
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

”
High-throughput GW Calculations“

verfasst von / submitted by

Florian Ellinger, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt / UA 066 876
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Physik UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. techn. Cesare Franchini



 



Contents

1 Introduction 3

1.1 Shortcomings of Density Functional Theory . . . . . . . . . . . . . . . . . . . 3

1.2 The GW Approach - Correcting DFT Calculations . . . . . . . . . . . . . . . . 3

1.2.1 GW Calculations - Conventional Approach . . . . . . . . . . . . . . . 4

1.2.2 The Basis Set Extrapolation Method . . . . . . . . . . . . . . . . . . . 4

1.3 Automated Calculations for Large Material Sets . . . . . . . . . . . . . . . . . 5

2 Theory 7

2.1 Physical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Important Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Electronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Electronic Band Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Computational Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Important Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 VASP - Vienna Ab initio Simulation Package . . . . . . . . . . . . . . . 13

2.2.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 The GW Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 The GW Approximation as Implemented in VASP . . . . . . . . . . . . 18

2.2.6 Converged GW Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 Basis Set Correction of the Correlation Energy . . . . . . . . . . . . . 21

3 Methods 23

3.1 High Throughput GW Calculations . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Implementing the Basis Set Extrapolation . . . . . . . . . . . . . . . . 23

3.1.2 Automating GW Calculations . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Overview of the Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Scripts and Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 G0W0 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 DFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Band Structure Calculations . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Calculating the Band Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Gamma Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Smallest Indirect Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Smallest Direct Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



Contents

4 Results 39

4.1 Validating the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Comparison to the Original Basis Set Extrapolation . . . . . . . . . . . 39

4.1.2 Wrongly Placed or Occupied Bands . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Accuracy of the Memory Conserving Variant . . . . . . . . . . . . . . 43

4.1.4 Influence of Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Automatic GW series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Automatically Calculated Band Gaps . . . . . . . . . . . . . . . . . . . 46

4.2.2 Comparison to Experimental Gaps . . . . . . . . . . . . . . . . . . . . 49

4.3 Possibility of a Norm Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Band Structures at DFT Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Discussion 55

5.1 Challenges during the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Encountered Problems and Stability . . . . . . . . . . . . . . . . . . . 55

5.1.2 Correct K-point Correction . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.3 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.4 Code Instability due to Large Band Numbers . . . . . . . . . . . . . . . 56

5.2 Feasibility of Automatic GW Calculations . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Bringing GW Calculations to AiiDA . . . . . . . . . . . . . . . . . . . 57

Acknowledgments 59

Bibliography 61

Appendix 63

2



1 Introduction

In materials science, computer simulations have become an integral part for the analysis and

discovery of novel materials. With increasing computational power, previously very challeng-

ing methods are nowadays available broad use. Just like a few years back with the surge of

Density Functional Theory (DFT) and its wide application, the GW method is on the brink of

introducing a new standard for ab initio simulations.

1.1 Shortcomings of Density Functional Theory

After the development of DFT by Hohenberg and Kohn back in 1964 this method has been

refined over the years and was long the gold-standard for ab initio calculations. Through con-

tinuous enhancements, such as implementing better exchange-correlation potentials, today

calculated quantities match experimental values to a very high degree.

Although, through the inherently inaccurate treatment of correlation effects some flaws of

the method are not completely compensated yet. One of the biggest problems here is the sys-

tematic underestimation of a materials fundamental electronic band gap.

Unfortunately, the fundamental gap is detrimental for modern material applications which

require semi-conducting or insulating behavior, such as in information technology, electronics,

solar cells, energy conversion, and many more. Additionally, the electronic band structure, to

which the band gap is of course directly related, defines many other material properties, such

as effective mass, Fermi velocity and optical transitions. An inaccurate description of it is a

great obstacle in the practical usability of DFT simulations.

1.2 The GW Approach - Correcting DFT Calculations

The GW approximation (G is the one particle Green function, W the screened Coulomb po-

tential) was introduced as a beyond Hartree-Fock method, substituting the static Coulomb

potential with a dynamically screened one. For the accurate treatment of correlation effects in

materials it is important to find a good estimation of the electronic self-energy. The first full

calculation of this property was done by Hedin, back in 1965.[3] The GW approximation as

used today was then introduced as the first term of an expansion of this self-energy in powers

of the screened Coulomb potential and has found many applications.[4, 5, 6]

Since this can be seen as a perturbation of an unperturbed ground state Hamiltonian, the

GW method is also closely related to quantum-mechanical perturbation theory. To employ

such a method, an initial guess of the unperturbed system is necessary. This can be done

systematically by performing an ab initio DFT calculation and use the resulting Kohn-Sham
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1 Introduction

orbitals as a starting point of the GW calculations. In this perspective, the GW method is used

to correct correlation effects, which are treated inaccurately in DFT calculations.

For a long time it was nearly impossible to perform GW calculations for many problems,

due to very demanding computational costs. Through new computing clusters, equipped with

an ever-growing amount of memory, this situation has changed and GW calculations can be

performed successfully even for large systems.

1.2.1 GW Calculations - Conventional Approach

Although non self-consistent GW calculations, called single-shot GW (or G0W0), are relatively

easy to perform, one such calculation alone does not guarantee converged results. One way

to improve this situation is to either self-consistently vary the screened Coulomb potential W

(G0W) or both, the potential and the Green function G (fully self-consistent GW). Although

this seems to be a good way to get good results for all kinds of properties, such self-consistent

calculations can be very difficult to perform.

The standard procedure of producing accurate results at GW level is to manually converge

computational parameters, such as the energy cut-off (also for the auxiliary basis set), number

of k-points, number of energy bands, and for self-consistent or half self-consistent calculations

also the number of iterations (see section (2.2.6)). Practically this means increasing each of the

different parameters systematically and performing several calculations in succession, while

monitoring the results. Above approach is often referred to as the conventional method (or

conventional approach) of calculating converged results with GW simulations, which will also

be the term for it used in this thesis.

Unfortunately, this method has two significant downsides: (1) It is a lot of work setting up all

the different G0W0 calculations and converging several parameters manually and (2), probably

even worse, is that this method does not stand on a strict mathematical foundation. That

quantities, such as the band gap, show a convergence while changing mentioned parameters is

a purely heuristic find and can not be expressed formally. A relatively new method, the basis

set extrapolation proposed by Klimeš et al. in reference [2], makes here a difference by being

rigorously derived from the mathematical background of the GW approach.

1.2.2 The Basis Set Extrapolation Method

In their paper from 2014, Klimeš et al. introduce a new way for calculating converged band

gaps on GW level.[2]

Basis set extrapolation uses the fact, that errors which arise due to the inaccurately treated

correlation energy of the system can be reduced by including more (empty) energy bands in

the calculation. In fact, the error shows a 1/N behavior, where N is the number of electronic

bands.1 This means by extrapolating to an infinite set of bands, the error can be corrected and

1As shown later in section (2.2.7), in the derivation of the basis set correction, the number of plane waves in the

auxiliary basis set N
χ
pw occurs instead of the number of bands NB. However, these are equivalent formulations

because the number of bands and energy cut-offs (determining the number of plane waves) have to be increased

simultaneously, which in turn stand in a fixed relation to each other where the energy cut-offs of the normal

basis set (Ecut ) governs the one of the auxiliary basis set (E
χ
cut =

2
3Ecut ).
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the correct band gap retrieved.

This method not only reduces the number of G0W0 necessary to be performed, it also does

not require to converge parameters manually or monitor results in the process. This is the

key difference important for this project. The fact, that this method is straight forward to

implement and does not require a subjective evaluation if convergence is reached makes it

possible to automate the whole procedure without the need of complicated algorithms.

One downside, however, is that with this method only single results are corrected, such as

the fundamental band gap or quasi particle energies. While the conventional method provides

a set of parameters for which most results found in the output should be well converged (in-

cluding band structure, density of states, dielectric function, and optical spectra), the basis set

extrapolation fails at doing that. This means there exists no single output file with accurate

data, in contrast to the conventional method once the optimal parameters are found.

1.3 Automated Calculations for Large Material Sets

A crucial, if not the most important part of modern computer science is the access to large

data sets. As in many different fields, in computational solid state and materials physics too,

the arrival of data driven methods (machine learning) seems like a promising new approach

to many already solved or still unsolved problems.[7] The success of such methods depends

greatly on the data set available, however.

For GW calculations such data collections are practically non-existent, since simulations

meant tedious one-by-one investigations of single materials in the past. With the new basis set

extrapolation scheme as a starting point for the automation of GW calculations this situation

could change in the near future. Since most of the workload of setting up calculations and pars-

ing results can be translated into scripts, large sets of materials can be analyzed quickly. This is

also the main idea of various software suites specialized in high-throughput simulations, such

as AiiDA.[8] GW calculations in the form of basis set extrapolation can easily be implemented

in such environments.

This larger scope shifts the paradigm away from single, sophisticated calculations towards

larger test series. Furthermore, the fine tuning is done more so by changing hyper-parameters

(fixed values for all calculations, as called for machine learning codes) and not by adjusting all

parameters for each material individually. As a consequence, the results themselves have to be

viewed as a collective entity. The result data sets accuracy has to be improved as a whole while

retaining a practical throughput rate.

With the goal of databases containing data from materials in the thousands, this trade-off

is well worth it in the early stages. Furthermore, machine learning techniques need first and

foremost a large quantity of data to be applicable at all. A higher quality of data then improves

the methods accuracy. With this in mind, it only makes sense to lay a focus on the quantitative

yield of a method as a starting point and then try to improve the average accuracy of the whole

result set. To provide such a database and the means to fill it represents the final goal of the

project the work done here is part of.
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2 Theory

In this section a theoretical overview is given, to create a better understanding of underlying

concepts used in this work. The topics are split up in (1) explaining the physical background

and (2) the computational theory and methods used, since these are the two main pillars the

project is built on.

At the beginning of both parts, relevant terms which might occur more frequently during

the thesis are explained briefly.

In the section for physical theory, basics about the description of electronic systems are given

before relevant material properties like the band structure and the fundamental band gap are

covered.

For the computational part, theoretical details regarding ab initio simulations in general,

density functional theory (DFT), and GW calculations are discussed. Afterwards, the conven-

tional method of calculating a converged GW level band gap is presented, before the basis set

extrapolation is introduced in a short summary of what can be found in the original proposal

of the method.[2]

2.1 Physical Theory

Many important properties of materials arise due to their electronic configuration. Especially

for technical applications crucial quantities like the band gap, conductivity, optical properties,

and many more can either directly or indirectly be related to their electronic structure.

2.1.1 Important Terms

To understand the topics discussed below, some important terms will be explained here briefly.

reciprocal space: Materials are usually described in two different spaces: real and reciprocal

space. Real space corresponds to our actual world, where we describe the materials structure

by defining a lattice through basis vectors. We call this the systems Bravais lattice, which

represents together with the atomic basis the crystal symmetry. Atom positions in the crystal

can then be expressed by linear combinations of these basis vectors.

For reciprocal space, the topic gets a bit less intuitive. The reciprocal lattice corresponding

to the real lattice of a material is given by all wave vectors k, that define plane waves with

the periodicity of the given Bavais lattice.[9] This can be explained in a mathematical way by

defining the systems Bravais lattice as R = n1a1 + n2a2 + n3a3. The reciprocal lattice is then
given by all vectors G = hb1 + kb2 + lb3 which fulfill

eiG·R = 1. (2.1)
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2 Theory

Figure 2.1: Graphical representation of the Brillouin zones. The most relevant first Brillouin zone is
marked light green at the center. In increasing darkness the second and third Brillouin zone is also
displayed. Mark that all zones have the same area, so the first zone is not included in the second, and
so on. Figure taken from reference [9]

The reciprocal space is especially important for describing optical properties and is used in

many different experiments, e.g. scattering experiments for structure analysis or the measure-

ment of electron dispersion to determine the band structure.

Brillouin zone: This is the smallest possible unit cell in reciprocal space. It is constructed by

taking half the connection line of one reciprocal lattice point to each of its nearest neighbors. A

graphical representation can be found in figure (2.1). Due to the crystals periodicity, it is often

sufficient to discuss properties like the band structure or phonon spectrum only in the first

Brillouin zone. In real space, the smallest unit cell constructed the same way as the Brillouin

zone is referred to as Wigner-Seitz cell.

correlation: Phenomena originating from electron-electron interactions are often general-

ized as correlation effects. These include mechanisms involving the electron spins or dipole

interactions, and other many-body effects. Since it is impossible to account for all these in-

teractions analytically or treat them accurately in simulations, these contributions have to be

approximated in most cases. For this reason, exchange-correlation potentials are implemented

to account for such contributions. Finding an appropriate method to do this influences the

calculated properties of materials significantly.[9]

exchange: Exchange effects occur when two electrons swap their places in a material. Such

mechanics contribute to the systems energy, but are also involved in physical phenomena such

as covalent bonding or magnetism.[9]

2.1.2 Electronic Systems

As fermions, electrons have to obey the Pauli principle and thus must be described in the frame

of quantum mechanics. Even at first glance simple properties like the heat capacity as well as
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2.1 Physical Theory

muchmore complex phenomena like the formation of polarons can not be explained classically.

In the center of quantum-mechanical models stands the Schrödinger equation and its so-

lutions, the wave functions. By finding and solving the right equation, all properties of the

investigated system can theoretically be calculated based on the wave function describing it.

Because of this, many problems in quantum mechanics have to do with finding an adequate

Schrödinger equation and its solutions.

Hamilton Operator for Electronic Systems

Generally, all electronic systems can be described as a many-body problem involving the elec-

trons and atom cores. The corresponding Hamilton Operator contains parts which describe

the individual energies of electrons and cores, as well as their interaction.

Ĥ = Te +Tn +Vee +Vnn +Ven (2.2)

• kinetic energies of the electrons

Te = −
~
2

2me

N
∑

i=1

∇2i (2.3)

• kinetic energies of the cores

Tn = −
~
2

2Mn

M
∑

n=1

∇2n (2.4)

• Coulomb interaction of the electrons

Vee =
1

4πǫ0

1

2

N
∑

i,j=1,i,j

e2

|ri − rj |
(2.5)

• Coulomb interaction of the cores

Vnn =
1

4πǫ0

1

2

M
∑

n,m=1,n,m

ZnZme
2

|Rn −Rm|
(2.6)

• Coulomb interaction between electrons and cores

Ven = −
1

4πǫ0

N
∑

i

M
∑

n

Zne
2

|ri −Rn|
(2.7)

The kinetic energies, as well as the interaction between electrons and cores lower the total

energy of the system. Where as the repulsive potential between the electrons or the cores

contributes an increase in energy. If the wave function is an eigenfunction of this Hamiltonian,

the corresponding eigenvalue is the total energy of the system.
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2 Theory

The Schrödinger equation for such systems is then given by

Ĥψ = Eψ, (2.8)

where ψ is the wave function and E the systems total energy. Since the Schrödinger equation

is effectively solved in reciprocal space in most simulations, not the energy eigenvalues in real

space (En, but rather the eigenvalues in reciprocal space (En(k)) are calculated most of the time.

2.1.3 Electronic Band Structure

The band structure represents the energy eigenvalues En(k) of the electron wave functions,

depending on the wave vector k. Similarly to other quantum-mechanical systems, only dis-

crete energy levels are allowed for the electrons to occupy. These energy levels are the bands,

denoted by the band index n and each of them having a finite energy bandwidth. Between these

bands are gaps, the so called band gaps, representing regions of energy the electrons cannot

occupy. If there is a gap located between the fully occupied band with the highest energy (va-

lence band) and the unoccupied band at the lowest energy (conduction band) the material is

an insulator or semi-conductor and this gap is called the fundamental band gap. The topology

of said band structure can be very complicated, due to complex interactions between atoms in

the material.

In crystals, only wave vectors inside the first Brilloin zone have to be considered due to the

system periodicity. Parts of the band structure which lie outside of this zone can be shifted

inside through translations by multiples of the reciprocal lattice vector G.[9] Because of this,

it is sufficient to consider paths between high-symmetry points of this cell in experiments and

calculations to investigate the systems band structure. An example for this can be found in

figure (2.2). Suggested paths, which should lead to detailed band structures for different unit

cells can be found in reference [10].

2.1.4 Electronic Band Gaps

The band gap refers to a range of energy between two bands that cannot be occupied by elec-

trons. As visible in figure (2.2), there is no connection between the valence (highest band below

0) and the conduction band (lowest band above 0). This means it is not possible for electrons

to change from the valence to the conduction band without the excitation by external energy.

Such band gaps are called fundamental energy gaps and give rise to semi-conducting and insu-

lating behavior of materials.

The fundamental band gap size influences the electrical behavior of the material to a very

high degree. While materials with very large band gaps are insulators, a smaller band gap (as

for silicon in figure (2.2)) allows for semi-conducting properties. A material is a conductor, if

there is no fundamental gap at all and electrons can move from valence to conduction band

freely.

There are also different types of band gaps, depending on the type of fundamental excitation

one can differentiate between direct and indirect gaps. Direct gaps can be accessed more easily

10



2.2 Computational Theory

Band Structure of Si [Fd3̄m]

Figure 2.2: Left: Band structure of silicon in face-centered cubic configuration calculated for this project.
The considered path between high symmetry points in the first Brilloin zone is denoted at the x-axis.
Right: Visualization of the first Brilloin zone and the path between high symmetry points. Figure taken
from reference [10]

in experiments and applications, due to the fact that electrons can be excited into the conduc-

tion bands with the use of photons only. This is because photons carry no impulse they could

transfer to the electron, which means that the excitation can only occur at a fixed value of the

wave vector k in reciprocal space. To address indirect gaps, phonons1 have to be involved in

the process to make a change in momentum possible. Because of this, the process is muchmore

complicated to investigate or use practically.

The fundamental band gap size and its type is of great importance for different kinds of

modern day applications. Finding materials with a band gap in the right energy range, or even

constructing one (band gap engineering), is a key topic of modern day solid state physics.

2.2 Computational Theory

After a quick introduction to the physical side of theory, computational backgrounds will be

explained below.

2.2.1 Important Terms

Some terms important for the presented project will be elaborated below. This should give a

good overview over relevant concepts occurring in this thesis.

1While photons are used for the quantization of electromagnetic fields, phonons are correspondingly used to

quantize lattice vibrations. They can be described as quasi-particles with energy E = ~ω and carry a quasi-

impulse p = ~k.
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Figure 2.3: Graphical representation of the concept behind pseudo-potentials. Below the radius rc he
diverging potential is replaced by a finite one to avoid rapid oscillations in the resulting wave function.

ab initio simulation: In these kind of simulations no empirical data is used during the cal-

culation. Simulated systems are often constructed out of pseudo-potentials (such as in DFT and

G0W0 calculations done for this project) and the dynamics are described throughmathematical

concepts.

pseudo-potential: Pseudo-potentials approximate the atomic wave function for the use in

calculations. Real systems show a complicated behavior such as rapid oscillations of the wave

function or divergences of the potential near the atom core region, whichmakes the description

difficult with basis functions used in simulation codes.

Therefore this problematic region is often approximated by a different function, which can

be better described computationally, and fulfills certain criteria. Examples for the latter would

be that the norm of the wave function is accurately represented (norm-conserving pseudo-

potentials) or that the pseudo wave function in the core region is especially smooth (ultrasoft

pseudo-potential). A graphical example of such a potential can be seen in figure (2.3).

These potentials are usually not created by the user, since generating a realistic pseudo-

potential is very complicated and involves difficult simulations in the form of all-electron codes.

However, once such a pseudo-potential is constructed for an element it can be reused in all

future calculations as long as the code supports its standard.

For this project so called projector-augmented wave (PAW ) PBE pseudo-potentials were

used.[11][12] For these potentials special GW-versions are available, constructed specifically

for these simulations. They include a larger number of plane waves leading to larger energy

cut-offs, such that scattering properties are well reproduced even in a relatively wide region

12



2.2 Computational Theory

above the Fermi energy. By constructing the potentials this way, a larger number of empty

bands can be treated accurately, which the convergence of GW quasi-particle energies cru-

cially depends on.

Perdew, Burke and Ernzerhof (PBE) exchange-correlation potential: Because of their

complexity, exchange and correlation effects in materials cannot be described analytically dur-

ing an ab initio simulation. As an approximation different potentials can be used to describe

these effects. Commonly used examples are the local density approximation (LDA) or the gen-

eral gradient approximation (GGA). The PBE potential is a variation of the general gradient

approximation and used in the calculations for this project.[13]

Hartree-Fock approximation: In this approximation, the all-electron problem arising in

electronic systems is reduced to a one-particle problem. This is done by introducing the Fock-

operator, which replaces the many-body Hamiltonian in the systems Schrödinger equation.

The problem is transformed into a set of single-particle equations, where all electrons move in

a effective field, often referred to as mean field. The GW approximation can be seen as a gen-

eralization of this, where the bare Coulomb interaction is replaced by a dynamically screened

one.[14]

quasi-particle shi�: Additionally to electronic band gaps, the quasi-particle shifts (QP-shift,

QS) are given as results for each material. This property corresponds to the shift experienced

by the energy eigenvalues due to the correction applied through the G0W0 calculation. It

is calculated as the difference between corrected valence band energies (after G0W0 has been

applied) and the initial bands (Kohn-Sham eigenvalues as calculated in DFT) at the correspond-

ing k-point. In most cases this property is negative, since the GW correction leads to a further

opening of the band gap, i. e. lowering of the valence band energies.

2.2.2 VASP - Vienna Ab initio Simulation Package

All calculations for this project are done using the Vienna Ab initio Simulation Package, more

broadly known as VASP.[15, 16]

This code for ab initio simulations uses quantum mechanical calculations with plane waves

as a basis set. With periodic boundary conditions and calculations done in reciprocal space it is

especially suited for the simulation of periodic systems, such as crystals and solids in general.

In the following, important files used by VASP will be introduced briefly:

INCAR: This file contains flags which determine general properties for the calculation. Here

one can switch on or off certain functionalities of VASP, set computational parameters, and

also define the simulation type, i.e. if a DFT (see section (2.2.3)) or GW (see section (2.2.4)) cal-

culation should be performed. Different values for the energy cut-off (ENCUT ) or the number

of energy bands (NBANDS) are for this project relevant parameters that can be defined here.
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2 Theory

POSCAR: The structural information of the system is stored in this input file. Its lattice

vectors, atom types and their positions are defined here. This file is used in the automatic GW

procedure as main input, since all information necessary for setting up the calculation can be

extracted here.

POTCAR: Atom specific pseudo-potentials used to simulate the system atoms are provided

in the POTCAR file. It is a very important decision to choose a suitable pseudo-potential for the

problem at hand, since the calculation performance and its results are directly tied to it. For this

project non-norm conserving PAW-PBE potentials were used for most calculations. Because of

the high memory requirement of the basis set extrapolation, these potentials were chosen to

be the most efficient. Employing norm conserving potentials would lead to very large basis

sets, although the results would be more accurate for some systems due to the reduced norm

violation.[17] Norm conserving potentials were only used on a subset of materials to validate

the method and compare the results to the original proposal of the basis set extrapolation.[2]

KPOINTS: The last important input is the KPOINT file. Here, the density of the computa-

tional grid in reciprocal space is defined. The number of k-points can severely influence the

accuracy of the calculation, so an adequate choice is crucial.

Since the extrapolation to an infinite basis set shows low sensitivity to the number of k-

points, most of the G0W0 calculations can be done using a coarse grid.[17] Only one calculation

has to be done for correcting to a higher density grid afterwards, as shown figures (3.1) and

(3.2).

TheKPOINTS file also allows to define a path between high symmetry points in the reciprocal

unit cell, along which the band structure is calculated. These paths where taken from reference

[10].

2.2.3 Density Functional Theory

Although this project mainly is about the application of GW calculations, the importance of

density functional theory as a preliminary step cannot be neglected. Every G0W0 calculation

needs an initial guess for the wave function and its derivative. Since these are usually provided

through DFT calculations the theory behind them will be quickly summarized in the following

section.

In quantum mechanical simulations, one of the big goals is solving the systems Schrödinger

equation, i.e. finding the corresponding wave function. Once this is achieved one can calculate

rather easily expectation values of operators, which then represent properties of the system

at hand. Although this seems easy theoretically speaking, in practice it is nothing that can be

done analytically for most real systems.

Finding an easy, efficient, and still relatively accurate way of determining the systems wave

function is an important topic in computational science. Density functional theory is one ap-

proach of solving this problem. The core idea around this method revolves is the Hohenberg-

Kohn theorem.

14
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The Hohenberg-Kohn Theorem

In their famous paper 1964 Hohenberg and Kohn set the foundation of modern DFT. Their

theorem contains two main statements, often referred to as separate theorems abbreviated as

HK1 and HK2. Firstly, it was stated that an universal functional for the energy E[n(r)] can be

defined which is valid for any external potential Vext . This functional depends only on the

charge density n(r) (HK1). Secondly, for any given external potential the ground state energy

is the global minimum of this functional and no energy below this true ground state energy

can be found for the system. The density n(r) (equation (2.9)) that minimizes E[n(r)], n0, is the
ground state density and can be found through variational principles (HK2).

n(r) =N

∫

d3r2

∫

d3r3 . . .

∫

d3rN ψ
∗(r,r2, . . . ,rN )ψ(r,r2, . . . ,rN ) (2.9)

Effectively this means that instead of dealing with a functional of N vectorial variables one

can work with a function only depending on one vectorial variable instead. This is possible,

because the ground state wave function not only has to reproduce the ground state density, but

also has to minimize the systems energy. Knowing the ground state charge density implicitly

contains all needed information for recreating the ground state wave function in the given

potential.[18]

Starting from that, multiple methods can be developed using this systematically as an ad-

vantage over calculations only using the wave function.

The Kohn-Sham Equations

The Kohn-Sham equations (equation(2.10) to (2.12)) are the core of most DFT-calculations.

They map the real, interacting system to an auxiliary construct with no interaction between

its components but the same charge density. Through the iteration of self consistent loops this

density can be determined.

vs(r) = v(r) + vH (r) + vxc(r) (2.10)

[

−~
2∇2
2m

+ vs(r)

]

φi(r) = ǫiφi(r) (2.11)

n(r) ≡ ns(r) =
N
∑

i

fi |φi(r)|2 (2.12)

The main idea here is to make an initial guess of the systems ground state charge density n(r),
calculating the corresponding potential vs(r), solving the differential equation (2.11), and with

its solution finding a new, and better guess of the initial density by using equation (2.12).

In many cases, the wanted wave function can be found rather fast and reliably this way,

making such an iterative method of solving the systems Schrödinger equation a powerful tool

for computational quantum mechanics.[18]
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2.2.4 The GW Approach

The GW approach can be classified as post-DFT method, i.e. is used to further refine or correct

data acquired with density functional theory. This is achieved by replacing the approximate vxc
above by calculating the explicit self-energy, using the Green function of the system (G) and
the screened Coulomb potential (W ). In the following some basic principles of this method will

be explained. All concepts presented are taken from a very detailed derivation of the method

that can be found in reference [14].

Green Function of Electronic Systems

The single-particle Green function for solid state systems, or systems where its properties are

mainly dictated by the electronic configuration in general, can be defined as shown below.

iG(x,x′) = 〈N |T [ψ̂(x)ψ̂†(x′)]|N〉 (2.13)

Here |N〉 is the N-electron ground state, ψ̂(x) a field operator in Heisenberg representation,

and T the time-ordering operator. Above Green function can be physically interpreted as the

probability amplitude, that for

• t′ > t a hole created at x will propagate to x′ and for

• t > t′ an electron added at x′ will propagate to x.

The photo-emission spectrum in the limit of large kinetic electron energies (Sudden approx-

imation) can now be directly related to above single particle Green function. Therefore, we

can obtain - besides the expectation values of any single-particle operator and the ground state

energy of the system - also its one-electron excitation spectrum.

The Hedin Equations

In the following the Hedin equations as a core concept of the GW approximation will be intro-

duced briefly. Again, all information was taken from reference [14] and a detailed derivation

containing all details an be found there.

Starting now from the Heisenberg equation of motion for the Green functions field operator

ψ̂(x)

i
∂ψ̂(x)

∂t
= [ψ̂(x), Ĥ] (2.14)

one can find the equation of motion for the Green function as

[i
∂

∂t
− h0(x)]G(x,x′)−

∫

dx′′ M(x,x′′)G(x′′ ,x′) = δ(x − x′). (2.15)

In above equation (2.15)M is the mass operator, containing the Hartree potential vH and the

self-energy Σ.
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With the use of a functional derivative we can now separate this mass operator and extract

the self-energy. With this the equation of motion takes the following form:

[i
∂

∂t
−H0(x)]G(x,x

′)−
∫

dx′′ Σ(x,x′′)G(x′′ ,x′) = δ(x − x′). (2.16)

The Hartree potential is now absorbed in H0, as well as the external field φ(x, t) which was

introduced to perform the functional derivative and can later be set to zero.

H0 = h0 + vH +φ (2.17)

Through further investigations, which will not be presented in detail here but can be found

in reference [14], one can now derive a set of coupled integral equations, the so called Hedin

equations2 (2.18) - (2.21).

Σ(1,2) = i

∫

d(34) G(1,3+)W (1,4)Λ(3,2,4) (2.18)

G(1,2) = G0(1,2) +

∫

d(34) G0(1,3)Σ(3,4)G(4,2) (2.19)

Λ(1,2,3) = δ(1− 2)δ(2− 3) +
∫

d(4567)
δΣ(1,2)

δG(4,5)
G(4,6)G(7,5)Λ(6,7,3) (2.20)

W (1,2) = v(1,2) +

∫

d(34) v(1,3)P(3,4)W (4,2) (2.21)

In above equations, several quantities occur:

Σ is the self-energy

W is the screened Coulomb potential, given by

W (1,2) =

∫

d3 ǫ−1(1,3)v(3− 2) (2.22)

itself containing the inverse dielectric function ǫ−1 =
δV (1)
δφ , where V = VH + φ is the

total and v the standard Coulomb potential

Λ is the vertex function

G0 is the Green function corresponding to Σ = 0

2A shorter notation is used in the Hedin equations to allow a more compact form. In all equations 1 corresponds

to the variable-tuples x1 = (r1, t1), 2 ≡ x2 = (r2, t2), and so on.
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P is the polarization function which describes the change in the charge density ρ upon

a change in the total field V , and is given by

P(1,2) =
δρ(1))

δV (2)
= −i

∫

d3d4 G(1,3)Λ(3,4,2)G(4,1+). (2.23)

Another, related quantity describing the change in the charge density upon a change in

the external field φ is the response function R, given by

R(1,2) =
δρ(1)

δφ(2)
. (2.24)

These two quantities themselves are related to the inverse dielectric function ǫ−1 via

ǫ−1 =
δV

δφ
= 1+ v

δρ

δφ
= 1+ v

δρ

δV

δV

δφ
. (2.25)

Generally speaking, the GW method is a generalization of the Hartree-Fock approximation,

where the bare Coulomb interaction v is substituted by a screened interactionW . The GW ap-

proximation used in most implementations can formally be obtained by neglecting the second

term in the vertex function (2.20), thus setting Λ(1,2,3) = δ(1− 2)δ(2− 3).[14]

2.2.5 The GW Approximation as Implemented in VASP

Like mentioned above, also in VASP the approximation is implemented by simplifying the

vertex function (2.20). This leads to simplified expressions for both, the polarization function

(2.23) and the self-energy (2.18):

P(1,2) = −iG(1,2)G(2,1) (2.26)

Σ(1,2) = iG(1,2)W (1,2) (2.27)

Furthermore, by transforming the problem into the frequency domain (reciprocal space), a

spectral representation for the Green function can be introduced as

G(r,r′ ,ω) =
∑

i

ψi(r,ω)ψ
†
i (r
′ ,ω)

ω −Ei(ω)
. (2.28)

In above equation, ψi are the solutions to the following quasi-particle equation:

H0(r)ψi(r,ω) +

∫

d3r Σ(r,r′ ,ω)ψi(r
′ ,ω) = Ei(ω)ψi(r,ω) (2.29)
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Figure 2.4: Schematic representation of the conventional method for calculating converged GW band
gaps. First the energy cutoff and the number of bands is changed until the gap energy converges (left),
then the number of k-points is determined using the optimal values Ecut−opt and NB−opt for these two
quantities (right).

Solving this eigenvalue problem and therefore determining the quasi-particle energies Ei cor-
responds to the here employed G0W0 calculation. This means the DFT Kohn-Sham energies

form the starting wave function are corrected once, by calculating the polarization function P ,
the screened Coulomb potentialW , and the self-energy Σ.

2.2.6 Converged GW Band Gap

In this section, two different procedures will be explained for calculating a converged electronic

band gap using G0W0 simulations: (1) The so-called conventional method, as established stan-

dard procedure, and (2) the newly proposed basis set extrapolation. The latter will be used for

this project in an altered, more memory conserving but in turn slightly less accurate version.

Conventional Method

The concept of what is called the "conventional method" of retrieving a converged GW-level

band gap is purely based on heuristics. It was observed, that in many cases one has to converge

several parameters before the accurate results are retrieved. These parameters are for G0W0

calculations: (1) the energy cut-offs of the plane wave basis set Ecut and the response function
E
χ
cut , as well as (2) their corresponding number of included energy bands NB and N

χ
B , (3) the

number of k-points used for the calculation grid Nk , and (4) the number of calculation points

on the frequency grid Nω .
By increasing these values progressively, the quasi-particle shift - and thus the correction of

DFT-level band gaps - should converge to the best achievable value.

A standard procedure of this approach, where the fundamental band gap is monitored as con-

vergence indicator, looks as follows:
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1. The band gap is calculated in a single-shot GW calculation (G0W0) using fixed values

for all parameters Ecut , E
χ
cut , NB, N

χ
pw, Nk , and Nω .

2. An example for this can be found in figure (2.4). By subsequently increasing the energy

cutoff Ecut and corresponding number of energy bands NB the gap should converge at

a certain point, revealing the optimal values Ecut−opt and NB−opt . If this is achieved,

Ecut−opt and NB−opt are fixed and the number of k-points Nk has to be converged the

same way.

3. This procedure must be performed carefully with each parameter, while always keeping

in mind that some parameters might influence each other.

4. A single-shot GW calculation using all optimal parameters should now give a converged

band gap.

Clearly, arriving at a converged band gap with this procedure is quite a tedious task, since

numerous single-shot GW calculations must be done to achieve convergence. However, many

converged properties can be extracted from the output files of a single G0W0 calculation, once

the final set of parameters is found.

Another, even more severe downside is the fact, that there is presently no rigorous mathe-

matical proof that this method indeed yields the correct and converged band gap for the simu-

lated system.[17] Extensive testing and comparing the results with experimental findings sug-

gests that this approach is valid in most cases, although a solid mathematical foundation would

be much appreciated, rather than a purely heuristic one.

Basis Set Extrapolation

Due to a very slow convergence of the quasi-particle energies it was found that an enormous

amount of empty bands need to be included in the single-shot GW calculations to find accurate

band gaps for some systems.[19] Because of this, and other observations, it was suggested that

the quasi-particle energies in the GW approach show a convergence behavior of 1/NB, where
NB is the number of energy bands included in the basis set of the calculation.[2]

For the practical application this means the accurate gap should be found through extrap-

olation to an infinitely large basis set. This is done by performing several G0W0 calculations

while increasing the energy cutoffs Ecut and E
χ
cut , as well as their corresponding number of

energy bands N and Nχ (which is equivalent to increasing the number of energy bands NB in

the basis set and N
χ
pw in the auxiliary basis set of the calculation).

It is not recommended to change the two energy cutoffs Ecut and E
χ
cut independently. Be-

cause of this, the VASP default of E
χ
cut =

2
3Ecut has been kept for all calculations done here.

In contrast to the conventionalmethod this approach stands on a formal basis. The important

points of the mathematical reasoning will be summarized below. A detailed derivation and all

herementioned information, as well as additional relevant references, can be found in reference

[2], where this basis set extrapolation method was proposed.

The most crucial approximation for this derivation is that the high-energy unoccupied states

occurring in the calculations can be represented by plane waves. This can be justified due to the
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fact, that for high energies the kinetic term −∆/2will be the dominant part of the Hamiltonian

and it can be well described by plane waves.

2.2.7 Basis Set Correction of the Correlation Energy

In the following a short summary of the derivation used for the basis set correction will be

given, investigating the convergence behavior of the direct second-order Møller-Plesset energy

(dMP2). The full version of the derivation and all information used below can be found in

reference [2].

The main errors that have to be corrected arise from the inaccurately treated correlation

energy of the system, specifically due to a plane-wave cut-off E
χ
cut imposed on the response

function of the GW calculation. It restricts the auxiliary basis set constructed from G (in the

following also G′) to energies below the cut-off, such that |G|
2

2 < E
χ
cut .

Starting from a more general form of the direct correlation energy ERPA for simulations

involving the random phase approximation (RPA) we can see that for large wave vectorsG the

polarizability χ0 becomes small and the correlation reduces to the leading-order term.

ERPA ≈ T r[1
2
(χ0v)

2] (2.30)

In above equation v is the Coulomb operator, the second order term EdMP2 can be written as

EdMP2(G′ ,G) = −2
occ
∑

ij

unocc
∑

ab

∑

GG′
〈i |G|a〉〈a| −G′ |i〉 4π

ΩG′2
×

〈j |G′ |b〉〈b| −G|j〉 4π

ΩG2

1

ǫa + ǫb − ǫi − ǫj
(2.31)

where {a,b} and {i, j} are the indices for the unoccupied and occupied states respectively, and

epsilon the corresponding energies. We are now interested in the energy error, which arises

because of the cutoff. For this we investigate the energy corresponding to auxiliary states G

and G′ which have no overlap with occupied orbitals, specifically where

〈i | −G|j〉 ≈ 0. (2.32)

Through different assumptions 3 and using the Fourier transformed charge density (here given

3

• Allow indices a and b in equation (2.31) to run over all states, instead of only unoccupied ones. This can

be justified by equation (2.32).

• Assumption that we can describe high-energy occupied states as plane waves of the form ψa(r) =

exp(iGa · r)/
√
Ω with eigenenergies ǫa = G2

a /2.

• Approximate ǫa+ǫb−ǫi −ǫj ≈ (G2+G′2)/2 due to the assumption that for occupied states components

with small wave vectors dominate.

• Use
∑

a |a〉〈a| = 1.
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for orbital i) equation (2.33)

ρi(G) =
1

Ω

∫

Ω

dr ψ∗i (r)ψi(r)exp(iG · r) (2.33)

we can rewrite equation (2.31) in the more compact form (2.34).

EdMP2(G,G′) = −1
2
|ρ(G−G′)|2 4π

G′2
4π

G′2
2

G2 +G′2
. (2.34)

With the cutoff condition and introducing Gcut =
√

2E
χ
cut we arrive at the energy error ∆E as

final solution.

∆E =
4

3

1

G3
cut

∑

g

|ρ(g)|2 ≈ 2

9π2

Ω
2

N
χ
pw

∑

g

|ρ(g)|2 (2.35)

Equation (2.35) tells us that the error, which arises due to the inaccurate treatment of the direct

correlation energy, has to shrink with increasing number of plane waves N
χ
pw included in the

auxiliary basis set of the calculation. For N
χ
pw→∞ the error should therefore vanish.
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In this chapter it will be discussed, how the theoretical concepts were implemented and applied

practically.

First, a general overview how to calculate a converged band gap on GW level through the

means of basis set extrapolation will be given. Then, the actual implementation used for this

project will be broken down and explained in detail. Finally, it will be discussed how the results

were calculated from the data produced.

Through all states of implementing the presented automatic GW scheme, the focus was on

keeping everything as general as possible. The procedure had to be universally applicable for

many different materials, with optimally no user interference and still good accuracy.

3.1 High Throughput GW Calculations

The automatic procedure for performing the basis set extrapolation scheme consists mainly

of individual BASH scripts, connecting the different calculation steps. That such an easy way

of automating something as complex as fundamental band gap calculations on GW level is

possible, highlights the simple structure of the basis set extrapolation, in comparison to the

conventional scheme.

There are only two kinds of input files necessary for each material: (1) the structure file

containing atom sorts and positions (POSCAR) and (2) the respective pseudo-potential files

for each atom sort (POTCAR). All material specific information can be extracted from these

files, including the energy cut-off (ENCUT ) from the potential file, which then determines the

number of bands included in the calculation (NBANDS), as well as from the structure file the

material symmetry, necessary for the band structure calculation.

3.1.1 Implementing the Basis Set Extrapolation

While implementing the basis set extrapolation scheme, many suggestions from the original

proposal [2] where taken into account. The procedure was slightly edited by substituting the

most memory demanding (high ENCUT ) calculation by a less accurate one.

First, the original procedure will be introduced briefly. This method consists of three low-

density k-point grid calculations for extrapolation and one high-density grid calculation for

the k-point correction. This setup seems to provide good accuracy in therms of the predicted

fundamental band gap for most systems.

A graphical representation of the scheme can be seen in figure (3.1), and explained the fol-

lowing way:
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Figure 3.1: Implementation of the basis set extrapolation as proposed by Klimeš et al. in reference [2].
The graphic was taken from reference [17] and differently labeled for better understanding.

1. Three single shot GW calculations including a different number of empty bands (N1,

N2, N3) and using a coarse k-point grid (nk) are done for extrapolating to an infinite

basis set. This is possible, since the extrapolation shows to be very insensitive to the

number of k-points used. The band number corresponds to three different energy cutoff

values. For E1 the highest ENMAX value of the used POTCAR is chosen as cut-off, then

E2 = 1.25×E1 and E3 = 1.57×E1.

2. A forth single shot GW calculation is then performed with a dense grid (Nk), but with a

low number of empty bands (N1,E1). The result is used to correct the extrapolated gap

to the dense k-point solution.

This corresponds to the following equation for the final, corrected band gap:

E∞(Nk ,N∞) ≈ E∞(nk ,N∞)−E(nk ,N1) +E(Nk ,N1) (3.1)

Because of the rather restrictive memory requirements, the original procedure was altered to

bemore feasible. For this the extrapolationwas done by using lower energy cut-offs: WhenEpot
is the highest ENMAX value of the potentials, the extrapolation is done using E1 = 0.75×Epot ,
E2 = Epot , and E3 = 1.25×Epot . This means the highest cut-off is substituted by a low-energy

one. The k-point correction was still done at Epot to ensure a more accurate gap.

E∞(Nk ,N∞) ≈ E∞(nk ,N∞)−E(nk ,N2) +E(Nk ,N2) (3.2)

Although this seems to be quite a big change, the overall trend of the extrapolation is not

much influenced and the resulting band gaps differ by less than 7%, as tests show (see section
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Figure 3.2: Implementation of the basis set extrapolation actually used for the project. Again, this
graphic was taken from reference [17] and modified accordingly.

(4.1.3)). Additionally, this was a necessary measure to ensure reliable calculations during and

preventing out-of-memory events. This procedure is illustrated in figure (3.2).

3.1.2 Automating GW Calculations

The main topic of this project is how this previously discussed basis set extrapolation now

can be used for the automation of GW calculations. While doing simulations for large sets

of materials it is crucial to reduce the time spent on repetitive tasks, such as setting up and

scheduling each calculation manually. Ideally, the user would only spend time on analyzing

and interpreting the results of simulations, omitting these repetitive tasks completely.

With this goal in mind, some requirements on the procedure were made:

• Trustful results and performing as accurate calculations as possible is still one of the top

priorities.

• The second most important requirement is reducing the required amount of user inter-

ference while doing the simulations.

• The procedure should be robust and universally applicable for different materials.

• A set of parameters should be found which is fitting for most materials, minimizing the

cases where a special treatment is necessary for achieving meaningful results.

• Lastly, there should be a balance between keeping the computational cost low and still

producing accurate data.
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3.2 Overview of the Implementation

The requirements mentioned above where taken as a guideline for implementing the GW pro-

cedure. After some different approaches, creating an infrastructure consisting out of BASH

scripts was chosen to be the most intuitive way to go. An overview of the final procedure can

be found in figure (3.3).

Several different steps are necessary for performing a basis set extrapolation a single mate-

rial: (1) At least four G0W0 calculations, each of them requiring their own preliminary DFT

calculation, as a first step. (2) From all of them the band gap has to be extracted, these are then

used for the (3) basis set extrapolation afterwards. (4) Additionally, one DFT calculation is used

to extract the band structure of the system on DFT level.

3.2.1 Directory Structure

There are several important directories used by the scripts introduced. They are mentioned

below to get a better understanding of the implementation.

repositories: Several repositories are used for holding the input files (POSCAR, POTCAR,

k-point paths for the band structure) and the scripts used for the calculations.

feed: This is a temporary repository for the input structures to be analyzed. The setup-

calculation script iterates through all POSCARs provided in this folder, until it reaches an empty

file called DEADEND. This signals the code that it should not move on to the next structure

and the series is stopped.

bs_extrapolation: In this directory the working folders for the calculations are created by

the setup-calculation script. It also contains two important auxiliary files: matcount and fin-

count. The first contains information on which structure file is the next to use for calculation,

the second how many parts of the basis set extrapolation have already finished. A history on

which materials have been analyzed is also saved in a log file in this folder.

data: Several important output files are stored in this directory. Besides the VASP standard

output files OUTCAR and vasprun.xml, intermediate result files containing the raw gap data

are also kept here.

With the files stored here it is possible to reproduce results presented here. Especially for

high throughput calculations it is crucial to save only relevant data in a well organized repos-

itory, to keep the required amount of memory low and accessibility high.

results: This directory contains all final results. Besides an individual file for each calcula-

tion with all the corrected gaps, the band structure images and a file collecting all gaps as an

overview is also stored here.

26



3.2 Overview of the Implementation

Figure 3.3: Structure of the automatic GW scheme: Ni are the different number of energy bands used for
the extrapolation, Ei are the corresponding energy cut-off values (i = 1,2,3). nk denotes a calculation
done using a coarse k-point grid, where Nk stands for a dense grid respectively.
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3.2.2 Scripts and Programs

In this section the different scripts and programs used in the automatic procedure will be briefly

broken down in their input, output and what their respective function is.

These include not only Bash scripts for calculating band gaps, or programs for doing the

actual extrapolation to an infinite basis set, but also the job scripts which are submitted to the

computing cluster.

[Bash] Setup-Calculation Script

Input:

– POSCAR of the material to simulate

– POTCARs to construct the material

– material counter (matcount) which POSCAR is next to be read in

Output:

– calculation ID

– POTCAR file corresponding to the investigated material

– first job script to submit (GW1)

Function:

– increase counter and read in next POSCAR, if the file DEADEND is reached

abort the calculation series

– define the calculation ID (material_timestamp)

– create the folder environment for the calculation to be performed

– copy the POSCAR file to the calculation directory

– create the POTCAR corresponding to the material at hand

– calculate the different energy cut-offs (ENCUT ) for the basis set extrapolation

based on information contained in the POTCAR

– setup the first job script (GW1) and submit the calculation

This script is the starting point of every basis set extrapolation procedure. Its functionality can

be split up in several different parts:

1. First, it checks if there are structure files (POSCAR) in the feeding folder. If not, or all

materials provided have already been analyzed (script reached DEADEND), it stops the

test series. If there are still materials left it continues as follows.
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3.2 Overview of the Implementation

2. It fetches the next POSCAR provided in the feeding folder. Then the script creates nec-

essary working- and output- folders for the simulation, using the material name (sum

formula and international symbol for its configuration) and a time stamp as naming con-

vention.

3. As a next step, the to the material corresponding POTCAR is created with the atom in-

formation from the POSCAR file.

4. According to the potentials used, the different energy cut-off values (ENCUT ) for the

basis set extrapolation are calculated and the GW1 script is copied to the working folder,

edited and submitted.

[SLURM array job] GW1 Script

Input:

– material definition (sum formula and international configuration symbol)

– calculation ID (material_timestamp)

– enegy cut-off values for the basis set extrapolation

Output:

– INCAR and KPOINTS files for the different DFT calculations involved in the

basis set extrapolation

– INCAR, KPOINTS and job files (GW2) for the G0W0 calculations

– INCAR and job file (Band Structure Script) for the band structure calculation

Function:

– submit an array job with three jobs, each corresponding to one energy cut-off

value for the basis set extrapolation

– for the lowest energy cut-off:

∗ setup the preliminary DFT calculation (INCAR, low-density KPOINTS)

∗ execute VASP

∗ setup G0W0 calculation (folders, INCAR)

∗ call the GW2 script to create the G0W0 job file

∗ submit GW job

– for standard energy cut-off (highest ENMAX in POTCAR):

∗ setup the preliminary DFT calculation (INCAR, low-density KPOINTS)

∗ execute VASP

29



3 Methods

∗ setup G0W0 calculation (folders, INCAR)

∗ call the GW2 script to create the G0W0 job file

∗ submit GW job

∗ setup DFT calculation for k-point correction (INCAR, high-density

KPOINTS)

∗ execute VASP

∗ setup G0W0 calculation (folders, INCAR)

∗ call the GW2 script to create the G0W0 job file

∗ submit GW job for k-point correction

– for highest energy cut-off:

∗ setup the preliminary DFT calculation (INCAR, low-density KPOINTS)

∗ execute VASP

∗ setup band structure calculation (folders, INCAR)

∗ call k-point generation script for band structure calculation (gener-

ate_kpoints)

∗ call script to setup the band structure job file (bandstructure script)

∗ submit band structure job

∗ setup G0W0 calculation (folders, INCAR)

∗ call the GW2 script to create the G0W0 job file

∗ submit GW job

This is the first job script submitted to the computing cluster. It creates an array job with three

parts, each one performing a preliminary DFT calculations as input to the G0W0 simulations

used in the basis set extrapolation.

The script also automatically sets up the remaining input files (INCAR, KPOINTS), before

starting the calculation. After every finished DFT calculation1 the GW2 script is called to con-

tinuewith the G0W0 part. Additionally, after the DFT calculation involving the highest number

of bands the band structure script is called.

1What is here referred to as one DFT calculation consists in reality out of two separate calculations: (1) First, a self

consistent DFT calculation is performed to find the electronic ground state of the system at hand and (2) then

the flag LOPTICS = .TRUE. and the final number of bands N is added in the INCAR, before only one electronic

iteration (NELM = 1) is performed to write all files required as an input for the G0W0 step afterwards.
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3.2 Overview of the Implementation

[Bash] GW2 Script

Input:

– calculation ID

– energy cut-off

– number of nodes and computing cores

Output:

– final results and output files of the G0W0 calculations used for the basis set

extrapolation

Function:

– setup job file for the G0W0 calculation with the given parameters (ENCUT,

number of nodes and cores)

– function of the job file:

∗ execute VASP

∗ create output folders in the data repository and store important result files

∗ call Calculate-Gap script

∗ remove large files likeWAVECAR or WAVEDER to clear up space

∗ call the Check-Finish script

This script creates the SLURM job script for the G0W0 calculation, performed after each of the

preliminary DFT simulations. Inside the job file, after a successful GW calculation the calculate-

gap script is called to analyze the output data, before the check-finish script is invoked as a last

step.

[Bash] Generate k-points Script

Input:

– OUTCAR of the preliminary DFT calculation

– KPOINT file from the repository containing the right path through reciprocal

space for the unit cell

Output:

– KPOINT file used for the band structure calculation
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Function:

– read in the OUTCAR file produced by the preliminary DFT calculation at high-

est energy cut-off and find unit cell symmetry

– fetch the right KPOINT file from the repository fitting the materials crystal

structure

This script looks at which crystal symmetry has been found byVASP during theDFT calculation

and fetches the right KPOINTS file for the band structure calculation from the repository. Some

systems require the calculation ofmaterial specific parameters, for examplewhen distortions or

elongations are involved. For thesemore complicated crystal structures there was no automatic

procedure implemented and the band structure calculation omitted.

[SLURM job] Band Structure Script

Input:

– calculation ID

– SLURM job array ID

Output:

– output files of the band structure calculation

– number of bands

Function:

– run VASP to perform the band structure calculation

– store relevant files (OUTCAR, INCAR, POSCAR, KPOINTS, vasprun.xml)

– call the calculate bands script to calculate and the plot bands script to plot the

band structure

– store the band structure and its plot as final results

This script performs a simple band structure calculation at DFT level. Afterwards, the Python

Materials Genomics (pymatgen) package [20] is used to extract and plot the band structure

form output produced by this calculation.
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3.2 Overview of the Implementation

[Bash] Calculate Gap Script

Input:

– OUTCAR of the G0W0 calculation

Output:

– raw data three different types of band gaps and quasi particle shifts (direct at

Gamma, smallest direct, smallest indirect) at the different energy cut-offs used

for the basis set extrapolation

– corresponding number of bands to each gap

Function:

– extract number of bands from the provided OUTCAR

– calculate band gap andQP-shift at Gamma, store values togetherwith the num-

ber of bands in an output file

– find conduction band minimum and valence band maximum

– calculate smallest indirect gap between these two points and corresponding

QP-shift and store values together with the number of bands in an output file

– find smallest direct gap at any k-point and the corresponding QP-shift and

store values together with the number of bands in an output file

This script is invoked after every G0W0 calculation. It calculates the different band gaps (direct

gap at Gamma, and smallest indirect gap, smallest direct gap), as well as the corresponding

quasi-particle shifts from data contained in the OUTCAR file.

The data is stored several output files (one for each kind of gap and QP-shift) to be used as

an input for the basis set extrapolation program.

As later mentioned in section (5.1.2) one has to be cautious when calculating the k-point

correction because of the different density of the k-point grids.

[Bash] Check Finish Script

Input:

– counter indicating how many G0W0 calculations already finished (stored in

the fincount file)

Output:

– updated counter
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Function:

– read in the counter of already finished G0W0 calculations

– if all are finished, reset the counter and call the calculate gap script to finish

the basis set extrapolation and the setup calculation script to start analyzing

the next material

– if not all have finished yet update the counter

This script is called at the end of each single-shot GW calculation. It checks how many of

the four G0W0 parts of the basis set extrapolation have already finished. If all of them are

done, the basis set extrapolation program is called over auxiliary scripts. Afterwards, if every-

thing finished successfully, the setup calculation script is started again with the next material

to investigate.

[C] Basis Set Extrapolation Program

Input:

– calculation ID

– output files from the calculate gaps script containing band gaps and QP-shifts

at different values of NBANDS (number of bands)

Output:

– final, extrapolated band gaps and QP-shifts

Function:

– for each band gap type read in the values at different number of bands

– perform a linear extrapolation to an infinitely large basis set (1/NBANDS→
0)

– gather and write all results into the final result file and store it

This program takes the stored data on band gaps and QP shifts as an input. It performs the

basis set extrapolation and k-point correction for all these quantities. The corrected gaps and

quasi-particle shifts are stored in the final result file.

3.3 Computational Details

All computational details will be discussed in this section. A goal of the project was to find a

computational setup which delivers accurate results, while being resource friendly and univer-
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3.3 Computational Details

sally applicable to as many systems as possible.

All calculations were performed on the Vienna Scientific Cluster 3 (VSC3), using its standard

nodes. Each node is equipped with 16 computing cores distributed over two processors, backed

by 64GB of memory, and are interconnected via a high-speed InfiniBand fabric.[21]

3.3.1 G0W0 Calculations

An example INCAR file, as used for the G0W0 employed in the basis set extrapolation can be

found below.

!G0W0 INCAR

ALGO = GW0

LSPECTRAL = .TRUE.

NOMEGA = 96

ENCUT = [E1,E2,E3]
NBANDS = [N1,N2,N3]

MAXMEM = 5000

!smearing

ISMEAR = 0

SIGMA = 0.05

EDIFF = 1E-6

!parallelization

KPAR = 2

Since the high-throughput should be as simple as possible, many parameters were kept at

the VASP default. For example, the energy cut-off of the auxiliary basis set Eχ , defined by the

flag ENCUTGW was kept at the default value of 2/3× the cut-off ENCUT.

Switching on the spectral method via LSPECRAL helps to reduce the computational workload

of G0W0 calculations at the cost of higher memory requirements, the flag MAXMEM sets the

maximally available memory per computing core (in MB), while also influencing the allocation

of the response function. The rank of said response function is determined byNOMEGA, which

should be dividable by the number of computing cores for optimal parallelization. This value

also influences the results accuracy [17] and a value around 100 was deemed sufficient.

The energy cutoff ENCUT and corresponding number of band NBANDS was, of course, indi-

vidually chosen and varied for the sake of performing the basis set extrapolation ([E1,E2,E3],
[N1,N2,N3]).

For these calculations, 8 nodes with 12 computing cores each were used at the VSC3, result-

ing in a total of 96 cores working in parallel. Although each node would be equipped with a

maximum of 16 cores, more memory was required for the large response functions. By only

using 12 cores on each node, the memory per core was increased from 4GB to 5GB and thus

sufficiently large for the simulations.

For the calculations with norm conserving pseudo-potentials to compare the automatic pro-

cedure in section (4.1.1) to results obtained in reference [2], the flag NMAXFOCKAE = 2

was added to the G0W0 INCAR. This is suggested and used in said reference to ensure a better

augmentation of the pseudo wave functions on the plane wave grid.
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The calculations using norm conserving pseudo-potentials were done on the VSC4 due to

the excessive amount of computational resources required. Also here, the amount of tasks per

node (number of cores used per node) had to be reduced to ensure sufficient memory. The

calculations were done on 8 nodes, each using only 24 of the available 48 cores to increase the

memory per core from 2GB to 4GB.

Parallelization flags, such as NCORE or NPAR are not supported for the G0W0 calculations

and thus have to be kept at default, even for the preliminary DFT calculations.

3.3.2 DFT Calculations

The DFT calculations are the starting point for each G0W0 calculation. While these simulations

are rather simple to perform and require only little computational resources in comparison to

GW simulations, the resulting wave function has to be discretized in a fitting way. In practice,

this means that the same number of computing cores has to be employed as are used later in

the G0W0 simulations. Only then the wave function will be parallelized in the right way.

Although less resources would be necessary, because of the reasons above already here 96

cores were used to perform the DFT calculations.

In practice, the DFT calculation part itself corresponds to two separate simulations. For the

first step (INCAR 1), a standard DFT calculation is performed to find the electronic ground

state. This calculation is done at the corresponding energy cut-off needed for the basis set

extrapolation, and an exact diagonalization algorithm (ALGO = Exact) is chosen to prevent

errors.

!DFT INCAR 1

ALGO = Exact

ENCUT = [E1,E2,E3]

!parallelization

KPAR = 2

!smearing

ISMEAR = 0

SIGMA = 0.05

EDIFF = 1E-6

Once this is done, only one electronic update step (NELM = 1) is done in the second step

(INCAR 2). Taking the ground state wave function from the first part as input, empty bands are

added to reach the maximal number of bands compatible with the energy cut-off. After only

one step, the wave function derivative (WAVEDER) and the frequency dependent dielectric

matrix are calculated (LOPTICS = .TRUE.). These are needed for the GW calculation afterwards

to serve as input. Since the electronic ground state was already found in the first DFT part, this

step is only needed to write the output with the right number of bands.
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!DFT INCAR 2

ALGO = Exact

NELM = 1

ENCUT = [E1,E2,E3]
NBANDS = [N1,N2,N3]

LOPTICS = .TRUE.

!smearing

ISMEAR = 0

SIGMA = 0.05

EDIFF = 1E-6

!parallelization

KPAR = 2

3.3.3 Band Structure Calculations

The band structure on DFT level was also calculated for each system as part of the automatic

scheme. For this step, the largest energy cutoff (E3) was used for maximal accuracy. The k-

point paths between the high symmetry points in reciprocal space were taken from reference

[10], for the Python Materials Genomics package (pymatgen) was used.[20]

!band structure INCAR

ICHARG = 11

LORBIT = 11

ENCUT = E3

!smearing

ISMEAR = 0

SIGMA = 0.1

3.4 Calculating the Band Gaps

When performing experiments to investigate the electronic properties of materials, different

kinds of band gaps can be found depending on the electronic excitation. Because of this, three

different types of band gaps were calculated for this project.

To calculate the band gaps, the Calculate-Gap script retrieves the conduction- and valence-

band energies at the corresponding k-points from the OUTCAR file.

3.4.1 Gamma Gap

The direct band gap at the Gamma point is the first one which was calculated. This band gap

can often be found as a reference in computational physics publications, what makes it an

important quantity to investigate. Because of the k-point grid, band gaps can not be calculated

at arbitrary points in reciprocal space. For many calculations this discrete lattice has its center

at Gamma, making it often a good choice to use.

This gap is calculated by simply taking the energy difference of the valence and conduction

band at the k-point located at Gamma ([0,0,0]).
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3.4.2 Smallest Indirect Gap

Indirect band gaps are more complicated to investigate than direct ones, at least in experiments.

This is because to address an indirect gap, phonons have to be involved in the excitation of

electrons. This makes it a much more complicated process to describe or even use practically.

Nevertheless, if the indirect gap is much smaller than the direct gap, or the crystal symmetry

promotes these kinds of excitation, it is also an important quantity.

The script finds the valence band maximum (VBM) and conduction band minimum (CBM)

for calculating the gap between those two points.

Interpreting the indirect band gap at GW level has do be done carefully, however. Since

the band energies are only known at very few points in reciprocal space (k-points), one has

to make sure that the gap between these points is physically relevant. Thus, this value is

not as significant as the Gamma gap in some cases for comparing results between different

simulations or experiments.

3.4.3 Smallest Direct Gap

In most experimental setups, this is the gap which is investigated. Many experiments involve

photonic excitation, which only responds to direct gaps and usually the energy dissipates using

the smallest one. This gap is calculated by finding the smallest band gap at any one k-point.

Unfortunately, the same problem as already mentioned for the smallest indirect gap occurs

here for GW calculations. The gap is only calculated on select few points in the reciprocal unit

cell, if the systems smallest direct gap lies somewhere in between it cannot be retrieved. This

makes it especially problematic when trying to compare computational results to experiments.
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4 Results

For this project, a broad range of materials was analyzed automatically, without any user

interference during the whole procedure. The material set contains 69 insulators and semi-

conductors. Mostly mono- and diatomic materials were investigated, but also a small amount

of compounds with more atoms in the unit cell. All computational parameters were set at the

beginning and are the same for every material, with the exception of automatically calculated

material specific parameters such as the exact energy cut-off or number of bands for the basis

set extrapolation. This might cause some inaccuracies in the results, but optimizing all param-

eters for each system individually would go against the paradigm that is tried to be enforced

here.

For all systems the fundamental band gap at GW level was calculated, using a less memory

demanding variant of basis set extrapolation as proposed in reference [2]. During the proce-

dure, three different gap types (direct at the Gamma point, smallest indirect gap, smallest direct

gap at any one k-point) were calculated, as well as the band structure at DFT level.

4.1 Validating the Method

The ultimate goal of performing simulations is producing data which predicts reality as close

and reliable as possible.

Since the here introduced automatic procedure is an early attempt at adopting a newly de-

veloped method for high-throughput calculations this goal is not the first criteria to look at,

however. In reference [2] it was shown that the basis set extrapolation is able to produce very

high quality gap data when performed carefully. It only makes sense to try reaching similarly

accurate results through an automatic procedure as a first test of feasibility.

4.1.1 Comparison to the Original Basis Set Extrapolation

As a first validation, some results obtained with the procedure used here should be compared

to data from reference [2], where the basis set extrapolation was introduced and investigated

very carefully (see tables (4.1) and (4.2)). The calculations performed by Klimeš et al. were

focused on very safe and accurate results, optimizing parameters for each material separately,

while also using the best choice of pseudo-potentials in the form of norm-conserving PAW

potentials.

As already mentioned, the procedure here does not allow to perform such an individual

treatment of every single system and a general set of parameters should be found which works

universally for most materials investigated. Because of this, it has to be expected that the

results deviate from the accurate data, depending on the sensitivity to sub-optimal parameter

choices.
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4 Results

Gap@Γ [eV] Gap@Γ [eV] Gap@Γ [eV]

Material ref. [2] NC PP mem. cons.

AlAs 2.99 3.11 (+ 0.12) 3.31 (+ 0.32)

AlP 4.23 4.32 (+ 0.09) 4.47 (+ 0.24)

AlSb 2.40 2.57 (+ 0.17) 2.65 (+ 0.25)

BN 11.33 11.30 (- 0.03) 11.61 (+ 0.28)

C 7.43 7.44 (+ 0.01) 7.49 (+ 0.06)

CdO 1.50 1.72 (+ 0.22) 1.69 (+ 0.19)

CdS 2.15 1.06 (- 1.09) 2.18 (+ 0.03)

CdSe 1.52 1.83 (+ 0.31) 1.61 (+ 0.09)

CdTe 1.57 1.74 (+ 0.17) 1.80 (+ 0.23)

GaAs 1.23 1.32 (+ 0.09) 2.08 (+ 0.85)

GaN 2.85 3.02 (+ 0.17) 3.94 (+ 1.09)

GaP 2.62 2.69 (+ 0.07) 3.36 (+ 0.73)

GaSb 0.68 0.61 (- 0.07) 1.54 (+ 0.78)

InAs 0.23 0.18 (- 0.05) 0.30 (+ 0.07)

InP 1.23 1.39 (+ 0.16) 1.43 (+ 0.20)

InSb 0.25 0.16 (- 0.09) 0.33 (+ 0.08)

MgO 7.55 7.56 (+ 0.01) 7.86 (+ 0.31)

Si 3.25 3.24 (- 0.01) 3.28 (+ 0.03)

SiC 7.35 7.39 (+ 0.04) 7.52 (+ 0.17)

ZnS 3.46 3.48 (+ 0.02) 3.54 (+ 0.08)

ZnSe 2.55 2.74 (+ 0.19) 2.50 (- 0.05)

ZnTe 2.27 2.39 (+ 0.12) 2.35 (+ 0.08)

Table 4.1: Comparison of calculated fundamental band gaps at Gamma to the results presented in refer-
ence [2]. For the middle column a very similar setup as proposed in said reference was used, employing
the original basis set extrapolation and norm conserving pseudo-potentials. Although norm conserv-
ing, the potentials used here are not exactly the same ones as in the reference and thus also the energy
cut-offs and band numbers for the extrapolation are slightly different. This can lead to significant dif-
ferences in the results, as shown later in section (4.1.4). In the last column results obtained with the
memory conserving variant are presented, which was used to determine the final result set of funda-
mental gaps. Results in italic show wrong band occupations in DFT and after one G0W0 calculation, as
discussed later in section (4.1.2)

For this validation, a setup was created which reproduces the one used in the reference paper

as close as possible, while still using the automatic calculation framework.

Norm conserving pseudo-potentials were used, as well as the original energy cut-off progres-

sion of (E1, 1.25×E1, 1.57×E1). The first cut-off value E1 was chosen as the highest suggested
value in the used potentials (ENMAX in the corresponding potential file). This is already a dif-

ference between the calculations done here, since in reference [2] all potentials were optimized

and consequently different values for the energy cut-off were chosen. Together with probably

different parallelization settings this leads to deviations in the numbers of energy bands NB
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4.1 Validating the Method

∆IPVB [eV] ∆IPVB [eV] ∆IPVB [eV]

Material ref. [2] NC PP mem. cons.

AlAs -1.01 -0.85 (+ 0.16) -0.81 (+ 0.20)

AlP -0.96 -0.87 (+ 0.09) -0.90 (+ 0.06)

AlSb -0.84 -0.69 (+ 0.15) -0.78 (+ 0.06)

BN -1.53 -1.48 (+ 0.05) -1.45 (+ 0.08)

C -1.22 -1.18 (+ 0.04) -1.11 (+ 0.11)

CdO -0.95 -0.97 (- 0.02) -0.96 (- 0.01)

CdS -1.11 -0.66 (+ 0.45) -1.15 (- 0.04)

CdSe -1.15 -1.13 (+ 0.02) -1.03 (+ 0.12)

CdTe -0.99 -0.88 (+ 0.11) -0.90 (+ 0.07)

GaAs -0.91 -0.72 (+ 0.19) -0.76 (+ 0.15)

GaN -1.20 -1.25 (- 0.05) -1.26 (- 0.06)

GaP -0.86 -0.74 (+ 0.12) -0.83 (+ 0.03)

GaSb -0.77 -0.54 (+ 0.23) -0.77 (+ 0.00)

InAs -0.83 -0.68 (+ 0.15) -0.66 (+ 0.17)

InP -0.78 -0.73 (+ 0.05) -0.78 (+ 0.00)

InSb -0.75 -0.55 (+ 0.20) -0.69 (+ 0.06)

MgO -2.16 -2.01 (+ 0.15) -2.02 (+ 0.14)

Si -0.72 -0.67 (+ 0.05) -0.72 (+ 0.00)

SiC -1.05 -1.00 (+ 0.05) -0.99 (+ 0.06)

ZnS -1.33 -1.18 (+ 0.15) -1.16 (+ 0.17)

ZnSe -1.34 -1.24 (+ 0.10) -1.05 (+ 0.29)

ZnTe -1.07 -0.93 (+ 0.14) -0.89 (+ 0.18)

Table 4.2: Comparison of quasi-particle shifts ∆IPVB proposed in reference [2] and calculated in this
project. These shifts are calculated with respect to the valence band maximum, i. e. a negative shift
means a lowering in the corresponding energy after the G0W0 step.

used for the extrapolation.

Later in section (4.1.4) it is shown that even slight changes in these numbers can lead to

significant differences in the gap value. This means although using norm conserving pseudo-

potentials and good settings it has to be expected that the results presented in the paper are

not completely accurately reproduced.

Another difference is the reduced number of frequency points for the response function,

since all calculations done for this project were done usingNOMEGA = 96, while the results

shown in reference [2] are produced using NOMEGA = 200. As claimed in the paper, this

should not change the results significantly (for most materials well below 50meV), however it

still might add to some errors and was a necessary step to ensure that there is enough memory

available.

Nevertheless, for many materials quite good accuracy was achieved, as shown in the tables

(4.1) and (4.2). Many fundamental band gaps and quasi-particle shifts calculated here show

good agreement with the optimized values in the reference.
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Figure 4.1: Comparison between band gaps and quasi-particle shifts acquired here in the project and
data as proposed by Klimeš et al. in the original basis set extrapolation paper.[2]

Results achieved with the here adopted standard procedure, using the memory conserving

variant of (0.75 × E1, E1, 1.25 × E1) and no norm conserving pseudo-potentials, can also be

found in these tables. They match the other results relatively well, for some materials the

fundamental gap compares even better to the reference than the ones computed using norm

conserving potentials. For others, like all the gallium compounds, it can be seen that the norm

violation leads to significant errors.

Materials which are marked in italic show wrong band ordering and occupation in DFT,

leading to metallic properties. This will be further discussed in section (4.1.2)

A graphical representation can be found in figure (4.1), where the accurate gaps from refer-

ence [2] are compared to the results obtained with the here adopted, less accurate procedure.

Due to the almost consistently higher values of the Gamma gaps it is clearly visible that the

band gap correction is reduced because of the lower accuracy.

4.1.2 Wrongly Placed or Occupied Bands

Some materials show metallic band properties in DFT, with wrongly placed or occupied bands.

To be precise, CdO, CdS, GaSb, InAs, and InSb show all such behavior. This was also observed

in reference [2], where it was claimed that the energies of the degenerate cation p-orbitals

incorrectly lie above the anion s-orbitals at Gamma. Additionally, these s-orbitals are fully

occupied and the three degenerate ones only partially.

While the band ordering gets fixed after the G0W0 step, the wrong occupation still cannot

be fixed with only one GW iteration, such that the conduction band minimum is still occupied

and below the Fermi level. A possibility would be to do more iterations of the GW step, which

leads to an opening of the right fundamental gap and correction of the occupation.

However, the extrapolation should still be based on G0W0 calculations only. Because of

this, the problem was treated as suggested in reference [2], where the threefold degenerate

bands were identified as the true valence orbitals after a single G0W0 step. Then the gap was
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Material original [eV] mem. cons. [eV] Error (abs) [eV] Error [%]

AlAs 3.29 3.36 0.07 +2.13

AlP 4.41 4.51 0.10 +2.27

AlSb 2.61 2.73 0.12 +4.60

BN 11.64 11.80 0.17 +1.46

C 7.53 7.58 0.05 +0.66

CdO 15.33 15.38 0.05 +0.33

CdS 2.15 2.23 0.08 +3.72

CdSe 1.63 1.62 0.01 -0.61

CdTe 1.82 1.82 0.00 +0.00

GaAs 2.15 2.00 0.15 -6.98

GaN 3.91 4.04 0.13 +3.32

GaP 3.41 3.31 0.10 -2.93

InP 1.49 1.41 0.08 -5.37

MgO 7.67 8.12 0.45 +5.87

Si 3.29 3.28 0.01 -0.30

SiC 7.70 7.57 0.13 -1.69

ZnS 3.58 3.55 0.03 -0.84

ZnTe 2.38 2.32 0.06 -2.52

Table 4.3:Comparison of Gamma band gaps calculated using the original procedure with higher energy
cut-offs and the memory conserving variant described in section (3.1.1).

calculated between these bands and the next one higher in energy, although this band is still

occupied. This is not the best approach, since the band energies change further during the

correction of the band occupation through more GW steps. Although moving away from singe

G0W0 calculations and employing an more ore less arbitrary amount of iterations until the

occupation is fixed would again lead to an semi-empirical approach and it is clear why the

authors refrained from it in the reference.

For FeO, MnO, and NiOmetallic solutions are found in DFT, which again cannot be corrected

by only one G0W0 iteration. Additionally, all calculations performed here were done without

taking into account magnetic moments, probably leading to an even larger error for these

magnetic materials.

4.1.3 Accuracy of the Memory Conserving Variant

In this project a slight change was made to the original basis set extrapolation, as it was pro-

posed in reference [2]. Here, the calculation at the highest energy cut-off was replaced by a

less accurate one, as described in section (3.1.1).

In table (4.3) the fundamental band gaps at Gamma can be found for a test set of some

materials, once calculated with the original and once with the memory conserving basis set

extrapolation scheme. It was found that this less accurate variant introduces errors well below

10%, with a maximum error of 6.98% for GaAs.
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Figure 4.2:Comparison between extrapolations done within the original basis set extrapolation scheme
(E1, 1.25×E1, 1.57×E1) and the memory conserving variant (0.75×E1, E1, 1.25×E1). Left: For Si
the memory conserving scheme reproduces the trend very well. Only a small error in the gap energy
(0.01 eV) is introduced as shift of the extrapolation function. Right: For GaAs the trend is not reproduced
correctly. It can be seen that the calculation at the lowest energy cut-off introduces a large error (0.15 eV),
resulting in a higher difference between the fundamental gaps found by the two variants.1

In figure (4.2) a possible explanation can be found, when this variant yields a good gap and

when it introduces a large error. For Si the error obtained was very small and can be interpreted

as the shift experienced by the extrapolation. For GaAs, however, the overall trend is changed

by replacing the one calculation. This leads to a significant change in the predicted gap and

for such cases the memory conserving variant is a sub-optimal choice.

Although some errors are quite significant for high-accuracy calculations, in the frame of

this automated scheme and the fact, that it was a necessary step to guarantee sufficient memory

for all materials investigated, the additional error is in an acceptable range for most materials.

Furthermore, in section (4.1.4) it is shown that even for slight changes in the number of bands

used for the extrapolation, large deviations of the trends have to be expected. This seems to be

mostly due to the small number of only three data points used for the procedure and the fact,

that the fundamental gap not always shows a perfect linear trend.

4.1.4 Influence of Parallelization

The number of energy bands included in calculations cannot be chosen arbitrary, for a given

energy cut-off there is a maximum number of bands which are supported. This number is also

1The energy cut-offs are chosen such that for both, the original and the memory conserving variant, E
original
1 =

Emem.cons.1 . However, it is visible that the fundamental gaps are not calculated at exactly the same number of

bands in figure (4.2). This is because the number of bands must be compatible to the number of computing

cores used in the calculation and calculations using the original variant were done at different parallelization

settings. As discussed later, this can significantly influence the result, but is not relevant for the explanation

when the memory conserving variant is a good choice and when it falls short.

44



4.1 Validating the Method

0
3.15

3.35

EGap = 3.2432eV

EGap = 3.1801eV

1/NB

E
g
ap

Si

original128 (NB = 256,384,512)

original96 (NB = 288,384,576)

mem. cons. (NB = 192,288,384)

Figure 4.3: Three different basis set ex-
trapolations for silicon. For the first two
(original128 and original96) the original
scheme was used (E1, 1.25×E1, 1.57×
E1), although once using 128 cores (orig-
inal128) and once using 96 respectively
(original96). The third extrapolation was
done with the memory conserving vari-
ant (0.75 × E1, E1, 1.25 × E1) using 96
cores. The trend shown in the origi-

nal96 extrapolation is completely differ-
ent than for the other two, although us-
ing a very similar set of parameters as
the memory conserving one. This leads
to an error of 0.06 eV (or approximately
2%) of the estimated gap.

influenced by the parallelization settings, i. e. over how many computing cores the calculation

is distributed. The number of bands has to be chosen as a multiple of the number of cores,

constraining which values can be chosen for the extrapolation.

The basis set extrapolation is done with only three data points, what makes the result quite

sensitive to outliers. This can be seen already in figure (4.2) for GaAs, where one data point

changes the predicted fundamental gap significantly. In this example, this might be because of

the low energy cut-off for said point and thus a lower accuracy of the corresponding calculation.

However, similar behavior is also found for very comparable calculations such as shown in

figure (4.3).

Here, two very similar basis set extrapolations (original128 and original96) are presented,

both using similar numbers of bands (N1
B = 256,384,512 and N2

B = 288,384,576) but differ-
ent numbers of cores, with 128 cores employed for original128 and 96 cores for original96. It

is clearly visible that these two setups produce vastly different trends in the extrapolation and

consequently different fundamental band gaps.

Furthermore, even with the memory conserving extrapolation shown in figure (4.3) having

a very similar setup compared to the original96 extrapolation, the trend of original128 matches

much better. This hints strongly, that the procedure is very sensitive to even slight changes

in the basis sets used for the extrapolation and even similar setups can produce significantly

deviating results.

To increase the accuracy and reliability of results it might be necessary to usemore than three

data points for the extrapolation to guarantee a reproduction of the right trend when using this

procedure. However, this would mean even larger memory requirements since the number of

bands can only be increased in multiples of the computing cores used for the calculations.

The error arising due to this uncertainty in the extrapolation is given for each quantity

calculated in this project and presented in tables (4.4a) and (4.4b). The derivation of this error

can be found in the appendix.
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4.2 Automatic GW series

The automatic basis set extrapolation scheme, visualized in figure (3.3), was applied on a set

of 69 different materials, consisting of different insulators and semi-conductors. Most of them

are mono- or diatomic, but also some materials containing more than two atoms per unit cell

were included.

For all materials three different types of fundamental band gaps were calculated: (1) the

direct gap at the Gamma point, (2) the smallest direct gap at any k-point, as well as (3) the

smallest indirect gap between any two k-points.

Furthermore, for each gap the quasi-particle shift (∆IP) with respect to the corresponding

valence band maximum (VBM) was calculated. This property is the shift which occurs in the

band energies due to corrections caused by the G0W0 calculation. For most materials this re-

sults in a further opening of the fundamental gap compared to DFT results, which corresponds

to a lowering of the VBM and thus a negative sign of the shifts.

As discussed in the previous sections, several problematic aspects can contribute to an error

in the determined values of these gaps. Not only is the extrapolation to an infinite basis set very

sensitive to the numbers of bands used for the three calculations it is based on, but also norm

violations due to the lack of norm conserving pseudo-potentials, as well as the less accurate

memory conserving scheme may negatively influence the results.

For a better quantification of the error the gaps might have, for each value the uncertainty

arising due to the extrapolation is given. This value is an indicator how good the data repro-

duces a linear trend, where a lower value means less deviation from the linear fit. An example

for this would be the red data set (small points) in figure (4.3). The other two lines (green

squares and large blue dots) in the same figure have a larger uncertainty. A description how

this error is calculated can be found in the appendix.

4.2.1 Automatically Calculated Band Gaps

In this section all band gaps and quasi-particle shifts obtained with the automatic basis set

extrapolation scheme are presented. The collected data can be found in tables (4.4a) and (4.4b).

For many systems the smallest direct gap is located at Gamma, in such cases only the Gamma

gap is presented. The smallest indirect band gap in these tables corresponds to the minimal

energy difference between the valence band maximum (VBM) and conduction band minimum

(CBM). In some cases this coincides either with the Gamma gap, the smallest direct gap, or

both. If this is the case, these gaps are also not explicitly mentioned. To summarize, if only the

direct gap at the Gamma point is mentioned this means there is no smaller gap between any

other k-points.

The total computation time, once the scheme was successfully implemented, was approxi-

mately one week. Since everything was scheduled automatically and in serial, the only unpro-

ductive time was when some of the calculations were pending due to a full cluster. No user

interference was necessary and all results were automatically parsed and collected. Depending

on the system, each part of the basis set extrapolation (one DFT calculation with G0W0 after-

wards) took between 15 minutes and several hours, where the calculation with a dense k-point

grid took always the longest to finish.
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Material Gamma Indirect Direct

[configuration] Gap [eV] ∆IP [eV] Gap [eV] ∆IP [eV] Gap [eV] ∆IP [eV]

AgCl [Fm3̄m] 4.90 ±0.04 -1.24 ±0.05 2.32 ±0.07 -1.56 ±0.04
AgF [Fm3̄m] 3.93 ±0.75 -3.16 ±0.78
AgI [F4̄3m] 2.53 ±0.08 -1.38 ±0.01
AlAs [F4̄3m] 3.31 ±0.00 -0.81 ±0.02 2.17 ±0.04 -0.81 ±0.02
AlN [P63mc] 6.28 ±0.09 -1.46 ±0.02
AlP [F4̄3m] 4.47 ±0.03 -0.90 ±0.02 2.42 ±0.03 -0.90 ±0.02
AlSb [F4̄3m] 2.65 ±0.05 -0.78 ±0.02 1.73 ±0.03 -0.78 ±0.02
BaBiO3 [Pm3̄m] 6.79 ±0.01 -1.17 ±0.02 2.08 ±0.02 -0.41 ±0.01 4.79 ±0.03 -1.21 ±0.01
BaF2 [Fm3̄m] 9.93 ±0.02 -2.38 ±0.01
BaO [Fm3̄m] 5.85 ±0.01 -1.27 ±0.03 3.61 ±0.01 -1.30 ±0.03
BaTiO3 [P4mm] 3.95 ±0.15 -0.93 ±0.03 3.51 ±0.10 -0.98 ±0.01
BaTiO3 [Pm3̄m] 3.75 ±0.10 -0.96 ±0.03 3.56 ±0.06 -0.97 ±0.01
BaTiO3 [R3m] 4.71 ±0.07 -0.99 ±0.01 4.23 ±0.02 -1.05 ±0.01
BeO [P63mc] 10.94 ±0.03 -2.04 ±0.12
BeTe [F4̄3m] 4.20 ±0.04 -0.87 ±0.04 1.80 ±0.03 -0.87 ±0.04
BN [F4̄3m] 11.61 ±0.02 -1.45 ±0.07 6.55 ±0.12 -1.45 ±0.07
C [Fd3̄m] 7.49 ±0.06 -1.11 ±0.06 6.26 ±0.04 -1.11 ±0.06
C [P63/mmc] 8.22 ±0.10 -1.19 ±0.04 4.30 ±0.01 -0.69 ±0.01
C [R3̄m] 7.92 ±0.08 -1.05 ±0.10 3.87 ±0.05 -0.63 ±0.06 4.55 ±0.07 -0.62 ±0.06
CaI2 [P3̄m1] 6.32 ±0.01 -1.61 ±0.01 6.02 ±0.00 -1.61 ±0.01
CaO [Fm3̄m] 6.82 ±0.06 -1.51 ±0.00 6.39 ±0.02 -1.51 ±0.00 6.80 ±0.04 -1.56 ±0.01
CaS [Fm3̄m] 6.56 ±0.00 -1.26 ±0.01 4.32 ±0.02 -1.26 ±0.01 5.19 ±0.03 -1.32 ±0.02
CdCl2 [R3̄m] 5.68 ±0.23 -1.69 ±0.17 5.53 ±0.06 -1.81 ±0.04
CdO [Fm3̄m] 1.69 ±0.06 -0.96 ±0.06
CdS [F4̄3m] 2.18 ±0.01 -1.15 ±0.05
CdS [Fm3̄m] 2.54 ±0.01 -0.81 ±0.04 0.82 ±0.03 -0.18 ±0.01
CdS [P63mc] 2.28 ±0.02 -1.16 ±0.03
CdSe [F4̄3m] 1.61 ±0.04 -1.03 ±0.08
CdTe [F4̄3m] 1.80 ±0.00 -0.90 ±0.00
CsAu [Pm3̄m] 7.98 ±0.06 -1.71 ±0.03 2.36 ±0.02 -1.26 ±0.03 3.03 ±0.02 -1.26 ±0.03
CuCl [F4̄3m] 1.61 ±0.09 -1.01 ±0.02
FeAl [Pm3̄m] 2.45 ±0.11 -0.09 ±0.00 2.26 ±0.00 -0.02 ±0.01 1.35 ±0.04 -0.02 ±0.01
FeO [Fm3̄m] 1.27 ±0.02 0.61 ±0.01 0.63 ±0.00 0.38 ±0.02
GaAs [F4̄3m] 2.08 ±0.03 -0.76 ±0.00 1.99 ±0.00 -0.76 ±0.00
GaN [F4̄3m] 3.94 ±0.01 -1.26 ±0.00

Table 4.4a: Calculated fundamental G0W0 band gaps (Gap) (direct gap atGamma, smallest direct gap
at any k-point, smallest indirect gap) and corresponding quasi-particle shifts (∆IP) of the valence band
maximum. The latter two gap types are only given if different from the fundamental gap at Gamma.
Gaps reported in italic have show wrong band occupations or metallic solutions, see section (4.1.2).
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Material Gamma Indirect Direct

[configuration] Gap [eV] ∆IP [eV] Gap [eV] ∆IP [eV] Gap [eV] ∆IP [eV]

GaP [F4̄3m] 3.36 ±0.02 -0.83 ±0.01 2.32 ±0.00 -0.83 ±0.01
GaSb [F4̄3m] 1.54 ±0.03 -0.77 ±0.00 1.45 ±0.01 -0.77 ±0.00
HfO2 [Fm3̄m] 6.69 ±0.07 -1.38 ±0.00 5.62 ±0.02 -1.40 ±0.03
HgO [Imm2] 13.68 ±0.01 -0.98 ±0.02 3.30 ±0.01 -0.98 ±0.02 3.20 ±0.01 -1.07 ±0.02
InAs [F4̄3m] 0.30 ±0.01 -0.66 ±0.00
InN [F4̄3m] 0.32 ±0.07 -0.81 ±0.00
InP [F4̄3m] 1.43 ±0.02 -0.78 ±0.01
InSb [F4̄3m] 0.33 ±0.03 -0.69 ±0.00
KCl [Fm3̄m] 8.42 ±0.01 -2.52 ±0.04
LiF [Fm3̄m] 13.73 ±0.26 -3.13 ±0.23
LiH [Fm3̄m] 22.59 ±0.01 -1.64 ±0.07 5.06 ±0.03 -1.55 ±0.00
Mg2Si [Fm3̄m] 2.31 ±0.05 -0.58 ±0.03 0.34 ±0.04 -0.14 ±0.01
MgO [Fm3̄m] 7.86 ±0.02 -2.02 ±0.03
MnO [Fm3̄m] 0.82 ±0.13 0.34 ±0.02
MnS [Fm3̄m] 2.77 ±0.08 0.28 ±0.03 3.54 ±1.08 0.13 ±0.09 0.11 ±0.14 0.13 ±0.09
MoS2 [R3m] 3.99 ±0.02 -0.68 ±0.01 2.51 ±0.06 -0.48 ±0.03 2.78 ±0.00 -0.48 ±0.03
MoSe2 [R3m] 3.88 ±0.03 -0.82 ±0.00 1.85 ±0.08 -0.51 ±0.01 2.86 ±0.03 -0.51 ±0.01
NaCl [Fm3̄m] 9.44 ±0.02 -2.33 ±0.01
NaCl [Pm3̄m] 10.31 ±0.06 -2.19 ±0.09 7.91 ±0.00 -2.19 ±0.03
NaI [Fm3̄m] 5.85 ±0.01 -1.77 ±0.01
NiO [Fm3̄m] 3.09 ±0.00 0.19 ±0.01 2.28 ±0.02 0.14 ±0.01 2.29 ±0.03 -0.25 ±0.02
PbF2 [Fm3̄m] 11.23 ±0.10 -1.85 ±0.00 6.71 ±0.02 -1.64 ±0.01 6.85 ±0.02 -1.67 ±0.01
PbSe [Fm3̄m] 7.68 ±0.01 -0.84 ±0.01 1.52 ±0.00 -0.15 ±0.00
Si [Fd3̄m] 3.28 ±0.00 -0.72 ±0.01 1.14 ±0.03 -0.72 ±0.01
Si [I41/amd] 3.20 ±0.14 -0.32 ±0.03 2.36 ±0.01 -0.35 ±0.03
Si [P63/mmc] 18.80 ±0.03 -0.36 ±0.02 2.06 ±0.05 -0.33 ±0.02 4.92 ±0.04 -0.33 ±0.02
SiC [F4̄3m] 7.52 ±0.07 -0.99 ±0.02 2.47 ±0.01 -0.99 ±0.02 5.81 ±0.02 -1.17 ±0.03
SrO [Fm3̄m] 5.81 ±0.10 -1.48 ±0.04 5.37 ±0.01 -1.48 ±0.04 5.47 ±0.01 -1.52 ±0.03
TlBr [Pm3̄m] 9.31 ±0.26 -1.43 ±0.00 3.33 ±0.00 -1.33 ±0.00
TlCl [Pm3̄m] 11.45 ±0.06 -1.47 ±0.02 3.67 ±0.03 -1.37 ±0.02
WS2 [R3m] 4.03 ±0.00 -0.63 ±0.01 2.76 ±0.01 -0.59 ±0.01 2.85 ±0.01 -0.59 ±0.01
ZnS [F4̄3m] 3.54 ±0.01 -1.16 ±0.03
ZnSe [F4̄3m] 2.50 ±0.02 -1.05 ±0.00
ZnTe [F4̄3m] 2.35 ±0.00 -0.89 ±0.00

Table 4.4b: Continuation of calculated fundamental G0W0 band gaps (Gap) (direct gap at Gamma,
smallest direct gap at any k-point, smallest indirect gap) and corresponding quasi-particle shifts (∆IP)
of the valence band maximum. The latter two gap types are only given if different from the fundamental
gap at Gamma. Gaps reported in italic have show wrong band occupations or metallic solutions, see
section (4.1.2).
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Figure 4.4:Comparison of calculated band gaps to experimental values. For gaps without any transition
(direct/indirect) specified the best fitting gap was chosen from the calculated ones. Experimental data
from references [22, 23, 24, 25, 26, 27, 28].

4.2.2 Comparison to Experimental Gaps

In this section the calculated band gaps should be compared to gaps determined in experiments.

Even if the automatic procedure has yet to reach similar accuracy as performing GW calcula-

tions manually, a first look at how the results compare to experiments helps to understand the

quality of produced data.

For each material, the corresponding gap to the transition measured in experiments (di-

rect/indirect, (d)/(i) as indicated in tables (4.5a) and (4.5b)) was chosen for comparison and for

the graphical representation in figure (4.4). If there was no transition specified in the literature

(denoted as (-) in the tables) the best fitting gap was chosen. This does not always mean that

this has to be the right choice.

Many gaps compare quite well to values found in experiments, with a majority of gaps being

at least 20 % accurate with respect to the experimental gap. For 32 materials the band gap error

was even below 10%. These materials can be found in table (4.5a), all other gaps with errors

<10 % are listed in table (4.5b).

As mentioned in reference [1], all gaps in the simulations are calculated at zero tempera-

ture. This inevitably leads to errors and deviations between experiments and calculations as

performed here. Most experimental gaps used here are measured at room temperature (300 K),
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Material Exp. Gap [eV] Cal. Gap [eV] Error (abs) [eV] Error [%]

AgCl [Fm3̄m] 5.1 (-) 4.90 0.20 -3.92

AlAs [F4̄3m] 2.16 (i) 2.17 0.01 +0.46

AlN [P63mc] 6.28 (d) 6.28 0.00 +0.00

BaF2 [Fm3̄m] 9.06 (-) 9.93 0.89 +9.82

BaO [Fm3̄m] 3.8 (-) 3.61 0.19 -5.00

BeO [P63mc] 10.57 (d) 10.94 0.37 +3.50

BN [F4̄3m] 6.36 (i) 6.55 0.19 +3.00

CaI2 [P3̄m1] 5.98 (-) 6.02 0.04 +0.67

CaO [Fm3̄m] 7 (-) 6.82 0.18 -2.57

CaS [Fm3̄m] 5.38 (-) 5.19 0.19 -3.53

CdCl2 [R3̄m] 5.8 (-) 5.68 0.12 -2.07

CdS [F4̄3m] 2.42 (d) 2.18 0.24 -9.92

CdS [Fm3̄m] 2.42 (d) 2.54 0.12 +4.96

CdS [P63mc] 2.42 (d) 2.28 0.14 -5.79

CdSe [F4̄3m] 1.74 (d) 1.61 0.13 -7.47

CsAu [Pm3̄m] 2.3 (-) 2.36 0.06 +2.53

GaP [F4̄3m] 2.26 (i) 2.32 0.06 +2.65

HfO2 [Fm3̄m] 5.55 (-) 5.62 0.07 +1.26

InP [F4̄3m] 1.35 (d) 1.43 0.08 +5.93

KCl [Fm3̄m] 8.69 (-) 8.42 0.27 -3.11

LiF [Fm3̄m] 14.20 (-) 13.73 0.47 -3.31

Mg2Si [Fm3̄m] 2.27 (d) 2.31 0.04 -1.76

MgO [Fm3̄m] 7.77 (d) 7.86 0.09 +1.16

NaCl [Fm3̄m] 8.97 (d) 9.44 0.47 +5.24

Si [Fd3̄m] 1.12 (i) 1.14 0.02 +1.79

SiC [F4̄3m] 2.3 (i) 2.47 0.17 +7.39

SrO [Fm3̄m] 5.77 (-) 5.81 0.04 +0.69

TlCl [Pm3̄m] 3.42 (-) 3.67 0.25 +7.31

ZnS [F4̄3m] 3.91 (-) 3.54 0.37 -9.46

ZnSe [F4̄3m] 2.67 (d) 2.50 0.17 -6.37

ZnTe [F4̄3m] 2.38 (d) 2.35 0.03 -1.26

Table 4.5a: Comparison of calculated fundamental band gaps to experimental values, with an error
< 10 % with respect to the experimental band gap. The indicators ((d) direct, (i) indirect, (-) not specified)
denote the experimentally measured transition. Experimental data from references [22, 23, 24, 25, 26,
27, 28].

for some values at 0 K were available and preferably taken.

Besides all experimental uncertainties, which might not be clearly stated in every source

such as purity or configuration of the material tested, there are also computational uncertain-

ties which could make the results appear worse. As mentioned before, the band gaps are only

calculated between select few points in reciprocal space, depending on the density of k-points
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Material Exp. Gap [eV] Cal. Gap [eV] Error (abs) [eV] Error [%]

AgI [F4̄3m] 2.91 (d) 2.53 0.38 -13.06

AlSb [F4̄3m] 2.22 (-) 2.65 0.43 +19.37

BaTiO3 [P4mm] 3.06 (-) 3.51 0.45 +14.71

BaTiO3 [Pm3̄m] 3.06 (-) 3.56 0.50 +16.34

C [Fd3̄m] 5.47 (i) 6.26 0.79 +14.44

C [R3̄m] 7.02 (-) 7.92 0.90 +12.82

CdTe [F4̄3m] 1.6 (-) 1.80 0.20 +12.50

GaN [F4̄3m] 3.44 (d) 3.94 0.50 +14.53

InAs [F4̄3m] 0.36 (d) 0.30 0.06 -17.58

MoSe2 [R3m] 1.6 (-) 1.85 0.25 +15.63

NaCl [Pm3̄m] 8.97 (d) 7.91 1.06 -11.82

NaI [Fm3̄m] 6.75 (d) 5.85 0.90 -13.33

NiO [Fm3̄m] 3.62 (d) 3.09 0.53 -14.64

AgF [Fm3̄m] 2.8 (-) 3.89 1.09 +38.93

AlP [F4̄3m] 3.63 (d) 4.47 0.84 +23.14

BaTiO3 [R3m] 3.06 (-) 4.23 1.17 +38.24

BeTe [F4̄3m] 2.89 (i) 1.80 1.09 -37.72

C [P63/mmc] 5.47 (i) 4.30 1.17 -21.39

CdO [Fm3̄m] 2.30 (-) 1.69 0.61 -26.47

GaAs [F4̄3m] 1.52 (-) 1.99 0.47 +30.92

HgO [Imm2] 2.48 (-) 3.20 0.72 +29.03

InN [F4̄3m] 0.7 (d) 0.54 0.16 -22.86

MnS [Fm3̄m] 6 (i) 3.54 2.46 -41.00

TlBr [Pm3̄m] 2.68 (-) 3.33 0.65 +24.25

CuCl [F4̄3m] 3.4 (d) 1.61 1.79 -52.65

GaSb [F4̄3m] 0.73 (d) 1.54 0.81 +110.96

InSb [F4̄3m] 0.17 (d) 0.33 0.16 -95.65

MnO [Fm3̄m] 1.84 (-) 0.82 1.02 -55.43

MoS2 [R3m] 1.23 (i) 2.51 1.28 +105.07

PbSe [Fm3̄m] 0.27 (d) 1.52 1.25 +462.96

WS2 [R3m] 1.1 (-) 2.76 1.66 +150.91

Correlation between calculated and experimental gaps: 0.97

Linear fit: y = 0.96x + 0.15

Table 4.5b: Continuation of the comparison of calculated fundamental band gaps to experimental val-
ues. Gaps here have from bottom to top an error of 10-20 %, 20-50 %, or >50 % with respect to the
experiment. The indicators ((d) direct, (i) indirect, (-) not specified) denote the experimentally measured
transition. The correlation coefficient is calculated between all calculated and experimental gaps, this
holds also true for the linear fit. Experimental data from references [22, 23, 24, 25, 26, 27, 28].
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in the automatically generated mesh. For all low k-point density calculations here, the energy

eigenvalues are only accessible at four points in the OUTCAR file. Since the band structure

at GW level is not available, it is quite possible to miss the right band gap if for example the

valence band maximum or the conduction band minimum lies somewhere between those few

points.

This is why it is easier to compare such results to other computational results, like done in

section (4.1.1). Here, the point in reciprocal space where the fundamental gap is calculated at

is well defined, making it clear which transition is investigated. Some of the results listed in

table 4.5b with a very large error could be such cases.

Generally speaking, the results are quite satisfactory. Taking into account how fast, easy,

and computationally cheap the final procedure is, reaching for approximately half of the test

set a gap accuracy with an error below 10% with respect to the experimental value found in

literature undermines the feasibility of such automated procedures. A sample correlation of

0.97 underlines that the calculated results stand in good agreement with experimental values.

Discussing these results one has to keep in mind how small changes in the procedure (see

section (4.1.4)) can already introduce errors of 100meV or more. Additionally, results were

achieved without the use of norm conserving pseudo-potentials and a less accurate procedure

to reduce the memory requirement. With enough computational resources available to employ

better potentials and allow the usage of the original variant, this procedure would probably

yield already much better fundamental band gaps for the majority of materials. Increasing the

number of data points for the correction would also greatly narrow down the error range, but

is leading again to greater computational costs.

4.3 Possibility of a Norm Correction

One of the main sources of errors in the band gap when calculated using basis set extrapolation

has its origin in the norm violation of the pseudo-potentials. This can be mostly mitigated

by constructing norm-conserving potentials for the simulations. However, the usage of such

requires severely larger basis sets and thus even more memory.

The method used for correcting the gaps to a high density k-point grid is possible in a very

simple way. This is because the slope of the linear fit resulting from the extrapolation is very

insensitive to the number of k-points.[17] Similarly, it was tested if the additional norm vi-

olation of not using norm-conserving pseudo-potentials could be corrected in a simple way

too.

In section (4.1.1) it can be seen that the quasi-particle shift seems to be much less sensitive to

an incorrectness of the norm. Since the band topology does not change significantly by going

from DFT to GW, the idea was to correct the norm violation on DFT level.

For this, ∆EDFT (nk ,E2) was introduced as the difference between DFT level band gaps at

Gamma, using one time norm-conserving potentials and the other time not. This correction

was also calculated using the coarse k-point nk grid and standard energy cut-off E1. The whole
basis set correction procedure is then given by:

E∞(Nk ,N∞) ≈ E∞(nk ,N∞)−E(nk ,N2) +E(Nk ,N2) +∆EDFT (nk ,E2) (4.1)
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4.4 Band Structures at DFT Level

ref. calc. corr.

Material Gap@Γ [eV] Gap@Γ [eV] Gap@Γ [eV] Error [%]

AlAs 2.99 3.36 3.09 3.38 (-8.98)

AlP 4.23 4.51 4.24 0.30 (-6.38)

AlSb 2.4 2.73 2.52 5.02 (-8.64)

GaAs 1.23 2.00 1.76 42.88 (-20.05)

GaP 2.62 3.31 3.07 17.15 (-9.11)

GaSb 0.68 1.46 1.27 86.37 (-28.74)

InP 1.23 1.41 1.15 6.37 (-8.20)

MgO 7.55 8.12 8.00 5.98 (-1.57)

Si 3.25 3.28 3.28 1.05 (-0.02)

SiC 7.35 7.57 7.58 3.07 (+0.01)

Table 4.7: Comparison of band gaps proposed in reference [2], calculated gaps in this project, and the
same gaps after the norm correction. The error in percent with respect to the reference gaps is also
given, as well as the error reduction due to the norm correction in brackets.

Quite surprisingly, this correction indeed positively influences band gap value. For all mate-

rials the corrected band gap had a better or at least the same agreement to the gaps in reference

[2], compared to the uncorrected one. (see table (4.7))

However, for many materials the correction does not compensate the norm violation com-

pletely, hinting that such an easy correction is not possible. This can be explained partially by

the fact that severe errors, like the band inversion in InAs, of course do not get corrected by

this procedure, at leased for some systems.

Furthermore, there was only a small number of gaps investigated and more tests have to be

made before any general conclusions are possible. Probably a correction in a similar fashion

at GW level could lead to even better results and could quite possibly be supported by some

machine learning techniques.

4.4 Band Structures at DFT Level

Additionally to the band gaps at GW level, the band structure at DFT level was determined

for all systems. This step is also included in the automatic procedure and done during the

preliminary DFT calculations before the G0W0 simulations. The plots themselves were created

using the Python Materials Genomics package (pymatgen), which is a powerful open source

tool for the analysis of materials.[20] The k-point paths through the reciprocal unit cell were

taken from reference [10].

Two examples band structures are shown here (Cu2O, FeAl), all the others that were com-

puted can be found in the appendix. All segments between the high symmetry points in recip-

rocal space are calculated with 20 intersections to guarantee a smooth and accurate curves.

The band structure calculations were just a small effort in comparison to the GW parts of

the project. Their execution was generally unproblematic, fast and succeeded for all systems.
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Figure 4.5: Examples for the band structure plots done for all materials. Left: Cu2O in in cuprite con-
figuration (Pn3̄m) with an fundamental band gap between valence and conduction band. Right: FeAl in
CsCl structure showing metallic properties without a band gap in DFT.

Even though the band structures are only calculated only on DFT level, this information is

relevant even for the GW level results. During the quasi-particle correction, achieved by the

G0W0 calculation, the band structure topology does not change much. Since calculating band

structures at GW level is a very difficult task, relevant information such as the position of band

extrema or gaps can be retrieved from the DFT level structure.
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5 Discussion

In the course of this project the feasibility of high-throughput GW calculations was tested and

the results compared to both, other GW and experimental data. In the following the presented

results, as well as observations during the work will be discussed.

5.1 Challenges during the Project

Dealing with GW calculations is never an easy task. Even if the basis set extrapolations brings

many simplifications and reduces the work necessary to calculate converged gaps, many chal-

lenges remain. Some of the most predominant issues which had to be resolved are the extensive

memory requirements and code instability.

5.1.1 Encountered Problems and Stability

In the final iteration of the automatic GW procedure, none of the calculations failed during the

investigation of 69 materials. To be precise, the procedure did not stop due to an error until

all materials were investigated. Although, as later discussed for about half of the materials the

calculated band gaps show unsatisfying accuracy, but this is more of a conceptual problem.

The calculations for materials showing wrong band occupation can also be seen as not suc-

cessful, since here the fundamental gap could not be calculated automatically and further in-

vestigation was necessary.

On the technical side, the most challenging part was providing enoughmemory for the high-

bands G0W0 calculations, causing severe difficulties mainly at the early stages of the project.

Once this issue was resolved the procedure proofed to be very stable and easy edit, without

encountering any further problematic errors.

5.1.2 Correct K-point Correction

Another intricate detail causing some problems and wrong band gaps was during the analysis

of band data in the OUTCAR file. Here the issue was to ensure that all band gaps and the k-

point correction is calculated at the same point in reciprocal space. Since the k-point mesh is

automatically generated by the code, number and position of the k-points can vary between

different steps. To explain that further, the calculation used for the k-point correction uses

a more dens mesh, leading to more points in reciprocal space where the band energies are

calculated. In practice this means that, for example the smallest band gap might be found at

k-point #3 for low-density grids, but for high-density k-point grids this point is denoted as

k-point #12. Here the actual positions in the reciprocal unit cell have to be used to avoid errors

and to correct the k-point density with the right fundamental gap.
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5.1.3 Memory Requirements

The basis set extrapolation method requires in its simplest form only four G0W0 calculations,

which is a significantly lower number of simulations that have to be performed. However, this

comes at the cost of an significantly increased memory requirement due to the extensive band

set that have to be included.

Themain component influenced by these bands is the response function. Its size is dependent

on the number of basis functions in the auxiliary basis set, which in turn scales with the energy

cut-off which has to be significantly increased during the extrapolation. The response function

also depends on the number of frequency points used for the simulations, defined by the flag

NOMEGA. As proposed in reference [17], this parameter has to be set to a high enough value to

retrieve accurate results and a number around 100 (96 because of parallelization) was deemed

as sufficient.

This leads to response functions with sizes of several GB, quickly exceeding the accessible

memory on the cluster. Even worse, when the spectral method is used for better performance

(LSPECTRAL = .TRUE.) the response function has to be kept im memory at all times during the

calculation.

To finally fulfill these excessive memory requirements it was necessary not to use the full

number of cores on each computing node (12 out of 16), resulting in an increased amount of

memory per core. Taking these measures it was possible to guarantee that all calculations have

enough memory to run stable.

5.1.4 Code Instability due to Large Band Numbers

Although the GW implementation in VASP is of course stable, there are several details which

have to be accounted for to successfully perform these simulations.

This begins during the DFT step for producing the starting wave function used as input

for the following GW step. It is not recommended to use the maximum number of empty

bands already during the electronic self-consistency loop, although required later in the G0W0

calculations. This is because the algorithms used for calculating the wave function and energy

may struggle with the large number of empty bands, leading to instability and eventual failure

of the procedure.

To avoid this, the ground state is found with a normal set of bands. Afterwards the empty

bands are added during a not self-consistent one-step DFT calculation, where also the wave

function derivative is calculated.

5.2 Feasibility of Automatic GW Calculations

The results of this project lead to several different conclusions regarding the feasibility of such

an automatic procedure to calculate GW level band gaps.

From a conceptual perspective, this project has shown that the basis set extrapolation indeed

can be automated through very simple means. The implementation of a high-throughput pro-

cedure is straight forward and also very stable and reliable, once the parameters are adjusted

accordingly.
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5.2 Feasibility of Automatic GW Calculations

The quality of the results, however, draws a mixed picture. For approximately 50 % of the

investigated materials the band gap was very accurately predicted with much lower effort than

usual. Looking at the quite high error of the other half, this is not a good success rate to rely

on.

Although for many materials the gap is very accurate, it would probably be necessary to

employ norm-conserving pseudo-potentials to guarantee a good results for the majority of

compounds. However, this is still computationally difficult to fulfill right now. Using such

potentials per default would lead to a severe increase in memory requirement and CPU time.

5.2.1 Machine Learning Approaches

It may be possible to preemptively make a guess of the expected norm violation when employ-

ing standard potentials and then automatically make a choice if norm-conserving potentials

would be required. Such an approach could be realized by machine learning algorithms, specif-

ically trained to make such an estimation based on atom types and positions in the material.

Including such an algorithm in the automatic procedure could prevent severely wrong gaps.

This approach can be even stretched out further, once enough good quality GW level band

gap data is collected. Using such a database could lead to data driven algorithms able predict

the QP shift or GW level gap directly from DFT level data. Such a model would need a vast

amount of data and has to be set up with great care, but directly correcting the band gap

produced byDFT calculationswithout performing anyGWsimulationswould be several orders

of magnitude faster. In reference [7] some approaches to predict the experimental gap from

DFT data, which is quite a challenge to reach an accuracy worth the effort.

Trying to predict GW level data might be much simpler, since there are theoretically no hid-

den uncertainties in contrast to experiments. This is because of the fact that the code used for

GW calculations should always lead to the same result when the same input is given, which is

also known exactly. Fitting a machine learning model to this different, but also purely mathe-

matical problem could be achieved more easy.

5.2.2 Bringing GW Calculations to AiiDA

This project has shown that the basis set extrapolation method can be automated in a simple,

straight-forward way. By eliminating the challenging task of systematically evaluating con-

vergence, sophisticated procedures as implemented in reference [1] are not required here. This

opens the possibility to transfer the procedure with rather low effort to already existing soft-

ware packages, specifically designed for high-throughput calculations and the analysis of large

data sets.

A very future-oriented application providing such an environment is AiiDA (Automated

Interactive Infrastructure and Database for Computational Science), developed and introduced

by Pizzi et al. [8]. With a strong focus on automation and producing results in an uniform and

easy-to-share format, it is clear to see that the next step would be transferring the automated

GW scheme to this software suite.

Already existing plug-ins support rather simple VASP applications, such as electronic or

structural relaxation procedures. Implementing GW calculations which provide converged
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results was not possible yet, due to the heuristic nature of the conventional scheme. However,

the here introduced method based on basis set extrapolation would not be much different to

implement as any other single-calculation plug-in.

Large scale GW calculations would open up new possibilities in computational materials sci-

ence. Salvaging codes specialized in high-throughput calculations will be essential to achieve

this task and the basis set extrapolation method might be a crucial part of such procedures.
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Appendix

Abstract

This project aims to efficiently calculate ab initio fundamental band gaps beyond density func-

tional theory (DFT) for large material sets. The GW approach (G is the one particle Green

function, W the screened Coulomb potential) is used as post DFT method to correct made ap-

proximations, specifically electronic correlation contributions. Performing even the simplest

type of GW calculations, so called single-shot GW calculations (referred to as G0W0), usually

requires a significant amount of computational resources and user interaction. This greatly in-

hibits an efficient and quick analysis of larger material sets. In practice, the standard procedure

(or conventional method) for calculating only one converged fundamental band gap typically

involves several G0W0 calculations for the purpose of converging different computational pa-

rameters separately. These include not only the energy cut-off of the basis set and the corre-

sponding number of energy bands, but also said two parameters for the auxiliary basis set, as

well as the density of the k-point grid. All of these quantities are increased gradually, until

the fundamental gap does not change anymore and convergence is reached. Because of such

involved convergence requirements and large amounts of user interference it is highly imprac-

tical to automate this approach. Only through the implementation of sophisticated methods

(as done in reference [1]) fundamental band gaps can be computed automatically through this

conventional method.

These complications can be circumvent by applying the so called basis set extrapolation,

developed by Klimeš et al..[2] In its proposal it was shown that the band gap error arising in

GW calculations due to truncation of the plane wave expansion behaves like 1/NB, whereNB is
the number of energy bands included in the simulation.[2] Thus, the gap error can be corrected

by extrapolating to the limit of an infinite set of bands. Calculating converged GW level band

gaps with this method requires only a total number of four G0W0 calculations. Additionally,

by removing the necessity of converging multiple parameters manually, an automatic scheme

can be implemented rather easily.

In my work I have developed such an automated scheme for calculating well converged fun-

damental band gaps on GW level, using basis set extrapolation. With this automatic procedure

three different types of fundamental gaps (direct gap at Gamma, smallest indirect gap, smallest

direct gap) were calculated fully automatic for a material set of 69 materials, consisting mostly

of mono- and diatomic insulators and semi-conductors. Additionally to the fundamental band

gaps at GW level, band structures at DFT level were also calculated within the procedure.

The ultimate goal of this automatic approach is to produce reliable GW data for large sets of

materials with less effort and making the results accessible to public via an online database.
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Appendix

Zusammenfassung

Das Ziel dieses Projektes ist die effiziente Berechnung von fundamentalen Energie-Bandlücken

für große Datensätze von Materialien unter der Verwendung von ab initio Methoden. Zur Be-

rechnung dieser Bandlücken kommt die GW-Methode (G steht für die Einteilchen-Greenfunktion,

W für das abgeschirmte Coulombpotenzial). Sie ist eine post-DFT Methode und wird dazu

verwendet notwendige Annäherungen in der Dichtefunktional-Theorie (DFT) zu korrigieren,

konkret werden angenäherte Elektronen-Korrelationseffekte exakt berechnet.

Bereits die einfachste Variante der GW-Methode, die Verwendung von sogenannten single-

shot GW (G0W0) Berechnungen, benötigt ein hohes Maß an Zeitaufwand und Computer-

Ressourcen. Folglich ist die Analyse von großen Datensätzen mit dieser Methode ein sehr auf-

wändiger Prozess. Zusätzlich benötigt die Berechnung von nur einer konvergierten Energie-

Bandlücke nicht lediglich eine G0W0 Berechnung, sondern mehrere davon sind notwendig,

um ein korrektes Ergebnis zu erhalten. Bei der konventionellen Methode (conventional me-

thod), wird eine Vielzahl an G0W0 Berechnungen dafür verwendet, den optimalen Wert für

mehrere Eingabe-Parameter manuell zu finden. Diese Parameter sind unter anderem der Ener-

gie Cutoff der verwendeten Basisfunktionen und die dazugehörige Anzahl an Energiebändern,

sowohl für das Standard-Basisset, als auch für das Hilfs-Basisset. Die Dichte der k-Punkte im

reziproken Raummuss ebenfalls optimiert werden. All dieseWerte müssenmanuell schrittwei-

se erhöht werden, bis sich die Energie-Bandlücke nicht mehr ändert. Diese Prozedur mit ihren

komplizierten Konvergenz-Kriterien kann nur schwer automatisiert werden und sehr aufwän-

digeMethodenmüssen verwendet werden, um fundamentale Energie-Bandlücken automatisch

zu berechnen.[1]

Eine neue Methode, die diese Komplikationen umgeht, ist die Basisset-Extrapolation, ent-

wickelt von Klimeš et al..[2] In ihrer Publikation wurde gezeigt, dass der Fehler, kommend von

dem Abbruch der Basisset-Entwicklung, ein Verhalten von 1/NB zeigt, wobei NB die Anzahl

der in der Berechnung inkludierten Energiebänder ist.[2] Dies hat zur Folge, dass der Feh-

ler durch eine Extrapolation zur Grenze von unendlich vielen inkludierten Bändern korrigiert

werden kann. Diese Methode verwendet lediglich vier G0W0 Berechnungen und keine Para-

meter müssen manuell optimiert werden, wodurch eine Automatisierung wesentlich einfacher

umzusetzen ist.

In meiner Arbeit habe ich unter Verwendung der Basisset-Extrapolation eine automatische

Prozedur zur Berechnung von konvergierten, fundamentalen Energie-Bandlücken entwickelt.

Mit dieser Prozedur wurden drei verschiedene Arten von Bandlücken (direkte Bandlücke am

Gammapunkt, die kleinste indirekte Bandlücke, und die kleinste direkte Bandlücke) vollauto-

matisch für einen Datensatz von 69 Materialien, bestehend aus hauptsächlich ein- und zweia-

tomigen Halbleitern und Isolatoren, berechnet. Zusätzlich zur den angeführten fundamentalen

Bandlücken auf GW-Level wurden auch die Bandstrukturen der Materialien auf DFT-Level im

Zuge der automatischen Prozedur berechnet.

Das finale Ziel dieser automatischen Prozedur ist qualitativ hochwertige Daten auf GW-

Level für große Datensätze vonMaterialien einfacher berechnen zu können und online in einer

öffentlichen Datenbank zugänglich zu machen.
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Regression Error

Regression Error

Due to the fact that calculated data points do not reproduce an exact linear trend, an error in

the estimated gap is introduced when using a linear regression. This error is often referred to

as standard error of the estimate or standard error of the constant of the linear regression.

In this section the formalism, how the error was calculated is briefly presented.

As a starting point, the sample standard deviation is calculated for the errors of the data

points. Since the band gaps do not have an error themselves and are seen as exact, one has to

calculate this quantity as the standard deviation of the dependent variables (band gaps) times

the square root of one minus the correlation squared (equivalent to the r2 value, which is

minimized during the regression).

σserr = σ
s
gaps ×

√
1− r2 (5.1)

The r2 value is referred to as the coefficient of determination and an indicator for how good

the trend is reproduced by the regression.

Next, the standard error of the regression model s can be calculated using this standard

deviation.

s = σserr ×
√

n− 1
n− 2 (5.2)

Where the last term simplifies to
√
2, since only n = 3 data points are used for the regression

here. Using these two quantities, the standard error of the estimate (error of the extrapolated

band gap) SE can now be calculated as follows.

SE =
s√
n
×

√

1+
x̄2

σ2
x

(5.3)

In above equation, n = 3 is again the number of data points used for the regression, x̄ is

the average of the independent variable (here the number of bands N ) and σ2
x is its variance.

Derivations presented here are all taken from reference [29].
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Electronic Band Structures

In this section all calculated band structures will be given. The Brillouin zone paths are all

taken from ref. [10], energies are given in electron volts.

For all bands, the Fermi energy as found in the OUTCAR is subtracted such that the occupied

states are below zero, the unoccupied ones above.

The band structure of systems which require the calculation of material specific parameters

due to distorted or more complicated reciprocal unit cells (e.g. body-centered tetragonal in ref.

[10]) was not calculated. This is because no routines were implemented, which could have

calculated such parameters automatically.

AgCl [Fm3̄m]
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Electronic Band Structures

AgF [Fm3̄m]

AgI [F4̄3m]
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AlAs [F4̄3m]

AlN [P63mc]
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Electronic Band Structures

AlP [F4̄3m]

AlSb [F4̄3m]
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BaBiO3 [Pm3̄m]

BaF2 [Fm3̄m]
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Electronic Band Structures

BaO [Fm3̄m]

BaTiO3 [P4mm]
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BaTiO3 [Pm3̄m]

BeO [P63mc]
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Electronic Band Structures

BeTe [F4̄3m]

BiOCl [P4/nmm]
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BN [F4̄3m]

C [Fd3̄m]
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Electronic Band Structures

C [P63/mmc]

CaI2 [P3̄m1]
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CaO [Fm3̄m]

CaS [Fm3̄m]
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Electronic Band Structures

CdO [Fm3̄m]

CdS [F4̄3m]
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CdS [Fm3̄m]

CdS [P63mc]
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Electronic Band Structures

CdSe [F4̄3m]

CdTe [F4̄3m]
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CePt3Si [P4mm]

CsAu [Pm3̄m]
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Electronic Band Structures

Cu2O [Pn3̄m]

CuCl [F4̄3m]
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FeAl [Pm3̄m]

FeO [Fm3̄m]
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Electronic Band Structures

GaAs [F4̄3m]

GaN [F4̄3m]
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GaP [F4̄3m]

GaSb [F4̄3m]
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HfO2 [Fm3̄m]

InAs [F4̄3m]
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InN [F4̄3m]

InP [F4̄3m]
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Electronic Band Structures

InSb [F4̄3m]

LiF [Fm3̄m]
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LiF [Fm3̄m]

LiH [Fm3̄m]
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Electronic Band Structures

Mg2Si [Fm3̄m]

MgO [Fm3̄m]
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MnO [Fm3̄m]

MnS [Fm3̄m]
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NaCl [Fm3̄m]

NaCl [Pm3̄m]
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NaI [Fm3̄m]

NiO [Fm3̄m]
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PbF2 [Fm3̄m]

PbSe [Fm3̄m]
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Si [Fd3̄m]

Si [P63/mmc]
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Electronic Band Structures

Si [P6/mmm]

SiC [F4̄3m]
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SrO [Fm3̄m]

TlBr [Pm3̄m]
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TlCl [Pm3̄m]

ZnS [F4̄3m]
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ZnSe [F4̄3m]

ZnTe [F4̄3m]
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