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1 Abstract 
Peroxisomes are single membrane bound organelles enclosing various important 

metabolic pathways. The peroxisomal matrix protein import is mediated by two 

targeting signals namely peroxisomal targeting signal 1 (PTS1, C-terminal) and 

peroxisomal targeting signal 2 (PTS2, N-terminal). The PTS1 is bound by the 

receptor PEX5 and PTS2 is bound by a dimer consisting of the receptor PEX7 and 

co-receptor PEX5 which are then able to cross the peroxisomal membrane. 

The efficiency of peroxisomal matrix protein import depends on the quality of 

the PTS. To determine the quality of individual PTS, a visual evaluation of import 

efficiency in cells expressing reporter proteins has originally been used. In this study, 

we want to present a first step into the direction of automated image analysis of 

fluorescence images. On the one hand, peroxisomes were first identified by a 

segmentation algorithm called Trainable Weka Segmentation and the average of the 

intensity maxima of these areas was compared to the average intensities of the non-

peroxisomal cellular background. On the other hand, the analysis of the intensity 

distribution of all pixels of each cell was used to discriminate cells presenting with 

different import efficiencies of the reporter protein, independently of the different 

shapes of cells. 

 The results of the segmentation approach demonstrate significant differences 

between the mean intensities of peroxisomal and non-peroxisomal areas within cells. 

The results of the analysis of the pixel-based intensity distribution suggest that the 

shape of the distribution curves reflect the visual evaluation of import efficiency. 

Moreover, the total amount of the reporter protein has a great impact on the 

evaluation of import efficiency. 

In summary, both methods presented in this thesis show promising results and 

are good candidates for further testing and improvement. 
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2 Introduction 

2.1 Peroxisomes 
Peroxisomes are small vesicles surrounded by a single membrane and were first 

reported in a light microscopy study on kidney tissue (Rhodin, 1954). Peroxisomes 

(mammals, fungi), glycosomes (protozoa) and glyoxysomes (plants) are organelles, 

which belong to the microbody family. They are ubiquitous subcellular organelles 

which lack nucleic acids. 

2.2 Metabolism 
Peroxisomal matrix protein import is essential for the functioning of the many 

metabolic pathways occurring in peroxisomes such as detoxification of glyoxylate or 

the biosynthesis of ether phospholipids. Here, I want to shortly describe two of the 

peroxisomal pathways, the fatty acid alpha and beta oxidation. 

 Peroxisomal fatty acid alpha-oxidation was first described studying skin 

fibroblasts (Singh et al., 1992). The primary substrate which is used in the 

peroxisomal fatty acid alpha-oxidation is phytanic acid. Phytanic acid has to be 

activated to phytanoyl-CoA prior to alpha-oxidation (Watkins, Howard & Mihalik, 

1994). The phytanic acid pathway is predominantly, if not exclusively, peroxisomal 

(Jansen & Wanders, 2006). 

 In plants and yeast, peroxisomes are the sole place of fatty acid beta-

oxidation, whereas in humans it occurs both in peroxisomes and mitochondria. In 

humans, the substrates for the fatty acid beta oxidation in peroxisomes and 

mitochondria are medium and long chain fatty acids. The very long chain fatty acids, 

however, can only be degraded in peroxisomes (Inestrosa, Bronfman & Leighton, 

1979;  Waterham, Ferdinandusse & Wanders, 2016;  Poirier et al., 2006). 

2.3 Peroxisomal life cycle 
Since the discovery of peroxisomes, there has been a debate whether peroxisomes 

are constantly formed de novo or are maintained by growth and division. Present, a 

hybrid of both models is widely accepted (Figure 1). Genes encoding proteins 

important for the biogenesis and function of peroxisomes are called peroxisome 

biogenesis factors (PEX) (Fujiki et al., 2014). 

Physiological regulation of de novo peroxisome biogenesis remains unclear, 

but it is suggested that the endoplasmic reticulum is involved (Smith & Aitchison, 

2013). The other model, based on growth and division, states that peroxisomes form 
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by a process involving elongation, constriction and fission of pre-existing 

peroxisomes. The most important peroxin within this model is PEX11, as an 

overexpression of PEX11 leads to an increased amount of smaller peroxisomes 

compared to the wild-type (Honsho, Yamashita & Fujiki, 2016). Part of the 

peroxisome homeostasis is the degradation system called pexophagy, which is a 

special form of autophagy that is selective for peroxisomes. The currently knowledge 

is that ubiquitin is involved (Cho et al., 2018;  Kim et al., 2008). 

 

Figure 1. Peroxisomal life cycle. Two models, the de novo synthesis and the growth and division 

model, were combined to form a hybrid model. The first model states that peroxisomes can form de 

novo from vesicles that originate from the endoplasmic reticulum (ER). The latter model includes the 

growth and division of peroxisomes by the three steps of elongation, constriction and fission 

(Waterham, Ferdinandusse & Wanders, 2016). 

2.4 Peroxisomal matrix protein import 

2.4.1 Peroxisomal targeting signals and receptors 

Peroxisomal matrix protein import is initiated by the recognition of a peroxisomal 

targeting signal (PTS) by a receptor protein. There are two types of targeting signals 

for peroxisomal matrix proteins: the peroxisomal targeting signal 1 (PTS1) and the 

peroxisomal targeting signal 2 (PTS2). PTS1 is located at the extreme C-terminus 

(Gould, Keller & Subramani, 1987;  Miyazawa et al., 1989) of the encoding proteins 

while PTS2 is located near the N-terminus of proteins (Osumi, Tsukamoto & Hata, 

1992;  Swinkels et al., 1991). 

 The early consensus sequence for PTS1 was (S/A/C)-(K/H/R)-(L/M) (Gould, 

Keller & Subramani, 1987). Later, a broader number of tripeptides were found to act 
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as targeting signals. Additionally, the upstream sequence of the PTS1 has been 

found to modulate binding strength with its import receptor, PEX5 

(Lametschwandtner et al., 1998;  Brocard & Hartig, 2006). 

The earliest consensus sequence found for the PTS2 was 

(R/K)(L/V/I)X5(Q/H)(L/A) (Glover et al., 1994). Bioinformatics approaches suggest R-

(L/V/I/Q)-X-X-(L/V/I/H)-(L/D/G/A)-X-(H/Q)-(L/A) as a consensus sequence for the 

most common PTS2 variants and (R/K)-(L/V/I/Q)-X-X-(L/V/I/H/Q)-(L/S/G/A/K)-X-

(H/Q)-(L/A/F) including essentially all naturally occurring variants of PTS2 (Petriv et 

al., 2004). 

The receptors responsible for the peroxisomal import are PEX5 for proteins 

with PTS1 (Van der Leij et al., 1993;  Brocard et al., 1994) and PEX7 (Marzioch et al., 

1994;  Braverman et al., 1997) together with a co-receptor, which in most 

multicellular eukaryotes is the PTS1 receptor PEX5, for proteins with PTS2. There 

are two splicing variants of PEX5, PEX5S and PEX5L, but only the latter interacts 

with PEX7 (Dodt et al., 1995). 

In PTS2 mediated protein transport, the additional binding of the co-receptor 

PEX5L to the receptor PEX7 and the cargo protein leads to an increase in interaction 

strength between all three binding partners (Figure 2, (Kunze et al., 2015)). The 

binding of PEX5L to the dimeric PEX7-PTS2 complex initiates the transportation of 

the cargo-receptor complex to the peroxisomal membrane (Kunze et al., 2015). 
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Figure 2. Model of PTS2-mediated peroxisomal protein import. Schematic of the PTS2 which is 

depicted in a frontal view on the alpha helix, which is connected to the core protein via an 

unstructured linker region (A). The interaction between PTS2, PEX7 and PEX5L is necessary for 

protein import (B) (adjusted from (Kunze et al., 2015)). 

2.4.2 Import of peroxisomal protein-receptor complexes 

Peroxisomal proteins can be imported in a fully folded state through translocons, 

whereas mitochondrial proteins can only be transported unfolded through gated 

channels within the membrane (Figure 3). The transport of matrix proteins across the 

peroxisomal membrane starts with the docking of PTS1 carrying proteins to PEX5 or 

PTS2 carrying proteins to PEX7 and PEX5L. The dimeric or trimeric complex can 

then dock to the docking complex, which consists of PEX13 and PEX14 (Albertini et 

al., 1997;  Girzalsky et al., 1999;  Waterham & Ebberink, 2012). The exact 

translocation mechanism remains elusive, but one model describes a dynamic 

transient pore that disassembles after translocation (Erdmann & Schliebs, 2005). 

Following translocation of the cargo across the membrane by the docking complex, 

the cargo is released inside the peroxisome. The receptors PEX5S, PEX7 and 

PEX5L are then exported back to the cytosol in an ATP- and ubiquitin dependent 

process (Figure 3). 
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Figure 3. Schematic representation of peroxisomal matrix protein import. Steps of protein import: 

(i) recognition of a peroxisomal import signal by a receptor (cargo binding), (ii) docking of the cargo-

receptor complex (docking), (iii) import of cargo protein (import) and (iv) recycling of receptors 

(recycling) (acquired from (Waterham & Ebberink, 2012)). 

2.5 Matrix protein import efficiency as a proxy for the quality of peroxisomal 

targeting signals 
The quality of peroxisomal targeting signals in living cells can currently not be 

measured directly. Therefore, an indirect approach such as peroxisomal matrix 

protein efficiency is needed. The hypothesis states that the higher the efficiency of 

peroxisomal matrix protein import, the higher the quality of the peroxisomal targeting 

signal. While an efficient targeting signal will lead to almost exclusive localization of 

proteins to peroxisomes, weaker signals might lead to an accumulation of 

peroxisomal matrix proteins in the cytoplasm. This is partially due to hypothesized 

saturation of proteins within peroxisomes and partially due to competition with 

proteins with stronger import signals. In this study, we used a peroxisomal targeting 

signal fused to EGFP for analyzing the intensity distribution within cells by 

fluorescence microscopy. 
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2.6 Fluorescence microscopy 

2.6.1 Epi-fluorescence microscopy as a technology still valuable today 

The microscope of choice was an inverted epi-fluorescence microscope specified in 

the materials and methods section. Although newer technologies are available, the 

epi-fluorescence microscope remains valuable at the current moment. In comparison 

with a laser scanning confocal microscope, the advantages of the epi-fluorescence 

microscope are that it is easier to use, cheaper and structurally less complicated with 

faster imaging time. Due to the lack of a pinhole, the epi-fluorescence microscope 

can gather more light, also leading to better results for low light applications (Webb & 

Brown, 2013). This in term leads to a reduction in bleaching of the specimen at the 

same light source output level and exposure time. The lack of the pinhole is also the 

greatest disadvantage of the epi-fluorescence microscope. This means that while the 

point-spread-function of the x and y directions are comparable between the two 

microscope types, the z direction spread is increased when using epi-fluorescence 

microscopy. Therefore, the epi-fluorescence microscope works best with thin 

specimen like COS7 cells (<20-30 µm in the z-axis) (Sagi, Basser & Assaf, 2009). 

2.6.2 Signal to noise ratio 

When excitation light from the light source of the fluorescence microscope comes in 

contact with the right type of fluorophore, light in form of photons is emitted that can 

then hit the sensor of the camera. The more fluorophores there are in one place, the 

more photons are emitted, which corresponds to a higher signal, and thus different 

pixels present with varying intensities in an image. Noise is the by-product of every 

signal and represents random distributions of intensities throughout an image. The 

goal of imaging is to keep it as low as possible. The three major types of noise are (i) 

the result of the variation of arrival rate of photons (photon noise), (ii) the thermal 

generation of electrons within the camera (dark noise) and (iii) noise can be produced 

during the conversion of photon signal into voltage signal (read noise). Methods to 

reduce noise and therefore maximize signal to noise ratio are optimizing the labelling 

method of the specimen, cooling the camera and increasing the exposure time 

(Thomas J. Fellers, no date). 

2.7 Image processing in general 
Image processing stands for the analysis of images regarding their intensity 

information and can also include separation of different regions within images (image 
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segmentation). It is a tool used by researchers for decades now, but in recent years 

advances in computer power and methodology have made this field very powerful. 

The intensity distribution within the images can be analysed and extracted. The 

classical approach is to compare the intensities of peroxisomes to the intensities of 

the cytoplasm to determine a measure for the effectiveness of the peroxisomal matrix 

protein import. 

2.7.1 Advantages and disadvantages of automated image processing 

There are several advantages with automated image processing. First, (i) tasks like 

peroxisome counting are completed faster than manually. Another advantage (ii) is 

the reproducibility of the results from the automatic analysis, circumventing the 

subjective aspect of visual evaluation. The automated program will always output the 

same number of peroxisomes, even when re-run several years later. A manual count 

will make mistakes due to day-to-day variability of the same experimenter. 

Additionally, there is no interpersonal variability when using the automated image 

analysis. 

The disadvantages are that the development of a new program can take a 

long time and mistakes within the program can always happen during that period, 

which are often difficult to detect. Therefore, internal controls are essential. It is also 

important not to absolutely trust the results of an automated program without having 

at least basic understanding of how it works and a basic test system. 

2.7.2 Image filters 

Image filters can be used to process images in various ways dependent on the 

desired outcome. Filters can be considered as fields of certain size, which combine 

the intensity values of a predetermined number of pixels by calculation and replace 

the original intensity information of said pixel with the result of the calculation. This 

calculation is then applied to each pixel in the image. Filters can reduce noise (e.g. 

Gaussian filter), increase the visibility of edges (e.g. Difference of Gaussian filter) or 

highlight texture based features of images (e.g. Median filter) (Bankhead, 2014). 

2.7.3 Classical image segmentation 

Image segmentation is the separation of objects of interest from other sections of an 

image. There are a manifold of different methods to achieve the highlighting of 

objects of interest, but it greatly depends on the sample at hand which method is best 

(Kang, Yang & Liang, 2009). Classical methods use comparably low computer 
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resources and are still valuable today. The simplest method of image segmentation is 

thresholding. Threshold segmentation divides the image into foreground and 

background. Thresholding can be done manual or automatic, for example with Otsu’s 

method (Otsu, 1979). It is best suited for large objects within images, like stained 

nuclei of cells. Smaller objects such as peroxisomes and mitochondria are more 

difficult to separate, because the area for detection is limited and the objects can be 

clustered. For smaller objects, edge detection filters like Sobel, Difference of 

Gaussian or a combination of different filters would be more applicable. The 

segmentation method introduced in this study combines classical image 

segmentation filters with the use of machine learning. The algorithm called Trainable 

Weka Segmentation (TWS) is implemented in ImageJ and uses manual training data 

to create classifiers used for segmentation (Arganda-Carreras et al., 2017). 

2.7.4 Machine learning segmentation 

Machine learning stands for a collection of algorithms that perform intelligent 

predictions based on a data set. Machine learning algorithms, also called models, are 

in use for a variety of tasks like image analysis or general analysis of data lists. There 

are two main types of machine learning algorithms, supervised and unsupervised. In 

this study, we want to focus on supervised learning. Supervised learning describes 

the process of teaching a model with input data of choice. Most of the imaging 

models are classifier algorithms that are trained on the objects of interest and tested 

on images of the same or different origin as the training images (Nichols, Chan & 

Baker, 2019). 
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3 Aim of this Study 
The aim of this study was to use two different methods to evaluate the efficiency of 

peroxisomal matrix protein import in eukaryotic cells using automatic quantification of 

fluorescence microscopic images of cells incubated with antibodies targeting PMP70 

or transfected with EGFP-PTS1 or PTS2-EGFP expression plasmids. 

To circumvent the problem of different expression level of the proteins of 

interest, we manually categorized the cells according to their peroxisomal matrix 

protein efficiency prior to the automatic image analysis. The process of manual 

categorization, however, is very time-consuming and the categorization by different 

experimenters can lead to different results. 

Therefore, we wanted to increase efficiency and repeatability of the 

categorizations by using computational methods. Two approaches were chosen for 

the computational image analysis, one based on pre-classification of peroxisomal 

and non-peroxisomal areas and the other an unbiased analysis of all pixels 

composing the images of cells. 

 The first method uses the differences of peroxisomal intensities in comparison 

to the intensity of the cytoplasm. This method relies on the correct finding of 

peroxisomes through a process called image segmentation. To segment images, the 

task was to search for a free-ware segmentation program, to test its reliability in 

finding peroxisomes and to compare it to other freeware programs. 

 The second method uses the distribution of intensities within images of the 

whole cell without segmentation. The individual pixel intensities of each cell were 

ordered from highest to lowest to form a plot. Within this plot, we then hypothesised 

that pixels with the highest intensities represent the intensities of peroxisomal areas, 

the centre of the curve represent intensities of cytoplasmic areas and the last part of 

intensities stem from pixels at the border regions of the cell. 

 Finally, the results obtained by the two methods should be compared as a final 

control. 
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4 Materials and Methods 

4.1 Reporter constructs 
The PTS2 reporter construct consist of the genetic information to express the first 

thirty amino acids of the N-terminus of the PTS2 carrying protein 3-ketoacyl-CoA-

thiolase of the organism Rattus norwegicus and was fused to EGFP (thioaseN-EGFP) 

(Kunze et al., 2011). The PTS1 reporter construct consists of the genetic information 

to express EGFP, which is fused to the C-terminal part of the sequence of ACOX-2 

(Chong et al., 2019). 

4.2 Cell seeding and cell counting 
The green monkey kidney cell line COS7 was purchased from ATCC. Cells were 

cultivated in DMEM (Sigma-Aldrich Art.No. D6429-500ml – high glucose) 

supplemented with 10% fetal calf serum (FCS), 250 µg/ml amphotericin (Sigma), 50 

units/ml penicillin and 100 μg/ml streptomycin (BioWhittaker).  

DMEM medium and trypsin were incubated for at least 30 minutes at 37 °C in 

a water bath. Cells were washed by replacing the medium inside of the T75 cell 

culture flasks with PBS. After removing the PBS from the flasks, 2 ml of trypsin was 

added and cells were incubated for at least 5 minutes at 37°C in the CO2 incubator. 

Cells were then checked for detachment from the surface of the flask using the light 

microscope and then the trypsinization reaction was stopped by adding at least 4 ml 

of DMEM medium. After carefully mixing and taking up the content of the cell culture 

flask with a pipette, 1 ml of cell suspension was returned into the flask. The remaining 

cell suspension was either discarded in the day-to-day cell cultivation routine or 

placed in a 15 ml falcon tube for cell seeding. 

For seeding, the cell suspension in the 15 ml falcon tube was centrifuged for 5 

minutes. After discarding the supernatant, the pellet was resuspended in 4 ml DMEM 

medium. Prior to the cell counting, the 150 µm diameter capillary system of the CASY 

cell sorter was cleaned. To count the cells, 50 µl of suspension were removed and 

mixed with 10 ml of CASY-ton liquid. After the counting, 5x104 cells were seeded per 

well (growing area 1.9 cm2) of 24-well plates (Greiner Bio-One; Art.No.: 662160) and 

incubated in the CO2 incubator for 24 hours. 

4.3 Transfection 
On the next day, we replaced the medium of the cell culture with 400 µl fresh DMEM 

medium. We then prepared 1 µg of DNA plasmids for each transfection. The DNA 
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plasmids were then mixed with 100 µl pure DMEM and 1.25 µl TurboFect 

(ThermoFisher) and the mix was incubated for 15 minutes at room temperature. 

Next, we added 100 µl of the TurboFect/plasmid mix to each of the wells and 

incubated the cells for 24 hours in the CO2 incubator. 

 For our experiments, we diluted each expression plasmid with mammalian 

expression plasmid without expression (pcDNA3.1). Different combinations of 

pcDNA3.1 and expression plasmid for the reporter protein were used: 31 ng of PTS2 

expression plasmid or 125 ng of PTS1 expression plasmid mixed with pcDNA3.1 to a 

total of 1000 ng. 

4.4 Cell splitting, chemical fixation and mounting of glass coverslips 
Following the incubation time after transfection, cells were washed with PBS and 

trypsinized (75 µl trypsin). Trypsinization was stopped after 5 minutes by adding 500 

µl fresh DMEM medium and the cell suspension was distributed into two wells of 24 

well plates containing glass coverslips (diameter ~1.3 cm2). Cells were then 

incubated for 24 hours in the CO2 incubator. Next, cells in 24 wells with glass 

coverslips were washed with PBS and chemically fixed with 1 ml of 3.7% (v/v) 

formaldehyde in PBS for 15 minutes. After the fixation, cells were washed twice with 

PBS to remove excess formaldehyde. Glass coverslips were then mounted on glass 

slides using 2.5 µl of Mowiol (https://www.nichd.nih.gov/about/org/dir/other-facilities/cores/microscopyandimaging/support/MOWIOL). 

4.5 Immunofluorescence staining 
After seeding COS7 cells into wells containing glass coverslips, cells were incubated 

for 24 hours in the CO2 incubator. Next, cells in 24 wells with glass coverslips were 

washed with PBS and fixed with 1 ml of 3.7 % formaldehyde in PBS for 15 minutes. 

After fixation, cells were washed twice with PBS and then the protocol was continued 

on the same or the next day. Next, cells were incubated in PBS + 0.05 % Triton-X100 

for 5 minutes. Subsequently, cells were washed with PBS and the buffer was 

removed. Next, parafilm was placed in a box and the glass slides were placed onto 

droplets of 50 µl of blocking solution (1x PBS, 5% FCS, 50ng/ml BSA, 0,02% NaN3). 

The glass plates were then placed upside down onto the droplets and incubated for 1 

hour at room temperature with low agitation. Next, cells were incubated with primary 

antibodies (rabbit anti-PMP70 diluted 1:2000, 1:4000 or 1:10000 in blocking solution) 

the same way as before for 3 hours. Glass coverslips were then washed with PBS 

three times using empty 12 well plates, incubated with dye labelled secondary 

https://www.nichd.nih.gov/about/org/dir/other-facilities/cores/microscopyandimaging/support/MOWIOL


16 
 

antibodies (donkey anti-mouse-Cy2 and donkey anti-rabbit-Cy3 both diluted 1:400 in 

blocking solution) for 1 hour the same way as before. Cells were washed three times 

in PBS and then glass coverslips were then shortly dipped in a beaker filled with 

dH2O and fixed to glass slides with a drop of Mowiol (3-5 µl) per glass coverslip. 

4.6 Manual categorization of cells according to their peroxisomal matrix protein 

import efficiency 
Cells were sorted into one of four categories A, B1, B2 and C. The categories are as 

A (best import), B1 (good import), B2 (weak import) to C (no apparent import). 

Category A marks cells that appear as bright punctate clouds with a dark oval in the 

middle where the nucleus is located. This is rated as the best peroxisomal import with 

reporter proteins inside the cells having a functional PTS2 and without an overload of 

reporter proteins. Category B1 marks cells that show punctate staining as well as a 

faint cytoplasmic staining with lightly stained nucleus. Reporter proteins inside the 

cells have either a weaker PTS2 or a slight overload of reporter proteins. Category 

B2 includes cells which have a punctate staining in combination with a clear 

cytoplasmic staining and a visible nucleus. Cells are sorted into category B2 when a 

mutation in the PTS2 reduces import efficiency into peroxisomes or if the cells 

produce large amounts of reporter proteins. Category C has similar cytoplasmic and 

nuclear staining as category B2 but does not show visible punctate staining. Cells in 

category C have in common that the peroxisomes are not detectable anymore either 

due to a non-functioning PTS2 or a strong overexpression of the reporter proteins. 

4.7 Microscopy 
For detection of the reporter proteins or labelled antibodies, we used the Olympus 

inverted epi-fluorescence microscope IX71 (Olympus) equipped with a CCD camera 

(Olympus CAM-XM10). Additionally to the respective wavelengths used to excite the 

reporter proteins, appropriate filters were applied. C-M-Cell software (Olympus) was 

utilized to obtain images. As an objective lens, we used the Olympus 60x PlanApo N 

objective with the numerical aperture of 1.42 (normal oil). 

4.8 Image Acquisition 
Images were acquired with constant exposure time set to 300 ms at full dynamic 

range of the camera and a bit depth of either 12 bits (0-4096 grey scales) or 14 bits 

(0-16383 grey scales). The microscope focus was set manually for each cell. Each 

cell was moved to the centre of the screen before image acquisition to avert the 
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uneven illumination at the edges of the camera. The images were saved locally in the 

C-M-Cell software database and in the 16-bit TIFF lossless file format before 

transferring them to a different computer. Pixel size in µm for measurements was 

taken from the microscope settings determined by the manufacturer. 

4.9 Quantitative Image Processing 
Images were loaded into Fiji (the abbreviation stands for Fiji is just ImageJ), a version 

of ImageJ with additional features. Next, images were stacked and one cell per 

image was marked with a region of interest which was subsequently saved. The next 

step was to segment the images with the Trainable Weka Segmentation (TWS) Fiji 

plugin equipped with a previously generated classifier. The output of the TWS was an 

8-bit colour image. Next, images were converted to 8-bit grey scale and then the 

binarize function in ImageJ was applied where peroxisomal areas were assigned the 

value of one (white) and non-peroxisomal areas the value of zero (black). After that, 

the watershed algorithm was applied to separate touching objects. Subsequently the 

region of interest of the whole cell, which was created in the beginning, was projected 

onto the image. Next, the particle analyser function within ImageJ counted the 

number of peroxisomes of the cell region of interest and saved each peroxisomal 

region of interest individually as well as a summary of information of all peroxisomal 

areas within each cell. Following this step, the peroxisomal regions of interest were 

applied on the original images and intensities were measured. A region of interest for 

the cytoplasm was created by subtracting the peroxisomal regions of the whole cell 

region of interest. Following the manual testing of this process, the steps were 

integrated into an ImageJ macro code. Last, the baseline of the intensity noise (mean 

of intensity of areas outside of cells pus three times standard deviation) was then 

subtracted from the numeric output of the intensity extraction. 

4.10 Training of a classifier of the Trainable Weka Segmentation 
The first step in training a classifier was to determine its settings. In the main 

interface in the settings tab, there are five filters that we used as a basis for the 

classifier, namely Gaussian blur, Sobel filter, Hessian, Difference of Gaussians and 

Median. The underlying algorithm used was the FastRandomForest. In the field Class 

names we named Class 1 as peroxisomes and Class 2 as non-peroxisomes. 

 Next, we used the draw tools implemented in ImageJ to draw either lines or 

areas into the images which were then subsequently saved by pressing either “add to 
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Peroxisomes” or “add to non-peroxisomes”. For the training success, it is important 

that the number of chosen areas are similar in all groups. 

 After enough areas were saved, we pressed the button Train classifier to see 

which areas the program would highlight as peroxisomes. When the segmentation 

was satisfactory, the classifier was saved under Save classifier. Additionally, the 

image data were saved using Save data. To continue the training of a saved 

classifier, we loaded the data into the TWS segmentation, trained on images and 

repeated the process of saving classifier and data. 

4.11 Intensity plots 
In this method, we extracted the intensity of each pixel of an individual cell without 

image segmentation by using an ImageJ macro code. The resulting list of x and y 

pixel place coordinates and their respective intensities were copied into an excel 

sheet. 

Next, the list was sorted in a descending order. The baseline of the intensity 

noise (mean of intensity of areas outside of cells pus three times its standard 

deviation) was then subtracted from the numeric output of the intensity extraction. 

For the normalization of the intensities, we calculated the mean of the top 100 

values with the highest intensities and subtracted the baseline of the intensity noise 

(mean of intensity of areas outside of cells pus three times its standard deviation) 

from this value. Then, we divided every value by this mean value and multiplied the 

resulting value by 100 to gain a percentage value. 

For the normalization of the pixel number in percent, we divided each pixel 

number by the total number of pixels within a cell area. 

Of these lists, the key values of choice were then extracted and saved 

separately. To gain a representative intensity plot, we extracted the first value of the 

list and the following values at each following percentage point of a total of ten cells. 

The mean and standard deviation was then calculated of each percentage step to 

form a mean intensity plot. 
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5 Results 

5.1 Quantitative image analysis 

5.1.1 Quality of peroxisomal matrix protein import 

The quality of a PTS depends on its amino acid sequence. The hypothesis for our 

experiments was that the better the quality of the PTS, the higher the peroxisomal 

matrix protein import efficiency. In this study, we wanted to automatize a manual 

classification of peroxisomal matrix protein import efficiency, previously performed in 

our lab. The idea behind the categorization system stems from the observation that 

cells transfected with plasmids expressing PTS2-EGFP fusion proteins can have 

different fluorescence intensity distribution within cells. As during the transfection 

individual cells receive different quantities of plasmid by chance, even cells 

transfected with plasmids expressing well importing fusion proteins can present with 

high amounts of fluorescence intensities in their cytoplasm. This is usually positively 

correlated with clear visibility of the nucleus and nucleolus. In this study, the cytosol 

and the nucleus are referred to as non-peroxisomal areas. Sometimes, increased 

peroxisomal staining is not visible in these cells, probably because the bright 

cytoplasmic staining is covering the peroxisomal intensities. When transfecting and 

observing mutated PTS2-EGFP fusion proteins with lower peroxisomal matrix import 

efficiency, the quantity of cells having a signal in the cytoplasm was increased 

(results of my “Großpraktikum”, data not shown). In the following sections I want to 

elaborate on the use of fluorescence proteins and present a general introduction to 

later chapters of this study. 

5.1.2 Fluorescence labelling within eukaryotic cells 

The goal was to study the import efficiency of PTS2-carring proteins. One of the 

difficulties of this import system is a limit in import capacity causing a broad variability 

in apparent import efficiency among transfected cells. 

Thus, we first establish the method using two fluorescence staining, an α-

PMP70 immunostaining using Cy3-labelled secondary antibodies (Figure 4A) and an 

EGFP-PTS1 (Chong 2019) fusion protein (Figure 4B). The membrane protein PMP70 

is classically used as an antibody target to highlight the location of peroxisomes. The 

antibody-mediated detection of endogenous proteins facilitates a very high signal to 

noise ratio. In contrast to the antibody-mediated approach, we used an EGFP-PTS1 

fusion protein, which is soluble and localizes to peroxisomes (Figure 4B). The PTS1 
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fusion protein produces a high signal to noise ratio with peroxisomes, but can also 

show minor levels of the reporter protein located in non-peroxisomal areas. With its 

expression upon transfection of encoding plasmid, the soluble reporter protein 

provides a useful tool for the study of transfection-mediated variability. Finally, we 

used the PTS2-EGFP fusion protein (Kunze 2011). The protein presents with lower 

import efficiency and a low signal to noise ratio in transfected cells, presenting 

different import categories, which makes analysis of images of this type of fusion 

proteins more difficult (Figure 4C-F). 
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Figure 4. Images of fluorescent labelled cells. Fluorescence signals were created either by using α-

PMP70 and Cy3-labelled secondary antibodies (A) or by transfecting plasmids coding for fusion 

proteins consisting of EGFP and PTS1 (B) or PTS2 and EGFP (C, D, E, F). Peroxisomal matrix protein 

import efficiency for PTS2-EGFP was categorized into one of four categories namely very good (B, C), 

good (D), poor (E) and no visible import (F) of peroxisomal matrix proteins. Scale bars shown in the 

images show a length of 10 µm. Gamma filter was used on all images. The cell type is COS7. 
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5.1.3 First, second and third dimension of intensities in images 

The signals of the labelled secondary antibodies or EGFP fusion proteins can be 

captured by using a fluorescence microscope. Light signals captured by the camera 

installed in the fluorescence microscope are converted to electrical currents, stored 

as binary numbers and displayed with shades of grey in the form of squares. These 

squares are called pixels and show how much of a signal was captured in a certain 

area on the camera’s sensor. For better visibility of the intensities, a so-called lookup 

table (LUT) was used to colourize the images where the pixel with the highest 

intensity is set to 100% (yellow) and the pixel with the lowest intensity is set to 0% 

(black) (Figure 5). Due to image brightness and gamma filter adjustments for better 

visibility, the cytoplasm also appears heavily stained. This is not the case, as when 

looking through the microscope, the cytoplasm is almost not visible. 

Within an image, local information can be extracted by creating a so called line 

graph, which is plotting the intensities against a line in the xy-layer (Figure 5, middle 

section). Taking the x and y dimensions of a 2 dimensional image and plotting the 

intensity in the z-axis results in a 3 dimensional plot where the impact of the intensity 

is more clearly visible (Figure 5, right section). As seen in the 1 dimensional and 3 

dimensional plots, the intensities of the pixels belonging to peroxisomes are 

increased in comparison to the cytosol. Within PMP70 images, only peroxisomes are 

labelled and the ratio between peroxisomal and cytoplasmic intensity is the highest 

(Figure 5, A). For the images of cells transfected with EGFP-PTS1 (Figure 5B) or 

PTS2-EGFP (Figure 5C) expressing plasmids, a fraction of the fusion proteins 

expressed within the cell remains in the cytoplasm while the majority of fusion 

proteins is imported into peroxisomes. 

The mean intensity signal of peroxisomes is highest with PMP70, intermediate 

with EGFP-PTS1 and lowest with PTS2-EGFP, leading to a low signal to noise ratio 

with the latter fusion proteins. Noise does not increase linearly with the signal, 

therefore the lines in the line graph appear smoother with the PMP70 samples with 

high signal strength (Figure 5A) than in the PTS2-EGFP sample with low signal 

strength (Figure 5C). This is the reason why images of the PTS2-EGFP samples are 

more difficult to process and require a program that can cope with the low signal to 

noise ratio and is able to find the peroxisomal regions. 
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Figure 5. Conversion of signal intensities in one-, two- and three-dimensional depictions. Each row 

represents three different depictions of the same image obtained for different kind of peroxisomal 

proteins. In each row, there is a 2 dimensional image of a cell coloured with a so called heat-map 

lookup table (left), a 1 dimensional graph of a line (middle) drawn into the 2 dimensional image (line 

in the left picture indicates the position of the line) and a 3 dimensional plot of intensities for the 

whole 2 dimensional image (right) with false colour. In the upper row there are images of a cell with 

an antibody label of α-PMP70 and Cy-3 secondary antibodies (A), the middle row represents a cell 

transfected with a plasmid expressing the fusion protein EGFP-PTS1 (B) and the lower row depicts a 

cell transfected with plasmids expressing fusion protein PTS2-EGFP with peroxisomal matrix import 

category A (C). Scale bars shown in the images show a length of 10 µm. Gamma filter was used on all 

images. The cell type is COS7. 

5.1.4 Two methods of image analysis 

The central hypothesis in this study is that the import efficiency of peroxisomal matrix 

proteins can be deduced from analyzing fluorescence microscopy images. 

To use the intensity information within the images, we tested two methods of 

image analysis. One, in which the core tool is the segmentation of the cell into 

peroxisomal and non-peroxisomal areas, and the other method, in which we use 

statistical analysis of all pixels of a cell without segmentation. 
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 The first method, automized segmentation, is used to compare the intensity 

levels of peroxisomes to the intensity levels of the remaining cell as a proxy for the 

concentration of proteins within compartments. 

In this study, we chose the free software Trainable Weka Segmentation 

(TWS), promoted and implemented by the free image management software ImageJ. 

It is based on the Weka open source machine learning platform. This software uses 

supervised input with the argumentation that humans use much more knowledge 

than what is used by most segmentation methods, which are based on colour and/or 

intensity information of individual pixels alone. But, putting all human knowledge into 

image segmentation algorithms would require huge databases which are currently 

not available. Supervised segmentation methods, however, are the first step into this 

direction. When compared to more classical segmentation methods, the advantages 

of the TWS are its versatile settings, the easy to understand graphical user interface 

and most importantly, the ability to improve the quality of the segmentation results by 

training. One of the disadvantages is that mistakes during the training process can 

decrease the quality of the resulting segmentation procedure. As a comparison of this 

technology, we used the segmentation software Squassh (implemented in ImageJ) 

and Cell Profiler, which are already in use for image analysis in cell biology. 

 The second method for image analysis utilizes the whole range of individual 

pixel intensities in a statistical manner without image segmentation. In this method, 

we read out the intensity of each pixel and ordered them from highest to lowest to 

obtain a plot which describes the intensity distribution within cells. Then, we stated 

the hypothesis that the first part of the plot includes mostly peroxisome pixels, the 

middle part of the plot encompasses the cytoplasm and nuclear intensities and the 

last part contains intensities of pixels at the border region of the cell. To compare 

different import categories to each other, we determined several points within the plot 

as key values and used them for calculations to obtain a meaningful separation 

between the categories. 
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5.2 Part one: Classical image analysis with new technology 

5.2.1 Identification of peroxisomes with the Trainable Weka Segmentation 

The TWS was our prime tool for identifying peroxisomes in this study. It combines a 

collection of machine learning algorithms with a set of selected image features to 

produce pixel-based segmentation. The underlying algorithm that was used was the 

FastRandomForest. As the name suggests, this is a fast implementation of the 

random forest algorithm, which uses a multitude of decision trees with the goal of 

creating a model that predicts the value of a target variable based on several input 

variables. To create predictive values, the TWS can be trained on images with the aid 

of image filters (Figure 6B). The predictive values, summarized in a so-called 

classifier, can then be used to segment different images. 

The filters Sobel and Hessian are responsible for the detection of rapid 

changes in intensity, so called edges. The Median filter is especially useful against 

certain types of noise while at the same time increasing the highlighting of textures 

within the image. The Gaussian blur is the most common noise reducer used in 

image analysis. The Difference of Gaussian filter is highly effective at detecting peak 

intensity signals without detecting noisy background, because it subtracts different 

levels of Gaussian blur from one another. Each of these filters creates a new image. 

These images are then overlaid and a probability is calculated for each pixel to 

belong either to peroxisomes or cytoplasm. 

The resulting probability image can then converted to a binary form (Figure 

6C, Binarization). This means that regions in the image are separated in either 

peroxisomal objects, here in red with the intensity value of one, or non-peroxisomal 

areas, shown in green with the intensity value of zero (Figure 6C, Binarization). Next, 

watershed algorithm and a size exclusion algorithm were applied (Figure 6C, 

watershed). The watershed algorithm is a method based on shape rather than 

intensity of objects, which leads to a separation of objects connected by only a thin 

corridor consisting of a few pixels. The size exclusion algorithm precludes objects 

that are outside of the range of 4 to 300 connected pixels (Figure 6C). This ensured 

the exclusion of random intensity spikes caused by noise and unspecific large 

aggregates (Figure 6D). 

Finally, peroxisomes were counted within a user defined cell area. After 

manual highlighting of cells and combining all steps mentioned above in an ImageJ 

macro language script, we were able to analyse Images automatically. 
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Next, we tested the segmentation algorithm on a set of 40 images of cells previously 

transfected with EGFP-PTS1 expressing plasmids (Figure 6E) and compared the 

automatic count of the new algorithm to a manual peroxisome count (Figure 6F). We 

found a strong correlation between the numbers of peroxisomes that were counted 

manually and automatically. 

 

Figure 6. Function and testing of the Trainable Weka Segmentation. (A-D) Steps of segmentation: 

Original image of a cell transfected with EGFP-PTS1 expressing plasmids (A), applying a combination 

of user defined filters (B), creating a binary image (peroxisomes red, non-peroxisomes green) and 

utilizing watershed and size exclusion (C), reading out intensities of original image by overlaying 

regions of interest (D). Overlay of an automatic peroxisome segmentation and an independent 

manual segmentation (E) Regression analysis of peroxisome numbers obtained by automatic 

peroxisome counting versus a manual peroxisome counting, n=40 (F). Scale bars shown in the images 

show a length of 10 µm. Gamma filter was used on all images. The cell type is COS7. 
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5.2.2 Watershed algorithm and pixel-based size exclusion increase the robustness of the 

peroxisome count 

To demonstrate the contribution of the watershed algorithm and the pixel-based size 

exclusion algorithm that followed the segmentation by the TWS, we re-ran the 

algorithm without using the watershed algorithm (Figure 7C and 7G) or without using 

the size exclusion (Figure 7D and 7H). Both methods should reduce the errors in the 

automatic peroxisome count, but in different directions. While the watershed 

algorithm compensates for a reduction in number caused by clumping of objects, the 

size exclusion prevents misidentified objects with a certain size to influence the 

peroxisome count. For this purpose, we selected a set of images (Figure 7A-D and E-

H) and compared the results obtained by the final program with the results in the 

absence of either the watershed algorithm or the size exclusion. 

By using watershed, the clump of peroxisomes in the image is separated into 

many smaller objects. The second set of images (Figure 7E-H) shows a different 

case. Here, objects are clearly separated, but the cell shows an increased intensity 

within non-peroxisomal areas which leads to an increase in random local intensity 

maxima. Without the exclusion of regions of interests based on pixel size, there 

would be an increase in objects detected that are below 4 pixels in size. In Figure 7 

(I) the number of peroxisomes is depicted as bar graphs. 
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Figure 7. Importance of watershed algorithm and pixel-based size exclusion of regions of interest. 

The distribution of EGFP-PTS1 reporter proteins in COS7 cells are detected by the trainable WEKA 

segmentation. We used two cells as examples for the usefulness of the watershed algorithms and the 

size exclusion (A-D and E-H). From left to right: original false colored images (A, E), segmented images 

with both watershed and size exclusion (B, F), segmented images without watershed applied but 

with size exclusion (C, G) and segmented images with watershed applied but without size exclusion 

(D, H). Depicting the number of peroxisomes as bar graphs (I). The cell type is COS7. Gamma filters 

were use on all images. 

5.2.3 Training of Trainable Weka Segmentation 

The training of the TWS is an important asset for its function. We wanted to test 

whether the number of images used for training influences the resulting number of 

peroxisomes found and compare the results with a manual peroxisome count. The 

training of the TWS, described in the materials and methods section, was conducted 

with images of cells incubated with PMP70 antibodies, transfected with EGFP-PTS1, 

or transfected with PTS2-EGFP expression plasmids. After each training step of 

either 2, 3 or 5 images trained, the TWS classifier was applied on sets of images 
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sharing the same type of fluorescence staining (Figure 8). The number of 

peroxisomes found this way was then divided by the number of manually counted 

peroxisomes for each cell and the mean value and standard deviation was calculated 

(Figure 8). Results of a peroxisome count of images of cells incubated with PMP70 

antibodies had a low standard deviation even when only three cells were used for 

training. The more samples were used for the training, the closer the ratio moved to 

the ideal value of one (dotted line). Classifiers trained with images of cells transfected 

with EGFP-PTS1 expression plasmids had larger standard deviations with few 

samples trained, but further training decreased the standard deviation and 

additionally brought the results of the automatic and the manual peroxisome count 

closer together. Training of classifiers on images of cells transfected with expression 

plasmids for PTS2-EGFP, assigned to import category A, showed an increase in 

performance when increasing the number of images trained but did not show the 

reduction in standard deviation as with the other training samples. 

 

 

Figure 8. Training of Trainable Weka Segmentation. Per image, the TWS was trained by manually 

highlighting one peroxisomal and one non-peroxisomal area each. The y-axis shows a ratio of the 

number of peroxisomes found by the TWS and a manual peroxisome count. The x-axis shows the 

number of images used for training. The classifier that was trained was saved and then applied on 

images of the same class of fluorescence label to determine peroxisome numbers: PMP-70 n=30 

(left), EGFP-PTS1 n=40 (middle) and PTS2-EGFP category A n=20 (right). Data shown as mean ± 

standard deviation. 
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5.2.4 Trainable Weka Segmentation classifiers trained on images of one type can be used on 

images of other types of fluorescence staining 

Next, we wanted to test the performance of the TWS classifiers trained on one set, or 

on a combination of sets of images of fluorescence staining (PMP70, EGFP-PTS1, 

PTS2-EGFP) when applied to images of a different type of fluorescence staining. As 

a measure of quality, we used the correlation of manually and automatically counted 

number of peroxisomes within a cell. To train a classifier, different images of different 

fluorescence staining and varying intensities can be combined. The training was 

conducted as described in the materials and methods section. 

In total, we trained three classifiers: (i) a PMP70 classifier trained on 10 

images each of cells incubated with a 1:2000, a 1:4000 or a 1:10000 primary 

antibody dilution and Cy3 secondary antibodies, (ii) a combined classifier trained on 

10 images of cells transfected with EGFP-PTS1 expression plasmid and 10 images 

of each peroxisomal matrix protein import category of cells transfected with PTS2-

EGFP expression plasmid added to the information of the PMP70 classifier and (iii) a 

PTS2-EGFP classifier which was trained on 90 images of cells attributed to different 

peroxisomal matrix protein import categories. 

The three classifiers were then applied to three sets of images: 30 images of 

cells incubated with a 1:2000 dilution of PMP70 primary antibodies and Cy3 

secondary antibodies (Figure 9, top row), 40 images of cells transfected with EGFP-

PTS1 expression plasmids (Figure 9 middle row) and 20 images of cells transfected 

with PTS2-EGFP expression plasmids (Figure 9, bottom row). Table 1 shows the 

slope and the coefficient of determination (R2) of the resulting trendlines in Figure 9. 

The PMP70 classifier works very well when applied on images of cells 

incubated with PMP70 as well as images of cells transfected with EGFP-PTS1 

expression plasmids. Due to the large differences in intensity saved within the 

classifier and the test images, peroxisomes of PTS2-EGFP samples are mostly not 

recognized (Figure 9, PMP70 classifier row). The combined classifier has 

intermediate results when finding peroxisomes (Figure 9, combined classifier row). 

Last, the PTS2-EGFP classifier, specialized on low signal images, still works 

acceptably for PMP70 and EGFP-PTS1 samples, but excels at finding peroxisomes 

in PTS2-EGFP samples (Figure 9, PTS2-EGFP classifier row). 
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In conclusion, classifiers work best when applied to images of the same type 

but can also be applied to other images as well. A combined classifier is a 

compromise between sensitivity, specificity and field of use. 

 

Figure 9. Quality control of TWS classifiers. The PMP70 classifier was trained on a total of 30 images 

of cells incubated with PMP70 primary and Cy3 secondary antibodies. The Combined classifier was 

trained on 30 PMP70 images, 10 images of cells transfected with EGFP-PTS1 expression plasmids and 

20 images of cells transfected with PTS2-EGFP expression plasmids with import category A. The PTS2-

EGFP classifier was trained on 90 cells transfected with PTS2-EGFP expression plasmids with varying 

import categories. Each of the three classifiers was applied to 30 images of cells labelled with PMP70 

antibodies, 40 images of cells transfected with EGFP-PTS1 expression plasmids and 20 images of cells 

transfected with PTS2-EGFP expression plasmids to determine the peroxisome number. One of the 

PTS2-EGFP samples was excluded due to a statistically higher number of peroxisomes compared to 

the other cells. 
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5.2.5 The Trainable Weka Segmentation shows better performance in detecting 

peroxisomes compared to the other two segmentation programs Squassh and Cell 

Profiler 

After testing the effectivity of the TWS, we wanted to compare it to other image 

segmentation programs. As a measure of quality, we used the number of 

peroxisomes obtained by different software programs from the same images and 

compared the results to a manual peroxisome count. 

The first program to compare to was Cell Profiler, a free, open-source software 

for quantitative analysis of biological images used in over 7000 publications. The 

software relies on buildable blocks of code, which can be easily interchanged with 

only few restrictions. The program was originally designed to count the number of 

cells in an image by using nuclear and cytoplasmic staining but has been expanded 

by many functions since. 

The second program was a tool called Squassh (segmentation and 

quantification of subcellular shapes), which is a free tool implemented in ImageJ for 

2-dimensional and 3-dimensional segmentation and quantification of subcellular 

shapes in fluorescence microscopy images. The tool is specialized on segmentation 

by region competition. Region Competition is a 2-dimensional and 3-dimensional 

multi-region image segmentation tool. It can segment arbitrarily (and not a priori 

known) numbers of objects in fluorescence microscopy images. The objects can 

have either constant or varying internal intensity. In this study, we only used the 

segmentation part of this software. 

Images of cells incubated with PMP70 antibodies were the easiest to segment, 

because of the high signal to noise ratio and high intensity differences between 

peroxisomal and non-peroxisomal areas. Therefore, the use of the three programs 
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tested led to a similarly good correlation between the automatic and the manual 

peroxisome count (Figure 10A). For images of cells transfected with EGFP-PTS1 

expression plasmids, the TWS shows the best correlation. CellProfiler and Squassh 

still have a good correlation regarding cells with lower amounts of peroxisomes but 

tend to underestimate the number of peroxisomes in cells with a larger number of 

smaller peroxisomes which are clustering. 

When counting peroxisomes of images of cells transfected with PTS2-EGFP 

expression plasmids, the TWS clearly outperforms both Cell Profiler and Squassh in 

a comparison of the manual and an automatic peroxisome count. The reason for this 

is the low signal to noise ratio and low differences of peroxisomal and non-

peroxisomal intensities of the PTS2-EGFP images. 

This demonstrates the advantage of the TWS over the compared 

segmentation programs. 
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Figure 10 Comparison of the novel program with other free-ware segmentation programs. The 

number of peroxisomes found by an automatic count after segmentation (y-axis) is compared to a 

manual peroxisome count (x-axis). The three segmentation programs that were compared are the 

TWS (a, blue diamonds), Cell Profiler (b, red squares) and Squassh (c, violet dots). The segmentation 

programs were tested on images with cells labelled with PMP70 antibodies primary and Cy3 labeled 

secondary antibodies (I), transfected with EGFP-PTS1 expression plasmids (II) or transfected with 

PTS2-EGFP expression plasmids (III). Of the PTS2-EGFP expression plasmid transfected cells, only 

category A was taken. 
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5.2.6 Comparing maximum and mean intensities of peroxisomes intensities of non-

peroxisomal areas 

After the positive quality control tests of the TWS, we wanted to focus on the 

analysis of images of cells transfected with plasmids expressing PTS2-EGFP. The 

aim of this analysis was to distinguish between different peroxisomal import 

categories. The images were segmented into peroxisomal and non-peroxisomal 

areas and the intensity information of those areas was extracted. The mean intensity 

of the peroxisomal maxima (Figure 11A) and the mean intensity of the peroxisomal 

areas (Figure 11B) was then compared to the mean intensity value of the non-

peroxisomal areas within each cell, respectively. 

When comparing the mean intensities of peroxisomal maxima and mean 

intensities of non-peroxisomal areas, significant differences in intensity can be found 

within cells of import categories A, B1 and B2 (Figure 11A). These are the categories 

where per definition peroxisomes are found. Images of category C cells show non-

significant intensity difference, the TWS most likely only identified random intensity 

spikes within the category C images as “peroxisomes”. 

When comparing the mean intensities of peroxisomal and mean intensities of 

non-peroxisomal areas within each cell, the results are similar to the comparison 

above, but the differences are not as large (Figure 11B). Here, only import category A 

and B1 show significant differences between the mean intensity of the peroxisomal 

and non-peroxisomal areas. 

 Next, we calculated the ratios between the mean of maxima (Figure 11A; 

Table 3, II) and mean intensities of peroxisomal areas (Figure 11B; Table 3, I) and 

the mean intensities of non-peroxisomal areas, respectively. In both cases (Figure 

11C and 11D), peroxisomal matrix protein import category A depicts the highest 

value followed by the other import categories in descending order. The reason for the 

high standard deviation of the ratio of category A intensities stems from the division 

of high numbers (peroxisomal intensities) with low numbers (non-peroxisomal 

intensities). In category C cells, the intensity variability between cells can be very 

high, but the intensity difference within the cells is low. Therefore, the ratio of 

category C cell intensities has a low standard deviation. 

Using the mean intensity of peroxisomal maxima leads to a greater difference 

in the intensity values than when using the mean value of peroxisomal intensities. 



36 
 

While a greater difference is desired, the use of the peroxisomal intensity maxima 

could lead to a biased outcome, especially when analysing import category C cells.  

The summary is that there are significant differences between the intensities of 

peroxisomal and non-peroxisomal areas within cells showing import category A, B1 

and B2 for the peroxisomal mean of maxima intensities and within cells showing 

import category A and B1 for peroxisomal mean intensities. 

 

Figure 11. Peroxisomal and non-peroxisomal intensities measured after segmentation. The 

program used for segmentation is the TWS. The blue dotted bars (A) represent the mean of the 

maximum peroxisome intensities and the filled red bars represent the mean of non-peroxisomal 

areas within cells. The blue striped bars (B) represent the mean intensity of peroxisomal areas. The 

red bars in B are the same as in A. The wavy light blue bars (C) are calculated from the ratio of the 

mean of maxima intensity of peroxisomal areas and the mean intensities of non-peroxisomal areas 

within cells. The light blue bars (D) are formed by the ratio of the mean intensity of peroxisomal 

areas and the mean intensity of the cytoplasmic areas. The error bars are the standard deviation. The 

n=9 images of cells for peroxisomal matrix import category A and n=10 for categories B1, B2 and C. 

Statistical tests included t-tests for each category in figures A and B and ANOVA with subsequent 

post-hoc Tukey tests for figures C and D. 



37 
 

Table 3. Ratio of peroxisome and cytoplasm intensities 
 

I II 

Category Mean StdDev Mean StdDev 

PMP-70* 6.765 1.233 11.385 2.231 
EGFP-PTS1* 3.178 0.853 4.439 1.272 
A** 3.407 1.284 4.580 2.030 
B1* 2.230 0.552 2.663 0.650 
B2* 1.555 0.251 1.698 0.244 
C* 1.231 0.204 1.343 0.205 
I) Ratio of peroxisome mean intensities and mean cytoplasm mean intensities 
II) Ratio of peroxisome mean maximum intensities and non-peroxisomal mean intensities 
*N=10; **N=9     

     

5.2.7 Mean and median intensities of peroxisomal intensities much lower than maximal 

intensities of peroxisomes 

There are large differences between the mean and the mean of maximum intensities 

of peroxisomal areas within images. This is due to the sharp intensity peaks of 

peroxisomal areas within images. 

A set of images of a cell in which peroxisomes were stained with PMP70 

antibodies show a more detailed view of the distribution of intensity values of a 

peroxisome (Figure 12). From an image of a cell (Figure 12A), a peroxisomal cluster 

was taken (Figure 12B) and from there, a single peroxisomal area was cut (Figure 

12C). We then added the intensity on the z-axis to create a 3-dimensional plot of the 

peroxisomal area. The top area with higher intensities (Figure 12D, yellow-orange) is 

small compared to the bottom area with lower intensities (Figure 12D, violet-blue). 

This leads to a skewed distribution of intensities and the numbers of central 

tendencies are lower than the maximum intensity value (Figure 12E). The intensity 

information of the images can be used to separate objects of interest from one 

another. This can either be done manually or with specialized segmentation 

programs. 

 The larger the peroxisomal area identified by the TWS, the larger the 

difference between the intensity maximum and the mean or median intensity of this 

area. To reduce the difference between mean and maximum intensity, the TWS 

could be trained to detect only sharp peaks and to not include the base of those 
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peaks. The downside of this procedure is the false positive recognition of random 

intensity spikes. A compromise has to be made between decreasing the risk of 

detecting random intensity spikes and reducing the peroxisomal area. 

The conclusion is that using the mean over the median intensity of a 

peroxisomal area could be used to better represent the intensity peak. Using the 

intensity peak itself for image analysis could lead to biased results. 

 

Figure 12. Peroxisome intensity peak as 2-dimensional image, 3-dimensional image and plot. A 2-

dimensional image of a cell incubated with PMP70 antibodies (A) was used to closer investigate the 

intensities of a peroxisome area (B) and a single peroxisome (C). The intensities of the peroxisome 

are drawn as a 3-dimensional peak (D) and a plot (E). 
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5.3 Part two: Cell intensity analysis without image segmentation 

5.3.1 Cell intensity analysis 

A different method than calculating central tendencies from peroxisomal and 

cytoplasmic areas is to use the information encoded in the intensity distribution of 

each cell. With the second method presented in this thesis, there is no need for the 

computational expensive and complicated use of image segmentation. Additionally, 

there might not be a distortion of the intensity value due to differences in intensity 

peak and the base of the peroxisomal areas. The downside of this approach is that, 

without prior segmentation, a new system of sorting the intensity of each pixel is 

required. 

5.3.2 Distribution of intensities and the localization of reporter proteins 

This new system included ranking the intensity of each pixel from highest to lowest 

(Figure 13A, left section). Since in most cases peroxisomal intensities are higher than 

cytoplasmic ones, we hypothesised that the highest intensities primarily originate 

from peroxisomal areas. The intensity values of the cytosolic and nuclear areas of the 

cells were expected to present with varying intensities and placed in the middle 

section of the plot (Figure 13A, middle section). Finally, at the border of the cell the 

intensities are expected to be lower, because COS7 cells are hypothesised to be 

thinner on the cell border than in the centre (Figure 13A, right section). 

Thus, we tried to conceptualize a curve that mimicks the expected distribution 

of pixel intensities. To calculate the baseline of the background noise level of the 

images, the mean of the intensities of 10-12 randomly chosen areas outside of cells 

was calculated and three times its standard deviation was added (Figure 13red 

dotted line). Every intensity value above this baseline was considered a singal, every 

intensity value below this baseline was considered noise. 
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Figure 13. Hypothetical location of cell compartments within a pixel intensity curve. A cartoon of a 

cell transfected with peroxisomal matrix proteins shows different regions within a cell. These 

intensities can be plotted by ranking the intensity of each pixel in a descending manner. The baseline 

equals the mean value of the noise outside of cells plus three times its standard deviation. 

5.3.3 Confirmation of the intensity distribution in cells expressing different reporter 

proteins and normalization of intensity plots 

Since the maximal intensity, the form and the number of pixels can vary from cell to 

cell, we tried to find a way to quantify and normalize the plots. 

Our approach for intensity normalization was to take the intensity value of 

each pixel and divide by the median of the first 100 pixels with the highest intensity 

value. To normalize the total number of pixels for each cell, we ranked each pixel 

within a cell, starting with the pixel with the highest intensity and assigned each pixel 

a number, starting with one. This means that the pixel with the highest intensity value 

was assigned the number one, which was then divided by the total number of pixels 

within the cell. The pixel with the second highest intensity value was assigned the 

number two and so on. Then, we used the pixel with highest intensity and the 

following pixels in 1% steps and calculated the median, the minimum, the maximum, 

the first quantile and the third quantile of the 101 values to create a median curve 

(Figure 14, B-f, C-f, D-f, E-f, F-f). 

Images of cells incubated with antibodies against PMP70 generally have high 

peroxisomal and low cytosolic intensity (Figure 14A-a). The signal to noise ratio is the 

highest of the samples tested. The intensity signals start high in the intensity plot but 

decay quickly (Figure 14, A-b). There are little differences in intensity distribution 

when comparing different cells (Figure 14, A-d). 

Next, we examined the intensity distribution in cells expressing the soluble 

reporter proteins EGFP-PTS1 (Figure 14, B-a). The first sample cell started with high, 
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but few intensity values followed by a large number of lower intensity values (Figure 

14, B-b). When testing more cells, it became clear that cell to cell intensity 

differences are larger than with the PMP70 samples due to differences in the number 

of plasmids that the cells receive during transfection (Figure 14, B-d). Therefore, we 

normalized the intensity and number of pixels as described above (Figure 14, B-e). 

The last step was to draw the median values of each of 101 pixels from the curves 

into one curve and add the first and third quartile and the minimum and maximum to 

that median line. 

Finally, we repeated the process for cells transfected with plasmids expressing 

PTS2-EGFP reporter proteins (Figure 14C-F). Peroxisomal import efficiency category 

A cells have a low starting point of the intensities with the used exposure time of 300 

ms (Figure 14C-a). The middle section of the plot is close to the noise baseline 

(Figure 14C-b). The maximal intensity is different for each cell observed, as expected 

with the use of soluble reporter proteins (Figure 14C-d). Normalization (Figure 14C-e) 

and calculation of a median curve (Figure 14C-f) produce distributions which have a 

relatively high intensity at the start and a lower intensity middle section. 

The other images of different matrix protein import distributions were treated 

the same. Category B1 showed a high starting point of intensities with a slightly 

elevated middle section (Figure 14D-f). The Category B2 plot starts with high 

intensities with a clearly elevated middle section (Figure 14E-f). Category C cells 

show a slope which is not as steep as with the other import categories (Figure 14F-f). 

 The conclusion of this section is that there are visible differences between the 

plots of the four categories of peroxisomal import efficiency after the quantification. In 

the next sections, a more refined approach for the specification of the peroxisomal 

and cytoplasmic areas within these plots and the calculation of numeric values to 

distinguish the categories will be explained. 
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Figure 14. Intensity curves quantification and normalization. Intensity values of images of cells 

incubated with antibodies against PMP70 and Cy3 labelled secondary antibodies (n=3) (A), images of 

cells transfected with EGFP-PTS1 expression plasmids (n=5) (B) or images of cells transfected with 

PTS2-EGFP expression plasmids with all four matrix protein import categories (n=10 for each 

category) (C-F). Each section (capital letters) shows an example image (a), an intensity curve of one 

cell (b), intensity curves of multiple cells (c), intensity curves of multiple cells where the x-axis is log10 

scaled (d), intensity curves of multiple cells with normalized values (e) and an intensity curve 

calculated from the median of the intensity curves in one section with quantile 1, 3, minimum and 
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maximum (f). The red dashed line represents the value of the noise in the image (intensity of outside 

regions mean+3xStdDev). Gamma filter was used on images of cells. 

5.3.4 Hypothetical location and calculation of key values within intensity plots 

5.3.4.1 Hypothetical locations of peroxisomal, cytoplasmic and border regions of the cell within the 

intensity plots 

Following the quantification and normalization of the intensity plots, we defined the 

possible regions of interest within the plots (Figure 15). As stated before, the 

beginning of the curve is hypothesised to contain the peroxisomal pixels (either 

median of first 100 values, 2% median value or 10% median value), the middle part 

should contain the cytoplasmic pixels (value at 50% of the curve) and the last part of 

the curve should include the intensities of pixels close to or at the border region of 

the cell (value at 90 %). 

 

Figure 15. Hypothetical key values of an intensity curve. The intensity values of peroxisomal areas 

are hypothesized to be near the starting point of the plot (median of first 100 intensity values of the 

curve, 2% median value and 10% median value). Additionally, in the middle of the plot (intensity 

value at 50%) we suspect the intensities of the cytoplasmic areas and at the 90% mark we 

hypothesise the location of the intensities of the border regions of cells. 
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5.3.4.2 Correlations of intensity plot key values and total intensity of images of cells transfected with 

plasmids expressing PTS2-EGFP 

To find out more about the locations within the intensity plots hypothesised as the 

representation of intensities of cell areas, we used a test sample of 40 images of cells 

showing different distribution of the expressed PTS2-EGFP. The 40 images 

consisted of 10 images of each peroxisomal protein import category and the intensity 

plots are shown above (Figure 16A-F). For this correlation test, we extracted the 

intensity information at the locations within the plot: (i) 2% median, (ii) 50% value and 

(iii) 90% value. Additionally, we extracted the amount of total intensity within each 

cell, because we hypothesised it to be a proxy for expressed reporter proteins. 

To improve the visualization of the figures, we scaled the x-axes and y-axes 

with the log10. The individual peroxisomal import categories that were determined 

manually prior to this test are shown in different colour and shapes (Figure 16). 

 The positive correlation between the 2% median values of the plots and the 

total intensities of the cells (Figure 16A) suggests that cells which receive a low 

amount of plasmids (total intensity) expressing PTS2-EGFP are more likely to be 

sorted into import category A. The peroxisomal protein import categories cluster 

along the trend-line with category A having low starting intensity, but low total 

intensity when compared to category C cells with high starting intensity and high total 

intensity. 

 Plotting the 50% values against the total intensities within cells leads to a 

similar result (Figure 16B). The peroxisomal protein import categories cluster, but the 

separation between the import categories is not perfect (Figure 16A and 16B). 

 There is also positive correlation between the 2% median and the value at 

50% of the plots (Figure 16C). The 2% median of category A intensity plots is much 

higher than the 50% values. This effect is reduced for category C cells. 

The result is similar for the positive correlation between the intensity values at 

50% and the values at 90% of the plots (Figure 16D). The slope in this correlation is 

not as steep suggesting that the difference between the 50% value and the 90% 

value of the intensity plots is not as extensive as in Figure 16C. 

The conclusion of this section is that the results depicted in figure16 suggest 

that a low total intensity, a proxy for the expression level of reporter protein, leads to 

a good peroxisomal import (category A). Additionally, the difference between the 2% 

value (hypothesised peroxisomal intensity level) and the value at 50% (hypothesised 
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cytoplasmic intensity level) is larger in cells sorted into import category A than cells 

sorted into import category C. 

 

Figure 16. Normalized and non-normalized key values of the intensity curves of the PTS2 import 

categories. Using the microscope, cells transfected with PTS2-EGFP expression plasmids were 

categorized according to the import efficiency of the fluorescent peroxisomal matrix proteins. Then, 

10 images of each cell with the respective import category were acquired and the intensity 

information was extracted using ImageJ. The log10 transformed key values 2% median (A) and 50% 

value (B) were plotted against the log transformed total intensity of a cell (A, B). Then, the 

normalized value of the 2% median was blotted against the normalized 50% value (C) and the 

normalized 50% value was blotted against the normalized 90% value (D). 

 

 



49 
 

5.3.4.3 Calculation of key values 

Next, we wanted to separate the peroxisomal import categories of images of cells 

transfected with PTS2-EGPF expressing plasmids by using the value of a calculation 

which includes the peroxisomal, cytoplasmic and border region values of the intensity 

plots (Figure 17, Table 4). Additionally, we tested which of the hypothesised values 

for the peroxisomal fraction, either (i) the median of the 100 highest values, (ii) the 

2% median or (iii) the 10% median, leads to the most separating power of the 

categories when implemented within a calculation (Figure 17, I, II and III).  

 The formula of the calculation consists of the subtraction of the peroxisomal 

intensity value by the cytoplasmic intensity value which is then divided by the 

subtraction of the peroxisomal intensity value by the intensity value of the border 

region of a cell. 

 

𝑅𝑎𝑡𝑖𝑜 =
(𝑝𝑒𝑟𝑜𝑥𝑖𝑠𝑜𝑚𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) − (𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

(𝑝𝑒𝑟𝑜𝑥𝑖𝑠𝑜𝑚𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) − (𝑏𝑜𝑟𝑑𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
 

 

We also used this calculation on intensity plots of images of cells incubated with 

antibodies against PMP70 or transfected with EGFP-PTS1 expressing plasmids as 

controls with a substantial difference between peroxisomal and cytoplasmic intensity, 

but low difference between cytoplasmic intensity and the intensity of the border 

regions. 

 The closer the result of the calculation to the value of one (100%), the higher 

the difference between the hypothesised peroxisomal intensities in comparison to the 

cytoplasmic intensities of the cell. This is shown by the value for the PMP70 samples 

being close to one with a very small standard deviation. EGFP-PTS1 samples also 

show a high mean value for peroxisomal intensities in all cases tested, but have 

higher standard deviation than the PMP70 samples. As shown before, samples that 

include soluble reporter proteins have a greater variability. 

 The bar graphs of the resulting ratio of the calculation form a “staircase” where 

category A has the highest value and category C the lowest. The separation between 

the categories is not sufficient to be significant in most cases (Figure 17, Table4).  

These results confirm that the analysis of the pixel intensity distribution of cells is able 

to reflect differences in the apparent import efficiency suggested by visual 

classification.  
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Figure 17. Bar graphs of peroxisomal intensities compared with cytoplasmic intensities for each of 

the four peroxisomal matrix protein import categories. The first set of bar graphs shows the 

comparison between the median of the first 100 values of the curve, the cytoplasmic value of 50% 

and the value for the border regions of the cell at 90% (I). The other two sets of bar graph depict the 

comparison of the intensity median value of the first 2% of the curve (II) and the median value of the 

first 10% of the curve (III). Shown are the mean and the standard deviation of n=10 images of cells. 

Table 4. Key values for pixel intensity curves. 

 
I II III 

Category Mean StdDev Mean StdDev Mean StdDev 

PMP-70+++ 0.976 0.003 0.956 0.005 0.917 0.010 
EGFP-PTS1++ 0.964 0.016 0.910 0.036 0.847 0.052 
A+ 0.879 0.066 0.805 0.084 0.719 0.089 
B1+ 0.790 0.103 0.692 0.111 0.601 0.110 
B2+ 0.701 0.073 0.626 0.084 0.549 0.102 
C+ 0.631 0.065 0.582 0.071 0.523 0.082 
I) (First 100 values - 50%)/(first 100 values - 90%) 
II) (2% median-50% value)/(2% median-90% value) 
III) (10% median - 50%)/(10% median - 90%) 
+N=10;++N=5;+++N=3 
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5.4 Part three: connection between classic image segmentation and intensity plot 

analysis 

5.4.1 Combination of methods 

Finally, we analysed, whether the results obtained by traditional methods are in 

agreement with results obtained by pixel analysis. The central question of this section 

is if our hypothesised regions within the intensity plots of part two of this study have 

similar intensities as the intensities of the areas segmented by the TWS in part one of 

this study. 

As a first test, we marked the position of the value of the lowest peroxisomal 

maxima, found within an area segmented as peroxisomal by the TWS, within an 

intensity plot (Figure 18A and 18B). In this qualitative approach, we used an image of 

a cell incubated with EGFP-PTS1 expressing plasmids (Figure 18). Analysis of 

images of cells incubated with PMP70 or transfected with PTS2-EGFP showed 

similar results (data not shown). 

Second, we calculated the ratio of peroxisomal pixels to cytoplasmic pixels as 

defined by the TWS (first part of this study) for different part of the pixel intensity 

curves to depict the distribution of peroxisomal pixel within this curve (Figure 19). In 

this test, we used images of cells incubated with PMP70 antibodies or incubated with 

EGFP-PTS1 or PTS2-EGFP (import category A only) expressing plasmids. 

As a final control, we tested for correlations between the results of the 

methods presented in part one and two of this study (Figure 20). In this test, we used 

images of cells transfected with PTS2-EGFP expression plasmids including all four 

peroxisomal import categories. 

5.4.2 Lowest peroxisomal intensity maximum 

The first task for the last chapter was to find out more about the distribution of 

attributed to peroxisomal areas by the segmentation of the TWS. Therefore, we 

displayed the location of the lowest peroxisomal maximum. In this qualitative 

approach, we marked the maxima of each peroxisomal area (Figure 18A) and 

extracted the lowest peroxisomal intensity maximum of a cell transfected with EGFP-

PTS1 (Figure 18B, red dotted line). The lowest peroxisomal intensity maximum is at 

the position 5850 of the curve of a total of 72318 total pixels (less than 10%) and 

shortly after the point of inflection. 

Next, we wanted to examine the number of maxima within the first 100 pixels 

of the curve. Of the first 100 pixels of the curve, 14 out of 96 peroxisome maxima 
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were found. This means that within the first 100 pixel intensities there are only few of 

the highest peroxisome maxima and their surrounding intensities, which disqualifies 

the mean or median of the first 100 highest pixels of an intensity plot as good 

representation of an average of peroxisomal intensity values. 

 

 

Figure 18. Position of lowest peroxisome intensity maximum within the intensity curve. The pixels 

belonging to a peroxisomal area of an image of a cell transfected with EGFP-PTS1 were determined 

using the TWS (A). Then, peroxisome maxima were determined within these peroxisome areas (A). 

The intensity information of each pixel of the cell area was extracted using ImageJ and plotted in a 

descending order and the position of the lowest peroxisome maxima was marked (B). Gamma filter 

was applied. Cell type is COS7. N=1. 

5.4.3 Location of peroxisomal pixels within the intensity curve 

Next, we used the intensity and place information of the pixels assigned to 

peroxisomal and non-peroxisomal areas by the TWS in the first part of this study to 

analyse the intensity plots of part two of this study. This was possible, because in 

part one and two of this study, the same images of cells were used for analysis. In a 

qualitative approach, we used images of cells incubated with PMP70 antibodies 

(Figure 19A and 19B) or images of cells transfected with either EGFP-PTS1 (Figure 

19C and 19D) or PTS2-EGFP (Figure 19E and 19F) expressing plasmids. 

 The first approach was to rank all pixels from highest to lowest and assign 

each pixel either a peroxisomal or non-peroxisomal tag. Then, we formed a ratio of 

these tags after a certain percentage number of pixels (Figure 19, red squares). 

 Next, we calculated the median intensities at certain percentage amounts of 

pixels (Figure 19, green triangles). 
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 Then, we included the information of how many peroxisomal pixels were 

counted at a certain percentage number of pixels adding up to 100% (Figure 19, blue 

diamonds).  

The ratio of peroxisomal to cytoplasmic pixels was high at the start of the 

curve, but quickly fell off until around the 5% mark of total pixels and further went 

down from there in all three sample cells (Figure 19A, C, E, red squares). At the 

same time, total peroxisomal pixel number went up to 100% around the 30% mark of 

total pixels. From the same three images of cells, we extracted the information of the 

median falloff which was quite substantial from the start to the 30% mark of total 

pixels (Figure 19B, D, F). 

 The conclusion of this section is that the peroxisomal pixels found by the TWS 

are mixed with cytoplasmic pixels within the curve. This disqualifies the 10% median 

value for peroxisomes, because the ratio between peroxisomal and cytoplasmic 

pixels is 1:1 in the best case (cytoplasmic pixels are overrepresented) (Figure 19A, 

blue diamonds) or lower in the worst case (Figure 19C, blue diamonds). The 

compromise would be to use the 2% median to represent the peroxisomal intensities. 

The quick decay of the ratio is a limitation of this method, since peroxisomal and 

cytoplasmic pixels are mixed. 
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Figure 19. Analysis of positioning of peroxisome and cytoplasm pixel intensities within a 

descending intensity curve. The TWS was used to determine peroxisome and non-peroxisomal pixels 

to then extract the information of the positioning of both types within the intensity plots. The 

percentage of peroxisomal pixels is shown on the secondary y-axis on each blot (A, B, C, D, E, F; blue 

diamonds). The ratio of peroxisomal pixels and the cytoplasmic pixels was calculated at different 

positions within the curve (A, C, E; red squares).  The median intensity was calculated at specific 

percentage locations within the pixel intensity curve (B, D, F; green triangles). Images of COS7 cells 

were used. 
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5.4.4 Final control: correlation between peroxisomal intensities found by the TWS and 

results of intensity calculation of the intensity plots 

Lastly, we compared the results of the intensity measurements after the 

segmentation by the TWS to the results of the unbiased intensity distribution 

measurements (Figure 20). We used the intensities of images of cells transfected 

with PTS2-EGFP expressing plasmids. Only cells showing peroxisomal import 

category A, B1 and B2 were included, because the definition of category C is that 

peroxisomal areas are not clearly visible within the cell. 

 The average values of peroxisome maxima within each cell tested found within 

peroxisomal areas assigned by the TWS, show a good correlation to the 2% median 

values. This suggests that the average of the top 2% pixel is a reasonable measure 

for the peroxisomal intensity. Surprisingly, it seems as if the 2% median value 

correlates better with the peroxisomal intensity maxima than with the mean intensities 

of peroxisomal areas. Thus, the average of the top 2% pixel is a reasonable measure 

for the peroxisomal intensity. 

 

Figure 20. Correlation between peroxisome maxima or peroxisome median and 2% value of 

intensity plots. Using the microscope, cells transfected with plasmids expressing PTS2-EGFP were 

categorized concerning the import efficiency of the fluorescent peroxisomal matrix proteins. The 

information on the y-axis stems from the first section of this study and uses the mean calculation 

after segmentation by the TWS. The intensity information of the x-axis is drawn from the second 

section of this study, the unbiased analysis of the intensity distribution. 
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6 Discussion 
The quality of peroxisomal import signals is hypothesised to be reflected by the 

import efficiency of peroxisomal matrix proteins. Therefore, we used a reporter 

protein expressed by a plasmid consisting of the genetic information of the PTS2 

fused to EGFP to analyse its distribution within COS7 cells by using the epi-

fluorescence microscope. Originally, each cell expressing such reporter protein was 

individually classified into one of four categories reflecting very good, good, weak and 

no import (A, B1, B2, C) by visual inspection. In this study, we want to present two 

computational methods as a first step to increase the efficiency of the classification 

and to reduce the bias that could be introduced by the experimenters. Additionally to 

the reporter protein mentioned above, we are using an EGFP-PTS1 expression 

plasmid and PMP70 primary and Cy3 labelled secondary antibodies as control 

reporters giving rise to different intensities. 

The first of the two computational approaches use the traditional method of 

comparing the intensity of peroxisomal areas with the intensities of non-peroxisomal 

areas within an image of a cell. The free software Trainable Weka Segmentation 

(TWS), implemented in ImageJ, was our prime tool separating the peroxisomal and 

non-peroxisomal areas from each other, which is also called image segmentation. 

With the aid of the watershed and size exclusion algorithms, the TWS was able to 

segment the images well. With the right classifier, even PTS2-EGFP images with low 

signal to noise ratio were segmented reasonably well. As a quality control, we 

compared the number of peroxisomes found by the computational method to a 

manual peroxisome count. The result is a strong correlation between manual and 

automatic peroxisome count. The training of the TWS, essential for the use of this 

machine learning approach, showed that an increase in sample number trained with, 

increased the quality of the segmentation. Classifiers trained with images of cells with 

one type of fluorescence signal can be applied to images of a different type of 

fluorescence signal, if there are no major differences in intensities between the types 

of images. It is also possible to combine the training data sets of images of cells 

incubated with antibodies against PMP70 as well as a training data from images from 

cells expressing the soluble reporter protein EGFP-PTS1 When comparing the TWS 

to other image segmentation programs such as Squassh or CellProfiler, the other 

programs work well with samples that have a high signal to noise ratio like images of 

PMP70 and EGFP-PTS1 staining. For PTS2-EGFP images, however, both other 
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programs had troubles correctly finding peroxisomes due to low signal to noise ratio 

of the images. The final section of the first part (of this master thesis) compared the 

intensities of the peroxisomal areas to the intensity of non-peroxisomal areas. Next to 

the peroxisomal intensity mean, we also compared the mean of peroxisomal intensity 

maxima to the intensity mean of non-peroxisomal areas. The mean of maxima has 

higher intensity values, which results in larger differences in the values of 

peroxisomal and non-peroxisomal areas. The critique of using the mean of maxima in 

comparison to a cytoplasm mean is that independently which sample you choose, the 

maxima will always be higher than the lower cytoplasm even when observing only 

random variations within a cell. When analysing the results of the cells transfected 

with PTS2-EGFP expression plasmids and using mean of maxima, the result for the 

three categories A, B1 and B2 was significantly higher in comparison to the mean 

intensity of non-peroxisomal areas within cells. When using the mean of peroxisomal 

intensities, only cells of import category A and B1 were significantly higher than the 

mean of cytoplasmic intensities. The mean intensities and the mean of maximum 

intensity of the “peroxisomal” areas highlighted within category C cells were not 

significantly different from the mean cytoplasmic intensities. This was a good 

outcome, because without visible peroxisomes in category C cells, the segmentation 

programs only detected random intensity spikes. The conclusion is that the prediction 

of the peroxisomal import categories by the peroxisomal to non-peroxisomal intensity 

values is promising, but needs further improvement to lead to a satisfactory outcome. 

 The second computational method used a different approach to reach the goal 

of classifying images into the import categories. This approach uses a statistical 

analysis of cell images without the use of image segmentation algorithms. All pixels 

of a cell area were ranked according to their intensity. The hypothesis was that pixels 

of highest intensity reflect peroxisomes, whereas pixels with intermediate intensity 

correspond to the cytosolic and nuclear regions. Low intensity pixels were assumed 

to reflect the borders of the cell, which are in case of COS7 cells hypothesised to be 

flatter than the centre of the cell and therefore cannot contain as much reporter 

proteins. The baseline of the noise was calculated from regions outside of cells and 

subtracted from every intensity value. As a first result, a qualitative analysis showed 

that the course of the curve was different for each category describing peroxisomal 

matrix protein import efficiency (A, B1, B2, C). To quantify these results, we designed 

a system, in which we normalized the intensity values comprising the plots and 
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compensated for the size of the cells. The result was that there are clear differences 

between the intensity plots of images of cells of different import categories. To 

identify a better measure for the analysis of the plots, we advanced our hypothesis to 

specify regions of interest for the peroxisomal fraction. We tested the values of (i) the 

median of intensities of the 100 pixels with the highest intensities, which we 

hypothesised to represent the peroxisome maxima, (ii) the median value of the first 

2% of intensities, which we thought to be the peroxisomal means and (iii) the median 

value of the first 10% of the intensities. The intensity value that was determined at the 

50% mark of the plot was assumed to reflect the cytoplasmic intensity and the last 

part of the plot (value at 90%) was hypothesised to represent pixels close to or at the 

border region of the cell. Next, we tested the correlation strength between the values 

presented above to gain information about the relation to the peroxisomal import 

categories. Additionally, we correlated the median of the 2% highest intensity values 

and the intensity value at 50% of the plots with overall intensities within images of 

cells. The results of the correlation studies show strong positive correlation between 

the median of the 2% with highest pixel intensity and the total intensity on the one 

side and the 50% value and the total intensity of the cell on the other side. In both 

cases, the categories cluster along the linear trend-line, which shows that category A 

cells have generally lower total intensity than category C cells, which supports the 

hypothesis that a lower amount of reporter protein plays a critical role in producing 

the import categories. The positive correlation of the median of 2% of the highest 

pixel intensities with the value at 50% of the plots indicates that category A cells with 

relative low intensities within peroxisomal areas generally have lower intensities in 

the non-peroxisomal areas. With the slope of the linear trendline being less than 45 

degrees, the differences between the two values are higher for import category A 

cells and much lower for import category C cells with B1 and B2 category cells being 

in between. This supports our hypothesis that import category A cells have a larger 

difference between the peroxisomal intensities and the cytoplasmic intensities than 

import category C cells. To find a formula for separating the peroxisomal import 

categories in this method, we created a calculation that includes the key values of the 

plots. The denominator represents the highest values hypothesised to be 

peroxisomal values subtracted by the value at 50% of the plot. This is divided by the 

numerator, which includes the subtraction of the intensities at the lower levels from 
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the peroxisomal intensities. This results in a value that should represent the form of 

the intensity plot. 

 

𝑅𝑎𝑡𝑖𝑜 =
(𝑝𝑒𝑟𝑜𝑥𝑖𝑠𝑜𝑚𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) − (𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

(𝑝𝑒𝑟𝑜𝑥𝑖𝑠𝑜𝑚𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) − (𝑏𝑜𝑟𝑑𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
 

 

To find out which value is the closest representation of peroxisomal intensities, we 

tested (i) the median of the 100 highest values, (ii) the 2% median and (iii) the 10% 

median. The cytoplasmic intensity was represented by the 50% value and the border 

region was reflected by the 90% value within the plots. The results of this calculation 

were that using the 2% median resulted in a significant difference when comparing 

the outcome of category A and category B1 cells. Additionally, category A included 

the highest values, because the images of cells showed high peroxisomal intensity, 

low cytoplasmic intensity and low border region intensity. Category C cells generally 

had a lower result, because the peroxisomal intensities as well as the cytoplasmic 

intensities were high and the border region intensities were intermediate. Category 

B1 and B2 were in between these two extremes. Overall, the values resulting from 

this calculation were a good representation of the form of the intensity plots. 

 We then used the combination of both methods to compare the results. In 

more detail, we used the place information of pixels assigned by the TWS to gain 

more information about the intensity plots of the second part of this study. First, we 

qualitatively tested the position of the intensity maxima of peroxisomal areas found in 

the first part of this study within an intensity plot created by the second method of this 

study using the same image of a cell. The conclusion was that within the 100 pixels 

with highest intensity, only few of the peroxisomal maxima were found together with 

their surrounding pixels. This was in contrast to our working hypothesis which stated 

that the 100 highest pixels contain most of the peroxisomal intensity maxima. 

Therefore, the 100 highest pixels should not be used as representative for the 

peroxisomal maxima. Second, we tested the positioning of the lowest peroxisomal 

intensity maxima within the intensity plot. The result was that the lowest maxima was 

found after the point of inflection which means that the maxima are also distributed in 

lower intensities than we expected. Next, we investigated the position of the 

peroxisomal pixels found in the first part of this study within the intensity plots of the 

second part of this study. From the start of the curve (left side, starting from the 
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highest pixel intensities), the ratio of peroxisomal pixels to cytoplasmic pixels decays 

quickly. In comparison to the total amount of pixels, the number of peroxisomal pixels 

is rather small. Therefore, cytoplasmic pixels quickly become dominant further down 

the curve. The higher the signal to noise ratio, the higher the differences between the 

starting ratio of peroxisomal to cytoplasmic pixels. With the sample image of a cell 

incubated with PMP70 antibodies, there are 10 times more peroxisomal than 

cytoplasmic pixels at the start of the curve. The curve of the image of a cell 

transfected with PTS2-EGFP shows only 1.6 times as much peroxisomal pixels than 

cytoplasmic pixels in the beginning. This suggests that in future studies the intensity 

of the signals has to be improved and noise has to be limited when using soluble 

reporter proteins containing a PTS2. 

 As a final control, we correlated the values of maxima and mean intensities of 

peroxisomal areas as indicated by the TWS and the 2% median values of the 

intensity plots. The result is that the 2% median values correlate better with the 

peroxisomal maxima suggesting that the findings of the two methods are in 

agreement. 

 Previously, other methods have been used to quantify import efficiency. First, 

a biochemical approach using an enzyme linked immunosorbent assay (ELISA)-

based system. Reporter proteins are imported into a semi-permealized human cell 

line or fibroblasts (Terlecky et al., 2001). The reporter protein is a fusion protein 

consisting of biotin, luciferase and PTS1. After a specific time period, avidin is added 

to the cell, which blocks biotin in the cytoplasm, but not within peroxisomes. The 

remaining free avidin is then bond by another compound and is removed. The 

amount fusion proteins enclosed in peroxisomes, is then measured by ELISA. The 

paper included different time periods for the in vitro approach with a maximum of 45 

minutes. At that point it seems like a saturation of fusion proteins within peroxisomes 

is reached. In comparison with our method, fusion proteins located in the cytoplasm 

are completely removed. The in vitro approach, however, does not have to deal with 

uneven expression levels of plasmids, because the proteins are delivered to the cells 

directly. Whereas in our method, the cells are transiently transfected with plasmids 

expressing the reporter proteins, which leads to large differences in expression 

between single cells. The advantage of our method is that we include the intensities 

within the cytoplasm and not only the peroxisomal intensities. In this way, we can use 

more information about the import mechanism. 
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 Second, I want to show a different approach to what is described above 

(Noguchi, Okumoto & Fujiki, 2013). The authors used a system of transfecting a 

fusion protein consisting of an unstable protein called FK 506 binding protein 12 

variant (destabilization domain, DD), EGFP and PTS1. This protein is degraded by 

the proteasome in the cytoplasm unless there is a stabilizing factor Shield1. With this 

system, cells are grown in medium including Shield1 for some time. After the removal 

of Shiled1, non-imported fusion proteins are degraded in the cytosol, but remain 

stable in the peroxisomes. The peroxisomal EGFP fluorescence intensity is then 

measured by flow cytometry of the cell suspension. 

Our method in comparison not only uses the intensity of the peroxisomes, but 

also the intensity of the cytoplasm to decide which peroxisomal import category 

should be used. Another advantage is that we can detect the number of peroxisomes 

as well as measure their intensity. In our system we already incorporate the 

hypothesis that each cell can receive a different amount of plasmids coding for fusion 

proteins during transfection, leading to highly heterogeneous phenotypes. 

The conclusion of this master thesis is that the first method, with the aid of the 

TWS, reveals significant differences between the intensity values of peroxisomal and 

non-peroxisomal areas. This can be distinguished in cells with visible peroxisomes, 

but not in category C cells, where only random peroxisome intensity spikes were 

measured. To identify category C cells, the low difference between the intensity 

spikes and the cytoplasm could be used. If the intensity ratio within the cell is below a 

certain threshold, it would be categorized as category C. 

The second method, based on statistics rather than segmentation, showed a 

difference between the different import categories when using the calculation showed 

above. 

In future studies, the exposure time should be increased with low signal 

samples, because the increase of signal to noise ratio could increase the differences 

between the import categories. The next steps should include the testing of these 

methods with a larger sample size and the comparison with targeting signals that 

lead to lower peroxisomal protein import efficiencies. 
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9 Appendix – ImageJ Macro language code used for automatic use of TWS 
 
// @ File(label = "Input directory", style = "directory") dir1 
// @ File(label = "Output directory", style = "directory") dir2 
// @ File(label = "Specify TWS Classifier File (.model)", style = "file") classifier 
// @ File(label = "Specify ROI File (.zip)", style = "file") cellRoi 
// @short(label = "Particle Analyzer: minimum number of pixels", style = "spinner") MinPixel 
// @short(label = "Particle Analyzer: maximum number of pixels", style = "spinner") MaxPixel 
// These are examples script parameters, only work when they are on top - they are not active now 
 
// This is important, because the script parameters are missing the "\" at the last position 
// In imagej it is "/", because the "\", which would normally be in folder names seems to be  
// taken by some other function 
dir1 = dir1 + "/"; 
dir2 = dir2 + "/"; 
// Just to see how much time the script took afterwards 
start = getTime(); 
// deletes all rois (regions of interest) currently in the manager 
roiManager("reset");  
// open the rois of the cell saved in the .zip file specified in the script parameters in the top, 
// and load into the roi manager 
roiManager("open", cellRoi); 
// load the list of the names in the directory saved in "dir1" into the variable "list" 
list = getFileList(dir1); 
// count total number of rois and save the number in the variable called "NumberOfRois" 
NumberOfRois = roiManager("count"); 
// Different output directories are created for the output images 
// First, a variable is "loaded" with the path ("dir2") + the name of the folder 
ClassifiedImageDir = dir2 + "/TWSClassifiedImages/"; 
BinaryImageDir = dir2 + "/BinaryImage/"; 
BareOutlines = dir2 + "/BareOutlines/"; 
RoiPath = dir2 + "/ParticleAnalyzerRois/"; 
// Here, the folders are created 
File.makeDirectory(ClassifiedImageDir); 
File.makeDirectory(BinaryImageDir); 
File.makeDirectory(BareOutlines); 
File.makeDirectory(RoiPath); 
// The batchmode is used so processes run faster and also images that are opened during the process 
// are closed or not shown on screen 
setBatchMode(true); 
// open one image after the other from the output path of the intensity adjusted images 
// then open for each image the TWS, load the classifier and get the result 
for (i=0; i<list.length; i++) { // with this, all images in the folder are processed 
//for (i=0; i<5; i++) { // here, only x image is processed for testing the macro 
    // showProgress is not so important - it just shows a progress bar for imageJ 
    showProgress(i+1, list.length); 
    // filename2 holds the path of the intensity adjusted output images from before 
    filename = dir1 + list[i]; 
    // this introduces a condition: if the filename in the path specified with "filename2" ends with tif, open it  
    if (endsWith(filename, "tif")) { 
        // TWS does not work with batchmode activated, so batchMode false 
        setBatchMode(false); 
        // open the image that is saved in the varaible "filename" 
        open(filename); 
        // the file name without the extention is saved in the variable "NoExtensionName" 
        NoExtensionName = File.nameWithoutExtension; 
        // Open the Trainable Weka Segmentation 
        run("Trainable Weka Segmentation"); 
        // Wait 3000 milliseconds for the TWS to load 
        wait(3000); 
        // load the classifier from the path specified in the variable "classifier" 
        call("trainableSegmentation.Weka_Segmentation.loadClassifier", classifier); 
        // tells the TWS to get the result (in form of a 8-bit colour image 
        call("trainableSegmentation.Weka_Segmentation.getResult"); 
        setBatchMode(true); // you can switch this off for testing 
        // save the Image in the path specified in "ClassifiedImageDir" with the name speicified in the 
        // NoExtensionName variable + two zeros and the number saved in the variable i 
        saveAs("tiff", ClassifiedImageDir + NoExtensionName + "TWSClassified" + "0" + "0" + i); 
        // change the output of the TWS from 8-bit colour to 8-bit 
        run("8-bit"); 
        // before running the make binary command, make sure that the background is set to black, this automatically sets the foreground to white 
        setOption("BlackBackground", true); 
        run("Make Binary"); 
        // watershedding is an important task that separates objects that are touching 
        run("Watershed"); 
        // save the binary, watershedded image 
        saveAs("tiff", BinaryImageDir + NoExtensionName + "Binary+Watershed" + "0" + "0" + i); 
        // save the title of the Watershedded binarized image into the varaibel "BinaryWatershed" 
        BinaryWatershed = getTitle();    
        // reset the roi manager so we have a clean start 
        roiManager("reset"); 
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        // load the original cell rois that we used in the beginning to define the cell outlines 
        roiManager("open", cellRoi); 
        // select the i'th entry in the roi manager 
        roiManager("Select", i); 
        // the Create Mask command leads to the creation of an image where the cell Roi is 255 (white) and the background is 0 (black) 
        run("Create Mask"); 
        // save the title of the mask (usually the name is just "Mask"), so be careful to always close the mask if you dont need it  
        TitleMaskCell = getTitle(); 
        // now select the window with the name saved in the varaible BinaryWatershed 
        selectWindow(BinaryWatershed); 
        // select the i'th entry in the roi manager - which is the cell roi of the specific cell 
        roiManager("Select", i); 
        // count the particles with the specified size in pixels, output bare outlines, exclude objects where at least one pixel 
        // is touching the border of the rois specified in cell roi, print summary and add all the dots to the manager 
        run("Analyze Particles...", "size=" + MinPixel + "-" + MaxPixel + " pixel show=[Masks] exclude summarize add"); 
        // save the image name of the particle analyzer output into the variable "TitleMaskPeroxisomes" 
        TitleMaskPeroxisomes = getTitle(); 
        // the next loop is necessary to be able to save the paroxisome rois without the cell rois 
        // so this loop selects each individual roi from the list starting with the first and ending with the number specified 
        // in the variable "NumberOfRois", specified in the beginning 
        for (j = 0; j < NumberOfRois; j++) { 
            roiManager("select", 0); 
            roiManager("delete");    
        } 
        // Now that we only have the rois of the individual peroxisomes without the cell outlines, we can count the number 
        RoiCount = roiManager("count"); 
        // this is just for debugging, to see which number is in the variable "RoiCount" 
        print("The Roi Count is: "+RoiCount); 
        // I noticed crashes when the program detects zero or one peroxisome rois so i needed three possible outcomes 
        // 1) roi count is zero: 
        if (RoiCount == 0) { 
            // print into the log: there were no peroxisomes found + iamge name 
            print("There were no peroxisomes found in the image: " + NoExtensionName + "0" + "0" + i); 
            // save the path of the image into the variable "filename" 
            // the i stands for the i'th image of the list 
            filename = dir1 + list[i]; 
            // open the image in the path filename 
            // in this case: original input images 
            open(filename); 
            // save the title of the image into the variable "ImageTitle" 
            ImageTitle = getTitle(); 
            // select image window with the name saved in the variable "TileMaskCell" 
            selectWindow(TitleMaskCell); 
            //run("Invert"); // this is not necessary, since there are 0 rois found 
            // creating a selection means taking the mask of the cell and creating an overlay 
            run("Create Selection"); 
            // the selection can then be added to the roi manager 
            roiManager("Add"); 
            // select the raw image saved in the varaible "ImageTitle" 
            selectWindow(ImageTitle); 
            // select the first entry in in the roi manager 
            roiManager("select", 0); 
            // measure whatever is set in the option "set measurements" in imageJ 
            run("Measure"); 
            // close all windows, i dont think this is really necessary 
            run("Close All"); 
        // 2) roi count is 1 
        } else if (RoiCount == 1) { 
            // if there is a roi found with the TWS, save it 
            roiManager("save", RoiPath + NoExtensionName + "0" + "0" + i + ".zip"); 
            // save the path of the image specified in dir1 into the variable "filename" 
            filename = dir1 + list[i]; 
            // open the image from the path saved in the variable "filename" 
            open(filename); 
            // save the title of this image into the variable "ImageTitle" 
            ImageTitle = getTitle(); 
            // show all command means that all rois in the roi manager are shown on the image 
            roiManager("Show All"); 
            // measure whatever is set in the option "set measurements" in imageJ 
            run("Measure"); 
            // this means delte all rois from the roi manager 
            roiManager("reset"); 
            // this calculation subtracte the mask of the peroxisomes form the mask of the cell 
            // the result is an image where the peroxisomes are "cut out" of the cell = cytoplasm + nucleus 
            imageCalculator("Subtract create", ""+TitleMaskCell,""+TitleMaskPeroxisomes); 
            // the resulting image needs to be inverted, otherwise it is an image with everything 
            // highlighted except the cytoplasm + nucelus 
            run("Invert"); 
            // now, a selection can be created form this image 
            run("Create Selection"); 
            // selections can be saved into the roi manager 
            roiManager("Add"); 
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            // select the window with the name specified in "ImageTitle" (raw image) 
            selectWindow(ImageTitle); 
            // select the roi that was just added 
            roiManager("select", 0); 
            // measure whatever is set in the option "set measurements" in imageJ 
            run("Measure"); 
            // close all, maybe not necessary when running in batch mode; this does not close result windows, only images 
            run("Close All"); 
            // end of batch mode 
            //setBatchMode(false); 
        // 3) Roi count is greater than one 
        } else if (RoiCount > 1) { 
            // the deselect command for the roi manager means select all 
            roiManager("deselect"); 
            // save the peroxisome rois of each cell into its own file (they are not very space-consuming 
            roiManager("save", RoiPath + NoExtensionName + "0" + "0" + i + ".zip"); 
            // save the path of the image specified in dir1 into the variable "filename" 
            filename = dir1 + list[i]; 
            // open the image from the path saved in the variable "filename" 
            open(filename); 
            // save the title of this image into the variable "ImageTitle" 
            ImageTitle = getTitle(); 
            // this will show all rois on the iamge 
            roiManager("Show All"); 
            // combines all rois into one big roi 
            roiManager("combine"); 
            // since, the measure command can only measure 1 roi, we used combine 
            run("Measure"); 
            // resets the roi manager/deletes all rois 
            roiManager("reset"); 
            // this calculation subtracte the mask of the peroxisomes form the mask of the cell 
            // the result is an image where the peroxisomes are "cut out" of the cell = cytoplasm + nucleus 
            imageCalculator("Subtract create", ""+TitleMaskCell,""+TitleMaskPeroxisomes); 
            // the resulting image needs to be inverted, otherwise it is an image with everything 
            // highlighted except the cytoplasm + nucelus 
            run("Invert"); 
            // now, a selection can be created form this image 
            run("Create Selection"); 
            // selections can be saved into the roi manager 
            roiManager("Add"); 
            // select the window with the name specified in "ImageTitle" (raw image) 
            selectWindow(ImageTitle); 
            // select the roi that was just added 
            roiManager("select", 0); 
            // measure whatever is set in the option "set measurements" in imageJ 
            run("Measure"); 
            // close all, maybe not necessary when running in batch mode; this does not close result windows, only images 
            run("Close All"); 
            // end of batch mode 
            //setBatchMode(false); 
        } 
    } 
} 
// does what it says, selects the window named "Summary" 
selectWindow("Summary"); 
// save the Summary 
saveAs("results", dir2 + NoExtensionName + "Summary.csv"); 
// Summary of the Peroxisomal Intensities 
selectWindow("Results"); 
saveAs("results", dir2 + "PeroxisomeIntensities.csv"); 
// print the overall time in the Log window 
print("Toal amount of time: " + (getTime()-start)/1000); 
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10 Deutsche Zusammenfassung des Abstracts 
Peroxisomen sind Organellen, besitzen nur eine Membran und sind verantwortlich für 

verschiedene Stoffwechselwege. Der Import von peroxisomalen Matrix Proteinen 

beginnt bei Proteinen welche entweder ein peroxisomal targeting signal 1 (PTS1, C-

terminal) oder ein peroxisomal targeting signal 2 (PTS2, N-terminal) aufweisen. Das 

PTS1 bindet am Rezeptor PEX5; das PTS2 bindet sowohl am Rezeptor PEX7 als 

auch am co-Rezeptor PEX5. Diese Verbindungen können dann an der 

peroxisomalen Membran binden und den Import initiieren. 

 Die Effizienz des peroxisomalen Matrix Imports ist abhängig von der Qualität 

des peroxisomal targeting signals (PTS). Um die Qualität von Import Signalen zu 

bestimmen, wurde zunächst eine visuelle Inspektion der Import Effizienz in Zellen 

durchgeführt. Hierzu wurden fluoreszierende Reporter Proteine verwendet. In dieser 

Studie möchten wir diese manuelle Methode mithilfe von Fluoreszenzmikroskop und 

Bildanalyse automatisieren. Als erster Schritt wurden die Peroxisomen von einem 

von einem Segmentierungs-Algorithmus namens Trainable Weka Segmentation 

segmentiert und der Mittelwert der Intensitäts-Maxima der peroxisomalen Gebiete 

einer Zelle wurden mit dem Mittelwert der Intensitäten der nicht-peroxisomalen 

Gebiete verglichen. Die zweite Methode beschäftigt sich mit der Intensitätsverteilung 

innerhalb der Zellen ohne vorherige Segmentierung.  

 Die Ergebnisse dieser Segmentierung zeigen signifikante unterscheide 

zwischen den Mittelwerten der Intensitäten von peroxisomalen und nicht-

peroxisomalen Gebieten innerhalb der Zelle. Die Ergebnisse der Pixel basierten 

Methode deuten darauf hin, dass die Form der Kurven die visuelle Evaluierung der 

Import Effizienz reflektiert. Zusätzlich beeinflusst die Anzahl an Reporter Proteinen 

die Evaluierung der Import Effizienz. 

 Beide Methoden, welche in dieser Studie vorgestellt wurden, haben Potential 

und sind gute Kandidaten für weitere Verbesserungen. 

 

"Ich habe mich bemüht, sämtliche Inhaber*innen der Bildrechte ausfindig zu machen und ihre Zustimmung zur 

Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung bekannt 

werden, ersuche ich um Meldung bei mir." 

 

 


