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Abstract

Lorentzian pre-length spaces are introduced by analogy to metric spaces, giving a
synthetic generalization of spacetimes based on the time distance. Some causality
conditions are transferred to this setting. A way of making Lorentzian pre-length
spaces intrinsic is shown (in analogy to length spaces). Regularly localizable
Lorentzian pre-length spaces are introduced to get length increasing push-up of
causal curves.

For intrinsic Lorentzian pre-length spaces, curvature comparison by timelike
triangles is introduced by analogy to triangle comparison in intrinsic metric
spaces. Hyperbolic angles in intrinsic Lorentzian pre-length spaces are defined
by analogy to hyperbolic angles in Lorentzian manifolds and angles in intrinsic
metric spaces. The no branching result in spaces of curvature bounded below is
reproducible using further weak conditions.
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Zusammenfassung

Lorentzsche vor-Längenräume werden per Analogie zu metrischen Räumen
eingeführt, sie sind eine synthetische Verallgemeinerung von Raumzeiten, der
auf Zeit-Abständen beruht. Hier werden einige Kausalitätsbedingungen auf
Lorentzsche vor-Längenräume übertragen. Es wird auch eine Art angegeben,
Lorentzsche vor-Längenräume intrinsisch zu machen (bei metrischen Räumen
entspricht das den Längenräumen). Es werden regulär lokalisierbare Lorentzsche
vor-Längenräume eingeführt, in diesen können kausale Kurven von positiver
Länge zu einer zeitartigen Kurve verlängert werden.

Für intrinsische Lorentzsche vor-Längenräume werden Krümmungsvergleiche
mit zeitartigen Dreiecken definiert (wie Dreiecksvergleiche in Längenräumen).
Man kann auch hyperbolische Winkel definieren. Unter schwachen Bedingungen
kann das Resultat, dass in Räumen mit unterer Krümmungsschranke keine
Verzweigungen von Geodäten auftreten kann, reproduziert werden.
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1 Defining Lorentzian length spaces

Here, a very short introduction to length spaces and Lorentzian manifolds is
given, for the purpose of analogy. For more details on length spaces, see [BBI01],
for more details on Lorentzian and semi-Riemannian geometry see [O’N83].

Definition 1.0.1 (Reminder). Let X be a topological space. A function f :
X → R ∪ {±∞} is called lower semicontinuous if for each a ∈ R ∪ {±∞},
the set f−1((a,+∞]) is open. For metric spaces, this is equivalent to ∀pn →
p, lim infn f(pn) ≥ f(p), i.e. f can jump down in the limit, but not up. ♦

1.1 Riemann manifolds

Definition 1.1.1. A Riemannian manifold is a smooth manifold M together
with a Riemannian inner product g ∈ Γ(S2TM →M): at each point p ∈M we
have a symmetric positive definite symmetric bilinear form g|p : TpM×TpM → R,
varying smoothly with the point.

For (M, g) a Riemannian manifold and γ a piecewise C1 curve, we define the
length L(γ) =

∫
dom(γ)

√
gγ(t)(γ′(t), γ′(t)).

Now we can make each Riemannian manifold into a metric space: for p, q ∈M ,
we define dL(p, q) = inf{L(γ) : γ is a piecewise C1 curve from p to q}. ♦

But there is also a notion of length of curves in metric spaces, so we have
two notions of length of curves: The differential length L and the variational
length LdL(γ) = sup{

∑
i dL(ti, ti+1) : ti < ti+1 is a partitioning of dom(γ)}.

Proposition 1.1.2. The two notions of length of curves on Riemannian mani-
folds agree, i.e. ∀γ piecewise C1 curve, L(γ) = LdL(γ).

Proof. Note that L is lower semicontinuous (i.e. for γn → γ pointwise,
lim inf(L(γn)) ≥ L(γ)) and see [BBI01, 2.4.3]

We can also iterate the construction of the distance: dLdL (p, q) = inf{LdL(γ) :
γ is a rectifiable curve from p to q}

Proposition 1.1.3. The two notions of distance of points on Riemannian
manifolds agree, i.e. ∀p, q ∈M , dLdL (p, q) = dL(p, q).

Proof. Both distances are defined via the infimum of the length of curves. By
the previous proposition LdL(γ) = L(γ) for piecewise C1 curves. In the infimum
in dL, only such curves are allowed. But in the infimum in dLdL , all curves are
allowed. So we get dLdL (p, q) ≤ dL(p, q).

For the other inequality see [BBI01, 2.4.1]
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1.2 Length spaces

(based on [BBI01]) Inspired by this, we can define a new metric on a metric
space:

Definition 1.2.1. Let (X, d) be a metric space (we allow d to attain∞). Then d
induces a length function Ld, which in turn induces the so-called induced intrinsic
metric d̂(p, q) = dLd(p, q) = inf{Ld(γ) : γ a rectifiable curve from p to q}. If
there is no such curve between p and q, we set d̂(p, q) =∞.

We call (X, d) intrinsic or a length space if d = d̂, and strictly intrinsic if
additionally the infimum is always attained, i.e. ∀p, q ∈ X∃γ : p q : Ld(γ) =
d(p, q). Such a curve γ is called distance realizing if its length is finite. Restrictions
of distance realizing curves are distance realizing as well. ♦

Theorem 1.2.2. A Riemannian manifold M viewed as a metric space with dL
is a length space.

Proof. This is proposition 1.1.3.

Proposition 1.2.3. Let (X, d) be a metric space. The induced intrinsic metric
d̂ makes X a length space, i.e. ̂̂d = d̂.

Proof. see [BBI01, 2.4.1]

1.3 Spacetimes

(based on [BBI01])

Definition 1.3.1. A semi-Riemannian manifold is a smooth manifold M to-
gether with a C2 semi-Riemannian scalar product g ∈ Γ(S2TM →M): at each
point p ∈ M we have a nondegenerate (but not necessarily positive definite)
symmetric bilinear form g|p : TpM × TpM → R, varying smoothly with the
point. ♦

The possible structures of the tangent space can be classified easily:

Proposition 1.3.2 (Sylvester’s law of inertia). Let V be a finite dimensional
R-vector space and b : V × V → R a symmetric bilinear form on it. Then there
exists a basis (vi) of V such that the basis representation of b is b(vi, vj) = δi,jci

(ci = 1, 0,−1), or equivalently, a diagonal matrix with just ones, minus ones and
zeros on the diagonal.

Any two such bilinear forms are related by an isomorphism if and only if
they have the same number k of +1’s, l of 0’s and m of −1’s. The signature of
b is the tuple (l, k,m).

Proof. [Cap15, 9.11]
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So each tangent space TpM with g|p is isomorphic to Rn,m, which is Rn+m

with b : Rn+m × Rn+m → R, b(v, w) = −
∑m
i=1 viwi +

∑n+m
i=m+1 viwi (as g|p is

nondegenerate, there can be no zeroes).

Proposition 1.3.3. Let M be a semi-Riemannian manifold. Then the signature
of g|p is constant on connected components.

Proof. Consider this in a chart. The signature of g|p is (0, p, q) exactly when the
matrix g|p has p positive eigenvalues and q negative ones. As the value of the
eigenvalues depend continuously on p and 0 is excluded, the signs have to stay
the same.

Definition 1.3.4. An n + 1-dimensional semi-Riemannian manifold is called
Lorentzian manifold if for all p ∈M the signature of g|p is (0, n, 1), i.e. the basis
representation has just one −1. Thus, TpM with g|p is isomorphic to Rn,1: ♦

Example 1.3.5 (Minkowski space). The space Rn,1 is called n+ 1-dimensional
Minkowski-space. In this case, one begins numbering the components with 0 (i.e.
v ∈ Rn,1 has components v0, · · · , vn).

It decomposes into 3 parts: let v ∈ Rn,1. If b(v, v) > 0, v is called spacelike
(green), if b(v, v) = 0 and v 6= 0, v is called null or lightlike (blue) and if
b(v, v) < 0, v is called timelike (red). The term causal vector is also used
(b(v, v) ≤ 0 and v 6= 0). The timelike part splits into two segments, one of which
(with v0 > 0) is the future part (dark red). This also splits the null vectors and
the causal vectors into future and past. The spacelike part does not split into
parts if n ≥ 2.

The future timelike vectors form the future timecone, the future null vectors
form the future null cone, and correspondingly for past directed vectors.

In pictures the "timelike" v0-component is drawn vertically. ♦

Definition 1.3.6. From their definition in Minkowski space one can also define
g-spacelike, g-timelike, g-null and g-causal vectors in the tangent space of a
Lorentzian manifold: Let ϕ : TpM → Rn,1 be an isomorphism (mapping g|p to
b), then v ∈ TpM is called g-spacelike resp. g-timelike resp. g-null if ϕ(v) is such.
We get the two timecones in TpM as the connected components of the g-timelike
vectors at p. These notions do not depend on the choice of ϕ.

But defining the future is harder here: Flipping the sign of the first coordinate
(v 7→ (−v0, v1, · · · , vn)) is an isomorphism on Minkowski space interchanging
future and past, so we have to make a choice:

3



A time orientation of a Lorentzian manifold is a continuous nowhere zero
global g-timelike vector field, considered up to homotopy2 of such. This vector
field is viewed as pointing into the future.

A spacetime is a connected time-oriented Lorentzian manifold. In a spacetime
we get notions of future g-timelike resp. future g-causal vectors, cones and curves:
of the two timecones, the global g-timelike vector field contains a vector in the
future one, and a g-causal vector points into the future if it lies in the future
timecone, else it is pointing into the past.

A piecewise C1 curve γ is future directed g-causal resp. future directed g-
timelike if its velocity γ′ is always a future g-causal resp. future g-timelike
vector. The length or eigentime of a future directed g-causal curve γ is Lg(γ) =∫

dom(γ)
√
−g|γ(t)(γ′(t), γ′(t))dt.

Correspondingly, we define past (directed) g-causal and past g-timelike curves.
We will only consider future directed curves here. ♦

Remark 1.3.7. Defining time orientation up to homotopy makes it "more unique":
If M is a connected Lorentzian manifold, either there doesn’t exist a time
orientation (see example 1.3.9) or there exist exactly two, with exchanged
notions of future and past. ♦

Example 1.3.8. Considering Minkowski space Rn,1 as a manifold makes it a
Lorentzian manifold, and the future pointing vector field is usually chosen as
constant (1, 0, · · · , 0). It could also be chosen as constant (−1, 0, · · · , 0), and all
other choices of nowhere zero (g-)timelike vector fields are homotopic to one of
these. ♦

Example 1.3.9. Take the subset (−1, 1]× (−1, 1)\(0, 1]×{0} of Minkowski space
and glue {1} × (−1, 0) with {1} × (0, 1) in a distance preserving way.

This is still a Lorentzian manifold, but not time orientable. ♦

We will only consider spacetimes from now on.

Definition 1.3.10. If M ⊆ Rn is an open subset, we have a basis of coordinate
vectors (vector fields) ∂i ∈ TpM (parallel to the ith axis) and the corresponding
dual basis dxi ∈ T ∗pM ("covectors"). Furthermore, we have the coordinate
functions xi (the coordinate decomposition of the identity). With these, we can

2any type gives the same result as long as it contains affine homotopies, as the two parts
are convex
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write a semi-Riemannian scalar product g in a basis: g|p =
∑
i,j gi,j(p)dxi⊗ dxj ,

usually one writes dxidxj for 1
2 (dxi ⊗ dxj + dxj ⊗ dxi). ♦

The length of curves behaves quite differently from the length of curves in
Riemannian geometry: There exist non-trivial curves of length 0 (the null curves),
and future directed g-causal geodesics are not locally distance minimizing:
Example 1.3.11 (Twin paradox). The two points p = (−1, 0), q = (1, 0) ∈ R1,1

in Minkowski space are connected by a unique future directed causal geodesic
γ(s) = (s, 0). It has Lg(γ) =

∫ 1
−1 1 = 2. The alternative future directed causal

curves

ηx(s) =

(s, x(1 + s)) s ≤ 0

(s, x(1− s)) s ≥ 0

for x ∈ [0, 1] have L(ηx) = 2
√

1− x2 and are thus shorter. The curve η1 even
has a length of 0.

γ η1

♦

But in contrast to Riemannian geometry, future directed g-causal geodesics
are locally distance maximizing curves:

Definition 1.3.12. A (geodesically) convex set U in a semi-Riemannian manifold
M is an open set, such that any two points p, q ∈ U can be connected by a
unique geodesic contained in U . ♦

Theorem 1.3.13 (Short geodesics maximize time). Let M be Lorentzian. Then
each point has a convex neighbourhood.

For each convex neighbourhood U and p, q ∈ U connected by a g-timelike
curve within U , the unique geodesic γ contained in U and connecting p to q is
g-timelike, and all future directed g-causal curves γ̃ contained in U from p to q
have a smaller eigentime (i.e. Lg(γ) ≥ Lg(γ̃)).

Proof. See [O’N83, 5.7] and [O’N83, 5.34].

So to obtain a distance function, we take the supremum instead of the
infimum of the length of curves, which is usually finite:

Definition 1.3.14. Let M be a spacetime. We define the time separation func-
tion as τ(p, q) = sup{Lg(γ) : γ : p q is piecewise C1 future directed g-causal}
for p, q ∈M (which can be infinite). If there is no future directed g-causal curve
from p to q, we set τ(p, q) = 0. ♦
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Proposition 1.3.15. For points where the involved curves exist, τ satisfies the
reverse triangle inequality: for p, q, r ∈ M, τ(p, r) ≥ τ(p, q) + τ(q, r). Further-
more, τ is lower semicontinuous.

Proof. In the case where future directed g-causal curves exist, this follows by
concatenating the curves.

If there exists a future directed g-causal curve from p to q and q to r, there
also exists a future directed g-causal curve from p to r.

If there doesn’t exist a future directed g-causal curve from p to q or q to r,
the inequality can fail.

For the lower semicontinuity of τ see [O’N83, 14.17] or [Gal14, 4.4]

Definition 1.3.16 (Comparing two Lorentzian metrics). Let M be a manifold
and g, h two spacetime structures (i.e. Lorentzian metrics and a time orientation).
Then we say that g has strictly narrower lightcones than h, g ≺ h, resp. g has
narrower lightcones than h, g � h, if each future g-causal vector is future h-
timelike resp. h-causal. In particular, future directed g-causal curves are future
directed h-timelike (resp. h-causal). ♦

1.4 Causality in spacetimes

(based on [Gal14]) In this section, we are interested when future directed g-
timelike or g-causal curves exist:

Definition 1.4.1. Let M be a spacetime.

• q ∈M lies in the timelike future of p ∈M , p� q, if there exists a future
directed g-timelike curve from p to q which is not just a point3.

• q ∈M lies in the causal future of p ∈M , p ≤ q, if p = q or there exists a
future directed g-causal curve from p to q.

• The timelike future of p ∈M is I+(p) = {q ∈M : p� q}.

• The causal future of p ∈M is J+(p) = {q ∈M : p ≤ q}.

• The timelike past of q ∈M is I−(q) = {p ∈M : p� q}.

• The causal past of q ∈M is J−(q) = {p ∈M : p ≤ q}.

• The timelike diamond of p, q ∈M is I(p, q) = I+(p) ∩ I−(q).

• The (causal) diamond of p, q ∈M is J(p, q) = J+(p) ∩ J−(q).

♦

3To exclude dom(γ) = [a, a] = {a}
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These relations are automatically transitive, and p � q ⇒ p ≤ q. Further-
more, they satisfy:

Proposition 1.4.2 (Push-up). Let M be a spacetime. If p� q ≤ r or p ≤ q �
r, then p� r.

Proof-idea. (A proof is in e.g. [Chr11, 2.4.14])
In the first case, we get a future directed g-timelike curve γ1 : p  q and a
future directed g-causal curve γ2 : q  r. In a convex neighbourhood U of
q, we can deform the parts of γ1 and γ2 contained in U to a future directed
g-timelike curve. We add it to γ1 and shorten the curve γ2. Iterating and using
compactness, we get a future directed g-timelike curve γ̃ : p r.

p

q

r

But these relations are not automatically order relations:

Definition 1.4.3 (Causality conditions). Let M be a spacetime. A subset
U ⊆M is (curve-)causally convex if no future directed g-causal curve meets U
in a disconnected way. 4

We say that M is:

• chronological if there are no closed future directed g-timelike curves (or
equivalently, � is an order relation),

• causal if there are no closed future directed g-causal curves (or equivalently,
≤ is an order relation),

• strongly causal if every point has a neighbourhood base of causally convex
open sets. Colloquially, no sequence of future directed g-causal curves is
closing in the limit (in a non-trivial way).

• internally compact if all the causal diamonds are compact and

• globally hyperbolic if it is both strongly causal and internally compact.

♦
4Compare: convex: there exists a connecting geodesic inside, causally convex: all connecting

causal curves inside.
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Example 1.4.4 (Lorentz cylinder). Glue the top with the bottom of [0, 1]× (0, 1)
in Minkowski space R1,1. This spacetime is not causal: the future directed
g-timelike curve γ(t) = (t, 1

2 ) is closed. ♦

Example 1.4.5. We take the following subset of Minkowski space R1,1:

We glue the top with the bottom. Then the red curve will close in the limit
(so the blue point has no small causally closed neighbourhoods), but there is
no closed future directed g-causal curve as the two white points and the dotted
lines are removed. ♦

Proposition 1.4.6. Let M be a spacetime, p ∈M . Then I+(p) and I−(p) are
open. If M is globally hyperbolic, J+(p) and J−(p) are closed.

Proof. See [Gal14, 2.2,4.3].

Sources

Example 1.4.4 comes from [KS18, 2.20].

1.5 Causal spaces

(based on [KS18]) We try to mimic this causality behaviour:

Definition 1.5.1. A set X with two binary relations �,≤, where both are
transitive, ≤ is reflexive, and ∀p, q ∈ X p� q ⇒ p ≤ q (sometimes denoted as
� ⊆ ≤), is called a causal space.

Then we can define I+(p), I−(q), J+(p), J−(q), I(p, q), J(p, q) as above. ♦

We get two natural topologies:

Definition 1.5.2. Let X be a causal space. The chronological topology on X
has {I±(p) : p ∈ X} as a subbase.

The Alexandrov topology on X has {I(p, q) : p, q ∈ X} as a subbase. ♦

We see that the Alexandrov topology is in general coarser than the chrono-
logical topology. But in general the converse is not true:
Example 1.5.3. Let X = {1, 2} and set �= {(1, 2)} (i.e. 1 � 2). Then the
chronological topology is the discrete topology, whereas the Alexandrov topology
is the indiscrete topology. ♦

8



1.6 Lorentzian pre-length spaces

(mostly based on [KS18]) Here we mimic the behaviour of τ . We include a metric
to have sufficiently nice notions of convergence.

Definition 1.6.1. A Lorentzian pre-length space is a causal space (X,�,≤)
together with a metric d on X and a map τ : X ×X → [0,∞] satisfying:

• τ is lower semicontinuous (w.r.t. d),

• τ(p, r) ≥ τ(p, q) + τ(q, r) for p ≤ q ≤ r (reverse triangle inequality) and

• τ(p, q) > 0⇔ p� q.

♦

This is a generalization of the notion of spacetimes:

Proposition 1.6.2. A spacetime M together with its�,≤ and τ and the metric
induced by a complete Riemannian inner product is a Lorentzian pre-length space.

Proof. In proposition 1.3.15 we have seen that τ is lower semicontinuous and
satisfies the reverse triangle inequality.

For the third property, we note: if γ : p  q is a future directed g-causal
curve with Lg(γ) =

∫
dom(γ)

√
−g(γ′, γ′) > 0, we get a subinterval where the

integrand is positive, so γ is future directed g-timelike there. Now we apply
push-up (1.4.2) twice to get a future directed g-timelike curve γ̃ : p q.

Another method to create Lorentzian pre-length spaces is to use absolute
time functions:

Example 1.6.3 (From absolute time function). Let X be a metric space and
t : X → R a continuous function (the absolute time function). We define the
causality: p ≤ q ⇔ t(p) ≤ t(q) and p� q ⇔ t(p) < t(q). Then

τ(p, q) =

0 t(p) ≥ t(q)

t(q)− t(p) t(p) ≤ t(q)

makes X a Lorentzian pre-length space with continuous τ <∞ and equality in
the reverse triangle inequality. ♦

We consider Lorentzian pre-length spaces made from an absolute time function
as not very interesting (as they have a rather trivial causal space), but they can
be used for counterexamples.

Proposition 1.6.4 (Push-up). Let X be a Lorentzian pre-length space. Then
p ≤ q � r or p� q ≤ r implies p� r

9



Proof. Let p ≤ q � r (the other case follows from time reversal). Then τ(p, r) ≥
τ(p, q) + τ(q, r) ≥ τ(q, r) > 0, so p� r.

Proposition 1.6.5. Let X be a Lorentzian pre-length space. Then I+(p) and
I−(p) are open.

Proof. The time separation function τ is lower semicontinuous, so τ−1((0,∞]) =
{(p, q) : τ(p, q) > 0} is open in X ×X. Fixing p0 and taking its slice, we see
{q : τ(p0, q) > 0} = {q : p0 � q} = I+(p0) is open. Analogously for I−.

Sources

The notion of Lorentzian pre-length spaces was introduced in [KS18, 2.8]. Propo-
sitions 1.6.2, 1.6.4 and 1.6.5 are from [KS18, 2.10-2.12]. Example 1.6.3 is new.

1.6.1 Causal curves

To speak about intrinsic time separation functions, we define the length of curves:

Definition 1.6.6. Let (X,�,≤, d, τ) be a Lorentzian pre-length space. A curve
γ in X is just a curve in the metric space (X, d).

A non-constant curve γ is future directed causal or future directed timelike
if ∀t1 < t2, γ(t1) � γ(t2) or γ(t1) ≤ γ(t2), respectively. The causal character
of a future directed causal curve is "timelike" if it is timelike and "null" if
∀t1 < t2, γ(t1) 6� γ(t2). Otherwise, we say that the causal character changes.

For past causal and past timelike, we reverse these relations (but we won’t
use such curves here. Upon parameter reversal, they are future directed causal /
timelike).

We can define the length of future directed causal curves as in metric spaces,
replacing the supremum with an infimum: Let p = (ti) be a partition of [a, b].
We define the length approximations Vp(γ) =

∑
i τ(γ(ti), γ(ti+1)), and the length

Lτ (γ) = inf{Vp(γ) : p a partition of dom(γ)}. For easier handling of parts of
curves we define Lτ (γ, s, t) = Lτ (γ|[s,t]) for s ≤ t and Lτ (γ, s, t) = −Lτ (γ, t, s)
for s ≥ t (which agrees for t = s if τ(γ(t), γ(t)) = 0).

♦

Note that the definition of future directed timelike curves does not match
the definition of future directed g-timelike curves in Lorentzian manifolds, and
therefore also the definition of the causal character is different:

Example 1.6.7. The null spiral t 7→ (t, cos(t), sin(t)) in Minkowski space R2,1 is not
g-timelike, but is future directed timelike when considered in the corresponding
Lorentzian pre-length space. ♦
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Proposition 1.6.8. When considering a strongly causal spacetime and its in-
duced Lorentzian pre-length space, the definitions of future directed causal curves
agree for piecewise C1 curves γ with γ′ never zero, as well as the length of such
curves.

Future directed g-timelike curves in a spacetime are automatically future
directed timelike in the induced Lorentzian pre-length space.

Proof. If γ is a (piecewise C1) future directed g-causal curve, then γ(t1) ≤ γ(t2)
for t1 < t2, as γ|[t1,t2] is a future directed g-causal curve.

Let γ be a piecewise C1 future directed causal curve in the induced Lorentzian
pre-length space, but t0 where w.l.o.g. the left sided derivative γ′−(t0) is not a
future g-causal vector. So γ is C1 on [t0− ε, t0]. As γ is future directed causal in
the induced Lorentzian pre-length space, we get future directed g-causal curves
γ̃n : γ(t0 − 1

n ) γ(t0) and we can assume they are geodesics. Seen through the
exponential chart at γ(t0), γ̃′n = γ(t0)−γ(t0− 1

n )
1
n

→ γ′−(t0). As γ̃′n is g-causal, also
γ′−(t0) has to be g-causal (the set of g-causal vectors plus 0 is closed in TM ,
and γ′−(t0) = 0 has been excluded)  .

For the length, let γ be a C1 curve. Then Lg(γ) =
∑
i Lg(γ|[ti,ti+1]) ≤∑

i τ(γ(ti), γ(ti+1)). Taking the infimum over the partitions (ti), we get Lg(γ) ≤
Lτ (γ).

For the other direction for length, see [KS18, 2.32]
The statement about timelike curves is clear from the definition of �.

By mapping partitions we see that length is preserved by bijective strictly
monotonically increasing reparametrizations (i.e. for a future directed causal
curve γ : [a, b]→ X and a bijective strictly monotonically increasing ψ : [c, d]→
[a, b], the curve γ̃ = γ ◦ ψ is future directed causal and has equal length).

Causal curves in non-causal spaces can behave quite badly:

Example 1.6.9 (Lorentz cylinder). Take the Lorentz cylinder (example 1.4.4).
It is not causal, and there are future directed g-timelike curves between any
two points. Therefore, we have p � q for all points, making all curves future
directed timelike. ♦

Example 1.6.10. Take the (non-strongly causal) spacetime from example 1.4.5:

11



Then the definitions of future directed causal curves agree for piecewise C1 curves
γ with γ′ never zero (as removing the green line changes neither ≤ nor τ within
the red and within the blue areas), and they have the same length: for C1 future
directed causal curves crossing the green line, the point on the green line has to
be included in the partition, similarly to 1.6.14.

But τ behaves strangely: It is not continuous "near the diagonal" on small
neighbourhoods of a point on the green line: If α is the red line (the "short-cut"),
then for pn on the blue side and qn on the red side converging to the same point
p = q on the green line, limn τ(pn, qn) = L(α), but τ(p, p) = 0. ♦

Proposition 1.6.11 (Generalized reverse triangle inequality). Let X be a Lor-
entzian pre-length space, γ : p q a future directed causal curve. Then τ(p, q) ≥
Lτ (γ).

Proof. By definition Lτ (γ) = inf{
∑
i τ(γ(ti), γ(ti+1))}. One of these partitions

(ti) is (t1 = a, t2 = b), and the corresponding term in the infimum is τ(p, q).
Therefore, the infimum is ≤ τ(p, q).

Remark 1.6.12 (Pullback). When considering only one curve, it is often enough
to "pull back" τ to the domain of the curve: If γ : [a, b]→ X is a future directed
causal curve in a strongly causal Lorentzian pre-length space, we can make
[a, b] a Lorentzian pre-length space by setting ≤ to be the normal order relation
≤, setting s � t ⇔ γ(s) � γ(t) (which is �=< if γ is timelike), and setting
τ(s, t) = τ(γ(s), γ(t)). There, we have the "canonical" curve id(t) = t which we
identify with γ. Properties "along the curve" like the length of (restrictions of)
these curves or being distance realizing agree, whereas properties like maximality
of the curve (see 1.7.1) get lost. Using this, we can drop the γs in expressions
like τ(γ(ti), γ(ti+1)). ♦

Proposition 1.6.13 (Convergence of length). Let X be a Lorentzian pre-length
space, γ : p  q a future directed causal curve. Then Lτ (γ) is the monotone
(directed) limit of Vp(γ) with inclusions of partitions.

Proof. Partitions with inclusions form a directed partial order: for two partitions
(ti), (sj) we can form their union, containing both of them. We now pull back τ
to dom(γ).

Let the partition (ti) be included in a partition (sj), i.e. sji = ti. Then
for each i, τ(ti, ti+1) ≥

∑
ji≤j<ji+1

τ(sj , sj+1) by the reverse triangle inequality.
Summing over i, we get V(sj)(γ) ≤ V(ti)(γ), so the limit exists, and the Vp(γ)
converge monotonously.

Contrary to the length in metric spaces, the length of a curve in a Lorentzian
pre-length space need not be the limit with respect to partition fineness:

12



Example 1.6.14. Let X = [0, 1], with causality ≤, <. Set M = {(x, y) : x < 1
2 <

y}. We modify the standard Minkowski time separation function τ(x, y) = y− x
if x < y to the new time separation function

τ̃(x, y) =

τ(x, y) (x, y) 6∈M

τ(x, y) + 1 (x, y) ∈M
.

Colloquially, we add 1 to the distance of points on different sides of the point 1
2 .

As M ⊆ �, the �-condition is satisfied. As M is open, τ̃ is still lower
semicontinuous. For the reverse triangle inequality, we note that if (x, z) ∈M
and x < y < z at most one of the (x, y) and (y, z) can be inM , and if (x, z) 6∈M
none of them is in M , so the number of added 1s in the triangle inequality is
bigger on the left side.

We consider the "canonical" future directed timelike curve γ(p) = p: In the
Minkowski time separation function τ , we have Lτ (γ) = V τp (γ) = 1. But for
the modified τ̃ , we have to distinguish whether 1

2 ∈ p or not: If it is, there is
no term in M (let i be such that ti = 1

2 . Then neither (ti, ti+1) nor (ti+1, ti+2)
is in M), and we get the same result as for τ . If it is not, we have exactly one
term in M (let i be such that ti < 1

2 < ti+1. Then (ti, ti+1) ∈M .) and we add 1
to the result for τ . So we see the length agrees, but for τ̃ there are arbitrarily
fine partitions with a "bad" length approximation. ♦

Proposition 1.6.15 (Additivity of length). Let X be a Lorentzian pre-length
space and γ a future directed causal curve. Let a < b < c, [a, c] ⊆ dom(γ). Then
(Lτ (γ) =)Lτ (γ, a, c) = Lτ (γ, a, b) + Lτ (γ, b, c).

Proof. For each partition of [a, c], we can add b (by the previous proposition
the corresponding approximation will be better). Restricting such partitions
p ⊂ [a, c] to [a, b] and [b, c] forms a bijection p 7→ (p ∩ [a, b], p ∩ [b, c]) between
{partitions of [a, c] containing b} and {partitions of [a, b]}×{partitions of [b, c]},
and one easily checks that the corresponding approximations of Lτ (γ, a, b) and
Lτ (γ, b, c) add up to the approximation of Lτ (γ, a, c).

Proposition 1.6.16 (Length continuity). Let X be a Lorentzian pre-length
space and let γ be a future directed causal curve. If τ is finite along γ or
Lτ (γ) < ∞, the length of the restriction of γ is continuous in the restriction
endpoints, i.e. Lτ (γ, s, t) is continuous in both s and t.

Proof. We can assume that γ is defined on a compact interval [a, b]. Now let
sn → s and tn → t. We have sn ≤ tn and s ≤ t. If Lτ (γ) = ∞, we have
τ(γ(a), γ(b)) =∞ by the generalized reverse triangle inequality  , so Lτ (γ) and
all its restrictions are finite.
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By additivity of length and finiteness we have Lτ (γ, t1, t2) = Lτ (γ, a, t2)−
Lτ (γ, a, t1) and only need f(t) = Lτ (γ, a, t) to be continuous.

Again by additivity of length f(t) is monotonously increasing. So if f were
discontinuous at t0, f jumps up (i.e. limt↗t0 f(t) < f(t0) or limt↘t0 f(t) >
f(t0)). By additivity of length and reversing time we can assume h = f(t0)−
limt↗t0 f(t) > 0.

We pull back τ along γ (1.6.12). Approximating the length with partitions,
we get a "precise" partition p of [a, t0] such that

0 ≤ Vp(γ|[a,t0])− Lτ (γ, a, t0) < h

2 . (1.1)

Let the two biggest entries of p be s0 < t0 (i.e. p = {s−n < s−n+1 < · · · < s0 <

t0}). For each s0 < t < t0, we define the partition pt = p\{t0} ∪ {t} = {s−n <
s−n+1 < · · · < s0 < t} of [a, t].

Claim: This partition also satisfies 0 ≤ Vpt(γ|[a,t])− Lτ (γ, a, t) < h
2

By monotone convergence of length (1.1) becomes:

h

2 > Vp(γ|[a,t0])− Lτ (γ, a, t0) ≥ Vp∪{t}(γ|[a,t0])− Lτ (γ, a, t0)

Splitting off the [t, t0] part, this is:

Vpt(γ|[a,t]) + τ(t, t0)− Lτ (γ, a, t)− Lτ (γ, t, t0)

As τ(t, t0) ≥ Lτ (γ, t, t0), we get the desired

h

2 > Vpt(γ|[a,t])− Lτ (γ, a, t) ≥ 0. (1.2)

Subtracting (1.2) from (1.1), we get

Vp(γ|[a,t0])− Vpt(γ|[a,t]) > Lτ (γ, t, t0)− h

2

But the formulae of the two length approximations almost agree and we are left
with

τ(s0, t0)− τ(s0, t) > Lτ (γ, t, t0)− h

2 ≥
h

2
as Lτ (γ, t, t0) ≥ h. We now let t→ t0, yielding

τ(s0, t0)− h

2 ≥ lim inf
t→t0

τ(s0, t)

- a contradiction to lower semicontinuity of τ .

Example 1.6.17 (Counterexample if τ attains ∞). Let X = [0, 1] with causality
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≤, <. We define the absolute time function t(x) = − 1
x (and t(0) = −∞). Then

we get τ as above (we set τ(0, 0) = 0, making τ only lower semicontinuous, and
have τ(0, x) =∞ for x > 0). This makes X a Lorentzian pre-length space.

Then the canonical curve γ : [0, 1] → X, γ(t) = t has Lτ (γ, 0, 0) = 0, but
Lτ (γ, 0, t) =∞ for all t > 0. ♦

Example 1.6.18 (Counterexample if τ attains ∞). Let X = [0, 1] with causality
≤, <. We define M = {(x, y) : y − x > 1− y} and set

τ(x, y) =

0 (x, y) 6∈M

∞ (x, y) ∈M

(colloquially, we consider the three points x ≤ y ≤ 1. If y is closer to 1, τ(x, y)
is infinite, if y is closer to x it is zero). It is lower semicontinuous as M is open.
It fulfils the reverse triangle inequality: splitting (x, z) 6∈M at x < y < z, the
distance between the involved points will get smaller and the distance to 1 can
only increase, so neither (x, y) nor (y, z) can be in M .

If x < y < 1, we can split this into pieces x = t1 < · · · < tn = y, such that
all τ(ti, ti+1) = 0, whereas when x < y = 1, we cannot. Therefore the canonical
curve γ : [0, 1]→ X, γ(t) = t has Lτ (γ, s, t) = 0 if t 6= 1 and Lτ (γ, s, 1) =∞ if
s 6= 1.

One may also add the Minkowski time separation function (making
Lτ (γ, s, t) = t− s if t 6= 1). ♦

Definition 1.6.19. Let γ : [a, b)→ X be a future directed causal curve (b ≤ ∞).
It is future inextensible if we cannot extend it to [a, b] in a continuous future
directed causal way (for b =∞, we need to reparametrize it with − 1

t ). Similarly,
we define past inextensible future directed causal curves (with domain (a, b]). ♦

Definition 1.6.20. A future directed causal curve is rectifiable if for all t1 < t2,
Lτ (γ, t1, t2) > 0. If Lτ (γ) <∞, this is equivalent to t 7→ Lτ (γ, a, t) being strictly
monotonically increasing. Especially, γ is future directed timelike.

A future directed causal curve is parametrized by (τ -)arclength if for all
t1 < t2, Lτ (γ, t1, t2) = t2 − t1. Especially, it is rectifiable. ♦

Proposition 1.6.21 (Parametrization by τ -arclength). Let γ be a future directed
causal rectifiable curve with Lτ (γ) <∞. We define ψ(t) = Lτ (γ, a, t). Then we
can form ψ−1, and γ̃ = γ ◦ ψ−1 is parametrized by arclength.

Proof. As γ is rectifiable, ψ(t) = Lτ (γ, a, t) is strictly monotonically increasing.
As Lτ (γ) < ∞, ψ is continuous (1.6.16). Therefore it is a bijection with its
image, and ψ−1 is strictly monotonic as well.
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To prove Lτ (γ̃, s1, s2) = s2 − s1 (s1 < s2), we find t1 = ψ−1(s1) and
t2 = ψ−1(s2). We note ψ|[t1,t2] : [t1, t2] → [s1, s2] is a strictly monotonously
increasing bijection and γ̃|[s1,s2] = γ|[t1,t2] ◦ ψ|−1

[t1,t2]. As length agrees when
reparametrizing, Lτ (γ̃, s1, s2) = Lτ (γ, t1, t2) = ψ(t2)− ψ(t1) = s2 − s1.

Sources

The notion of causal and timelike curves and their length was introduced in
[KS18, 2.18,2.24], inextensible curves were introduced in [KS18, 3.10], rectifiable
curves in [KS18, 2.29]. The example 1.6.7 is [KS18, 2.31], and 1.6.14, 1.6.17
and 1.6.18 are new. The statement 1.6.8 is [KS18, 2.21,2.32], 1.6.11 is [O’N83,
14.16.(2)] and 1.6.15 is [KS18, 2.25]. 1.6.16 is an improved version of [KS18,
3.33], 1.6.21 is an improved version of [KS18, 3.34]. 1.6.13 is new. The tool
1.6.12 is new as well.

1.6.2 Causality conditions

I will distinguish three types of conditions: The compatibility with d, the
existence of certain curves and the (standard) causality conditions.

Definition 1.6.22 (Compatibility with d). Let X be a Lorentzian pre-length
space. An open set U is causally closed if the subset ≤ ⊂ U ×U is closed, i.e. for
pn → p, qn → q ∈ U with pn ≤ qn also p ≤ q. U is called an open d-compatible
set if the d-length of future directed causal curves within U is bounded.

• X is locally causally closed if X is covered by causally closed sets.

• X is globally causally closed if X itself is a causally closed set.

• X is d-compatible if it is covered by open d-compatible sets.5

• X is non-totally imprisoning if for every compact set K there is a bound
on the d-length of future directed causal curves within K.

♦

A locally causally closed Lorentzian pre-length space which is proper as a
metric space is enough to use limits in a meaningful way:

Proposition 1.6.23 (Inextensibility and limits). Let X be a locally causally
closed Lorentzian pre-length space and γ : [a, b)→ X (b ≤ ∞) a future directed
causal curve. Then γ is future inextensible exactly when limt↗b γ(t) does not
exist.

5Distinguish open d-compatible sets from d-compatible spaces! d-compatible spaces are
covered by d-compatible sets.
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Proof. If p = limt↗b γ(t) exists, we extend γ by γ(b) = p, making it a continuous
curve. As X is causally closed near p, this is still a future directed causal curve,
so γ was not inextensible.

If γ is not inextensible, there exists an extension to the closed interval [a, b].
By continuity of this extension limt↗b γ(t) = γ(b) exists.

Theorem 1.6.24 (Limit curve theorem). Let X be a proper locally causally
closed Lorentzian pre-length space and γn : [a, b]→ X (or any open or infinite
interval) future directed causal curves that are uniformly Lipschitz continuous.
Assume there exists c ∈ [a, b] such that γn(c) converges. Then there is a sub-
sequence of γn converging (locally) uniformly to a (possibly constant) future
directed causal curve with the same Lipschitz bound.

Proof. We assume a closed finite interval (otherwise we find subsequences of
subsequences and use a diagonal argument).

As the curves are uniformly Lipschitz continuous (with Lipschitz constant L)
and γn(c) converges, for large enough n all curves are contained in a ball (e.g.
K = B̄L(b−a)+1(limn γn(c))). By properness the closed ball K is compact, so
we can use the Arzelà-Ascoli theorem to get a subsequence of the γn uniformly
converging to a curve γ, w.l.o.g. this is the sequence γn itself.

γ is, if not constant, a future directed causal curve: As X is locally causally
closed, we can cover the trace of γ with open causally closed sets U . For t < s

with γ(t), γ(s) ∈ U , also γn(t), γn(s) is in U for large enough n. So we see:
γn(t) ≤ γn(s), and taking the limit we have γ(t) ≤ γ(s). Using transitivity of ≤,
we see γ is a future directed causal curve.

d-compatibility makes causal curves Lipschitz:

Proposition 1.6.25 (Lipschitz reparametrization). Let X be a d-compatible
Lorentzian pre-length space and γ a future directed causal curve. Then we can
reparametrize γ to be Lipschitz.

Proof. We need to show γ has locally finite d-length (then we can reparametrize
it w.r.t. d-arclength). So w.l.o.g., we restrict γ to a compact interval [a, b].

We cover X by open d-compatible sets U . Then the sets γ−1(U) ⊆ [a, b] are
open. We split them into (open) connected components Ii. (Then [a, b] =

⋃
i Ii).

As [a, b] is compact, we only have finitely many is. By d-compatibility Ld(γ|Ii)
is finite. So Ld(γ) ≤

∑
i Ld(γ|Ii) <∞.

Example 1.6.26. Equip R× {t 6= 0} ∪ {(0, 0)} with the standard metric d and τ
induced from the Lorentz metric g = t2(dx)2 − 4(dt)2. We consider the curve
γ(t) = (t sin( 1

t ), t). It is g-timelike. But the d-length is infinity near (0, 0), so
there is no open d-compatible set containing the point (0, 0). ♦
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Example 1.6.27. Consider 2-dimensional Minkowski space with a point removed:
M = R1,1\{(0, 0)}. This space is not globally causally closed: the points
pn = (−1,−1 + 1

n ) and qn = (1, 1 + 1
n ) satisfy pn ≤ qn, but in the limit

p = (−1,−1) 6≤ q = (1, 1), as the only connecting causal curve γ(t) = (t, t)
passes through the excluded point {(0, 0)}.

But it is locally causally closed: the sets {(t, x) : x > 0}, {(t, x) : x < 0},
{(t, x) : t > 0}, {(t, x) : t < 0} are causally closed (note (0, 0) is not allowed as a
limit point, as it is not in the metric space) and cover M . ♦

Remark 1.6.28. The limit curve theorem (1.6.24) is usually used in locally
causally closed, curve-causally convex (i.e. the definition from the causality
conditions (1.4.3) transferred to Lorentzian pre-length spaces) and d-compatible
neighbourhoods U , or in locally causally closed, curve-causally convex and
relatively compact subsets U of non-totally imprisoning spaces: There, for
pn → p, qn → q ∈ U and γn : pn  qn (which are automatically contained
in U by curve-causal convexity), the d-length of γn has a bound, so we can
reparametrize γn w.r.t. d-arclength and extend it constantly so all are defined
on the same finite interval. With the limit curve theorem, we now get a future
directed causal curve p  q in U which is the limit of a subsequence of the
reparametrized γn. ♦

Definition 1.6.29 (Existence of curves). Let X be a Lorentzian pre-length
space. It is called

• causally path connected if for each p � q we can find a future directed
timelike curve connecting them, and for each p ≤ q we can find a future
directed causal curve (possibly constant for p = q) connecting them (i.e.
each causal / timelike relation is "realized" by a curve),

• causally length connected if for each p� q we can find a future directed
causal curve of positive length connecting them, and for each p ≤ q we can
find a future directed causal curve (possibly constant for p = q) connecting
them (i.e. each causal / timelike relation is "realized" by the length of a
curve) and

• length continuous if every future directed causal curve γ : [a, b] → X

has continuous length, i.e. Lτ (γ, t1, t2) is continuous in t1 and t2. By
proposition 1.6.16 this is automatically the case unless Lτ (γ) =∞.

♦

The difference between causal path connectedness and causal length connect-
edness consists of timelike curves with zero length like the null spiral (1.6.7)

18



and of curves of changing causal character failing to be "pushed up" to a future
directed timelike curve.

Definition 1.6.30. A subset U of a causal space is called (relation-)causally
convex if ∀p, q ∈ U J(p, q) ⊆ U . ♦

In particular, I(p, q) and J(p, q) and intersections of relation-causally convex
sets are relation-causally convex.

Definition 1.6.31 (Causality conditions). A causal space is:

• chronological, if � is irreflexive (and by transitivity antisymmetric),

• causal, if ≤ is antisymmetric.

• It has no �-isolated points if for all p ∈ X there exist p+, p− ∈ X where
p− � p� p+, i.e. there exist no point in the "beginning" or "end" of time.
Equivalently, both I+(p), I−(p) are always non-empty.

A Lorentzian pre-length space is:

• strongly causal if the Alexandrov topology is the topology induced by d
(i.e. timelike diamonds I(p, q) form a subbasis),

• internally compact if all causal diamonds are compact and

• globally hyperbolic if it is both non-totally imprisoning and internally
compact.

♦

These definitions agree with the old ones for (strongly causal) spacetimes,
and are stronger than the transferred old ones for Lorentzian pre-length spaces:

Proposition 1.6.32 (Curve vs. relation causal convexity). A subset U of a
causally path connected Lorentzian pre-length space X which is curve-causally
convex is also relation-causally convex. This also works for spacetimes with
(piecewise C1) future directed g-causal curves.

A subset U of a Lorentzian pre-length space X which is relation-causally
convex is also curve-causally convex.

Proof. Let p ≤ q ≤ r be points contradicting the relation-causal convexity of U
(i.e. p, r ∈ U , q 6∈ U). By causal path connectedness (or the definition of ≤ in
spacetimes) we find a future directed (g-)causal curve γ : p q  r. But this
future directed causal curve meets U in a disconnected way (it begins at p ∈ U ,
leaves U as q 6∈ U , and ends in r ∈ U), contradicting curve-causal convexity.
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Let γ be a future directed causal curve contradicting curve-causal convexity
of U , i.e. there are t0 < t1 < t2, such that p = γ(t0) and r = γ(t2) are in U ,
but q = γ(t1) is not. But γ is future directed causal, so p ≤ q ≤ r, and p, q, r
contradict relation-causal convexity.

Theorem 1.6.33. Let X be a Lorentzian pre-length space.

(1) If it is strongly causal (with this new definition, 1.6.31), every point has a
neighbourhood base of relation-causally convex sets. If furthermore no open
set has �-isolated points, the converse is also true. In particular, if X is
strongly causal (with this new definition), every point has a neighbourhood
base of curve-causally convex sets (i.e. the old definition of strong causality,
1.4.3, transferred to Lorentzian pre-length spaces).

(2) If it is non-totally imprisoning and causally path connected, it is causal.
(3) If it is strongly causal, locally causally closed and d-compatible, it is non-

totally imprisoning.
(4) If it is internally compact and contains no �-isolated points, J+(p) is

closed for all points p ∈ X.
(5) If it is strongly causal and consists of more than one point, it has no
�-isolated points.

Proof. (1) If X is strongly causal, the sets
⋂
i I(pi, qi) (i ∈ {1, · · · , n}) form a

basis of the topology. But one immediately sees these sets are relation-causally
convex open sets, so we get the old definition (1.4.3).

On the other hand, if Ui is a basis of the topology consisting of relation-
causally convex open sets, we know ∀p, q ∈ Ui the open I(p, q) ⊆ Ui. So if
there is no �-isolated point in Ui, all points in Ui are contained in one of the
I(p, q) ⊂ Ui and we get that the open sets I(p, q) form a basis of the topology.

For a curve-causally convex basis, we note that by proposition 1.6.32 rela-
tion-causally convex sets are curve-causally convex, so V =

⋂
i I(pi, qi) (i ∈

{1, · · · , n}) still works.
(2) If X was not causal, we could find p ≤ q ≤ p (p 6= q). By causal path

connectedness we get a future directed causal curve α : p  q and a future
directed causal curve β : q  p. Concatenating, we get a (non-constant) closed
future directed causal curve γ. Its image im(γ) is compact. Repeating γ, we get
a curve "going around in circles" of infinite d-length contained in the compact
im(γ), contradicting non-total imprisonment.

(3) If X was not non-totally imprisoning, we would have a future directed
causal curve γ of infinite d-length contained in a compact set K. It cannot
accumulate infinite d-length in a compact domain: cover the compact image
with finitely many open d-compatible sets Ui. The connected components of the
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pre-images of these sets cover the compact domain, so finitely many are enough.
But each of those segments of γ can only contribute a finite length. So w.l.o.g.,
we assume dom(γ) = [0,∞).

By strong causality we assume the Ui to be timelike diamonds: Ui = I(pi, qi).
On each of the finitely many Ui, γ can only gather finite length, so it has to
visit a Ui twice, i.e. leave a Ui and enter it again: We have t0 < t1 < t2, such
that γ(t0), γ(t2) ∈ I(pi, qi), but γ(t1) 6∈ I(pi, qi). But this means pi � γ(t0) ≤
γ(t1) ≤ γ(t2)� qi, so γ(t1) ∈ I(pi, qi) .

(4) Let qn → q with p ≤ qn. As X contains no �-isolated points, we find
q � q̃. The open set I−(q̃) contains q and thus all but finitely many qn. As J(p, q̃)
is compact and contains the qn, it also contains q. In particular, q ∈ J+(p), so
J+(p) is closed.

(5) Let p be a�-isolated point, and let q be another point. As X is Hausdorff,
there exists an open neighbourhood U of p not containing q. But by strong
causality we find an intersection of timelike diamonds O =

⋂
i I(xi, yi) with

p ∈ O ⊆ U . This intersection is not the trivial intersection as q 6∈ O, so there
exists an i and xi � p� yi and p was not �-isolated.

Theorem 1.6.34. Let M be a spacetime (with an additional Riemannian metric
h), and X be the induced Lorentzian pre-length space.

(1) X is d-compatible.
(2) No open subset of X has �-isolated points.
(3) If M is strongly causal, X is locally causally closed.
(4) If M is strongly causal, X is non-totally imprisoning.
(5) If M is strongly causal (i.e. every point has a neighbourhood base of

curve-causally convex sets, 1.4.3), X is also strongly causal (i.e. timelike
diamonds form a subbasis, 1.6.31).

(6) If M is globally hyperbolic, τ is continuous.
(7) LetM be a strongly causal spacetime. Considered as a Lorentzian pre-length

space, it is causally path and length connected and length continuous.

Proof. (1) At each point p ∈M , we take an orthonormal basis ei ∈ TpM and a
chart (xi), such that g|p = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2 and xi(p) = 0. Then
the alternative Lorentzian metric gε = −(1 +ε)(dx0)2 + (dx1)2 + · · ·+ (dxn)2 has
strictly narrower lightcones (g|p ≺ gε|p) and so we find a small neighbourhood
U of p where we still have g|U ≺ gε|U (and gε was extended constantly). We
restrict U to a relatively compact open subset V with x0(V ) ⊆ (−c, c), which
will be the open d-compatible set.

Now let γ be a future directed g-causal curve contained in V . Then γ is
future directed gε-timelike, so the component x0(γ(t)) is strictly increasing. By
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reparametrizing we can assume x0(γ(t)) = t. We set γ̃(t) = (xi(γ(t)))i>0 to be
the remaining components. As γ′ is gε-timelike, we know ‖γ̃′‖2

eucl < (1+ε). Then
the euclidean length of γ can be estimated: Leucl(γ) =

∫
dom(γ)

√
1 + ‖γ̃′‖2

eucl <

2c
√

2 + ε. As all Riemannian metrics can be estimated against each other on
relatively compact subsets, we also get a constant estimate of the d-length of
future directed causal curves in V , so V is an open d-compatible set.

(2) Let p ∈ U ⊆ M be a �-isolated point. Let γ : (−ε, ε) → M be any
timelike geodesic with γ(0) = p. But then γ(−δ)� p� γ(δ) are all contained
in U for small δ > 0, so p is not �-isolated.

(5) The sets I(p, q) = I+(p) ∩ I−(q) are open by proposition 1.6.5. We
still need that for each point r and every neighbourhood U , there is such a set
contained in U , containing r: But we already know we can find a curve-causally
convex neighbourhood V ⊆ U of r, and that every open set has no �-isolated
points. By proposition 1.6.32 (a spacetime is always causally path connected) V
is covered by sets of the form I(p, q), i.e. I(p, q) form a basis.

(3) By (1) we can find a cover A of M consisting of open d-compatible
neighbourhoods whose closure is compact. By (5) timelike diamonds form a
basis and we can refine the cover A to a cover B consisting of timelike diamonds,
giving relatively compact relation-causally closed d-compatible neighbourhoods.
We now refine B to C, consisting of open sets whose closure is contained in one
of the B. We claim C is the covering by causally closed neighbourhoods.

So let U ∈ C, Ū ⊆ V ∈ B and pn ≤ qn ∈ Ū converge: pn → p, qn → q.
We get future directed g-causal curves γn : pn  qn, which are automatically
contained in V as V is relation-causally convex. As V is a d-compatible neigh-
bourhood, we can reparametrize the γn to be uniformly Lipschitz and can apply
[Chr11, 2.6.1] to get a Lipschitz curve γ : p  q with γ′ future causal almost
everywhere. By [KS18, 5.9] we get a piecewise C1 curve with the same endpoints,
and we get the desired p ≤ q.

(4) now follows from the last theorem (1.6.33.(3)).
For (6), see [O’N83, 14.21]
(7) As� and ≤ are defined by the existence of future directed g-timelike and

(g-)causal curves, X is automatically causally path connected. Causal length
connectedness follows, as g-timelike curves in a spacetime have positive length.
Length continuity follows directly from the integral formula of the length (the
lengths agree by proposition 1.6.8).

Example 1.6.35. A Lorentzian pre-length space coming from an absolute time
function is always causal (but in general not strongly causal). ♦

Example 1.6.36. Take the (non-strongly causal) spacetime from example 1.4.5.
Considered as a Lorentzian pre-length space, it is not locally causally closed:
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There is no neighbourhood U of any point x on the green line (see graphic in
1.6.10) which is causally closed: Take pn ∈ U above x in the blue area converging
to p on the green line, qn ∈ U below x in the red area converging to q on the
green line. Then pn ≤ qn, but p 6≤ q. ♦

Example 1.6.37. A globally hyperbolic locally causally closed, but not globally
causally closed Lorentzian pre-length space can be explicitly defined as follows:

We begin by taking points pn → p, qn → q with pn ≤ qn but p 6≤ q. To be
specific, we say pn 6≤ qm for n 6= m and τ(pn, qn) = 0 (i.e. they are null related)
and no further causal relations. But the set of these points is not strongly causal
yet.

To make a Lorentzian pre-length space consisting of more than one point
strongly causal, there must not be �-isolated points (1.6.33.(5)). To satisfy this
with a quite small number of additional points, we add further "time shifted"
points pk and pkn, k ∈ Z, with p = p0 and τ(pk, pl) = max(l − k, 0) etc., and do
the same thing for q. Note that pkn does not converge to pk as n→∞.

We want the points pn → p to converge, and so we need timelike diamonds to
see this: We introduce further "time shifted" points p± 1

k with pn ∈ I(p− 1
k , p

1
k ) iff

n ≥ k. To make notation more intuitive, we will assume p1 = p
1
1 and p−1 = p−

1
1 .

To be specific, we define τ(p−
1
n

n , p) = τ(pn, p
1
n ) = 1

n and τ(px, py) = max(y−x, 0)
for x, y ∈ {0,±k,± 1

k : k ∈ N\{0}} (and extend by the smallest value allowed
by the reverse triangle inequality). We add the same points for q. In total, we
define X as the set:

{p, q, pn, qn, px, qx, pmn , qmn : n ∈ N,m ∈ Z, x = ±k or x = ±1
k

for k ∈ N\{0}}

For the distance d, we define the distance between any two points x 6= y

to be d(x, y) = 1 except for the convergence of points we can set d(pn, p) =
d(p± 1

n , p) = 1
n (and the further values required by the triangle inequality, e.g.

d(p 1
n , pm) = 1

n + 1
m = d(p 1

n , p) +d(p, pm)), and the same distances for the points
converging to q.

τ is continuous: we only have to check a few convergent points: e.g. τ(p− 1
n , q) =

1
n → 0 = τ(p, q). X is strongly causal by construction, and for internal compact-
ness we note the only convergent sequences are contained in pn → p, p− 1

n → p,
p

1
n → p (and correspondingly for q, but w.l.o.g. the converging sequence con-

verges to p). So we need when infinitely many of these points are in J(x, y), also
p (resp. q) is in J(x, y). But there are not many cases for x to be even before
two of these points: only p−k and p− 1

n come into consideration. Similarly for
y: only pk, p 1

n , qk and q
1
n are possible. But p lies between these. And X is

locally causally closed: The points with p in their name form a causally closed
set, similarly with q. But X is not globally causally closed: pn ≤ qn, but not
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p ≤ q.6

♦

Sources

The notions locally causally closed, d-compatible, non-totally imprisoning and
causal path connectedness come from [KS18, 3.4,3.13,2.35,3.1], the notions
globally causally closed, causal length connectedness and length continuity are
new. The causality conditions are taken from [KS18, 2.35], whereas the (non-
standard) notion of internal compactness stems from [Gal14, 4.1]. Inextensibility
and limits (1.6.23) and the limit curve theorem (1.6.24) come from [KS18,
3.12,3.7]. The Lipschitz reparametrization (1.6.25) and comparison of causal
convex sets (1.6.32) are new. The example 1.6.26 is new. The summarizing
result 1.6.33 splits up as follows: (1), (4) and (5) are new, (2) and (3) is [KS18,
3.26.(ii,iii)], the other summarizing result 1.6.34 splits up as: (1), (2), (6) and
(7) are new, (3) is [KS18, 3.5], (4) is [O’N83, 14.13] and (5) is [KS18, 2.38.(iii)].
The example 1.6.37 is new.

1.7 Lorentzian length spaces

1.7.1 Intrinsic time separation functions

Definition 1.7.1 (Maximal curves and intrinsic spaces). Let X be a Lorentzian
pre-length space. A future directed causal curve γ : p  q is called distance
maximizing or maximal if all other future directed causal curves γ̃ : p q have
a smaller length, i.e. Lτ (γ) ≥ Lτ (γ̃). A future directed causal curve γ : p q

is called distance realizing if Lτ (γ) = τ(p, q) < ∞. By the generalized reverse
triangle inequality distance realizing curves are automatically maximal curves.
Restrictions of maximal / distance realizing curves are also maximal / distance
realizing (by length additivity and the reverse triangle inequality).

Like for intrinsic metric spaces we want to define a new time separation
function based on the length of curves: We define τ̂(p, q) = sup{Lτ (γ) :
γ is a future directed causal curve p  q}, and τ̂(p, q) = 0 if no such curves
exist. We note that maximal curves are maximizers in this supremum.

X is called intrinsic, if τ = τ̂ (especially p � q ⇔ there exists a future
directed causal curve p q of positive length) and p ≤ q ⇔ there exists a future
directed causal curve p  q. (Colloquially, everything (except d) comes from
the length of curves.) An intrinsic X is automatically causally length connected.
If X is intrinsic, finite maximal curves are automatically distance realizing.

6This set cannot be realized as a subset of Minkowski space with induced τ,�,≤, as
Minkowski space is globally causally closed.
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X is called strictly intrinsic or geodesic if it is intrinsic and the supremum
is always attained, i.e. there exists a future directed distance realizing curve
between any two points p ≤ q with τ(p, q) <∞ and a future directed curve of
infinite length between any two points p ≤ q with τ(p, q) =∞.

X is called timelike strictly intrinsic if there exist distance realizing curves
between any two points p� q with 0 < τ(p, q) <∞ and a future directed curve
of infinite length between any two points p ≤ q with τ(p, q) = ∞. (This does
not imply intrinsic, as null curves need not exist.) ♦

Remark 1.7.2. The pull-back (1.6.12) of τ along a distance realizing curve γ of
finite length in a causal Lorentzian pre-length space comes from an absolute time
function (1.6.3): We pick an a ∈ dom(γ) and define for all p ∈ dom(γ): t(p) =
L(γ, a, p). As γ is distance realizing and of finite length, so are its restrictions,
and for p ≥ q we have t(p)− t(q) = L(γ, a, p)− L(γ, a, q) = L(γ, q, p) = τ(q, p).
For p < q, we use that our space is causal, and thus τ(q, p) = 0. ♦

Under certain conditions, τ̂ induces a new Lorentzian pre-length space:

Theorem 1.7.3 (Intrinsification).
(1) If X = (X,�,≤, d, τ) is causally length connected and length continuous, τ̂

is a new time separation function, making X̂ = (X,�,≤, d, τ̂) an intrinsic
Lorentzian pre-length space (i.e. τ̂ = ˆ̂τ).

(2) If X = (X,�,≤, d, τ) is just length continuous (and not necessarily
causally length connected), we define p �̂ q ⇔ τ̂(p, q) > 0 and p ≤̂ q ⇔
there is a future directed causal curve p q or p = q. If I+

�̂
(p) and I−

�̂
(p)

is always open, this makes X̂ = (X, �̂, ≤̂, d, τ̂) an intrinsic Lorentzian
pre-length space. (1) is a special case of this.

Proof. To handle both statements at once, we set �̂ =� and ≤̂ =≤ in (1)
(which agrees with the definition in (2) by length connectedness). Note that in
(2), if p ≤̂ q (respectively p �̂ q) and p 6= q, there exists a future directed causal
γ : p q (of positive length), i.e. we have causal length connectedness (with �̂
and ≤̂) in both statements.

The reverse triangle inequality works via concatenating curves: If p ≤̂ q ≤̂ r
and none of them are equal, we have future directed causal curves between
them (by causal length connectedness). We take future directed causal curves
α : p  q, β : q  r realizing distance up to ε, concatenate them and see
τ̂(p, r) ≥ τ̂(p, q)+ τ̂(q, r)+2ε. Taking the limit ε→ 0, we get the reverse triangle
inequality.

The condition τ̂(p, q) > 0⇔ p� q is just causal length connectedness.
For lower semicontinuity: Let pn → p, qn → q and let C < τ̂(p, q) be

arbitrarily large.7 If p 6̂� q, τ̂(p, q) = 0 and we have nothing to show. So
7To handle τ̂(p, q) =∞ at the same time. If τ̂(p, q) <∞, one can use C = τ̂(p, q)− ε

25



let p �̂ q. We get a future directed causal curve γ : p  q on the domain
[a, b] of length Lτ (γ) > C. We pick parameter values a < t1 < t2 < b, such
that Lτ (γ, t1, t2) > C − ε (they exist, as X is length continuous). We define
the points p̃ = γ(t1), q̃ = γ(t2). The set I−

�̂
(p̃) is open (this was assumed for

the second statement) and contains p. As pn → p, we get an n0 such that
∀n ≥ n0, pn ∈ I−�̂(p̃), i.e. pn �̂ p̃. We do the same thing (with I+) at q and
pick the larger n0. By causal length connectedness (with �̂) we find future
directed causal curves αn : pn  p̃, βn : q̃  qn. We concatenate αn, γ|[t1,t2], βn

and obtain a future directed causal curve ηn : pn  qn. It has length:

τ̂(pn, qn) ≥ Lτ (ηn) ≥ Lτ (γ, t1, t2) > C − ε

Taking ε → 0 and C → τ̂(p, q), we get lim infn τ̂(pn, qn) ≥ τ̂(p, q), i.e. lower
semicontinuity.

p

q

p̃

q̃

qn

pn

γ

For (2), we need �̂ ⊆ ≤̂ ⊆ ≤: The first inclusion is clear, the second follows
directly from the definition of future directed causal curves.

Switching from ≤ to ≤̂ does not change the notion of future directed causal
curves: ≤̂ ⊆ ≤ and if γ : [a, b]→ X is future directed≤-causal and t1 < t2 ∈ [a, b],
γ|[t1,t2] is a future directed ≤-causal curve γ(t1) γ(t2), so γ(t1) ≤̂ γ(t2) and γ
is ≤̂-future directed causal.

For future directed timelike curves, we have �̂ ⊆ �, but only a rectifiable
future directed timelike γ is automatically �̂-timelike.

It is intrinsic: we show Lτ̂ = Lτ (as the notion of future directed causal
curves agree, τ̂ = ˆ̂τ follows):

For p �̂ q and a future directed causal curve γ : p q, the reverse triangle
inequality yields Lτ (γ) ≤ τ(p, q). Taking the supremum over γ : p q, we see
τ̂ ≤ τ , and so Lτ̂ (γ) = inf{

∑
i τ̂(γ(ti), γ(ti+1))} ≤ inf{

∑
i τ(γ(ti), γ(ti+1))} =

Lτ (γ), and we have Lτ̂ ≤ Lτ .
For the other direction, let γ : [a, b] → X be a future directed causal

curve. Then Lτ̂ (γ) = inf{
∑
i τ̂(γ(ti), γ(ti+1)) : (ti) is a partition of [a, b]}, so let

p = (ti) be a partition of [a, b] such that Lτ̂ (γ) + ε ≥
∑
i τ̂(γ(ti), γ(ti+1)). Define

γi = γ|[ti,ti+1]. We have Lτ (γi) ≤ τ̂(γ(ti), γ(ti+1)) by definition of τ̂ . Summing
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over i, we get

Lτ̂ (γ) + ε ≥
∑
i

τ̂(γ(ti), γ(ti+1)) ≥
∑
i

Lτ (γi) = Lτ (γ)

Taking ε→ 0, we get Lτ̂ ≥ Lτ .

Proposition 1.7.4. Let X be a Lorentzian pre-length space, and τ̂ its intrinsified
time separation function. Let γ be a curve. Then γ is future directed ≤-causal
exactly when it is future directed ≤̂-causal. In this case, the lengths agree:
Lτ (γ) = Lτ̂ (γ).

Proof. This was already proven in the proof of intrinsification (1.7.3).

Proposition 1.7.5. Let M be a strongly causal spacetime. Then its induced
Lorentzian pre-length space is intrinsic.

Proof. We know Lg(α) = Lτ (α) for future directed causal piecewise C1 curves
α. Now let p ≤ q. Then τ̂(p, q) ≤ τ(p, q) by the generalized reverse triangle
inequality.

For the converse inequality, we take ε > 0 and a "long" future directed causal
C1 curve γ : p q, Lg(γ) ≥ τ(p, q)− ε. But we have τ̂(p, q) ≥ Lτ (γ) = Lg(γ) ≥
τ(p, q)− ε. Letting ε→ 0, we get the desired τ̂ = τ .

By proposition 1.6.34.(7) we note M is causally length connected, so the
≤-condition is automatically satisfied.

Definition 1.7.6. If (X, �̂, ≤̂, d, τ̂) is a Lorentzian pre-length space, we call it
the intrinsification of (X, τ).

Its causality agrees, if �̂ =� and ≤̂ =≤. ♦

Example 1.7.7. The intrinsification of a non-causally length connected space can
be quite different from the space itself: Let X = Qn+1 ⊂ Rn,1 be the rational
points in Minkowski. Then no non-constant curves exist, and p ≤̂ q only holds
for p = q. ♦

Theorem 1.7.8. Let X be a Lorentzian pre-length space having an intrinsifica-
tion X̂. Then:

(1) X̂ is causally length connected.
(2) If X is proper, strongly causal, locally causally closed and d-compatible, X̂

is locally causally closed as well.
(3) The properties d-compatibility, non-total imprisonment, length continuity

and being chronological / causal are inherited.
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(4) If X is causally length connected (i.e. causality agrees), the properties of
strong causality, having no �-isolated points and internal compactness are
inherited.

Proof. (1) holds, as X̂ is intrinsic ("all properties are given by the length of
curves").

(2) By further restricting to timelike diamonds (by strong causality this
is possible) we can assume the open d-compatible sets U are relation-causally
convex. These will be the causally closed neighbourhoods in X̂. So let pn → p

and qn → q be all contained in U with pn ≤̂ qn, i.e. we have future directed
causal curves γn : pn  qn. As in 1.6.28, we can reparametrize γn and use the
limit curve theorem (1.6.24) to get a future directed causal curve γ : p  q,
making p ≤̂ q.

(3) By proposition 1.7.4 the notions of future directed causal curves and their
lengths agree. Therefore inheritance of d-compatibility, non-total imprisonment
and length continuity is clear.

If the new space wasn’t chronological resp. causal, we would have p 6= q

violating antisymmetry of �̂ resp. ≤̂. But both relations are contained in the
old ones: �̂ ⊆ � and ≤̂ ⊆ ≤, thus p 6= q also violate antisymmetry of the old
relation � resp. ≤ and X wasn’t chronological resp. causal either.

(4) As X is causally length connected, the relations agree.

Example 1.7.9 (Counterexample not causally path connected). Take X to be the
trace of the null spiral γ in Minkowski space. We take two consecutive points
γ(s) = p� γ(t) = q in X. After intrinsifying, we get τ̂(p, q) = Lτ (γ, s, t) = 0 as
the length of the null spiral is 0, and p 6�̂ q. Therefore causality will change. ♦

Example 1.7.10 (Counterexample not causally path connected). Take X =
[−1, 0] × {0} ∪ {(t, t) : t ∈ R} in Minkowski space, i.e. a union of a timelike
curve and a null geodesic. Then (−1, 0) �̂ (1, 1), but there is no future directed
timelike curve between them. ♦

Example 1.7.11. In a Lorentzian pre-length space coming from an absolute time
function, all future directed causal curves are distance realizers (by the triangle
equality). If any p ≤ q has a future directed causal curve p q (i.e. one of the
requirements of causally path connected), it is automatically strictly intrinsic. ♦

In the next two results we study the case of τ being upper semicontinuous as
well:

Proposition 1.7.12 (Length is upper semicontinuous if τ is). Let X be a locally
causally closed Lorentzian pre-length space where τ is upper semicontinuous
as well (making it continuous). Then if the future directed causal curves γn
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converge pointwise to a curve γ, γ is (if not constant) future directed causal and
Lτ (γ) ≥ lim supn Lτ (γn).

In particular, Lτ is upper semicontinuous.

Proof. Let p = (ti) be a partition of [a, b]. If τ is upper semicontinuous, we
have lim supn τ(γn(ti), γn(ti+1)) ≤ τ(γ(ti), γ(ti+1)). Summing over i, we get
lim supn Vp(γn) ≤ Vp(γ), i.e. Vp is upper semicontinuous as well (for a fixed
partition p).

Let ε > 0. We choose p fine enough such that Lτ (γ) + ε ≥ Vp(γ). By upper
semicontinuity of Vp we have an n0 such that for all n > n0, Vp(γn) ≤ Vp(γ) + ε.
So we have:

Lτ (γ) + 2ε ≥ Vp(γ) + ε ≥ Vp(γn) ≥ Lτ (γn)

⇒ Lτ (γ) + 2ε ≥ sup
n≥n0

Lτ (γn) ≥ inf
n0

sup
n≥n0

Lτ (γn) = lim sup
n

Lτ (γn)

We let ε→ 0 and get upper semicontinuity.

Proposition 1.7.13 (τ̂ is upper semicontinuous if τ is). Let X be a locally
causally closed, d-compatible and proper Lorentzian pre-length space where τ is
upper semicontinuous as well (making it continuous), then τ̂ is upper semicon-
tinuous within open curve-causally convex d-compatible sets U (making τ̂ |U×U
continuous).

Proof. Let pn, qn ∈ U be converging pn → p, qn → q. We need τ̂(p, q) ≥
lim supn τ̂(pn, qn). W.l.o.g., we can assume that either all τ̂(pn, qn) = ∞ or
none. By the definition of τ̂ , for Cn < τ̂(pn, qn) arbitrarily large, 8 we get future
directed causal curves γn : pn  qn of Lτ (γn) = Cn. As in 1.6.28, we can
reparametrize γn and use the limit curve theorem (1.6.24) to get a subsequence
uniformly converging to some (possibly constant) future directed causal curve
γ : p q defined on the same interval, w.l.o.g. we assume γn → γ uniformly.

By the upper semicontinuity of Lτ :

τ̂(p, q) ≥ Lτ (γ) ≥ lim sup
n

Lτ (γn) ≥ lim sup
n

Cn

Now we let Cn → τ̂(pn, qn) uniformly (as either all or none of the τ̂(pn, qn) =∞,
this is possible). The right hand side becomes lim supn τ̂(pn, qn) and we get
upper semicontinuity of τ̂ .

Definition 1.7.14 (Substructures). A subset Y ⊆ X in a Lorentzian pre-length
space (X,�,≤, d, τ) gets an induced structure of a Lorentzian pre-length space
by restricting �,≤, d and τ to Y .

8To handle τ̂(pn, qn) = ∞ at the same time. If τ̂(pn, qn) < ∞, one can use Cn =
τ̂(pn, qn)− ε
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If this restriction satisfies the conditions of proposition 1.7.3.(2), it induces
an induced intrinsic structure by intrinsification. ♦

Example 1.7.15 (Causal funnel). Let γ : p q be a future directed causal curve
in Minkowski space Rn,1. Then the subset J−(p) ∪ γ(dom(γ)) ∪ J+(q) of Rn,1

together with its intrinsified τ (causality agrees) and the restricted metric d of
Rn+1 is a globally hyperbolic, d-compatible, locally causally closed and strictly
intrinsic Lorentzian pre-length space, a causal funnel. We note the special cases
where γ is timelike (then X is causally path connected, and there is no future
directed null curve p  q) and where γ is null (then X is not causally path
connected: there are p− � q+ where all future directed causal curves connecting
them have a null segment). ♦

Sources

The notions of maximal and distance realizing curves, intrinsic and strictly intrin-
sic spaces are taken from [KS18, 3.22,2.33], the notion of an induced substructure
is new. The statement 1.7.5 is from [KS18, 3.24], whereas intrinsification (1.7.3),
1.7.8 and upper semicontinuity of Lτ (1.7.12) and of τ̂ (1.7.13) are new results.
Causal funnels (1.7.15) are taken from [KS18, 3.19].

1.7.2 Localizable spaces

We now say what we expect from a nice neighbourhood in Lorentzian geometry:

Definition 1.7.16. A Lorentzian pre-length space X is called local, if:

• it is strictly intrinsic,
• τ is upper semicontinuous (making τ continuous),
• there exist no �-isolated points and
• it is a d-compatible set.

It is called regularly local if, additionally, distance realizing curves do not change
their causal character. ♦

Remark 1.7.17. Again note that the causal character does not agree with the
one in spacetimes: null tangents at a single point are ignored, and the null spiral
(1.6.7) is g-null but timelike in the Lorentzian pre-length space. ♦

Proposition 1.7.18 (Small neighbourhoods in spacetimes are local). The
Lorentzian pre-length space induced by an open convex normal d-compatible
set U in a spacetime is a regularly local space. In particular, small open convex
normal sets are regularly local.
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Proof. By proposition 1.3.13 future directed causal geodesics exist exactly when
future directed causal curves exist, in which case they are distance realizing,
making U strictly intrinsic. Geodesics never change their causality.

If we have sequences pn → p and qn → q in U with pn ≤ qn, we get future
directed causal geodesics γn : pn  qn. The g-lengths can be determined through
the exponential map: L(γn) =

∥∥exp−1
pn (qn)

∥∥. As the map E : TM → M ×M ,
E(vp) = (p, expp(v)) (see [O’N83, 5.4]) is a diffeomorphism near {0 ∈ TpM :
p ∈ M} ⊆ TM , we get L(γn) =

∥∥exp−1
pn (qn)

∥∥ → ∥∥exp−1
p (q)

∥∥ = L(γ), so τ is
continuous.

In charts we immediately see that there are no �-isolated points (as the
domain is open).

By 1.6.34.(1) small open neighbourhoods are d-compatible sets, thus small
open convex normal sets satisfy the conditions of this proposition.

Example 1.7.19. There exist spacetimes where τ is not continuous (and thus
not local): Let M = R1,1\({0} × [ε, 2]) in Minkowski space. We set p = (−2, 2)
and q = (1 + ε, 1− ε). For the nearly shortest curves, we have to consider two
types: The null polygonal line α : p (0, 2) q of length 2 which is excluded
as (0, 2) 6∈ M (and all allowed variations are not causal), and the polygonal
line β : p (0, ε) q of small length which is excluded as (0, ε) 6∈M , but we
have nearby causal curves. Therefore, τ(p, q) = L(β) is small, but we have some
sequence of points qn → q where τ(p, qn)→ L(α) = 2.

α

β

p

q qn

♦

Example 1.7.20. [0, 1]× [0, 1] in Minkowski space is not local: all the points in
{0, 1} × [0, 1] (the future and past boundary) are �-isolated. ♦

Definition 1.7.21. A Lorentzian pre-length space is called:

• localizable, if it can be covered by open sets Ui with Ûi being local and
having agreeing causality,

• regularly localizable, if it can be covered by open sets Ui with Ûi being
regularly local and having agreeing causality,
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• strongly localizable, if there is a basis Ui of the topology with Ûi being local
and having agreeing causality and

• strongly regularly localizable, if there is a basis Ui of the topology with Ûi
being regularly local and having agreeing causality.

♦

Localizable Lorentzian pre-length spaces are automatically d-compatible,
have no �-isolated points, and the strong versions are compatible with taking
open subsets.

Proposition 1.7.22 (Lτ is upper semicontinuous in localizable spaces). In a
locally causally closed localizable Lorentzian pre-length space X, Lτ is upper
semicontinuous on future directed causal curves with compact domain, i.e. if the
future directed causal curves γn : [an, bn] → X converge pointwise to a future
directed causal curve γ : [a, b]→ X, then Lτ (γ) ≥ lim supn Lτ (γn).

Proof. W.l.o.g., all these curves have the same domain [a, b]. We cover the
compact image of γ by finitely many local spaces Ui (i = 1, · · · , n) and split
up the domain [a, b] =

⋃
i[ti, ti+1] such that γ|[ti,ti+1] is contained in Ui. Then

for all but finitely many n, γn|[ti,ti+1] are contained in Ui. As the length agrees
when intrinsifying (1.7.4), we only need to consider the lengths in the local
spaces, so we only consider these restrictions and w.l.o.g., we are in a local
space. But here, τ is continuous, so length is upper semicontinuous (1.7.12) and
Lτ (γ) ≥ lim supn Lτ (γn).

Proposition 1.7.23 (Length continuity). A localizable Lorentzian pre-length
space X is length continuous, and every future directed causal curve with compact
domain has finite length.

Proof. Let γ be a curve. First, we check the one sided length continuity at t0
(i.e. Lτ (γ, a, t) is continuous at t = t0). Let U be a local neighbourhood of γ(t0),
take ε > 0 such that γ|[t0−ε,t0] is still contained in U . By length additivity and
as length agrees when intrinsifying (1.7.4) we can work in the local space U
(Lτ (γ, a, t) = Lτ (γ, a, t0 − ε) + Lτ (γ, t0 − ε, t), where the second term can be
computed in U). As τ̂ |U is finite by locality, we have length continuity (1.6.16).

For the two-sided case (at s0, t0), we apply this local argument at both γ(t0)
and time-reversed at γ(s0). We have:

Lτ (γ, s, t) = Lτ (γ, s, s0 + ε) + Lτ (γ, s0 + ε, t0 − ε) + Lτ (γ, t0 − ε, t).

If ∀ε > 0 s0 + ε > t0 − ε , we have s0 = t0 and everything is contained in a local
neighbourhood anyway.
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For finite length we cover the image of γ : [a, b] → X by finitely many
local spaces Ui. We can split up the domain [a, b] =

⋃
i[ti, ti+1] such that

γ[ti,ti+1] is contained in Ui. As length agrees when intrinsifying, we only need
to consider the length in the local spaces, and there we have Lτ (γ, ti, ti+1) ≤
τ̂ |Ui(γ(ti), γ(ti+1)) <∞. Summing up, we get Lτ (γ) <∞.

Theorem 1.7.24 (Push-up of curves). Let X be a regularly localizable Lorentzian
pre-length space. Let γ : p q be a future directed causal curve with Lτ (γ) > 0
and t1 < t2 such that γ(t1) 6� γ(t2). Then there is a longer future directed
timelike curve γ̃ : p q.

If X is even strongly regularly localizable, we can even find such a γ̃ in every
neighbourhood of the image of γ.

Proof. Let dom(γ) = [a, b]. W.l.o.g., we assume t1 = a. As Lτ (γ, t1, t2) ≤
τ(γ(t1), γ(t2)) = 0, it is null there. We set s = sup{t : Lτ (γ, a, t) = 0} (then
0 < s < b). By length continuity (1.7.23) Lτ (γ, a, s) = 0. Let U be a regularly
local neighbourhood of γ(s), and s1 < s < s2 such that γ|[s1,s2] is contained in
U . By definition of s we have Lτ (γ, s1, s2) > 0, but Lτ (γ, s1, s) = 0.

The segment γ|[s1,s2] is not distance realizing in U : If it were, so would
be its restriction γ|[s1,s]. But Lτ (γ, s1, s2) > 0, so γ|[s1,s2] is timelike, and
Lτ (γ, s1, s) = 0, so γ|[s1,s] is null  . So we can replace the segment γ|[s1,s2] by a
(future directed timelike) distance realizing curve in U , making it longer.

By compactness we can iterate this procedure to get a longer future directed
timelike curve γ̃ : p q.

If X is strongly regularly localizable and V is a neighbourhood of the image
of γ, we can take all U ’s to be in V . The resulting γ̃ will then be contained in
V .

Example 1.7.25 (Causal funnels). A relatively compact open causally convex
subset U of a causal funnel (see 1.7.15) X containing all of γ (or none of it)
is a local space (making X localizable). If γ contains a null segment, X is
not regularly localizable. If γ is timelike, any relatively compact open causally
convex subset is regularly local, making X strongly regularly localizable. ♦

Sources

The notions of local and localizable spaces stem from [KS18, 3.16] (but local
spaces are not explicitly mentioned there). The example of a spacetime with
non-continuous τ (1.7.19) comes from [O’N83, 14.18], locality in spacetimes
(1.7.18), upper semicontinuity of Lτ (1.7.22) and push-up of curves (1.7.24) are
from [KS18, 3.24.(i),3.17,3.20]. Length continuity in localizable spaces (1.7.23)
is new.
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1.7.3 Lorentzian length spaces

Definition 1.7.26. A Lorentzian length space is a locally causally closed,
causally path connected, intrinsic and localizable Lorentzian pre-length space.

If it is regularly localizable, it is a regular Lorentzian length space. ♦

Remark 1.7.27. A Lorentzian length space is both causally path connected and
causally length connected (as it is intrinsic). ♦

Proposition 1.7.28 (Globally hyperbolic lorentzian length spaces are strictly
intrinsic). Let X be globally hyperbolic Lorentzian length space. Then:

(1) τ is finite,
(2) τ is continuous and
(3) X is strictly intrinsic.

Proof. (2) τ is continuous: We know it is lower semicontinuous. If it were not up-
per semicontinuous, there would exist pn → p, qn → q with lim supn τ(pn, qn) >
τ(p, q). This cannot be the case if τ(p, q) = ∞. So we get ε > 0 such that
τ(pn, qn) ≥ τ(p, q) + ε. As X has no �-isolated points, we find p− � p and
q � q+. Then p and q and thus all but finitely many pn and qn are contained in
the open set I(p−, q+) ⊆ J(p−, q+).

As ε > 0, we have pn � qn, and as X is intrinsic we can take future
directed causal curves γn : pn  qn of length Lτ (γn) ≥ τ(pn, qn)− ε

2 , which are
automatically contained in I(p−, q+). As in 1.6.28, we can reparametrize γn and
apply the limit curve theorem (1.6.24) to get a subsequence of the γn converging
uniformly to a future directed causal or constant curve γ : p q (w.l.o.g., this
subsequence is γn itself).

By upper semicontinuity of length in localizable spaces (1.7.22)

τ(p, q) ≥ Lτ (γ) ≥ lim sup
n

Lτ (γn) ≥ lim sup
n

τ(pn, qn)− ε

2 ≥ τ(p, q) + ε

2  

so τ is upper semicontinuous.

J(p−, q+)

γnγ

p

q

pn

qn

p−

q+
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(1) τ is finite: We indirectly assume there exist p ≤ q with τ(p, q) =∞. As
X is intrinsic, we find future directed causal curves γn : p q with Lτ (γn)→∞.
The compact set J(p, q) contains all these curves and is non-totally imprisoning,
so as in 1.6.28, we can reparametrize and use the limit curve theorem (1.6.24)
to get a subsequence converging to a future directed causal curve γ : [0,K]→
X, p q.

As X is localizable, we get upper semicontinuity of length (1.7.22) and have
Lτ (γ) ≥ limn Lτ (γn) = ∞, so this curve gathers infinite τ -length in a finite
interval. But this cannot happen in a localizable space by proposition 1.7.23.

(3) Distance realizing curves exist: Let p ≤ q. As X is intrinsic, we get future
directed causal curves γn : p  q with Lτ (γn) → τ(p, q). As above, we make
them uniformly Lipschitz and apply the limit curve theorem in the compact set
J(p, q) to get a future directed causal curve γ : p q. By upper semicontinuity
of length we get Lτ (γ) ≥ τ(p, q). The other inequality is just the generalized
reverse triangle inequality.

This does not work for non-localizable spaces: See example 1.6.17.

Example 1.7.29 (Causal funnel). As we saw in 1.7.15 and 1.7.25, causal funnels
with timelike γ are globally hyperbolic Lorentzian length spaces. ♦

Sources

Lorentzian length spaces were introduced in [KS18, 3.22]. The statement 1.7.28
is a summary of [KS18, 3.28,3.30].

2 Curvature comparison

In this section, we will define bounds on the sectional curvatures of semi-
Riemannian manifolds, and generalize this to the setting of length spaces and
Lorentzian pre-length spaces.

Definition 2.0.1 (Reminder: Sectional curvature). Let (M, g) be a semi-
Riemannian manifold, p ∈ M a point and P ⊆ TpM a nondegenerate 2-
dimensional subspace ("plane")9. Let v, w ∈ P be linearly independent. Let R
be the Riemann curvature tensor. Then the value g(R(v,w)w,v)

g(v,v)g(w,w)−g(v,w)2 doesn’t
depend on the choice of v, w (but on P and p) and is called the sectional curvature
of M at p on the plane P . ♦

9I.e. (g|p)|P : P × P → R is a nondegenerate symmetric bilinear map.
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2.1 Curvature comparison for length spaces

2.1.1 Triangle comparison for k = 0

We start with an intuition that on spheres and other positively curved spaces,
triangles are "fatter" than normal, and in negatively curved spaces, they are
"thinner" than normal. To make this precise, we define the following:

Definition 2.1.1. A triangle ∆p1p2p3 in a strictly intrinsic length space (X, d)
consists of three points pi ∈ X and three distance realizing curves αij : pi  pj .

Here we denote the standard metric on R2 by d̄ to distinguish it from the
length space (X, d). A comparison triangle to ∆p1p2p3 is a triangle with vertices
p1, p2, p3 in R2 with agreeing distances, i.e. d(pi, pj) = d̄(pi, pj). We say the
vertex pi corresponds to pi and the side αij : pi  pj corresponds to the straight
line αij : pi  pj .

For a point q on α12 we define the corresponding point q on α12 (or cor-
respondingly any other side) by requiring equal distances to the ends of this
curve: d(p1, q) = d̄(p1, q) (and then automatically, d(p2, q) = d̄(p2, q) as α12 was
distance realizing). Note that it might be necessary to specify which side q
should be considered to be on (as two sides can partially overlap).

p1

p2

p3
q

⇒

p3 p1

p2

q̄

The length of the solid lines agree, the length of the dashed line will in general not agree and is

compared.

We can now locally compare the distance of q to the "opposite" point p3 with
the situation in the comparison situation:

Let X be a strictly intrinsic length space. An open subset U is a non-negative
curvature comparison neighbourhood resp. non-positive curvature comparison
neighbourhood if for all triangles ∆p1p2p3 in U and q on the p1p2-side and all
(any) comparison situations ∆p1p2p3, q in R2, the distance satisfies

d(q, p3) ≥ d̄(q, p3) resp. d(q, p3) ≤ d̄(q, p3).

Now we call the strictly intrinsic length space X non-negatively curved if it
is covered by non-negative curvature comparison neighbourhoods. Likewise, X
is non-positively curved if it is covered by non-positive curvature comparison
neighbourhoods. ♦

36



Here, we compared the "thickness" of triangles in X to the "thickness" of the
comparison triangle in flat space, giving curvature bounded below / above by 0.
Using comparison spaces different than flat space, we can do more:

2.1.2 Riemannian comparison spaces

Definition 2.1.2. The Riemannian constant curvature spaces or space forms
are10:

• positive curvature k: Kn,0
k = {v ∈ Rn+1,0 : b(v, v) = 1

k2 } = 1
kS

n, except
for n = 0 and n = 1, where we take a connected component resp. the
universal cover (there, the set is two points resp. a circle).

• negative curvature −k: Kn,0
−k is a connected component of {v ∈ Rn,1 :

b(v, v) = − 1
k2 } = 1

kH
n (the set is a two-sheeted "hyper"hyperboloid).

• curvature 0 (flat): Kn,0
0 = Rn,0

They are smooth n-dimensional submanifolds of Rn+1,0 or Rn,1, respectively.
The inner product g of Rn+1,0 or Rn,1 restricts to a Riemannian inner product
on these spaces.

In the case n = 2, it is called the k-plane or the comparison space of constant
sectional curvature k.

The diameter of Kn,0
k is Dk = π√

k
for k > 0 and Dk =∞ for k ≤ 0. Three

values a1, a2, a3 > 0 satisfying all three triangle inequalities are said to satisfy
the size bounds for k if a1 + a2 + a3 < 2Dk.11 This is useful for constructing
triangles with prescribed side-lengths in the k-plane. ♦

Example 2.1.3. The k-planes are:

• k > 0: K2,0
k = 1√

k
S2 (the sphere of radius 1√

k
),

• k = 0: K2,0
0 = R2 (the Euclidean plane), and

• k < 0: K2,0
k =: 1√

−kH (the so-called hyperbolic space of radius 1√
−k ).

♦

Proposition 2.1.4 (Constant curvature spaces indeed have constant sectional
curvature). For all k ∈ R, all p ∈ Kn,0

k and all planes P ⊆ TpKn,0
k , the sectional

curvature of the plane P is k. (Note this only makes sense for n ≥ 2, otherwise,
there are no planes.)

10The cases n = 0 and n = 1 (the exceptions) are not interesting, they just give a point resp.
a line

11a1 + a2 + a3 < 2Dk is trivial if k ≤ 0
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Proof. For k = 0, we have the Riemann tensor R = 0 and so K = 0. Else, we
consider M = Kn,0

k as a submanifold of M̄ = Rn+1,0 resp. Rn,1. For two vectors
v, w ∈ TpM spanning a plane, we have the sectional curvature K(v, w) in M , the
sectional curvature K̄(v, w) = 0 in M̄ and the shape operator S(v) of M ⊂ M̄ .
The sign ε of M ⊂ M̄ is the sign of k. By [O’N83, 4.20]

K(v, w) = K̄(v, w) + ε
g(S(v), v)g(S(w), w)− g(S(v), w)2

g(v, v)g(w,w)− g(v, w)2

By [O’N83, 4.27]we have S(v) = −
√
|k|v, giving

K(v, w) = ε|k|g(v, v)g(w,w)− g(v, w)2

g(v, v)g(w,w)− g(v, w)2 = ε|k| = k.

Proposition 2.1.5 (Triangles exist). Given three values a1, a2, a3 ≥ 0 satisfying
all three triangle inequalities and the size bounds for k, there exists a triangle
∆p1p2p3 in a normal neighbourhood in the k-plane such that d(pi, pj) = ak (for
i, j, k distinct).

Any two such triangles ∆p1p2p3, ∆q1q2q3 (for the same ai) in the k-plane
are related by an isometry ϕ mapping one to the other. ϕ is unique unless all
ai = 0 or there is an equality in one of the triangle inequalities.

Proof. See [AB08, 2.1], points 1. and 2.

Remark 2.1.6. The values ai ≥ 0 are realized as side-lengths of a triangle in the
k-plane exactly if they satisfy the triangle inequalities and the weak size bounds
for k (i.e. allowing for equality). In the case of equality in the weak size bounds
and no equalities in the triangle inequalities, the triangle is however not unique
up to an isometry, and in the case of equality in the weak size bounds and an
equality in one of the triangle inequalities or all ai = 0, it is unique up to a
non-unique isometry. ♦

Proof. By 2.1.5 we only have to consider k > 0, i.e. the sphere of radius r = 1√
k
.

As the weak size bounds are automatically satisfied on the sphere, we only need
to check the size bounds having equality.

We assume a1 ≥ a2 ≥ a3. By the triangle inequality and the equality in the
size bounds 2rπ = a1 + a2 + a3 ≥ 2a1.

In case of equality, we can set p2, p3 to be antipodal points, and can divide a
half great circle to get the splitting in a2 + a3 = rπ. We still have to choose the
shortest curve between the antipodal points which makes it non-unique up to
isometry.
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In case of inequality, all ai < rπ and this triangle can be realized (only) on
a great circle: The closed unit speed curve along the great circle has length
2πr = a1 + a2 + a3 and its restriction to subintervals of length less than rπ is
the unique distance minimizing curve between its endpoints. Then we choose
three points according to a1 and a2 (so two of the lengths are as desired), and
by the length of the great circle, the third distance is 2rπ − a1 − a2 = a3. This
realization is not unique up to isometry, but there is a non-trivial isometry
mapping it to itself: the reflection about the great circle.

Now we can define curvature bounded below / above by any k ∈ R by
replacing flat space R2 by the k-plane in the above definition:

2.1.3 Triangle comparison

Definition 2.1.7. Let (X, d) be a metric space, (K2,0
k , d̄) be the k-plane and

∆p1p2p3 be a triangle in X. A comparison triangle to ∆p1p2p3 in the k-plane
is a triangle with vertices p1, p2, p3 in the k-plane with agreeing distances, i.e.
d(pi, pj) = d̄(pi, pj). We say the vertex pi corresponds to pi and the side
αij : pi  pj corresponds to the side αij : pi  pj .

For a point q on α12 we define the corresponding point q on α12 by requiring
equal distances to the ends of this curve: d(p1, q) = d̄(p1, q) (and then automat-
ically, d(p2, q) = d̄(p2, q) as α12 was distance realizing). We can now compare
the distance of q to the "opposite" point p3 with the situation in the comparison
situation:

Let X be a strictly intrinsic length space. An open subset U is called a
≥ k-comparison neighbourhood resp. a ≤ k-comparison neighbourhood if for all
triangles ∆p1p2p3 in U satisfying the size bounds for k and q on the p1p2-side
and all (any) comparison situations ∆p1p2p3 and q in the k-plane, the distance
satisfies

d(q, p3) ≥ d̄(q, p3) resp. d(q, p3) ≤ d̄(q, p3).

We say X has curvature bounded below by k if it is covered by ≥ k-comparison
neighbourhoods. Likewise, its curvature is bounded above by k if it is covered by
≤ k-comparison neighbourhoods. ♦

Remark 2.1.8 (Automatic size bounds). If X is strictly intrinsic and has curvature
bounded above / below, we can restrict ourselves to comparison neighbourhoods
U where the size bounds are automatically satisfied, and there exists a basis of
the topology of such neighbourhoods. ♦

Proof. Let X be covered by comparison neighbourhoods U . We cover U by balls
of radius Dk

6 or smaller. In those, the size bounds are automatically satisfied.
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Proposition 2.1.9 (Toponogov, triangle comparing). Let (M, g) be a Rieman-
nian manifold. Then its sectional curvature is bounded below / above by k if and
only if its curvature is bounded below / above by k in the above sense. More-
over, the ≤ k or ≥ k comparison neighbourhoods can be chosen to be normal
neighbourhoods.

Proof. See [AB08, 5.1,5.2,5.3].

In particular, the k-plane has curvature bounded below by any k̃ ≤ k and
bounded above by any k̃ ≥ k.

Proposition 2.1.10 (Transitivity of curvature bounds). A strictly intrinsic
length space X having curvature bounded below (resp. above) by k implies having
it bounded below (resp. above) by any k̃ ≤ k (resp. k̃ ≥ k).

Proof. For simplicity, we only do the bounded below case, the other case is
analogous. Let k̃ ≤ k and the curvature of X bounded below by k, i.e. X is
covered by ≥ k-comparison neighbourhoods. We can use 2.1.8 to get comparison
neighbourhoods U where the size bounds for both k and k̃ are automatically
satisfied. We claim U is also a ≥ k̃-comparison neighbourhood:

We need to check the condition for a triangle ∆p1p2p3 and a point q on α12

in U : We get a comparison situation ∆p1p2p3, q in a normal neighbourhood in
the k-plane, and another comparison situation ∆p̃1p̃2p̃3, q̃ in the k̃-plane (we
denote the metric in the k̃-plane by d̃).

As U is a ≥ k-comparison neighbourhood, we know d(q, p3) ≤ d̄(q, p3). As
the normal neighbourhood in the k-plane is a ≥ k̃-comparison neighbourhood
(2.1.9), ∆p1p2p3, q in the k-plane has ∆p̃1p̃2p̃3, q̃ as a comparison situation in
the k̃-plane, so d̄(q, p3) ≤ d̃(q̃, p̃3).

Using both these inequalities, we get d(q, p3) ≤ d̃(q̃, p̃3), making U a ≥ k̃-
comparison neighbourhood and the curvature of X bounded below by k̃.

2.1.4 Angles

Definition 2.1.11 (Angles). In the Euclidean vector space Rn, we define the
angle α = ^(v, w) ∈ [0, π] between two non-zero vectors v, w ∈ Rn by requiring
〈v, w〉 = cos(α) ‖v‖ ‖w‖. By the Cauchy Schwarz inequality we have |〈v,w〉|‖v‖‖w‖ ≤ 1,
and thus we can solve for α. It is independent of scaling v and w with positive
constants and swapping the vectors.

For two regular piecewise C1 curves α, β in a Riemannian manifold M with
α(0) = β(0) = p, we define ^(α, β) to be ^(α′(0), β′(0)) (using an isometry
TpM → Rn).
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For p1, p2, p3 in a strictly intrinsic length space X and a comparison triangle
∆p1p2p3 in the k-plane we define the comparison angle ˜̂k(p1, p2, p3) as the angle
of the triangle p1, p2, p3 at p2. For k = 0, we set ˜̂ = ˜̂0.

For two curves α, β : [0, ε)→ X with α(0) = β(0) = p, we define the angle
between them as ^(α, β) = limt→0,s→0 ˜̂0(α(s), p, β(t)), if it exists. ♦

Lemma 2.1.12 (Law of cosines). The definition of the comparison angle leads
to the law of cosines for angles: Let p, q, r be three points in the k-plane. Define
the distances a = d(p, q), b = d(q, r), c = d(p, r), the angle γ = ˜̂k(p, q, r) (which
is just the angle of the triangle) and the scaling factor s =

√
|k|. Then we have:

c2 = a2 + b2 − 2ab cos(γ) for k = 0
cosh(sc) = cosh(sa) cosh(sb)− sinh(sa) sinh(sb) cos(γ) for k < 0

cos(sc) = cos(sa) cos(sb) + sin(sa) sin(sb) cos(γ) for k > 0
In particular, for a 6= 0, b 6= 0 and k fixed, c is a strictly increasing function of γ.

Proof. For k = 0, we are in R2 and the sides of this triangle are just straight lines.
[AB08, 2.3] gives us c2 = a2 + b2 − 2ab cosh(ω), which is the desired formula.

If k 6= 0, the sides of the triangle are the geodesics αpq, αqr, αpr, which we
assume to be defined on the domain [0, 1]. The energy E(αpipj ) is given by
d(pi, pj)2 if pi � pj . Now we apply [Kir18, 3.1.3]:

cos(
√
kE(αpr)) = cos(

√
kE(αpq)) cos(

√
kE(αqr))

+
〈
−α′pq(1), α′qr(0)

〉√
E(αpq)

√
E(αqr)

sin(
√
kE(αpq)) sin(

√
kE(αqr))

Note this uses imaginary numbers if k < 0. In that case, cos(ix) = cosh(x) and
sin(ix) = i sinh(x).
For k > 0, this equation reads:

cos(sc) = cos(sa) cos(sb) + cos(γ) sin(sa) sin(sb)

For k < 0, this equation reads:

cosh(sc) = cosh(sa) cosh(sb)− cos(γ) sinh(sa) sinh(sb)

Example 2.1.13 (Nonexistent angles). In R2, consider the curves α(t) = (t, t sin( 1
t ))

and β(t) = (0, t) meeting at p = α(0) = β(0) = (0, 0). Then for sn = 1
2πn → 0,

∆α(sn)pβ(t) has a right angle at 0, but for sn = 1
2πn+π

2
→ 0, ∆α(sn)pβ(t) has

an angle of 45◦ (π4 ).
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α

♦

Proposition 2.1.14 (Angles agree). Let α, β : [0, ε) → M be two regular
(piecewise) C1 curves in a Riemannian manifold (M, g). Then ^(α, β) is the
same as the standard Riemannian angle12

Proof. W.l.o.g., we can assume α and β to be C1 (by just considering the piece
at 0). As α and β are regular, v = α′(0) and w = β′(0) do not vanish and the
Riemannian angle makes sense.

By the law of cosines (2.1.12, k = 0) we get the comparison angle:

cos( ˜̂0(α(s), p, β(t))) = d(p, α(s))2 + d(p, β(t))2 − d(α(s), β(t))2

2d(p, α(s))d(p, β(t)) .

In a convex neighbourhood U of p all these distances are given by geodesics
smoothly varying with the points. The distances appearing in the law of cosines
behave as follows when s, t→ 0:

• d(p, α(s))2 = s2g(v, v) + o(s2),
• d(p, β(t))2 = t2g(w,w) + o(t2),
• d(α(s), β(t))2 = g (sv − tw, sv − tw) + o((s+ t)2).

The first and second equation are special cases of the third one: replace s resp. t
by zero.

To prove the third equation, we use the map E : TM →M ×M defined by
xp 7→ (p, expp(x)). We can shrink U so that E restricts to a diffeomorphism with
image U ×U . Let γx be the geodesic with initial velocity x, then d(α(s), β(t)) is
the length of the distance minimizing geodesic γE−1(α(s),β(t)) on the domain [0, 1]
(as U is convex), which is the length of the initial velocity E−1(α(s), β(t)), giving
d(α(s), β(t))2 = g(E−1(α(s), β(t)), E−1(α(s), β(t))). In a normal chart, we have
limt→0

E−1(p,γy(t))−E−1(p,p)
t = limt→0

ty
t = y and limt→0

E−1(γx(t),p)−E−1(p,p)
t =

limt→0
−tx
t = −x as the geodesics between these two points is given by γy and

γ−x, respectively.
We expand into a Taylor series at s = t = 0: The O(1) term is 0, the O(t)

term is ∂g(0, 0) + 2g(∂t|0E−1(α(0), β(t)), 0) = 0 and similarly for the O(s) term.
12I.e. given by g|p(α′(0), β′(0)) =

√
g|p(α′(0), α′(0))g|p(β′(0), β′(0)) cos(θ)
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The O(t2) term is

1
2(∂∂g(0, 0) + · · ·+ 2g(∂t|0E−1(α(0), β(t)), ∂t|0E−1(α(0), β(t)))) = g(w,w),

the O(s2) term is symmetric to this one, the O(st) term is

∂∂g(0, 0) + · · ·+ 2g(∂t|0E−1(α(0), β(t)), ∂s|0E−1(α(s), β(0))) = 2g(−v, w).

In total we get the Taylor expansion of d(α(s), β(t))2:

0 + 0s+ 0t+ g(−v,−v)s2 + g(w,w)t2 + 2g(−v, w)st+ o((s+ t)2) =

g(sv − tw, sv − tw) + o((s+ t)2)

Plugging these approximations into the law of cosines and ignoring the o((t+s)2)
terms (if v and w are non-zero), we are left with

cosh( ˜̂0(α(s), p, β(t)))s
2g(v, v) + t2g(w,w)− g(sv − tw, sv − tw)

2st
√
g(v, v)

√
g(w,w)

.

Expanding the difference term and cancelling, we get g(v,w)√
g(v,v)

√
g(w,w)

, which is
the formula of the Riemannian angle.

Proposition 2.1.15 (All ˜̂k converge to ^). Let X be a length space, α, β two
curves with α(0) = β(0) = p. Then for all k, limt,s→0 ˜̂k(α(s), p, β(t)) = ^(α, β)
and one exists if and only if the other exists.

Proof. We restrict to t, s small enough to have the size bounds automatically
satisfied. By the law of cosines (2.1.12) we have (with l =

√
|k| and the sides

a = d(p, α(s)), b = d(p, β(t)), c = d(α(s), β(t))): if k > 0,

cos( ˜̂k(α(s), p, β(t))) = cos(lc)− cos(la) cos(lb)
sin(la) sin(lb)

Expanding the cosines and sines, this is:

1− (lc)2/2 + o((lc)2)− (1− (la)2/2 + o((la)2))(1− (lb)2/2 + o((lb)2))
l2ab+ o(l4(ab)2) =

(la)2/2 + (lb)2/2− (lc)2/2− l4a2b2/4 + o((la)2) + o((lb)2) + o((lc)2)
l2ab+ o(l4(ab)2) =

a2 + b2 − c2 − l2a2b2/2 + o(a2) + o(b2) + o(c2)
2ab+ o((lab)2) =

a2 + b2 − c2

2ab − l2a2b2/2 + o(a2) + o(b2) + o(c2) + o((lab)2)
2ab
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As all a, b, c→ 0, this converges if and only if

cos( ˜̂0(α(s), p, β(t))) = a2 + b2 − c2

2ab

converges, and they converge to the same value, and similarly for k < 0.

Proposition 2.1.16 (Angles exist in spaces of bounded curvature). Let X be
a strictly intrinsic length space with curvature bounded above or below. Then
for any two distance realizing curves α, β : [0, ε]→ X with α(0) = β(0) = p, the
angle ^(α, β) exists.

Proof. We only consider the case with curvature bounded below by k, the other
case is analogous. We define the comparison angle function for α and β as
θk(s, t) = ˜̂k(α(s), p, β(t)).
Claim: θk is monotonously decreasing in s and t for s and t small.
We only prove θk is monotonous in s, the other statement follows analogously. So
let s > s0 > 0 and t > 0 be small enough to lie in a ≥ k-comparison neighbour-
hood where the size bounds for k are automatically satisfied 2.1.8. To calculate
θk(s, t) we need a comparison triangle ∆̄1 = ∆α(s)β(t)p to ∆1 = ∆α(s)pβ(t),
and for θk(s0, t) we need a comparison triangle ∆̃2 to ∆2 = ∆α(s0)pβ(t) in the
k-plane. But as α(s0) lies on a side of ∆1, we can do triangle comparison:

The situation ∆α(s)β(t)p, α(s0) has a comparison situation ∆̄1, α(s0). We
get d(α(s0), β(t)) ≥ d̄(α(s0), β(t)).

As the sides α and β of ∆2 are segments of the sides α and β of ∆1, the
sub-triangle ∆α(s0)β(t)p of ∆̄1 and ∆̃2 have agreeing side-lengths except the
side opposite p. That side satisfies d̄(α̃(s0), β̃(t)) ≥ d̄(α(s0), β(t)).

But by the law of cosines (2.1.12) the angle is a strictly increasing function
in the opposite side-length. This implies

θk(s0, t) = ˜̂k(α(s0), p, β(t)) ≥ ˜̂k(α(s), p, β(t)) = θk(s, t),

so θk is monotonously decreasing in s. Analogously, we get θk is monotonously
decreasing in t.

As monotone limits exist, lims,t→0 θk(s, t) exists, and as all ˜̂k converge to
^ (2.1.15), the limit is ^(α, β).

Sources

Triangle comparison in length spaces is described in [BBI01, 4], the Riemannian
space forms (2.1.2) were taken from [O’N83, 8.22]. The existence of triangles
(2.1.5 and Toponogov (2.1.9) is from [AB08, 2.1, 1.1]. Angles (2.1.11) come
from [BBI01, 3.6.25], the law of cosines (2.1.12) is mainly [Kir18, 3.1.3]. The
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agreement of angles (2.1.14) and the convergence of all ˜̂k to ^ (2.1.15) seems to
be new. The existence of angles (2.1.16) is made analogously to [BBI01, 4.3.5].

2.2 Curvature comparison for Lorentzian length spaces

In Lorentzian length spaces we only have the time distance, so we restrict
ourselves to causal triangles:

Definition 2.2.1. A timelike (geodesic) triangle ∆p1p2p3 in a Lorentzian pre-
length space X consists of three points p1 � p2 � p3 ∈ X (with τ(pi, pj) <∞
for i < j) and three future directed causal distance realizing curves αij : pi  pj

(for i < j).
An admissible causal (geodesic) triangle ∆p1p2p3 in a Lorentzian pre-length

space X consists of three points p1 � p2 ≤ p3 or p1 ≤ p2 � p3 ∈ X (with
τ(pi, pj) < ∞ for i < j) and three possibly constant13 future directed causal
distance realizing curves αij : pi  pj (for i < j). We call the sides between two
vertices pi � pj a timelike side (although it need not be a timelike curve).

We call p1 the past endpoint and p3 the future endpoint of the triangle.
A causal or timelike triangle is called non-degenerate if the reverse triangle
inequality τ(p, r) ≥ τ(p, q) + τ(q, r) is strict, and it is called degenerate in the
strict sense if the sides α12 and α23 are (reparametrized) parts of the longest
side α13. ♦

Now we need the spaces that are to contain the comparison triangle:

2.2.1 Comparison spaces

Example 2.2.2 (Revision). Rn,m is the vector space Rn+m together with the
inner product b(v, w) = −

∑m
i=1 viwi +

∑n+m
i=m+1 viwi. It can also be viewed as a

semi-Riemannian manifold. ♦

Definition 2.2.3. The semi-Riemannian constant curvature spaces or space
forms are:

• positive curvature k: Kn−1,m
k = {v ∈ Rn,m : b(v, v) = 1

k2 }, except for
n−1 = 1 and n−1 = 0, where we take the universal cover resp. a connected
component (there the set is a one- resp. two-sheeted hyperboloid)

• negative curvature −k: Kn,m−1
−k = {v ∈ Rn,m : b(v, v) = − 1

k2 } except
for m− 1 = 1 and m− 1 = 0, where we take the universal cover resp. a
connected component (there the set is a one- resp. two-sheeted hyperboloid)

• curvature 0 (flat): Kn,m
0 = Rn,m

13Of course, if p1 ≤ p2 � p3, only α1,2 can be constant etc.
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They are smooth submanifolds of Rn,m. The semi-Riemannian inner product g of
Rn,m restricts to a semi-Riemannian inner product on these spaces, with signature
given in the upper index (i.e. (n− 1,m), (n,m− 1) and (n,m), respectively).

In the case n+m = 2, we call the Kn,m
k k-planes or the comparison spaces

of constant sectional curvature k (and signature n,m).
The (finite timelike) diameter of K1,1

k is Dk = π√
−k (Dk =∞ for k ≥ 0)14.

Three numbers a12, a23, a13 ≥ 0 satisfying the reverse triangle inequality
a12 + a23 ≤ a13 (making a13 the largest) are said to satisfy the size bounds for k
if a13 < Dk.15 This is useful for constructing causal triangles with prescribed
side-lengths in the Lorentzian k-plane. ♦

Example 2.2.4. For the Lorentzian case with dimension n = m = 1, the k-planes
are:

• k > 0: K1,1
k = 1√

k
S2

1 (scaled versions of the de Sitter spacetime),
• k = 0: K1,1

0 = R1,1 (the Minkowski space), and
• k < 0: K1,1

k =: 1√
−kH

2
1 (scaled versions of the anti-de Sitter spacetime).

♦

Proposition 2.2.5 (Constant curvature spaces indeed have constant sectional
curvature). Let k ∈ R, p ∈ Kn,m

k be a point and P ⊆ TpKn,m
k be a plane in the

tangent space where g|P is non-degenerate. Then the sectional curvature of the
plane P is k. If g|P is degenerate, nothing can be said as the denominator in
sectional curvature is zero.
(Note this only makes sense for n+m ≥ 2, otherwise, there are no planes.)

Proof. For k = 0, we have the Riemann tensor R = 0 and so K = 0. Else, we
consider M = Kn,m

k as a submanifold of M̄ = Rn+1,m resp. Rn,m+1. For two
vectors v, w ∈ TpM spanning a non-degenerate plane, we have the sectional
curvature K(v, w) in M , the sectional curvature K̄(v, w) = 0 in M̄ and the
shape operator S(v) of M ⊂ M̄ . The sign ε of M ⊂ M̄ is the sign of k. By
[O’N83, 4.20]

K(v, w) = K̄(v, w) + ε
g(S(v), v)g(S(w), w)− g(S(v), w)2

g(v, v)g(w,w)− g(v, w)2

By [O’N83, 4.27]we have S(v) = −
√
|k|v, giving

K(v, w) = ε|k|g(v, v)g(w,w)− g(v, w)2

g(v, v)g(w,w)− g(v, w)2 = ε|k| = k.

14This is the maximum time distance which is finite.
15a13 < Dk is trivial if k ≥ 0.
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But sectional curvature comparison is more difficult in the semi-Riemannian
case:

Definition 2.2.6 (Sectional curvature comparing). LetM be a semi-Riemannian
manifold. Let p ∈ M be a point and P ⊆ TpM be a plane. Then P is called
spacelike if g|p is positive or negative definite on P , timelike if g|p is nondegenerate
and indefinite on P .

M has sectional curvature bounded below (resp. above) by k if for all points p
and all spacelike planes P ⊆ TpM , the sectional curvature is ≥ k (resp. ≤ k) and
for all timelike planes P ⊆ TpM , the sectional curvature is ≤ k (resp. ≥ k). ♦

Remark 2.2.7. The sectional curvature bounds are not transitive: if M has
sectional curvature bounded below / above by k, it does not automatically
have it bounded below / above for any k̃ 6= k. But if M has timelike sectional
curvature bounded below (resp. above) by k, it is automatically bounded below
(resp. above) by any k̃ ≥ k (resp. k̃ ≤ k) (but note it is the intuitively wrong
direction!). ♦

Example 2.2.8. The constant curvature space Kn,m
k (n,m 6= 0) have curvature

bounded above and below by k, but not by any other k̃ 6= k. ♦

Proposition 2.2.9 (Triangles exist). Given three values a12, a23, a13 ≥ 0 satis-
fying the reverse triangle inequality a12 + a23 ≤ a13 and the size bounds for k,
there exists a causal triangle ∆p1p2p3 in a normal neighbourhood in the k-plane
such that τ(pi, pj) = aij (for i < j).

Any two such triangles ∆p1p2p3, ∆q1q2q3 (for the same aij) in the k-plane
are related by an isometry ϕ mapping one to the other. ϕ is unique unless a13 = 0
(making all aij = 0) or the reverse triangle inequality has equality.

Proof. We want to invoke [AB08, 2.1]. Note that there timelike geodesics have
negative lengths. So we need side-lengths (−a12,−a23,−a13). This result now
corresponds exactly to the points 2 and 3 from [AB08, 2.1].

Remark 2.2.10. The values aij ≥ 0 are realized as side-lengths of a causal triangle
in the k-plane exactly if they satisfy the reverse triangle inequality and the weak
size bounds for k (i.e. allowing for equality). In the case of equality in the weak
size bounds, the causal triangle is however not unique up to an isometry, and in
the case all aij = 0, the isometry is not unique. ♦

Proof. By 2.2.9 we only have to consider k < 0, i.e. in the universal cover of the
anti-de Sitter space. An important property of the universal cover of anti-de
Sitter space is that future directed timelike geodesics are only distance minimizing
up to length π√

−k . At this length all future directed timelike geodesics emanating
at the same point p meet again at a point q (seen in the base space of this cover,
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this is the antipodal point −p). Any two timelike related points which are not
connected by a distance minimizing timelike geodesic have connecting timelike
curves with arbitrarily large length. (See [Chr08, p.3])

So the longest side of a triangle cannot be longer than π√
−k . 2.2.9 covers

side-lengths shorter than this, we only have to consider equality in the size
bounds, i.e. a13 = π√

−k . We can pick p1 and p3 to be opposite points (lifted to
the universal cover such that τ(p1, p3) = π√

−k ). Every future directed timelike
geodesic starting at p1 goes to p3, and has length π√

−k . Now we can pick a
point on any of these geodesics and we get any degenerate side-lengths. For any
triangle with a13 = π√

−k , the geodesic connecting p1 with p2 also meets p3, and
thus every triangle with p1, p3 antipodal is degenerate.

2.2.2 Triangle comparison

Definition 2.2.11 (Timelike curvature bounds). Let (X, τ) be a Lorentzian
pre-length space, (K1,1

k , τ̄) be the k-plane and ∆p1p2p3 be a timelike triangle in
X. A comparison triangle to ∆p1p2p3 in the Lorentzian k-plane is a triangle with
vertices p1 � p2 � p3 in the k-plane with agreeing distances, i.e. τ(pi, pj) =
τ̄(pi, pj) for i < j. We say the vertex pi corresponds to pi and the side αij :
pi  pj (i < j) corresponds to the side αij : pi  pj .

For a point q on some side αij of the triangle we define the corresponding
point q on αij by requiring equal distances to the ends of the curve it is on: we
require τ(pi, q) = τ̄(pi, q) (and then automatically, τ(q, pj) = τ̄(q, pj) as αij and
αij are distance realizing). Note that it might be necessary to specify which
side q should be considered to be on (as two sides can partially overlap). If
we take two such points q1 ≤ q2 (usually on different sides), we can compare
the distance of q1 to q2 with the distance of the corresponding points in the
comparison situation (see the proof of 2.2.28 for graphics):

Let X be a Lorentzian pre-length space. An open subset U is called a timelike
≥ k-comparison neighbourhood (resp. timelike ≤ k-comparison neighbourhood)
if:

• τ is finite and continuous on U ,

• U is timelike strictly intrinsic (i.e. it contains distance realizers between
any p� q) and

• for all timelike triangles ∆p1p2p3 in U satisfying the size bounds for k,
q1 ≤ q2 two points on the sides α and β and all (any) comparison situations
∆p1p2p3, q1, q2 in the k-plane, the time distance satisfies

τ(q1, q2) ≤ τ̄(q1, q2) resp. τ(q1, q2) ≥ τ̄(q1, q2)
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Note that in the bound below, q1 � q2 implies q1 � q2, and in the bound
above, q1 � q2 implies q1 � q2.

We say X has timelike curvature bounded below by k if it is covered by timelike
≥ k-comparison neighbourhoods. Likewise, its timelike curvature is bounded
above by k if it is covered by timelike ≤ k-comparison neighbourhoods. ♦

Remark 2.2.12 (Automatic size bounds). If X is strongly causal and has timelike
curvature bounded above / below, we can restrict ourselves to comparison
neighbourhoods U where the size bounds are automatically satisfied, and there
exists a basis of the topology of such neighbourhoods. ♦

Proof. Let X be covered by timelike comparison neighbourhoods U . By conti-
nuity of τ on U we can cover U by open subsets V where the size bounds are
automatically satisfied. We cover these V again by timelike diamonds W . These
W are again timelike comparison neighbourhoods: τ is still finite and continuous,
W is strictly intrinsic, as the distance realizers in U cannot leave the timelike
diamond, and the comparison property is trivially satisfied.

Definition 2.2.13 (Causal curvature bounds). LetX be a Lorentzian pre-length
space. An open subset U is called a causal ≥ k-comparison neighbourhood resp.
a causal ≤ k-comparison neighbourhood if:

• τ is finite and continuous on U ,

• U is strictly intrinsic (i.e. it contains (possibly constant) distance realizers
between any p ≤ q).

• For all admissible causal triangles ∆p1p2p3 in U satisfying the size bounds
for k and two points q1 and q2 on timelike sides. We require that for all
(any) comparison situations ∆p1p2p3 and q1, q2 in the k-plane, the time
distance satisfies

τ(q1, q2) ≤ τ̄(q1, q2) resp. τ(q1, q2) ≥ τ̄(q1, q2).

Note that q1 � q2 implies q1 � q2 resp. q1 � q2 implies q1 � q2.

As above, we now say X has causal curvature bounded below by k if it is covered
by causal ≥ k-comparison neighbourhoods and its causal curvature is bounded
above by k if it is covered by causal ≤ k-comparison neighbourhoods. ♦

The remark on automatic size bounds (2.2.12) is still true for causal curvature
bounds.
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Proposition 2.2.14 (Toponogov, triangle comparing). Let (M, g) be a strongly
causal spacetime with sectional curvature bounded below / above by k. Then it
also has timelike and causal curvature bounded below / above by k in the above
sense. Moreover, the timelike and causal ≥ k / ≤ k comparison neighbourhoods
can be chosen to be convex normal neighbourhoods.

Proof. See [AB08, 5.1,5.2,5.3].

In particular, the k-plane has causal curvature bounded below by any k̃ ≥ k
and bounded above by any k̃ ≤ k (note the intuitively wrong direction). But it is
unknown if there are spacetimes with timelike but not causal curvature bounded
and causal curvature bounded but not the sectional curvature bounded.

Proposition 2.2.15 (Transitivity of curvature bounds). If a (timelike) strictly
intrinsic strongly causal Lorentzian pre-length space X has timelike / causal
curvature bounded below (resp. above) by k, it is also bounded below (resp. above)
by any larger value k̃ ≥ k (resp. smaller value k̃ ≤ k). Note this is the intuitively
wrong direction.

Proof. We only check that timelike curvature bounded below by k implies it is
bounded below by any k̃ ≥ k (the other cases are similar). Let k̃ ≥ k and the
timelike curvature of X be bounded below by k, i.e. X is covered by timelike
≥ k-comparison neighbourhoods U . As X is strongly causal, we can use 2.2.12,
to get comparison neighbourhoods U where both the size bounds for k and the
size bounds for k̃ are automatically satisfied. We claim U is also a timelike
≥ k̃-comparison neighbourhood:

The first two properties of a timelike ≥ k̃-comparison neighbourhood get
inherited from U being a timelike ≥ k-comparison neighbourhood. By 2.2.28
we only need to check the one-sided comparisons: Let ∆p1p2p3 be a timelike
triangle in U and q be a point on one of the sides. W.l.o.g., we want to compare
q � pi: We get a comparison situation ∆p1p2p3, q in a normal neighbourhood
in the Lorentzian k-plane, and another comparison situation ∆p̃1p̃2p̃3, q̃ in a
normal neighbourhood in the k̃-plane (with time separation function τ̃).

As U is a timelike ≥ k-comparison neighbourhood, we know τ(q, pi) ≤ τ̄(q, pi).
By 2.2.14 we get that the normal neighbourhood in the k-plane is a timelike ≥ k̃-
comparison neighbourhood (again note the intuitively wrong direction: k̃ ≥ k).
But ∆p1p2p3, q in the k-plane has ∆p̃1p̃2p̃3, q̃ as a comparison situation in the
k̃-plane, so τ̄(q, pi) ≤ τ̃(q̃, p̃i).

Using both these inequalities, we get τ(q, pi) ≤ τ̃(q̃, p̃i), making U a timelike
≥ k̃-comparison neighbourhood, and the timelike curvature of X bounded below
by k̃.
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Example 2.2.16. Let I = (
√
Kt,∞) as a oriented Riemannian manifold (metric

h1), R the real line as a Riemannian manifold (with h2) and f(t) = t2, f : I → R+.
Then we define the spacetime (−I)×fR to be I×R as a manifold with Lorentzian
metric g|(t,x) = −h1|t + f(t)h2|x and time orientation given by the orientation
of I. This satisfies the conditions of [AB08, 7.1] for sectional curvature bounded
below by K (and thus also timelike and causal curvature bounded below by K),
but not the condition for sectional curvature bounded above by any K̃. ♦

Definition 2.2.17. A Lorentzian pre-length space X has timelike / causal
curvature unbounded above / below if it has an open set U which satisfies the
first two properties of a timelike / causal ≥ k / ≤ k-comparison neighbourhood,
but the third property (the comparison property) fails for all k ∈ R. In both
cases we say that X has a curvature singularity. Obviously, timelike curvature
unboundedness implies causal curvature unboundedness. ♦

Definition 2.2.18. A Lorentzian pre-length space X has timelike / causal
curvature strongly unbounded above / below if it has a point p and a neighbourhood
base of open sets U which satisfy the first two properties of a timelike / causal
≥ k / ≤ k-comparison neighbourhood, but the third property (the comparison
property) fails for all k ∈ R. In both cases we say that X has a real curvature
singularity. Obviously, strong timelike curvature unboundedness implies strong
causal curvature unboundedness. ♦

Curvature bounds and having curvature strongly unbounded (both in the
same direction) exclude each other, but not with the curvature weakly unbounded:

Example 2.2.19 (Non-global bounds). Consider the following subset of Minkowski
space and glue the arrows together:

The red and green regions form causal ≥ k and ≤ k-comparison neighbourhoods.
But in the whole space, there exist triangles where the triangle bound below-
condition is not satisfied: The blue points and black line form a degenerate (but
not in the strong sense) triangle where the middle point does not lie on the
longest side. Thus for suitably chosen points q1 and q2 on the sides of the triangle,
τ(q1, q2) = 0 as they lie in the different green areas, but τ̄(q1, q2) > 0 in all
comparison spaces (as the triangle there is degenerate in the strict sense). Thus
τ̄(q1, q2) 6≤ τ(q1, q2) and the whole space does not satisfy the ≥ k-comparison
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property, but the other conditions for being a ≥ k-comparison neighbourhood.
Therefore, this space has curvature bounded below by 0, but at the same time
has timelike curvature unbounded below. ♦

It is unknown whether this is also possible with curvature unbounded above,
or if there is a globalization property of the bounds.

Example 2.2.20. Causal funnels with λ timelike have timelike curvature un-
bounded below: It is l.u.g., so otherwise proposition 2.2.33 would yield it has no
timelike branching points. ♦

Example 2.2.21. The Schwarzschild black hole (including the singularity) has
timelike curvature unbounded below. See [KS18, 4.22]. ♦

2.2.3 Hyperbolic angles

Now for the analogon of angles:

Definition 2.2.22 (Rapidity and speed). In special relativity rapidity is an
alternative measure of relative speed: In Minkowski space (Rn,1, b), we define
the rapidity or hyperbolic angle ω = ^(v, w) ≥ 0 between two timelike vectors
v, w ∈ Rn,1 by b(v, w)2 = cosh(ω)2b(v, v)b(w,w). By the reverse Cauchy Schwarz
inequality for future timelike vectors (see [Gal14, 1.1 (1)]) we have b(v,w)2

b(v,v)b(w,w) ≥ 1,
and thus we can solve for ω ≥ 0. It is independent of scaling and reversing v
and w.

Using this we can also define rapidity in Lorentzian manifolds M : Let
α, β : (−ε, ε) → M be two timelike curves with p = α(0) = β(0), then the
rapidity between them is ^(α′(0), β′(0)) (where we identified TpM with Rn,1).

For p1 � p2 � p3 with finite τ -distance in a Lorentzian pre-length space
and a comparison triangle ∆p1p2p3 in the k-plane, we can define the compari-
son rapidities or hyperbolic comparison angles ˜̂k(p2, p1, p3), ˜̂k(p1, p2, p3) and
˜̂k(p1, p3, p2) as the rapidities in the corresponding vertex of the comparison
triangle. (Like for angles, the second point denoted is the point the hyperbolic
angle is at.) For k = 0, we set ˜̂ = ˜̂0.

For a past directed curve α : [0, ε) → X and a future directed curve β :
[0, ε) → X with α(0) = β(0) = p in a strictly intrinsic Lorentzian pre-length
space, we define the rapidity or hyperbolic angle between them as

^(α, β) = lim
t→0,s→0

˜̂0(α(s), p, β(t)),

if it exists.16

16Note requiring α to be past directed and β to be future directed gives ∆α(s)pβ(t) a fixed
time order. If they were e.g. both future directed in a spacetime, we would find s, t such that
α(s) and β(t) were not even ≤-comparable.
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To get the relative speed of two physical particles described by future directed
causal curves α and β meeting at α(0) = β(0) with rapidity ω = ^(α, β), the
formula v = tanh(ω) (in units of the speed of light) is used. ♦

Lemma 2.2.23 (Law of cosines). The definition of the comparison rapid-
ity leads to the hyperbolic law of cosines: For p, q, r in the Lorentzian k-
plane forming a finite timelike triangle (not necessarily in this order), let
a = max(τ(p, q), τ(q, p)), b = max(τ(q, r), τ(r, q)), c = max(τ(p, r), τ(r, p)) be
the side-lengths, ω = ˜̂k(p, q, r) be the hyperbolic angle at q and the scaling factor
s =

√
|k|. If q is a future or past endpoint, we set ε = −1, if it is not, ε = 117.

Then we have:
a2 + b2 = c2 − 2abε cosh(ω) for k = 0

cos(sc) = cos(sa) cos(sb) + ε cosh(ω) sin(sa) sin(sb) for k < 0
cosh(sc) = cosh(sa) cosh(sb)− ε cosh(ω) sinh(sa) sinh(sb) for k > 0

In particular, fixing a, b and s, εω is a strictly increasing function in c.

Proof. For k = 0, we are in Minkowski space and the sides of this triangle are
just the straight lines. [AB08, 2.3] gives us −c2 = −a2−b2−2abε cosh(ω), which
is the desired formula.

If k 6= 0, the sides of the triangle are future or past directed geodesics
γpq, γqr, γpr, which we assume to be defined on the domain [0, 1]. The energy
E(γpipj ) is given by −τ(pi, pj)2 if pi � pj . Now we apply [Kir18, 3.1.3]:

cos(
√
kE(γpr)) = cos(

√
kE(γpq)) cos(

√
kE(γqr))

+
〈
γ′qp(0), γ′qr(0)

〉 sin(
√
kE(γpq))√
E(γpq)

sin(
√
kE(γqr))√
E(γqr)

.

Note that this uses imaginary numbers if k > 0. In that case, cos(ix) = cosh(x)
and sin(ix) = i sinh(x).
For k < 0, this equation reads:

cos(sc) = cos(sa) cos(sb) + ε cosh(ω) sin(sa) sin(sb),

where ε is the sign of the inner product (which is as described in the statement).
For k > 0, this equation reads:

cosh(sc) = cosh(sa) cosh(sb)− ε cosh(ω) sinh(sa) sinh(sb),

where again the minus comes from an i2 in the denominator.

Similarly to above, we can construct examples where the rapidity between
curves does not exist:

17ε is just the sign of the inner product of the initial velocities of the two sides at q
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Example 2.2.24 (Nonexistent rapidities). In R1,1, consider the curves α(t) =
(t, 1

2 sin(log(t))) and β(t) = (t, t2 ) meeting at p = α(0) = β(0) = (0, 0). Then
α′(t) = (1, 1

2 sin(log(t)) + 1
2 cos(log(t))︸ ︷︷ ︸

∈(−1,1)

) is always future timelike, so both α and

β are future directed timelike.
For sn = e−2πn → 0, cosh( ˜̂0(α(sn), p, β(t)))2 = 4

3 (corresponding to v = 1
2 ),

but for sn = e−2πn−π/2 → 0, cosh( ˜̂0(α(sn), p, β(t)))2 = 1 (corresponding to
v = 0). ♦

Proposition 2.2.25 (Rapidities agree). Let α : [0, ε) → M be a past directed
and β : [0, ε) → M a future directed C1 regular g-timelike curve in a strongly
causal spacetime M . Then the rapidity ^(α, β) in the Lorentzian pre-length space
is the same as the Lorentzian rapidity ^(α′, β′).

Proof. We try to modify the proof of 2.1.14 to this setting:
As α and β are regular and g-timelike, v = α′(0) and w = β′(0) are past resp.

future timelike vectors, so the Lorentzian rapidity formula makes sense.
By the law of cosines (2.2.23, k = 0, ε = 1) we get the comparison rapidity:

cosh( ˜̂0(α(s), p, β(t))) = τ(α(s), β(t))2 − τ(α(s), p)2 − τ(p, β(t))2

2τ(α(s), p)τ(p, β(t)) .

In a convex normal neighbourhood U of p, all these distances are given by
geodesics smoothly varying with the points contained in U . The distances
appearing behave as follows when s, t→ 0:

• τ(α(s), p)2 = −s2g(v, v) + o(s2)

• τ(p, β(t))2 = −t2g(w,w) + o(t2)

• τ(α(s), β(t))2 = −g(−sv + tw,−sv + tw) + o((s+ t)2)

The first and second equation are special cases of the third one: replace s resp. t
by zero.

To prove the third equation, we use the map E : TM →M ×M defined by
xp 7→ (p, expp(x)). We can shrink U so that E restricts to a diffeomorphism with
image U × U . Let γx be the geodesic with initial velocity x, then τ(α(s), β(t))
is the length of the distance maximizing geodesic γE−1(α(s),β(t)) on the do-
main [0, 1] (as U is convex), which is the (time-)length of the initial velocity
E−1(α(s), β(t)), giving τ(α(s), β(t))2 = −g(E−1(α(s), β(t)), E−1(α(s), β(t))).
In a normal chart, we have limt→0

E−1(p,γy(t))−E−1(p,p)
t = limt→0

ty
t = y and

limt→0
E−1(γx(t),p)−E−1(p,p)

t = limt→0
−tx
t = −x as the geodesics between these

points are given by γy and γ−x, respectively.
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We expand into a Taylor series at s = t = 0: The O(1) term is 0, the O(t)
term is −∂g(0, 0) − 2g(∂t|0E−1(α(0), β(t)), 0) = 0 and similarly for the O(s)
term. The O(t2) term is

1
2(−∂∂g(0, 0) + · · · − 2g(∂t|0E−1(α(0), β(t)), ∂t|0E−1(α(0), β(t)))) = −g(w,w),

the O(s2) term is symmetric to this one, the O(st) term is

−∂∂g(0, 0) + · · · − 2g(∂t|0E−1(α(0), β(t)), ∂s|0E−1(α(s), β(0))) = −2g(−v, w)

In total, we get the Taylor expansion of τ(α(s), β(t))2:

0 + 0s+ 0t− g(−v,−v)s2 − g(w,w)t2 − 2g(−v, w)st+ o((s+ t)2) =

−g(sv − tw, sv − tw) + o((s+ t)2)

Plugging these approximations into the law of cosines and ignoring the o((t+s)2)
terms (if v and w are timelike), we are left with

cosh( ˜̂0(α(s), p, β(t))) = −g(sv − tw, sv − tw) + g(sv, sv) + g(−tw,−tw)
2
√
−g(sv, sv)

√
−g(−tw,−tw)

.

Expanding the difference term and cancelling, we get g(v,w)√
−g(v,v)

√
−g(w,w)

, which
is the formula of the Lorentzian angle.

Proposition 2.2.26 (All ˜̂k converge to ^). Let X be an intrinsic Lorentzian
pre-length space which is strongly causal, α, β a future and a past directed curve
with α(0) = β(0) = p. Then for all k, limt,s→0 ˜̂k(α(s), p, β(t)) = ^(α, β) (or a
corresponding permutation in ˜̂k) and one exists if and only if the other exists.

Proof. We restrict to t, s small enough to have the size bounds automatically
satisfied (2.2.12). By the law of cosines (2.2.23) we have (with l =

√
|k|, ε = ±1

as in the law of cosines and the side-lengths a = max(τ(p, α(s)), τ(α(s), p)), b =
max(τ(p, β(t)), τ(β(t), p)), c = max(τ(α(s), β(t)), τ(β(t), α(s)))): if k > 0,

cosh( ˜̂k(α(s), p, β(t))) = ε
cosh(la) cosh(lb)− cosh(lc)

sinh(la) sinh(lb)

or the corresponding permutation. Expanding the hyperbolic cosines and sines,
this is:

ε
(1 + (la)2/2 + o(la)2)(1 + (lb)2/2 + o(lb)2)− (1 + (lc)2/2 + o(lc)2)

l2ab+ o(l2ab) =
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ε
1 + (la)2/2 + (lb)2/2 + l4a2b2/4− (lc)2/2 + o(la)2 + o(lb)2 + o(lc)2

l2ab+ o(l2ab)2 =

ε
a2 + b2 − c2 + l2a2b2/2 + o(a)2 + o(b)2 + o(c)2

2ab+ o(lab)2 =

ε
a2 + b2 − c2

2ab + ε
l2a2b2/2 + o(a)2 + o(b)2 + o(c)2 + o(lab)2

2ab
As all a, b, c→ 0, this converges if and only if

cosh( ˜̂0(α(s), p, β(t))) = a2 + b2 − c2

2ab

(or the corresponding permutation) converges, and they converge to the same
value, and similarly for k < 0.

Proposition 2.2.27 (Angles exist in spaces of bounded curvature). Let X be
a strongly causal Lorentzian pre-length space with causal / timelike curvature
bounded above or below. Then for any past directed causal / timelike distance
realizing curve α : [0, ε) and future directed timelike curve β : [0, ε) with α(0) =
β(0) = p, the angle ^(α, β) exists. (And of course, an analogous statement holds
for α timelike and β causal.)

Proof. We only consider the case with curvature bounded below by k, the other
case is analogous. We define the comparison angle function for α and β as
θk(s, t) = ˜̂k(α(s), p, β(t)).
Claim: θk is monotonously increasing in s and t for s and t small.
We only prove θk is monotonous in s, the other statement follows analogously.
So let s > s0 > 0 and t > 0 be small enough to lie in a (causal / timelike) ≥ k-
comparison neighbourhood where the size bounds for k are automatically satisfied
(2.2.12). To calculate θk(s, t) we need a comparison triangle ∆̄1 = ∆α(s)β(t)p
to ∆1 = ∆α(s)pβ(t), and for θk(s0, t) we need a comparison triangle ∆̃2 to
∆2 = ∆α(s0)pβ(t) in the Lorentzian k-plane. But as α(s0) lies on a side of ∆1,
we can do triangle comparison:

The situation ∆α(s)β(t)p, α(s0) has a comparison situation ∆̄1, α(s0). We
get τ(α(s0), β(t)) ≤ τ̄(α(s0), β(t)).

As the sides α and β of ∆2 are segments of the sides α and β of ∆1, the
sub-triangle ∆α(s0)β(t)p of ∆̄1 and ∆̃2 have agreeing side-lengths except the
side opposite p. That side satisfies τ̄(α̃(s0), β̃(t)) ≤ τ̄(α(s0), β(t)).

But by the law of cosines (2.2.23, ε = 1) the hyperbolic angle is a strictly
increasing function in the opposite side-length. This implies

θk(s0, t) = ˜̂k(α(s0), p, β(t)) ≤ ˜̂k(α(s), p, β(t)) = θk(s, t),
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so θk is monotonously increasing in s. Analogously, we get θk is monotonously
increasing in t.

As monotone limits exist, lims,t→0 θk(s, t) exists, and as all ˜̂k converge to
^ (2.2.26), the limit is ^(α, β).

Remark 2.2.28 (One-sided comparison). The definition of timelike and causal
curvature bounds with triangle comparisons involving two points q1 and q2 on
two sides is equivalent to using a one-sided comparison of one point q on a side
to a vertex pi. We distinguish future comparison if pi = p3, past comparison if
pi = p1 and across comparison if pi = p2. ♦

Proof. By picking one of the qi to be a vertex one immediately sees one-sided
comparisons are two-sided comparisons.

For the other direction we consider the two-sided comparison (q1, q2) and
decompose it into two one-sided comparisons: We only do the case of curvature
bounded below, the other case follows nearly analogously. We note that the size
bounds of a causal triangle get inherited by any causal sub-triangle (i.e. having
the vertices on the sides of the triangle), so we need not care about them.

We need to distinguish on which sides the q lie: If both lie on the same side,
we have nothing to check (the side is distance realizing and comparisons always
have equality). If q1 is on α12 and q2 is on α23 (i.e. the two shorter sides), we
need to check the condition on the comparison situation ∆p1p2p3, q1, q2. We
automatically have q1 � q2 and q1 � q2, so we only have to check the condition
on τ(q1, q2). By past comparison for ∆p1p2p3, q2 we get τ(p1, q2) ≤ τ̄(p1, q2), by
future comparison for ∆p1p2q2, q1 (this is a timelike / causal triangle as all points
on the side α23 are in the timelike future of p1, except possibly p2) we get a future
comparison triangle ∆p̃1p̃2q̃2, q̃1 which satisfies τ(q1, q2) ≤ τ̄(q̃1, q̃2)). We need to
compare τ(q1, q2) with τ̄(q1, q2): Note that the situation ∆p1p2q2, q1 (inside the
comparison situation ∆p1p2p3) looks just like the future comparison situation
∆p̃1p̃2q̃2, q̃1, except that one side is of different length: τ̄(p̃1, q̃2) = τ(p1, q2) ≤
τ̄(p1, q2). But as the length of the "longest side" τ̄(p̃1, q̃2) increases to τ̄(p1, q2),
the angle ˜̂k(q̃2p̃2p̃1) = ˜̂k(q̃2p̃2q̃1) increases to ˜̂k(q2p2p1) = ˜̂k(q2p2q1) by the
law of cosines (2.2.23, ε = 1) and the distance τ̄(q̃1, q̃2) increases to τ̄(q1, q2),
yielding the desired τ(q1, q2) ≤ τ̄(q̃1, q̃2) ≤ τ̄(q1, q2).

in X past+mixed future

p1

p2

p3

q1

q2

p1

p2

p3

q1

q2

p̃1

p̃2

q̃1

q̃2

57



(Sides between equally named points have equal length if they are drawn in the same colour)

Otherwise, we can w.l.o.g. assume q1 is on α12 and q2 is on α13. As q1 and
q2 do not automatically have a time ordering, we need to check the condition on
both τ(q1, q2) and τ(q2, q1). First we do τ(q1, q2): We want to show the condition
on the comparison situation ∆p1p2p3, q1, q2 by decomposing it into two one-sided
comparisons: By future comparison for ∆p1p2p3, q1 we get τ(q1, p3) ≤ τ̄(q1, p3).
By across comparison for ∆p1q1p3, q2 (this is a timelike / causal triangle as all
points on the side α12 are in the timelike past of p3) we get an across comparison
situation ∆p̃1q̃1p̃3, q̃2 which satisfies τ(q1, q2) ≤ τ̄(q̃1, q̃2).

We need to compare τ(q1, q2) with τ̄(q1, q2). We note that the situation
∆p1q1p3, q2 looks just like the across comparison situation ∆p̃1q̃1p̃3, q̃2, except
that one side is of different length: τ̄(q̃1, p̃3) = τ(q1, p3) ≤ τ̄(q1, p3). But
as this "future side" τ̄(q̃1, p̃3) increases, the angle ˜̂k(p̃3p̃1q̃1) = ˜̂k(q̃2p̃1q̃1)
increases to ˜̂k(p3p1q1) = ˜̂k(q2p1q1) by the law of cosines (2.2.23, ε = −1)
and the distance τ̄(q̃1, q̃2) increases to τ̄(q1, q2), yielding the desired τ(q1, q2) ≤
τ̄(q̃1, q̃2) ≤ τ̄(q1, q2).

in X future+mixed across

p1

p2

p3

q1

q2

p1

p2

p3

q1

q2

p̃1

p̃3

q̃1

q̃2

For the condition on τ(q2, q1), we need to check the condition on the compar-
ison situation ∆p1p2p3, q2, q1 by decomposing it into two one-sided comparisons:
By across comparison for ∆p1p2p3, q2 we get τ(q2, p2) ≤ τ̄(q2, p2).

If q2 6� p2, also q2 6� q1 (as q1 ≤ p2 are on the same side) and τ(q2, q1) =
0 ≤ τ̄(q2, q1) (this is only needed for the bound below. For the bound above,
we have τ(q2, p2) ≥ τ̄(q2, p2) and so also q2 6� p2. Therefore both τ(q2, q1) and
τ̄(q2, q1) are zero). If q2 � p2, we can use across comparison for ∆p1q2p2, q1

(this is a timelike / causal triangle if q2 � p2), we get an across comparison
situation ∆p̃1q̃2p̃2, q̃1 which satisfies τ(q2, q1) ≤ τ̄(q̃2, q̃1).

We need to compare τ(q2, q1) with τ̄(q2, q1). We note that the situation
∆p1q2p2, q1 looks just like the across comparison situation ∆p̃1q̃2p̃2, q̃1, except
that one side is of different length: τ̄(q̃2, p̃2) = τ(q2, p2) ≤ τ̄(q2, p2). But as this
"future side" τ̄(q̃2, p̃2) increases to τ̄(q2, p2), the angle ˜̂k(q̃2p̃1p̃2) = ˜̂k(q̃2p̃1q̃1)
decreases to ˜̂k(q2p1p2) = ˜̂k(q2p1q1) by the law of cosines (2.2.23, ε = −1)
and the distance τ̄(q̃2, q̃1) increases to τ̄(q2, q1), yielding the desired τ(q2, q1) ≤
τ̄(q̃2, q̃1) ≤ τ̄(q2, q1).
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in X across+mixed across

p1

p2

p3

q1

q2

p1

p2

p3

q1
q2

p̃1

p̃2

q̃1
q̃2

2.2.4 Branching

Definition 2.2.29. A maximal future directed causal curve γ : [a, b]→ X in a
Lorentzian pre-length space has a future branching point p = γ(t) (p 6= γ(a)) if
there exists a maximal future directed causal curve γ̃ : [a, t+ ε] (for some small
ε > 0) , such that:

• they agree up to t (i.e. γ|[a,t] = γ̃|[a,t]),

• they are non-trivial from t to t+ ε (i.e. γ(t) 6= γ(t+ ε) and γ̃(t) 6= γ̃(t+ ε)),
but

• they do not meet shortly after t (i.e. γ((t, t+ ε]) ∩ γ̃((t, t+ ε]) = ∅)

Correspondingly, one defines past branching points where they agree after t and
do not meet shortly before t. A branching point is either of these.

A timelike branching point x ∈ X is a future / past branching point of a
future directed timelike maximal curve γ where also γ̃ is future directed timelike.

A Lorentzian pre-length space X is timelike locally uniquely geodesic (l.u.g.)
if it is covered by open sets U where for any p � q ∈ U there exists a unique
(up to reparametrization) maximal future directed causal curve p q contained
in U . In particular, X is locally timelike path connected. ♦

Example 2.2.30. A causal funnel with timelike γ (1.7.15) is l.u.g. (even globally
uniquely geodesic), but has timelike branching points: the end point of γ is future
timelike branching, and the starting point of γ is past timelike branching. ♦

Example 2.2.31. The subset [−1, 0]× {0} ∪ {(t, 1
2 t) : t ∈ [0, 1]} ∪ {(t,− 1

2 t) : t ∈
[0, 1]} in Minkowski space has (0, 0) as a future timelike branching point, but is
l.u.g. (even globally uniquely geodesic).

59



♦

Example 2.2.32. On X = R2 = {(t, x) ∈ R2}, we take (t, x) 7→ t as a absolute
time function to make it a Lorentzian pre-length space. Then every curve with
strictly increasing t-component is a distance realizing future directed timelike
curve. In particular, every future directed timelike curve is distance realizing
and branching everywhere, and X is not timelike locally uniquely geodesic. ♦

Theorem 2.2.33 (Curvature bounded below has no branching). Let X be a
strongly causal Lorentzian pre-length space with timelike curvature bounded below.
If either:

(i) X is covered by relatively compact, causally closed and open U where for
p� q ∈ U there is a maximal future directed timelike curve γ contained
in U , and every future directed causal curve in U which contains a null
segment is strictly shorter, or

(ii) X is l.u.g.,

then X has no timelike branching points.

Proof. Let x be a (w.l.o.g. future) timelike branching point. Then we get future
directed timelike curves α, α′ : [a, b] → X with x = α(t) as in the definition
of branching. As (i), (ii) and being a timelike comparison neighbourhood is
preserved when taking a timelike diamond inside, we can find a neighbourhood
U of x which is a timelike comparison neighbourhood in the form of a timelike
diamond satisfying (i) or (ii). We now construct a non-degenerate timelike
triangle in U with segments of α and α′ as sides, including x on both:

If U satisfies (ii), choose points p = α(s) � x � r = α(u) ∈ U and
x � r′ = α′(u′) in U with r � r′, with parameters s < t < u, u′ and r not
on α′. We now restrict α and α′ to this interval: W.l.o.g., α : p x r and
α′ : p  x  r′. We also have a unique (by l.u.g.) maximal future directed
causal β : r  r′ of positive length (U is timelike strictly intrinsic). This gives
the desired timelike triangle ∆prr′ which is non-degenerate by the l.u.g. property
(α concatenated with β is also p r′ and thus shorter than α′).

α α′

β

p

x

r

r′
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If U satisfies (i), choose points p = α(s)� x and r = α(u), r′ = α′(u′) with
τ(x, r) = τ(x, r′) in U and parameters s < t < u, u′ (this is possible as τ is
continuous on U). By the reverse triangle inequality τ(r, r′) = 0 and τ(x, r′) > 0.
Going backward from r on α, we set u∗ = sup{u : τ(α(u), r′) > 0} ∈ [t, u]. We
get un → u∗ where there exist future directed timelike γn : α(un) r′.

As X is strongly causal, d-compatible and causally path connected, it is
non-totally imprisoning by 1.6.33.(3). As U is causally closed, relatively compact,
we use the limit curve theorem (1.6.28) to get q∗ = α(u∗) is null before r′ (the
dotted line below). Now q∗ � r, otherwise q∗ = r and the future directed causal
curve going from p q∗ with α and then from q∗  r′ has the same length but
contains a null segment,  (i).

Moving a bit backwards from u∗, we find a point x � q � q∗ on α where
τ(q, r′) < τ(q∗, r) (as τ is continuous). Then p � q � r′ forms the desired
timelike triangle which is non-degenerate: τ(p, q) + τ(q, r′) < τ(p, q) + τ(q∗, r) =
τ(p, r) = τ(p, r′).

α α′

p

x

r r′

q∗
q

In both cases, we get a non-degenerate timelike triangle ∆pqr′ and find the
corresponding comparison triangle ∆pqr′ in the comparison space. We now get
two comparison points for the point x, as it is on two sides of ∆pqr′: x1 on the
side p q and x2 on the side p r′. We have τ̄(x1, r′) < τ̄(x2, r′), as otherwise
the broken geodesic p x1  r′ would be at least as long as the geodesic p r′

(via x2) in the uniquely geodesic comparison space.
As the timelike curvature is bounded from below, the future comparison is

τ̄(x1, r′) ≥ τ(x, r′), yielding τ(x, r′) = τ̄(x2, r′) > τ̄(x1, r′) ≥ τ(x, r′)  .
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α α′

β

p

x

q

r′

⇒

ᾱ α′

β̄

p

q

r

x1 x2

The dotted line is compared. Both dotted lines on the right correspond to the distance τ(x, r), i.e.

the dotted line on left.

Sources

Triangle comparison in Lorentzian pre-length spaces is described in [KS18, 4.7]
for timelike bounds and [KS18, 4.14] for causal bounds, branching is taken from
[KS18, 4.10]. The Lorentzian constant curvature spaces were taken from [O’N83,
8.22,8.24]. The existence of triangles (2.2.9) and Toponogov (2.2.14) are from
[AB08, 2.1,1.1]. The example 2.2.16 is done analogously to [AB08, 7.1], example
2.2.19 is new. The law of cosines is mainly [Kir18, 3.1.3]. The agreement of
rapidities and the convergence of all ˜̂k to ^ (2.2.26) are probably new results.
The existence of angles (2.2.27) and one-sided comparison (2.2.28) are new.
Curvature bounded below has no branching (2.2.33) is taken from [KS18, 4.12].
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