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Abstract

In this thesis we investigate a particular source of divergence of perturbative expansions in
QCD which leads to divergent series that can at best be considered asymptotic. The asymptotic
behaviour these divergences are causing is related to contributions from small and large loop
momenta in perturbative calculations and manifests itself in poles of the corresponding Borel
transform which are termed infrared (IR) and ultraviolet (UV) renormalons, depending on the
momentum regions they are related to. Studies of renormalon divergences have become increasingly
important in high-energy physics to achieve an ever higher precision in theoretical predictions. In
this context we review the QCD description of hadronic τ decays and summarize what is known
about ultraviolet and infrared renormalons. In particular we analyze the close connection between
IR renormalons and non-perturbative power corrections in QCD and discuss how IR renormalons
lead to ambiguities in the definition of the Borel integral. Furthermore we present another approach
to deal with renormalon divergences and show how the introduction of an additional scale R can be
used to improve the poor convergence behaviour of perturbative series suffering from renormalon
ambiguities. From the solution of renormalization group equations with respect to the scale R, the
so-called R-evolution equations, we deduce an analytic all-order expression for the Borel transform
of perturbative series that can be used as a test for renormalon ambiguities. As a practical
application we study the Borel transform of the Adler function in the context of the large-β0

approximation.

Zusammenfassung

In dieser Arbeit wird eine bestimmte Art von Divergenzen betrachtet, welche in perturbativen
Entwicklungen in QCD auftreten und zu divergenten Reihen führen, die bestenfalls asymptotisch
sind. Das asymptotische Verhalten dieser Reihen wird sowohl von Bereichen mit niedrigen als auch
von Bereichen mit hohen Impulsen in Schleifenintegralen verursacht und spiegelt sich in Form von
Singularitäten in der entsprechenden Boreltransformierten wider, welche als Renormalons bezeich-
net werden. In Abhängigkeit von ihrem Ursprung von Bereichen mit niedrigen oder hohen Im-
pulsen, wird dabei zwischen infraroten (IR) bzw. ultravioletten (UV) Renormalons unterschieden.
Genaue Untersuchungen dieser Renormalon Divergenzen werden zunehmend bedeutender, um the-
oretische Vorhersagen in der Hochenergie-Physik zu verbessern. In diesem Zusammenhang betra-
chten wir zunächst hadronische τ Zerfälle und geben einen allgemeinen Überblick über ultravio-
lette (UV) sowie infrarote (IR) Renormalons. Im Speziellen diskutieren wir die enge Verknüpfung
zwischen IR Renormalons und nicht-perturbativen Powerkorrekturen in QCD und zeigen, dass
IR Renormalons zu einer Ambiguität in der Definition des Borel-Integrals führen. Des Weiteren
präsentieren wir einen alternativen Ansatz, um Renormalon Divergenzen zu behandeln und zeigen
wie mit Hilfe einer zusätzlichen Skala R das schlechte Konvergenzverhalten von Störungsreihen
verbessert werden kann. Die Lösung von Renormierungsgruppen-Gleichungen bezüglich dieser
neuen Skala R, welche R-evolution Gleichungen genannt werden, liefert einen analytischen Aus-
druck für die Boreltransformierte von Störungsreihen, die zum Testen von Renormalon Ambi-
guitäten verwendet werden kann. Als Anwendungsbeispiel betrachten wir die Boreltransformierte
der Adlerfunktion in der Large-β0 Näherung.
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Chapter 1

Introduction

It is a well-known fact that perturbative expansions in quantum field theory, and in particular
in Quantum Chromodynamics (QCD), lead to divergent series for which one expects a factorial
growth of the perturbative coefficients at high orders. An important source of divergence, which
is directly related to small and large momentum behaviour in loop integrals, is referred to as
renormalons and was investigated for the first time in the 1970s [1, 2, 3]. Ever since, studies of
renormalons and large-order behaviour in perturbation series have become indispensable in high-
energy physics, especially because theoretical predictions of fundamental parameters require an
ever increasing precision in order to test the internal consistency of the Standard Model and find
physics that goes beyond it.

In this context one of the central quantities of QCD is the strong coupling constant αs and over
the last decades major efforts, ranging from analyses of event shapes in e+e− annihilation (see e.g.
[4, 5, 6, 7]) to lattice QCD (e.g. [8, 9, 10, 11]), have been made to improve its determination. The
probably most important low-energy extraction of the strong coupling is provided by investiga-
tions of hadronic τ decays. Due to the mass mτ = 1.78 GeV of the τ lepton the strong coupling
αs(Mτ ) at the τ mass scale is on the one side small enough such that perturbative expansions
still converge, but on the other side large enough that the τ hadronic width Rτ is sensitive to
it [12]. Besides, non-perturbative contributions to Rτ turn out to be rather small which makes
an accurate theoretical prediction in the context of perturbation theory possible. At present the
largest source of theoretical uncertainty in the determination of αs from τ decays is related to the
apparent discrepancy between different approaches used to improve the perturbative expansion of
the τ decay rate by means of the renormalisation group. The two most commonly employed tech-
niques, known as fixed-order (FOPT) and contour-improved perturbation theory (CIPT), lead to
significant numerical differences and many studies have been motivated by the necessity to resolve
this issue [13, 14, 15]. Detailed investigations [16] indicate that the preference for either FOPT or
CIPT depends primarily on the assumptions made on the models used to predict the large-order
behaviour of the perturbative series of Rτ .

Associated with these higher-order models are renormalons, which dominate the large-order
behaviour and therefore play a crucial role. In order to deal with factorially divergent series related
to renormalons it proves to be very useful to perform a Borel transformation. The Borel transform
then encodes the information on the divergent behaviour in form of singularities that lie on the real
axis in the complex Borel plane. It is actually these poles in the Borel transform along with the
associated large order behaviour of the perturbative series which are called renormalons. Depend-
ing on their physical origin it is possible to separate renormalons into two different classes. Those
related to the short-distance behaviour of QCD appear on the negative real axis and are termed
ultraviolet (UV) renormalons, while the ones associated with long-distance physics are located on
the positive real axis and are referred to as infrared (IR) renormalons.

IR renormalons represent a fundamental problem in the computation of the inverse Borel trans-
form (see eq. (3.5)), which will be discussed in detail in chapter 3. This inverse transformation
involves an integral over the positive real Borel axis (=Borel integral) and due to the IR renor-
malon poles, one is forced to regulate the integral in some way. The resulting ambiguities in the
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definition of the Borel integral are related to non-perturbative power corrections (cf. eq. (3.22)).
To remove these ambiguities higher-dimensional operator corrections (QCD condensates) which
arise in the framework of the operator product expansion (OPE) need to be considered.

The OPE is an important instrument for QCD predictions that separates short- and long
distance physics into perturbatively computable Wilson coefficients and non-perturbative matrix
elements of operators. As explained in section 3.3.1, the operator expansion is usually realised in
the common MS-scheme which is useful for multiloop calculations and preserves important prop-
erties, such as gauge and Lorentz invariance. In this scheme the Wilson coefficients do not suffer
from explicit IR divergences but contain contributions from arbitrary small loop momenta and are
therefore still IR sensitive. This sensitivity is reflected by IR renormalon divergences which lead
to factorial growth of the perturbative Wilson coefficients (cf. (4.2)). These IR renormalons may
cause poor convergence and are compensated by corresponding instabilities (UV renormalons) in
the matrix elements of higher dimensional operators in the OPE. To avoid the problem of renor-
malon cancellations between different terms in the MS-OPE, it is useful to switch to a scheme
that involves explicit renormalon subtractions but retains the powerful computational properties
of MS [17]. Associated with such a scheme is typically an additional cut-off scale R below which
the renormalon contribution is subtracted. Treating the scale R as continuous variable leads to
the definition of a new renormalisation group equation, the so-called R-evolution equation, that
resums, at the same time, the asymptotic renormalon series and large logarithms in the difference
of two subtractions at scales R0 and R1 in a renormalon free way. Moreover, we will see that
the general solution of this equation yields an analytic expression for the Borel transform of the
perturbative series that carries the information on a specific renormalon pole. As a byproduct we
also obtain an analytic result for the normalization of the singular terms in the Borel transform.
This expression for the normalization, called the renormalon sum rule, can in principle be applied
to any perturbative series as a probe for renormalon ambiguities.

In order to demonstrate the usefulness of R-evolution and the renormalon sum rule we apply
it to the Adler function which represents the central quantity in the perturbative description of
hadronic τ decays. In addition, we prove that the solution of the R-evolution equation recovers an
anlaytic expression for the Borel transform that matches exactly the ansatz for a physical model
of the Adler function derived in [14]. The model for the Borel transform given there is based on
common renormalisation group methods and allows one to predict the position and strength of the
renormalon pole, but not its residue. As we will see, the renormalon sum rule resolves this issue
and can, in principle, be used to gain additional information about the residues of renormalon poles.

This work is organized as follows: In chapter 2 we give an overview of hadronic τ decays. Chap-
ter 3 provides an in-depth introduction to renormalons and Borel summation. In this section we
discuss the simple example of the Adler function and investigate how renormalons emerge in loop
calculations. Moreover we establish the connection between IR renormalons, ambiguities of the
Borel integral and higher-dimensional operator corrections in the OPE. Chapter 4 is dedicated to
R-evolution and the renormalon sum rule. We first discuss the implications of the R-evolution
equation and then derive the analytic expressions for the Borel transform and the renormalon
sum rule for a given perturbative series. The application of R-evolution to the Adler function in
the context of the large-β0 approximation is then presented in chapter 5 and, finally, chapter 6
summarises our findings.
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Chapter 2

Hadronic τ Decays

Due to the fact that the τ is the only lepton heavy enough to also decay into hadrons, hadronic
τ decays provide an ideal tool for precision tests of QCD and its fundamental quantities at low
energies. One of the most important parameters in this respect is the strong coupling constant αs

which can be determined very accurately from investigations of the τ hadronic width

Rτ =
Γ (τ− → hadrons ντ (γ))

Γ (τ− → e− νe ντ (γ))
. (2.1)

Theoretically, it is possible to divide Rτ into contributions from non-strange (ud) and strange (us)
quark currents, which can be further resolved into vector (V ) and axial-vector (A) contributions.
Since experimentally a separation of the strange decays into vector and axial-vector contributions is
not feasible due to the lack of data for the Cabibbo-suppressed sector, it is convenient to decompose
Rτ in the following form [12]

Rτ = Rτ,V +Rτ,A +Rτ,S , (2.2)

where Rτ,S denotes the strange hadronic width. In general, the contribution from non-strange
decays is given by [12, 14, 18]

Rτ,V/A =
NC

2
SEW|Vud|2

[
1 + δEW + δ(0) +

∑
D≥2

δ
(D)
ud,V/A

]
. (2.3)

In this decomposition SEW and δEW comprise electroweak corrections, δ(0) contains the pertur-

bative QCD corrections to Rτ neglecting quark masses and δ
(D)
ud,V/A includes leading quark mass

effects as well as corrections from higher dimensional terms in the operator product expansion
(OPE) for current-current correlation functions. In this work we will mainly focus on the latter

two corrections, δ(0) and δ
(D)
ud,V/A, electroweak corrections will not be covered. For a complete and

detailed discussion of all contributions to the τ hadronic width, see [12].

2.1 Theoretical Framework for the Prediction of Rτ

Starting point for the analysis of the τ hadronic width is the two-point correlation function of

vector and axial-vector currents, J
V/A
µ,ij (x) = [qjγµ(γ5)qi](x), of massless quarks [14]:

Π
V/A
µν,ij(q) = i

∫
dx eiqx 〈Ω|T{JV/Aµ,ij (x)J

V/A
ν,ij (0)†} |Ω〉 = (qµqν − q2gµν) Π

V/A
ij (q2). (2.4)

Here, |Ω〉 denotes the full physical vacuum and the indices i, j characterize the relevant quark
flavours up, down and strange. The hadronic width Rτ can be written as an integral of the
spectral functions ρ(s) ∝ Im Π(s) over the invariant mass-squared s = q2 of the final state hadrons

3



[12, 13],

Rτ = 12π

m2
τ∫

0

ds

m2
τ

(
1− s

m2
τ

)2(
1 + 2

s

m2
τ

)
Im Πτ (s), (2.5)

where the correlator Πτ (s) is given by

Πτ (s) = |Vud|2
[
ΠV
ud(s) + ΠA

ud(s)
]

+ |Vus|2
[
ΠV
us(s) + ΠA

us(s)
]
. (2.6)

Exploiting the fact that Πτ (s) is analytic in the entire complex s-plane except for the positive real
axis, eq. (2.5) can be transformed by means of Cauchy’s theorem into a contour integral running
counter-clockwise around the circle |s| = m2

τ [14]:

Rτ = 6πi

∮
|s|=m2

τ

ds

m2
τ

(
1− s

m2
τ

)2(
1 + 2

s

m2
τ

)
Πτ (s). (2.7)

For a systematic calculation of the hadronic τ decay rate, it is furthermore convenient to introduce
the so-called Adler function [19]

D(s) = 4π2s
dΠ(s)

ds
, (2.8)

which, in contrast to the correlators Π(s), is a physical quantity as it is RG invariant [14]. In terms
of the Adler function Rτ is given by [13]

Rτ = − 3 i

2π

∮
|x|=1

dx

x
(1− x)3(1 + x)D(m2

τx), (2.9)

with the dimensionless integration variable x = s/m2
τ . Eq. (2.9) is especially useful for the evalua-

tion of the τ hadronic width because at the energy scale s = m2
τ non-perturbative effects in QCD

are expected to be small (i.e. ΛQCD � mτ ) and hence a series expansion in the framework of the
operator product expansion can be applied. The OPE allows to perform a systematic separation
of perturbative and non-perturbative contributions to D(s) into a series in inverse powers of s. As
will be explained in more detail later in this work, this concept is closely connected to renormalon
divergences in perturbation series in QCD.

Due to the factor (1− x)3 in the integrand of eq. (2.9), uncertainties in the OPE of the Adler
function associated with contributions from the region near the positive real axis are strongly sup-
pressed and the expansion can be regarded to be well-behaved along the complex contour.

The dominant contribution to the τ hadronic width is related to the purely perturbative QCD
corrections δ(0) in the chiral limit. In this limit vector and axial-vector correlation functions co-
incide and we therefore only need to consider the vector correlator ΠV (s) in the massless case.
Starting from the general structure [13],

ΠV (s) =
Nc

3

∞∑
n=0

anµ

n+1∑
k=0

cn,k lnk−1

(−s
µ2

)
, (2.10)

the Adler function can be expressed in the form [13]

D(s) =
Nc

3

∞∑
n=0

anµ

n+1∑
k=1

k cn,k lnk−1

(−s
µ2

)
, (2.11)

4



where we define aµ ≡ αs(µ)/π with µ being the renormalisation scale. The logarithms emerging
in the above expression can be resummed with the choice µ2 = −s = Q2, yielding1 [13]:

D(Q2) =
Nc

3

∞∑
n=0

cn,1 a
n
Q. (2.12)

Thus, we see that only the coefficients cn,1 are independent and all other coefficients cn,k with k ≥ 2
can be expressed in terms of QCD β-function coefficients and the cn,1 by means of renormalisation
group arguments. (For further details see [14].)

Since 2008 analytic results for the coefficients of the Adler function up to O(α4
s ) have been

available [20]. In the MS-scheme for Nc = 3 they read (see e.g. [20, 21, 22, 23]):

c0,1 = c1,1 = 1, (2.13)

c2,1 =
365

24
− 11ζ3 −

(
11

12
− 2

3
ζ3

)
Nf = 1.64,

c3,1 =
87029

288
− 1103

4
ζ3 +

275

6
ζ5 −

(
7847

216
− 262

9
ζ3 +

25

9
ζ5

)
Nf +

(
151

162
− 19

27
ζ3

)
N2
f = 6.37,

c4,1 =
144939499

20736
− 5693495

864
ζ3 +

5445

8
ζ2

3 +
65945

288
ζ5 −

7315

48
ζ7

+

(
− 13044007

10368
+

12205

12
ζ3 − 55ζ2

3 +
29675

432
ζ5 +

665

72
ζ7

)
Nf

+

(
1045381

15552
− 40655

864
ζ3 +

5

6
ζ2

3 −
260

27
ζ5

)
N2
f

+

(
− 6131

5832
+

203

324
ζ3 +

5

18
ζ5

)
N3
f = 49.08.

The numerical results in (2.13) are given for Nf = 3. There also exist estimates for the next six-
loop coefficient c5,1 that employ methods such as fastest apparent convergence (FAC) or principle
of minimal sensitivity (PMS) [20, 24]. For Nf = 3 the estimate used in [14] is given by:

c5,1 = 283± 142. (2.14)

2.1.1 Fixed-Order vs. Contour-Improved Perturbation Theory

One of the most important theoretical uncertainties in the prediction of the hadronic τ decay rate
is related to different possibilities of performing renormalisaton group improvements of the per-
turbative correction δ(0). In this section we compare the two most widely used techniques, namely
fixed-order (FOPT) and contour-improved perturbation theory (CIPT), which in comparison to
scale variations of the individual series seemingly lead to significantly different results.

Starting from eq. (2.9) and inserting the series expansion for D(s) given in eq. (2.11), the
perturbative QCD corrections can be expressed in the following form [14]

δ(0) =

∞∑
n=0

anµ

n+1∑
k=1

k cn,k
1

2πi

∮
|x|=1

dx

x
(1− x)3 (1 + x) lnk−1

(−M2
τ x

µ2

)
, (2.15)

where the additional contribution coming from the axial-vector correlator has already been included
and Nc = 3 was used. In fixed-order perturbation theory the perturbative series in eq. (2.15) is
resummed with the choice µ2 = m2

τ , yielding [13]

δ
(0)
FO =

∞∑
n=0

anMτ

n+1∑
k=1

k cn,k Jk−1. (2.16)

1Note that the series expansion in powers of αs/π will only be used in this introductory chapter on hadronic τ
decays in order to be consistent with the notation used in the literature. In chapter 5 the Adler function series will
be expanded in powers of αs/(4π). The corresponding coefficients an (see eq. (5.1)) are related to the coefficients
cn,1 in (2.12) via cn,1 = an/4

n.
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Comparing this expansion with eq. (2.15) it is an easy task to derive the form of the contour
integrals Jk:

Jk =
1

2πi

∮
|x|=1

dx

x
(1− x)3 (1 + x) lnk(−x). (2.17)

Details on how to solve these integrals analytically are given in [14].
In contrast to FOPT, contour-improved perturbation theory sums the logarithms appearing in

eq. (2.15) by setting µ2 = −M2
τ x, which leads to [14, 13]

δ
(0)
CI =

∞∑
n=0

cn,1 J
a
n(M2

τ ), (2.18)

with Jan(m2
τ ) defined by

Jan(m2
τ ) =

1

2πi

∮
|x|=1

dx

x
(1− x)3 (1 + x)

(
αs(−m2

τx)

π

)n
. (2.19)

Thus, we see that in CIPT the running coupling effects are resummed along the integration con-

tour leading to an expansion for δ
(0)
CI in which each perturbative order n only depends on a single

coefficient cn,1, while FOPT performs a systematic expansion in powers of the strong coupling at
the τ mass scale.

With these characterizations in mind we can now compare the numerical results for δ(0) obtained
from employing the two approaches. Using the known corrections up to O(α4

s ) of eq. (2.13) for
Nf = 3 and αs(mτ ) = 0.3186 (corresponding to αs(MZ) = 0.1184), we find [15]

δ
(0)
FO = 0.1959± 0.0063,

δ
(0)
CI = 0.1814± 0.0033,

(2.20)

where the given uncertainty is obtained from comparing the result for δ(0) using the known coef-
ficients with an approximation including the estimate c5,1 = 283 of the O(α5

s ) contribution. As
can be seen, the CIPT result is considerably below the FOPT sum, which requires the strong
coupling αs to be larger in order to reproduce the experimental data for the τ hadronic width2.
This behaviour is also reflected in Fig. 2.1, where the well-known PDG plot for the extraction
of αs from hadronic τ decays is shown. The thin dashed line and the yellow band represent the
pre-average value of αs(M

2
Z) from studies which employ both, FOPT and CIPT, whereas the thick

dashed line and grey-shaded band indicate the world-average value which includes determinations
of the strong coupling from other sub-fields, such as lattice QCD and deep-inelastic lepton-nucleon
scattering (DIS). Comparing the individual results of the different groups one can see a dominance
of CIPT approaches because most values for αs are on the high side of the world average.

Investigating the single contributions to δ(0) at each perturbative order up to O(α5
s ) (see [14]),

the CIPT series shows a faster convergence than FOPT and, therefore, CIPT is typically consid-
ered to be the method of choice. This argument, however, has to be taken with a grain of salt,
since studies of the contour integrals (2.19) (see Fig. 1 in [14]) show that the numerical values
for Jan(m2

τ ) are positive up to the sixth order and become progressively smaller before they turn
negative around n ∼ 7. Consequently, the CIPT series is always found to approach its minimal
term around the seventh order, before the asymptotic behaviour3 sets in (see Figs. 2.2 and 2.3 in
the next section). Thus, the faster convergence to its minimal term does not necessarily indicate

2Note that this argument only holds, if the higher dimensional operator terms in (2.3) are the same for both
approaches.

3The concept of asymptotic series will be explained in chapter 3.
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Fig. 2.1: Extraction of αs(M
2
Z) from hadronic τ -decays. The thin dashed line and

the yellow band represent the pre-average value of αs(M
2
Z) from studies which employ

both, FOPT and CIPT. The thick dashed line and grey-shaded band indicate the
world-average value which includes determinations of the strong coupling from other
sub-fields, such as lattice QCD. (Tanabashi et al. [26], p. 154)

that CIPT provides the better approximation to the ‘true’ result for the resummed perturbative
series.

Up to now, the discrepancy between FOPT and CIPT (if treated as a theoretical uncertainty,
see [25]) has developed into the largest numerical uncertainty of the αs determination from hadronic
τ decays and much effort has been expended to resolve this issue. An important question in this

respect concerns the behaviour of the series δ
(0)
FO and δ

(0)
CI when higher-order perturbative coef-

ficients are added. Intensive investigations [16] suggest that the preference for either FOPT or
CIPT depends predominantly on the assumptions made for the higher-order contributions in the
perturbative series.

2.2 Higher-Order Models

In order to gain some insight into the features favouring FOPT or CIPT we briefly present two
different models for the higher-order terms in the perturbative expansion of δ(0). The first one, the
so-called large-β0 approximation, can be considered as a toy model for the entire Adler function
series and gives a first glance at the problems related to renormalons which dictate the large-order
behaviour in perturbative series. This approximation will be analysed in much more detail later
on.

The second model we discuss here is based on a physically motivated ansatz and represents
the central model that will be important throughout this work. The study of R-evolution and
the renormalon sum rule in the subsequent sections is to a great extent intended to gain more
information on the higher-order contributions to the Adler function and, thus, to δ(0) based on
this physical model.

The following discussion of higher-order models (and especially of the physical model) is based
on the work by Beneke and Jamin from 2008 [14].

2.2.1 The Large-β0 Approximation

We first have a look at the implications of the large-β0 approximation4 on the perturbative ex-
pansion of δ(0). Since the concepts introduced in the following will be explained at length in
the introductory section on renormalons and Borel summation, we want to keep the discussion of
this model brief and just outline the main features of the higher-order terms in this approximation.

The basic problem one has to face when dealing with higher-order models is related to the fact

4The origin of the term “large-β0” approximation will be discussed in section 3.2.1. For now, it suffices to know
that in the large-β0 approximation only the contributions with the highest power of Nf in the coefficients cn,1 are
considered and Nf is replaced by −3/2β0.
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that perturbative series in QCD are typically divergent and can at best be considered asymptotic.
In order to quantify the large-order behaviour of factorially divergent series, which we most often
encounter, it is useful to perform a so-called Borel transformation. In contrast to other models, in
the large-β0 approximation a closed analytic result for the Borel transform of the Adler function
and Rτ is available and the coefficients cn,1 can in principle be deduced to all orders in perturbation
theory (see e.g. [16, 27, 28, 29]).

In connection with Borel transformation in the large-β0 approximation, one often defines the
reduced Adler function D̂ by [14]

3

Nc
D(s) = 1 + D̂(s) = 1 +

∞∑
n=0

rn αs(
√
s)n+1, (2.21)

where the relation between the coefficients of D(s) and D̂(s) is given by cn,1 = πnrn−1. The Borel
transform of the reduced Adler function is defined as:

B[D̂](u) =

∞∑
n=0

rn
un

n!
. (2.22)

To recover an expression for the perturbative series D̂(s), we can perform the Borel integral (inverse
Borel transformation)

D̂(αs) =
4π

β0

∞∫
0

du e
−4πu
β0αs B[D̂](u), (2.23)

where β0 denotes the first term in the QCD β-function (see appendix C.1). If this integral exists,
i.e. if the Borel transform B[D̂](u) has no singularities for u > 0, D̂(s) is called Borel-summable
and D̂(αs) is considered to be the ‘true’ result for the perturbative series of the reduced Adler
function D̂(s) [27].

Computing a certain set of diagrams, the so-called bubble-chain diagrams (see Fig. 3.1), the
Borel transform of the Adler function in the large-β0 approximation takes the form [28]:

B[D̂](u) =
32

3π

e−Cu

(2− u)

∞∑
k=2

(−1)k k

[k2 − (1− u)2]2
. (2.24)

Here, C denotes a scheme-dependent constant which has the value C = −5/3 in the MS-scheme.
Exploiting eq. (2.24), the perturbative coefficients rn and cn,1, respectively, can be recovered by

simply Taylor expanding B[D̂](u) in the variable u and afterwards evaluating the Borel integral
(2.23) term by term.

When we look at the expression for the Borel transform given in eq. (2.24), we see that
B[D̂](u) has singularities at positive and negative integer values of u (except for u = 0, 1) that
encode the information on the divergent behaviour of D̂(s). These singularities can be viewed as
manifestation of the asymptotic behaviour of the perturbative series and are referred to as infrared
(IR) and ultraviolet (UV) renormalons, since they are related to small and large momentum
regions in loop integrals. More specifically, IR renormalons are located at the positive real axis
in the complex Borel plane and are closely connected to higher dimensional terms in the operator
product expansion, whereas the UV renormalons appear on the negative real Borel axis with
the leading UV renormalon at u = −1 dominating the characteristic sign-alternating large-order
behaviour of the perturbative series.

We now recall the definition of the Borel integral given in eq. (2.23). Due to the IR renormalon
poles at u > 0, the integral cannot be performed and we are forced to regulate the integral, e.g. by
deforming the integration contour into the complex plane which introduces an arbitrary ambiguity
in the definition of D̂(α). From the point of view that the regulation procedure of the Borel
integral is not unique, the question concerning the different possibilities to quantify this ambiguity
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Fig. 2.2: Graphical representation of the results for δ(0) at αs(mτ ) = 0.34 in the

large-β0 approximation. The plot shows the partial sums for δ
(0)
FO (black circles) and

δ
(0)
FO (grey circles) as a function of the order n. The horizontal line denotes the principal

value of the Borel integral and the shaded region provides an estimate of the ambiguity.
(M. Beneke and M. Jamin [14], p. 13)

arises. One frequently used method is the principle value prescription of the Borel integral and
then simply takes the imaginary part of the result as an estimate for the ambiguity. In this sense
the ‘true’ result for the perturbative series of the Adler function is expected to be consistent with
the principal value of the Borel integral within an error band defined by the ambiguity of the
integral. However, from the point of view of an arbitrary deformation of the integration contour, it
is not so clear how well the Borel integral in connection with a principle value prescription actually
quantifies the ambiguities related to IR renormalon singularities and the question remains whether
there are alternative ways to approximate these ambiguities. This issue is one the questions that
we want to address in this work and represents in part our motivation to apply the concept of
R-evolution to hadronic τ -decays.

Returning to our discussion on the discrepancy between FOPT and CIPT, we can now calculate δ(0)

in the large-β0 approximation employing the perturbative coefficients deduced from eq. (2.24). The

results for δ
(0)
FO and δ

(0)
CI are depicted in Fig. 2.2 which shows the partial sums of the perturbative

series5 as a function of the order n. The FOPT sum δ
(0)
FO is given by the full black circles, while the

grey circles represent δ
(0)
CI . The solid straight line marks the principle value of the Borel integral

obtained by using the well-known theorem (C.40),

1

a− u± iε = PV

(
1

a− u

)
∓ iπ δ(a− u), (2.25)

and the shaded band provides an estimate of the ambiguity given by the imaginary part of eq.
(2.25)6. Analytic results for the calculation of the Borel integral can be found in appendix C.5.

If we start from the assumption that the ‘true’ result of the perturbative series is approximated
reasonably well by the Borel sum, Fig. 2.2 shows that in the large-β0 approximation the FOPT
series smoothly approaches the value of the Borel integral before, eventually, the leading UV
renormalon at u = −1 takes over and the sign-alternating divergent behaviour of the series sets
in. CIPT, on the contrary, suffers from a much earlier onset of the divergent behaviour and
therefore does not represent a good approximation. A more detailed investigation [14] reveals
large cancellations between the Adler function series and additional contributions coming from the

5Note that for the calculation in the large-β0 approximation the running of αs at the one-loop order has been
used in eqs. (2.16) and (2.18).

6The authors in [14] argue that the size of the ambiguity divided by π is of the order of the higher-dimensional
corrections in the OPE. Thus, the shaded band in Fig. 2.2 is given by the imaginary part of eq. (2.25) divided by π.
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integration along the contour in eq. (2.15). However, in [14] it is argued that these cancellations
are missed by CIPT causing the poor convergence behaviour in the large-β0 approximation.

2.2.2 Physical Model for the Adler Function

The second model we want to present is a physically motivated ansatz for the Borel transform of
the Adler function series proposed by Beneke and Jamin in [14]. This model includes the exactly
known coefficients up to O(α4

s ) and comprises general features of renormalon singularities learned
from the large-β0 approximation and other toy models. The ansatz relies on the fact that the
renormalon pole structure in the Borel transform needs to be modified when the running of αs is
implemented at higher-loop orders. In the case of the large-β0 approximation, where a one-loop
running coupling is used, the Borel transform (2.24) only consists of simple and double poles, but
as soon as higher terms of the QCD β-function are incorporated in the running effects, the pole
structure must be adapted in order to include the possibility of branch cuts.

To derive the appropriate structure for the IR renormalon singularities, one can exploit the
close connection between IR renormalons and power-suppressed terms in the OPE which will be
discussed extensively in the next sections. For now, the crucial point is that from the comparison of
the scaling behaviour of a specific term in the OPE with the energy dependence of the ambiguity
of the Borel integral, one can predict the structure of the renormalon singularity causing this
ambiguity.

Starting point for the derivation of the IR renormalon pole structure, is a generic expression
of a term in the OPE of the Adler function [14]

COd(aQ)
〈Od〉
Qd

= [aQ]

2γ
(1)
Od
β0

[
C

(0)
Od

+ C
(1)
Od
aQ + C

(2)
Od
a2
Q + . . .

]〈Od〉
Qd

, (2.26)

where Od denotes an operator of dimension d and aQ ≡ αs(Q)/π. Skipping the details given in
[14], the renormalon pole whose ambiguity matches the energy dependence of the term in eq. (2.26)
is found to be7 (p > 0):

B[DIR
p ](u) =

dIR
p

(p− u)1+γ̃

[
1 + b̃1(p− u) + b̃2(p− u)2 + . . .

]
. (2.27)

Here, dIR
p is the residue of the pole and the following definitions have been used [14]

p =
d

2
, γ̃ = p

β1

β2
0

−
2γ

(1)
Od

β0
,

b̃1 =
4(b1 + c1)

β0γ̃
, b̃2 =

16(b2 + b1c1 + c2)

β2
0 γ̃ (γ̃ − 1)

, (2.28)

with:

b1 =
d

8β3
0

(β2
1 − β0 β2), b2 =

b21
2
− d

64β4
0

(β3
1 − 2β0 β1 β2 + β2

0 β3),

c1 =
C

(1)
Od

C
(0)
Od

, c2 =
C

(2)
Od

C
(0)
Od

. (2.29)

γ
(1)
Od

denotes the leading order anomalous dimension of the operator Od defined by:

µ
d

dµ
Od(µ) = −γOd(aµ)Od(µ) = −

[
γ

(1)
Od
aµ + γ

(2)
Od
a2
µ + γ

(3)
Od
a3
µ

]
Od(µ). (2.30)

7The structure of the renormalon pole given by eqs. (2.27) - (2.30) will be compared to our R-evolution approach
in section 4.3. There we show that using R-evolution one can reproduce eq. (2.27) and furthermore determine the
residue dIRp by means of the so-called renormalon sum rule (see eq. (4.47)).
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From the point of view of eq. (2.23), UV renormalons are Borel summable, since they lie on the
negative real axis in the complex plane and do not obstruct the naive calculation of the Borel
integral. Nevertheless, this does not at all mean that the existence of UV renormalons is irrelevant
on physical grounds. They indicate profound physics and are connected to the addition of higher
dimensional operators in the context of the Standard Model Effective Field Theory (SMEFT). UV
renormalons will be discussed in more detail in section 3.4.

In order to deduce an expression for UV renormalon singularities similar to the one in eq. (2.27),
it is useful to change the sign of the coupling aQ and consider a Borel-like integral ranging from
zero to minus infinity [30]. In that way, the UV poles on the negative real axis lead to ambiguities
which again can be linked to higher-dimensional operators. As a result, one obtains an expression
for the Borel transform of UV renormalon singularities that resembles eq. (2.27)

B[DUV
p̃ ](u) =

dUV
p̃

(p̃+ u)1+γ̄

[
1 + b̄1(p̃+ u) + b̄2(p̃+ u)2 + . . .

]
, (2.31)

where p̃ > 0 and the appearing parameters are given by:

γ̄ = −p̃ β1

β2
0

+
2γ

(1)

Õd

β0
, b̄1 = −b̃1, b̄2 = b̃2 (2.32)

Here, γ
(1)

Õd
denotes the leading order anomalous dimension of the higher dimensional SMEFT op-

erator Õd corresponding to the UV renormalon at u = −p̃.
With these expressions for the renormalon singularities at hand, it is now possible to construct

a physically motivated model for the Adler function that reproduces the analytically known coeffi-
cients and allows us to compare the higher-order contributions to the perturbative series in FOPT
and CIPT based on the full QCD OPE.

From investigations of the large-β0 approximation and the fact that in the MS-scheme the
exact coefficients (2.13) of the Adler function display a fixed-sign behaviour we conclude that the
low and intermediate orders of the perturbative series are governed by IR renormalons, while the
UV renormalons dictate the sign-alternating behaviour at large orders. Thus, it was argued in [14]
that it is reasonable to incorporate at least the two leading IR renormalons at u = 2, 3 as well
as the leading UV singularity at u = −1 in the model to reproduce the exactly known low-order
coefficients and to sufficiently characterise the large-order behaviour.

Taking these considerations into account, the authors in [14] proposed the following ansatz for
a physical model of the Adler function:

B[D̂](u) = B[D̂UV
1 ](u) +B[D̂IR

2 ](u) +B[D̂IR
3 ](u) + d0 + d1 u, (2.33)

where the first three terms for the renormalon poles are obtained from eqs. (2.27) and (2.31).
This ansatz depends on five independent parameters, the residues for the renormalons, dUV

1 , dIR
2

and dIR
3 , plus two additional polynomial coefficients, d0 and d1. The parameters are fixed in such

a way that the perturbative expansion of the model matches the exactly known coefficients cn,1,
including the estimate for the six-loop coefficient c5,1 in (2.14). The error of this estimate has been
neglected in the matching procedure. The five parameters of the model (2.33) are found to be [14]:

• dUV
1 = −1.56 · 10−2, dIR

2 = 3.16, dIR
3 = −13.5, (2.34)

• d0 = 0.781, d1 = 7.66 · 10−3.

In order to investigate the higher-order contributions to the perturbative series in FOPT and CIPT,
we can now use the ansatz (2.33) to determine the coefficients cn,1 needed for the computation

of δ
(0)
FO and δ

(0)
CI , respectively. Numerical values for the first few coefficients of the Adler function

derived from the physical model can be found in [14].

Fig. 2.3 shows a graphical representation of the results for δ
(0)
FO and δ

(0)
CI . Like in the plot for

the large-β0 approximation (see Fig. 2.2), the full black circles represent the partial sums of the
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Fig. 2.3: Results for δ(0) at αs(mτ ) = 0.34 employing the physical model (2.33). The

plot shows the partial sums for δ
(0)
FO (black circles) and δ

(0)
FO (grey circles) as a function

of the order n. The horizontal line denotes the principal value of the Borel integral
and the shaded region provides an estimate of the ambiguity. (M. Beneke and M.
Jamin [14], p. 23)

FOPT series as a function of the perturbative order n and the grey circles give the corresponding
result for the CIPT series. The horizontal line denotes again the principal value of the Borel
integral and the shaded band provides an estimate for the complex ambiguity. As can be seen,
the qualitative behaviour of the FOPT and CIPT series resembles basically the outcome of our
analysis in the large-β0 approximation. FOPT smoothly approaches the Borel sum with a later
onset of the sign-alternating divergence as compared to the large-β0 case, while the CIPT series
always stays below the FOPT result. It was argued in [14] that using CIPT to extract the strong
coupling from comparison to the experimental data for Rτ would result in a too large value for αs

and we thus conclude that FOPT prevails in the physical model.

The model described in (2.33) is based on the central idea that the structure of a given renor-
malon pole can be related to associated higher-dimensional terms in the OPE by means of the
renormalisation group. In this way, the position and strength (i.e. the structure of the expo-
nent) of renormalon poles can be determined, whereas it is not possible to predict the residues.
Improving the form of the Borel transform used in physical models such as (2.33) is of utmost im-
portance to resolve the discrepancy between FOPT and CIPT. In this context the open question is
whether or not it is possible to gather more information on single renormalon poles. In particular,
we want to know if one can gain knowledge about the residues of the singularities without hav-
ing to rely on calculating bubble-chain diagrams in the large-β0 approximation. Solving this issue
represents the main motivation to deal with R-evolution and the renormalon sum rule in this work.

Before we start with a more detailed introduction to renormalons, let us briefly review the questions
we want to address in the subsequent sections:

1. What can we tell about the ambiguities related to renormalon singularities?

• How well does the Borel integral quantify these ambiguities?

• Are there alternative ways to estimate the size of the ambiguities?

2. Is it possible to improve the form of the Borel transform used in physical models for the
Adler function?

• Can we gain more information on single renormalon poles?

• Is it possible to predict the residues, if one does not rely on the large-β0 approximation?
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Chapter 3

Renormalons and Borel Summation

This chapter is intended to give a detailed introduction to the notion of renormalons which provide
the basis for our discussion of R-evolution. Readers already familiar with the basic concepts
related to renormalon divergences, especially with the connection between (IR) renormalons and
non-perturbative power corrections in the OPE, may regard the following discussion as a brief
review and skim through this section quickly.
The analysis given below draws primarily upon the comprehensive review in [27].

3.1 Basic Concepts and Terminology

As long as the fundamental interactions in quantum field theories (QFT) are weak, a generic
observable F can usually be expressed in terms of a series expansion in the interaction coupling α:

F (α) =

∞∑
n=0

cn α
n+1. (3.1)

However, it is well-known that such series are divergent and the coefficients cn are typically expected
to grow factorially [27]

cn
n→∞∼ ann!nbZ, (3.2)

for some constants a, b, Z. A particular source causing this factorial growth in perturbative series
is generally referred to as renormalon divergence [1, 2, 3].

Due to the divergent behaviour of the perturbative expansion it is not at all obvious how the
series on the right-hand side of eq. (3.1) is related to the exact (‘true’) value of F on the left-hand
side. From a mathematical point of view a divergent series can only be considered as a meaningful
approximation to F , if it is asymptotic in a region G of the (complex) α-plane in the sense that
[27] ∣∣∣∣F (α)−

N∑
n=0

cn α
n+1

∣∣∣∣ < KN+1 α
N+2, (3.3)

for all α ∈ G and some numbers KN+1. For factorially divergent series these numbers most often
also grow with the order N (KN ∝ N !) and the best approximation to the exact value of F is
typically given when the perturbative series is truncated at its minimal term. Note, however, that
perturbative expansions in QFT can only be assumed to be at best asymptotic. Rigorous proofs
require a profound non-perturbative definition of observables which, in theories such as QCD, do
generally not exist.

3.1.1 Borel Summation

In order to study the large-order behaviour of asymptotic series, we need to find a suitable way
to deal with the divergences emerging in the perturbative expansion. As already mentioned in
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the discussion of the large-β0 approximation in section 2.2.1, factorially divergent series are con-
veniently summed employing the Borel summation technique. Starting from a series expansion of
the form of eq. (3.1), we first consider the Borel transform defined as

B[F ](t) =

∞∑
n=0

cn
n!
tn. (3.4)

In this way, we introduce an equivalent series in the Borel variable t which is much better behaved
than the original series due to the suppression factor 1/n!. If B[F ](t) has no singularities for t > 0
and does not increase too rapidly for t→∞, we can recover a definition for the original divergent
series F (α) by performing the Borel integral (inverse Borel transformation) [27]:

F̃ (α) =

∞∫
0

dt e−
t
α B[F ](t). (3.5)

If this integral exists, F (α) is called Borel-summable and F̃ (α) provides an expression for the sum
of the perturbative series.

To investigate the concept of Borel summation in more detail, let us consider an asymptotic
series similar to (3.2) with coefficients given by [27]

cn = K an Γ(1 + n+ b), (3.6)

where K, a and b denote some arbitrary (real) constants. Assuming that b > 0, the Borel transform
of this series takes the form [27]

B[F ](t) = K
Γ[1 + b]

(1− a t)1+b
, (3.7)

and one can observe that the information on the divergent behaviour originally contained in the
Γ-function of eq. (3.6) is now encoded in the singularity at t = 1/a of the Borel transform. As we
are going to see in the next section, it is exactly these poles in the Borel transform of perturbative
series that are referred to as renormalon divergences.

Besides this crucial aspect relating renormalons to singularities in the Borel plane, the illustra-
tive example (3.6) also reveals some other general features of the Borel summation method. First
of all, from the expression of the Borel transform in eq. (3.7) one notices that larger values of a,
i.e. faster diverging series, lead to poles closer to the origin of the Borel plane. These singularities
and the associated renormalons are thus regarded as the most severe ones1.

Furthermore, the sign of a has a large impact on the definition of the Borel integral (3.5). While
sign-alternating series (a < 0) yield singularities on the negative real axis in the Borel plane and
are therefore Borel-summable, fixed-sign series (a > 0) produce poles at positive t and obstruct
the naive calculation of the Borel integral. In this case the integral needs to be regulated and can
for example still be performed by a deformation of the integration contour either above or below
the pole. The regulation procedure introduces an ambiguity in the definition of the inverse Borel
transform that is tightly connected to non-perturbative power corrections (cf. eq. (3.22)). The
concept of the ambiguity of the Borel integral will be discussed in much more detail in connection
with the operator product expansion (see section 3.3).

3.2 Bubble Chain Diagrams as a Probe for Renormalons

After the formal introduction to asymptotic series and Borel summation in the previous section,
we now want to investigate how renormalon divergences emerge in loop calculations and how they

1At low orders the perturbative coefficients cn in (3.6) also depend on the size of the constant K. Hence, the
perturbative series can also be dominated at low orders by renormalon singularities farther away from the origin of
the Borel plane provided that K is sufficiently large.
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Fig. 3.1: Bubble chain diagrams for the calculation of the Adler function in the large-
Nf limit. The factor 2 in front of the second diagram takes into account an identical
contribution from the diagram in which the modified gluon propagator (= bubble
chain) is attached to the lower antiquark line of the ‘large’ quark loop.

are related to poles in the Borel transform of perturbative series. For this purpose consider once
again the Adler function D(p2) already discussed in chapter 2,

D(p2) = 4π2 dΠ(p2)

dp2
= 1 + D̂(p2) = 1 +

∞∑
n=1

cn

(
αs

π

)n
,

i

∫
dx eipx 〈Ω|T{JV/Aµ,ij (x)J

V/A
ν,ij (0)†} |Ω〉 = (pµpν − p2gµν) Π

V/A
ij (p2),

(3.8)

where J
V/A
µ (x) = [qγµ(γ5)q](x) denotes a vector/axialvector current of massless quarks. In order to

study the large-order behaviour of the Adler function we cannot compute the entire perturbative
series, but have to restrict ourselves to a certain subset of diagrams that can be calculated to
all orders in perturbation theory. A very convenient choice in this respect is the set of so-called
bubble chain diagrams of massless quarks depicted in Fig. 3.1. In the context of QCD these
graphs represent the dominant contributions in the 1/Nf -expansion in the limit Nf → ∞, where
Nf denotes the number of light quark flavours. To achieve an expansion in this limit, we define
a = αsNf/π, and expand in the parameter 1/Nf with a held fixed. Even though this set of
quark bubble graphs is not the only set of diagrams contributing to renormalon divergences in
perturbative series, we still apply these diagrams as a reference probe for renormalons2, since they
are useful for explicit calculations.

When we look at the form of the bubble chain diagrams shown in Fig. 3.1, we notice that all
information on the order in αs is comprised in the number of quark bubble insertions into the
gluon line. Thus, the summation of these diagrams reduces effectively to the evaluation of a simple
two-loop diagram with a modified gluon propagator which contains the sum over any number of
fermion bubble insertions. This modified gluon propagator is generally referred to as bubble chain.
The only ingredient needed for the calculation of the bubble chain is the well-known result for the
renormalized quark loop (see appendix A)

π̂(p2) =
αsNf

6π
ln

(
µ2

−p2
e−C

)
, (3.9)

where C denotes a scheme-dependent constant. In MS, the renormalization scheme that will be
used throughout this section, C = −5/3. Using this, the bubble chain in Landau gauge3 is given
in the handy form

Dab
µν(k) =

−i
k2 + i0+

(
gµν −

kµkν
k2

)
1

1 + π̂(k2)
δab (3.10)

=
−i

k2 + i0+

(
gµν −

kµkν
k2

)
δab

∞∑
n=0

[
−αsNf

6π
ln

(
µ2

−p2
e−C

)]n
,

2Note that renormalons were originally discovered in bubble chain diagrams such as Fig. 3.1 [1, 2, 3].
3For the calculation of the diagrams in Fig. 3.1 Landau gauge proves to be very useful (see appendix A).
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where the expression in the second line can be used to calculate the diagrams in Fig. 3.1. In
the following, however, we mainly focus on the derivation of the leading renormalon divergences
of the Adler function in the large-Nf approximation and therefore only sketch the bubble chain
computation here. An in-depth calculation along with an derivation of the Borel transformed
Adler function in this approximation can be found in Appendix A.

3.2.1 Calculating Bubble Chain Diagrams for the Adler Function

Starting from the diagrams in Fig. 3.1 and exploiting eq. (3.10) for the modified gluon propagator,
we first integrate over the momentum of the ‘large’ quark loop that encloses the bubble chain.
Introducing the dimensionless integration variable k̂2 = −k2/Q2 with Q2 = −p2, the Adler function
(in the MS-scheme) is given by [27]

D =
∞∑
n=0

αs(µ)

∞∫
0

dk̂2

k̂2
ω(k̂2)

[
αs(µ)Nf

6π
ln

(
k̂2Q

2

µ2
e−5/3

)]n
. (3.11)

Here, the factor in the bracket arises from multiple insertions of renormalized fermion loops into the
bubble chain and the additional factor αs = g2/(4π) in front of the integral comes from attaching
the end points of the gluon propagator to the quark lines of the large fermion loop. The weight
function ω(k̂2) describes the gluon momentum distribution and is found to be [31]:

ω(k̂2) =
2CF
π2

∞∑
s=2

(−1)s
d

ds

1

s2 − 1

∞∫
−∞

dr eir ln k̂2
(

1 + ir

r2 + s2
− 1

1− ir

)
. (3.12)

Setting µ2 = Q2, the integral receives large logarithmic enhancements from small (k̂2 � 1) and
large (k̂2 � 1) momentum regions and we therefore only need to know the small and large mo-
mentum behaviour of ω(k̂2) [27]:

ω(k̂2) =
3CF
2π

k̂4 +O
(
k̂6 ln k̂2

)
(k̂2 � 1) (3.13)

ω(k̂2) =
CF
3π

1

k̂2

(
ln k̂2 +

5

6

)
+O

(
ln k̂2

k̂4

)
(k̂2 � 1).

Proceeding with the large-order evaluation of eq. (3.11), we now split the integral at k̂2 = e5/3 and
perform the integration for small and large momenta employing the expressions in eq. (3.13). We
finally obtain

D ∼
∞∑
n=0

αn+1
s (Q)

[
e10/3

(
− Nf

12π

)n
n! + e−5/3

(
Nf

6π

)n
n!

(
n+

11

6

)
+ . . .

]
, (3.14)

where the first term comes from small momentum regions and the second one is due to the inte-
gration over large loop momenta. As one can see, the coefficients of the perturbative series exhibit
the expected factorial growth and the corresponding divergences causing this behaviour are known
as infrared (IR) and ultraviolet (UV) renormalons depending on the momentum region they are
related to. To be more precise, the result in eq. (3.14) represents the leading IR and UV renor-
malons, while the sub-dominant divergent behaviour caused by other renormalons is not shown
and only indicated by ellipses.

Despite its apparent usefulness for explicit calculations, the question remains whether the set of
bubble graphs provides a suitable approximation to renormalon divergences encountered in pertur-
bative expansions. In non-Abelian gauge theories, such as QCD, the Nf -terms coming from fermion
bubble diagrams only give a small contribution to the complete perturbative coefficients and other
contributions associated with non-Abelian diagrams, like gluon and ghost bubbles, are obviously
missed. The absence of gluon self-couplings in the large Nf -limit has fundamental consequences,
since one loses the QCD property of asymptotic freedom [32]. In order to restore this property at
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least approximately and estimate the non-Abelian contribution to renormalon divergences, it was
suggested (see e.g. [16, 31]) to apply the replacement rule

Nf → −
3

2

(
11

3
CA −

2

3
Nf

)
= −3

2
β0 (3.15)

to bubble chain calculations. This substitution, which is referred to as Naive Non-Abelianization
(NNA) [33], turns out to give a major contribution to perturbative coefficients in almost all cases
where a comparison with exact second order results is available and is thus expected to provide
a reasonable large-order approximation for qualitative studies of perturbative series [16]. This
observation along with the fact that fermion bubble graphs are much easier to evaluate than non-
Abelian diagrams explains why there only exist very few analyses that go beyond the computation
of bubble chains in this so-called large-β0 approximation.

Replacing Nf with the full QCD β0-function (see appendix C.1), the Adler function (3.14) in
the large-β0 approximation is given by:

D ∼
∞∑
n=0

(
αs(Q)β0

4π

)n+1 [
e10/3

(
1

2

)n
n! + e−5/3 (−1)n n!

(
n+

11

6

)
+ . . .

]
, (3.16)

where the first contribution is again related to small loop momenta, whereas the second term arises
from large momentum regions. From the form of the Adler function in the large-β0 approximation
we are now in the position to establish the connection between renormalon divergences and poles
in the Borel transform. Using eq. (3.4) and the terms shown in (3.16) the Borel transform of the
Adler function can be cast into the form,

B[D](u) ∼ e10/3 2

2− u + e−5/3

(
1

(1 + u)2
+

5

6

1

(1 + u)

)
+ . . . , (3.17)

where the modified Borel variable u ≡ tβ0/(4π) was used. The first term in the above expression
exhibits a singularity at u = 2 and is associated with the leading IR renormalon divergence in
(3.16). The singularity at u = −1 in the second term, on the other hand, is related to the leading
UV renormalon divergence and consists of a simple as well as a double pole. More specifically, the
simple pole is connected to the n! contribution in the second term of eq. (3.16), while the double
pole leads to the (n+1)! growth of the coefficients and thus dominates. As can be seen, renormalon
divergences in perturbative series related to small and large loop momentum behaviour are indeed
connected to singularities in the corresponding Borel transform and in the following we will refer
to renormalons as poles in the Borel plane.

The form of the Adler function in eq. (3.16) also corroborates our previous findings that
poles closer to the origin of the Borel plane correspond to faster diverging series. The leading IR
renormalon divergence is suppressed by a factor (1/2)n as compared to the leading UV renormalon
at u = −1 which therefore dominates the large-order behaviour of the Adler function. Furthermore
it now becomes obvious that UV renormalon poles located on the negative real Borel axis lead to
sign-alternating factorial divergences and IR renormalons at u > 0 are related to series displaying
a fixed-sign factorial growth.

Relying on the calculation of bubble chain diagrams, an analytic expression for the complete
Borel transform of the reduced Adler function D̂ can be found [28] (see Appendix A for more
details):

B[D̂] =
32

3π

e−Cu

(2− u)

∞∑
k=2

(−1)k k

[k2 − (1− u)2]2
, (3.18)

where C denotes the same scheme-dependent constant which also arises in eq. (3.9). Besides the
leading UV and IR renormalons, the Borel transform also contains subleading (simple and double)
renormalon poles at positive and negative integer values of u, except for u = 0, 1. The absence of
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the u = 1 renormalon, as we are going to see in the next section, is related to the fact that there
is no dimension-2 operator in the OPE of the Adler function. The singularity at u = 0 is only
present in the Borel transform of the correlation function Π(Q2) (see [34]) and vanishes in the case
of the Adler function by taking the derivative with respect to Q2 in (3.8).

The NNA prescription (3.15) reveals another important aspect of renormalon divergences in the
context of the large-β0 approximation. When we go back to the expression of the renormalized
bubble chain given in eq. (3.10), the substitution of the Abelian Nf -terms with the full β0-function
yields:

Dab
µν(k) =

−i
k2 + i0+

(
gµν −

kµkν
k2

)
1

1 + π̂(k2)
δab (3.19)

=
−i

k2 + i0+

(
gµν −

kµkν
k2

)
δab

∞∑
n=0

(
αs β0

4π

)n[
ln

(
µ2

−p2
e−C

)]n
,

Using this expression in the calculation of the diagrams in Fig. 3.1, the Adler function in the
MS-scheme is given by (compare with (3.11))

D =

∞∫
0

dk̂2

k̂2
ω(k̂2)

αs(k)

1 + π̂(k̂2)
=

∞∫
0

dk̂2

k̂2
ω(k̂2) αs

(
k e−5/6

)
(3.20)

=

∞∑
n=0

αs(µ)

∞∫
0

dk̂2

k̂2
ω(k̂2)

[
−αs(µ)β0

4π
ln

(
k̂2Q

2

µ2
e−5/3

)]n
,

where the coupling αs

(
k e−5/6

)
in the second term of the first line denotes the well-known one-loop

QCD running coupling defined by:

αs(µ) =
αs(µ0)

1 + αs(µ0)
4π β0 ln

(
µ2

µ20

) . (3.21)

Hence, renormalons are closely connected to the concept of the running coupling and the set of
bubble chain diagrams is actually equivalent to the evaluation of corresponding two-loop diagrams
which use the one-loop running coupling at the vertices without any fermion bubble insertions into
the gluon propagator. From a physical point of view it is exactly these running coupling effects
in QCD which turn the small momentum behaviour in perturbative loop integrals into factorial
divergences. Moreover it is now clearly evident that the large-β0 limit only provides a useful
approximation to the large-order behaviour of asymptotic series, if the contributions coming from
the one-loop running dominate at high orders.

In this context the question arises how the structure of renormalon divergences and especially
the positions of the poles on the real axis in the Borel plane change, when diagrams beyond the
large-β0 approximation are considered. The Borel transform (3.18) of the Adler function in the
large-β0 approximation consists of an infinite sequence of simple and double poles, but in the
general case the renormalon pole structure will be much more complicated, involving cuts and
higher terms of the QCD β-function (see e.g. the physical model for the Adler function presented
in Chapter 2). Nevertheless, one can prove (see [27]) that the exact location of the renormalon
poles is already given by the large-β0 approximation.

Another crucial point we need to mention here is that even though the bubble chain diagrams
in the large-β0 approximation reproduce the correct positions for the renormalon poles, they do
not yield all singularities that should be present in the Borel transform. An important example in
this respect are instantons which are exponentially small effects in the 1/Nf -expansion that lead to
singularities far away from the origin in the Borel plane and thus can usually be neglected when it
comes to the discussion of renormalons. A detailed review on instanton singularities can be found
e.g. in [35].
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3.3 Ambiguity of the Borel Integral

We have already alluded to the issue that the renormalon poles in the Borel transform have a
large impact on the definition of the Borel integral (3.5). Since UV renormalons are located on the
negative real axis in the Borel plane, they lie outside the integration range and the Borel integral
is well-defined. Even though UV renormalons are Borel-summable in this sense, they are not at
all irrelevant from a physical point of view. UV renormalons will be discussed in more detail in
section 3.4.

IR renormalons, on the other hand, obstruct the integration and we are forced to regulate the
integral in order to avoid the singularities. This introduces an ambiguity in the definition of the
Borel integral which e.g. can be quantified by deforming the integration contour either above or
below the pole. Thus, we can estimate the ambiguity caused by a generic IR renormalon pole at
u = p/2 (p > 0) in the Borel transform of the Adler function by a contour integration around the
singularity:

∆D(Q2) ∼
∮

u=p/2

du e
− 4πu
β0αs(Q)

1

p/2− u ∝
(

e
− 2π
β0αs(Q)

)p
∼
(

ΛQCD

Q

)p
. (3.22)

Here, we used the definition of the intrinsic QCD scale, ΛQCD, at the leading-logarithmic (LL) order
in the last equality (see appendix C.1). Since physical observables, such as the Adler function,
should not be affected by renormalon ambiguities, the result of eq. (3.22) indicates that additional
non-perturbative power corrections4 need to be considered in an adequate, i.e. unambiguous,
definition of observables. This is a very crucial point we want to stress here: If QCD or any other
theory is supposed to be of physical relevance, perturbation theory must be incomplete and the
existence of IR (but also of UV) renormalons is just a reminder of this fact.

3.3.1 Infrared Renormalons and Operator Product Expansion

An important instrument to systematically incorporate non-perturbative effects in QCD calcula-
tions is the operator product expansion (OPE). The concept of the OPE was developed by Wilson
[36] who proposed to replace a product of local operators evaluated at different space-time points
that are close to each other by a linear combination of composite local operators:

lim
x→y

A(x)B(y) =
∑
i

Ci(x− y)Oi(x). (3.23)

The sum on the right-hand side comprises all operators Oi which carry the same quantum numbers
as the composite operator on the left-hand side and the complex-valued coefficient functions Ci are
known as Wilson coefficients. Moreover one can associate mass dimensions di with the operators
Oi and the sum can generally be organized in terms of a series of increasing dimensions.

Strict proofs of the OPE are only valid in perturbation theory [37, 38, 39] and there are many
studies that investigate to which extent the operator expansion still holds when non-perturbative
effects are included [40, 41, 42]. In particular, it is shown in [40] that there exists a critical dimen-
sion at which non-perturbative effects lead to a breakdown of the OPE. Nevertheless, the operator
product expansion is an important tool for QCD predictions which allows us to separate short-
and long-distance physics into perturbatively computable Wilson coefficients and matrix elements
of operators that demand non-perturbative treatment.

Before we deal with the OPE of a generic observable, it is instructive to first consider the corre-
sponding expansion for the Adler function in order to study the deep connection between IR renor-
malon ambiguities and non-perturbative effects. To this end recall that according to its definition

4From the result of (3.22) we conclude that the power corrections (ΛQCD/Q)p are given by exponential terms in
the strong coupling αs. In this sense they are also purely non-perturbative, since these terms vanish trivially in a
perturbative expansion around α = 0. Furthermore note that even though power corrections are sometimes referred
to as exponentially small, they do not need to be small numerically.
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in eq. (3.8) the Adler function is basically given by the time-ordered product 〈0|T{Jµ(x)Jν(0)†} |0〉
of two quark currents Jµ. In the limit in which the currents are evaluated at the same point x,
we can apply the operator product expansion (3.23) and express the product of currents by means
of a sum over local operators. Since we are interested in the vacuum expectation value of the
Adler function, the possible set of operators appearing in the OPE can be restricted to the class
of gauge-invariant Lorentz scalars. It turns out that it is not possible to construct any operators
of dimension d = 1, 2 which meet these requirements and thus the first contributions to the OPE
come from operators with dimension 3 and 4:

O3 = qq, O4 = GaµνG
a,µν . (3.24)

Here, Gaµν denotes the field strength tensor of the gluon field Aaµ and the corresponding vacuum
expectation values of these operators, 〈Ω| qq |Ω〉 and 〈Ω|GaµνGa,µν |Ω〉, are called quark and gluon
condensate, respectively. Since the quark condensate violates the chiral symmetry, its associated
Wilson coefficient comes with an additional factor of the quark mass m and the OPE of the Adler
function receives non-perturbative contributions from operators starting effectively at dimension
d = 4. Neglecting higher dimensional terms, the expansion of the Adler function reads

D(Q2) = C0(Q2, µ)11 + CGG(Q2, µ)
〈
(
GAµν

)2〉(µ)

Q4
+ Cqq(Q

2, µ)m
〈qq〉(µ)

Q4
+O

(
Λ6

QCD

Q6

)
, (3.25)

where we introduced the notation 〈Ω|O |Ω〉 ≡ 〈O〉. Note that the first term in the expansion is
related to the unit operator, whose corresponding Wilson coefficient C0 comprises the purely per-
turbative contributions to the Adler function. In the large-β0 approximation C0 can be computed
from the bubble chain diagrams in Fig. 3.1. In the massless case the quark condensate vanishes
and we conclude that the dominant non-perturbative effects in the definition of the Adler function
arise from the gluon condensate.

The contribution of the gluon condensate can be linked to the leading IR renormalon at u = 2
[27]. Starting from the observation that IR renormalons are related to small loop-momentum re-
gions, the low-energy physics is described by a local operator, since the large external scale Q can
be contracted to a single point with respect to the small momentum fluctuations. In addition,
the Adler function is a Lorentz scalar and since no external hadrons exist, we need to compute
vacuum expectation values. We also know that the dominant sequence of IR renormalons is due
to a single soft gluon line in Fig. 3.1 which constrains the local operator to consist of low energy
gauge fields Aaµ attached to one local space-time point. Taking into account that gauge invariance
rules out terms of the form AaµA

a,µ, the lowest dimensional operator consistent with these con-
straints (in the limit of vanishing quark masses) is found to be the dimension-4 gluon condensate
〈Ω|GaµνGa,µν |Ω〉 ∼ Λ4

QCD. This completes the connection between IR renormalons and higher
dimensional terms in the operator product expansion we wished to establish. As is evident from
eq. (3.22), the gluon condensate is precisely of the order of the ambiguity related to the leading
u = 2 IR renormalon,

∆D(Q2) ∼
(

ΛQCD

Q

)4

, (3.26)

such that the Adler function is defined unambiguously in the sum of (3.25) up to power suppressed
contributions of order O(Λ6

QCD/Q
6). In a similar fashion the dimension-6-operators in the OPE

of the Adler function compensate the ambiguities caused by the IR renormalon at u = 3 and in
the most general case an IR renormalon singularity located at u = p/2 > 0 in the Borel plane is
related to non-perturbative matrix elements 〈Ω|Op |Ω〉 ∼ ΛpQCD of p-dimensional operators5. Fur-
thermore, it now becomes obvious how the missing of an u = 1 renormalon in the Borel transform
of the Adler function is associated with the absence of a dimension-2-operator in the OPE, and
later on we will also see that the simple pole structure of the u = 2 renormalon results from the

5To our knowledge the connection between IR renormalons and higher dimensional terms in the operator product
expansion was noted for the first time by Parisi [43].
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vanishing anomalous dimension of the gluon condensate in the large-β0 approximation.

Before generalizing our previous findings to a generic observable a few comments need to be
made. From the estimation in (3.22) we have seen that renormalon ambiguities are related to two
different scales which typically involve a large, perturbative scale Q (e.g. a momentum transfer or
mass) and ΛQCD, the scale at which perturbation theory breaks down. As indicated in eq. (3.25),
the Wilsonian OPE introduces a factorization scale µ separating these two scales in such a way
that ΛQCD < µ < Q and performs a consistent expansion in powers of ΛQCD/Q for contributions
from loop momenta k < µ. The coefficient functions are perturbatively computable and only
contain contributions k ∼ Q > µ, while the small momentum region k ∼ ΛQCD < µ is inherent to
the non-perturbative matrix elements. Therefore, the Wilson coefficient C0, comprising the purely
perturbative result for the Adler function, does not contain any IR renormalons in this picture
and could in principle be defined unambiguously since UV renormalons are Borel summable any-
way. However, since implementing a suitable real momentum cut-off µ and preserving important
features, such as gauge symmetry and Lorentz invariance, at the same time is hard to achieve in
calculations beyond the one-loop order, one usually uses dimensional regularization in connection
with the MS-scheme in perturbative computations. In dimensional regularization the renormal-
ization scale is introduced to realise the factorization in the OPE. In contrast to the Wilsonian
picture, loop integrations are still performed over all momenta k, resulting in Wilson coefficients
that are still IR sensitive and thus incorporate contributions from arbitrary small momenta. This
in turn leads to IR renormalon divergences which manifest themselves in the factorial growth
of the perturbative coefficients in C0. In the MS-OPE the convergence behaviour of the Adler
function gets improved by the addition of non-perturbative effects related to matrix elements of
higher-dimensional operators. The cancellation of the renormalon ambiguities in C0 with the cor-
responding instabilities in the matrix elements can be traced back to the fact that the MS-OPE
does not provide a strict separation of momentum scales.

Note that the coefficient functions of higher dimensional terms in the OPE (e.g. CGG, Cqq
in (3.25)) in principle also contain IR renormalon series causing subleading divergent behaviour.
Since there exists no consistent way of treating these renormalons (and since they are subleading
compared to the most important ones in C0), we do not consider any renormalon divergences in
coefficient functions other than C0 here.

The convergence of the Wilson coefficients in the Adler function and other physical observables
obviously depends a lot on an appropriate scheme choice. As we are going to discuss in the next
chapter, switching to a scheme that expresses observables in terms of perturbative series that are
less IR sensitive will in general improve the convergence. The definition of such schemes typ-
ically requires an additional infrared scale R, below which the problematic fluctuations due to
IR renormalons are subtracted. Similar to the case of the conventional renormalization scale µ,
we can also study the renormalization group evolution with respect to the new scale R. This
so-called R-evolution leads to corresponding RGEs which sum at the same time the asymptotic
renormalon series and potential large logarithms in the difference of two subtractions defined at
widely separated scales. Furthermore we will see that the solutions of these R-evolution equations
yield expressions for a “renormalon sum rule” method that can be used as a probe for the exis-
tence of renormalons without relying on the calculation of bubble chain diagrams in the large-β0

approximation. This renormalon sum rule provides the possibility to gain information on specific
renormalons in perturbative series and allows us to address the second question raised at the end
of chapter 2. Besides, the solution of the R-evolution equation is directly linked to Borel-type
integrals and, hence, represents an alternative method to quantify the size and the structure of
renormalon ambiguities.

Continuing with our discussion we now turn to the OPE of a generic observable σ. Assuming
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this observable to be dimensionless, its MS-OPE exhibits the general structure6,

σ(Q) = C0(Q) +
∑
i

Ci(Q,µ)
〈Oi(µ)〉
Qp

+ . . . (3.27)

= C0(Q) + ~Cᵀ(Q,µ)
〈 ~O(µ)〉
Qp

+ . . . ,

where C0 denotes the purely perturbative contributions to σ in the MS-scheme and the first
non-vanishing non-perturbative matrix elements arise from operators with equal dimension p.
According to our previous analysis of the Adler function, these matrix elements compensate the
ambiguity caused by u = p/2 renormalons in C0. To facilitate the subsequent discussion, the set of
dimension p operator matrix elements and their associated Wilson coefficients have been combined
into the vectors 〈 ~O(µ)〉 and ~Cᵀ in the second line.

In the following we are interested in investigating more closely the scale dependence of generic
OPE correction terms due to operators of equal dimension p,

σ(Q) = C0(Q) +
F pO
Qp

+ . . . , (3.28)

F pO = ~Cᵀ(µ) 〈 ~O(µ)〉.

In the expression for the correction term F pO the renormalization scale µ is shown explicitly, while
the dependence on other momentum scales is implicit. Since physical observables are independent
of the renormalization scale, they satisfy a homogeneous RGE and we thus have,

d

d lnµ

(
~Cᵀ(µ) 〈 ~O(µ)〉

)
= 0, (3.29)

which immediately leads to[
d

d lnµ
~Cᵀ(µ)

]
〈 ~O(µ)〉 = −~Cᵀ(µ)

[
d

d lnµ
〈 ~O(µ)〉

]
. (3.30)

Defining

d

d lnµ
~O(µ) = −γO[as(µ)] ~O(µ), (3.31)

with the anomalous dimension matrix γO expanded in the form (as ≡ αs/π)

γO[as(µ)] = γ
(1)
O as + γ

(2)
O a2

s + . . . , (3.32)

the RGE for the Wilson coefficients is found to be:

d

d lnµ
~C(µ) = γᵀO[as(µ)]~C(µ). (3.33)

In order to obtain a suitable expression for F pO, it is convenient to change to an operator basis in

which the leading-order anomalous dimension matrix is diagonal. Upon diagonalizing γ
(1)
O by a

matrix V consisting of the eigenvectors of γ
(1)
O ,

γ
(1)
D = V −1γ

(1)
O V, (3.34)

where the diagonal elements of γ
(1)
D are now given by the eigenvalues of γ

(1)
O , the generic OPE term

(3.28) can be rewritten in the following way,

F pO = ~Cᵀ(µ) 〈 ~O(µ)〉 = ~Cᵀ(µ)V V −1 〈 ~O(µ)〉 = ~Cᵀ
D(µ) 〈 ~OD(µ)〉, (3.35)

6To simplify the notation in the following discussion, only a generic set of correction terms associated with u = p/2
IR renormalons is displayed in the OPE (3.27). If C0 suffers from a series of IR renormalons for different p values,
an appropriate sum over p is implied.
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with

〈 ~OD(µ)〉 = V −1 〈 ~O(µ)〉, (3.36)

~CD(µ) = V ᵀ ~C(µ).

The corresponding leading order RGEs are given by:

d

d lnµ
~OD(µ) = −γ(1)

D as(µ) ~OD(µ), (3.37)

d

d lnµ
~CD(µ) = γ

(1),ᵀ
D as(µ) ~CD(µ).

The leading logarithmic (LL) solution can be parameterized as

~Cᵀ
D(µ)ULL(µ, µ′) 〈 ~OD(µ′)〉, (3.38)

which yields an RGE for the renormalization group evolution matrix ULL(µ, µ′) at the LL order

(γ
(1)
D ≡ diag

[
~γ

(1)
D

]
):

d

d lnµ
ULL(µ, µ′) = −diag

[
~γ

(1)
D

]
as(µ)ULL(µ, µ′). (3.39)

Exploiting the one-loop running of the strong coupling αs (see eq. (C.1)), the LL solution eventually
takes the form:

ULL(µ, µ′) = diag

[(
as(µ)

as(µ′)

)2~γ
(1)
D /β0]

, ULL(µ, µ) = 11. (3.40)

For the generalisation to the next-to-leading order, we proceed similar to the LL case and define

g := V −1γ
(2)
O V , which, in contrast to γ

(1)
D , is not diagonal in general. The RGE for the evolution

matrix UNLL(µ, µ′) in the next-to-leading logarithmic approximation is given by:

d

d lnµ
UNLL(µ, µ′) = −

[
diag

[
~γ

(1)
D

]
as(µ) + g a2

s (µ)

]
UNLL(µ, µ′). (3.41)

This differential equation can be solved by using the ansatz,

UNLL(µ, µ′) =
[
11 + as(µ)S

]
ULL(µ, µ′)

[
11− as(µ

′)S
]
, (3.42)

which after a short calculation leads to the following expression for the elements of the matrix S:

Sij =
β1

4β0
γ

(1),i
D δij

1

(γ
(1),i
D − γ(1),j

D − β0/2)
− gij

(γ
(1),i
D − γ(1),j

D − β0/2)
(3.43)

= − β1

2β2
0

γ
(1),i
D δij +

gij

(β0/2 + γ
(1),j
D − γ(1),i

D )
.

Details on the calculation of S have been relegated to appendix C.2 and can also be found in [44, 45].

With these expressions for the evolution matrix at hand, we are now in the position to investigate
generic OPE contributions at the NLL level. The subsequent derivation will be a bit technical
including lots of redefinitions that may seem unnecessary at first sight. However, the notation
introduced below greatly facilitates the discussion of the IR (and UV) renormalon structure, es-
pecially in view of the R-evolution formalism developed in the next chapter.

Using the NLL solution for the evolution matrix, the term F pO of (3.28) in the OPE can be
rewritten in a form where all large logarithms involving the scales Q and ΛIR are being resummed
at NLL:

F pO = ~Cᵀ(Q)UNLL(Q,ΛIR) 〈 ~O(ΛIR)〉, (3.44)
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where we displayed explicitly the dependence on the large and low momentum scales with ΛIR � Q.
Next, we exploit the ansatz (3.42), which yields:

F pO = ~Cᵀ(Q)
[
11 + as(Q)S

]
diag

[(
as(Q)

c

) 2~γ
(1)
D
β0

]
︸ ︷︷ ︸

≡ ~̂Cᵀ
c (Q)

diag

[(
as(ΛIR)

c

)−2~γ
(1)
D

β0

][
11− as(ΛIR)S

]
〈 ~O(ΛIR)〉︸ ︷︷ ︸

≡〈 ~̂Oc(ΛIR)〉

=
∑
i,j

Ci(Q)
[
δij + as(Q)Sij

](as(Q)

c

)2γ
(1)
D,j/β0

〈Ôjc(ΛIR)〉. (3.45)

Here, ~̂Cᵀ
c and 〈 ~̂Oc〉 defined in the first line denote the Wilson coefficients and matrix elements,

respectively, in the so-called renormalization group improved (RGI) scheme and the auxiliary con-
stant c was introduced for later convenience. We emphasize that in the RGI-scheme the momentum
scales Q and ΛIR are strictly separated in the sense that the coefficient functions Ĉc(Q) only de-
pend on the large scale Q, whereas 〈Ôc(ΛIR)〉 does only depend on ΛIR. In the following we assume
the coefficient functions in (3.45) to be renormalon free, that is we neglect all renormalons that
may be contained in Ci(Q), while the non-perturbative matrix elements carry the pure O(ΛpQCD)
renormalon. This will be important in the discussion of R-evolution in section 4.2.1.

Continuing with our analysis, we now decompose the Wilson coefficient Ci in the form

Ci(Q) = aδis (Q)
∞∑
n=0

c
(n)
i ans (Q), (3.46)

where δi represents the lowest power in the strong coupling of the coefficient function Ci. Thus,
the OPE term FO can be further rewritten as follows

F pO =
∑
i,j

aδis (Q)
[
c

(0)
i + as(Q)c

(1)
i + . . .

][
δij + as(Q)Sij

](as(Q)

c

)2γ
(1)
D,j/β0

〈Ôjc(ΛIR)〉 (3.47)

=
∑
j

(
as(Q)

c

)δj[
c

(0)
j + as(Q) c

(1)
j

](as(Q)

c

)2γ
(1)
D,j/β0

cδj 〈Ôjc(ΛIR)〉

+
∑
i,j

c
(0)
i

(
as(Q)

c

)δi
as(Q)Sij

(
as(Q)

c

)2γ
(1)
D,j/β0

cδi−δj cδj 〈Ôjc(ΛIR)〉

=
∑
j

(
as(Q)

c

)δj+2γ
(1)
D,j/β0

[
c

(0)
j +as(Q)

(
c

(1)
j +

∑
i

(
as(Q)

c

)δi−δj
cδi−δj c

(0)
i Sij

)]
cδj 〈Ôjc(ΛIR)〉

=
∑
j

c
(0)
j

(
as(Q)

c

)δj+2γ
(1)
D,j/β0

[
1+as(Q)

(
c

(0)
j

)−1
(
c

(1)
j +

∑
i

as(Q)δi−δj c
(0)
i Sij

)]
cδj 〈Ôjc(ΛIR)〉,

where we dropped terms of O(a2
s ) in the expansion of the product of the square brackets in the

first line. In addition, we stress that the exponent δi − δj of αs in the second part of the last line
can in principle take on any integer value greater than or equal to −δj , since δi ≥ 0. In order to
recover a suitable expression for F pO, we redefine the Wilson coefficients Cj and leading powers δj
in the following way:

F pO =:
∑
j

ĉ
(0)
j

(
as(Q)

c

)δ̂j+2γ
(1)
D,j/β0

[
1 + as(Q) ĉ

(1)
j + . . .

]
cδ̂j 〈Ôjc(ΛIR)〉. (3.48)

The expression above is rearranged in such a way that the correction term as(Q) ĉ
(1)
j within the

square brackets is truly O(αs)-suppressed. In particular, note that depending on the values of δj
and δi in (3.48), the newly defined leading powers δ̂j do not need to be identical with δj .
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3.4 Ultraviolet Renormalons

In contrast to IR renormalons, UV renormalons in QCD are Borel summable and cannot be
related to non-perturbative power corrections that arise in the framework of the operator product
expansion. For this reason UV renormalons are sometimes regarded to be less problematic than
their infrared counterparts and are often left aside in discussions. However, for some observables,
like the Adler function, UV renormalons are closest to the origin in the Borel plane and therefore
dominate the large-order behaviour, as can be seen from the sign-alternating factorial growth of
the perturbative coefficients.

There is a striking similarity between UV renormalons and UV renormalization first noted by
Parisi [46] who suggested that UV renormalons could be compensated by insertions of local higher-
dimensional operators7 into the Green functions from which the observable under consideration
is derived. Parisi’s conjecture is based on the observation that UV renormalons are connected
to the large momentum expansion of the integrands in loop calculations. In the computation of
bubble chain diagrams (see section 3.2) the Feynman integrand contains a large power of logarithms
ln k2/µ2 coming from multiple fermion loop insertions into the gluon line. Potential logarithmic
UV divergences in such computations are associated with integrations of terms like d4k/k4 over
large loop momenta and are removed by counterterm insertions of operators of dimension four in
the renormalization procedure. The UV renormalons then arise from integrating large powers of
ln k2/µ2 in the remaining terms of the large momentum expansion of the Feynman integrand over
the ultraviolet region. To be more specific, the leading UV renormalon u = −1 follows from the
large-k behaviour of the d4k/k6-part and the subleading UV renormalons starting at u = −2 are
due to the remaining terms such as d4k/k8. Similar to the removal of ordinary UV divergences by
means of local counterterms, UV renormalons can be compensated by insertions of local higher-
dimensional operators. In the particular case of the leading u = −1 renormalon we thus need to
consider an additional term in the Lagrangian,

∆L(6) =
∑
i

C
(6)
i (µ)

O
(6)
i (µ)

Λ2
UV

, (3.49)

containing all local operators O
(6)
i of dimension six. This additional term signifies the missing

information from energy scales much larger than Q. In a similar fashion the subleading UV renor-
malon at u = −2 is related to local dimension-8 operators and, in general, a UV renormalon
singularity located at u = −p̃/2 (p̃ > 0) in the Borel plane can be remedied by adding further
terms to the Lagrangian including local operators of dimension k = p̃ + 4. Most works in the
literature primarily deal with the leading UV renormalon and detailed discussions can be found
e.g. in [30, 47].

Due to their analogy to UV renormalization, UV renormalons can in some sense be regarded
universal, since once the coefficient functions Ci, which contain short distance information from
scales ΛUV � Q, have been determined from Green functions for a specific process in a more UV
complete theory, the UV renormalons for all other processes can be treated in the same way.

In the following we want to investigate in more detail the structure of additional terms in the
Lagrangian needed to compensate the effects of UV renormalons located at u = −p̃/2 on the neg-
ative real Borel axis. Adopting the results from the discussion of IR renormalons in the previous
section, a generic Lagrangian term for operators of dimension k = p̃+ 4 is given by8

∆L = ~Cᵀ(ΛUV)UNLL(ΛUV, Q)
~O(Q)

Λp̃UV

= (3.50)

7Note that these higher-dimensional operators are considered local with respect to the scale Q.
8Analogous to (3.27), only a generic Lagrangian term for operators associated with u = −p̃/2 UV renormalons is

displayed in (3.50). If C0 suffers form a series of UV renormalons for different p̃ values, an appropriate sum over p̃
is implied.
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=
1

Λp̃UV

~Cᵀ(ΛUV)
[
11 + as(ΛUV)S

]
diag

[(
as(ΛUV)

c

) 2~γ
(1)
D
β0

]
︸ ︷︷ ︸

≡ ~̂Cᵀ
c (ΛUV)

diag

[(
as(Q)

c

)−2~γ
(1)
D

β0

][
11− as(Q)S

]
~O(Q)︸ ︷︷ ︸

≡ ~̂Oc(Q)

,

where ΛUV denotes e.g. a BSM scale with ΛUV � Q. In order to account for an u = −p̃/2 renor-
malon in the perturbative expansion of an observable σ(Q) we have to consider Green functions
for the SM/QCD process with a single insertion of the local operators Oi contributing to σ(Q).
Assuming that this calculation only involves a single scale Q, the contribution from each insertion
of the operator Oi can be generically written as,

Rσ(Oi(Q)) = Qp̃ aδis (Q)
[
c

(0)
UV,i + as(Q) c

(1)
UV,i + . . .

]
. (3.51)

Using this expression we can define (cf. eq. (3.28)),

σ(Q) = C0(Q) +
F p̃,UV

O

Λp̃UV

+ . . . , (3.52)

with,

F p̃,UV

O =
∑
i,j

Ĉc,j(ΛUV)

(
as(Q)

c

)−2γ
(1)
D,j/β0[

δji − as(Q)Sji
]
Rσ(Oi(Q)) (3.53)

=
∑
i,j

Ĉc,j(ΛUV)

(
as(Q)

c

)−2γ
(1)
D,j/β0[

δji − as(Q)Sji
]
Qp̃ aδis (Q)

[
c

(0)
UV,i + as(Q) c

(1)
UV,i + . . .

]
=
∑
i,j

cδj Ĉc,j(ΛUV)

(
as(Q)

c

)−2γ
(1)
D,j/β0[

δji − as(Q)Sji
]

×Qp̃
(
as(Q)

c

)δi
cδi−δj

[
c

(0)
UV,i + as(Q) c

(1)
UV,i + . . .

]
=
∑
j

cδj Ĉc,j(ΛUV)Qp̃
(
as(Q)

c

)−2γ
(1)
D,j/β0+δj[

c
(0)
UV,j + as(Q) c

(1)
UV,j

]
−
∑
i,j

cδj Ĉc,j(ΛUV)Qp̃
(
as(Q)

c

)−2γ
(1)
D,j/β0+δj(as(Q)

c

)(δi−δj)
cδi−δjas(Q)Sji c

(0)
UV,i

= Qp̃
∑
j

cδj Ĉc,j(ΛUV)

(
as(Q)

c

)−2γ
(1)
D,j/β0+δj[

c
(0)
UV,j+as(Q)

(
c

(1)
UV,j−

∑
i

as(Q)δi−δj c
(0)
UV,i Sji

)]

= Qp̃
∑
j

cδj Ĉc,j(ΛUV)

(
as(Q)

c

)−2γ
(1)
D,j/β0+δj

c
(0)
UV,j

×
[
1 + as(Q)

(
c

(0)
UV,j

)−1
(
c

(1)
UV,j −

∑
i

Sji as(Q)δi−δj c
(0)
UV,i

)]
.

Here, the process-independent and universal coefficients Ĉc(ΛUV) compensate for O(Λ−p̃UV) UV
renormalons. Similar to the discussion of the OPE corrections in the last section, it is possible to
combine the terms in the last line such that one obtains an expression resembling the one in eq.
(3.48):

F p̃,UV

O =:
∑
j

cδ̂j Ĉc,j(ΛUV)Qp̃
(
as(Q)

c

)−2γ
(1)
D,j
β0

+δ̂j

ĉ
(0)
UV,j

[
1 + as(Q) ĉ

(1)
UV,j + . . .

]
. (3.54)
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The expression above is rearranged in the same fashion as the generic IR-OPE correction in

eq. (3.48) such that the first subleading term as(Q)
ˆ

c
(1)
UV,j in the square brackets is truly O(αs)-

suppressed. We stress again that δ̂j does not need to be equal to δj .

3.5 Renormalon Structure of a Generic Observable

After the rather elaborate notational setup in the previous two sections we briefly summarize and
combine our knowledge about IR and UV renormalons. From the form of the Borel integral (3.5)
we have seen that IR renormalons are associated with ambiguities in the definition of the perturba-
tive series C0 of a physical observable σ(Q), which indicate that low momentum non-perturbative
corrections need to be considered9. These effects can be efficiently incorporated in the framework
of the operator product expansion by adding higher-dimensional terms in the form of operators
that are local with respect to momenta ΛIR � Q (i.e. enconding interactions of ΛIR-modes gener-
ated by the large scale Q). In this formalism IR renormalon ambiguities in the perturbative series
of the coefficient C0 cancel with corresponding instabilities contained in vacuum matrix elements
of these local operators which constitute non-perturbative condensate contributions.

UV renormalons, on the other hand, are related to missing high momentum information, but are
Borel-summable and show remarkable similarities to ordinary renormalization of UV divergences.
They are linked to terms in the large momentum expansion of integrands in loop calculations and
can be compensated by insertions of higher-dimensional local operators into the Green function
contributing to a specific observable. These operators are local with respect to scales Q � ΛUV,
i.e. they encode interactions of Q-modes generated by the large scale ΛUV.

Combining our previous findings, one can write down an OPE-like expression for a dimension-
less observable σ(Q) which compensates all IR and UV renormalon effects associated with power
suppressed contributions of order (ΛIR/Q)p and (Q/ΛUV)p̃, respectively, that occur in the pertur-
bative calculation of σ(Q):

σ(Q) = C0(Q) + ~Cᵀ(Q,µ)
〈 ~O(µ)〉
Qp

+ · · ·+ ~Cᵀ
UV(µ)

Rσ
(
~OUV(Q,µ)

)
Λp̃UV

+ . . . . (3.55)

Here, the coefficient function C0 comprises the purely perturbative contributions to σ(Q). In gen-
eral, C0 suffers from an infinite series of IR and UV renormalons involving different p and p̃ values,
so an appropriate sum over p and p̃ is implied10.

At this point an important comment concerning the generic IR and UV correction terms in
(3.55) is in order. In the IR case, as discussed in section 3.3.1, the Wilson coefficients can be
computed perturbatively, while the matrix elements need non-perturbative treatment. For UV
renormalon corrections, on the contrary, the role of Wilson coefficients and matrix elements is
interchanged and only the matrix elements are perturbatively accessible. The UV Wilson coeffi-
cients contain information from energy scales much larger than Q and are computable in a more
UV complete theory (BSM theories).

Exploiting the results of eqs. (3.48) and (3.54), the OPE for σ(Q) is given by:

σ(Q) =

[
1 +

∞∑
n=1

ãna
n
s (Q)

]
+

1

Qp

∑
j

(
as(Q)

c

) 2γ
(1)
D,j
β0

+δ̂j

ĉ
(0)
j

[
1 + as(Q) ĉ

(1)
j . . .

]︸ ︷︷ ︸
=:Ĉj(Q)

〈cδ̂j Ôjc〉+ . . .

9We assume that σ(Q) involves only the single scale Q (i.e. Q is the scale of the measurement).
10Strictly speaking, the concept of the operator product expansion only applies to IR renormalons. However, in

order to simplify the discussion in the following chapter, we will refer to the expression (3.55) including corrections
for both, IR and UV renormalons, as the OPE for the observable σ(Q).
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+
Qp̃

Λp̃UV

∑
j

[
cδ̂j ĈUV

c,j

](as(Q)

c

)−2γ
(1)
D,j
β0

+δ̂j

ĉ
(0)
UV,j

[
1 + as(Q) ĉ

(1)
UV,j . . .

]︸ ︷︷ ︸
=:ĈUV,j(Q)

+ . . .

=

[
1 +

∞∑
n=1

ãna
n
s (Q)

]
11 +

1

Qp

∑
j

(
as(Q)

c

) 2γ
(1)
D,j
β0

+δ̂j

Ĉj(Q) 〈cδ̂j Ôjc〉+ . . .

+
Qp̃

Λp̃UV

∑
j

(
as(Q)

c

)−2γ
(1)
D,j
β0

+δ̂j

ĈUV,j(Q)
[
cδ̂j ĈUV

c,j

]
+ . . . . (3.56)

It is essential to recall how the renormalon cancellation takes place in the MS-OPE. Since σ(Q) is
a physical observable, it must be renormalon free and hence certain cancellations happen between
different contributions in the OPE. In particular, IR and UV renormalons causing factorial growth
of the perturbative coefficients in C0 are compensated order-by-order in the αs expansion by cor-

responding instabilities in the process-independent and universal matrix elements 〈cδ̂j Ôc,j〉(ΛIR)

and coefficient functions cδ̂j Ĉc,j(ΛUV), respectively. As already mentioned, these renormalon can-
cellations can be improved by switching to another scheme, called the MSR-scheme, that subtracts
the renormalon contributions form C0(Q) due to IR and UV renormalons at the new scales R and
RUV, respectively. Similar to the renormalization scale µ in MS one can also consider RG equations
with respect to the new scales, R and RUV, which leads to the notion of R-evolution. This allows
to choose R and RUV of order Q for the subtracted versions of C0, called C0(Q,R,RUV), which is
free of large logarithms involving the scales Q,R and RUV. Furthermore, large logarithms involving
the ratios R/Q and Q/RUV can be summed systematically. The subtractions in the MSR-scheme
and the concept of R-evolution will be formulated in the next chapter.

Note that it is in principle possible to decompose the perturbative coefficients ãn into contri-
butions from the various renormalons C0. Thus, we can write:

ãn =
∑
p,j

ãpj,n +
∑
p̃,j

ã−p̃j,n + ãn,rem, (3.57)

where the first part comprises the contributions due to IR renormalon poles at u = p/2 and the
second sum takes into account all UV renormalon singularities at positions u = −p̃/2. The last
term denotes a convergent remainder which includes all contributions to ãn that do not arises from
renormalon poles. In practice, however, it turns out that we cannot define this splitting uniquely,
but only asymptotically.
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Chapter 4

R-evolution and the Renormalon Sum
Rule

In the previous section we discussed how large cancellations between the purely perturbative
coefficient C0 and higher-dimensional IR and UV correction terms in the OPE-like expression
(3.56) lead to a renormalon free description of a physical observable σ(Q). However, the numerical
cancellations at high orders in the perturbative expansion in αs expressed in the conventional MS-
scheme of the OPE is sometimes impractical for precise theoretical predictions of QCD observables

and it can be useful to employ schemes for the IR matrix elements 〈cδ̂j Ôc,j〉 and UV Wilson

coefficients cδ̂j Ĉc,j with explicit subtractions of low and high energy fluctuations involving new
cut-off scales R and RUV. In this chapter we lay out the basic formalism for these schemes and
show in detail how the subtractions cancel the factorial growth due to IR and UV renormalon
divergences in C0. Moreover, treating the parameters R and RUV, respectively, as continuous
variables yields a renormalization group equation [48], which connects subtractions at different
scales without introducing renormalons. We study the implications of the renormalization group
flow in R (and RUV) and, in particular, present a detailed derivation of the so-called renormalon
sum rule which allows us to probe renormalons in perturbative series.

At the beginning of the next section 4.1 we focus only on the discussion of IR renormalons
to motivate the definition of the so-called MSR-scheme. UV renormalons will be included from
section 4.1.1 onwards.

4.1 The MSR-Scheme

We have already argued that using a rigid momentum cut-off in the Wilsonian OPE provides a very
intuitive physical picture for the factorization into coefficient functions and matrix elements, but
is hard to implement and preserve gauge symmetry and Lorentz invariance in calculations beyond
the one-loop order. Switching to the MS-scheme represents a convenient alternative which allows
us to perform loop calculations in a gauge and Lorentz invariant way. However, as mentioned
in section 3.3.1, MS calculations involve integrations over all loop momenta which results in the
known factorially divergent behaviour of the perturbative coefficients in C0 caused by renormalon
poles. In the context of the MS-OPE these renormalon effects are compensated order-by-order in
the αs expansion by corresponding instabilities in the matrix elements.

In order to avoid the resulting large cancellations between C0 and higher-dimensional terms
in the OPE, one can employ appropriate schemes for the Wilson coefficient C0 and the non-
perturbative matrix elements that take explicit renormalon subtractions into account. Such
schemes usually depend on an additional momentum scale, denoted as R, at which the renor-
malon contributions are removed. To illustrate how these subtractions can generally be defined,
recall the expression for the Adler function in the MS-scheme quoted in section 3.2:

C0(Q,µ) = 1 +
∞∑
n=1

cn

(
αs(µ)

π

)n
, (4.1)
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cn =
∞∑
k=0

cn,k lnk
(
µ

Q

)
.

From the computation of bubble chain diagrams (see eq. (3.16)) we see that renormalon singu-
larities give rise to factorial growth of the perturbative coefficients cn in (4.1). More precisely, the
large-order behaviour of the coefficients due to a renormalon located at u = p/2 in the Borel plane
is given by [17],[27]:

cn+1 ∼
(
µ

Q

)p
n!

[
2β0

p

]n
, (4.2)

where the factor (µ/Q)p arises at large n from the contribution of powers of ln(µ/Q) in the
coefficients cn. A sensible definition of a scheme with explicit renormalon subtractions needs to
account for cancellations of this factorial growth order by order. In general, C0 can be connected
to the corresponding coefficient function C0(R) in a new R-scheme by a relation of the form [17]:

C0(Q) = C0(Q,R) + δC0(Q,R, µ) (4.3)

= C0(Q,R) +

(
R

Q

)p ∞∑
n=1

bn a
n
s (µ).

Here, the perturbative series in δC0 must have the same bad large-order behaviour as the series in
C0, i.e. bn+1∼ (µ/R)p n! [2β0/p]

n, such that the coefficients in C0(Q,R) do not anymore exhibit
factorial growth for large n [17]:

C0(Q,R) ∼
[(
µ

Q

)p
−
(
R

Q

)p µp
Rp

]∑
n

n!

[
2β0

p

]
. (4.4)

Thus, we see that the factor (R/Q)p introduced in the definition (4.3) causes power law dependence
of the series in δC0 on the new cut-off scale which cancels exactly the contributions due to the
u = p/2 renormalon in C0. The scheme change in C0 is associated with a corresponding scheme
change in the vacuum matrix elements and one can construct subtractions similar to those in eq.
(4.3) that compensate the instabilities in the definition of the matrix elements (see [17]).

So far the only constraint we put on the subtraction terms in the new R-scheme was related
to the fact that the coefficients bn need to have the same large-order behaviour as the coefficients
in C0. This leaves substantial freedom for the definition of the subtractions. For our analysis in
the following sections it is convenient to take the subtraction coefficients bn to coincide with the
contributions ãpn in (3.57) due to the u = p/2 renormalon in the MS coefficient function C0. The
scheme thus defined preserves the computational features of MS, like gauge and Lorentz invariance,
and is called the MSR-scheme.

4.1.1 MSR-OPE for a Generic Observable

Returning to the discussion in section 3.5, we can now avoid the problem of large cancellations
between C0 and higher-dimensional terms in the OPE for a dimensionless observable σ(Q) by
switching to the MSR-scheme. Similar to (4.3) one can define subtractions for both the universal
low energy matrix elements 〈Ôjc〉 and the high energy Wilson coefficients ĈUV

c,j :

• 〈cδ̂j Ôjc(R)〉 = 〈cδ̂j Ôjc〉+Rp
(
as(R)

c

)− 2 γ
(1)
D,j
β0
−δ̂j(

Ĉj(R)
)−1

∞∑
n=1

ãpj,n a
n
s (R) (4.5)

•
cδ̂j ĈUV

c,j (RUV)

Λp̃UV

=
cδ̂j ĈUV

c,j

Λp̃UV

+
1

Rp̃UV

(
as(RUV)

c

) 2 γ
(1)
D,j
β0
−δ̂j(

ĈUV,j(RUV)
)−1

∞∑
n=1

ã−p̃j,n a
n
s (RUV), (4.6)

From the discussion at the end of the previous chapter (below eq. (3.55)) recall that in the IR
OPE correction terms the Wilson coefficients are perturbatively computable, while in the UV case
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the matrix elements are perturbatively accessible. Therefore, in (4.5) the matrix element 〈cδ̂j Ôjc〉
contains the pure O(ΛpQCD) ambiguity which cancels against a corresponding ambiguity in the

series of the second term on the right-hand side, such that the MSR matrix element 〈cδ̂j Ôjc(R)〉 is
ambiguity free.

In (4.6), on the other hand, the high energy Wilson coefficient cδ̂j ĈUV
c,j has a pure O(Λ−p̃UV) am-

biguity1 which is cancelled by an ambiguity of the same order in the second term on the right-hand

side. Since both 〈cδ̂j Ôjc(R)〉 and cδ̂j ĈUV
c,j (RUV) do not contain an ambiguity, taking the derivative

with respect to R and RUV yields perturbative series on the RHS of eqs. (4.5) and (4.6) that are also
ambiguity-free. This fact will be used in the derivation of the R-evolution equation in section 4.2.1.

Using the subtractions in (4.5) and (4.6) the OPE in the MSR-scheme takes the form:

σ(Q) =C0(Q,R,RUV) +
1

Qp

∑
j

(
as(Q)

c

) 2γ
(1)
D,j
β0

+δ̂j

Ĉj(Q) 〈cδ̂j Ôjc(R)〉+ . . . (4.7)

+Qp̃
∑
j

(
as(Q)

c

)−2γ
(1)
D,j
β0

+δ̂j

ĈUV,j(Q)

[
cδ̂j ĈUV

c,j (RUV)

Λp̃UV

]
. . . ,

where the purely perturbative contributions in the Wilson coefficient C0(Q,R,RUV) are now given
by:

C0(Q,R,RUV) =C0(Q)−
∑
j

Rp

Qp

(
as(Q)

as(R)

) 2γ
(1)
D,j
β0

+δ̂j Ĉj(Q)

Ĉj(R)

∞∑
n=1

ãpj,n a
n
s (R)− . . . (4.8)

−
∑
j

Qp̃

Rp̃UV

(
as(Q)

as(RUV)

)− 2γ
(1)
D,j
β0

+δ̂j ĈUV,j(Q)

ĈUV,j(RUV)

∞∑
n=1

ã−p̃j,n a
n
s (RUV)− . . . .

Note that we need to treat IR and UV renormalons separately and therefore have to introduce
two additional momentum scales R and RUV. Setting c = 2/β0 for later convenience and defining
ãn = an/4

n for the coefficients in (3.57) as well as as = as/4 = αs/(4π), the MSR coefficient
function C0(Q,R,RUV) can be rewritten in the following form,

C0(Q,R,RUV) = (4.9)

= C0(Q)−
∑
j

{
1

Qp

(
αs(Q)β0

2π

) 2γ
(1)
D,j
β0

+δ̂j[
1 + 4 ĉ

(1)
j as(Q) + . . .

]

×Rp
(
αs(R)β0

2π

)− 2γ
(1)
D,j
β0
−δ̂j[

1 + 4 ĉ
(1)
j as(R) + . . .

]−1
∞∑
n=1

apj,n a
n
s (R)

}
− . . .

−
∑
j

{
Qp̃
(
αs(Q)β0

2π

)− 2γ
(1)
D,j
β0

+δ̂j[
1 + 4 ĉ

(1)
UV,j as(Q) + . . .

]

× 1

Rp̃UV

(
αs(RUV)β0

2π

) 2γ
(1)
D,j
β0
−δ̂j[

1 + 4 ĉ
(1)
UV,j as(RUV) + . . .

]−1
∞∑
n=1

a−p̃j,n a
n
s (RUV)

}
− . . .

1UV renormalons are Borel summable and therefore do not cause an ambiguity in the definition of the Borel
integral (3.5) – at least formally. In practice, however, a UV renormalon may be as severe as an IR renormalon.
So, in order to unify the discussion of IR and UV renormalons in this chapter, we will adopt the notion that UV
renormalons at u = p̃/2 lead to ambiguities of O(Λ−p̃UV).
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= C0(Q) +
∑
j

1

Qp

(
αs(Q)β0

2π

) 2γ
(1)
D,j
β0

+δ̂j[
1 + 4 ĉ

(1)
j as(Q) + . . .

]
θp,j(R) + . . .

+
∑
j

Qp̃
(
αs(Q)β0

2π

)− 2γ
(1)
D,j
β0

+δ̂j[
1 + 4 ĉ

(1)
UV,j as(Q) + . . .

]
θUV
−p̃,j(RUV) + . . . ,

with the series θp,j(R) and θ−p̃,j(RUV) defined as:

• θp,j(R) = −Rp
(
αs(R)β0

2π

)− 2γ
(1)
D,j
β0
−δ̂j[

1 + 4 ĉ
(1)
j as(R) + . . .

]−1
∞∑
n=1

apj,n a
n
s (R) (4.10)

• θUV
−p̃,j(RUV) = −R−p̃UV

(
αs(RUV)β0

2π

) 2γ
(1)
D,j
β0
−δ̂j[

1 + 4 ĉ
(1)
j as(RUV) + . . .

]−1
∞∑
n=1

a−p̃j,n a
n
s (RUV). (4.11)

Remember that the perturbative series θp,j(R) and θUV
−p̃,j(RUV) contain pure renormalon ambigui-

ties of O(ΛpQCD) and O(Λ−p̃UV), respectively, which cancel the corresponding ambiguities in C0(Q).
Moreover, we emphasize that in order to consistently implement all information needed to remove
the renormalon ambiguity at each order in the series expansion, we see from eq. (4.9) that the

coefficients ĉ
(n)
j have in principle to be available to one order less than the perturbative coefficients

an of C0(Q). The anomalous dimensions, on the other hand, need to be known to the same order
as the coefficients an.

As one can see, the subtractions for both the IR and UV renormalons look very much alike
and for the discussion in the subsequent sections it will be often convenient to consider a generic
form for the subtraction terms,

θp,α(R) = −Rp
(
αs(R)β0

2π

)α ∞∑
n=1

apn a
n
s (R), (4.12)

where IR and UV renormalons are distinguished by means of the exponent α and the sign of p:

α =

−
2γ

(1)
D,j

β0
− δ̂j , IR (p > 0)

2γ
(1)
D,j

β0
− δ̂j , UV (p = −p̃ < 0).

(4.13)

4.2 Renormalization Group Evolution in R –
The R-Evolution

Remember that the scales R and RUV in eq. (4.8) were introduced in order to remove the renor-
malons from the MS perturbative series C0(Q) and therefore give it a well-defined, i.e. unambigu-
ous meaning. However, we have not yet talked about proper choices for the scales in the OPE (4.7)
which are mainly constrained by the potential occurrence of large logarithms. First considering the
IR-OPE terms, the low energy matrix elements 〈Ôjc(R)〉 require R & ΛQCD, that is a value close
to the Landau pole but where perturbation theory is still valid. On the contrary, the perturbative
calculation of the Wilson coefficient C0(Q,R) demands R ∼ Q. Thus, we conclude that no choice
for R avoids large logarithms in both, C0(Q,R) and the higher-dimensional matrix elements.

The very same is true for the UV renormalon correction terms in eq. (4.7). Here, the universal
high-energy Wilson coefficients ĈUV

c,j (RUV) require RUV∼ΛUV � Q and once again we cannot find

appropriate values for RUV that minimize the logarithms in C0(Q,RUV) and ĈUV
c,j (RUV) at the same

time.
In the MS-OPE a similar problem arises already with respect to the renormalization scale µ

and is avoided by performing an RGE in the scale µ which sums large logarithms between widely
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separated scales. In the case of the MSR-OPE we can use a similar approach and consider a
renormalization group equation in the variable R. The corresponding RG evolution2 connecting
subtractions at different values for R is known as R-evolution [48].

4.2.1 R-Evolution Setup

In order to motivate the R-evolution equation for C0(Q,R,RUV), we first consider the expression
for the coefficient function at R = RUV = Q:

C0(Q,Q,Q) = C0(Q)−
∑
j

∞∑
n=1

apj,n a
n
s (Q)− · · ·

∑
j

∞∑
n=1

a−p̃j,n a
n
s (Q)− . . . . (4.14)

Comparing this result to eq. (3.57), where the coefficients of C0(Q) were split into contributions
from the various renormalon poles, we see that C0(Q,Q,Q) =

∑
n an,rem a

n
s (Q) describes a con-

vergent series3. Thus, starting from this series we can now define an evolution in the scales R and
RUV in the following way,

C0(Q,Λ,ΛUV) = C0(Q,Q,Q)−
Q∫

Λ

d lnR
d

d lnR
C0(Q,R,RUV)− . . . (4.15)

−
Q∫

ΛUV

d lnRUV

d

d lnRUV

C0(Q,R,RUV)− . . . ,

= C0(Q,Q,Q)+
∑
j

{
1

Qp

(
as(Q)β0

2π

) 2γ
(1)
D,j
β0

+δ̂j[
1+4 ĉ

(1)
j as(Q)+. . .

] Q∫
Λ

d lnR
d

d lnR
θp,j(R)

}
+ . . .

+
∑
j

{
Qp̃
(
αs(Q)β0

2π

)−2γ
(1)
D,j
β0

+δ̂j[
1+4 ĉ

(1)
UV,j as(Q)+ . . .

] Q∫
ΛUV

d lnRUV

d

d lnRUV

θUV
−p̃,j(RUV)

}
+ . . . ,

where in the second equality we used the fact that C0(Q) is independent of R. Note that the scale
Λ must at least satisfy Λ & ΛQCD such that perturbation theory still converges and ΛUV can be of
order the scale where the more general underlying more UV-complete theory needs to be employed.

According to our previous definition of generic MSR subtraction terms in (4.12), the R-evolution
equation for C0 treating either a specific IR (p > 0) or UV (p < 0) renormalon then exhibits the
general form:

d

d lnR
θp,α(R) = −Rp

(
αs(R)β0

2π

)α
γR[αs(R)] (4.16)

= −Rp
(
αs(R)β0

2π

)α ∞∑
n=0

γRn a
n+1
s (R),

where the coefficients of the R-anomalous dimension γR[αs(R)] are given by (see Appendix C.3)

γRn = p an+1 − 2

n−1∑
j=0

(α+ n− j)βj an−j . (4.17)

2An RGE for R was formulated in the context of heavy quark physics in [49, 50], its implications were discussed
for the first time in [48].

3Strictly speaking, this statement is only true upon summing over all IR and UV renormalons on the RHS of eq.
(4.14) (cf. (3.57)). Note that this sum is only implied in (4.14) and not written explicitly.
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In the discussion of the subtraction terms (4.5) and (4.6) in section 4.1.1 we argued that the
perturbative series θp,α(R) contains a pure renormalon ambiguity of O(ΛpQCD) or O(Λ−p̃UV), respec-

tively, which drops out after taking the derivative in eq. (4.16). Thus, γR[αs(R)] is by construction
free from the u = p/2 renormalon. This fact actually provides the most crucial feature of the
R-evolution equation: Its solution sums at the same time the asymptotic renormalon series and
large logarithms that arise in the difference of two subtractions at widely separated scales in a way
avoiding the O(ΛpQCD/UV

) renormalon [51]. Due to its power law dependence on R, the solution
of the R-evolution equation is fundamentally different from common RGEs which only have loga-
rithmic scale dependence.

Up to now we have considered generic IR and UV subtraction terms in the definition of the
MSR Wilson coefficient C0(Q,R,RUV) in (4.9). In practice, usually only one or a few renormalons
are relevant in explicit calculations. We therefore assume in the following, for simplicity, that
the perturbative series in C0(Q) is dominated by contributions of a single renormalon located at
u = p/2 in the Borel plane. The generalization to several renormalons (either at the same location
u = p/2 or at different locations) is straightforward.

4.2.2 Connection to the Borel Integral

There is a deep connection between the solution of the R-evolution equation and the Borel integral
(3.5) which we want to briefly discuss here. To illustrate this relation it is instructive to consider
the leading logarithmic (LL) solution of eq. (4.16) which is obtained from calculations in the large-
β0 approximation. In this approximation the perturbative series in the R-anomalous dimension
reduces exactly to a single non-vanishing term γR[αs(R)] = γR0 as(R). Furthermore, assuming
α = 0 for simplicity4 we obtain[

d

d lnR
θp,0(R)

]
LL

= −γR0 Rp
(
αs(R)

4π

)
, (4.18)

and the solution of the R-evolution equation connecting subtractions at the two scales R0 and R1

is given by:

[
θp,0(R1)− θp,0(R0)

]
LL

= −γR0
lnR1∫

lnR0

dlnR Rp
(
αs(R)

4π

)
. (4.19)

Exploiting the QCD β-function at the LL level together with the LL relation for ΛQCD, that is
ΛLL

QCD = R exp[−2π/(β0αs(R))], the integration on the right-hand side can be expressed as an
integral over αs(R):

[
θp,0(R1)− θp,0(R0)

]
LL

=
γR0
2β0

αs(R1)∫
αs(R0)

dαs

αs

(
ΛLL

QCD

)p
e

2πp
β0αs . (4.20)

Next, changing the integration variable to

t = − 2π

αs β0
, (4.21)

we can further rewrite the integral,

[
θp,0(R1)− θp,0(R0)

]
LL

= − γR0
2β0

(
ΛLL

QCD

)p t1∫
t0

dt

t
e−t p (4.22)

= − γR0
2β0

(
ΛLL

QCD

)p [ ∫ ∞
t0

dt

t
e−t p −

∫ ∞
t1

dt

t
e−t p

]
,

4The value α = 0 corresponds e.g. to an operator with vanishing leading order anomalous dimension, whose
associated Wilson coefficient starts at order α0

s (cf. (4.13)).
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where the integration limits are defined as ti = −2π/(β0αs(Ri)). In the second line we split the
integral into a difference of two terms for reasons that will become evident soon. Each of the two
pieces is itself ill-defined, since for R0,1 > ΛQCD we have t0,1 < 0 and one is forced to integrate
over the Landau singularity at the point t = 0 (which encodes the information on the renormalon
ambiguity) to the limit t → ∞, which corresponds to αs(µ → 0). However, these ambiguities
cancel in the difference of the two integrals such that θ̃p,j(R1)− θ̃p,j(R0) remains renormalon free.

In order to complete the connection to the Borel integral we finally switch to the Borel vari-
able u = −p(t/ti − 1)/2 and use the relation for ΛLL

QCD mentioned above in both integrals. A
straightforward calculation yields:

[
θp,0(R1)− θp,0(R0)

]
LL

=
γR0
2β0

∞∫
0

du

[
Rp1

(
µ

R1

)2u 1

u− p
2

−Rp0
(
µ

R0

)2u 1

u− p
2

]
e
− 4πu
β0αs(µ) , (4.23)

where the right-hand side represents the Borel integral over the difference of two Borel transforms
of the u = p/2 renormalon contribution in the large-β0 approximation.

Eq. (4.23) proves that R-evolution and the concept of Borel integration are closely related.
Furthermore, R-evolution between two perturbative scales and Borel integration over the difference
of Borel transforms sum the same logarithms. However, from a conceptual point of view one may
argue ([51]) that R-evolution is more natural in the sense that it can be applied to any perturbative
series without requiring additional approximations, while the Borel integral method relies on the
knowledge of explicit expressions for the Borel transform which is often hard to achieve.

An important implication of the connection between R-evolution and the Borel integral sheds
light on the first question raised at the end of chapter 2. We already know that IR renormalons
in QCD inevitably lead to imaginary ambiguities in the definition of the Borel integral and the
relation (4.23) suggests that these ambiguities may also be quantified by means of the R-evolution
equation. Now consider one restores the ambiguity on the left-hand side of eq. (4.22) by taking
the limit5,

lim
R0→0

t0 =∞. (4.24)

Upon changing to the Borel variable u, the second Borel transform on the right-hand side of eq.
(4.23) vanishes in the limit6 R0 → 0 and we are left with the usual Borel integral over a single
Borel transform7. Using the relations (4.15) and (4.16) we thus obtain,

C0(Q) ' − 1

Qp
lim
R0→0

[
θp,0(Q)− θp,0(R0)

]
LL

=

∞∫
0

duB[Q,µ](u) e
− 4πu
β0αs(µ) , (4.25)

with

B[Q,µ](u) =
γR0
2β0

(
µ

Q

)2u 1

u− p
2

. (4.26)

The sign ' in (4.25) implies that the right-hand side only contains the u = p/2 IR renormalon
contribution of C0 as indicated in (4.14). An IR renormalon in the Borel transform obstructs the
naive calculation of the integral and the resulting ambiguity can be related to the solution of the
R-evolution equation in the limit R0 → 0. Note, however, that taking this limit is problematic
since it pushes the perturbative running of the strong coupling αs(R0) into a momentum region

5Note that the limit in (4.24) is consistent with the one-loop running coupling αs(R) = 2π/(β0 ln(R/ΛQCD)).
The limit is also valid when higher orders of the QCD β-function are included.

6The limit in R is related to a corresponding limit in u. Taking the limit R0 → 0 forces us to integrate over the
Landau singularity at t = 0. Using the substitution u = −p(t/ti − 1)/2 this translates to an integration over the
renormalon pole at u = p/2 in the Borel integral.

7In this section we only discuss the connection between R-evolution and Borel integration in the large-β0 approx-
imation. In appendix C.6 we relate the general solution of the R-evolution equation (see section 4.3.1) to the Borel
integral.
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where it does not apply anymore. The ambiguity arises from integrating over the Landau pole at
R0 = ΛQCD. However, R-evolution requires R0 & ΛQCD in order to stay within the perturbative
regime. Thus, we can in principle use small variations in the lower limit R0 close to, but larger than
ΛQCD, to estimate the value of the Borel integral and quantify the size of its ambiguity. Typically
one exploits the principal value prescription to evaluate the Borel integral and takes the imaginary
part as an estimate for the ambiguity, but eq. (4.25) reveals that R-evolution provides an useful
alternative to this procedure. We discuss this issue in much more detail in the next chapter where
we investigate the implications of R-evolution on the Adler function in the large-β0 approximation.

4.3 Renormalon Sum Rule

Another striking feature of the R-evolution equation is provided by the fact that its solution can
be used to find an analytic expression for the Borel transform of any perturbative series which
encodes exactly the information on a particular renormalon pole at u = p/2. Since this Borel
transform only focuses on a single renormalon, the normalization of its singluar and non-analytic
terms is characteristic for the “strength” of the u = p/2 renormalon. It turns out that the solution
of the R-evolution equation provides an analytic expressions for this normalization in terms of the
coefficients of the R-evolution equation (and thus of the original series). This analytic expression
can be employed as a probe for the existence of renormalons in any perturbative series and is called
the renormalon sum rule.

The sum rule was first studied for the u = 1/2 renormalon in the pole mass of heavy quarks
in the letter [48] and details on the derivation can be found in [51]. A more general result for
arbitrary IR poles at u = p/2 is given in [52], where the anomalous dimension of the operators
in the OPE is not incorporated and the Wilson coefficients are assumed to start at tree-level. In
this section we review the derivation of the renormalon sum rule for the IR case including the
anomalous dimension and extend the discussion to also comprise UV renormalons.

4.3.1 General Solution of the R-Evolution Equation

Starting point for the derivation of an analytic expression for the Borel transform of the perturba-
tive series θp,α is the general solution of the R-evolution equation (4.16) which we want to discuss
in the following. Integrating on both sides of the equation yields:

θp,α(R1)− θp,α(R0) = −
∫ R1

R0

dRRp−1 γR[αs(R)]

(
αs(R)β0

2π

)α
(4.27)

= ΛpQCD

∫ t1

t0

dt γR[t] b̂(t) e−G(t) p (−t)−α,

where

γR[t] =
∞∑
n=0

γRn

(
− 1

2β0 t

)n+1

. (4.28)

The function G(t) is given in (C.5) in the appendix. In the second line of eq. (4.27) we switched
to the integration variable t = −2π/(β0αs) defined in (4.21) and used the result for ΛQCD derived
from the RGE for the strong coupling αs given in appendix C.1. In order to simplify the general
solution we rewrite

γR[t] b̂(t) e−G(t) p = e−t p (−t)−b̂1p
∞∑
k=0

S
(p)
k

(−t)k+1
, (4.29)

where explicit expressions for the first few coefficients S
(p)
k can be found in (C.25) in appendix C.4.

Next, inserting eq. (4.29) into eq. (4.27) we find,

θp,α(R1)− θp,α(R0) = ΛpQCD

∞∑
k=0

S
(p)
k

∫ t1

t0

dt (−t)−α−b̂1p−k−1 e−tp (4.30)
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= ΛpQCD

∞∑
k=0

S
(p)
k pα+b̂1p+k

∫ t1 p

t0 p
dt (−t)−α−b̂1p−k−1 e−t.

Finally, splitting the integral above in the same fashion as we did in eq. (4.22), we can exploit the
definition of the incomplete gamma function,

Γ(s, t) =

∫ ∞
t

dxxs−1 e−x, (4.31)

along with the standard phase convention (−1) = e−iπ to obtain the following all-order expression
for the solution of the R-evolution equation:

θp,α(R1)− θp,α(R0) = (4.32)

= ΛpQCD

∞∑
k=0

S
(p)
k

eiπ(b̂1p+k+α)

p−k−b̂1p−α

{
Γ(−b̂1p− k − α, t1 p)− Γ(−b̂1p− k − α, t0 p)

}
.

Before we proceed with the derivation of the renormalon sum rule, let us take a closer look at
the analytic properties of the result (4.32). Returning to the integral in (4.30) and recalling the
definition of the substitution variable, t = −2π/(β0αs(R)), we have that t = 0 for R = ΛQCD and
t0,1 < 0 for R0,1 > ΛQCD. Since the integrand has a singularity at the point t = 0, the integral
is well-defined as long as the integration range lies outside the singular region and therefore the
difference θp,α(R1)−θp,α(R0) is renormalon free provided that R0,1 > ΛQCD. In eq. (4.32), however,
we rewrote the integral in terms of the difference of two incomplete gamma functions Γ(s, t), each
having a cut for t < 0. The ambiguities these cuts8 are causing cancel for each k in the sum and,
thus, the difference θp,α(R1)− θp,α(R0) remains free of the u = p/2 renormalon.

4.3.2 Analytic Borel Transform and Sum Rule for IR Renormalons

We first discuss the derivation of the sum rule for IR renormalons and deal with the sum rule for
the UV case in the next section. In order to obtain an analytic expression for the Borel transform
carrying the information on an O(ΛpQCD) renormalon we need to restore the renormalon ambiguity
in the solution of the R-evolution equation by again taking the limit,

lim
R0→0

t0 =∞, (4.33)

in (4.32). In this limiting procedure the second incomplete gamma function in eq. (4.32) vanishes.
Using the relations (4.15) and (4.16) we thus obtain,

C0(Q) ' − 1

Qp
(−tQ)α

[
1 + 4 ĉ(1) as(Q) + 16 ĉ(2) a2

s (Q) + . . .
] [
θp,α(Q)− θp,α(0)

]
, (4.34)

with

θp,α(Q)− θp,α(0) = ΛpQCD

∞∑
k=0

S
(p)
k

eiπ(b̂1p+k+α)

p−k−b̂1p−α
Γ(−b̂1p− k − α, tQ p), (4.35)

and

tQ = − 2π

β0 αs(Q)
. (4.36)

The sign ' in (4.34) again implies that the right-hand side only contains the u = p/2 IR renormalon
contribution of C0 as indicated in (4.14) with α given by (4.13). The ambiguity contained in the

8Note that the incomplete gamma functions in eq. (4.32) only have a cut when dealing with IR renormalons, since
p > 0 and t0,1p < 0 in this case. In the derivation of the general solution for UV renormalons (p < 0 and t0,1p > 0),
the integral in eq. (4.30) is split into two well-defined pieces such that the resulting gamma functions do not exhibit
any cuts. This actually reflects the fact that UV renormalons are Borel summable and do not lead to ambiguities
(compare eq. (4.25)).
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perturbative series in θp,α(Q)− θp,α(0) is now visible through the cut in the remaining incomplete
gamma functions for tQp < 0. As one can see, the sum in k in the all-order result (4.35) provides
systematically a reordering of the terms in the series θp,α(Q) − θp,α(0) related to the O(ΛpQCD)
renormalon ambiguity into leading and subleading contributions. This important feature represents
the reason why the solution of the R-evolution equation allows one to find an analytic expression
for the Borel transform focusing on a particular renormalon pole.

We proceed with an asymptotic expansion of the incomplete gamma function according to

Γ(s, t)
t→∞
= e−t ts−1

∞∑
m=0

Γ(1− s+m)

(−t)m Γ(1− s) , (4.37)

which together with eq. (C.9) yields9:

θp,α(Q)− θp,α(0) = (4.38)

=−Qp eG(tQ)p e−tQp (−tQ)−b̂1p
∞∑

k,m=0

S
(p)
k

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α)
(−tQ)−1−m−k−α p−1−m.

Using the definition (see appendix C.4)

eG(t)p e−tp (−t)−b̂1p =:

∞∑
l=0

g
(p)
l (−t)−l (4.39)

we can further rewrite this result in the following form:

θp,α(Q)− θp,α(0) = (4.40)

= −Qp
∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

∞∑
m=0

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α)
(−tQ)−1−m−k−α−l p−1−m.

To obtain the Borel transform related to the u = p/2 renormalon (and the corresponding α value)
one must convert eq. (4.34) into the Borel space. The leading term (i.e. neglecting the 4 ĉ(1) as(Q)
and 16 ĉ(2) a2

s (Q) terms in (4.34)) has the form:

− 1

Qp
(−tQ)α

(
θp,α(Q)− θp,α(0)

)
= (4.41)

=
∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

∞∑
m=0

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α)
(−tQ)−1−m−k−l p−1−m.

Performing the Borel transform of this series amounts to the substitution (−tQ)−n−1 → 2 (2u)n/Γ(n+
1). This replacement emerges from our definition of the (inverse) Borel transform which leads to
the rule: (

αsβ0

4π

)n+1

↔ un

Γ(n+ 1)
. (4.42)

The Borel transform of eq. (4.41) is therefore given by

B0(u) ≡ B
[
− 1

Qp
(−tQ)α

(
θp,α(Q)− θp,α(0)

)]
(u) = (4.43)

= 2

∞∑
k,m,l=0

S
(p)
k g

(p)
l

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α) Γ(1 +m+ k + l)
(2u)m+k+l p−1−m

= 2

∞∑
k,l=0

S
(p)
k g

(p)
l

2F1(1, k + b̂1p+ α+ 1; 1 + k + l; 2u
p )

pΓ(1 + k + l)
(2u)k+l,

9Eq. (4.37) represents an asymptotic expansion and therefore the imaginary part originating from the cut in the
incomplete gamma function must not occur on the right-hand side of eq. (4.38).
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where in the last line we used

∞∑
m=0

p−1−m Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α) Γ(1 +m+ k + l)
(2u)m+k+l = (4.44)

=
2F1(1, k + b̂1p+ α+ 1; 1 + k + l; 2u

p )

pΓ(1 + k + l)
(2u)k+l.

Finally exploiting the following relation for hypergeometric functions

2F1(1, a; b; z) =
b− 1

b− a− 1
2F1(1, a; 2 + a− b; 1− z) +

Γ(b) Γ(1 + a− b) z1−b

Γ(a) (1− z)1+a−b , (4.45)

the Borel transform can be written in the form:

B0(u) = Pαp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l)(p
2 − u

)1+b̂1p+α−l
2−b̂1p−α+l +

∞∑
l=0

g
(p)
l Q

(p)
l (u), (4.46)

with the normalization

Pαp/2 =
∞∑
k=0

S
(p)
k pk+b̂1p+α

Γ(1 + k + b̂1p+ α)
, (4.47)

and

Q
(p)
l (u) = 2

∞∑
k=0

S
(p)
k

2F1(1, 1 + k + b̂1p+ α; 2 + b̂1p+ α− l; 1− 2u
p )

p (l − b̂1p− α− 1) Γ(k + l)
(2u)k+l (4.48)

= −2
∞∑
k=0

S
(p)
k

l+k−1∑
j=0

Γ(1 + j + α+ b̂1p− l) pl+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j .

The Borel transform (4.46) is divided into two different parts. The first one represents the sin-
gular terms which are related to the O(ΛpQCD) renormalon ambiguity. The ambiguity caused by
these non-analytic contributions can be easily checked by calculating the imaginary part of the
corresponding Borel integral. Using

Bsing
0 (u) ≡ B0(u)

∣∣
singular

= Pα,IRp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l)(p
2 − u

)1+b̂1p+α−l
2−b̂1p−α+l, (4.49)

the ambiguity is given by:

Im

[ ∫ ∞
0

du e2tQuBsing
0 (u)

]
= (4.50)

= Im

[
Pαp/2

∞∑
l=0

g
(p)
l Γ(1+b̂1p+α−l) 2−b̂1p−α+l

∫ ∞
0

du
e2tQu(p

2 − u
)1+b̂1p+α−l

]
=

= −π Pαp/2 eptQ (−tQ)b̂1p+α
∞∑
l=0

g
(p)
l (−tQ)−l = −π Pαp/2 (−tQ)α

(
ΛQCD

Q

)p
.

The details of the calculation have been relegated to appendix C.5. As one can see, the ambigu-

ity is consistent with (4.34) and the starting equations (3.56) where 〈(2/β0)δ̂j Ôjc〉 contains a pure

O(ΛpQCD) renormalon ambiguity. Since the functions S
(p)
k in the normalization Pαp/2 involve the

coefficients γRk of the R-anomalous dimension which in turn contain the perturbatively computable
coefficients, it is possible to apply eq. (4.47) to any perturbative series as a probe for a u = p/2
renormalon and therefore the normalization Pαp/2 was called the renormalon sum rule by the au-

thors in [48]. (In [48] only the case p = 1, α = 0 was treated.)
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An important issue in connection with the analytic Borel transform (4.46) concerns the conver-
gence of the renormalon sum rule. As we are going to discuss in section 5.2, Pαp/2 only converges, if
the variables p and α correspond to the strongest renormalon contained in the perturbative series.
The dominant renormalon is given by smallest p (i.e. renormalon is located closest to the origin of
the Borel plane) and largest α value.

The physical significance of the second term in the Borel transform (4.46) can be explained
by looking at eqs. (4.43) and (4.44). In (4.44) we performed the sum over m and then used the
relation (4.45) to split the Borel transform into a singular part Bsing

0 (u) containing the renormalon

sum rule and another term involving the function Q
(p)
l in (4.48). In contrast to eq. (4.44), which

represents a series in u starting at order uk+l, Bsing
0 (u) generates a series already starting at O(1).

Thus, the singular part of the Borel transform encodes additional information that is not contained
in the original perturbative series. It turns out that the second part of the Borel transform10 (4.46)
precisely removes these terms, i.e. it represents a series that terminates beyond order uk+l−1 (see
also appendix C.6).

Eq. (4.46) is quite remarkable, since it demonstrates that starting from a perturbative series
that is supposed to suffer from an O(ΛpQCD) renormalon ambiguity, one can use the general solu-
tion of the R-evolution equation to derive an analytic expression for the Borel transform of this
series that does not rely on any simplifying model, like e.g. the calculation of fermion bubble
diagrams. For this reason the renormalon sum rule provides a very useful tool to gain informa-
tion on specific renormalons and allows us to tackle the questions raised at the end of chapter
2. In order to illustrate its capability to probe (the dominant) renormalons in perturbative se-
ries, we apply the sum rule to the Adler function in the large-β0 approximation in the next chapter.

Before we proceed, a few more comments are in order. First, we emphasize that eq. (4.46) does not
represent the exact Borel transform, since it only encodes the information on a single renormalon
pole located at u = p/2 in the complex Borel plane. In order to test for other poles we need to study
the solutions of the R-evolution equation with different powers p of R and different parameters11

α. Remember that the parameter α involves the leading order anomalous dimension of a specific
operator in the OPE and the leading power in αs of the corresponding Wilson coefficient. Thus,
changing its value corresponds to calculating the contribution associated with another operator of
dimension d = p. Furthermore, we usually only know very few perturbative coefficients for most
realistic cases, that is eq. (4.47) represents the all-order result and applying the truncated series,

P
α,(NnLL)
p/2 =

n∑
k=0

S
(p)
k pk+b̂1p+α

Γ(1 + k + b̂1p+ α)
, (4.51)

provides an estimate with an uncertainty. From a mathematical point of view renormalons are
connected to asymptotic high-order behaviour and strict proofs are very rare. However, the more
coefficients of a perturbative series are known, the more precise becomes the renormalon sum rule.

To complete the discussion of the sum rule for IR renormalons, let us briefly check that the
singular part of the analytic Borel transform (4.46) is consistent with the expression (2.27) in
section 2.2.2 obtained previously by the authors in [14]. Our main concern is to improve the form
of the Borel transform used in physical models for the Adler function and therefore it should be
possible to reproduce the results given in section 2.2.2. For this purpose we rearrange the singular
terms in our analytic Borel transform in the following way:

Bsing
0 (u) = Pαp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l)(p
2 − u

)1+b̂1p+α−l
2−b̂1p−α+l (4.52)

10Note that the second line in (4.48) indeed represents the series expansion of Bsing
0 (u) up to O(uk+l−1).

11We stress that it is possible to have various renormalon poles of different order located at the same position
in the Borel plane. For example the Borel transform of the Adler function in the large-β0 approximation contains
an infinite series of simple and double IR renormalons singularities for positive integer values u ≥ 3 (see section
3.2). We stress again that the renormalon sum rule Pαp/2 can only be used to probe a single renormalon whose pole
structure is characterized by a specific parameter α.
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= Pαp/2 2−b̂1p−α Γ(1 + b̂1p+ α)
∞∑
l=0

Γ(1 + b̂1p+ α− l)
Γ(1 + b̂1p+ α)

2l g
(p)
l(p

2 − u
)1+b̂1p+α−l

=
Nα
p/2(p

2 − u
)1+b̂1p+α

[
1 +

2 g
(p)
1

(b̂1p+ α)

(
p

2
− u
)

+
4 g

(p)
2

(b̂1p+ α) (b̂1p+ α− 1)

(
p

2
− u
)2

+ . . .

]
,

where Nα
p/2 denotes an alternative normalization of the singular terms given by:

Nα
p/2 = Pαp/2 2−b̂1p−α Γ(1 + b̂1p+ α). (4.53)

Comparing eq. (4.52) with the corresponding expression (2.27), one immediately deduces12,

γ̃ = b̂1p+ α = p
β1

2β2
0

−
2γ

(1)
D,j

β0
− δ̂j , (4.54)

which is consistent with the findings in section 2.2.2 up to the additional factor δ̂j that describes
the leading power in αs of the Wilson coefficient for the operator Oj . (In [14] it was assumed that

δ̂j = 0.) Exploiting the explicit expressions for the functions b̂k and g
(p)
l given in appendix C.1

and C.4, we obtain

• 2 gp1
(b̂1p+ α)

=
p

2β4
0 γ̃

(
β2

1 − β0 β2

)
=

4 b1
β0γ̃

, (4.55)

• 4 gp2
(b̂1p+ α) (b̂1p+ α− 1)

=
4

γ̃ (γ̃ − 1)

p

2

(
b̂22p− b̂3

)
=

16

γ̃ (γ̃ − 1)β2
0

[
1

2

(
p

8β3
0

(
β2

1 − β0 β2

))2

− p

64β4
0

(
β3

1 − 2β0 β1 β2 + β2
0 β3

)]
=

16 b2
γ̃ (γ̃ − 1)β2

0

,

which agrees with the first terms of the coefficients b̃1 and b̃2 in the Borel transform (2.27) (with
the Wilson coefficient correction terms c1 and c2 set to zero). In order to reproduce the remaining
parts of b̃1 and b̃2 we need to consider the subleading parts in (4.34) involving the term 4 ĉ(1) as(Q)
and beyond. Using the solution of the R-evolution equation given in eq. (4.40), the series we have
to deal with exhibit the generic form:

− 1

Qp
(−tQ)α ans (Q)

(
θp,α(Q)− θp,α(0)

)
= −(2β0)−n

Qp
(−tQ)α−n

(
θp,α(Q)− θp,α(0)

)
= (4.56)

= (2β0)−n
∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

∞∑
m=0

Γ(1+b̂1p+k+α+m)

Γ(1+b̂1p+k+α)

(−tQ)−1−m−k−l−n

p−1−m .

Except for the prefactor (2β0)−n the above expression is identical with eq. (4.52) if one substitutes
l + n → l. Thus, upon Borel transforming the series in (4.56) and repeating the manipulations
we performed in the derivation of the analytic Borel transform (4.46), the Borel transform for the
subleading terms can be written as:

Bn(u) ≡ B
[
− 1

Qp
(2β0)−n (−tQ)α−n

(
θp,α(Q)− θp,α(0)

)]
(u) = (4.57)

= (2β0)−n Pαp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l − n)(p
2 − u

)1+b̂1p+α−l−n
2−b̂1p−α+l+n + (2β0)−n

∞∑
l=0

g
(p)
l Q

(p)
l,n ,

12We emphasize that the Borel transform in section 2.2.2 has the form B(u) ∝ 1
(p−u)1+γ̃

[
1 +O(p− u)

]
, while the

analytic expression for the Borel transform derived in this chapter refers to a slightly different notation, Bsing(u) ∝
1

(p/2−u)1+γ̃

[
1 + O(p/2 − u)

]
. Hence, we need to substitute p/2 → p in order to relate the results of this section to

those in 2.2.2.
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with

Q
(p)
l,n(u) = −2

∞∑
k=0

S
(p)
k

l+n+k−1∑
j=0

Γ(1 + j + α+ b̂1p− l − n) pl+n+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j . (4.58)

We can once again check the ambiguity associated with the non-analytic terms contained in (4.57)
by calculating the imaginary part of the inverse Borel transformation. Defining

Bsing
n (u) ≡ Bn(u)

∣∣
singular

= (2β0)−n Pαp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l − n)(p
2 − u

)1+b̂1p+α−l−n
2−b̂1p−α+l+n, (4.59)

we find:

Im

[ ∫ ∞
0

du e2tRuBsing
n (u)

]
= (4.60)

= Im

[
(2β0)−n Pαp/2

∞∑
l=0

g
(p)
l

Γ(1+b̂1p+α−l − n)

2−b̂1p−α+l+n

∫ ∞
0

du
e2tRu(p

2 − u
)1+b̂1p+α−l−n

]

= −π Pαp/2 (2β0)−n eptQ (−tQ)b̂1p+α
∞∑
l=0

g
(p)
l (−tQ)−l−n = −π Pαp/2 (−tQ)α ans (Q)

(
ΛQCD

Q

)p
,

which is again consistent with (3.56).
For the purpose of comparing eq. (4.57) with the corresponding expression given in (2.27), it

is again helpful to rewrite the singular Borel transform using the alternative normalization Nα
p/2

defined in (4.53):

Bsing
n (u) = (2β0)−n Pαp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l − n)(p
2 − u

)1+b̂1p+α−l−n
2−b̂1p−α+l+n (4.61)

= Pαp/2 2−b̂1p−α Γ(1+b̂1p+α)
∞∑
l=0

Γ(1+b̂1p+α−l−n)

Γ(1+b̂1p+α)

2l β−n0 g
(p)
l(p

2 − u
)1+b̂1p+α−l−n

= Nα
p/2

∞∑
l=0

2l β−n0 g
(p)
l

Γ(1+b̂1p+α−l−n)

Γ(1+b̂1p+α)

1(p
2 − u

)1+b̂1p+α−l−n
.

For the first subleading contribution (including the coefficient ĉ
(1)
j ) we therefore have,

4 ĉ
(1)
j Bsing

1 (u) = 4 ĉ
(1)
j Nα

p/2

∞∑
l=0

g
(p)
l

2l

β0

Γ(b̂1p+α−l)
Γ(1+b̂1p+α)

1(p
2 − u

)b̂1p+α−l (4.62)

= 4 ĉ
(1)
j

Nα
p/2(p

2 − u
)1+b̂1p+α

[
1

β0

1

(b̂1p+ α)

(
p

2
− u
)

+
2

β0

g
(p)
1

(b̂1p+ α) (b̂1p+ α− 1)

(
p

2
− u
)2

+ . . .

]
,

where the terms in the square brackets are indeed found to agree with the corresponding terms in
the coefficients b̃1 and b̃2 of (2.27):

• 1

β0

4 ĉ
(1)
j

(b̂1p+ α)
=

4 ĉ
(1)
j

β0 γ̃
, (4.63)

• 2

β0

4 ĉ
(1)
j g

(p)
1

(b̂1p+ α) (b̂1p+ α− 1)
=

2

β0

4 ĉ
(1)
j b̂2 p

γ̃ (γ̃ − 1)
=

2 ĉ
(1)
j p

β5
0 γ̃ (γ̃ − 1)

(
β2

1 − β0 β2

)
=

16 ĉ
(1)
j b1

β2
0 γ̃ (γ̃ − 1)

.
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The next subleading contribution is given by:

16 ĉ
(2)
j Bsing

2 (u) = −Rp 16 ĉ
(2)
j Nα

p/2

∞∑
l=0

g
(p)
l

2l

β2
0

Γ(b̂1p+α−l−1)

Γ(1+b̂1p+α)

1(p
2 − u

)b̂1p+α−l−1

= −Rp 16 ĉ
(2)
j

Nα
p/2(p

2 − u
)1+b̂1p+α

[
1

β2
0

1

(b̂1p+ α) (b̂1p+ α− 1)

(
p

2
− u
)2

+ . . .

]
, (4.64)

with,

1

β2
0

16 ĉ
(2)
j

(b̂1p+ α) (b̂1p+ α− 1)
=

16 ĉ
(2)
j

β2
0 γ̃ (γ̃ − 1)

. (4.65)

As one can see, the expression for the analytic Borel transform derived from the general solution
of the R-evolution equation is fully consistent with the one in section 2.2.2. However, the Borel
transform (2.27) is based on the fact that the renormalisation group can be used to connect the pole
structure of renormalon singularities to the leading order anomalous dimensions of the associated
operators in the OPE. This allows one to determine the position and strength of renormalon poles,
while the overall norm (i.e. the “weight” of this renormalon) cannot be predicted.

Our explicit derivation of the Borel transform from the solution of the R-evolution equation
resolves this problem as it explicitly derives the norm as well. It is just the term Nα

p/2 (or Pαp/2,

respectively) and can be computed directly from the renormalon sum rule which, as shown above,
is equivalent to the term dIR

p in (2.27). Hence, R-evolution can, in principle, be applied in order
to calculate the norm of renormalon singularities (and non-analytic terms) and allows us to gain
knowledge about the Borel transform which is unaccessible using common RG methods.

4.3.3 Analytic Borel Transform and Sum Rule for UV Renormalons

We now turn to the discussion of the renormalon sum rule for the UV case. Even though UV
renormalons are Borel summable and thus do not cause any ambiguities at the formal level, we
can still use R-evolution to find an analytic sum rule which can be used as a probe for UV
renormalons in perturbative series. Furthermore, taking the derivative with respect to RUV in eq.
(4.11) removes the sign-alternating divergent behaviour, leading to a renormalon-free R-evolution
equation. The subsequent derivation is very similar to the one in the previous section for the IR
case, except for the fact that we now have p = −p̃ < 0, since UV renormalons in QCD are located
on the negative real Borel axis. In addition we also have to adjust the parameter α according to
eq. (4.13).

To obtain an analytic Borel transform encoding the information on a specific UV renormalon
pole we once again need to restore the renormalon in the general solution of the R-evolution
equation. This time, however, we must consider the limit R0 →∞ which implies t0 → −∞. Using
the relations (4.15) and (4.16) we thus obtain13

C0(Q) ' −Qp̃ (−tQ)α
[
1 + 4 ĉ

(1)
UV as(Q) + 16 ĉ

(2)
UV a

2
s (Q) + . . .

] [
θp,α(Q)− θp,α(∞)

]
, (4.66)

where,

θp,α(Q)− θp,α(∞) =
1

Λp̃QCD

∞∑
k=0

S
(p)
k

∫ tQ

−∞
dt (−t)−α−b̂1p−k−1 e−tp (4.67)

=
1

Λp̃QCD

∞∑
k=0

S
(p)
k

∫ ∞
t′Q

dt′ (t′)−α−b̂1p−k−1 e−(−p)t′

=
1

Λp̃QCD

∞∑
k=0

S
(p)
k (−p)b̂1p+k+α

∫ ∞
−pt′Q

dt e−t t−α−b̂1p−k−1.

13Since both variables p and p̃ will be used in the following derivation we stress again that p = −p̃ < 0 for UV
renormalons.
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The formula for the terms S
(p)
k is the same as for IR renormalons and is given in eq. (C.25). In the

second line we changed to the integration variable t′ = −t. Rewriting the result above in terms of
incomplete gamma functions, we obtain,

θp,α(Q)− θp,α(∞) =
1

Λp̃QCD

∞∑
k=0

S
(p)
k (−p)b̂1p+k+α Γ(−b̂1p− α− k,−p t′Q) (4.68)

=
1

Λp̃QCD

∞∑
k=0

S
(p)
k (−p)b̂1p+k+α Γ(−b̂1p− α− k, p tQ),

which is analogous to the expression in eq. (4.32). Note that the incomplete gamma functions in
the sum over k do not exhibit any cuts, since tQp > 0. This reflects the fact that UV renormalons
do not cause ambiguities in the definition of the Borel integral. Next, we asymptotically expand
the incomplete gamma function according to (4.37) and exploit eq. (C.9). This yields:

θp,α(Q)− θp,α(∞) = (4.69)

= − 1

Qp̃
eG(tQ)p e−tQp (−tQ)−b̂1p

∞∑
k,m=0

S
(p)
k

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α)
(−tQ)−1−m−k−α p−1−m.

Finally using eq. (4.39) for the coefficients g
(p)
l the solution of the R-evolution equation can be

cast into the form:

θp,α(Q)− θp,α(∞) = (4.70)

= − 1

Qp̃

∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

∞∑
m=0

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α)
(−tQ)−1−m−k−α−l p−1−m.

The further steps follow exactly the derivation of the IR renormalon sum rule in the previous
section. First, taking into account the factor (−t)−α for the leading term (4.12), we can apply the
substitution rule (−t1)−n−1 → 2(2u)n/Γ(n+1) to perform the Borel transform of the perturbative
series −Qp̃(−tQ)α

(
θp,α(Q)− θp,α(∞)

)
:

BUV
0 = B

[
−Qp̃ (−tQ)α

(
θp,α(Q)− θp,α(∞)

)]
(u) = (4.71)

= 2
∞∑

k,m,l=0

S
(p)
k g

(p)
l

Γ(1 + b̂1p+ k + α+m)

Γ(1 + b̂1p+ k + α) Γ(1 +m+ k + l)
(2u)m+k+l p−1−m.

Exploiting the relations (4.44) and (4.45) the analytic Borel transform can be written as:

BUV
0 (u) = Pα,UV

p/2

∞∑
l=0

(−1)l g
(p)
l

Γ(1 + b̂1p+ α− l)(
− p

2 + u
)1+b̂1p+α−l

2−b̂1p−α+l +
∞∑
l=0

g
(p)
l Q

(p),UV

l (u), (4.72)

where the renormalon sum rule for the UV renormalons is now given by:

Pα,UV

p/2 =
∞∑
k=0

S
(p)
k (−1)k+1 (−p)k+b̂1p+α

Γ(1 + k + b̂1p+ α)
. (4.73)

Except for the sign of p and the additional sign-alternating factor (−1)k+1 the UV renormalon
sum rule coincides with the corresponding expression for IR renormalons given by eq. (4.47).

The functions Q
(p),UV

l in the second part of the Borel transform (4.72) are found to be:

Q
(p),UV

l (u) = −2

∞∑
k=0

S
(p)
k

l+k−1∑
j=0

(−1)l+k−j−1 Γ(1 + j + α+ b̂1p− l) (−p)l+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j . (4.74)

Similar to the IR case these terms remove the additional information encoded in the singular part
of the Borel transform (4.72) that is not contained in the original perturbative series.
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Analogous to the consistency check we did in the previous section it is also important in the
UV case to test whether the singular part of eq. (4.72) is in agreement with the Borel transform
(2.31) for UV renormalons given in section 2.2.2. To that end it is again useful to rewrite the
singular terms in the analytic Borel transform,

BUV,sing

0 (u) = Pα,UV

p/2

∞∑
l=0

(−1)l g
(p)
l

Γ(1 + b̂1p+ α− l)(
− p

2 + u
)1+b̂1p+α−l

2−b̂1p−α+l (4.75)

= Nα,UV

p/2

∞∑
l=0

(−2)l g
(p)
l

Γ(1 + b̂1p+ α− l)
Γ(1 + b̂1p+ α)

1(
− p

2 + u
)1+b̂1p+α−l

=
Nα
p/2, UV(

− p
2 + u

)1+b̂1p+α

[
1− 2 g

(p)
1

(b̂1p+ α)

(
− p

2
+u

)
+

4 g
(p)
2

(b̂1p+ α) (b̂1p+ α− 1)

(
− p

2
+u

)2

+ . . .

]

=
Nα
p/2, UV( p̃

2 + u
)1−b̂1p̃+α

[
1− 2 g

(p)
1

(−b̂1p̃+ α)

(
p̃

2
+u

)
+

4 g
(p)
2

(−b̂1p̃+ α) (−b̂1p̃+ α− 1)

(
p̃

2
+u

)2

+ . . .

]
,

where the alternative normalization Nα,UV

p/2 is given by:

Nα,UV

p/2 = Pα,UV

p/2 2−b̂1p−α Γ(1 + b̂1p+ α). (4.76)

The last line in eq. (4.75) (where we used p̃ = −p) matches exactly the alternative form of the
Borel transform (4.52) for IR renormalons derived in the previous section except for the alternating
sign behaviour of the terms in the square brackets due to the factor (−1)l. The same distinction
between IR and UV renormalons was found in section 2.2.2 which proves the consistency of eq.
(4.75) and the results given there.

The subleading contributions containing information on the Wilson coefficients of the associated
operators take the form,

BUV
n (u) ≡ B

[
−Qp̃ (−tQ)α ans (Q)

(
θp,α(Q)− θp,α(∞)

)]
(u) = (4.77)

= (2β0)−n Pαp/2

∞∑
l=0

(−1)l+n g
(p)
l

Γ(1 + b̂1p+ α− l − n)(
− p

2 − u
)1+b̂1p+α−l−n

2−b̂1p−α+l+n + (2β0)−n
∞∑
l=0

g
(p)
l Q

(p),UV

l,n ,

where:

Q
(p),UV

l,n (u) = (4.78)

= −2
∞∑
k=0

S
(p)
k

l+n+k−1∑
j=0

(−1)l+n+k−j−1 Γ(1 + j + α+ b̂1p− l − n) (−p)l+n+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j .

The singular terms in (4.77) are given by,

BUV,sing
n (u) ≡ BUV

n (u)
∣∣
singular

= (4.79)

= (2β0)−n Pα,UV

p/2

∞∑
l=0

g
(p)
l (−1)l+n

Γ(1 + b̂1p+ α− l − n)(
− p

2 + u
)1+b̂1p+α−l−n

2−b̂1p−α+l+n

= Nα,UV

p/2

∞∑
l=0

2l β−n0 g
(p)
l (−1)l+n

Γ(1+b̂1p+α−l−n)

Γ(1+b̂1p+α)

1(
− p

2 + u
)1+b̂1p+α−l−n

.

and also agree with the findings in section 2.2.2:

• 4 ĉ
(1)
j BUV,sing

1 (u) = Nα,UV

p/2

∞∑
l=0

g
(p)
l

2l

β0

Γ(b̂1p+α−l)
Γ(1+b̂1p+α)

(−1)l+1 4 ĉ
(1)
j(

− p
2 + u

)b̂1p+α−l (4.80)
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= 4 ĉ
(1)
j

Nα,UV

p/2(
− p

2 + u
)1+b̂1p+α

[
− 1

β0

1

(b̂1p+ α)

(
− p

2
+ u

)

+
2

β0

g
(p)
1

(b̂1p+ α) (b̂1p+ α− 1)

(
− p

2
+ u

)2

+ . . .

]
,

• 16 ĉ
(2)
j BUV,sing

2 (u) = Nα,UV

p/2

∞∑
l=0

g
(p)
l

(−2)l

β2
0

Γ(b̂1p+α−l−1)

Γ(1+b̂1p+α)

16 ĉ
(2)
j(

− p
2 + u

)b̂1p+α−l−1

= 16 ĉ
(2)
j

Nα,UV

p/2(
− p

2 + u
)1+b̂1p+α

[
1

β2
0

1

(b̂1p+ α) (b̂1p+ α− 1)

(
− p

2
+ u

)2

+ . . .

]
.

The consistency check completes our introduction to the concepts of R-evolution and the renor-
malon sum rule. As a practical application we use the methods developed here to analyze the Adler
function in the large-β0 approximation in the following chapter. In particular, we will show that
the renormalon sum rule can indeed be employed as a powerful tool to probe renormalon poles.
In appendix D, we additionally verify that the pole structure of our analytic expression for the
Borel transform agrees with the structure of the dimension-4 gluon condensate and the dimension-
6 four quark operator corrections found in the literature. Furthermore we also demonstrate how
the leading order results for the coefficient functions of the gluon and four quark condensates
can be obtained from asymptotic expansions of the diagrams in Fig. 3.1 in the context of the
expansion-by-region method.
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Chapter 5

Applications of R-Evolution in the
Large-β0 Approximation

So far we have seen how switching to appropriate schemes for IR matrix elements 〈Ôjc〉 and UV
Wilson coefficients ĈUV

c,j (see eqs. (4.5) and (4.6)) that account for explicit renormalon subtractions

involving additional scales R and RUV, respectively, can avoid large cancellations between C0 and
higher-dimensional terms in the OPE for a physical observable σ(Q). Furthermore we discussed
the RG evolution for the scales R and RUV and looked at important features of the R-evolution
equation that allow us to address the questions raised in chapter 2. In this chapter we study the
Adler function in the large-β0 approximation in order to investigate the applications of R-evolution
in more detail. More specifically, we illustrate that the relation (4.25) can be used as an alternative
method to estimate IR renormalon ambiguities and demonstrate how the renormalon sum rule (see
eq. (4.47)) can be employed to probe specific renormalons in the perturbative expansion of the
Adler function. The reason why we choose to work in the large-β0 approximation is simply given
by the fact that in this approximation a closed analytic expression for the Borel transform of the
Adler function is known which allows us to test very easily to which extent the methods based on
R-evolution are consistent with the known exact results.

5.1 Adler Function in the Large-β0 Approximation

Before we deal with the applications of R-evolution, let us briefly review the most important results
for the Adler function in the large-β0 approximation which we already discussed in section 3.2.
In order to be consistent with the notation used in the previous chapter, we express the Adler
function in the following way1

D(p2) = 4π2 p2 dΠ(p2)

dp2
= 1 + D̂(p2) = 1 +

∞∑
n=1

an

(
αs

4π

)n
. (5.1)

Computing the set of bubble chain diagrams in Fig. 3.1 an analytic result for its Borel transform
can be found [28]:

B[D̂](u)

∣∣∣∣
µ2=Q2

=
32

3π

e−Cu

(2− u)

∞∑
k=2

(−1)k k

[k2 − (1− u)2]2
, (5.2)

where Q2 = −p2 and C denotes a scheme-dependent constant which takes the value C = −5/3 in
the MS scheme. Using this convention for the Borel transform the reduced Adler function D̂ is
given by the inverse Borel transformation (3.5),

D̂(αs) =

∞∫
0

dt e
− t

αCs B[D̂](t) =
4π

β0

∞∫
0

du e
− 4πu

β0α
C
s B[D̂](u), (5.3)

1Note that we used a different notation for the Adler function series in chapter 2. The expansion coefficients cn,1
(see eq. (2.12) in section 2.1) are related to the coefficients an in (5.1) via cn,1 = an/4

n.
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n an u = −1 u = 2 u = −2

1 4 1.1752 112.13 -0.0436

2 24.904 -13.599 504.57 0.2319

3 1005.5 299.18 4541.1 -2.408

4 6356.9 -9546.5 6.1305 · 104 36.842

5 8.0674 · 105 3.9655 · 105 1.1035 · 106 -741.18

6 −8.1567 · 106 −2.0224 · 107 2.4829 · 107 18432

7 1.6150 · 109 1.2206 · 109 6.7037 · 108 −5.4506 · 105

8 −7.0623 · 1010 −8.4997 · 1010 2.1117 · 1010 1.8662 · 107

Table 5.1: Perturbative coefficients of the Adler function in the large β0 approxima-
tion. The results have been calculated in the MS-scheme for µ2 = −p2 and Nf = 3
light quark flavours. The last three columns show the breakdown of an into the con-
tributions apn from the leading renormalon poles (see eq. (5.6)). The results for the
UV renormalons contain the combined contributions from simple and double poles.

where the modified Borel variable u ≡ tβ0/(4π) is used in the second equality and αCs denotes the
strong coupling in the scheme specified by the constant C. The relation between αCs for arbitrary

C and the MS coupling αs ≡ αC=−5/3
s is given by:

αCs =
αs

1− αs β0
4π

(
5
3 + C

) . (5.4)

According to eq. (5.2) the Borel transform of the Adler function consists of an infinite series of
renormalon poles located at positive (IR) and negative (UV) integer values of u, except for u = 0, 1.
We already know that the u = 1 renormalon is absent, since it would correspond to a dimension-
2 operator in the OPE of the Adler function. The singularity at u = 0, on the other hand, is
only present in the Borel transform of the RG-scale dependent correlation function Π(Q2) (see
[34]) and vanishes in the case of the Adler function by taking the derivative with respect to Q2 in
(5.1). All UV and IR renormalons are double poles apart from the IR pole at u = 2 which is simple
due to the vanishing anomalous dimension of the gluon condensate in the large-β0 approximation.

The perturbative coefficients of the Adler function in the large-β0 approximation can be obtained
from Taylor expanding the Borel transform in the variable u and subsequently calculating the
Borel integral (5.3) term by term. Numerical values for the first few coefficients in the MS-scheme
are shown in the first column of Table 5.1. One can observe that the sign-alternating asymptotic
behaviour caused by the dominant u = −1 UV renormalon is delayed and sets in not until order
n ∼ 6. Low and intermediate orders are governed by contributions from IR renormalon poles,
which are enhanced in the MS-scheme due to the exponential factor e5/3u. However, if we instead
choose to work in other schemes (e.g. C = 0), we observe an earlier onset of the asymptotic be-
haviour.

In order to analyze in more detail how fast the asymptotic regime is reached it is sometimes
useful to separate the Borel transform (5.2) into contributions associated with individual renor-
malon poles (see appendix C.7). Focusing on the leading renormalons the decomposition of the
Borel transform in the MS-scheme is given by:

B[D̂](u)

∣∣∣∣
µ2=Q2

=
e−5/3

π

(
4

9

1

(1 + u)2
+

10

9

1

(1 + u)

)
+

e10/3

π

2

(2− u)
(5.5)

− e−10/3

π

(
2

9

1

(2 + u)2
+

1

2

1

(2 + u)

)
+ . . . .

The terms shown in the decomposition above arise from an expansion of the Borel transform
(5.2) with C = −5/3 about the locations of the individual renormalons at u = p/2. The first
contribution, for instance, represents the two singular terms in the series expansion at u = −1. In
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the following we refer to these singular terms as the contributions of the double and simple pole,
respectively, of the UV renormalon at u = −1. All other (non-singular) terms of the expansion at
u = −1 are only indicated and not shown explicitly in (5.5). In a similar fashion, the second and
the third term in (5.5) give the singular contributions of the renormalons at u = 2 and u = −2.

Taylor expanding each term in (5.5) and performing the Borel integral (5.3) we obtain the
contributions of the individual renormalons to the series coefficients an. This way we can find a
decomposition of the coefficients an similar to eq. (3.57):

an =
∑
PIR

aPIR
n +

∑
PUV

aPUV
n + an,rem, (5.6)

where the first sum contains all singular contributions due to IR renormalons, while the second sum
accounts for UV poles. The last term represents a remainder which comprises all non-singular con-
tributions in (5.5). Numerical values for the contributions apn of the individual renormalons to the
perturbative coefficients an are shown in Table 5.1 and explicit expressions for the decomposition
in (5.6) (for the scheme C = 0) can be found in appendix C.7.

5.2 Renormalon Sum Rule as a Probe for Renormalon Ambigui-
ties

The first feature of R-evolution we want to address here is the renormalon sum rule derived in sec-
tion 4.3. As already explained, the renormalon sum rule denotes the normalization of the singular
terms in the analytic Borel transform (4.46) that are characteristic for a particular renormalon
and is hence suited as a probe for renormalon ambiguities in perturbative series.

In general one can distinguish three different cases when the sum rule is applied to test for the
existence of a renormalon at u = p/2 with specific pole structure characterized by the parameter
α (see eq. (4.13)):

1. Pαp/2 converges to zero as we go to higher orders in perturbation theory. In this case the

corresponding O(ΛpQCD) renormalon (characterized by the values of p and α) is absent but
higher order renormalons further away from the origin in the Borel plane might still be
present. Moreover it is also possible that another renormalon located at the same position
u = p/2 exists which is given by a smaller variable α′ < α.

2. Pαp/2 converges to a non-zero value. In this case we conclude that an O(ΛpQCD) renormalon
ambiguity related to the value of α exists in the series.

3. Pαp/2 diverges which either suggests that an ambiguity of O(ΛqQCD) with q < p is present (i.e.

in the Borel transform there is a renormalon pole closer to the origin of the Borel plane)
or indicates the existence of a second more dominant renormalon singularity located at the
same position with another pole structure specified by a parameter α′ > α that leads to a
faster factorial growth in the perturbative coefficients. (Compare e.g. the contributions of
the double and the simple pole at u = −1 in eq. (3.16).)

In order to elaborate on the capability of the sum rule for probing renormalon ambiguities we
apply it to the Adler function as an illustrative example in this section.

5.2.1 Analytic Borel Transform and Renormalon Sum Rule in the Large-β0

Approximation

Before we study the renormalon structure of the Adler function with the methods of R-evolution,
it is instructive to investigate the analytic Borel transform and the renormalon sum rule in the
context of the large-β0 approximation. Since this approximation results from taking the large-Nf

limit and then replacing Nf → −3/2β0, the coefficients b̂k (see eq. (C.8)) are suppressed by powers
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of 1/Nf and consequently vanish. In addition to the b̂k also the functions g
(p)
l , with the exception

of g
(p)
0 = 1, drop out and the analytic expression of the Borel transform (4.46) reduces to,

Bsing
β0

(u) = Pαp/2,β0
Γ(1 + α) 2−α(p

2 − u
)1+α =

Nα
p/2,β0(p

2 − u
)1+α , (5.7)

Nα
p/2,β0

= Pαp/2,β0 Γ(1 + α) 2−α,

Pαp/2,β0 =
∞∑
k=0

S
(p)
k pk+α

Γ(1 + k + α)
,

for IR renormalons (p > 0) and,

Bsing
β0

(u) = Pα,UV

p/2,β0

Γ(1 + α) 2−α(
− p

2 + u
)1+α =

Nα,UV

p/2,β0(
− p

2 + u
)1+α , (5.8)

Nα,UV

p/2,β0
= Pα,uvp/2,β0

Γ(1 + α) 2−α,

Pα,UV

p/2,β0
=

∞∑
k=0

S
(p)
k (−1)k+1 (−p)k+α

Γ(1 + k + α)
,

for UV renormalons (p < 0). In both cases the functions S
(p)
k simplify to:

S
(p)
k =

γRk
(2β0)k+1

, (5.9)

γRk = p ak+1 − 2 (α+ k)β0 ak.

Note that if the renormalon sum rule in the large-β0 approximation is applied to probe the series
of an exact renormalon, all coefficients of the R-anomalous dimension, except for γR0 , vanish
exactly. Consequently, Pαp/2,β0 reduces to a single (non-zero) term which, according to point 2 in

the discussion at the beginning of section 5.2, indicates that an O(ΛpQCD) renormalon characterized
by the value of α exists in the series.

Eqs. (5.7) and (5.8) give the all-order result for the normalization Nα
p/2,β0

of the renormalon

singularity at u = p/2. The corresponding result needed for the order-by-order study of the
convergence of the sum rule in the next section is given by2:

N
α,(n)
p/2 = P

α,(n)
p/2 Γ(1 + α) 2−α = Γ(1 + α) 2−α

n∑
k=0

S
(p)
k pk+α

Γ(1 + k + α)
, (5.10)

N
α,(n)
p/2,UV

= P
α,(n)
p/2,UV

Γ(1 + α) 2−α = Γ(1 + α) 2−α
n∑
k=0

S
(p)
k (−1)k+1 (−p)k+α

Γ(1 + k + α)
.

As we see, the analytic Borel transform carrying the information on a specific renormalon has a
much simpler form in the large-β0 approximation and reduces to a single term whose pole structure
is determined by the parameter α defined in (4.13). In the case of the Adler function α can take
on the values zero (simple pole) or one (double pole).

5.2.2 Probing the Leading Renormalon Divergence in the Adler Function

We already know that the Borel transform of the Adler function in the large-β0 approximation
consists of an infinite series of simple and double poles at integer values of u (expect for u = 0, 1)
and from the extensive analysis in chapter 3 we deduced that the most severe renormalon is the
one closest to the origin of the Borel plane. Moreover we have seen (cf. eq. (3.16)) that the fac-
torial growth at high orders in the perturbative coefficients of a series

∑
n an(αs/(4π))n+1 caused

2Since we only work in the large-β0 approximation in this chapter, the subscript β0 will be dropped.
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Fig. 5.1: Application of the renormalon sum rule to probe the double pole at u = −1
in the Adler function series. Graphs (a)-(c) show the result of eq. (5.10) (blue curves)
for the values p = −2 and α = 1 as a function of the perturbative order n for the
three schemes C = 7/10, C = 0 and C = −5/3 (MS-scheme). The red line denotes
the exact value of the norm determined from the Borel transform (5.2). Graph (d)
combines the plots (a)-(c) to illustrate the different convergence behaviour of the sum
rule for the various schemes.

by a double pole at u = p/2 is of the type an ∼ (n + 1)! (2β0/p)
n, whereas simple poles lead to

an ∼ n! (2β0/p)
n. Thus the dominant renormalon divergence in the Adler function series is due to

the double pole at u = −1 in the Borel transform.

For the purpose of probing the leading renormalon of the Adler function we simply need to generate
its perturbative coefficients from the Borel transform (5.2) and insert them into the renormalon
sum rule (5.8) with the choice p = −2 and α = 1. A graphical representation of the results for
the application of the renormalon sum rule is given in Fig. 5.1. The blue curves in the plots show

the oder-by-order normalization N
1,(n)
−1,UV

for the u = −1 double pole obtained from eq. (5.10) as a

function of the order n for three different schemes C = 7/10, C = 0 and C = −5/3 (MS-scheme).
The solid red line in each plot marks the exact value for the norm3 of the renormalon pole de-
termined from the known Borel transform expression given in eq. (5.2). In order to simplify the
comparison of the outcomes for the different schemes the exponential normalization factor e−C·(−1)

of the renormalon pole in the Borel transform (see e.g. (5.5)) has been removed in the final results.
Thus, the norm of the u = −1 double pole takes on the same value in all plots.

The blue curves in Fig. 5.1 show that the renormalon sum rule indeed converges to the ex-
pected value of the norm as we go to higher orders in perturbation theory. This proves that the
sum rule cannot only be employed to test whether a specific renormalon ambiguity is present, but

3We refer to norm of the u = −1 double pole as the over-all factor multiplying the singular structure (1 + u)−2

in the Borel transform. In this sense the norm of the double pole at u = −1 in the MS Borel transform (5.5) is e.g.
given by e−5/3 4/(9π).
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also allows one to determine the overall norm of the corresponding pole in the Borel transform
at the same time. However, the convergence of the renormalon sum rule depends strongly on
the scheme choice for the Adler function series. While the blue curve approaches the exact value
rather fast within a small uncertainty band for schemes with a positive value for the constant C
(Fig. 5.1a), we see that the convergence gets worse and sets in later as we go to schemes charac-
terized by a negative value of C (Fig. 5.1b and Fig. 5.1c). The observed convergence behaviour
of the renormalon sum rule is consistent with our findings in section 5.1. Since we are probing
the leading UV renormalon at u = −1 the exponential factor e−C·(−1) multiplying the renormalon
pole in the Borel transform (5.2) supports its dominance already at low orders for schemes with
positive C, whereas schemes with negative C enhance IR renormalons such that the effects due
to the leading UV renormalon are delayed. To illustrate the difference in the convergence for the
different schemes, the plots of Fig. 5.1a - Fig. 5.1c have been combined to a single graph in Fig.
5.1d. In contrast to the MS-scheme (C = −5/3), where the exact value is reached reasonably well
around order n ∼ 10, the convergence in the scheme C = 7/10 sets in much earlier and the norm
can already be predicted with the same accuracy around n ∼ 5.

From our analysis one may suppose that it is possible to gradually improve the convergence of
the sum rule by choosing schemes with ever larger positive values of C. This, however, turns out
to be not the case, since increasing C also enhances all other UV renormalons at u = p/2 < 0 (and
not just the leading one) due to the exponential factor e−Cu. Therefore, in such schemes low and
intermediate orders are governed by strongly enhanced UV renormalons far away from the origin
of the Borel plane and consequently the dominant behaviour of the leading UV renormalon is only
observed at higher orders. The renormalon sum rule for the u = −1 double pole shows the fastest
convergence for the scheme with C = 7/10.

Once the norm of the double pole at u = −1 has been determined, the leading renormalon in
the Adler function series can be removed from the Borel transform (5.2) and we can use the renor-
malon sum rule to test the next-to-leading renormalon, which corresponds to the simple pole at
u = −1. For this purpose we first need to generate the perturbative coefficients associated with
the u = −1 double pole from the analytic Borel transform expression,

Bsing(u) =
N1,UV

−1

(1 + u)2
, (5.11)

and subtract them from the coefficients an of the full Adler function series obtained from the Borel
transform (5.2). The subtracted series can then be inserted into the renormalon sum rule (with
the values p = −2 and α = 0) to probe the simple pole at u = −1. The results are depicted in Fig.
5.2a and Fig. 5.2b. Similar to our previous analysis of the leading UV renormalon, we observe
that the norm4 of the simple pole (red line) is approached faster in schemes with positive C (Fig.
5.2a) as compared to schemes with negative C (Fig. 5.2b).

At this point a short comment is in order. Even though the exponential factor e−C·(−1) of the
renormalon pole has once again been removed from the results of the sum rule calculation, the
norm of the simple pole for different schemes does not coincide in the plots. The reason for this
observation, which contradicts our findings in the investigation of the double pole, can be traced
back to the decomposition of the Borel transform (5.2) into contributions from individual renor-
malon poles (see e.g. eq. (5.5)). In order to obtain the contribution due to the UV renormalon at
u = −1, one needs to compute the corresponding Laurent series of the Borel transform about the
point u = −1. Since the simple pole is the second term in the expansion, it does not only have an
exponential factor e−C·(−1) like the double pole but also receives an additional contribution linear
in C coming from the first derivative of the factor e−Cu in (5.2). Hence, the norm of the simple
pole in different schemes still does not coincide after the exponential factor has been accounted
for.

We want to stress again that the renormalon sum rule for the simple pole at u = −1 does

4We stress that the norm of the simple pole at u = −1 is given by the over-all factor multiplying the singular
term (1 + u)−1 in the Borel transform.
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Fig. 5.2: Application of the renormalon sum rule N
0,(n)
−1,UV

(blue curves) to probe the
u = −1 simple pole in different schemes (graphs (a)-(c)). The red line denotes again
the exact value of the norm given by the Borel transform (5.2). In (a) and (b) the
contributions of the u = −1 double pole have been cancelled, whereas in (c) the sum
rule is applied to the complete Adler function series. In (d) the double pole is probed
after its contributions have been removed from the Adler function.

only converge to the exact value for the norm of the corresponding renormalon pole in the Borel
transform (5.2), if the contributions due to the dominant double pole have been removed from the
Adler function series. The situation, in which the sum rule for the simple pole is applied to the
complete Adler function series (including the contributions from the leading renormalon pole), is
depicted in Fig. 5.2c. In this case the renormalon sum rule diverges, as explained in point 3 of the
discussion at the beginning of section 5.2, since a more severe renormalon is present. To complete
the discussion of the u = −1 renormalon, let us also investigate what happens, if we eliminate the
double pole but still try to probe this renormalon using the sum rule. This situation is shown in
Fig. 5.2d, where the expected convergence to zero can be seen.

In order to probe the yet next-to leading renormalon ambiguity, which is the u = −2 double
pole, we would have to remove both the contributions of the u = −1 double and simple pole from
the perturbative series of the Adler function and repeat the entire procedure. This way it is in
principle possible to find a decomposition of the Borel transform into contributions from various
renormalon poles similar to the one given in eq. (5.5).

Finally, we briefly mention a subtlety of the renormalon sum rule that arises in situations where
the large-order behaviour of a perturbative series is governed by two renormalon poles with the
same pole structure (i.e. the same value of α) located equidistantly from the origin of the Borel
plane on the positive and negative real axis. In such cases it is not possible to tell which one is
the dominant renormalon. To illustrate this situation we consider a toy model (within the large-β0

approximation) in which a series F is generated by a Borel transform that consists of only two
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Fig. 5.3: Oscillation of the renormalon sum rule when applied to a perturbative series
generated by the Borel transform (5.12). The graph shows the oscillation for the case
bUV = 2 and bIR = 5. The exact value of the norm for the IR renormalon (red line)
lies between the two accumulation points bIR + bUV = 7 and bIR − bUV = 3.

poles, a simple pole at u = −2 and another one at u = 2:

B[F ](u) =
bUV

(2 + u)
+

bIR
(2− u)

. (5.12)

If we compute the perturbative coefficients of the series F and attempt to probe the ambiguity of
the IR renormalon, we observe an oscillation of the sum rule around the norm bIR of the renormalon
pole. For the special case of bUV = 2 and bIR = 5 this oscillation behaviour is shown in Fig. 5.3,
where the two accumulation points are given by bIR + bUV = 7 and bIR − bUV = 3. For a series F
generated by the Borel transform (5.12) one can analytically calculate the renormalon sum rule
(5.7) and prove that,

P 0,IR
2,β0

=
∞∑
k=0

S
(4)
k 4k

Γ(1 + k)
= bIR + bUV + 2 bUV

∞∑
k=0

(−1)k, (5.13)

which is consistent with the accumulation points in Fig. 5.3.
Even though this feature of the renormalon sum rule seems to limit its usefulness, we want to

emphasize that this situation is only encountered once the sub-leading renormalon ambiguities of
the simple poles at u = −2 and u = 2 are probed in the Adler function series. The study of the
leading u = −1 renormalon is not affected by this complication and the sum rule correctly predicts
the norm in this case as shown in Fig. 5.1.

5.3 Estimation of IR Renormalon Ambiguities

The second application of R-evolution we want to address is related to the connection between
the R-evolution equation and the Borel integral discussed in section 4.2.2. Assuming that the
perturbative series in C0(Q) is dominated by contributions of a single renormalon we showed that
one can express the solution of the R-evolution equation in terms of a Borel integral over the
difference of two Borel transforms defined at distinct scales R1 and R0 (see (4.23)). Moreover, we
also addressed an important implication of this connection when the lower scale is set to zero. In
this limit we found (see eq. (4.25)):

C0(Q) ' − 1

Qp
lim
R0→0

[
θp,0(Q)− θp,0(R0)

]
LL

=

∞∫
0

duB[Q,µ](u) e
− 4πu
β0αs(µ) , (5.14)

which proves that the information on the ambiguity caused by an (IR) renormalon in the Borel
transform on the right-hand side can be related to the solution of the R-evolution equation for the
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corresponding perturbative series. Thus, R-evolution provides an alternative method to estimate
the size of renormalon ambiguities which is not based on the commonly used principle value pre-
scription of the Borel integral.

As eq. (5.14) indicates, the solution of the R-evolution equation only reduces exactly to the
definition of the Borel integral in the limit R0 → 0. However, in order to stay within the pertur-
bative regime we cannot integrate over the Landau pole R0 = ΛQCD in the R-evolution equation
and hence need to choose values R0 & ΛQCD such that perturbation theory is still valid (i.e. the
perturbative prediction of R-evolution depends on the IR cutoff R0). This suggests that using
small variations in the lower scale R0 close to ΛQCD may allow one to find an estimate for the
value of the Borel integral and quantify the size of its ambiguity5.

5.3.1 Ambiguity of the u = 2 Renormalon in the Adler Function

In order to illustrate how R-evolution can be used to estimate renormalon ambiguities we want
to apply eq. (5.14) to the Adler function in the large-β0 approximation and compare the principle
value prescription of the Borel integral to the prediction of R-evolution. For this purpose let
us consider the contribution of the u = 2 IR renormalon in the decomposition of the MS Borel
transform (5.5):

B[D](u)

∣∣∣∣
µ2=Q2

' e10/3 2

(2− u)
. (5.15)

Using this expression we can easily generate the series
∑

n a
p=4
n (αs/(4π))n containing only the

contributions ap=4
n due to the u = 2 simple pole in Adler function series. The generated series then

serves as a starting point for the R-dependent subtraction terms θ4,0 in our R-evolution ansatz6

(cf. eq. (4.12)). Since we are working in the large-β0 approximation this series reduces exactly to
a single term when taking the derivative to obtain the R-evolution equation7. We thus obtain,[

d

d lnR
θ4,0(R)

]
β0

= −R4 γR0

(
αs(R)

4π

)
(5.16)

which is consistent with the expression in eq. (4.18). Following the derivation in section 4.2.2 the
solution of the R-evolution equation is found to be,

[
θ4,0(R1)− θ4,0(R0)

]
β0

= − γR0
2β0

(
ΛLL

QCD

)4 [ ∫ ∞
t0

dt

t
e−4t −

∫ ∞
t1

dt

t
e−4t

]
(5.17)

= − γR0
2β0

(
ΛLL

QCD

)4 [
Γ

(
0,− 2π · 4

β0 αs(R0)

)
− Γ

(
0,− 2π · 4

β0 αs(R1)

)]
,

where the integration limits in the first line are defined as ti = −2π/(β0αs(Ri)) and the LL re-
lation for ΛQCD is given by ΛLL

QCD = R exp[−2π/(β0αs(R))]. In the second line we adopted the
definition (4.31) to rewrite the result in terms of incomplete gamma functions. The information
on the renormalon ambiguity originally contained in the perturbative series θ4,0 is now encoded in
the analytic structure of the appearing incomplete gamma functions and cancels in the difference
of eq. (5.17) such that θ4,0(R1)− θ4,0(R0) becomes ambiguity-free.

Eq. (5.17) represents the desired expression for the solution of the R-evolution equation which

5Note that the variations in the IR cutoff lead to changes in the perturbation theory part, which in principle
need to be compensated by corresponding changes of the R-dependent condensates. The discussion of R-dependent
condensates is beyond the scope of this work.

6Since the u = 2 renormalon corresponds to a simple pole in the Borel transform, we have p = 4 and α = 0.
7Exploiting the analytic expressions (C.61) for the contributions of the various renormalons one can explicitly

check that the R-anomalous dimension for a perturbative series in the large-β0 approximation generated by a
particular renormalon pole indeed collapses to a single non-vanishing term.
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can now be used to compute the Borel integral according to eq. (5.14):

D(Q2) ' − 1

Q4
lim
R0→0

[
θ4,0(Q)− θ4,0(R0)

]
LL

=

∞∫
0

duB[Q](u) e
− 4πu
β0αs(Q) , (5.18)

where

B[Q](u) =
γR0
2β0

1

u− 2
. (5.19)

The “'” sign in eq. (5.18) indicates that we do only consider the contribution of the u = 2
renormalon of the Adler function. Note again that taking the limit R0 → 0 reintroduces the
renormalon ambiguity once we integrate over the Landau pole at R0 = ΛQCD. Therefore, varying
the lower limit R0 close to ΛQCD in the perturbative regime provides an estimate for the Borel
integral and the corresponding ambiguity which is independent of the common principal value
prescription.

A graphical representation of this procedure is depicted in Fig. 5.4, which shows the solution
of the R-evolution equation (orange curves) as a function of R0 for the fixed scales µ=Q =10 GeV
(Fig. 5.4a) and µ = Q = 2 GeV (Fig. 5.4b). The solid blue line in both graphs represents
the principle value result of the Borel integral and the blue-shaded bands provide an estimate of
the renormalon ambiguity given by the imaginary part of the principle value prescription. The
small peak in the orange curves at 0.5 GeV marks the position of the Landau pole and we see
that the solution of the R-evolution equation agrees with the principal value result in an analytic
continuation for scales R0 < ΛQCD. In order to quantify the ambiguity of the Borel integral using
R-evolution we choose to vary the scale R0 in a narrow region between 0.8 GeV ≤ R0 ≤ 1.2 GeV
marked by the vertical red dashed lines. The resulting central value for the Borel integral is
represented by the solid black line and the surrounding red-shaded error band gives the R-evolution
estimate of the ambiguity.

Let us take a closer look at the graphs of Fig. 5.4 and compare the results of the principal
value and the R-evolution method. In Fig. 5.4a, showing the situation for a hard scale Q = 10
GeV, the central values for both approaches are found to be,

σPV = 2.2939± 0.0002 (5.20)

σR = 2.2925± 0.0007,

and we conclude that both procedures yield quite compatible results for the Borel integral and its
ambiguity. The relative deviation of the R-evolution central value σR compared to the principal
value result amounts to ∆σ ≈ 0.06 % in this case. Fig. 5.4b, on the other hand, depicts the
situation for Q = 2 GeV and yields:

σPV = 5.89± 0.15 (5.21)

σR = 4.99± 0.46,

Here, we find a relative deviation ∆σ ≈ 15 % which shows that the R-evolution prediction is now
significantly below the principal value result. In view of the determination of αs from hadronic τ
decays the outcome of Fig. 5.4b is quite remarkable, since we see that for energy regions close to
τ mass scale Mτ = 1.78 GeV R-evolution represents an alternative method to compute the Borel
integral that differs considerably from the results of the common principal value prescription.
Therefore, using R-evolution in investigations of hadronic τ decays could provide new insight
into the long-standing discussion of the discrepancy between FOPT and CIPT and consequently
improve the accuracy of the αs extraction from Rτ .

5.4 Discussion

We conclude this chapter by summarizing the most important results. Our main goal was to in-
vestigate to what extend R-evolution can be used to address the questions raised in the discussion
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Fig. 5.4: Computation of the Borel integral (5.18) using R-evolution for fixed hard
scales Q = 10 GeV (a) and Q = 2 GeV (b). The orange curves represent the solution of
the R-evolution equation and the blue solid lines denote the principal value of the Borel
integral with an ambiguity estimation given by the blue-shaded region. The red dashed
lines mark the boundaries of the R0 variation between 0.8 GeV ≤ R0 ≤ 1.2 GeV. The
resulting R-evolution central value and the corresponding ambiguity are given by the
black solid line and the red-shaded error band.

of higher order models for hadronic τ decays at the end of chapter 2. For this purpose we studied
the Adler function in the large-β0 approximation in which a simple analytic expression of its Borel
transform is known.
The first purpose of this chapter was to illustrate how R-evolution can be used to gain more in-
formation on specific renormalons in perturbative series. To that end we applied the renormalon
sum rule to the Adler function to demonstrate its capability to test renormalon ambiguities. In
particular, we probed the leading u = −1 renormalon and showed that the sum rule converged to
the expected value of the residue. In view of the renormalon models for the Adler function pre-
sented in section 2.2 this feature of R-evolution is very promising to lead to an improved ansatz for
physical models used in the determination of the strong coupling constant αs. The sum rule only
relies on the knowledge of the QCD β-function and the coefficients of the perturbative series and,
provided that the series coefficients are known to sufficiently high order, allows one to construct
a Borel transform focusing on a single renormalon pole without making any approximations. For
most realistic cases, e.g. the Adler function in full QCD, only a few perturbative coefficients are
available which currently makes the application of the renormalon sum rule quite challenging.

Second, we compared the solution of the R-evolution equation with the principal value predic-
tion for the Borel integral and in particular looked at the ambiguity caused by the leading u = 2
IR renormalon. The result of this comparison is shown in Fig. 5.4 and proves that R-evolution
coincides with the principle value prescription in the limit R0 → 0. However, for scales R0 & ΛQCD

which are perturbatively accessible we see a considerable deviation between these two approaches
and the variation of the R-evolution solution in the region 0.8 GeV ≤ R0 ≤ 1.2 GeV leads to a new
central value for the Borel integral that is significantly below the principle value result. We stress
that for a full analysis one also needs to account for the R-dependent gluon condensate, but this is
beyond the scope of this thesis. Besides, one may argue that taking these variation limits is a com-
pletely arbitrary choice and choosing values more closely to ΛQCD would result in central values
and corresponding ambiguities which are in better agreement with the principal value result. This
is a totally valid objection, but the point we want to make here is the following. Computing the
Borel integral by means of the principle value method and estimating the ambiguities by taking
the imaginary part is also an arbitrary choice. We commonly expect the ‘true’ result of the Adler
function series to be consistent with the principal value of the Borel integral within an error given
by its ambiguity. However, since the ambiguities arise from deformations of the integration contour
in the evaluation of the Borel integral, it is not at all obvious how well they are determined by
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the imaginary part of the principle value result. R-evolution provides an alternative possibility to
quantify the ambiguity of the Borel integral and clearly leads to different results. This, in turn,
sheds new light on the discussion of the mechanisms favouring FOPT or CIPT and also raises the
question how much the extraction of the strong coupling from hadronic τ decays is affected, if one
does not rely on the principle value computation of the Borel integral.
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Chapter 6

Summary and Outlook

In this thesis we reviewed the basic problem of asymptotic series in QCD and studied a very
promising approach, called R-evolution, to deal with the implications related to a particular source
of divergence known as renormalons. Renormalon divergences have received increasing attention
over the last few decades, especially because it has been realised that they often reveal far-reaching
physics and indicate that non-perturbative effects need to be considered in order to define physical
theories unambiguously.

Starting out from an exact, i.e. non-perturbative, definition of physical observables in the
framework of the operator product expansion, we established the close connection between IR
renormalons and higher-dimensional operator terms in the OPE in chapter 3 and discussed how
the addition of these corrections account for renormalon ambiguities in the definition of the Borel
integral (3.22). UV renormalons, on the other hand, are Borel summable and hence do not cause
ambiguities – at least formally. Nevertheless, they also indicate the existence of profound UV
physics and can be accounted for by insertions of local higher-dimensional operators in the context
of the Standard Model Effective Field Theory (SMEFT).

In chapter 4 we derived the basic formalism for schemes with explicit renormalon subtractions
involving additional scales R and RUV and discussed in detail the implications of the renormal-
ization group evolution when the parameter R is treated as a continuous variable. In particular,
we showed that the solution of the R-evolution equation leads to an analytic expression for the
Borel transform of a perturbative series that encodes the singular and non-analytic contributions
which are characteristic for a particular renormalon pole. For the normalization of the singular
renormalon terms we obtained an analytic sum rule which can be determined from the knowledge
of the series coefficients and the QCD β-function and does not rely on simplifying approximations
like the calculation of bubble chains. Therefore, the renormalon sum rule (4.47) can be applied
to any perturbative series and serves as a probe for renormalon ambiguities. Early works on this
topic [17, 48] focused primarily on the description of the leading u = 1/2 renormalon in the heavy
quark pole mass and an extension for arbitrary IR poles at u = p/2 was derived in [52] where,
however, the anomalous dimensions of the operators in the OPE are not considered and the Wilson
coefficients are assumed to start at tree-level. A major purpose of this thesis was to review the
derivation of the renormalon sum rule including operator anomalous dimensions and generalize it
to also comprise UV renormalons.

Our main motivation for dealing with renormalons and R-evolution was provided by investiga-
tions of hadronic τ decays which enable the determination of the strong coupling constant αs at
low energies in a rather clean environment [12]. As discussed in chapter 2 the dominant source of
uncertainty resides in the significant numerical discrepancy between different ways to improve the
perturbative expansion through renormalization group methods, namely CIPT and FOPT. Since
the preference for either CIPT or FOPT depends primarily on higher-order perturbative QCD cor-
rections governed by renormalons, studies of adequate renormalon models for the Adler function
series have become increasingly important. A particular useful model, in which the perturbative
coefficients can be calculated to all orders in perturbation theory, is the large-β0 approximation
based on the computation of bubble chain diagrams. In this approximation a simple analytic
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expression for the Borel transform of the Adler function is known which allows us to test the pre-
dictions of R-evolution. As an application of the renormalon sum rule, we investigated the Adler
function in chapter 5 and successfully quantified the residue of the leading u = −1 renormalon
pole. Moreover we were also able to prove the compatibility of the analytic Borel transform ex-
pression derived from the R-evolution equation with the renormalon model for the Adler function
given in [14] and showed that R-evolution provides an alternative method to estimate the size of
renormalon ambiguities in the Borel integral.

The results of chapter 5 suggest that R-evolution is indeed a promising approach capable of im-
proving the ansatz for physical models of the Adler function. However, an improved determination
of αs using R-evolution methods without any additional approximations is still hard to achieve,
since the renormalon sum rule is restricted to the series coefficients of the Adler function which
are currently known up to O

(
α4

s

)
. With only four coefficients available the sum rule displays a

poor convergence behaviour and the prediction for the residues is unreliable.
Finally we want to stress again that the results for the analytic Borel transform and the renormalon
sum rule derived in this thesis are not restricted to the study of the Adler function in hadronic
τ decays but can also be applied to other fields to investigate renormalon divergences and are
therefore extremely powerful.
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Appendix A

Calculation of Bubble Chain
Diagrams

We provide a detailed computation of the Adler function in the flavour expansion up to order 1/Nf

in this part of the appendix. As already mentioned in section 3.2, the dominant contributions to
the Adler function in this expansion arise from bubble chain diagrams with any number of massless
quark bubble insertions into the internal gluon propagator (see Fig. A.1). All calculations in this
section will be done using dimensional regularization in d = 4− 2ε space-time dimensions.

Starting point for our analysis is the definition of the Adler function given in eq. (3.8). According
to this, we write

Πµν(p) =
(
pµpν − gµνp2

)
Π(p2), (A.1)

where we can decompose the correlation function Π(p2) at order 1/Nf in the form

Π(p2) =
1

Nf

∞∑
n=0

Π(n)an+1, (A.2)

with a = αsNf/π. The superscript (n) denotes the number of fermion bubble insertions into the
internal gluon line and the total number of loops in the corresponding diagrams is obviously given
by n + 2. We begin with the simple fermion loop diagram needed for the renormalization of the
Adler function (see Fig. A.2). A straightforward calculation yields the well-known result (compare
[53]):

πµν(p) =
(
pµpν − gµνp2

)
a

( −p2

4πµ2

)−ε
[Γ(2− ε)]2 Γ(ε)

Γ(4− 2ε)
. (A.3)

The renormalized quark loop is thus given by

π̂(p2) =
αs

6π
Nf ln

(
µ2

−p2
e−C

)
, (A.4)

where C denotes a scheme-dependent constant. In MS, the renormalization scheme that will
be used throughout this section, C = −5/3. Note, that the factor Nf/(6π) corresponds to the
fermionic contribution of the one-loop QCD β-function (see Appendix C).

In the next step we are going to calculate the two-loop contribution Π(0), i.e. the diagrams
depicted in Fig. A.1 without any insertion of fermion bubbles into the internal gluon line. A full
derivation of the two-loop calculation is given in Appendix B. Here we are only interested in stating
the final result:

Π(0) =− CF
CA

16π2
· (1− ε)
ε (3− 2ε)

(−p2 − i0+

4πµ2

)−2ε

[Γ(1− ε)]3 (A.5)

·
{[

Γ(ε)

Γ(2− 2ε)

]2

Γ(1− ε) · (2− ε+ 2ε2)− Γ(2ε)

Γ(3− 3ε)

(2− 2ε)2 + 4

ε

}
.
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+

Fig. A.1: Fermion bubble diagrams that contribute to the leading term in the 1/Nf -
expansion of the Adler function.

Exploiting some well-known identities of the Γ(z)-function, one can easily show that eq. (A.5) can
be rewritten in the form [53]

Π(0) =− CF
CA
4π2

( −p2

4πµ2

)−2ε

[Γ(2− ε)]2
{

3 + 2ε

2

[Γ(1− ε) Γ(ε)]2

Γ(2− 2ε) Γ(4− 2ε)
(A.6)

+
Γ(ε) Γ(−ε) Γ(2ε) Γ(−3 + 2ε)

Γ(1− 3ε) Γ(3ε)
− Γ(2ε) Γ(−3 + 2ε)

ε

− 2 (1− 2ε) (2− 2ε− ε2)
Γ(−ε) Γ(−3 + 2ε)

εΓ(3− 3ε)

}
.

The calculation of the bubble diagrams with an arbitrary number of fermion bubbles in the gluon
line is very tedious and, unfortunately, cannot be solved using ‘standard’ computational tricks
such as integration-by-parts techniques (IBP). As pointed out in [54], one runs into difficulties
when trying to calculate the third diagram in Fig. A.1, where the gluon is exchanged between
the upper fermion and the lower antifermion line, if there are subdivergences nested within the
internal gluon line. In such cases, the corresponding loop momentum integration involves two-loop
integrals of the form (see Appendix B)

I(p2, nε, d) =

(
µ̃2
)(1+n)ε

(2π)2d

∫∫
ddk ddq

[k2]+ [q2]+ [(k − p)2]+ [(q − p)2]+ [(k − q)2]1+nε
+

, (A.7)

where we used the notation [x]+ ≡ [x+ i0+] and the non-integer exponent of the last propagator
arises from the insertion of n fermion loops into the gluon line. In order to calculate this integral
one can e.g. use the so-called Gegenbauer polynomial x-space technique [55] to reduce the occurring
loop momentum integrals to a form that can be expanded in the infinitesimal regulator ε.

Applying Gegenbauer integration to our present problem of fermion bubble diagrams with at
least one insertion of a fermion loop in the gluon line (n ≥ 1), yields the result [53]
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Fig. A.2: Fermion loop diagram needed for the renormalization of the Adler function
in the 1/Nf -expansion.

Π(n) =− CF
Nc

4π2

1

2n

( −p2

4πµ2

)−ε(n+2)

·
{
− 2

Γ(1 + ε) [Γ(2− ε)]2
ε Γ(4− 2ε)

}n
(A.8)

· 1− ε
3− 2ε

· [Γ(1− ε)]2
Γ(1 + nε)Γ(3− 3ε− nε) ·

Γ(1− ε− nε)
−ε(1 + n)

·
{(

6− 14ε− 8nε+ ε2(4 + 10n+ 4n2) + ε3(4 + 3n+ n2)
)

Γ(−2 + nε+ 2ε)

+
Γ(1− ε)
Γ(2− 2ε)

·
[
(2− nε− 3ε) (1− nε− 3ε)F (0)

− (2 + ε) (n+ 1)n ε2 (2− nε− 3ε)F (1)

+ (1− nε− ε) (1− nε) (n+ 1)n ε2 F (2)
]}
,

where the occurring function F (s) is given by [53]

F (s) =

∞∑
m,k=0

Γ(m− s+ 3ε+ nε) Γ(k + 2− 2ε) Γ(m+ k + 1− s+ nε+ 2ε)

m! k! Γ(m+ k + 2− ε) (A.9)

·
{

1

(m+ k + 1− s+ ε+ nε) (k + 1− s+ nε)

− 1

(m+ k + 1) (k + 1 + s− nε− 2ε)

}
· 1

Γ(3ε+ nε− s) .

For the purpose of analyzing the renormalization of the bubble diagrams, it is useful to study the
structure of eq. (A.8) in more detail. If we look at the second curly bracket, which involves all
terms containing the function F (s) (s = 0, 1, 2), and perform an expansion in ε, we notice that this
bracket contributes only to O(ε0). Thus, the divergent behaviour of the diagrams coming from
the integration over the loop momenta is completely incorporated in the first part of eq. (A.8) and
one can immediately see that the lowest order term in the Laurent series of Π(n) is proportional to
1/εn+1.1 Allowing for a normalization factor we can therefore rewrite eq. (A.8) in the form [28, 53]

Π(n) = (−1)nCF
Nc

16π2 · 6n ·
1

n+ 2
· 1

εn+1
·G(p2/µ2, ε, nε), (A.10)

with

G
(
p2/µ2, ε, δ = ε (n+ 2)

)
=

∞∑
j=0

Gj(ε) (ε (n+ 2))j , Gj(ε) =

∞∑
i=0

g
(j)
i εi, (A.11)

where G(p2/µ2, ε, δ) is analytic near ε = δ = 0. According to eq. (A.3), the counterterms for
the fermion loops in the bubble chain needed for the renormalization procedure are given by

1One would naively expect that the Laurent series of the regularized polarization function Π(p2) starts at order
1/εn+2. Each fermion loop in the bubble chain gives a factor 1/ε and the remaining loop integrations are supposed
to contribute 1/ε2. But since the 2-loop vacuum polarization graphs in Landau gauge only have simple poles in the
regularization parameter ε (see eq. (A.6) and Appendix B), the lowest order term in the Laurent series is proportional
to 1/εn+1.
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−αsNf/(6πε) in the MS scheme. Furthermore, in order to properly subtract all subdivergences
we need to take a combinatorial factor into account which determines the number of ways, we
can choose k renormalized loops from the n available loops in the bubble chain. Combining the
previous results, we obtain the following expression [53, 34]

Π
(n)
part.ren =

n∑
k=0

(
n

k

)
Π(n−k)

(
− 1

6ε

)k
(A.12)

=(−1)nCF
Nc

16π2 · 6n
∞∑
j=0

Gj(ε)

εn+1−j

n∑
k=0

(
n

k

)
(n+ 2− k)j−1 (−1)k ,

where Π
(n)
part.ren denotes the partially renormalized coefficient of the bubble diagrams at order an+1

after subtraction of the subdivergences in the MS scheme. Since we are only interested in the finite
terms that do not vanish in the limit ε→ 0, we truncate the j-summation at j = n+ 1. Using the
astonishing fact that [53]

n∑
k=0

(
n

k

)
(n+ 2− k)j−1 (−1)k = 0 for 1 ≤ j ≤ n, (A.13)

eq. (A.12) is non-zero only for j = 0 and j = n+ 1 and hence simplifies to

Π
(n)
part.ren = (−1)nCF

Nc

16π2 · 6n
(

(−1)n

(n+ 1) · (n+ 2) εn+1
G0(ε) + n! ·Gn+1(ε)

)
. (A.14)

Now we can add the counterterm allowing for the subtraction of the whole diagrams and finally
take the limit ε → 0. Applying eq. (A.11), the MS-renormalized coefficient is eventually given by
[28]

Π
(n)
ren. = CF

Nc

16π2 · 6n
(

1

(n+ 1) · (n+ 2)
g

(0)
n+1 + (−1)n n! ·Gn+1(0)

)
. (A.15)

As one can see, in order to determine the fully renormalized coefficients of the bubble diagrams
in Fig. A.1 we need to know only two terms of the n-loop generating function G(p2/µ2, ε, nε)
given in eq. (A.11). The relevant contributions come from G0(ε), which corresponds to an analytic
continuation to the zero-loops case of Fig. A.1, and G(p2/µ2, 0, ε(n+ 2)) which, as we are going to
see, is associated with the Borel limit ε→ 0 when δ = ε (n+ 2) is held fixed [56].

To identify the term G(p2/µ2, ε, 0) = G0(ε) it is once again useful to take a closer look at the
result of eq. (A.8), but this time in the limit nε→ 0. Since we know from our analysis above that
G0(ε) contributes to order 1/εn+1, we need to extract the lowest order term of the Laurent series
of Π(n). As it is evident from our observations concerning eq. (A.8), we thus have to investigate the
ε-expansion of all terms involving the function F (s) (s = 0, 1, 2) defined in eq. (A.9). The crucial
point at this stage is to realize that even though the function F (s) is given by an infinite double
series, just a very few terms of these series contribute to order 1/εn+1 in eq. (A.8)2. Combining
the relevant terms, one obtains after a quite lengthy calculation [53, 28]

G0(ε) =
(1 + ε)(1− 2ε)(3− 2ε)Γ(4− 2ε)

9 [Γ(2− ε)]2 Γ(3− ε)Γ(1 + ε)
(A.16)

In contrast to G0(ε), however, it is not possible to express G(p2/µ2, 0, ε(n + 2)) entirely in terms
of simple Γ-functions. A full derivation of the analytic expression for G(p2/µ2, 0, ε(n+ 2)) that, to
our knowledge, was first obtained by Broadhurst in 1993 [28] is far beyond the scope of this work
and we will therefore just sketch the key aspects of the derivation here. First of all, we need to

2In fact there are only four significant terms. The first one comes from F (1) when the running indices, k and m,
take on the values k = m = 0 and the other three are associated with F (2) for the values (k,m)=(0,0),(1,0),(0,1).
The function F (0) does not contribute to the lowest order 1/εn+1.
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remind ourselves of the fact that the major problem in calculating the bubble diagrams arises from
the graph, where the modified gluon line is exchanged between the fermion and the antifermion
line. The corresponding two-loop integral (see eq. (A.7)) involves a propagator with a non-integer
exponent which makes the calculation of the integral very challenging.

Over the last decades, many attempts have been made to find a suitable expansion for this
and other related integrals. One of the first techniques, developed to resolve this issue, was the
Gegenbauer integration technique [55] which we applied to derive the result given in eq. (A.8).
Exploiting the symmetries of the integral, Broadhurst, Gracey and Kreimer were able to set up a
recurrence relation and proved that the function G(p2/µ2, ε, δ) could be reduced to a Saalschützian

3F2 hypergeometric series [57]. Applying systematically various identities for hypergeometric series
one can show that it is possible to rewrite this Saalschützian 3F2 series in the form [28, 27]

G(p2/µ2, 0, δ) =
32

3

(
− p

2

µ2
eC
)−δ

1

1− (1− δ)2

∞∑
k=2

(−1)kk

(k2 − (1− δ)2)2 , (A.17)

where C is the same scheme-dependent constant that we already encountered in eq. (A.4). Re-
member, in the MS-scheme C = −5/3. The significance of eq. (A.17) for the remainder of this
section is reflected by the fact that this expression for G(p2/µ2, 0, δ) is consistent with the Borel
transform of the correlation function Π(p2). To demonstrate this connection we need to consider
that all information on the order in a = αsNf/π of the bubble diagrams is comprised in the number
of fermion loop insertions into the gluon line. Thus, instead of summing all different graphs at
order 1/Nf , we can look at the gluon propagator and first calculate the sum of n fermion bubble
insertions. The resulting effective propagator, which is usually called a bubble chain, has the form
[27, 34]

Dab
µν(k) =

−i
k2 + i0+

(
gµν −

kµkν
k2

)
1

1 + π̂(k2)
δab (A.18)

=
−i

k2 + i0+

(
gµν −

kµkν
k2

)
δab

∞∑
n=0

[
−αsNf

6π
ln

(
µ2

−k2
e−C

)]n
,

where we have used Landau gauge and the renormalized fermion loop π̂(k2) is given by eq. (A.4).
Now we can easily perform the Borel transformation, which according to eq. (3.4) is given by
[27, 34]

B[4π αsD
ab
µν ](k, u) =

−i
k2 + i0+

(
gµν −

kµkν
k2

)
δab
(
− 24π2

Nf

) ∞∑
n=0

un

n!

[
ln

(
µ2

−k2
e−C

)]n
(A.19)

=
−i

k2 + i0+

(
gµν −

kµkν
k2

)
δab
(
− 24π2

Nf

)
exp

[
u ln

(
µ2

−k2
e−C

)]
=

−i
k2 + i0+

(
gµν −

kµkν
k2

)
δab
(
− 24π2

Nf

)(
µ2

−k2
e−C

)u
=

−i δab
(−k2 − i0+)2+u

(
gµν k

2 − kµkν
)(
− 24π2

Nf

)(
µ2 e−C

)u
.

In the expression above, we added a factor g2 = 4παs in the definition of our Borel transform, which
takes into account the vertices at the end points of our bubble chain when the gluon propagator
is attached to the large fermion loop of the diagrams in Fig. A.1. Eq. (A.19) describes the
Borel transform of the fully renormalized bubble chain, which is essentially identical with the
renormalization of the effective coupling in the exponent of the formula for the inverse Borel
transformation (see eq. (3.5)).

Up to now, we have only taken into account the fermionic part of the one loop QCD β-function
∝ Nf/(6π), but did not consider the contribution coming from gluon and ghost bubbles. Thus,
to order 1/Nf in the flavour expansion QCD is not asymptotically free and essentially identical to
QED. Nevertheless, almost all cases in which exact higher order result are available suggest that
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we can recover the expected positions of UV and IR renormalons in QCD, once we substitute Nf

with the full value of β0 [33]:

Nf → −
3

2

(
11

3
CA −

2

3
Nf

)
= −3

2
β0. (A.20)

Due to this substitution it is therefore possible to partly consider gluonic contributions attributed
to diagrams that are gauge-dependent and much harder to calculate exactly. This simple proce-
dure, which is usually referred to as Naive Non-Abelianization (NNA) or large-β0 approximation,
is the main reason why we consider the fermion bubble diagrams in the first place.

If we replace the gluon propagator with the modified propagator

B[4π αsD
ab
µν ](k, u) =

−i δab
(−k2 − i0+)2+u

(
gµν k

2 − kµkν
)(

16π2

β0

)(
µ2 e−C

)u
. (A.21)

and calculate the sum of the diagrams in Fig. A.1, the Borel transformed correlation function to
order 1/Nf is found to be [34]

B[Π](p2, u) =
32

3π

(
− p

2

µ2
eC
)−u

1

1− (1− u)2

∞∑
k=2

(−1)k k

(k2 − (1− u)2)2 , (A.22)

which confirms the expression given in eq. (A.17). As one can see, the Borel transform of the
correlation function exhibits an undesirable pole at u = 0, which is due to the fact that in the
derivation of eq. (A.22) we considered only the renormalization of the fermion loops in the bubble
chain, but did not incorporate the counterterm for the subtraction of the whole diagrams. In the
Appendix of Ref. [34] it is shown that a proper renormalization amounts to the cancellation of the
singularity at u = 0.

Alternatively, we can also take one derivative with respect to the external momentum p2 to
remove this pole of the Borel transformed correlation function. Since the derivative of Π(p2) with
respect to p2 gives the Adler function (see eq. (3.8)), we immediately obtain an expression for the
Borel tranform of the Adler function in the large-β0 approximation. [27, 56]

B[D](p2, u) =
32

3π

(
− p

2

µ2
eC
)−u

u

1− (1− u)2

∞∑
k=2

(−1)k k

(k2 − (1− u)2)2 (A.23)

=
32

3π

(
− p

2

µ2
eC
)−u

1

2− u
∞∑
k=2

(−1)k k

(k2 − (1− u)2)2 .
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Appendix B

The Massless Two-Loop Two-Point
Function

In this appendix we calculate the massless two-loop two-point function, i.e. the two-loop contri-
bution Π(0) to the Adler function in the 1/Nf -expansion (see Fig. A.1), and verify the result of
eq. (A.5). In contrast to appendix A, however, we deal here with the similar QED calculation,
that is the exchanged gluon is replaced by a corresponding photon line. To obtain the result for
the QCD case one simply needs to account for the corresponding colour factor. All subsequent
results in this section will be derived using dimensional regularization in d = 4 − 2ε space-time
dimensions.

Diagrams Containing a Self-energy Subgraph

We begin our analysis with the computation of the two diagrams depicted in the first row of
Fig. A.1. Since it makes no difference whether the photon (gluon) is attached to the fermion or
antifermion line of the loop, both diagrams yield exactly the same result. According to the usual
QED Feynman rules the amplitude Mµν

1 of either graph is given by

iMµν
1 = (ie)2 µ̃2ε

∫
ddk

(2π)d
(−1) Tr

[
γµ i/k (−iΣ(/k)) i/k γν i(/k + /p)

]
[k2 + i0+]2 [(k + p)2 + i0+]

, (B.1)

where Σ(/k) denotes the electron self-energy subgraph ( see Fig. B.1b), which can be calculated in
the following way:

−iΣ(/k) = (ie)2 µ̃2ε

∫
ddq

(2π)d
γρ i(/k − /q) γσ

[(k − q)2 + i0+]
· −i

(
gρσq

2 − (1− ξ)qρqσ
)

[q2 + i0+]2
(B.2)

= −e2 µ̃2ε

∫
ddq

(2π)d

{
(2− d)(/k − /q)

[(k − q)2]+ [q2]+
− (1− ξ)2/q(k · q)− q2(/q + /k)

[(k − q)2]+ [q2]2+

}
= −e2 µ̃2ε

[
Σa(/k)− (1− ξ) Σb(/k)

]
.

In eq. (B.2) above, we introduced the abbreviation [p2]± ≡ [p2±i0+], which will be used throughout
this section. Before we proceed with the calculation of the electron self-energy, it is convenient to
consider a specific class of loop integrals that will often appear during our analysis of the massless
two-loop two-point function. The integrals of this class have the generic form
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(b)

Fig. B.1: Calculation of vacuum polarization at two-loops. (a) Two-loop diagram
containing a fermion self-energy subgraph. (b) Representation of the fermion self-
energy subgraph nested within the diagram depicted in (a).

Z(p2, α, β, d) ≡
∫

ddk

(2π)d
1

[k2]α+ [(k − p)2]β+
=

∫
ddk

(2π)d
1

[k2]α+ [(k + p)2]β+
(B.3)

=
Γ(α+ β)

Γ(α) Γ(β)

∫
ddk

(2π)d

1∫
0

dx
(1− x)α−1 xβ−1

[k2(1− x) + (k2 − 2k · p+ p2)x+ i0+]α+β

= i
Γ(α+ β − d/2)

Γ(α) Γ(β)
· (−1)α+β

(4π)d/2

1∫
0

dx
(1− x)α−1 x1−β

(−p2x(1− x)− i0+)α+β−d/2

= i
(−1)α+β

(4π)d/2
· Γ(α+ β − d/2) Γ(d/2− α) Γ(d/2− β)

Γ(α) Γ(β) Γ(d− α− β) (−p2 − i0+)α+β−d/2 ,

where α and β can take on arbitrary positive integer numbers. For later convenience it is further-
more helpful to define

N(α, β, d) : =
Z(p2, α, β, d)

(−p2 − i0+)d/2−α−β
(B.4)

= i
(−1)α+β

(4π)d/2
· Γ(α+ β − d/2) Γ(d/2− α) Γ(d/2− β)

Γ(α) Γ(β) Γ(d− α− β)
.

Another handy expression that will be used a lot in the following relates integrals of different
arguments with each other:

Z(p2, α+ 1, β, d) = Z(p2, α, β + 1, d) = (B.5)

=
i (−1)d/2

(4π)d/2
Γ(α+β−d/2+1) Γ(d/2−α−1) Γ(d/2−β)

Γ(α+1) Γ(β) Γ(d−α−β−1) (p2+i0+)α+β+1−d/2

= Z(p2, α, β, d)
(α+β−d/2) (d−α−β−1)

(d/2−α−1)α (p2 + i0+)
.

Since we are going to rewrite all subsequent results in terms of the integrals defined in eq. (B.3),
we will refer to this class of loop integrals as one-loop master integral.

Applying these definitions to the calculation of the electron self-energy, the first integral in eq. (B.2)
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yields

Σa(/k) =

∫
ddq

(2π)d
(2− d)(/k − /q)

[(k − q)2]+ [q2]+
(B.6)

= (2− d)

[
/k Z(k2, 1, 1, d)− /k

2

Z(k2, 1, 1, d)

k2

]
= (2− d)

/k

2
· Z(k2, 1, 1, d),

In order to sketch how this result can be derived, let us consider the following tensor integral which
occurs in the calculation of Σa above:∫

ddq

(2π)d
qµ

[(k − q)2]+ [q2]+
. (B.7)

An easy way to solve this integral is to perform a tensor reduction and decompose the loop
integral into scalar integrals. Since the result of the integral given in eq. (B.7) can only depend on
the momentum k, it has the Lorentz decomposition∫

ddq

(2π)d
qµ

[(k − q)2]+ [q2]+
= kµB1(q2; 0, 0), (B.8)

where B1 can be expressed through scalar integrals only. Contracting both sides with kµ gives

k2B1 =

∫
ddq

(2π)d
q · k

[(k − q)2]+ [q2]+
(B.9)

=
1

2

∫
ddq

(2π)d

[
k2 + q2 − (k − q)2

]
[(k − q)2]+ [q2]+

.

Neglecting all terms that lead to ’scaleless’ integrals we get

k2B1 =
1

2

∫
ddq

(2π)d
k2

[(k − q)2]+ [q2]+
=

1

2
k2 Z(k2, 1, 1, d) (B.10)

and, thus, eq. (B.7) is given by∫
ddq

(2π)d
qµ

[(k − q)2]+ [q2]+
=

1

2
kµ Z(k2, 1, 1, d). (B.11)

The second integral of eq. (B.2), Σb(/k), can be solved in a similar fashion. A straightforward
calculation yields

Σb(/k) =

∫
ddq

(2π)d
2/q(k · q)− q2(/q + /k)

[(k − q)2]+ [q2]2+
(B.12)

=
/k

2

[
k2 Z(k2, 2, 1, d)− Z(k2, 1, 1, d)

]
.

Combining Σa and Σb and exploiting the relation (B.5), we obtain

−iΣ(/k) = e2 µ̃2ε /k

2
ξ (d− 2)Z(k2, 1, 1, d) =

/k

[−k2 − i0+]2−d/2
· ξ · f(ε), (B.13)

with

f(ε) =e2 µ̃2ε (d− 2)

2
·N(1, 1, d) = e2 µ̃2ε (d− 2)

2
· i

(4π)d/2
Γ(2− d/2) [Γ(d/2− 1)]2

Γ(d− 2)
. (B.14)
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As one can see, the amplitude of the electron self-energy diagram depends a lot on the choice of the
gauge parameter ξ and vanishes in Landau gauge (ξ = 0). Consequently, all diagrams containing
Σ(/k) as subgraph are also identical to zero and do not need to be considered. This fact provides
the main reason for the usefulness of Landau gauge in the calculation of the massless two-loop
two-point function.

Even though it is now apparent why Landau gauge represents the most suitable gauge choice,
we will continue our analysis in general Rξ-gauge and keep the gauge parameter arbitrary. As we
are going to see, due to gauge invariance the ξ-dependent terms cancel anyway in the sum of all
three diagrams that contribute to the massless two-loop two-point function.

Using the result of eq. (B.13), the amplitude Mµν
1 of the diagram depicted in Fig. B.1 is given

by

iMµν
1 =− i e2 µ̃2ε f(ε) ξ

∫
ddk

(2π)d
(−1) Tr

[
γµ /k /k /k γν (/k + /p)

]
[k2]

4−d/2
+ [(k + p)2]+

(B.15)

=− i e2 µ̃2ε f(ε) ξ · 4
∫

ddk

(2π)d
−k2gµν − gµν(k · p)
[k2]

3−d/2
+ [(k + p)2]+

− i e2 µ̃2ε f(ε) ξ · 4
∫

ddk

(2π)d
kµpν + pµkν + 2kµkν

[k2]
3−d/2
+ [(k + p)2]+

where the simplifications of the Dirac structure have been carried out by means of the FeynCalc
Mathematica package [58],[59]. The easiest way to proceed is to decompose the tensor integrals
into scalar integrals as demonstrated in the calculation of the electron self-energy above. One
finally obtains:

•
∫

ddk

(2π)d
−k2gµν

[k2]
3−d/2
+ [(k + p)2]+

= −gµν Z(k2, 2− d/2, 1, d) (B.16)

•
∫

ddk

(2π)d
−(k · p) gµν

[k2]
3−d/2
+ [(k + p)2]+

=
gµν

2

[
Z(k2, 2− d/2, 1, d)− p2Z(k2, 3− d/2, 1, d)

]
•

∫
ddk

(2π)d
kµpν

[k2]
3−d/2
+ [(k + p)2]+

= −p
µpν

2

[
Z(p2, 3− d/2, 1, d) +

Z(p2, 2− d/2, 1, d)

p2

]
•

∫
ddk

(2π)d
pµkν

[k2]
3−d/2
+ [(k + p)2]+

= −p
µpν

2

[
Z(p2, 3− d/2, 1, d) +

Z(p2, 2− d/2, 1, d)

p2

]
.

The last term in eq. (B.15) can be decomposed in the form∫
ddk

(2π)d
kµkν

[k2]
3−d/2
+ [(k + p)2]+

= gµνp2B00 + pµpνB11. (B.17)

In order to determine the coefficients B00 and B11 we need to contract both sides with gµν and
pµpν , respectively. After a short calculation, we get

∫
ddk

(2π)d
kµkν

[k2]
3−d/2
+ [(k + p)2]+

=

(
gµν − d p

µpν

p2

)
1

2 (1− d)

[
Z(p2, 1− d/2, 1, d)

2p2
(B.18)

+
p2 Z(p2, 3− d/2, 1, d)

2
− Z(p2, 2− d/2, 1, d)

+
pµpν

p2
Z(p2, 2− d/2, 1, d)

]
.
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k q

q-p
k-p

p p

k-q νμ

Fig. B.2: Second diagram needed for the calculation of the two-loop vacuum polar-
ization function. This graph contains an overlapping divergence.

Putting all these results together, the amplitude Mµν
1 is given by

iMµν
1 =− i e2 µ̃2ε f(ε) ξ · 4 Z(p2, 2− d/2, 1, d)

6 (1− d) (4− d)
(B.19)

·
{
gµν

(
6d2 − 22d+ 16

)
− pµpν

p2

(
8d2 − 32d+ 24

)}
=− i e4 µ̃4ε ξ · 2

3

(d− 2)

(d− 4)
N(1, 1, d) · Z(p2, 2− d/2, 1, d)

{
(3d− 8) gµν − 4 (d− 3)

pµpν

p2

}
.

Diagram Containing a Vertex Subgraph

The calculation of the second diagram needed for the computation of the two-loop vacuum po-
larization function (see Fig. B.2) requires some more effort due to the fact that it contains an
overlapping divergence. In contrast to the previous section, where we were able to reduce a two-
loop diagram with a nested subdivergence to one-loop computations only, we now have to face the
problem that such a reduction is not always possible, since the internal photon line is common to
both subdivergences. Nevertheless, we will see that integration-by-parts (IBP) techniques prove
very helpful in this context to express the occurring loop momentum integrals in terms of the
one-loop integral defined in eq. (B.3).

The amplitude Mµν
2 of the diagram depicted in Fig. B.2 is given by

iMµν
2 = (ie)4 µ̃4ε

∫∫
ddk

(2π)d
ddq

(2π)d

{
(−1) Tr

[
γµ i(/k − /p) γρ i(/q − /p) γν i/q γσ i/k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+

(B.20)

· −i
[
gρσ(k − q)2 − (1− ξ)(k − q)ρ(k − q)σ

]
[(k − q)2]2+

}
.

Since the amplitude depends only on the external momentum p, we can make the following
ansatz consistent with Lorentz covariance:

iMµν
2 = gµνp2A+ pµpν B, (B.21)

where the coefficients A and B can once again be expressed through scalar integrals only. In order
to determine these coefficients, it is appropriate to contract our ansatz with both gµν and pµpν :

• iMµν
2 gµν = p2 (Ad+B) (B.22)

• iMµν
2 pµpν =

(
p2
)2

(A+B). (B.23)
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Contraction with gµν

We start our analysis with the computation of the contraction of the amplitude Mµν
2 with gµν .

The contracted amplitude is given by

iMµν
2 gµν = i e4 µ̃4ε

∫∫
ddk

(2π)d
ddq

(2π)d

{
Tr
[
γµ (/k − /p) γρ (/q − /p) γµ /q γρ /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]+

(B.24)

− (1− ξ) Tr
[
γµ (/k − /p) (/k − /q) (/q − /p) γµ /q (/k − /q) /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]2+

}
= i e4 µ̃4ε

[
Ig,1 − (1− ξ) Ig,2

]
.

Calculation of Ig,1

We will first concentrate on the calculation of the scalar integral

Ig,1 =

∫∫
ddk

(2π)d
ddq

(2π)d
Tr
[
γµ (/k − /p) γρ (/q − /p) γµ /q γρ /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]+

. (B.25)

The numerator of this integral involves a trace over a product of eight γ-matrices that can be
simplified in the following way

num(Ig,1) = Tr
[
γµ (/k − /p) γρ (/q − /p) γµ /q γρ /k

]
(B.26)

= 4 (d− 2)
{

(d− 4) k2 (p · q − q2)

+ (k · p)
[
(d− 4) q2 + 4 (k · q)− 4 (p · q)

]
+ (k · q)

[
4(p · q)− (d− 4)p2

]
− 4(k · q)2

}
,

where we again used FeynCalc to perform the simplifications [58],[59]. For the purpose of decom-
posing Ig,1 into simpler integrals, it is convenient to rewrite the occurring scalar products using
the identities:

• k · q =
1

2

[
k2 + q2 − (k − q)2

]
(B.27)

• k · p =
1

2

[
k2 + p2 − (k − p)2

]
(B.28)

• p · q =
1

2

[
p2 + q2 − (q − p)2

]
. (B.29)

Replacing all scalar products in eq. (B.26) by the expressions given above yields

num(Ig,1) = 4 (d− 2)
{(4− d)

2

[
k2 (q − p)2 + q2 (k − p)2

]
(B.30)

+
(d− 8)

2
p2 (k − q)2 + (k − q)2 (q − p)2

+ k2 (k − q)2 −
[
(k − q)2

]2
+ q2

[
p2 + (k − q)2 − k2 − (q − p)2

]
+ (k − p)2

[
p2 + (k − q)2 − k2 − (q − p)2

]
+ p2

[
(q − p)2 − p2 + k2

] }
Since the diagram depicted in Fig. B.2 is symmetric in both loop momenta, we see that the

structure of the numerator is invariant under the exchange of k and q, as well as under the
simultaneous exchange of k ↔ (k − p) and q ↔ (q − p). Exploiting this symmetry, we obtain

num(Ig,1) = 4 (d− 2)
{

(4− d) k2 (q − p)2 −
(
p2
)2

(B.31)

+
(d− 8)

2
p2 (k − q)2 −

[
(k − q)2

]2
+ 4 p2 (q − p)2 − 2 k2 q2 + 4 k2 (k − q)2

}
,
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where the last two terms lead to vanishing integrals (’scaleless’ integrals) and do not contribute to
the final result. Considering the structure of the denominator, the integral Ig,1 is thus given by

Ig,1 = 4 (d− 2)

{∫∫
ddk

(2π)d
ddq

(2π)d
(4− d)

[(k − p)2]+ [q2]+ [(k − q)2]+
(B.32)

+
(d− 8)

2

∫∫
ddk

(2π)d
ddq

(2π)d
p2

[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+

−
∫∫

ddk

(2π)d
ddq

(2π)d
(k − q)2

[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+

+ 4 p2

∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − p)2]+ [q2]+ [k2]+ [(k − q)2]+

−
∫∫

ddk

(2π)d
ddq

(2π)d

(
p2
)2

[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]+

}

= 4 (d− 2)
{

(4− d) Iag,1 +
(d− 8) p2

2
Ibg,1 − Icg,1 + 4 p2 Idg,1 −

(
p2
)2
Ieg,1

}
.

The first four two-loop integrals of the equation above can easily be reduce to one-loop integrals
of the form given in eq. (B.3). To demonstrate this decomposition consider the first integral Iag,1:

Iag,1 =

∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − p)2]+ [q2]+ [(k − q)2]+
. (B.33)

First performing the integration over the loop momentum q gives

Iag,1 =

∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − p)2]+ [q2]+ [(k − q)2]+
(B.34)

=

∫
ddk

(2π)d
1

[(k − p)2]+
· Z(k2, 1, 1, d)

=

∫
ddk

(2π)d
1

[(k − p)2]+ [k2]
2−d/2
+

·N(1, 1, d)

= N(1, 1, d) · Z(p2, 2− d/2, 1, d),

where we made use of the definition introduced in eq. (B.4). The other integrals of eq. (B.32)
except for Ieg,1 can be solved in a similar fashion, yielding

• Ibg,1 =
[
Z(p2, 1, 1, d)

]2
(B.35)

• Icg,1 = −1

2
p2
[
Z(p2, 1, 1, d)

]2
(B.36)

• Idg,1 = N(1, 1, d) · Z(p2, 3− d/2, 1, d). (B.37)

In order to sketch how the result for Icg,1 was derived, note that in the numerator, (k − q)2 =

k2 + q2 − 2 k · q, only the last term leads to a non-vanishing integral:

Icg,1 =

∫∫
ddk

(2π)d
ddq

(2π)d
(k − q)2

[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+
(B.38)

=

∫∫
ddk

(2π)d
ddq

(2π)d
−2 k · q

[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+

=− 2

∫
ddk

(2π)d
kµ

[(k − p)2]+ [k2]+
·
∫

ddq

(2π)d
qµ

[(q − p)2]+ [q2]+
.

Both integrals in the last line can then be decomposed according to eq. (B.8).
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α

β γ

δ σ

Fig. B.3: Topology of the two-loop two-point function diagram depicted in Fig. B.2.

Integration-by-Parts Technique

In contrast to the integrals Iag,1 to Idg,1, it is not possible to reduce the last integral Ieg,1 to one-loop
computations, since Ieg,1 is associated with the case of an overlapping divergence.
Consider a generic two-loop integral of the form

I(α, β, γ, δ, σ, d) =

∫∫
ddk ddq

[(k − q)2]α+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+ [q2]σ+
, (B.39)

that corresponds to the graph given in Fig. B.3. If one of the exponents vanished, one would be
able to express eq. (B.39) in terms of nested one-loop integrals, which could then be solved by
means of the one-loop master integrals given in eq. (B.3).

To achieve such a reduction it is convenient to use integration-by-parts (IBP), where one exploits
the fact that in dimensional regularization the integral of a total derivative is zero, if the integrand
vanishes at the boundaries:

∫
ddk

∂

∂kµ
F (k) = 0. (B.40)

In the equation above F (k) denotes an arbitrary function that depends on the loop momentum k.
Since in our case of the massless two-loop two-point function we are dealing with scalar integrals,
we contract the derivative with the momentum (k − q)µ of the internal photon line. Thus, we
obtain ∫∫

ddk

(2π)d
ddq

(2π)d
∂

∂kµ

{
(k − q)µ

[(k − q)2]α+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+ [q2]σ+

}
= 0. (B.41)

Performing the derivatives

• ∂

∂kµ
(k − q)µ = δµµ = d (B.42)

• (k − q)µ ∂

∂kµ
[
(k − q)2

]−α
=

−2α

[(k − q)2]α
(B.43)

• (k − q)µ ∂

∂kµ
[
(k − p)2

]−β
= −β

{
1

[(k − p)2]β
+

(k − q)2 − (q − p)2

[(k − p)2]β+1

}
(B.44)

• (k − q)µ ∂

∂kµ
[
k2
]−δ

= −δ
{

1

[k2]δ
− q2 − (k − q)2

[k2]δ+1

}
(B.45)

gives

0 =

∫∫
ddk

(2π)d
ddq

(2π)d
∂

∂kµ

{
(k − q)µ

[(k − q)2]α+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+ [q2]σ+

}
(B.46)

=

∫∫
ddk

(2π)d
ddq

(2π)d
(d− 2α− β − δ)

[(k − q)2]α+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+ [q2]σ+
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+ β

{∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − q)2]α+ [(k − p)2]β+1
+ [(q − p)2]γ−1

+ [k2]δ+ [q2]σ+

−
∫∫

ddk

(2π)d
ddq

(2π)d
1

[(k − q)2]α−1
+ [(k − p)2]β+1

+ [(q − p)2]γ+ [k2]δ+ [q2]σ+

}

+ δ

{∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − q)2]α+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+1
+ [q2]σ−1

+

−
∫∫

ddk

(2π)d
ddq

(2π)d
1

[(k − q)2]α−1
+ [(k − p)2]β+ [(q − p)2]γ+ [k2]δ+1

+ [q2]σ+

}
.

The integral in eq. (B.39) is therefore given by

I(α, β, γ, δ, σ, d) =
β [I(α− 1, β + 1, γ, δ, σ, d)− I(α, β + 1, γ − 1, δ, σ, d)]

(d− 2α− β − δ) (B.47)

+
δ [I(α− 1, β, γ, δ + 1, σ, d)− I(α, β, γ, δ + 1, σ − 1, d)]

(d− 2α− β − δ) .

Using this result for the computation of the diagram depicted in Fig. B.2, the two-loop integral
Ieg,1 can be decomposed in the form

Ieg,1 ≡ I(1, 1, 1, 1, 1, d) =
I(0, 2, 1, 1, 1, d)− I(1, 2, 0, 1, 1, d)

d− 4
(B.48)

+
I(0, 1, 1, 2, 1, d)− I(1, 1, 1, 2, 0, d)

d− 4

=
2 [I(0, 2, 1, 1, 1, d)− I(1, 2, 0, 1, 1, d)]

d− 4
.

In the last line we once again exploited the fact that the diagram is invariant under the exchange of
k and q, as well as under the simultaneous exchange of k ↔ (k− p) and q ↔ (q− p). As indicated
above, both integrals in eq. (B.48) can be solved in terms of the one-loop master integrals given in
eq. (B.3):

I(0, 2, 1, 1, 1, d) =

∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − p)2]2+ [(q − p)2]+ [k2]+ [q2]+
(B.49)

= Z(p2, 1, 2, d) · Z(p2, 1, 1, d),

I(1, 2, 0, 1, 1, d) =

∫∫
ddk

(2π)d
ddq

(2π)d
1

[(k − q)2]+ [(k − p)2]2+ [k2]+ [q2]+

= N(1, 1, d) · Z(p2, 3− d/2, 2, d).

Thus, we finally get

Ieg,1 =
2

d− 4

{
Z(p2, 1, 2, d) · Z(p2, 1, 1, d)−N(1, 1, d) · Z(p2, 3− d/2, 2, d)

}
. (B.50)
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Combining all previous results, the integral Ig,1 is given by

Ig,1 = 4 (d− 2)

{
(4− d)N(1, 1, d) · Z(p2, 2− d/2, 1, d) (B.51)

+
1

2
(d− 8) p2

[
Z(p2, 2− d/2, 1, d)

]2
+

1

2
p2
[
Z(p2, 2− d/2, 1, d)

]2
+ 4 p2N(1, 1, d) · Z(p2, 3− d/2, 1, d)

−
(
p2
)2 · 2

(d− 4)
Z(p2, 1, 2, d) · Z(p2, 1, 1, d)

+
(
p2
)2 · 2

(d− 4)
N(1, 1, d) · Z(p2, 3− d/2, 2, d)

}

= 4 (d− 2)

{
(4− d)N(1, 1, d) · Z(p2, 2− d/2, 1, d)

+ p2
[
Z(p2, 2− d/2, 1, d)

]2 (d− 4)2 + d

2 (d− 4)

+ p2N(1, 1, d) · Z(p2, 3− d/2, 1, d)
2 (2− d)

d− 4

}

Calculation of Ig,2

We now turn to the computation of the second scalar integral of the contracted amplitude:

Ig,2 =

∫∫
ddk

(2π)d
ddq

(2π)d
Tr
[
γµ (/k − /p) (/k − /q) (/q − /p) γµ /q (/k − /q) /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]2+

. (B.52)

Using FeynCalc to simplify the Dirac structure, the numerator of the integral becomes [58],[59]

num(Ig,2) = Tr
[
γµ (/k − /p) (/k − /q) (/q − /p) γµ /q (/k − /q) /k

]
(B.53)

= 4 (d− 2)
{(
k2
)2

(p · q − q2) + q2
[
p2(k · q) + 2 (k · p)2

+ (k · p)
(
q2 − 2(k · q + p · q)

) ]
+ k2

[
q2(k · p− 2p2 + p · q)

+ (k · q)(p2 − 2 (p · q) + 2q2) + 2 (p · q)(p · q − k · p)−
(
q2
)2 ]}

.

In order to further reduce Ig,2 into simpler integrals, we can rewrite the scalar products in the
numerator by means of eqs. (B.27 - B.29):

num(Ig,2) = 2 (d− 2)
{
k2
[
(q − p)2

]
+ q2

[
(k − p)2

]2
+
(
k2
)2

(q − p)2 (B.54)

+
(
q2
)2

(k − p)2 − k2 p2(q − p)2 − q2 p2(k − p)2

+ k2 p2(k − p)2 + q2 p2(q − p)2 − k2 q2(q − p)2

− k2 q2(k − p)2 − k2(q − p)2(k − p)2 − q2(q − p)2(k − p)2

− k2(k − q)2(q − p)2 − q2(k − q)2 − (k − p)2
}
.

Exploiting the symmetry of the diagram, we finally get

num(Ig,2) = 4 (d− 2)
{

2
(
k2
)2

(q − p)2 − k2 p2(q − p)2 − k2(k − q)2(q − p)2 (B.55)

+ k2 p2(k − p)2 − k2 q2(k − p)2 − k2(q − p)2(k − p)2
}
,
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where the last three terms give vanishing contributions. Taking the structure of the denominator
into account, the integral Ig,2 is given by

Ig,2 = 4 (d− 2)

{∫∫
ddk

(2π)d
ddq

(2π)d
2 k2

[(k − p)2]+ [q2]+ [(k − q)2]2+
(B.56)

−
∫∫

ddk

(2π)d
ddq

(2π)d
p2

[(k − p)2]+ [q2]+ [(k − q)2]2+

−
∫∫

ddk

(2π)d
ddq

(2π)d
1

[(k − p)2]+ [q2]+ [(k − q)2]+

}
= 4 (d− 2)

{
2 Iag,2 − p2 Ibg,2 − Icg,2

}
.

In contrast to the calculation of Ig,1, where we had to apply integration-by-parts to solve the
occurring integrals, Ig,2 can easily be reduced to the one-loop master integrals defined in eq. (B.3)
without further knowledge. Following a similar approach as in the previous section, we obtain

• Iag,2 = N(1, 2, d) · Z(p2, 2− d/2, 1, d) (B.57)

• Ibg,2 = N(1, 2, d) · Z(p2, 3− d/2, 1, d) (B.58)

• Icg,2 = N(1, 1, d) · Z(p2, 2− d/2, 1, d). (B.59)

Inserting these results back into eq. (B.56), the integral Ig,2 takes the form

Ig,2 = 4 (d− 2)
{

2N(1, 2, d) · Z(p2, 2− d/2, 1, d) (B.60)

− p2N(1, 2, d) · Z(p2, 3− d/2, 1, d)

−N(1, 1, d) · Z(p2, 2− d/2, 1, d)
}

= 4 (d− 2)Z(p2, 2− d/2, 1, d)
{
N(1, 2, d)

d

4− d −N(1, 1, d)
}

= 4 (d− 2)Z(p2, 2− d/2, 1, d) ·N(1, 1, d)
(d− 2)2

d− 4
.

Thus, we finally obtain the following expression for the contraction of the amplitude Mµν
2 with

gµν :

iMµν
2 gµν = ie4 µ̃4ε [Ig,1 − (1− ξ)Ig,2] (B.61)

= ie4 µ̃4ε 4
(d− 2)

(d− 4)

{[
Z(p2, 1, 1, d)

]2
p2 (d− 4)2 + d

2

+N(1, 1, d) · Z(p2, 2− d/2, 1, d)
2 (24− 20d+ 7d2 − d3)

(d− 4)

+ ξ (d− 2)2N(1, 1, d) · Z(p2, 2− d/2, 1, d)

}

Contraction with pµpν

The computation of the second conditional equation (see eq. (B.23)) needed to determine the
coefficients A and B of our ansatz given in eq. (B.21), follows basically the same procedure as the
calculation we have done in the previous sections.
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The contraction of Mµν
2 with pµpν yields

iMµν
2 pµpν = i e4 µ̃4ε

∫∫
ddk

(2π)d
ddq

(2π)d

{
Tr
[
/p (/k − /p) γρ (/q − /p) /p /q γρ /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]+

(B.62)

− (1− ξ) Tr
[
/p (/k − /p) (/k − /q) (/q − /p) /p /q (/k − /q) /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]2+

}
= i e4 µ̃4ε

[
Ip,1 − (1− ξ) Ip,2

]
.

where the numerators of both integrals, Ip,1 and Ip,2, involve a trace over a product of eight
γ-matrices.

Calculation of Ip,1

First, we deal with the calculation of the scalar integral

Ip,1 =

∫∫
ddk

(2π)d
ddq

(2π)d
Tr
[
/p (/k − /p) γρ (/q − /p) /p /q γρ /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]+

. (B.63)

After performing the Dirac algebra and substituting all occurring scalar products with the identities
given in eq. (B.27 - B.29), the numerator takes the form

num(Ip,1) = Tr
[
/p (/k − /p) γρ (/q − /p) /p /q γρ /k

]
=− 2 (d− 2)

{
k2 p2(q − p)2 + q2 p2(k − p)2 − q2

[
(k − p)2

]2
(B.64)

− k2
[
(q − p)2

]2
+ q2 k2(k − p)2 + k2 q2(q − p)2

−
(
k2
)2

(q − p)2 −
(
q2
)2

(k − p)2 − (q − p)2(k − p)2(k − q)2

− q2 k2(k − q)2 + k2(k − q)2(q − p)2 + q2(k − q)2(k − p)2

+ q2(q − p)2(k − p)2 + k2(k − p)2(q − p)2
}
.

Exploiting the fact that the diagram depicted in Fig. B.2 is symmetric in both loop momenta, the
numerator structure can be further simplified to

num(Ip,1) = 4 (d− 2)
{

2
(
k2
)2

(q − p)2 − k2 p2(q − p)2 − 2 q2 k2(k − p)2 (B.65)

+ q2 k2(k − q)2 − k2(q − p)2(k − q)2
}
,

where the last three terms can be omitted, since they lead to vanishing integrals. Combining this
result for the numerator with the denominator of eq. (B.63), we obtain

Ip,1 = 4 (d− 2)

{∫∫
ddk

(2π)d
ddq

(2π)d
2 k2

[(k − p)2]+ [(k − q)2]+ [q2]+
(B.66)

−
∫∫

ddk

(2π)d
ddq

(2π)d
p2

[(k − p)2]+ [(k − q)2]+ [q2]+

}
= 4 (d− 2)

[
2 Iap,1 − p2 Ibp,1

]
,

where both integrals, Iap,1 and Ibp,1, can be expressed in terms of one-loop master integrals. A
straightforward calculation yields

• Iap,1 = N(1, 1, d) · Z(p2, 1− d/2, 1, d) (B.67)

• Ibp,1 = N(1, 1, d) · Z(p2, 2− d/2, 1, d). (B.68)

Hence, Ip,1 is given by

Ip,1 = 4 (d− 2) ·N(1, 1, d)
{

2 · Z(p2, 1− d/2, 1, d)− p2 Z(p2, 2− d/2, 1, d)
}
. (B.69)
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Calculation of Ip,2

The second integral of eq. (B.62),

Ip,2 =

∫∫
ddk

(2π)d
ddq

(2π)d
Tr
[
/p (/k − /p) (/k − /q) (/q − /p) /p /q (/k − /q) /k

]
[(k − p)2]+ [(q − p)2]+ [q2]+ [k2]+ [(k − q)2]2+

, (B.70)

can be calculated in exactly the same way. First performing some Dirac algebra, then rewriting all
scalar products and finally exploiting the symmetry of the diagram, the numerator of Ip,2 becomes:

num(Ip,2) = Tr
[
/p (/k − /p) (/k − /q) (/q − /p) /p /q (/k − /q) /k

]
(B.71)

= 4
{(
k2
)2 [

(q − p)2
]2 − k2 p2(q − p)2(k − q)2 − k2 q2(k − p)2(q − p)2

}
.

Neglecting the last term, that gives a vanishing contribution and taking the denominator structure
into consideration, we get

Ip,2 = 4

{∫∫
ddk

(2π)d
ddq

(2π)d
k2(q − p)2

[(k − p)2]+ [q2]+ [(k − q)2]2+
(B.72)

−
∫∫

ddk

(2π)d
ddq

(2π)d
p2

[(k − p)2]+ [q2]+ [(k − q)2]+

}
= 4

[
Iap,2 − p2 Ibp,2

]
.

where the integrals, Iap,2 and Ibp,2, are given by

• Iap,2 =
p2

2
Z(p2, 2− d/2, 1, d)

[
N(1, 1, d) +N(1, 2, d)

]
(B.73)

+
1

2
Z(p2, 1− d/2, 1, d)

[
N(1, 1, d)−N(1, 2, d)

]
• Ibp,2 =N(1, 1, d) · Z(p2, 2− d/2, 1, d). (B.74)

Inserting these results back into eq. (B.72) yields

Ip,2 = 4

{
p2

2
Z(p2, 2− d/2, 1, d)

[
N(1, 2, d)−N(1, 1, d)

]
(B.75)

+
1

2
Z(p2, 1− d/2, 1, d)

[
N(1, 1, d)−N(1, 2, d)

]}
.

We hence obtain the following expression for the contraction of Mµν
2 with pµpν :

iMµν
2 pµpν = i e4 µ̃4ε

[
Ip,1 − (1− ξ) Ip,2

]
(B.76)

= i e4 µ̃4ε 4 ξ

{
p2

2
Z(p2, 2− d/2, 1, d)

[
N(1, 2, d)−N(1, 1, d)

]
+

1

2
Z(p2, 1− d/2, 1, d)

[
N(1, 1, d)−N(1, 2, d)

]}
= i e4 µ̃4ε 4

3
ξ · p2 Z(p2, 2− d/2, 1, d)

[
N(1, 2, d)−N(1, 1, d)

]
.

Since the contraction with pµpν is explicitly ξ-dependent, eq. (B.76) has a major impact on the form
of the amplitude Mµν

2 . If we choose to work in Landau gauge (ξ = 0), the contracted amplitude
vanishes which, according to the conditional eq. (B.23), implies that A = −B. Therefore, the
amplitude Mµν

2 is transversal in Landau gauge:

iMµν
2 = (gµνp2 − pµpν)A (for ξ = 0). (B.77)
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In the following, however, we will work in Rξ-gauge and will not make a specific choice for the
value of the gauge parameter. Combining all previously obtained results for the contraction with
both, gµν and pµpν , the conditional equations

1) iMµν
2 gµν = p2 (Ad+B) (B.78)

2) iMµν
2 pµpν =

(
p2
)2

(A+B) (B.79)

provide a system of equations for the coefficients A and B. Solving this system, the coefficients
are given by

A =
i e4 µ̃4ε

p2 (d− 1)

(d− 2)

(d− 4)
· 4
{[

Z(p2, 1, 1, d)
]2
p2 (d− 4)2 + d

2
(B.80)

+N(1, 1, d) · Z(p2, 2− d/2, 1, d)
2 (24− 20d+ 7d2 − d3)

(d− 4)

+ ξ N(1, 1, d) · Z(p2, 2− d/2, 1, d)

[
(d− 2)2 +

(d− 4)

3

]}

B =i e4 µ̃4ε 4 (2− d)

3 p2
−A (B.81)

and the amplitude Mµν
2 finally takes the form

iMµν
2 =i e4 µ̃4ε

(
gµν − pµpν

p2

)
· 4 (d− 2)

(d− 4) (d− 1)

{[
Z(p2, 1, 1, d)

]2
p2 (d− 4)2 + d

2
(B.82)

+N(1, 1, d) · Z(p2, 2− d/2, 1, d)
2 (24− 20d+ 7d2 − d3)

(d− 4)

}
+ ξ i e4 µ̃4ε 4

3

(d− 2)

(d− 4)
N(1, 1, d) · Z(p2, 2− d/2, 1, d)

·
{

(3d− 8) gµν − 4 (d− 3)
pµpν

p2

}
.

Sum of all Diagrams

If one compares the results of eq. (B.19) and eq. (B.82), the expected cancellation of the ξ-dependent
terms becomes obvious. Thus, in the sum of all three diagrams that contribute to the vacuum
polarization function at the two-loop level, the amplitudes Mµν

1 of the two diagrams involving a
self-energy subgraph cancel exactly the ξ-dependent term of the amplitude Mµν

2 and we obtain

iMµν =2 iMµν
1 + iMµν

2 (B.83)

=i e4 µ̃4ε

(
gµν − pµpν

p2

)
· 4 (d− 2)

(d− 4) (d− 1)

{[
Z(p2, 1, 1, d)

]2
p2 (d− 4)2 + d

2

+N(1, 1, d) · Z(p2, 2− d/2, 1, d)
2 (24− 20d+ 7d2 − d3)

(d− 4)

}
=− i e4 µ̃4ε

(
gµνp2 − pµpν

)
· 4 (d− 2)

(d− 4) (d− 1)

(−p2 − i0+)d−4

(4π)d
[Γ(d/2− 1)]3

·
{[

Γ(2− d/2)

Γ(d− 2)

]2

Γ(d/2− 1) · (d− 4)2 + d

2
+ 2 · Γ(4− d)

Γ(3d/2− 3)

(d− 2)2 + 4

(d− 4)

}

=
α2

(4π)2

(
gµνp2 − pµpν

)
· 4 (1− ε)
ε (3− 2ε)

(−p2 − i0+

4π µ̃2

)−2ε

[Γ(1− ε)]3

·
{[

Γ(ε)

Γ(2− 2ε)

]2

Γ(1− ε) · (2− ε+ 2ε2)− Γ(2ε)

Γ(3− 3ε)

(2− 2ε)2 + 4

ε

}
.
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In the last line we used α = e2/(4π) and replaced the dimension d by d = 4 − 2ε. Note again
that all QED results we have derived in this appendix, are also valid in QCD (where the internal
photon line gets substituted with a gluon), if we consider the QCD colour factors. Therefore, we
see that eq. (B.83) is consistent with the expression for the two-loop contribution Π(0) of the Adler
function given in eq. (A.5), if we take into account the notation introduced in appendix A.

81



Appendix C

QCD β-Function and Renormalon
Sum Rule Coefficients

In this appendix we provide the details on important relations and coefficients needed for the
derivation of the renormalon sum rule described in section 4.3.

C.1 QCD β-Function

First, let us consider the RG equation for the strong coupling αs in the MS-scheme for which we
use the convention:

dαs

d lnR
= β[αs(R)] = −2αs(R)

∞∑
n=0

βn

(
αs(R)

4π

)n+1

. (C.1)

The coefficients of the QCD β-function are currently known up to the five-loop term β4 [60] and,
in the notation used here, they read:

β0 = 11− 2

3
Nf , (C.2)

β1 = 102− 38

3
Nf ,

β2 =
2857

2
− 5033

18
Nf +

325

54
N2
f ,

β3 =
149753

6
+ 3564 ζ3 −

(
1078361

162
+

6508

27
ζ3

)
Nf +

(
50065

162
+

6472

81
ζ3

)
N2
f +

1093

729
N3
f ,

β4 =
8157455

16
+

621885

2
ζ3 −

88209

2
ζ4 − 288090 ζ5

+

(
− 336460813

1944
− 4811164

81
ζ3 +

33935

6
ζ4 +

1358995

27
ζ5

)
Nf

+

(
25960913

1944
+

698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

)
N2
f

+

(
− 630559

5832
− 48722

243
ζ3 +

1618

27
ζ4 +

460

9
ζ5

)
N3
f

+

(
1205

2916
− 152

81
ζ3

)
N4
f .

In numerical form the coefficients of the β-function are given by,

β0 ≈ 11− 0.6667Nf , (C.3)

β1 ≈ 102− 12.6667Nf ,

β2 ≈ 1428.5− 279.611Nf + 6.0185N2
f ,
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β3 ≈ 29243− 6946.29Nf + 405.089N2
f + 1.4993N3

f ,

β4 ≈ 537148− 186162Nf + 17567.8N2
f − 231.278N3

f − 1.8425N4
f .

The general solution of the RGE can be written in the form [48],[51]:

ln
R1

R0
=

∫ α1

α0

dαs

β[αs]
=

∫ t0

t1

dt b̂(t) = G(t0)−G(t1), (C.4)

where we used αi = αs(Ri) and changed to the integration variable t = −2π/(β0αs) with ti =
−2π/(β0αi) in the second equality. We find

G(t) = t+ b̂1 ln(−t)−
∞∑
k=2

b̂k
(k − 1) tk−1

, (C.5)

b̂(t) = G′(t) = 1 +
∞∑
k=1

b̂k
tk
, (C.6)

where the first few coefficients are given by:

b̂1 =
β1

2β2
0

, (C.7)

b̂2 =
1

4β4
0

(β2
1 − β0β2),

b̂3 =
1

8β6
0

(β3
1 − 2β0β1β2 + β2

0β3),

b̂4 =
1

16β8
0

(β4
1 − 3β0β

2
1β2 + β2

0β
2
2 + 2β2

0β1β3 − β3
0β4).

Note that there also exists a recursion relation for the coefficients b̂k [51]:

b̂n+1 = 2
n∑
i=0

b̂n−i βi+1

(−2β0)i+2
, b̂0 = 1. (C.8)

From eq. (C.4) we finally obtain the well-known definition of the scale ΛQCD,

R1eG(t1) = R0eG(t0) = ΛQCD, (C.9)

that allows us to determine an expression for ΛNkLL
QCD by truncating the series G(t) after the k-term.

In particular, the LL expression for ΛQCD is found to be:

ΛLL
QCD = R etR = R e

− 2π
β0αs(R) . (C.10)

C.2 OPE Corrections at NLO

In this part of the appendix we provide a detailed derivation of the NLL expression for the OPE
corrections,

FO = ~Cᵀ(µ) 〈 ~O(µ)〉, (C.11)

to a generic observable σ due to operators of equal dimensions (see section 3.3.1). Starting from
the RGE for the evolution matrix UNLL(µ, µ′) in the next-to-leading logarithmic approximation,

d

d lnµ
UNLL(µ, µ′) = −

[
diag

[
~γ

(1)
D

]
as(µ) + g a2

s (µ)

]
UNLL(µ, µ′), (C.12)
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where the matrix g is defined by

g := V −1γ
(2)
O V, (C.13)

it proves useful to make the following ansatz for the NLL solution:

UNLL(µ, µ′) =
[
11 + as(µ)S

]
ULL(µ, µ′)

[
11− as(µ

′)S
]

(C.14)

=
[
11 + as(µ)S

]
diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′).

Inserting this ansatz into eq. (C.12), we find:

dUNLL(µ, µ′)

d lnµ
=

[
11 + as(µ)S

]
diag

[
2~γ

(1)
D

β0

(
− β0

2
a2

s (µ)− β1

8
a3

s (µ)

)(
as(µ)

)2~γ(1)D /β0−1
]
M(µ′)

+ S

(
− β0

2
a2

s (µ)− β1

8
a3

s (µ)

)
daig

[(
as(µ)

)2~γ(1)D /β0

]
M(µ′) (C.15)

Neglecting all terms that go beyond the NLL level, we obtain:

dUNLL(µ, µ′)

d lnµ
=− as(µ)

[
11 + as(µ)S

]
diag

[
~γ

(1)
D

]
diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′) (C.16)

− β1

4β0
diag

[
~γ

(1)
D

]
a2

s (µ) diag
[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

− β0

2
a2

s (µ)S diag
[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

=− diag
[
~γ

(1)
D

]
as(µ)

[
11 + as(µ)S

]
diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

− g a2
s (µ) diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

+ a2
s (µ)

(
diag

[
~γ

(1)
D

]
S − S diag

[
~γ

(1)
D

])
diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

− β1

4β0
diag

[
~γ

(1)
D

]
a2

s (µ) diag
[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

− β0

2
S a2

s (µ) diag
[
as(µ)2~γ

(1)
D /β0

]
M(µ′)

+ g a2
s (µ) diag

[
as(µ)2~γ

(1)
D /β0

]
M(µ′),

where the first two lines in the last equality reproduce the NLL RG equation given in eq. (C.12),
while all other terms must vanish. This condition yields an defining equation for the matrix S,

diag
[
~γ

(1)
D

]
S − S diag

[
~γ

(1)
D

]
− β1

4β0
diag

[
~γ

(1)
D

]
− β0

2
S + g = 0, (C.17)

whose elements are therefore found to be:

Sij =
β1

4β0
γ

(1),i
D δij

1

(γ
(1),i
D − γ(1),j

D − β0/2)
− gij

(γ
(1),i
D − γ(1),j

D − β0/2)
(C.18)

= − β1

2β2
0

γ
(1),i
D δij +

gij

(β0/2 + γ
(1),j
D − γ(1),i

D )
.

In the second line we exploited the fact that the first term in the definition of Sij is symmetric

under exchange of indices i and j. Furthermore, note that in contrast to γ
(1)
D the matrix gij will

not be diagonal in general. For more details on the derivation of the RG evolution matrix beyond
the leading order approximation see [44, 45].
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C.3 Derivation of the R-Anomalous Dimension

Exploiting the QCD β-function

d

d lnR

(
αs(R)

4π

)
= −2

∞∑
n=0

βn

(
αs(R)

4π

)n+2

, (C.19)

it is an easy task to derive the expression (4.17) for the coefficients of the R-anomalous dimension
γR[αs] given in section 4.2.1. Starting from a perturbation series of the form

θp,α(R) = −Rp
(
αs(R)β0

2π

)α ∞∑
n=1

an

(
αs(R)

4π

)n
, (C.20)

its R-evolution equation is then given by

d

d lnR
θp,α(R) =

d

d lnR

[
−Rp (2β0)α

∞∑
n=1

an

(
αs(R)

4π

)n+α]
(C.21)

= −Rp (2β0)α
[ ∞∑
n=1

p an

(
αs(R)

4π

)n+α

+

∞∑
n=1

(−2)(α+ n) an

∞∑
j=0

βj

(
αs(R)

4π

)α+n+j+1]

= −Rp
(
αs(R)β0

2π

)α[ ∞∑
n=0

p an+1

(
αs(R)

4π

)n+1

+

∞∑
k=0

(−2)(α+ k + 1) ak+1

∞∑
j=0

βj

(
αs(R)

4π

)k+j+2]

= −Rp
(
αs(R)β0

2π

)α[ ∞∑
n=0

p an+1

(
αs(R)

4π

)n+1

+
∞∑
n=0

(−2)
n−1∑
j=0

(α+ n− j)βj an−j
(
αs(R)

4π

)n+1]

= −Rp
(
αs(R)β0

2π

)α ∞∑
n=0

[
p an+1 − 2

n−1∑
j=0

(α+ n− j)βj an−j
](
αs(R)

4π

)n+1

.

If we now define the R-anomalous dimension as

d

d lnR
θp,α(R) = −Rp

(
αs(R)β0

2π

)α
γR[αs(R)] = −Rp

(
αs(R)β0

2π

)α ∞∑
n=0

γRn

(
αs(R)

4π

)n+1

, (C.22)

we see that the coefficients γRn are indeed given by

γRn = p an+1 − 2
n−1∑
j=0

(α+ n− j)βj an−j . (C.23)

C.4 Coefficients S
(p)
k and g

(p)
l

The coefficients S
(p)
k arise in the general solution of the R-evolution equation (4.32) and are defined

via the series:

γR[t] b̂(t) e−G(t) p et p (−t)b̂1p =

∞∑
k=0

S
(p)
k

(−t)k+1
. (C.24)

The exact form of the S
(p)
k can be determined by expanding the left-hand side for large t and

subsequently comparing the coefficients for the various powers of t on both sides of the equation.
The first few coefficients read

S
(p)
0 = γ̃R0 , (C.25)

S
(p)
1 = γ̃R1 −

(
b̂1 + p b̂2

)
γ̃R0 ,
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S
(p)
2 = γ̃R2 −

(
b̂1 + p b̂2

)
γ̃R1 +

[(
1 + p b̂1

)
b̂2 +

p

2

(
p b̂2 + b̂3

)]
γ̃R0 ,

S
(p)
3 = γ̃R3 −

(
b̂1 + p b̂2

)
γ̃R2 +

[(
1 + p b̂1

)
b̂2 +

p

2

(
p b̂2 + b̂3

)]
γ̃R1

−
[
p

(
1 +

p

2
b̂1 +

p2

6
b̂2

)
b̂22 +

(
1 +

p

2
b̂1 +

p2

2
b̂2

)
b̂3 +

p

3
b̂4

]
γ̃R0 ,

where

γ̃Rn =
γRn

(2β0)n+1
. (C.26)

The coefficients g
(p)
l are defined by the series:

eG(t)p e−tp (−t)−b̂1p =
∞∑
l=0

g
(p)
l (−t)−l, (C.27)

and can be determined in a similar fashion as the functions S
(p)
k . Up to O(α4

s ) the coefficients g
(p)
l

are given by

g
(p)
0 = 1, (C.28)

g
(p)
1 = p b̂2,

g
(p)
2 =

p

2

(
p b̂22 − b̂3

)
,

g
(p)
3 =

p

6

(
p2 b̂32 − 3p b̂2 b̂3 + 2b̂4

)
,

which is in agreement with the recursion relation [51]:

g
(p)
n+1 =

1

n+ 1
p

n∑
i=0

(−1)i b̂i+2 g
(p)
n−i, g

(p)
0 = 1. (C.29)

C.5 Borel Integral

In this section we provide the details on the calculation of the Borel integral (= inverse Borel
transformation) of generic renormalon poles and also discuss the complex ambiguities associated
with IR renormalons.

We first consider the Borel transform of a generic UV-renormalon-type contribution of the
form:

B[DUV](u) =
dUV
p̃( p̃

2 + u
)1+γ , (C.30)

with p̃ > 0 and γ ∈ R. The corresponding inverse transformation is given by the Borel integral,

DUV(αs) = dUV
p̃

∞∫
0

du
e2tu( p̃

2 + u
)1+γ , (C.31)

where we introduced the variable t = −2π/(β0αs) < 0 for convenience. Since the renormalon pole
lies outside the integration range, we can easily calculate the Borel integral using the substitution
x = −2t (p̃/2 + u):

DUV(αs) = dUV
p̃

∞∫
0

du
e2tu( p̃

2 + u
)1+γ (C.32)
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= dUV
p̃ e−t p̃ (−2t)γ

∞∫
−t p̃

dx e−x x−1−γ

= dUV
p̃ e−t p̃ (−2t)γ Γ(−γ,−t p̃)

= dUV
p̃ e

2π p̃
β0αs

(
4π

β0αs

)γ
Γ

(
− γ, 2π p̃

β0αs

)
.

We stress that −t p̃ = 2πp̃/(β0αs) > 0 such that the Borel integral for UV renormalons is defined
unambiguously and does not lead to any ambiguities.

For the discussion of IR-renormalon-type contributions, we consider Borel integrals of the generic
form:

B[DIR](u) =
dIR
p(p

2 − u
)1+γ , (C.33)

where we now have p > 0 and γ ∈ R. In contrast to UV case, the integrand has a singularity at
u = p/2 as well as a corresponding branch cut for u > p/2 and we therefore need to move the
integration contour either above or below the cut. Equivalently, we can also shift the singularity
into the complex Borel plane by means of the ‘iε’ prescription, i.e. p → p ± iε. Forcing the
singularity into the lower half-plane (p = p − iε), which corresponds to taking the integration
contour above the cut, yields:

DIR(αs) = dIR
p

∞∫
0

du
e2tu(p

2 − u− iε
)1+γ = dIR

p

∞∫
0

du
e2tu

e(1+γ) ln
(
p
2
−u−iε

) (C.34)

= dIR
p

∞∫
0

du
e2tu θ(p/2− u)(p

2 − u
)1+γ + (−dIR

p )

∞∫
0

du
e2tu θ(u− p/2)

e−iπγ
(
u− p

2

)1+γ ,

where in the second integral of the last line we used:

ln(x± iε) = ln |x| ± iπ for x < 0. (C.35)

The integrals in the second line of eq. (C.34) can be calculated similarly to eq. (C.32). We finally
obtain:

DIR(αs) = −dIR
p eiπγ et p (−2t)γ Γ(γ, t p) (C.36)

= −dIR
p eiπγ e

− 2π p
β0αs

(
4π

β0αs

)γ
Γ

(
− γ,− 2π p

β0αs

)
.

Exploiting the identity,

En(x) = xn−1 Γ(1− n, x), (C.37)

one can also express this result in terms of the exponential integral En(x):

DIR(αs) = −dIR
p

(
2

p

)γ
e
− 2π p
β0αs E1+γ

(
− 2π p

β0αs

)
. (C.38)

Instead of pushing the singularity into the lower half-plane, we can also choose p = p+ iε which is
equivalent to moving the contour below the cut. In this case the Borel integral is given by,

DIR(αs) = −dIR
p

(
2

p

)γ
e
− 2π p
β0αs E1+γ

(
− 2π p

β0αs

)
− 2πi

e
− 2π p
β0αs

Γ(1 + γ)

(
4π

β0αs

)γ
, (C.39)

87



which differs from (C.38) only by the discontinuity of the branch cut.

In order to find an expression for the ambiguity caused by IR renormalons, one can easily compute
the imaginary part of eq. (C.38) or (C.39) and take the outcome as an estimate for the correspond-
ing ambiguity. For γ = 1 we can also directly calculate the imaginary part of the Borel integral
using the well-known Sokhotski-Plemelj theorem:

lim
ε→0

1

x± iε = PV

(
1

x

)
∓ iπ δ(x). (C.40)

The ambiguity for arbitrary γ ∈ R is found to be:

Amb(DIR) = Im

[ ∞∫
0

du
e2tu(p

2 − u
)1+γ

]
(C.41)

= ±π (−2t)γ

Γ(1 + γ)
et p = ±π e

− 2π p
β0αs

Γ(1 + γ)

(
4π

β0αs

)γ
,

where the positive sign refers to the case of moving the integration contour above the cut, while
the minus sign denotes the solution for moving the contour below the cut.

C.6 Relation between R-Evolution and Borel Integration

In this part of the appendix we establish the connection betweenR-evolution and the (inverse) Borel
integration by means of a variable transformation from the R-evolution variable t = −2π/(αsβ0) to
the Borel parameter u. In the following we will only focus on IR renormalons, but similar relations
for UV renormalons can also be found.

Starting point for our derivation is the solution of the R-evolution equation given by (4.30) in
section 4.3.1:

θp,α(R1)− θp,α(R0) = ΛpQCD

∞∑
k=0

S
(p)
k

∫ t1

t0

dt (−t)−α−b̂1p−k−1 e−tp. (C.42)

Recall that in order to obtain an expression for the Borel transform carrying the information of
an O(ΛpQCD) renormalon we need to restore the IR renormalon ambiguity in the solution of the
R-evolution equation by taking the limit,

lim
R0→0

t0 =∞. (C.43)

Using the relations (4.15) and (4.16) we then obtained (tQ = −2π/(β0αs(Q))),

C0(Q) ' − 1

Qp
(−tQ)α

[
1 + 4 ĉ(1) as(Q) + 16 ĉ(2) a2

s (Q) + . . .
] [
θp,α(Q)− θp,α(0)

]
, (C.44)

where the right-hand side only contains the u = p/2 renormalon contribution of C0. According to
(C.42) the perturbative series of the leading term (i.e. neglecting the corrections ĉ(1) and ĉ(2) in
(C.44)) is given by,

− 1

Qp
(−tQ)α

[
θp,α(Q)− θp,α(0)

]
= (C.45)

=
ΛpQCD

Qp
(−tQ)α

∞∑
k=0

S
(p)
k

∫ ∞
tQ

dt (−t)−α−b̂1p−k−1 e−tp

= etQp
∞∑
l=0

∞∑
k=0

g
(p))
l S

(p)
k (−tQ)α+b̂1p−l

∫ ∞
tQ

dt (−t)−α−b̂1p−k−1 e−tp,
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where in the second equality (C.9) and (C.27) were used. The integral on the right-hand side
can now be written in the form of a Borel integral by changing the integration variable to the
u = −p (t/tQ − 1)/2:

− 1

Qp
(−tQ)α

[
θp,α(Q)− θp,α(0)

]
= (C.46)

=

∞∑
l=0

∞∑
k=0

g
(p))
l S

(p)
k

(
2

p

)−α−b̂1p−k
(−tQ)−l−k

∞∫
0

du
e2 tQp u(p

2 − u
)1+α+b̂1p+k

.

Note that the upper limit of the integral is u = +∞, since tQ < 0 for Q > ΛQCD. The remaining
task is to prove that the Borel transform on the right-hand side of (C.46) can be rewritten in terms
of the analytic Borel transform B0(u) in eq. (4.46) of section 4.3.2. To that end we rearrange the
terms in the Borel integral using integration by parts,

(−tQ)−l−k
∞∫

0

du
e2 tQp u(p

2 − u
)1+γ+k

= (C.47)

= −
(

2

p

)γ+k (−tQ)−l−k

(γ + k)
+

2(−tQ)−l−k+1

(γ + k)

∞∫
0

du
e2 tQp u(p

2 − u
)γ+k

,

where we introduced γ = α+b̂1p to simplify the notation in the following. Repeating this procedure
for the Borel integral (l + k)-times yields:

(−tQ)−l−k
∞∫

0

du
e2 tQp u(p

2 − u
)1+γ+k

= (C.48)

= −
(

2

p

)γ+k (−tQ)−l−k

(γ + k)
− · · · − 2l+k−1

(
2

p

)γ−l+1 (−tQ)−1

l+k−1∏
i=0

(γ + k − i)

+
2l+k

l+k−1∏
i=0

(γ + k − i)

∞∫
0

du
e2 tQp u(p

2 − u
)1+γ−l .

The products in the denominators on the right-hand side can be conveniently organized in terms
of Γ-functions by multiplying the equation above with 1 = Γ(γ + k)/Γ(γ + k):

(− tQ)−l−k
∞∫

0

du
e2 tQp u(p

2 − u
)1+γ+k

Γ(γ + k)

Γ(γ + k)
= (C.49)

= −
(

2

p

)γ+k Γ(γ + k)

Γ(1 + γ + k)
(−tQ)−l−k − · · · − 2l+k−1

(
2

p

)γ−l+1 Γ(1 + γ − l)
Γ(1 + γ + k)

(−tQ)−1

+ 2l+k
Γ(1 + γ − l)
Γ(1 + γ + k)

∞∫
0

du
e2 tQp u(p

2 − u
)1+γ−l

= −
l+k∑
j=1

2l+k−j
(

2

p

)γ−l+j Γ(j + γ − l)
Γ(1 + γ + k)

(−tQ)−j + 2l+k
Γ(1 + γ − l)
Γ(1 + γ + k)

∞∫
0

du
e2 tQp u(p

2 − u
)1+γ−l
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Next, we rewrite the polynomial terms in (−tQ)−n ∼ αns (Q) as Borel integrals of polynomials in u
which amounts to the replacements (−tQ)−n−1 → 2 (2u)n/Γ(n+ 1) (see eq. (4.42) in section 4.3.2):

(−tQ)−l−k
∞∫

0

du
e2 tQp u(p

2 − u
)1+γ+k

Γ(γ + k)

Γ(γ + k)
= (C.50)

=

∞∫
0

du e2 tQp u

 Γ(1 + γ − l)
Γ(1 + γ + k)

2l+k(p
2 − u

)1+γ−l − 2
l+k∑
j=1

2l+k−j
(

2

p

)γ−l+j Γ(j + γ − l) (2u)j−1

Γ(1 + γ + k) Γ(j)


Inserting this expression into eq. (C.46) finally yields,

− 1

Qp
(−tQ)α

[
θp,α(Q)− θp,α(0)

]
= (C.51)

=

∞∫
0

du e2 tQp u

 ∞∑
k=0

S
(p)
k

pk+α+b̂1p

Γ(1 + α+ b̂1p)

∞∑
l=0

g
(p)
l

Γ(1 + α+ b̂1p− l)(p
2 − u

)1+α+b̂1p−l
2−α−b̂1p+l

−2
∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

l+k−1∑
j=0

Γ(1 + j + α+ b̂1p− l) pl+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j


=

∞∫
0

du e2 tQp u

Pα,IRp/2

∞∑
l=0

g
(p)
l

Γ(1 + α+ b̂1p− l)(p
2 − u

)1+α+b̂1p−l
2−α−b̂1p+l +

∞∑
l=0

g
(p)
l Q

(p)
l

 ,
which agrees precisely with the expression of the analytic Borel transform B0(u) given in eq. (4.46)
in section 4.3.2. We stress that the second term of the Borel transform including the functions

Q
(p)
l represents the the series expansion of the singular terms in the Borel transform up to order

uk+l−1 (see discussion in section 4.3.2 below eq. (4.50)).
For the subleading terms in (C.44) we have to consider series of the generic form,

− 1

Qp
(−tQ)α ans (Q)

[
θp,α(Q)− θp,α(0)

]
= − 1

Qp
(2β0)−n (−tQ)α−n

[
θp,α(Q)− θp,α(0)

]
= (C.52)

= (2β0)−n
∞∑
l=0

∞∑
k=0

g
(p))
l S

(p)
k

(
2

p

)−α−b̂1p−k
(−tQ)−l−n−k

∞∫
0

du
e2 tQp u(p

2 − u
)1+α+b̂1p+k

.

Repeating the manipulations above with the substitution l→ l + n one obtains,

− 1

Qp
(2β0)−n (−tQ)α−n

[
θp,α(Q)− θp,α(0)

]
= (C.53)

=

∞∫
0

du e2 tQp u (2β0)−n

 ∞∑
k=0

S
(p)
k

pk+α+b̂1p

Γ(1 + α+ b̂1p)

∞∑
l=0

g
(p)
l

Γ(1 + α+ b̂1p− l − n)(p
2 − u

)1+α+b̂1p−l−n
2−α−b̂1p+l+n

−2

∞∑
l=0

g
(p)
l

∞∑
k=0

S
(p)
k

l+n+k−1∑
j=0

Γ(1 + j + α+ b̂1p− l − n) pl+n+k−j−1

Γ(1 + α+ b̂1p+ k) Γ(j + 1)
(2u)j


=

∞∫
0

du e2 tQp u (2β0)−n

Pα,IRp/2

∞∑
l=0

g
(p)
l

Γ(1 + α+ b̂1p− l − n)(p
2 − u

)1+α+b̂1p−l−n
2−α−b̂1p+l+n +

∞∑
l=0

g
(p)
l Q

(p)
l,n

 ,
which is also in line with the formluae for the analytic Borel transforms Bn(u) in eq. (4.57).
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C.7 Perturbative Coefficients of the Adler Function in the Large-
β0 Approximation

In this part of the appendix we derive analytic expressions for the series coefficients of the Adler
function discussed in section 5.1. For the subsequent analysis the following notation will be used:

•D(p2) = 4π2 dΠ(p2)

d ln p2
= 1 + D̂(p2),

• D̂(p2) =
∞∑
n=1

dn

(
αs β0

4π

)n
=
∞∑
n=1

an

(αs
4π

)n
⇒ an = βn0 dn,

• D̂(p2) =
4π

β0

∫ ∞
0

du e
− 4πu
αsβ0 B[D̂](u).

(C.54)

In the large-β0 approximation the Borel transform of the Adler function can be written in the
closed form [28]

B[D̂](u) =
32

3π

(−p2

µ2
eC
)−u

1

2− u
∞∑
k=2

(−1)k k

(k2 − (1− u)2)2
, (C.55)

where C denotes a scheme-dependent constant. (C = −5/3 in the MS-scheme.) In the following
we will set µ2 = −p2 and work in the renormalization scheme in which the constant C vanishes.
Using partial fraction decomposition one can separate the individual contributions of the various
renormalon poles and rewrite eq.(C.55) in the form:

B[D̂](u) =
1

π

{
2

2− u (C.56)

+
32

3

∞∑
k=2

(−1)k

4 k2

[
2k + 1

(k + 1)2

1

(u+ k − 1)
+

k

(k + 1) (u+ k − 1)2

+
2k − 1

(k − 1)2

1

(u− k − 1)
− k

(k − 1) (u− k − 1)2

]}
.

The sum over k includes all IR and UV renormalons except for the simple pole at u=2. For
later convenience it will be useful to further decompose this sum into two different parts, one
which contains the information on the IR renormalons and another one which comprises all UV
renormalons:

B[D̂](u) =
1

π

{
2

2− u (C.57)

+
32

3

−1∑
k=−∞

(−1)−k+1

4 (−k + 1)2

[ −2k + 3

(−k + 2)2

1

(u− k)
+

(−k + 1)

(−k + 2) (u− k)2

]

+
32

3

∞∑
k=3

(−1)k−1

4 (k − 1)2

[
2k − 3

(k − 2)2

1

(u− k)
− k − 1

(k − 2) (u− k)2

]}
.

From the two sums over k we can easily read off the coefficients of all simple and double poles
contained in the Borel transform. To obtain an analytic expression for the coefficients an of the
Adler function given in (C.54), we use the generalized binomial theorem to express the contributions
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of the renormalon poles in terms of infinite series:

B[D̂](u) =
1

π

∞∑
n=0

un

{
1

2n
(C.58)

+
32

3

−1∑
k=−∞

(−1)−k+1

4 (−k + 1)2

[
− −2k + 3

(−k + 2)2

1

kn+1
+

(−k + 1)

(−k + 2)

(n+ 1)

kn+2

]

−32

3

∞∑
k=3

(−1)k−1

4 (k − 1)2

[
2k − 3

(k − 2)2

1

kn+1
+

k − 1

(k − 2)

(n+ 1)

kn+2

]}
.

Subsequently performing the inverse Borel transformation according to (C.54) yields,

D̂(Q) =
4

β0

∞∑
n=0

n!

(
αs(Q)β0

4π

)n+1
{

1

2n
(C.59)

+
32

3

−1∑
k=−∞

(−1)−k+1

4 (−k + 1)2

[
− −2k + 3

(−k + 2)2

1

kn+1
+

(−k + 1)

(−k + 2)

(n+ 1)

kn+2

]

−32

3

∞∑
k=3

(−1)k−1

4 (k − 1)2

[
2k − 3

(k − 2)2

1

kn+1
+

k − 1

(k − 2)

(n+ 1)

kn+2

]}

=
4

β0

∞∑
n=1

(n− 1)!

(
αs(Q)β0

4π

)n{ 1

2n−1

+
32

3

−1∑
k=−∞

(−1)−k+1

4 (−k + 1)2

[
− −2k + 3

(−k + 2)2

1

kn
+

(−k + 1)

(−k + 2)

n

kn+1

]

−32

3

∞∑
k=3

(−1)k−1

4 (k − 1)2

[
2k − 3

(k − 2)2

1

kn
+

k − 1

(k − 2)

n

kn+1

]}
.

As one can see, it is possible to express the coefficients dn of the Adler function in the following
form;

an = a2,(1)
n +

∞∑
kIR=3

[
akIR,(1)
n + akIR,(2)

n

]
+

−1∑
kUV=−∞

[
akUV,(1)
n + akUV,(2)

n

]
, (C.60)

where the superscript in parentheses denotes simple (1) or double (2) poles. Recalling that an =
βn0 dn, the individual coefficients are found to be:

• a2,(1)
n =

4

β0
βn0

(n− 1)!

2n−1
,

• akIR,(1)
n =

4

β0

32

3
βn0

(−1)kIR

4(kIR − 1)2

2kIR − 3

(kIR − 2)2

(n− 1)!

knIR
,

• akIR,(2)
n =

4

β0

32

3
βn0

(−1)kIR

4 (kIR − 1)2

(kIR − 1)

(kIR − 2)

n!

kn+1
IR

,

• akUV,(1)
n =

4

β0

32

3
βn0

(−1)−kUV

4 (−kUV + 1)2

−2kUV + 3

(−kUV + 2)2

(n− 1)!

knUV

,

• akUV,(2)
n =

4

β0

32

3
β0

(−1)−kUV+1

4 (−kUV + 1)2

(−kUV + 1)

(−kUV + 2)

n!

kn+1
UV

.

(C.61)
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Appendix D

OPE of the Adler Function

This last appendix is dedicated to a thorough investigation of the dimension-4 and dimension-
6 operator corrections in the OPE of the Adler function in the large-β0 approximation. The
subsequent analysis is divided into two different sections. In the first one we collect the results
for the coefficient functions of the gluon and four-quark condensates distributed throughout the
literature and check whether the structure of these contributions in the OPE can be reproduced
by the analytic expression of the Borel transform derived in section 4.3. In particular, we want
to study which four-quark operators are connected to the simple and double pole structure of the
u = 3 renormalon in the large-β0 Borel transform (3.18).

In the second part we present a detailed leading order computation of the coefficient functions
using the expansion-by-regions method.

D.1 Adler Function Revisited

The OPE of the Adler function and its connection with IR renormalons has been discussed ex-
tensively in section 3.3.1 and will not be reviewed in the following. Here, the important point to
remember is that the relevant quantity in the QCD analysis of hadronic τ decays is given by the two-

point function of flavour non-diagonal vector and axial-vector currents, J
V/A
µ (x) = [uγµ(γ5)d](x),

of massless quarks [61],

ΠV/A
µν (q) = i

∫
dx eiqx 〈Ω|T{JV/Aµ (x)JV/Aν (0)†} |Ω〉 = (qµqν − q2gµν) ΠV/A(q2). (D.1)

where |Ω〉 denotes the full physical vacuum. In the Euclidean region (Q2 = −q2 > 0), the concept
of the OPE then allows one to organize the scalar correlator ΠV/A in a series expansion in inverse
powers of Q2 [61]:

ΠV/A(Q2) = C0(µ,Q2) + Ci4(µ,Q2)
〈Oi4〉(µ)

Q4
+ C

V/A,i
6 (µ,Q2)

〈Oi6〉(µ)

Q6
+ . . . (D.2)

where 〈O〉 represents the vacuum matrix elements of the operators arising in the OPE. Both,
the coefficient functions and the local matrix elements, depend on the renormalization scale µ,
while only the coefficient functions additionally depend on the momentum Q. In the chiral limit,
the contributions from vector and axial-vector currents coincide for the purely perturbative QCD
correction C0 as well as for the dimension-4 term, which in this case reduces to a single operator
given by the gluon condensate 〈GaµνGa,µν〉. The coefficient functions of the gluon condensate and
other operators in the OPE of current-current correlators have been calculated at leading order
for the first time in [40] and computations beyond leading order can be found e.g. in [62, 63]:

C4 〈O4〉 =
1

12

[
1− 11

18

αs(Q)

π

]〈αs

π
GaµνG

a,µν
〉
. (D.3)

Besides the gluon condensate, we are mainly interested in investigating the dimension-6 corrections
to (D.2), which consist of the three-gluon condensate 〈fabcGaµνGb,νρGc,ρµ〉 and a set of four-quark

93



operators. However, since the three-gluon condensate does not contribute at leading order, we
will focus our study on the four-quark condensates only. The next-to-leading order results for
the coefficient functions of the four-quark operators were calculated in [64] and for Nf = 3 light
flavours and Nc = 3 colour degrees of freedom one obtains (in the MS-scheme) [65],

CV,i6 〈Oi6〉 = −4π2as

{(
55

48
+

5

4
L

)
as 〈OoV 〉+

[
2 +

(
85

16
+

9

4
L

)
as

]
〈OoA〉+

(
11

18
+

2

3
L

)
as 〈OsV 〉

+

[
2

9
+

(
37

72
+

95

324
L

)
as

]
〈O3〉+

(
35

219
+

5

36
L

)
as 〈O4〉

+

(
7

81
+

2

27
L

)
as 〈O6〉 −

(
1

81
− 2

27
L

)
as 〈O7〉

}
, (D.4)

for the vector correlation function and,

CA,i6 〈Oi6〉 = −4π2as

{[
2 +

(
85

16
+

9

4
L

)
as

]
〈OoV 〉+

(
55

48
+

5

4
L

)
as 〈OoA〉+

(
11

18
+

2

3
L

)
as 〈OsA〉

+

[
2

9
+

(
37

72
+

95

324
L

)
as

]
〈O3〉+

(
35

219
+

5

36
L

)
as 〈O4〉

+

(
7

81
+

2

27
L

)
as 〈O6〉 −

(
1

81
− 2

27
L

)
as 〈O7〉

}
, (D.5)

for the axial-vector correlator. In eqs. (D.4) and (D.5) we used as = αs(µ)/π, L = lnµ2/Q2 and the
occurring operators define a subset of a complete basis needed for their one-loop renormalization1

[61]:

OoV =
(
uγµT

addγµT au
)
, OsV =

(
uγµddγ

µu
)
,

OoA =
(
uγµγ5T

addγµγ5T
au
)
, OsA =

(
uγµγ5ddγ

µγ5u
)
,

O3 =
(
uγµT

au+ dγµT
ad
) ∑
q=u,d,s

(qγµT aq) ,

O4 =
(
uγµγ5T

au+ dγµγ5T
ad
) ∑
q=u,d,s

(qγµγ5T
aq) ,

O5 =
(
uγµu+ dγµd

) ∑
q=u,d,s

(qγµq) ,

O6 =
(
uγµγ5u+ dγµγ5d

) ∑
q=u,d,s

(qγµγ5q) ,

O7 =
∑

q=u,d,s

(qγµT
aq)

∑
q′=u,d,s

(q′γµT aq′) ,

O8 =
∑

q=u,d,s

(qγµγ5T
aq)

∑
q′=u,d,s

(q′γµγ5T
aq′) ,

O9 =
∑

q=u,d,s

(qγµq)
∑

q′=u,d,s
(q′γµq′) ,

O10 =
∑

q=u,d,s

(qγµγ5q)
∑

q′=u,d,s
(q′γµγ5q

′) .

(D.6)

D.1.1 Analytic Borel Transform and Structure of the Coefficient Functions

Our main concern in this section will be to establish the connection between the higher-dimensional
operator contributions to the OPE of the Adler function and its Borel transform given by the
analytic R-evolution expression (4.46). More specifically, we want to study whether the general

1The discussion of the dimension-6 four quark operators in this section is based on [61], in which the leading
order anomalous dimension matrix is calculated and its influence on the pole structure of the corresponding u = 3
IR renormalon is studied.

94



formula,

Bsing
0 (u) = −Rp1

[
Pα,IRp/2

∞∑
l=0

g
(p)
l

Γ(1 + b̂1p+ α− l)(p
2 − u

)1+b̂1p+α−l
2−b̂1p−α+l

]
, (D.7)

allows one to reproduce the correct structure of the u = 2 and u = 3 renormalons provided that
the operator corrections (D.3) and (D.4) as well as the corresponding anomalous dimensions are
given. To that end, it is once again useful to consider the large-β0 approximation of the Adler
function, where the pole structure of its Borel transform is completely known (see eq. (3.18)). In
particular, the Borel transform consists of a linear pole at u = 2 in this limit, whereas the u = 3
renormalon has both, a linear and a quadratic pole. The u = 2 singularity obviously corresponds
to the dimension-4 gluon condensate and the question arises which four-quark operators are con-
nected to pole structure of the u = 3 renormalon.

Before we proceed, let us reflect about the form of eq. (D.7) in the large-β0 approximation (see
(5.7)),

Bsing
β0

(u) = −Rp Pα,IRp/2,β0

Γ(1 + α) 2−α(p
2 − u

)1+α , (D.8)

α = −
2γ

(1)
D,j

β0
− δ̂j .

From the simple and double pole structure of the Adler function Borel transform we can infer that

the parameter α is either zero or one. Therefore, since δ̂j ≥ 0, 2γ
(1)
D,j/β0

2 needs to be either zero
or takes on negative integer values:

2γ
(1)
D,j

β0
= 0,−1,−2,−3 . . . . (D.9)

It is not at all obvious why we observe this behaviour in the large-β0 limit, but the crucial point is
that we can predict these values because we know the pole structure of the renormalons in the Borel
transform. According to eq. (D.8) the pole structure of the singular terms in the Borel transform
is completely determined by the leading order anomalous dimensions of the operators in the OPE
and the leading powers in αs of the associated Wilson coefficients, but does not depend on the
purely perturbative coefficient C0. This is a remarkable fact: only the normalization of the singular
terms, i.e. the renormalon sum rule Pαs

p/2, relies on the knowledge of the purely perturbative QCD
corrections, but as long as we are only interested in the pole structure of the Borel transform we do
not need to have any information on C0. This is also in line with the assumptions on the physical
Borel model made in [14]. From the generic form of a term in the OPE and renormalisation group
arguments one can deduce the position and structure of an infrared renormalon pole correspond-
ing to an operator Oj , but it is not possible to predict the normalization (i.e. the residue) in this
way. R-evolution and the renormalon sum rule provide us a handy tool to determine these residues.

Given the possible values of δ̂j and γ
(1)
D,j in the large-β0 approximation, we are now in the po-

sition to investigate the generic form of the corresponding terms in the OPE of the Adler function.
For this purpose consider the general expression (3.48) for an OPE contribution due to a set of
operators of equal dimension (as ≡ αs/π),

FO =
∑
j

Ĉ
(0)
j

(
as(Q)

c

)δ̂j+2γ
(1)
D,j/β0

[
1 + as(Q) Ĉ

(1)
j + . . .

]
cδ̂j 〈Ôjc(ΛIR)〉, (D.10)

2Recall that δ̂j gives the leading power in αs of the coefficient function corresponding to the operator Oj and

γ
(1)
D,j denotes the leading order anomalous dimension in the diagonal basis (see section 3.3.1 for more details).
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where c denotes an arbitrary constant that will be irrelevant in the following3. The large-β0

approximation of the Adler function is associated with the set of bubble chain diagrams which
contain any number of fermion bubble insertions into the internal gluon line (see Fig. 3.1). Thus,
assuming that the coefficient functions are given in the form (cf. eq. (3.46)),

Ĉj(Q) = a
δ̂j
s (Q)

∞∑
n=0

ĉ
(n)
j ans (Q), (D.11)

we can decompose the perturbative coefficients ĉ
(n)
j according to,

ĉ
(n)
j = rjn0 + rjn1Nf + · · ·+ rjnnN

n
f , (D.12)

where the contributions rjnn with the largest power of Nf can be obtained from the calculation of
bubble chain diagrams. Inserting this decomposition into eq. (D.10) yields,

FO =
∑
j

rj00

(
as(Q)

c

)δ̂j+2γ
(1)
D,j/β0

[
1 + as(Q)

(
rj10 + rj11Nf

)
+ . . .

]
cδ̂j 〈Ôjc(ΛIR)〉, (D.13)

where, depending on the values of δ̂j and γ
(1)
D,j , each term in the expansion will contribute to a

specific IR pole in the Borel transform of the Adler function. In particular, we find that terms
∼ (αsNf )n contribute to simple poles, while terms of the form ∼ (αsNf )nNf give rise to a double
pole structure. Other contributions, such as αs(αsNf )n, will not lead to any singularities in the
Borel transform.

In order to make our analysis more concrete, let us eventually consider the coefficient functions of
the gluon condensate and the four-quark operators given in the previous section and check whether
our findings are consistent with these results.

Starting with the gluon condensate, we first take a closer look at its coefficient function given
in eq. (D.3). Since one power of αs is part of the matrix element, we have that δ̂GG = 0 in this case.
Moreover, we already know that the leading order anomalous dimension of the gluon condensate
vanishes in the large-β0 approximation (see [27]). Therefore, according to our expansion (D.13),
the coefficient function can be cast into the generic form,

C4 ∼ r00 a
0
s (Q)

[
1 + as(Q) (r10 + r11Nf ) + . . .

]
, (D.14)

where the term ∼ r10 as(Q) does not yield any singularities in the Borel transform, whereas the
second term ∼ r11 as(Q)Nf contributes to a simple pole. This pole structure is precisely in line
with the known structure of the u = 2 renormalon in the Borel transform of the Adler function
given by eq. (3.18).

For the investigation of the pole structure of the u = 3 renormalon, we first need to deal with the
anomalous dimension matrix of the corresponding four-quark operators in (D.6). The calculation
of the anomalous dimension is quite standard and results can be found e.g. in [66, 67]. Here,
we follow primarily the discussion in [61] where the leading order anomalous dimension matrices
for the V + A and V − A cases have been studied. Since the vector and axial-vector current
contributions to C0 coincide, the purely perturbative QCD corrections in the V − A case cancel
and consequently no renormalon ambiguity emerges. Hence, we are only interested in V + A and
for the closed set of operators (Oo+, O

s
+, O3, O4, O6, O7, O8, O9, O10) the leading order anomalous

3In the derivation of the R-evolution equation in chapter 4 the constant c was set to c = 2/β0.
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dimension matrix for Nc = 3 colours takes the form [61],

γ
(1)
+ =



−1 2
3 −1

9 0 0 0 0 0 0

3 0 2
3 0 0 0 0 0 0

0 0
Nf
3 − 85

36
5
4

2
3

2
3 0 0 0

2 −2
3

113
36 −1

4 −2
3 −1 −1 1

3
1
3

0 0 11
3 0 0 0 0 0 0

0 0 0 0 0
2Nf

3 − 85
36

5
4 0 2

3

0 0 0 0 0 41
36 −9

4
2
3 0

0 0 0 0 0 2
3 3 0 0

0 0 0 0 0 11
3 0 0 0



, (D.15)

where the operators Oo+ and Os+ are defined as [61]:

Oo+ = OoV +OoA, Os+ = OsV +OsA. (D.16)

The anomalous dimension in the form (D.15) is especially convenient for our purposes, since the
explicit dependence on Nf allows us to easily connect to the large-β0 approximation and address
the question which four-quark operators are connected to the simple and double pole structure of
the u = 3 renormalon.

If we take the large-Nf limit of (D.15) and use the replacement rule (3.15) to obtain the large-β0

result, only two entries of the anomalous dimension matrix remain on the diagonal corresponding
to the operators O3 and O7, respectively:

γ
(1)
O3

= −β0

2
, γ

(1)
O7

= −β0. (D.17)

These two operators will be responsible for the pole structure in the Borel transform of the Adler

function. For the operator O3 we find 2γ
(1)
O3
/β0 = −1 and since its coefficient function starts

at order αs (i.e. δ̂O3 = 1), we can exploit the findings in (D.14) to argue that this operator is
connected to the simple pole at u = 3.

For O7, on the other hand, we have 2γ
(1)
O7
/β0 = −2 and looking at the generic form of its coefficient

function,

CO7 ∼ r7
00 a

δ̂O7
−2

s

[
1 + as

(
r7

10 + r7
11Nf

)
+ . . .

]
, (D.18)

we expect δ̂O7 = 1 in order that the operator contributes to the double pole in the Borel transform.
However, from (D.4) we see that the coefficient function CO7 starts at O(α2

s ) which only gives rise
to a simple pole structure.

At first sight the analytic Borel transform (D.8) seems to contradict the form of the four-quark
condensate corrections in the OPE of the Adler function, but going back to the very beginning of
the derivation of (D.8) the inconsistencies can easily be resolved. At the end of section 3.3.1 we
started out from a generic OPE term of the form,

FO = ~Cᵀ
6 〈 ~O6〉, (D.19)

and argued to work in an operator basis in which the leading order anomalous dimension matrix
is diagonal,

γ
(1)
D = V −1γ

(1)
+ V. (D.20)
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q q

(a)

q q

(b)

Fig. D.1: Exemplary leading order diagrams relevant for the computation of the
gluon condensate (a) and the four-quark operator O3 (b).

Here, γ
(1)
D contains the eigenvalues of γ

(1)
+ on its diagonal and the transformation matrix V is used

to construct the new operator basis:

FO = ~Cᵀ
6 〈 ~O6〉 = ~Cᵀ

6 V V
−1 〈 ~O6〉 = ~Cᵀ

6,D 〈 ~O6,D〉, (D.21)

〈 ~O6,D〉 = V −1 〈 ~O6〉,
~Cᵀ

6,D = ~Cᵀ
6 V.

Solving the RGE (3.41) to resum the logarithms in ~C6, the OPE term can then be cast into the
form of eq. (D.10). Thus, we see that the inconsistencies in our investigation of the four-quark

operators originated from the fact that we naively took the large-Nf limit of γ
(1)
+ without first

changing to the diagonal basis. This is the crucial point: only the eigenvalues of γ
(1)
+ , i.e. the

entries of the diagonal matrix γ
(1)
D , enter in the analytic Borel transform (D.8), but we cannot

simply consider the large-Nf limit to achieve a diagonal form of the anomalous dimension matrix.
We need to do the diagonalization properly such that the structure of the coefficient functions in
the new basis is adjusted appropriately and only then we can take the large-Nf limit.

If we consider once again the anomalous dimension matrix in (D.15) and perform the diagonal-
ization, we will find that the coefficient function of O7 receives additional contributions from other
operators, including O3 and Oo+, with the result that the operator combination in the diagonal
basis corresponding to the eigenvalue −β0 has a coefficient function starting at order4 αs. This
then leads to the expected double pole structure of the u = 3 renormalon in the Borel transform
and, furthermore, shows that the double pole contribution is connected to the off-diagonal entries

of the anomalous dimension matrix γ
(1)
+ .

At the end of this section, we want to discuss a subtle issue that arises in the investigation
of the dimension-4 and dimension-6 operator condensates and their coefficient functions. If we
compare the matrix elements we notice that in the case of the gluon condensate one power of αs

is part of the matrix element, whereas for the four-quark operators the information on the strong
coupling is completely contained in the coefficient functions. It seems there is some freedom in
the definition of the matrix elements and the question arises if it is possible to move powers of αs

between the condensates and their coefficient functions.
To resolve this issue, let us have a look at Fig. D.1 which shows the leading order diagrams for

the coefficient functions of the gluon condensate and the four-quark operator O3. In both graphs
the hard momentum q enters through the left current and exits on the right-hand side without
passing through the gluon lines. Thus, the gluon lines are soft and it is reasonable to include the
corresponding factor of αs in the definition of the matrix element, as is done for the gluon conden-
sate. For the operator O3, on the other hand, the factor of αs is part of the coefficient function

4The O(αs) contribution to this coefficient function will be actually proportional to 1/Nf and would again vanish
in the limit Nf → ∞. However, we can factor out this 1/Nf -dependence into the coefficient ĉ(0) of (D.10) and in
the derivation of our analytic Borel transform expression this coefficient cancels (cf. eq. (4.9)).
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which seems to be inconsistent. In this case, however, the anomalous dimension matrix given by
(D.15) has exactly the appropriate form needed such that the O3-condensate correction in the OPE
is still in line with the u = 3 renormalon structure in the Borel transform of the Adler function.
Hence, depending on the definition of the matrix elements, the anomalous dimension matrix will
always be adjusted properly. So, if for example one power of αs was moved from the coefficient
functions of the four-quark operators into the matrix elements, the anomalous dimension matrix
would change accordingly in order to be still consistent with the renormalon structure of the Borel
transform.

D.2 Leading Order Computation of the Coefficient Functions

The second part of the appendix provides a detailed leading order computation of the coefficient
functions of the gluon condensate and some four-quark operators that belong to the complete basis
given in (D.6). As already mentioned, the leading order results for the operator expansion of vari-
ous currents can be found in [40] and [42], where diagrams like the ones in Fig. D.1 are calculated.
In this section we reflect upon these computations and show in detail how the coefficient functions
of the condensates can be obtained from an asymptotic expansion of the Feynman integrals related
to the leading order diagrams depicted in Fig. 3.1 (i.e. the diagrams with an exchange of a simple
gluon line).

To begin with, let us briefly review the operator product expansion of the Adler function and par-
ticularly discuss how the non-perturbative condensate corrections arise in this framework. Starting
point for the investigation of the OPE in section 3.3.1 is the vacuum polarization induced by T-
ordered products of vector and axial-vector currents. At large Q2, in the asymptotically free
regime, αs(Q

2) is numerically small and standard perturbation theory can be applied. As we move
to larger distances confinement effects become sizable and the asymptotic freedom starts to break
down. This breakdown is typically reflected by the appearance of non-vanishing vacuum expec-
tation values (condensates) of higher dimensional operators due to non-perturbative effects that
change the nature of the QCD vacuum5 [42]. The emergence of these matrix elements signals that
the free particle propagators are modified strongly at large distances. Therefore, the propagators
cannot be reliably described within perturbation theory and it is assumed that they are related
to soft non-perturbative fields in the vacuum. This observation is key to the understanding of the
computation in this section.

To become more concrete, let us consider the diagrams in Fig. D.2 and investigate how the
emergence of the gluon condensate is connected to soft gluon lines. First, assuming that all quark
and gluon lines carry a momentum of order q, the purely perturbative contributions to the vacuum
polarization function can be calculated by applying the usual Feynman rules. However, it is also
possible that the large momentum is carried only by the quark lines, while the gluon is soft. In
this case we run into problems, since the soft gluon line cannot be described any longer by the
perturbative form for its propagator. In order to account for the non-perturbative gluon fields we
need to introduce a new unknown parameter given by the vacuum matrix element of the gluon
condensate6. Diagramatically, this situation is shown on the right-hand side of Fig. D.2. The
crossed blob contains the hard quark lines and currents at short distances where everything is
computable, while the gluon line is soft and constrained to start and end at the same point. This
soft gluon line is then substituted by the gluon condensate. At this point the natural question
arises how we can make sure that only long-distance physics is contained in the definition of the
matrix element. To that end, we have to evaluate the gluon condensate in perturbation theory
and subtract this contribution from the perturbative calculation of the diagrams on the left-hand
side in Fig. D.2. How this is done in practice, will be shown in the computation below.

Returning to the problem of soft non-perturbative fields, we can also study how other oper-

5Note that these vacuum expectation values vanish per definition in standard perturbation theory.
6In connection with soft gluon lines, the gluon condensate represents the simplest expression compatible with

Lorentz and gauge invariance (see discussion in section 3.3.1).
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Fig. D.2: Momentum routing for the one-gluon exchange diagrams that gives rise
to the gluon condensate in the OPE of the Adler function. The crossed vertex in the
diagram on the right-hand side contains all hard quark lines and the currents and
only the gluon line with momentum k is soft. This soft gluon line is substituted by
the vacuum matrix element of the gluon condensate.

ator condensates in the OPE of the Adler function are characterized by different routings of the
large momentum q. In Fig. D.3, for instance, we consider the same diagrams with a single gluon
exchange, but this time we have two soft quark lines that will be related to the matrix element of
a four quark-operator.

In the following we are going to compute the diagrams for various momentum routings and
demonstrate how the coefficient functions for the resulting operator condensates can be obtained.

D.2.1 Gluon Condensate
〈
αs

π
Ga
µνG

a,µν
〉

Starting with the gluon condensate, we consider once again the diagrams in Fig. D.2. Since we
already know that the gluon condensate is connected to soft gluon fields, we choose the momentum
routing in such a way that only the momentum k of the gluon line is soft, while the other loop
momentum l of the quark bubble is of the order of the large momentum q. Before we deal with
the calculation of these diagrams, let us first take a closer look at the perturbative expression for
the gluon condensate represented by the one-loop diagram on the right-hand side of Fig. D.2. In
d = 4− 2ε dimensions the T-ordered product corresponding to this graph is given by,〈

GaµνG
a,µν
〉
≡ 〈0|T{Gaµν(x)Ga,µν(x)} |0〉 (D.22)

= 2
[
〈0|T{(∂µAaν) (∂µAa,ν)} |0〉 − 〈0|T{(∂µAaν) (∂νAa,µ)} |0〉

]
= −2i

∫
ddk

(2π)d

{
d k2 δaa

[k2 + i0+]
− δ µ

ν kµ k
ν δaa

[k2 + i0+]

}
= −2i (d− 1)

(
N2
c − 1

)∫ ddk

(2π)d
k2

[k2 + i0+]
,

where we did not cancel the k2 in the numerator to emphasize that this factor is due to the
derivatives in the definition of the gluon field strength Gaµν .

Using this expression for the gluon condensate we can now compute the diagrams on the left-
hand side. For the amplitude of the first graph (a) we obtain,

iMµν
a = i g2

s CF CA µ̃
4−d
∫∫

ddk

(2π)d
ddl

(2π)d
Tr
[
γµ /l γρ (/l + /k) γν (/l + /k + /q) γρ (/l + /k)

]
[l2]+ [k2]+[(l + k)2]+ [(l + q)2]+ [(l + k + q)2]+

(D.23)

= 2π i αs

(
N2
c − 1

)
µ̃4−d

∫∫
ddk

(2π)d
ddl

(2π)d
Tr
[
γµ /l γρ (/l + /k) γν (/l + /k + /q) γρ (/l + /k)

]
[l2]+ [k2]+[(l + k)2]+ [(l + q)2]+ [(l + k + q)2]+

,
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where we introduced the notation [p2]± ≡ [p2 ± i0+] and used CF = (N2
c − 1)/(2Nc), CA = Nc

in the second line. Comparing the dimensions of the loop integrals in (D.22) and (D.23) in d = 4,
we find that the two expressions are not compatible with each other. While the gluon condensate
displays the expected four dimensional form, the dimensional analysis of (D.23) gives rise to a
dimension-2 operator condensate. Thus, in order to obtain the contribution corresponding to the
gluon condensate we need to expand the integrand in (D.23) in the soft gluon momentum and keep
only those terms which are bilinear in k. Performing this expansion generates all possible terms
containing two powers of k in the numerator and subsequently applying the substitution,

kα kβ → 1

d
gαβk2, (D.24)

allows us to factor out the perturbative expression for the gluon condensate in (D.22). In particular,
this reveals that the colour factor of the amplitude in (D.23) is not part of the coefficient function,
but is rather contained in the definition of the matrix element. Finally, we can perform the
integration over the loop momentum l and in the limit d→ 4 we obtain,

iMµν
a =

i

(q2)2

[
qµ qν
18

(
3

ε
+ 5 + 3 ln

(
−µ

2

q2

))
− 1

4
q2 gµν

] 〈αs

π
GaµνG

a,µν
〉
, (D.25)

where we already included the factor αs/π in the definition of the matrix element. The very same
procedure can now be applied to the other two diagrams in Fig. D.2, leading to:

• iMµν
b = − i

(q2)2

[
qµ qν
72

(
6

ε
+ 7 + 6 ln

(
−µ

2

q2

))
− 1

12
q2 gµν

] 〈αs

π
GaµνG

a,µν
〉
,

• iMµν
c = − i

(q2)2

[
qµ qν
72

(
6

ε
+ 7 + 6 ln

(
−µ

2

q2

))
− 1

12
q2 gµν

] 〈αs

π
GaµνG

a,µν
〉
.

(D.26)

Adding the contributions of all three diagrams we eventually obtain,

Πµν =Mµν
a +Mµν

b +Mµν
c =

(
qµ qν − q2gµν

)
12 (q2)2

〈αs

π
GaµνG

a,µν
〉
, (D.27)

which is consistent with the transverse structure of the vacuum polarization tensor in (D.1) and
gives the correct leading order result for the coefficient function of the gluon condensate (see eq.
(D.3)).

D.2.2 Vector Octet Operator 〈Oo
V 〉

Next, we want to study the coefficient function of the vector octet operator OoV =
(
uγµT

ad dγµT au
)

given in (D.6). For this purpose, we consider the diagrams depicted in Fig. D.3 where we now
have two soft quark lines that give rise to a four-quark condensate. Note that for the calculation
of the coefficient function we need to take into account all possible routes of the large momentum
q which lead to the same form of the matrix element represented by the diagram on the right-hand
side. In particular, this means that diagrams (a) and (b) are not equivalent topologically and both
need to be accounted for.

Following the logic of the investigation in the previous section, we first start with the pertur-
bative computation of the matrix element for OoV which, to lowest order, is given by:〈

uγµT
ad dγµT au

〉
≡ 〈0|T{(uγµT ad)(x) (dγµT au)(x)} |0〉 (D.28)

= CF CA

∫∫
ddk

(2π)d
ddl

(2π)d
(−1) Tr

[
i/k γµ i/l γ

µ
]

[k2]+ [l2]+

= 2 (2− d)
(
N2
c − 1

)∫∫ ddk

(2π)d
ddl

(2π)d
k · l

[k2]+ [l2]+
.

In d = 4 this matrix element leads to a dimension-6 expression for the four-quark operator OoV and
in order to be compatible with this result on dimensional grounds, we again have to expand the
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Fig. D.3: Diagrams relevant for the leading order computation of the operator OoV .
One needs to take into account all momentum routes with two soft quark lines that
lead to the same form of the matrix element on the right-hand side.

propagators in the diagrams on the left-hand side in the soft quark momenta. This time, however,
we need to do the expansion consistently in both soft momenta, k and l, keeping only those terms
that are either linear in k and l or bilinear in k or bilinear in l. Of course, this step again generates
a lot of terms, but luckily, all contributions bilinear in k or l cancel leaving only the terms linear
in both momenta7. Finally, we can perform the substitution,

kα lβ → 1

d
gαβ (k · l), (D.29)

and factor out the definition of the matrix element given by (D.28) to obtain the contribution to
the coefficient function. In contrast to the computation of the gluon condensate we do not need
to perform any loop integration here, since both integrals are part of the matrix element. In the
limit d→ 4 the results for the four diagrams are then found to be:

• iMµν
a = 4πi αs

gµν

(q2)2 〈OoV 〉 ,

• iMµν
b = 4πi αs

gµν

(q2)2 〈OoV 〉 ,

• iMµν
c = −4πi αs

qµ qν

(q2)3 〈OoV 〉 ,

• iMµν
d = −4πi αs

qµ qν

(q2)3 〈OoV 〉 .

(D.30)

Adding all contributions finally yields,

Πµν =Mµν
a +Mµν

b +Mµν
c +Mµν

d =

(
qµ qν − q2gµν

)
(q2)3 (−8π αs) 〈OoV 〉 , (D.31)

which is consistent with the leading order contribution of the coefficient function given in (D.5).

D.2.3 Operator 〈O3〉
The study of the operator O3 is a bit more involved than the computations in the previous two
sections. First, note that the flavour sum of this four-quark operator is usually rewritten by means

7Note that these cancellations take place for all four diagrams separately.
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Fig. D.4: Possible routes of the large momentum q that lead to the operator O3.
Only the diagram in which the gluon is exchanged between the upper antiquark and
lower quark line contributes in this case to the matrix element on the right-hand side.

of the equation of motion,

DµG
a,µν + gs

∑
q

(q γνT aq) = 0 (D.32)

⇒ O3 = − 1

gs

(
uγµT

au+ dγµT
ad
)
Dν G

a,νµ.

The resulting form of the operator is more suitable for the perturbative evaluation of its matrix
element. To lowest order, this matrix element is given by the two-loop graph on the right-hand
side of Fig. D.4 and yields:

〈O3〉 ≡ −
1

gs
〈Ω|T{(uγµT au+ dγµT

ad)(x) (Dν G
a,νµ)(x)} |Ω〉 (D.33)

= 2CF CA

∫∫
ddk

(2π)d
ddl

(2π)d
(−1) Tr

[
i/l γµ i(/l + /k) γµ

]
k2

[l2]+ [(l + k)2]+ [k2]+

= 4 (2− d)
(
N2
c − 1

)∫∫ ddk

(2π)d
ddl

(2π)d
k · l

[k2]+ [l2]+
.

It is not a coincidence that the perturbative expression for the matrix element of O3 agrees with
the one for OoV in (D.28)8. If we do not apply the equation of motion (D.32) and directly compute
the matrix element for O3 given in its four-quark form, we obtain the two-loop graph depicted
in Fig. D.3. However, it is more convenient to use (D.33), since the form of the corresponding
diagram in Fig. D.4 allows us to specify the momentum routings of the two-loop vacuum polar-
ization diagrams that lead to the condensate corrections for O3. We find that only the diagram in
which the gluon is exchanged between the quark and the antiquark lines contributes in this case.
More specifically, we can distinguish two different routes of the large momentum q, shown on the
left-hand side of Fig. D.4, that give rise to the matrix element of O3.

In the following we will concentrate on the computation of diagram (a) to demonstrate how the
Wilson coefficient can be extracted,

iMµν
a = −i g2

s CF CA µ̃
4−d
∫∫

ddk

(2π)d
ddl

(2π)d
Tr
[
γµ (/l + /k − /q) γρ (/l − /q) γν /l γρ (/l + /k)

]
[l2]+ [k2]+[(l + k)2]+ [(l − q)2]+ [(l + k − q)2]+

. (D.34)

From the dimensional analysis of the matrix element (see second line in (D.33)) we can infer that
we need to keep all terms in the asymptotic expansion that give four additional powers of the
soft momenta9 k and l. The enormous amount of terms this expansion is generating makes the
computation very cumbersome.

Next, we can start to rewrite the terms of order k l3, k2 l2 and k3 l by reducing the tensor
integrals over one of the loop momenta, e.g. k, to scalar ones. Since the (perturbative) matrix

8The additional factor 2 in the definition of (D.33) compared with (D.28) is due to the fact that the operator O3

contains the sum of the currents (uγµT
au) and (dγµT

ad).
9We stress that one has to take into account all possible contributions in this expansion, i.e. all terms of order

k4, k3 l, k2 l2, k l3 and l4.
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element of O3 is scaleless, we need to be careful about the decomposition and, in particular, are
not allowed to drop any scaleless terms that usually vanish in dimensional regularization. A long
but straightforward calculation, including also the terms of order k4 and l4, then leads to,

iMµν
a = (D.35)

=
−i g2

s CF CA µ̃
4−d

(d− 1)

{
− 16 (d2 − 6d− 4)

d (q2)3

∫∫
ddk

(2π)d
ddl

(2π)d
(k · l) (qµ qν − q2 gµν)

[k2]+ [l2]+

+
32 (d3 − 7d2 + 6d− 16)

d (d+ 2) (q2)3

∫∫
ddk

(2π)d
ddl

(2π)d
l2 qµ qν

[k2]+ [l2]+

+
4 (d4 − 13d3 − 56d2 − 28d+ 112)

d (d+ 2) (q2)3

∫∫
ddk

(2π)d
ddl

(2π)d
l2 q2 gµν

[k2]+ [l2]+

− 32 (d+ 1)

(q2)4

∫∫
ddk

(2π)d
ddl

(2π)d
(l · q)2

[
lµ lν q

2 − (l · q) (lµ qν + lνqµ − (l · q) gµν)
]

[k2]+ [l2]+ [(k + l)2]+

}
,

where we already applied the substitutions (D.24) and (D.29) wherever possible. This result is
not yet in a suitable form and still contains undesired terms that we need to get rid of. For this
purpose we use a “dirty” trick. Consider for example a two-loop integral of the following form:∫∫

ddk ddl
(l · q) (k · q) kµ kν

[k2]+ [l2]+ [(k + l)2]+
=

∫∫
ddk ddl

lα kβ kµ kν q
α qβ

[k2]+ [l2]+ [(k + l)2]+
. (D.36)

To decompose this integral we have two possibilities. On the one hand we can start with the
integral over l and use,∫

ddl
lα

[l2]+ [(k + l)2]+
= −1

2
kα

∫
ddl

1

[l2]+ [(k + l)2]+
, (D.37)

to rewrite (D.36) in the form,∫∫
ddk ddl

(l · q) (k · q) kµ kν
[k2]+ [l2]+ [(k + l)2]+

= −1

2

∫∫
ddk ddl

(k · q)2 kµ kν
[k2]+ [l2]+ [(k + l)2]+

. (D.38)

On the other hand, we can first consider the k-integral and decompose the tensor structure kβkµkν
according to the general ansatz:∫

ddk
kβ kµ kν

[k2]+ [(k + l)2]+
= lβ lµ lν B111 + (lβ gµν + lµ gβν + lν gµβ)B001. (D.39)

Keeping all scaleless integrals in the evaluation of the coefficients B111 and B001 one then finds,

∫∫
ddk ddl

(l · q) (k · q) kµ kν
[k2]+ [l2]+ [(k + l)2]+

=

∫∫
ddk ddl

[
(d+ 2) (l · q)2 lµ lν

8 (1− d) [k2]+ [l2]+ [(k + l)2]+
(D.40)

+
3 (d− 2)

(
k · l − l2

) (
2qµ qν + q2 gµν

)
4 d (d− 1) (d+ 2) [k2]+ [l2]+

]
,

where we again applied (D.24) and (D.29) wherever possible. If the decomposition is done properly,
the right-hand sides of eqs. (D.38) and (D.40) need to coincide which allows us to derive a handy
relation:∫∫

ddk ddl
(l · q)2 lµ lν

[k2]+ [l2]+ [(k + l)2]+
=

2
(
2qµ qν + q2 gµν

)
d (d+ 2)

∫∫
ddk ddl

(
l2 − k · l

)
[k2]+ [l2]+

. (D.41)
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In a similar fashion one can also find other relations that can be used to rewrite the result in
(D.35),

•
∫∫

ddk ddl
(l · q)3 lµ qν

[k2]+ [l2]+ [(k + l)2]+
=

6 (d− 2) qµ qν q
2

d (d+ 2)

∫∫
ddk ddl

(
l2 − k · l

)
[k2]+ [l2]+

,

•
∫∫

ddk ddl
(l · q)3 lν qµ

[k2]+ [l2]+ [(k + l)2]+
=

6 (d− 2) qµ qν q
2

d (d+ 2)

∫∫
ddk ddl

(
l2 − k · l

)
[k2]+ [l2]+

,

•
∫∫

ddk ddl
(l · q)4 gµν

[k2]+ [l2]+ [(k + l)2]+
=

6 (d− 2) gµν
(
q2
)2

d (d+ 2)

∫∫
ddk ddl

(
l2 − k · l

)
[k2]+ [l2]+

.

(D.42)

Applying these identities to (D.35) then gives,

iMa
µν = (D.43)

=− 4 (d− 2) i g2
s CF CA µ̃

4−d

d (d+ 2) (q2)3

{
4 (4 + d (2− d))

(d− 1)

∫∫
ddk

(2π)d
ddl

(2π)d
(k · l)

(
qµ qν − q2 gµν

)
[k2]+ [l2]+

+ (d− 4)

∫∫
ddk

(2π)d
ddl

(2π)d
l2
(
8 qµ qν + (d− 6) q2 gµν

)
[k2]+ [l2]+

}
,

and in the limit d→ 4 we obtain:

iMa
µν =

16 i gsCF CA

9 (q2)3

(
qµ qν − q2 gµν

) ∫∫ ddk

(2π)d
ddl

(2π)d
(k · l)

[k2]+ [l2]+
. (D.44)

In the last step, we can finally account for the matrix element of O3 given in (D.33) which leads
to,

iMa
µν = −i 4π αs

(
qµ qν − q2 gµν

)
9 (q2)3 〈O3〉. (D.45)

Diagram (b) can be calculated in the very same way and is found to yield an identical contribution.
Finally adding the results for both diagrams gives the correct leading order contribution for the
coefficient function of O3 (see (D.4)):

Πµν =Mµν
a +Mµν

b =

(
qµ qν − q2gµν

)
(q2)3 4π αs

(
−2

9

)
〈O3〉. (D.46)
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