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Abstract 
Real-time fMRI-based neurofeedback is an emerging scientific and clinical tool that allows for 

learning to self-regulate brain activity. It has been shown to modulate behaviour in healthy 

individuals, and further has demonstrated the capacity to improve clinical symptoms in 

various patient populations. However, the performance in self-regulating neural activity varies 

considerably across studies and individuals. Consistent learning curve patterns, such as 

steadily rising regulation performances across runs, are rare. Here, we investigate whether 

neurofeedback regulation performances across runs are merely random or follow a 

predictable pattern. This is achieved by applying machine-learning (L1-regularized Linear 

Regression & Randomized Trees) to predict the regulation performance of a training run based 

on previous training run performances. Additionally, we included subject- and study-specific 

characteristics such as age, sex, instructions, trained brain regions, and the length of 

regulation blocks in our machine-learning models to investigate how these factors affect 

performance. For assessing the relevance of each feature, we applied permutation-based 

feature importance analyses to our trained models. To obtain results that generalize across 

the field of real-time fMRI neurofeedback, our analyses was conducted on a large and 

heterogeneous real-time fMRI neurofeedback dataset of 197 participants from 11 different 

studies that included healthy participants as well as patients, different ROIs, and diverse 

experimental designs. We were able to predict regulation performance significantly better 

than chance level. However, with median R² values of up to 0.26 a considerable part of 

variance remains unexplained. For the predictions, previous regulation performances were 

the most crucial features. Overall, we found that performance in neurofeedback training is 

not random but to some degree predictable. These results might help to develop a better 

understanding of how self-regulation of brain activity with neurofeedback is accomplished, 

thus allowing for more effective clinical and scientific use of this promising method. 

Considering increased availability of suitable data in the context of the Open Science 

movement, our data-driven approach might become a promising avenue for advancing our 

understanding and the applicability of neurofeedback. 
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Introduction 

Neurofeedback 

Biofeedback generally involves monitoring and using physiological information to teach 

patients or participants to modify specific physiological functions (McKee, 2008). There are 

many different modalities biofeedback can be based upon. This thesis focuses on 

neurofeedback. Neurofeedback is a specific form of biofeedback, enabling to learn the 

volitional control of one’s own brain activity (Sitaram et al., 2017). Neurofeedback provides 

the subjects with an opportunity to observe changes in their neural activity in real-time, 

which can then be leveraged to achieve voluntary control over one’s own neural activity. 

Ultimately, the self-learned control of neural activity can result in changes in behaviour, 

brain function and cognition (Weiskopf et al., 2004).  

In 1969, Spilker and colleagues published the first neurofeedback studies in humans 

(Spilker et al., 1969). Their study design investigated the operant control of alpha waves 

from human electroencephalogram (EEG). However, although EEG has a good temporal 

resolution, it suffers from poor spatial resolution, making it difficult to precisely locate the 

origin of a neural signal, or target deep brain regions. Therefore, not all brain regions can be 

trained using EEG based neurofeedback. To overcome these limitations, neurofeedback 

training using functional Magnetic Resonance Imaging (fMRI) was established over the last 

years, allowing for a higher spatial resolution and full brain coverage (Weiskopf et al., 2004). 

Functional Magnetic Resonance Imaging  

Functional MRI enables the acquisition of physiological brain data. The underlying idea 

behind fMRI is to infer brain activity by local changes in blood oxygenation. This is possible 

because fMRIs’ signal intensity is affected by the proportion of oxygenated and 

deoxygenated blood. For obtaining a map of brain activity, fMRI relies on the so called 

blood-oxygen-level-dependent (BOLD) contrast (Ogawa, Lee, Kay, et al., 1990; Ogawa, Lee, 

Nayak, et al., 1990). The BOLD contrast is a marker for physiological events changing the 

blood oxygenation state of the brain (Ogawa, Lee, Kay, et al., 1990). Since 1990 much 

progress has been made in the field of fMRI. In 2001, Logothetis reported that the 

physiological basis of the BOLD signal reflects an indirect index of neural activity (Logothetis 

et al., 2001).  



Increasing neural activity has been shown to coincide with increases in local blood 

flow, meaning that more oxygenated blood is supplied to the activated cortical region. 

Although the local oxygen consumption is increased, the increase in supply of oxygenated 

blood exceeds the consumption, and results in an overall increase of blood oxygenation. The 

fMRI signal can discriminate between more or less active brain areas by exploiting the 

different magnetic properties of oxygenated and deoxygenated haemoglobin (Hb) in 

erythrocytes. On the one hand, oxygenated Hb is diamagnetic, resulting in small, negative 

magnetic susceptibility, which dephases magnetized proton spins slowly. This eventually 

leads to an increase in BOLD signal, which is indirectly associated with elevated neural 

activity. On the other hand, deoxygenated Hb is paramagnetic, thereby it has a larger 

positive contribution to the net magnetic field, distorting the magnetic field, and dephasing 

magnetized proton spins fast, resulting in a decreased BOLD signal (Mark et al., 2015).   

Real-time functional Magnet Resonance Imaging-based neurofeedback 

In 2012, the first conference on real-time functional magnetic resonance imaging (rtfMRI) 

neurofeedback took place at the Swiss Federal Institute of Technology in Zurich (Sulzer et al., 

2013). RtfMRI was first introduced in 1995 by Cox et al., as any process relying on functional 

information from a MRI scanner, where data analysis and visualization are performed 

simultaneously with data acquisition (Cox et al., 1995).  Recently, rtfMRI neurofeedback is 

receiving increasing attention in the fields of cognitive and clinical neuroscience, as it allows 

the training of voluntary control over brain activity in any localized region of interest (ROI). 

The information flow in rtfMRI neurofeedback can be conceptualized as a closed loop system 

as illustrated in Figure 1 from Weiskopf et al. (2004). Participants are instructed to regulate 

local brain activity using cognitive strategies. While the participants perform the regulation, 

the corresponding brain activity is recorded using fMRI. The acquired data is pre-processed 

correcting for artefacts caused, for example, by head motion or respiration. In the 

subsequent step the difference between regulation and most often a baseline is calculated. 

Based on the analysed neural activity a feedback is provided to the participants, closing the 

loop. Most of the times feedback is presented visually as a thermometer display or a 

continuous scrolling curve representing brain activation (Sulzer et al., 2013). The signal can 

be provided continuously or in an intermittent fashion. For the latter, the feedback is only 

updated in certain time intervals, usually after a few seconds (Emmert et al., 2017). 

However, feedback has also been implemented in different ways like, for example, in virtual 



reality settings, such as computer games (Goebel et al., 2004). It needs to be noted that 

rtfMRI based neurofeedback is always delayed for two reasons: The first is the time it takes 

to perform the preprocessing and statistical calculations which must happen in real-time and 

can be computationally expensive. The second reason is the haemodynamic coupling which 

introduces a delay between the neuronal activation and the BOLD signal changes (S.-G. Kim 

& Bandettini, 2010). The onset of signal increase is delayed by about 3 seconds, and the peak 

signal by roughly 6 seconds, depending on the brain region and the task. Advances in 

computer hardware allow to minimize any additional delays. However, further advances in 

processing speed will only be of limited value because the intrinsic haemodynamic delay 

does not change (Weiskopf et al., 2004). So, although it is referred to it as real-time 

feedback, there is always a delay of a few seconds, depending on the chosen equipment and 

performed analyses. 

 

 

Figure 1. Image taken from Weiskopf et al. (2004). The set-up of a rtfMRI neurofeedback-

based experiment. From the top-left the participants regulate their local brain activity. 



Functional images are extracted from the MR scanner in real-time and analysed. The 

analysed data is presented to the participant for the purpose of neural self-regulation.  

In the following rtfMRI-based neurofeedback study designs will be explained as well 

as target groups and different types of rtfMRI-based neurofeedback.  

 

Experimental Design  

The experimental design in rtfMRI neurofeedback studies depends on the study objectives, 

which range from neurofeedback induced learning of neural self-regulation to improving 

clinical conditions (deCharms et al., 2005; Shibata et al., 2011). However, the majority of 

neurofeedback studies share a similar experimental framework as illustrated in Sulzer et al. 

(2013), which is comprised of 5 steps: 

1. A definition of the physiological target area and the response measure. A region is 

defined either anatomically or a functional localizer is used to define the trained 

brain region and/or network.   

2. Neurofeedback of the physiological target response and measurement of the 

subjects’ performance. The participant is presented with feedback information on 

ongoing activity of the physiological target and aims to learn to control the activation 

using mental strategies. The feedback training can span from a few minutes or hours 

to several repeated sessions over multiple days.  

3. Following the training comes the transfer: When participants have achieved 

successful regulation, they are tested to demonstrate whether they are able to 

maintain the skill of controlling brain activation or performing a task in the absence 

of feedback and/or in a different setting.  

4. Experimental control group: studies either employ different control groups or within 

subject control conditions to control for confounds in learning, as well as behavioural 

and placebo effects.  

5. Testing of behavioural effects: after the regulation training, it is tested whether there 

are specific behavioural effects. Typically, this is done in a pre- post-training 

comparison.  

The majority of rtfMRI neurofeedback designs are using a block design for the regulation 

task. In this type of design, the participants are required to regulate the BOLD signal for 



usually 15 – 30 seconds followed by a resting block with a similar duration. A single run 

usually consists of 3-6 blocks, while on a single experimental session 2 to 5 runs can take 

place.  

Target groups  

To this date various brain areas have been targeted using fMRI-based neurofeedback where 

the activity-based neurofeedback is the most widespread technique. Some examples 

include: the anterior cingulate cortex (deCharms et al., 2005; Emmert et al., 2014; Gröne et 

al., 2015; Guan et al., 2015; Li et al., 2013), dorsolateral prefrontal cortex (Sherwood et al., 

2016), anterior insula (Yao et al., 2016), insula (Buyukturkoglu et al., 2013; Caria et al., 2007; 

Emmert et al., 2014; Frank et al., 2012; Zilverstand et al., 2015), amygdala (Nicholson et al., 

2017; Young et al., 2014), auditory cortex (Emmert et al., 2017), motor cortex (Auer et al., 

2015; Blefari et al., 2015; Buyukturkoglu et al., 2013; Marins et al., 2015; Scharnowski et al., 

2015), visual cortex (Scharnowski et al., 2012) and the ventral tegmental area (MacInnes et 

al., 2016). 

Recently, functional brain networks have also been successfully trained employing 

connectivity-informed neurofeedback in networks associated with motor control (Liew et al., 

2016; Megumi et al., 2015), emotion regulation (Koush et al., 2015), default mode network 

(McDonald et al., 2017), attention (Koush et al., 2013), executive control (Spetter et al., 

2017) and craving (D.-Y. Kim et al., 2015). 

Next to improving behavioural and cognitive functions in healthy participants, rtfMRI 

neurofeedback has also been successfully applied in order to reduce clinical symptoms in 

neurological and psychiatric patient populations, such as borderline personality disorder 

(Paret et al., 2016), depression (Linden et al., 2012; Young et al., 2014), Huntington’s disease 

(Papoutsi et al., 2018) or post-traumatic stress disorder (Nicholson et al., 2017). 

 

Real-time fMRI-based neurofeedback types 

There are different measures rtfMRI neurofeedback can be based upon. The most widely 

used option is activity-based neurofeedback. In this category the most common measures 

are the beta coefficients from the General Linear Model or Percent Signal Changes (PSC). 

Most of the times the feedback is calculated by the difference between the current 

regulation block and the preceding baseline in the same ROI. Another branch of 



neurofeedback is concerned with training connectivity between two brain regions. For 

connectivity-based neurofeedback, the activity of two brain regions is simultaneously 

trained. Here the correlation between the respective activation of the brain regions is often 

used as a measure (Megumi et al., 2015). Another connectivity based neurofeedback 

measure is Dynamic Causal Modelling (DCM) (Koush et al., 2013; Watanabe et al., 2017). 

DCM requires defining hypotheses about the neural mechanisms underlying a fMRI 

measurement including the ROIs, connections between these ROIs as well as external inputs 

and context dependent manipulations of the network (Koush et al., 2013). In the next step 

Bayesian model comparison is used to discern which model explains the data best (Penny et 

al., 2004). Furthermore, DCM allows for estimating the model’s parameters and thereby 

shedding light on the dynamic connectivity changes during an experiment. The 3rd group is  

multivariate pattern analysis (MVPA) feedback and Decoding neurofeedback (DecNef) 

(LaConte et al., 2007; Watanabe et al., 2017): Classic fMRI neurofeedback approaches in- or 

decrease the 1D amplitude of fMRI signals averaged across a ROI in the brain. However, 

MVPA feedback can change fMRI voxel patterns in the ROI rather than the mean amplitude 

of a ROI. Here, in the first step a decoder is constructed to classify a fMRI voxel pattern into 

one of different states for a participant in advance. Second, one of these states is selected as 

the target state for the following neurofeedback training. In the 3rd step, during each training 

trial the fMRI voxel pattern in the ROI of the participant is measured on a real-time basis, 

and the fMRI voxel pattern is input into the decoder, which then computes the likelihood of 

the targeted state. The feedback score which is provided to the participant is proportional to 

the likelihood of the targeted state. For a more detailed description of DecNef see Shibata et 

al. (2019).   

 

Learning in real-time fMRI-based neurofeedback 

RtfMRI-based neurofeedback has been successfully used in various settings as described in 

the previous sections. However, the underlying learning mechanisms that enable to gain 

control over one’s own neural activity remain uncertain. Currently several different learning 

mechanisms are theorised to be engaged in neurofeedback learning (Sulzer et al., 2013).  

On the psychological level one hypothesized learning mechanism which is supposedly 

crucially involved is associative learning. Associative learning describes the process of 

forming associations between behaviour and a stimulus. This comprises two sub forms: 



classical and operant conditioning. The latter is often mentioned in the explanation of 

neurofeedback learning processes (Orndorff-Plunkett et al., 2017; Sulzer et al., 2013). In a 

nutshell, operant conditioning states that the probability of a physiological response is 

increased when a reinforcing stimulus follows that response, focusing on three components: 

1. discriminative stimuli, 2. responses and 3. reinforcers.  

In rtfMRI neurofeedback training one response can be reinforced in the presence of a 

discriminative stimulus but not in presence of another, for example when an upwards 

pointing arrow appears, but not when a downwards pointing one does.  Following this 

learned association, the response probability will only increase for the first discriminative 

stimulus where the rtfMRI feedback of the brain activity functions as a reinforcing stimulus.  

 Next to investigating the psychological mechanisms, their corresponding physical 

instantiation on the hardware level is equally important when trying to understand the 

learning processes. Although not fully understood, the driving processes implementing 

associative learning are theorized to be a specific form of long-term potentiation, namely 

time dependent plasticity  (Caporale & Dan, 2008; Sulzer et al., 2013). Long-term 

potentiation is the persistent strengthening of synaptic connections caused by recent 

patterns of activation, resulting in increased signal transmissions between two neurons 

(Cooke & Bliss, 2006). However, many questions remain open, like the fact that up to this 

point it cannot be determined whether the up-regulation of BOLD results in a neural 

excitation or inhibition (Gallistel & Matzel, 2013).  

 Summarising the excursion on learning in neurofeedback, it can be concluded that 

neither the psychological nor the biological level is fully understood. Progress in the 

understanding of the underlying learning mechanisms will be essential in the further, 

purposeful development of the field. For a more thorough discussion of learning in 

neurofeedback see Sherlin et al. (2011) and Sitaram et al. (2017).  

 

Predictability of regulation performance 

Various rtfMRI neurofeedback experiments report improvements in behaviour and the 

alleviation of clinical symptoms like for example Nicholson et al. (2017 or Young et al. (2014). 

However, the question arises whether we can observe the corresponding changes in neural 

activity. Figure 2 shows the PSCs of 120 participants over 4 training runs.  

 



 

Figure 2. For 120 participants the Percent Signal Change values are plotted over 4 runs. Each 

individual blue line corresponds to one participants performance over the 4 runs.  

 

Assuming improved self-regulation through neurofeedback training, a positive slope 

across training runs would be expected. However, visual inspection of the learning curves 

does not indicate such a trend, i.e., a regression line with positive slope. Hence, the 

question: Does regulation performance in rtfMRI-based neurofeedback training follow a 

systematic, predictable pattern? This thesis aims at answering this question by investigating 

whether it is possible to predict regulation performance measured in PSC in rtfMRI 

neurofeedback based on previous regulation performance and other study- and participant 

specific characteristics.  

Hypothesis:  

H0: Neurofeedback performance as indicated by PSC is random and does not reveal 

systematic patterns that can be predicted above chance level.  

H1: Neurofeedback performance as indicated by PSC is not random but follows patterns that 

can be predicted above chance level.  



In the following sections the precise approach will be explained for testing the hypotheses 

and assessing whether rtfMRI-based neurofeedback is predictable and induces systematic 

changes.  

  



Methods 

Overview 

The approach this thesis takes is a meta-analytic one, including the data of several studies 

from the field of rtfMRI based neurofeedback. In order to test the hypothesis, we train 

statistical models, trying to predict the regulation performance of a given run, measured in 

PSC, based on previous regulation performance. For example, this would mean predicting 

the regulation performance of the participants in the fourth run based on the regulation 

performance in the first, second and 3rd runs. In a subsequent step next to the previous 

performance we incorporate additional features. The analysis then includes both the 

previous regulation performance, as well as study and participant specific information. As 

part of this thesis the 3rd, 4th, 5th, and 6th run are predicted. The 1st and 2nd are not predicted 

since there are too few features to base the prediction on. Furthermore, we did not predict 

runs after the 6th one, because there are too little available data, since only few participants 

from the studies included in the meta-analysis participated in more than 6 neurofeedback 

runs.  

 After training the models, the same models are trained on randomly shuffled data, to 

obtain the chance level prediction, in order to then compare the performances of the 

trained models to their chance level equivalent. The model’s performances are captured by 

their explained variance as indicated by the coefficient of determination (R²). To compare 

the different models to the corresponding chance-level predictions bootstrap tests are used. 

Furthermore, the individual importance of features and their contributions to the overall 

prediction using permutation-based feature importance are analysed. 

 The following sections report on the included data and the features, the used 

machine learning techniques, as well as the process of training the models. 

 

Data description 

The data included in the meta-analysis were contributed from various labs all over the world 

and comprise the largest dataset available in rtfMRI neurofeedback. Since required data 

could not be extracted just form publications exclusively, suitable studies were identified via 

the real-time fMRI neurofeedback mailing list and by contacting authors directly by Amelie 

Haugg who provided the data. For increased generalizability, we did not limit this study to a 



specific participant cohort or a target ROI. However, the employed statistical methods 

required the dataset to be homogenous with regard to the measure indicating the regulation 

performance. Therefore, only activity-based neurofeedback studies, as indicated by PSC, 

could be included in the analysis. Moreover, all included data measured one ROI and its 

respective Up/Downregulation compared to a baseline. The PSC of downregulation were 

inverted before the statistical analysis. For a detailed listing of the included studies see the 

corresponding Table 1.  

Author Participants ROIs 

Emmert et al. (2017) tinnitus (N=14) auditory cortex 

Kim et al. (2015) tobacco use disorder (N=7) Anterior cingulate cortex (ACC), 

medial prefrontal cortex (mPFC), 

orbitofrontal cortex (OFC) 

MacInnes et al. (2016) healthy (N=19) Ventral tegmental area (VTA) 

Papoutsi et al. (2018) Huntington’s disease (N=10) Supplementary motor area (SMA) 

Scharnowski et al. (2012) healthy (N=10) visual cortex 

Shuxia et al. (2016) healthy (N=18) anterior insula 

Young et al. (2017) depression (N=18) amygdala 

Hellrung et al. (2018) healthy (N=49) amygdala 

Hellrung (unpublished) healthy (N=11) insula 

Papoutsi et al. (2018) Huntington’s disease (N=8) SMA 

Marxen et al. (2016) healthy (N=32) amygdala 

Table 1. Summary of included studies for the predictions of the real-time functional magnet 

resonance imaging-based neurofeedback performance.  



The respective ROIs are illustrated in Figure 3. Overall, the analysed dataset contains 

197 participants from a total of 11 studies. All participants completed at least 3 

neurofeedback training runs. Some of the participants had to be excluded from the analysis 

due to individual missing values. Furthermore, due to missing additional information the 

data from the unpublished study was incorporated in the PSC-based predictions, but could 

not be used in the analysis incorporating previous performance and the additional 

information about study and participant specific characteristics. The available data was 

analysed with regard to outliers using isolation forests. Identified outliers were excluded 

from the predictions (see section Isolation Forests). 

 

Figure 3. Illustration of the regions of interest from the included studies.   

 

Authors contributing the data were asked to provide one value indicating PSC per 

neurofeedback run determining neurofeedback success. Next to the PSC values of the 

individual runs, participant and study specific information were included. These additional 

variables were added as features in the analysis: 

• Age 

• Sex (Male/Female 

• Patient/Healthy 



• Runs on one or several days 

• Feedback type (continuous or intermittent) 

• One or multiple clusters 

• Functional localizer (yes/no) 

• Precise instructions/No precise instructions 

• Length on training run 

• Length of regulation blocks 

In the prediction two machine learning models were always trained on the same data, 

namely a Lasso and a randomized trees model. For each run, the models were trained first 

on the previous regulation performance and second on the previous regulation performance 

combined with the additional information.  

 

Machine Learning models & cross validation  

A seminal definition of machine learning was given by Mitchell in 1997: “A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with  E” 

(Mitchell, 1997). Breaking down this very technical definition: The experience E corresponds, 

in our case, to data based on which our constructed program learns to solve a task T. Here, 

the data is the previous run performance and the additional features listed in the previous 

section, while the task is a regression task, namely the prediction of the participants 

regulation performance. A performance measure is a technical term from the field of 

Artificial Intelligence, representing the evaluation of the program or agents performance 

(Russell & Norvig, 2016). In our case the performance measure is the increase of explained 

variance as represented by the coefficient of determination R².  

 In the following sections k-fold cross validation will be explained followed by two 

regression methods in Lasso regularised Linear Regression and Randomized Trees based on 

“An Introduction to Statistical Learning” (James et al., 2013). K-fold cross validation is a 

resampling procedure employed to evaluate machine learning models on limited data 

samples. It ensures that the model does not overfit the data used for training the model but 

allows for a realistic estimation of the models’ performance to new, unseen cases. 



Furthermore, a machine learning technique for identifying outliers – Isolation Forests – will 

be described. The identified outliers were excluded from the analysis to form a 

representative sample. Finally, the concept of permutation-based feature importance will be 

explained, to introduce the technique used to determine each features importance for the 

made predictions. 

 All reported analyses were conducted using Python 3.7 (Python Software Foundation, 

https://www.python.org/) and the library Scikit-learn (Pedregosa et al., 2011). 

 

k - fold cross - validation  

A common problem in machine learning is that models always have to be trained on a 

sample, due to resource limitations and the lack of possibility to have an example for every 

alternative of a given problem. Although the ideal sample would be representative for the 

population, the models still always face the challenge of generalising to new, so far unseen 

data. If the models are exclusively trained on the collected sample not paying any attention 

to this problem, our models suffer from overfitting. Overfitting describes the case of our 

model fitting the individual characteristics of our sample well, including unusual cases but 

not generalizing to new data, resulting in poor performance. James et al. (2013) address 

different techniques how to tackle this problem. We choose a k-fold cross validation 

approach. Here the available set of observations are randomly divided into k folds of 

approximately equal size. The first fold is used as a validation or test set while the remaining 

k-1 folds are used to train the model. This procedure is repeated k times, where each time a 

different fold is used as a test set. Each time the mean squared error is computed and, 

eventually, the mean over all computed mean squared errors is used as the overall model 

performance. Because of the dependence on the assignment of individual observations to 

the k-folds, there is still some variability in the result. Therefore, the just described method 

of splitting up the dataset and iterating over the folds is often repeated several times to 

account for the variability.  

 For finding the optimal hyperparameters and obtaining a good estimate of our 

models’ performance on new data, we use two nested cross validation loops. The outer loop 

is a 10-times 10-fold cross validation loop. The 9 folds used as a training set from the outer 

loop are used for the 10-times 5-fold inner loop, where the data is split over again. In this 

inner loop the hyperparameters are optimized using randomized search from a specified 

https://www.python.org/


distribution. The exact optimized hyperparameters are described in the following sections. 

After having identified the best value for the hyperparameters in the inner cross validation 

loop, the entire dataset of the inner loop is used to fit the model using the specified 

hyperparameter value. In the next step the left-out testing fold of the outer cross validation 

is used to identify the model’s performance. This completes one iteration of the outer cross 

validation loop. This process of searching for the best hyperparameters is then repeated a 

total of 100 times until the outer cross validation loop is completed and the model fully 

trained.  

Lasso regularised linear regression 

For understanding Lasso regularised linear regression the explanation starts with linear 

regression, followed by multiple linear regression to eventually understand the regularized 

version following the explanation from James et al. (2013). Simple linear regression is 

straight forward: A quantitative response Y is predicted on the basis of a single predictor 

variable X, while assuming a linear relationship. This linear relation can be written as 

 

𝑌 ≈ 𝛽0 + 𝛽1𝑋 +  ɛ.  

 

(1) 

𝛽0 and 𝛽1 are unknown constants, representing the intercept and the slop in the linear 

model. After using our training data to obtain the estimates for these coefficients we can 

predict values for Y based on X. The values for 𝛽0 and 𝛽1 are unknown in practice. For 

obtaining estimations we estimate them based on our data. Let  

 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) (2) 

 

 be a set of n estimation pairs. We want to choose the values for 𝛽̂0 and 𝛽̂1in a way that the 

differences between our fitted line and the training data is minimal. The most commonly 

used approach is to minimize the least squares criterion, which is achieved by minimizing the 

sum of squared errors as illustrated in Figure 4. 



 

Figure 4. Illustration of the residuals between the data point and the fitted linear regression 

line. Taken from (James et al., 2013). 

 

The difference between the actual values corresponding to the red dots and the predicted 

ones indicated by the line represents the residuals which can be calculated via  

𝑒𝑖 = 𝑦𝑖−𝑦𝑖̂. 

 

(3) 

For each data point there is one residual which can be thought of as the error of the 

prediction for that given data point. The residual sum of squares (RSS) is calculated by 

RSS = 𝑒1
2 + 𝑒2

2 + ⋯ +  𝑒𝑛
2,  

 

(4) 

or equivalently as 

RSS = (𝑦1 − 𝛽̂0 − 𝛽̂1𝑥1)² + (𝑦2 −  𝛽̂0 − 𝛽̂1𝑥2)² + … + (𝑦𝑛 − 𝛽̂0 − 𝛽̂1𝑥𝑛)². 

 

(5) 

The least squares approach chooses 𝛽̂0 and 𝛽̂1 to minimize the RSS. This can be achieved 

calculating  



𝛽̂1 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅𝑛 

𝑖=1 )

∑ (𝑥𝑖−𝑥̅)²𝑛
𝑖=1

, 

 

(6) 

𝛽̂0 =  𝑦̅ - 𝛽̂1𝑥̅, 

 

(7) 

where 𝑦̅ and 𝑥̅ are the sample means.  

 Multiple linear regression follows the same principles but instead of predicting Y only 

based on X we add further features to our prediction. Including a total of p predictors our 

multiple linear regression model takes the form: 

 

Y = 𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑝𝑋𝑝+ ɛ 

 

(8) 

We can now in the same way as for linear regression estimate our parameters with the 

difference that we now have to estimate p coefficients based on the number of features we 

use for our prediction. For estimating the parameters, we again apply the same least squares 

approach, minimizing the sum of squared residuals:  

RSS = ∑ (𝑦𝑖 −  𝑦̂𝑖
𝑛
𝑖=1 )² 

 

(9) 

RSS = ∑ (𝑦𝑖 −  𝛽̂0 −  𝛽̂1𝑥𝑖1 −  𝛽̂1𝑥𝑖2 − ⋯ −  𝛽̂𝑝𝑥𝑖𝑝
𝑛
𝑖=1 )².  

 

(10) 

Having explained linear regression and its expansion to multiple linear regression, the 

only remaining step is adding the regularization term. Here, the Lasso regularized regression 

will be explained as one of the most common techniques next to Ridge Regression. Lasso 

regression estimates the coefficients in a very similar way to the least squares approach. The 

only difference is the addition of a regularization term to the RSS. In particular the β-

coefficients are chosen to minimize  

∑(𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗)²

𝑝

𝑗=1

𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗| = 𝑅𝑆𝑆 + 

𝑝

𝑗=1

𝜆 ∑|𝛽𝑗| 

𝑝

𝑗=1

 
(11) 

 

𝜆 is a tuning- or also called hyperparameter which is to be determined separately, often in a 

cross-validation fashion. The RSS searches for the fit which minimizes the residuals as 



before. The second term, the so-called lasso penalty is shrinking the coefficients towards 

zero trying to make them small, and thereby also naturally performing a feature selection, 

since the predictors with a coefficient of 0 do not contribute to the prediction. The tuning 

parameter 𝜆 serves the overall scaling of the regularization term where a 𝜆 = 0 is equal to a 

classic multiple linear regression. 𝜆 in our case is optimized inside the inner 5-times 10-fold 

cross validation loop. Using randomized search, we select 250 values in the value range 

0.001 to 1000 on each iteration, aiming at finding the optimal value for the hyperparameter 

𝜆.  

Randomized trees 

This section will briefly explain the ideas behind decision trees, as they are used for 

regression tasks, followed by an explanation of random forests to eventually explain the 

modification in randomized trees. Predictions from regression trees for a specific 

observation are typically made after a series of splits and eventually using the mean or mode 

of the training observations in the region which it belongs to. The splitting rules used to 

segment the predictor space can be summarized in a tree, therefore these types of 

approaches are generally referred to as decision trees. Figure 5 modified from James et al. 

(2013) illustrates such a decision tree. In line with the tree analogy, the regions R1 to R5 are 

referred to as leaves, while the split points leading to the leaves are internal nodes. The tree 

originates at the so-called root creating branches to the leaves.  

 

Figure 5. Modified from James et al. (2013). Visual illustration of a decision tree resulting in 5 

distinct regions.  



The building process of a tree follows two steps: 

1. The predictor space (X), that is the set of possible values for our p predictors, is 

divided into J distinct non-overlapping regions 𝑅1, … , 𝑅𝐽. 

2. Then the same prediction is made for every observation, falling into region 𝑅𝐽, which 

is simply the mean of the response values for the training observations in 𝑅𝐽.  

In other words, using the decision tree the prediction is made by stepping through the 

decision tree and following down a branch according to the splitting points to one of the J 

regions.  The prediction for that given observation is the value of that leave which is 

determined by the examples in the training phase of the decision tree. The open question is 

how are the regions constructed and the splitting points determined? The goal is to find the 

regions 𝑅1, … , 𝑅𝐽 that minimize the RSS given by  

∑ ∑(𝑦𝑖 − 𝑦̂𝑅𝑗
)²

𝑖𝜖𝑅𝑗

𝐽

𝑗=1

, 

(12) 

 

where 𝑦̂𝑅𝑗
 is the mean over the training examples in the J-th region. Since it is impossible to 

consider every possible partitioning of the feature space, we have to take a top-down, 

greedy approach, known as recursive splitting. Here we step through the tree starting at the 

root and at each splitting node choose the given best split minimizing the local RSS at that 

given node. Thereby at each split two new regions are created which are then again split 

over again into two new regions each in the subsequent step. This process is repeated until 

no more splits are possible because each node only contains one example, or a specific 

stopping criterion is reached, for example a minimum of 5 observations in each node. One 

problem that decision trees suffer from is high variance, meaning that the decision trees 

overfit to the data and work very well on the trained dataset, but do not generalize well to 

new examples.  

One way to solve that problem is the random forest algorithm which builds upon 

individual decision trees (Breiman, 2001). It takes advantage of a method called bagging. 

Since every individual tree tends to suffer from high variance, a solution is to build several 

decision trees and average their output. For doing so repeatedly a bootstrap sample is 

drawn from the data set with the same size as the initial dataset. From each bootstrap 



sample a decision tree is built. In a next step the output of the built trees is averaged to 

obtain the final prediction. Furthermore, random forest implements another method that 

decorrelates the individual trees which eventually after the averaging improves the 

performance of the model: at each splitting node only a random subset of predictors is used 

to compute the optimal local split. This results in more diverse trees, which in combination 

with the averaging over many decision trees improves the performance of the random 

forest.  

 Building on the idea of a random forest a modified version was developed, called the 

randomized trees (Geurts et al., 2006). There are two main differences between a random 

forest and a randomized tree. However, the basic principle of building many different 

decision trees that are averaged at the end remains the same. The first difference is that 

rather than drawing bootstrap samples from the dataset for each built tree, all available data 

is used. The second difference are the split points. In random forests a subset of all available 

predictors is chosen and then the best value minimizing the RSS chosen as a splitting 

criterion, whereas in the case of a randomized tree all available predictors are used for each 

split. For each predictor, a random value is chosen and evaluated. The predictor with the 

chosen random value minimizing the RSS the best is chosen as the splitting criterion. Hence, 

the trees built using the randomized tree method are very diverse and decorrelated which is 

desirable since the subsequent averaging over very diverse trees tends to result in the best 

overall model. 

 One hyperparameter that was optimized was the maximum number of leaves each 

tree is allowed to grow in order to control for tree complexity. Here, similar to the lasso 

regression, we search for the ideal parameters in the inner cross validation loop trying 85 

different values using randomized search with an upper threshold of a maximum of 256 

leaves on each built tree.   

Isolation forest 

Isolation forests are a tree-based method just like randomized trees. However, they serve a 

different purpose. Rather than solving regression tasks they can be applied for detecting 

anomalies (Liu et al., 2008). Isolation forests exploit two properties of outliers to identify 

them. The first is that they are minorities, consisting of fewer instances. The second is that 

they have attribute values that are different to those of the normal instances. These 



properties make them very susceptible to isolation. Thus, the anomalies are isolated closer 

to the root of a decision tree, whereas normal datapoints are isolated deeper in the tree. 

Similar to random forests and randomized trees, also in the case of isolation forests many 

trees are built resembling a forest of random trees. When these trees collectively produce 

shorter path lengths for some particular datapoints they are highly likely to be anomalies. 

For a more thorough explanation see Liu et al. (2008). 

 

Figure 6. taken from Liu et al. (2008). (a) and (b) illustrate the different path lengths in order 

to isolate a given datapoint. (c) shows the convergence of path lengths with increasing 

number of trees.  

 Figure 6 (a) shows the isolation of a datapoint which is no outlier in comparison to 

the isolation of an anomaly in shown in Figure 6 (b). Figure 6 (c) shows the averaged path 

lengths of the forest. With increasing tree number, the path length converges to a stable 



value. In the here presented example the anomaly requires 4 splits to be isolated while the 

normal datapoint is isolated after 12 splits (Liu et al., 2008). 

 In the present study for each predicted run the PSC data was analysed using isolation 

forests, excluding the outliers before fitting the models. On average about 10% of the data 

were identified as outliers and excluded before the training of the models. 

 

Bootstrap test 

In order to assess the statistical significance of the difference between trained models and 

chance level, bootstrap tests were conducted. For doing so, models were trained on 

randomly shuffled data first, to generate 100 R² values of the model predicting at chance. 

This distribution is now compared to the distribution of 100 R² values generated by the 

trained models on the correct data.  

For comparing the distributions, the bootstrap test implements the following steps: 

1. The difference in mean based on the to sample distributions was computed ("Mean 

Difference 1"). 

2. In the subsequent step the two distributions are merged to one joint 

distribution. Under the H0 the two distributions are the same. 

3. Now two bootstrap samples are drawn with replacement from the joint 

distribution of equal size to the initial two distributions. In our case 100 

values. 

4. Now the mean difference between the two drawn distributions is calculated, 

here named "Mean Difference bootstrapped". 

5. The steps 3 and 4 are repeated very often generating many different Mean 

Difference bootstrapped values. We generated a total of 20000 Mean 

Difference bootstrapped values per bootstrap test. 

6. Based on the ratio of how often Mean Difference 1 is larger than Mean 

Difference 2 a p-value can be calculated and compared to a significance level. 

 

For each prediction, a bootstrap test was calculated using a significance level of α = 0.05. 

 



Feature importance 

 

Permutation based feature importance 

When inputting several features into a machine learning model an interesting question is 

which features are actually important for the prediction and which do not yield valuable 

information for the predictions. One approach to analyse and interpret the contributions of 

the individual variables used as predictors was introduced by Altmann et al. (2010). They 

propose a permutation-based feature importance measure. The permutation-based feature 

importance is defined to be the decrease in a model score when a single feature value is 

randomly shuffled. By shuffling, the relationship between the feature and the target is 

broken up. Hence, the drop--in model score, here the R² scores, is indicative of how much 

the model depends on the specific feature. Therefore, in an iterative fashion one feature is 

shuffled at a time, then the model is trained over again, and the corresponding drop 

observed, allowing for an assessment of the model’s overall dependence on each feature. 

One big advantage of the permutation-based feature importance approach is that it is model 

agnostic, meaning that it is not specific to one type of model (like a Lasso regularised linear 

regression or randomized trees), but can be compared across models. However, it needs a 

substantial amount of data to clearly identify the most important features and their 

importance precisely. Another characteristic which is important to note is that correlated 

features represent a problem in the permutation-based feature importance approach, since 

when one feature is shuffled, the information is still available through the correlated 

feature. In the results section for each reported model the most important feature is 

reported as well as its proportional reduction of R².  

 

Model based importance 

In order to gain a better understanding of the individual contributions from each feature 

next to approaches like permutation-based feature importance, the Lasso regularised linear 

regression and randomized trees models can be inspected themselves.  

For the lasso regularised linear regression the model’s weights were additionally 

analysed for each included feature. For each model the four most important predictors are 

reported and their weights in form of the median over the 100 models trained in the cross-

validation. The individual weights indicate the importance of the corresponding feature and 

can be directly interpreted since the features were standardised before inputting them into 



the model. The weight for each feature indicates the increase along the y-axis for one unit 

increase along the x-axis.  

In case of the analysis of the randomized trees models, instead of the model 

coefficients for each feature, the relative reduction of the root mean squared error 

compared to the total reduction in root mean squared error was analysed and ranked. The 

most important predictor reduces the root mean squared error the most. In the results 

section the four most important predictors are listed, and their relative reduction of the root 

mean squared error as the median value over the 100 models trained in the cross-validation. 

It has to be noted that one disadvantage of the model inspections is that they are not 

model agnostic like the permutation-based feature importance. Hence, it is not possible to 

compare the importance rankings directly across different model types. 

  



Results   

Prediction results based on previous run performance 

In the following, the model performance summaries will be reported. Table 2 and Table 3 

contain the model summaries for the Lasso and the randomized trees models based on the 

PSC values only. For each run the number of available participants is listed as well as the 

average and median R² values over the 100 models trained in the cross-validation. 

Furthermore, the R² values for the models trained on the randomly shuffled data are 

reported to obtain the chance level predictions. Additionally, p-values were calculated 

comparing the model fits to the chance level predictions and to the trivial predictors using 

bootstrap tests.  

Table 2. Summary of the Lasso models trained on the Percent Signal Change data. 

Predicted 

Run, (n) 

Avg. R² (std), 

Median R² 

p-value to trivial 

predictor 

Chance Level Avg. 

R² (std) 

p-value to 

chance level 

Run 3, (170) 0.12 (0.23), 

0.14 

< .001* -0.1 (0.12) <.001* 

Run 4, (110) 0.12 (0.49), 

0.26 

.003* -0.13(0.2) <.001* 

Run 5, (66) -0.02 (0.53), 

0.11 

.634 -0.36 (0.57) <.001* 

Run 6, (66) -0.06 (0.7), 

0.16 

.806 -0.36(0.68) .003* 

Avg. R² and Median are calculated over the 100 models fitted in the outer cross validation. 

The comparison to the trivial predictor tests whether the prediction is significantly better 

than always predicting the mean value. The Chance Level comparison is based on fitting the 

model to the randomly shuffled data. (n) = number of included participants. (std) = standard 

deviation. *p < .05. 

 

 The Lasso regularised regression and the randomized trees show similar 

performances. Both models always show significantly better predictions than chance levels 



for all runs (p < 0.05).  Furthermore, both models showed significantly better performances 

than the trivial predictor, corresponding to predicting using the mean value, for the 3rd and 

4th run with a median R² up to 0.26. However, neither the lasso regularised regression nor 

the randomized trees models were able to predict the 5th and 6th run significantly better 

than the trivial predictor. For more detailed information on each model see the Appendix for 

plots showing the models predictions plotted against the true values in the data (Figure7-

14). 

 

Table 3. Summary of the Randomized Trees models trained on the Percent Signal Change 

data. 

Predicted 

Run, (n) 

Avg. R² (std), 

Median R² 

p-value to trivial 

predictor 

Chance Level 

Avg. R² (std) 

p-value to 

chance level 

Run 3 (170) 0.12 (0.29),  

0.16 

<0.001* -0.1 (0.17) <.001* 

Run 4, (110) 0.1 (0.43),  

0.22 

.008* -0.17 (0.19) <.001* 

 

Run 5, (66) -0.14 (0.86), 

0.06 

.936 -0.33 (0.46) .04* 

Run 6, (66) 0.02 (0.55),  

0.16 

.338 -0.57 (1.01) <.001* 

Avg. R² and Median are calculated over the 100 models fitted in the outer cross validation. 

The comparison to the trivial predictor tests whether the prediction is significantly better 

than always predicting the mean value. The Chance Level comparison is based on fitting the 

model to the randomly shuffled data. (n) = number of included participants. (std) = standard 

deviation. *p < .05. 

Prediction results based on all available information  

The table 4 and table 5 summarise the lasso regularised regression and randomized trees 

models based on all available information which include study and participant specific 

information next to the PSC values. Similarly, to table 2 and table 3 the mean and median R² 

values are reported for the trained models and the chance level predictions. Additionally, 



the p-values for bootstrap tests are reported comparing the trained models to the chance 

level prediction and the trivial predictor.  

 

Table 4. Summary of the Lasso models on all available information. 

Predicted 

Run, (n) 

Avg. R² (std), 

Median R² 

p-value to trivial 

predictor 

Chance Level Avg. 

R² (std) 

p-value to 

chance level 

Run 3, (160) 0.03 (0.23),  

0.07 

.128 -0.06 (0.12) .0012* 

Run 4, (99) 0.07 (0.56),  

0.18 

0.099 -0.22 (0.36) <.001* 

Run 5, (55) -0.21 (0.69),  

-0.02 

.997 -0.62 (1.3) .008* 

Run 6, (55) -0.54 (1.47),  

-0.07 

.999 -0.54 (0.94) .971 

Avg. R² and Median are calculated over the 100 models fitted in the outer cross validation. 

The comparison to the trivial predictor tests whether the prediction is significantly better 

than always predicting the mean value. The Chance Level comparison is based on fitting the 

model to the randomly shuffled data. (n) = number of included participants. (std) = standard 

deviation. *p < .05. 

  

Both models can predict significantly better than chance level for all runs except the 

sixth run. However, for the comparison to the trivial predictor only one prediction was 

significantly better, namely the 3rd run predicted by the randomized trees model. All other 

runs for both models remained not significant. A detailed description on the models’ 

individual performances can be found in the Appendix figures 15-22.  

 

 

 

 



Table 5. Summary of the Randomized Trees models trained on all available information. 

Predicted 

Run, (n) 

Avg. R² (std), 

Median R² 

p-value to trivial 

predictor 

Chance Level 

Avg. R² (std) 

p-value to 

chance level 

Run 3, (160) 0.04 (0.24),  

0.01 

0.029* -0.21 (0.25) <.001* 

Run 4, (99) -0.11 (0.65), 

0.04 

0.944 -0.38 (0.55) .0024* 

Run 5, (55) -0.42 (1.0),  

-0.06 

1.0 -0.9 (1.65) .017* 

Run 6, (55) -0.31 (1.23),  

-0.1 

.985 -0.74 (3.71) .251 

Avg. R² and Median are calculated over the 100 models fitted in the outer cross validation. 

The comparison to the trivial predictor tests whether the prediction is significantly better 

than always predicting the mean value. The Chance Level comparison is based on fitting the 

model to the randomly shuffled data. (n) = number of included participants. (std) = standard 

deviation. *p < .05. 

 

Feature importance analysis 

 

Permutation based feature importance analysis 

 

For analysing the importance of each feature permutation-based feature importance was 

used on the models including all available information. Since the overall sample sizes of our 

models are low, the permutation-based feature importance results show large variability 

over the 100 models trained in the cross-validation. The full rankings for each model can be 

found in the Appendix. Here, in Table 6 and Table 7, for each run the most important 

predictor is listed and the median importance for each run’s prediction. Since a clear most 

important predictor could not always be determined, some fields are left blank 

corresponding to no predictor having an importance above the arbitrary threshold of 0.05.  

 



Table 6. Permutation based feature 

importance for Lasso regularised linear 

regression  

Predicted Run Ranked 1st, Median 

Run 3 Run 2, 0.38 

Run 4 Run 3, 0.22 

Run 5 Run 4, 0.05 

Run 6 Run 1, 0.10 

 

The most important predictor for each 

lasso regularised linear regression model 

according to permutation-based feature 

importance and the corresponding median 

importance. 

 Table 7. Permutation based feature 

importance for randomized trees  

 

Predicted Run Ranked 1st, Median 

Run 3 Run 2, 0.2 

Run 4 - 

Run 5 - 

Run 6 

 

Run 5, 0.057 

 

The most important predictor for each 

randomized trees model according to 

permutation-based feature importance 

and the corresponding median 

importance. Empty cells indicate that all 

predictor values were below 0.05. 

 

As listed in Table 6 and Table 7, the past runs always were the most important predictors 

and in 5 cases the most recent run was the most crucial predictor. However, permutation-

based feature importance suffers from the small sample, which makes clearly identifying the 

importance for each predictor difficult. Hence, it was not possible to identify one most 

important predictor for the randomized trees models predicting run 4 and run 5.  

For a better understanding of the individual contributions additionally a model-based 

analysis was conducted and is reported in the following chapter.  

Model importance Lasso regularised linear regression 

In the case of lasso regularised linear regression the coefficients can be directly interpreted 

as the increase along the y-axis with one unit of increase along the standardized x-axis. Table 

8 lists the coefficients for the 4 most important predictors for each model trained.  

 

 

 



Table 8. Model importance analysis for the Lasso regularised linear regression trained on all 

available information. 

The 4 most important predictors according to their model weights are ranked and their 

corresponding median values over the 100 models trained in the cross validation. 

 
Overall, the results are similar to the permutation-based feature importance results, in the 

preceding runs being important predictors where in 3 out of 4 cases the most recent run was 

the highest ranked predictor. Additionally, the length of the neurofeedback run as well as 

the participant coming from a healthy or a clinical population were ranked as important 

predictors. All rankings for each model can be found in the Appendix.  

 

Model importance randomized trees 

 

Just like the coefficients in lasso regularised linear regression, in randomized trees the 

features can be analysed by observing the normalized root mean squared error reductions 

each feature contributes. Table 9 summarises the most important predictors for each run 

Predicted 

Run 

Ranked 1, 

Median 

Ranked 2,  

Median 

Ranked 3,  

Median 

Ranked 4,  

Median 

Run 3 
Run 2,  

0.27 

Run 1, 

0.09 

Length of 

neurofeedback 

run, 

0.07 

Patient or Healthy, 

0.06 

Run 4 
Run 3,  

0.33 

Run 2, 

0.14 
 

Patient or Healthy, 

0,06 

Length of neurofeedback 

run, 

0.04 

Run 5 
Run 4, 

0.27 

Up regulation, 

0.19 

Run 3, 

0.14 

Run 2, 

0.04 

Run 6 
Run 2, 

0.31 

Run 5, 

0.18 

Run 4, 

0.08 

Run 3, 

0.07 



and their relative root mean squared error reduction as the median over the 100 models 

trained in the cross-validation.  

 

Table 9. Model importance analysis for the Randomized Trees model trained on all available 

information. 

The 4 most important predictors based on the relative root mean squared error reduction 

are ranked and their corresponding median values over the 100 models trained in the cross 

validation.  

 

In line with the previously reported results, the past runs are the most important predictors 

and in 3 out of 4 cases the most recent run reduced the relative root mean squared error the 

most. Additionally, it can be noted that for the prediction of run 3 and run 4 again the 

information about a participant coming from a clinical or heathy population was important 

information and allowed for a considerable amount of root mean squared error reduction. 

The entire ranking for each model can be found in the Appendix (Figures 25-38).  

Predicted 

Run 

Ranked 1,  

Median 

Ranked 2,  

Median 

Ranked 3,  

Median 

Ranked 4,  

Median 

Run 3 
Run 2,  

0.44 

Patient or 

Healthy, 

0.16 

Run 1,  

0.12 

One or more days,  

0.09 

Run 4 
Run 3, 

0.31 

Patient or 

Healthy, 

0.21 

Run 2, 

0.21 

Run 1, 

0.04 

Run 5 
Run 4,  

0.23 

Part of sensory 

system, 

0.19 

Run 3, 

0.15 

Run 2, 

0.13 

Run 6 
Run 2, 

0.31 

Run 5, 

0.3 

Run 4, 

0.14 

Run 3, 

0.08 



Discussion 
RtfMRI-based neurofeedback is an emerging scientific tool allowing to learn to self-regulate 

neural activity. It has been applied to various fields showing promising results as described in 

the chapter on target groups. However, the question arises whether we can observe 

corresponding patterns in neural activity that go along these behavioural changes. 

Therefore, this Thesis investigated the predictability of neurofeedback training performance 

as measured by PSC.  

Predictability of regulation performance 

Overall, our results show that neurofeedback performance can be predicted above 

chance level as shown by both model types trained on PSC values. All models trained on PSC 

values predicted significantly better than chance level. However, the incorporation of 

additional information did not yield improvements in the amount of explained variance. 

Overall, the models trained on all available information show a similar pattern with all runs 

showing above chance level prediction performance except the 6th. In any case, only the 3rd 

and 4th run could be predicted significantly better than the trivial predictor with the highest 

median R² value being 0.26. This points out that although our models are able to predict 

above chance level and in some cases better than the mean, a decent amount of PSC 

variance remains unexplained. Regarding the trained models, the effect of the decreasing 

sample size with the increasing number of runs, used as target, has to be pointed out. For 

predicting the 3rd run the data of up to 170 participants were available while for the 6th run 

only 66, corresponding to less than 40% of the data compared to run 3. This must be 

considered when interpreting our results, since less data leads to overall worse model 

performance. One reason for this is the fewer examples the model can be trained on, which 

will not cover the full variable value range. In order to assess the predictability of training 

performance for the 6th run and even later runs we would require additional data. Hence, 

one expansion for future research is the analysis of later runs on an ideally further growing 

data repository. Here we would expect the predictions of the 6th and later runs to work 

similarly well to the earlier runs assuming equally large datasets. Perhaps even an increased 

performance could be possible, since every participant would have had more training runs 

and therefore contributes more datapoints overall, helping the fitting of statistical models.  



Feature importance 

Next to assessing the predictability of rtfMRI-based neurofeedback training itself, the 

analysis of the individual importance of features was a crucial part of our data analysis. One 

approach we took was permutation-based feature importance. Overall, the relatively small 

available sample made it difficult to clearly determine each features importance with 

permutation importance methods since their relevance varies considerably throughout the 

models trained in the cross-validation. The full rankings can be found in the Appendix 

(Figures 25-38). However, it can be concluded, that the previous runs’ PSC value seems to 

carry the most information in predicting the regulation performance. This can be expected 

since the BOLD response tends to be slow and is therefore autocorrelated (Worsley et al., 

1995). Therefore, going in line with the signal being autocorrelated the directly preceding 

run carries the most information for the predictions.  

In addition to the permutation-based feature importance, a model-based feature 

analysis was conducted for the trained lasso regularised linear regression and the 

randomized trees models. These results support the conclusion that previous runs yield the 

most information for predicting future performance. For all predictions, past runs were the 

most important predictor and in 75 percent of the cases the directly preceding run carried 

the most valuable information. The results from the feature importance analysis are in line 

with the models trained on PSC values in that they are not performing worse than the 

models including additional information.  

Inspecting the models predicting the 3rd and 4th run with the highest R² values, it can 

be concluded that for these models the length of the neurofeedback training run was a 

valuable information, as well as the information about the participants being healthy or from 

a clinical population.  

Strengths, limitations, and future directions 

Our dataset is a joint dataset comprised out of various studies. The only restrictions 

we applied were that the feedback measure had to be a PSC value of a fixed region or set of 

regions, from a regulation period in comparison to a baseline period. Hence, our dataset 

mixes healthy participants with patients as well as different ROIs and experimental designs. 

Overall, all studies aim at inducing systematic changes to neural activity and train the ability 

to voluntarily control brain activity. Therefore, the overall goal of the studies is comparable. 

Nevertheless, it is hard to point out to what extend one of the many variables might affect 



the comparability of the included data. It will be a very interesting challenge for future 

research to generate a better understanding of the relevant factors affecting training 

performance. A recent systematic review conducted by Thibault et al. (2017) also maps out 

this heterogeneity in the field from the differences in experimental designs, over feedback 

techniques to the wide spanning range of outcomes: one the one hand, studies in which 

participants fail to obtain control of their neural activity, and, on the other hand, studies 

showing great success with participants being able to control their brain activity and showing 

concurrent behavioural changes. Here, an important aspect they point out is the likely bias in 

the literature overrepresenting successful studies and unsuccessful studies not being 

published, and therefore not included in many studies as it is the problem in many fields 

(Ioannidis, 2005; Thibault et al., 2017).  

However, as the field matures, and further data is collected we will hopefully 

continue to see the trend of sharing data, allowing more comprehensive meta analytic 

approaches like ours. Additionally, finding a way to make data from unsuccessful studies 

accessible would enable further insights, allowing for a more accurate depiction of rtfMRI-

based neurofeedback as a field. Furthermore, endeavours like the CRED-nf checklist will help 

a lot in incorporating new data and assess its comparability (Ros et al., 2019). Here the main 

objective is to introduce a consensus-driven checklist in the field, aimed at improving 

reporting and experimental design standards.  

Next to the already mentioned future research directions, other possible extensions 

of this Thesis will be worth pursuing. On the one hand, as mentioned before, an expansion of 

the available data with new studies would allow for more precise results. On the other hand, 

also the models themselves could be optimized by looking further into hyperparameter 

tuning or the training of different model types. Furthermore, next to training different 

models on the same data, other datasets should be analysed like different activity-based 

measures for instance the beta-coefficients or connectivity-based neurofeedback studies. 

This could either confirm our present results or raise new questions if one of the feedback 

measures is better predictable than another.  

The last branch of research following up from here is an expansion on the briefly 

touched upon topic of learning in neurofeedback. A better understanding of the 

psychological and neurobiological underpinnings could inform the experimental designs and 



trained targets in future neurofeedback studies. Here open questions are the ideal length of 

the neurofeedback runs, the number of runs to learn to gain control and the kind of 

feedback to name a few. Progress here could increase the efficacy of neurofeedback and 

allow for a better understanding of the underlying processes in neurofeedback.  

Conclusion 

Our study aimed at assessing the predictability of neurofeedback performance, measured by 

PSC in a large dataset incorporating data from various studies, allowing for a generalisation 

across the field of neurofeedback. We were able to show that training performance can be 

predicted and shows systematic patterns. However, going in line with the large variability in 

regulation performance, our best models were only able to explain about a fourth of the 

overall variance. We hope that our might help to optimize the experimental designs in 

neurofeedback studies and increase the efficacy of neurofeedback training.  
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Appendix 
Deutsche Zusammenfassung 

Echtzeit funktionelle magnetresonanztomographiebasiertes Neurofeedback ist ein neues 

wissenschaftliches und klinisches Werkzeug, welches erlaubt die eigene Gehirnaktivität zu 

regulieren. Es ermöglich das Verhalten von gesunden Teilnehmerinnen zu beeinflussen als 

auch die Behandlung von klinischen Symptomen in Patientenpopulationen. Jedoch variiert 

die Fähigkeit der Regulation stark über Studien und TeilnehmerInnen. Konsistente 

Lernkurven wie beispielsweise stetige Anstiege sind selten. Unsere Studie untersucht ob die 

Neurofeedbackregulationsleistung über einzelne Runs zufällig variiert oder ob vorhersagbare 

Muster vorhanden sind. Unsere Modelle beinhalten zudem subjekt- und studienspezifische 

Merkmale wie beispielsweise Alter, Geschlecht, Instruktionen, trainierte Gehirnareale oder 

die Länge der einzelnen Runs, um zu untersuchen wie diese Faktoren die Leistung 

beeinflussen. Unter Verwendung von maschinellem Lernen (L1 regularisierte lineare 

Regression und Randomized Trees) sagen wir die Leistung in einem bestimmten Run vorher 

auf Basis der vorangehenden Regulationsleistungen. Zur Analyse des Beitrags der einzelnen 

Prädiktoren wurde die Methode der permutationsbasierten Prädiktorenrelevanz 

(Permutation-based feature importance) angewendet sowie die trainierten Modelle selbst 

analysiert. Unsere Analysen wurden auf einem Datensatz von 197 Probanden durchgeführt 

(aus 11 Studien), aus welchen wir schlussfolgern, dass die Regulationsleistung stets 

signifikant besser als das Zufallsniveau vorhergesagt werden kann. Jedoch bleibt mit Median 

R² werten von bis zu 0.26 stets ein großer Teil der Varianz in unseren Daten unerklärt. Die 

Analyse der Relevanz der Prädiktoren ergab, dass die vorhergehenden Runs die 

relevantesten Prädiktoren waren und der vorangehende Run oftmals der wichtigste 

Prädiktor. Insgesamt zeigen unsere Ergebnisse, dass Neurofeedbackregulationsleistung 

überzufällig gut vorhersagbar ist und systematischen Mustern folgt. Diese Ergebnisse können 

dazu beitragen die Selbstregulationsfähigkeit in Neurofeedbacktraining besser zu verstehen 

und damit die Anwendungsmöglichkeiten von Neurofeedback vergrößern. Im Rahmen der 

Open Science Bewegung könnte ein solcher datenbasierter Ansatz ein vielversprechender 

Weg sein für ein tiefergehendes Verständnis von Neurofeedback. 

  



Figures 

Models trained on PSC values only 

Figure 7 Lasso regularised linear regression predicting run 3 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 8 Lasso regularised linear regression predicting run 4 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error.  



Figure 9 Lasso regularised linear regression predicting run 5 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 10 Lasso regularised linear regression predicting run 6 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Figure 11 Randomized Trees predicting run 3 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 12 Randomized Trees predicting run 4 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Figure 13 Randomized Trees predicting run 5 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 14 Randomized Trees predicting run 6 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Models trained on all available information 

Figure 15 Lasso regularised linear regression predicting run 3 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 16 Lasso regularised linear regression predicting run 4 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Figure 17 Lasso regularised linear regression predicting run 5 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 18 Lasso regularised linear regression predicting run 6 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Figure 19 Randomized Trees predicting run 3 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 20 Randomized Trees predicting run 4 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Figure 21 Randomized Trees predicting run 5 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

 

Figure 22 Randomized Trees predicting run 6 

 

R² = coefficient of determination. MAE = mean average error. Std = Standard deviation.  

Med = median. RMSE = Root mean squared error. 

  



Feature importance analysis 

 

Feature importance rankings for regularised linear regression predicting run 3 

Figure 23 

 

Figure 24 

 

  



Feature importance rankings for regularised linear regression predicting run 4 

Figure 25 

 

Figure 26 

  



Feature importance rankings for regularised linear regression predicting run 5 

Figure 27 
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Feature importance rankings for regularised linear regression predicting run 6 

Figure 29 
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Feature importance rankings for randomized trees predicting run 3 

Figure 31 
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Feature importance rankings for randomized trees predicting run 4 

Figure 33 
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Feature importance rankings for randomized trees predicting run 5 

Figure 35 
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Feature importance rankings for randomized trees predicting run 6 

Figure 37 

 

Figure 38 
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