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Abstract

This master thesis studies a data-driven approach for the prediction of time-dependent
PDEs. In particular, we are interested in model reduction methods and machine learning
for fast response curve estimation modeled by the (parameter-dependent) Landau-Lifschitz-
Gilbert (LLG) equation, the fundamental partial differential equation of motion in the field
of micromagnetics. The work on the thesis consists of a theoretical conception of certain di-
mensionality reduction methods as well as nonlinear regression schemes for efficient machine
learning of the solution trajectories of the LLG equation. Specifically, kernel methods will
be studied with a focus on numerically stable and efficient implementation of Kernel Ridge
Regression (KRR) and Kernel Principal Component Analysis (kPCA) with (novel) low-rank
treatment of certain dense operators. Many algorithms map the data to another feature
space. Pre-image computation is an essential element in the course of this work. Therefore,
we discuss a supervised approach utilizing Kernel Ridge Regression.

With all those elements in mind, we derive an iterative solution to Kernel Dependency
Estimation (KDE) and further develop an explicit multistep feature space integration scheme
capable of learning the complicated magnetization dynamics in a reduced dimensional space.
This algorithm offers fast prediction with similar accuracy as KDE. We discuss the data
structure for this task and have a look at storage requirements for different approaches. For
the implementation, we use the numpy and scikit-learn python modules, and simulations
were partially computed on the Vienna Scientific Cluster (VSC).

As a comparative analysis, a second part deals with neural network autoencoders for
dimensionality reduction for the data sets with a focus on smooth latent space variable
description with the help of regularization in contractive autoencoders. We find that the
latent space description of the autoencoder is more powerful than the one offered by kernel
principal component analysis. Further, a forward-looking objective function is used to train
a neural network regression scheme to replace the kRR. Using Keras and Tensorflow, with
automated differentiation we are able to perform optimization of very difficult objective
functions.

In the case of kernel methods, the explicit feature space integration scheme offers an
easy training process with explicit solutions to arising optimization problems. This becomes
more difficult in the case of neural networks and requires advanced stochastic optimizers
with adaptive moment estimation. We use the Adam optimization algorithm for this pur-
pose. Using cross-validation, we perform a series of model validation and hyper-parameter
estimation tasks and find that these methods offer a semi-supervised learning method with
considerably lower computational cost than other approaches.

The thesis is thematically at the forefront of current research in computational physics/-
mathematics and in the course of this thesis, two preprints were submitted to internationally
accepted and peer-reviewed journals while, up until now, one has been accepted.
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Chapter 1

Introduction and Problem Setting

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

1.1 Machine learning in Micromagnetism

Computational micromagnetism is an established discipline that is useful for simulations
aiming at magnetic devices design in applications such as permanent magnets [19] or mag-
netic sensors [49]. E.g. permanent magnet research searches for novel superior magnetic
materials with reduced critical rare earth content, and electronic circuit design and real time
process control models quick and reliable sensor response. The theoretical foundation of
micromagnetism is the continuum theory of micromagnetism, which treats magnetization
processes on above atomistic length scales but without losing the capability to resolve mag-
netic domains, which are important for magnetic effects in the devices. The magnetization
vector field is modelled as a continuous function inside a magnetic material in three dimen-
sional space. Dynamics of the magnetization field in a magnetic material is governed by
internal and external fields, such as exchange field, stray field, anisotropy field and Zee-
man field, and mathematically described by the Landau-Lifschitz-Gilbert (LLG) equation, a
time-dependent partial differential equation (PDE). The exchange field contribution is local
but makes the PDE spatially second order, which yields stability requirements for explicit
time-integration typically of CFL-type ∆t ≤ C (∆x)2. On the other hand, the non-local
stray field complicates implicit treatment. Also the exchange length (typically in the range
of a few nanometers) is an upper bound for the discretization size, hence indirectly limits
the size of time-steps in the presence of the mentioned time-step restrictions. The LLG
equation is usually treated in finite difference or finite element discretization frameworks [33,
42], where the main computational burden is due to the magnetostatic Maxwell equations
posed in whole space [1, 14].

More precisely, the mathematical description of magnetization dynamics in a magnetic
body Ω ⊂ R3 is through the Landau-Lifschitz-Gilbert (LLG) equation [9, 30]. In micromag-
netism we consider the magnetization as a vector field M(x, t) = Msm(x, t), |m(x, t)| = 1
depending on the position x ∈ Ω and the time t ∈ R. The LLG equation is given in explicit
form as

∂M

∂t
= − γ0

1 + α2
M ×H − αγ0

(1 + α2)Ms
M ×

(
M ×H

)
, (1.1)

where γ0 is the gyromagnetic ratio, α the damping constant and H the effective field,
which is the sum of nonlocal and local fields such as the stray field and the exchange field,
respectively, and the external field h ∈ R3 with length h. The stray field arises from the
magnetostatic Maxwell equations, that is the whole space Poisson equation for the scalar
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potential ud

∆ud = ∇ ·M in R3, (1.2)

with Hd = −∇ud. The exchange term is a continuous micro-model of Heisenberg exchange,
that results in Hex = 2A

µ0M2
s

∆M, where µ0 is the vacuum permeability, Ms the saturation

magnetization and A the exchange constant. Equation (1.1) is a time-dependent PDE in
3 spatial dimensions supplemented with an initial condition M(x, t = 0) = M0 and (free)
Neumann boundary conditions. For further details on micromagnetism the interested reader
is referred to the literature [6, 2, 30]. Typically, equation (1.1) is numerically treated by
a semi-discrete approach [48, 13, 12, 18], where spatial discretization by collocation using
finite differences or finite elements leads to a rather large system of ordinary differential
equations. Clearly, the evaluation of the right hand side of the system is very expensive
mostly due to the stray field. Hence, effective methods are of high interest, especially in
the case of successive solutions for different parameters such as an external field. On the
other hand, applications need quick and effective solutions. A way to meet such demands
for applications is offered by diverse reduced order models (ROMs) in micromagnetism. So
far most ROMs were (multi)linear, e.g., tensor methods [15] and model reduction based
on spectral decomposition [7] such as via a subset of the eigenbasis of the discretized self-
adjoint effective field operator [11]. While these are keen ideas, they are clearly limited
due to the inherent linearity of the reduced models. Recently, the authors introduced data-
driven nonlinear model order reduction (nl-MOR) to effectively predict the magnetization
LLG-dynamics subject to the external field based on simulated data [29, 17, 16]. Fast re-
sponse to an external field can be obtained from such data-driven PDE machine learning
(ML) models combined with unsupervised nonlinear model reduction. Another inspiration of
the proposed machine learning scheme in [17, 16] was to construct a time-stepping predictor
on the basis of a non-black-box nonlinear dimensionality reduction approach such as kernel
principal component analysis (kPCA) [41] for the better understanding of the underlying
approximations. In this connection, the key idea is to use a data set of simulated magneti-
zation trajectories to learn a time-stepping model scheme that is capable of predicting the
dynamics step by step for a new unseen external field without having to solve the LLG equa-
tion numerically, and hence with practically negligible computational effort. The challenging
part is the combination of the learning process with reduced dimensionality of the feature
space, which is initially proportional to the size of the discretization space used in the data
generation, thus, several orders of magnitude too large for regression. A nonlinear kernel
version of principal component analysis for the feature space dimensionality reduction was
successfully established in [17, 16], where each time-step was learned on the basis of mag-
netization states represented via truncated kernel principal components. In the forthcoming
presentation one novel extension of the idea in [17] will be the simultaneous learning of all
steps via an entire dimension-reduced feature space integration scheme. Besides, the second
improvement concerns the feasibility of the kernel learning scheme by the introduction of
low-rank approximation to the kernel matrix, which allows the use of larger learning data.
The reason for its importance is the fact that the learning process gets gradually infeasible
as data size increases, as such, a common problem in data-driven methods but especially
the case for kernel methods in machine learning [23]. Thus, while the original approach
already leads to an exceptional reduction in feature dimension and fast learning owing to the
nonlinear kernel, the novel approach performs training and predictions entirely in reduced
coordinates and is capable of exploiting information from large training data sample sets
owing to the low-rank kernel principal component analysis (low-rank kPCA). The low-rank
kernel methods with applications to the prediction of magnetization dynamics was recently
developed and submitted for publication as [16].
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1.2 Supervised Learning

When considering a general supervised learning problem in machine learning, the goal is to
establish a model which can reliably predict the variable y ∈ Y, given an input x ∈ X . To
create a model, one first needs a set of training data S = {(xi, yi) ∈ X × Y|i = 1, . . . ,m}.
The samples are drawn from a data generating distribution ρ and are independently and
identically distributed (i.i.d). Further a hypothesis classH and a loss function L : Y×Y → R
is needed. The optimal hypothesis f∗ ∈ H is given by the following optimization problem:

f∗ = arg min
f∈H

{Lρ(f)} , (1.3)

where Lρ(f) is called the expected risk [45]

Lρ(f) := E
(x,y)∼ρ

{L(y, f(x))} . (1.4)

Using the Lebesgue integral, the expected risk can be expressed with

Lρ(f) =

∫
X×Y

L(y, f(x))dρ, (1.5)

where the loss function L is defined on the probability space (X ×Y,ΣX×Y , ρ) and ρ is the
unknown joint probability distribution.

When calculating the loss L(y, f(x)), the hypothesis f is applied to the input x in order
to predict ŷ. With this notion, the loss function can be seen as a measure of similarity
between the estimate ŷ = f(x) and the true output y.

Hence, knowing the loss function gives knowledge of the similarity measure which is
used in the output space Y. In a classification setting this is often the zero-one loss and
in regression the square loss. However, more complex outputs would also require a more
complex loss function [52].

1.3 Data-driven solution of PDEs

Parameter-dependent PDEs are solved with conventional numerical methods on computa-
tional grids for varying parameter and the associated snapshots of the discrete solutions are
collected in a training data set. Our approach to learn the solution manifold spanned by
the solutions w.r.t. the varying parameter is to mimic time-stepping schemes in the training
phase. For each time step ∆t, a dependency map is learned between the solutions at times
{t, t + ∆t, . . . , t + (ν − 1)∆t} (input space) and at time t + ν∆t (output space), where
ν ∈ N defines the ”multisteps” in a ν-step scheme. In more detail, the generic dependency
estimation is here restated from [16]. We denote X as the input set and Y as the output
set. A general learning problem is to estimate a map between inputs x ∈ X and outputs
y ∈ Y. The underlying mathematical task is that of estimating a map from an Hilbert space
V by minimizing the risk functional

f∗ ∈ arg min
f∈V
J (f) :=

∫
X×Y

L(y, f(x)) dρ(x, y),

on the measure space
(
X × Y,ΣX×Y , ρ

)
but with unknown joint probability distribution

ρ. If we have available inputs x ∈ X and outputs y ∈ Y from a given training set
(x1, y1), (x2, y2), . . . ,
(xm, ym) ∈ X ×Y, we can try to empirically solve the problem in a model class or hypothesis
class like e.g. H = {f(.;α) : α feasible parameter}. In [17] we defined L as the distance
in output feature space using a radial basis function as kernel ` : Y ×Y → R on the output
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set. This gives a RKHS F` with associated map φ` : Y → F` and `(y, y′) = φ`(y) · φ`(y′)
and a loss expression L(y, f(x)) = ‖φ`(y) − φ`(f(x))‖2F`

, which can be expressed entirely
through the kernel ` using the kernel trick. For the purpose of finding the minimizer f∗,
only few kernel principal components of the representation of feature vectors are used and
a ridge regression is used in [17]. Generally, the problem of estimating the map f can be
decomposed in subtasks using the idea of kernel dependency estimation (KDE) [52], where
f is the composition of three maps, i.e.,

f = φ−1` ◦ fF ◦ φk, (1.6)

where φk : X → Fk is the feature map for inputs associated with a kernel k, fF : Fk → F`
the map between input and output feature spaces and φ−1` : F` → Y an approximate
inverse onto Y which is called the pre-image map. See Figure 1.1 for an illustration of the
involved mappings. In this thesis we model the time-evolution of LLG dependent on external

X Y

Fk F`

f

φk

fF

φ` φ−1`

Figure 1.1: Illustration of the mappings in (1.6).

field in a certain range. For instance, we will estimate a time-stepping map with (low-rank)
kernel-ridge regression between truncated kPCA coordinate representations of magnetization
configurations in the actually infinite dimensional feature space. Our learning approach works
entirely with low-dimensional magnetization representations in feature space. All time steps
are learned within the reduced dimensional setting and the pre-image is computed after the
final time step only. We will use the computational low-rank approach of section 2.3.2 to
further improve this method. Figure 1.2 illustrates the feature space integration scheme.

X . . .
f

X ′

Fk · · ·
fF

F ′k

φk φ−1k

Figure 1.2: Illustration of the mappings involved in the feature space integration procedure.
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Chapter 2

Kernel methods and nonlinear
dimensionality reduction

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

2.1 Kernels in RKHS

Many algorithms auch as Support Vector Machines (SVMs) or Principal Component Analysis
(PCA) are based on inner products measuring the distance between samples in the input
space X . A notion of distance can be encoded in a symmetric positive definite kernel function
k.

Definition 2.1.1 (Positive definite kernel function [16]). Let X be a nonempty set. A
symmetric function k : X × X → R is a positive definite kernel on X if for all m ∈ N
any choice of inputs x = {x1, . . . , xm} ⊆ X gives rise to a positive definite gram matrix
K[x] ∈ Rm×m defined as Kij = k(xi, xj), i, j = 1, . . . ,m. To distinguish an involved
second subset y = {y1, . . . , y`} ⊆ X we define the matrix K[x,y] ∈ Rm×` via its entries
Kij = k(xi, yj), i = 1, . . . ,m, j = 1, . . . , k.

A kernel therefore calculates an inner product in some Hilbert space Fk which can replace
the inner product in the original space X . This means there exists a map φk : X → Fk
such that k(x, x′) = (φk(x)Tφk(x

′)). The inner product space Fk is also known as the
Reproducing Kernel Hilbert Space (RKHS) [3].

The replacement of the inner product by a positive definite kernel function is also known
as the kernel trick. There are many different kernel functions. Two examples which give rise
to a symmetric positive kernel matrix are the polynomial kernel k(x, x′) = (xTx′ + 1)p with
degree p and the Radial Basis Function (RBF) k(x, x′) = exp(−γ‖x−x′‖2). For the choice
γ = 1

2σ2 the kernel is also known as the Gaussian kernel of variance σ2.

2.1.1 Kernel methods

There are many methods available to detect linear relations in a given dataset. E.g. Linear
Regression is used to model the relation between a set of independent explanatory variables
and a dependent real valued output variable. Principal Component Analysis (PCA) [54] (see
section 2.3) can be used for compression and denoising and is based on a linear transformation
of the data. Logistic Regression [28], on the other hand, can be used for classification if
the data is separable by a halfspaces. Those methods are well established and extensively
studied in literature. Together they form a powerful set of methods for machine learning,
but they all suffer from the problem that they cannot detect and utilize nonlinear patterns

5



in the dataset. Kernel methods help to overcome this issue by mapping the data onto a
Hilbert space in which the nonlinear dependencies can again be expressed in a linear fashion
[46]. For example the dataset in Figure 2.1 is not separable in one dimension, but by using
the feature map φ : R→ R2, x 7→ (x, x2), the data becomes linearly separable.

4 2 0 2 4
x

0

5

10

15

20

x
2

Figure 2.1: Feature space map φ : R→ R2, x 7→ (x, x2)

Using complicated feature mappings can result in very high-dimensional, or even infinite
dimensional feature spaces. With the notion of kernels, we can still make use of those map-
pings, without ever explicitly evaluating them. Many algorithms depend on the evaluation
of inner products in feature space. In practice, those inner products can be replaced by the
specified kernel function. We call this step kernelization. It therefore is a natural way to
extend linear models in order to recognize nonlinear patterns in the data. We will see this
in more detail in 2.2, when we will kernelize Ridge Regression and also in section 2.3 for
Principal Component Analysis.

2.1.2 Low-rank kernel approximation

For large sample size m we seek a low-rank approximation of the Gram matrix as a Nyström
approximation of the kernel matrix arising from the training data split into r ≤ m randomly
selected basis samples and the m− r remaining samples [53].
In the case where the kernel matrix has rank r ≤ m we get an explicit form of the low-rank
decomposition.

Lemma 2.1.1 (Low-rank approximation of the kernel matrix). Given a set of samples x =
{x1, . . . , xm} ⊆ X we assume to be able to pick a subset of r ≤ m samples xr ⊆ x such that
K[xr] ∈ Rr×r has full rank r. Let us further denote the set of remaining m−r samples with
xm−r and assume the relabeled initial sample set x = {xr,xm−r} such that the associated
kernel matrix gets block form

K[x] =

(
Kr,r KT

m−r,r
Km−r,r Km−r,m−r

)
, (2.1)

where Kr,r := K[xr] ∈ Rr×r, Km−r,r := K[xm−r,xr] ∈ Rr×(m−r) and Km−r,m−r :=
K[xm−r] ∈ R(m−r)×(m−r). Then there holds

K[x] = Φr ΦT
r , (2.2)

with

Φr := Φr[x] =

(
K

1/2
r,r

Km−r,rK
−1/2
r,r

)
= Km,rK

−1/2
r,r ∈ Rm×r. (2.3)
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Proof. We first observe that

Φr ΦT
r =

(
Kr,r KT

m−r,r
Km−r,r Km−r,rK

−1
r,rK

T
m−r,r

)
. (2.4)

Since K[x] has rank r, we have the eigenvalue decomposition K[x] = UΛUT with U ∈ Rm×r
and the diagonal matrix Λ ∈ Rr×r built from the r nonzero eigenvalue of K[x]. Using the
block notation U = (UTr , U

T
m−r)

T we get

K[x] = UΛUT =

(
UrΛU

T
r UrΛU

T
m−r

Um−rΛU
T
r Um−rΛU

T
m−r

)
. (2.5)

Note that UTr Ur = I and hence

Km−r,rK
−1
r,rK

T
m−r,r = (Um−rΛU

T
r )(UrΛ

−1UTr )(UrΛU
T
m−r) = Um−rΛU

T
m−r = Km−r,m−r,

(2.6)

which shows K[x] = Φr ΦT
r . Finally, the identity in Eqn. (2.3) simply follows from K

1/2
r,r =

Kr,rK
−1/2
r,r .

The computation of Φr needs O(mr + r2) kernel evaluations. Each kernel evaluation

takes an additional O(dim(X )) floating point operations. Evaluation of K
−1/2
r,r has a cost

of O(r3) and matrix multiplication takes O(mr2) operations. We see that the algorithm
depends only linearly on the sample size m. This is a huge advantage to conventional
kernel methods which depend on the calculation of the full kernel matrix and hence have a
complexity of O(m2). We further remark that for some kernels such as Gaussian RBF the
above rank r assumption will only hold approximately for sufficiently large r, but the faster
the eigenvalues of the Gramm matrix decrease, the smaller we can choose an approximate
rank r.

From Lemma 2.1.1 Eqn. (2.3) we see that when mapping an individual data sample
y ∈ X under φ : X → Rr the corresponding feature vector is given as

Φr(y) =
(
k(y, x1), . . . , k(y, xr)

)
K−1/2r,r , (2.7)

which holds true for y /∈ xr as it represents the respective row in Km,rK
−1/2
r,r , but also

for y ∈ xr due to the identity K
1/2
r,r = Kr,rK

−1/2
r,r . We summarize this remark for later

reference.

Corollary 2.1.2. Under the assumptions of Lemma 2.1.1 the matrix of feature vectors of
data samples y = {y1, . . . , y`} is given as

Φr[y] = K[y,xr]K
−1/2
r,r , (2.8)

with K[y,xr] =
(
k(yi, xj)i,j

)
∈ R`×r.

Later we will use the low-rank approximation of the kernel matrix to enhance efficiency in
(un)supervised learning via Kernel Principal Component Analysis (kPCA) and Kernel Ridge
Regression (KRR).

2.2 Kernel Ridge Regression

2.2.1 Linear Regression

Possibly the most elementary algorithm that can be kernelized is ridge regression. The task
is to find a linear function that models the dependencies between input variables X ⊆ X and
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output variables Y ⊆ Y. Let X be a m× Ñ real valued matrix, where the rows contain the
training samples xi, for i = 1, . . . ,m, having Ñ features. Respectively let Y be a m × M̃
matrix, containing the output samples yi with M̃ features. The classical way to do that is
to minimize the quadratic cost,

LLR(W ) =
1

2

m∑
i=1

‖yi −W Txi‖2, (2.9)

where W is a Ñ × M̃ matrix containing the weights [51]. Minimizing L leads to classical
linear regression.

2.2.2 Ridge Regression

However, calculation of the linear regression coefficients can be difficult if the data tends
to be non-orthogonal. This can cause large coefficient values and some might even have
the wrong sign [22]. On the other hand, very high dimensional data often suffers from
independent variables being highly correlated, which often leads to poor performance of
Multiple Linear Regression. The usual way to handle this issue is regularization. A simple
yet effective way to regularize, is to penalize the norm of W . This is sometimes called
weight-decay. Adding the regularization term, the cost function becomes

LRR(W ) =
1

2

m∑
i=1

‖yi −W Txi‖2 +
1

2
α‖W T ‖2F

=
1

2
‖Y T −W TXT ‖2F +

1

2
α‖W T ‖2F .

(2.10)

The regularization parameter α ∈ R+ determines the strength of the regularization. Further,

‖A‖F =
√∑M

i=1

∑N
j=1 a

2
ij denotes the Frobenius norm.

Proposition 2.2.1. The solution of the minimization problem

arg min
W

LRR(W )

is unique and given by

W T = Y TX(XTX + Iα)−1 primal solution (2.11)

W T = Y T (XXT + Iα)−1X dual solution. (2.12)

The following lemma will be useful to proof proposition 2.2.1.

Lemma 2.2.2 (Push-through identity). Let A be a l × k and B a k × l sized matrix, then
the following identity holds

A(BA+ Ikα)−1 = (AB + Ilα)−1A, (2.13)

where Ik denotes the identity of size k.

Proof. Starting with
(AB + Ilα)A = A(BA+ Ikα),

and multiplying with (BA+ Ikα)−1 from the right and (AB + Ilα)−1 from the left results
in

A(BA+ Ikα)−1 = (AB + Ilα)−1A.
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The identity has its name, because the matrix A, when pushed into the inverse from the
left, is pushed through to the right.

Proof of Prop. 2.2.1. By taking the matrix derivative of the loss function (2.10) and equat-
ing to zero gives

∇WLRR(W ) =
1

2
∇W

(
tr(Y Y T )− 2 tr(XWY T ) + tr(XWW TXT ) + α tr(WW T )

)
= −Y TX +W TXTX + αW T = 0

Solving for W results in the primal solution

W T = Y TX(XTX + Iα)−1

To derive the dual solution, one can apply Lemma 2.2.2 and get

W T = Y T (XXT + Iα)−1X.

To predict the value of a new point x, the point is projected onto the space spanned by
the rows of W T . Out hypothesis f therefore becomes

f(x) = W Tx = Y (XTX + Iα)−1XTx. (2.14)

2.2.3 Kernelization

To apply the kernel trick, we use the feature map φ : X → Fk, x 7→ φ(x) to transform the
features to a RKHS. This gives us the following cost function:

LKRR(W ) =
1

2

m∑
i=1

‖yi −W Tφ(xi)‖2 +
1

2
α‖W‖2F . (2.15)

The problem arises when we actually want to solve this optimization problem, since we
cannot explicitly calculate φ(x). Nevertheless, the solution of W is given by

W T = Y TΦ[x](Φ[x]TΦ[x] + Iα)−1 primal solution (2.16)

W T = Y T (Φ[x]Φ[x]T + Iα)−1Φ[x] dual solution, (2.17)

where Φ[x] denotes the matrix of size m × dim(Fk) which holds the samples mapped to
the feature space

Φ[x] = [φ(x1)| . . . |φ(xm)]T . (2.18)

The inner products of the RKHS can now be replaced by the kernel function (Def. 2.1.1),
e.g. K[x] = Φ[x]Φ[x]T . By applying the kernel trick to the hypothesis (2.14), the equation
changes to

fKRR(x) = W Tφ(x) = Y T (K[x] + Iα)−1K[x, x]. (2.19)

Therefore, when using KRR, it is only necessary to calculate the kernel function, but not to
explicitly evaluate the map φ(x).

The hypothesis fKRR can also be seen as a weighted sum of centered kernels:

fKRR(x) =

m∑
i=1

ωik(xi, x), (2.20)
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where ωi is the ith column of Y T (K[x] + Iα)−1. As an illustration, we show Figure 2.2. A
KRR with a RBF kernel k(x, y) = e−γ‖x−y‖

2
is performed on a dataset with labels −1 and

1 and with two different value for the kernel parameter γ. We can see that for a larger value
of gamma, the centered kernel functions are more isolated, whereas for smaller values they
merge together and create a sharper decisions boundary.
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(a) γ = 0.5
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Figure 2.2: Example of Kernel Ridge Regression with a RBF kernel k(x, y) = e−γ‖x−y‖
2

on
a dataset with features x1, x2 and labels −1 and 1.

2.2.4 Low-rank KRR and the primal solution

By utilizing a low-rank approach or rank r to approximate the Gram matrix K[x] ≈ ΦrΦ
T
r ,

it is possible to use the primal solution (2.16) in order to solve the hypothesis

fKRR(x) ≈ Y T (ΦrΦ
T
r + Iα)−1ΦrΦr[x]T = Y TΦr(Φ

T
r Φr + Iα)−1Φr[x]T . (2.21)

The low-rank mapping Φr[x] ∈ R1×r of the new data sample x is calculated by using
Corollary 2.1.2. The approximate Gram matrix ΦrΦ

T
r is still of size m ×m, but only has

a rank of r. By using the primal solution, we have to calculate the covariance matrix
Σ = ΦT

r Φr, which is only of size r× r instead. This is equivalent to first apply the Nyström
approximation (2.3) to the dataset, following a linear Ridge regression (2.14).

2.2.5 Low-rank eigenvalue regularization

Since the map Φ is equivalent to a change of the feature space, the new feature space might
be very high (possibly infinite) dimensional, depending on the kernel k. Since the number
of training samples m is much smaller than the number of features, the problem becomes
underdetermined. We therefore need the regularization parameter α in order to shift the
small eigenvalues of the Gram matrix away from zero, such that K[x] + Iα becomes well
conditioned. Instead of shifting the eigenvalues, another way to regularize could be done
by performing an eigenvalue decomposition of the Gram matrix K[x] = UΛUT and then
neglecting small eigenvalues and their corresponding eigenvectors up to a predetermined
threshold ε. The problem would change to

fε(x) = W T
ε φ(x) = Y (UΛεU

T )−1K[x, x], (2.22)

where Λε denotes the diagonal matrix with all eigenvalues < ε set to zero. On first glance
this might not seem very useful for kernel matrices of size m × m if m is large, since it
adds the extra burden of eigenvalue decomposition. For large training sets, this can become
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infeasible. However, if we use a low-rank approximation as described above, we could think
of regularizing the covariance matrix Σ = ΦT

r Φr by this technique instead

fε(x) = Y Φr(V ΛεV
T )−1φ(x), (2.23)

with ΦT
r Φr = V ΛV T being the eigenvalue decomposition of the covariance matrix.

There are two regularizations happening here. The first one occurs when we choose the
rank r and the second one is given by the parameter ε. If we choose the rank appropriately,
we could omit the second regularization. But since we usually don’t know the rank in the first
place, we can achieve the desired regularization with the second regularization parameter
ε. One could calculate the rank by first setting ε and further investigate the number of
eigenvalues which had been cut off. If this number is very large, one can likely choose a
smaller rank and hence reduce the computational effort.

For this task, it is useful to set the parameter ε relative to the approximation error of the
covariance matrix. This way, choosing a higher rank r does not change the result. Using

the Eckart-Young theorem (see Appendix A.2) the error is given by
√∑

i:λi<ε
|λi|2, where

λi denotes the diagonal entries of Λ. The relative error is therefore given by

εrel =

√∑
i:λi<ε

|λi|2√∑r
i=1 |λi|2

. (2.24)

We can calculate the relative error for all eigenvalues and remove those which are smaller
than the chosen threshold.

2.3 Principal Component Analysis

Principal Component Analysis is an unsupervised learning method which aims to find the
subspace of largest variance. The number of dimensions can be chosen beforehand. This is
useful if the directions of small variance do not contain interesting information and can be
neglected. The method can therefore be used to filter noise from a signal. Often, however,
the directions of small variance contain valuable information. In this case Independent
Component Analysis (ICA) can be used instead [50].

PCA projects a N dimensional dataset orthogonally onto a d-dimensional subspace.
Figure 2.3 illustrates how a two-dimensional dataset is projected onto a line.
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Figure 2.3: Orthogonal projection of a two-dimensional dataset onto a one dimensional
subspace.
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Let x ∈ RN be a N dimensional vector and Ud = [v(1), . . . , v(d)] ∈ RN×d a set of
orthonormal vectors. To project x onto the d-dimensional subspace which is spanned by the
components of Ud, we can calculate the inner products v(i)Tx, i = 1, . . . , d. This can be
written in matrix form

z = UTd x, (2.25)

where z denotes the d-dimensional encoded vector of x. The reconstruction x̂ of x is given
by

x̂ = Udz = UdU
T
d x. (2.26)

Theorem 2.3.1 (PCA). Let X = [x1, . . . , xm]T ∈ Rm×N be the matrix of m training
samples with zero mean. Suppose we want to find an orthogonal set of d linear basis vectors
Ud = [v(1), . . . , v(d)] ∈ RN×d, such that the average reconstruction error

LPCA(Ud) =

m∑
i=1

‖xi − x̂i‖2 (2.27)

is minimized. The optimal solution is obtained by choosing Ud equal to the d eigenvectors
with largest eigenvalues of the empirical covariance matrix Σ̂ = 1

m

∑m
i=1 xix

T
i = 1

mX
TX.

Furthermore, the optimal low-dimensional encoding of the data is given by Z = UTd X, which
is an orthogonal projection of the data onto the column space spanned by the eigenvectors.
The matrix UdU

T
d is an orthogonal projection matrix.

Proof [34]. Let zi = UTd xi be the low dimensional representation of xi under the transfor-
mation Ud. We can express the average reconstruction error as follows

LPCA(Ud) =
1

m

m∑
i=1

‖xi − UdUTd xi‖2

=
1

m

m∑
i=1

(xTi xi − 2xTi UdU
T
d xi + 2xTi (UdU

T
d )(UdU

T
d )xi).

(2.28)

Since the matrix Ud is orthonormal, it follows that (UdU
T
d )(UdU

T
d ) = UdU

T
d . Therefore,

LPCA(Ud) =
1

m

m∑
i=1

(xTi xi − xTi UdUTd xi)

=
1

m

m∑
i=1

xTi xi −
1

m

m∑
i=1

zTi zi.

(2.29)

The first term is constant and if we denote the jth component of the low-dimensional

representation zi with z
(j)
i , we can write the objective as

LPCA(Ud) = const− 1

m

d∑
j=1

m∑
i=1

z
(j)
i

2
. (2.30)

Let z̃(j) ∈ Rm denote the jth component of all the low-dimensional vectors zi, i = 1, . . . ,m.
Then, assuming that the data is centered in feature space, the empirical variance of the jth

projected coordinate vector is given by

var
{
z̃(j)
}

= E
{
z̃(j)

2
}
− (E

{
z̃(j)
}

)2 = E
{
z̃(j)

2
}

=
1

m

m∑
i=1

(z
(j)
i

2
). (2.31)
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Therefore, minimizing the reconstruction error is equivalent to maximizing the empirical
variance of the low d-dimensional representation. This is why it is said that PCA finds the
directions of maximal variance.

The variance of the jth component can also be written as

1

m

m∑
i=1

z
(j)
i

2
=

1

m

m∑
i=1

v(j)
T
xix

T
i v

(j) = v(j)
T

Σ̂v(j), (2.32)

It would be trivial to maximize the variance of the projection by letting ‖v(j)‖ → ∞, so
the additional constrain ‖v(j)‖ = 1 is needed. By using Lagrange Multiplier calculus, the
objective, which we need to maximize now, is given by

L̂PCA(v(j)) = v(j)
T

Σ̂v(j) + λj(v
(j)T v(j) − 1) (2.33)

where λj is the Lagrange multiplier. By setting the derivative to zero we get the following
eigenvalue problem,

∂

∂v(j)
L̂PCA(v(j)) = 2Σ̂v(j) − 2λjv

(j) = 0

Σ̂v(j) = λjv
(j) (2.34)

Hence, the direction that maximizes the variance of the jth component of the low-dimensional
representation is an eigenvector of the covariance matrix. The matrix Σ̂ is SPD, therefore,
left multiplying by v(j) shows that

v(j)
T

Σ̂v(j) = λj > 0, for all j = 1, . . . , N. (2.35)

In order to maximize the variance, we must therefore pick those eigenvectors which corre-
spond to the d largest eigenvalues.

The algorithm requires that the data has zero mean. We can simply center the data by
subtracting the mean

x̄ =
1

m

m∑
i=1

xi. (2.36)

Having found the eigenvectors Ud of the covariance matrix, we can now project a new
sample x′ ∈ RN onto the space spanned by the columns of Ud and hence get a low level
representation of the new data point

z′ = UTd (x′ − x̄). (2.37)

2.3.1 Kernel Principal Component Analysis

In case there are more dimensions than data samples, such that some dimensions remain
unoccupied, it is not hard to see that the eigenvectors that span the projection space must
lie in the subspace spanned by the sample vectors, i.e.,

λjv
(j) = Σ̂v(j) =

1

m

m∑
i=1

xix
T
i v

(j) =
1

m

m∑
i=1

(xTi v
(j))xi. (2.38)

For λj 6= 0 we get for the eigenvector the following linear combination of data points

v(j) =

m∑
i=1

xTi v
(j)

mλj
xi. (2.39)
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We now derive a kernelized version of the above procedure. For that purpose, we define
the covariance matrix of the data points in feature space Fk.

Σ̄ =
1

m

m∑
i=1

φ(xi)φ(xi)
T . (2.40)

. The solution of PCA of this transformed system is given by the eigenvectors v(j) of

Σ̄v(j) = λjv
(j). (2.41)

Since the dimension dim(Fk) might not be finite, in general, problem (2.41) can not be
computed directly. However, from equation (2.39) we see that the solution is given by a
linear combination of the transformed data points [41]

v(j) =
m∑
i=1

α̂
(j)
i φ(xi). (2.42)

Therefore, instead of solving for v(j) ∈ dim(Fk), we can also solve for the dual coefficients
α̂(j) ∈ Rm.

Theorem 2.3.2 (kPCA). Let x = {x1, . . . , xm} ⊆ X be a dataset in X . Further, let Φ :
X → Fk be a feature space mapping to some Hilbert space (possibly of infinite dimension)
and k : X × X → R, a kernel function as defined in 2.1.1. The kernel PCA generates

the kernel principal axes v(j) = 1√
λj

∑m
i=1 α

(j)
i φ(xi), j = 1, 2, . . . ,m, where the coefficient

vectors α(j) ∈ Rm, j = 1, . . . ,m, result from the eigenvalue problem

K̄α(j) = λjα
(j), (2.43)

with the centered Gram matrix K̄ = K[x]−1mK[x]−K[x]1m +1mK[x]1m ∈ Rm×m and
(1m)ij = 1/m. The eigenvalue problem (2.43) is solved for nonzero eigenvalues. The jth

kernel principal component of a data point x ∈ X can be extracted by the projection

p(j)(x) = φ(x)T v(j) =
1√
λj

m∑
i=1

α
(j)
i k(xi, x). (2.44)

Proof [41]. Since the eigenvectors can be written as a linear combination of the data in-
stances, this implies that instead of the eigenvalue equation (2.34), one can also solve for
α(j) by considering the m projected equations φ(xi)

T Σ̄v(j) = λ̂jφ(xi)
T v(j) for i = 1, . . . ,m

as follows:

φ(xi)
T Σ̄v(j) = λ̂jφ(xi)

T v(j)

φ(xi)
T

[
1

m

m∑
l=1

φ(xl)φ(xl)
T

]
m∑
k=1

α
(j)
k φ(xk) = λ̂jφ(xi)

T
m∑
l=1

α
(j)
l φ(xl)

1

m

m∑
l=1

m∑
k=1

α
(j)
k (φ(xi)

Tφ(xl))(φ(xl)
Tφ(xk)) = λ̂j

m∑
l=1

α
(j)
l (φ(xi)

Tφ(xl)) (2.45)

Starting with equation (2.45) and assuming the data is centered in feature space, we apply
the kernel trick be replacing the inner products with the kernel function, i.e. φ(xi)

Tφ(xl) =
k(xi, xl).

1

m

m∑
l=1

m∑
k=1

α
(j)
k k(xi, xl)k(xl, xk) = λ̂j

m∑
l=1

α
(j)
l k(xi, xl). (2.46)
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Using matrix notation we can express the m equations as,

K̄[x]2α(j) = mλ̂jK̄[x]α(j), (2.47)

and simplifying further, using the non-singularity of the kernel matrix,

K̄[x]α(j) = λjα
(j) with λj = mλ̂j . (2.48)

The definition of PCA requires that the data is centered. For now we assume that the data
is centered in feature space. Later we will see how to center the data using only the kernel
matrix.

Equation (2.48) gives an eigenvalue equation for α(j) for j = 1, . . . ,m which in turn
completely determines the eigenvectors v(j) by (2.42). Let α̂(j) be the jth eigenvector of
(2.48) such that v(j) is normalized. By using equation (2.42), the norm ‖α̂(j)‖ = 1/

√
λj ,

which follows from the calculation:

v(j)
T
v(j) =

m∑
i=1

m∑
k=1

α̂
(j)
i α̂

(j)
k k(xi, xk)

= α̂(j)TK[x]α̂(j)

= λjα̂
(j)T α̂(j) = λj‖α̂(j)‖2 = 1

(2.49)

For ‖α(j)‖ = 1, it is necessary to scale the eigenvectors such that α̂(j) = 1√
λj
α(j).

We define the d-dimensional projection operator Pd which minimizes the reconstruction
error in the feature space Fk, i.e.,

Pd = arg min
P

LkPCA(P ) :=
m∑
i=1

‖φ(xi)− Pφ(xi)‖2Fk
. (2.50)

This is analogue to the reconstruction error of linear PCA (2.27).

Lemma 2.3.3. The projection image Pdφ(x) is spanned by the kernel principal axes v(j), j =
1 . . . , d and Pd is an orthogonal projection.

Proof. For a projection PdPdφ(x) = Pdφ(x) must hold. The operation can be written as a
linear combination in its orthonormal basis

Pdφ(x) =

d∑
k=1

(v(k)
T
φ(x))v(k). (2.51)

Therefore, we have

Pd(Pdφ(x)) =

d∑
k=1

v(k)
T
( d∑
l=1

(v(l)
T
φ(x))v(l)

)
v(k)

=

d∑
k=1

d∑
l=1

(
(v(l)

T
φ(x))(v(k)

T
v(l))

)
v(k)

=
d∑

k=1

(
(v(k)

T
φ(x))

)
v(k) = Pdφ(x).

(2.52)
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Further, a projection is orthogonal if and only if it is self-adjoint Pdφ(x)Tφ(y) = φ(x)TPdφ(y):

Pdφ(x)Tφ(y) =
( d∑
k=1

(v(k)
T
φ(x))v(k)

T
)
φ(y)

=
d∑

k=1

(v(k)
T
φ(x))(v(k)

T
φ(y))

= φ(x)T
( d∑
k=1

(v(k)
T
φ(y))v(k)

)
= φ(x)TPdφ(y).

(2.53)

Since we have proven that Pd is an orthogonal projection, it remains to proof that it minimizes
the reconstruction error. This is analogue to the proof of Theorem 2.3.1.

The individual components of a new data point x are given by equation (2.44). This
defines the d-dimensional low level representation of Pd.

Corollary 2.3.4. Given a dataset x = {x1, . . . , xm} ⊆ X and let the matrix L denote the

m × d matrix with the entries Lij = 1√
λj
α
(j)
i , the optimal d-dimensional encoding of the

data is given by
p(x) = LTK[x, x]. (2.54)

�

We define the matrix p[x] ∈ Rm×d = [p(x1), . . . , p(xm)]T which contains the kernel principal
features in its columns.

Note that we still assume that the data is centered in feature space. In practice, the
kernel matrix of the new data instance needs to be centered as well, which is described in
the next section, see equation (2.58).

Centering the data in feature space

In the kernelized version, the data is mapped onto a new feature space by the map φ :
X → Fk. Even if the data might be centered in the original space X , it is not guaranteed
that the data is still centered in the new feature space Fk. It is very difficult, and in many
cases impossible to explicitly center the data in feature space. But, since the algorithm only
depends on the kernel matrix, one can ask the question of how the centered kernel matrix
would have to look.

Lemma 2.3.5. For the feature space mapping φ : X → Fk, x 7→ φ(x) and a dataset
x = {x1, . . . , xm} ⊆ X , let Φ[x] = [φ(x1), . . . , φ(xm)] be the dataset of size m× dim(Fk)
which contains the transformed data points in its rows. The kernel matrix is given by
K[x] = Φ[x]Φ[x]T . Then the centered version of the kernel matrix is given by

K̄[x] = K[x]− 1mK[x]−K[x]1m + 1mK[x]1m, (2.55)

where 1m denotes the m×m matrix with all entries equal to 1/m.

Proof [43]. A centered version of the data Φ[x] is given by

Φ̄[x] = Φ[x]− 1mΦ[x], (2.56)

The centered kernel matrix K̄[x] is therefore given by

K̄[x] = (Φ[x]− 1mΦ[x])(Φ[x]− 1mΦ[x])T

= Φ[x]Φ[x]T − 1mΦ[x]Φ[x]T − Φ[x]Φ[x]T1m + 1mΦ[x]Φ[x]T1m

= K[x]− 1mK[x]−K[x]1m + 1mK[x]1m.

(2.57)
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The rectangular kernel matrix related to a set of new data points y ⊆ X can be centered
by

K̄[x,y] = (Φ[x]− 1mΦ[x])(Φ[y]− 1mΦ[x])T

= K[x,y]− 1mK[x,y]−K[x]1m + 1mK[x]1m. (2.58)

2.3.2 Low-rank kernel principal component analysis

In the course of the kPCA algorithm one has to solve d eigenvalue problems of the form
K̄α(j) = mλjα

(j), j = 1, . . . , d, which now take the particular form

Φ̄rΦ̄
T
r α

(j) = λjα
(j), j = 1, . . . , d, (2.59)

with Φ̄r = Φr − 1mΦr and Φr = Φr[x] = Km,rK
−1/2
r,r ∈ Rm×r with K[x] ≈ Φr[x]Φr[x]T

being the low-rank approximation of the kernel matrix. An eigenvalue problem of the form
(2.59) can be efficiently solved for nonzero eigenvalues.

Lemma 2.3.6 (Low-rank eigenvalue problem). The eigenpairs (v, λ) with λ 6= 0 of ΦrΦ
T
r ∈

Cm×m with Φr ∈ Cm×r are given by (Φrw, λ) with ΦT
r Φrw = λw. Particularly, there holds

for ‖w‖2 = 1 that ‖v‖2 = λ1/2, i.e., v = λ−1/2 Φrw has unit length.

Proof. Suppose ΦT
r Φrw = λw with λ 6= 0. Then we have ΦrΦ

T
r (Φrw) = λ(Φrw) with

Φrw 6= 0, since otherwise multiplication with ΦT
r yields ΦT

r Φrw = 0 and thus, λ = 0,
contradicting the assumption λ 6= 0 in the first place. Hence, (Φrw, λ) is an eigenpair of
ΦrΦ

T
r . Moreover, ‖Φrw‖22 = wT (ΦT

r Φrw) = λwTw = λ.

The remarkable consequence of Lemma 2.3.6 is a significant reduction in complexity when
solving the eigenvalue problems in the kPCA with low-rank kernel matrix approximation in
the case r � m. Specifically, the computational complexity is reduced from O(m2) to
O(r2) for each of the d eigenvalue problems. We now have the tools to define a low-rank
version of the kPCA.

Definition 2.3.1 (Low-rank kPCA). Given inputs x = {x1, . . . , xm} ⊆ X , a kernel k : X ×
X → R and a low-rank approximation of K̄[x] = K[x]−1mK[x]−K[x]1m+1mK[x]1m ∈
Rm×m by Φ̄rΦ̄

T
r = (Φr − 1mΦr)(Φr − 1mΦr)

T from a choice of a subset xr ⊆ x according
to Lemma 2.1.1. The low-rank version of the kernel PCA generates r ≤ m kernel principal

axes v(j) = 1√
λj

∑m
i=1 α

(j)
i Φ̄r(xi), j = 1, 2, . . . , r, where the coefficient vectors α(j) ∈ Rm

result from the eigenvalue problem

Φ̄rΦ̄
T
r α

(j) = λjα
(j), (2.60)

which is solved for nonzero eigenvalues using Lemma 2.3.6. We choose d ≤ r kernel
principal components, where the jth component of a data point x ∈ X can be extracted by
the projection

pj(x) = Φ̄r(x)T v(j) =
1√
λj

m∑
i=1

α
(j)
i Φ̄r(xi)Φ̄r(x)T . (2.61)

Given data points y = {y1, . . . , y`} ⊆ X their jth kernel principal components are collectively
calculated by

(pj(y1), . . . , pj(y`)) =
(

1√
λj
α(j)T Φ̄r[x]

)
Φ̄r[y]T = L(j)Φ̄r[y]T , j = 1, . . . , d, (2.62)

where Φ̄r[ · ] stands for Φr[ · ] centered w.r.t. the training data. Moreover we defined the

vectors L(j) = 1√
λj
α(j)T Φ̄r[xr] ∈ Rr for j = 1, . . . , d. According to Corollary 2.1.2 the

projections (2.62) are exact under the assumption of Lemma 2.1.1 and Kr,r full rank r.
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Note that L(j)T = Φ̄T
r α

(j)/
√
λj can be directly extracted from the algorithm of the

low-rank eigenvalue problem (2.60) owing to w in Lemma 2.3.6 and the fact that

(Φ̄T
r Φ̄r)(Φ̄

T
r α

(j)) = λj(Φ̄
T
r α

(j)). (2.63)

Hence, the low-rank kPCA needs to store a matrix of unit eigenvectors L = [L(1)T | · · · |L(d)T ]
∈ Rr×d. Only K[y,xr] ∈ R`×r is newly computed for projections onto the kernel principal
axes in the course of the computation of Φ̄r[y] [16].

2.4 Pre-image problem of kPCA

We cannot assume that linear PCA will detect all patterns in a given data set, but if we uti-
lize suitable nonlinear features, we can extract more information. The kPCA as a nonlinear
feature extractor is a powerful tool suited to find interesting nonlinear structures. Unfortu-
nately, identifying the pre-image is generally an ill-posed problem. This is an outcome of the
higher dimensionality of the feature space compared to the input space. As a consequence,
most elements in the feature space might not have a unique pre-image. If the kernel is
an invertible function, for example the polynomial kernel with odd degree and the sigmoid
kernel, the pre-image can be computed exactly [24]. For many kernels though, the results
provided by kernel PCA live in some very high dimensional feature space and, thus, need not
have pre-images in the input space. We still can try to find approximate pre-images using
the squared distance in the feature space [32].

Lemma 2.4.1. Let Pdφ(x) denote the d-dimensional (low-rank) kernel principal projection
derived from a dataset x = {x1, . . . , xm} ⊆ X of the data instance x 6∈ x. The approximate
pre-image z is given by

z = arg min
x̂∈X

‖φ(x̂)− Pdφ(x)‖2. (2.64)

By expressing inner products by kernels, the minimization problem can be written as

z = arg min
x̂∈X

‖φ(x̂)− Pdφ(x)‖2

= arg min
x̂∈X

(
φ(x̂)Tφ(x̂)− 2φ(x̂)TPdφ(x)

)
= arg min

x̂∈X

(
φ(x̂)Tφ(x̂)− 2Pdφ(x̂)TPdφ(x)

)
= arg min

x̂∈X

(
k(x̂, x̂)− 2K[x̂,x]TLLTK[x, x]

)
.

(2.65)

There are different methods to solve this problem. For the RBF kernel one could use
an iterative approach, similar to (4.10) [32] or gradient descent techniques [24]. Using
supervised learning [4], we can establish a model to train a pre-image map Γ : Fk → X that
approximates

x ≈ z = ΓPdφ(x), (2.66)

e.g. by KRR using the training set x and its kPCA projections p[x] ∈ Rm×d. We define the
KRR problem for determining the linear map W T , which, together with a kernel `, represents
approximately Γ : Fk → X in the form

min
W

1

2

m∑
i=1

‖xi −W Tφ`(p(xi))‖2 +
1

2
α‖W‖2, (2.67)

with the regularization parameter α > 0. The dual solution is given by equation (2.17)

W T = XT (K`[p[x]] + Iα)−1Φ`[p(x)], (2.68)
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where X = [x1, . . . , xm]T ∈ Rm×dim(X ) and Kell[p[x]] = Φ`[p[x]]Φ`[p[x]]T . The principal
component encoding p is given by Corollary 2.3.4. The pre-image of x is then given as

z = W Tφ`(p(x)) = XT (K`[p[x]] + Iα)−1K`[p(x), p(x)]. (2.69)

This is also the implementation which is used by scikit-learn and works well for our purposes.
In theory one can choose a different kernel ` than the one used by kPCA. But we achieved
good results by setting them both equal.

Low-rank KRR and pre-image computation

As described in section 2.2.4 we can further improve on our algorithm by using a low-rank
version of KRR. In the course of the later prediction of micromagnetic time-evolution we will
also use this low-rank version of KRR to estimate the time-stepping maps in feature space
(see Chapter 4) [16, 40].

In the first step, we compute a low-rank factorization K`[p[x]] ≈ Φ̂r[p[x]]Φ̂T
r [p[x]] with

rank r, with Φ̂r[p[x]] ∈ Rm×r, m ≥ r, by Lemma 2.1.1. Hence, the pre-image computation
becomes

z = BΦ̂T
r [p(x)], B = XT Φ̂r[p[x]](Φ̂T

r [p[x]]Φ̂r[p[x]] + Iα)−1 (2.70)

with the low-rank mapping Φ̂r[p(x)] ∈ R1×r of the new data sample x calculated by Corollary
2.1.2.

2.4.1 Numerical validation of the low-rank kPCA

We summarize the low-rank kPCA and pre-image procedure in algorithm 1. This generates
the unit norm eigenvectors L(j), j = 1, . . . , d for the prediction of new data according to
(2.62) as well as the operator for the pre-image map B in (2.70).

Algorithm 1 Low-rank kPCA and pre-image

Data: Training data x = (xr,xm−r) ⊆ X , kernel k(., .) and `(., .), d ≤ r.
Result: Eigenvector matrix L = [L(1)| · · · |L(d)] ∈ Rr×d, truncated kernel PC’s p[x], Op-
erator for pre-image map B in (2.70).

Low-rank kPCA:

• Calculate Φr in (2.3).

• Solve low-rank eigenvalue problem (2.60) for d ≤ r eigenvectors of unit length.

Low-rank pre-image map:

• Calculate Φ̂r[p[x]] using (2.3) and kernel `.

• Calculate B in (2.70).

We validate the low-rank version of kPCA and the pre-image solution via a test example
from the scikit learn documentation [36], which uses both m = 1000 training data and test
data drawn from concentric circles with noise, see Figure 2.4. A RBF kernel with γ = 4
is used and 3 kernel principal components are extracted. Two noise levels ε = 0.02 and
0.07 are used, where in both cases fast (exponential) convergence for increasing rank r can
be observed, see Figure 2.5 which shows the mean squared error of the pre-images of the
predictions compared with the original data with varying rank r used in the low-rank kPCA.
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Figure 2.4: The original data set (left column), the kPCA transformed samples (middle
column) and the pre-images (right column). Noise level ε = 0.02 (top) and ε = 0.07
(bottom). Number of training samples m = 1000. Rank r = 120 is used.
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Figure 2.5: Mean squared reconstruction error for increasing rank r in the case of noise level
ε = 0.02 and ε = 0.07.
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m r training time prediction time mse

8000 100 0.075 (2.813) 0.053 (1.696) 0.132

4000 100 0.043 (0.791) 0.028 (0.440) 0.132

2000 100 0.037 (0.246) 0.014 (0.153) 0.092

1000 100 0.010 (0.069) 0.004 (0.047) 0.081

500 100 0.018 (0.030) 0.003 (0.013) 0.041

1000 800 0.307 0.056 1.14e-18

1000 400 0.119 0.027 1.10e-18

1000 200 0.039 0.021 5.76e-16

1000 100 0.010 0.004 0.081

1000 50 0.013 0.002 0.055

Table 2.1: Cpu times in seconds for training and prediction of low-rank kPCA for varying
samples m and rank r. Numbers in brackets refer to computing times of the respective
dense kPCA version. The last column shows the mean squared error of the computed three
kernel principal components compared to the results obtained from the conventional kPCA
[16].

Figures 2.6a and 2.6b show the pre-images for increasing rank in the two noise cases,
respectively.
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Figure 2.6: Pre-images for increasing rank r.
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Chapter 3

Artificial Neural Networks and
Autoencoders

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

The brain connects a vast number of neurons in a complex network, which allows it to
carry out highly complex computations. An Artificial Neural Network (ANN) aims to mimic
such networks, in order to create a powerful set of nonlinear hypotheses. The paradigm was
introduced in the mid-20th century and in recent years, with an increase in computational
power and improved software, the field grew rapidly. Today, artificial neural networks out-
perform many other supervised learning methods in various fields, such as natural language
processing or image recognition. Also in recent years, ANN arouse interest as a hypothesis
class to solve PDEs in a supervised or even unsupervised manner. In the course of this
chapter we will look at the basic setup of a neural network and how to train it for solving a
particular problem setting. Further we will investigate autoencoders for unsupervised feature
extraction, which will be an important model for learning magnetization dynamics [45].

3.1 Feedforward Neural Networks

A general neural network can be described by a graph G = (V,E) and a weight function
over the edges w : E → R. Each node then corresponds to a (nonlinear) scalar activation
function and each edge links the output of this activation to the input of another node. The
inputs to a neuron are combined by calculating the weighted sum with weights w.

If G is an directed acyclic graph, information only flows into one direction. If further

the nodes are grouped into layers V =
⋃̇T

t=0Vt, such that every edge in E connects some
node in Vt−1 to some node in Vt, for some t = 0, . . . , T , we call this a Feedforward Neural
Network (FFNN) or multilayer perceptron (MLP). We refer to T as the number of layers,
or depth of the network. Figure 3.1 shows such a network with a single scalar output. The
last neuron in each layer t = 0, . . . , T − 1 is the ”constant” neuron, which always outputs
1. This is similar to the bias term from linear regression. The network has an input and
an output layer and the mid layers are called hidden layers. The information flows from one
layer to the next and each layer extracts and processes features in order to produce the final
output ŷ [45].

Linear algebra description of a multilayer perceptron

We want to establish a nonlinear model in order to learn a mapping from the input space X
to the output space Y. A FFNN fŴ : X → Y, fŴ (x) 7→ ŷ with T layers can be expressed
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in a recursive way

a(0) = σ(0)(x)

a(t) = σ(t)(W (t)a(t−1) + b(t)) for t = 1, . . . , T
(3.1)

The weight matrices W t ∈ RNt×Nt−1 and the bias terms b(t) ∈ RNt , t = 1, . . . , T hold
the adjustable parameters. Each layer has an activation function σ(t) : RNt → RNt , t =
0, . . . , T , where Nt is the layer size excluding the constant neuron. Note that an activation
might as well be the identity function I (linear activation) and an intercept term b(t) might
as well be set to 0. The final output is then given by ŷ = σ(T )(a(T )). For a network of four
layers T = 3 (i.e two hidden layer) this results in

a(0) = σ(0)(x)

a(1) = σ(1)(W (1)a(0) + b(1))

a(2) = σ(2)(W (2)a(1) + b(2))

ŷ = a(3) = σ(3)(W (3)a(2) + b(3)).

(3.2)

Or by nesting it, we can write it as

ŷ = a(3) = σ(3)(W (3)σ(2)(W (2)σ(1)(W (1)σ(0)(x) + b(1)) + b(2)) + b(3)). (3.3)

This is what we call the forward propagation algorithm.
LetW be the set of all possible combinations of weight matrices and intercept terms, and

Ŵ = {(W (t), b(t)) : t = 1, . . . , T} ∈ W be an instance of this set. Further, let fŴ : X → Y
be a neural network with weights Ŵ , we can then define the hypothesis class for a FFNN
HFFNN = {fŴ : Ŵ ∈ W} from which we can pick one which minimizes a chosen objective.
Since the hypothesis class is highly nonlinear, the objective function may contain many local
minima. We can still perform e.g. Stochastic Gradient Decent (SGD) in hope of finding a
good hypothesis, which is often the case. In the next section we will discuss the algorithm
which enables us to use gradient decent techniques.

3.2 Back-propagation

For a neural network fŴ , the empirical risk is given by the average of the loss function L

LNN =
1

m

m∑
k=1

L
(
fŴ (xk, yk)

)
. (3.4)

We want to find out how sensitive the risk is w.r.t a specific weight, i.e what is the derivative

of LNN with respect to the weight w
(t)
ij , which connects the jth neuron in layer t− 1 to the

ith neuron in layer t, i.e.,

∂LNN
∂w

(t)
ij

=
1

m

m∑
k=1

∂L(fŴ (xk), yk)

∂w
(t)
ij

. (3.5)

As before, we denote the output of the affine transformation with z(t) = W (t)a(t−1) + b(t)

and the activation with a(t) = σ(t)(z(t)). For a training sample (x, y), we then take the
chain rule to derive

∂L(a(T ), y)

∂w
(t)
ij

=
∂L(a(T )(x), y)

∂a(t)
∂a(t)

∂z(t)
∂z(t)

∂w
(t)
ij

. (3.6)

23



...
...

...· · · ...

x1

x2

xN

v
(0)
1

v
(0)
2

v
(0)
N

+1

v
(1)
1

v
(1)
2

v
(1)
N1

+1

v
(T−2)
1

v
(T−2)
2

v
(T−2)
NT−2

+1

v
(T−1)
1

v
(T−1)
2

v
(T−1)
NT−1

+1

v
(T )
1

y

Input
layer V0

Hidden
layer V1

Hidden
layer VT−2

Hidden
layer VT−1

Ouput
layer VT

Figure 3.1: A multilayer perceptron which consists of T + 1 layers. The network has an
input size of N and only one output. Each edge represents a weight. The information flows
through the network from left to right and is processed along the way. Each layer extracts
features which are used to generate the predicted output. Each layer t has |Vt| nodes.

Note here that for layer t with Nt neurons, the first term is the 1×Nt Jacobian matrix of
the loss, the second term is a Nt×Nt diagonal matrix, with its ith diagonal entry being the

derivative of the activation function (σ
(t)
i (z

(t)
i ))′ and the last term is just the zero vector of

size Nt with its ith entry set to z
(t)
j . When we take the derivative w.r.t a weight b

(t)
i in the

intercept term b(t), not much changes. The only difference is that the last term contains 1
as its ith entry.

We can then calculate the derivatives in a backward fashion. First we start by calculating

δ(T ) =
∂L(a(T ), y)

∂a(T )
∂a(T )

∂z(T )
. (3.7)

For a quadratic loss term L2(x, y) = 1
2‖x − y‖

2, the derivative is given by ∂L2(a(T ),y)

∂a(T ) =

(a(T ) − y)T . We continue going backwards through the network, by calculating

δ(t) = δ(t+1)W (t+1)∂a
(t)

∂z(t)
. (3.8)

The partial derivatives of layer w.r.t the weights in w
(t)
ij , i = 1, . . . , Nt and j = 1, . . . , Nt−1

and b
(t)
i , i = 1, . . . , Nt of the current layer t are easy to obtain using equation (3.6)

∂L(a(T ), y)

∂w
(t)
ij

= δ(t)
∂z(t)

∂w
(t)
ij

,
∂L(a(T ), y)

∂b
(t)
i

= δ(t)
∂z(t)

∂b
(t)
i

. (3.9)

To train a neural network, for each sample we make a forward pass through the network
using equation (3.1), and then calculate the gradient vector using back-propagation (equation
(3.8) and (3.9)). The weighted sum of all gradient vectors gives the full gradient for the risk
function (3.5). We can then use SGD or other variants of gradient decent such as Adam
[27] and pass the gradient vector to the optimizer.
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3.3 Autoencoders

An autoencoder is an unsupervised neural network which tries to copy its input to its output.
It is often used for dimensionality reduction or feature discovery or extraction. Given a dataset
x = {x1, . . . , xm} ⊆ X , an autoencoder can learn nonlinear relations in the dataset and
compress the data to only the most descriptive features which are needed for reconstruction.
Formally, an instance x ∈ X is mapped to a latent space FX with an encoder function
E : X → FX , h = E(x). A decoder part D : FX → X , x̂ = D(h) is trained to find a good
reconstruction of the original data instance x measured with the loss function L. This could
be the mean squared error for real valued input or the cross-entropy loss for binary values.
The objective of the neural network is to minimize the average reconstruction error

LAE(E,D) =
1

m

m∑
i=1

L(D(E(xi)), xi). (3.10)

Both the encoder and the decoder are typically modeled with some kind of neural network.
This could be a simple Feedforward Neural Network but often a Convolutional Neural Net-
work [35] is chosen. The design of a simple autoencoder is shown in Figure 3.2. More

Encoder Hidden Layer Decoder

E h D
x x̂

Figure 3.2: Architecture of a simple feedforward auto-encoder with a hidden layer h, an
encoder E and a decoder D.

modern versions of autoencoders have generalized the idea beyond deterministic functions
to stochastic mappings. However, in this chapter we will not focus on these concepts. A
comprehensive overview of different autoencoder models can be found in [21].

If it happens that the autoencoder just learns the identity function D ◦ E = I, it is not
very useful in the first place. In particular, if X = RN and FX = Rd, imagine the hidden
layer has the same dimension of the input N = d. The encoder can just copy its input to the
hidden layer and the decoder can copy the information from the hidden layer to the output.
One way to prevent the autoencoder from learning the identity is to design it in a way that
d < N . This is what we call an undercomplete autoencoder. Respectively, if d > N , we
say the autoencoder is overcomplete. Having an undercomplete autoencoder might still not
be enough to ensure that the network just learns D(E(x)) = x for each training sample x,
e.g. if some features are duplicates. In theory, even if the hidden layer has just one neuron,
having an encoder and decoder with enough memory to remember each training sample,
the autoencoder will still do a perfect job on the training data. However, the model will
have a large generalization error and hence would overfit. This scenario does not occur in
practice, but illustrates how the autoencoder can fail to learn anything interesting from the
data. In many cases a simple undercomplete autoencoder might still do a good job. By
having a bottleneck (d < N), the amount of information which can flow through the system
is limited. Therefore, minimizing the objective will cause the model to capture the most
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relevant aspects of the data which can be used for reconstruction [21]. A good auto-encoder
model should balance the following:

• sensitivity with respect to the input for accurate reconstruction,

• insensitivity to the input to discourage memorization.

This trade-off should force the model to learn only those variations in the data which are
required [25].

3.3.1 Linear Autoencoders

In this section we will see how linear autoencoders are related to linear Principal Component
Analysis. If we were to choose a linear function for both, the encoder h = E(x) = WEx
and the decoder x̂ = D(h) = WDx, where WE ∈ Rd×N and WD ∈ RN×d, we would see a
similar latent space as we get with PCA.

Assuming we want to minimize the mean squared error L(x, x′) = ‖x − x′‖22, then the
objective is given by

LAE(E,D) =
1

m

m∑
i=1

‖xi −WDWExi‖22

=
1

m
‖XT −WDWEX

T ‖2F ,

(3.11)

where X ∈ Rm×N . Let XT = USV T be a singular value decomposition, with the unitary
matrices U ∈ RN×N and V ∈ Rm×m, and the rectangular diagonal matrix S ∈ RN×m with
non-negative entries. We know from the Eckart-Young Theorem (see Appendix A.2) that
the best rank-d approximation of XT is given by US̄dV

T , where S̄d ∈ RN×m contains only
the d largest singular values of S, while the others are set to zero. Let Sd ∈ Rd×d be the
diagonal matrix with only the largest singular values. Further, Ud ∈ RN×d and Vd ∈ Rd×m
are the matrices which only contain the left and right-singular vectors associated with the
singular values in Sd. There holds that US̄dV

T = UdSdV
T
d . If the data is centered, it can

be shown that the optimal linear autoencoder is equivalent to linear PCA.

Lemma 3.3.1. Given the data tensor X ∈ Rm×N , the singular value decomposition XT =
USV T and the orthonormal basis matrix Ud with only those columns in U corresponding
to the d largest singular values. For given rank d, with 0 < d ≤ N , setting WE = UTd and
WD = Ud minimizes equation (3.11).

Proof. We know from the Eckart-Young Theorem A.2 that the best rank-d matrix approx-
imation to XT is given by US̄dV

T . Given the particular form of the autoencoder and a
prescribed d with 0 < d ≤ N , we find that WDWEX

T = US̄dV
T . Now, if we choose

WDWE = UdU
T
d , we find

WDWEX
T = UdU

T
d US̄dV

T . (3.12)

Assuming that the singular values and the associated singular vectors are arranged in de-
scending order, we get UTd U = [I, 0] = Id×N ∈ Rd×N . It follows that Id×N S̄dV

T = SdV
T
d

and therefore,
WDWEX

T = UdSdV
T
d . (3.13)

The left hand side in (3.13) is exactly what we got from the Eckart-Young Theorem in the
first place, i.e., US̄dV

T = UdSdV
T
d . It follows that WDWE = UdU

T
d is an optimal solution

to (3.11).

Therefore, if we subtract the mean upfront, the linear autoencoder is equivalent to PCA and
would span the same subspace. Given that the data is normally distributed, we find that
the encoding is optimal. Otherwise a nonlinear encoder/decoder may learn a more powerful
representation of the data.

26



3.4 Regularized Autoencoders

Sensitivity to the input data is handled by the average reconstruction error. One way to
reduce model complexity is to design the autoencoder in a undercomplete way. Sometimes,
if this restriction is too limiting, e.g. in case we want to design an overcomplete autoencoder
with d > N , we can introduce a regularization term in our objective, i.e.,

L(E,D) =

m∑
i=1

L(E,D, xi) + regularizer. (3.14)

Sparse auto-encoders [21] for example penalize the activations in the hidden layers

L(E,D) =
m∑
i=1

L(E,D, xi) + Ω(hi), (3.15)

thus non-descriptive latent features are discouraged.

3.4.1 Contractive Auto-Encoder

Often latent features are required to be smooth. Rifai et al. [39] suggest a regularization
term which restricts the size of the Jacobian matrix in order to keep gradients small, i.e.,

Ω(h) = λ
∥∥∥∂E(x)

∂x

∥∥∥2
F
. (3.16)

Penalizing the Jacobian trains the autoencoder to resist pertubations of its input. Neigh-
boring input points are mapped to a smaller neighborhood of output points, such that the
contraction is only locally. A perturbation of an input x is therefore mapped closely to E(x).

This regularization will cause most of the derivatives in ∂E(x)
∂x to be tiny. The final goal is to

learn the data manifold structure, so the directions with large Jacobian, that rapidly change
h, are directions that are likely to approximate the tangent planes of the manifold.

The name contractive arises from the way that the Contractive Auto-Encoder (CAE)
wraps space. Specifically, because the CAE is trained to resist perturbations of its input, it
is encouraged to map a neighborhood of input points to a smaller neighborhood of output
points. The contraction is only locally. This means that a perturbation of x is mapped close
to E(x), but two very different points x and x′ are mapped to E(x) and E(x′) which are
farther apart.

One way to think about the Jacobian matrix ∂E(x)
∂x at a point x is as a linear approximaton

to the nonlinear encoding E(x). A linear operator A is said to be contractive if the norm of
Ax remains less than or equal to 1 for all unit-length vectors x. The unit sphere completely
encapsulates the image of the unit sphere.

Computation of the Jacobian is easy for a single hidden layer, but becomes increasingly
harder for deeper autoencoders. The original approach was to train a series of single layer
contractive autoencoders, each one reconstructing the previous autoencoder’s hidden layer.
This does not give the same result as optimizing the original objective, but because each layer
is locally contractive, the composite autoencoder is contractive as well. Here, we suggest
another approach, by approximating the Jacobian matrix and finding an upper bound to
the norm. This way, we can overcome the complicated original design, and train a suitable
autoencoder for our purposes in an economic way.

Given an undercomplete autoencoder which uses a simple FFNN for the encoder part,
we can find an upper bound to the Jacobian norm

λ
∥∥∥∂E(x)

∂x

∥∥∥
F

= λ
∥∥∥∂E(x)

∂z(1)
W (1)

∥∥∥
F
≤ λ

∥∥∥∂E(x)

∂z(1)

∥∥∥
F

∥∥∥W (1)
∥∥∥
F
. (3.17)
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The term W (1) denotes the weights of the first layer and z(1) = W (1)x+ b(1). This approx-
imation is very useful if dim(z1)� dim(x).

In this thesis, we use the mean square error plus a contractive term which yields the
objective

LAE(E,D) =
1

m

m∑
i=1

(
‖xi −D(E(xi))‖22 + λ

∥∥∥∂E(x)

∂xi

∥∥∥2
F

)
, (3.18)

or respectively

LAE(E,D) =
1

m

m∑
i=1

(
‖xi −D(E(xi))‖22 + λ

∥∥∥∂E(xi)

∂z(1)

∥∥∥
F

∥∥∥W (1)
∥∥∥
F

)
, (3.19)

An issue, which apparently can occur in practice, is that the contraction penalty can
yield useless results if we do not impose some sort of scale on the decoder. This is likely to
happen in the overcomplete case, since the mapping to a higher dimension makes overfitting
more likely. One way to restrict the decoder is a coupling of the weight matrices, such
that the weight matrices of D are the transpose of E. In this work we do not consider the
overcomplete case and the reduced latent space of E(x) serves as a regularization for our
decoder D.

There are many interesting connections to other types of autoencoders (e.g. Denoising
Auto-Encoder, Sparse Auto-Encoder), which are not further discussed here. The relationship
with weight decay should be mentioned however. Since the Jacobian of h is given by the
weight matrix in the case of a linear encoder, the regularization term corresponds to a L2-
weight decay. Keeping the weights small is the only way to have a contraction in the linear
case. But with a nonlinear activation, contraction and robustness can also be achieved by
driving the hidden units to their saturated regime [21, 39].
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Chapter 4

Learning Feature Space Maps

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

4.1 Kernel Dependency Estimation

As it is possible to think about the kernel k as a similarity measure in the input space,
likewise the loss function can be seen as a similarity measure in the output space and can
therefore also be encoded using a kernel `(y, y′) = φ`(y)Tφ`(y

′), where φ` : Y → F`. This
map makes it possible to consider a large class of nonlinear loss functions [52].

In order to learn a map f : X → Y, y = f(x), one would need to minimize the
expected risk (equation (1.3)) given a set of training data and a hypothesis class like e.g.
H = {f( . ;α) : α feasible parameter}. The idea behind Kernel Dependency Estimation
(KDE) is to minimize a risk functional, which uses the feature space Fk induced by the
kernel k and a loss function measured in the output space F` induced by the kernel `.
Therefore the feature space mapping fF : Fk → F` and a pre-image map φ−1` is needed.
This is illustrated in Figure 4.1. The map f can be decomposed into subtasks, i.e.,

f = φ−1` ◦ fF ◦ φk. (4.1)

In the original KDE algorithm of Weston et al. [52], Φ` is decomposed into d orthogonal
directions using Kernel Principal Component Analysis (kPCA). A mapping from Fk to each
direction can then be learned independently by using a standard kernel regression method,
e.g SVM regression or Kernel Ridge Regression (KRR). In the final step, the pre-image
problem (see section 2.4) must be solved to obtain an estimate in the original space Y.

Here, we present an approach as discussed by Cortes et al. [10]. It leads to a neat
algorithm which does not rely on Kernel Principal Component Analysis. For that purpose,

X Y

Fk F`

f

φk

fF

φ` φ−1`

Figure 4.1: Illustration of the mappings of Kernel Dependency Estimation.
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we can express the map f in terms of a more general pre-image problem which relies on
kernels k and `,

f(x) = arg min
y∈Y

‖φ`(y))− fF (φk(x))‖2. (4.2)

Let fF be the set of all linear functions from Fk to F` and fF (φk(x)) = W Tφk(x),
where W is a linear map. If the problem is modeled with a Kernel Ridge Regression, the
optimization problem is given by

arg min
W

m∑
i=1

‖φ`(yi)−W Tφk(xi)‖2 + α‖W‖2F . (4.3)

From equation (4.3), we see that KDE is equivalent to Kernel Ridge Regression with the
labels yi in feature space F`. See equation (2.15) for comparison. Analogue to equation
(2.16), the dual solution of (4.3) is given by

W T = Φ`[y]T (Kk[x] + αI)−1Φk[x], (4.4)

where Φk[x] defines the matrix of size m × dim(Fk) of input data mapped to the feature
space Fk and Φ`[y] the transformed output data in F`, i.e.,

Φk[x] = [φk(x1)| . . . |φk(xm)]T , Φ`[y] = [φ`(y1)| . . . |φ`(ym)]T , (4.5)

and the kernel matrix Kk[x] = Φk[x]Φk[x]T . By using this result and plugging it into the
pre-image problem (4.2) we can derive the following optimization problem

f(x) = arg min
y∈Y

‖W Tφk(x)− φ`(y)‖2

= arg min
y∈Y

(φ`(y)Tφ`(y)− 2φ`(y)TW Tφk(x))

= arg min
y∈Y

(φ`(y)Tφ`(y)− 2φ`(y)Tφ`[y]T (Kk[x] + αI)−1φk[x]φk(x))

= arg min
y∈Y

(`(y, y)− 2K`[y,y](Kk[x] + αI)−1Kk[x, x]). (4.6)

Let γ = (Kk[x] + αI)−1Kk[x, x] ∈ Rm, then for the kernel ` being a radial symmetric
kernel such as for the RBF kernel with `(y, y) = const, the optimization problem becomes

f(x) = arg min
y∈Y

(−2

m∑
i=1

`(y, yi)γi). (4.7)

For the RBF kernel, we can find an implicit solution to (4.7) by taking the gradient respec-
tively y

∇y(−2

m∑
i=1

`(y, yi)γi) =

m∑
i=1

`(y, yi)(y − yi)γi = 0. (4.8)

Rearranging (4.8) to y gives

y =

∑m
i=1 `(y, yi)γiyi∑m
i=1 `(y, yi)γi

. (4.9)

The solution of equation (4.9) is well defined if the denominator
∑m

i=1 `(y, yi)γi 6= 0. Since
the RBF kernel ` is smooth, we can conclude that there exists a neighborhood of the
extremum of the objective function in which the denominator is not zero. This can be
shown in the case that W is an orthogonal projection matrix, which was done by Mika et al.
[32] for pre-image computation of kPCA. Therefore the solution can be incorporated into
an iterative scheme [24, 32]. In case W is not an orthogonal projection, we lack a rigorous
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proof in general. However, we incorporated the solution into an iterative fixed point scheme
(equation (4.10)) nonetheless, which we use for pre-image computation for KDE as follows:

y(t+1) =

∑m
i=1 `(y

(t), yi)γiyi∑m
i=1 `(y

(t), yi)γi
(4.10)

We have not encountered any problems in our numerical examples so far. In fact, the
iteration scheme converged extremely fast in only a few iterations.

When training such an estimator, the inverse (K[x] + αI)−1 can be calculated upfront.
The iteration scheme, though, must be solved for every new sample, which makes the
prediction very time consuming. As starting value for the iteration one can use the initial
training samples.

4.2 Feature Space Integration for solving PDEs

The numerical treatment of PDEs is often difficult, since conventional methods often impose
constraints on either space or time discretization. The resulting numerical methods often
lead to very large linear systems which require special solvers and a big computational load.
Even advanced methods do not scale to growing real world problem settings, since small-
scale effects often affect large-scale behavior. Using traditional numerical solvers, for a
time-dependent PDE ut = Lu(x, t) we would precompute a discretization of the differential
operator L and the derivative ut to solve the PDE. This fixed discretization imposes a
limitation to our numerical method. In a supervised learning setting, we could establish a
model to find such a good discretization for us [5], and hence, weaken this restriction to
make more efficient numerical solvers.

Further, since the dimension of an inertial solution manifold for a nonlinear PDE is finite
and the dynamics of a time-dependent system can be reduced to a finite dimensional ODE
[20], we may want to embed our high dimensional solution of a dynamic system into a lower
dimensional space such that this manifold is preserved. This would allow us to find an easier
description of the solution to gain a computational advantage over traditional solvers.

In particular, given a time series data of the solution of a PDE, {x0, . . . , xs} ⊆ X and
a corresponding additional tag a ∈ A, we want to train a model f which uses ν previous
consecutive timesteps in order to predict the next data instance in the time evolution

f : X ν ×A → X , f(xi−ν , . . . , xi−1; a) = xi for i = ν, . . . , s. (4.11)

We could use KDE to first map the data xi−1, . . . , xi−ν to some feature space Fk and learn
a map to the feature space F`. Given the embedding in F`, we can then learn the pre-image
map to find the data instance xi in the original feature space X . The involved mappings are
shown in Figure 4.2. For instance, we can use equation (4.10) and use an iterative approach
to predict the next timestep. This by itself is a powerful model which can gain impressive
results, as shown in Chapter 6. We still face the problem that pre-image computation may
be very costly. Therefore, if we were to train explicit maps φk, fF and φ−1` , we can vastly
improve computational complexity by omitting pre-image evaluation. Let Fk =

⊗ν
j=1F`,

we can learn the map φ` : X → F`, φ`(xi) = zi for i = 0, . . . , s and the corresponding
pre-image map φ−1` and set

φk([xi−ν , . . . , xi−1])
T = [φ`(xi−ν)T , . . . , φ`(xi−1)

T ] for i = ν, . . . , s. (4.12)

Since we designed F` to be a subspace of Fk, we can replace elements from the output space
F` back to the input space Fk, averting pre-image computation. This allows us to perform
integration entirely in feature space. Since elements in F` belong to a subspace of Fk, we
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X ν X

Fk F`

f( · ; a)

φk

fF( · ; a)

φ` φ−1`

Figure 4.2: Illustration of the mappings of explicit feature space integration.

Algorithm 2 Explicit feature space integration

Input: Initial data x1, . . . , xν , tag a, low-dimensional embedding φ`, pre-image map φ−1`
and predictor model fF .
Result: Final timestep xs.

Computation:

1. Calculate the low-dimensional embedding zi = φ`(xi) for i = 0, . . . , ν − 1,

2. Predict zi = fF (zi−ν , . . . , zi−1; a) for i = ν, . . . , s,

3. Calculate pre-image xs ≈ φ−1` (zs).

can place elements from the output space F` back into the input space Fk, averting pre-
image computation. Algorithm 2 describes the computational multistep scheme to perform
explicit feature space integration:

Learning a mapping φ` from a high dimensional feature space X to an even higher
dimensional space F`, might not seem to be useful to improve computational complexity
in the first place. If we truncate F` to only those dimensions which contain the most
important information, we can compress the initial data and hence have a more efficient
algorithm. Figure 4.3 illustrates feature space integration for ν = 1 for KDE and our explicit
integration approach listed in Algorithm 2. We can see that we can completely avoid the
expensive pre-image computation and make the algorithm more efficient.

X

F`

x0

z0 z1

x1

z2

x2

· · ·

zs−1

xs−1

zs

xs

(a) Implicit feature space integration.

X

F`

x0

z0 z1 z2

· · ·

zs−1 zs

xs

(b) Explicit feature space integration.

Figure 4.3: Illustration of explicit feature space integration compared to implicit feature
space integration using KDE for ν = 1.

To perform explicit feature space integration, we need to learn a nonlinear embedding φ`
of the feature space X which captures the most important data relevant to predict the next
timestep. There are several candidate models for this. In section 2.3.1 we learned about
Kernel Principal Component Analysis for nonlinear feature space reduction, which captures
those directions of the data with the highest variance. We also learned in section 2.3.2 how
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to make the kPCA algorithm computationally more effective, by using a low-rank approach.
And in section 2.4 we discussed different approaches to find the pre-image map of kPCA.
The feature space map fF can be modeled by different methods, s.a. SVM regression or
KRR. In chapter 3 we looked at Neural Networks and how we can capture the most relevant
features using Autoencoders. We can model the map φ` using the encoder part naturally get
the pre-image map φ−1` given by the decoder part. The map fF can be modeled by a FFNN
as well. In practice, it turned out to be a difficult task to model fF with a simple FFNN
and required complicated regularization in order to prevent overfitting. This is described in
more detail in chapter 5.
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Chapter 5

Prediction of magnetization
dynamics

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

Equation (1.1) describes the magnetization dynamics of a magnetic body Ω ⊂ R3. As
stated before, evaluation of the right hand side of the system is very expensive and even with
modern numerical solvers, temporal and spatial discretization is very small. Hence, effective
numerical solvers are of high interest and with the development of machine learning, data
driven solvers became a new field of research in hope of efficient computation of even large
scale problems which would otherwise be intractable.

Solutions to the LLG equation for a specific problem, with N discretization points, can
be highly complex. The data might still embed a manifold which entirely described the
magnetization dynamics. Knowledge of this structure can therefore help to understand the
system. We propose a algorithmic framework which uses prior information regarding the
solution in order to learn a feature space which allows an easier description of the dynamics.
This yields a predictor model without any need for field evaluations after a data generation
and training phase has been established as a pre-computation, making the computation of
new solutions fast and computationally efficient.

5.1 Data structure for the time stepping learning method

In the pioneering work Kovacs et al. [29] the standard problem 4 was chosen as a suitable
benchmark. The test problem is well established and usually considered as a kind of ”must
pass” criterion for any new micromagnetic method for integrating the LLG equations of mo-
tion. Essentially, the problem is split into two external field cases applied to a magnetic thin
film equilibrium s-state. Both fields initialize a nonlinear and non-trivial de-magnetization
dynamical behavior. Predictions via the neural network model from [29] exhibited high ac-
curacy in the first field case. However, in the second field case predictions yielded larger
deviations from the ground truth states. Several additional features had been incorporated
into the learning phase, such as extra scaling of the z-component, a magnetization length
preserving loss term and a rather complicated usage of eight previously obtained magneti-
zation snap-shots.

Following [17] we generate data associated with the NIST µMAG Standard problem #4
[31, 37]. The geometry is a magnetic thin film of size 500 × 125 × 3 nm with material
parameters of permalloy: A = 1.3×10−11 J/m, Ms = 8.0×105 A/m, α = 0.02. The initial
state is an equilibrium s-state, obtained after applying and slowly reducing a saturating field
along the diagonal direction [1, 1, 1] to zero. Then two scenarios of different external fields
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are studied: field 1 of magnitude 25mT is applied with an angle of 170◦ c.c.w. from the
positive x axis, field 2 of magnitude 36mT is applied with an angle of 190◦ c.c.w. from
the positive x axis. For data generation we use a spatial discretization of 100× 25× 1 and
apply finite differences [33] to obtain a system of ODEs that is then solved with a projected
Runge-Kutta method of second order with constant step size of 40fs.
We denote the number of discretization cells with N . For the purpose of collecting training
data samples we use numerically obtained approximations for n ∈ N different external field
values. Following the splitting of training data of Exl et al. [17], the external field is either
in the range of the field 1

Hext,1 : ‖Hext,1‖ =: h ∈ [20, 30]mT, argHext,1 =: ϕ ∈ [160◦, 180◦] (5.1)

or in the range of the field 2

Hext,2 : ‖Hext,2‖ =: h ∈ [30, 40]mT, argHext,2 =: ϕ ∈ [180◦, 200◦]. (5.2)

For s = 100 time steps we assemble the data into a 3-tensor D, defined slice-wise by

D ∈ R(s+1)×n×3N : D(i, :, :) = [mx(ti)|my(ti)|mz(ti)] ∈ Rn×3N , i = 0, . . . , s, (5.3)

where mq(ti) ∈ Rn×N , q = x, y, z denotes the magnetization component grid vector at
time ti for each of the n field values. Each sample is tagged with a external field at time
ti with h and ϕ components. The external fields are grouped in the matrix h(ti) ∈ Rn×2.
Figure 5.1 shows the data tensor D with the corresponding field values.

Figure 5.1: Data tensor D together with the external field tags h(ti).

The data generation was performed using the Vienna Scientific Cluster (VSC). We used
the Python machine learning package scikit learn [36] which we extended by the low-rank
kPCA (`-kPCA) variant with pre-image computation and low-rank kRR (`-KRR) introduced
in Chapter 2. We used those to establish the models, which we describe in the following
section.

5.2 Implicit Feature Space integration using KDE

Suppose we want to develop a ν-step scheme, the KDE algorithm trains a map from the input
space X = R2+νN , which contains ν previous magnetization states and the field tags, to the
output space Y = RN . The input is implicitly mapped to a space Fk with associated kernel
k and the output is mapped to F` with kernel `. Given the last ν timesteps, the algorithm
produces the next timestep based on the iterative formula which is given by equation (4.10).
Using the tensor notation from Chapter 5, the input and output to the model is

input: {h(ti−1),D(i− ν, :, :), . . . ,D(i− 1, :, :)}, output: {D(i, :, :)}, (5.4)
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with i = ν, . . . , s.
Since this method does not perform an explicit change into the feature space, it increases

the computational cost dramatically. Together with the iterative scheme, the method does
not scale to larger problem sets very easily.

5.3 Explicit Feature Space integration

Given the data tensor D obtained from a pre-computation step, our model uses D as input
data in order to first train a feature space mapping such as kPCA or an autoencoder as
well as its inverse. The goal is to drastically compress the data size while keeping the most
descriptive information. This is followed by a regression scheme which entirely performs in
feature space. In this work we use a Kernel Ridge Regression and a Feedforward Neural
Network for this task. The model is therefore a composite of two models.

5.3.1 Feature Space mapping and data compression

Prior to the training of the regression model, the data tensor D is compressed to a size
d < 3N , yielding a truncated data tensor DF ∈ R(s+1)×n×d. In theory many dimensionality
reduction methods are possible. We focus mainly on kPCA and autoencoders, since the
pre-image computation is incorporated and both are established models which can perform
well on a variety of different tasks. Further, in the case of kPCA, a low-rank version can
be used to further improve computational efficiency. Figure 5.2 shows the truncated tensor
together with the magnetic field components.

Truncated Data Tensor

Figure 5.2: Illustration of the truncated data tensor DF and the field values h.

In Section 2.3.1 we covered the kPCA algorithm together with its low-rank version. Note,
even though we have a compression of the data, what we actually do is to map the data
onto a higher dimensional feature space. We only take the d most descriptive principal
components of this high dimensional space, leaving us with a net compression of our data.

Section 3.3 on the other hand describes autoencoders and their use cases. In our model,
the encoder and the decoder take the form of a FFNN with a simple structure. The network
has 3N input and output units, some hidden layers, and a bottleneck layer with only d
units. The exact architecture can be seen in Chapter 6. Training of the autoencoder is
straightforward, using gradient decent techniques. Further, in Section 3.4 we described
further improvements to the autoencoder using additional regularization terms, such as
sparse autoencoders and contractive autoencoders. We presumed that those additional
regularization terms would give rise to a smoother feature space, enabling easier and more
accurate feature space integration.
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5.3.2 Feature Space integration model

As described in Section 4.2, we train a predictor model which uses ν consecutive previous
timesteps. Time stepping maps are now learned by taking reduced dimensional input and
output data tensor to fit a kRR model. In its simplest form one can use a one step scheme
mapping from t→ t+∆t by taking input data defined via the slices DF (i, :, :), i = 0, . . . , s−
1, and output data defined by DF (i, :, :), i = 1, . . . , s, which corresponds to data shifted by
one time step ∆t. However, inspired by [29], we found enhanced stability by introducing time
stepping with multi-steps, e.g., choosing ν steps in a scheme {t, t+∆t, . . . , t+(ν−1)∆t} →
t + ν∆t. For that purpose we choose a time stepping number ν(< s) ∈ N and train the
model with the following input and output:

input: {h(ti−1),DF (i− ν, :, :), . . . ,DF (i− 1, :, :)}, output: {DF (i, :, :)}, (5.5)

with i = ν, . . . , s.

FFNN Feature Space Integration

There are several neural network models which could be used to predict time series with
a neural network. We choose a simple Feedforward Neural Network for this task. The
network has ν d + 2 input units for the truncated feature space magnetization components
and the magnetic field parameters, and d output units. Further, we take a rather complex
architecture for this task, with 5 hidden layers. Table 6.7 shows the full architecture for
both field cases. Our experiments show that a FFNN alone is not a good fit for this task,
since a simple time-stepping scheme would easily overfit, and the prediction results are of
poor quality. Therefore, we use a forward looking objective, as applied in [26, 29], to gain
accuracy.

Let ci,j be the low dimensional embedding of D(i, j, :) for time i and sample j. We want
to train the NN-predictor model with weights w

N : R2+νd → Rd, N (ci−1,j , . . . , ci−ν,j ;w, hj(ti−1)) 7→ ci,j . (5.6)

To this purpose, we define the tensor D̂(t)
F (i, :, :) ∈ Rn×d to be a prediction of DF (i, :

, :) = [ci,1, . . . , ci,n]T ∈ Rn×d, which used t previous consecutive predictions. The rather
complicated objective is then given by

min
w

ft∑
t=0

s∑
i=ν+t

‖DF (i, :, :)− D̂(t)
F (i, :, :)‖2F . (5.7)

The forward looking parameter ft regulates how well the model predicts a time step based
on previous predictions.

Example: To better understand this complex objective, we will go through a step-by-step

example with ft = 3 and ν = 3. Let ĉ
(t)
i,j be a prediction of ci,j for step i and sample j, which

uses t previous predictions. First, we start of with t = 0. The tensor D̂(0)
F uses no previous

predictions. This means, for a sample j we calculate the predictions ĉ
(0)
i,j for i = 3, . . . , s

using (5.6), i.e.,

N (c0,j , c1,j , c2,j ;w, hj(t2)) = ĉ
(0)
3,j , . . . ,N (cs−3,j , cs−2,j , cs−1,j ;w, hj(ts−1)) = ĉ

(0)
s,j . (5.8)

The predictions can be grouped into the tensor D̂(0)
F (i, j, :) = ĉ

(0)
i,j for j = 1, . . . , n.
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Next, we set t = 1 and use the previous predictions in D̂(0)
F to calculate D̂(1)

F . Therefore,

we replace the last timestep to calculate ĉ
(1)
i,j for i = 4, . . . , s

N (c1,j , c2,j , ĉ
(0)
3,j ;w, hj(t3)) = ĉ

(1)
4,j , . . . ,N (cs−3,j , cs−2,j , ĉ

(0)
s−1,j ;w, hj(ts−1)) = ĉ

(1)
s,j . (5.9)

Note that we had to drop the first step c0,j , because there is no previous prediction available

for c2,j . As before, we set D̂(1)
F (i, j, :) = ĉ

(1)
i,j for j = 1, . . . , n.

We continue with t = 2 and calculate ĉ
(2)
i,j for i = 5, . . . , s the same way. We now put

both prediction ĉ
(0)
i,j and ĉ

(1)
i,j into the model, in order to predict ĉ

(2)
i,j for i = 5, . . . , s

N (c2,j , ĉ
(0)
3,j , ĉ

(1)
4,j ;w, hj(t4)) = ĉ

(2)
5,j , . . . ,N (cs−3,j , ĉ

(0)
s−2,j , ĉ

(1)
s−1,j ;w, hj(ts−1)) = ĉ

(2)
s,j . (5.10)

Then we set D̂(2)
F (i, j, :) = ĉ

(2)
i,j .

Finally, we use all three previous predictions to predict ĉ
(3)
i,j for i = 6, . . . , s

N (ĉ
(0)
3,j , ĉ

(1)
4,j , ĉ

(2)
5,j ;w, hj(t5)) = ĉ

(3)
6,j , . . . ,N (ĉ

(0)
s−3,j , ĉ

(1)
s−2,j , ĉ

(2)
s−1,j ;w, hj(ts−1)) = ĉ

(3)
s,j (5.11)

and set D̂(3)
F (i, j, :) = ĉ

(3)
i,j .

Now that we calculated D̂(0)
F , D̂(1)

F , D̂(2)
F and D̂(3)

F , we can plug them into the objective
(5.7) and evaluate the gradient respectively w using Automatic Differentiation tools.
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Chapter 6

Results

Parts of this chapter were previously submitted for publication [16, 40] (author of this thesis
is co-author) and here restated with the permission of the first and corresponding author.

6.1 KDE

As stated in Chapter 5, KDE is a powerful model for predicting magnetization dynamics. It
can convince with a high prediction accuracy, while also being able to resolve small scale
dynamic effects. On the other hand, it suffers from expensive pre-image computation,
making prediction slow. Nonetheless, we can use KDE as a benchmark model, to compare
performance and speed of other methods like the explicit feature space integration scheme.

Figure 6.2 to 6.1 show the result of the KDE algorithm for the prediction of the time
course of the magnetization state. The algorithm performs very well when it comes to
prediction accuracy. The drawback of this method is the computational cost. This can
be seen in Table 6.1. Also, since the magnetization components are not mapped to a
lower dimensional space, using a multi time-stepping scheme leads to tremendous storage
requirements. The method converges very fast. For a tolerance of 1× 10−5 it only takes 3
iterations to arrive at a solution.

We used the RBF kernel for the input and output space. The kernel parameter γ was
set to the default value, which corresponds to one over the number of features.

n pred. error [-] fit time [s] pred. time [s]

10 0.0691 0.35 9.94
50 0.0102 5.07 55.44

100 0.0054 21.66 122.35
200 0.0055 116.19 343.11

(a) Field 1 case

n pred. error [-] fit time [s] pred. time [s]

10 0.1418 0.48 16.98
50 0.0655 6.67 83.52

100 0.0785 29.99 198.10
200 0.0535 159.75 447.85

(b) Field 2 case

Table 6.1: Results of a 5-fold cross validation of the KDE algorithm, using a different
number of samples n. The prediction error relates only to the last timestep. The parameters
were chosen as follows: kernel parameter γk = 1

3N+6 , γ` = 1
3N , time-stepping ν = 3 and

regularization α = 1× 10−6.
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(b) Field 2 case

Figure 6.1: Predictions versus computed results for mean magnetization, using the iterative
KDE algorithm (4.10). We used m = 100 samples for the prediction and the parameters
were chosen as follows: kernel parameter γk = 1

3N+6 , γ` = 1
3N , time-stepping ν = 3 and

regularization α = 1× 10−6.
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Figure 6.2: Snap shots of computed (Comp) and predicted magnetization states, using
the iterative KDE algorithm (4.10). We used n = 100 samples for the prediction and the
parameters were chosen as follows: kernel parameter γk = 1

3N+6 , γ` = 1
3N , time-stepping

ν = 3 and regularization α = 1× 10−6.
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6.2 kPCA and KRR

In this section we compare the explicit feature space integration model, which we established
in Section 4.2 and 5.3, with implicit feature space integration using KDE. We use kPCA as
feature space mapping and KRR for feature space integration. Further, we also use KRR for
the pre-image map, as stated in Section 2.4. For all models we use the RBF kernel.

Tabel 6.2 shows, how the combined model performs with different dataset sizes. Training
the model scales at least quadratic, due to the evaluation of the kernel matrix. We also note
that prediction time is considerably lower than with KDE, since we do not need pre-image
computation for intermediate steps.

One issue is the determination of the kernel for feature space integration. We chose a RBF
kernel with the kernel parameter γKRR = 1, since it worked for our purposes. Nonetheless,
for real world application, we would need a proper evaluation for the kernel. We note here
that a Gaussian Process model would be a better fit for this task, since it is able find a good
kernel. The training process would become computationally more intense though.

We can see that prediction accuracy is comparable with the implicit feature space inte-
gration (Table 6.1), but we also see from Figure 6.4 that the algorithm does not preserve as
many details (Figure 6.2). Still, we can observe that the model indeed learns the magneti-
zation dynamics and even has a better score for the second field case.

n pred. error [-] fit time [s] pred. time [s]

10 0.0089 0.43 0.06
50 0.0062 12.16 0.26

100 0.0078 68.52 0.62
200 0.0056 414.53 2.04

(a) Field 1 case with ν = 3 and d = 20

n pred. error [-] fit time [s] pred. time [s]

10 0.0401 0.43 0.08
50 0.0274 12.25 0.40

100 0.0415 67.75 1.01
200 0.0225 409.60 2.92

(b) Field 2 case with ν = 5 and d = 40

Table 6.2: Prediction results of a 5-fold cross validation of the explicit feature space integra-
tion using kPCA as reducer and KRR as integrator. For a different number of samples n we
show fit time, prediction time and MSE. The prediction error relates only to the last timestep.
We used a RBF kernel for the kPCA, the integrator and the pre-image KRR map. The pa-
rameters were chosen as follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator
regularization parameter αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001
and n = 100 samples.

In Table 6.3 we used a varying number of principal components for feature space in-
tegration. We note that prediction time increases for more principal components, but the
model has better performance. Since we need to solve the eigenvalue problem d times, the
kPCA algorithm should scale linearly with increasing d, but this also depends on the actual
implementation.

In Figure 6.3 and 6.4, we show the computed mean magnetization and the predicted one
for various values of principal components. We see that more principal components are able
to capture more information, and increase the overall accuracy.
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d pred. error [-] fit time [s] pred. time [s]

3 0.0146 29.80 0.54
5 0.0115 29.74 0.52

10 0.0073 64.01 0.54
20 0.0067 63.87 0.62

(a) Field 1 case with ν = 3

d pred. error [-] fit time [s] pred. time [s]

5 0.0574 29.79 0.60
10 0.0410 63.60 0.61
20 0.0352 63.26 0.73
40 0.0375 63.95 0.96

(b) Field 2 case with ν = 5

Table 6.3: Prediction results of a 5-fold cross validation of the explicit feature space inte-
gration using kPCA as reducer and KRR as integrator. For a different number of principal
components d we show fit time, prediction time and MSE. The prediction error relates only
to the last timestep. We used a RBF kernel for the kPCA, the integrator and the pre-
image KRR map. The parameters were chosen as follows: kernel parameter γKPCA = 1

3N
and γKRR = 1, integrator regularization parameter αKRR = 0.01, pre-image regularization
parameter αKPCA = 0.001 and n = 100 samples.
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(a) Field 1 case with ν = 3
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(b) Field 2 case with ν = 5

Figure 6.3: Prediction using kPCA as reducer and KRR as integrator. We show the mean
magnetization for different values of principal components d. We used a RBF kernel for
the kPCA, the integrator and the pre-image KRR map. The parameters were chosen as
follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization parameter
αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 100 samples.
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(a) Field 1 case with ν = 3
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(b) Field 2 case with ν = 5

Figure 6.4: Magnetization snapshots for different values of principal components d cor-
responding to Figure 6.3. We used a RBF kernel for the kPCA, the integrator and the
pre-image KRR map. We used kPCA as reducer and KRR as integrator. We used a RBF
kernel for the kPCA, the integrator and the pre-image KRR map. The parameters were
chosen as follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization
parameter αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 100
samples.
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6.3 `-kPCA and `-KRR

Selection of basis vectors for the low-rank procedure (compare with xr in section 2.3.2) is
accomplished by choosing r field values and collecting the corresponding discrete magne-
tization trajectories for all s + 1 time points for each chosen field value. This results in a
reduced sample size of (s+ 1)r ≤ (s+ 1)n = m.

In the course of learning the time-stepping via low-rank kPCA the data tensor is used
with reduced dimensionality. Note that we have d ≤ r(s + 1) ≤ n(s + 1) = m. We
denote the reduced dimensional data tensor resulting from the low-rank kPCA approach
with DF ∈ R(s+1)×n×d. Figure 5.2 shows the compressed (resp. truncated) data tensor
DF with the corresponding magnetic field values, where the large grid size 3N is reduced
to d and the field is appended, compare with the original data tensor from Figure 5.1. From
the truncated tensor, we take r horizontal slices as basis vectors. Additionally we illustrate
in Figure 6.5 the tensor required in storage to project new data onto the kernel principal
components, compared to the tensor which is required for the low rank version.

kPCA
storage requirement

Low Rank kPCA
storage requirement

Figure 6.5: Illustration of the storage requirements in the low-rank kPCA and the low-rank
kRR for the time stepping model (right), compared with full-rank kPCA (left). Storage of
the compressed tensor is only O((s+ 1)dr).

6.3.1 Cross-validation of the hyper-parameters

First we focus on the important validation of model- and method-specific hyper-parameters
such as the kernel defining γ > 0, the time stepping number ν ∈ N, the number of kernel
principal components d ∈ N and study the dependence on the rank r ∈ N.

Figure 6.6 shows the kernel approximation error decay for increasing r. We see that the
field 1 case is easier to approximate and the field 2 decay is rather slow. Therefore, for some
of the coming experiments, we use a value r = 20 for the first field and r = 40 for the
second one, such that approximation error is at most around 10−9.

We determine the hyper-parameters γ, ν and d via grid search. For that purpose we
measure the mean error norms in the magnetization between the prediction and the simu-
lation of 1ns for the standard problem in both ranges of field 1 and 2. This shows that a
(default) value of γ = 1/N is quite optimal. Furthermore, the regularization parameters in
the kRR were chosen to be between 0.001 and 0.01. Figure 6.7 shows for varying d and
ν the mean error norms in the magnetization between the predictions and simulations of
1ns for the standard problem in the range of field 1 and 2 (compare with (5.1) and (5.2)),
respectively, obtained from a 10-fold cross-validation with random split strategy and 10%
test size. Here we used a rather large rank r = 40.

We show in Table 6.4, how the algorithm scales with increasing dataset size. The fit
time is considerably lower than the original kernel version of kPCA and KRR. But we also
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Figure 6.6: Low-rank kernel matrix approximation for increasing rank r for the data sets
corresponding to field 1 and 2, respectively. We used a RBF kernel with γ = 1

3N and
n = 300 samples.

see that the prediction time actually increases. This is due to the low-rank approximation,
since the truncated data tensor of size n× νd+ 2 is inflated again to a size of n× (s+ 1)r.
This seems like a big drawback at first, but we also need to consider the computability of the
kernel matrix. For very large datasets, the kernel matrix would not fit into memory, but the
low-rank approximation might still do. This tradeoff between ease of computation and speed
depends on the kernel approximation error decay as shown in Figure 6.6. If the decay is slow,
we might want to consider another kernel, or another method for feature space integration.
In Table 6.5, where we show the result of a 5-fold cross validation for the parameter r, this
issue is even more apparent. We used r vectors for the kPCA and select the same truncated
basis vectors, to perform feature space integration. It is not clear, if the kernel matrix of
low-rank KRR actually need as many basis vectors for a good approximation.

n pred. error [-] fit time [s] pred. time [s]

10 0.0107 1.23 0.08
50 0.0062 24.80 0.72

100 0.0050 34.56 0.88
200 0.0038 52.76 1.22

(a) Field 1 case with ν = 3, d = 20 and r = 30

n pred. error [-] fit time [s] pred. time [s]

10 0.0559 1.20 0.09
50 0.0493 49.59 1.10

100 0.0331 103.53 2.36
200 0.0242 138.96 3.16

(b) Field 2 case with ν = 5, d = 40 and r = 50

Table 6.4: Prediction results of a 5-fold cross validation of the explicit feature space in-
tegration using `-kPCA as reducer and `-KRR as integrator. For a different number of
samples n we show fit time, prediction time and MSE. The prediction error relates only
to the last timestep. We used a RBF kernel for the kPCA, the integrator and the pre-
image KRR map. The parameters were chosen as follows: kernel parameter γKPCA = 1

3N
and γKRR = 1, integrator regularization parameter αKRR = 0.01, pre-image regularization
parameter αKPCA = 0.001.

In Figure 6.8 we show the learning curve. We note that, due to the explicit solution of
kPCA and KRR, we have only a small variance in the model performance and therefore a
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1 2 3 4 5

10

15

20

25

30

d

0.175 0.013 0.01 0.01 0.01

0.131 0.012 0.008 0.007 0.007

0.145 0.01 0.006 0.005 0.005

0.077 0.009 0.005 0.005 0.004

0.082 0.008 0.005 0.004 0.004

(a) Field 1 case with r = 20

1 2 3 4 5

10

15

20

30

40

d

1.036 0.048 0.034 0.032 0.032

0.459 0.036 0.028 0.028 0.027

0.345 0.035 0.025 0.024 0.025

0.218 0.032 0.023 0.022 0.024

0.212 0.034 0.023 0.023 0.024

(b) Field 2 case with r = 40

Figure 6.7: Cross validation (5-fold) table for varying number of kernel principal components
d and step parameter ν. The tables show the mean error norm in the magnetization for
the prediction with `-kPCA as reducer and `-KRR as integrator over all timesteps. The
parameters were chosen as follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator
regularization parameter αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001
and n = 300 samples.

more predictable model. Also, we see that the training error decreases, which is unusual. We
assume this has to do with regularization. For less training samples, we have a smaller kernel
matrix and the regularization will have a stronger effect on the smaller matrix, resulting in
a stiffer model.

r pred. error [-] fit time [s] pred. time [s]

5 0.0270 16.30 0.23
10 0.0047 31.65 0.67
50 0.0031 322.82 7.50

100 0.0031 1269.50 31.44

(a) Field 1 case with ν = 3 and d = 20

r pred. error [-] fit time [s] pred. time [s]

5 0.1937 17.13 0.28
10 0.2287 31.24 0.71
50 0.0274 325.36 7.61

100 0.0173 1301.31 34.96

(b) Field 2 case with ν = 5 and d = 40

Table 6.5: Prediction results of a 5-fold cross validation of the explicit feature space inte-
gration using `-kPCA as reducer and `-KRR as integrator. For a varying number of basis
vectors r we show fit time, prediction time and prediction error. The prediction error relates
only to the last timestep. We used a RBF kernel for the kPCA, the integrator and the pre-
image KRR map. The parameters were chosen as follows: kernel parameter γKPCA = 1

3N
and γKRR = 1, integrator regularization parameter αKRR = 0.01, pre-image regularization
parameter αKPCA = 0.001 and n = 200 samples.

6.3.2 Prediction results

Figure 6.9 shows the mean magnetization for a varying number of basis vectors. We can see
that a better approximation of the kernel matrix offers better prediction results. Figure 6.10
shows that even with a few basis vectors we already have a good estimate for the first few
steps. For field 1, only after the magnetization component mx completely reverses and the
dynamics becomes more complex, more basis vectors are needed for a good estimate.

For completeness, we show also the low-rank approximation with a varying number of
principal components in Figure 6.11 and 6.12 (compare with Figure 6.3 and 6.4). We can
observe that the prediction error is very similar to the full-rank version.
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(a) Field 1 case with ν = 3, d = 20 and r = 30
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(b) Field 2 case with ν = 5, d = 40 and r = 50

Figure 6.8: Learning curves based on a 10-fold cross-validation with a testset size of 20%
for the explicit feature space integration using `-kPCA as reducer and `-KRR as integrator.
The prediction error is averaged over all timesteps. Further, we show the standard deviation
of training and test error represented by the filled area. We used a RBF kernel for the kPCA,
the integrator and the pre-image KRR map. The parameters were chosen as follows: kernel
parameter γKPCA = 1

3N and γKRR = 1, integrator regularization parameter αKRR = 0.01,
pre-image regularization parameter αKPCA = 0.001.
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(a) Field 1 case with ν = 3 and d = 20
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(b) Field 2 case with ν = 5 and d = 40

Figure 6.9: Prediction using `-kPCA as reducer and `-KRR as integrator. We show the
mean magnetization for a varying number of basis vectors r. We used a RBF kernel for
the `-kPCA, the integrator and the pre-image `-KRR map. The parameters were chosen as
follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization parameter
αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 200 samples.
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(a) Field 1 case with ν = 3 and d = 20
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(b) Field 2 case with ν = 5 and d = 40

Figure 6.10: Magnetization snapshots for a varying number of basis vectors r corresponding
to Figure 6.9. We used a RBF kernel for the kPCA, the integrator and the pre-image KRR
map. We used `-kPCA as reducer and `-KRR as integrator. We used a RBF kernel for
the kPCA, the integrator and the pre-image KRR map. The parameters were chosen as
follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization parameter
αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 200 samples.
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(a) Field 1 case with ν = 3 and r = 30
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(b) Field 2 case with ν = 5 and r = 50

Figure 6.11: Prediction using `-kPCA as reducer and `-KRR as integrator. We show the
mean magnetization for a varying number of principal components d. We used a RBF
kernel for the `-kPCA, the integrator and the pre-image `-KRR map. The parameters were
chosen as follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization
parameter αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 200
samples.
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(a) Field 1 case with ν = 3 and r = 30
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Figure 6.12: Magnetization snapshots for a varying number of principal components d cor-
responding to Figure 6.11. We used a RBF kernel for the kPCA, the integrator and the
pre-image KRR map. We used `-kPCA as reducer and `-KRR as integrator. We used a
RBF kernel for the kPCA, the integrator and the pre-image KRR map. The parameters were
chosen as follows: kernel parameter γKPCA = 1

3N and γKRR = 1, integrator regularization
parameter αKRR = 0.01, pre-image regularization parameter αKPCA = 0.001 and n = 200
samples.
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6.4 Autoencoder and FFNN for Feature Space integration

There are many ways to design an autoencoder for this task and optimizing the architecture
would be a special topic by its own. We choose a simple feed forward architecture. If
we want to reduce the dimension from one layer of size l to the next layer of size k, we
need lk + k parameters for a dense layer. This can become problematic for a big input
dimension, since it requires a big reduction from the first layer to the second one, in order
to reduce the model complexity. Other models such as a Convolutional Autoencoder have
less parameters, but have worse reconstruction properties. If we want to apply additional
regularization terms, such as a contractive term (3.10), having a strong reduction in the
first layer gives the additional advantage that we can use objective 3.17 for faster training.
Figure 6.13 illustrates this architecture and Table 6.6 shows the detailed implementation.

3N q d q 3N
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inverse
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Figure 6.13: Autoencoder model for the prediction of magnetization dynamics. Input and
output size is 3N . The encoder maps the input to the feature space with latent-dimension
d. The linear mapping of the first layer reduces the dimension to a number q > d. This is
followed by a nonlinear mapping which consists of some dense layers of size q with an ELU
activation. The final order reduction is done in a linear manner again. The decoder is a
mirrored version of the encoder.

6.4.1 Cross-validation of the hyper-parameters

We perform a similar cross validation as in Section 6.3 over the time stepping parameter
ν and the latent dimension of the autoencoder d. From Figure 6.14 we can see that we
get a similar prediction accuracy as with the low-rank version (compare Figure 6.7), but
with a smaller feature space. We only performed a 2-fold cross validation because of the
computational cost of optimization.

Further, we performed a cross validation over the forward looking parameter ft. Table 6.8
shows the results of this cross validation. The prediction accuracy does not improve if
ft > 10, but also the results are not significantly worse. However, fit time increases since
the objective function becomes more difficult to optimize.

If Figure 6.15, we show the learning curves of the autoencoder and FFNN. If we compare
the learning curve with Figure 6.8, we see immediately that the variance is much higher. This

53



Layer Activation Output shape

Input - 3N = 7500
Dense elu 400
Dense elu 400
Dropout - 400

Dense linear d

Dense elu 400
Dropout - 400
Dense elu 400
Dense linear 7500

Table 6.6: Autoencoder architecture (layer type, activation function and output shape).

Layer Activation Output shape

Input - 2 + νd
Dense elu 400
Dense elu 300
Dense elu 300
Dense elu 200
Dense elu 100
Dense linear d

Table 6.7: Architecture of the feed-forward neural network used for latent space integration of
the autoencoder. For regularization we apply a dropout layer after each nonlinear activation.

means, when training a model, we cannot assume that it is optimal. This is a disadvantage,
since we are interested in a predictable model. One could use Quasi-Newton methods, such
as Limited-memory BFGS to obtain a more accurate solution to the optimization problem,
but this is more difficult to perform on large datasets. We also note that the training error
decreases for the field 1 case. Given that a larger training set will result in a longer training
phase, we can assume that the solution is not yet optimal for less samples. If it were optimal,
the training error would have to increase, since the model complexity is not influenced by
the number of training samples as it is for the `-kPCA/`-KRR model.

So far, all experiments did not include a contractive term. Table 6.9 and 6.10 show
a 2-fold cross validation over the contraction term λ for the objective function (3.18) and
(3.19). We see that the contractive term, in our particular case, has a negative effect on the
prediction results. Depending on the dataset, the term might be beneficial as well. Further,
we see a small decrease in the fit time when we switch to the objective (3.19). Since the
feature space integration objective is more complicated, the benefit is only small. Note that
we average the mean square error, which requires pre-image computation over all timesteps.
This increases the prediction time.

6.4.2 Prediction results

We show the prediction results for a varying forward looking parameter in Figure 6.16 and
the corresponding magnetization snapshots in Figure 6.17. We can see from these that the
neural networks can store more details than the low-rank approach with less parameters. On
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1 2 3 4 5
(ft=15)

1

2

5

7

10

d

0.303 0.096 0.064 0.046 0.06

0.074 0.092 0.041 0.027 0.026

0.028 0.004 0.022 0.011 0.017

0.009 0.004 0.003 0.007 0.006

0.029 0.005 0.005 0.004 0.002

(a) Field 1 case with ν = 3

1 2 3 4 5
(ft=15)

2

3

5

10

20

d

0.195 0.147 0.121 0.107 0.134

0.121 0.082 0.067 0.059 0.05

0.056 0.064 0.048 0.049 0.034

0.063 0.108 0.03 0.054 0.037

0.113 0.117 0.053 0.032 0.025

(b) Field 2 case with ν = 5

Figure 6.14: Cross validation (2-fold) table for varying number of latent space dimensions
d and step parameter ν. The tables show the mean error norm in the magnetization for
the prediction with the autoencoder from Table 6.6 as reducer and a FFNN (Table 6.7) as
integrator over all timesteps. For optimization we used the Adam optimizer. The parameters
were chosen as follows: sample size n = 200, autoencoder learning rate lAE = 0.0002 and
FFNN learning rate lFFNN = 0.0002.

ft pred. error [-] fit time [s] pred. time [s]

1 0.1079 285.32 3.20
5 0.0027 366.87 2.87

10 0.0036 492.57 2.89
15 0.0038 611.72 2.87

(a) Field 1 case with ν = 3, d = 10

ft pred. error [-] fit time [s] pred. time [s]

1 0.4578 306.75 3.11
5 0.0487 392.30 2.69

10 0.0253 538.24 2.70
15 0.0358 677.65 2.65

(b) Field 2 case with ν = 5, d = 20

Table 6.8: Prediction results of a 2-fold cross validation of the explicit feature space inte-
gration using an autoencoder (Table 6.6) as reducer and FFNN as integrator (Table 6.7).
For the forward looking parameter ft, we show fit time, prediction time and MSE. The
prediction error relates only to the last timestep. We used the Adam optimizer with the au-
toencoder learning rate lAE = 0.0002 and FFNN learning rate lFFNN = 0.0002 and sample
size n = 200.

the downside, optimization is way more difficult. Further, the number of parameters is not
dependent on the training set size.
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(a) Field 1 case with ν = 3 and d = 10

20 40 60 80 100 120 140 160
Training samples n

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

Training error
Cross-validation error

(b) Field 2 case with ν = 5 and d = 20

Figure 6.15: Learning curve based on a 10-fold cross-validation with a testset size of 20%
for the autoencoder from Table 6.6 as reducer and a FFNN (Table 6.7) as integrator. The
prediction error is averaged over all timesteps. Further, we show the standard deviation of
training and test error represented by the filled area. For optimization we used the Adam
optimizer. The parameters were chosen as follows: sample size n = 200, autoencoder
learning rate lAE = 0.0002, FFNN learning rate lFFNN = 0.0002 and ft = 15.

λ pred.error [-] fittime [s] pred.time [s]

0 0.0087 647.93 6.10
1E-6 0.0070 763.36 6.11
1E-4 0.0054 766.33 5.94
1E-2 0.0112 764.93 5.94
1E-0 0.0181 764.93 6.21

(a) Field 1 case with ν = 3 and d = 10

λ pred.error [-] fittime [s] pred.time [s]

0 0.0277 619.27 6.20
1E-6 0.0463 866.89 6.00
1E-4 0.0291 860.21 6.14
1E-2 0.0672 859.41 6.07
1E-0 0.0623 875.66 6.09

(b) Field 2 case with ν = 5 and d = 20

Table 6.9: Prediction results of a 2-fold cross validation of the explicit feature space inte-
gration using an autoencoder (Table 6.6) as reducer and FFNN as integrator (Table 6.7).
Equation (3.18) was used as objective function. For the contraction parameter λ, we show fit
time, prediction time and MSE. The prediction error is averaged over all timesteps. We used
the Adam optimizer with the autoencoder learning rate lAE = 0.0002 and FFNN learning
rate lFFNN = 0.0002, a sample size n = 200 and ft = 15.

λ pred.error [-] fittime [s] pred.time [s]

0 0.0033 640.85 6.07
1E-6 0.0088 668.67 6.42
1E-4 0.0113 646.44 6.09
1E-2 0.0264 661.66 5.94
1E-0 0.0458 646.98 6.10

(a) Field 1 case with ν = 3 and d = 10

λ pred.error [-] fittime [s] pred.time [s]

0 0.0322 626.60 6.22
1E-6 0.0266 638.89 6.15
1E-4 0.0501 633.60 6.10
1E-2 0.1164 633.64 5.95
1E-0 0.0971 643.88 5.94

(b) Field 2 case with ν = 5 and d = 20

Table 6.10: Prediction results of a 2-fold cross validation of the explicit feature space inte-
gration using an autoencoder (Table 6.6) as reducer and FFNN as integrator (Table 6.7).
Equation (3.19) was used as objective function. For the contraction parameter λ, we show fit
time, prediction time and MSE. The prediction error is averaged over all timesteps. We used
the Adam optimizer with the autoencoder learning rate lAE = 0.0002 and FFNN learning
rate lFFNN = 0.0002, a sample size n = 200 and ft = 15
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(a) Field 1 case with ν = 3 and d = 10
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(b) Field 2 case with ν = 5 and d = 20

Figure 6.16: Prediction using the autoencoder from Table 6.6 as reducer and a FFNN
(Table 6.7) as integrator. We show the mean magnetization for a varying forward looking
parameter ft. The parameters were chosen as follows: sample size n = 200, autoencoder
learning rate lAE = 0.0002 and FFNN learning rate lFFNN = 0.0002.
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(b) Field 2 case with ν = 5 and d = 20

Figure 6.17: Magnetization snapshots for a varying forward looking parameter ft correspond-
ing to Figure 6.16 using the autoencoder from Table 6.6 as reducer and a FFNN (Table 6.7)
as integrator. The parameters were chosen as follows: sample size n = 200, autoencoder
learning rate lAE = 0.0002 and FFNN learning rate lFFNN = 0.0002.
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Chapter 7

Discussion and Conclusion

In this thesis we went over the basics of kernel methods such as Kernel Ridge Regression
and Kernel Principal Component Analysis. We then learned how to use low-rank approxi-
mations to improve performance. An essential, but often underrated part is the pre-image
computation. We learned how to use supervised learning in order to train a pre-image map
from a feature space to the original space. In Chapter 3 we had a look on Feedforward
Neural Network and learned how to replace kPCA with an autoencoder. We derived the
back-propagation algorithm and explained the tie between PCA and linear autoencoders.

The main inspiration of this thesis comes from the idea of Kernel Dependency Estimation
(KDE), which we explained in Section 4.1. We went further and developed an explicit version
of this algorithm, which is capable of faster prediction with comparable accuracy. Section 4.2
and 5 explain how to put those components together, in order to train a model which is
capable of predicting the solution of a PDE. We developed the main algorithm, which is
used for the prediction of magnetization dynamics (Algorithm 2) and did essential research
and experiments for the NIST µMAG Standard problem #4 [31]. We used three essentially
different approaches in order to solve the LLG equation (1.1) and for validation we used two
datasets corresponding to different scenarios. The first approach was the prediction with the
pure implicit version of KDE. This algorithm shows an incredible prediction accuracy, but
suffers from slow prediction time. We then used Algorithm 2 together with kPCA and KRR
in order to perform explicit feature space integration (entirely in feature space). We saw
that this method is able to learn the overall magnetization dynamics and has comparable
errors as KDE. The novelty which we present is the replacement of the kernel methods with
the corresponding low-rank versions. This is especially efficient, if only a few basis vectors
are needed for a good approximation (see Figure 6.6) and if the original feature space is
large. On the contrary, if the eigenvalues of the kernel matrix decay only slowly, we need
many basis vectors and will therefore slow down the algorithm. A good choice of the kernel
function is therefore essential. We examined the effect of the rank on the prediction results.
In the last approach, we replaced the kPCA with an autoencoder and the KRR with a FFNN
and saw that this version can reduce model complexity even further. On the downside, it
suffers from a complicated optimization problem.

There are still many unsolved issues with out explicit integration scheme. One could
argue that the kernel methods only work that well because all magnetization vectors are
normalized. We were thinking of replacing the RBF kernel with a data-dependent version
[56]. Further, we could utilize tensor decomposition and compression techniques [47] to
further improve performance for larger datasets. Or, for very large datasets, there is a need
for an incremental version which could be used in an online setting.

Deep neural networks supposedly solve all those issues above, but also bring their own.
One main issue is the architecture choice. There are countless ways on how to design an
autoencoder or a FFNN and it is very hard to determine a good choice. Further, autoencoders
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often lack smoothness of the latent space, which can become troublesome. In our case the
problem setting turned out to work well with an autoencoder, but this does not mean that
it always works. Therefore, we explained how to use further regularization techniques, such
as a sparse or contractive term.

Feature space integration is based on a multistep scheme. This may offer good prediction
results for our problem setting, but for other problems it would require the calculation or
prediction of the first timesteps. Therefore, we would need another model for this task, or
replace the feature space integration scheme by something more powerful. One such model
could be a Neural Ordinary Differential Equation [8], but would require further research.

Physics-informed neural networks (PINNs) [38] offer an alternative approach to train
models which are capable to solve PDEs. This can result in a model which is not limited in
some kind of discretionary, but works on the full domain. Further, this method does poten-
tially not even require training data, but can learn the solution from the weak formulation
of the PDE. For the LLG equation, we face the problem that the stray field is not limited
to a single point, but needs to be evaluated on the full domain. This can become hard to
implement for PINNs.

For ever growing problem settings, traditional solvers often reach their limit. It is only a
matter of time until we see the first solvers based on machine learning used on a commercial
level. This thesis offers an introduction to this rather complicated task, but still misses many
aspects. There are many different models which were not covered and as we know from the
no free lunch theorem [55], there is no single model to cover all problem settings which arise
in the real world.
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Appendix A

A.1 Representer Theorem

One of the crucial properties of kernels is that even if the input domain X is only a (finite)
set, we can think of the pair (X , k) as a (subset of a) Hilbert space. This is attractive from
a mathematical point of view, since many data structures can be studied in Hilbert spaces.
This raises the practical problem that for many kernels, the Hilbert space is known to be
infinite-dimensional. However, we do not normally want to solve an optimization problem in
an infinite-dimensional space. A large class of optimization problems with RKHS regularizers,
have solutions that can be expressed as kernel expansions in terms of the training data [44].

Theorem A.1.1 (Representer Theorem [45]). Given a mapping Φ from X to some Hilbert
space FX with the inner product 〈·, ·〉 and the optimization problem

min
w∈FX

(f (〈w,Φ(x1)〉, . . . , 〈w,Φ(xm)〉) + g (‖w‖)) . (A.1)

The norm ‖ · ‖ denotes the norm in the Hilbert space FX .

Then, there exists a vector α ∈ Rm such that w =
∑m

i=1 αiΦ(xi) is an optimal solution of
equation (A.1).

Proof. Let w∗ be an optimal solution of equation (A.1). Because w∗ is an element of a
Hilbert space, we can rewrite it as an unique orthogonal sum

w∗ =
m∑
i1

αiΦ(xi) + u (A.2)

where 〈u,Φ(xi)〉 = 0 for all i. Set w = w∗ − u. We can see that ‖w∗‖2 = ‖w‖2 + ‖u‖2
and therefore ‖w‖ ≤ ‖w∗‖. Since g is non-decreasing we obtain that g(‖w‖) ≤ g(‖w∗‖).
Further, for all i we have that

〈w,Φ(xi)〉 = 〈w∗ − u,Φ(xi)〉 = 〈w∗,Φ(xi)〉, (A.3)

and therefore

f (〈w,Φ(x1)〉, . . . , 〈w,Φ(xm)〉) = f (〈w∗,Φ(x1)〉, . . . , 〈w∗,Φ(xm)〉) . (A.4)

We have shown that the objective of equation (A.1) at w cannot be larger than the objective
at w∗ and therefore w is also an optimal solution. Because w =

∑m
i=1 αiΦ(xi), this concludes

the proof [45].

The representer theorem says that, when we are searching for an optimal solution in H
we can instead optimize (A.1) with respect to the coefficients α ∈ Rm as follows. Applying
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w to the objective and using the kernel trick yields the following

min
α∈Rm

(
f

(
〈
m∑
i=1

αiΦ(xi),Φ(x1)〉, . . . , 〈
m∑
i=1

αiΦ(xi),Φ(xm)〉

)

+ g

√√√√〈 m∑
i=1

αiΦ(xi),

m∑
i=1

αiΦ(xi)〉

)

⇐⇒ min
α∈Rm

(
f

 m∑
i=1

αi〈Φ(xi),Φ(x1)〉, . . . ,
m∑
j=1

αj〈Φ(xj),Φ(xm)〉


+ g

√√√√ m∑
i,j=1

αiαj〈Φ(xi),Φ(xj)〉

)

⇐⇒ min
α∈Rm

(
f

 m∑
i=1

αik(xi, x1), . . . ,
m∑
j=1

αjk(xi, xm)

+ g

√√√√ m∑
i,j=1

αiαjk(xi, xj)

)
(A.5)

A.2 Low-rank matrices and Eckart-Young theorem.

Finding a matrix approximation Ã to a rank-p matrix A with rank r ≤ p can be found by
the SVD. There holds:

Theorem A.2.1 (Eckart-Young). Given the matrix A with rank p and a SVD A = USV ∗,
the optimization problem

min
Ã
‖A− Ã‖F with rank(Ã) = r, (A.6)

with ‖A‖ =
√∑

i,j |ai,j |2 being the Frobenius Norm, turns out to have the solution

Ar = US̄rV
∗. (A.7)

The matrix S̄r is a modified version of S that only contains the largest r singular values,
while all the other ones are replaced by zero. For the error there holds

‖Ar −A‖F =

√√√√ p∑
j=r+1

σ2h. (A.8)
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A.3 Deutsche Zusammenfassung

Diese Masterarbeit behandelt einen datengetriebenen (
”
data-driven“) Ansatz zum Lösen von

zeitabhängigen PDEs. Im Speziellen werden Methoden zur Modellreduktion und maschinel-
len Lernen für die schnelle Abschätzung der Magnetisierungsdynamik in Abhängigkeit zum
äußeren Feld entwickelt und angewandt, welche durch die Landau-Lifschitz-Gilbert (LLG)
Gleichung, die fundamentale partielle Bewegungs-Differentialgleichung im Feld des Mikro-
magnetismus, modelliert wird. Die Arbeit beschreibt die Theorie von bestimmten Mod-
ellreduktionsmethoden, sowie nicht lineare Regressionsmodelle, zum Zweck des effizienten
maschinellen Lernens der Lösungstrajektorien der LLG-Gleichung als parameterabhängige
PDE. Ein Schwerpunkt lieg bei Kernel-Methoden, mit dem Fokus auf numerisch stabile
und effiziente Implementierung von Kernel Ridge-Regression (kRR) und der Kernel-Haupt-
komponentenanalyse (kPCA) mit einem modernen Niedrig-Rang-Approximationsverfahren
zur Behandlung von bestimmten dichten Operatoren. Viele dieser Verfahren berechnen die
Abbildung der Daten in einem anderen Funktionsraum, daher ist die Urbild-Berechnung
essenziell. Im Zuge dieser Arbeit wird ein

”
supervised learning“ Prozess vorgestellt, der

wiederum auf Kernel Ridge-Regression beruht.
Nach Darlegung dieser Grundlagen, wird eine iterative Lösung des Kernel-Dependency-

Estimation Algorithmus (KDE) hergeleitet und, basierend darauf, ein explizites Mehrschritt-
Verfahren entwickelt welches ausschließlich im abgeleiteten Funktionsraum operiert und die
komplizierte Magnetisierungsdynamik in einem reduzierten Raum erlernt. Dieser Algorithmus
ermöglicht eine schnelle Vorhersage der Lösung mit einer ähnlichen Genauigkeit wie KDE.
Weiters wird die Datenstruktur dieser Methode diskutiert, sowie die nötige Speicherkapazität
verglichen. Die Implementierung erfolgte mit dem numpy und scikit-lern Python Modulen,
und Simulationen wurden teilweise auf dem Vienna Scientific Cluster (VSC) gerechnet.

In einem zweiten Teil der Arbeit wird die Hauptkomponentenanalyse mit einem neu-
ronalen Autoencoder zur Dimensionsreduktion des Datensatzes verglichen. Wir legen den
Fokus auf eine glatte Beschreibung des Funktionsraumes mithilfe eines regularisierenden
Terms eines kontraktiven Autoencoders. Es stellt sich heraus, dass die Funktionsraumbeschrei-
bung des Autoencodes besser ist als die der kPCA und mithilfe einer zukunftsgerichteten
Zielfunktion kann ein neuronales Regressions-Netzwerk trainiert, und damit die KRR ersetzt
werden. Mithilfe des Keras und Tensorflow Moduls, und mittels automatischen Differen-
zierens, ist es möglich diese sehr komplizierten Optimierungsprobleme zu lösen.

Im Falle der Kernel Methoden bietet das explizite Funktionsraumintegrationsschema
einen einfachen Trainingsprozess mit expliziter Lösung des aufkommenden Optimierungsprob-
lems. Dies ist schwieriger im Falle des neuronalen Netzwerkes und erfordert fortschrittliche
stochastische Optimieralgorithmen mit adaptiver Momentabschätzung. Im Speziellen wird
der Adam Optimieralgorithmus verwendet. Mithilfe von Cross-Validation wird eine Serie von
Modellvalidierungs- und Hyperparameterschätzungsaufgaben durchgeführt und es stellt sich
heraus, dass diese Methoden einen teils überwachten Trainingsprozess bieten, der darüber
hinaus auch einen beachtlich kleineren Rechenaufwand erfordert als andere Lösungsmetho-
den.

Diese Arbeit ist thematisch an der Spitze der derzeitigen Forschung im Bereich von
Computational Physics, und es wurden im Zuge dieser Arbeit zwei Preprints zu interna-
tional anerkannten und peer-reviewed Journalen eingereicht, wovon bis dato bereits einer
zur Publikation akzeptiert wurde.
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