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Preface

This thesis consists of research I have conducted over the past four years at the
University of Vienna and is comprised of various topics of logistics solutions for pickup
and delivery problems. Each chapter corresponds to a separate research topic and is
either a published paper or a submitted manuscript with the exceptions of the introduc-
tion as Chapter 1, a single-authored working paper as Chapter 5, and the conclusion as
Chapter 8.

More precisely, Chapter 2 with the title ‘Multi-depot pickup and delivery problems
in multiple regions: A typology and integrated model’ is published in Dragomir et al.
[43] while Chapter 3 with the title ‘Solution techniques for the inter-modal pickup and
delivery problem in two regions’ is published in Dragomir and Doerner [42]. Chapter 6
with the title ‘Tackling a VRP challenge to redistribute scarce equipment within time
windows using metaheuristic algorithms’ is published in Kheiri et al. [86] and Chapter 7
with the title ‘Total distance approximations for routing solutions’ is published in Nicola
et al. [116].

Chapter 4 with the title ‘The pickup and delivery problem with alternative locations
and overlapping time windows’ has been submitted to Transportation Research Part
B: Methodological [44] and is under revision, while Chapter 5 with the working title ‘A
comparison of heuristics for the pickup and delivery problem with alternative locations’
is still in preparation.

The results of these works were presented at several conferences: i.a. at the VeRoLog,
the annual workshop of the EURO working group on Vehicle Routing and Logistics opti-
mization, in 2016, 2017, and 2019; the MIC, the Metaheuristics International Conference,
in 2017; the EURO, the Association of European Operational Research Societies, in
2019; the TSL, the INFORMS Transportation Science and Logistics Society Workshop,
in 2019; the EULOG, Entscheidungsunterstützung in der Logistik, in 2016 and 2018; and
the YAMS, the Workshop on Young Academics’ Management Science, in 2015.
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Chapter 1

Introduction

This thesis deals with of variations of the pickup and delivery problem, a subfield
of commercial transportation problems. The increase of e-commerce and the rapid
development experienced by the transportation industry in the past decades has led to the
study of many configurations of transportation networks and to an explosion of variants
in transportation problems, motivating researchers to look at broader logistic problems,
beyond the basic vehicle routing problems. My wide research focus results in very
diverse topics and chapters including characteristics like time windows, multiple regions,
multiple depots, inter-modal transportation, long-haul and short-haul transportation,
homogeneous and heterogeneous vehicles, alternative locations, roaming locations, locker
boxes, capacitated and uncapacitated vehicles, paired and unpaired pickups and deliveries,
travel time restrictions, and combination of scheduling and routing aspects.

This thesis attempts to find answers for a multitude of questions: How to extend
the known mathematical models to be able to handle multiple regions and multiple
depots for a pickup and delivery problem? How important is synchronization in a multi-
region multi-modal transportation problem using transshipment? How much can the
long-haul scheduling really impact the short-haul routing costs? This thesis also explores
new concepts that transportation providers might consider for their product portfolio:
A holistic approach that attempts to unify the convenience of the customer with cost
savings for the carrier by incorporating alternative recipients and roaming locations. How
does this concept compare to traditional home delivery? Is additional convenience only
advantageous for the customer? Is it affordable, or even profitable, for the carrier as
well?

In addition to these questions, some problems are of a more methodological nature:
Different methods were developed and compared to find the most efficient and appropri-
ate method and design of that method for a particular problem. The methods used in this
thesis are heuristics, metaheuristics, matheuristics, and decomposition approaches. In
particular, I applied adaptive large neighborhood search, variable neighborhood decent,
pilot method and an extension thereof, genetic algorithms, and variations of the savings
algorithm and the insertion algorithm to different problems. For all heuristics I used both
standard operators from the literature and self-developed problem specific operators. To
ensure the quality of the algorithms, I tested them on instances from the literature and
compared them in terms of both solution quality and computation time. For all topics,
I conducted distinct computational experiments, as well as solved realistic and real-life
scenarios to gain a deeper understanding of relevant factors and gain managerial insights.

The remainder of this thesis is organized as follows:

Chapter 2 is a survey and typology that provides definitions, a literature review and
a step-by-step construction of the mathematical models from a simple and well-known

1



2 Chapter 1. Introduction

scenario to the multi-region multi-depot pickup and delivery problem (MR-MDPDP). It
suggests extensions for prospective research, and computational experiments show that
considering a multi-region formulation is much more efficient than using the formulations
for a single region. The chapter was published in Dragomir et al. [43] as a collaborative
effort by my co-authors D. Nicola, A. Soriano and myself, with M. Gansterer taking a
supervising and guiding role. The work was motivated by the project FEAT, and the
models and literature review were developed in a joint effort using cooperative team-work.

Chapter 3 is an inter-modal pickup and delivery problem in two regions where direct
shipments between regions are not possible and a long-haul connection has to be used.
Additionally, it incorporates time window and capacity constraints. The scope is to
identify the correlations and synchronization between different modes and to examine
the influences of the long-haul scheduling on short-haul routing costs. This work was
published in Dragomir and Doerner [42]. This problem was motivated by the project
FEAT and suggested by my supervisor Karl Doerner. I developed the model, imple-
mented the solution algorithm, conducted the computational experiments and wrote the
manuscript with advice and guidance from my co-author regarding every part of the
process.

Chapter 4 examines an alternative concept for transportation providers in order to
attain more convenience for private customers that wish to send and receive parcels: the
pickup and delivery problem with alternative locations and overlapping time windows.
Additional convenience is achieved with customers having multiple roaming pickup loca-
tions throughout the day with non-overlapping time windows (since the product cannot
be in two places at once), multiple roaming delivery locations, an additional alternative
recipient with its own set of roaming locations, and 24-hour locker boxes. This work has
been submitted to Transportation Research Part B: Methodological [44] and is currently
under revision. The initial motivation was provided by my co-authors with whom I speci-
fied the problem. I developed the model, implemented the solution algorithm, conducted
the computational experiments and wrote the manuscript. My co-authors gave advice,
guidance and feedback for every part of the process.

Chapter 5 is a result of the extensive computational study of Chapter 4. Multiple
solution algorithms were implemented which provides an opportunity to compare differ-
ent methods while solving the same problem. Therefore, the motivation and problem
specification is identical to the pickup and delivery problem with alternative locations.
This chapter is a working paper for which I am the sole author. I implemented all
algorithms and conducted all computational experiments, and wrote the manuscript.

Chapter 6 is published in Kheiri et al. [86] and emerged out of the participation
and achievement of third place in the VeRoLog Solver Challenge 2016 - 2017: the third
solver challenge facilitated by VeRoLog, the EURO Working Group on Vehicle Routing
and Logistics Optimization. The work is a collaboration between the participants that
achieved second place (Ahmed Kheiri), third place (my co-author David Mueller and
myself), and the organizers of the challenge. The parts of the published work can be
clearly distinguished as each participant describes their own method and the organizers
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present an overview of the challenge, the posed problem, and the competition results.
The solution algorithm of the third place was initiated by me, however the implementa-
tion, tuning and optimization of the algorithm, and writing of the manuscript emerged
in a cooperative manner by my co-author and myself.

Chapter 7 presents regression-based estimation models that provide fast predictions
for the travel distance in the Traveling Salesman Problem, the Capacitated Vehicle
Routing Problem with Time Windows, and the Multi-Region Multi-Depot Pickup and
Delivery Problem. The use of different characteristics allows us to adjust the models
to different problems and to different solution methods. Regression based models are
particularly advantageous when a large number of routing problems have to be solved so
that even heuristic methods do not provide the required speed. This work is published
in Nicola et al. [116]. My contribution is limited to the implementation of the heuristic
solution methods for the different problems and participation in conducting the literature
review.

For all chapters that correspond to already published work, I have obtained the
rights to include the submitted version in my thesis. The only changes made, and
the only differences to the published versions, concern formatting, structural changes
(renumbering of sections), and updates to cited references.
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Abstract The rapid development experienced by the transportation industry in the
last decades has led to many configurations of networks and therefore to an explosion
of variants in transportation problems, motivating researchers to look at broader
logistic problems, beyond the basic vehicle routing problems. This work introduces
a new type of problem scenario combining various attributes: a pickup and delivery
problem with multiple regions, multiple depots and multiple transportation modes.
We provide definitions, a literature review and a step-by-step construction of the
mathematical models from a simple and well-known scenario to the multi-region
multi-depot pickup and delivery problem (MR-MDPDP). For each step the relevant
literature is examined. Furthermore we suggest possible extensions for prospective
research.

2.1 Motivation
When thinking about realistic transportation networks four main features come to mind:

multiple depots, multiple regions, paired pickup and deliveries, and multi-modality. The first
three are the core pillars of the problems we are examining. The literature so far has mostly
looked at transportation problems within one single region, although in reality transportation
between different regions is common practice since the beginning of modern globalization. Also,
the so often made assumption that the routing problem can be simplified to a vehicle routing
problem might be justified from an academic point of view but is rather oversimplified for practical
applications. Moreover, almost all companies operating on a somewhat larger scale will have
a network structure that contains at least two depots, especially if transportation takes place
between two geographically separated regions. The multi-modality aspect usually occurs by
default by operating in different regions and by the need for a switch of transportation modes
for the last-mile delivery.

The great advances in infrastructures, computation power and solution algorithms have
increased the possibilities for all carriers, specially when facing long distance services. Therefore,
we believe that research in the transportation field should start to look at more complex problem
structures, like the ones described in this work. This paper is aimed to serve as an introduction
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of this new kind of problems that have been hardly studied in their entirety in the literature.
Furthermore, we want to ascertain which works consider at least part of the main building blocks.
We are therefore specifically looking at multi-depot pickup and delivery problems in multiple
regions to provide a foundation for further research in this field.

This research will not only benefit big transportation companies, but also by small carriers
who are willing to form a collaborative network system to be able to compete with those big
companies in the long distance transportation market. The paper presents the transition from
single-region multi-depot problems to multi-region pickup and delivery problems, going through
all the basic mathematical models and existing literature in each field. This aims to provide
a better understanding of the underlying multi-region transportation problem. Our goal is to
gradually introduce the building blocks of our problem to allow the reader a deeper understanding
of it. Our basis are multi-depot pickup and delivery problems.

The paper is structured as follows: in Section 2.2 we will give a short problem introduction
including all necessary definitions. Section 2.3 gives an overview of the relevant literature. Section
2.4 and 2.5 introduces in detail different variations of multi-depot pickup and delivery problems
in one or several regions. We will present mathematical models for each problem variation and
give a literature review over work already done in these areas including information about already
used instances. In Section 2.6 we conclude our work and in Section 2.7 we examine possible
extensions to the basic problem presented before.

2.2 Problem introduction
Before going into detail we need to provide some definitions:

We assume a two-dimensional plane. All nodes within this plane are represented by a complete
graph G(V,E), where V represents a set of nodes and A represents a set of arcs connecting them.
A single arc connects a node i to a node j, with a transportation cost of dij . This cost is usually
represented by the distance between both end points of the arc.

Our definitions are based on the nomenclature provided by Parragh et al. [122]. We define
a region as a group of nodes. The nodes in different regions are geographically separated. A
pickup node is a customer, located at some specific location, where goods have to be collected
by a vehicle. A delivery node is a customer where goods have to be dropped off. In unpaired
problems, the goods are homogeneous and some quantity is collected and dropped off. There is no
need do deliver specific goods. We are either looking at unpaired or at paired pickup and delivery
nodes. For unpaired nodes the goods collected or dropped off are either transported between
customers or have the depot as their origin or destination. Paired nodes are called a request.
A request can have its pickup and delivery node within the same region or in different regions.
A request therefore consists of exactly one pickup and one delivery node with a specific quantity.
The pickup node has to be served before the delivery node. Since the goods are considered
heterogeneous, the delivery node expects exactly these goods and not any goods just like it. Two
modes of transportation are considered. Short-haul vehicles are used within a region. They
are of small capacity and are mainly used for the last-mile delivery. Long-haul vehicles are
used for transporting goods between regions. They allow the consolidation of goods and have a
much bigger capacity than the short-haul vehicles. Long-haul vehicles can be slow, fast, cheap or
expensive in any combination. A depot is the place where a vehicle starts and ends their tours.
A tour starts and ends at the same depot. Also, vehicles are assumed to stay at the depot when
they are not being used.

Figure 2.1 shows two cases of regions. All figures in this work use the following representation:
the squares are depots, the circles are nodes. An empty (white) circle is a pickup node, a full
(black) circle is a delivery node. Routes fulfilled by a short-haul vehicle are depicted as dashed
lines, long-haul routes are double lines.
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(a) One region with 2 Depots (b) Two regions with 4 depots and long-haul

Figure 2.1: Figure 7.1a shows one region with two depots where all nodes can be served by
either depot. Figure 7.1b shows two regions with two depots each. The depots belonging
to different regions are connected by long-haul lanes. The delivery node of a corresponding
pickup can be in the same or in another region. Black nodes are pickup points, while white
nodes are the paired delivery points.

In general, the multi-depot multi-region version of the vehicle routing problems (VRP) is
closely related to network design problems (including location routing problems), two- or multi-
echelon VRPs, multi-modal transportation and VRP with intermediate facilities. All of these
topics are closely related to real-world problems and have been studied in the literature. However,
no clear problem definition or consistent typology exists. Our goal is to provide structure and
formulations for this generalization of existing problems. For a literature review on VRPs with
multiple depots we refer the interested reader to the publication by Montoya-Torres et al. [109].
The works mentioned there build the basis for the problem we are examining but they do not
contain the core characteristics of examining solely pickup and delivery problems or dealing
with multiple regions. For a literature review on multimodal freight transportation planning
we refer the reader to the work by Steadie Seifi [156]. Multi-modal problems often incorporate
multiple depots, pickup and delivery problems, or multiple regions but almost never all three.
The literature review by Montoya-Torres et al. [109] gives a very good overview but does not
integrate all building blocks.

2.3 Literature
Our goal was to find literature that fits exactly to our problem: multiple depot pickup

and delivery problem with inter-depot routes in multiple regions. However, to the best of our
knowledge, the exact problem we are studying here, has not been yet addressed in the existing
literature. Therefore we set the boundary at literature dealing with multi-depot problems with
an underlying pickup and delivery routing problem. We loosened this boundary if a paper dealt
with other important characteristics (inter-depot routes or multiple regions) even if it was ”only”
a vehicle routing problem. Therefore we also included in our literature multi-depot VRPs if they
seemed fitting and had an overall network structure that contained some features of the problem
classes. Because of this, literature about the two-echelon routing problem and work dealing with
multiple modes became relevant for this work. We want to give structure to a new problem
class because there has already been some work done but it seems uncoordinated and looked at
from very different point of views. We collected the relevant work to show the potential of this
problem. Most of the work mentioned here used real-life instances provided by a company which
had a need for a solution. Therefore the importance becomes evident.

Table 2.1 gives an overview on the included literature. The individual papers are presented
in detail in their corresponding sections. The papers are sorted first by the section they appear
in this work and second by year of publication.

The first block of columns shows the underlying routing problem. This refers to the way
the routing is dealt with within a region. We divide the papers according to the following
classification: VRPs (VRP), paired pickup and delivery problems (paired P&D), pickup and
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delivery problems with backhauls (backhauls), and pickup and delivery problems with mixed
backhauls (mixed backhauls). In the standard VRP each customer node has a certain quantity.
It does not matter if this quantity has to be delivered or picked up since it is the same type for all
nodes. Please note, that we did include literature that was similar enough to our problem, even if
it only dealt with the standard VRP. The paired pickup and delivery problem (see the definitions
by Parragh et al. [122]) contains for each transportation request a pickup and delivery node that
belong together. The delivery can be done directly (within the same tour as the pickup) or be
forced to go over a depot. The VRP with backhauls or mixed backhauls belongs to a different
class of problems. Here, all goods that are delivered to a customer are loaded at the depot and all
goods that are picked up at a customer are unloaded at the depot. There is no link between the
pickup and delivery nodes (see the definitions by Parragh et al. [121]). In the mixed backhaul
problem the pickup and delivery at the customers can be fulfilled in any sequence. However
the standard backhaul problem (also called the VRP with clustered backhauls) specifies that all
deliveries have to occur before the first pickup.

The second block of columns shows constraints and other problem specifications. Only
constraints that were mentioned in the relevant literature are included in the table, apart from
the vehicle capacity constraint, which was excluded because it appeared in every paper. These
are however not all possible constraints since many problem variations have not been studied
yet. For further suggestions we refer the reader to Section 2.7. The third block of columns shows
whether the solution method applied was an exact method or a heuristic. Because of the difficult
nature of the problems it is not surprising that heuristics were used more often. Also, it shows
the number of locations (nodes) for the biggest instances solved. If only the number of requests
where given, the assumption is made that each request consists of two locations and this number
was added to the table.

2.4 Single region problems
Single region problems are the basic building block for our new problem class. According to

the previous definition of region, single-region problems encompass the vast majority of families
of VRPs studied so far. The main elements of this setting are a set of customers or nodes that are
to be visited and a set of depots from and to which routes start and arrive. Many configurations
and restrictions of this setting can be found in the literature, leading to a broad spectrum of
problems. The most representative problems of this setting are the classical travelling salesman
problem and VRPs. Both problems have one unique depot. In Laporte [93], the VRP is described
in detail and solution algorithms for the VRP are presented. For the purpose of this paper we
are interested in problems where the number of depots is greater than one. Routing problems
with one depot can be extended to several depots, leading to the family of multi-depot problems.
One of the classic problems among them is the multi-depot VRP, which is an extension of the
aforementioned VRP. A formal description of this type of problem can be found in the works by
Polacek et al. [129] and Renaud et al. [134]. The main elements of these settings remain the
same as for the single-depot problems, only the graph G(V,E) is extended to include all depots.
The many existent typologies of problems in this family arise from the diversification of factors
like the nature of customers, their relation, time constraints and many others. In this work we
focus on pickup and delivery problems. We present some of the more relevant variants of this
problem within the single-region setting, along with their mathematical model, before extending
them to the multi-region setting.

Multi-depot vehicle routing problems
Dondo and Cerdá [41], consider a heterogeneous fleet of vehicles in a multi-depot scenario

with time windows. The vehicles differ in capacity and speed. The underlying routing problem is
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Currie and Salhi [36] 2003 X X X X X X X 200 2.4
Polacek et al. [129] 2004 X X X X 288 2.4
Dondo and Cerdá [41] 2007 X X X X 100 2.4
Min et al. [105] 1992 X X X 161 2.4.1
Irnich [81] 2000 X X X X X 484 2.4.1
Nagy and Salhi [114] 2005 X X X 249 2.4.1
Bettinelli et al. [16] 2014 X X X X X 144 2.4.2
Detti et al. [40] 2016 X X X X X X 246 2.4.2
Gendron and Semet [63] 2009 X X X X 701 2.4.3
Perboli and Tadei [125] 2010 X X X X X 50 2.4.3
Crainic et al. [32] 2011 X X X X X 50 2.4.3
Perboli et al. [126] 2011 X X X X X 50 2.4.3
Hemmelmayr et al. [77] 2012 X X X X X 50 2.4.3
Nguyen et al. [115] 2012 X X X X 200 2.4.3
Ghilas et al. [65] 2016 X X X X X X X 100 2.4.3
Breunig et al. [18] 2016 X X X X X 200 2.4.3
Ghilas et al. [64] 2018 X X X X 50 2.4.3
Bard et al. [9] 1998 X X X X 20 2.4.3
Angelelli and Speranza [4] 2002 X X X X 150 2.4.3
Crevier et al. [34] 2007 X X X 288 2.4.3
Goel and Gruhn [68] 2008 X X X X X X 2500 2.4.3
Muter et al. [112] 2014 X X X 50 2.4.3
Salhi and Sari [143] 1997 X X X 360 2.7.3
Ceselli et al. [22] 2009 X X X X X X X 100 2.7.4

Table 2.1: General classifications of the literature sorted by section and year



10 Chapter 2. Typology of the multi-region multi-depot pickup and delivery problem

a capacitated vehicle routing problem. Although they mention both pickups and deliveries, only
one option is chosen at a time.

The proposed method is a region-based optimization including three phases. In the first
phase, a set of cost effective regions is identified, while in a second phase, regions are assigned to
vehicles and tours are sequenced using a region-based MILP formulation. The third phase orders
nodes within regions and schedules arrival times for the vehicles at customer locations by solving
a MILP model. They test the computational performance of their algorithm on instances from
Solomon’s work found in [150]. In addition, new test instances have been generated. They have
up to 100 nodes and can solve many problems up to optimality or near-optimality. Even though
the work deals only with a simple vehicle routing problem it is mentioned because of the region
based solution approach which makes it interesting for our topic.

Another application presented by Currie and Salhi [36] is a full-load pickup and delivery
problem with time windows. They have heterogeneous vehicles and products. In their problem
they consider the delivery requirements of a large construction company. Goods have to be
transported from multiple depots to a large number of customers. Since the problem consists
only of deliveries it can be classified as a capacitated vehicle routing problem. The problem
ignores vehicle load splits as they very rarely occur. Trips are made between locations, where the
product is collected, and the depots. Each location is visited exactly once, as several requests for
the same location are considered as a single requests for a location. Loading and unloading times
are assumed to be constant, irrespective of the product to be transported. A constant cleaning
time for vehicles, as well as waiting times might be added to the routes. ’Dayworks’, which are
situations in which the vehicles remain at a location for the rest of the day after their arrival, are
also included. External vehicles might be hired by the company if the fleet is not sufficient to
perform all trips.

To solve the problem described in Currie and Salhi’s work [36], the authors present a first
formulation as a 0-1 LP followed by a hybrid algorithm that chooses between a greedy heuristic
and one based on regret costs. The greedy heuristic uses an index of stringency to select the
next request for insertion, where requests with the lowest index values are assigned to vehicles
first. Stringency includes different attributes such as quantity and length of time windows. The
regret costs method calculates a penalty cost for each request, which is obtained from the cost of
forfeiting the opportunity of inserting the request in its best slot. They randomly generate their
instances and solve instance sizes up to 200 location sites and 500 request. These instances can
be found on: http://www.mat.bham.ac.uk/S.Salhi/others.

2.4.1 Multi-depot vehicle routing problem with mixed backhauls

The multi-depot vehicle routing problem with mixed backhauls consists of a set of unpaired
pickup and delivery customers. Unpaired nodes are independent of each other, there is no
relationship between the pickup and the delivery locations. By definiton this means that all
pickup goods are transported to a depot, and all delivery goods have to be loaded in the vehicle
at a depot.

The underlying routing problem has been defined in different ways in the literature. In [121],
Parragh et al. refer to the problem as VRP with Mixed Linehauls and Backhauls, while Salhi
et al. name it Multiple Depot VRPs with Backhauling in [142]. Traditionally, the VRP with
backhauls has been associated with pickup and delivery problems where pickup and delivery
customers are not paired and a node has positive or negative quantities. In the simplified version
(with clustered backhauls) the delivery points must always be visited before the pickup of goods
to avoid infeasibility concerning the vehicle capacity restriction. However, in this section we
present the more general case where no precedence relations have to be satisfied, that is, pickup
and delivery points can be visited in any order. Therefore, we want to differentiate from the pure
backhauling problems by referring to the problem as multi-depot VRP with mixed backhauls
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Figure 2.2: A single-region multi-depot problem with mixed backhauls. For every pickup in
a tour, a delivery is done at the depot, and for every delivery in a tour, the goods are picked
up at the depot as well. Note, that the pickup and delivery sequence within the tour can be
mixed.

(MDVRPMB). Figure 2.2 gives a visual representation of the VRP with mixed backhauls can be
found .

As described above, the main characteristics of this problem are that the nodes in graph
G(V,E) could be either pickup or delivery customers, and that they can be visited in any order.
The objective is to visit all customers at minimum cost while satisfying the capacity restrictions
of the vehicles. A set of vehicle is defined in advance, but it is assumed that this number is
sufficient to fulfill all transportation requests.

The mathematical model is based on the work by Montoya et al. [109].

Sets and Parameters
N = set of customers,
L = set of depots,
V = set of all nodes, N ∪ L,
Kl = set of vehicles in depot l,
K = ∪l∈LKl = set of all vehicles,

qi = quantity load for the node
{

+qi , if it is a pickup customer,
−qi , if it is a delivery customer.

QSH = capacity of each vehicle,
cij = travel cost between nodes i and j.

Decision Variables

xijk =
{

1, if vehicle k travels directly from node i to node j,
0, otherwise.

Sik = loading amount of vehicle k after visiting customer i.

For simplicity in the notation, copies of depot l representing start and end points of the
routes are denoted as l0 and l1.

minimize
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk Subject to (2.1)

∑
i∈N

∑
k∈K

xijk = 1 ∀j ∈ V (2.2)
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∑
i∈V

xihk −
∑
j∈V

xhjk = 0 ∀k ∈ K,h ∈ N (2.3)

∑
i∈V

xilk =
∑
j∈V

xljk ≤ 1 ∀l ∈ L, k ∈ Kl (2.4)

Sjk =
∑
i∈V

xijk · (Sik + qi) ∀j ∈ V, k ∈ K (2.5)

0 ≤ Sik ≤ QSH ∀i ∈ V, k ∈ K (2.6)∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀k ∈ K,S ⊆ N, |S| ≥ 2 (2.7)

xijk ∈ {0, 1} ∀i, j ∈ V, k ∈ K (2.8)
Sik ∈ N ∀i ∈ V, k ∈ K

Equation (2.1) represents the objective function, which is to minimize costs. Constraint (2.2)
ensures that each node is visited once, constraint (2.3) that the vehicle entering and leaving a
node should be the same (route continuity). Each short-haul tour originates and terminates at
the corresponding depot (2.4). Loading restrictions for backhauls (2.5). Constraint (2.5) makes
the model non-linear. For simplification purposes, linearization of the constraint is not included
in the model but on the appendix. Since both pickup and delivery nodes are visited in any order,
it is not sufficient to sum up over all quantities within a route. After every visited node, the
quantity of goods in the vehicle has to be within our bounds (2.6). Constraint (2.7) is used for
sub tour elimination.

Related problems

Different types of this model (with certain variants and assumptions) have been worked on.
For example, the MDVRP with backhauling, was early proposed by Min et al. in [105]. They do
not consider mixed backhauls because they assume rear-loaded trucks for their problem where
reshuffling of loads is tedious and not easily possible. Therefore all deliveries are fulfilled before
the first pickup is allowed. Both their vehicles and depots have a limit on capacity. For the
depots this means that they are able to only serve a limited amount of loadings and unloadings
per day. Their main decision problems are to determine the fleet size (the number of available
vehicles is not limited), to allocate the vehicles to the depots, to allocate the customers to vehicles
and the routing of the vehicles.

Irnich [81] looks at a kind of multi-depot pickup and delivery problem. The author here
considers multiple depots and heterogeneous vehicles. The goods are delivered to and from a
hub, instead of the depots of the particular vehicles. This is because of the particularity that all
pickup or delivery locations serve as the depots for the vehicles. We classified it as a problem
with backhauls under the assumption, that the hub is actually the depot and the nodes are just
simple customers. However it is clear that it does not quite fit since the hub does not correspond
to the definition of a depot. Their main decision is the assignment of a request to a specific
vehicle. The routing is far less important.

Nagy and Salhi [114], look at a multi-depot VRP with mixed backhauls and simultaneous
pickup and deliveries where a customer can both receive and send goods at the same time.
Although their work focuses mainly on single-depot problems, they manage to extend this
approach to a multi-depot scheme. Their vehicles are capacitated and they have a maximum
route length constraint.
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Methods and instances

Min et al. in [105] decompose their problem and use a three phase heuristic method. Its first
phase aggregates customers (delivery nodes) and vendors (pickup nodes) to capacitated regions;
in the second phase, customers and vendors are assigned to a depot and a route; the third phase
designs the individual vehicle routes. Each phase takes the output of the previous phase as an
input. The data and instances used were provided by the transportation division of a large U.S.
company and altered to ensure confidentiality. Their data contained 161 potential nodes to visit.
The input data can be found in the appendix of their published paper.

Irnich [81] formulated their problem as a network model. The goal is to find a set of trips which
fulfills all requests while minimizing costs. They use a set partitioning/covering model which
implies a two phase algorithm. The solution approach first enumerates relevant route-vehicle
combinations; then a set T of relevant trips for each route-vehicle combination are enumerated,
checked for dominance, and, if dominated, eliminated from T . Finally they solve a set covering
problem with the corresponding remaining set T . The algorithm was implemented in a decision
support system used by the Deutsche Post AG. They have up to 22 locations with 242 requests
in total and up to 6 different vehicle types. They do not provide a comparison to exact solutions,
only to weak lower bounds. However, compared to previously manually planned solutions, they
where able to reduce cost by 15 per cent on average. As far as we know, the exact data has not
been made public.

The multi-depot problems from Nagy and Salhi [114] are solved by dividing the customer set
into borderline and non-borderline customers. For the non-borderline customers, the assignment
is straightforward, whereas the borderline customers need an explicit assignment to their nearest
depot. A customer is borderline if it is situated roughly midway between two depots. For each
depot they find a weakly feasible solution and finally insert the borderline customers into the
vehicle routes one at a time. Their instances have up to 249 customers and up to 5 depots. They
also reimplemented other methods from the literature to compare against and show that their
methods outperforms the others in relation to solution quality, but not necessarily in relation to
computational times.

2.4.2 Multi-depot paired pickup and delivery problem

This problem represents the basic extension to a multi-depot scheme of the classic pickup
and delivery problem (PDP). In PDP, customers are not independent any more, but they are
paired to form requests. Each request consists thus of two customers or locations, one where the
goods have to be picked up and a second one where goods are to be delivered. This problem
differs from the one presented in Section 2.4.1 because the order in which customers are visited is
now constrained. No delivery customer can be visited before its matching pickup customer. For
further information about PDP problems we refer the interested reader to the work by Parragh
et al. [122] and by Berbeglia et al. [14]. Despite the extensive research conducted on single depot
PDP and its variants, very little literature exists for the multi-depot case (MDPDP). A visual
representation of the VRP with paired P&D can be found in Figure 2.3.

New Sets and Parameters
R = set of requests, ={1,..n},
N = set of pickup and delivery points, ={1,..n, n+1,...,2n}.

New decision variables
tik = fulfillment time at node i on tour (vehicle) k.

The precedence relation between pickup and delivery customers is modeled by explicitly
considering the visiting time as a decision variable. The pickup and delivery nodes have to be
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Figure 2.3: A single-region multi-depot VRP with paired P&D. Here the delivery has to be
after the pickup within the same route and vehicle. The nodes belonging together share the
same number.

always within the same route, it is not possible to store a package at the depot.

∑
j∈N

xijk −
∑
j∈N

xi+n,j,k = 0 ∀i ∈ R, k ∈ K (2.9)

tik ≤ ti+n,k ∀i ∈ {1, .., n}, ∀k ∈ K (2.10)

tjk =
∑
i∈V

xijk · (tik + cij) ∀j ∈ V, k ∈ K (2.11)

tik ∈ Z ∀i ∈ V, k ∈ K (2.12)

Constraint (2.9) ensures that both pickup and delivery locations are served by the same
vehicle. The precedence constraints for P&D are included by (2.10). (2.11) makes sure that the
time continuity is given in a tour.

Related problems
Bettinelli et al. in [16] present a multi-depot heterogeneous pickup and delivery problem with

soft time windows. They find a set of routes of minimum length for a fleet of vehicles with limited
capacity to serve a set of customers. Routes start and end at a depot from a given set of depots.
Customers have a given demand that has to be served by a single vehicle from a heterogeneous
fleet. The violations of the time windows are penalized. The pickup and delivery of a package
belonging to one request has to be done by the same vehicle.

Detti et al. [40] present a multi-depot dial-a-ride problem with heterogenous vehicles. They
extend the problem by introducing compatibility constraints. The authors study a problem in
healthcare, where patients have to be transported in vehicles depending on their needs. A fleet of
heterogeneous vehicles are located in geographically distributed depots. Patients may ask to be
transported by a specific vehicle, which is called patient’s preferences. The problem consists on
assigning transportation services to vehicles and finding a route for them. Among the constraints
included in this problem we can find vehicle’s capacity, patient-vehicle compatibility, pick up and
delivery time windows, patients’ preferences, precedence constraints, quality and timing of the
service provided.

Methods and instances
As for the problem described by Bettinelli et al. in [16], the authors propose a branch-and-

cut-and-price algorithm. First, a set of columns is generated for every customer, representing
optimal paths when customers are served one at a time. A dummy column with a very high cost
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is included in order to ensure feasibility at each node of the search tree. They solve the linear
relaxation of the restricted master problem (RMP), and then search for columns which are not in
the RMP, but have negative reduced cost. If this column does not exist, the solution is optimal
for the linear relaxation of the master problem and provides a lower bound to the problem. Their
next step is a dynamic programming heuristic to provide an upper bound on the amount of dual
prizes that could be collected when completing the path. To strengthen the lower bound they
add violated 2-path inequalities. The branching policies used are branching on the number of
vehicles and branching on arcs. This approach is tested on instances derived from Solomon’s
work presented in [150], solving instances up to 144 customers. They manage to prove optimality
for instances up to 75 customers.

In Detti et al. [40], the proposed solution methods include variable neighbourhood search
and tabu search algorithms. A mixed integer linear programming formulation is also presented.
These algorithms are compared based on their computational results for large real-world and
random instances. For the tabu search, in a first phase, an initial solution is generated through
a fast insertion heuristic. Then, a tabu search scheme iteratively tries to improve this solution.
At each iteration, a neighbourhood is generated by perturbing the current solution. The whole
process is repeated until a stopping criterion is satisfied. As for the variable neighbourhood search
algorithm, two steps are proposed. First, an initial solution is generated through a fast insertion
heuristic. Then, a local search step is performed on this initial solution. The second step of the
algorithm is an iterative procedure. At each iteration of the algorithm, a new randomly generated
solution is created in the current neighbourhood. A local search step is applied to this solution. If
it is feasible and the best so far, it replaces the initial solution. If only one violation on any single
type of constraint occurs, the solution is changed by an adjusting procedure to make it feasible.
These methods are tested on random instances based on real-life data. The instances have up to
246 transportation services (requests) and 313 vehicles with 4 different types, distributed over 17
depots and belonging to 29 non-profit organizations.

2.4.3 Multi-depot pickup and delivery problem with inter-depot routes
Here we present one variant of the multi-depot problem where depots are connected by inter-

depot lanes. Figure 2.4 shows a simple version of an inter-depot route connecting two depots in a
single regions with paired pickup and delivery nodes. This setting makes sense when the vehicle
type used for inter-depot transportation is different from the one used for servicing the customer
nodes, exploiting the advantages of a faster or cheaper connection. Therefore, this problem
lies also in the family of multi-modal transportation. The inter-depot lane can be a permanent
connection or opened when needed. The connection allows the consolidation of goods and a more
efficient and maybe even faster transportation per unit of distance. It can be operated on a fixed
schedule and would therefore mimic a third party providing the service, or on a flexible schedule
which would mimic long-haul vehicles at the carriers’ own disposition. The costs can be fixed
(full-truckload transportation) or variable depending on the goods transported. To represent
different modes of transportation, multiple parallel lanes can be added to a model, for example a
cheap and slow lane for transportation by ship and an expensive and fast lane for transportation
by plane. To the best of our knowledge, this problem has not been previously addressed in this
setting in literature. However it is included in this work as a basis for the development of multi
region transportation problems presented in Section 2.5.

This mathematical model inherits the main characteristics of the previous models without
inter-depot routes, and adds inter-depot related sets, variables and constraints. Also, decision
variables regarding the beginning and ending times of the routes have to be defined to model the
time consistency between the short- and long-haul vehicles.

New sets and parameters
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Figure 2.4: Inter-depot routes by adding a separate (faster, cheaper) vehicle between the
depots, while still operating in a single region where each node can be served by any depot.
Each request (pickup and delivery pair) has a letter assigned. The short-haul vehicles visit the
pickup nodes first and then deliver to the corresponding delivery nodes. The optimal routes
are shown and numbered according to their sequence of execution. All transportation requests,
except one (C), are transported over the inter-depot route. Request C is picked up and directly
delivered by the same vehicle.

Hl = set of inter-depot vehicles in depot l ∈ L,
H = set of inter-depot vehicles, ∪l∈LHl,

QLH = capacity of each inter-depot vehicle,
clp = cost of traveling between depots l and p ∈ L.

New decision variables

yilph =
{

1, if request i is transported from depot l to depot p with vehicle h,
0, otherwise.

zlph =
{

1, if inter-depot vehicle h is used for a transport between depots l and p,
0, otherwise.

mh = starting time of vehicle h, h ∈ H,
bk = beginning time of tour k ∈ K,
ek = ending time of tour k ∈ K.

The adjusted objective function includes the costs of transporting between depots, which
may be different from the costs of the vehicles used for the routes:
Constraints to add:

minimize
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk +
∑
l∈L

∑
p∈L

∑
h∈Hl

clpzlph (2.13)

Constraints to add:∑
j∈N∪{l}

∑
k∈Kl

xijkek ≤
∑
h∈Hl

yilphmh +M(1−
∑

j∈N∪{p}

∑
k′∈Kp

x(i+n)jk′) ∀i ∈ R, l, p ∈ L

(2.14)∑
j∈N∪{l}

∑
k′∈Kp

x(i+n)jk′bk′ ≥
∑

l∈L\{p}

∑
h∈Hl

yilph(mh + dlp) ∀i ∈ R, p ∈ L (2.15)

∑
i∈R

∑
h∈Hl

yilphqi ≤ QLH ∀l, p ∈ L (2.16)
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∑
i∈R

yilph ≤M · zlph ∀l, p ∈ L, h ∈ Hl

(2.17)
yilph, zlph ∈ {0, 1} ∀i ∈ V, l, p ∈ L

(2.18)
mh ∈ Z ∀h ∈ H

Starting time of the inter-depot vehicle transporting goods of request i should be greater
than the arriving time of the short-haul route serving the pickup customer corresponding to
the request (2.14). The big M component is necessary to allow for requests being transported
directly from pickup to delivery, without going through the inter-depot route. Starting time of
the short-haul route delivering goods of request i should be greater than the arriving time of the
long-haul route transporting the goods of the request (2.15). Constraint (2.16) for the quantity
on the inter-depot vehicle. Constraint (2.17) ensures that requests are only assigned to long-haul
transports that are performed.
Constraints (2.14) and (2.15) make the model non-linear and therefore intractable for a commer-
cial solver. However they can be linearized, as shown in the appendix. In spite of this the model
remains NP-hard and can only be solved to optimality for small instances.

Related problems
As far as we know, this type of multi-depot problem has not been yet addressed in the

literature in this form. Its main feature is the existence of two different ways of transportation
in two stages, which requires the combination of a scheduling and a routing problem. Extensive
literature exists for similar problems, where two dependent decisions are to be made. For
example, two-echelon vehicle routing problems (2E-VRP) and location routing problems (LRP)
are frequently studied in the literature. Also another concept of MDPDP with inter-depot routes
has been addressed in the literature, where inter-depot routes are understood as a vehicle starting
and ending the route in a different depot, thus staying away from multi-modal transportation.
A detailed explanation is given in Section 2.4.3.

Gendron and Semet [63] consider a multi-echelon LRP for a fast delivery service, with three
levels of intershipment facilities (hubs, depots, satellites). From satellites, the products are sorted
and delivered to the customers. Transportation between levels is done in different transportation
modes.

In Crainic et al. [32], Perboli and Tadei [125], Perboli et al. [126], and Breunig et al. [18] a
two-echelon vehicle routing problem (2E-VRP) is presented. They define one central hub, a set
of intermediate depots called satellites and a set of customers with demands. The freight stored
at the central hub must transit through the satellites and then be delivered to the customers.
Two different types of vehicles are considered according to the level they serve. Neither route
size nor number of visited customers are limited.

In Hemmelmayr et al. [77], the 2E-VRP is also considered. Satellites locations are assumed
to be known and a limit on the number of vehicles for both levels is considered. They are also
able to solve an LRP with their approach, by transforming the 2E-VRP to an LRP. Capacity
limit and opening costs are considered for the depots.

Ghilas et al. [64, 65] use a very similar type of inter-depot routes in their work. Their inter-
depot route is a scheduled active public transportation line travelling in the city of Amsterdam
transporting both passengers and packages. All vehicles from a depot can serve all customer
nodes without restrictions, but they have the possibility to shorten their routes by consigning the
packages to a public scheduled line. At the end of the line, the packages have to be picked up by
another vehicle belonging to another depot and delivered to their destination. They prove that
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introducing scheduled lines leads to a decrease in transportation cost compared to the solutions
obtained without them.

Methods and instances
Gendron and Semet [63] present both an arc-based and a path-based formulation for tackling

the problem. Furthermore, they develop a binary relaxation as an alternative, for which both
formulations are equivalent. The computational results are obtained from 32 instances generated
based on real data, for 93 depots, 320 satellites and 700 customers. The linear programming
relaxations are solved using CPLEX with a 2 hours CPU time limit.

For the 2E-VRP solution, Perboli and Tadei [125] present new inequalities in an exact model.
Inequalities are then inserted in a Branch & Cut framework with a 10000 seconds computing
time limit for each instance.

Crainic et al. [32] present heuristics to solve the 2E-VRP. An initial solution is obtained by
a first-clustering second-routing strategy. Then a local search is performed over the clustering of
customers around satellites. A final perturbation move is performed until a feasible solution is
reached.

Perboli et al. [126] present two interesting math-based heuristics to solve the 2E-VRP. The
first one forces assignment variables to be fixed to a value and, if the model is infeasible, they unfix
some variables and restart the process. The second heuristic method, solves a semi-continuous
2E-VRP using a MIP solver with a 60 seconds time limit and obtains a list of best integer
solutions found. For every solution in the list, they consider the customer-satellite assignments
and solve the VRP instances with a time limit of 5 seconds.

Crainic et al. [32], Perboli and Tadei [125] and Perboli et al. [126] use instances from some
previous work of theirs, which covers up to 50 customers and 5 satellites.

An adaptive large neighborhood search is proposed in Hammelmayr et al. [77]. Its main
feature is that it allows for infeasibilities in the initial solution construction phase. Destroy and
repair algorithms are used for improving the solution and making it feasible. The authors use
the same instances as Crainic et al. [32] and Perboli et al. [126].

Breunig et al. [18] make use of a large neighborhood search heuristic. The method uses
several destroy operators and only one repair operator. They also work on collecting the instances
for the problem, obtaining different sets from several previous works and modifying them to a
common structure. Instances with up to 200 customers are solved. Results show a very good
performance in comparison to the results from Hemmelmayr et al. [77].

Ghilas et al. [64, 65] use both exact and heuristic methods for their problem. They decided for
a branch-and-price approach as an exact method and for an adaptive large neighborhood search
heuristic method. They managed to obtain exact results for small and medium size instances
with up to 50 requests. In addition they studied the effects of the number of scheduled lines,
the scheduled lines frequency, and of the time windows on the operating costs. Their instances
contain up to 100 requests and 3 scheduled lines.

Interpretations of inter-depot routes

So far, existing literature has referred to the inter-depot routes as routes in which vehicles
start and ends in different depots or when another depot than the starting depot is used as a
replenishment or unloading point along the route. This interpretation leaves us with a quite
different problem than the previously proposed one. Multi-modal transportation stays out of
scope and it is no longer a two-level decision problem.

The first option mentioned consist of vehicles starting in a depot and ending at a different
location (depot or customer) within the same region. A practical application would be to allow
the vehicles to return to their start depot on another day. Figure 2.5 shows a simple route with
two pickup and two delivery nodes which starts and ends at different depots. From this example
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Figure 2.5: Inter-depot routes by allowing vehicles have different start and end depots.

Figure 2.6: Inter-depot routes by allowing vehicles to visit depots within their route. In the
first part of the route it picks up all the white nodes and delivers all or part of the goods to the
nearest depot (different from the starting depot). From there, it picks up the goods that have
to be delivered to the black nodes. At the end of the day it returns to the depot it started
from.

it is clear that by forcing a vehicle to return to the start depot, a considerable increase in distance
has to be condoned.

The paper by Goel et al. [68] deals with a rich VRP that incorporates several constraints
found in real-life applications. These locations can require a pickup, a delivery, or simply a service,
where no quantity of goods change hands. They do not assume that vehicles are stationed at a
depot, but simply become available at a specific location, to a specific time with some predefined
load. Also, vehicles do not return to a depot, but an end location for the tour is given. Therefore
we classified the problem as one with inter-depot routes, since every location can be a depot.
During the computation, some requests get canceled while others became known only then. In
addition to the inter-depot routes, they consider several constraints like time window restrictions
or drivers’ working hours, among others.

They make use of a reduced large neighborhood search strategy, with several and specific
neighborhoods that allow them to go from one solution to another. They solved self generated
instances with up to 500 vehicles and 2500 orders.

Another approach that can be considered as a problem with inter-depot routes consists in
allowing a vehicle to visit another depot during its tour while still returning to its own depot
at the end of the day. This approach makes sense for unpaired pickup and delivery problems or
capacitated VRP with backhauls. Especially vehicles with a tight capacity might profit from the
possibility to unload or replenish the goods to be transported during their route. This scenario
also applies, for example, to electric vehicles that need to use recharging stations during their
route, as stated in the work by Hiermann et al. [78]. Figure 2.6 shows an example of a route in
which a vehicle visits a depot during its route while transporting backhauls.

This problem has been introduced by Crevier et al. [34] where depots act as replenishment
facilities, in a real-life grocery distribution network. Vehicles can have a single-depot route,
which starts and ends at the same depot, or inter-depot routes which connects two different
depots. Nevertheless, returning to its original depot is mandatory. They tackle the problem
with a three-phase heuristic: route generation, determination of least cost feasible rotations and
post-optimization phase. They adapted instances from the literature and generated benchmark
instances with 48 to 288 customers and 3 to 6 depots.

Muter et al. [112] tackle the same problem and allow vehicles to stop at intermediate depots
for replenishment.They solve their problem by a branch-and-price algorithm. Moreover, two
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Figure 2.7: MR-MDPDP with two regions and two depots per region. Requests A, B and
C are transported over long-haul lanes. Request D is an intra-region request served only by
depot 2. The SH routes are numbered in their order of execution. The order is the following:
Route 1 picks up request A, which then travels from D3 to D1 over the LH. Route 2 delivers
A and picks up B. B travels over the LH from D1 to D4. Route 3 picks up D and C and
immediately delivers D within the same route. Request C travels over the LH to D4. After
both B and C have arrived in D4 they are both delivered by route 4.

different pricing sub problems are implemented and compared. The traditional one-level column
generation scheme is inferior to their developed two-level decomposition scheme. They work on
instances from the literature containing between 3 and 7 depots and up to 50 customers, solving
some of them to optimality. They show that allowing inter-depot routes leads to an improvement
of cost, although making the problem harder to solve.

Bard et al. [9], and Angelelli and Speranza [4] allow the replenishment at intermediate
facilities, but differing from the previous works in that depots cannot act as intermediate facilities,
hence being different kind of locations.

Angelelli and Speranza [4] propose a tabu search algorithm to iteratively move from one
solution to another within the same neighborhood. A new solution is chosen minimizing a
penalty that is related to the objective function. Instances from previous literature are solved,
as well as random generated ones with up to 150 customers, 4 satellites and 5 vehicles.

The solution method proposed in Bard et al. [9] starts by relaxing the vehicle routing problem
with satellite facilities linear program. Subsequently, a branch and cut approach is implemented.
They solve self-generated instances with up to 20 customers and 2 satellites.

2.5 Multi-region pickup and delivery problems
In this section we introduce a new type of problems, the multi-region pickup and delivery

problems. The main characteristic of these problems is that regions are independent of each
other, meaning that customers in different regions cannot be visited by a vehicle from a depot
situated in another region. Especially, we are interested in describing the multi-depot version
of these problems (MR-MDPDP), where more than one depot is located in each region. This
problem constitutes a special case of the MDPDP with inter-depot routes explained in Section
2.4.3. From the application point of view, we think it seems to be more realistic than the MDPDP
with inter-depot routes since there exist many cases where transportation between two separated
regions is unpractical for the vehicles performing the short distance transportation, and no other
option than multi-modal transportation is left.

In MR-MDPDP, all transportation requests have a pickup and a delivery node. These nodes
can be within the same region (intra-region requests) or they can be in different regions (inter-
region requests). Customer locations (either pickup or delivery) are visited by short-haul vehicles.
The goods from inter-region requests have to be transported from the region where the pickup
customer is located, to the delivery customer region. This inter-region transportation is done
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by long-haul vehicles. Long-haul or inter-region vehicles connect the regions and transport the
consolidated goods. They have to be scheduled so that all requests are fulfilled and cost minimized.
In the case where there is only one depot in each region the inter-region vehicles represent a
standing connection between the regions which has to be used due to a lack of alternatives.
However, the departure times can still be either fixed (scheduled) or flexible (up to optimization).
If multiple depots are present in each region, the additional decision occurs, which of the possible
long-haul connections to use. Since each depot can be connected to every other depot of any
other region, several possibilities arise. Figure 2.7 shows a simple representation of a solution of
a MR-MDPDP with two regions and two depots in each region.

To the best of our knowledge, this problem has not been considered in the literature yet.
However, all related problems and literature detailed for the MDPDP with inter-depot routes in
Section 2.4.3 apply to the MR-MDPDP, and even in a greater degree, since in this case multi-
modal transportation is required and we face a pure two-level decision problem like the problems
from 2E-VRP and LRP families.

The characteristics of this problem induce the need of introducing an index for the region
in most of the sets and decision variables in the mathematical model. We also have to make a
distinction between requests going over inter-region transportation and requests for which pick
up and delivery are in the same region. Since the introduction of this problem is one of the main
goals of this paper and due to the several changes that need to be made on the mathematical
formulation, we present the complete model for the multi-region problems.

Sets

U = set of regions,
RI = set of inter-region requests, with customers located in different regions,
Ru = set of intra-region requests, with both customers in region u,

Nu = customer points in region u,

Lu = set of depots in region u,

V u = Nu ∪ Lu,
Ku
l = set of short haul vehicles in depot l of region u,

Ku = ∪j∈LuKu
j ,

Hu
l = set of long haul vehicles in depot l of region u,

Hu = ∪j∈LuHu
j .

Parameters

cuij = distance between points i and j in region u,

cuwlp = distance between depots l ∈ Lu and p ∈ Lw,

dui =
{

1, if request i starts in region u,
0, otherwise.

qui = quantity to serve at customer i in region u


> 0, if it is a pick up point,
< 0, if it is a delivery point,
0, if customer i is not in region u.

QSH = capacity limitation for short-haul vehicles,
QLH = capacity limitation for long-haul vehicles.
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Decision Variables

xuijk =
{

1, arc i− j in region u is covered by vehicle k ∈ Ku,
0, otherwise.

yuwilph =
{

1, request i ∈ RI transported from depot l ∈ Lu to depot p ∈ Lw in long-haul vehicle h ∈ Hu
l ,

0, otherwise.

zuwlph =
{

1, vehicle h ∈ Hu
l is used for transporting between depots l ∈ Lu and p ∈ Lw,

0, otherwise.
Suik = quantity loaded in tour k ∈ Ku after visiting customer i,
tuik = fulfillment time at customer i from region u with vehicle k ∈ Ku,

buk = beginning time of route performed by vehicle k ∈ Ku,

euk = ending time of route performed by vehicle k ∈ Ku,

mu
h = starting time of inter-region trip with vehicle h ∈ Hu.

For simplicity in the notation, copies of depot l ∈ Lu representing starting and ending depot
respectively in each region will be denoted as lu0 and lu1 . Indexes in Nu are constituted first with
the customers belonging to inter-region requests and then with pickup and delivery customers
belonging to intra-region requests in u (Ru).

minimize
∑
u∈U

∑
i,j∈V u

∑
k∈Ku

cuij · xuijk +
∑
u∈U

∑
w∈ū

∑
l∈Lu

∑
p∈Lu

∑
h∈Hu

l

cuwlp · zuwlph (2.19)

Subject to

∑
j∈V u

∑
k∈Ku

xuijk = 1 ∀u ∈ U, i ∈ Nu (2.20)

∑
i∈V u

xuihk −
∑
i∈V u

xuhik = 0 ∀u ∈ U, h ∈ Nu, k ∈ Ku (2.21)∑
i∈V u

xulu0 ,ik =
∑
i∈V u

xui,lu1 ,k ≤ 1 ∀u ∈ U, l ∈ Lu, k ∈ Ku
l (2.22)

tujk =
∑
i∈V

xuijk ·
(
tuik + cuij

)
∀u ∈ U, j ∈ V, k ∈ K (2.23)

buk = tulu0 ,k ∀u ∈ U, k ∈ Ku, l ∈ Lu

euk = tulu1 ,k ∀u ∈ U, k ∈ Ku, l ∈ Lu (2.24)
tuik < tui+|Ru|,k ∀u ∈ U, i ∈ Ru, k ∈ Ku (2.25)

Sujk =
∑
i∈V u

xutijk · (Suik + qui ) ∀u ∈ U, j ∈ Nu, k ∈ Ku (2.26)

0 ≤ Suik ≤ QSH ∀u ∈ U, i ∈ V u, k ∈ Ku (2.27)∑
i∈RI

yuwilph ≤M · zuwlph
∀u ∈ U,w ∈ U \ u, l ∈ Lu
∀p ∈ Lw, h ∈ Hu

l

(2.28)
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dui ·
∑
j∈V u

∑
k∈Ku

l

xuijke
u
k ≤

∑
h∈Hu

l

∑
p∈Lw

yuwilphm
u
h ∀u ∈ U,w ∈ U \ u, i ∈ RI , l ∈ Lu

(2.29)∑
j∈V w

∑
k∈Kw

p

xwijkb
w
k ≥ dui ·

∑
l∈Lu

∑
h∈Hu

l

yuwilph(mu
h + cuwlp )∀u ∈ U,w ∈ U \ u, p ∈ Lw, i ∈ RI

(2.30)∑
i∈Nu

yuwilphq
u
i ≤ QLH

∀u ∈ U,w ∈ U \ u, l ∈ Lu
∀p ∈ Lw, h ∈ Hu (2.31)

xuijk ∈ {0, 1} ∀i, j ∈ V, k ∈ K (2.32)
yuwilph, z

uw
lph ∈ {0, 1} ∀i ∈ V, l, p ∈ L, h ∈ H,u,w ∈ U

tuik, S
u
ik, b

u
k , e

u
k ∈ Z ∀i ∈ V, k ∈ K

mh ∈ Z ∀h ∈ H

Constraint (2.20) ensure that all customers in region u are visited once and only once by a
vehicle from region u. A vehicle arriving at a customer must leave it in the same tour (2.21). A
vehicle belonging to depot l in region u has to arrive at depot l, if it leaves it (2.22). Constraint
(2.23) refers to time continuity constraints: the arriving time to customer j with vehicle k equals
the time the previous customer of vehicle k was serviced plus the travel time between i and
j. Constraints modeling the beginning and end time of vehicle k: Start time equals the time
when vehicle k leaves the depot. End time is when vehicle k arrives at the depot (2.24). Time
precedence constraint for intra-region pickup and delivery requests (2.25). Constraints (2.26)
and (2.27) model the load of a short-haul vehicle when visiting customer j and ensure the load
stays below the short-haul capacity limitation. Constraint (2.28) binds decision variable y and
z. Constraints (2.29) and (2.30) bind decision variables x and y. If inter-region request i starts
in region u, the end time of the vehicle k visiting the pickup customer must be smaller than the
departing time of the long-haul vehicle h transporting request i. Equivalently, the beginning
time of vehicle k′ visiting the delivery customer must be greater than the arriving time of the
long-haul vehicle h to depot p. The load on a long-haul vehicle cannot exceed the long-haul
vehicle capacity limitation (2.31).
The linearization of constraints (2.26), (2.29) and (2.30) is shown in the appendix.

Methods
As previously stated, the MR-MDPDP is a two-level decision problem in which interrelated

scheduling and routing decisions have to be made. Any change in the scheduling of requests
traveling in long-haul vehicles affects the routes in both regions and vice versa. Therefore we
face a problem with two simpler underlying problems. The routing problem corresponds to a
MDVRPMB (see Section 2.4.1). It is based on the classical capacitated VRP, which is itself
a NP-hard problem (see Cordeau et al. [28]). Therefore the MR-MDPDP also belongs to the
category of NP-hard problems. This means that an exact approach to the solution is only possible
for instances of very small size, and therefore an heuristic approach is needed for solving problems
of a realistic size.

In order to assess how far we can get with the use of commercial solvers, the previous model
has been implemented and applied to instances of different sizes. A time limit of two hours
was set for every run. All computational results and data description can be found as online
supplements to this publication. In general, within the specified computational time we are able
to solve instances with up to 4 inter-region requests and 4 intra-region requests.
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Consequently, heuristic algorithms are the only feasible option for dealing with bigger in-
stances. Many types of algorithms have been used for problems with similar two-level decision
structure, like the families of 2E-VRP and LRP. Looking at the most relevant 2E-VRP literature
(presented in Section (2.4.3)), however, it is possible to observe that most of heuristics used
consist of two-stage heuristics due to the fact that they provide convenient solution represen-
tation. The interrelated variables make it difficult to store a solution in a format required to
use them as chromosomes in a population for genetic based algorithms or as labels in a column
generation scheme. Hence, large neighborhood heuristics arise as common practice to solve these
problems, since the work is done mainly on one single solution. Also, most of the papers make
use of two phase algorithms for obtaining initial solutions or to explore neighborhood spaces.
That is, they separate the scheduling and the routing problems and consider one of them as an
independent problem. This first problem is solved, and afterwards the second one is approached
according to the solution obtained from the first phase. However we found an interesting case
in the work from Ghilas et al. [64], where a branch-and-price algorithm is successfully applied,
getting solutions that outperform in quality those from the ALNS approach, and in time those
from CPLEX. However, as earlier mentioned, they need to design a complex labeling system, far
from the standard labeling systems applied in general VRP problems.

Everything stated above suggests that probably the best way of approaching a solution
method for the MR-MDPDP would be by making use of large neighborhood heuristics, as well
as two-phase heuristics with a more particular design focused on each type of problem.

2.6 Conclusion
Multi-region problem scenarios are becoming more common everyday. Different real-world

applications include intra-region as well as inter-region transportation, in which, regions are
connected by vehicles of larger capacity, different speed and cost.

In-town logistics are constantly evolving in order to reduce costs and increase productivity.
While big trucks and trains are an advantage when traveling from one city to another, smaller
trucks are used for pickup and delivery operations inside a city. Other multi-modal models
have to be used in certain cities, as the only transportation means that are allowed in some
neighborhoods are small electric vehicles.

This work introduces this new type of logistic problems which main focus lies on pickup and
deliveries in multiple geographically separated regions. The characteristics of these problems
lead to the necessity of dealing with other issues like multi-modal transportation and multi-depot
networks. An exhaustive examination of already existing literature in related topics is also
presented, justifying the multi-region scenarios as a logical evolution step towards more realistic
problems in transportation logistics and setting a basis for further research in this direction.
This work also contains a step-by-step construction of mathematical models, which highlights
the relation between classical transportation problems and the new introduced logistic networks.

2.7 Outlook and possible extensions
As logistics operations are centralized to save resources, n-regions multi-modal problems are

an attractive scenario for further research. Companies can use big vehicles like airplanes, trains
and trucks to connect main depots to a central location, smaller trucks can be used to reach
smaller regional depots and from these, smaller depots, stores, dealers and/or customers can be
visited with small vehicles routes. It is very rare to find models that are capable of solving this
kind of problems.

Multi-depot, multi-region problems are of particular importance in collaborative settings.
Although all cited studies assume to have one single decision maker who aims for a centralized
solutions, this assumption does not necessarily hold for collaborative vehicle routing problems.
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Probably many companies are involved in such collaborative networks, and therefore decentralized
decision making has to be investigated.

Collaborative Networks have been studied and developed over the last years. In works like
Berger and Bierwirth [15], Gansterer and Hartl [62], Wang and Kopfer [164]. These studies
were, however, focusing on single depot per carrier settings. In a multiple depot approach,
collaborative networks could include collaborative depots that could be used by all participants.
When thinking about a multiple region structure, collaboration might be even more beneficial,
by allowing carriers to share depots and short-haul vehicles on every region, and by splitting
costs in combined long-haul trips.

Real world applications of collaborative networks can be found in Montoya et al. [110] and
Buijs et al. [19], where a quantification of the obtained improvement suggests that collaboration
is a plausible and recommendable practice. Once collaboration is performed, a final aspect to
take into account is profit sharing. Guajardo and Rönnqvist in [72], present a recent overview
on cost and profit sharing allocation methods.

Besides solution methods, collaborative networks could be improved with managerial impli-
cations suggesting best practices in this field. The decision on how much information does a
company need to share in order to get the maximum advantage is one of the main questions.

Furthermore we introduce some possible extensions for the problems. All extensions are
presented with respect to the model in Section 2.5. These show the extensive gap between
already existing literature and a rough approximation to reality, making these problems an
attractive field for future research since many real world extensions are not considered so far.

2.7.1 Time windows
Time windows have already been used a lot in the literature and can be added in many

different ways. Usually the nodes or customers to visit have soft or hard time windows for the
visit. A soft time window that is not met, results in penalties that impair the objective value. A
hard time window that is not met, results in an infeasible solution. Time windows can also be
considered on the depot opening hours. A clear example of a routing problem with time windows
can be found in Dondo and Cerda [41].

Some changes should be done to the presented models when including time windows. Let
[ai, fi] be the time window for customer i.

• Soft time windows. The objective function must be modified to account for penalty costs.
Let φ represent the relative penalty cost. The new objective cost would be:

minimize
∑
u∈U

∑
i,j∈V u

∑
k∈Ku

cuij · xuijk +
∑
u∈U

∑
w∈ū

∑
l∈Lu

∑
p∈Lu∗

∑
h∈Hu

l

cuwlp · zuwlph

+
∑
u∈U

∑
i∈V u

∑
k∈Ku

φ ·max(0, tuik − fi)
(2.33)

• Hard time windows. New constraints have to be added.

ai ≤
∑
k∈Ku

tuik ≤ fi ∀u ∈ U, i ∈ V u (2.34)

2.7.2 Multiple periods
Another common extension in routing problems is to consider multiple periods. Generally

this problems introduce the possibility for requests to be performed on different days. That
induces another degree of freedom to the combinatorial problem, widening the solution space.
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Servicing a customer on different days can lead to significant improvements in the objective
function. Storage of goods in depots is a realistic option for these problems. The work of Vidal et
al. [160] contains a clear explanation of multiple period models. A hybrid genetic metaheuristic
is developed to solve a variety of problems within the multi-depot and periodic VRP families.

Multiple periods induce a change on the variables of the model. A temporal index should be
added to all variables that could be dependent on it. If we name o the new index representing
the days in the planning horizon, the variables of our model would be the following:
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2.7.3 Heterogeneous vehicles
A problem with an heterogeneous fleet is a problem where vehicles with different problem-

relevant characteristics exist. It refers to vehicles within the same mode of transportation and
performing the same kind of service. Vehicles can be different if they have different capacities, fixed
or variable cost, range (especially for electric vehicles), driving time restrictions or restrictions
concerning the arcs they can travel, different speed or different requirements for the drivers (not
all drivers have a license for all vehicle types). In a realistic scenario, a company will generally
have an heterogeneous fleet.

Regarding heterogeneous fleets, the following works have to be mentioned: The work by
Dondo and Cerdá [41] is a multi-depot VRP with heterogeneous fleet and time windows. Their
vehicles differ in capacity, cost and speed. Irnich [81] works on a single region multi-depot VRP
with an heterogeneous fleet. The vehicles in the fleet differ by cost and speed (regarding driving
and loading), and capacity. Salhi and Sari [143] consider a single region multi-depot capacitated
VRP with the objective to construct vehicle routes and determine the composition of the vehicle
fleet. The vehicles in the fleet differ in capacity and cost. The aim of the authors is to construct
a set of routes and determine the vehicle fleet composition minimizing costs.

The changes on our model derived from the use of heterogeneous fleet would be reflected
on the parameters and sets. Also we would need an extra index for the variables. Assume we
have n vehicle types for the short-haul routes and r vehicle types for long-haul routes. The new
elements would be:
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2.7.4 Multi-attribute vehicle routing problems
Multi-attribute or rich VRPs are labels for VRPs with additional constraints that aspire

to express a more realistic problem structure and decision choices (multiple depots, fleets and
commodities that take place in multiple periods and have to consider driver work rules, traffic
congestion and much more).

A rich VRP can be found in the work by Ceselli et al. [22] who use a heterogeneous fleet of
vehicles, multiple depots, multiple capacities, time windows associated with depots and customers,
incompatibility constraints between goods, depots, vehicles, and customers; maximum route
length and duration; upper limits on the number of consecutive driving hours and compulsory
drivers’ rest periods; the possibility of skipping some customers and using express courier services
instead of the given fleet to fulfill some orders; the option of splitting up the orders; and the
possibility of open routes that do not terminate at depots.
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Vidal et al. [161] present a survey on heuristics for multi-attribute VRPs. However, in spite
of their extensive pool of constraints, both papers do not consider multi-modality, the possibility
of consolidation, or more complex network structures.

These considerations would lead to many different changes in our model from Section 2.5,
depending on which attributes are added to the problem.

2.8 Appendix: Linearization of non-linear constraints
Some constraints in the previously presented models are not linear. Here we present the

linearization of these constraints, in order to provide full information about the way the models
can be implemented.

All non-linear constraints can be grouped in two main equation classes.
1. The first one applies to time continuity and capacity constraints. They appear in constraints

11, 23, 5 and 26. An additional variable Aijk is defined, and big M notation is used.
Original constraint:

Sjk =
∑
i∈V

xijk · (Sik + qi) ,
(
tjk =

∑
i∈V

xijk · (tik + cij)
)

∀j ∈ V, k ∈ K,

New constraints:

xijk +Aijk = 1 ∀i, j ∈ V, k ∈ K,

Sik + qi − Sjk ≤MAijk ∀i, j ∈ V, k ∈ K,
Sik + qi − Sjk ≥ −MAijk ∀i, j ∈ V, k ∈ K,

2. The second linearization applies to the flow consistency constraints for the models with
inter depot routes 14, 15, 29 and 30. Two new decision variables are defined: αik, βilh.
Original basic constraint:∑

j∈N∪{l}

∑
k∈Kl

xijkek ≤
∑
h∈Hl

yilphmh ∀i ∈ RI , l, p ∈ L,

New constraints:∑
j∈N

xijkek = αik ∀i ∈ RI , k ∈ K, (Non− linear)

∑
l′∈L\l′

yill′hmh = βilh ∀i ∈ RI , l ∈ L, h ∈ H l, (Non− linear)

∑
k∈Kl

αik ≤
∑
h∈Hl

βilh ∀i ∈ RI , l ∈ L,

The first two of the new equations have to be linearized too. We show the linearization
of the first one, and the same method applies to the second one. Big M notation is again
used.

αik ≤M
∑
j∈N

xijk ∀i ∈ RI , k ∈ K,

αik ≤ ek ∀i ∈ RI , k ∈ K,
αik ≥ ek −M(1−

∑
j∈N

xijk) ∀i ∈ RI , k ∈ K,
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Abstract This work addresses the routing problem faced by transportation carriers
and postal services that transport small parcels in large quantities. By splitting
the territory into regions, these service providers can adapt a three-part network
structure and solve a pickup and delivery problem with long-hauls without direct
shipments between regions. That is, bilateral cross-city and cross-country requests
must be met while also fulfilling capacity and time window constraints. To address
this challenge, this work limits the problem to two regions and thereby can identify
the correlations and synchronization between different modes. The proposed solution
approach decomposes the problem into two subproblems: a long-haul assignment
that can be solved exactly, and a short-haul routing problem that must be solved
heuristically. The result is an efficient matheuristic, whose quality is confirmed
through a comparison with findings from previous literature; it is viable in terms of
solution quality and computation time. Long-haul flexibility also influences short-
haul routing cost, such that improvements of up to 22% are possible merely by
increasing long-haul flexibility but not long-haul cost. Finally, realistic instances are
solved based on the inter-library loan system comparing the influence of selecting
train or truck on the SH routing costs.

3.1 Introduction and motivation
Transportation carriers and postal services transport small parcels in large quantities and

operate in vast territories, divided into regions for better planning and execution. Parcels are
delivered on the same day from origin to destination, from one customer to another, though
they often are located in different regions. To operate more efficiently and environmentally,
many carriers have adopted inter- or multi-modal network structures that split transportation
between short-haul (SH) and long-haul (LH) operations. That is, the first- and last-mile delivery
operations are performed exclusively by SH vehicles, whereas LH transportation is dedicated
to the connections across regions or cities, used to primarily consolidate shipments. Goods
transported using the different parts of the network include at least one LH connection, whereas
cross-city orders can be served solely by SH vehicles. A real life application of such a structure
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is the inter-library loan system. The cities of Austria offer a vast variety of specialized libraries,
archives, institutions of estate administration, offices, and museums, each with their own unique
and borrowable collection. These collections are relevant for students, scholars, office holders,
and the interested public alike. Specialized research would require travel to libraries located in
different cities. The inter-library loan system makes sharing possible by providing a network of
shipping copies or original documents to the reader.

To study such network structures, a two-region setting is the smallest non-trivial option, in
that it includes all relevant properties of the different modes, reflects the influence of different LH
timetables, and acknowledges the importance of synchronization among transportation modes
and different regions. To serve such regions, a three-part network is typical of postal services
(e.g., messenger services, express mail, parcel services) [5]. With this research setting, we consider
an extension of the pickup and delivery problem (PDP), as has been studied extensively and with
many variations [122], such that we adapt the PDP to this specific network structure. Dragomir
et al. [43] introduce problems with a similar structure and confirm the relevance of multiple
regions, inter-modality, and paired pickups and deliveries. A strongly related problem has been
used for our study of the interrelation between LH flexibility and SH cost.

Other authors also address inter- and multi-modal problems (for detailed reviews see [17, 156,
166]), including contributions that offer a taxonomy of intermodal freight transportation [33]. A
key trait of inter- or multi-modality is the task division between the SH (often trucks) and LH
(rail, ships, or full truckload trucks) parts of the transportation chain, as well as the need to
establish synchronization between modes [17]. The SH also has been described as pre-haul (first
mile) or end-haul (last-mile) [156]. Previous works have studied this problem in varying degrees
and are hereafter sorted by similarity to our own problem formulation.

Previous work often assumes a relaxed network structure such that the customers, even if
far apart, are formally located in a single region. A direct delivery by SH vehicles is almost
always an option suggesting that LH transportation is optional, which is not a realistic scenario
when deliveries span multiple cities. In this sense, our research diverges notably from otherwise
similar contributions from Ghilas et al. [65, 64], Aldaihani and Dessouky [3], Liaw et al. [94],
and Moccia et al. [107].

Ghilas et al. [64, 65] investigate the PDP with time windows and scheduled lines, along with
the novel idea of using public transportation for part of the transit. Using this public transport
vehicle (or ‘scheduled line’), analogous to LH, is optional. In their study the pickup and delivery
nodes are all located in one region, so all SH vehicles can visit all nodes. To solve the problem,
Ghilas et al. use adaptive large neighbourhood search (ALNS) and branch-and-bound in an effort
to minimize the total costs (i.e., travel cost for the pickup and delivery vehicles and cost of the
scheduled lines, which depends on the quantity shipped but is independent of travelled distance).
Due to the similarity of their problem to ours their instances were chosen for comparison.

Aldaihani and Dessouky [3] and Liaw et al. [94] both investigate the dial-a-ride problem with
up to two modes of transportation: last mile (curb-to-curb service, analogous to SH) and fixed
route transit (analogous to LH) with buses. To investigate how to transport elderly passengers to
and from hospitals, Aldaihani and Dessouky rely on multiple bus routes, similar to Ghilas et al.
[65, 64]. Their problem is bound to a single region and does not require obligatory transit. Their
solution minimizes both distance and travel time for passengers; to achieve these two separate,
sometimes conflicting objectives, they adopt a lexicographic approach. Using heuristics, they
show that switching from direct delivery to an option with transfers reduces overall distance and
trip time, due to the clustered nature of residences and hospitals. The clusters themselves are
far apart and connected by a bus line. Because the nodes are part of a single connected region,
instead of two separate regions, transshipments (i.e., switching between transportation modes)
are optional.

Liaw et al. [94] focus on people with handicaps who require transportation between their
home and other locations of interest, like hospitals or work. To limit customer inconvenience,
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they allow only direct transportation or the inclusion of a single bus trip; switching between
buses or between SH vehicles is not permitted. Time windows are established for pickup, delivery,
or both. With a lexicographic objective function, these authors seek to maximize the serviced
number of requests. Then, for a fixed number of requests, they seek to minimize the total travel
distance of the vehicles. Both the time windows and the maximum allowable excess riding time
of the passengers are hard constraints that must be met; excess riding time however is relative
to the direct riding time of each passenger. In an online setting, requests come in one at a
time, and a simple greedy heuristic was designed to include buses whenever possible, as well as
all additional locations for routing the SH vehicles. In offline cases, all requests are known in
advance. An iterative improvement procedure, based on simulated annealing, including local
search techniques, is applied to find a good approximate solution in an acceptable amount of
computation time. Including fixed bus routes with fixed schedules, they find a solution that can
accommodate more requests while decreasing the amount of direct transportation, compared
with the manual solutions previously obtained by the schedule operators.

Moccia et al. [107] review a PDP in a multi-modal network, in which shipments must be
routed through the network in accordance with time windows and multiple capacity constraints
of consolidations (volume, weight). The individual modes operate on either fixed or flexible
schedules and evoke different cost functions. The planning horizon over multiple days includes
multiple non-overlapping time windows for pickups and deliveries with the goal of finding the
lowest cost for routing within the network. In this case, direct delivery, or dedicated origin-
destination shipment, is always an option without requiring transshipment or multi-modality.
The authors use a column generation approach to compute lower bounds that they embed in a
heuristic algorithm, consisting of a limited branch-and-cut search, to obtain feasible solutions.
However, they were unable to solve a real-life instance of 122 requests optimally, so they created
smaller instances of 10, 30 and 60 requests. Still, the quality of their solution heuristic is good
compared with the best known lower bounds.

Postal services and express shipping routing problems constitute a specific aspect of the inter-
or multi-modal literature with a three-part network structure. Parcels need to be transported
within and between regions. The distribution of customer nodes reflects urban agglomeration and
therefore is clustered. The different regions are far enough apart to warrant a LH connection, and
direct delivery by SH vehicles between regions is not an option, due to the large distances and low
cost demand on this industry. This network structure thus requires inter-modal transportation,
which always involves the consolidation of goods in the LH vehicles [31]. Grünert and Sebastian
[71] describing the Deutsche Post postal service, introduce a similar network structure and consider
multiple clusters, but they only address the tactical problem (LH planning) of achieving next
day delivery of all mail, without citing operational issues like explicit SH routing. In their work,
SH planning consists of vehicle and driver assignments, and air transportation (direct, over hub,
combination) and truck transportation are analysed in detail. They introduce different models of
LH transportation for different specific parts of the network; a system-wide optimization would
not be solvable within reasonable computation times for a transportation problem of relevant
size. They separately model tactical planning of air transportation (aircraft scheduling and
request-to-flight allocations), ground transportation (requests not assigned to the air network),
and scheduling of vehicles, aircraft and drivers, without discussing explicit solution techniques.

Barnhart and Schneur [10] investigate an express shipment design problem, provide and solve
a model using column generation. The elaborate LH connection allows for multiple stops and
directs all LH paths over a central hub. Packages are first collected at shipment centres and then
brought together in a LH station. They include various costs (i.e., fuel, drivers, crew cost) in all
parts of the system (ground transport, handling, air transport) within their objective.

When considering cross-city or cross-country pickup and delivery problems one has to be
aware of the vast scope that is possible to include. Although the newest topics from multi-modal
city-logistics prove to be insightful and promising, they exceed the scope of this work which is
focusing on the inter-modality in terms of LH transportation. Therefore we refer the interested
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reader to the most recent publications by Savelsbergh and Van Woensel [145], Perboli and Rosano
[124], Perboli et al. [123] and Oliveira et al. [117].

In general, prior inter-modal literature, despite some obvious similarities, does not consider
all components of the problem at hand. Instead of an operational planning problem with an
inter-modal structure, researchers often consider only strategic (e.g., infrastructure investment
decisions like hub allocation problems) or tactical (e.g., network flow planning, service network
design) planning problems, whereas operational planning problems are only rarely addressed [43].
Therefore, and reflecting the relevance for postal services and transportation carriers, we focus
on studying the pickup and delivery problem with long-hauls (PDPLH). To specify the effect
of the interaction between LH and SH transportation, we limit our focus to two regions, which
provides the smallest non-trivial problem setting.

In turn, the contributions of this study are threefold:

1. We introduce a decomposition approach and matheuristic for the PDPLH in two regions
solving the LH assignment subproblem exactly and the SH routing subproblem heuristically
using a variation of the pilot method proposed by Voß et al. [162]. This method offers a
fast algorithm that also can perform bundle generation in auctions in a collaborative setting
[62] and a variation of this method has been proven suitable for distance approximations
for routing solutions [116]. It has been successfully applied in combination with other
metaheuristics for network design [80] and routing problems [103, 131].

2. We establish the quality and efficiency of the solution method applying it to state-of-the-art
instances from Ghilas et al. [64] and comparing the results of their branch-and-bound
algorithm. We also analyse different parameter settings for the solution method.

3. By conducting a managerial analysis of the effects of a more flexible LH schedule and its
influence on SH routing and overall costs, we determine the importance of synchronization
between transportation modes, as well as whether an increase in LH vehicles and departure
times leads to better overall solutions in an operational planning setting.

Section 3.2 formally introduces the problem, and then in Section 4.3, we detail the proposed
solution method. Along with the computational results, we offer a comparison with Ghilas et
al. [64] in Section 7.4 and an evaluation of the effects of a more flexible LH on overall costs in
Section 3.4.2. Finally, we conclude in Section 7.5.

3.2 The pickup and delivery problem in two regions with
long-hauls

A three-part network in two regions/cities is a suitable starting point for studying the PDP for
transportation carriers that operate in a network. Each city consists of geographically separated
nodes and has a depot that represents the start and end point of all SH vehicles assigned to
this city. Each city also contains a station for available LH connections, used as a consolidation
and transshipment point. The station is usually a separate location from the depot, but the two
locations may be identical. All nodes (customer nodes, station) have individual service times,
reflecting their (un)loading and transfer processes. The LH vehicles depart on a schedule, given
as a departure frequency (e.g., departure every 30 minutes). The greater the schedule frequency,
the more flexible the LHs are, in that more departure and arrival points are available. Both
SH and LH vehicles are limited in capacity and number (the available number of LH vehicles
depends on the schedule). Our scope is to fulfil a set of requests as cost effectively as possible
and optimize a planning horizon of a single day (10 hours). That is, a feasible solution requires
all pickups, deliveries, and LH transportations to be performed within this time span. A request
consists of a pickup and a delivery node, as well as a quantity. The nodes can be both within
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Figure 3.1: A schematic representation with two cities

the same city (cross-city) or in two different cities (cross-country). Cross-country requests have
to be transported over the available LH connection and therefore need to be delivered in time
to the station, so that they can depart with the scheduled LH; moreover, they are available to
be picked up at a station only after the arrival of the LH. The customer nodes also have time
windows. Pickup time windows have to be before delivery time windows, but they also require
sufficient time for a direct delivery path, reflecting the distances of the nodes to and from the
stations, the LH travelling time and the LH schedule.

The goal is to transport all requests within the planning horizon and minimize the total LH
and SH costs. In particular, the objective value of a solution is the sum of the SH costs in both
clusters plus the LH costs for both directions. The SH costs are the sum of all distances (or
arcs) travelled by SH vehicles in each city. The LH costs are composed of the cost of the LH
transportation per direction (which corresponds to the distance) multiplied by the number of
LH vehicles used. The LH costs are independent of the load. The necessary decisions include
the determination of a LH departure time for each request and the sequence in which the nodes
should be visited by the SH vehicles. 3.6.1 provides a mathematical model of the complete
problem.

Figure 3.1 offers an overview of the problem with two cities. The LH connects the stations
and is depicted by a double arrow. There are six requests, indexed by the letters A to F. Requests
A and F are cross-city requests; B, C, D and E are cross-country requests, and the directions of
B and C are opposite those of D and E.
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3.3 Solution algorithm
The complexity of the mathematical model (see 3.6.1) makes it computationally intractable to

solve bigger instances within reasonable computation times. Instances with more than 9 requests
cannot be solved by CPLEX. Our 8GB of RAM was not sufficient for the memory requirement of
CPLEX for more than 9 requests and since using the hard drive results in a considerable increase
in computation time and the gap to the optimal solution was still too large, the computations
were aborted. Additionally, the problem emerged from an auction based collaboration with the
necessity of creating and evaluating bundles of transportation requests within the three-part
network [116]. Therefore a solution method that reaches good solutions in short computational
times is chosen by focusing on a good construction heuristic, namely a variation of the pilot
method by Voß et al. [162], and an improvement metaheuristic to improve the routing and
minimize used vehicles.

The proposed solution algorithm splits the problem into two sub-problems which are easier to
handle: the LH assignment and the SH routing. The solution algorithm consists of the following
steps:

1. Optimal LH assignment for all cross-country requests to minimize LH costs and consolidate
the goods according to the model presented in Section 3.3.1.

2. Establish a construction heuristic for the SH routing using variations of the pilot method
[162], including a variant of cheapest insertion [83] that accounts for waiting time.

3. Establish an improvement heuristic for the SH routing using a variable neighbourhood
descent [106] for minimizing route length and the number of used vehicles.

The decomposition approach ensures that each sub-problem can be solved independently,
making the problem easier to solve. The LH assignment is solved optimally due to its simple
nature; more sophisticated construction and improvement heuristics are required for the SH
routing, which constitutes a more complex PDP with time windows.

3.3.1 Long-haul assignment
The goal of the LH assignment is to select exactly one LH departure time for each request

while meeting LH capacity constraints and allowing for potentially feasible SH routing. A feasible
SH routing requires consideration of the temporal aspect, such that the LH departure and arrival
times are compatible with the time windows set at the customer nodes. The goal is to fulfil all
requests and minimize the number of expensive LH vehicles used, while also meeting the time
windows for SH vehicles visiting customers by direct delivery from and to the station. The LH
assignment model requires identical constraints for both directions. For readability, we present
half of the model here, with the caution that the constraints have to be implemented twice, once
for each direction. Accordingly, we use the following mathematical model to find an optimal
solution to the LH assignment problem:

Sets and Parameters

N = {1, 2, . . . , |N |} . . . set of node indices
R = {1, 2, . . . , |R|} . . . set of request indices
F = {1, 2, . . . , |F |} . . . set of LH departure indices

sd ∈ N . . . index of departure station node
sa ∈ N . . . index of arrival station node
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npr ∈ N . . . pickup node of request r ∈ R
ndr ∈ N . . . delivery node of request r ∈ R
dij ≥ 0 . . . distance between node i ∈ N and j ∈ N

qr . . . quantity of request r ∈ R
τBi . . . begin of time window of node i ∈ N
τEi . . . end of time window of node i ∈ N
σi . . . service time of node i ∈ N
Tf . . . departure time for each LH departure f ∈ F
H . . .LH travel time
C . . .LH capacity
D . . .depot closing time
P . . .penalty for not fulfilling a request

Decision variables

zrf =
{

1, request r departs with LH number f ,
0, otherwise.

yr =
{

1, request r is outsourced (not fulfilled),
0, otherwise.

gf =
{

1,LH f is used (at minimum one request is shipped),
0, otherwise.

tdr . . . time of LH departure for each request r
tar . . . time of LH arrival for each request r

Minimize P
∑
r∈R

yr +
∑
f∈F

gf (3.1)

s.t.

gf 6
∑
r∈R

zrf ∀f ∈ F (3.2)

|R|gf >
∑
r∈R

zrf ∀f ∈ F (3.3)

yr = −
∑
f∈F

zrf + 1 ∀r ∈ R (3.4)

∑
f∈F

zrf 6 1 ∀r ∈ R (3.5)

∑
f∈F

zrfTf = tdr ∀r ∈ R (3.6)
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tdr +H = tar ∀r ∈ R (3.7)∑
r∈R

qrzrf 6 C ∀f ∈ F (3.8)

max(d0np
r
, τBnp

r
) + σnp

r
+ dnp

rsd + σsd 6 tdr +Myr ∀r ∈ R (3.9)
tar + σsa + dsand

r
6 τEnd

r
+Myr ∀r ∈ R (3.10)

tar + σsa + dsand
r

+ σnd
r

+ dnd
r0 6 D +Myr ∀r ∈ R (3.11)

Constraints (3.2) and (3.3) require that if at least one request is scheduled on a LH, it gener-
ates cost. Constraints (3.4) state that each request has to depart with a LH or be ‘outsourced’,
then bear the penalty for not fulfilling a request. Constraints (3.5) ensures that each request can
depart with at most one LH vehicle. Constraints (3.6) limit the LH departure times to the given
schedule. Constraints (3.7) set the arrival times in relation to the departure times of the LH for
each request. Constraints (3.8) ensures that the LH capacity is not exceeded. Constraints (3.9)
ensures that the requests can arrive in time for the LH departure. Constraints (3.10) and (3.11)
ensure that the requests arrive early enough to enable a delivery in the other region.

A pool of solutions is created, each with different LH departure times for the requests, which
are all equally good in terms of absolute objective value. We use CPLEX to populate the pool of
solutions. No objective value gap between solutions is allowed, and we apply CPLEX parameters
to search specifically for diverse solutions (i.e., solution pool intensity with value 4 and solution
pool replacement strategy with value 2). Note that ‘outsourcing’ or not fulfilling a request is in
general possible by our model but avoided by setting the penalty p high enough. Therefore, the
model always uses an additional LH vehicle at a different time. The SH routing is performed for
all complete solutions, where no request is outsourced. Due to the differences in LH departure
times, the SH routing results in different routes (and different costs) for each solution in the pool.
The solution with the smallest cost is considered the best solution.

3.3.2 Short-haul routing

All cross-country requests have to travel over the LH and therefore change transportation
modes at stations. The LH assignment fixes the departure and arrival times at the stations for
each request. The SH routing thus can be performed for each city independently, by duplicating
requests that travel over the LH and splitting them into two independent requests in each city.
Instead of a station, we use a ‘dummy’ pickup/delivery location. The departure times of the LH
result in an available drop-off time span at the station, within which requests have to arrive to
be able to leave with the scheduled LH. Therefore, for each request departing by LH, we also
create a ‘dummy’ delivery node with a drop-off time span that is equal to the time window begin
of the paired pickup node and the LH departure time. The ‘dummy’ pickup nodes are created
in the same way: For requests arriving by LH a ‘dummy’ pickup node is created with a release
time span of the LH arrival time and the time window end of the paired delivery node. Within
this release time span, requests are available for pickup by the SH vehicles. Figure 3.2 depicts
examples of each ‘dummy’ node. The transshipment time for loading/unloading SH and LH
vehicles is a service time at the station node and incorporated in the SH routing.

The solution algorithm is based on the cheapest insertion algorithm inspired by Jaw et al.
[83]. The procedure calculates the cost of inserting each request into each vehicle at the best
possible position without changing the sequence of already inserted nodes. From this set of
possible insertions (with different allocated costs), one insertion is selected and performed. In
general, only insertions with the smallest cost are considered. After every successful insertion,
the cost for each request-vehicle-combination has to be recalculated. This procedure is repeated
until all requests are inserted in the solution.
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Figure 3.2: Dummy delivery node B* and dummy pickup node E* for cross-country requests.
Request E arrives and request B departs with the LH at 12:00. These values have been set by the
LH assignment model. The release time span for request E at the station is therefore 12:00-16:00;
the drop-off time span for request B is therefore 8:00-12:00.

The insertion cost is the minimum additional distance that a vehicle has to travel to include
a request into its route. For an empty vehicle, it is always the direct distance between the nodes
to be inserted (see Equation 3.12 for the insertion cost cr for request r with pickup node i and
delivery node j). In addition to the cost of travelled distance, we include the waiting time,
with the assumption that waiting at a customer node until the beginning of the time window is
unproductive time that prevents the vehicle from servicing other nodes. The weights ϕd for the
distance and ϕw for the waiting times wi and wj are therefore included in the calculation of the
insertion cost. Figure 3.3 shows a graphical representation of the waiting time calculation for a
single request, inserted into a previously empty vehicle route. In this example, waiting time only
occurs before visiting node i, not before visiting node j.

cr = ϕd(d0i + dij + dj0) + ϕw(wi + wj) (3.12)

Figure 3.3: Determination of waiting time wi for insertion into an empty vehicle. 0 represents
the depot. No waiting time occurs before visiting node j.

If a vehicle is not empty, all possible positions are considered for inserting an additional
request without changing the node sequence. If the pickup node i and delivery node j of the
request to be inserted are next to each other, as in Figure 3.4, the insertion calculation is
equivalent to Equation 3.13, and the set V = {1, ..., v} contains all nodes in the new route. The
waiting time w is calculated for each node v depending on the difference between the arrival time
at that node and the earliest possible start of service. If the pickup node i and delivery node j
of a request to be inserted are separated by at least one other node, the calculation is slightly
different, as shown in Figure 3.5 and Equation 3.14. The nodes i+ 1 and j − 1 can be the same
if i and j are separated by only one node.

cr = ϕd(−di−1,j+1 + di−1,i + dij + dj,j+1) + ϕw
∑
v∈V

wv (3.13)
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Figure 3.4: Inserting nodes next to each other
Figure 3.5: Inserting nodes separate from each
other

cr = ϕd(−di−1,i+1 − dj−1,j+1 + di−1,i + di,i+1 + dj−1,j + dj,j+1) + ϕw
∑
v∈V

wv (3.14)

Information about the position of the nodes gets saved together with the cost of inserting a
particular request into a particular vehicle. The cost depend on the position and sequence of the
nodes and contain the sum of necessary detours, as well as the weighted waiting time throughout
the whole route.

Combining cheapest insertion with the pilot method

In the pilot method proposed by Voß et al. [162], the concept is to ‘look ahead’ to a possible
result when building a solution. Decisions are based solely on the quality of that insertion,
defined by the immediate increase in the objective value (greedy approach). The pilot insertion
method (PI) evaluates multiple decisions at each step to achieve a better solution at the end of
the construction process. Figure 3.6 shows the underlying principle. At each step, the m-best
possible choices are considered for insertion, and the solution evaluation only takes place after
looking ahead n steps. The decision about which insertion to select depends on the best partial
solution obtained. A complete solution, where all requests are fulfilled, is evaluated by distance
only, whereas a partial solution needs a cost estimation accounting for not yet fulfilled requests.
If distance alone were to be considered for the quality of a partial solution, an empty solution
would always (and wrongly) be considered ‘better’ than one in which all nodes are visited. We
want to eliminate the possibility of selecting decisions leading to a partial solution that is ‘better’
because it has unfulfilled requests, in contrast to another partial solution which is ‘worse’ because
it fulfils all requests and travels a longer distance. Therefore we estimate the cost of a partial
solution by considering a penalty for not (yet) included requests, in addition to distance. For
n look-ahead steps, the estimated cost differs greatly if one solution path fulfils n requests but
the other only fulfils, for example, n− 1 requests (because the nth request could not be feasibly
inserted). The penalty is always greater than any reduction in distance costs. If the same number
of requests were inserted, the values of the estimated costs would differ only by distance. For the
PI, with a greedy approach for all n look-ahead steps, the best insertion is always selected. By
looking ahead, we can determine the solution quality according to the cost estimation and use
this as a basis for the current insertion decision. This procedure is repeated at every step of the
solution construction, i.e. every time an insertion is permanently chosen for the solution.

The PI was augmented to create an extended pilot method (EPI). The idea is, to not only
assume greedy decision for all look-ahead steps but rather always consider all m possible choices.

Figure 3.7 shows the principle of the EPI method. The m possible choices are only drawn
for the first decision each, but are considered for every decision in that decision tree. The EPI
evaluates more of the solution space than PI. Although it is more computationally expensive, the
EPI can find better solutions than the PI.
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Figure 3.6: Pilot insertion method (PI)
with m decisions and n look-ahead
steps

Figure 3.7: Extended pilot insertion method
(EPI) with m decisions and n look-ahead
steps

VND for the improvement of the short-haul routing
The constructed solution by PI or EPI is further improved by a variable neighbourhood descent

(VND); a local search and a variation of the variable neighbourhood search by Mladenović and
Hansen [106]. The purpose of the VND is to further improve the routing and reach feasibility (if
not previously achieved, due to unfulfilled requests). If unfulfilled requests remain, additional
temporary vehicles can be created and the requests are individually inserted into the vehicles.
The VND uses 3 different neighbourhoods (MoveRequest, SwapRequest and 2Opt∗, in that
order) to improve the solution and remove previously added vehicles whenever possible. It starts
with the solution provided by the pilot method as an incumbent solution, then moves to the
next neighbourhood if no more improvement can be found in the current neighbourhood as a
means to escape from a local minimum. Each improvement results in a new incumbent solution
and a restart of the VND, such that the number of unsuccessful tries for each neighbourhood
is reset to zero. A solution that is equal or worse to the incumbent solution is discarded. The
VND ends after no more improvement can be found for a certain number of iterations in each
neighbourhood, thus resulting in a local optima for all three neighbourhoods [159].

The neighbourhood MoveRequest picks a random vehicle and a random request served by
this vehicle. This request is removed from the vehicle, and the corresponding pickup and delivery
nodes are simultaneously inserted at their best positions into the best other vehicle. For this,
all possible insertion location combinations are tried out without changing the already present
node sequence. The best vehicle is determined by trying all vehicles, apart from the vehicle from
which the request was previously removed. If the cost of the newfound solution is better than
the cost of the incumbent solution, the move is accepted; otherwise, it is discarded.

The neighbourhood SwapRequest picks two random vehicles and one random request each
within those vehicles. The requests are swapped, and the corresponding pickup and delivery
nodes again inserted at the most favourable possible position without changing the order of
already present nodes.

The neighbourhood 2Opt∗ picks two random vehicles and a random position within the route
(a random arc). The routes are ‘cut’ at this position. The first parts of the cut routes remain with
the original vehicle, but the second parts are switched among the vehicles. This cut procedure
is not trivial, because the pickup and delivery nodes of a request are not allowed to end up in
different routes. Routes can only be cut at places where whole requests would be transferred to
another vehicle.

Both the MoveRequest and the 2Opt∗ neighbourhood can result in empty vehicles. A vehicle
can be empty if the only remaining request is moved to another vehicle or if the ‘cut’ of a route
occurs before the very first visit of a vehicle, such that the entirety of the route is transferred to
another vehicle while simultaneously cutting at the very end of the other route, such that nothing
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gets transferred back. Figure 3.8 shows a 2Opt∗ that results in an empty vehicle, because it cuts
both routes in such a way that after the swap, the first vehicle is empty and can be eliminated.

Figure 3.8: 2Opt∗ operator: cuts and swap result in an empty vehicle.

3.4 Computational Experiments and Results
In Section 3.4.1, we provide the instance descriptions. Section 3.4.2 provides managerial

insights related to the impact of more LH flexibility on SH costs, while in Section 3.4.3 we
validate the quality our algorithm by comparing with existing literature. Then in Section 3.4.4
we apply our solution algorithm to instances from the inter-library loan network. Finally, Section
3.4.5 explores technical differences among the solution methods.

The computational experiments were performed on a desktop computer with an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz processor (4 cores) and 8 GB RAM running on Windows 10.

3.4.1 Instance description
Our algorithm is tested on three different types of instances.

First, we report computational results from 40 randomly generated instances. The number of
requests (R) range from 10 to 100, with a random quantity between 1 and 4. Each instance
contains between 0% and 50% of cross-city requests (Rcc). There is a limited number of SH
vehicles (V c) at each depot. The instances are generated either without time windows (TW) (i.e.,
time windows spanning the whole day of 600 minutes) or with TW of 180 minutes each. The
coordinates for the customer nodes are randomly distributed in two areas on an Euclidean plane
corresponding to two cities. The cities are so far apart that the LH transportation time takes
approximately 2.5 hours. The planning horizon is one day (600 minutes). The LH departure
frequency ranges from 300 to 30 minutes. Each city contains one depot and one station. The
depot can have the same location as the station (S=D), but if it is separate from the station, the
locations are generated randomly. In addition to locations for pickup and delivery, each request
has a predefined city assignment that establishes if it is a cross-city or cross-country request,
according to the assigned city of origin and destination.
Second, we compare our algorithm to the results and instances provided by Ghilas et al. [64].
They provide three sets of instances with a range of requests from 10 to 50. The instances are
clustered around the stations (C), uniformly distributed (R), or randomly clustered (RC). The
planning horizon is 10 hours. The requests have randomly generated time windows between 26
and 91 minutes, a random demand between 1 and 3 units, and a random loading time up to 3
minutes. The SH vehicles are limited in number and heterogeneous in capacity (up to 20 units).
The LH vehicles depart every 30 minutes throughout the day.
Third, we apply our algorithm to realistic instances based on the inter-library loan system. The
instances simulate 25 to 40 orders to be delivered within a day. Since the parcels are comprised
of single books or documents, the SH and LH vehicles are assumed to have no relevant capacity
constraint. The network includes 115 real locations in Vienna and 40 real locations in Graz, each
with their (sometimes very restricted) real opening hours and service times between 5 and 10
minutes. The bigger and more popular libraries and archives have opening hours corresponding
to a standard work day (e.g. 9 a.m. to 5 p.m.) whereas the smaller and less frequented archives
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might close around lunch time or are open only for one to two hours in the afternoon. For all
locations that are only accessible by appointment we assumed a general availability from 9 a.m.
to 6 p.m. All distances and travel times are the shortest driving route provided by Google Maps.
The orders are mostly comprised of inter-city requests, however some intra-city requests are also
present. We compare a LH connection by train to one by truck. The train connection assumes
the use of a passenger train, on a weekday, between Vienna and Graz, by the time table set
by the Austrian Federal Railway. Trains from Vienna to Graz leave hourly at minute 58 (e.g.,
06:58, 07:58), trains from Graz to Vienna leave hourly at minute 26 (e.g., 06:26, 07:26) and take
155 minutes. The truck reduces the LH travel time to 120 minutes and allows a more flexible
schedule (departures are assumed to be possible every 15 minutes).

3.4.2 Evaluation of the influence of more flexible LH on costs
Since we study a pickup and delivery problem with LH in two regions one of the main

questions is not only which LH to choose from the ones offered but rather how many connections
to offer. Because costs only accrue for utilized connections, not for offered ones, a possible solution
could be to offer as many LHs as possible, so a possible connection exists at every moment of
the day. However, this solution greatly increases the complexity of the problem. We therefore
study the costs associated with limiting or else extending the choice of possible connections. The
possible departure frequencies of LH vehicles, in minutes, range from an extremely limited choice
of a single possible LH at an interval of 300 minutes to a more flexible choice of 19 possible LH
connections at an interval of 30 minutes. The LH is assumed to depart simultaneously from both
stations at the scheduled times. We are particularly interested in the influence of a more flexible
LH on SH costs; the LH cost are secondary. Therefore we relax the capacity constraint on the
LH vehicles to be able to fulfil all requests even with a single departure.
Table 3.1 shows the absolute EPI values for a LH departure frequency of 75 minutes with and
without VND. The first column depicts the instances from 1 to 40. The next five columns give
more detailed information about each instance: the number of requests R, the share of cross-city
requests Rcc, whether the location of the station is identical to the location of the depot ‘S=D’,
the size of the time windows ‘TW’ and the number of available SH vehicles in each city V c.

We also list the total costs and objective value ‘OV’, LH costs ‘LH’, SH costs ‘SH’ and
computation time in seconds ‘T’. The relation of the LH cost to total OV depends mostly on the
instance size. For larger instances, more goods can be consolidated, and the LH gets cheaper
in relation to SH. The column ‘∆ OV’ specifies the improvement obtained by including the
VND (EPI&V NDonlyEPI − 1). The VND does not result in much improvement for smaller instances but
produces improvements up to 21.8% for larger instances. Overall, the VND leads to an average
improvement of 11.8%.

Tables 3.2 and 3.3 detail the improvements in SH costs ‘SH’ and difference in computational
time ‘T’ when changing the LH frequency from 300 to 150 minutes, from 150 to 75 minutes,
and from 75 to 30 minutes. The last block of columns shows the overall differences obtained by
increasing the LH frequency from 300 to 30 minutes. Negative numbers indicate decreased costs.
Table 3.2 shows the values obtained using PI, and Table 3.3 contains the values using EPI. For
all instances, we used five look-ahead steps n, three decisions m, a waiting time weight ϕw of
0.3, and 104 iterations without improvement until the VND termination. The LH costs are not
shown, because they mostly remain identical, with only the timing changed.

Overall, the SH costs improve significantly; only sporadically is a worse solution obtained.
On average, the SH costs are 12% lower for the PI and 11% lower for the EPI method, with up
to 22% cost improvement for both methods. However, we also observe a large increase in the
required computational time.

By increasing the LH departure frequency, we obtain a change in SH routing and in SH
costs. The SH total costs can be reduced while keeping LH costs at the same level, because
no additional LHs are actually used (though they are offered), and because empty LHs do not
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75LH, only EPI 75LH, EPI & VND ∆ OV
R Rcc S=D TW V c OV LH SH T OV LH SH T

1 10 0% no 600 4 1054.4 354.2 700.2 2.9 1054.4 354.2 700.2 5.2 0.0%
2 10 0% no 600 4 1217.2 316.8 900.5 2.0 1217.2 316.8 900.5 3.4 0.0%
3 10 0% no 600 4 894.5 272.1 622.4 3.4 894.5 272.1 622.4 5.7 0.0%
4 10 50% no 600 4 902.7 202.5 700.2 2.2 902.7 202.5 700.2 4.9 0.0%
5 10 50% no 600 4 880.2 238.0 642.1 2.2 880.2 238.0 642.1 5.5 0.0%
6 10 0% no 180 4 1013.3 272.1 741.2 2.2 991.5 272.1 719.4 4.0 -2.2%
7 10 0% no 180 4 1200.2 215.7 984.4 2.5 1194.4 215.7 978.7 5.5 -0.5%
8 10 30% no 180 4 964.2 275.5 688.7 0.9 955.1 275.5 679.5 1.7 -1.0%
9 10 50% no 180 4 1066.6 202.5 864.1 0.7 1032.1 202.5 829.6 1.7 -3.2%
10 10 50% no 180 4 1084.1 238.0 846.0 0.9 1084.1 238.0 846.0 2.2 0.0%

11 20 30% no 600 7 1577.4 274.9 1302.4 16.1 1394.3 274.9 1119.4 21.7 -11.6%
12 20 30% no 600 7 1665.4 278.1 1387.3 16.7 1531.6 278.1 1253.4 24.1 -8.0%
13 20 50% no 600 7 1463.0 325.4 1137.6 17.0 1380.9 325.4 1055.5 23.6 -5.6%
14 20 50% no 600 7 1272.3 247.3 1025.0 16.5 1184.2 247.3 936.9 23.8 -6.9%
15 20 50% no 600 7 1406.7 292.9 1113.8 11.6 1384.1 292.9 1091.2 16.4 -1.6%
16 20 0% yes 180 7 1509.6 247.4 1262.2 17.3 1429.9 247.4 1182.5 24.2 -5.3%
17 20 10% yes 180 7 1488.0 247.4 1240.6 20.6 1441.8 247.4 1194.4 28.7 -3.1%
18 20 20% yes 180 7 1675.3 247.4 1427.9 8.3 1513.6 247.4 1266.2 11.8 -9.6%
19 20 30% no 180 7 1834.4 278.1 1556.3 10.1 1701.2 278.1 1423.1 15.6 -7.3%
20 20 50% no 180 7 1609.7 247.3 1362.4 9.0 1450.3 247.3 1203.0 12.8 -9.9%

21 50 30% no 600 18 2500.2 272.1 2228.2 407.9 2135.9 272.1 1863.9 464.3 -14.6%
22 50 30% no 600 18 2306.1 262.1 2044.0 480.8 2105.6 262.1 1843.6 543.0 -8.7%
23 50 50% no 600 18 2683.2 276.0 2407.2 281.1 2237.6 276.0 1961.6 317.3 -16.6%
24 50 50% no 600 18 2246.7 221.8 2024.9 167.9 1944.8 221.8 1723.0 207.1 -13.4%
25 50 50% no 600 18 2360.4 346.0 2014.4 292.2 2183.4 346.0 1837.4 339.6 -7.5%
26 50 0% no 180 18 2955.9 284.1 2671.8 143.2 2569.0 284.1 2284.9 172.8 -13.1%
27 50 0% no 180 18 2842.0 258.3 2583.7 190.8 2304.7 258.3 2046.5 225.9 -18.9%
28 50 10% no 180 18 2837.6 218.4 2619.2 210.1 2596.3 218.4 2377.8 237.5 -8.5%
29 50 10% no 180 18 2785.1 226.9 2558.2 194.3 2391.5 226.9 2164.6 225.7 -14.1%
30 50 30% yes 180 18 3197.4 247.4 2950.0 109.1 2584.8 247.4 2337.4 127.3 -19.2%

31 100 0% yes 600 35 3958.5 247.4 3711.1 2477.1 3440.6 247.4 3193.2 3041.8 -13.1%
32 100 0% yes 600 35 4254.0 247.4 4006.6 2473.4 3587.6 247.4 3340.2 2986.6 -15.7%
33 100 30% no 600 35 3591.8 225.8 3366.0 1741.3 3112.8 225.8 2887.0 2160.7 -13.3%
34 100 50% no 600 35 3971.4 274.5 3696.9 689.7 3105.7 274.5 2831.3 888.0 -21.8%
35 100 50% no 600 35 3800.0 240.4 3559.6 1693.3 3144.2 240.4 2903.8 2169.1 -17.3%
36 100 50% yes 180 35 4947.0 371.1 4575.9 491.1 4274.1 371.1 3903.1 555.7 -13.6%
37 100 50% yes 180 35 5293.3 247.4 5046.0 190.0 4508.8 247.4 4261.5 212.5 -14.8%
38 100 50% yes 180 35 4908.2 247.4 4660.8 500.7 4142.1 247.4 3894.7 564.6 -15.6%
39 100 50% yes 180 35 4982.9 247.4 4735.5 389.0 4251.5 247.4 4004.2 457.2 -14.7%
40 100 50% yes 180 35 5214.6 247.4 4967.2 252.5 4650.2 247.4 4402.8 278.8 -10.8%

Avg. 2435.4 262.1 2173.3 338.5 2147.2 262.1 1885.2 410.4 -11.8%

Table 3.1: Absolute EPI values for a LH departure frequency of 75 minutes (LH75), with and
without VND and improvement in percentage (∆ OV). The table includes the number of requests
(R), the amount of cross-city requests (Rcc), whether the station and depot have identical locations
(S=D), the time window size (TW), the number of SH vehicles (V c), the total objective value
(OV), LH cost (LH), SH cost (SH), and CPU time in seconds (T).
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generate cost. In addition to a reduction in SH costs, we observe a reduction in required SH
vehicles. These effects emerge for each increase in LH departure frequency, but they are greatest
for the increase from 300 to 30 minutes. The effects also occur independent of time windows, the
share of cross-city requests, or the size of the instances.

However, the universal claim that more LH connections are better is insupportable, because
the goal must be to offer the right connections, not the most. Ascertaining the right departure
times creates the same difficulties as the choice between departures at every minute of the day.

To illustrate the change in SH routing when increasing the LH departure frequency, we depict
two explicit examples in Figures 3.10 and 3.11 in 3.6.2. In both cases, we compare a LH departure
frequency of 300 minutes with a departure frequency of 30 minutes.

In the case of LH300, a single LH departs in the middle of the planning horizon for each
direction, so LHs depart simultaneously from each station. Each city requires at least two
routes, though not necessarily two vehicles, namely one route performing all pickups and one
route performing all deliveries. First, all pickups are performed in both cities (more or less
simultaneously) and brought to the station. Then, all parcels are simultaneously transported via
LH to their destination city with both LH vehicles leaving at minute 300. Finally, upon arriving,
all parcels are delivered by a separate route (possibly using the same SH vehicles).

In the case of LH30, a potential LH can depart every 30 minutes, throughout the day, starting
from the beginning of the day (time 0), including the departure time of LH300. First, the parcels
are being picked up in one city and transported to the station on a route that contains only
pickups. Then, the first LH leaves. After arrival in the other city, the parcels are picked up from
the station, and the SH vehicles perform combined pickup and delivery routes. At the end of
this combined route, the station is visited again to drop off all parcels destined for the other city.
Then, the LH returns to the first city and finally, upon arriving, the parcels are brought to their
destinations by a SH vehicle servicing only delivery nodes.

By allowing multiple LH departure times and a higher departure frequency, we make combined
pickup and delivery routes possible, and therefore make room for improving the SH routes. In
both instances shown in 3.6.2, the SH and total costs can be improved while having the same
LH cost (the same number of utilized LH departures).

To evaluate the robustness of the claim that a more flexible LH leads to improvements in SH
costs, we conduct a sensitivity analysis where different LH capacity restrictions are tested. In
particular we test the SH improvement of our instances when limiting the LH capacity to 25%,
50%, 75% or 100% of total demand. The box plot in Figure 3.9 shows the average results of those
tests. The mean values for all capacity restrictions are stable and below zero (improvements
ranging from 4% to 7%) indicating a strong claim that more flexible LHs lead to improvement
of SH cost. Additionally, the boxes of the boxplot are stable below zero as well (improvement
ranging from 2% to 10%).

Note that, not all instances can be solved with certain LH departure frequencies in combina-
tion with a restricted LH capacity. Out of our 40 instances we can solve 25 instances with a LH
departure frequency of 150 minutes and a LH capacity restriction at 25%. For a LH departure
frequency of 300 minutes (which is the equivalent of a single departure per day) we can solve 38
instances at a capacity restriction set to 75%, 28 instances at a capacity restriction set to 50%,
and only 2 instances at a capacity restriction set to 25%. This is due to the fact that we need to
fulfil all requests in order to obtain a feasible solution.

The box plots for the more detailed tests comparing different LH departure schedules can be
found in 3.6.3. They show, like in Tables 3.2 and 3.3, the results of the SH cost reduction when
the LH departure frequency increases from 300 to 150 minutes in Figure 3.13a, 150 to 75 minutes
in Figure 3.13b, 75 to 30 minutes in Figure 3.13c, and 300 to 30 minutes in Figure 3.13d. It can
be seen that the mean values of SH improvement range from zero to 15% with outliers just over
zero (slight worsening) and improvements up to 22%.
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LH150 rel. to LH300 LH75 rel. to LH150 LH30 rel. to LH75 LH30 rel. to LH300
R Rcc S = D TW V c SH T SH T SH T SH T

1 10 0% no 600 4 -9% 228% -10% 134% 0% 324% -19% 3158%
2 10 0% no 600 4 -12% 39% -10% 189% 0% 509% -21% 2349%
3 10 0% no 600 4 -11% 185% 0% 92% 0% 555% -11% 3481%
4 10 50% no 600 4 -2% 272% -13% 197% 0% 418% -14% 5634%
5 10 50% no 600 4 -5% 210% -4% 202% -2% 411% -11% 4678%
6 10 0% no 180 4 0% 72% -9% 140% 0% 294% -9% 1527%
7 10 0% no 180 4 0% 85% -12% 211% -1% 603% -13% 3953%
8 10 30% no 180 4 0% -30% -14% 335% -4% 491% -17% 1699%
9 10 50% no 180 4 0% -30% -1% 204% -5% 842% -6% 1910%
10 10 50% no 180 4 0% 8% -1% 422% -4% 611% -5% 3912%

11 20 30% no 600 7 -1% 87% -6% 187% -4% 627% -11% 3796%
12 20 30% no 600 7 -5% 120% -1% 135% -11% 566% -16% 3333%
13 20 50% no 600 7 -14% 207% -1% 118% -8% 560% -21% 4320%
14 20 50% no 600 7 -14% 349% -1% 72% -6% 479% -19% 4375%
15 20 50% no 600 7 -3% 62% -5% 176% 1% 713% -6% 3538%
16 20 0% yes 180 7 0% 44% -4% 188% -3% 384% -7% 1903%
17 20 10% yes 180 7 0% 62% -7% 206% -1% 318% -8% 1970%
18 20 20% yes 180 7 0% -1% -5% 346% -5% 774% -9% 3766%
19 20 30% no 180 7 0% 96% -8% 180% -1% 514% -9% 3281%
20 20 50% no 180 7 -1% 45% -19% 167% 0% 502% -20% 2233%

21 50 30% no 600 18 -2% 353% -12% 100% -5% 341% -18% 3883%
22 50 30% no 600 18 -2% 471% -5% 107% -3% 617% -10% 8359%
23 50 50% no 600 18 -8% 250% -1% 123% -7% 358% -15% 3471%
24 50 50% no 600 18 0% 107% -1% 202% -5% 813% -6% 5605%
25 50 50% no 600 18 -11% 312% -6% 48% -4% 377% -20% 2810%
26 50 0% no 180 18 0% 0% -20% 296% -2% 481% -22% 2212%
27 50 0% no 180 18 0% -3% -19% 419% -3% 280% -21% 1814%
28 50 10% no 180 18 0% -9% -10% 425% -2% 345% -12% 2019%
29 50 10% no 180 18 0% 21% -2% 140% -8% 339% -10% 1172%
30 50 30% yes 180 18 0% -3% 0% 184% -13% 158% -13% 611%

31 100 0% yes 600 35 0% 73% 2% 145% -3% 415% -1% 2080%
32 100 0% yes 600 35 -4% 122% -4% 243% -2% 414% -10% 3815%
33 100 30% no 600 35 -5% 107% -5% 124% -1% 706% -11% 3626%
34 100 50% no 600 35 0% -8% -9% 179% -1% 886% -10% 2440%
35 100 50% no 600 35 0% 339% 1% 90% -3% 503% -3% 4931%
36 100 50% yes 180 35 0% 2% -10% 349% 0% 165% -10% 1115%
37 100 50% yes 180 35 0% -11% -4% 101% -6% 841% -9% 1577%
38 100 50% yes 180 35 0% -6% -9% 695% 0% 139% -9% 1685%
39 100 50% yes 180 35 0% -7% -7% 940% -4% 284% -11% 3623%
40 100 50% yes 180 35 0% -2% -4% 28% -5% 537% -9% 704%

Min -14% -30% -20% 28% -11% 139% -22% 704%
Avg. -3% 105% -7% 223% -3% 493% -12% 3081%
Max 0% 471% 2% 940% 1% 886% -1% 8359%

Table 3.2: Comparison for different LH frequencies (between 30 and 300 minutes) with the PI
method. The table includes the number of requests (R), the amount of cross-city requests (Rcc),
whether the station and depot have identical locations (S=D), the time window size (TW), the
number of SH vehicles (V c), the SH cost (SH), and the CPU time difference (T). The table
shows the increases in SH cost reduction and CPU time as a percentage when the LH departure
frequency increases from 300 to 150 minutes, 150 to 75 minutes, 75 to 30 minutes, and 300 to 30
minutes.
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LH150 rel. to LH300 LH75 rel. to LH150 LH30 rel. to LH75 LH30 rel. to LH300
R Rcc S = D TW V c SH T SH T SH T SH T

1 10 0% no 600 4 -10% 173% -10% 152% 0% 335% -19% 2890%
2 10 0% no 600 4 -12% 62% -9% 246% -1% 546% -21% 3514%
3 10 0% no 600 4 -11% 198% 0% 141% 0% 593% -11% 4883%
4 10 50% no 600 4 -1% 156% -12% 224% 0% 418% -13% 4187%
5 10 50% no 600 4 -4% 152% -5% 232% 0% 390% -8% 4007%
6 10 0% no 180 4 0% 47% -9% 272% 0% 260% -9% 1868%
7 10 0% no 180 4 0% 33% 0% 336% -1% 556% -1% 3712%
8 10 30% no 180 4 0% -4% -14% 336% -4% 549% -17% 2624%
9 10 50% no 180 4 0% -26% 0% 297% -5% 778% -5% 2462%
10 10 50% no 180 4 0% -30% -1% 376% -4% 610% -5% 2259%

11 20 30% no 600 7 -3% 49% -10% 222% 0% 504% -13% 2805%
12 20 30% no 600 7 0% 89% 0% 233% -12% 489% -12% 3601%
13 20 50% no 600 7 -9% 263% -1% 162% -4% 519% -14% 5789%
14 20 50% no 600 7 -7% 207% -5% 139% -1% 432% -13% 3807%
15 20 50% no 600 7 0% 74% 0% 207% -2% 706% -2% 4200%
16 20 0% yes 180 7 -1% 63% -8% 193% 0% 382% -9% 2203%
17 20 10% yes 180 7 0% 76% -3% 230% -1% 306% -4% 2255%
18 20 20% yes 180 7 0% -18% -5% 382% -3% 655% -9% 2888%
19 20 30% no 180 7 0% 52% -6% 277% -5% 411% -10% 2826%
20 20 50% no 180 7 -4% 66% -18% 252% -1% 507% -22% 3436%

21 50 30% no 600 18 -1% 355% -16% 152% -5% 275% -20% 4206%
22 50 30% no 600 18 -8% 324% 0% 153% -7% 519% -14% 6539%
23 50 50% no 600 18 -16% 277% 1% 154% -3% 334% -18% 4057%
24 50 50% no 600 18 0% 95% -9% 220% -1% 579% -10% 4134%
25 50 50% no 600 18 -7% 270% -5% 154% -2% 332% -13% 3955%
26 50 0% no 180 18 0% -8% -15% 391% -6% 407% -20% 2179%
27 50 0% no 180 18 0% -9% -19% 312% -3% 292% -21% 1364%
28 50 10% no 180 18 0% -14% -9% 390% -4% 284% -12% 1507%
29 50 10% no 180 18 0% -10% 0% 354% -6% 252% -7% 1342%
30 50 30% yes 180 18 0% -11% -13% 464% 1% 176% -12% 1280%

31 100 0% yes 600 35 0% 111% 0% 208% -1% 376% -1% 2989%
32 100 0% yes 600 35 2% 86% -6% 256% -3% 403% -7% 3225%
33 100 30% no 600 35 -3% 116% -3% 196% -4% 601% -10% 4391%
34 100 50% no 600 35 0% -5% -9% 359% -3% 700% -12% 3395%
35 100 50% no 600 35 -4% 349% -4% 155% -2% 465% -9% 6359%
36 100 50% yes 180 35 0% -12% -11% 373% -3% 202% -14% 1161%
37 100 50% yes 180 35 0% -11% -6% 157% -8% 573% -14% 1437%
38 100 50% yes 180 35 0% -11% -5% 393% -5% 125% -9% 884%
39 100 50% yes 180 35 0% -12% -3% 426% -2% 309% -5% 1792%
40 100 50% yes 180 35 0% -12% 1% 118% -10% 508% -8% 1062%

Min -16% -30% -19% 118% -12% 125% -22% 884%
Avg. -2% 89% -6% 255% -3% 447% -11% 3102%
Max 2% 355% 1% 426% 0% 778% -1% 6539%

Table 3.3: Comparison for different LH frequencies (between 30 and 300 minutes) with the EPI
method. The table includes the number of requests (R), the amount of cross-city requests (Rcc),
whether the station and depot have identical locations (S=D), the time window size (TW), the
number of SH vehicles (V c), the SH cost (SH), and the CPU time difference (T). The table
shows the increases in SH cost reduction and CPU time as a percentage when the LH departure
frequency increases from 300 to 150 minutes, 150 to 75 minutes, 75 to 30 minutes, and 300 to 30
minutes.
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Figure 3.9: SH improvement with different LH capacity constraints for various LH frequency
comparisons. The y-axis shows SH improvements up to 19 percent (∆ SH), the x-axis indicates
the available LH capacity as a percentage of the total demand (q’), ranging from 25% to 100%.

3.4.3 Evaluation of the algorithm in comparison with Ghilas et al. [64]

We compare our algorithm with the branch-and-price algorithm of Ghilas et al. [64], developed
for a PDP with time windows and scheduled lines (PDPTW-SL). Not all instances are suitable
for comparison though. We eliminate instances from the computational experiments if the
same solution could not be reached by our algorithm, because our constraints do not allow it.
The PDPTW-SL operates in one big region, with two depots, multiple stations, and multiple
scheduled lines or long-hauls. In our problem, a SH vehicle may not leave the region, whereas
in some solutions by Ghilas et al. [64], a SH vehicle visits both the station of its own region
and the station of the opposite region. For the comparison, we include only those instances
whose solutions are valid by our definition. Also, to enable the comparisons, we split the nodes
and assigned them to two regions, each with one depot and one station, by assigning the same
depot as in the solution by Ghilas et al. We also adapted the objective function to be identical
with that from Ghilas et al., where SH vehicle driving time (equal to distance) is multiplied by
0.5, and the LH cost is 1 per unit shipped, regardless of LH distance. Table 3.4 compares the
objective value obtained from our algorithms and the results provided by Ghilas et al. [64]. For
all instances, we include both PI and EPI and report the better solution. Identical parameters
are used for all instances, with an initial LH assignment solution pool of 30, six look-ahead steps,
four considered decisions, a waiting time weight of 0.8, and 105 iterations without improvement
until VND termination. Among the 28 instances, 20 are optimal, as indicated in the table by
asterisks. On average, our algorithm deviates by 1% from the optimal solution, with a maximum
deviation of 5.9%. Table 3.5 shows the best solution over all runs with different parameters. Here
we find 22 optimal solutions. On average, our algorithm is only 0.3% worse than the optimal
solution with a maximum deviation of 5.0%. By including different parameter settings, we can
improve the mean objective value and we obtain an optimal solution for two additional instances
(C12 and RC50). There seem to be no differences in performance according to instance type or
customer node distribution. The exact parameters used for each instance can be found in Table
3.10 in 3.6.4. Table 3.6 shows the run times for all instances in seconds for the results obtained
by Table 3.5. On average, our algorithm is about four times faster, mainly due to the large
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instances that take exponentially longer with an exact solution approach. Both algorithms are
implemented in Java. Ghilas et al. use four threads on a 2.6 GHz Intel Core i5 processor with 4
GB of RAM; whereas our computational experiments were performed with a 3.60 GHz Intel Core
i7 processor with 8 GB of RAM. Comparing the single thread ratings of both processors, we find
ours to be about 30 percent more powerful and have therefore provided both the actual achieved
computational times as well as projected times that account for the different CPU benchmarks.

3.4.4 Application of the solution algorithm on the inter-library loan
network

Our algorithm is applied to realistic instances for the inter-library loan network. The compu-
tational results of 20 instances are summarized in Table 3.7 and two different LH options (train
and truck) and their influence on the SH costs are compared. The table provides information
about the number of requests R, the share of cross-city loans Rcc, the SH costs ‘SH’ and number
of SH vehicles ‘#SH’ of both the train and truck LH option, and the change in SH costs ‘∆ SH’.
The train departs hourly according to the timetable of the Austrian Federal Railway while the
truck offers more flexibility by being able to depart every 15 minutes. Identical parameters are
used for all instances, namely the same as the ones used to obtain Table 3.2: PI method with an
initial LH assignment solution pool of 30, five look-ahead steps n, three decisions m, a waiting
time weight ϕw of 0.3, and 104 iterations without improvement until VND termination.
On average, the SH costs reduce by 2.1% when choosing truck over train, while the required
number of SH vehicles increases slightly. However, the changes in costs are very volatile. They
range from a 13.06% reduction to a 10.70% increase. This distribution of costs is independent of
the instance size or the share of cross-city requests, however they to seem to correlate with the
increase in SH vehicles. Figure 3.12 shows two exemplary SH solutions in Graz of instance 1 of
the inter-library loan system using a LH via train or truck. The different schedule results in a
different SH routing when switching from a LH via train to truck.
With both LH options, the absolute number of used LH vehicles was minimized in the first step
of the solution algorithm with the aim to use the least amount of connections possible. We made
the assumption that minimizing LH vehicles would sufficiently minimize LH costs since all LH
connections are provided by a third party and LH costs consists only of a factor of the quantity
shipped (only variable costs, no fixed costs). This assumption is suitable for modelling transport
via train, but is probably inapt for transport via truck. The additional fixed costs of using trucks
as LH vehicles and the slight increase in required SH vehicles, makes an average of 2.1% SH costs
decrease seemingly irrelevant. As previous results on the artificial instances indicated, it seems
that also on the real-world based instances a careful decision when to schedule LH departures is
of more importance than simply offering more LH connections.

3.4.5 Analysis of the algorithm and parameter settings

Influence of the waiting time weight, number of decisions, and look-ahead
steps

The weight of the waiting time influences evaluations of an insertion. The weights range from
0 to 0.9 in 0.1 increments and are set in relation to the distance weight, which is always 1. A
weight of 0 implies no penalty for waiting times, whereas higher weights result in higher penalties.
The waiting time penalty is added to the distance cost, and the insertion list is sorted by this
combined cost, so the weights influence the order of the sorted list and, by extension, determine
if an insertion will be considered at a specific point in the construction process.

The number of considered insertion decisions m and the number of look-ahead steps n also
could have a considerable influence on the quality of the solutions. To find the combination of
parameters that leads to the best solutions, we solved an instance several times with different
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Instance OV-G Ghilas ∆

C10* 510.01 510.01 0.0%
C11* 522.85 522.85 0.0%
C12 549.80 541.60 1.5%
C20 778.82 751.23 3.7%
C25 922.48 879.94 4.8%
R6* 416.16 416.16 0.0%
R7* 473.06 473.06 0.0%
R8* 558.17 558.17 0.0%
R9* 632.42 632.42 0.0%
R10* 636.05 636.05 0.0%
R11 780.69 748.29 4.3%
R12* 913.68 913.68 0.0%
R15* 1083.50 1083.50 0.0%
R20* 1542.93 1542.93 0.0%
R25* 1636.12 1636.12 0.0%
R40 2085.31 1969.77 5.9%
RC6* 572.76 572.76 0.0%
RC7* 575.95 575.95 0.0%
RC8* 585.32 585.32 0.0%
RC9* 593.70 593.70 0.0%
RC10* 599.95 599.95 0.0%
RC11* 624.48 624.48 0.0%
RC12* 662.03 662.03 0.0%
RC15* 1068.16 1068.16 0.0%
RC20* 1200.36 1200.36 0.0%
RC25 1533.89 1530.43 0.2%
RC40 2020.98 1969.45 2.6%
RC50 2327.10 2200.88 5.7%

Mean 1.0%

Table 3.4: Comparison of objective value (OV-G) to Ghilas et al. [64] (Ghilas) and the difference
(∆), best run. Identical parameters are used on all instances. 20 of 28 instances are optimal,
marked with ‘*’.
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Instance OV-G Ghilas ∆

C10* 510.01 510.01 0.0%
C11* 522.85 522.85 0.0%
C12* 541.60 541.60 0.0%
C20 751.30 751.23 0.0%
C25 888.34 879.94 1.0%
R6* 416.16 416.16 0.0%
R7* 473.06 473.06 0.0%
R8* 558.17 558.17 0.0%
R9* 632.42 632.42 0.0%
R10* 636.05 636.05 0.0%
R11 754.70 748.29 0.9%
R12* 913.68 913.68 0.0%
R15* 1083.50 1083.50 0.0%
R20* 1542.93 1542.93 0.0%
R25* 1636.12 1636.12 0.0%
R40 2067.75 1969.77 5.0%
RC6* 572.76 572.76 0.0%
RC7* 575.95 575.95 0.0%
RC8* 585.32 585.32 0.0%
RC9* 593.70 593.70 0.0%
RC10* 599.95 599.95 0.0%
RC11* 624.48 624.48 0.0%
RC12* 662.03 662.03 0.0%
RC15* 1068.16 1068.16 0.0%
RC20* 1200.36 1200.36 0.0%
RC25 1531.95 1530.43 0.1%
RC40 1978.65 1969.45 0.5%
RC50* 2200.88 2200.88 0.0%

Mean 0.3%

Table 3.5: Comparison of objective value (OV-G) to Ghilas et al. [64] (Ghilas) and the difference
(∆), best solutions found over all runs with different parameters. 22 of 28 instances are optimal,
marked with ‘*’.
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Instance CPU i5-CPU Ghilas

C10 51 66 67
C11 67 87 9
C12 70 91 4
C20 7 10 83
C25 144 187 2114
R6 2 2 0
R7 2 2 1
R8 2 2 0
R9 43 55 2
R10 46 59 1
R11 35 45 1
R12 72 94 2
R15 2 2 15
R20 1 2 12
R25 52 68 50
R40 3 4 895
RC6 3 4 0
RC7 4 5 0
RC8 4 5 0
RC9 22 28 0
RC10 24 32 0
RC11 29 38 1
RC12 22 28 1
RC15 2 2 1
RC20 65 84 6
RC25 69 90 28
RC40 20 26 738
RC50 145 189 1235
Mean 36.0 46.7 188.1

Table 3.6: Run time comparison with Ghilas et al. [64], in seconds, showing the actual achieved
times (CPU) and projected times (i5-CPU) accounting for the different CPU benchmarks.
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Train Truck
R Rcc SH #SH SH #SH ∆ SH

1 25 20% 209.40 5 194.59 8 -7.07%
2 25 20% 220.07 5 219.10 8 -0.44%
3 25 20% 197.99 7 199.85 7 0.94%
4 25 20% 234.39 4 237.32 6 1.25%
5 25 20% 210.63 6 223.88 4 6.29%
6 30 33% 240.38 6 225.22 6 -6.31%
7 30 33% 245.32 6 234.40 4 -4.45%
8 30 33% 263.15 7 251.87 6 -4.29%
9 30 33% 235.54 6 231.90 6 -1.55%
10 30 33% 237.02 6 242.45 6 2.29%
11 35 14% 241.08 8 209.59 8 -13.06%
12 35 14% 290.86 9 263.59 5 -9.38%
13 35 14% 287.82 8 268.82 8 -6.60%
14 35 14% 264.18 6 265.59 6 0.53%
15 35 14% 246.23 5 272.58 9 10.70%
16 40 25% 274.75 10 243.91 7 -11.22%
17 40 25% 288.96 8 275.10 9 -4.80%
18 40 25% 252.93 8 244.18 8 -3.46%
19 40 25% 272.55 6 274.02 7 0.54%
20 40 25% 279.58 4 299.60 7 7.16%

Mean 6.5 6.8 -2.1%

Table 3.7: Comparison of different LH options for the inter-library loan network between Vienna
and Graz. The table includes the number of requests (R), the share of cross-city requests (Rcc),
the SH cost when using the train or truck (SH), the total number of SH vehicles used in both
cities (#SH), and the difference in objective value (∆ SH) when comparing the SH costs.

parameter combinations. In general, having very few decisions or looking-ahead steps leads to
inferior solutions. However, when these values grow larger, the computation time lengthens,
depending on the number of partial solutions that need to be evaluated. The PI method always
evaluates m solutions, no matter how many n steps are looked-ahead (though each additional
look-ahead step takes time), so the number of solutions to evaluate depends solely on the size of
the instance (number of requests r), rm. The EPI evaluates more solutions, depending on both
the number of decisions and look-ahead steps, rmn. The values are therefore restricted for our
computational experiments to 3 6 m 6 6 decisions and 1 6 n 6 8 look-ahead steps.

A good tuning of the parameters is crucial to finding good or optimal solutions. The settings
depend on the instance. We evaluate two instances from Ghilas et al. [64] in detail, namely,
R15 and R20. The plots are in 3.6.5 and represent the objective value obtained with different
parameter combinations of insertion decisions n, look-ahead steps m, and waiting time weight
ϕw. In general, overly small values of n < 3 lead to worse or even infeasible solutions. Values of
n = 5 and n = 6 seem promising and do not demand too much computational time. However,
values of n = 7 or n = 8 can deteriorate solution quality or stay promising, depending on the
instance. Additionally, different values of insertion decisions are tested. At least m = 3 insertion
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decisions are always included. Any increase in decisions included in the selection led almost as
often to a decline in solution quality as it led to an improvement.

A comparison of the pilot method (PI) and the extended pilot method (EPI)
The EPI method performs slightly better than the PI method on average, but it also is much

more computationally expensive. The PI evaluates rm solutions with r requests and m insertion
decisions; the EPI evaluates rmn with n look-ahead steps. Regarding the trade-off between
computation time and solution quality, the difference in both also depends on the application of
the improvement heuristic, which can increase both time and solution quality.
Table 3.8 details the performance of both PI and EPI for our own instances with LH75 (LH
departure every 75 minutes), with and without VND. The relation is calculated using PI

EPI − 1.
Without VND, the PI method is on average 2.5% worse (i.e., has 2.5% higher costs) than the
EPI method. The results range from being 6.1% better to 14.3% worse. When including VND,
the difference between the two algorithms diminishes, and PI is only 0.4% worse on average, with
a range of 8.8% better to 12.1% worse. We do not include LH costs in the table, because they
are identical for both methods. We find no significant differences in PI and EPI performance
with regard to instance size, the share of cross-city requests, the location of the station, or the
size of the time windows.

Why the PI method can be better than the EPI method
Although it may seem counterintuitive, the EPI does not always result in a better solution

than the PI for the same number of considered decisions and look-ahead steps.
The EPI goes beyond the m decisions in the first step to consider all m possibilities for each

of the n look-ahead steps. Based on this much more extended decision tree, the decision for
the first step is made. The solutions evaluated by the PI thus are by definition a subset of the
solutions evaluated by the EPI.

To understand how the EPI might fail though, we offer an example: Assume that both
algorithms perform identically until a specific point at which the evaluations of the insertions
diverge, due to a potential solution that could be superior in objective value. On the path
considered by the EPI, the expected partial solution has a lower estimated cost (i.e., smaller
distance while fulfilling the same number of requests). However, if not all requests have been
included, such that one request is still missing in each partial solution, looking ahead just one
more step would reveal that the decision path of the EPI was misguided, and the last request
cannot be feasibly inserted. When the algorithm finishes, it becomes evident that the solution
achieved with the PI is superior to that from the EPI, because the EPI was misled down a
seemingly good solution path that would not have been feasible if followed.

Both methods might yield infeasible solutions that do not fulfil all requests. A change in the
look-ahead steps also exerts a great impact on the solutions obtained (see Figure 3.14 in 3.6.5).
Adding a single look-ahead step to our example would have prevented the EPI from selecting
that inappropriate path. Still, from our computational results, it is clear that both methods
should be used if time allows.

Some remarks on computational time
Table 3.9 gives an overview of the average running time for an instance in seconds. In general:

• Computation time increases for larger instances and larger time windows.

• A tighter LH departure frequency increases running time significantly, because more short-
haul sub-problems must be solved (also see Tables 3.2 and 3.3).

• EPI is much more computationally expensive then PI (see also Table 3.8)
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LH75, only (E)PI LH75, (E)PI & VND
R Rcc S=D TW V c OV SH T OV SH T

1 10 0% no 600 4 -0.5% -0.8% -95.9% -0.5% -0.8% -57.5%
2 10 0% no 600 4 0.6% 0.7% -97.4% -0.9% -1.2% -52.7%
3 10 0% no 600 4 0.9% 1.3% -97.3% 0.9% 1.3% -52.0%
4 10 50% no 600 4 -0.6% -0.7% -94.9% -0.6% -0.7% -42.5%
5 10 50% no 600 4 1.7% 2.3% -97.6% 1.7% 2.3% -45.6%
6 10 0% no 180 4 0.5% 0.6% -96.2% 0.5% 0.6% -52.4%
7 10 0% no 180 4 1.2% 1.5% -97.6% 0.0% 0.0% -55.7%
8 10 30% no 180 4 4.5% 6.3% -95.5% 0.7% 0.9% -39.9%
9 10 50% no 180 4 1.2% 1.4% -95.3% 0.7% 0.9% -44.9%
10 10 50% no 180 4 0.0% 0.0% -94.3% 0.0% 0.0% -41.4%

11 20 30% no 600 7 -0.7% -0.8% -98.5% 2.3% 2.9% -79.8%
12 20 30% no 600 7 -1.2% -1.5% -98.5% 3.0% 3.7% -75.5%
13 20 50% no 600 7 5.6% 7.2% -98.3% 2.3% 2.9% -75.1%
14 20 50% no 600 7 3.3% 4.1% -98.5% 5.6% 7.1% -76.3%
15 20 50% no 600 7 0.2% 0.3% -98.2% -0.7% -0.9% -74.8%
16 20 0% yes 180 7 2.8% 3.4% -98.4% 0.4% 0.5% -72.2%
17 20 10% yes 180 7 1.5% 1.8% -98.3% -3.5% -4.2% -71.5%
18 20 20% yes 180 7 4.5% 5.3% -97.6% 5.3% 6.3% -70.5%
19 20 30% no 180 7 2.3% 2.7% -98.0% -1.6% -2.0% -74.9%
20 20 50% no 180 7 6.9% 8.1% -98.4% 0.1% 0.1% -71.1%

21 50 30% no 600 18 1.4% 1.5% -98.5% 0.4% 0.5% -88.7%
22 50 30% no 600 18 2.9% 3.3% -98.5% -3.7% -4.3% -89.9%
23 50 50% no 600 18 1.2% 1.3% -98.7% 0.3% 0.3% -88.2%
24 50 50% no 600 18 2.8% 3.1% -98.4% 5.5% 6.2% -88.3%
25 50 50% no 600 18 2.0% 2.3% -98.6% 0.5% 0.6% -89.2%
26 50 0% no 180 18 -6.1% -6.8% -98.6% -8.8% -9.9% -84.6%
27 50 0% no 180 18 2.7% 2.9% -98.6% -0.6% -0.6% -83.6%
28 50 10% no 180 18 14.3% 15.4% -98.7% -4.2% -4.6% -90.4%
29 50 10% no 180 18 -0.2% -0.2% -98.7% 1.3% 1.5% -90.7%
30 50 30% yes 180 18 1.7% 1.8% -98.2% 12.1% 13.4% -83.6%

31 100 0% yes 600 35 5.4% 5.7% -98.7% 2.3% 2.5% -84.2%
32 100 0% yes 600 35 8.8% 9.3% -98.8% 0.1% 0.1% -82.4%
33 100 30% no 600 35 4.8% 5.1% -98.6% -1.2% -1.3% -92.3%
34 100 50% no 600 35 -2.7% -2.9% -98.6% -1.1% -1.2% -92.7%
35 100 50% no 600 35 -3.7% -3.9% -98.4% 0.7% 0.8% -91.5%
36 100 50% yes 180 35 7.3% 7.9% -98.8% -2.4% -2.6% -90.6%
37 100 50% yes 180 35 4.1% 4.4% -98.6% -1.2% -1.3% -91.3%
38 100 50% yes 180 35 4.5% 4.7% -98.5% -1.4% -1.5% -90.1%
39 100 50% yes 180 35 4.8% 5.1% -98.6% 1.9% 2.1% -86.7%
40 100 50% yes 180 35 9.3% 9.8% -98.7% -1.9% -2.0% -90.8%

Min -6.1% -6.8% -98.8% -8.8% -9.9% -92.7%
Avg 2.5% 2.8% -97.9% 0.4% 0.5% -74.9%
Max 14.3% 15.4% -94.3% 12.1% 13.4% -39.9%

Table 3.8: PI in relation to EPI performance for a LH departure frequency of 75 minutes (LH75)
with and without VND. The table includes the number of requests (R), the amount of cross-city
requests (Rcc), whether the station and depot have identical locations (S=D), the time window
size (TW), the number of SH vehicles (V c), the total objective value (OV), SH cost (SH), and
computational time (T). The PI method is 2.5% worse on average (i.e. has 2.5% higher cost)
than the EPI method without VND and 0.4% worse than the EPI method with VND.
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PI EPI
LH300 LH150 LH75 LH30 LH300 LH150 LH75 LH30

R10 0.37 0.72 2.00 11.59 0.68 1.22 3.98 22.89
R10 No TW 0.35 0.97 2.47 13.41 0.68 1.72 4.94 27.30
R10 TW 0.38 0.47 1.52 9.78 0.67 0.73 3.03 18.47
R20 1.02 2.01 5.19 31.95 3.50 6.54 20.25 115.63
R20 No TW 0.90 2.30 5.18 35.24 3.43 7.65 21.91 135.49
R20 TW 1.11 1.68 5.02 29.51 3.49 5.42 18.23 101.87
R50 5.88 13.68 33.40 173.47 42.98 93.33 286.05 1317.42
R50 No TW 5.03 20.50 41.15 238.42 38.73 144.50 374.26 1871.03
R50 TW 6.61 9.84 27.48 119.58 45.39 57.41 221.47 880.84
R100 32.12 59.68 163.30 909.99 225.03 413.10 1331.50 7193.12
R100 No TW 53.07 108.61 283.97 1651.47 330.05 720.34 2249.22 12797.38
R100 TW 12.98 25.09 66.21 325.31 131.61 229.98 706.33 3365.52

Table 3.9: Average computational times in seconds by instance size, type, and LH departure
frequency

• The smallest instances need an average of 0.37 seconds to be solved. The largest com-
putational times for instances with 100 requests, no time windows, EPI, and a high LH
departure frequency (LH30) need approximately 3.5 hours.

3.5 Conclusions
We have proposed a matheuristic algorithm to solve the PDPLH in two regions by decom-

posing the problem into LH assignment, SH routing, and SH improvement. The LH assignment
is solved exactly and then provides input for the SH routing. To demonstrate the quality of the
solution algorithm, we compared it with the branch-and-price algorithm described by Ghilas et
al. [64] for a related problem. We managed to obtain optimal solutions in 22 of 28 instances with
an average difference of 0.3% in reasonable computation times. We also provide the results for
self-generated instances. Both the achieved solution quality and computational times make the
algorithm suitable as a method for evaluating bundles of transportation requests in an auction
mechanism for a collaborative setting. Such a setting requires solving problems of the PDPLH
type to evaluate potential additional costs or consolidation possibilities when transportation
carriers exchange requests among themselves.

The numerical experiments involving both instances from prior literature and our own analyses
the need to fine-tune the parameters and provide interesting insights into the mechanics of the
pilot insertion method (PI) and the extended pilot insertion method (EPI). The comparison
indicates that the EPI can be superior but is not always. Single instances can be improved up
to 14%, yet the overall benefits, after taking the high computation times into account, remain
uncertain.

To study the effect of a more flexible LH connection, we limit the number of available LH and
gradually expand availability, then check the effects on SH costs. Improvements in SH costs of
up to 22% can be observed, merely due to additional LH departure times without additional LH
costs. On average, more LH connections result in a 11% (for the PI) or 12% (for the EPI) cost
decrease. This insight is especially relevant for decision makers and illustrates the importance
of synchronization between transportation modes, as well as the need to remain flexible with
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respect to predefined schedules. When simple measures, such as offering additional departure
times, results in potential cost savings of that magnitude, decision makers must balance potential
SH savings against the cost of flexibility, which is intangible and harder to compute.

Future possible extensions of the problem might be the increase the number of regions or
cities, as well as additional modes of (LH) transportation. Small steps in this direction have
already been made with a basic comparison of train or trucks as LH vehicles for realistic instances
of the inter-library loan network. However, more sophisticated cost functions, that depict the
real world more accurately, are necessary. Additional constraints limiting the storage space at the
transshipment point, and potential holding costs also might be of interest. Finally, an extension
to a multiple-period problem and the inclusion of dynamic or stochastic components would be of
interest.

3.6 Appendix
3.6.1 Mathematical problem formulation

Since our problem is based on two cities, they have been named city ‘A’ and city ‘B’. c will
be used as a place-holder for either ‘A’ or ‘B’. The same principle is applied for indicating if a
set, variable or parameter belongs to a pickup ‘P’ or a delivery ‘D’. In that case π will be used
as a place-holder. Also note, that the notation for this mathematical problem formulation is
independent of the initial LH assignment in Section 3.3.1.

Sets

V c . . . set of SH vehicles in each city c
V l . . . set of LH vehicles
R . . . set of all requests

Rlc . . . set of requests travelling over the LH from city c
Rcc . . . set of requests travelling from/to/within city c
N c . . . set of nodes in each city c
N c

0 = N c ∪ {0}, set of nodes including the depot
Nπc
r . . .P/D node of each request r in c, a set of size 1
Bc . . . set of LH single trips departing from c

Parameters

Qv . . . capacity of SH vehicle v
Ql . . . capacity of LH vehicles
H . . .LH travel time per direction
C . . . cost of LH transportation per direction
dcij . . . distance from node i to j per city c
σi . . . service time of node i
σs . . . loading time at station s

E . . . end of day
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qci . . .

{
qi,positive quantity for pickup nodes i in c

−qi, negative quantity for delivery nodes i in c

hb . . . departure time of LH vehicle b in both cities

Fixed time windows of request

ePAr , ePBr , eDAr , eDBr . . . earliest P/D time of request r travelling within city A/B
uPAr , uPBr , uDAr , uDBr . . . latest P/D time of request r travelling within city A/B
ePAAr , eDAAr , eDABr . . . earliest P/D time of request r travelling from A in A/B
uPAAr , uPABr , uDABr . . . latest P/D time of request r travelling from A in A/B

Requests are present in all sets that apply and are therefore in multiple sets at once. For
requests travelling over the LH, the time windows are fixed at the customer nodes and treated as
decision variables at the stations. For example, for a request travelling from city A to city B, the
pickup TW in city A and delivery TW in city B (at customer nodes) are fixed. Delivery TW in
city A and pickup TW in city B (at the stations) are decision variables. For cross-city requests
(not travelling over the LH), all of the TWs are fixed.

Decision variables

xcijv =
{

1, if vehicle v travels from i to j in c,
0, otherwise.

zrb =
{

1, if request r is departing with LH b,
0, otherwise.

gcb =
{

1, if any request is departing with LH b from c,
0, otherwise.

tci . . . visit at node i in c

tPcr . . . pickup time of request r in c

tDcr . . . delivery time of request r in c

Sciv . . . load after visiting node i in c

tcδv . . . departure time from the depot in c

tcαv . . . arrival time at the depot in c

tlδr . . . departure time of r with LH vehicle
tlαr . . . arrival time of r with LH vehicle
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Time window decision variables at the stations

ePABr , ePBAr . . .Pickup begin TW of r travelling from A in B (or from B in A)
uDAAr , uDBBr . . .Delivery end TW of r travelling from A in A (or from B in B)

Objective
The objective is to minimize the total cost (SH A + LH + SH B):

Minimize
∑
i∈NA

0

∑
j∈NA

0

∑
v∈V A

dAijx
A
ijv +

∑
b∈BA

CgAb +
∑
b∈BB

CgBb +
∑
i∈NB

0

∑
j∈NB

0

∑
v∈V B

dBijx
B
ijv (3.15)

Constraints for the SH

∑
i∈Nc

0

xcijv −
∑
i∈Nc

0

xcjiv = 0 ∀j 6= i, j ∈ N c, v ∈ V c (3.16)

xciiv = 0 ∀i ∈ N c, v ∈ V c (3.17)∑
i∈Nc

0

xci0v =
∑
j∈Nc

0

xc0jv = 1 ∀v ∈ V c (3.18)

∑
i∈Nc

0 ,i6=j

∑
v∈V C

xcijv = 1 ∀j ∈ N c (3.19)

tci + σi + dcij 6 tcj +M(1− xcijv) ∀i, j ∈ N c, v ∈ V c (3.20)
0 6 tci 6 E ∀i ∈ N c (3.21)
tπcr = tci ∀r ∈ R, i ∈ Nπc

r (3.22)
tci 6 tcj ∀i ∈ NPc

r , j ∈ NDc
r , r ∈ R (3.23)

eπcr 6 tπcr 6 uπcr ∀r ∈ Rcc (3.24)
eπAcr 6 tπcr 6 uπAcr ∀r ∈ RAB (3.25)
eπBcr 6 tπcr 6 uπBcr ∀r ∈ RBA (3.26)
Scjv 6 Sciv + qci +M(1− xcijv) ∀i, j ∈ N c

0 , v ∈ V c (3.27)
Scjv > Sciv + qci −M(1− xcijv) ∀i, j ∈ N c

0 , v ∈ V c (3.28)
0 6 Sciv 6 Qv ∀i ∈ N c, v ∈ V c (3.29)
Sc0v = 0 ∀v ∈ V c (3.30)
tcδv + dc0i 6 tci +M(1− xc0iv) ∀i ∈ N c, v ∈ V c (3.31)
tci + σi + dci0 6 tcαv +M(1− xci0v) ∀i ∈ N c, v ∈ V c (3.32)
0 6 tcδv 6 tcαv 6 E ∀v ∈ V c (3.33)
tcδv 6M(1− xc00v) ∀v ∈ V c (3.34)
tcδv > −M(1− xc00v) ∀v ∈ V c (3.35)
tcαv 6M(1− xc00v) ∀v ∈ V c (3.36)
tcαv > −M(1− xc00v) ∀v ∈ V c (3.37)

Constraints (4.3) state that if vehicle v visits a node in a tour, it has to leave the node again.
Constraints (4.4) state that travelling between the same node i is forbidden (except the depot),
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because that would indicate an empty tour. Constraints (4.5) state that each SH tour originates
and terminates at the depot, in both cities. Constraints (4.6) makes sure that each node is
visited exactly once. Constraints (4.7) state that if we travel from i to j in vehicle v in city c,
the fulfilment times at the nodes must be consecutive. Therefore, the fulfilment time tcj at node
j in city c has to be greater than or equal to the sum of the fulfilment time tci at node i in city c,
service time σi, and distance dcij between the nodes. These constraints also eliminate subtours,
because all tours begin and end at the depot. Constraints (3.21) state that the fulfilment time
of requests have to be positive and smaller than the end of the time span E. Constraints (4.12)
and (4.14) state that the P&D times tπcr of request r in city c have to be set to the fulfilment
times tci at node i, where i is part of the set Nπc

r containing exactly one P/D node of request r in
c, and the pickup must be completed before the delivery is possible. Constraints (4.8) to (3.26)
restrict the fulfilment times at the nodes to the time windows. Constraints (4.15) to (4.18) are
the loading restrictions for the SH vehicles. If we travel from i to j with vehicle v, the load Scjv
before serving node j equals the load before servicing node i plus the quantity qci of node i. This
quantity can be negative if a delivery occurs. Constraints (4.19) and (4.20) state that all arrival
times tcαv and departure times tcδv at the depot have to be consistent with travelling times and
fulfilment times of the SH vehicles. Constraints (4.21) state that the departure and arrival times
at the depot have to be during the time span as well as ensuring that each vehicles first departs
and then arrives at the depot. Constraints (4.23) to (4.26) states that if a SH tour is empty, the
departure time and arrival time at the depot are 0.

Constraints for the LH

∑
b∈B

zrb = 1, ∀r ∈ Rlc (3.38)

gcb =
∑
r∈Rlc

zrb ∀b ∈ Bc (3.39)

∑
r∈RLc

zrbq
c
i 6 QL ∀i ∈ NPc

r , b ∈ Bc (3.40)

tLδr 6 hb +M(1− zrb) ∀r ∈ RLc, b ∈ Bc (3.41)
tLδr > hb −M(1− zrb) ∀r ∈ RLc, b ∈ Bc (3.42)
tLαr 6 hb +H +M(1− zrb) ∀r ∈ RLc, b ∈ Bc, (3.43)
tLαr > hb +H −M(1− zrb) ∀r ∈ RLc, b ∈ Bc, (3.44)
uDAAr 6 tlδr − σs +M(1− zrb) ∀r ∈ RAB , b ∈ Bc (3.45)
uDAAr > tlδr − σs −M(1− zrb) ∀r ∈ RAB , b ∈ Bc (3.46)
ePABr 6 tlαr + σs +M(1− zrb) ∀r ∈ RAB , b ∈ Bc (3.47)
ePABr > tlαr + σs −M(1− zrb) ∀r ∈ RAB , b ∈ Bc (3.48)
uDBBr 6 tlδr − σs +M(1− zrb) ∀r ∈ RBA, b ∈ Bc (3.49)
uDBBr > tlδr − σs −M(1− zrb) ∀r ∈ RBA, b ∈ Bc (3.50)
ePBAr 6 tlαr + σs +M(1− zrb) ∀r ∈ RBA, b ∈ Bc (3.51)
ePBAr > tlαr + σs −M(1− zrb) ∀r ∈ RBA, b ∈ Bc (3.52)
zr0 = 1 ∀r ∈ R \Rlc (3.53)
tlδr = tlαr = 0 ∀r ∈ R \Rlc (3.54)
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Constraints (3.38) state that all requests that are supposed to travel over the LH have to be
scheduled on a LH. Constraints (4.27) determine if a LH is in use and therefore if it generates
costs or not. Constraints (3.40) is the capacity constraint for the LH vehicles. Constraints (4.29)
to (3.52) state that for each request that departs with the LH vehicle, the departure and arrival
times are set. The LH departure and arrival times also correspond to the time windows for
pickup and drop-off of requests at the stations (after considering service time σs). Constraints
(4.31) and (4.32) leave no decision variable undefined for cross-city requests, which do not need
to travel over the LH connection.

The constraints for the LH are not the same as the long-haul assignment model in Section
3.3.1; they serve different purposes. The long-haul assignment as part of the solution algorithm
is specifically designed to generate solutions in which all requests are transported by the LH,
without taking the SH routing into account, whereas above constrains for the LH are part of the
complete model.
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3.6.2 Visualization of exemplary instances

(a)

(b)

Figure 3.10: Solution of instance 1 with PI, with (3.10a) LH300 or (3.10b) LH30. Instance 1 has
10 requests, no time windows, and no cross-city requests. Requests are numbered from 1 to 10,
each with a pickup node ‘P’ and a delivery node ‘D’. Pickups are always serviced before deliveries
of the same request.
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(a)

(b)

Figure 3.11: Solution of instance 20 with EPI, with (3.11a) LH300 or (3.11b) LH30. Instance
20 has 20 requests, time windows, and a cross-city share of 50%. Requests are numbered from 1
to 20, each with a pickup node ‘P’ and a delivery node ‘D’. Pickups are always serviced before
deliveries of the same request.
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(a)

(b)

Figure 3.12: SH solution in Graz of instance 1 of the inter-library loan system with PI, using a
LH via (3.12a) train or (3.12b) truck. The different schedule results in a different SH routing
when switching from a LH via train to truck. Although the instances are composed of real travel
times, this figure is a simplified depiction and does not include real travel paths (only direct
connections).
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3.6.3 Sensitivity analysis of SH improvements with more LH flexibility
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Figure 3.13: SH improvement with different LH capacity constraints for various LH frequency
comparisons. The y-axis shows SH improvements up to 22 percent (∆ SH), the x-axis indicates
the available LH capacity as a percentage of the total demand (q’), ranging from 25% to 100%.
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3.6.4 Parameter settings

Instance LH sol. Pool VND tries n m ϕw

C10 30 105 6 4 0.8
C11 30 105 6 4 0.8
C12 30 105 5 3 0.7
C20 30 104 5 3 0.4
C25 30 104 6 4 1
R6 30 105 6 4 0.8
R7 30 105 6 4 0.8
R8 30 105 6 4 0.8
R9 30 105 6 4 0.8
R10 30 105 6 4 0.8
R11 30 104 5 3 1
R12 30 105 6 4 0.8
R15 30 105 6 4 0.8
R20 30 105 6 4 0.8
R25 30 105 6 4 0.8
R40 30 106 7 4 0.2
RC6 30 105 6 4 0.8
RC7 30 105 6 4 0.8
RC8 30 105 6 4 0.8
RC9 30 105 6 4 0.8
RC10 30 105 6 4 0.8
RC11 30 105 6 4 0.8
RC12 30 105 6 4 0.8
RC15 30 105 6 4 0.8
RC20 30 105 6 4 0.8
RC25 30 104 5 3 0.2
RC40 30 - 7 4 0.8
RC50 30 105 5 3 0.2

Table 3.10: Individual parameters for the results provided in Table 3.5. The table includes
the number of solutions in the pool after the LH assignment (LH sol. pool), the number of
unsuccessful iterations after which the VND terminates (VND tries), the number of look-ahead
steps n, the number of insertion decisions considered m, and the waiting time weight ϕw.
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3.6.5 Solution quality plots

(a) (b)

Figure 3.14: Solution quality plots for instance R15 (3.14a) and R20 (3.14b) for different numbers
of insertion decisions m, look-ahead steps n, and waiting time weight ϕw. Each block corresponds
to the objective value obtained by explicit combinations of m, n and ϕw. The blocks are color
coded and range from green (optimal solution found) over yellow and red (solution gets worse)
to grey (no feasible solution found). For n = 6 and n = 7, the number of decisions changed to
m = {3, ..., 7}, and for n = 8, it changed to m = {3, ..., 6}. For instance R15, it was relatively easy
to obtain feasible solutions, and many parameter combinations lead to the optimal or very good
objective values. For instance R20, feasibility was much harder to reach, and most parameter
combinations lead to infeasible solutions.
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Abstract Sending and receiving parcels can be an inconvenience in both B2C and
C2C settings. To facilitate transportation providers to expand their product portfolio
with alternative concepts, we consider the pickup and delivery problem (PDP) with
alternative locations and overlapping time windows. The transportation requests
have to be served by a fleet of homogeneous capacitated vehicles. Each request may
have multiple roaming pickup locations throughout the day with non-overlapping
time windows (since the product cannot be in two places at once). Request may also
have multiple roaming delivery locations and additionally an alternative recipient
with its own set of roaming locations. As such, multiple persons in different locations
can be available simultaneously to accept a delivery. Additionally, recipients can use
24-hour locker boxes if they are located near their home.
We propose a solution approach based on a multi-start adaptive large neighborhood
search with problem specific operators to solve the pickup and delivery problem with
alternative locations. We compare our algorithm with similar problems from the
literature and examine in detail different scenarios based on real data provided by
an Austrian logistics provider. In particular, we explore the benefits of locker boxes,
roaming locations, alternative recipients, and mixed customer profiles with different
preferences concerning data sharing and convenience. We found that an increase
in flexibility and convenience for the customers translates into cost savings up to
almost 30% for the carriers.

4.1 Introduction and motivation
In a C2C (Customer to Customer) market consumers interact directly with each other without

a commercial player in the middle. Well-known online platforms such as eBay, Chraigslist or
Willhaben enable persons to sell no longer needed or self-made items to private buyers. eBay
alone almost doubled their gross merchandise volume in the last years to 95 billion U.S. dollars
(full year 2018) [49]. Willhaben is one of the biggest online platforms in Austria for (mainly) C2C
second-hand goods with a broad range of categories. The increasing popularity of smartphone
applications for C2C transactions, i.e. OfferUp, Vinted and Tradesy, greatly simplified the process
and enabled a further utilization increase. Additionally, the C2C market gains relevance due to

67
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the second-hand consumption movement [157] where environmentally conscious consumers try
to give goods a second life through repairs, repurposing, recycling or reusing instead of buying
new goods.

With the growth of the online C2C market comes an increase in transportation requirements.
Since a major motivation of online shopping is time savings and convenience [2, 137], we can
assume that at least a considerable part of C2C participants will opt for shipping instead of a
personal meeting for exchanging goods and money, even if both live in the same city. However,
opting for a transportation carrier brings its own inconveniences: Public post services or com-
mercial shipping companies are not very accommodating for private mail by enforcing personal
visits at pickup points or simply by maintaining rigid schedules and opening hours. Sender of
parcels have to make an appearance at their local post office within its opening hours. On the
other hand, missed deliveries for parcel receivers are a prevalent problem in the industry. The
cost of a missed delivery is more than just the last mile cost of a second delivery attempt. One
has to include the environmental impact and the frustration of the carrier and receiver alike.
Complaints take up customer service resources of the sender and the carrier, and a repetition
of missed deliveries result in the loss of customer loyalty, bad reviews and long-term losses of
potential new customers. Most current delivery options are not sufficiently accommodating for a
C2C setting.

However, some private companies already noticed the need for more convenience for pickup
and delivery problems (PDP) and implemented solutions accordingly: most big C2C platforms
have included shipping options. Some, like Willhaben (which collaborates with Veloce) or Tradesy
(which collaborates with USPS), took big steps towards convenience by offering a pickup option,
same-day delivery, customer chosen delivery time slots, or even packaging material. Others, like
OfferUp or Vinted, just act as an intermediary for standard shipping options.

Motivated by these real life challenges, we study a variant of the PDP in which both the seller
and the buyer can specify a daily itinerary of their whereabouts. An itinerary is a detailed plan
of places scheduled to visit during the day and the estimated time frame. The transportation
carrier can then choose between multiple locations and their corresponding time windows for
pickup and delivery of the parcel to minimize its transportation cost. It can be very expensive
for the transportation carrier, even infeasible, to allow a single customer-selected pickup and
delivery time window. However, by having multiple options spread throughout the day the
problem becomes both harder to solve and cheaper in terms of transportation cost. The option
of multiple locations counterbalances the restricted consolidation potential. However a direct
one-to-one PDP ensures that the transportation requests are delivered faster and immediately
without detours over a distribution center. To the best of our knowledge this problem, the pickup
and delivery problem with alternative locations (PDPAL), was not previously studied.

This work focuses on the PDPAL where we know the itineraries of both parties in advance
and optimize accordingly. While there is little doubt about the revenue potential of perceived
convenience in time-based parcel delivery [66], we assume that consumers are willing to share
their itineraries in exchange for the added benefits [52]. This is also supported by the fact that
companies like Fetchr (fetchr.us) use live GPS tracking to find the recipient of a parcel, while
Roadie (roadie.com) tries to estimate the whereabouts of recipients based on the GPS data
collected by their phone.

The PDP is a generalization of the vehicle routing problem (VRP) [48] where a set of vehicles
have to fulfill transportation requests that consist of a pickup location and a delivery location
with a precedence constraint. In the literature [14, 122], our problem is classified as a one-to-
one problem where the origin and destination of each request are coupled and, if not allowing
transshipments, have to be served by the same vehicle. Savelsbergh and Sol [146] introduce
the general PDP where each transportation request can be picked up and delivered to a set of
possible locations. The general variant seems to have been studied much less than its special
cases namely the PDP, dial-a-ride (on-demand transportation of people), or the VRP.
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The PDPAL includes characteristics of the VRP with roaming delivery locations (VRPRDL)
introduced by Reyes et al. [135] and Ozbaygin et al. [119] where a fleet of vehicles deliver
parcels to the trunk of cars, wherever they may be parked during the day. The pickups all take
place at the depot. Since the cars move around during the day and are never in two places at
once, their problem has non-overlapping time windows for all roaming locations. The VRPRDL
is similar to our problem, therefore we chose the work of Reyes et al. [135] and Ozbaygin et
al. [119] for comparison and evaluation of the efficiency of our algorithm. Both, Lombard et
al. [96] and Sampaio et al. [144] extended the VRPRDL by including stochastic travel times
(VRPRDL-S). Lombard et al. [96] propose a combined Monte-Carlo sampling method and
enhanced greedy randomized adaptive search procedure (GRASP) to solve this new problem
variant while Sampaio et al. [144] use a scenario-based sample average approximation to get a
heuristic solution. Ozbaygin and Savelsbergh [120] extended their original problem to include
the possibility that the formerly fixed customer itineraries can change on short notice.

The VRP with floating targets was studied by Gambella et al. [61] where the targets
(customers) move away from their home location during the day. Their problem models new
applications in drone routing and ridesharing where the customers move towards the vehicles
and all customers share a common destination. In this paper a dynamic variant is studied. It
is relevant to note that customers have no choice in the matter and their movement towards a
vehicle is part of the optimization. Both the customer and vehicle movement speed are randomly
generated. For the literature concerning moving-target traveling salesman problems, see [24, 76].

Minimizing the chance of missed deliveries is studied in different variations: Florio et al.
[57] used realistic availability profiles to optimize hit rates for finding customers at home. Local
pickup/delivery points like gas stations, supermarkets or parcel lockers are considered as well
[82, 102, 111, 151] either as a primary delivery location or only after delivery at home was
unsuccessful. Other attempts for more convenience have been made by including anticipatory
shipping [153], where customer behaviour is predicted and products shipped before they are
ordered, or drone delivery [128].

Our main contribution is extending the VRPRDL to include pickup and deliveries and both
non-overlapping and overlapping time windows. We provide an efficient algorithm to solve this
new problem: a multi-start adaptive large neighborhood search (MS-ALNS). The ALNS has
been developed foremost for a PDP [139] as well as successfully used for a wide variety of VRPs.
In particular [65, 67, 100, 113] applied it to various PDPs. In our computational study we
solve realistic instances based on data from an Austrian logistics provider in Vienna and are
competitive when comparing with previous work from Reyes et al. [135] and Ozbaygin et al. [119].
Furthermore, we provide detailed comparisons of different scenarios where various degrees of
flexibility are compared by including alternative recipients, roaming pickup and delivery locations,
or limited participation of customers in the system. Additionally, we study the relevance of locker
boxes and their cost savings potential. Locker boxes are unattended parcel delivery boxes, placed
in strategic locations by the service provider, where recipients can autonomously pick up their
parcel at their convenience.

The remainder of this paper is organized as follows: Section 4.2 provides a detailed problem
formulation and a mathematical model. Section 4.3 describes the solution algorithm. Section
4.4 shows the computational results of our algorithm. We provide numerical results of detailed
problem scenarios in Sections 4.4.1 and 4.4.2 and compare with the VRPRDL from the literature
in Sections 4.4.3 and 4.4.4. Section 7.5 concludes and adds final remarks.

4.2 Problem definition and formulations
For the PDPAL, we have a complete directed graph G = (N0, A) with N0 = 0, 1, ..., n where

node 0 corresponds to the depot and all other nodes correspond to either a potential pickup or a
potential delivery location. N is a set of nodes excluding the depot. Each node i has a service
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time σi and a quantity qi associated with it, which has a positive value for a pickup location and
a negative value for a delivery location. Furthermore, each node i has a time window associated
with it during which a visit is allowed. The time window for each node i opens at ai and closes
at bi. If a vehicle arrives before the opening of the time window, it has to wait. For each arc
(i, j) ∈ A a cost and a symmetrical travel time cij is given.

The PDPAL consists of a collection of transportation request R where an item or parcel has
to be transported from the seller (where it is picked up) to the buyer (where it is delivered).
Since the seller is a private person and has usually no commercial store or designated pickup
location, it is assumed that on the day of the pickup the parcel travels with the seller on his/her
itinerary. We also assume that the whereabouts of the seller are known in advance. Each place
the seller visits throughout the day corresponds to a pickup location. Time windows are given
for each pickup location indicating the time the package is available for pickup at each location.
Since the seller moves between locations throughout the day, we define those as roaming pickup
locations with non-overlapping time windows. The set of unique nodes NP

r includes all possible
pickup nodes for each request r.

The buyer moves around as well and has his/her own set of roaming delivery locations given
by ND

r . Additionally, each buyer has an alternative person available for receiving the parcel.
This alternative person has their own set of roaming delivery locations as well. Combining
both persons and adding 24-hour locker boxes, we obtain alternative delivery locations with
overlapping time windows. The set ND

r represents the union of all those locations. However,
the locker boxes are only a viable option and included if they are located less then five minutes
from the home location of the primary delivery recipient. Furthermore we assume that the locker
boxes have enough remaining capacity to serve as a delivery location for requests and they do
not generate additional cost since, in the case of Vienna, the locker box network is already build
and operating.

For each request, we therefore have roaming pickup locations, alternative delivery locations
and a fixed quantity. Figure 4.1 shows an example where request A has three (possible) pickup
locations and request B has three (possible) delivery locations. A choice has to be made which
of the alternative locations to include in the tour. The arrows depict the tour of the vehicle. For
request B, the nodes nearest to the depot are selected, however for request A a more distant
pickup node is selected due to time window restrictions (time windows are not depicted). Figure
4.2 shows an example for the time windows of a request with roaming pickups and alternative
deliveries. There are three possible delivery locations with overlapping time windows.

Figure 4.1: VRPTW with multiple pickup and delivery locations

All transportation requests have to be served by a fleet V = 1, 2, ..., v of homogeneous vehicles
that start and end their tour at the single depot. All vehicles have a maximum tour duration L
and have to return to the depot before the end of day E. For our instances, we assume a time
frame (depot opening hours) of a working day of 16.5 hours, starting at 5 a.m. and ending at 9:30
p.m., the smallest unit of time is one minute. The goal is to select exactly one of the pickup and
one of the delivery location possibilities for each request and to determine the node sequence for
all vehicles while minimizing travel time and while fulfilling time window and capacity constraints.
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Figure 4.2: Possible time windows for a request with roaming pickups and alternative deliveries

4.2.1 Mathematical problem formulation
In Table 4.1 the mathematical notation can be found. It is understood that each node i ∈ N

is uniquely assigned to a single request r ∈ R. Furthermore each node i is either a pickup or
delivery node:

NP
r ∩ND

r′ = ∅ ∀r, r′ ∈ R (4.1)

Parameter Description
V Set of vehicles
R Set of all requests
N Set of nodes
N0 N ∪ {0}, set of nodes including the depot
NP
r Set of possible pickup nodes for each request r

ND
r Set of possible delivery nodes for each request r

Q Capacity of vehicle
cij Travel time from node i to j
σi Service time of node i
L Maximum tour duration
E End of day and depot closing time
qi Quantity at node i, positive for pickup, negative for delivery
ai Opening of time window for node i
bi Closing of time window for node i

xijv

1, if vehicle v travels from node i to j,
0, otherwise.

ti Time of visit at node i
tPr Pickup time of request r
tDr Delivery time of request r
siv Load after visiting node i with vehicle v
tδv Departure time of vehicle v from the depot
tαv Arrival time of vehicle v at the depot

Table 4.1: Sets, parameters, and decision variables for the mathematical problem formulation

The objective is to minimize the travel time:

Minimize
∑
i∈N0

∑
j∈N0

∑
v∈V

cijxijv (4.2)
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The constraints are the following:∑
i∈N0

xijv −
∑
i∈N0

xjiv = 0 ∀j 6= i, j ∈ N, v ∈ V (4.3)

xiiv = 0 ∀i ∈ N, v ∈ V (4.4)∑
i∈N0

xi0v =
∑
j∈N0

x0jv = 1 ∀v ∈ V (4.5)

∑
i∈N0,i6=j

∑
v∈V

xijv 6 1 ∀j ∈ N (4.6)

ti + σi + cij 6 tj +M(1− xijv) ∀i ∈ N0, j ∈ N, v ∈ V (4.7)

ai
∑
v∈V

∑
j∈N0\i

xijv 6 ti 6 bi
∑
v∈V

∑
j∈N0\i

xijv ∀i ∈ N (4.8)

0 6 ti 6M
∑
j∈N0

xijv ∀i ∈ N, v ∈ V (4.9)

∑
i∈NP

r

∑
j∈N0\i

xijv =
∑
i∈ND

r

∑
j∈N0\i

xijv ∀r ∈ R, v ∈ V (4.10)

∑
i∈NP

r

∑
j∈N0\i

∑
v∈V

xijv =
∑
i∈ND

r

∑
j∈N0\i

∑
v∈V

xijv = 1 ∀r ∈ R (4.11)

tPr =
∑
i∈NP

r

ti ∀r ∈ R (4.12)

tDr =
∑
i∈ND

r

ti ∀r ∈ R (4.13)

tPr 6 tDr ∀r ∈ R (4.14)
sjv 6 siv + qj +M(1− xijv) ∀i, j ∈ N0, v ∈ V (4.15)
sjv > siv + qj −M(1− xijv) ∀i, j ∈ N0, v ∈ V (4.16)
0 6 siv 6 Q ∀i ∈ N, v ∈ V (4.17)
s0v = 0 ∀v ∈ V (4.18)
tδv + c0i 6 ti +M(1− x0iv) ∀i ∈ N, v ∈ V (4.19)
ti + σi + ci0 6 tαv +M(1− xi0v) ∀i ∈ N, v ∈ V (4.20)
0 6 tδv 6 tαv 6 E ∀v ∈ V (4.21)
tαv − tδv 6 L ∀v ∈ V (4.22)
tδv 6M(1− x00v) ∀v ∈ V (4.23)
tδv > −M(1− x00v) ∀v ∈ V (4.24)
tαv 6M(1− x00v) ∀v ∈ V (4.25)
tαv > −M(1− x00v) ∀v ∈ V (4.26)
xijv ∈ {0, 1} ∀i, j ∈ N0, v ∈ V (4.27)
0 6 ti 6 E ∀i ∈ N0 (4.28)
0 6 tPr 6 E ∀r ∈ R (4.29)
0 6 tDr 6 E ∀r ∈ R (4.30)
0 6 tδv 6 E ∀v ∈ V (4.31)
0 6 tαv 6 E ∀v ∈ V (4.32)
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Constraints (4.3) state that if vehicle v visits a node in a tour, it has to leave the node
again. Constraints (4.4) state that traveling between the same node i is forbidden (except the
depot because that would indicate an empty tour). Constraints (4.5) state that each vehicle tour
originates and terminates at the depot. Constraints (4.6) make sure that each node is visited at
most once. Constraints (4.7) state that if a vehicle v travels from i to j, the fulfillment times
at the nodes must be consecutive. Therefore, the fulfillment time tj at node j has to be greater
than or equal to the sum of the fulfillment time ti at node i, service time σi, and travel time cij
between the nodes. These constraints also eliminate subtours, because all tours begin and end
at the depot. Constraints (4.8) restrict the fulfillment times at the nodes to the time windows.
Constraints (4.9) restrict the fulfillment times at the nodes to be at least zero and at most zero
or a large number depending on whether the node i is visited. Constraints (4.10) and (4.11)
ensure that from all nodes i, from a set of pickup or delivery nodes belonging to a single request
r, exactly one is visited. They also ensure that the pickup and delivery is fulfilled by the same
vehicle by forcing, for each vehicle, the same number of arcs to leave the pickup nodes NP

r of
a request as well as arrive at the delivery nodes ND

r of the same request r. Constraints (4.12)
and (4.13) state that the pickup and delivery times tPr and tDr of request r have to be set to
the sum of the fulfillment times ti at all nodes i from the set NP

r or ND
r respectively. Since

it was ensured by Constraints (4.10) and (4.11) that exactly one pickup node and one delivery
node is visited for each request, and ensured by Constraints (4.9) that the times from not visited
nodes are set to zero, the sum of the fulfillment times of all nodes is the fulfillment time at the
visited request. Constraints (4.14) state that the pickup must be completed before the delivery
is possible. Constraints (4.15) to (4.18) are the loading restrictions for the vehicles. If we travel
from i to j with vehicle v, the load sjv before serving node j equals the load before servicing node
i plus the quantity qi of node i. This quantity can be negative if a delivery occurs. Constraints
(4.19) and (4.20) state that all arrival times tαv and departure times tδv at the depot have to be
consistent with traveling times and fulfillment times of the vehicles. Constraints (4.21) state that
the departure and arrival times at the depot have to be during the time span of the day, as well
as ensuring that each vehicles first departs and then arrives at the depot. Constraints (4.22) limit
the maximum vehicle tour duration. Constraints (4.23) to (4.26) state that if a tour is empty,
the departure time and arrival time at the depot are 0. Constraints (4.27) to (4.32) limit the
range of the decision variables.

4.3 Solution algorithm
For our solution algorithm we decompose the problem in two sub-problems: a request to

vehicle assignment and a single vehicle routing which define the specific pickup and delivery
locations as well as the visiting order. Specifically, to solve the PDPAL, three decisions have to
be made:

• Select exactly one pickup and one delivery location for each request

• Assign requests to vehicles

• Determine the sequence in which the vehicles visit the nodes

The request-to-vehicle assignment is determined by our metaheuristic algorithm: a multi-start
adaptive large neighborhood search (MS-ALNS). The pickup and delivery locations and the node
sequence are determined by a separate algorithm that is responsible for the routing. It is based
on a farthest insertion and a local search procedure. All parameters used for the algorithm can
be found in Table 4.9 in the Appendix. The algorithm terminates after a runtime limit is reached.
The runtime depends on the instance size so that larger instances have a longer runtime.



74 Chapter 4. The pickup and delivery problem with alternative locations

4.3.1 Construction heuristic
For a multi-start approach, we create a pool of size |P | of different initial solutions. A larger

solution pool means a higher diversification in the starting points for the metaheuristic which can
be advantageous. On the other hand, this advantage is balanced out when considering a limited
runtime where not every solution might be selected for improvement. Therefore, we select a
value as big as possible to allow for as much diversification as possible, and as small as necessary
to ensure that each solution can be selected for improvement. We use a simple construction
heuristic where each request has a probability between ρmin and ρmax to be assigned to a random
vehicle. Otherwise they are assigned to a separate vehicle. This leads to a randomized grouping
of requests which proved quite successful in combination with a multi-start approach. It is also
possible, that requests are grouped which can not feasibly served together due to time window
or route length constraints. In this case, the solution is discarded and the construction heuristic
is applied again. When all requests are assigned to vehicles, the routing heuristic (see Section
4.3.4) is used to determine the pickup and delivery locations, the node sequence, and the travel
time and consequent costs.

4.3.2 Multi-start Adaptive Large Neighborhood Search (MS-ALNS)

Algorithm 1 Multi-start Adaptive Large Neighborhood Search (MS-ALNS)
1: s′′ . Best found solution
2: procedure MS-ALNS
3: while solution pool is not filled do
4: create feasible initial solutions
5: while time limit not reached do
6: apply a roulette wheel selection for choosing the next incumbent solution s
7: improve the solution s with ALNS

Algorithm 1 gives an overview of the MS-ALNS. First, a solution s is chosen from the
solution pool using a roulette wheel selection [7] where better solutions have a higher probability
in proportion to their fitness of being chosen. For a minimization problem, a better fitness means
a smaller objective function value (OFV). This solution s is then improved with an ALNS that
is described in detail in Algorithm 2.

At the start of the algorithm the variable c is initialized to 0, a counter to keep track of
how many iterations have passed where no improvement was found. If c reaches cL the ALNS
is terminated, the modified solution s′ returned to the pool, replacing the solution s, and a new
solution is selected for improvement. Alternatively, the algorithm also stops, if the runtime limit
is reached.

Also, the variable w is initialized to 1, the threshold for accepting a worse solution in relation
to the starting solution s. This helps to avoid getting stuck in a local optima by allowing us to
escape it when we can no longer find improvements. The standard values for the parameters cw,
cγmax and wmax can be found in Table 4.9 in the Appendix, where cw is the number of iterations
without improvement after which the threshold w is increased by w′ until at most wmax. A new
solution is accepted as the new incumbent solution if its OFV is smaller than the OFV of s times
w. So, for w = 1 no worse solution is accepted and for w = 1.2 a solution is accepted if it is
less than 20 percent worse than s. cγmax

is the number of iterations without improvement after
which the solution destroy percentage γmax is doubled, to the end that a local optima might be
escaped.

A copy s′ of s is made as an incumbent solution to be modified. A destroy and repair operator
is applied. If the modified solution s′ is feasible and better than the previously found best solution
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Algorithm 2 Adaptive Large Neighborhood Search (ALNS)
1: c← 0 . counter for iterations without improvement
2: cw ← 0.5 ∗ cL . after how many iterations without improvement a worse solution is

accepted
3: wmax ← 1.5 . how much worse the incumbent solution is allowed to be in relation

to s
4: w ← 1 . Initialize w, the threshold for allowing worse solutions
5: w′ ← 0.05 . by how much w changes if no solution could be found
6: γmax ← 0.4 . Initialize γmax, the upper destroy limit for a solution
7: cγmax ← 0.75 ∗ cL . after how many iterations without improvement the destroy

limit is changed
8: while c < cL do
9: c← c+ 1

10: create new incumbent solution s′ ← s
11: destroy s′ by selecting destroy operator
12: repair s′ by selecting repair operator
13: if s′ is feasible and OFV s′ < s′′ then
14: s′′ ← s′

15: s← s′

16: w ← 1
17: c← 0
18: reset γmax to original value
19: update probabilities for destroy and repair operators
20: else if s′ is feasible and OFV s′ < s ∗ w then
21: s← s′

22: else if s′ > s ∗ w or infeasible then
23: s′ ← s . s′ is discarded
24: if c > cw and w < wmax then
25: w ← w + w′

26: if c > cγmax then
27: γmax ← 2 ∗ γmax
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s′′, the best solution s′′ is replaced by s′, s is replaced by s′, the parameters w and c are reset,
and the probabilities for choosing destroy and repair operators are updated. In all other cases, c
is increased by one to keep track of the number of iterations without improvement.

If the modified solution s′ is feasible, worse than the best solution s′′ but better than s, s is
replaced by the modified solution s′. If s′ is feasible but worse than s, it depends on the value of
w if we take it as the new incumbent solution. If the modified solution s′ is infeasible or worse
than the threshold set by w, s′ is discarded and replaced by s.

At the end of each iteration we check if c > cw and w < wmax, that is we check if the number
of iterations without improvement has exceeded a certain threshold and if the multiplier, that
determines the maximum OFV of an accepted solution, has not yet reached its maximum. If this
is the case we increase the multiplier to accept even worse solutions. Additionally, we check if
c > cγmax

, that is if the number of iterations without improvement has exceeded an even higher
threshold. If this is the case we double the allowed solution destroy percentage. Both, accepting
a worse solution and increasing the amount of the solution to be destroyed, helps us to escape
from a local optima.

4.3.3 Destroy and repair operators
The ALNS uses three destroy and six repair operators. Each destroy operator removes between

γmin and γmax percent of the solution, i.e. requests-to-vehicles assignments. Simultaneously,
the pickup and delivery nodes are removed from the vehicle tours while leaving the rest of the
node sequence unchanged. This is necessary because we need to be able to evaluate additional
request removals from the same vehicle tours. The method of removal is identical for all destroy
operators, they are only distinguished by their selection of which requests to remove.

The destroy greedy requests operator calculates the reduction in tour length when removing
a request from their respective tour. Since we always remove two nodes, a pickup node and a
delivery node, we adapted the standard savings calculation by Clarke and Wright [26] and the
reduction in tour length will henceforth be termed ‘savings’ value as well. If the delivery node is
visited right after the pickup node, the savings sp,d for removing the pickup node p and delivery
node d is calculated as follows:

sp,d = cp−1,p + cp,d + cd,d+1 − cp−1,d+1 (4.33)

with cij denoting the cost and travel time between two nodes. If there are other nodes between
the pickup node p and the delivery node d, the savings is calculated as follows:

sp,d = cp−1,p + cp,p+1 + cd−1,d + cd,d+1 − cp−1,p+1 − cd−1,d+1 (4.34)

We use a roulette wheel selection for choosing which request to remove from the solution with
bigger savings having a proportionally bigger chance for selection.

The destroy random requests operator chooses the requests to remove randomly, as does the
destroy random vehicles operator. The difference is, that the former picks single requests from
all vehicles, and the latter picks random vehicles and removes all requests within those vehicles.
We did not use a roulette wheel selection for selecting the vehicles to destroy, since vehicles
with a high cost are not necessarily bad. On the contrary, high cost vehicles usually serve many
requests and this is not something that needs to be discouraged. Neither can we make universal
statements about low cost vehicles, therefore we opted for randomness.

The repair cheapest insertion operator calculates the insertion cost of each request for each
vehicle. The insertion cost are the minimum additional cost that arise when serving an additional
request. For determining the insertion cost of a request into a specific vehicle, we try all possible
pickup and delivery positions. The best position with the smallest cost is selected. We use the
same calculation as Dragomir and Doerner [42] with the weights ϕc of one for the travel time
and ϕw of 0.2 to account for waiting time. To allow for some variability we randomly choose
between the best three vehicles.
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The repair request compatibility pairs and repair request compatibility triple operators assign
a request to a vehicle based on a compatibility measure. The compatibility measure tries to
indicate how well a pair/triple of requests fit together when being served by the same vehicle.
The calculation is based on the travel times and time windows and is calculated as follows: For
each pair of requests, r1 and r2, a single compatibility indicator is calculated. This is done only
once as a preprocessing step and the values are stored in a two dimensional matrix for all request
pairs (three dimensions for request triples). We look how ‘compatible’ all pickup and delivery
locations of r1 are to all locations (pickup and delivery) of r2. The compatibility of a pickup
(delivery) location to all other pickup (delivery) locations of the same request are not relevant
since both locations will never be visited simultaneously.

The compatibility κ of r1 and r2 is therefore

κr1r2 =
∑

p1∈NP
r1

∑
p2∈NP

r2

max(|bp1 − ap2 − cp1p2 |, |bp2 − ap1 − cp1p2 |)

+
∑

p1∈NP
r1

∑
d2∈ND

r2

max(|bp1 − ad2 − cp1d2 |, |bd2 − ap1 − cp1d2 |)

+
∑

d1∈ND
r1

∑
p2∈NP

r2

max(|bd1 − ap2 − cd1p2 |, |bp2 − ad1 − cd1p2 |)

+
∑

d1∈ND
r1

∑
d2∈ND

r2

max(|bd1 − ad2 − cd1d2 |, |bd2 − ad1 − cd1d2 |) (4.35)

with NP
r and ND

r as the sets of alternative pickup and delivery locations of request r, cij as the
travel times between locations i and j, ai and bi as the begin and end time windows for location
i. Request pairs have a higher compatibility if the travel time between them and their time
windows make a visit easily feasible. For the triples we calculate all pairs separately and take
the average.

For assigning a request to a vehicle we calculate the most promising feasible vehicle using
the compatibility measure. The vehicle compatibility is the average of all compatibilities of
already-assigned requests to be served by that vehicle and the request in question. It is important
to take the average because vehicles that serve more requests would otherwise have a higher
compatibility, no matter how high the values actually are. Of all possible feasible vehicles, the
selection is made by a weighted roulette mechanism, prioritizing the vehicles with the highest
compatibility.

For the repair location compatibility pairs and repair location compatibility triple the same
calculation is used. However the compatibilities over the pickup and delivery locations of the
requests are not summed up, but rather the maximum is used. By using the maximum we can
identify if request pairs (triples) fit together well if certain locations are selected even if the other
locations do not seem promising.

The repair request randomly operator inserts a request in a random non-empty vehicle, if it
can be feasible inserted. The feasibility is verified by quickly calculating the insertion cost and
ensuring that no constraints are violated (capacity, time windows, tour length). If an insertion is
not feasible, any other non-empty vehicle is selected. If no insertion is feasible in any non-empty
vehicle, it is inserted alone in an empty vehicle.

After destroying and repairing the request-to-vehicle assignment and calculating the routing
(see description in Section 4.3.4) we can determine if the solution was improved by the changes. If
this is the case, we update the probabilities of selecting those specific destroy and repair operators.
At the beginning of the algorithm, all operators have equal probabilities to be selected. For each
operator we count the number of successful applications of that specific operator so. We also
count how often the solution was improved with all operators ss. The probability po to select a
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specific operator o is calculated as

po = so
ss

(4.36)

4.3.4 Routing algorithm
The node sequence is determined for each vehicle separately and all vehicles start empty. For

the tour construction we use a modified farthest insertion heuristic with a roulette wheel selection
that considers all possible locations and has a penalty for waiting time. The constructed tour is
improved by local search using move and swap operators embedded in a variable neighborhood
descent (VND)[106] framework. Since the routing calculation is quite fast but stochastic, we
calculate it multiple (five) times to guarantee a good solution.

For our construction heuristic, we need to calculate the insertions for each request. An
insertion is defined by a request and a vehicle, a determined pickup location, a determined
delivery location, the places of those locations within the (already existing) node sequence, and
cost. The insertion calculation is identical to the savings Eq. (4.33) and (4.34) and it guarantees
that all constraints are satisfied (time windows, maximum tour length, depot opening hours,
vehicle capacity). A separate insertion is created for each pickup/delivery location combination
and for each place in the node sequence. From this list, we first select one insertion for each
request, namely the one with the smallest cost. Ties are broken randomly. All other insertions are
discarded. From the remaining insertions one is picked by a roulette wheel selection prioritizing
the highest cost. The request is inserted into the vehicle, the insertions recalculated and the
process begins anew until all request are inserted into all vehicles. A small example with two
requests can be found in Figure 4.3 and its subfigures.

For improvement, the VND utilizes neighborhoods that are applied in order of complexity.
Each neighborhood is performed until no further improvement can be found for θ iterations and
a local optimum is reached. To escape from this local optimum, the algorithm moves to the
next neighborhood. As soon as a new solution is found, the algorithm restarts and returns to
the first neighborhood since it’s the least complex and ‘cheapest’ in terms of computation time.
If no more improvements can be found for θ iterations for all neighborhoods, the algorithm is
terminated. The consequent solution is a local optimum for all neighborhoods applied [159]. For
our VND we use two neighborhoods.

The move neighborhood picks a random request, removes it from its original tour, and inserts
it into the best possible position (in terms of node sequence) of any other vehicle (including its
former vehicle). The goal is to reduce the distance. For determination of the distance reduction
we compare the savings value when removing a request (see Eq. (4.33) and (4.34)) to the insertion
cost in the new vehicle and/or the new position of the nodes. If a better vehicle and/or position
can be found, the request is moved, otherwise it remains in its current vehicle and its current
position.

The swap neighborhood picks two random requests from separate vehicles and swaps the
vehicle assignment of the requests. The requests are first removed from their original tour
and reinserted in the tour of the other request respectively. Only the best position within the
node sequence is considered when inserting a request, no matter the position of the original
request. The cost savings when removing and reinserting both requests are determined while
both insertions have to be feasible. If the total cost is smaller, the swap counts as a success and
is saved. Otherwise the changes are discarded.

4.4 Computational results
Our computational results section is structured as follows: in Section 4.4.1 a description of

our own instances and the created scenarios can be found. Section 4.4.2 reports the results of
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(a) (b)

(c) (d)

Figure 4.3: Depiction of farthest insertion. Figure 4.3a shows two requests ‘A’ and ‘B’ with two
pickup and two delivery locations each. Not depicted is the insertion calculation that determines
the cost for each pickup and delivery location combination for each request. Figure 4.3b shows
how exactly one insertion is selected for each request, namely the one with the smallest cost.
Choosing from the remaining (in this example two) insertions, Figure 4.3c shows the selection of
the farthest insertion, request ‘A’. Here, the insertions are recalculated. For the only remaining
request ‘B’ the same nodes are selected, however the placement of the nodes within the sequence
are different, since the tour already serves a request. Figure 4.3d show the selection of the
next-farthest (and last) insertion, request ‘B’, and its placement in the tour.

those scenarios. To evaluate the quality of our solution algorithm, we provide numerical results
and compare to Reyes et al. [135] in Section 4.4.3 and to Ozbaygin et al. [119] in Section 4.4.4.

All computational experiments are performed on a desktop computer with an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz processor (4 cores) and 8 GB RAM running on Windows 10.

4.4.1 Instance and scenario descriptions
Locations and distances

For our self generated instances, we had access to Viennese delivery data from 2017 from
an Austrian logistics provider. We put a grid over the city and adjusted its coarseness until
around 700 locations remained, so that each grid square contained exactly one location. Those
were classified into ‘home’, ‘work’, and ‘other’ roaming locations, depending on their nature.
‘Home’ and ‘work’ are self-explanatory, however an ‘other’ roaming location was defined as a
place where people typically and regularly spend a block of their time (fitness center, library or
other educational institutions, pub/restaurants). A location can have multiple classifications, for
example a university is both ‘work’ for its employees and ‘other’ for its students and a multistory
apartment building with a fitness studio and several medical practices have all three classifications.
Additionally, we have around 100 locations for the 24-hour locker box stations belonging to the
Austrian Post in Vienna (with a separate classification ‘postal locker box’). From these 799
locations (including the depot), the actual travel time matrix was created using Open Street
Map [118]. A real-life travel time matrix is neither symmetric nor does it fulfill the triangular
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inequality. Therefore, we symmetrized it and then determined the shortest path for all arcs to
fulfill the triangular inequality by using the Floyd-Warshall Algorithm [58]. All travel times are
given in minutes.

Customers and requests
Each request consists of a seller (sender), a buyer (receiver) of a parcel and a random

generated quantity between one and five. We created 17 different customer profiles: six profiles
representing full-time employment, eight profiles representing part-time employment, and three
profiles representing unemployment (including pensioners) where each profile is given as a daily
itinerary of the whereabouts of a customer. Therefore all scheduled visits to different locations
during the day are known. The detailed profiles can be found in Table 4.7 in the Appendix. The
profiles have on average 3.1 locations, ranging from one to five. There are always 30 minutes
between locations to account for unavailability while the customer moves between places. For
Vienna, the statistical probability to be employed is 65 percent. If one is employed, there is a
71.4 percent chance for full-time employment [155]. Additionally, each person has a probability
of living and working in a certain sector in Vienna. The probabilities can be found in Table 4.8 in
the Appendix. Based on this data each customer was created by selecting the employment type
based on the probabilities mentioned above, then selecting a random profile of this employment
type. Additionally, the home location, work location and up to two ‘other’ roaming locations
were selected based on the probabilities in Table 4.8 (‘other’ roaming locations have an equal
probability for each sector). After selecting the sector for each type of node, the actual location
was selected randomly out of all locations in that particular sector. For each request we need
to create 3 customers: one seller (pickup), one buyer (delivery) and one alternative person
(alternative delivery recipient). Additionally, the buyers have the possibility to get their parcel
delivered to a 24-hour locker box if one is located within five minutes of their home location.

Instances types
We created 19 different types (scenarios) of the same instance where the customer profiles,

all relevant locations and the travel time matrix are identical for all types. The home location
and itineraries of all customers are exactly the same among the types even if one type includes
deliveries to roaming or alternative locations and the other type doesn’t. Therefore we made
a comparison possible to determine the usefulness of roaming locations, alternative persons or
locker boxes. Table 4.2 gives an overview for all types and a detailed description. All instances
are provided online at https://bda.univie.ac.at/research/data-and-instances/vehicle-
routing-problems/.

4.4.2 Scenario comparisons
We created 10 sets of each type in three different sizes: 30 requests, 50 requests and 100

requests (570 instances in total). Table 4.3 shows the average objective function values (OFV)
for each scenario type over all 10 sets. The scenarios in the table are sorted by complexity (less
flexibility on top, more flexibility on the bottom) and the color gradient already gives a good
impression about the usefulness of more complexity. To examine the scenarios in more detail
we provide explicit comparisons in Table 4.4. Explicit results of all instances are provided as
complementary material and can be found at https://bda.univie.ac.at/research/data-and-
instances/vehicle-routing-problems/

Comparison of ‘traditional’ systems to ‘full flexibility’.
First, we compare the possible cost benefits when switching from a more ‘traditional’ system

to one with full flexibility. A ‘traditional’ system is one where only home delivery is considered,

https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/
https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/
https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/
https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/
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Type Description

H Customers are assumed to be available at home all day. Both
pickup and delivery locations are the home locations. No time
windows.

H+TW Only home pickup/delivery within the customer specified time
windows. Option with highest convenience.

H+TW+LB Home pickup/delivery only within the customer specified time
windows. Additionally, delivery to a nearby 24-hour locker
box is possible.

RP+RD(%) Roaming pickup locations and roaming delivery locations for
(%) of requests. Pickup/delivery locations and time windows
are based on the customer itineraries. All other requests
can only be served at home within the TW specified (like
‘H+TW’).

RP+RD+LB(%) Identical to RP+RD(%). Additionally, 24-hour locker boxes
are available for all requests.

RP+RD+AL(%) Identical to RP+RD(%). Additionally, each buyer (delivery
customer) has an additional alternative person to whom can
be delivered instead. This person has its own itinerary.

RP+RD+AL+LB(%) Identical to RP+RD+AL(%). Additionally, 24-hour locker
boxes are available for all requests (including the ones that
can only be served at home).

Table 4.2: Description of all instance types. Types containing a ‘%’ are created in four variants:
25%, 50%, 75% and 100%.
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30 req. 50 req. 100 req. Avg.

H+TW 628 954 1723 1102
H+TW+LB 592 911 1620 1041
H 543 843 1484 957
RP+RD(25) 609 944 1697 1083
RP+RD(50) 582 923 1672 1059
RP+RD(75) 558 908 1640 1035
RP+RD(100) 545 865 1598 1003
RP+RD+LB(25) 583 888 1620 1031
RP+RD+LB(50) 565 872 1598 1011
RP+RD+LB(75) 539 872 1565 992
RP+RD+LB(100) 541 859 1540 980
RP+RD+AL(25) 514 819 1453 929
RP+RD+AL(50) 502 815 1437 918
RP+RD+AL(75) 486 797 1438 907
RP+RD+AL(100) 498 753 1428 893
RP+RD+AL+LB(25) 496 809 1416 907
RP+RD+AL+LB(50) 490 795 1412 899
RP+RD+AL+LB(75) 487 791 1401 893
RP+RD+AL+LB(100) 485 776 1410 890

Table 4.3: Average OFV over 10 sets of 19 different scenarios rounded commercially to the
nearest integer (rounded down until including .4, rounded up from including .5). The column
‘Avg.’ is the average value over all instance sizes for a scenario. For a detailed description of the
scenarios see Table 4.2. The scenarios are sorted from lowest to highest flexibility. Low flexibility
types include only the home locations (with and without time windows or locker boxes). Middle
flexibility types include a roaming option and high flexibility types include an alternative persons.
The color gradient depicts the relation of a OFV in relation to the other OFV within the same
column and ranges from ‘red’ (high OFV, worse solution) to ‘green’ (low OFV, good solution).
The results were obtained with a runtime multiplier mu = 1 where the runtime is the number of
requests in seconds.
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either the whole day without time windows (H) or only within the time windows specified
(H+TW). We also include the possibility to deliver to a nearby locker box (H+TW+LB) in
our definition of ‘traditional’ systems. All those options are similar to what the Austrian Post
and other transportation carriers already have implemented. ‘Full flexibility’ is our version of
including a roaming pickup possibility, roaming deliveries, and locker boxes for all requests.
H+TW is of course the option with the highest restrictions for the transportation carrier. When
compared to ‘full flexibility’ we obtain savings of up to almost 30% for the scenarios with 30
requests. For bigger scenarios the numbers are slightly smaller, however an average over all
scenarios of 23.7% cost savings remains. When including the locker boxes (H+TW+LB) the
potential savings diminish slightly by 6-7%. When comparing the all-day home delivery scenario
(H) with ‘full flexibility’ the savings are slightly less with 7.4% on average over all scenarios.
In general we can be confident with the results and the potential real life benefits of a similar
system.

The relevance of locker boxes
Locker boxes are postal boxes used by the Austrian postal service. A delivery to a locker

box can simply be managed by having it as the delivery address on the package. Recipients get
an electronic notification when the parcel arrived and can pick it up around the clock (with a
personalized code submitted simultaneously with the notification). Although in practice recipients
can select any locker box of their choice, we included them only as an option if one was located
within 5 minutes of their home location. Looking at the computational results, we observe
that including locker boxes do provide cost savings in comparison to the option without locker
boxes. However, the savings diminish the more flexible the basic problem is. For the option with
home delivery within customer specified time windows (H+TW), adding locker boxes provide
up to 6.4% cost savings (with an average of 5.8%), while adding the option to roaming pickup
and roaming deliveries (RP+RD) the benefits amount up to 4.5% (with an average of 4.2%).
When considering alternative persons (RP+RD+AL), adding locker boxes improves the solution
only slightly with benefits up to 2.1% and 1.6% on average. Note, that for RP+RD(+LB) and
RP+RD+AL(+LB) the percentages in the table are calculated by comparing the averages over
all instance types (25/57/75/100%).

The relevance of an alternative recipient
An alternative recipient is defined as a separate person with his or her own home location,

itinerary and roaming delivery locations. Alternative persons can only be included for the delivery
of a parcel, never for a pickup, since the goods cannot be simultaneously in two places at once.
If an alternative person is included, all his or her roaming locations are included as potential
delivery options. However, alternative persons never have a locker box assigned, because we fear
that the motivation to pick up a parcel that does not concern them directly is low and prone to be
forgotten. Therefore, for instances including both alternative persons and locker boxes, only the
primary recipient might have a locker box. When including alternative persons as an option for
delivery, the solutions are on average 14.7% better. If both locker boxes and alternative persons
are included, the benefit of having an additional person diminishes somewhat and the results
are on average only 11.8% better than when not including their additional locations. Also, the
improvements prove quite stable across different instance sizes.

The relevance of roaming pickup and delivery locations
Reyes et al. [135] report cost savings up to 40% for their realistic instances with a depot in the

southern part of the city. They also report, that the most benefits can be achieved in cities with a
small number of work locations clustered together and dispersed residential locations. In Vienna,
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where our instances are based, the population density is highest in the more central districts (see
the Figure 4.4 in the Appendix), while the workplaces are scattered throughout the city. It is
therefore not surprising that our cost savings are not nearly as high, even though the depot of
the Austrian logistics provider is located in the southern outskirts of the city. Another possibility
is, that cost savings are diminished when addressing a PDP instead of a VRP. Comparing the
scenario of roaming locations (RP+RD) with the scenario of only home delivery within the time
windows (H+TW), including roaming locations leads to improvements up to 15.2% and 9.8% on
average over all instance sizes. When making the same comparison including locker boxes, the
advantage is smaller with 6.3% on average and 9.4% at most. Nonetheless, even in a mixed city
like Vienna, the potential cost improvements are obviously present and can be highly relevant
when considering real world scenarios.

The relevance of partial inclusion of flexible requests
The assumption that all sender and receiver of parcels are willing to share their itinerary is not

prudent. No matter how high the convenience, it is necessary to take mixed customer profiles into
account where both data-sharing customers and data-withholding customers have to be served.
Therefore, we also test if only a certain percentage of all requests allow data sharing, roaming
locations, or alternative persons. The percentages used are 25, 50, 75 or 100% and are given in
parentheses for each instance type. Our results show, that even when only 25% of customers
participate in the more convenient system, the potential cost savings for the transportation carrier
are up to 14.1% with an average of 11.6% over all instance sizes. When including more and
more customers, both the average and the maximum cost savings are continuously growing. The
maximum savings range from 14.1% to 21.5% and the average savings range from 11.6% to 17%.
The smallest gap can be found for values between 75% and 100% which indicates that it might
not be necessary for all customers to participate in the system for the carrier to reap the cost
benefits.

4.4.3 Comparison with Reyes et al. [135]
We compare our work to Reyes et al. [135] since their paper on vehicle routing with roaming

delivery locations (VRPRDL) is a special case of our problem. For the VRPRDL, the pickups all
take place at the depot and the time windows of the delivery locations are not overlapping. They
examine the potential of trunk deliveries where delivery personnel have a one-time permission
to open a customers car trunk to deliver the parcel. This concept is built on the premise that
cars spend most of their day parked somewhere while the owner is at work, shopping, or at home.
They generated 40 ‘general’ instances with the number of customers ranging from 15 to 120.
Each customer has up to six roaming delivery locations, with the first always being the home
location. In addition to the location coordinates, they provide a travel time matrix that are
not the Euclidean distances between the coordinates. They provide multiple sets of instances,
however for our comparison we choose the ones where the triangle inequality is fulfilled. The
OFVs of Reyes et al. [135] were obtained from their paper, Table 2, cheur.

The results are presented in Table 4.5. We compare the OFVs obtained by Reyes et al. [135]
‘OFVReyes’ with the values obtained by our algorithm ‘OFV’. The value of ∆R is the difference
between our results and their heuristic and is calculated by OFV−OFVReyes

OFVReyes
.

The table is divided in two parts. The first part shows the runtime needed to surpasses the
results reported by Reyes et al. [135]. If we terminate our algorithm as soon as we reach the
objective function value OFVReyes, the solutions found are on average -0.9% better (smaller)
with a minimum improvement of -8.9% and a median improvement of -0.2%. The runtime is at
least 0.9 seconds and up to 5160 seconds (slightly less than 90 minutes), with an average of 272
seconds (around 4.5 minutes), and a median of 28 seconds. Since Reyes et al. [135] do not report
their runtimes (only an iteration limit is reported), a more precise comparison is not possible.
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30 req. 50 req. 100 req. Avg.

Comparison to ‘traditional’ systems

H+TW vs Full Flexibility 29.6% 22.9% 22.2% 23.7%
H+TW+LB vs Full Flexibility 22.1% 17.4% 14.9% 16.9%
H vs Full Flexibility 12.1% 8.6% 5.2% 7.4%

The relevance of locker boxes

H+TW vs H+TW+LB 6.2% 4.7% 6.4% 5.8%
Avg RP+RD vs Avg RP+RD+LB 3.0% 4.3% 4.5% 4.2%
Avg RP+RD+AL vs Avg RP+RD+AL+LB 2.1% 0.4% 2.1% 1.6%

The relevance of alternative recipients

Avg. RP+RD vs Avg. RP+RD+AL 14.7% 14.3% 14.8% 14.7%
Avg. RP+RD+LB vs Avg. RP+RD+AL+LB 13.8% 10.1% 12.1% 11.8%

The relevance of roaming locations

H+TW vs RP+RD(100) 15.2% 10.2% 7.8% 9.8%
H+TW+LB vs RP+RD+LB(100) 9.4% 6.1% 5.3% 6.3%

The relevance of partial inclusion of convenience

H+TW to avg. all(25) 14.1% 10.2% 11.4% 11.6%
H+TW to avg. all(50) 17.5% 12.1% 12.7% 13.4%
H+TW to avg. all(75) 21.4% 13.2% 14.1% 15.1%
H+TW to avg. all(100) 21.5% 17.2% 15.4% 17.0%

Table 4.4: Explicit comparison between different scenarios.
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The second part of the table reports our results with a longer runtime of at most 3600
seconds (one hour). The runtime depends on the instance size to allow bigger instances a longer
runtime and ranges between 7.5 minutes for the small instances with 15 requests to 60 minutes
for the large instances. Our solutions are on average -1.8% better (smaller) with a minimum
improvement of -8.9% and a median improvement of -0.8%. We also have some instances where
we did not find a better solution than Reyes et al. [135], at most we are 0.7% worse.

4.4.4 Comparison with Ozbaygin et al. [119]
Furthermore we compare our work with Ozbaygin et al. [119]. They worked on the same

problem as Reyes et al. [135] and extended it to include an all-day home delivery option by
replacing the time windows of the home location with ones that span all day. They used an
exact solution method, namely a branch-and-price algorithm on their own instances and on the
instances provided by Reyes et al. [135]. Therefore they made it possible for us to compare our
heuristic to the optimal solutions for most of the instances. For the biggest instances with 120
requests they reached their runtime limit (two hours for instances up to 60 customers, and six
hours for instances with 120 customers). The OFV of Ozbaygin et al. [119] were obtained from
their paper, Table 9, column VRPRDL. ∆O is the difference between our results and theirs and
is calculated by OFV−OFVOzbaygin

OFVOzbaygin
.

The computational results can be found in Table 4.6. We used two runtime multipliers and
the runtimes were therefore between one and 60 minutes. When comparing to the branch-and-
price algorithm, we find that, for the short runtimes, we are on average 1.33% worse with a
median of 0.14% and 7.84% at most. For the longer runtimes we are on average 0.77% worse,
with a median of 0.08% and deviate at most by 5.66%.

Note that although the same instances were used for both comparisons the OFVs are vastly
different because Reyes et al. [135] used a different objective cost function than Ozbaygin et al.
[119]. For the cost calculation Reyes et al. [135] used the provided travel time matrix where the
travel time of each arc is roughly twice its Euclidean distance. Ozbaygin et al. [119] used the
Euclidean distances rounded to the nearest integer for evaluating the solution cost. Furthermore,
Reyes et al. [135] and Ozbaygin et al. [119] do not have the same numbering of instances reported
in their tables. We chose to keep the nomenclature and sorting of Reyes et al. [135]. A conversion
key can be found in the Appendix, Table 4.10.

4.5 Conclusions
Adequate convenience is especially lacking in the C2C market where customers interact

directly and goods are both picked up and delivered by transportation carriers. Including the
possibility to add both roaming locations for pickup and deliveries as well as an alternative
recipient and even 24-hour locker boxes, makes for a competitive and comfortable system with
advantages for the customers and carrier alike. There are big potential improvements with up to
almost 30% in cost savings when comparing more traditional home delivery system with more
flexible ones. Even though the benefits of locker boxes are small (up to 6.4%) in comparison to
alternative recipients or roaming locations, it is the option most easily realized. Partly because
the locker boxes are already build and in use, and partly because the only variability in success
depends on their capacity. Including roaming locations or alternative persons enable the carrier to
drive shorter tours but in reality they carry a risk. Even well-meaning and cooperative customers
cannot guarantee their itineraries and changes on short notice means that the customers are
unavailable for service at the planned time. To avoid missed pickups or deliveries other methods
can be included to extend this deterministic problem. For example, Florio et al. [57] use different
realistic availability profiles to represent the likelihood of a customer being available for receiving
a delivery at their home location to maximize successful deliveries. This premise can be extended
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Instance #req. # loc. OFVReyes time(s) OFV ∆ R time(s) OFV ∆ R
1 15 51 2128 15.0 2128 0.0% 450 2128 0.0%
2 15 53 2007 6.7 1984 -1.1% 450 1984 -1.1%
3 15 53 3661 15.0 3661 0.0% 450 3661 0.0%
4 15 58 2582 1.5 2573 -0.3% 450 2572 -0.4%
5 15 63 1802 15.0 1801 -0.1% 450 1801 -0.1%
6 20 64 3374 1.1 3374 0.0% 600 3374 0.0%
7 20 67 2588 20.0 2588 0.0% 600 2588 0.0%
8 20 69 2489 2.3 2310 -7.2% 600 2310 -7.2%
9 20 77 2536 0.9 2521 -0.6% 600 2521 -0.6%
10 20 81 3196 28.6 2912 -8.9% 600 2912 -8.9%
11 30 76 3659 4.2 3646 -0.4% 900 3646 -0.4%
12 30 99 4173 3.5 4173 0.0% 900 4172 0.0%
13 30 104 3849 30.0 3849 0.0% 900 3849 0.0%
14 30 107 3668 1.7 3667 0.0% 900 3658 -0.3%
15 30 108 2548 22.1 2544 -0.2% 900 2543 -0.2%
16 30 114 4695 3.6 4690 -0.1% 900 4654 -0.9%
17 30 119 3507 25.0 3497 -0.3% 900 3491 -0.5%
18 30 120 3877 25.1 3877 0.0% 900 3875 -0.1%
19 30 125 3397 28.9 3392 -0.1% 900 3388 -0.3%
20 30 131 3939 30.0 3934 -0.1% 900 3934 -0.1%
21 60 209 6049 40.7 5848 -3.3% 1800 5750 -4.9%
22 60 214 5873 36.0 5818 -0.9% 1800 5661 -3.6%
23 60 220 8391 55.3 8374 -0.2% 1800 8365 -0.3%
24 60 226 7670 26.4 7656 -0.2% 1800 7562 -1.4%
25 60 226 9218 38.0 9121 -1.1% 1800 9090 -1.4%
26 60 227 8057 10.1 8012 -0.6% 1800 7942 -1.4%
27 60 230 7032 21.4 6937 -1.4% 1800 6778 -3.6%
28 60 235 6434 60.1 6400 -0.5% 1800 6377 -0.9%
29 60 236 8971 331.8 8956 -0.2% 1800 8909 -0.7%
30 60 239 8428 10.1 8280 -1.8% 1800 8225 -2.4%
31 120 423 13414 273.0 13366 -0.4% 3600 13210 -1.5%
32 120 423 11434 96.3 11327 -0.9% 3600 11279 -1.4%
33 120 429 12987 41.5 12822 -1.3% 3600 12396 -4.6%
34 120 442 11379 148.8 11357 -0.2% 3600 11176 -1.8%
35 120 452 11713 600.1 11586 -1.1% 3600 11136 -4.9%
36 120 456 11374 146.9 11104 -2.4% 3600 10902 -4.1%
37 120 462 10516 322.8 10475 -0.4% 3600 9949 -5.4%
38 120 463 11045 66.9 11033 -0.1% 3600 10372 -6.1%
39 120 468 10115 5160.1 10094 -0.2% 3600 10186 0.7%
40 120 472 10492 3111.3 10481 -0.1% 3600 10480 -0.1%

Min. 0.9 -8.9% -8.9%
Avg. 272.0 -0.9% -1.8%
Med. 27.5 -0.2% -0.8%
Max. 5160.1 0.0% 0.7%

Table 4.5: Comparison to Reyes et al. [135]. The table is divided in three parts: the left part
gives information about the instances, the middle part reports the computational time ‘time(s)’
needed until our algorithm surpasses the results from the heuristic of Reyes et al. [135], and
the right part shows the results we are able to obtain when setting a fixed runtime limit of
µ = 30. The columns are labeled as follows: ‘Instance’ is the instance number (from 1 to 40) that
corresponds to the number reported in Reyes et al. [135] ‘#req.’ shows the number of requests
and ‘#loc.’ shows the number of locations each instance has. ‘OFVReyes’ reports the original
objective function value from Reyes et al. [135] ‘OFV’ is the absolute objective function value
obtained by our algorithm and the difference in percent is given by ‘∆ R’ with negative values
signifying an improvement (a smaller) objective function value.
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Instance #req. # loc. OFVOzbaygin time(s) OFV ∆ O time(s) OFV ∆ O
1 15 51 1062 60 1062 0.00% 450 1062 0.00%
2 15 53 991 60 991 0.00% 450 991 0.00%
3 15 53 1832 60 1832 0.00% 450 1832 0.00%
4 15 58 1286 60 1286 0.00% 450 1286 0.00%
5 15 63 901 60 902 0.11% 450 902 0.11%
6 20 64 1684 80 1684 0.00% 600 1684 0.00%
7 20 67 1294 80 1294 0.00% 600 1294 0.00%
8 20 69 1155 80 1155 0.00% 600 1155 0.00%
9 20 77 1260 80 1260 0.00% 600 1260 0.00%
10 20 81 1455 80 1456 0.07% 600 1456 0.07%
11 30 76 1822 120 1823 0.05% 900 1823 0.05%
12 30 99 2083 120 2083 0.00% 900 2083 0.00%
13 30 104 1922 120 1922 0.00% 900 1922 0.00%
14 30 107 1827 120 1827 0.00% 900 1827 0.00%
15 30 108 1273 120 1274 0.08% 900 1274 0.08%
16 30 114 2324 120 2327 0.13% 900 2325 0.04%
17 30 119 1747 120 1751 0.23% 900 1748 0.06%
18 30 120 1938 120 1938 0.00% 900 1938 0.00%
19 30 125 1694 120 1697 0.18% 900 1696 0.12%
20 30 131 1965 120 1965 0.00% 900 1965 0.00%
21 60 209 2865 240 2871 0.21% 1800 2869 0.14%
22 60 214 2828 240 2832 0.14% 1800 2830 0.07%
23 60 220 4173 240 4185 0.29% 1800 4180 0.17%
24 60 226 3761 240 3785 0.64% 1800 3777 0.43%
25 60 226 4536 240 4548 0.26% 1800 4540 0.09%
26 60 227 3964 240 3969 0.13% 1800 3968 0.10%
27 60 230 3378 240 3386 0.24% 1800 3385 0.21%
28 60 235 3161 240 3194 1.04% 1800 3180 0.60%
29 60 236 4440 240 4471 0.70% 1800 4447 0.16%
30 60 239 4107 240 4112 0.12% 1800 4108 0.02%
31 120 423 6498 480 6663 2.54% 3600 6585 1.34%
32 120 423 5608 480 5656 0.86% 3600 5636 0.50%
33 120 429 5849 480 6253 6.91% 3600 6180 5.66%
34 120 442 5278 480 5662 7.28% 3600 5573 5.59%
35 120 452 5519 480 5780 4.73% 3600 5555 0.65%
36 120 456 5218 480 5520 5.79% 3600 5427 4.01%
37 120 462 4935 480 5186 5.09% 3600 4959 0.49%
38 120 463 5048 480 5195 2.91% 3600 5181 2.63%
39 120 468 4845 480 5225 7.84% 3600 5082 4.89%
40 120 472 5083 480 5328 4.82% 3600 5215 2.60%

Min. 0.00% 0.00%
Avg. 1.33% 0.77%
Med. 0.14% 0.08%
Max. 7.84% 5.66%

Table 4.6: Comparison to Ozbaygin et al. [119] that provided an exact method and optimal
solutions for the instances from Reyes et al. [135]. The table is divided in three parts. The
left part of the table gives an overview over the instances: ‘Instance’ is the instance number
(from 1 to 40) that corresponds to the number reported in Reyes et al. [135] ‘#req.’ shows the
number of requests each instance has and ‘#loc.’ shows the number of locations each instances
has. ‘OFVOzbaygin’ reports the original objective function values from Ozbaygin et al. [119]. The
middle and right part of the table report our results: ‘OFV’ is the absolute objective function
value obtained by our algorithm and the difference in percent is given by ‘∆ O’ with negative
values signifying an improvement (a smaller) OFV. The runtime multiplier for the middle table
is µ = 4 and for the right table µ = 30.
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to other locations outside of the home as well and would make a suitable extension by adding
stochasticity. Additionally, not all customers might be willing to share their itineraries, live GPS
data or historical movement patterns. For this case, we analyzed the benefits of having mixed
customer preferences where the percentage of customers opting for convenience was set to 25,
50, 75 or 100%. We showed that even with just 25% of customers opting in on the system, it is
profitable to allow for roaming locations and alternative recipients.

4.6 Appendix

Employed full-time

EF1 H 05:30 07:30 W 08:00 16:00 H 16:30 21:00
EF2 H 05:30 07:30 O 08:00 09:00 W 09:30 18:00 H 18:30 21:00
EF3 H 05:30 08:00 W 08:30 17:00 O 17:30 20:00 H 20:30 21:00
EF4 H 05:30 07:30 W 08:00 16:00 O 16:30 19:30 H 20:00 21:00
EF5 H 05:30 10:30 W 11:00 19:30 H 20:00 21:00
EF6 H 05:30 08:30 O 09:00 10:30 W 11:00 19:30 H 20:00 21:00

Employed part-time

EP1 H 05:30 06:00 W 06:30 12:00 H 12:30 15:30 O 16:00 18:00 H 18:30 21:00
EP2 H 05:30 07:30 W 08:00 14:00 O 14:30 17:30 H 18:30 21:00
EP3 H 05:30 11:30 W 12:00 18:00 H 18:30 21:00
EP4 H 05:30 11:30 W 12:00 18:00 O 18:30 21:00
EP5 H 05:30 09:00 O 09:30 11:30 W 12:00 18:00 H 18:30 21:00
EP6 H 05:30 13:00 W 14:00 20:00 H 20:30 21:00
EP7 H 05:30 09:30 O 10:00 13:30 W 14:00 20:00 H 20:30 21:00
EP8 H 05:30 09:30 O 10:00 12:30 O 13:00 15:30 W 16:00 21:00

Unemployed

UN1 H 05:30 21:00
UN2 H 05:30 09:30 O 10:00 14:00 H 14:30 21:00
UN3 H 05:30 13:00 O 14:00 18:00 H 18:30 21:00

Table 4.7: Customer profiles for full-time employed, part-time employed and unemployed persons.
Complete daily itinerary for each profile given with ‘H’ meaning ‘Home’, ‘W’ meaning ‘Work’
and ‘O’ meaning ‘Other’ roaming locations.
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Sector % living % working

1 0.009 0.111
2 0.056 0.068
3 0.048 0.103
4 0.018 0.029
5 0.029 0.021
6 0.017 0.029
7 0.017 0.034
8 0.014 0.016
9 0.023 0.051
10 0.107 0.078
11 0.054 0.038
12 0.052 0.039
13 0.029 0.025
14 0.049 0.030
15 0.042 0.030
16 0.055 0.029
17 0.030 0.015
18 0.027 0.015
19 0.038 0.033
20 0.046 0.030
21 0.086 0.057
22 0.099 0.064
23 0.055 0.055

Sum 1.000 1.000

Table 4.8: Probabilities and percentage of population living and working in each sector in Vienna.
Data provided by the magistrate MA23 [97, 98] from Statistik Austria statistik.at
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Figure 4.4: Depiction of population density from 2017 in Vienna. Original picture provided by
the municipality MA 18 of Vienna [154], translated to English.
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Parameter Meaning Value

|P | Size of initial solution pool 10
ρmin Min. probability of assigning a random vehicle for a request

during the construction heuristic
0.01

ρmax Max. probability of assigning a random vehicle for a request
during the construction heuristic

0.04

#r Number of requests. The value depends on the instance –
µ Runtime multiplier. The value is variable and indicated for each

table separately.
–

cL Iteration limit for the ALNS. If after cL iterations no further
improvement could be found, the ALNS is terminated.

50

cw Iteration limit without improvement after which the threshold w
to accept a worse solution is increased

1
2cL

cγmax Iteration limit without improvement after which upper destroy
limit γmax for a solution is doubled

3
4cL

wmax How much worse the incumbent solution is at most allowed to
be in relation to the best solution

1.5

w′ By how much the parameter for a worse solution acceptance
changes if no solution could be found

0.05

γmin Minimum percentage of solution to be destroyed 0.1
γmax Maximum percentage of solution to be destroyed 0.4
ϕc Weight of the travel time for calculating the insertion cost of a

request into a tour
1

ϕw Weight of the waiting time for calculating the insertion cost of a
request into a tour

0.2

Table 4.9: Table of all parameters used for the computational results. The standard values are
given. If any values deviate for specific computational results, the changes are reported in the
respective tables.
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Reyes et al. [135] Ozbaybin et al. [119] File numbering

1 4 3
2 3 2
3 5 4
4 2 1
5 1 0
6 10 9
7 6 5
8 7 6
9 9 8
10 8 7
11 20 19
12 19 18
13 11 10
14 18 17
15 14 13
16 12 11
17 13 12
18 16 15
19 15 14
20 17 16
21 27 26
22 22 21
23 28 27
24 21 20
25 26 25
26 29 28
27 24 23
28 25 24
29 23 22
30 30 29
31 36 35
32 38 37
33 39 38
34 32 31
35 35 34
36 34 33
37 31 30
38 40 39
39 37 36
40 33 32

Table 4.10: A conversion key for the numbering of the instances. For example: The same instance
is numbered ‘1’ int the paper by Reyes et al. [135], ‘4’ in the paper by Ozbaygin et al. [119]
and ‘3’ for the file. We chose to keep the numbering of the instances from Reyes et al. [135].
Therefore our objective function value reported of instance ‘1’ needs to be compared to instance
‘4’ in the work of Ozbaygin et al. [119]. The file numbering is provided as well to avoid confusion
for future uses and comparisons of those instances.
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Abstract This work aims to provide insights into the efficiency of different solution
algorithms for the pickup and delivery problem with alternative locations (PDPAL).
For an identical general solution approach, namely a decomposition of the problem
into a request-to-vehicle assignment and a routing algorithm, different heuristics
for both parts are compared to each other. For solving the vehicle routing prob-
lem we examine five construction heuristics: a nearest neighbor algorithm (NN), a
modified nearest neighbor algorithm incorporating penalties for waiting time (NNw),
a modified farthest insertion heuristic (FI), a modified smallest insertion heuris-
tic (SI), and a combination of farthest and smallest insertion heuristic (FIf). The
methods are evaluated by their ability to generate feasible solutions, and by the
overall solution quality. The potential of local search is examined, as well as the
importance of considering waiting time when applying the methods to a PDPAL
with time windows. For the request-to-vehicle assignment we compare an Adap-
tive Large Neighborhood Search (ALNS), a Genetic Algorithm (GA), a multi-start
ALNS (MS-ALNS), and a combination of GA and ALNS (GA-ALNS). From our
results we conclude the MS-ALNS to lead to the best solutions with potential for
further improvement for longer run times with the GA-ALNS as a close second.

5.1 Introduction
Transportation research problems have been widely studied in the literature, with the most

common being Vehicle Routing Problems (VRP) and Pickup and Delivery Problems (PDP).
Both, VRPs and PDPs, have a wide variety of applications and the research interest has lead to
it being covered in several surveys: Savelsbergh and Sol [146], Berbeglia et al. [14], Cordeau et
al. [30], and Parragh et al. [122]. Additionally, the broad range of applications for VRPs and
PDPs have lead to many different definitions and variants, with the most recent being VRP with
roaming delivery locations (VRPRDL) [96, 119, 120, 135, 144] and the PDP with alternative
locations (PDPAL) [44].

The solution methods applied for both VRP and PDP range from exact methods to heuris-
tics (e.g. constructive heuristics, local-improvement heuristics, metaheuristics, mathheuristics,
decomposition approaches, population-based methods) with both, exact and heuristic methods,
having their legitimacy. For an analysis of several heuristics for the traveling salesman problem
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(TSP) see the work by Rosenkrantz [140]. For a pedagogical introduction of heuristics for VRPs
the work by Røpke [138] can be recommended as well as Vidal et al. [161]. For a comprehensive
introduction to metaheuristics the reader is referred to Zäpfel et al. [168] and to Rothlauf [141].

For newer problems, like VRPRDL or PDPAL, both exact and heuristic methods exist
[44, 119, 135]. However, when approaching realistic instance sizes, exact methods often reach
their limit. Also, since both problems were defined quite recently, not many solution methods
have been applied to them. Especially for the PDPAL there is, to the best of our knowledge,
little literature regarding the efficiency of different solution algorithms. This work attempts
to close this gap insofar as to provide comparisons of different heuristics for the same general
solution approach, namely a decomposition approach with a request-to-vehicle assignment and
an underlying routing heuristic.

The rest of this paper is structured as follows: Section 5.2 provides a problem definition.
Section 5.3 presents different solution algorithms for the routing problem which are then compared
amongst each other in Section 5.4. Section 5.5 presents different metaheuristics for the request-to-
vehicle assignment and Section 5.6 reports the computational experiments of the metaheuristics.
The conclusion can be found in Section 5.7.

5.2 Problem definition
For the PDPAL, we have a set of transportation requests. Each request has a seller (from

whom the parcel is picked up), a buyer (to whom the parcel is delivered), and a quantity.
We assume that on the day of pickup the parcel stays with the seller and can be picked up

wherever they are. We also assume that we know the itinerary, that is the whereabouts, of both
the seller and the buyer on the day the service occurs. The itinerary specifies the time windows
for each location. Each location the seller visits on their itinerary corresponds to a (roaming)
pickup location with non-overlapping time windows. Each location the buyer visits corresponds
to a (roaming) delivery location with non-overlapping time windows. The buyer can specify
an additional person to receive their parcel. This person has its own itinerary with their own
roaming delivery locations. Additionally, the buyer has the option to have the parcel delivered
to a 24-hour locker box for self-pickup. From the perspective of the buyer, these locations are
alternative locations with overlapping time windows to their own locations.

For each request, we therefore have roaming pickup locations, alternative delivery locations
and a fixed quantity. Figure 5.1 shows an example where request A has three (possible) pickup
locations and request B has three (possible) delivery locations. A choice has to be made which
of the alternative locations to include in the tour. The arrows depict the tour of the vehicle. For
request B, the nodes nearest to the depot are selected, however for request A a more distant
pickup node is selected due to time window restrictions (time windows are not depicted). Figure
5.2 shows an example for the time windows of a request with roaming pickups and alternative
deliveries. There are three possible delivery locations with overlapping time windows.

Figure 5.1: VRPTW with multiple pickup and delivery locations

All requests have to be served by a fleet of homogeneous vehicles that start and end their
tour at a single depot. All vehicles have a maximum tour duration and have to return to the
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Figure 5.2: Possible time windows for a request with roaming pickups and alternative deliveries

depot before the end of day. For our instances, we assume a time frame (depot opening hours)
of a working day of 16.5 hours, starting at 5:00 a.m. and ending at 9:30 p.m., the smallest unit
of time is one minute. The goal is to select exactly one of the pickup and one of the delivery
location possibilities for each request and to determine the node sequence for all vehicles while
minimizing travel time and while fulfilling time window and capacity constraints.

For the mathematical problem formulation and the detailed instance descriptions we refer
the interested reader to Dragomir et al. [44].

The problem was decomposed into two parts: First, the assignment of requests to vehicles,
and second, the determination of the pickup and delivery locations as part of the routing algorithm
that also determines the node sequence. The following sections will examine in detail different
construction heuristics for the routing problem (with and without local search) and metaheuristics
for the overall problem.

5.3 Solution algorithms for the routing problem
The routing algorithm is split into a construction heuristic and an improvement heuristic. For

constructing the initial routes, we compare five different methods: a nearest neighbor algorithm
(NN), a modified nearest neighbor algorithm incorporating penalties for waiting time (NNw),
a modified farthest insertion heuristic (FI), a modified smallest insertion heuristic (SI), and a
combination of farthest and smallest insertion heuristic (FIf). The heuristics are adaptations from
the standard traveling salesman application [26, 69] to incorporate paired pickup and delivery
nodes and time windows. All insertion heuristics include a penalty for waiting time. The node
sequence is determined for each vehicle separately and all vehicles start empty.

The constructed tour is improved by local search using move and swap operators embedded
in a variable neighborhood descent (VND) [106] framework.

5.3.1 Construction heuristic NN and NNw

The construction heuristics NN and NNw have been adapted for a PDP. They distinguish
between pickup and delivery nodes, and take precedence constraints into account. Both, NN and
NNw, are in principle identical, except that NNw considers a penalty for waiting time, which is
given as a weight for influencing the determined routing cost. When the waiting time weight ϕw
is zero, NN and NNw lead to the same solution. Therefore, both heuristics are described with
the same pseudo-code. Algorithm 1 shows two procedures: the construction heuristic named
Nearest neighbor and the function Get nearest feasible neighbor that describes in detail
how the next node is selected.

The procedure Nearest neighbor works as follows: starting from an empty route, all
possible nodes that can be visited are added to the set L. Since we are working with paired
pickups and deliveries, the first iteration adds all pickup locations of all requests assigned to this
vehicle to the set L. One of those locations is selected as the next node to visit with the function
Get nearest feasible neighbor and this location is appended to the tour. Now, the set L
needs to be updated. The just selected pickup node belongs to a request. Since only one pickup is
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required, all other pickup locations of this particular request are no longer available as a possible
candidate to be visited next and are removed from the set L. However, now all delivery nodes of
this particular request are available to be visited next and are added to the set L. In the next
iteration, the next node to be visited can be either a pickup node of another request, or a delivery
node of the same request. The iterative approach adds and removes locations from the set L
depending on the last selected node. Any time a pickup node is selected the aforementioned steps
are taken. Any time a delivery node is selected, all other delivery nodes of the same request are
removed from the set L and none are added. The procedure continues until the set L is empty,
which means that for each request one pickup and one delivery location has been chosen and the
node sequence has been established.

For determining which of the possible locations present in set L to select, the function Get
nearest feasible neighbor is called. A cost cj is calculated for each location j in L by

cj = dij + ϕwk(σj − ti) (5.1)

with i as the previous visited node, j the current possible next location, dij as the distance and
cost between i and j, ϕw as the waiting time weight, ti as the departure time from location i, σj
as the earliest service time at j and calculated by

σj = max(tj , aj) (5.2)

with tj as the arrival time at location j and aj as the time window opening of j. The variable k
is calculated by

k = σj − ti
trest

(5.3)

and indicates the necessary time allocation for this location.
The objective of this calculation is the following: When considering the next node to visit

in a tour in a problem with time windows, no general assertion can be made whether waiting
time is disadvantageous or inconsequential. In the case of a low workload, that is, few requests
need to be served by a vehicle, waiting time might not be relevant enough to be considered,
especially if the remaining time to serve them is long enough. In the case of a high workload,
every wait increases the probability of not finishing the tour in time and, as a result, could lead
to an infeasible solution. When calculating the cost cj of visiting the next node j, we determine
the remaining time this vehicle has for its tour by calculating trest = E − ti, with E denoting
the end of day and ti as the departure time from location i. Then, we calculate the average
remaining time per node, by dividing the remaining time by the number of remaining nodes to
visit trest = trest

nrest
. This is then used for calculating the time allocation k.

The difference between the two methods can be illustrated using a small example with one
depot ‘0’ and three nodes ‘A’,‘B’ and ‘C’. Table 5.1 provides the distance and cost matrix dij and
the time windows. For our example we assume an end of day E of 100 and a waiting time weight
ϕw of 0.5. Figures 5.3 to 5.6 show the step by step construction of a route and the calculations
in a table below it. All nodes have their time windows aj and bj depicted above them (e.g. from
zero to 30 for node ‘A’) and the arrival time tj and start of service σj depicted below them in
square brackets.

In Figure 5.3 both calculations select node ‘A’ to be inserted first. In Figure 5.4 the algorithms
diverge. The NN selects node ‘C’ because the distance is only five. The arrival time tj at ‘C’ is
15, however the start of service σj is 85 due to the time windows. NNw selects node ‘B’ because
it considers the waiting times although with a distance of 30 it is much farther away than node
‘C’. Here, the arrival time tj at ‘B’ is 40, and the start of service σj is 50. Figure 5.5 shows
the selection and calculation of the next node. For both examples only one node remains to be
inserted. NN attempts to insert node ‘B’. However, after the long wait at the previous node, it
arrives past the time window closing bj and a service is no longer possible. NNw successfully
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Algorithm 1 (Modified) Nearest Neighbor (NN and NNw)
1: procedure Nearest neighbor(waiting time weight ϕw, set of requests assigned to

vehicle Rv)
2: L← ∅ . initialize the set of possible nodes to visit
3: tour ← {0} . Vehicle tour gets initialized with node 0, the depot
4: ti ← 0 . departure time from the depot is set to 0
5: si ← 0 . load when leaving depot is set to 0
6: nrest ← |Rv| . remaining nodes to be served
7: for all r ∈ Rv do . for all requests assigned to this vehicle
8: L← L ∪NP

r . all pickup nodes are added to the set L
9: while |L| > 0 do

10: N ← Get nearest feasible neighbor(ϕw, L, ti, si, nrest)
11: if N = −1 then . if no feasible location could be found
12: break
13: tour ← tour ∪N . append node to tour
14: nrest ← nrest − 1
15: if N ∈ ⋃

r∈Rv

NP
r then . if node was a pickup node

16: L← L \NP
r . remove all other pickup nodes of r from L

17: L← L ∪ND
r . add all delivery nodes of r to L

18: else if N ∈ ⋃
r∈Rv

ND
r then . if node was a delivery node

19: L← L \ND
r . remove all delivery nodes of r to L

20: function Get nearest feasible neighbor(waiting time weight ϕw, set of locations
L, departure time from previous location ti, quantity at departure from previous
location si, remaining nodes to be served nrest)

21: cmin←M . initialize smallest cost to a big number M
22: lmin←−1 . initialize best neighbor
23: trest ← E − ti . remaining time for this vehicle
24: trest ← trest

nrest
. average remaining time per node

25: for all j ∈ L do
26: tj ← ti + cij . arrival time at location j
27: if tj > bj then . If arrival time exceeds time window at location j
28: continue
29: sj ← qi + qj . quantity at location j
30: if sj > Q then . If quantity exceeds vehicle capacity
31: continue
32: σj ← max(tj , aj) . earliest service time at j
33: k ← σj−ti

trest
. time allocation k

34: cj ← dij + ϕwk(σj − ti) . calculate cost
35: if cj < cmin then
36: cmin ← cj
37: lmin ← j

38: return lmin
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dij 0 A B C
0 0 10 31.6 11.2
A 10 0 30 5
B 31.6 30 0 30.4
C 11.2 5 30.4 0

TW 0 A B C
aj 0 0 50 85
bj 100 30 100 100

Table 5.1: The distance and cost matrix dij , and the time windows for a small example

ti trest nrest trest tj aj σj k dij cj

A 0 100 3 33.3 10.0 0 10 0.3 10.0 11.5
B 0 100 3 33.3 31.6 50 50 1.5 31.6 69.1
C 0 100 3 33.3 11.2 85 85 2.6 11.2 119.6

Figure 5.3 & Table 5.2: Example of NN and NNw, first node. Both algorithms insert node ‘A’.

inserts node ‘C’. Figure 5.6 shows the completion of the route and the return to the depot. For
the NN algorithm, the vehicle arrives past the depot opening hours and the solution is therefore
infeasible. The NNw algorithm creates a feasible solution.

5.3.2 Construction heuristic FI, SI, and FIf
For all insertion based construction heuristics (FI, SI, and FIf) we need to calculate the

insertions for a request. An insertion is defined by a request and a vehicle, a determined pickup
location, a determined delivery location, the places of those locations within the (already existing)
node sequence, and cost. The insertion cost Ii,j for adding the pickup node i and delivery node
j is calculated as follows:

Ii,j = di−1,i + di,j + dj,j+1 − di−1,j+1 (5.4)

with dij denoting the cost and distance between two nodes. The indices ni+1 and nj+1 denote the
succeeding nodes in the tour from i and j respectively, while ni−1 and nj−1 denote the preceding
nodes. If the tour is empty, the nodes ni−1 and nj+1 are both the depot. If the insertion of i and
j is done in such a way that they are not sequential, the insertion cost is calculated as follows:

Ii,j = di−1,i + di,i+1 + dj−1,j + dj,j+1 − di−1,i+1 − dj−1,j+1 (5.5)

All insertion based construction heuristics use the same basic principle that is outlined in
Algorithm 2. Also, they all use the same algorithm to create the list of initial insertions which
are the insertion costs based on an empty tour (see Algorithm 3).
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ti trest nrest trest tj aj σj k dij cj

B 10 90 2 45 40 50 50 0.9 30 47.8
C 10 90 2 45 15 85 85 1.7 5 67.5

Figure 5.4 & Table 5.3: Example of NN and NNw, second node. The algorithms diverge: NN
inserts node ‘C’ as the nearest node, NNw inserts node ‘B’ due to the waiting time influencing
the cost calculation.

ti trest nrest trest tj aj σj k dij cj

B 85 15 1 15 115.4 50 115.4 2.0 30.4 61.2

C 50 50 1 50 80.4 85 85.0 0.7 30.4 42.7

Figure 5.5 & Table 5.4: Example of NN and NNw, third node. NN attempts to insert node ‘B’,
however the arrival time is past the time window of ‘B’ and the solution is therefore infeasible.
NNw successfully inserts node ‘C’.

Algorithm 2 Insertion Algorithm (FI, SI, FIf)
1: Create initial insertions
2: while L¬∅ do
3: Select insertion
4: Insert request into vehicle
5: Recalculate insertions
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Figure 5.6: Example of NN and NNw, arrival back at the depot. The choices made by NN do
not result in a feasible solution. NNw is successful in constructing a feasible solution.

Algorithm 3 Create initial insertions for FI, SI, and FIf
1: for all r ∈ R do
2: for all i ∈ NP

r do
3: for all j ∈ ND

r do
4: ti ← max(d0,i, ai) . arrival time at pickup i
5: if ti > bi then . if arrival time exceeds the time window
6: continue
7: tj ← max(ti + σi + dij , aj) . arrival time at delivery j
8: if tj > bj then . if arrival time exceeds the time window
9: continue

10: t0 ← tj + σj + cj0 . arrival time at depot
11: if t0 > E then
12: continue
13: d← d0i + dij + dj0 . calculate distance
14: w ← t0 − d− σi − σj . calculate waiting time
15: Ii,j ← d+ wϕw . calculate insertion cost
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(a) (b)

(c) (d)

Figure 5.7: Depiction of farthest insertion. Figure 5.7a shows two requests ‘A’ and ‘B’ with two
pickup and two delivery locations each. Not depicted is the insertion calculation that determines
the cost for each pickup and delivery location combination for each request. Figure 5.7b shows
how exactly one insertion is selected for each request, namely the one with the smallest cost.
Choosing from the remaining (in this example two) insertions, Figure 5.7c shows the selection of
the farthest insertion, request ‘A’. Here, the insertions are recalculated. For the only remaining
request ‘B’ the same nodes are selected, however the placement of the nodes within the sequence
are different, since the tour already serves a request. Figure 5.7d show the selection of the
next-farthest (and last) insertion, request ‘B’, and its placement in the tour.

The difference between FI, SI, and FIf lies in their manner of choosing the next insertion.
FI, which stands for farthest insertion, pre-selects one insertion for each request, namely

the one with the smallest cost. Ties are broken randomly. All other insertions are discarded.
From the remaining insertions one is picked by a roulette wheel selection prioritizing the highest
cost. This function is named Get biggest by roulette wheel selection and is part of the procedure
described in Algorithm 4. A small example for FI with two requests can be found in Figure 5.7.

SI, which stands for smallest insertion, does no pre-selection. Instead, it simply picks an
insertion by a roulette wheel selection prioritizing the smallest cost. A small example with two
requests can be found in Figure 5.8. The procedure is described in Algorithm 5. Note, that
max(ci, 1) is used when adding the cost for each insertion to account for costs smaller than 1
and zero.

FIf is a combination of FI and SI and stands for farthest insertion first. The first request
to be inserted in a tour is selected by a FI principle while all subsequent insertions follow the
SI principle. The main idea is to combine the advantages of both methods. For the example in
Figures 5.7 and 5.8, the solution is identical to the FI algorithm. However, the computational
experiments performed in Section 5.4 indicate it to be the superior algorithm.

5.3.3 Improvement heuristic using local search (LS)
For improvement of the constructed vehicle routes, we use local search embedded in a VND

[106] framework. The VND utilizes neighborhoods that are applied in order of complexity. Each
neighborhood is performed until no further improvement can be found for θ iterations and a
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Algorithm 4 Pick Farthest Insertion (FI)
1: Ls ← ∅ . An empty set of insertions
2: for r ∈ R do . for each request
3: Ls ← Lr,min . the insertion with the smallest cost is added to Ls
4: Ls,max ← Get biggest by roulette wheel selection(Ls)
5: return Ls,max
6: function Get biggest by roulette wheel selection(Ls)
7: cc ← 0 . initialize variable for cumulative cost
8: for all i ∈ Ls do . for each insertion in the list
9: cc ← cc + ci . add cost of each insertion ci to cc

10: r ←random number between 0 and cc
11: for i ∈ Ls do
12: r ← r − ci
13: if r < 0 then
14: return i

(a) (b)

Figure 5.8: Depiction of smallest insertion with two requests ‘A’ and ‘B’ and each request with
two pickup and two delivery locations. Figure 5.8a shows how the first request, request ‘B’, is
selected and inserted into the route. Figure 5.8b selects and inserts the next request, request
‘A’, and depicts how the other locations of request ‘B’ are no longer an option. Although the
algorithm uses a roulette wheel selection, this small example always chooses the request with the
smallest cost for illustrative purposes.

Algorithm 5 Pick Smallest Insertion (SI)
1: cc ← 0 . initialize variable for cumulative cost
2: for all i ∈ L do . for each insertion in the list
3: cc ← cc + 1

max(ci,1) . add cost of each insertion to cc
4: r ←random number between 0 and cc
5: for i ∈ L do
6: r ← r − 1

max(ci,1)
7: if r < 0 then
8: return i
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local optimum is reached. To escape from this local optimum, the algorithm moves to the next
neighborhood. As soon as a new solution has been found, the algorithm restarts and returns to
the first neighborhood since it is the least complex and ‘cheapest’ in terms of computation time.
If no more improvements can be found for θ iterations for all neighborhoods, the algorithm is
terminated. The found solution is a local optimum for all neighborhoods applied [159].

For our VND, decribed in Algorithm 6, we use two neighborhoods: The move request neigh-
borhood picks a random request, removes it from its original tour, and inserts it into the best
possible position (in terms of node sequence) of any other vehicle (including its former vehicle).
The goal is to reduce the net distance. For determination of the net distance reduction, we
compare the savings when removing a request to the insertion cost in the new vehicle and/or the
new position of the nodes (see Eq. 5.4 and 5.5). If a better vehicle and/or position can be found,
the request is moved, otherwise it remains in its current vehicle and its current position.

The swap request neighborhood picks two random requests from separate vehicles and swaps
the vehicle assignment of the requests. The requests are first removed from their original tour
and reinserted in the tour of the other request respectively. Only the best position within the
node sequence is considered when inserting a request, no matter the position of the original
request. The cost savings when removing and reinserting both requests are determined while
both insertions have to be feasible. If the total cost is smaller, the swap counts as a success and
is saved. Otherwise the changes are discarded.

Additional neighborhoods were implemented but did not prove successful: 2-Opt, 2-Opt*,
move section, and swap section. All those were limited by the present time window restrictions
and precedence constraints prevalent in a PDP. Also, move section and swap section between
vehicles were additionally limited by the constraint that a request has to be served by a single
vehicle and requests are not allowed to be split up.

Algorithm 6 Variable Neighborhood Decent (VND)
1: t . Iteration counter
2: while true do
3: t← 0
4: while t < θ do . While iteration limit θ not reached
5: t← t+ 1
6: Move request
7: if Move request lead to improvement then
8: t← 0
9: t← 0

10: while t < θ do
11: t← t+ 1
12: Swap request
13: if Swap request lead to improvement then
14: break
15: if t < θ then
16: continue
17: else
18: break
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Size NN NNw FI SI FIf Avg. Best ∆ avg. Worst ∆ best

10 294.5 295.0 292.7 292.8 292.8 293.5 FI -0.3% NNw -0.8%
30 927.9 928.4 908.8 909.6 907.0 916.3 FIf -1.0% NNw -2.3%
50 1386.8 1387.2 1375.4 1376.1 1374.6 1380.0 FIf -0.4% NNw -0.9%

100 3209.9 3210.1 3176.4 3179.7 3168.6 3188.9 FIf -0.6% NNw -1.3%

Table 5.5: Comparison of different construction heuristics in absolute OV by instance size.

Size NN NNw FI SI FIf Avg. Best ∆ avg. Worst ∆ best

10 252.1 252.2 250.1 250.6 250.5 251.1 FI -0.4% NNw -0.8%
30 693.2 692.7 686.2 685.3 682.2 687.9 FIf -0.8% NN -1.6%
50 1019.3 1019.0 1018.8 1017.4 1017.8 1018.5 SI -0.1% NN -0.2%

100 1895.7 1890.5 1883.5 1881.4 1880.8 1886.4 FIf -0.3% NN -0.8%

Table 5.6: Comparison of different construction heuristics with LS in absolute OV by instance
size.

5.4 Computational experiments for the routing algorithms
5.4.1 Comparison of the construction heuristics

The following construction heuristics are being compared: nearest neighbor (NN), nearest
neighbor modified by a waiting time weight (NNw), farthest insertion (FI), smallest insertion
(SI), and the combination of farthest insertion and smallest insertion (FIf). The computational
comparison was performed with the following method: for each request-to-vehicle assignment
each construction heuristic was applied once. The request-to-vehicle assignments were generated
as part of the solution algorithms described in Section 5.5. All generated vehicle routes were
saved for evaluation. In total 18,450 vehicle routes were generated. Of those, 15,045 were from
instances with time windows, and 3,405 were from instances without time windows.

Table 5.5 shows the comparison of different construction heuristics by instance size, the
average OV for each method-instance size combination, and the average objective value (OV).
The best methods are FI for the smallest instances and FIf for all others with improvements
up to 1 percent in relation to the average OV. The worst method is NNw with a larger OV of
up to 2.3 percent compared to the best method. Table 5.6 includes LS in the results. The best
methods are FI for the smallest instances and FIf and SI for all others with improvements up to
0.8 percent in relation to the average OV. The worst method is NNw for the smallest instances
and NN for all others with an increase of OV of up to 1.6 percent compared to the best method.

Table 5.7 and 5.8 show the results for instances without time windows. The construction
heuristic FIf is the best, both for the case with LS as well as the case without LS. The difference
between the best and the worst method is up to 4.7 percent larger for instances without time
windows.

Concerning feasibility
Table 5.9 shows, in percent, how many times different construction heuristics did not find a

feasible solution for different waiting time weights ϕw. For the instances without time windows,
all algorithms seem equally successful in finding feasible solutions; there are however differences
for instances with time windows. NN performs the worst with 6.5 percent of infeasible solutions
on average, while both SI and FIf share the best results of 3.1 percent. It is interesting to
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Size NN NNw FI SI FIf Avg. Best ∆ avg. Worst ∆ best

10 323.4 323.4 320.2 320.6 320.0 321.5 FIf 0.00 NN -1.1%
30 953.6 953.6 913.3 916.9 908.8 929.2 FIf -2.2% NN -4.7%
50 1284.9 1284.9 1255.4 1256.8 1253.9 1267.2 FIf -1.0% NN -2.4%

100 3066.5 3066.5 3009.3 3015.6 2991.2 3029.8 FIf -0.01 NN -2.5%

Table 5.7: Comparison of different construction heuristics in absolute OV by instance size without
time windows.

Size NN NNw FI SI FIf Avg. Best ∆ avg. Worst ∆ best

10 251.0 251.0 249.3 249.7 249.2 250.1 FIf -0.3% NN -0.7%
30 631.9 631.9 621.4 622.8 606.5 622.9 FIf -2.6% NN -4.0%
50 925.0 925.0 926.7 925.9 925.6 925.6 NN -0.1% FI -0.2%

100 1810.0 1810.0 1801.1 1800.7 1799.3 1804.2 FIf -0.3% NN -0.6%

Table 5.8: Comparison of different construction heuristics with LS in absolute OV by instance
size without time windows.

note that, a waiting time weight ϕw of zero leads to the most infeasible solutions. We therefore
conclude that considering waiting time in the cost calculation provides the benefit of a wider
range of feasible solutions.

Table 5.10 shows the best and worst methods regarding infeasibility. In 35 percent of cases,
every method found a feasible solution, except one. If only one method did not manage to
find a feasible solution, while all other methods did, it was in 95 percent of cases the NN. This
phenomenon, that one method was particularly unsuccessful, only occurred for instances with
time windows. In 13 percent of cases, no method found a feasible solution, except one. If only
one method found a feasible solution, it was NNw (37 percent), FIf (29 percent), SI (20 percent),
or FI (14 percent), but never NN. For cases without time windows the best methods are SI
(71 percent) and FI (29 percent). These methods therefore seem most promising when only
considering feasibility and not solution quality.

with time windows without time windows

ϕw NN NNw FI SI FIf Avg. by ϕw NN NNw FI SI FIf Avg. by ϕw
0 6.5% 3.7% 5.5% 4.7% 5.1% 5.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

0.2 6.5% 3.7% 2.7% 2.7% 2.6% 3.7% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.5 6.5% 3.7% 2.8% 2.6% 2.5% 3.6% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0.7 6.5% 3.7% 2.7% 2.7% 2.6% 3.6% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

1 6.5% 3.7% 2.8% 2.7% 2.5% 3.6% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Avg. 6.5% 3.7% 3.3% 3.1% 3.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Table 5.9: Percentage of infeasible solutions by construction heuristic and waiting time weight
ϕw. Percentages for instances with time windows are based on the 15,045 vehicle routes with
time windows, and percentages for instances without time windows are based on the 3,405 vehicle
routes without time windows. For instances without time windows ϕw has no influence on the
percentage of infeasible solutions.
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Every method found a feasible solution, except . . .

with time windows without time windows
Total NN NNw FI SI FIf Total NN NNw FI SI FIf
35% 95% 0% 2% 1% 1% 0% 0% 0% 0% 0% 0%

No method found a feasible solution, except . . .

with time windows without time windows
Total NN NNw FI SI FIf Total NN NNw FI SI FIf
13% 0% 37% 14% 20% 29% 28% 0% 0% 29% 71% 0%

Table 5.10: Best and worst methods regarding infeasibility. The ‘Total’ column refers to the
percentage of infeasible vehicle routes.

Size NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FIf

10 -14.4% -14.5% -14.5% -14.4% -14.4%
30 -25.3% -25.5% -24.5% -24.7% -24.8%
50 -26.5% -26.5% -25.9% -26.1% -26.0%

100 -40.9% -41.1% -40.7% -40.8% -40.6%
Avg. -26.8% -26.9% -26.4% -26.5% -26.5%

Table 5.11: Average improvement of local search by method and instance size. Averaged over all
ϕw.

The potential of local search
After eliminating infeasible vehicle routes, 13,387 feasible routes remain for evaluation. Of

those, there are 9,809 routes from instances with size 10, 2,021 routes from size 30, 964 routes
from size 50 and 593 routes from size 100. Tables 5.11, 5.12 and 5.13 give an overview of the
potential of local search. Local search seem to be more effective the larger the instance size is,
with improvements of around 41 percent on average for instances of size 100 in comparison of 14
percent for instances of size 10. Waiting time weight ϕw on the other hand, does not seem to have
much influence on the effectiveness of LS, and neither does the choice of construction heuristic.
For a weight of zero, the improvements seem slightly bigger using LS which corresponds to the
observation that ϕw = 0 generates the least amount of feasible solutions. However, both waiting
time weight and construction heuristic, might affect the solution quality, even though they do
not seem to influence the effectiveness of LS. In general, we see that LS is a powerful procedure
with average improvements of around 27 percent (Table 5.11) or 16 percent (Table 5.13). The
difference between the two reported average values is the following: Table 5.13 computes the
values over all vehicle routes. Since the generated vehicle routes are not equally distributed over
the different instance sizes, the values for the average and median are skewed towards the smaller
instances with a multitude of routes. Table 5.11 however, calculates the average of the averages
by instance size. Overall improvements of LS are up to 69 percent. The minimum improvement
is zero, as there is never any decrease in solution quality by applying LS.

For instances without time windows, the computational experiments with LS lead to similar
results. Tables 5.14, 5.15 and 5.16 give an overview over the results for instances without time
windows. The improvements are slightly larger overall. The differences are especially visible for
smaller instance sizes. The results indicate that for instances without time windows there is a
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ϕw NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FIf

0 -27.2% -27.3% -26.8% -26.8% -26.9%
0.2 -26.9% -27.1% -26.7% -26.7% -26.6%
0.5 -26.8% -26.9% -26.4% -26.5% -26.4%
0.7 -26.6% -26.7% -26.2% -26.3% -26.2%

1 -26.4% -26.5% -26.1% -26.2% -26.1%
Avg. -26.8% -26.9% -26.4% -26.5% -26.5%

Table 5.12: Average improvement of local search by method and waiting time weight ϕw. Averaged
over all instance sizes.

NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FI

Max. -69% -69% -69% -69% -69%
Median -15% -15% -15% -14% -15%
Avg. -16% -16% -16% -16% -16%
Min. 0% 0% 0% 0% 0%

Table 5.13: Improvement range of local search over all vehicle routes.

slight difference in the effectiveness of LS when comparing different construction heuristics. The
differences are small (up to 2 percent) but ‘simpler’ construction heuristics (NN and NNw) seem
to profit slightly more from LS than more complex construction heuristics (FI, SI, FIf). The same
impression is obtained from Table 5.15, where the value of ϕw seems to be irrelevant, whereas
the choice of construction heuristic makes a small difference. For instances without time windows
the average improvement is 23 percent with a median of 25 percent. Improvements reached by
LS are up to 69 percent.

The importance of waiting time weight
Table 5.17 shows the average objective values (OV) by instance size for each waiting time

weight ϕw. The table shows the standard deviation in absolute numbers as well as a percent
of the average OV for each particular instance size. A different weight leads to a difference of
up to 0.5 percent. When considering feasibility and the effectiveness of LS, we conclude that a
positive weight is beneficial. However, when considering the absolute OV, the best results are
achieved with ϕw = 0. Since the absolute improvement is quite small but the amount of infeasible

Size NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FIf

10 -22.4% -22.4% -22.1% -22.1% -22.1%
30 -33.7% -33.7% -32.0% -32.1% -33.3%
50 -28.0% -28.0% -26.2% -26.3% -26.2%

100 -41.0% -41.0% -40.1% -40.3% -39.8%

Avg. -31.3% -31.3% -30.1% -30.2% -30.4%

Table 5.14: Average improvement of local search by method and instance size for instances
without time windows. Averaged over all ϕw.
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ϕw NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FIf

0 -31.3% -31.3% -30.1% -30.2% -30.4%
0.2 -31.3% -31.3% -30.1% -30.2% -30.4%
0.5 -31.3% -31.3% -30.1% -30.2% -30.4%
0.7 -31.3% -31.3% -30.1% -30.2% -30.4%

1 -31.3% -31.3% -30.1% -30.2% -30.4%

Avg. -31.3% -31.3% -30.1% -30.2% -30.4%

Table 5.15: Average improvement of local search by method and waiting time weight ϕw for
instances without time windows. Averaged over all instance sizes.

NN+LS vs NN NNw+LS vs NNw FI+LS vs FI SI+LS vs SI FIf+LS vs FIf

Max. -69% -69% -69% -69% -69%
Median -25% -25% -25% -25% -26%

Avg. -23% -23% -23% -23% -23%
Min. 0% 0% 0% 0% 0%

Table 5.16: Improvement range of local search over all vehicle routes without time windows.

solutions is decreased by half, we propose a positive, albeit small weight of around 0.2 as a means
to profit from both effects. Table 5.18 shows that for instances without time windows, the weight
of waiting time has no influence on the absolute OV.

ϕw/Instance size 10 30 50 100

0 250.10 683.56 1011.42 1872.50
0.2 250.51 686.00 1013.91 1881.26
0.5 251.14 688.81 1017.81 1885.48
0.7 251.69 690.15 1023.14 1892.77

1 252.02 691.02 1026.03 1899.87

Std. dev. 0.71 2.76 5.48 9.41
in % of avg. 0.3% 0.4% 0.5% 0.5%

Table 5.17: Average OV by waiting time weight and instance size.
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ϕw/Instance size 10 30 50 100

0 250.06 622.88 925.64 1804.22
0.2 250.06 622.88 925.64 1804.22
0.5 250.06 622.88 925.64 1804.22
0.7 250.06 622.88 925.64 1804.22

1 250.06 622.88 925.64 1804.22

Std. dev. 0.00 0.00 0.00 0.00
in % of avg. 0.0% 0.0% 0.0% 0.0%

Table 5.18: Average OV by waiting time weight and instance size for instances without time
windows.

5.5 Solution algorithms for the request-to-vehicle assign-
ment

For the request-to-vehicle assignment we implemented different metaheuristics: an Adaptive
Large Neighborhood Search (ALNS), a Genetic Algorithm (GA), a multi-start ALNS (MS-ALNS),
and a combination of GA and ALNS (GA-ALNS).

For a successful implementation of those methods, and an efficient application of our search
operators, a well thought out solution representation needs to be used [141]. We utilized both a
genotype, for applying our search operators, and a phenotype for the evaluation of our solutions.
Our genotype is represented as an array. Its size depends on the number of requests. For each
request an integer indicating a vehicle ID is set. All search operators, be it of the destroy/recreate
type for the neighborhood based heuristics or the recombination/mutation type for the evolu-
tionary algorithms, are based on the modification of the integers in this array. Our phenotype
for evaluating our solution is our routing algorithm which determines the specific pickup and
delivery locations and node sequence of the vehicles.

For all methods we use two simple construction heuristics. The first construction method
assigns each request to a separate vehicle. The second construction method assigns each request
to a random vehicle. The ALNS, as the only single-solution approach, uses the solution of the
first construction method as a starting solution. The other methods (GA, MS-ALNS, GA-ALNS)
use pools of solutions which consists of both methods (the one solution from the first construction
method, and the rest from the second random construction method). When all requests are
assigned to vehicles, the routing heuristic is used to determine the pickup and delivery locations,
the node sequence, and the travel time and cost. Based on the computational experiments of the
routing algorithms (see Section 5.4), we selected the farthest insertion first (FIf) algorithm as
the standard routing algorithm for all metaheuristics, so that they remain comparable.

Gaining information in a preprocessing step
An important step in our solution algorithm is the detection of additional instance specific

information or constraints. Depending on the instance, it is entirely possible that some requests
can not be assigned to be served by the same vehicle. Due to distance or time windows it might
be impossible to feasibly serve both requests with the same vehicle. This knowledge can be
exploited to make the search space smaller. This information is therefore saved and is used by
all our methods when determining the request-to-vehicle assignment.

Additionally, a request compatibility measure is calculated. This measure has already been
introduced in Dragomir et al. [44] and is only shortly recapitulated here. The compatibility
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measure tries to estimate how well a pair or triple of requests fit together when being served by
the same vehicle. The calculation is based on the travel times and time windows and is calculated
as follows: For each pair of requests, r1 and r2, a single compatibility indicator is calculated.
This is done only once as a preprocessing step and the values are stored. The compatibility κ of
request r1 and request r2 is

κr1r2 =
∑

p1∈NP
r1

∑
p2∈NP

r2

max(|bp1 − ap2 − cp1p2 |, |bp2 − ap1 − cp1p2 |)

+
∑

p1∈NP
r1

∑
d2∈ND

r2

max(|bp1 − ad2 − cp1d2 |, |bd2 − ap1 − cp1d2 |)

+
∑

d1∈ND
r1

∑
p2∈NP

r2

max(|bd1 − ap2 − cd1p2 |, |bp2 − ad1 − cd1p2 |)

+
∑

d1∈ND
r1

∑
d2∈ND

r2

max(|bd1 − ad2 − cd1d2 |, |bd2 − ad1 − cd1d2 |) (5.6)

with NP
r and ND

r as the sets of alternative pickup and delivery locations of request r, cij as the
travel times between locations i and j, ai and bi as the begin and end time windows for location i.
Request pairs have a higher compatibility if the travel time between them and their time windows
make a visit easily feasible. For triples of requests we calculate all pairs of requests separately
and take the average. The compatibility measure is only used by the ALNS and MS-ALNS as
part of a repair operator.

5.5.1 Adaptive large neighborhood search (ALNS)
Shaw [149] introduced a search method for a vehicle routing problem based on destroying

and recreating a solution. The destroy and recreate operators are applied on large portions of a
solution which gives the large neighborhood search (LNS) its name. This concept was extended
in 2006 by Ropke and Pisinger [139] (and renamed to destroy and repair) by letting the algorithm
steer the probabilities of which operators to use, depending on their past successes. The ALNS
was developed primarily for PDPs with time windows. Since then it has gained in popularity
and has been applied to many different problems.

For the detailed description of the ALNS we refer the reader to Dragomir et al. [44]. In
principle, the ALNS works as follows: A solution is (1) destroyed, (2) repaired, and (3) replaces
the incumbent solution according to an acceptance criterion.

The destroy operators remove between γmin and γmax percent of the solution. Our ALNS uses
three destroy operators: destroy greedy requests, destroy random requests, and destroy random
vehicles, which are all standard operators. All operators are described in detail in Dragomir
et al. [44]. Each destroy operator removes between γmin and γmax percent of the solution, i.e.
request-to-vehicle assignments. Simultaneously, the pickup and delivery nodes are removed from
the vehicle tours while leaving the rest of the node sequence intact. This is necessary because we
need to be able to evaluate additional request removals from the same vehicle tours. The method
of removal is identical for all destroy operators, they are only distinguished by their selection of
which requests to remove. Should no improvement be found for cγmax iterations, the solution
destroy percentage γmax is doubled.

Our ALNS uses six repair operators: repair cheapest insertion and repair request randomly
are standard operators while repair request compatibility pairs, repair location compatibility pairs
and repair location compatibility triple are self-developed problem specific operators that use the
information gained during the preprocessing step (for details see Dragomir et al. [44]). The repair
operators reassign requests to vehicles and determine the vehicle routes.
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The changed solution is evaluated according to our objective function and, if it is better,
always accepted. If the solution is improved, we update the probabilities of selecting those specific
destroy and repair operators. If it is worse, it is only accepted if the algorithm was unsuccessful
for cw iterations and the solution is only slightly worse in comparison to the starting solution. The
parameter w, indicating how much increase in solution objective value is accepted, is initialized to
1 (where no depreciation in solution quality is accepted) and grows by w′ with each unsuccessful
iteration after cw iterations until at most wmax. Infeasible solutions are never accepted. As
soon as an improvement is found, all counters and thresholds are reset. Both accepting a worse
solution and increasing the amount of the solution to be destroyed, is beneficial to escape from a
local optima.

The stopping criterion for ALNS is either cL iterations without improvement or a run time
limit. For the computational experiments using ALNS alone, cL was set to infinity and only a run
time limit was provided. When calling the ALNS procedure as part of MS-ALNS or GA-ALNS,
an iteration limit cL = 50 was provided.

5.5.2 Genetic algorithm (GA)
Genetic algorithms are computational models of evolution and classified as population based

search approaches [59]. The basic principle relies on creating an initial population of individuals
(individual solutions), and iteratively creating new generations by recombining and mutating
those individuals. Influenced by Darwin’s natural selection theory and Herbert Spencer’s iconic
phrase ‘Survival of the fittest’, the ‘fittest’ or best individuals will procreate and pass on their
superior genes to the next generation. In terms of operations research, the fittest solution is
defined by our fitness function, which (in our case) is identical to the objective function.

The GA is described in Algorithm 7. For the creation of the initial solution pool, the simple
construction heuristic mentioned at the beginning of Section 5.5 is used and the pool is filled
with randomly generated solutions.

The probability of selecting the parents for procreation is the same as in Kheiri et al. [86]
with a probability of 1/2 to select out of the top 50 percent of the population, a probability of
1/3 to select out of the less-than-average quarter and a probability of 1/6 to select out of the
worst quarter. Within those parts, the probability to select a specific solution is uniform.

As in Kheiri et al. [86], children are created using uniform crossover where the decision
which parent property to use for each request is made independently. In our case, each request
needs to be assigned to a vehicle and each request has a probability of 50 percent to inherit
the vehicle assignment of one of its parents. Additionally, we consider the information obtained
in the preprocessing step and only assign requests to vehicles where no conflicting requests are
present. At least one parent will always fulfill this requirement.

Each child has a mutation probability mprob = 0.5 to mutate and a mutation percentage of
mperc = 0.05. That is, if a mutation occurs, 5 percent of requests are randomly assigned to a
different ‘allowed’ vehicle where no conflicts with other requests exist.

According to Zäpfel et al. [168], the population should consist of elite and diverse solutions.
We therefore keep the best k percent of each generation as an elite. After creating all children
of a new generation, the elite is added to the solution pool of the new generation. The solutions
are sorted by fitness and the worst solutions removed so as to keep the population size stable.

5.5.3 Multi-start adaptive large neighborhood search (MS-ALNS)
For a multi-start approach we create a pool of different initial solutions. After many compu-

tational experiments, the size of the solution pool was set to 10. A larger solution pool means
a higher diversification in the starting points for the metaheuristic which can be advantageous.
On the other hand, this advantage is balanced out when considering a limited run time where
not every solution might be selected for improvement. Therefore we selected a value as big as
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Algorithm 7 Genetic Algorithm (GA)
1: while solution pool is not filled do
2: create feasible initial solutions
3: while time limit not reached do
4: Create new generation
5: function Create new generation(population size PGA)
6: G← ∅ . Create an empty solution pool for the new generation
7: while |G| < PGA do
8: select 2 parent solutions
9: apply uniform crossover to generate a child solution c

10: mutate child c
11: if child is feasible then
12: G← G ∪ {c} . Add child to new generation
13: add top k percent of parents to child generation pool . Keep elite
14: while |G| > PGA do
15: remove worst solution . After adding elite, reduce population size

possible to allow for as much diversification as possible, and as small as necessary to ensure
that each solution could be selected for improvement. The disadvantages of a small solution
pool is counteracted by the random solution construction which ensures an adequate amount of
diversification.

Algorithm 8 gives an overview of the MS-ALNS. First, a solution s is chosen from the solution
pool using a roulette wheel selection [7] where better solutions have a higher probability of being
chosen in proportion to their fitness. For a minimization problem a better fitness means a smaller
OV. This solution s is then improved with an ALNS procedure (see Section 5.5.1). When the
iteration limit without improvement cL for the ALNS is reached, the algorithm is not simply
terminated. Instead, the modified solution s′ is returned to the pool, replacing the solution s, and
a new solution is selected for improvement. Altough the iteration limit cL for a single solution
seems small, it ensures that the algorithm does not needlessly spend time on unfruitful solutions.

Algorithm 8 Overview of MS-ALNS
1: while solution pool is not filled do
2: create feasible initial solutions
3: while time limit not reached do
4: pick a solution s by roulette wheel selection
5: improve solution s with ALNS

5.5.4 Genetic algorithm and adaptive large neighborhood search (GA-
ALNS)

The GA-ALNS is a simple combination of both GA and ALNS, namely that they share the
run time. Algorithm 9 gives an overview of the method. The GA is performed until µGA percent
of the total run time is reached and additionally for a minimum number of ζGA generations. After
this, only the elite part (k percent) of the population is kept and may proceed with the ALNS.
The ALNS used for the GA-ALNS follows the same principle as the MS-ALNS.
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Algorithm 9 Genetic algorithm and adaptive large neighborhood search (GA-ALNS)
1: while solution pool is not filled do
2: create feasible initial solutions
3: while GA time limit or min. number of generations not reached do
4: create new generation
5: keep only the best k percent of population
6: while time limit not reached do
7: pick a solution s by roulette wheel selection
8: improve solution s with ALNS

5.6 Computational experiments for the request-to-vehicle
assignment

For the comparison of the different metaheuristics we solved 30 instances of various sizes
(30, 50, and 100 requests) with each method. For each instance, each method has the same run
time limit. We compare not only the overall result, but also the performance during the run
time. The run time limit depends on the instance size and is five times the number of requests
in seconds (i.e. 150 seconds for instances with 30 requests, 250 seconds for instances with 50
requests, and 500 seconds for instances with 100 requests). Since we have no optimal solution to
compare our methods to, we compare to the best found solution over all methods. We deem this
sufficient since the MS-ALNS has already been compared to both heuristics and exact methods
from the literature in Dragomir et al. [44]. The evaluation of the methods is conducted for each
instance size separately where the results are given as a percentage of how far away the method is
from the best found solution (also named ‘base’ solution or ‘base’ objective value). Additionally,
all results are reported as a percent of passed run time to make instances of different size, and
therefore different run times, comparable to each other.

Table 5.19 provides a comparison of all methods. More detailed results can be found in Table
5.21 in the Appendix. Both tables represent the results at the end of the allocated run time with
∆OV indicating the deviation in percent to the ‘base’ OV (OVB) and the rank. The methods are
ranked from 1 to 4 for each instance. If two methods reached the same OV, they share a rank
and the next rank is skipped. For example for instance 20, both ALNS and GA-ALNS reached
the same solution and are ranked number 2 while rank number 3 is skipped. This results in the
sum of the rows ‘1st place’ and ‘last place’ of Table 5.19 to be larger than 100 percent, since
ranks can be assigned twice.

The best method according to the average rank is the MS-ALNS with a rank of 1.6. It is
followed by GA-ALNS with 2.3, third place is the ALNS with an average rank of 2.5 and GA
with 3.2. Table 5.19 also provides the average, median, and maximum deviation from ‘base’
solution. GA-ALNS is superior to all other methods with an average deviation (‘Avg. ∆OV’) of
0.9 percent, a median deviation (‘Median ∆OV’) of 0.1 percent and a maximum deviation (‘Max.
∆OV’) of 6.4 percent. The second best method is MS-ALNS with an average deviation of 1.4
percent while the worst method is GA with an average deviation of 4.4 percent.

When looking at the number of times a method reached first and last place in the ranking,
compared to the other methods, a similar picture emerges: MS-ALNS reached first place in 50
percent of the instances and was never last place. GA-ALNS reached first place in 27 percent of
the instances and was last place in 20 percent of the instances. The worst method is again the
GA, with only 10 percent of the times reaching first place and 53 percent last place.

This leads to the following conclusions: the GA is by far the worst performing method. It
was most often last place, least often first place. It has the highest average and median deviation
from the best-known objective value and the worst maximum deviation. In our computational
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ALNS GA MS-ALNS GA-ALNS

Avg. rank 2.5 3.2 1.6 2.3
Avg. ∆OV 2.1% 4.4% 1.4% 0.9%
Median ∆OV 2.0% 4.0% 0.8% 0.1%
Max. ∆OV 8.3% 15.3% 8.4% 6.4%
1st place 27% 10% 50% 27%
last place 23% 53% 0% 20%

Table 5.19: Method comparison
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Figure 5.9: Method comparison for instances of size 30

experiments MS-ALNS is the best method. It has the best average rank, is most often first place
and never last place. However, considering the deviations from the best objective value, it is
always slightly worse than GA-ALNS.

Figures 5.9 to 5.12 show the performance of the methods over the course of the run time. For
all instance sizes the MS-ALNS has the slowest start but leads to the best solutions. Both GA
and GA-ALNS show a slow decline even in the later parts of the run time. The ALNS is often
the fastest to reach a big drop in OV, however after that it is quite stagnant and seems to get
caught in some local optimum. All figures are depicted in two versions, with and without error
bars of standard deviation to increase readability. Although MS-ALNS is most often ranked first
place and never ranked last place, it exhibits the highest volatility as seen from the large error
bars (especially for larger instances). Large error bars indicate large differences between the OVs
of the different solutions at a specific run time percentage. While small error bars indicate a
strong performance and an accurate predictability of the OV at a certain run time percentage.
In contrast, ALNS and GA seem to have the smallest standard deviations over all methods and
seem to be the most stable.
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Figure 5.10: Method comparison for instances of size 50
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Figure 5.11: Method comparison for instances of size 100
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Figure 5.12: Method comparison for all instances
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5.7 Conclusions
As a construction heuristic FIf is the most promising, leading to the best results for instances

with and without time windows, with and without using LS, and over instances of different sizes.
Both, NN and NNw, are not recommended.

Concerning the feasibility of vehicle routes we conclude that more complex routing methods
(FI, SI, and FIf) are superior to simpler methods (NN, NNw), if the instances have time windows.
For instances without time windows, all methods produce solutions of equal feasibility. Further-
more, a waiting time weight ϕw of zero is detrimental to create feasible solutions. Therefore, we
conclude that it is beneficial to account for waiting time for the construction of vehicle routes.

The potential of local search is not to be underestimated. With improvements of up to
almost 70 percent it is absolutely essential for routing heuristics. In general, it does not seem to
matter which construction heuristic is used or the choice of ϕw, since they do not influence the
effectiveness of the LS.

A waiting time weight ϕw of a positive value greater than zero is best to improve feasibility,
however a value of zero is best for the best OV. Since the gains of improved feasibility are larger
than the losses of OV we propose a positive, albeit small, weight of at most 0.2. For instances
without time windows, ϕw has no influence over the OV.

In our computational experiments, GA is the worst method by far. It has the highest rank
compared to the other methods, the highest average and median deviation from the best objective
value and the worst maximum deviation. However, it seems to be a stable method, without much
deviation between the instances, and provides a steady decline in OV.

ALNS performs better than GA but not as good as MS-ALNS or GA-ALNS. It has a very
quick drop in OV but seems stagnant and struggles to get out of local optima (even though the
worse solution acceptance criteria and the solution destroy percentage are greatly increased if no
improvement can be found). Compared to the other methods, it is almost as often first place, as
it is last place.

MS-ALNS and GA-ALNS perform very differently during run time. MS-ALNS has the slower
start, but at some point it often surpasses the GA-ALNS. Comparing the methods to each other,
MS-ALNS is clearly better, with a better average rank, most often reaching first place and never
last place. However, when comparing the methods to their deviation from the best found OV,
GA-ALNS is slightly better. However, since the differences in rank are greater than the differences
in deviation from the best found OV, we can declare the MS-ALNS as the best method in this
computational experiment.

5.8 Appendix

ID #req. time(s) Method OV OVB ∆OV Rank
20 30 151 ALNS 523 522 0.2% 2
20 30 160 GA 542 522 3.8% 4
20 30 150 GA-ALNS 523 522 0.2% 2
20 30 150 MS-ALNS 522 522 0.0% 1
21 30 150 ALNS 646 646 0.0% 1
21 30 151 GA 662 646 2.5% 4
21 30 150 GA-ALNS 646 646 0.0% 1
21 30 150 MS-ALNS 646 646 0.0% 1
22 30 150 ALNS 614 597 2.8% 3
22 30 150 GA 618 597 3.5% 4
22 30 150 GA-ALNS 598 597 0.2% 2
22 30 150 MS-ALNS 597 597 0.0% 1
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Table 5.21 continued from previous page
ID #req. time(s) Method OV OVB ∆OV Rank
23 30 151 ALNS 522 522 0.0% 1
23 30 153 GA 602 522 15.3% 4
23 30 150 GA-ALNS 531 522 1.7% 3
23 30 150 MS-ALNS 527 522 1.0% 2
31 30 150 ALNS 489 473 3.4% 3
31 30 153 GA 486 473 2.7% 2
31 30 150 GA-ALNS 492 473 4.0% 4
31 30 150 MS-ALNS 473 473 0.0% 1
58 30 150 ALNS 558 546 2.2% 3
58 30 150 GA 594 546 8.8% 4
58 30 151 GA-ALNS 553 546 1.3% 2
58 30 150 MS-ALNS 546 546 0.0% 1
59 30 150 ALNS 642 623 3.0% 2
59 30 150 GA 646 623 3.7% 4
59 30 150 GA-ALNS 645 623 3.5% 3
59 30 150 MS-ALNS 623 623 0.0% 1
60 30 150 ALNS 627 609 3.0% 3
60 30 151 GA 627 609 3.0% 3
60 30 150 GA-ALNS 615 609 1.0% 2
60 30 150 MS-ALNS 609 609 0.0% 1
61 30 150 ALNS 509 498 2.2% 3
61 30 158 GA 533 498 7.0% 4
61 30 150 GA-ALNS 500 498 0.4% 2
61 30 150 MS-ALNS 498 498 0.0% 1
69 30 150 ALNS 462 462 0.0% 1
69 30 169 GA 492 462 6.5% 4
69 30 150 GA-ALNS 477 462 3.2% 3
69 30 151 MS-ALNS 473 462 2.4% 2
210 50 250 ALNS 802 788 1.8% 3
210 50 253 GA 794 788 0.8% 2
210 50 251 GA-ALNS 808 788 2.5% 4
210 50 251 MS-ALNS 788 788 0.0% 1
211 50 250 ALNS 946 904 4.6% 4
211 50 255 GA 918 904 1.5% 3
211 50 250 GA-ALNS 904 904 0.0% 1
211 50 250 MS-ALNS 916 904 1.3% 2
212 50 250 ALNS 899 851 5.6% 4
212 50 251 GA 870 851 2.2% 3
212 50 250 GA-ALNS 851 851 0.0% 1
212 50 250 MS-ALNS 861 851 1.2% 2
213 50 250 ALNS 833 833 0.0% 1
213 50 256 GA 838 833 0.6% 2
213 50 250 GA-ALNS 847 833 1.7% 4
213 50 250 MS-ALNS 838 833 0.6% 2
221 50 253 ALNS 763 763 0.0% 1
221 50 259 GA 797 763 4.5% 3
221 50 256 GA-ALNS 798 763 4.6% 4
221 50 307 MS-ALNS 790 763 3.5% 2
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Table 5.21 continued from previous page
ID #req. time(s) Method OV OVB ∆OV Rank
248 50 251 ALNS 852 837 1.8% 4
248 50 270 GA 837 837 0.0% 1
248 50 250 GA-ALNS 843 837 0.7% 3
248 50 250 MS-ALNS 837 837 0.0% 1
249 50 250 ALNS 978 975 0.3% 3
249 50 252 GA 975 975 0.0% 1
249 50 250 GA-ALNS 982 975 0.7% 4
249 50 250 MS-ALNS 975 975 0.0% 1
250 50 250 ALNS 950 912 4.2% 4
250 50 252 GA 912 912 0.0% 1
250 50 250 GA-ALNS 920 912 0.9% 2
250 50 250 MS-ALNS 920 912 0.9% 2
251 50 250 ALNS 904 883 2.4% 3
251 50 256 GA 920 883 4.2% 4
251 50 250 GA-ALNS 888 883 0.6% 2
251 50 251 MS-ALNS 883 883 0.0% 1
259 50 254 ALNS 794 794 0.0% 1
259 50 257 GA 858 794 8.1% 3
259 50 309 GA-ALNS 861 794 8.4% 4
259 50 255 MS-ALNS 795 794 0.1% 2
400 100 500 ALNS 1648 1598 3.1% 3
400 100 513 GA 1676 1598 4.9% 4
400 100 500 GA-ALNS 1598 1598 0.0% 1
400 100 500 MS-ALNS 1611 1598 0.8% 2
401 100 500 ALNS 1868 1771 5.5% 4
401 100 501 GA 1861 1771 5.1% 3
401 100 500 GA-ALNS 1771 1771 0.0% 1
401 100 500 MS-ALNS 1785 1771 0.8% 2
402 100 500 ALNS 1760 1708 3.0% 4
402 100 522 GA 1749 1708 2.4% 3
402 100 500 GA-ALNS 1711 1708 0.2% 2
402 100 500 MS-ALNS 1708 1708 0.0% 1
403 100 500 ALNS 1655 1655 0.0% 1
403 100 519 GA 1763 1655 6.5% 4
403 100 500 GA-ALNS 1671 1655 1.0% 3
403 100 502 MS-ALNS 1665 1655 0.6% 2
411 100 501 ALNS 1456 1429 1.9% 3
411 100 501 GA 1526 1429 6.8% 4
411 100 501 GA-ALNS 1451 1429 1.5% 2
411 100 501 MS-ALNS 1429 1429 0.0% 1
438 100 500 ALNS 1453 1451 0.1% 2
438 100 519 GA 1473 1451 1.5% 4
438 100 502 GA-ALNS 1463 1451 0.8% 3
438 100 501 MS-ALNS 1451 1451 0.0% 1
439 100 500 ALNS 1739 1605 8.3% 4
439 100 501 GA 1679 1605 4.6% 3
439 100 500 GA-ALNS 1605 1605 0.0% 1
439 100 500 MS-ALNS 1651 1605 2.9% 2



5.8. Appendix 121

Table 5.21 continued from previous page
ID #req. time(s) Method OV OVB ∆OV Rank
440 100 500 ALNS 1527 1513 0.9% 2
440 100 518 GA 1576 1513 4.2% 4
440 100 500 GA-ALNS 1513 1513 0.0% 1
440 100 500 MS-ALNS 1546 1513 2.2% 3
441 100 501 ALNS 1547 1547 0.0% 1
441 100 518 GA 1646 1547 6.4% 4
441 100 501 GA-ALNS 1570 1547 1.5% 2
441 100 504 MS-ALNS 1585 1547 2.5% 3
449 100 501 ALNS 1367 1325 3.2% 2
449 100 522 GA 1459 1325 10.1% 4
449 100 523 GA-ALNS 1325 1325 0.0% 1
449 100 501 MS-ALNS 1410 1325 6.4% 3

Table 5.21: Results of method comparison for all instances. Although the run time limit was
identical, the algorithm always finishes already started iterations. Therefore the reported run
times can deviate.
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Parameter Description Value

PMS−ALNS Size of initial solution pool for MS-ALNS 10
PGA Size of initial solution pool for GA and GA-ALNS 100
mprob Mutation probability for GA 0.5
mperc Mutation percentage for GA 0.05
k Elite population for GA 0.1
µGA Percentage of GA for GA-ALNS 0.2
ζGA Min. generations for GA for GA-ALNS 5
w Initial threshold to accept a worse solution for ALNS 1

wmax ALNS parameter controlling how much worse the incumbent
solution is at most allowed to be in relation to the best solution

1.5

w′ ALNS Parameter controlling by how much w changes if no so-
lution could be found

0.05

cL ALNS iteration limit. If after cL iterations no further improve-
ment could be found, the ALNS is terminated.

∞

cL Iteration limit for ALNS as part of MS-ALNS or GA-ALNS. 50
cw ALNS iteration limit without improvement after which the

threshold w to accept a worse solution is increased
50

cw Iteration limit without improvement after which the threshold
w to accept a worse solution is increased for ALNS as part of
MS-ALNS or GA-ALNS

1
2cL

cγmax ALNS iteration limit without improvement after which upper
destroy limit γmax for a solution is doubled

75

cγmax Iteration limit without improvement after which upper destroy
limit γmax for a solution is doubled for ALNS as part of MS-
ALNS or GA-ALNS

3
4cL

γmin Minimum percentage of solution to be destroyed for ALNS 0.1
γmax Maximum percentage of solution to be destroyed for ALNS 0.4
ϕw Weight of the waiting time for calculating the insertion cost of

a request into a tour
0.2

Table 5.20: Table of all parameters used for the computational results.
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Abstract This paper reports on the results of the VeRoLog Solver Challenge 2016 -
2017: the third solver challenge facilitated by VeRoLog, the EURO Working Group on
Vehicle Routing and Logistics Optimization. The authors are the winners of second
and third places, combined with members of the challenge organizing committee.
The problem central to the challenge was a rich VRP: expensive and therefore scarce
equipment was to be redistributed over customer locations within time windows.
The difficulty was in creating combinations of pickups and deliveries that reduce
the amount of equipment needed to execute the schedule, as well as the lengths of
the routes and the number of vehicles used. This paper gives a description of the
solution methods of the above-mentioned participants. The second place method
involves sequences of 22 low level heuristics: each of these heuristics is associated
with a transition probability to move to another low level heuristic. A randomly
drawn sequence of these heuristics is applied to an initial solution, after which
the probabilities are updated depending on whether or not this sequence improved
the objective value, hence increasing the chance of selecting the sequences that
generate improved solutions. The third place method decomposes the problem into
two independent parts: first, it schedules the delivery days for all requests using a
genetic algorithm. Each schedule in the genetic algorithm is evaluated by estimating
its cost using a deterministic routing algorithm that constructs feasible routes for
each day. After spending 80 percent of time in this phase, the last 20 percent of the
computation time is spent on Variable Neighborhood Descent to further improve
the routes found by the deterministic routing algorithm. This article finishes with
an in-depth comparison of the results of the two approaches.
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6.1 Introduction
The VeRoLog Solver Challenge 2016 - 2017 was facilitated by VeRoLog, the EURO Work-

ing Group on Vehicle Routing and Logistics Optimization and organized in cooperation with
ORTEC. This challenge inspired a total of 28 teams, worldwide, to participate. Table 6.1 lists
the institutions to which the participants were affiliated. The first, second and third prize were
awarded during the VeRoLog conference 2017 in Amsterdam1.

ORTEC designed and ran the third solver challenge organized by the VeRoLog. The previous
two editions took place in 20142 and 20153 and were designed and run by PTV. This paper
concerns the third challenge45.

The routing problem central to the VeRoLog Solver Challenge 2016 - 2017 was based on a
real-life problem for one of ORTEC’s clients. From this real-life problem, a few aspects were
selected that lead to a new research topic in vehicle routing optimization.

The problem concerns a large cattle improvement company, that must regularly measure the
milk quality at a number of farms (customers). This requires special measuring tools, which have
to be delivered to the customers at their request. After the measurement, typically a few days
later, the tools have to be picked up again. The scheduling of these deliveries to days and the
routing for the planned deliveries and pickups are the issues to address in this challenge.

The problem of this challenge is deterministic and revolves over a long horizon, meaning
that the scheduling of the individual delivery dates has a large impact on solution quality. The
problem was first introduced by Gromicho et al. [70] and in the context of the challenge by
Dullaert et al. [47]. It combines the following decisions:

• On which day each delivery request should be served. This leads to a second automatic
decision: on which day it should be picked up again.

• For each day in the planning horizon, which deliveries and which pickups to combine in
each route - and in what sequence.

The main objective is to serve all requests at a minimum cost (see Section 6.2.1), subject to
the following constraints:

• The number of items (equipment or tools) available per type is limitative, making them
scarce and forcing reuse.

• Items can be loaded at the depot or at a customer, but the items on board must always
satisfy the capacity constraints.

We may recognize some of the aspects of the problem in the available literature. The routing
part of our problem consists of unpaired pickups and deliveries which is central to the Pickup and
Delivery VRP (PDVRP) as defined in Parragh et al. [122], where they argued that this problem
had received the least attention of all problems which they have surveyed. Only one paper was
known to the authors of Parragh et al. [122] addressing unpaired pickups and deliveries being
repositioned by multiple vehicles, namely Dror et al. [45]. The problem being addressed there
resembles in many aspects the routing of a specific day in our challenge, including the scarcity
of the goods and the possibility of them being repositioned (shared electric cars). Dror et al.
[45] developed an exact methodology based on a mixed integer programming model, but the
applicability was limited to very small instances.

1https://verolog2017.sciencesconf.org/
2www.euro-online.org/websites/verolog/verolog-solver-challenge-2014/
3www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2015/
4www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2016-2017/
5https://verolog2017.ortec.com/

https://verolog2017.sciencesconf.org/
www.euro-online.org/websites/verolog/verolog-solver-challenge-2014/
www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2015/
www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2016-2017/
https://verolog2017.ortec.com/
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Table 6.1: The participants’ institutions. If known, the names of the participants are also
mentioned.

Team Institution Country Participants
– CIRRELT Canada

– Erasmus University Rotterdam The Netherlands

– Ho Chi Minh City Vietnam
International University

– Koc University Turkey

akhe Lancaster University United Kingdom Ahmed Kheiri

– Los Andes University Colombia

– Maastricht University The Netherlands

Success Shiraz University Iran Morteza Keshtkaran

– Tages s.c. Italy

– Tata Consultancy Services Unknown
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Close to the time of writing Parragh et al. [122], Montané and Galvão [108] designed the
first metaheuristic for the routing of unpaired pickups and deliveries by multiple vehicles, but no
repositioning was considered: each vehicle departs from a single depot with the loads to deliver
and returns to the same depot with the picked up loads. This seems to be the setting generally
followed by subsequent research.

Battarra et al. [11] consider the VRP with simultaneous pickup and delivery demands and
attribute its origin to the work of Min [104] which considered simultaneous pickup and delivery in
the context of a public library. The study of Min [104], which seems to be overlooked by Parragh
et al. [122], also assumes that the deliveries come from a depot and the pickups return to the
same depot, hence disallows relocation. It is worthy to mention that their proposed mathematical
model includes a parameter to model the traffic congestion, which makes sense since the setting
of their study was a large urban area. This is simply done by adjusting the travel times on the
arcs. However, just as in the case of our challenge, no detailed consideration is given to the time
aspect and the travel times appear only in the objective function.

Another aspect that received substantial attention is that of pickups and deliveries of individ-
ual items, which is central to so-called dial-a-ride models Cordeau and Laporte [29]. These models
deal with the transportation of people and tend to focus on the journey of each item (person),
which starts at pickup and finishes at delivery. Some modifications to this theme include the
usage of transfer points as in Masson et al. [101] and anticipation on expected return transports
as in Schilde et al. [147]. The latter adds a coordination aspect that relates to the subject of our
challenge in the sense that the items being delivered need to be picked up again; however, their
items (people) are not ‘reusable’ nor ‘exchangeable’.

Simultaneous pickups and deliveries are also central in the literature on routing within reverse
logistics, see Dethloff [39]. Researchers in this field tend to focus on the transportation of reusable
packaging, which seemingly relates to our relocation of scarce items. However, the relocation -
and hence reuse - is out of scope of these models: packaging is brought back to depots to be
reused in subsequent, not yet planned, routes. Typically, no careful inventory of packages is kept
since they are not perceived as scarce.

In general, routing papers assume the pickup and delivery orders to be a priori defined and
they should be served on the day of planning.

One area where we do find the multiple day aspect and the choice of delivery day is in
inventory routing problems as surveyed by Coelho et al. [27]. The main difference is that in
inventory routing models the inventory is managed at the delivery location and typically estimated
by the routing operator. Goods are not relocated, nor they are scarce. Inventory inside the
vehicles is simple to manage since loading takes place at the depot only, whereas unloading
takes place during the route. The intrinsic difficulty of such models comes from the combination
of demand forecasting (leading to inventory estimation) with routing and scheduling decisions.
These scheduling and routing aspects are present in our problem; however, classical inventory
routing models lack the relocation and reuse of goods.

Finally, we mention the research on relocation planning for bike sharing systems (see Fishman
[56] for a survey). In this problem, the goal is to transport bikes from locations where they tend
to accumulate to those where they are sought. The decision on what level of bike inventory to
maintain at every location greatly depends on estimations of flows between locations, which makes
this problem highly stochastic and complex. This complexity is mentioned in, for example, Schui-
jbroek et al. [148], which notes that finding provably optimal solutions is practically intractable.
Perhaps that is why this domain is quite rich in approaches, including Variable Neighborhood
Search heuristics in Rainer-Harbach et al. [130], branch-and-cut algorithm in Raviv and Kolka
[133], cluster-first route-second heuristic in Schuijbroek et al. [148], and simulation optimization
in Jian et al. [84]. Furthermore, these models are sometimes extended with different aspects of
the problem, such as combining staff-based vehicle redistribution and real-time price incentives
for customers Pfrommer et al. [127].
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It is interesting to mention that the repositioning by multiple vehicles addressed by Dror
et al. [45] was also in a context of vehicle sharing, in their case electric cars, which are indeed
much more scarce than the bikes being shared.

We believe that the combination of decisions found in the problem of this challenge, which
is a practical problem faced by some of ORTEC’s customers, is quite unique and may lead to
subsequent research. Also, the richness of the objective function contributes to the versatility and
difficulty of this problem: emphasizing tool minimization leads to different methodologies being
effective than emphasizing total distance. In order to support future research with benchmarking,
the challenge site remains alive after the challenge has ended.

The problem, including the format of the instance and solution files, and the challenge rules
are described by the challenge team (Gerhard Post, Daan Mocking, Jelke van Hoorn, Caroline
Jagtenberg and Joaquim Gromicho) which can be found on the competition website. Note that
this paper contains a recap of the problem description and the challenge rules.

The challenge problem is a simplification of a richer version found by ORTEC’s clients, which
includes among other features multiple resource capabilities, heterogeneous fleet, multiple depots,
route synchronization, tight time-windows and adherence to working and driving time directives.
Furthermore, the real problem as solved by ORTEC for its clients includes an additional phase
which is not part of this challenge: the scheduling and routing of inspectors, who should visit the
farms while the equipment is present. Each inspector has his or her own home base, skills and
periods of availability, which makes the whole problem an even greater challenge. The problem
instances used during the VeRoLog challenge can be downloaded from the competition website.

As a curiosity, we mention that a group of undergraduate Business Analytics students at the
Vrije Universiteit in Amsterdam ran a preliminary version of the challenge composed of smaller
and less restrictive instances, as a case study during a course taught by Joaquim Gromicho.
During this case study it became evident that there are at least two main ways to tackle the
problem: route first, schedule second or schedule first, route second. Those that focus first on
routing day by day and just schedule to meet restrictions were the first to obtain solutions to all
instances, while those that develop a sophisticated scheduling of the visits prior to routing took
longer to design and implement their algorithms but reached higher solution quality.

The remainder of this paper is structured as follows. Section 6.2 provides a description of
the tackled problem. Section 6.3 describes the algorithms that ended up second and third in
the ranking of the challenge. Section 6.4 presents the results, and Section 6.5 describes the
conclusions.

6.2 Problem description
The problem discussed in this paper consists in planning of deliveries and pickups of tools to

customers at their requests to achieve objectives under the presence of several constraints.
The problem consists of a set C of customers, a set T of tool kinds, and a set R of tool

requests. A request r(n, t, c, d, w) asks for n ∈ N tools of one kind t ∈ T , that need to be present
at customer c ∈ C for a given number of consecutive days d. The delivery of the tools has to
fall within a certain time window w given in full days. If a customer requires several kinds of
tools, this means separate requests are made. Note that all requests are known at the moment
the planning is made. The tools of the request have to be picked up by one vehicle the day after
the request is completed, i.e., precisely d+ 1 days after the tools were delivered.

Each problem instance has one depot location where all tools are located at the beginning
and end of the planning horizon. A vehicle can load a tool at the depot and unload it at a
customer. Alternatively, after the first day, a vehicle can also pick up a tool at customer c1 and
deliver it to customer c2 without visiting the depot in between. Vehicles can also visit the depot
multiple times per day, leaving tools and picking them up later for redistribution. To avoid the
need for synchronization between the vehicles on the same day, only the vehicle that left the tool
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at the depot may pick it up again. Relaxing this constraint would force detailed arrival moments
at the depot to be modeled in order to enable checking that tools already brought by a vehicle are
available to be taken by another during the same day. If the tools cannot be exchanged between
vehicles on the same day, the arrival and departure times of vehicles at the depot do not need to
be synchronized among the vehicles. This restriction does not apply if the tool is being picked
up on a later day. All vehicles must start and end their day at the depot. If a vehicle visits the
depot during the day, the vehicle route consists of multiple tours.

Each tool kind has a certain size, and the available vehicles all have the same capacity with
respect to the tool sizes. During any part of a route, the total size on board of a vehicle may
not exceed its capacity. There is no maximum amount on the number of vehicles one can use
(although vehicles are not free).

Every problem instance provides coordinates for each customer as well as a depot, allowing
the participants to compute the Euclidean distance between any two locations. There is an upper
bound on the distance that a vehicle can travel in one day.

6.2.1 Objectives
All requests must be satisfied, and the objective is to minimize a cost function that consists

of four parts: (1) costs per distance traveled, (2) costs for using a vehicle for a day, (3) costs for
using a vehicle at all, and (4) a cost per tool, depending on the tool kind. The latter was inspired
by the real-life problem that this challenge originated from: the tools involved are in fact rather
expensive, and hence it is worthwhile to investigate whether routes can be created which allow
for fewer tools to be purchased. Each problem instance includes a definition for costs (1) - (4),
which means that different problem instances emphasize different aspects of this problem. This
makes it more challenging for the participants to come up with one algorithm that tackles all
problem instances.

For the challenge rules, including how algorithms are evaluated, we refer the reader to 6.6.

6.3 Competitors’ algorithms
Search methodologies are at the core of decision support systems, particularly while dealing

with computationally difficult optimization problems. The cutting-edge methods are often tailored
for a specific problem domain by the experts in the area. Such systems are custom-made and,
often, costly to build. When exact methods cannot be applied, practitioners and researchers
resort to heuristics, which are ‘rule of thumb’ methods for solving a given optimization problem.
There is a growing interest towards more general, cheaper and intelligent methods. Metaheuristics
[152] and hyper-heuristics [20] are such methodologies that automate the search process. This
section presents the methods that won the runner-up and the second runner-up prizes in the
VeRoLog Solver Challenge 2016 - 2017. The former method employs a hyper-heuristic technique
and the latter applies an improved genetic algorithm metaheuristic.

6.3.1 A sequence-based selection hyper-heuristic (Team: akhe)
The main components of selection hyper-heuristics as identified in [20] are (i) heuristic

selection which selects a low level heuristic from a pre-defined set of low level heuristics and
applies it to a candidate solution at each decision point; and (ii) move acceptance which decides
whether to continue with the newly generated solution or the previous solution. A new field
of hyper-heuristic methods embedding data science techniques has recently been developed [6].
Experiments on a hyper-heuristic benchmark framework [87], urban transit route design problem
[1], wind farm layout optimization problem [167], high school timetabling problem [88] and on
water distribution optimization problem [89] have shown that applying a sequence of low level
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heuristics can potentially improve the quality of solutions more than those that simply select and
apply a single low level heuristic.

Overall model
The competing method that took the second place uses a method that applies sequences

of heuristics. To achieve this, each low level heuristic is associated with two probabilities: a
transition probability to move to another low level heuristic including itself, and another to
determine whether to terminate the sequence of low level heuristics at this point.

Let [llh0, llh1, . . . , llhn−1] be the set of low level heuristics. A transition matrix (Transition)
of size n × n stores scores for each of the n low level heuristics, from which we calculate the
probabilities of moving from one low level heuristic to another (by normalizing the scores given
in the matrix). We also define another matrix referred to as sequence status matrix (Status) of
size n× 2 which specifies scores for each of the n low level heuristics in one of two options: add
and end.

Initially, elements in both matrices (Transition and Status) are assigned the value 1. Fig-
ure 6.1 shows the initial score values of the two matrices for n = 4 low level heuristics.

llh0 llh1 llh2 llh3

llh0 1 1 1 1
llh1 1 1 1 1
llh2 1 1 1 1
llh3 1 1 1 1

Transition

add end

llh0 1 1
llh1 1 1
llh2 1 1
llh3 1 1

Status

Figure 6.1: Initial score values of the two matrices for n = 4 low level heuristics

At first, a randomly selected low level heuristic (assume llh2 is selected) is added to the
sequence of low level heuristics. [SEQUENCE: llh2]

The Status matrix is used to decide whether another low level heuristic will be selected and
added to the sequence or the sequence will end at this point. To make one of these two choices, a
roulette wheel selection method is applied. For llh2, the probability of adding another low level
heuristic is 1/2. Assume that the chosen status is add. [SEQUENCE: llh2, ]

The decision now is to add another low level heuristic to the sequence. This will be chosen
by a selection procedure based on the roulette wheel selection strategy. In our example, the
probability of selecting any low level heuristic, given that the recently added low level heuristic
was llh2, is 1/4. Assume that the chosen low level heuristic is llh1. [SEQUENCE: llh2, llh1]

The Status matrix is used again to decide whether another low level heuristic will be selected
and added to the sequence or the sequence will end at this point. For llh1, which is the recently
added low level heuristic, the probability of adding another low level heuristic to the sequence is
1/2. Assume that the chosen status is end. [SEQUENCE: llh2, llh1].

In this case the current sequence of low level heuristics ([llh2, llh1]) will be applied to the
candidate solution in this given order to generate a new solution.

If the new solution improved over the best solution, the scores in both matrices for the
relevant low level heuristics are increased by 1 as a reward. This is illustrated in Figure 6.2. If
the new solution does not improve the quality of the best solution in hand, then the scores in the
matrices will not be updated. This way we only increase the chance of selecting the sequences
that generate improved solutions.
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llh0 llh1 llh2 llh3

llh0 1 1 1 1
llh1 1 1 1 1
llh2 1 2 1 1
llh3 1 1 1 1

Transition

add end

llh0 1 1
llh1 1 2
llh2 2 1
llh3 1 1

Status

Figure 6.2: Updated score values of the two matrices

We are now at llh1, and we continue with the same strategy to construct and apply the next
sequence of heuristics using the updated scores.

The move acceptance method used in this work is Record-to-Record Travel (RRT) move
acceptance criterion [46]. The idea of RRT is based on the simple notion that any new solution,
which is not much worse than the best solution recorded, is accepted. A candidate solution is in
the form of a three-dimensional array (days × routes × visits).

Note that the quality of a given solution is evaluated using the main objective to be minimized
and an estimated (secondary) objective depending on which cost type (described in Section 6.2.1)
of a given problem instance is set highest. As an example, if the main objective is to minimize the
number of vehicles, then the algorithm will locate the day that has the most number of vehicles
(routes) running and the secondary objective becomes the trip distance of the route that has the
least total distance on that day. Similarly for the number of used vehicles per day, the algorithm
attempts to minimize the number of vehicles used per day as the main objective, and the trip
distance of the route that has the least total distance as the secondary objective.

The organizers of the challenge provided a set of feasible instances, and confirmed that a
feasible solution to the problem can be achieved by selecting for each visit (delivery or pickup)
one vehicle to carry out only this visit. Following this, we developed a greedy algorithm to
construct an initial feasible solution. However, the implemented simple greedy algorithm, which
runs in milliseconds, often yields a poor quality solution requiring further enhancement.

Low level heuristics
The sequence-based selection hyper-heuristic approach in this work controls a set of 22 low

level heuristics to improve the quality of an initially generated solution. The low level heuristics
are grouped into the following 6 categories: move, swap, reverse, add, delete and ruin and recreate.

Move low level heuristics
• LLH0: Moves a visit (delivery, pickup or depot) into a new location inside a route

(Figure 6.3a).

• LLH1: Selects two random routes, same day, and a random position on each route. The
visit in the first position is moved into the second position on the second route (Figure 6.3c).

• LLH2: Selects two random routes from different days and a random position on each
route. The visit in the first position is moved into the second position on the second
route. Corresponding visits (pickup or delivery) will be moved to satisfy the time window
constraint.

• LLH3: Moves a block of visits, that is a set of consecutive visits, into a new location
inside a route.
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(a) Move inside route (b) Swap inside route

(c) Move between routes (d) Swap between routes

(e) Move block between routes (f) Swap block between routes

(g) Add (h) Delete

(i) Reverse (j) Ruin and recreate

Figure 6.3: Straight arcs are visits in the route, dashed arcs are visits removed after applying the
heuristic, curved arcs are visits added after applying the heuristic

• LLH4: Moves a block of visits into a randomly selected location from another route in
the same day (Figure 6.3e).

• LLH5: Moves a block of visits into a randomly selected location from another route in
different day. Corresponding visits will be moved to satisfy the time window constraint.

• LLH6: Moves a tour, that is visits between two depots, from a route into another route
in the same day.

• LLH7: Moves a tour from a route into another route in different day. Corresponding visits
will be moved to satisfy the time window constraint.

Swap low level heuristics
• LLH8: Selects a random route and two random positions and swaps the two visits in these

positions (Figure 6.3b).
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• LLH9: Selects two random routes from a randomly selected day, and a random position
on each route and swaps the visits in these positions (Figure 6.3d).

• LLH10: Selects two random routes from two different days, and a random position on
each route and swaps the visits in these positions. Corresponding visits will be moved to
satisfy the time window constraint.

• LLH11: Exchanges block of visits inside a route.

• LLH12: Exchanges block of visits between two routes both from the same day (Figure 6.3f).

• LLH13: Exchanges block of visits between two routes from different days. Corresponding
visits will be moved to satisfy the time window constraint.

• LLH14: Exchanges two tours in a randomly selected route.

• LLH15: Exchanges two tours in two different routes in a randomly selected day.

• LLH16: Exchanges two tours in two different routes from different days. Corresponding
visits will be moved to satisfy the time window constraint.

Reverse low level heuristics
• LLH17: Consists in a chronological reversal of a block of visits in a randomly selected

route (Figure 6.3i).

Add low level heuristics
• LLH18: Selects a random route and a random position in this route and adds a depot

visit into this position (Figure 6.3g).

Delete low level heuristics
• LLH19: Deletes a depot visit (Figure 6.3h).

Ruin and recreate low level heuristics
• LLH20: Destructs a randomly selected rout generating a partial solution and then recon-

structs a complete solution at random (Figure 6.3j).

• LLH21: Same as LLH20 but destructs/reconstructs several routes from a randomly se-
lected day.

Additional remarks and conclusions
Although, the ultimate goal of the development of hyper-heuristic methods is to increase

the level of generality, by offering methods that have the ability to work on a wide range of
optimization problems, still it would be interesting to know the position of hyper-heuristics with
respect to other problem-specific solution methods in a particular optimization problem while
still being general. In this work, a sequence-based selection hyper-heuristic has been developed
which aims to intelligently and effectively control the application of sequences of heuristics as
opposed to simple selection of single heuristic. The method effectively exploits the features of the
problems on the fly as indicated in [87]. This is a viable approach considering that at different
points during the search, different sequences of heuristics may be performing well.

Preliminary experiments did indicate that large low level heuristics at tour (or block of visits)
level that tend to move tours around could lead to better results. Of course better understanding
of this effect requires further work and much more exploration. Final results of the challenge
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suggest that the low level heuristics would need significant adjustment to handle the problem
more effectively. Interesting future work might well try to explore features of instances that are
correlated with the different objectives defined in Section 6.2.1.

6.3.2 A genetic algorithm metaheuristic (Team: ADDM)
The proposed algorithm decomposes the problem into two independent parts. The first part

finds a schedule for the delivery day of each request. The second part finds the routes of the
vehicles for each day according to the predetermined schedule.

Scheduling of delivery days
For the scheduling, a genetic algorithm (GA) is used. For a pedagogical introduction on

GA see Wall [163]. Hart et al. [74] provide a review on evolutionary scheduling literature. The
genome sequence represents the day of delivery for each request. Therefore, the sequence has a
length equal to the number of requests. The day specified for each genome has to be within the
delivery time window for the request. Since every request needs the tools for a specific amount
of days, the corresponding pickup days can be easily determined. As far as the scheduling is
concerned, all necessary information is stored in this sequence. Figure 6.4 shows an example of a
genome sequence.

Figure 6.4: An example of a genome sequence for the genetic algorithm

Building a population
For building an initial population, two different approaches are used: a greedy heuristic and

a random schedule generator.
The greedy heuristic picks a request and assigns a delivery day that increases costs the least

for the overall schedule. Here, a cost estimation is used based on the number of required vehicles
and tools. If the resulting sequence is feasible, it is added to the initial population, otherwise
the heuristic restarted. Feasibility is determined by checking if the required resources are not
exceeding the available limit. To avoid a deterministic heuristic, the order of requests is chosen
randomly.

The random schedule generator assigns each request a random day for delivery as long as it
is within the allotted time windows. Therefore, the day for the sequence is selected between the
first and last possible day for delivery. If the sequence is determined to be feasible, it is added to
the initial population.

The size of the population is adapted to the size of the instance, i.e. the number of requests.
Depending on the problem instance, we choose between 70 and 300 individuals. Both the greedy
heuristic and the random schedule generator initially generate a pool of individuals two times
the population size. The better half is kept, the worse half discarded.

Selection, genetic operators and mutation
The parents for reproduction are chosen out of the whole population with decreasing prob-

ability the higher the cost of an individual: first, we sort the population by the score of each
individual. The population is then separated into three parts: the top half and the next two
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quarters. A parent is then chosen with 1/2 probability out of the top half, 1/3 probability out of
the less-than-average quarter and 1/6 probability out of the worst quarter. The same procedure
is used for the second parent. This way of selecting parents guarantees that individuals with
low cost are chosen most of the time, but also allows for less than average candidates to take
part in the reproduction step. As a consequence, it takes longer for populations to converge to
local optima. Clearly, constructing a selection method is not a rigorous task and there is a lot of
freedom in the exact details of how to choose individuals. After some testing we settled on the
above described selection method due to its simplicity and because it achieved acceptable results.

For reproduction, a uniform crossover operator is used. Each gene of the child sequence has
an equal probability of being selected from one of the parents. Figure 6.5 shows an example of a
uniform crossover.

Figure 6.5: An example of a uniform crossover

After the crossover, some mutation might occur: we mutate up to 10 random requests, each
having a probability of 1/2 to mutate. The mutation shifts a request to a different delivery day
within the available time windows.

The genetic algorithm runs up to 400 generations or until the population ‘converges’. We
define a population to be converged, if the new generation contains more than 80 per cent of
identical individuals compared to the last generation.

Routing and schedule evaluation
To get the exact score of a schedule, the routing for the whole planning horizon has to be

computed. The routing algorithm has to run very often, because our genetic approach relies on
evaluating the score of a large number of individual schedules in a short amount of time. In
particular, the genetic algorithm might encounter the same individual more than once during
its run. Therefore, the score evaluation of individual schedules represents the main performance
bottleneck of the solver.

These problems can be solved by choosing a deterministic routing algorithm, which provides
each schedule with a unique set of routes. As a result, two identical schedules have the same
routing and the same score. Once the routes for a schedule are calculated, the score and a hash
value of the schedule can be cached in a lookup table. The lookup table provides an easy and
fast way of checking if a particular schedule has been encountered before and obtaining its score
without running the routing algorithm again. Furthermore, memory use is also greatly improved
because it is not necessary to store the routes of each schedule in the population. In the rare
event that the exact routes are needed (for example when writing the best known solution to
a file), we simply run the deterministic routing algorithm again and obtain the same result as
before.
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The routing algorithm takes a schedule as input and tries to solve the routing problem for
each day individually. Since each vehicle can return to the depot multiple times within a day,
each vehicle route can consist of multiple tours. The algorithm is comprised of four stages:

1. A modified parallel savings algorithm [26, 132] with sij = k(si0 + sj0 − sij) where k > 1,
if i is a pickup and j a delivery of the same tool. Otherwise k = 1. Since the problem
has the quite unique characteristic of allowing tools to be passed on from one customer to
the next, we favor savings where this is the case to minimize tool use. The algorithm is
initialized with single requests tours. Each initial tour starts at the depot, fulfills a single
pickup or delivery request and then returns to the depot. The savings algorithm is based
on merging pairs of tours into increasingly longer tours. For every merge we determine if
the capacity constraint is fulfilled by iterating through the arcs where each pickup reduces
the remaining capacity and each delivery increases the remaining capacity of the vehicle.
Additionally, maximum distance constraints are checked by summing over arc lengths. If
constraints are violated, the savings pair is skipped and the next pair is considered.

2. A 2-opt heuristic [35] using best improvement where all combinations of arc pairs are
selected and the sub-route between the arcs is reversed. Every time tours are modified we
check for capacity and distance constraints.

3. A 3-opt heuristic [95] using best improvement where all combinations of arc triplets are
selected. As with the 2-opt heuristic, we check for constraint violations.

4. A best fit decreasing bin packing heuristic [85, 99] to combine tours into vehicles routes
with the goal to reduce the amount of vehicles in use. When packing tours into routes the
capacity constraint is always fulfilled, as each tour starts and ends at the depot. However,
the distance constraint must still be checked.

Stages 2 – 4 use simple cost estimations with different weight parameters for tool use, vehicle
number and route length. Tools of the same type are assumed to always be passed on from a
customer to the next to minimize the number of tools required from the depot. Depending on
the parameter k and the weights, the results of the routing algorithm can vary dramatically for a
given schedule. The final version of our solver uses 5 different parameter sets, which put emphasis
on particular aspects of the cost function. During the initial stage of the solver, we choose the
parameter set which gives the best average score of the initial population.

Post optimization for the routing
Once the genetic algorithm finishes (either due to convergence of the population or due to

reaching the time limit) and a candidate schedule has been found, more computationally intensive
improvement heuristics can be used to further improve the routes that were determined by the
deterministic routing algorithm. Our solver sets aside 20 per cent of the available runtime for this
post optimization stage. We use Variable Neighborhood Descent (VND) [73] and the following
neighborhoods:

1. Move Moves a random node (delivery or pickup) to another position and/or tour and/or
vehicle route.

2. Swap Swaps two random nodes from randomly selected tours and vehicles.

3. Tour move Moves a random tour to another vehicle.

4. Tour swap Swaps two random tours from randomly selected vehicles.

The VND terminates after n iterations without improvement in each neighborhood or until
available runtime is reached.
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Additional remarks and conclusions
The decomposition approach (i.e. ‘scheduling first, routing second’) was chosen to simplify

the problem and accommodate the genetic algorithm. In particular, it naturally leads to an
appropriate solution representation of individuals in terms of schedules. The genetic algorithm
proves to be a powerful metaheuristic for a problem like this, where sub-optimal but feasible
solutions can easily be found. The deterministic routing and schedule evaluation ensures that
routing calculations are not needlessly repeated for identical schedules. This results in a great
acceleration of the evaluation of the later generations. Such optimization is especially important
for the (time) resource restricted challenge. The parameter values that account for the vastly
different costs of each instance and the general parameters of the genetic algorithm were set in
a trial-and-error fashion. In the end, participation in the all-time-best challenge with strong
competition from other teams helped us choose the particular values used in the solver.

6.4 Competition results
6.4.1 All-time-best challenge

Table 6.2 shows the characteristics of the all-time-best instances and the cost of best obtained
solutions. Instances are named using two numbers with the prefixes r for requests and d for days.
The instances range from 100 to 1000 customers and from 5 to 30 days. The last number indicates
which cost type is set highest, with 1: tool cost followed by vehicle cost, 2: tool cost followed
by vehicle day cost, 3: vehicle cost, 4: vehicle day cost and 5: distance cost. For example, the
Instance VeRoLog r100d5 1 has 100 requests over 5 days, with tools having the highest cost, and
vehicle has the second highest cost. The instances also have between 2 and 5 different tool kinds
that have to be distributed.

Table 6.3: The costs of the best five solutions achieved by the competitors and the date the
solutions were submitted during the all-time-best challenge

Instance First Team Second Team Third Team Fourth Team Fifth Team

r100d5 1
Team mjg Success akhe ADDM Sunbeams
Cost 1,552,435,049 1,552,437,090 1,552,472,997 1,552,667,702 1,552,674,956
Date 10/04/2017 12/06/2017 22/03/2017 24/03/2017 13/05/2017

r100d5 2
Team mjg akhe Sunbeams ADDM Success
Cost 996,709,544 997,125,464 997,131,853 997,536,075 997,975,026
Date 17/04/2017 22/03/2017 19/05/2017 24/03/2017 13/03/2017

r100d5 3
Team mjg Success ADDM Sunbeams EquipoMLS
Cost 119,957,689 119,999,604 120,174,619 125,484,960 141,027,538
Date 17/04/2017 15/06/2017 08/03/2017 13/05/2017 30/05/2017

r100d5 4
Team Success ADDM mjg Sunbeams EquipoMLS
Cost 1,359,088,350 1,359,171,004 1,388,155,986 1,506,904,422 1,599,316,230
Date 12/03/2017 10/03/2017 13/04/2017 03/05/2017 30/05/2017

r100d5 5
Team mjg Success ADDM Sunbeams EquipoMLS
Cost 300,125,049,016 302,122,548,017 302,145,047,015 312,987,048,016 324,679,054,017
Date 17/04/2017 15/06/2017 02/03/2017 03/05/2017 26/05/2017

r100d10 1
Team mjg Success Sunbeams ADDM VeRoLog050
Cost 1,313,786,538 1,313,800,238 1,313,843,042 1,383,818,456 1,404,313,470
Date 05/03/2017 17/06/2017 19/05/2017 09/03/2017 03/03/2017

r100d10 2
Team mjg Success Sunbeams VeRoLog050 ADDM
Cost 1,555,438,898 1,555,866,637 1,556,076,294 1,608,781,502 1,616,279,307
Date 14/02/2017 15/04/2017 19/05/2017 02/03/2017 09/03/2017

Continued on next page
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Table 6.3 – Continued from previous page
Instance First Team Second Team Third Team Fourth Team Fifth Team

r100d10 3
Team mjg Success ADDM Sunbeams TeamTau2017
Cost 155,316,178 155,451,452 155,606,071 155,859,870 156,154,622
Date 13/04/2017 30/03/2017 09/03/2017 19/04/2017 02/06/2017

r100d10 4
Team Success mjg ADDM TeamTau2017 goc-ar
Cost 1,114,888,217 1,152,790,895 1,192,096,909 1,350,637,725 1,351,320,617
Date 09/05/2017 28/04/2017 06/03/2017 02/06/2017 09/12/2016

r100d10 5
Team Success mjg ADDM Sunbeams goc-ar
Cost 43,871,262,004 43,901,664,004 45,036,866,004 52,393,174,005 52,474,576,006
Date 23/04/2017 13/04/2017 10/03/2017 28/04/2017 05/12/2016

r500d15 1
Team mjg Sunbeams Success VeRoLog050 ADDM
Cost 3,256,089,143 3,288,333,346 3,346,228,685 3,487,816,461 3,506,242,192
Date 03/05/2017 09/06/2017 20/04/2017 03/03/2017 06/03/2017

r500d15 2
Team mjg Sunbeams Success ADDM VeRoLog050
Cost 3,800,352,751 3,811,482,643 3,888,199,515 3,951,378,786 4,052,471,132
Date 03/05/2017 14/06/2017 13/04/2017 07/03/2017 03/03/2017

r500d15 3
Team mjg ADDM goc-ar Success TeamTau2017
Cost 402,839,699 454,318,339 511,857,243 558,690,479 607,429,601
Date 03/05/2017 07/03/2017 29/12/2016 02/04/2017 02/06/2017

r500d15 4
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 2,807,990,462 2,892,747,784 3,652,534,665 3,732,841,802 4,051,526,171
Date 03/05/2017 02/03/2017 31/12/2016 02/06/2017 01/06/2017

r500d15 5
Team mjg ADDM goc-ar TeamTau2017 VeRoLog050
Cost 251,378,880,010 259,677,305,009 306,490,210,012 312,221,625,011 330,726,465,011
Date 03/05/2017 02/03/2017 17/12/2016 02/06/2017 03/03/2017

r1000d25 1
Team mjg Sunbeams akhe ADDM VeRoLog050
Cost 7,004,087,706 7,166,663,786 7,469,954,246 7,494,227,661 7,546,340,291
Date 03/05/2017 05/06/2017 14/04/2017 12/03/2017 02/03/2017

r1000d25 2
Team mjg Sunbeams NSA ADDM VeRoLog050
Cost 6,486,405,100 6,811,349,274 7,177,503,250 7,229,613,701 7,232,820,503
Date 03/05/2017 05/06/2017 12/05/2017 06/03/2017 02/03/2017

r1000d25 3
Team mjg ADDM goc-ar EquipoMLS TeamTau2017
Cost 207,087,083 239,642,618 246,934,382 298,214,337 308,695,312
Date 03/05/2017 10/03/2017 09/12/2016 03/06/2017 02/06/2017

r1000d25 4
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 5,598,405,178 6,205,511,061 7,553,650,631 8,204,868,671 8,857,593,182
Date 03/05/2017 03/03/2017 09/12/2016 02/06/2017 08/06/2017

r1000d25 5
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 161,446,120,006 174,254,946,006 196,592,076,007 218,038,116,009 234,970,338,008
Date 03/05/2017 03/03/2017 09/12/2016 02/06/2017 08/06/2017

r1000d30 1
Team mjg Sunbeams Success ADDM Eva
Cost 5,220,068,560 5,545,670,163 5,572,741,083 5,919,953,818 6,029,750,153
Date 03/05/2017 05/06/2017 14/04/2017 06/03/2017 16/05/2017

r1000d30 2
Team mjg Sunbeams VeRoLog050 Success ADDM
Cost 5,181,409,255 5,363,167,525 5,696,835,520 5,703,651,327 5,736,716,754
Date 03/05/2017 10/06/2017 02/03/2017 13/04/2017 06/03/2017

r1000d30 3
Team mjg ADDM EquipoMLS TeamTau2017 goc-ar
Cost 187,843,389 219,104,500 282,173,474 284,664,999 285,062,660
Date 03/05/2017 12/03/2017 29/04/2017 02/06/2017 05/12/2016

Continued on next page
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Table 6.3 – Continued from previous page
Instance First Team Second Team Third Team Fourth Team Fifth Team

r1000d30 4
Team mjg ADDM goc-ar TeamTau2017 Success
Cost 4,562,837,156 5,139,734,143 6,157,957,481 6,367,255,071 6,644,215,518
Date 03/05/2017 02/03/2017 09/12/2016 02/06/2017 12/06/2017

r1000d30 5
Team mjg ADDM goc-ar Success TeamTau2017
Cost 257,497,762,007 287,103,606,008 353,163,918,012 367,894,412,012 380,128,952,013
Date 03/05/2017 03/03/2017 31/12/2016 12/06/2017 02/06/2017

While team mjg - who won the finals - is frequently at the top of the ranking, there is an
example where this team is outperformed6 by team ADDM, who won third prize in the finals.
This happens, for the problem instance VeRoLog r100d5 4 (see Table 6.3), consisting of 100
requests and a 5 day planning horizon, where ADDM and mjg provided the second and third
best solution respectively. For the other instances where mjg did not provide the best solution
it provided the second best solution. It is still possible to upload solutions to the all-time-best
challenge.

6.4.2 Restricted resources challenge
Based on the challenge ranking system, the organizers selected potential finalists, and verified

that their reported results could have realistically been produced by their submitted algorithms.
This was done by running the algorithms on the same ORTEC-late instances and random seeds.
Eventually, three participants were selected as finalists for the second part of the challenge.

Figures 6.6 to 6.10 show the performance variation of all competing methods on all five
versions of VeRoLog late r1000d25 dataset. mjg achieved the best results in all instances. akhe
performs better than ADDM on the first three versions, but ADDM found slightly better results
compared to akhe on the last two versions (i.e. when vehicle day cost and distance cost are highly
penalized, respectively). The same can be observed with the other instances.
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Figure 6.6: VeRoLog late r1000d25 1

Figure 6.11 shows the mean rank of the teams that submitted in the restricted resources
challenge (on the so-called “ORTEC late instances”). The figure shows a large gap between the
third and fourth place, which lead to the organizer’s decision to allow precisely three participants
in the finale.

Table 6.4 shows the characteristics of the hidden instances and the cost of the current best-
known solutions. As before, the last integer in the instance name denotes the type of most
penalized cost as described in 6.4.1.

Table 6.5 summarizes the results. We performed Mann-Whitney-Wilcoxon test [90, 53] with a
95% confidence level to compare pairwise performance variations of two given competing methods

6At the time of writing this article, after the all-time-best challenge has ended.
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Table 6.2: The characteristics of the all-time-best instances and the cost of best obtained solutions

Instance Customers Tools Capacity Max distance Best solution Obtained by
VeRoLog r100d5 1 100 3 50 20000 1,552,435,049 mjg
VeRoLog r100d5 2 100 2 40 20000 996,709,544 mjg
VeRoLog r100d5 3 100 4 40 20000 119,957,689 mjg
VeRoLog r100d5 4 99 5 30 15000 1,359,088,350 Success
VeRoLog r100d5 5 100 2 45 16000 300,125,049,016 mjg

VeRoLog r100d10 1 100 3 50 16000 1,313,786,538 mjg
VeRoLog r100d10 2 100 5 35 20000 1,555,438,898 mjg
VeRoLog r100d10 3 100 2 40 17000 155,316,178 mjg
VeRoLog r100d10 4 100 4 45 15000 1,114,888,217 Success
VeRoLog r100d10 5 98 3 35 16000 43,871,262,004 Success

VeRoLog r500d15 1 494 4 35 15000 3,256,089,143 mjg
VeRoLog r500d15 2 491 3 35 20000 3,800,352,751 mjg
VeRoLog r500d15 3 490 2 45 15000 402,839,699 mjg
VeRoLog r500d15 4 487 3 35 17000 2,807,990,462 mjg
VeRoLog r500d15 5 488 3 45 15000 251,378,880,010 mjg

VeRoLog r1000d25 1 950 2 45 15000 7,004,087,706 mjg
VeRoLog r1000d25 2 943 4 35 16000 6,486,405,100 mjg
VeRoLog r1000d25 3 944 3 50 17000 207,087,083 mjg
VeRoLog r1000d25 4 949 4 30 17000 5,598,405,178 mjg
VeRoLog r1000d25 5 951 3 50 16000 161,446,120,006 mjg

VeRoLog r1000d30 1 940 5 40 15000 5,220,068,560 mjg
VeRoLog r1000d30 2 942 4 35 15000 5,181,409,255 mjg
VeRoLog r1000d30 3 945 4 40 20000 187,843,389 mjg
VeRoLog r1000d30 4 930 4 40 16000 4,562,837,156 mjg
VeRoLog r1000d30 5 948 3 35 16000 257,497,762,007 mjg

statistically. The following notations are used: Given competing method A1 versus competing
method A2, (i) A1 > (<) A2 denotes that A1 (A2) is better than A2 (A1) and this performance
variance is statistically significant, (ii) A1 ' A2 indicates that there is no statistically significant
difference between A1 and A2.

Overall, it is clear that there is an unambiguous hierarchy: mjg (mean rank 1.02) performs
better than akhe (rank 2.16) and akhe performs better than ADDM (rank 2.82). However, there
are some exceptions to this and we focus on some differences between the second and third place.
For the instances of type 4 (highest cost are of the type vehicle day) and type 5 (highest cost are
of the type distance) the difference in performance between akhe and ADDM is less significant.
This can also be observed in the late instances submitted by the participants. This suggests that
the submitted solvers performed in a stable and consistent manner. With regards to instances
with high tool cost (represented by type 1 and 2), akhe performed better than ADDM. One
particular characteristic of the challenge problem is that tool cost can be avoided if tools are not
directly delivered to a customer from the depot but transferred between customers instead. The
results of the late and hidden instances indicate that ADDMs solver prioritizes distance cost over
tool cost and therefore generally performs worse in such cases.
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Figure 6.7: VeRoLog late r1000d25 2
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Figure 6.8: VeRoLog late r1000d25 3

6.4.3 Convergence comparison
In this section, we compare akhe and ADDM algorithms on all five versions of VeRoLog late r1000d25

dataset. Our experiments are performed on Intel(R) Core(TM) i7-6500U CPU with a 2.50GHz,
2.60GHz and 8.00GB of RAM. The convergence curves of the two algorithms on the selected
instances is illustrated in Figure 6.12. In all the cases, the hyper-heuristic method (akhe) im-
proves the quality of the candidate solutions at the beginning of the search process rapidly,
and then the process slows down when reaching the local optimum. The employment of the
sequence-based strategy seems to lead the search to jump from local optima in some cases (e.g.
VeRoLog late r1000d25 5), allowing further improvement to the quality of the solutions. Note
that the plotted objective values for ADDM start slightly later than akhe. This is due to the
initial phase of the solver: before starting the genetic algorithm, the initial population is evaluated
using the routing algorithm with different parameter sets. Each parameter set is geared towards
different cost priorities. The parameter set with the best average score is then chosen for the
rest of the evolution. As this takes up some time, the objective value curves start only once this
phase is completed.

6.5 Conclusion
In this paper, two heuristic algorithms were proposed to solve a vehicle routing problem

with inter-route and intra-route challenges. This problem was the topic of a recent competition,
referred to as VeRoLog Solver Challenge 2016 - 2017. It is based on a real-life problem of a
cattle improvement company that combines routing, scheduling and inventory aspects. Instances
differed, apart from size, in cost penalties, making the problem potentially relevant from a multi-
objective point of view. 28 teams participated worldwide in the all-time-best challenge that ran
for 8 months and 9 teams participated in a restricted resources challenge.

Academic challenges, such as the one described in this paper, have the pleasant property that
algorithms can be compared objectively. Since it is ensured that (1) all researchers are working
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Figure 6.9: VeRoLog late r1000d25 4
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Figure 6.10: VeRoLog late r1000d25 5

on exactly the same, well-defined problem, (2) there is compensation for run times on different
machines, and (3) each algorithm is applied to many different problem instances.

We described two different solution methods for the problem central to the challenge: the first
method, by team akhe, is based on finding promising combinations of low level heuristics. These
heuristics, such as move, swap or reverse, are combined in sequences that are randomly drawn
with probabilities that are updated in a tuning process that depends on the problem instance.
This algorithm is rather generic, in the sense that applying it to different problems would require
relatively few changes (as long as it is easy to find initial feasible solutions for the problem).

The second method, by team ADDM, focuses on decomposing the problem. This means that
the algorithm is explicitly tackling the problem of assigning tasks to days. It spends the first 80%
of the computation time on finding good day to day schedules using a genetic algorithm. The last
20% of time is spent on Variable Neighborhood Descent in order to improve the routing given a
certain day to day schedule. One might say this approach is intuitive, because the decomposition
explicitly deals with the scheduling and the routing aspects of the problem.

We can observe differences and similarities between the two approaches. Let us focus on the
most obvious difference first: team ADDM decomposed the problem whereas team akhe did not.
While the two approaches appear quite different altogether, we can still find several similarities.
First of all, the ‘low level heuristics’ as mentioned in akhe’s approach overlap with the heuristics
used in team ADDM’s neighborhood search. Furthermore, both teams made use of the fact that
initial feasible solutions were easy to find. Finally, both approaches were randomized and allowed
for trying moves that appeared to be unlikely to improve the solution - albeit with a smaller
probability than those moves that appeared promising.

The ability to compare algorithms objectively makes a challenge a valuable opportunity
to gain insights into state-of-the-art solution techniques. In this paper, we demonstrated that
the two solution approaches - although altogether different - were both effective in solving the
NP-hard optimization problem that underlined the VeRoLog Solver Challenge 2016 - 2017.
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Figure 6.11: Mean rank per team, as computed according to the challenge rules. These results
are based on the submissions of the restricted resources challenge (late instances). The leftmost
three bars correspond to the teams that reached the finale.

6.6 Appendix: Challenge rules
We summarize the challenge rules, which were originally published in Dullaert et al. [47].

The challenge consisted of three parts, and the first two ran partially parallel in time.

6.6.1 All-time-best challenge
The organizers disclosed 25 instances in December 2016: the “all-time-best instances”. Par-

ticipants were invited to submit a solution to an instance if it was better than the best solution
submitted so far for this instance. Progress, i.e., the cost of the best solution over time, was
shown to the participants. This information is still visible on the website, and it shows that
different instances are won by different participants.

The all-time-best challenge ran till July 2, 2017 and the participants were rewarded in two
ways: for every week during the all-time-best period that their solution was the best, and
additionally for having the best solution at the end of the challenge. In this part of the challenge,
any means, resources and time, were allowed.

6.6.2 Restricted resources challenge
This challenge had a more “traditional” form: the resources were restricted, especially the

computing time. The time Tlimit (seconds) that each algorithm was allowed to run on the
organizers’ single core machine is limited by the formula Tlimit = 10 + 2|R|. Here |R| is the
number of (delivery) requests in the instance. The organizers provided a calibration tool, so that
each participant could estimate the equivalent time on his or her local machine. In addition, it
was not allowed to use any software that is not freely available for commercial use. In particular,
this means that for example the use of commercial MILP solvers was forbidden. Each algorithm
had to run on a new set of 25 instances (available since April 1 2017). Furthermore, each solver



6.6. Appendix: Challenge rules 143

0 10 20 30

5.5

6

6.5

7

7.5 ·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(a) VeRoLog late r1000d25 1

0 10 20 30
5

6

7

·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(b) VeRoLog late r1000d25 2

0 10 20 30
0.4

0.6

0.8

1

1.2 ·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(c) VeRoLog late r1000d25 3

0 10 20 30
2

4

6

·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(d) VeRoLog late r1000d25 4

0 10 20 30

0.5

1

1.5
·1012

time [min]

ob
je

ct
iv

e

akhe
ADDM

(e) VeRoLog late r1000d25 5

Figure 6.12: Comparison of the convergence profile of akhe and ADDM algorithms on
VeRoLog late r1000d25 dataset



144 Chapter 6. Multi-period pickup and delivery problem of scarce equipment

had to run on each instance, using nine different random seeds, in order to reduce the variance
coming from randomized algorithms. Non randomized algorithms could also profit from the
random seeds: they were known to be between 108 and 109 with a different starting digit for
each seed, and hence it was possible to detect this and run 9 different deterministic algorithms.
The corresponding results and solver binaries were submitted on May 8, 2017.

The evaluation of algorithms in the restricted resources challenge was done as follows. A
rank score was calculated per instance for each solver. First, per instance, the two best solutions
and the two worst solutions found by the solver were removed. The remaining five solutions were
used to compute the score of the solver. If these five solutions were all feasible, their average
counted as the score of the solver. Alternatively, if there were infeasible solutions among the
middle 5 solutions, that solver was first ranked with respect to the number of feasible solutions,
and secondary by the average cost of the feasible ones. Finalists were announced on June 1.

6.6.3 The finals
The finalists’ solvers were run by the organizers on a set of 50 not previously disclosed (the

so-called hidden) instances. Again, per solver per instance but equal for each finalist, nine runs
with different random seeds were done, again with nine different starting digits. A solver ranking
per instance was made with the same rules as above, as well as a ranking of the solvers based on
these scores. The winner of the challenge was the participant whose solver had the lowest mean
of the ranks.
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Table 6.4: The characteristics of the hidden instances and the cost of best obtained solutions

Instance Customers Tools Capacity Max distance Best known
VeRoLog hidden r500d10 1 485 4 50 17000 8365884102
VeRoLog hidden r500d10 2 492 2 35 16000 5770640038
VeRoLog hidden r500d10 3 491 3 40 20000 744495928
VeRoLog hidden r500d10 4 489 5 40 20000 3774764460
VeRoLog hidden r500d10 5 492 3 40 20000 166281961014

VeRoLog hidden r500d15 1 490 4 35 16000 2696765455
VeRoLog hidden r500d15 2 491 3 45 15000 5295158689
VeRoLog hidden r500d15 3 486 5 50 15000 216780767
VeRoLog hidden r500d15 4 492 3 35 17000 2019397633
VeRoLog hidden r500d15 5 493 2 50 16000 153864525012

VeRoLog hidden r1000d20 1 950 4 30 17000 8176085650
VeRoLog hidden r1000d20 2 950 3 50 20000 4487557411
VeRoLog hidden r1000d20 3 942 5 50 16000 452935897
VeRoLog hidden r1000d20 4 946 5 35 16000 1816133429
VeRoLog hidden r1000d20 5 950 3 35 17000 673881241010

VeRoLog hidden r1000d25 1 947 2 40 15000 2476429490
VeRoLog hidden r1000d25 2 961 4 40 16000 5953632945
VeRoLog hidden r1000d25 3 952 4 40 16000 176042639
VeRoLog hidden r1000d25 4 952 2 35 16000 7253854432
VeRoLog hidden r1000d25 5 952 2 45 20000 445754474005

VeRoLog hidden r1500d30 1 1379 4 40 17000 6446878020
VeRoLog hidden r1500d30 2 1372 5 40 16000 6483597038
VeRoLog hidden r1500d30 3 1373 2 45 20000 115134924
VeRoLog hidden r1500d30 4 1374 3 40 16000 10599076534
VeRoLog hidden r1500d30 5 1382 4 50 20000 1138250720007

VeRoLog hidden r1500d40 1 1375 3 40 15000 3598635808
VeRoLog hidden r1500d40 2 1370 5 40 20000 6035110304
VeRoLog hidden r1500d40 3 1367 3 50 16000 253836767
VeRoLog hidden r1500d40 4 1373 4 35 15000 2670813271
VeRoLog hidden r1500d40 5 1385 2 40 15000 1610263788013

VeRoLog hidden r2000d50 1 1785 2 45 16000 5029970838
VeRoLog hidden r2000d50 2 1785 5 30 16000 4290045748
VeRoLog hidden r2000d50 3 1791 5 40 16000 323926260
VeRoLog hidden r2000d50 4 1792 4 35 16000 18321969466
VeRoLog hidden r2000d50 5 1777 4 40 16000 1047956765006

VeRoLog hidden r2000d65 1 1776 2 40 16000 3989738288
VeRoLog hidden r2000d65 2 1773 4 50 16000 2457293730
VeRoLog hidden r2000d65 3 1782 5 40 16000 195384322
VeRoLog hidden r2000d65 4 1767 3 35 17000 15891623281
VeRoLog hidden r2000d65 5 1799 5 45 16000 1370590324007

VeRoLog hidden r2500d70 1 2166 3 45 16000 4751728213
VeRoLog hidden r2500d70 2 2164 5 35 16000 5599542429
VeRoLog hidden r2500d70 3 2181 2 35 15000 354579316
VeRoLog hidden r2500d70 4 2170 4 50 20000 14479189673
VeRoLog hidden r2500d70 5 2140 5 40 17000 1177525804008

VeRoLog hidden r2500d75 1 2160 4 40 15000 5591086150
VeRoLog hidden r2500d75 2 2160 3 35 16000 3520404346
VeRoLog hidden r2500d75 3 2147 5 50 15000 300634318
VeRoLog hidden r2500d75 4 2185 3 45 17000 15283897582
VeRoLog hidden r2500d75 5 2192 2 50 17000 1625596820006
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Table 6.5: Summary of the competition results (hidden instances)

Instance ADDM (A) akhe (B) mjg (C) A vs B A vs C B vs C
Avg. cost Rank Avg. cost Rank Avg. cost Rank

VeRoLog hidden r500d10 1 Infeasible 3 8543852756 2 8365899289 1 < < <

VeRoLog hidden r500d10 2 7301404930 3 5903916399 2 5771493723 1 < < <

VeRoLog hidden r500d10 3 863711081 3 814843760 1 819673854 2 < < '
VeRoLog hidden r500d10 4 4561034407 2 4587216376 3 3799479893 1 ' < <

VeRoLog hidden r500d10 5 1.95044E+11 2 2.20579E+11 3 1.70088E+11 1 ' < <

VeRoLog hidden r500d15 1 3267429112 3 2838813151 2 2697367524 1 < < <

VeRoLog hidden r500d15 2 6264518370 3 5518848425 2 5311310871 1 < < <

VeRoLog hidden r500d15 3 300157427 3 258486750 2 217665073 1 < < <

VeRoLog hidden r500d15 4 2333125167 2 2603742796 3 2071346776 1 > < <

VeRoLog hidden r500d15 5 1.79542E+11 2 1.79855E+11 3 1.55013E+11 1 ' < <

VeRoLog hidden r1500d30 1 7848014014 3 6881717534 2 6467120269 1 < < <

VeRoLog hidden r1500d30 2 7788925107 3 7127091955 2 6489993680 1 < < <

VeRoLog hidden r1500d30 3 131376619 3 127751602 2 115315364 1 ' < <

VeRoLog hidden r1500d30 4 13173341132 3 13166641854 2 10703447930 1 ' < <

VeRoLog hidden r1500d30 5 1.31728E+12 2 1.34828E+12 3 1.15184E+12 1 > < <

VeRoLog hidden r1500d40 1 4320649929 3 3865210740 2 3599106687 1 < < <

VeRoLog hidden r1500d40 2 7316145898 3 6535928682 2 6081597171 1 < < <

VeRoLog hidden r1500d40 3 378641946 3 316000036 2 266249047 1 < < <

VeRoLog hidden r1500d40 4 3568036772 3 3269104825 2 2688601902 1 < < <

VeRoLog hidden r1500d40 5 1.92543E+12 2 2.03423E+12 3 1.62762E+12 1 > < <

VeRoLog hidden r2000d50 1 5810784719 3 5298648594 2 5030224679 1 < < <

VeRoLog hidden r2000d50 2 5328466675 3 4866236414 2 4308682151 1 < < <

VeRoLog hidden r2000d50 3 486474150 3 418201601 2 324847201 1 < < <

VeRoLog hidden r2000d50 4 25001890955 3 23252981136 2 18510562245 1 < < <

VeRoLog hidden r2000d50 5 1.28428E+12 3 1.25324E+12 2 1.05629E+12 1 < < <

VeRoLog hidden r2000d65 1 4810734214 3 4294615936 2 3990007875 1 < < <

VeRoLog hidden r2000d65 2 3083403319 3 2702857405 2 2465266227 1 < < <

VeRoLog hidden r2000d65 3 261437817 3 238093078 2 195919946 1 < < <

VeRoLog hidden r2000d65 4 20897565143 2 21949270729 3 16051327503 1 > < <

VeRoLog hidden r2000d65 5 1.64544E+12 3 1.61752E+12 2 1.38209E+12 1 > < <

VeRoLog hidden r2500d70 1 5923449374 3 5114335854 2 4751953813 1 < < <

VeRoLog hidden r2500d70 2 7171256068 3 6556981185 2 5643936333 1 < < <

VeRoLog hidden r2500d70 3 519502106 3 469897674 2 354745805 1 < < <

VeRoLog hidden r2500d70 4 18895390762 3 18836590052 2 14619186238 1 ' < <

VeRoLog hidden r2500d70 5 1.51888E+12 3 1.4329E+12 2 1.18559E+12 1 < < <

VeRoLog hidden r2500d75 1 6952945996 3 6156231838 2 5597113528 1 < < <

VeRoLog hidden r2500d75 2 4335142495 3 4135070761 2 3556430390 1 < < <

VeRoLog hidden r2500d75 3 428374927 3 383930752 2 301433094 1 < < <

VeRoLog hidden r2500d75 4 20347372369 3 19519419317 2 15493912178 1 < < <

VeRoLog hidden r2500d75 5 2.01467E+12 3 1.9737E+12 2 1.63357E+12 1 < < <

Average ranking 2.82 2.16 1.02
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Abstract In order to make strategic, tactical and operational decisions, carriers and
logistic companies need to evaluate scenarios with high levels of accuracy by solving a
large number of routing problems. This might require relatively high computational
efforts and time. In this paper, we present regression-based estimation models that
provide fast predictions for the travel distance in the Traveling Salesman Problem
(TSP), the Capacitated Vehicle Routing Problem with Time Windows (CVRP-TW),
and the Multi-Region Multi-Depot Pickup and Delivery Problem (MR-MDPDP).
The use of general characteristics such as distances, time windows, capacities and
demands, allows us to extend the models and adjust them to different problems and
also to different solution methods. The resulting regression models in most cases
achieve good approximations of total travel distances, except in cases where strong
random noise is present, and outperform previous models.

7.1 Introduction
Many exact and heuristic algorithms have been developed to solve transportation problems in

short computational time. However, there are situations in which it is not necessary or possible
to apply such algorithms. For example, carriers who need to respond to an inquiry by a potential
customer or who are involved in a competitive bidding process need rapid information about
costs, but not about the actual routing. This information must often be obtained very quickly
for a large number of transportation requests, for example in a combinatorial auction, when bids
must be made for many bundles of requests. Combinatorial auctions were frequently proposed as
part of collaboration mechanisms to improve the efficiency of the transportation system [15, 62].

Several approaches for approximating travel distances in transportation problems have been
developed, which we will review in section 7.2. Previous methods were mostly based on analyti-
cally derived approximation formulas [e.g., 13], which were sometimes augmented by empirically
estimated parameters [e.g., 25]. This approach limits the domain of problem classes for which
approximations can be developed to comparatively simple problems, in which tour lengths can
be approximated analytically. Only few authors [e.g., 21, 79] so far considered a more empirical
approach, but also limited their work to problems like the traveling salesman problem or vehicle
routing problems without complex, real world constraints.

Our work takes an empirical perspective, initially considering a large set of (possibly redun-
dant) potential variables, and then with the help of statistical methods identifying variables

147

https://doi.org/10.1016/j.cor.2018.10.008


148 Chapter 7. Total Distance Approximations for Routing Solutions

that are particularly useful in approximating total costs. Some of these variables, like distances
between customers, are present in all routing problems. Other variables, like time windows
and capacity constraints, are added to approximate the solution of problems containing those
constraints. Previous studies have mostly reported the quality of approximations in terms of
goodness of fit to the problem instances for which the model was estimated. We complement this
in-sample evaluation with an out-of-sample evaluation, in which we analyze how well our models
are able to predict total costs for new problem instances.

Our empirical approach requires actual solutions of some problems to estimate the parameter
values. The approach therefore does not necessarily approximate the optimal solution to a
problem, but the solution that can be found by the algorithm applied. For many of the applications
envisioned, this is exactly the information that is required. For example, in a competitive bidding
process, the price charged for performing a set of requests needs to cover the actual costs that
will be incurred. If the algorithm used for generating the actual schedule delivers a solution that
causes higher than optimal costs, these are the costs that need to be covered. Of course, having
a better routing algorithm would make the carrier more competitive, but pricing should be based
on the actual planning process.

Although this empirical approach is adaptable to different solution methods, this does not
imply that the same empirical model can be applied to approximate solutions found by any
algorithm. It is quite possible that the solution quality of different algorithms also depends
on different characteristics of the problem, thus different empirical models will be needed to
approximate solutions of the algorithms. However, the general method remains the same, even if
other variables are included in the models.

In line with much of the existing literature [55, 37], we consider (variable) costs to be roughly
equivalent to travel distance. We develop approximations for travel distance in different types of
transportation problems of increasing complexity, ranging from a standard Traveling Salesman
Problem (TSP) to the recently introduced [43] Multi-Region Multi-Depot Pickup and Delivery
Problem (MR-MDPDP). This gradual approach allows us to study whether the presence of addi-
tional constraints like vehicle capacity or time windows influences the quality of approximations
in general. We also study how such factors can be represented in the approximation to make it
more accurate even for a complex setting. In our view, the ability to incorporate additional prob-
lem characteristics into the approximation in a rather straightforward manner is a considerable
advantage of an empirical approach. Thus, we consider it important to determine the potential
benefit of adding such additional parameters to the model.

The remainder of the paper is structured as follows: In Section 7.2, we present a literature
review on approximation models for different types of transportation problems. Section 7.3
introduces the regression based approximation for the different types of logistic problems we
study in this paper. Computational experiments and results are presented in Section 7.4, and
Section 7.5 concludes the paper by summarizing its results and presenting an outlook onto future
research.

7.2 Literature Review
Bearwood et al. [13] are among the first authors who developed a distance approximation.

They demonstrated that for a set of n nodes in a compact and convex area A, the length of the TSP
tour asymptotically converges to c

√
nA when n→∞, c being a constant. Christofides and Eilon

[25] approximated the average TSP route length by 100× c√n. Further distance approximations
for the TSP were developed by Chien [23], Kwon et al. [91], and Hindle and Worthington [79].
They all recognized the need for additional parameters representing the shape of the area or
distances between customers. Chien [23] modified the area factor A by including the area of
the smallest rectangle that covers all customers and also includes distance related measures like
the average distance to the depot. Kwon et al. [91] used regression models and neural networks
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to improve the TSP approximations. They considered a rectangular length/width ratio as well
as a shape factor. Hindle and Worthington [79] used two different models depending on how
customers are distributed over the area. Their first model considered a uniform distribution of
locations. The second model used “demand surfaces” to represent different densities of customers
across regions. In a recent paper on the approximation of TSP travel distances, Çavdar and Sokol
[21] proposed an approximation based on coordinates of customers. Their approximation was
based on the standard deviations of coordinates as well as the standard deviations of distances
between customers and the average-point of the area. Stein [158] considered the bus problem, a
TSP with additional constraints in which pickup and delivery nodes are paired. They extended
the results of Bearwood et al. [13] and estimated the length of the optimal tour either for one or
for several buses.

The first published approximations for the Capacitated Vehicle Routing Problem (CVRP)
were developed in the 1960s by Webb [165], who studied the correlation between route length
and customer-depot distance. Eilon et al. [50] proposed approximations to the length of the
CVRP based on the shape and area of delivery, distances between customers and the depot, and
capacity of vehicles. Daganzo [37] approximated CVRP tour length as

CV RP (n) ≈ 2rn/Q+ 0.57
√
nA (7.1)

where n is the number of customers customers, r is the average distance between the customers
and the depot and Q is the maximum number of customers that can be served by a vehicle.
Robusté et al. [136] tested Daganzo’s approximation and proposed adjustments based on the
shape of the area, in particular for elliptic zones. Erera [51] extended Daganzo’s approximation for
stochastic versions of the CVRP. Langevin and Soumis [92] developed an approximate method for
planning pickup and delivery zones assigned to vehicles. Their approach included an estimation
of the increase in the number of vehicles used if zones are allowed to overlap.

Time window constraints were first considered in the late 1980s by Daganzo [38] by dividing
the time horizon in periods and clustering the customers in rectangles. The problem was simplified
by assigning customer time windows to a time period. A more recent contribution for VRP’s
with time windows is provided by Figliozzi [54], who approximated the distance for serving n
customers using a known number m of routes as

V RP (n) ≈ bn−m
n

√
An+m2r. (7.2)

The parameter b was estimated by linear regression. Figliozzi [55] studied approximations to
the average length of VRP’s when the number of customers, time window constraints and
demand levels vary. A detailed literature review of models that use continuous approximation in
distribution management can be found in Franceschetti et al. [60].

7.3 Regression Based Approximations
This section introduces the problems that are studied in this paper and describes the variables

that are included in the estimation models presented in Section 7.4. We consider three classes
of problems in increasing order of complexity: The Traveling Salesman Problem (TSP), the
Capacitated Vehicle Routing Problems with Time Windows (CVRP-TW), and the Multi Region
Multi-Depot Pickup and Delivery Problem (MR-MDPDP).

These problems are also different with respect to the solution methods that can be applied.
For small TSP, an optimal solution can be found via exact methods, for the MR-MDPDP, only
one heuristic is available. This allows us to study how well the regression approach can adapt
to solutions and methods of different quality. We also study this question in more detail for the
CVRP-TW, where we apply the regression approach both to known optimal solutions and to
solutions obtained with a simple heuristic.
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7.3.1 Traveling Salesman Problem
The first models for the TSP approximated the total tour length using the factor

√
nA. Since

the total travel distance depends on the distance between nodes, we include different distance
measures in the estimation model. To represent different distributions of nodes in the area, we
also include dispersion measures such as the variance of distances and maximum distances to
the average-node. Based on the approach proposed in [21], we also include the product of the
variances of coordinates. Figure 7.1 illustrates the purpose of including this interaction term.
The problems presented in figures 7.1a and 7.1b both have solutions with a small total travel
distance, but variances in the two coordinates differ considerably. As Figure 7.1c shows, large
travel distances will occur if variances in both coordinates are sufficiently high, this effect is
covered by including the product.

(a) VarX>>VarY (b) VarX<<VarY (c) VarX ≈ VarY

Figure 7.1: TSP nodes distribution scenarios in a similar area. Figure 7.1a shows a distribution of
nodes along the x axis. Figure 7.1b shows a distribution along the y axis. Figure 7.1c shows a distribution
in which nodes are uniformly distributed along both axis, leading to similar values for their variances.

We therefore consider the following variables:
• Number of requests n (indicated by Req in the tables).
• Distances between nodes: These include the minimum (MinP) and maximum (MaxP)

distance across all pairs of nodes and the variance of distances (VarP). Furthermore, we
consider the sum of distances to the nearest (SumMinP) and to the farthest (SumMaxP)
neighbor of each node.

• Distances to the average-node: Distances to the node located at the average x and y coor-
dinates are aggregated across nodes by considering the minimum (MinM), the maximum
(MaxM), the sum (SumM) and the variance (VarM).
• Product of variances of x and y coordinates of nodes (VarX×VarY).

7.3.2 Capacitated Vehicle Routing Problem with Time Windows
In the CVRP-TW, each customer has a known demand, which has to be served by a given

fleet of homogeneous vehicles of limited capacity, so that each customer is visited once by one
vehicle within a given time window. The presence of time windows can have a strong effect on
the total travel distance. In one extreme case, customers could be visited in exactly the same
sequence as in the optimal tour without time windows, if time windows are large enough or
happen to correspond exactly to that sequence. In the other extreme, time windows may require
to visit a customer that is far from the previous customer, and then come back to a customer
that is located close to the first one. We use two types of measures to represent how much the
presence of time windows constrains the problem: The first directly refers to the length of time
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windows of individual customers, where we consider the sum and the variance. Furthermore, we
use the average overlap and variance of overlaps of time windows between pairs of customers to
measure how strongly time windows restrict routing possibilities.

The presence of time windows also influences which links between customers can actually be
used. If it is not possible to visit customer i after customer j, then the travel distance from i
to j cannot influence the solution. We therefore include travel distance dij between customers i
and j in the calculation of distance-related measures only if the condition

STWi + servi + dij ≤ ETWj (7.3)

is fulfilled. In (7.3), servi is the service time, and STWi and ETWi are the starting and ending
times of the time window of customer i. A vehicle is allowed to arrive early to a node and wait
until the customer’s time window starts.

Since the capacity of each vehicle is limited, additional vehicles will be required once the
capacity of a vehicle is exceeded. This increases the total tour length, and we therefore have to
include these effects in the model. This is achieved by adding two more variables. The total-
demand/vehicle-capacity ratio provides information on the minimum number of tours necessary to
perform all requests. The vehicle-capacity/average-demand ratio represents the average number
of requests that can be included in one tour.

Previous studies have included the number of requests, the average distance to the depot and
the ratio between the number of requests and the vehicle capacity. In addition, we include the
following variables:

• Sum (SumD) and variance (VarD) of distances between customers and the depot.

• Sum (SumTW) and variance (VarTW) of the lengths of time windows.

• Minimum (MinPosDist), maximum (MaxPosDist), sum (SumPosDist) and variance (Var-
PosDist) of distances between customers. Only distances that fulfill condition (7.3) are
included in these calculations.

• Sum (SumOverlap), average (AvgOverlap) and variance (VarOverlap) of overlaps of time
windows betwen customers.

• Total-demand/vehicles-capacity ratio (Q/Cap) and vehicles-capacity/average-demand ratio
(Cap/AvQ).

7.3.3 Multi-Region Multi-Depot Pickup and Delivery Problem
The MR-MDPDP has not been studied as much in previous literature as the TSP and

the CVRP-TW. It extends the other problems by providing a hierarchical structure of the
transportation system. Customers (pickup and delivery nodes) are located in different regions.
A request is fulfilled in three phases: pickup, performed by a short-haul vehicle, a long-haul trip,
performed by a larger vehicle, and delivery, again performed by a short-haul vehicle. Requests
have different demands and customers have time windows in which they can be visited. The
short-haul routing for each region can therefore be classified as a Vehicle Routing Problem with
Mixed Backhauls (VRPMB) according to the definitions by Parragh et al. [121]). The objective is
to minimize total costs of short-haul and long-haul trips. Although the distance between regions
is fixed and there is no routing involved, costs of long-haul trips can vary because different
schedules require a different number of trips. Figure 7.2 shows a graphical representation of the
problem. In the present paper, we consider only two regions. This problem already provides a
sufficiently rich environment to test how well regression based models can approximate optimal
solutions in such a complex transportation problem.

New and more complex problems like the MR-MDPDP include multi-modal transportation
using different vehicles. Therefore, we have to relate demand to the capacities of all types of
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Figure 7.2: 2R-MDPDP Diagram. Requests have paired pickup (white) and delivery (black) nodes in
opposite regions. To be serviced, they are part of a vehicle tour in every region starting and ending at
the region depot. Both depots are connected by long-haul trips.

vehicles involved. Furthermore, timing of long-haul trips might influence the total distance. For
example, if the scheduled departure times are fixed in a way that orders cannot be consolidated,
more long-haul trips will be necessary than if the long-haul schedule can be flexibly adjusted.

Even small instances of this problem are quite difficult to solve exactly in reasonable time.
Therefore, heuristic solution methods have to be used and the regression approximates the costs
in the solutions obtained by these methods, which might be higher than the optimal costs.
Different algorithms might find different solutions, but the regression would work in a similar
way. However, as we already indicated, we cannot study differences between algorithms for this
particular problem, since no alternative algorithms are available.

The dependent variable of the model is the total distance, including long-haul and short-haul
trips. The model is very complex, so many properties of the problem can influence the objective
value. In particular, we have to distinguish between variables related to long- and short-haul
transportation, and variables that refer to single regions or both regions simultaneously. In
addition to the variables considered in the previous models, we include the following variables in
the initial regression model:

• Long-haul schedule type: a binary variable taking the value of 0 if the schedule is fixed
and 1 if it is flexible (BinFlexFix).

• Distances to the depots: in addition to the sum and variance, we also consider the minimum
(MinD) and maximum (MaxD).

• Sum of distances between customers (SumP).

• The sum of demands is zero, as it is a pickup and delivery problem. Therefore, we in-
clude the quantity-capacity information using the total-pickup-quantities/capacity ratio
(SumQ/Cap). When both regions are considered together, the quantity-capacity informa-
tion is introduced as the variance-of-quantities/capacity ratio (VarQ/Cap).
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7.4 Computational Experiments and Results
Our computational experiments are based on instances that are either randomly generated

or obtained from literature. Each set of instances was split into two parts, a training set and
an evaluation set. Parameters of the regression models were first estimated for the training set,
and then the resulting regression equations were applied to the evaluation set. Thus, we obtain
data on the within-sample and out-of-sample fit of the model. In line with previous research
[23, 91, 54, 55], the regression model does not contain a constant parameter, since a problem
without customers obviously has an objective value of zero. After generating a model including
all possible variables, we apply forward and backward stepwise regression to obtain models with
a smaller set of parameters.

We apply two measures for the quality of approximation. The Mean Percentage Error (MPE)
is defined as:

MPE = 1
k

k∑
i=1

Di − Ei
Di

× 100% (7.4)

and the Mean Absolute Percentage Error (MAPE) as:

MAPE = 1
k

k∑
i=1

|Di − Ei|
Di

× 100% (7.5)

where Di is the total travel distance obtained by the solution method, Ei the approximation
obtained by the regression models for observation i, and k is the number of observations.

7.4.1 Traveling Salesman Problem
For the TSP, the groups of instances, solution methods to obtain the travel distance and the

estimation models with their results are presented in this section.

Instances and Solution Method
Instances for this problem contain between 25 and 1000 nodes located in a square of 200×200

units. Travel distance between nodes is assumed to be equal to the Euclidean distance. All
instances for this problem were randomly generated. The first group of TSP problems consisted
of 260 instances (130 in the training set and 130 in the evaluation set) with 25 to 50 customers.
Problems were solved to optimality using the commercial solver IBM CPLEX version 12.6.3.

To test approximation to the TSP problem for larger instances, we generated three groups of
400 instances (200 for training, 200 for evaluation) with 50 to 1000 customers. The three groups
differed in the locations of nodes. In one group (random instances, R), nodes were uniformly
distributed across the entire area. The second group (C) contained clustered instances, where two
clusters 1/9 the size of the entire area were created and located at opposite corners within the area
and nodes were uniformly distributed within these clusters. The last group (random-clustered,
RC) was a mixed group, in which the set of nodes was randomly fractioned in three smaller
sets, two were uniformly distributed in each cluster and one was uniformly distributed across the
entire area. As these instances are too large to solve optimally, we used the Lin-Kernighan (LK)
implementation by Helsgaun [75].

Regression Parameters and Results
The models estimated for the small instances are presented in Table 7.1. Model 1 was created

using a backward stepwise regression and Model 2 is based on a forward stepwise regression. In
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both models, a threshold of p = 0.05 for entering/removal was used. The best models for each of
the three groups of larger instances are presented in Tables 7.2, 7.3 and 7.4. For comparison, we
also add the models of Hindle and Worthington [79] (HW) and the model of Çavdar and Sokol
[21] (CS).

Parameter Model 1 Model 2 HW CS
Req ***7.077 6.98
MinP
MaxP ***1.309 ***1.369
SumMinP ***0.478 ***0.388
SumMaxP ***0.072
VarP ***-7.4 E-5
VarX × VarY **3.23 E-6
MinM
MaxM ***-1.581
SumM ***0.101
VarM ***0.0899 ***0.127
Constant 59.18
ln(Req) 186.48√

Req(cstdevxcstdevy) *** 2.879√
Req(stdevxstdevy) A

CxCy
4.4 E-5

R2 (adjusted) 0.9988 0.9989 0.7153 0.9958
MPE (in sample) 0.07% 0.07% -0.33% 0.23%
MAPE (in sample) 2.76% 2.57% 4.79% 5.23%
MPE (out of sample) 0.64% 0.88% 0.78% 0.34%
MAPE (out of sample) 2.60% 2.73% 4.42% 5.55%

∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01

Table 7.1: TSP Estimation Models for Small Instances

In sample, for the small instances, our regression models provide a considerably better
approximation than the previous models. Out-of-sample, the MPE is comparable to the value of
the model of Hindle and Worthington [79], and higher than in the model of Çavdar and Sokol
[21]. However, the MAPE of our models is considerably better. Approximation errors in the
model of Çavdar and Sokol [21] are more evenly distributed around zero, but on average, the
absolute error is larger. For larger instances, all models perform similarly for the R instances,
providing small estimation errors. However, our models outperform the other two models for the
RC and C instances.
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Parameter Model 1 HW CS
Req 0.198 *** 2.33
MinP ***-33.818
MaxP ***3.064
SumMinP ***1.063
SumMaxP -0.003
VarP
VarX × VarY ** -1.3 E-5
MinM **-2.635
MaxM -0.652
SumM *0.0188
VarM -0.088
Constant ***-1073.8
ln(Req) ***539.392√

Req(cstdevxcstdevy) ***2.70883√
Req(stdevxstdevy) A

CxCy
***-1.65 E-6

R2 (adjusted) 0.9998 0.9972 0.9996
MPE (in sample) -0.11% 0.03% 0.54%
MAPE (in sample) 1.59% 1.85% 2.02%
MPE (out of sample) 0.12% -0.01% 0.40%
MAPE (out of sample) 1.77% 1.79% 2.15%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.2: TSP Estimation Models for Large R Instances

Parameter Model 1 HW CS
Req ***1.573
MinP ***-17.268
MaxP ***2.107
SumMinP ***1.1147
SumMaxP
VarP
VarX × VarY
MinM ***-6.597
MaxM
SumM ***0.012
VarM ***-0.090
Constant ***-1507.87
ln(Req) ***623.38√

Req(cstdevxcstdevy) ***2.33239√
Req(stdevxstdevy) A

CxCy
2.43 E-6

R2 (adjusted) 0.9996 0.8872 0.9779
MPE (in sample) -0.23% -1.29% 0.41%
MAPE (in sample) 1.81% 9.66% 13.25%
MPE (out of sample) -0.37% -0.38% 1.32%
MAPE (out of sample) 2.12% 10.32% 13.43%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.3: TSP Estimation Models for Large RC Instances
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Parameter Model 1 HW CS
Req ***0.157 ***1.228
MinP ***-36.069
MaxP ***1.194
SumMinP ***0.987
SumMaxP
VarP ***-4.41 E-7
VarX × VarY
MinM
MaxM
SumM ***0.025
VarM ***0.157
Constant *-757.049
ln(Req) ***350.698√
Req(cstdevxcstdevy) ***1.409√
Req(stdevxstdevy) A

CxCy
***9.9 E-6

R2 (adjusted) 0.9997 0.8798 0.9665
MPE (in sample) -0.15% -0.15% 1.20%
MAPE (in sample) 1.72% 11.16% 17.02%
MPE (out of sample) 0.56% 0.80% -0.17%
MAPE (out of sample) 1.91% 11.62% 25.46%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.4: TSP Estimation Models for Large C Instances

7.4.2 Capacitated Vehicle Routing Problem with Time Windows
Section 7.4.2 describes the instances and solutions for the CVRP-TW. Estimation models

and their results for optimal and Nearest Neighbor Solutions are presented in Section 7.4.2.

Instances and Solution Method
For this problem, the instances proposed in Solomon [150] for 25, 50 and 100 customers are

used. These instances have a hierarchical objective, minimizing first the number of vehicles and
then the total distance. The dependent variable corresponds to the travel distance reported for the
optimal solutions. Instances and solutions can be found at http://web.cba.neu.edu/˜msolomon/home.htm.
Additional solutions were obtained from Baldacci et al. [8].

The Solomon data set contains six groups of instances, clustered instances (C), random
instances (R) and random-clustered instances (RC), which are all further separated into instances
with long and short planning horizons (subgroups C1 and C2 etc.). In works like [55], separate
models were generated for each group of instances. This approach implicitly assumes that when
applying the model to a new instance, one is able to correctly identify the level of clustering as
well as whether the time horizon is long or short. In this paper, we present models for instance
groups C, R and RC separately, as they differ considerably in the distribution of customers.
Groups 1 and 2 are merged by including variables that relate to capacity.

Regression Parameters and Results
Table 7.5 presents the best performing approximation models for the optimal solutions of

the three groups of problems. The model for instances of type C approximates the solution
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with very small errors. For instances of type R, our results are comparable to results obtained
in previous papers like [55]. The approximation error for problems of type RC is considerably
larger. These problems seem to be particularly difficult, since instances that are very similar
in all the variables considered sometimes have very different objective values. However, this
effect can, to a certain extent, be corrected when calibrating the models by considering the
in-sample approximation error of each instance. For the present estimation, we removed one
instance (RC205) that had a particularly large in-sample error. RC205 represents a situation
where, because of the arrangement of time windows across nodes, one would expect a large total
travel distance. Time windows in this problem are rather short and have little overlap. Still the
total travel distance is rather short because neighboring nodes also have time windows that allow
to visit them within a short time span.

These results show that there might always be additional factors not included in the model
that increase the variance of travel distance and thus make prediction more difficult. Such
influences might come from the problem, but also from the solution algorithm used. In particular,
simple algorithms tend to find good solutions in some instances, but also very bad solutions in
other instances. This creates a large variance in solutions that is hard to predict. Table 7.6
illustrates this effect with models that approximate solutions obtained by a nearest neighbor
insertion algorithm. As it was expected, a less powerful solution algorithm like this one leads to
a high variability in objective values, which makes approximation difficult. Our models perform
acceptably only for the R type instances. For the C and RC type, the approximation errors are
considerably larger.

Parameter R RC C
Req **-18.713 ***25.422
SumD ***0.901 ***0.653
VarD **-0.168 ***0.06 ***-0.071
VarX ×VarY ***1.29 E-7
SumMinP ***4.86 E-4
SumTW **4.393 E-3 ***-7.79 E-3 ***-9.06 E-5
MinPosDist **-25.907
MaxPosDist ***0.143
SumPosDist ***-3.63 E-3 ***-3.99 E-3
AvgOverlap *** -0.035
VarOverlap ***4.12 E-7
Q/Cap ***63.251 ***57.212 ***-12.963
Cap/AvQ ***4.612
R2 (adjusted) 0.9980 0.9989 0.9999
MPE (in sample) -0.26% -0.20% 0.09%
MAPE (in sample) 3.22% 2.51% 0.37%
Out-of-Sample
MPE (out of sample) 0.01% 3.38% 0.1%
MAPE (out of sample) 4.45% 6.47% 0.5%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.5: CVRPTW Estimation Models for Optimal Solutions



158 Chapter 7. Total Distance Approximations for Routing Solutions

Parameter R RC C
Req ***27.882 87.652 -23.252
SumD -0.914 ***2.439
VarD -0.022 -0.035
VarX ×VarY
SumTW -0.032 *-0.014
VarTW 2.22 E-5 **3.21 E-6
MinPosDist ***-19.706
MaxPosDist
SumPosDist ***-3.33 E-3 -9.2 E-4 ***-7.2 E-3
VarPosDist -4.4 E-5 * -4.7 E-6
SumMinPosDist ***0.925
SumOverlap 8.41 E-5 **9.62 E-5
AvgOverlap ***-0.218 -0.0281 0.156
VarOverlap 3.31 E-7 -3.47 E-9
Q/Cap ***30.763 -160.62 ***-130.449
Cap/AvQ -9.906 ***7.624
R2 (adjusted) 0.9990 0.9930 0.9979
MPE (in sample) 9.94 E-3% -0.81% 0.04%
MAPE (in sample) 3.12% 6.90% 3.31%
MPE (out of sample) -0.96% -4.11% 0.97%
MAPE (out of sample) 4.78% 12.06% 6.45%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.6: CVRPTW Estimation Models for Nearest Neighbor Solutions

7.4.3 Multi-Region Multi-Depot Pickup and Delivery Problem
The instances for this problem are described in Section 7.4.3. Since no standard method

for this problem class is available, instances were solved using a specifically developed heuristic
approach described in Section 7.4.3. The models, which estimate the solutions obtained by this
particular solution method, and their results are presented in Section 7.4.3.

Instances
For this problem, instances with 10, 25, 50 and 100 customers were randomly created. We

consider two regions with a size of 100×100 distance units. Each customer has a transportation
request from a randomly located pickup node in one region to a randomly created delivery node
in the other region. Demand values are randomly assigned to each customer. Two types of
time windows are used: broad time windows, with a length of 75% of the planning period for
all customers, and tight time windows, with a length of 6.25% of the planning period for all
customers. For every instance, we also considered two types of long-haul schedules: a fixed
schedule, in which long-haul vehicles leave at fixed points in time, and a flexible schedule, in
which long-haul vehicles can leave at any time. A total of 444 instances is used for this problem,
split evenly into training and evaluation sets.

Solution Method
Due to problem complexity, a decomposition approach is used. In the first step, an exact

solution for the long-haul assignment is determined using the commercial solver IBM CPLEX
version 12.6.3. The long-haul assignment fulfills all requests and minimizes long-haul costs. This
long-haul information is used as input for the second step, in which the short-haul routing is
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performed. The short-haul routing can be performed for each region independently and can
therefore be classified as Vehicle Routing Problem with Mixed Backhauls (VRPMB) [121]. The
solution method starts by assuming single-customer routes for each node. It then uses the pilot
method [162] with an underlying savings algorithm [26]. Since we are dealing with a problem
with time windows, the standard savings calculation

sij = di0 + d0j − dij (7.6)
is changed to

sij = w1 · (di0 + d0j − dij)− w2 · waitingT ime (7.7)
where w1 and w2 are weights to account for distances and waiting time, referred as waitingT ime.
Waiting time is considered because the savings algorithm merges routes without re-evaluating
sequence of nodes within the combined route. If a vehicle arrives at a node before the time
window opens, waiting time occurs. It is time that is not spent productively and too much
waiting time could lead to infeasible solutions. A long waiting time makes joining the two routes
less attractive.

We use the pilot method to determine the order in which the savings are selected. This
method “looks ahead” to determine which of the available immediate decisions is the best in the
long run. In contrast to a greedy approach, which chooses the (locally) best savings, or a pure
random approach, we try out the best m savings. This approach creates m solution candidates,
which correspond to the m best savings in the first iteration and the best savings for the next n
iterations. The best partial solutions after n−1 iterations are chosen for evaluation of the current
step. This is iterated until the entire solution is built. Figure 7.3 shows the basic principle of the
“looking ahead” approach.

Figure 7.3: The basic principle of the pilot method showing 1..m solution copies of solution S
with 1..n looking ahead steps.

Since a vehicle can leave the depot multiple times, the tours obtained by the pilot method
and savings algorithm are combined to vehicle routes via a heuristic proposed by Battarra et
al. [12]. This is also necessary if at this point the number of vehicles needed is greater than
the number of available vehicles. All tours are initially sorted by non-decreasing starting time,
breaking ties according to minimum route duration. Tours are appended in this order to vehicles
that are already in use. If a tour cannot be added anywhere, a new vehicle is used. Vehicles are
selected to minimize the idle time spent at the depot.

This solution method’s average computation time for the instances described in Section 7.4.3
ranged from 21.13 seconds for problems with 10 customers to 162.17 seconds for problems with
100 customers.
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Regression Parameters and Results
The results for models considering variables for each region separately are presented in Table

7.7. Model 1 is the full model that includes all variables. Models 2 and 3 are obtained by forward
and backward stepwise procedures. In both cases, a threshold value of p = 0.05 was used. The
models achieve a very good approximation with out-of-sample MAPE values below 2%.

Table 7.8 illustrates the advantage of considering each region individually. In that table, we
combine distances from both regions into one variable, which results in a much higher MAPE
value. Considering each region individually allows the model to evaluate the complexity of the
VRP, and thus the likely contribution to the total objective value, in each region separately.
In contrast, similar average values across both regions could be generated by very different
scenarios in the two regions, leading to high variance of solutions and thus a considerably worse
approximation overall.

7.5 Conclusions
A fast and accurate approximation of travel distances that can be obtained without solving

a complex transportation problem is important for many applications. In this paper, we have
presented an empirical approach to estimate total travel distances for different routing problems
using different properties as predictors in regression models. Our models covered a wide range
of transportation problems, ranging from conceptually simple traveling salesman problems to
complex multi-region transportation problems involving a wide spectrum of real-life constraints.
Although the quality of approximation varies between different problem classes, in many cases we
obtain very good approximations, which are more accurate than previous models. In particular,
we obtained good approximation results for a new class of problems, the 2R-MDPDP problem,
for which no previous results were available. This shows that an empirical approach makes it
possible to cover problems that include additional characteristics that could not be taken into
account in previous models.

Furthermore, we were also able to show that models estimated on one set of instances can
reliably predict travel distances for other, previously unknown problems. This is a particularly
important result in view of potential applications of our models. Another important feature of
the empirical approach for this type of applications is that our models can not only be fitted
to optimal solutions, but also reliably predict the travel distances that can be obtained with
heuristic methods like the one we have utilized for the 2R-MDPDP problem.

Apart from the fact that our models provide a very good approximation in many cases, the
regression models also provide additional insight about which variables have a strong influence on
total travel distances for the different types of transportation problems. By applying a stepwise
regression approach, we were able to identify significant drivers of travel distances (and costs)
out of a large set of possible influence factors. An interesting result here is that the number
of requests and the area in which customers are located are not present in all the models, and
that the total travel distance can also be estimated based mainly on information about distances
between customers. Information about which problem characteristics are strong drivers of travel
distances is not only important to obtain better approximations, but can also support carriers in
their decision making. Knowing which factors influence total travel distances can help carriers
to select those requests that can be fulfilled efficiently and thus to focus their acquisition efforts.
Our models therefore can support carriers in many ways in their planning and decision making
for efficient operations.

Our results indicate not only the usefulness, but also the limitations of such an empirical
approach. For some types of problems, approximation errors were considerably larger than
for other problems. An empirical approach relies on the stability of the relationship between
explanatory variables and the value to be predicted. Any effect that is not explicitly captured in
the model can be considered as noise that makes the empirical prediction more difficult. Apart



7.5. Conclusions 161

Parameter Model 1 Model 2 Model 3
Req **19.617 ***17.017
BinFlexFix ***-214.185 ***-210.349 ***-213.9
SumTW **-8.8 E-4 **-9.536 E-4
MinD1 -0.4448
MaxD1 ***2.964 ***3.081 ***3.495
SumD1 ***1.936 ***1.901 ***1.887
VarD1 -3.598 E-3
MinD2 *2.231 **2.656
MaxD2 -0.299
SumD2 ***1.917 ***1.937 ***1.907
VarD2 **1.008 E-2 ***9.72 E-3
MinP1 -0.628
MaxP1 *3.2 ***2.318
SumP1 -3.34 E-3
VarP1 3.02 E-4
MinP2 -0.394
MaxP2 *2.808 ***4.289
SumP2 1.339 E-3
VarP2 -6.7 E-4 **-5.316 E-4
VarX × VarY1 2.36E-07
VarX × VarY2 2.E-06 ***3.69 E-7 ***2.077
MinM1 1.071
MaxM1 -1.491
SumM1 *-0.409
VarM1 -0.017
MinM2 0.337
MaxM2 -0.228 ***4.744
SumM2 *-0.539 ***-0.741
VarM2 *-2.992 E-2 **-4.204 E-2
SumTW × Req *1.13 E-5 ***1.245 E-5
BinFlexFix × Req ***5.189 ***5.014 ***5.137
SumQ/Cap -2.077
R2(adjusted) 0.9998 0.9998 0.9998
MPE (in sample) 4.74 E-5% 0.12% 0.04%
MAPE (in sample) 1.44% 1.49% 1.46%
MPE (out of sample) -0.32% -0.12% -0.21%
MAPE (out of sample) 1.57% 1.50% 1.55%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.7: 2R-MDPDP Estimation Models with variables for every region separately
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Parameter Model 1
Req ***118.303
BinFlexFix -134.489
SumTW ***5.006 E-3
VarQ/Cap **-289.528
FlexReq **4.533
MinD -0.639
MaxD *-7.691
SumD 0.318
VarD 0.011
MinP 0.553
MaxP **8.317
SumP 0.007
VarP ***-4.206 E-3
VarXVarY 5.71E-07
MinM 13.253
MaxM -2.393
SumM 0.102
VarM **0.079
R2(adjusted) 0.9916
MPE (in sample) -0.67%
MAPE (in sample) 7.91%
MPE (out of sample) -0.61%
MAPE (out of sample) 9.30%
*:p < 0.1 ; **:p < 0.05 ; ***:p < 0.01

Table 7.8: 2R-MDPDP Estimation Model for two region-combined variables
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from systematic factors omitted from the model specification, such noise can also result from
some inherent randomness of the problem, which makes travel distances to a certain extent
unpredictable. One possible source of such randomness might be the particular structure of the
problem, as became evident in the case of the random-clustered CVRP problems. Here the partly
systematic, partly random location of customers makes it difficult to approximate total costs.
Another source of randomness may be the algorithm used to solve the problem, as became evident
in the CVRP solved with the nearest neighbor heuristic. There, the highly variable performance
of the algorithm makes prediction difficult. However, as the example of the 2R-MDPDP has
shown, it is sometimes possible to overcome this high level of randomness by considering relevant
variables at a more detailed level, here by considering information about both regions separately.
This shows that a systematic analysis of possible variables to be included in such models is a
worthwhile exercise, that can lead to a highly reliable prediction of travel distances and costs.





Chapter 8

Conclusion

This thesis studies multiple variants of the pickup and delivery problem (PDP), a subtopic of
logistics and operations research. It has advanced the research base thematically and methodolog-
ically by addressing PDPs in new contexts and through various computational studies. This has
been achieved by studying transportation networks that require transshipment and multi-modal
transportation, or by examining the potential of new concepts that merge the wants of customers
towards better service and the requirements of carriers toward less unsuccessful deliveries and
shorter delivery routes. Methodologically, this thesis applied many well known heuristic solution
methods and developed extensions and adaptations thereof, as well as developing new problem
specific operators.

In Chapter 2 a new type of logistic problem is introduced: A PDP in multiple geographically
separated regions based on real-world applications. The separated region make intra-region
as well as inter-region transportation necessary. The regions are connected by long-haul (LH)
vehicles of larger capacity, different speed and cost, in comparison to the short-haul (SH) vehicles
used for intra-region transportation. The characteristics of these problems lead to the necessity
of dealing with other issues like multi-modal transportation and multi-depot networks. Chapter
2 provides a literature review and step-by-step construction of mathematical models.

In Chapter 3 a two-region PDP with a LH connection is examined. A matheuristic algorithm
was developed and the problem is decomposed into a LH assignment and the SH routing. The
LH assignment is solved exactly and then provides input for the SH routing. To demonstrate
the quality of the solution algorithm, it is compared to a similar problem from the literature.
Additionally, two types of self-generated instances are provided, namely random ones and realistic
ones. The methodological contribution consists of the implementation of the pilot insertion
method (PI) and the development of the extended pilot insertion method (EPI). The comparison
indicates that the EPI can be superior. Furthermore, we studied the effects of a more flexible LH
connection on SH routing costs. When offering additional LH departure times, without increasing
the amount of actual LH departures, we observe SH cost reductions of up to 22%. On average,
more LH connections result in a 11% (for the PI) or 12% (for the EPI) cost decrease. Decision
makers need to be aware of the importance of synchronization between transportation modes, as
well as the need to remain flexible with respect to predefined schedules. However, a flexible LH
schedule can have its drawbacks, especially if multiple SH routing problems depend on it, and
the potential SH savings have to be balanced against the cost of flexibility.

Chapter 4 investigates a new potential product for the portfolio of transportation carriers to
increase flexibility for customers without increasing cost for the carriers: the PDP with alternative
locations (PDPAL). We include the possibility to add both roaming locations for pickup and
deliveries as well as an alternative recipient and even 24-hour locker boxes. When comparing this
flexible system with a traditional home delivery system, we generate potential cost savings up to
almost 30%. This includes a detailed examination of the potential benefits of locker boxes (up to
6.4% cost savings) or the implications if only a part of the customer base is willing to participate
in the system. We showed that allowing for roaming locations and alternative recipients is
profitable even if only 25% of customers are participating in the system.

Chapter 5 compares different heuristics for the PDPAL. We compare five different construction
heuristics for the routing: two nearest neighbor variations and three insertion variations. For
instances with time windows neither of the nearest neighbor algorithms can be recommended. The
potential of local search is examined, as well as the importance of adding a waiting time weight
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when calculating the routing costs for problems with time windows. For the request-to-vehicle
assignment we compare four different metaheuristics: an Adaptive Large Neighborhood Search
(ALNS), a Genetic Algorithm (GA), a multi-start ALNS (MS-ALNS), and a combination of GA
and ALNS (GA-ALNS). GA seems to be the worst method by far. The ALNS leads quickly to
improvements but seems to become stagnant later in the run time. GA-ALNS improves quicker
than MS-ALNS, however, at the end of the run time MS-ALNS seems to have outperformed the
GA-ALNS.

In Chapter 6 the results of the VeRoLog Solver Challenge 2016 - 2017 are reported. The
competition problem is based on a real-life problem of a cattle improvement company that
combines routing, scheduling and inventory aspects. Instances were generated with wildly different
cost penalties for different parts of the objective function, making the problem potentially relevant
from a multi-objective point of view. For the challenge we used an intuitive approach and focused
on decomposing the problem. A GA was used for the scheduling and a Variable Neighborhood
Decent for the routing improvement. The presented solution approach was awarded third place
in the challenge.

The work presented in Chapter 7 resulted from the necessity to obtain fast and accurate
approximations of travel distances without necessarily solving a complex transportation problem.
This is important for many applications, for example auction based carrier collaborations. Chapter
7 presents an empirical approach to estimate total travel distances for different routing problems
using different properties as predictors in regression models. Our models covered a wide range
of transportation problems, ranging from conceptually simple traveling salesman problems to
complex multi-region transportation problems involving a wide spectrum of real-life constraints.
An important feature of the empirical approach for this type of applications is that our models
can not only be fitted to optimal solutions, but also reliably predict the travel distances that can
be obtained with heuristic methods like the one we have utilized for the two-region multi-depot
pickup and delivery problem (2R-MDPDP).
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[6] Asta, S. and Özcan, E. (2015). A tensor-based selection hyper-heuristic for cross-domain
heuristic search. Information Sciences, 299:412–432.
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Abstract

The thesis is comprised of topics dealing with variations of the pickup and delivery problem
(PDP), a subfield of commercial transportation problems. The research on PDPs has been
advanced thematically and methodologically by studying new topics and developing extensions
of existing algorithms and new solution methods.

In particular, this thesis considers transportation networks operating in multiple regions
that are linked by a long-haul connection. An extensive literature review for the multi-region
multi-depot pickup and delivery problem (MR-MDPDP) and its preceding problems is provided
as well as more detailed work on a three-part network structure to solve a PDP with long-hauls
without direct shipments between regions while fulfilling capacity and time window constraints.
The insights gained from this problem show that long-haul flexibility influences short-haul routing
cost, such that large improvements are possible merely by increasing long-haul flexibility but not
long-haul cost. This work was also extended as a basis to train a regression model to enable the
fast estimation of cost for the MR-MDPDP.

The thesis also examines the pickup and delivery problem with alternative locations and
overlapping time windows in one region. Each request may have multiple roaming pickup locations
throughout the day with non-overlapping time windows. Requests may also have multiple roaming
delivery locations and additionally an alternative recipient with its own set of roaming locations.
The assumption is that it is no longer necessary to deliver to a single specific person. Multiple
persons in different locations can be available simultaneously to accept a delivery. Additionally,
recipients of parcels can use 24-hour locker boxes supplied by the logistics provider if they are
located near their home. In particular, we explore the benefits of locker boxes, roaming locations,
alternative recipients, and mixed customer profiles with different preferences concerning data
sharing and convenience. We find that an increase in convenience for the customers and flexibility
translates into large cost savings for the carriers.

A rich variation of the pickup and delivery problem was solved as part of the VeRoLog Solver
Challenge 2016–2017. This problem required the redistribution of expensive and, therefore,
scarce equipment over customer locations within time windows. The difficulty was in creating
combinations of pickups and deliveries that reduce the amount of equipment needed to execute
the schedule, as well as the lengths of the routes and the number of vehicles used. The developed
algorithm was awarded third place in the challenge.

Methodologically, this thesis applied heuristics, metaheuristics, matheuristics, and decom-
position approaches. Some established methods (adaptive large neighborhood search, variable
neighborhood decent, genetic algorithms) are applied successfully, while others (extension of the
pilot method, variations of the savings algorithm and the insertion algorithm) are adapted and
extended for a better applicability on the problems studied. The quality of the solution methods
is ensured by comparing with suitable previous results from the literature. Managerial insights
are gained by solving realistic and real-life scenarios.
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Zusammenfassung

Diese Dissertation befasst sich mit Variationen des Abhol- und Zustellproblems (engl. pickup
and delivery problem - PDP), einem Teilbereich des gewerblichen Transports. Die Forschung
wurde thematisch und methodisch vorangetrieben, indem neue Themen behandelt, bestehende
Algorithmen erweitert und neue Lösungsmethoden entwickelt wurden.

Insbesondere befasst sich diese Dissertation mit Verkehrsnetzen, die in mehreren Regionen
betrieben werden und über eine Fernverbindung miteinander verknüpft sind. Eine ausführliche Li-
teraturrecherche zum Multi-Region Multi-Depot Abhol- und Zustellproblem (engl. Multi-Region
Multi-Depot Pickup and Delivery Problem - MR-MDPDP) und seinen vorhergehenden Proble-
men wird präsentiert. Es wird eine dreiteiligen Netzwerkstruktur zur Lösung eines PDPs mit
Transporten ohne direkte Verbindung zwischen den Regionen betrachtet, wobei Kapazitäts- und
Zeitfensterbeschränkungen eingehalten werden müssen. Die aus diesem Problem gewonnenen Er-
kenntnisse zeigen, dass die Langstreckenflexibilität die Kosten der Kurzstreckenrouten beeinflusst,
sodass große Verbesserungen ermöglicht werden wenn die Langstreckenflexibilität, nicht aber
dessen Kosten, erhöht wird. Diese Methode wurde auch für ein Regressionsmodell verwendet, um
eine schnelle Kostenabschätzung für das MR-MDPDP zu ermöglichen.

Des Weiteren wird das PDP in einer Region mit alternativen Standorten und Zeitfenstern,
die sich überschneiden, untersucht. Jeder Transportauftrag kann den ganzen Tag über an meh-
reren Orten innerhalb von Zeitfenstern abgeholt werden. Der Auftrag kann auch an mehrere
Orte zugestellt werden. Zusätzlich dazu gibt es einen alternativen Empfänger. Die Annahme
ist, dass es nicht mehr notwendig ist, an eine bestimmte Person zu liefern. Es können mehrere
Personen gleichzeitig verfügbar sein, um eine Lieferung entgegenzunehmen. Außerdem können
Paketempfänger 24-Stunden Schließfächer verwenden, die vom Logistikdienstleister bereitgestellt
werden. Insbesondere werden die Vorteile von Schließfächern, alternative Abhol- und Zustellorte,
und alternative Empfänger mit gemischten Kundenprofilen untersucht. Wir stellen fest, dass eine
Steigerung des Komforts und mehr Flexibilität für Kunden zu großen Kosteneinsparungen für
Spediteure führen kann.

Im Rahmen der VeRoLog Solver Challenge 2016–2017 wurde eine umfangreiche Variante des
PDPs gelöst. Dieses Problem erforderte die Umverteilung teurer und daher knapper Geräte über
Kundenstandorte zu bestimmten Zeiten. Die Schwierigkeit bestand darin, Kombinationen von
Abholungen und Lieferungen zu erstellen, die die Anzahl der Geräte sowie die Länge der Routen
und die Anzahl der verwendeten Fahrzeuge reduzieren. Der entwickelte Algorithmus wurde in
der Challenge mit dem dritten Platz ausgezeichnet.

Die in dieser Dissertation verwendeten Methoden sind Heuristiken, Metaheuristiken, Ma-
theuristiken und Zerlegungsansätze. Einige etablierte Methoden (Adaptive Large Neighborhood
Search, Variable Neighborhood Decent, Genetische Algorithmen) werden erfolgreich eingesetzt,
während andere (Erweiterung der Pilot Method, Variationen des Savings Algorithmus und des
Insertion Algorithmus) für eine bessere Anpassung an die Probleme erweitert wurden. Die Qua-
lität der Lösungsverfahren wird durch Vergleiche mit Ergebnissen aus der Literatur sichergestellt.
Einblicke in mögliche Managemententscheidungen wird durch das Betrachten realistischer und
realer Szenarien gewonnen.
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