fi,k(xi) = fj,k(xj). The maps φi : Ri → R are obtained
canonically by sending each element to its equivalence class.

In other words, an element is equivalent to all its images under the maps of the
direct system, i.e. xi ∼ fij(xi) whenever i ≤ j.

When talking about the direct limit of pointed étale extensions, while construct-
ing the Henselization, we use the following lemma. Its proof is a good example on
how one deals with the defined object.

Lemma A.2.2. Let {Ri}i∈A be a directed system of local rings and set R := lim−→Ri.
Then R is also local.

Proof. Consider m := R\R∗ the subset of non-units. We will show that m is an ideal
proving that it must be the unique maximal ideal of R.

First note that if x, y ∈ m then by definition of the direct limit for some large
enough i ∈ A there is a homomorphism φi : Ri → R and elements x̄, ȳ ∈ Ri such
that φi(x̄) = x and φi(ȳ) = y. Since x, y 6∈ R∗ we must have that x̄ and ȳ are also
non-units in Ri. As Ri is local, it follows that x̄, ȳ ∈ mi, where mi is the unique
maximal ideal of Ri.

55



We claim that x−y ∈ m and we prove this by contradiction: assume the contrary,
then x− y ∈ R∗ and there is an inverse z ∈ R. It follows for a possibly even bigger
i ∈ A that 1 = z(x− y) = φi(z̄(x̄− ȳ)). But then, for an even larger i ∈ A, we must
have z̄(x̄− ȳ) = 1, hence x̄− ȳ is invertible. However, x̄− ȳ ∈ mi, a contradiction.

Finally, take some r ∈ R and x ∈ m. Considering their preimages in Ri for
sufficiently large i ∈ A, gives r̄x̄ ∈ mi which, by a similar argument to the above,
yields φi(r̄x̄) = rx ∈ m.

We have proven that m is an ideal; since it is the set of non-units it follows that
R must be local.
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Appendix B

The Resultant

“Curiouser and curiouser!”
Lewis Carroll, Alice’s Adventures in Wonderland, Chapter II

The mathematical theory connected to the resultant is very broad; however we want
to state just the most important facts about it, as just a very small piece of infor-
mation is needed for our purposes. For defining the resultant we work over a field K
and with univariate polynomials, but note that one may also consider all appearing
objects over some ring and allow for several variables. Some similar results hold true
in this case, however some others fail [GKZ08].

We start by defining Pn for n ∈ N to be the set of all polynomials over some
fixed field K of degree less than n. It is obvious that Pn is a vector space over K
of dimension n. Now let p(t) = p0 + · · · + pdt

d and q(t) = q0 + · · · + qet
e be two

coprime monic polynomials of degrees d and e respectively. Note that p(t) 6∈ Pd and
q(t) 6∈ Pe, because their degrees are too large, nevertheless we may define the linear
map

Φ : Pe × Pd → Pd+e

(a(t), b(t)) 7→ p(t)a(t) + q(t)b(t).

Clearly, the dimensions of Pe×Pd and Pd+e agree. Moreover, take some (a(t), b(t)) ∈
ker(Φ), then p(t)a(t) + q(t)b(t) = 0. Because p(t) and q(t) are relatively prime, we
must have that q(t) divides a(t) and p(t) divides b(t). However, since the degrees
of a(t) and b(t) are smaller than e and d this is only possible if a(t) = b(t) = 0.
Therefore we see that Φ is injective and since it is a linear map between two vector
spaces of equal dimension, it must be surjective as well and hence it is invertible.

Furthermore, we know that Φ, being a linear map between vector spaces, is
representable as a matrix. It is clear that over the basis of Pe × Pd given by B =
{(1, 0), . . . , (te−1, 0), (0, 1), . . . , (0, td−1)}, the map Φ is given by the (d+ e)× (d+ e)
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matrix 

p0 0 · · · 0 q0 0 · · · 0
p1 p0 · · · 0 q1 q0 · · · 0

p2 p1
. . . 0 q2 q1

. . . 0
...

...
. . . p0

...
...

. . . q0

pd pd−1 · · ·
... qe qe−1 · · ·

...

0 pd
. . .

... 0 qe
. . .

...
...

...
. . . pd−1

...
...

. . . qe−1

0 0 · · · pd 0 0 · · · qe


This matrix (or sometimes its transpose) is called the Sylvester matrix of the poly-
nomials p(t) = p0 + · · · + pdt

d and q(t) = q0 + · · · + qet
e and is usually denoted

by Sp(t),q(t). The determinant of this matrix, which of course does not depend on
whether we use the form above or the transposed one, is called the resultant of p(t)
and q(t) and is often denoted by res(p(t), q(t)). By the discussion above, we con-
vinced ourselves that Sp(t),q(t) is invertible if p(t) and q(t) are relatively prime. Of
course we have that res(p(t), q(t)) 6= 0 in this case.

58



Bibliography

[DG67] J. Dieudonné and A. Grothendieck. “Éléments de géométrie algébrique”.
In: Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961–
1967).

[AM65] M. Artin and B. Mazur. “On Periodic Points”. In: Annals of Mathematics
81.1 (1965), pp. 82–99. issn: 0003486X. url: http://www.jstor.org/
stable/1970384.

[Fur67] H. Furstenberg. “Algebraic functions over finite fields”. In: Journal of
Algebra 7.2 (1967), pp. 271–277. issn: 0021-8693. doi: https://doi.org/
10.1016/0021-8693(67)90061-0. url: http://www.sciencedirect.
com/science/article/pii/0021869367900610.

[AM69] M. F. Atiyah and I. G. MacDonald. Introduction to commutative algebra.
Addison-Wesley-Longman, 1969, pp. I–IX, 1–128. isbn: 978-0-201-40751-
8.

[LT70] F. Lazzeri and A. Tognoli. “Alcune proprietà degli spazi algebrici”. it. In:
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 3,
24.4 (1970), pp. 597–632. url: http://www.numdam.org/item/ASNSP_
1970_3_24_4_597_0.

[Ive73] B. Iversen. Generic Local Structure of the Morphisms in Commutative
Algebra. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1973.
isbn: 9783540383383.

[Nag75] M. Nagata. Local Rings. R.E. Krieger Publishing Company, 1975.

[Mat80] H. Matsumura. Commutative Algebra. Math Lecture Notes Series. Ben-
jamin/Cummings Publishing Company, 1980. isbn: 9780805370263.

[Mil80] J. S. Milne. Etale Cohomology (PMS-33). Princeton Legacy Library. Prince-
ton University Press, 1980. isbn: 9780691082387.

[Del84] P. Deligne. “Intégration sur un cycle évanescent.” In: Inventiones mathe-
maticae 76 (1984), pp. 129–144. url: http://eudml.org/doc/143120.

[DL87] J. Denef and L. Lipshitz. “Algebraic power series and diagonals”. In: Jour-
nal of Number Theory 26.1 (1987), pp. 46–67. issn: 0022-314X. doi:
https://doi.org/10.1016/0022- 314X(87)90095- 3. url: http:
//www.sciencedirect.com/science/article/pii/0022314X87900953.

[Bou89] N. Bourbaki. Algebra I: chapters 1-3. Elements of mathematics. Springer-
Verlag, 1989. isbn: 9783540193739.

59

http://www.jstor.org/stable/1970384
http://www.jstor.org/stable/1970384
https://doi.org/https://doi.org/10.1016/0021-8693(67)90061-0
https://doi.org/https://doi.org/10.1016/0021-8693(67)90061-0
http://www.sciencedirect.com/science/article/pii/0021869367900610
http://www.sciencedirect.com/science/article/pii/0021869367900610
http://www.numdam.org/item/ASNSP_1970_3_24_4_597_0
http://www.numdam.org/item/ASNSP_1970_3_24_4_597_0
http://eudml.org/doc/143120
https://doi.org/https://doi.org/10.1016/0022-314X(87)90095-3
http://www.sciencedirect.com/science/article/pii/0022314X87900953
http://www.sciencedirect.com/science/article/pii/0022314X87900953


[AMR92] M. E. Alonso, T. Mora, and M. Raimondo. “A computational model for al-
gebraic power series”. In: Journal of Pure and Applied Algebra 77.1 (1992),
pp. 1–38. issn: 0022-4049. doi: https://doi.org/10.1016/0022-
4049(92)90029-F. url: http://www.sciencedirect.com/science/
article/pii/002240499290029F.

[Rui93] J.M. Ruiz. The Basic Theory of Power Series. Advanced Lectures in
Mathematics. Vieweg+Teubner Verlag, 1993. isbn: 9783528065256.

[Eis95] D. Eisenbud. Commutative Algebra: With a View Toward Algebraic Ge-
ometry. Graduate Texts in Mathematics. Springer, 1995. isbn: 9780387942698.

[BCR98] J. Bochnak, M. Coste, and M.F. Roy. Real Algebraic Geometry. Springer
Berlin Heidelberg, 1998. isbn: 9783662037188.

[Lan05] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York,
2005. isbn: 9780387953854.

[GKZ08] I.M. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resul-
tants, and Multidimensional Determinants. Modern Birkhäuser Classics.
Birkhäuser Boston, 2008. isbn: 9780817647704.

[AB13] B. Adamczewski and J. P. Bell. “Diagonalization and rationalization of
algebraic Laurent series”. en. In: Annales scientifiques de l’École Normale
Supérieure Ser. 4, 46.6 (2013), pp. 963–1004. doi: 10.24033/asens.2207.
url: http://www.numdam.org/item/ASENS_2013_4_46_6_963_0.

[Mil13] J. S. Milne. Lectures on Etale Cohomology (v2.21). Available at www.
jmilne.org/math/. 2013.

[ACH14] M. E. Alonso, Francisco Jesus Castro-Jiménez, and H. Hauser. “Encoding
Algebraic Power Series”. In: Foundations of Computational Mathematics
18 (2014), pp. 789–833.

[Hau17] H. Hauser. “The classical Artin approximation theorems”. In: Bulletin of
the American Mathematical Society 54 (Jan. 2017), p. 1. doi: 10.1090/
bull/1579.

[Hoc17] M. Hochster. Math 615 Lecture Notes. Available at http://www.math.
lsa.umich.edu/~hochster/615W17/615.pdf. 2017.

[Stacks] The Stacks Project Authors. Stacks Project. https://stacks.math.
columbia.edu. 2020.

60

https://doi.org/https://doi.org/10.1016/0022-4049(92)90029-F
https://doi.org/https://doi.org/10.1016/0022-4049(92)90029-F
http://www.sciencedirect.com/science/article/pii/002240499290029F
http://www.sciencedirect.com/science/article/pii/002240499290029F
https://doi.org/10.24033/asens.2207
http://www.numdam.org/item/ASENS_2013_4_46_6_963_0
www.jmilne.org/math/
www.jmilne.org/math/
https://doi.org/10.1090/bull/1579
https://doi.org/10.1090/bull/1579
http://www.math.lsa.umich.edu/~hochster/615W17/615.pdf
http://www.math.lsa.umich.edu/~hochster/615W17/615.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	Abstract
	Introduction
	Notation
	The Ring of Formal Power Series
	The Ring of Algebraic Power Series
	Weierstrass Theorems
	The Importance of Hensel's Lemma

	Algebraic Power Series and Henselization
	Henselian Rings
	Henselian Characterization of Algebraic Power Series

	Étale Ring Maps and Henselization
	Motivation for Étale Ring Maps
	Étale Ring Maps
	Construction of the Henselization

	Explicit Implications
	Codes of Algebraic Power Series
	Representation of Algebraic Power Series as Diagonals

	Direct and Inverse Limits
	Inverse Limit and the Completion
	Direct Limit

	The Resultant
	Bibliography

