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Vida en Fiedra
Agolpcs de mar, clastos derrumbaclos,
lientos y deshechos, eternos ratos
de ese mar a hachazos, capas, estratos

ya rcncliclos, ya desenterrados.

Rendiclos aun tiemPo, los derribados
restos de Piedra ven otro dcstino,
atras quedé la vida en el camino,

atras ]os sedimentos devastados.

Morir, tal vez, de nuevo, en las arenas,
volver siemPre y para siempre al mar,

o quizés, sc')lo, nada entre la nada.

Sélo es eso. \/ida en Piedra enla Piedra
por siemPre condenada a retornar

a una historia triste Yy olvidada.

DAGR, Lorca, 1998
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Chapter 1: Introduction

Chapter 1

Introduction

Diversity and history of the Brachiopoda

Brachiopods are a phylum of exclusively marine invertebrate metazoans with a
characteristic bivalved shell. They are filter feeders, most are stenohaline, and most have a benthic
sessile lifestyle (James et al., 1992; Alvarez et al., 2005a; Bitner and Cohen, 2013). About 30.000
fossil species representing approximately 5.000 genera have been described (Richardson, 1986;
Lee, 2008; Santagata, 2015), and their temporal distribution spans the Early Cambrian through to
the present day. Today about 400 species allocated in 118 genera are known (making up only ~ 5%

of all described genera), which are distributed worldwide (Logan, 2007; Emig et al., 2013).

Brachiopod-dominated Paleozoic world

Brachiopods are the most diverse and abundant animals preserved in the Paleozoic marine
fossil record. In terms of sustained familial richness through time, brachiopods rank third among
marine metazoans of all time (Thayer, 1986). Their dominance of Paleozoic benthic ecosystems in
terms of taxonomic richness has long been thought to come to an end after the most devastating
mass extinction of life’s history on Earth, at the end of the Permian, which wiped out > 90% of
marine skeletonized species (Erwin, 1994). This event was especially dramatic for brachiopods, the
second largest group having been affected by this biotic crisis (Erwin, 1994; Chen et al., 2005).
Indeed, the end-Permian mass extinction marked a turnover from the Paleozoic Evolutionary Fauna
(dominated by rhynchonelliform brachiopods) to the Modern Evolutionary Fauna dominated by

bivalves and gastropods (Sepkoski, 1981; Clapham et al., 2006).

Brachiopod-Bivalve ecologic switch

To explain the overall pattern of waning brachiopod diversity coupled with waxing bivalve
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diversity, early hypotheses (e.g., Simpson, 1953) invoked the “geometric argument” (i.e., one taxon
decreases in diversity as the other increases because of direct biotic competition for resources)
(Sepkoski, 1996). Alternative views of this problem, however, suggest that both groups simply
displayed differential response, in terms of taxononomic losses, to the end-Permian mass extinction.
The event reset diversities, and each group pursued its characteristic and different history without
mediation of competition; like ‘ships that pass in the night’ (Gould and Calloway, 1980). Therefore,
one interpretation for the Triassic brachiopod-bivalve turnover has been posed as a case of pre-
emptive exclusion by incumbent bivalves that took over vacant post-extinction ecospace (Walsh,
1996; Kowalewski et al., 2002); something sort of like ‘move your feet, lose your seat’. Along these
lines, it has been pointed out that the life habits displayed by Early Triassic bivalves evolved
already during the Paleozoic, and the subsequent morphological innovations that fueled the
Mesozoic bivalve radiation are not deemed to be responsible for the Early Triassic brachiopod-
bivalve ecologic switch (Frasier and Bottjer, 2007). Because traditionally most studies dealing with
the brachiopod-bivalve problem have focused on the Early Triassic recovery after the end-Permian
mass extinction, some recent studies have set the scope at refining the knowledge on brachiopod-
molluscan diversity and ecological trends during the Permian (Clapham and Bottjer, 2007a). These
studies conclude that the brachiopod-bivalve diversity shift developed stepwise, beginning already
around the Guadalupian-Lopingian boundary, with a second shift that occurred in the Late Jurassic
(Clapham and Bottjer, 2007a,b). These results contrast with the tacit assumption of a single
ecologic shift associated with the end-Permian mass extinction. Moreover, there is evidence that,
from the metabolic activity standpoint, dominance of bivalves in Paleozoic ecosystems predates the
end-Permian mass extinction by 150 m.y., and their increasing metabolic rates during the
Phanerozoic might have operated by acquisition of new food resources rather than by displacing

brachiopods (Payne et al., 2014; Hsieh, 2019).
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Disproportional environmental distribution of brachiopods through the Phanerozoic

An interesting pattern arises if we consider the whole Phanerozoic: brachiopods have
colonized a plethora of environments encompassing the intertidal to abyssal (Ager, 1965; Zezina,
2008; Bitner and Cohen, 2013), including hydrocarbon seeps, hydrothermal vents (e.g., Sandy,
2010; Peckmann et al., 2011) and seamounts (Voros, 1986; Ager, 1993; Gischler et al., 2004). The
Phanerozoic distributional patterns of brachiopods are, however, disproportional (TomaSovych,
2006). During the Paleozoic, brachiopods were diverse and abundant in tropical to subtropical
shallow-water environments, often in soft-bottom habitats (TomaSovych, 2006). On the contrary,
nowadays brachiopods are abundant in hard substrates of sheltered habitats: shaded fjords (Grange
et al., 1981; Tunnicliffe and Wilson, 1988; Dawson, 1991; Forsterra et al., 2008), sea-lochs (Curry,
1982), caves (Logan and Zibrowius, 1994; Taddei Ruggiero, 2001; Motchurova-Dekova et al.,
2002; Alvarez et al., 2005b), polar regions from shallow to deep waters (Foster, 1974; Barnes and
Peck, 1997), and they are relatively rich in pelagic seamounts (Logan, 1998; Gaspard, 2003; Bitner,
2008). Dense brachiopod-dominated communities occur in the outer platform in the Mediterranean
Sea (Emig, 1987) and the Pacific coast off California (Pennington et al., 1999), but these are
temperate regions. The only example of extant abundant brachiopods in tropical shelves is known
from Brazil (Kowalewski et al., 2002). It is interesting that these assemblages contain one endemic
genus while the others are cosmopolite, occurring in other climatic settings (Simdes et al., 2004). In
shallow-water tropical regions brachiopods are micromorphic and occupy cryptic, shaded areas in
crevices and undersides of corals (Jackson et al., 1971; Logan, 1975; Asgaard and Stentoft, 1984;

Zuschin and Mayrhofer, 2009; Peck and Harper, 2010).

Latitudinal diversity gradient
A decrease of extant brachiopod diversity toward the tropics was pointed out by Rudwick
(1970) and Walsh (1996), the latter who suggested that this pattern was already being shaped during

the Jurassic. This is striking if we consider that taxonomic richness of many clades peaks in the
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tropics (Roy et al., 2000; Macpherson, 2002; Jablonski et al., 2013). Although four out of nine
brachiopod orders in the Permian survived the end-Permian mass extinction through to the Jurassic
(Vorss, 2010), athyridid and spiriferidid brachiopods, severely affected by the end-Triassic
extinction, went extinct in the Early Toarcian, probably because of the Toarcian global anoxic event
(Voros, 2002; Baeza-Carratala et al., 2015). Diversity of terebratulid and rhynchonellid
brachiopods, however, conspicuously rebounded during the Triassic and Jurassic (Sepkoski, 1996;
Lee, 2008; Allroy, 2010; Hsieh, 2019). This suggests that the end-Permian mass extinction alone
cannot explain this shifting brachiopod distribution toward sheltered habitats either in shallow

(caves, undersides of boulders or corals) or deeper water (TomaSovych, 2006).

Biotic factors: Escalation and Biological Disturbance

Several lines of evidence point to the appearance of high-metabolism durophagous predators
(e.g., jawed fishes and malacostracans) in the middle Devonian, evolving through to the
Carboniferous. The occurrence of these predators is accompanied by a concomitant increase in
repair marks (from unsuccessful crushing attacks) and drilling predation intensity in brachiopods
and other shelled organisms (Signor and Brett, 1984; Leighton, 1999; Leighton et al., 2013). These
authors likewise identify morphological changes to more ornamented shells of brachiopods toward
the equator, and interpret this trait as an adaptive response to a latitudinal gradient of increasing
predation pressure (Dietl and Kelley, 2001). It is possible that this trend was disrupted during the
end-Permian mass extinction (Leighton, 1999), which is consistent with the rebounds of brachiopod
diversity in the Triassic and Jurassic. There is cogent evidence that predators and
bioturbating/bulldozing organisms radiated in the Jurassic (Thayer, 1983; Bambach, 2002; Aberhan
et al., 2006). Grazing and bulldozing have very deleterious effects on the survival of attached
brachiopod larvae, because once dislodged, they are unable to re-attach to the substrate (Thayer,
1979; Collins, 1991). In parallel to this predator radiation, brachiopods in shallow-water habitats

developed stronger ribbed ornamentation, which conforms to the ‘escalation hypothesis’ (e.g.,
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Vermeij, 2013), while coeval brachiopods that were adapted to seamounts remained smooth (V6ros,
2005), exhibiting morphologies comparable to those of Paleozoic counterparts inhabiting the same
environments (Gischler et al., 2004). Eventually, shallow water, strongly ribbed brachiopods gave
up the ‘arm race’ and gradually disappeared after the mid-Jurassic, retreating toward deeper water
habitats (Vo6ros, 2005; 2010) where the predation pressure was presumably lower (Harper and Peck,
2016). The gradual retreat of brachiopods toward deep water refugia or cryptic oligotrophic habitats
is consistent with a decrease of their metabolic rate by about 50% during the Phanerozoic (Payne et
al., 2014), a trait that makes brachiopods fitter to cope with low- or seasonal nutrient input, and low
levels of oxygen (Tunnicliffe and Wilson, 1988; Peck et al., 2005). Study cases of extant
brachiopods in shallow-water habitats show that neutral models (Hubbell, 2001) of community
dynamics alone do not explain variation in community composition (Tomasovych, 2008a), and that
these brachiopods thrive in complex substrates where grazing pressure is lower, being less
competitive than co-occurring epibyssate bivalves in bare surfaces (Tomasovych, 2008b; but see
Zuschin and Mayrhofer, 2009). Several studies have suggested that brachiopods may be unpalatable
and not a preferred prey (Thayer, 1985; McClintock et al., 1993; Mahon et al., 2003), but Tyler et
al. (2013), however, reached the conclusion, based on experimental results and field surveys, that
this might not be the case. There is a wealth of evidence in the fossil record that brachiopods have
been preyed upon in the Paleozoic (Kowalewski et al., 2005; Leighton et al., 2013), the Mesozoic
(Kowalewski et al., 1998; Harper and Warton, 2000), the Cenozoic (Baumiller and Bitner, 2004;
Baumiller et al., 2006; Schimmel et al., 2012) and the Recent (Delance and Emig, 2004; Taddei

Ruggiero et al., 2006; Evangelisti et al., 2012).

Abiotic factors
An array of perturbations of marine communities is, however, related to changing
environmental parameters associated with sea-level changes (Brett, 1995, 1998; Gahr, 2005).

Physico-chemical factors (e.g., substrate composition/consistency, oxygen availability, temperature,
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light irradiance, sedimentation rates, fluctuations in salinity, etc.), have been likewise recognized as
an important factor in shaping the composition, distribution and abundance of marine benthic
assemblages (Firsich, 1995; Fiirsich et al., 2001; Gahr, 2005; Reolid, 2005; Pérez-Huerta and
Sheldon, 2006; Tomasovych, 2006) because stressful conditions foster changes in community
composition (e.g., decrease of diversity, vanishing or replacement of taxa, and dominance of

opportunistic species) (Abdelhady and Fiirsich, 2014).

Temperature and brachiopod distribution

Overall, for marine invertebrates, the upper and lower thermal tolerance is associated with
geographical and depth distribution, and metabolic rate (James et al., 1992). The ranges of thermal
tolerance of most individual species of extant brachiopods are not well known thus far (Rudwick,
1970; Richardson, 1997; Mancefiido and Damborenea, 2008). Nevertheless, a large list of some
extant species from different latitudes, and the temperature range of the waters where they were
found, is gathered by Brand et al. (2003). In a number of cases, however, brachiopod species
display a rather localized distribution, and many tolerate cold water (-1.9° C) (Foster, 1974;
Manceiiido and Damborenea, 2008), and as much as 32°C (Lee, 2008; Brand et al., 2013). It has
likewise been pointed out that some organo-phosphatic brachiopods (i.e., Linguliformea) are better
represented in shallow subtropical to tropical water, whereas calcareous brachiopods (Craniiformea
and Rhynchonelliformea) occur more commonly in temperate water, and when they are represented
in lower latitudes, they occur in deeper environments taking advantage of the depth/temperature
gradient (Rudwick, 1970; Helmcke fide Ziegler, 1975; Mancefiido and Damborenea, 2008; Giles,
2012) or they are micromorphic. Latitudinal taxonomic richness of brachiopods at genus level from
Cambrian to Recent was calculated by Powell (2009) based on Doescher’s extensive brachiopod
literature database, concluding that brachiopods did not change their latitudinal distribution during
the Phanerozoic. James et al. (1992) suggested that brachiopods, in comparison with mollusks, are

expected to be stenothermal, according to their subtidal and cryptic distribution. James et al. (1992)
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also mentioned some examples of temperature tolerance of extant brachiopods: a majority of New
Zealand brachiopods appear to tolerate temperatures ranging from 8° to 18° C (Lee, 1991), while
intertidal species from New Zealand display tolerance to a temperature range in excess of 15° C
(6.1° C in winter to 21° C in summer). Paine (1963) observed that the lingulid brachiopod Glottidia
would not respond to stimuli at 10° C, while its activity is resumed at 12° C (see also Rudwick,
1970). Peck (1989) also recorded an upper tolerance temperature of 4.5° C for the terebratulidine
brachiopod Liothyrella uva from Antarctica. Richardson (1997), in an essay on the ecology of
extant rhynchonelliform brachiopods, argues that temperature and food supply are unlikely to limit
their distribution, based on the widespread latitudinal and bathymetric distribution of examples such
as Macandrevia americana and Platidia anomioides. Then Pennington et al. (1999), based on
laboratory experiments, showed that the proportion of Laqueus erythraeus larvae that successfully

settled was dependent on temperature range.

Influence of temperature on organisms survival

There are three main ways for organisms to cope with environmental change: 1) To use the
physiological capacity to survive; including modification of their behavior or activity; 2) To evolve
or adapt to the new conditions through selection of mutations which are consistent with survival; 3)
To migrate to areas which are suitable for continued survival (Peck, 2007).Under normal
conditions, organisms display a capacity or flexibility to meet biological requirements. The capacity
not used for essential functions can be regarded as spare capacity available for other requirements,
or to cope with the environmental variability (e.g., seasonality) in the area where these organisms
thrive. If the range of environmental variability shifts with time, organisms might survive because
the environmental shift took place within the range of physiological capacity, at the expense of
reducing the spare capacity remaining after the shift in environmental conditions. However, if the
shift in environmental range moves beyond the limits of physiological capacity, survival remains

time limited (Peck, 2007). Adaptation of organisms to a shift in environmental range would mean a

10
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concomitant shift in the upper and/or lower boundary of capacity limit that would encompass the
new range of environmental conditions. If the organisms cannot evolve to withstand the change in
environmental conditions, the only way out is migration to more suitable areas for survival.

On one hand, when temperature rises, ectothermic organisms cope with the new conditions
by raising their metabolic rates, usually through oxygen consumption, to cover the costs of
increased body temperatures (Portner et al., 2007; Peck, 2007).Extant brachiopods are considered to
have poor abilities to raise their metabolic rates and have poor metabolic scopes (i.e., minimum
(standard) rate of oxygen consumption minus maximum aerobic metabolic rate) (Peck, 2007). On
the other hand, when temperature drops between the lower temperature threshold for metabolic
activity and the survival threshold, the organism is in a state of suspended animation, but can
resume metabolism once the temperature increases and re-crosses the lower temperature metabolic
threshold (Clarke et al., 2013), which is consistent with the observations by Paine (1963) on
Glottidia. However, the survival for sexually reproducing eukaryotes depends on temperature not
dropping below the metabolic threshold necessary for completion of the life cycle from zygote to
zygote (Clarke et al., 2013). This means that a climate change involving a drop of temperature
below the metabolic threshold for reproduction of a species will result in its extinction if it cannot

migrate to more suitable areas (Monegatti and Raffi, 2001).

Pleistocene cooling as a trigger for the extinction of Terebratulinae?

The Cenozoic-Quaternary genus Terebratula, like other representatives of the family
Terebratulinae such as Pliothyrina and Maltaia, thrived in relatively shallow-water environments
(as shallow as 30 m based on the height of Gilbert-type delta clinoforms (Reolid et al., 2012)). This
taxon has been found in detritic-bottom habitats of neritic settings in the Paratethys and the
Mediterranean realms in an era dominated by mollusks and bulldozing marine organisms. Attaining

a big size (up to 9.5 cm in length for Terebratula scillae) (Taddei Ruggiero, 1994) might have

11
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served as a size-refuge strategy (Doherty, 1979; Harper et al., 2009) against the high biotic
disturbance in these habitats. The genus existed under subtropical to warm-temperate conditions
during the Miocene and Pliocene (e.g., Brébion et al., 1978; Taviani, 2002; Kroh et al., 2003; Nalin
et al., 2010) (see also climatic variability for the Neogene in Zachos et al., 2001, Kocsis et al., 2008,
Juan et al., 2016). Although Terebratula survived the Gelasian cooling (Borghi, 2001; Malz and
Jellinek, 1984), it went extinct in the Mediterranean region during the Calabrian (Middle
Pleistocene) (Gaetani and Sacca, 1985; Lee et al., 2001), coinciding with a second cooling climatic
event (Crippa et al., 2016; 2019). In particular, two species of Terebratula occur in the Pleistocene:
Terebratula terebratula occurring in the Calabrian deposits of the sections at the Arda and Stirone
rivers in the Emilia Romagna Region (northern Italy) (Brocchi, 1814; Borghi, 2001; Dominici,
2001; 2004; Bertolaso et al., 2009; Pervesler et al., 2011; Crippa et al., 2015; 2016). This taxon is
also recorded in the Gelasian of the Apulia Region (southern Italy) (e.g., Taddei-Ruggiero and Raia,
2014). The other species, T. scillae (restricted to Sicily, Calabria and Apulia in southern Italy), died
out also during the Calabrian.

Bathyal brachiopods associated with cold-water coral assemblages described from the
Pleistocene of Sicily (Seguenza, 1865; 1871; Gaetani and Sacca, 1984; Borghi et al., 2014) no
longer exist in the present-day Mediterranean, but some of the same species and some other closely
related species occur in the Atlantic nowadays. The extinction of these taxa in the Mediterranean is
thought to have been triggered by progressive uplift of the Gibraltar Sill (Logan, 1979). The
hypothesis implies that these taxa thrived under psycrospheric conditions (e.g., Gaetani and Sacca,
1984; Borghi et al., 2014). The warmest periods of the Pleistocene probably annihilated them from
the Mediterranean realm, and subsequently they were unable to re-enter it due to the onset of
homothermic conditions (Logan, 1979; Gaetani and Sacca, 1984; Taviani, 2002; Logan et al.,
2004).

In contrast, the only hypothesis posed for the extinction of the relatively shallow-water

taxon Terebratula is progressive cooling during the Pleistocene (Lee et al., 2001). This hypothesis
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implies that Terebratula displayed a metabolic threshold for reproduction incompatible with the
climatic conditions during the Calabrian between 30° and 45° latitudes. Members of the family
Terebratulinae have been reported from the Eastern Atlantic. The genus Pliothyrina persisted up to
the Pleistocene in the Red Crag Formation of the United Kingdom (Muir-Wood, 1938; Wood et al.,
2009). Dollfus and Cotter (1909) reported terebratulidines (identified as Terebratula ampulla) from
the Pliocene north of the Tagus river in Portugal. The internal characters of this taxon are not
known, therefore at present it is difficult to assess whether this taxon belongs either to Terebratula
or to Pliothyrina. Toscano et al. (2010) identified Maltaia pajaudi = M. moysae (Mayer-Eymar,
1898) from the Pliocene of Huelva (SW Spain). Gonzalez-Alvarez (2013) recently illustrated
Pliocene specimens of Maltaia moysae from the Gran Canaria Island (identified by the former
author as Terebratula sinuosa). Bitner and Moissette (2003) reported the taxon Terebratula sp.
from the Pliocene of Morocco. The extinction of these terebratulidines, evaluating the hypothesis
that cooling affected deleteriously their metabolic ability for reproduction, implies that some
ecological barriers prevented their migration toward warmer areas in lower latitudes of the Eastern

Atlantic (e.g., Monegatti and Raffi, 2001; Taviani, 2002).

Light

The vertical distribution of extant brachiopods has only been reliably established for about
200 species (Zezina, 2008). The maximum species richness of extant brachiopods is attained
between 100 and 150 m depth (Zezina, 2008). The latter author commented that, overall, most
brachiopod species live below 30-50 m, beyond the limits of the phytal zone or in its lower
boundaries. James et al. (1992) summarized some studies on brachiopod larval behavior, stressing
that the analyzed species were positively phototactic during early swimming stages to become
negatively phototactic just prior to settlement. In the terebratellidine Laqueus erythraeus, however,
there is no evident response to vertical or horizontally directed lights, and their larvae are probably

geotactic (Pennington et al., 1999). It appears that larvae of these species display rugophilic,
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explorative and selective behavior for substrate settlement (James et al., 1992), which would
explain the observed propensity of some brachiopods to settle on irregular surfaces or crevices in
very shallow-water environments (James et al., 1992). The influence of biotic and abiotic
disturbances, such as grazing pressure, substrate failure, selective predation or near-substrate fluid
dynamics, has been unsufficiently explored (James et al., 1992). In this regard, it is interesting to
recall the observations described by Savage (1972) from his studies of a sandy rocky platform close
to Durban, South Africa. In researching the brachiopod Megerlina pisum, Savage (1972)
commented that only one boulder, out of several dozens surveyed, contained brachiopods and other
organisms in its underside. The boulder was carefully relocated and, upon new inspection after two
weeks, the boulder had been moved several meters away by wave action, and the brachiopods torn

off.

Relationship with substrate

As mentioned earlier, brachiopods are sessile epibenthic to semi-endobenthic organisms
(although there are infaunal inarticulate brachiopods such as the lingulids), which leads to the
consideration that the importance of the substrate for brachiopod distribution is crucial. Gaspard
(1997) provided some examples of adaptive solutions displayed by brachiopods to inhabit a range
of different substrates (rocks, shell fragments, other organisms —including congeners-, and
exceptionally even unconsolidated pelitic sediments) (e.g., Manceflido & Damborenea, 2008). Lee
(1978) distinguished between macrosubstrate, which refers to the type of sediment where the
brachiopod is found, and the microsubstrate, which may coincide with the latter or not, and refers to
the substrate where the pedicle is actually attached. In this thesis I discuss the macrosubstrate and
its relationship the brachiopod species considered. In some especial cases it is possible to identify
the microsubstrate as well (in the study area, I have identified pedicle traces —Podichnus obliquus-
in congeners of the terebratulidines Terebratula spp. and Maltaia moysae, which suggest that these

taxa facultatively formed clusters). In the study area, specimens of the inarticulate brachiopod

14



Chapter 1: Introduction

Novocrania anomala have often been found cemented to shells of Terebratula, scallops or oysters
in the Terebratula biostrome. In the Carboneras and Mazarron areas (SE Spain), an assemblage
composed of small gryphine brachiopod species, Megerlia truncata, Terebratulina retusa,
Lacazella mediterranea and the small terebratulidine Ceramisia meneghiniana have been identified
associated with octocorals of the genus Keratoisis (Barrier et al., 1991). This latter case suggests
that these brachiopod assemblages found proper hard substrates for attachment in other organisms
within this deep-water paleocommunity, which is found associated with very fine-grained deposits,
which otherwise would seem unsuitable for attachment. Brachiopod species can either be
generalists or specialists (e.g., Richardson, 1986). The different species can be ascribed to either
type by analyzing the association with different macrosubstrates where they are found and the
anatomical features that can be deduced from their morphological traits. I have likewise observed
that at the top of a thick and conspicuous Terebratula biostrome of Pliocene age in the study area,
the onset of coarse siliciclastic sedimentation coincides with a turnover in dominance favoring the
scallop Aequipecten scabrellus. Abdelhady & Fiirsich (2014), in a paleoecological study of Middle
Jurassic sections, observed that increasing terrigenous input was coincident with an abundance of
bivalves and dwindling presence of brachiopods. These authors explain that the terrigenous influx
may turn the substrate soupy, making it unstable for brachiopods to thrive. Conversely, these
authors observed an abundance of brachiopods associated with carbonate lithologies, an observation
similar to that reported by Kowalewski et al. (2002) for extant Brazilian shelf brachiopods. In the
study area, the macrosubstrate for Terebratula is most often made up of mixed-carbonate

siliciclastic fine-grained sands.

Oxygenation of the bottom
Brachiopods are often labeled as minimalist organisms (Ghallager, 2003), because their low
metabolic rates allow them for a low oxygen comsumption (e.g., Peck, 1996; Tunnicliffe & Wilson,

1988). Consequently, several authors have explained the success and extraordinary abundance of
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brachiopods in particular environments as the result of their tolerance of low oxygen concentrations,
conditions which might be rather adverse for organisms with higher metabolic demands, such as
bivalves (competitors) or possible predators (e.g., Tomasovych et al., 2006; Abdelhady & Fiirsich,
2014). However, in the context of understanding this presumable superiority of brachiopods over
bivalves during biotic crises in the Earth’s history, some studies suggest that bivalves might

withstand similar levels of hypoxia, or even more than brachiopods (Ballanti et al., 2012).

Paleoproductivity and hydrodynamic conditions

Alméras & Elmi (1983, 1985) have suggested that primary production along with a well
established deep ocean circulation, fostering upwelling and downwelling currents, are among the
main factors controlling brachiopod distribution. This hypothesis is supported by the observations
of Emig & Garcia-Carrascosa (1991), who mapped the populations of the terebratulidine Gryphus
vitreus in the Corsican platform, and found that maximum densities were coincident with the
highest velocities of bottom-currents which run perpendicular to isobaths, and depend on the
steepness of the continental platform and its physiography. Reolid et al. (2012) likewise held that
warm and more saline currents flowing towards the Atlantic through a Miocene seaway, in southern
Spain, might explain the spectacular abundance of Terebratula in that locality. Kowalewski et al.
(2002) found that high densities of brachiopods in the Brazilian Ubatuba Bay (outnumbering
bivalves and gastropods combined) coincide with nutrient rich, well-oxygenated and relatively cold
(T<20°C) upwelling currents at a depth of 100-120 m, in the shelf break. The reports of nutrient rich
environments as suitable for brachiopods might appear to be contradicting the examples where
brachiopods successfully thrive in remarkably oligotrophic conditions (Peck et al., 2005). Both
types of observations suggest the hypothesis that while low metabolic rates of brachiopods and their
versatility to feed on different sources of food makes them successful colonizers of oligotrophic

habitats, they might not be exclusively limited to nutrient poor environments.
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Sedimentation rates and sequence stratigraphy

Sedimentation rates are often invoked as another critical factor controlling brachiopod
distribution (e.g., Abdelhady & Fiirsich, 2014; Alméras & Elmi, 1985; Garcia & Dromart, 1997). It
can be envisaged that, overall, the sessile character of brachiopods makes them incompatible with
high sedimentation rates. Three examples from the literature can be put forth to understand the
effects of high sedimentation rates: Emig (1989) observed that fires started in the Corsica Island
triggered episodes of high terrigenous influx into the continental platform because unsheltered soils
were subjected to erosion. The eventual increase in terrigenous particles reaching bathyal depths is
claimed to be responsible for high mortalities of Gryphus vitreus (up to 90% of individuals)..
Following the same rationale, He et al. (2007) posed the hypothesis that turbid conditions associated
with a cycle of marine regression might explain the phenomena of miniaturization in brachiopods
(Liliput effect). All these three examples are supposed to involve the clogging of the lophophore
with fine terrigenous particles, which prevents normal feeding and respiration, either leading to
miniaturization in the long run or to starvation and death if the shift and intensity in sedimentation
rate is very sharp (Laurin and Garcia Joral, 1990). Thin pavements of Terebratula in the study area,
associated with fine-grained sediments and displaying very high articulation ratio as well as pristine
preservation, might be interpreted as obrution deposits triggered by a substantial increase of
sedimentation rates. The abundance of tubes of the polychaete Ditrupa arietina in these deposits is
consistent with this interpretation, because this taxon is considered as a proxy for unstable
substrates and high sedimentation rates (e.g., Sanfilippo, 1999).

Conversely, Garcia & Dromart (1997) interpreted brachiopod marker beds of Jurassic age to
be related to maximum flooding surfaces corresponding to cycles of different orders. These marker
beds are characterized by being spatially very widespread, and by displaying biofabrics of densely
packed brachiopod concentrations. Maximum flooding surfaces are characterized by very low
sedimentation rates because during this stage of the sea level, the accommodation space is maximal.

There are localities of Cenozoic age reported in the literature which record brachiopod shell beds
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extending across several kilometers, often associated with glauconitic sands (Feldman, 1977,
Pedley, 1976). The general features of these shell beds might suit the model proposed by Garcia &
Dromart (1997) to explain their formation. In the study area, localities recording the early Pliocene
transgression, over the local metamorphic basement or over older Miocene deposits, are generally

rich in brachiopods.

Taxonomic remarks on Terebratulinae from the Pliocene of Aguilas

Large-sized terebratulids from the European Cenozoic have a long and complex
nomenclatorial and taxonomic history (e.g., Bitner and Martinell, 2001; Lee et al., 2001; Dulai et
al., 2020), which is still unresolved today. To a great extent, this uncertainty is due to the loss of
type specimens, lack of topotypical material (or poorly preserved material when topotypes are
available), and vague original descriptions regarding the type localities (mostly from 19" century
and earlier works). To justify the taxonomy used in this dissertation, it is necessary to comment on
the state of the art of the problem. During the preparation of the revised volume of the Treatise on
Invertebrate Paleontology, part H, chapter 6 (Lee et al., 2006), it was necessary to formally
designate the type species of the genus Terebratula Miiller, 1776 and select a neotype. This was
accomplished by Lee and Brunton (1998) and Lee et al. (2001), who designated the species
Terebratula terebratula (Linnaeus, 1758) as the type of the genus, and erected a neotype to act as
the name bearer for the Order Terebratulida (Lee et al., 2001). The neotype is a planoplicate (=
trapezoidal uniplication sensu Nath, 1932 fide Muir-Wood, 1936) coming from the Pliocene of
Andria (Apulia, Italy). Unfortunately, the insufficient original definitions of species such as T.
terebratula, Terebratula sinuosa (Brocchi, 1814), Terebratula pedemontana Valenciennes in
Lamarck, 1819 and Terebratula ampulla (Brocchi, 1814) led to multiple and different
interpretations of these and other species in the subsequent literature (see review in Garcia-Ramos,
2006). For example, both Linnaeus (1758) and Brocchi (1814) referred to a strongly folded

specimen of unknown locality depicted in Colonna (1616) as the reference to their respective
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species Anomia terebratula and Anomia sinuosa. Although the Pliocene specimens from Andria are
described as smooth to secondarily and anteriorly folded (unlike the Colonna specimen, which is
strongly folded since very early ontogentic stages), 7. sinuosa was placed into the synonymy of 7.
terebratula by Lee et al. (2001). This action was justified due to an objective synonymy (both
nominal species had the same type, i.e., the Colonna specimen). As a result, Lee et al. (2001) argued
that the strong plication depicted in the Colonna illustration was probably an exaggeration of the
artist, and presumably considered that the less strongly folded taxa Terebratula calabra Seguenza,
1871 and Terebratula costae Seguenza, 1871 were conspecific with the Andria specimens (the latter
which are usually planoplicate), and regarded them as synonyms of 7. terebratula. Lee et al. (2001)
were possibly unaware that other authors, most notably Boni (1933; 1934), Marasti (1973), De
Porta et al. (1979) and Calzada (1978), had illustrated Miocene specimens very similar to the
Colonna specimen. Because of the objective synonymy of 7. terebratula and T. sinuosa pointed out
by Lee et al. (2001), Garcia-Ramos (2006) proposed the binomen Terebratula maugerii Boni, 1933
(a junior synonym of 7. sinuosa) to accommodate the Miocene strongly folded specimens, which
were clearly non-conspecific with the Andria taxon. Recently, Taddei Ruggiero et al. (2019)
proposed to revalidate the name 7. sinuosa for the strongly folded taxon by invoking the long —
albeit confusing— history of the binomen in the literature. This revalidation was also proposed
because the concept of 7. ferebratula had changed forever following the 2001 designation of a
neotype from Andria; thereby the Colonna specimen was no longer representative of the concept of
T. terebratula.

After studying population samples from many Miocene and Pliocene outcrops in southern
Spain, Garcia-Ramos (2006) concluded that the anteriorly folded specimens from the Pliocene were
attributable to 7. calabra, rejecting a synonymy with 7. terebratula from Andria as proposed by
Lee et al. (2001) and subsequent authors. This sulciplicate taxon with folding restricted to the
anterior half of the shell is best represented in classical localities from Piedmont, Calabria and

south-east Spain. In Piedmont the species is abundant in the Asti area (e.g., Valle Botto, Capriglio
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and Montafia), and was illustrated under different names by Sacco (1902), Caretto (1963), Taddei
Ruggiero (1983), Pavia and Zunino (2008), Taddei Ruggiero et al. (2008) and Taddei Ruggiero and
Raia (2008). This taxon from Asti has usually been confused with 7. ampulla (see subsequent
discussion about this species). 7. calabra was defined from Calabria in southern Italy (Nasiti and
Terreti). [llustrations of specimens from this area are included in Seguenza (1871), Taddei Ruggiero
(1983) and Gaetani and Sacca (1985), whereas the stratigraphy and the paleoenviroments were
studied in detail by Barrier et al. (1987) based on the Pavigliana section, which is located relatively
close to the type locality. T. calabra is also abundant in southern Spain, and it was illustrated under
different names by Pajaud (1976; 1977), Bitner and Martinell (2001), and Garcia-Ramos (2004;
2006). It should be noted that the specimens from Terreti are, on average, somewhat smaller than
those from the Asti and Aguilas areas (Gaetani and Sacca, 1985). This difference in size can
probably be understood in the context of the slightly different ages of the different populations. On
the contrary, [ have seen a few specimens from Montafia, and these are indistinguishable from those
of Aguilas.

The attribution of the late Zanclean Asti specimens to 7. ampulla goes back to Sacco (1902),
as far as [ am aware. The Asti area is not included in the original localities referred to by Brocchi
(1814) for T. ampulla. Brocchi (1814) cited “Fossile nel Piacentino, a San Geminiano, e a Lajatico
nella Toscana, e nella Calabria”. It seems clear that Brocchi had in mind a planoplicate taxon, at
best weakly biplicate, for 7. ampulla. This is evidenced, besides his description, by his reference to
the terebratula illustrated by Scilla (1670, Tav. ‘XIIII") as an example of 7. ampulla. The Scilla
specimen most probably corresponds with Terebratula scillae Seguenza, 1871, which is another
mainly planoplicate taxon. Besides, Brocchi (1814, p. 467) described a variety of 7. ampulla from
Crete Senesi south of Siena, in Tuscany, as “prominently folded and with a sinuous inferior
margin”. This “variety” from Tuscany highlights that Brocchi (1814) did not consider the typical 7.
ampulla as a notably biplicate taxon. The variety from Tuscany, instead, seems to agree with the

features of T. calabra. Brocchi (1814), however, was more explicit about a locality for 7. ampulla
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in page 467 of his work: “Nelle colline di Castell'Arquato presso Piacenza trovasi sepolta questa
anomia in una marna bigia che ne riempie la cavita interna...” A detailed taxonomic revision of the
terebratulids from the Arda and Stirone rivers was conducted by Borghi (2001). This author
described the Castell’Arquatto and Stirone terebratulas as mainly uniplicate (also E. Borghi,
personal communication, 2005; and personal observation at the Geological Museum of
Castell’ Arquatto, 2018). The typical specimens from these localities fit closely the description of T.
ampulla by Brocchi (1814). Hence, if we accept Castell’ Arquatto as the type locality of 7. ampulla,
then this latter binomen would be a junior synonym of 7. terebratula, because the specimens from
the Arda River (Calabrian in age) are hardly distinguishable from the specimens coming from
Andria and other localities of the Gravina Calcarenites (Garcia-Ramos, 2006; Bertolaso et al.,
2009).

Also in relation to the Asti terebratulas I should discuss the species 7. pedemontana. This
species was insufficiently described (without illustration) by Valenciennes in Lamarck (1819). It
was described as a biplicate species, and the only indication about is provenance or age was
“Fossile de Turin”. Davidson (1850, 1870) traced the original specimen housed at the museum of
the Garden of Plants in Paris, and illustrated it for the first time, but only in dorsal view, hampering
its comparison with other biplicate species such as 7. sinuosa. Davidson (1850, 1870) further
mentioned that it was collected by Sig. Bonelli in the “tertiary beds near Turin, Italy”.
Subsequently, Sacco (1902) reinterpreted the species as a “variety” (a morphotype) of 7. sinuosa,
and stated that it is frequent in the Miocene of Turin (Colli Torinesi). On December the 18", 2009 I
received a message from Jean Michel Pacaud, from the Muséum National d’Histoire Naturelle,
Paris, mentioning that the syntype of 7. pedemontana was housed in said institution. This specimen
is curated with register number MNHN.F. A32406 coll. Bonelli, and it is said to be of Miocene age

(Pacaud, 2015). Recently available online photographs of such syntype' show a terebratulid very

! http://coldb.mnhn.fr/catalognumber/mnhn/{/a32406
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similar to the Pliocene specimens from the Asti area mentioned above, which occur as close as 27
km away from Turin (e.g., Capriglio). It is, therefore, feasible that 7. calabra might be a junior
synonym of 7. pedemontana, the latter probably coming from the Pliocene of the Asti area. The
uncertainty about the exact provenance and the geological horizon of the syntype, along with the
lack of further syntypes, however, complicates further assessments about the synonymy of T.
calabra with T. pedemontana. For this reason, I have opted here to attribute the Aguilas specimens
to T. calabra, as 1 did in my former review (Garcia-Ramos, 2006), awaiting further clarification

about 7. pedemontana.

Systematics

Phylum Brachiopoda Duméril, 1806
Subphyllum Rhynchonelliformea Williams, Carlson, Brunton, Holmer y Popov, 1996
Class Rhynchonellata Williams, Carlson, Brunton, Holmer y Popov, 1996
Order Terebratulida Waagen, 1883
Suborder Terebratulidina Waagen, 1883
Superfamily Terebratuloidea Gray, 1840
Family Terebratulidae Gray, 1840
Subfamily Terebratulinae Gray, 1840
Genus Terebratula Miller, 1776
Type species: Terebratula terebratula (Linnaeus, 1758)

Terebratula calabra Seguenza, 1871

FIG.TEXT 1
? 1814  Anomia ampulla.Var. (plicis ementioribus, margine inferne sinuoso). Brocchi, p.467.
? 1819  Terebratula pedemontana. Valenciennes in Lamarck, p. 252. (¥*)

? 1850 Terebratula pedemontana Val. in Lamk. Davidson, p. 440, pl. 14, fig.34.
Pars 1864 Terebratula sinuosa (Brocchi, 1814). Davidson, p.6, pl. 1, figs. 1,2
1865 Terebratula sinuosa. Seguenza, p. 36, pl.4, figs.2-3.
? 1870 Terebratula pedemontana (Lamarck). Davidson, p. 365, pl. 18, fig. 5.
1871  Terebratula philippii Seg. Seguenza, p. 128, pl. 4, figs.6-11.
* 1871 Terebratula calabra Seguenza. Seguenza, p. 138, pl. 5, figs.5-8.
1902  Terebratula ampulla var. complanata Sacc. Sacco, p. 12, pl.2, figs. 9-11. (juveniles)
Pars 1902  Terebratula ampulla var. plicata Sacc. Sacco, p. 13, pl.2, figs.22-24.
1902  Terebratula ampulla var. plicatolata Sacc. Sacco, p. 14, pl.2., fig. 26.
1902  Terebratula ampulla var. perstricta Sacc. Sacco, p.14, pl.3, figs. 1-2.
1963  Terebratula ampulla var. plicatolata Sacco. Caretto, pl. 4, figs. 1a-b.
1976  Terebratula terebratula (Linné, 1758). Pajaud, p. 100, pl. 3, figs. A-C.
1977 Terebratula terebratula (Linné). Pajaud, p. 6, pl. I, figs. C-E.
1983  Terebratula ampulla. Taddei Ruggiero, p.178, pl.1, figs. 4a-d.
1983  Terebratula sinuosa. Taddei Ruggiero, p.178, pl.1, figs. Sa-c.
1983  Terebratula sinuosa Brocchi. Cooper, pl. 4, figs. 17-19.
1985  Terebratula calabra Seguenza 1871. Gaetani and Sacca, p. 7, fig. 5 (text), pl. 1, figs. 7-

22



1988
1994
1999
2001
2004
v 2004

% 2006

2008
2008
2012
? 2016
2018

Chapter 1: Introduction

12.

Terebratula terebratula (Linné). Gomez-Alba, p. 142, fig. 7.

Terebratula calabra Seguenza, 1871. Taddei Ruggiero, p. 206, pl. 1, figs. 3-5.
Terebratula terebratula (Linné, 1758). Ifiesta, p. 22, pl.5, fig.2.

Terebratula terebratula (Linnaeus, 1758). Bitner and Martinell, p. 181, fig.3 M-T.
Terebratula ampulla. Rico-Garcia, p. 254, pl. 5, figs. D-E.

Terebratula terebratula (Linnaeus, 1758). Garcia-Ramos, p. 25, figs.4-6 (text); pl.5,
figs.3-10; pl.6, figs.1-3; pl.7, figs. 2, 8, 10.

Terebratula calabra Seguenza, 1871. Garcia-Ramos, pl.2, figs. 1-7; pl.7, figs. 7-8, 10;
pl.8, figs. 11-29.

Terebratula ampulla (Brocchi). Taddei Ruggiero and Raia, p.322, fig. 2 A-L
Terebratula ampulla. Taddei Ruggiero et al., p.211, fig. IH-M.

Terebratula terebratula. Reolid et al., p. 10, fig.7a-b.

Terebratula ampulla (Brocchi, 1814). Dulai, p. 83, figs. 19-21.

Terebratula cf. calabra Seguenza. Giannetti et al., p. 24, fig. 6.11a-c.

*Muséum national d’Histoire naturelle, Paris (France), Collection: Paleontology (F), Fossil
specimen MNHN.F.A32406

Diagnosis. Terebratula of medium to large size; oval to rounded subpentagonal outline; maximum

width somewhat displaced anteriorly from midvalve; adults usually sulciplicate, with dorsal folds

developing at- or more usually anterior to midvalve; antero-ventral region smooth or with short,

gently developed ventral fold. Juveniles with a tendency to be subrhomboidal in outline; with the

maximum width often displaced posteriorly (‘high-shouldered’ sensu Middlemiss, 1976), plano-

convex to concavo-convex and slightly sulcate.

FIGURE 1. 1, 2, Specimens of Terebratula calabra from the biostrome in the Aguilas Basin
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(modified from Garcia-Ramos, 2006). 1a-d, specimen showing dorsal, ventral, lateral and frontal
views. 2, brachidium of another specimen, displaying long terminal points. 3, original specimens of

T. calabra from Nasiti (Calabria) (modified from Seguenza, 1871).

Remarks. The specimens from Santa Pola (Alicante, Spain) and from Cuatro Calas (Aguilas
Basin, Spain) illustrated by Pajaud (1976; 1977) were attributed to 7. terebratula when the concept
of the species was that of a relatively strongly folded taxon as interpreted by Buckman (1907).The
latter author was based on a notably plicated, but deformed, specimen from the Pleistocene deposits
of Monte Mario (near Rome, Italy). This specimen was also reproduced by Thomson (1927) and by
Muir-Wood in Moore (1965). As shown by Cooper (1983), the Monte Mario specimens (which he
identified as 7. ampulla) can be planoplicate. It seems that the Buckman specimen was an extreme
morphotype, untypical for the population. The Monte Mario specimens are most probably
conspecific with the Andria specimens (and with specimens from other Apulian localities from the
Gravina Calcarenites Fm), and are, therefore, attributable to 7. terebratula. T. calabra differs from
T. terebratula overall in being less elongate in outline, smaller, and in the tendency of adults to be
sulciplicate; displaying better defined folds on the dorsal valve. T. terebratula can be rectimarginate
to sulciplicate but the typical morphotype is planoplicate in adulthood. In the Paratethys there are
taxa that resemble 7. calabra. These were identified under different names, such as Terebratula
grandis (Blumenbach, 1803) or Terebratula styriaca Dreger, 1889 (Kudrin, 1961; Barczyk and
Popiel-Barczyk, 1977). Their internal features are poorly known but the Polish and Ukranian
specimens can probably be referred to as “Terebratula” makridini Kudrin, 1958. This latter taxon
can at best be considered a heterochronous homeomorph of 7. calabra. The attribution of the Polish
specimens to 7. styriaca is unlikely, since the topotypical material of “T.” styriaca from
Kleinhoflein near Eisenstadt (Austria) that I have seen are notably smaller and more strongly
plicated, as faithfully illustrated in the original publication of Dreger (1889). T. calabra is easily

distinguishable from 7. sinuosa (in the sense of Marasti, 1973 and Taddei Ruggiero et al., 2019) or
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from “Terebratula” hoernesi Suess, 1866 because the latter two are very strongly folded, with a
ventral fold developed from the posterior to the anterior margins of the shell. The Tortonian (late
Miocene) specimens identified by Calzada (1978; 1984) as T. ampulla, from Ceuti (Spain), are
larger than 7. calabra, and tend to be planoplicate, but there are also specimens with well-
developed sulciplication. The folding patterns in this taxon, also identified by Garcia-Ramos (2006)
in Barranco de Cavila, near Caravaca (Spain), start to develop posterior to midvalve, when
compared with either 7. calabra or T. terebratula. These latter Miocene specimens are similar to 7.
sinuosa var. pseudoscillae Sacco, 1902 from the Miocene of Monte Vallassa (Italy), which Garcia-
Ramos (2006) considered to be a valid species. In late Miocene outcrops there are anteriorly
plicated specimens which are difficult to distinguish from 7. calabra. They are known from Malta
(Cooper, 1983, who identified them as 7. sinuosa), from the late Tortonian of the Guadix Basin,
Spain (Garcia-Ramos, 2006; Reolid et al., 2012; Giannetti et al., 2018) and from the late Tortonian-
early Messinian of the Sorbas Basin, Spain (Videt, 2003; Garcia-Ramos, 2006; Puga-Bernabéu et
al., 2008).
Genus Maltaia Cooper, 1983
Type species: Maltaia maltensis Cooper, 1983

Maltaia moysae (Mayer-Eymar, 1898)

FIG.TEXT 2
1865 Terebratula pedemontana. Lamk. Seguenza, 1865, p.39, pl. 4, fig. 5.
* 1898  Terebratula moysae. Mayer-Eymar, p. 72, pl.12, figs. 20 a, b.
1898  Terebratula biplicata (Brocchi, 1814). Almera and Bofill, p.167-168, pl. 6, figs. 2a-2b.
1898  Terebratula biplicata var. lata. Almera and Bofill, p.168, pl. 6, fig.3.
1902  Terebratula ampulla var. plicatoparva Sacc. Sacco, p., pl. 2, fig. 13.
1902  Terebratula ampulla var. incavata Sacc. Sacco, pl.2. fig. 25.
1988  Terebratula sinuosa (Brocchi, 1814). Gomez Alba, pl. 71, fig. 9.
1988  Terebratula terebratula. Calzada, p. 248, fig. 225
1989  Terebratula calabra Seguenza, 1871. Spano, p. 160, pl. 9, figs. 2-4.
v,pars 2004  Terebratula sinuosa (Brocchi, 1814). Garcia-Ramos, p.23, figs. 2, 3 (text); pl. 4, figs.1-
8; pl. 6, figs. 5-7,11, 13.
v 2006 Maltaia pajaudi. Garcia-Ramos, 2006, p. 61, fig. 19.1a-g (text); pl.6, figs. 1-13; pl.8,
figs.1-10.
v 2010 Maltaia pajaudi Garcia-Ramos, 2006. Toscano et al., 2010, p. 257, figs. 3 e-h.
2011  Terebratula sinuosa Brocchi 1814. Betancort, p. 90, pl. 5, figs. 1-4.
2013 Terebratula sinuosa (Brocchi, 1814). Gonzalez-Alvarez, p. 14, fig. la-b.

Diagnosis. Provided in Garcia-Ramos (2006).
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Remarks. This taxon is very abundant in some Mediterranean localities but has drawn the attention
of a few authors only. I erected the species Maltaia pajaudi in 2006 without having a copy of the
works of Mayer-Eymar (1898) and Almera and Bofill (1898), both of whom described and
illustrated the same species. I now consider M. pajaudi to be a junior synonym of M. moysae. This
species is characterized by being remarkably smaller than other Mediterranean species, by a strong
subpentagonal to subrhomboidal outline, and by the presence in most specimens of well-developed
dorsal folds located anterior to midvalve. Some specimens display a conspicuous pedicle collar. The
most characteristic feature of the species, however, is a ventral sulcus. This is displayed by many
specimens from population samples coming from many different localities. Other rare specimens
can display a smooth antero-ventral region or develop an inconspicuous ventral fold. The loop of
adults of this species (with very short terminal points, and a low-arched, rounded transverse band) is
like that of juveniles of different species of Terebratula. These morphological features can be
considered, therefore, as paedomorphic traits. That was the reason why I argued (Garcia-Ramos,
20006) that the species can be included in Maltaia Cooper, 1983. Different species of Terebratula
display much longer terminal points and usually a high-arched, trapezoidal transverse band. The
trapezoidal shape in frontal view is produced by a narrow bridge (sensu Arcelin and Roché, 1936)
on the ventral side of the transverse band of Terebratula. The species M. moysae was first defined
from Egypt (Mayer-Eymar, 1898) and is cited from there in a few works (e.g., Sandford and Arkell,
1933; Little, 1936) without illustrations. It is also described from Egypt by Hamza (1972 non vidi).
The brachiopods mentioned by Aigner (1983) from the Pliocene cliff-line near the Giza pyramid
plateau likely refer to the same species. I have found M. moysae in several similar outcrops from
southern Spain. Elsewhere, the species is described from Italy, under different names, by Sacco
(1902) (notably 7. ampulla var. incavata). Enrico Borghi has shown me pictures of this species
from Ciuciano (Tuscany). Seguenza (1865) identified a possibly conspecific specimen from San
Filippo inferiore (Messina, Sicily) as 7. pedemontana, whereas Spano (1989) illustrated a most

likely conspecific specimen from the lower Pliocene of Capo di San Marco in Sardinia.
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FIGURE 2. Specimens of Maltaia moysae (Mayer-Eymar, 1898). 1-3, Specimens in dorsal, ventral,
lateral and frontal view. They come from the lower Pliocene of Bolnuevo (1), Cabo Cope (2) and
Playa de Piedra Mala (3); all in the Province of Murcia. 4, original illustrations of “7. moysae”,
modified from Mayer-Eymar (1898). 5, original illustrations of Terebratula biplicata var. lata,

modified from Almera and Bofill (1898).

In Spain I have found M. moysae in many localities in the provinces of Almeria, Murcia and
Alicante, always in Zanclean sediments. It certainly occurs also in Malaga (Guillermo Diaz-
Medina, personal communication, 2019) and in the Guadalquivir Basin (Toscano et al., 2010). It
was described and illustrated from some localities in Catalonia by Almera and Bofill (1898) either
as Terebratula biplicata or T. biplicata var. lata. Later authors attributed specimens from
Vilacolum to 7. terebratula (Calzada, 1988; Encinas, 1992 non vidi). It has recently been
illustrated, under the name 7. sinuosa, from Gran Canaria (Canary Islands) by Betancort (2011) and
by Gonzalez Alvarez (2013). The ventral sulcus of the Pliocene specimens enables an easy
distinction from relatively similar forms such as Maltaia aff. costae (sensu Garcia-Ramos, 2006),

“T.” styriaca, “Terebratula” kemenczeiensis Majer, 1915 and M. maltensis. The latter four taxa are
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probably heterochronous quasi-homeomorphs.

Thesis aims

Terebratulide brachiopods are considered the “supreme survivors” of all brachiopod clades,
since nowadays they are the dominant brachiopod clade in modern oceans in terms of abundance,
diversity and biomass (95% of brachiopod biomass), when compared with rhynchonellide and
thecideide brachiopods (Lee, 2008). The genus Terebratula is a good example of success as
reflected in Neogene sediments in terms of species richness and abundance (e.g., Pedley, 1976;
Reolid et al. 2012). The genus, however, strikingly went extinct in the Calabrian. The aim of this
dissertation is to help constrain the optimal ecological niche of Terebratula and analyze the
environmental conditions that once drove its success, because these questions have been
insufficiently explored, and because improving our knowledge on this specific question can
contribute to better understanding the dramatic demise of other examples of once successful
organisms.

In this thesis I address the above question by discussing how the distribution of Terebratula
was influenced by a number of environmental variables associated with depth-related gradients,
such as the type of macrosubstrate, oxygenation of the bottom, productivity, sedimentation rates,
hydrodynamic conditions, and light. All these paleobiological analyses are integrated in a

framework of detailed sedimentological and sequence stratigraphic models.
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ABSTRACT

During the early Pliocene, subaqueous delta-scale clinoforms developed in
the Aguilas Basin, in a mixed temperate carbonate-siliciclastic system. The
facies distribution is consistent with the infralittoral prograding wedge
model. Stacking patterns and bounding surfaces indicate that the clinoforms
formed during the highstand and falling sea-level stages of a high rank cycle.
Twenty-two prograding clinothems were recognized over a distance of
>1 km. Biostratigraphic data indicate a time span shorter than 700 kyr for
the whole unit (MP13 biozone of the Mediterranean Pliocene). Cyclic skeletal
concentrations and occasional biostromes of suspension feeders (terebratulid
brachiopods, modiolid bivalves and adeoniform bryozoan colonies), slightly
evolved glauconite and occasional Glossifungites ichnofacies formed on the
clinoforms during high-frequency pulses of relative sea-level rise. During
such stages, increased accommodation space in the topsets of the clinoforms
caused a strong reduction of terrigenous input into the foresets and bottom-
sets. This provided favourable conditions for the development of these sus-
pension feeder palaeocommunities. During stillstand stages, however,
reduced accommodation space in the topsets eventually resumed prograda-
tion in the foresets. There, the abundance of Ditrupa tubes indicates frequent
siltation events that extirpated the terebratulid populations and other epifau-
nal suspension feeders in the foreset and bottomset subenvironments. The
occurrence of shell beds on the clinoforms suggests that this case study rep-
resents lower progradation rates than standard examples where shell beds
bound the clinobedded units at their base and top only. Importantly, the dis-
tributions of biofacies and ichnoassemblage associations contribute signifi-
cantly to the understanding of the effects of relative sea-level fluctuations on
the evolution of subaqueous delta-scale clinoform systems.

Keywards Brachiopods, clinoforms, high-frequency sea-level changes,
mixed carbonate-siliciclastic systems, sequence stratigraphy, shell beds.

INTRODUCTION cycle duration (Drummond & Wilkinson, 1996;

Schlager, 2004, 2010). Many authors advocate

The duration of cycles is the traditional criterion
to discriminate the hierarchical order of strati-
graphic sequences (Mitchum & Van Wagoner,
1991; Vail et al., 1991). The assignment of
sequences to orders, however, can be difficult
and arbitrary because the structure of the sedi-
mentary record conforms to a continuum rather
than to distinct modes of abundance classes of

analyzing hierarchy based on the relative scale
and magnitude of sequences (Embry, 1993, 1995;
Catuneanu, 2006; Neal & Abreu, 2009; Catuneanu
et al., 2011). Accordingly, high rank (low fre-
quency) and low rank (high frequency) sequences
are established on a case by case basis using
observations from the rock record. For example,
the sequence of largest magnitude in a particular
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basin can be designated by the generic rank ‘N,
and successively lower rank sequences can be
designated by ranks ‘N-17, ‘N-2’, etc. (e.g. Massari
& Chiocci, 2006). Such hierarchical systems can
serve as a template for comparison with other
study areas and, if good chronological control is
available, these ranks can be evaluated in light of
cycle duration to reconcile both approaches (Sch-
lager, 2010). The physical expression of
sequences can include the relative extension of
unconformities, depth of incision of fluvial val-
leys, geometric relationships between the build-
ing blocks of composite sequences, magnitude of
facies shifts, relative scale of clinoforms (Thorne,
1995; Helland-Hansen ef al., 2012; Pattuno et al.,
2015), or the development of onlap, backlap,
downlap and toplap shell beds (Kidwell, 1991;
Abbott, 1997; Naish & Kamp, 1997; Kondo et al.,
1998; Di Celma et al., 2005; Hendy et al., 20086;
Zecchin & Catuneanu, 2013). Except for large-
scale outcrops, however, where the relationships
between the rank of sequences and the distribu-
tion of shell beds can be directly traced (Beckvar
& Kidwell, 1988; Massari & I’Alessandro, 2012;
Zecchin & Catuneanu, 2017) (Fig. 1A), exposures
with limited spatial extent hamper the observa-
tion of clinoforms. In such cases, the rank of
sequences defined by the position and geometric
relationship of condensed shell beds with the
sequence building blocks can be difficult to eluci-
date (Flirsich et al., 1991; Ruffell & Wach, 1998).

This study documents the distribution of cycli-
cally arranged brachiopod shell beds in the Aguilas
Basin (south-east Spain) in extensive outcrops of
Pliocene sediments. These pavements formed on
the distal part of lower rank delta-scale {i.e. tens of
metres high) clinoforms (Fig. 1B and C). Impor-
tantly, this contrasts with other examples where
onlap and backlap shell beds bound lower rank
delta-scale clinoforms (e.g. Massari & I’Alessan-
dro, 2012) (Fig. 1A). Determining the scale of clino-
forms in the current study area enables the
identification of low rank onlap and backlap shell
beds. Moreover, the development of condensed
shell beds on clinoforms implies lower prograda-
tion rates than thaose where clinoforms of compara-
ble scale/rank lack such hiatal concentrations.

NOMENCLATURE

Clinoforms, clinothems and scale

Clinoforms are sloping depositional surfaces
commonly associated with prograding strata
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(Pirmez et al., 1998; Patruno et al., 2015, and ref-
erences therein). These surfaces consist of gently
dipping topset and bottomset parts bounded by a
basinward steeper-dipping portion termed the
foreset (Gilbert, 1885) (Fig. 2A). The sedimentary
deposits {or stratal packages) bounded by two
successive clinoforms of the same hierarchy/rank
are termed ‘clinothems’ (Rich, 1951; Anell &
Midtkandal, 2015; Patruno et al., 2015) (Fig. 2A).
In short, clinoforms are surfaces and clinothems
are the deposits between them. Depending on the
geometry of the clinoform, there are one or two
slope break points of maximum curvature, known
as ‘rollovers’. An ‘upper rollover’ connects the
topset with the foreset and a ‘lower rollover’ con-
nects the foreset and the bottomset (Walsh et al.,
2004; Mitchell, 2012; Patruno et al, 2015)
(Fig. 2A). The rollover separating the topset and
foreset has also been referred to as shoreline
break, breakpoint, brinkpoint, offlap break or
shelfbreak, depending on the scale of the clino-
form and the sedimentary environment (Vail
et al., 1991; Herndndez-Molina et al., 2000; Soria
et al., 2003). Concerning the spatial scale, clino-
forms are fractal structures that display a huge
vertical range, in the order of centimetres to thou-
sands of metres (Thorne, 1995; Pirmez et al.,
1998; Patruno et al., 2015). Accordingly, in a
proximal to distal transect, large clinoforms have
been classified as subaerial delta and subaqueous
delta clinoforms (both tens of metres high), shelf
prisms {ca 100 to 500 m high) and continental
margin clinoforms (thousands of metres high)
(Helland-Hansen ef al.,, 2012; Patruno et al,
2015) (Fig. 2B).

In rare cases, all four types are found to pro-
grade synchronously in the same basin, forming
a compound clinoform system (Patruno ef al.,
2015) (Fig. 2B and C). In physical-accommoda-
tion dominated systems (sensu Pomar & Ken-
dall, 2008), the relative progradation rates
decrease from subaerial and subaqueous deltas,
to shelf prisms and then to continental margin
clinoforms (Patruno et al, 2015) (Fig. 2B). This
is important because the relative progradation
rates can help to reconcile the duration of rela-
tive sea-level cycles and their physical expres-
sion in the rock record.

Delta-scale clinoforms

Both subaerial and subaqueous delta-scale clino-
forms display a vertical range of tens of metres.
Subaerial and subaqueous deltas should not be
confused, because the former have a topset
entirely or partially above sea-level (Postma,

© 2018 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of
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This study

Rank N-1 cycle RankN-1 Onlap shell beds

Rank N-1 wave
ravinement

surface

N-1 rank backlap shell beds
[] Regressive sst [[] Transgressive sst —— Downlap surface == Wave ravinement surface

Fig. 1. Idealized sketch of the sequences with the location of condensed shell beds and the conceptual framework
for a hierarchical classification of ranks based on geometry and scale. (A) Rank N sequence with indication of rank
N onlap, backlap, downlap and toplap shell beds (adapted from Zecchin, 2007). (B) Rank N sequence indicating
the position of both rank N and rank N-1 shell beds as described in this study. (C) Outcrop example of rank N-1
shell beds on a Pliocene subaqueous delta-scale clinoform (low rank) in the Aguilas Basin (from proximal to dis-
tal: Schizoretepora — rhodolith debris, Schizoretepora and Terebratula facies).

1990), whereas the latter have the whole clino-
form (topset, foreset and bottomset) submerged
(Fig. 2C). Moreover, the rollover in subaerial
deltas can be coincident with or very close to
the shoreline, whereas in subaqueous deltas the
rollover is on average several kilometres away
from the shoreline.

In a meta-analytical study of clinoform geome-
try and scale, Patruno et al. (2015) differentiated
two types of subaqueous delta-scale clinoforms:
sand-prone and mud-prone. This distinction is
relevant because the former display higher fore-
set gradients and their rollovers are closer to the
shoreline than in the latter (Patruno et al., 2015).
The terminology of Patruno et al. (2015) focuses
on the geometric description of clinoforms. Simi-
lar terms related to geometric aspects include
‘distally steepened ramp’ (Read, 1985) for car-
bonate environments (see also Pomar, 2001).

Other terms have been proposed following a
genetic approach. For example, Herndndez-
Molina et al. (2000) introduced the term

‘infralittoral prograding wedge’ (IPW) for a mor-
pho-sedimentary system characterized by narrow,
shore-parallel, sigmoidal-shaped sedimentary
bodies that prograde below the wave base in the
offshore transitional zone of wave-dominated
coasts. Geometrically, this system belongs to the
category of sand-prone subaqueous delta-scale
clinoforms of Patruno et al. (2015). Such a dis-
tinction is helpful because prograding reef plat-
forms also produce subaqueous delta-scale
clinoforms (Franseen & Mankiewicz, 1991; Pomar
& Ward, 1994; Braga & Martin, 1996; Cuevas-Cas-
tell et al., 2007; Kleipool et al., 2017) but the
genetic factors and resulting facies are quite dif-
ferent from those of an IPW (Pomar & Kendall,
2008).

Mixed carbonate-siliciclastic ‘hybrid’
deposits

For mixed carbonate-siliciclastic systems, the
term ‘hybrid’ is often used in the literature to

© 2018 The Authors. Sedimentology published by John Wiley & Sons Ltd on hehalf of
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quickly convey the mixed character of sediments
with fractions of both carbonate and siliciclastic
components (Mount, 1984; Fliigel, 2004; Tomas-
setti & Brandano, 2013; Nalin ef al., 2016; Zec-
chin & Catuneanu, 2017). Nalin et al. (2016)
used this term for mixed deposits with a silici-
clastic fraction, in particular, between 20% and
50%.

Synthem

A synthem is an unconformity-bounded unit
(Ruban, 2015). In this study, the term refers to
the units bounded by the local high rank uncon-
formities.

‘Pristine’ preservation

This study uses the term “pristine’ as a shortcut
ta refer to bioclasts that barely display any signs
of biostratinomic alteration. These bioclasts are
articulated and complete, with well-preserved
ornamental features, and have not been subject
to macrobioerosion and/or encrustation by epi-
Zoan organisms.

GEOLOGICAL SETTING

The Aguilas Arc (south-east Spain) (Fig. 3A),
which belongs to the Inner Zones of the Betic
Cordillera, is a tectonic megastructure that
extends onshore over a distance of 60 km along
a south-west/north-east axis. The megastructure
resulted from a north-south or north-west/
south-east rigid-plastic indentation of a crustal
block that began in the Early Miocene due to
collision of the African and Eurasian plates in
the Western Mediterranean and is still active
today (Coppier et al., 1989; Griveaud et al,
1990). This arc is delimited to the south-west
and north-east by systems of left-lateral and
right-lateral strike slip faults (Palomares, Cocén-
Terreros and Maoreras fault systems) (Coppier
et al., 1989; Silva ef al., 1993). The internal sec-
tor of this arc comprises five small basins that
are open to the Mediterranean (Bardaji et al,
1999); their opening was probably caused by an
important collapse of the southern margin of the
arc, associated with transtension (Coppier et al.,
1989). These basins probably acted as rias (i.e.
estuaries encased in high-relief fluvial valleys)
and then as coastal embayments during the early
Pliocene (Dabrio et al, 1991; Garcia-Ramos
ef al., 2014). This study focuses on the
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southwestern sector of the Aguilas Basin
(Fig. 3B and C), located some 5 km south-west
of the town of Aguilas, where the succession of
Pliocene marine sediments is most complete
(Montenat et al., 1978).

STRATIGRAPHIC FRAMEWORK

Pliocene deposits in the current study area can
be attributed to three synthems: SPO (MPl1-
MP12 pro parte biozones), SP1 (MPI3 biozone)
and SP2 (possibly MP14) (Fig. 3D). The focus
here is on the prograding succession of synthem
SP1. The topmost part of SP1 consists of carbon-
ates of an isolated platform abutting a volcanic
ledge, that is an entirely different morpho-sedi-
mentary system and therefore beyond the scope
of this study (Fig. 3C and I}). To provide a strati-
graphic framework, SP0, SP1 and SP2 are briefly
outlined.

The SPO synthem is represented by glaucony-
rich condensed deposits. At the 14 m thick El
Barceldn section (Fig. 3C), beds are oriented
N79°E/8°SE. A sharp transgression over meta-
morphic rocks of the Palomas Unit (Alpujarride
Complex, Inner Betic Zones) (Alvarez & Aldaya,
1985) is recorded at the base. Planktonic forami-
nifera from SPO indicate the MPI1 and MPI2 bio-
zones of the Mediterranean Pliocene (Montenat
et al.,, 1978; Garcia-Ramos et al., 2012). Based
on benthic and planktonic foraminifera, Garcia-
Ramos ef al. (2014) proposed a shallowing
upward trend evolving up-section to assem-
blages of shallow-water benthic foraminifera,
devoid of planktonic foraminifera. In this sec-
tion, the top of SPO is truncated and overlain by
Quaternary conglomerates, and the transition
from SPO to SP1 is not exposed. An angular, ero-
sive unconformity is inferred because of the dif-
ferent strike and dip of the two synthems and a
conspicuous shift in benthic and planktonic for-
aminiferal assemblages from shallow-water to a
relatively deep-water, offshore environment
between the top of SPO and the base of SP1.
This unconformity crops out in a section north-
east of Castillo de Terreros (Montenat et al.,
1978) (Fig. 51).

Synthem SP1 consists of a succession of
clinobedded units that prograded over a dis-
tance of about 2 km starting from the hillock of
Cabezo Alto across the area of Cafiada Brusca
and the Cuatro Calas coves (Fig. 3D). In SP1, cli-
noforms have a strike of N57°E with a variable
dip (a few degrees to over 14°SE) along a north-
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west/south-east transect. The unconformity
between SP1 and SP2 eroded part of the upper
interval of SP1, which is either missing on the
surface or covered by colluvial deposits. The
uppermaost part of SP1 crops out again, however,
in the Cuatro Calas coves sector (Fig. 3C); there,
the top of SP1 is also truncated and overlain by
Quaternary conglomerates. The SP2 synthem
was described and interpreted as a wave-domi-
nated Gilbert-type delta system (Dabrio et al,
1991): SP2 is also truncated at the top by an
unconformity and covered by Quaternary marine
and terrestrial units, one of which has been
dated to the oxygen isotopic stage 5e based on
the occurrence of the gastropod Persistisirombus
latus (Bardaji et al., 2001).

Biostratigraphy

The co-occurrence of Globerotalia puncticulata
and G. margaritae from the base to the top of
the synthem SP1 (Fig. 3D) indicates that it was
deposited entirely during the MPI3 planktonic
foraminiferal biozone of the Mediterranean Plio-
cene (4-52 to 3-81 Myr) (laccarino et al., 2007,
Violanti, 2012; Corbi & Soria, 2016). Because of
truncation at the base and the top of the syn-
them, the exact duration of SP1 is uncertain, but
must be <700 kyr.

MATERIAL AND METHODS

Fluvial incision has revealed laterally continu-
ous outcrops oriented subparallel and subper-
pendicular to the depositional strike that
enabled the stratal geometries and stacking pat-
terns to be studied. Clinoforms and clinothems
were mapped using outcrop panoramic photo-
mosaics while stratigraphic contacts and facies
were checked in the field. Two main sections
(Figs 3C, 3D and 4), 44 m thick (Cabezo Alto)
and 77 m thick (Cafiada Blanca), were logged in
detail, for lithology, sedimentary structures,
macrofossil composition, biofabrics and ich-
noassemblages to evaluate the vertical variation
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and stacking of facies. These sections were com-
plemented by smaller sections to show details of
stratigraphic features. The macrofauna was iden-
tified to species level whenever possible, except
for most bryozoans, for which only the zooarial
morphology was noted. The abundance of
macrofaunal taxa was estimated in the field by
distinguishing between dominant (26 to 100%),
common (11 to 25%) and rare (1 to 10%) cate-
gories. This qualitative approach was conducted
by visually inspecting each sampling site for
30 min (cf. time-picking of Ceregato et al,
2007). Skeletal concentrations were described
using qualitative criteria (Kidwell et al., 1986),
while biofabrics follow the semi-quantitative
charts of Kidwell & Holland (1991). Macroscopic
descriptions of lithofacies were complemented
with representative thin sections. Some bulk
samples of uncemented sediment were sieved
through 500 pm, 125 pm and 63 um meshes to
explore qualitatively the content of benthic and
planktonic foraminifera in the 125 um fraction,
to aid in a palaecenvironmental interpretation
and biostratigraphic characterization of the stud-
ied synthem. For 26 samples of the Cabezo Alto
section, >200 benthic foraminifera were identi-
fied and counted. Taxa with >3% proportional
abundance are reparted.

Magnetic susceptibility, a proxy of terrigenous
input (Davies et al., 2013), was measured in the
field, with a SM-20 magnetic susceptibility
meter (Gf Instruments, Brno-Medlénky, Czechia)
for the Cabezo Alto (34 sampling sites) and
Canada Blanca (68 sampling sites) sections. Five
to six replicate measurements per sampling site
(ca 1 sec measuring time) were taken on flat
rock surfaces, and the mean value reported.

Carbonate content was quantified at the Insti-
tute of Geography and Regional Research
(University of Vienna) with a Scheibler calcime-
ter for 34 samples in the Cabezo Alto section
and 48 samples at the Canada Blanca section.
The procedure specified in ISO 10693:1995 has
been followed (ONORM L 1084, 20086).

Glauconite maturity has been categorized into
four stages, based on the K,O content (Amorosi

Fig. 3. Location of the study area in south-east Spain. [A) Tectonic Aguilas Arc (modified from Bardajf ef al.,
2001). (B) Detail of the Agnilas Basin with indication of outcrops of Pliocene age. (C) Cartographic sketch of the
studied sector in the Cafiada Brusca area, including Pliocene synthems (SP0, SP1 and SP2), the main facies asso-
ciations in SP1 (FA1 to FA4), and location of the studied sections or those mentioned in the text. (D) Schematic
cross-section of the studied sector to show the relationship of the identified Pliocene synthems, with indication of
the studied sections (CA, Cabezo Alto; CBr W, Cafiada Brusca W; CBL, Cafiada Blanca). Biostratigraphically rele-
vant planktonic foraminiferan taxa indicate the MPI3 biozone (Zanclean) for the whole synthem SP1. Vertical

scale exaggerated.
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et al., 2007; Amorosi, 2012): (i) nascent (K,0 = 2
to 4%); (ii) slightly evolved (K;0 =4 to 6%);
(iii) evalved (K;O =6 to 8%); and (iv] highly
evolved (K,O > 8%). Glauconite K,0O content
and colour are correlated: nascent to slightly
avolved glauconite is light green — yellowish,
mature glauconite is dark pgreen. Glauconite
composition was examined in one sample to
determine its maturity. About 80 to 100 grains
were picked from the 125 to 500 pm fraction,
embedded in resin and polished on a slide.
Glauconite analyses were performed at the
Department of Lithospheric Research (University
of Vienna) using a Cameca SXFive FE Electron
Probe Microanalyzer (EPMA; CAMECA, Gen-
nevilliers Cedex, France) equipped with five
wavelength-dispersive and one energy-disper-
sive spectrometers. Well-characterized homoge-
neous natural and synthetic minerals were used
as standards. All analyses were performed at
15 kV accelerating voltage and 20 nA beam cur-
rent. Due to the K migration a defocused beam
with 5 pm diameter and 10 sec counting time
on peak position were used. For matrix correc-
tions, the PAP method (Pouchou & Pichoir,
1991) was applied to all acquired data. The rela-
tive error of the laboratory internal standard is
below 1%.

DESCRIPTION OF FACIES

Four main facies associations and one facies
were recognized in the studied synthem. These
are described in detail in Tables 1 to 4. Facies
distributions are shown in stratigraphic logs and
outcrop photomaosaics to highlight wvertical and
lateral changes. In general, the facies grade into
one another along a proximal-distal gradient.

Facies Association 1

The common feature of Facies Association 1
(FA1) is the occurrence of coarse-grained silici-
clastics. Three facies are distinguished based on
sorting, carbonate matrix and packing of
macroinvertebrates.

Coarse-grained friable sandstone — F1.1

This facies was observed in only two clinothems
of the Canada Brusca W area. It consists of fri-
able sandstone composed of well-sorted, coarse,
angular grains (mainly of quartz and schists)
(Fig. 5A and B). This sandstone is poorly
cemented and pervasively bioturbated, therefore

Chapter 2: Cycles of Brachiopod Shell Beds
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no physical sedimentary structures are pre-
served. In proximal parts it displays an inten-
sely bioturbated ichnofabric dominated by
vertically oriented Muacarenichnus and  sub-
sidiary Ophiomorpha (Fig. 5A and D to H). It
vields abraded and fragmented microfossils in
low abundance, including ostracods (for exam-
ple, Aurila) and benthic foraminifera, most nota-
bly Elphidium crispum and Aminonia inflata
(Table 1).

Hybrid rhodelithic sandstone — F1.2

This facies mainly occurs in the Canada Blanca
section and the Canada Brusca W sectors (Fig. 51
and J}, in more distal positions than F1.1. It con-
sists of poorly sorted coarse sandstone with a
carbonate matrix. Granule-sized debris of coral-
line red algae is characteristic, albeit in varying
proportions. The fabric in general is massive;
locally, well-defined trace fossils are identifiable
(Table 1).

Shell-rich hybrid sandstone — F1.3

This facies occurs in the Cafada Blanca section
{(clinothem 12). The matrix resembles that of
F1.2 but it is distinguished by thick (>1 m), den-
sely packed skeletal concentrations dominated
by pectinids (Aequipecten scahrellus). Tt also
displays a complex biofabric, with large gutter
casts infilled with pectinids, and overlies an
irregular erosive surface.

Interpretation of Facies Association 1

The well-sorted and winnowed texture of the
coarse sands, selectively enriched in detrital
quartz (Fig. 5B}, suggests proximal environments
affected by tidal and wave currents above the
fair-weather wave base (Blomeier et al., 2013).
This interpretation is supported by the lateral
facies change, in which beds displaying proxi-
mal facies F1.1 evolve distally into poarly-sorted
and unwinnowed coarse sandstone facies F1.2
(Fig. 51 and ]). The association of Ophiomorpha
and dominant Macarenichnus in similar lithofa-
cies (Fig. 5D to F) has been interpreted as either
foreshore or upper shoreface environments
(Frébourg et al., 2012; Mayoral et al., 2013; Uch-
man et al.,, 2016). This is compatible with the
impoverished benthic foraminiferal assemblage,
with the poorly preserved shallow shelf species
Elphidium crispum and Ammonica inflata (Sgar-
rella & Moncharmont Zei, 1993; Fiorini &
Vaiani, 2001; Rasmussen, 2005). The low spe-
cies richness, abundance and high taphonomic
alteration of these microfossils can be
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interpreted as an indication of onshore trans-
portation (Davaud & Septfontaine, 1995). The
dominance of Flabellipecten bosniaskii in some
patches of facies F1.2 (Table 1) is consistent
with proximal sandy environments (Aguirre
et al., 1996). The lack of physical sedimentary
structures is most probably due to thorough bio-
turbation and/or cryptobioturbation (Pemberton
et al., 2008).

Facies Association 2

The main characteristic of Facies Association 2
(FA2) is the fine-grained carbonate-rich matrix
(CaCQO3 ca 40 to 80%) (Fig. 4) and the frequent
presence of coralline algae, either in the form of
complete rthodoliths or thodolith debris.

Calcarenite — F2.1

In contrast to other facies, this was found only
in the upper two clinothems (Fig. 8A and B).
The coarse-grained, well-sorted fabric is similar
to F1.1 but is composed of carbonate lithoclasts.
Small casts, probably of comminuted aragonitic
shells, are visible. This facies is locally crudely
stratified and can contain pavements of Flabel-
lipecten and Ostrea (Table 2; Fig. 6). It has vari-
able proportions of rhodolith debris and is
pervasively bioturbated, with poorly defined
trace fossils, except for intervals with well-
defined Thalassinoides (Fig. 6B).

Hybrid rhodolithic calcirudite — F2.2

This facies only occurs locally, associated with
F2.3. It consists of calcirudite mostly composed
of rhodolithic debris and pectinids. It is often
found infilling pods (like the ray pit trace Pisci-
chnus waitemata). In clinothem 8, it forms a
wedge, laterally interdigitating with facies F3.1.

Hybrid rhodoelithic floatstone — F2.3

This facies is characteristic of the whole study
area. The matrix consists of fine-grained silici-
clastic material and micrite in variable propor-
tions (up to 80% carbonate content). The
dominant bioclastic material is rhodolith debris,
which varies from coarse-grained to gravel size,
but complete rhodoliths also occur and one
locality exhibits pavements (Fig. 7). It is perva-
sively bioturbated with wvariable ichnoassem-
blages (Table 2); hence only one example of
swaley cross-stratification (SCS) has been identi-
fied (Fig. 5K). In clinothem 21, however, it dis-
plays a crude stratification, forming tabular beds
about 30 to 40 cm thick. The most characteristic

Chapter 2: Cycles of Brachiopod Shell Beds

macroinvertebrates are Clypeaster cf. aegyptia-
cus (often as complete tests), Spondylus crassi-
costa (often articulated), Ostrea edulis f.
lamellosa and Gigantopecten latissimus (juve-
niles and adults). In some samples, coralline
algae attributable to lithophylloid and melobe-
sioid taxa were identified (Fig. 7D to F).

Shell-rich hybrid rhodelithic floatstone — F2.4

This is similar to F2.3 but contains densely
packed concentrations of pectinids (Aequipecten
epercularis) and rhodoliths and locally also
Ostrea and Spondylus. This facies usually forms
very thick (several metres) beds, often overlying
an erosive or irregular surface. Coralline algae
are sometimes present as rhodoliths or repre-
sented by small proportions of thodolith debris.

Interpretation of Facies Association 2

The well-sorted, winnowed texture and coarse
grain-size of F2.1, together with the dominance
of Flabellipecten and Ostrea, points to high-
energy proximal environments (Aguirre et al.,
1996; Blomeier et al., 2013). The reduced grain-
size of siliciclastics in F2.3 and F2.4 points to
lower energy levels compared to FA1. The abun-
dance of rhodoliths (Fig. 7) suggests background
low-moderate energy conditions, good oxygena-
tion, low sedimentation rates and low turbidity
enabling suitable light penetration; the assem-
blage of melabesioids and lithophylloids
(Fig. 7D to F) suggests depths in the order of
several tens of melres (Aguirre ef al., 2012,
2017). Moreover, the characteristic macroinverte-
brate species in this facies (Table 2; Fig. 5A) are
common in shoreface environments (Malatesta,
1974; Ben Moussa, 1994; Mancosu & Nebelsick,
2017).

Swaley cross stratification (Fig. 5K) indicates
storm deposition events (e.g. Myrow, 2005) in
the offshore transitional zone (Dumas & Arnott,
2006). The occurrence of sporadic densely
packed lenticular shell beds (Fig. 5), probably
the product of ‘cut and fill' structures, also
points to major storm events (Zecchin et al,
2017). The ichnoassemblage of F2.3 (Ophiomor-
pha nodosa, Skolithos linearis and Planolites
montanus) (Table 2), combined with the features
discussed above, is interpreted here to indicate
an opportunistic Tesponse associated with
storms or other high-energy disturbances (Pem-
berton et al., 1992; Gani et al., 2009; Buatois
et al., 2015), although individual ichnotaxa can
occur under normal marine conditions. In the
first scenario, Palaeophyeus can be characteristic
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of the fair-weather assemblage (Pemberton et al.,
1992). Finally, the rhodolith-pectinid rudstone
infilling Piscichnus traces suggests trapping in
burrows by passive filling when coarser particles
are entrained during storm traction—transport
(Wanless et al., 1988; Zuschin & Stanton, 2002;
Yesares-Garcia & Aguirre, 2004).

Concentration of shoreface
shells by storm-reworking and
winnowing during forced
regression. This facies is found
only in clinothem 12 at the

=
;:_% g The complex biofabric of thick, densely
E ‘g packed skeletal concentrations (facies F2.4) over-
2 2 lying erosive surfaces, together with the observa-
= g tion that they overlie FA1 (Fig. 5C to E) or F2.1
(Fig. 6), suggests that this facies formed under

g conditions of sediment bypass or starvation, pro-

% %ﬂg moting the amalgamation of event beds during

o &:5 g% @ transgressive phases (Kidwell, 1991; Abbott,
& %U; G E :E 1997; Dattilo et al., 2008; Zecchin et a¢l., 2017).
= 225 09 8o They are therefore interpreted as onlap shell
@ REEZDE = beds in line with conclusions drawn by Kidwell

(1991) and Zecchin et al. {(2017) elsewhere. The
absence of physical sedimentary structures is
interpreted here to be a result of thorough biotur-
bation. According to Zecchin (2007), this trait is
typical of sheltered embayments.

Facies Association 3

The characteristic feature of Facies Association
3 (FA3) is the occurrence of the serpulid poly-
chaete Ditrupa arietina in a fine-grained hybrid
matrix. The carbonate content varies between
about 30% and 50% (Fig. 4).

bicerosion. Additional subsidiary taxa
include Cubifostrea frondosa and

Different degrees of encrustation. Low
Spondvius crassicosta

hastalis/Isurus oxyrinchus, Sparus sp.,
Pinna sp. Large acorn barna-cles
encrusting echinoids, large bones, or
large oysters in clusters of a few

ten scabrellus, often complete valves.

(Concavus concavus) occasionally
individuals

Macrofossils and taphonomy
purpureus, Echinocyamus pusillus,
Echinalampas sp. Cosmopolitodus

Hybrid packstone with Ditrupa and rhodolith
debris — F3.1

May contain poorly Dominated by diarticulated Aequipec-

g g Facies F3.1 is transitional between Facies Asso-
o 2 ciations 2 and 3. It consists of hybrid fine-
@ . . .

g b - grained packstone to grainstone with small frag-
gﬂ _“3 g ] ments of rhodolith debris. The main feature is
E 2= %3 the much smaller proportion of rhodolith debris
= FTER compared to FAZ. Locally it contains Ditrupa,

C o2 8 O : .
pectinids or fragments of adeoniform zooaria
B g w (Schizoretepora sp.). Because of the high carbon-
- g *;;g 3 g ate content (ca 50% CaCQj3), cementation locally
g g8 S8 defines beds varying from 30 to 40 cm to over

1 m in thickness. The fabric is massive.
- Eq Hybrid packstone with Ditrupa — F3.2

= @ E < This is the most characteristic facies of FAS3.
2 & i EF . Ditrupa is the dominant macroinvertebrate, often
g E %E ; EE passively infilling pods (Fig. 8A) or forming
g N Ewg loosely to densely packed concentrations. The
‘9_’ Na i -~ ST A grain-size of terrigenous particles is fine-grained
A " and poorly sorted. Macarenichnus — Teichich-
= % o nus and other traces are characteristic {Table 3).
a & = The bedding is completely distupted by
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bioturbation and the fabric is massive. This
facies is rich in benthic (Fig. 9) and planktonic
foraminifera.

Shell-rich hybrid packstene — F3.3

The matrix, which is similar to F3.1 or F3.2,
contains densely packed concentrations of
macroinvertebrates, either fragments of adeoni-
form =zooaria, pectinids (A. scabrellus], or the
mytilid Gibbomodiola cf. adriatica (Fig. 8B).
Pectinids most often occur as disarticulated, but
complete valves, preserving the ornamental
details. Erosive surfaces were observed only in
the proximally positioned localities (Gibbomodi-
ola and Schizoretepora beds). Well-preserved
acorn barnacles (Selidebalanus mylensis), some-
times preserving scutal and tergal plates inside
the corona, form clusters on Aequipecten.

epizoans due to taphonomic
feedback

due to sea-floor cementation
during low sedimentation

rates It develops either at
the toesets—bottomsets or at

Interpretation
the foresets

Barren to loosely Formation of stiffgrounds

clumps of pris-

Biofabric
packed

most
The

Interpretation of Facies Association 3

This facies association is dominated by D. ari-
elina, a short-lived, free-living suspension-feeder
and opportunist that can attain high densities in
fine sands and muddy substrates under high
sedimentation rates, high turbidity and unstable
conditions [(Grémare et al, 1998; Santilippo,
1999; Ceregato el al, 2007; Scarponi et al,
2014). The interpreted opportunistic behaviour
agrees with its high dominance (Ceregato et al,,
2007), as in Pliocene outcrops in the Aguilas
and the neighboring Cope Basins (Martinell
et al., 2012). A review on its ecology by Hartley
(2014) emphasizes two explanations for the high
densities reported in modern environments,
both associated with disturbances: (i) disruption
of established benthic communities, enabling
successful recruitment of high numbers of
Ditrupa larvae; and (ii) post-settlement redistri-
bution by storms and concentration in areas of
deposition. It is therefore probable that the pau-
cispecific fossil assemblages dominated by
Ditrupa concentrations in FA3 are associated
with the action of storms or internal waves,
either by redeposition, by opportunistic
responses to storm-induced siltation producing
organic-rich substrates, or both (Ceregato et al,,
2007; Hartley, 2014). The abundance of the ben-
thic foraminifera Cassidulina carinata, Bolivina
spp., Bulimina aculeata and Globocassidulina
subglobosa (Fig. 9] is consistent with the organic
enrichment associated with siltation (Jorissen
et al., 2007; Abu-Zied et aql., 2008; Goineau
et al., 2012; Pérez-Asensio ef al., 2017). Ich-
noassemblages support the interpretation of high
sedimentation rates and nulrient contents,

biostrome’, found to live encrusting tine specimens
(Ova canalifera).

worn out fragments of Clypeaster.
Diverse and common membrani-

poriform zooaria
Except for the Terebratula Dbio-

strome, macrofossils are not abun-
dant. It can include pectinids and

associated with the ‘Terebratula
echinoids

sediment infilling the burrows is
similar in composition to the

Macrofossils and taphonomy
encasing matrix

interpreted as transported,

and Oichnus notably Spondvlus crassicosta and

6)

nus arcuatus, Caulostrep- terebratulids. Occurrence of taxa

sis taeniola, Anellusichnus
works of unlined burrows,

mostly Thalassinoides sue-

Centrichnus isp., Renich-
vicus. (BI

Ichnology
Gnathichnus pentax,

circularis
simplex
Massive fabric Dominated by dense net-

Sedi-
mentary
structure

(continued)

Lithology
Cemented
burrowed
packstone

hybrid

Fb

Table 4.
Facies
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Fig. 5. Stratigraphic motif of low rank cycles from the CBr W sector. (A) Partial stratigraphic log with interpreted sys-

21

tems tracts (both high rank and low rank sequences), facies, clinothems and semi-quantitative abundance of traces and

macrofossils. (B) Well-sorted, winnowed, coarse sandstone (F1.1) (clinothem 14). (C) to (E) Contact between clinothems
14 and 15 (red line), interpreted as a low rank transgressive ravinement surface (TRS). The shell bed overlying the TRS
(facies F2.4) is interpreted as a low rank onlap shell bed (OSB). (E) Densely bioturbated Macaronichnus ichnofabric (clin-

othem 14). (F) Ophiomerpha burrow corresponding to the inset in (E). (G) to (H) Ophiomorpha ichnofabric (clinothem

14), ca 20 m basinward from the location shown in (C) to (F). (I) Irregular contact between clinothems 13 (facies F2.3)

and 14 (black bold line), interpreted as a regressive surface of marine erosion. Hammer for scale is 33 cm long. (J) Detail
from inset in (I), showing Thalassinoides burrows (Glossifungites ichnofacies) passively infilled with material from the
base of clinothem 14 (facies 1.2). (K) Swaley-cross stratification (SCS) in facies F2.3, truncating two examples of Diplocra-
terion parallelum. (L) Detail of D. parallelum from inset in (K).
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Fig. 6. Partial stratigraphic log of the Canada Blanca section for clinothems 20 to 22. (A) Example of low rank sequence
(clinothem 21). (B) Calcarenite (F2.1) with fragmented molluscs and tubes of Ditrupa (top of clinothem 21). (C) Hybrid
coralline algal floatstone (F2.3) with branched coralline algae embedded in a fine-grained matrix (lower interval of clin-
othem 21). (D) Shell-rich rhodolithic floatstone (F2.4) with densely packed pectinids, rhodoliths and subsidiary oysters
(middle of clinothem 21), interpreted as a low rank backlap shell bed. (E) Contact (red dashed line) between the cal-
carenite (top of clinothem 21) and the pectinid floatstone (F2.4) (base of clinothem 22), interpreted as a low rank onlap
shell bed. (F) Detail of the pectinid floatstone of clinothem 22.
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Fig. 7. Example of rhodolithic facies (FA2) in clinothem 16 (rollover zone) from the Canada Brusca W sector. (A)
Oblique view to depositional strike of clinothem 16, partially highlighted. (B) Rhodolith pavements in outer topset
facies of clinothem 16. (C) Detail of a rhodolith pavement of (B), showing spheroidal growth forms (white arrow-
head). Note the fine-grained hybrid carbonate matrix. (D) to (F) Thin sections of samples of FA1-FA2 facies dis-
playing examples of coralline red algae. (D)} Uniporate conceptacles of Lithophylloideae (clinothem 18). (E) and
(F) Multiporate conceptacles of Melobesioideae (clinothem 17).

although there are variations in a proximal to
distal gradient, with increasing ichnodiversity
and density of traces towards distal positions. In
general, facies F3.2 is dominated by Maca-
ronichnus, which is the product of vagile, detri-
tus-feeding worms (Bromley et al, 2009;
Pearson et al., 2013). Such trace fossils are
rarely reported from offshore settings (Aguirre
et al., 2010; Rodriguez-Tovar & Aguirre, 2014;
Giannetti et al., 2018) and their producers cope
well with high sedimentation rates (Taylor
et al., 2003). In distal positions (the base of the
Canada Blanca section), other common ichno-
taxa include Teichichnus rectus, attributed to a
deposit-feeder in nutrient-rich sediments, which
can re-equilibrate to the sediment-water inter-
face (MacEachern et al., 2012a). The intense bio-
turbation in distal positions (Table 3), however,

suggests long colonization windows (Buatois
et al., 2015) under background fair-weather con-
ditions, because the effects of siltation and/or
gravity flows decrease both in intensity and fre-
quency in these settings. The occurrence of the
traces Teichichnus, Diplocraterion and Secalich-
nus in distal F3.2 (Table 3) points to re-equili-
bration in the aftermath of such sporadic,
exceptional events (MacEachern et al., 2012a).

Facies Association 4

The major characteristic of Facies Association 4
(FA4) is the presence of fine-grained hybrid
packstone distally and the reduced carbonate
content (ca 13 to 40%) (Fig. 4), characteristically
dominated either by Costellamussiopecten or
Terebratula (Figs 10B and 11).
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Hybrid packstone with Costellamussiopecten —
F4.1

Facies F4.1 consists of hybrid packstones with
poorly sorted fine-grained sands to coarse silts
(variable proportions of micrite and sparite
depending on the locality). The terrigenous par-
ticles comprise angulose grains of quartz, schist
and abundant mica flakes. Planktonic and ben-
thic foraminifera (Fig. 9) are abundant, the latter
including centimetre-sized tests of Pyramidulina
raphanistrum and Lenticulina spp. As in the
other facies, the fabric is massive and structure-
less. Macrofossils, most notably Costellamus-
siopecten  cristatum, occur as dispersed,
complete, disarticulated valves (Fig. 10B). The
density of identifiable traces varies. Outsized,
angular floating clasts of metamorphic material
from the basement are very rare (Fig. 10C). Some
of them are pebble-sized, rounded and bio-
eroded black dolostones (Fig. 10D).

Paraconglomerate of outsized floating clasts —
F4.2

This facies occurs only at the base of the Cabezo
Alto section (clinothem 1) (Fig. 10A). The
matrix is similar to that of F4.1. It is character-
ized by a paraconglomerate of outsized, angular
floating clasts and loosely packed to dispersed
bioclasts (Fig. 10E). The richness of vertebrates
and macroinvertebrates is the highest in the
whole study area (including fish vertebrae, elas-
mobranch teeth, crustacean dactyla, wood
remains bioeroded by Nototeredo sp., plant

Chapter 2: Cycles of Brachiopod Shell Beds

Fig. 8. Details of the main features
in FA3 and F5. (A) A Ditrupa pod
concentration in hybrid packstones.
(B) Densely packed mollusc
concentration (Gibbomodiola bed).
(C) Contact (red dashed line)
between F5 (Glossifungites
ichnofacies; below red line) and the
overlying Ditrupa rich friable
hybrid packstones (F3.2) at the
Cabezo Alto section. (D)
Glossifungites ichnofacies (F5) with
well-developed networks of
Thalassinoides suevicus (marked
‘Tha’) in the Canada Brusca sector.

detritus and others; Fig. S2). Most shells are dis-
articulated, consisting of a mixture of pristine,
fragmented and bioeroded/encrusted specimens
of many species; some of them occur typically
in FA1 and FA2 (Table 4; Fig. 10F). This facies
is densely bioturbated (mostly indistinct mot-
tling) and the richness of identifiable ichnotaxa
is relatively high in comparison to other facies.
The density of floating lithoclasts and bioclasts
peaks at the base of clinothem 1 and decreases
progressively upward (Fig. 10A and F). In the
125 to 500 pm fraction, yellowish to light-green
glauconite grains (often preserved as foraminif-
eral casts) are frequent.

Terebratula pavements — F4.3

This facies is characteristic of the Cabezo Alto -
Caniada Brusca area, where 13 outcrops were
identified. They consist of ca 5 to 20 cm thick
beds in which brachiopods appear embedded in
a fine-grained matrix (Fig. 11A and B). Two out-
crops showed two pavements separated by about
20 cm. These are referred to in this study as
‘twin pavements’ (Fig. 11C). No erosive or pla-
nar surfaces, either at the base or at the top of
the skeletal concentration, were observed
(Fig. 11A, B and G). No normal grading is visi-
ble in the matrix; the sediment is indistinguish-
able from that underlying and overlying the
pavements; the shell orientation varies from ran-
dom to umbo-down; bioclasts are well-preserved
and only a few specimens show minor tapho-
nomic alterations; more than 50% of the
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specimens are articulated. Some pavements
vield small juveniles. The packing of specimens
is variable, from dense in the centre to loose
towards distal and proximal positions of the
pavement (Fig. 11G). In some cases, disrupted
biological clumping occurs (Fig. 11B and F). All
of the pavements studied yield yellowish to
light-green glauconite grains. Chemical analysis
of two glauconite grains from one sample
showed a K,O content of 4-4% and 4-3%. This
facies is distributed cyclically, most often alter-
nating with F4.1.

Terebratula biostrome — F4.4

This is one thick bed (>1 m) dominated by
loosely to densely packed terebratulids
(Fig. 12A). It contains a mixture of well-pre-
served, articulated specimens (Fig. 12B), some-
times devoid of sediment infill (Fig. 12C), and
disarticulated valves (Fig. 12E and F). Many of
the latter are fragmented, abraded, heavily bio-
eroded and encrusted by bryozoans, anomiid
bivalves (Fig. 12D), serpulids and craniid bra-
chiopods. The biolabric is variable and com-
plex, with examples of in situ Terebratula

clumps, pod concentrations and gutter casts
(Fig. 12G). Oulcrops of this single interval are
recognizable for 850 m parallel to the strike,
whilst at Canada Brusca, a low abundance of
additional brachiopod species (Table 4) was
observed.

Interpretation of Facies Association 4

This facies association crops oul in the more
distal positions of the depositional profile,
where the fine-grained sediment composition
indicates low-energy background conditions.
This is supported by the occurrence of C. crista-
tum, characteristic of F4.1, which is an extinct
pectinid  with delicate valves, frequently
reported from offshore environments (Aguirre
et al.,, 1996; Robba, 1996; Yesares-Garcia &
Aguirre, 2004; Ceregalo ef al., 2007). Extant spe-
cies of the homeomorphic genus Amusium (Wal-
ler, 2011) inhabil quiel walers on fine sandy and
muddy substrates of the Indo-Pacific region, at
depths of 10 to 100 m (Fréneix el al., 1987; Min-
chin, 2003). The benthic foraminiferal assem-
blage (Fig. 9) is also Lypical of olfshore
environments (Rasmussen, 2005). The massive
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Alto section (clinothems 1 and 2). (B) Juvenile valve of Costellamussiopecten cristatum. (C) Example of cobble-
sized angular, metamorphic floating clast. (D) Rounded and bioeroded dolostone clast. (E) Floating clast paracon-
glomerate at the base of clinothem 1 (examples with arrowheads). The dashed line highlights the base of the para-
conglomerate. (F) Detail of the bioclasts in the paraconglomerate of clinothem 1 (Flabellipecten bosniaskii and
Cubitostrea frondosa). (G) R-sediment model, adapted from Kidwell (1985) and Tomasovych et al. (2006). It
explains the fabric pattern with an upward decrease in density of floating clasts by a concomitant increase in bur-

ial rates.

fabric can be explained by intense bioturbation
and deposition by suspension fall-out (Garcia-
Garcia et al., 2006; Longhitano, 2008). The bar-
ren to dispersed packing of F4.1 suggests high
sedimentary dilution and/or low shell produc-
tivity (TomaSovych et al., 2006). The good
taphonomic preservation of the autochthonous

(and some allochthonous in F4.2) macrofossils
(Table 4) fits the outer-shelf taphofacies model
of Yesares-Garcia & Aguirre (2004). The ichno-
fabrics also point to low-moderate background
sedimentation rates probably affected episodi-
cally by high sedimentation rates, as in distal
F3.2. Stable background conditions are
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Fig. 11. Examples of facies F4.3 (Terebratula pavements; bounded by red dashed lines). (A) Terebratula pavement
between clinothems 3 and 4 in the Cabezo Alto area. (B) Detail of the pavement shown in (A). Most specimens
are articulated and distributed in small clusters of two to three specimens (possibly representing a disrupted bio-
logical clumping or patchiness). (C) ‘Twin pavements’ between clinothems 5 and 6. (D) and (E) Densely packed
concentrations in the pavement between clinothems 9 and 10 in the Canada Brusca sector. Hammer for scale is 33
cm long. (F) Possible Terebratula cluster. (G) Loosely packed pavement in more distal positions. The red circle

pinpoints a juvenile specimen.

suggested by the dominance of lined burrows:
such lining helps to stabilize burrows (con-
structed as permanent domiciles) in soft sub-
strates (Bromley, 1996; Buatois & Mangano,
2011). The dominance of Domichnia therefore
indicates well-oxygenated substrates and stable
background conditions (Buatois & Madngano,
2011). The local occurrence of Trichichnus isp.
at the CA section (clinothem 2) might be related
to longer periods of stable conditions and a low
food content at the sediment-water interface
(Pervesler et al., 2008). An event-bed suite can

be interpreted based on the occurrence of some
Taenidium and backfilled, unidentified menis-
cate traces (possibly Scolicia isp.), indicating the
activity of deposit feeders. They probably
reacted opportunistically to sporadic high-den-
sity gravity flows or siltation events associated
with storms or other disturbances (de Gibert &
Goldring, 2007).

The occurrence of outsized floating clasts
(Fig. 10) across the depositional profile is inter-
preted as the product of storm-induced high-
density gravity flows (Postma etal, 1988;
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Fig. 12. Main features of FA3 and F4.4 at the Canada Blanca section. (A) Detailed stratigraphic log for clinothems
9 to 14. (B) Clump of in situ Terebratula specimens. Note the articulated specimens, umbo-down orientation, pres-
ence of juveniles. (C) Void Terebratula displaying the brachidium (geopetal structure). Hammer tip for scale is 2
cm long. (D) Pod concentration filled with coarse siliciclastic grains, Ditrupa tubes and two articulated Terebrat-
ula specimens. Note the sharp-walled, unlined large burrow and numerous anomiid bivalves (Monia squamma)
encrusting Terebratula. (E) Detail of imbricated, strongly altered Terebratula valves. Note the abraded foramen
and right hinge-tooth in a fragmented ventral valve. Pen tip is 19 mm long. (F) Detail of gutter cast filled with dis-
articulated Terebratula shells. Concave-up, disarticulated ventral valves predominate. (G) View of the basal bed,
overlain by gutter casts and the erosive surface separating clinothems 11 and 12. BSFR, basal surface of forced
regression. Hammer is 33 cm long.
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Mulder & Alexander, 2001; Talling et al., 2012).
This is consistent with source areas dominated
by schists and phyllites, such as in the Aguilas
Basin. In particular, according to Garcia-Garcia
(2004), the sensitivity of these lithologies to ero-
sion favours the production of high volumes of
fine fraction, which in turn enhances the forma-
tion of cohesive debris flows. The angularity of
these clasts (some of which have weak litholo-
gies) (Fig. 10C) suggests that they bypassed the
depositional profile directly from the river or
ephemeral stream mouth to reach the distal
positions where FA4 was deposited, probably by
hyperpycnal flows that transformed into cohe-
sive debris flows. The roundness and the pres-
ence of Gastrochaenolitles traces on the
dolostone clasts suggest that the latter were
stored in a delta plain, a beach or a cliff-toe
(Uchman et al., 2002; Garcia-Garcia et al., 2011)
and were incorporated into the flows during
flash floods. The storage area would have been
no further away than a few kilometres (Fig. 13),
judging from the distribution and structure of
the Palomas Unit (Alvarez & Aldaya, 1985). A
possible alternative explanation for their occur-
rence is kelp or seaweed rafting as a main trans-
portation means (Bennett et al., 1994; Garden
et al., 2011; Frey & Dashtgard, 2012) but co-
occurrence of the floating clasts with other
allochthonous elements [out of habitat molluscs
(Table 4), plant debris, Teredolites isp. and
Calpensia bryoliths (Fig. S2)] supports the first
hypothesis (MacEachern et al., 2005; Ghinassi,
2007; Moissette et al., 2010; Nalin et al., 2010;
Buatois et al., 2011).

In facies F4.3, the frequent pristine preserva-
tion of terebratulids, the occurrence of juveniles
and disrupted patchiness (Fig. 11A and B),
together with the absence of diagnostic features
for hydraulic reworking (e.g. Roetzel & Pervesler,
2004), suggest that these pavements probably
represent obrution deposits of autochthonous
palaeocommunities (Brett & Seilacher, 1991;
Fiirsich, 1995; Brett et al., 2003). They can be
interpreted as mixed assemblages, in part
within-habitat time-averaged, and in part census
death assemblages (Kidwell, 1998). The occur-
rence of glauconite in the terebratulid pave-
ments points to conditions of very low
terrigenous input (Odin & Fullagar, 1988; Hard-
ing et al., 2014). Preservation of glauconite
grains (often as well-preserved casts of foramini-
fera) points to their autochthonous or parau-
tochthonous origin (Amorosi, 1997, 2012).
Therefore, compared with F4.1, the Terebratula
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pavements (F4.3) indicate conditions of notably
reduced sedimentation rates. The taphonomic
traits and biofabric of these pavements suggest
that the Terebratula palaeocommunities in the
study area were extirpated by siltation events
(Emig, 1989; Tomasovych & Kidwell, 2017)
because fine terrigenous particles clog the lopho-
phore and smother these animals (He et al,
2007). These siltation events probably represent
the onset of the next cycle of F4.1 sedimenta-
tion. The interpretation here is, therefore, that
the pattern of alternating F4.3 and F4.1 facies
represents cyclical changes of decreased and
increased sedimentation rates.

The ‘Terebratula biostrome’ (F4.4) shares the
dominance of terebratulids with F4.3 (Fig. 12).
The variable taphofacies (Table 4) suggests com-
plex taphonomic pathways of mixed biogenic—
sedimentological origin (Kidwell et al., 1986).
The occurrence of in situ clumps (Fig. 12B)
indicates that the terebratulids were autochtho-
nous to the biotope where FA4 was being depos-
ited. The dominance of Terebratula points to
high shell productivity [high hard-part input
rates sensu Tomasovych et al. (2006)]. In con-
trast, pod concentrations, pristine void

Saltador Delta

Sheltered bay
“Facies Tabac”

-~ <
2km Aguita,
Y- |Present-day
777~ coastline
Vera-Pulpi %
Basin &

Isolated carbonate @\@&%
platforms -
Palaeocurrent direction
(sandwave fields)

Fig. 13. Proposed palaeogeographic map of the
Aguilas Basin during deposition of synthem SP1
(Zanclean, MPI3 biozone). The exact position of the
palaeocoastline in the western sector is tentative due
to the paucity of shallow-water outcrops, and uncer-
tainty as to their attribution to SP1. The indented
black line indicates the rollover of the infralittoral
prograding wedge and is shown with estimation of
approximate inferred palaeobathymetry at the time of
deposition of the oldest clinothems. The palaeocur-
rent direction is inferred from outcrops of stacked
sandwave fields at the Terreros and La Carolina sec-
tors (see Fig. 3), migrating seaward.

Palaeocoastline
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specimens (geopetal structures) and gutter casts
infilled with highly altered and densely packed
terebratulid shells, are all characteristic of epi-
sodes of rapid burial and hydraulic reworking
in situ (Fig. 12C to F) (Baeza-Carratald et al,
2014). Hydraulic disturbances are also demon-
strated by the occurrence of a few disarticulated
valves of Spondylus, a typical element of FA2
(where it is often articulated), which suggests an
allochthonous origin.

The abundant fragmented, abraded, bioeroded
and encrusted shells (assemblage-level alter-
ation] are typical for prolonged exposure at the
sediment-water interface, which, together with
the loose to dense packing (shelliness), points to
reduced sedimentation rates (Kidwell, 1985,
1989). The rich ichnoassemblage of bioerosion
traces (Table 4) is strongly uneven, dominated
by Entebia isp. (clionaid sponges), highlighting
strong hydrodynamics and background sedimen-
tation tates between <1gm * and ca 7 gm *
(Carballo ef al., 1994). The rare occurrence of
echinoid rasping traces Gnathichnus pentax
coupled with the ahsence of Radulichnus
(scratch marks by herbivorous gastropods and
polyplacophorans) (de Gibert et al., 2007) point
to dim light or aphotic conditions (Bromley,
2005). The co-occurrence of the above tapho-
nomically altered brachiopod bioclasts, together
with abundant pristine specimens, demonstrates
that the Terebratula palaeocommunity was able
to recover from multiple episodic disturbances,
where background conditions of strong hydrody-
namics and low sedimentation rates were envi-
ronmentally optimal for these brachiopods
(Emig & Garcia-Carrascosa, 1991; Reolid et al,
2012). The co-occurrence of lined and sharp-
walled, unlined burrows (Fig. 12D) suggests that
the substrate within F4.4 evolved from a soft-
ground to a stiffground, indicating a decrease in
sedimentation rates (Taylor etal, 2003;
MacEachern et al., 2012b).

Facies 5

Cemented burrowed hybrid packstone
(Glossifungites ichnofacies)

This facies cannot be attributed to any particular
facies association because in some places it
adjoins FA4 but elsewhere adjoins FA3. It is
treated here as a separate type. The matrix con-
sists of a fine-grained hybrid packstone that is
cemented {ca 40% CaCQ,) and completely bio-
turbated (Fig. 8C). In general, traces are poorly
defined but some are attributable to non-
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compacted Thalassinoides burrows, except for
one locality, where many well-defined, non-com-
pacted Thalassinoides suevicus occur (Fig. 8D).
The material infilling the burrows is similar to
the surrounding matrix. In some localities, this
facies displays loosely to densely packed skeletal
concentrations, but Ditrupa is absent.

Interpretation of Facies 5

This facies, interspersed between either FA4 or
FA3, is interpreted as the formation of stiff-
grounds during phases of low sedimentation
rates, which favoured cementation of the sea floor
(Taylor et al., 2003; MacEachern et al., 2012h).

GEOMETRIC AND STRATIGRAPHIC
STACKING PATTERNS

Geometry

The Cabezo-Alto and Canada Brusca W sectors
enable delta-scale clinoforms sensu Patruno ef al.
(2015] to be identified (Figs 1C, 14A and 14B).
For example, the clinoform separating clino-
thems 5 and 6 extends for about 250 m from the
toeset-point to the upper rollover (Fig. 1C). The
clinoforms display a sigmoidal profile (sensu
Adams & Schlager, 2000) where, in general, FA2
and facies 3.1 occur in the upper rollover, FA3 in
the foreset and FA4 from the lower rollover bas-
inward, in the bottomset. FA1 is best observed in
the Canada Brusca W sector where it occurs in
the topset (Fig. 14D to F).

Stacking patterns

The mapping of stratigraphic surfaces on photo-
mosaics, the outcrop study of bed surfaces and
the facies distribution show that SP1 displays a
south-east prograding and offlapping stacking
pattern of sigmoidal clinothems. Twenty-two
clinothems were identified in SP1 (numbering in
Figs 4 and 14). In the Cabezo Alto (CA) sector,
clinothems 1 to 6 display a forestepping pattern
{(progradation plus aggradation), evolving verti-
cally from FA4 at the base to FA2 at the top; the
latter is truncated and overlain by Quaternary
deposits (Fig. 14A and B). The aggrading pattern
is present in clinothems 5 and 6, which display
facies 3.1 at the top of the sections; this contrasts
with the adjacent clinothem 4, with facies 2.3 at
the top (Fig. 14A and B). The contacts between
these clinothems in distal positions consist of
facies F4.2 (only at the base of the CA section),
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F4.3 (red lines in Fig. 14A and B), or F5. Starting
with clinothem 7, a downstepping pattern is visi-
ble, with strong shifts from facies F2.2 and F2.3 to
F3.2 (Fig. 14A and B). The contact between these
latter clinothems is erosive in the upper part of
the sections (Fig. 14C). The offlapping trend is
modulated by clinothem 11, which displays the
maore distal facies F3.1 at the Canada Brusca W
sector compared with adjacent older clinothems
(Fig. 141} and E). Clinothem 11 is followed by
strong shifts with facies F1.1 and F1.2 in clino-
thems 12 and 14, alternating with facies F2.3 in
clinothems 13 and 15 through prominent erosive
surfaces (Figs 5 and 14D to F). Clinothems 11 and
14 are very distinctive and make up marker beds
recognized in the Cafada Brusca E, Cafada
Brusca W and Canada Blanca sectors. The Canada
Blanca section is characterized, in general, by
alternating facies associations FA1 and FA2 and
erosive contacts in between (Fig. 4). This pattern
holds except at the base of the section which dis-
plays facies associations FA3 and FA4 up to clin-
othem 11, sharply overlain by facies association
FA1 through an erosive surface (Figs 4 and 12).

MAGNETIC SUSCEPTIBILIY AND
CARBONATE CONTENT

The overall carbonate content ranges from 13 to
80% (Fig. 4). Maximum values are attained in the
rhodolith dominated facies of FAZ2; they decrease
proximally and distally from this facies. In the
CA section no cyclicity in CaCQyj is recognizable,
whereas in the CBL section the variation appears
to roughly coincide with variation trends in mag-
netic susceptibility. Both the CA and CBL sec-
tions display very low magnetic susceptibility
(MS) values, increasing only near the clinothem
boundaries identified by sedimentological -
palaeontalogical criteria. The maximum value in
the whole studied area is recorded in the para-
conglomerate interval at the base of section CA
(Fig. 4).

DISCUSSION

Depositional model

Clinoforms of SP1 have the diagnostic features
of sand-prone subaqueous delta-scale clinoforms
(Patruno et al., 2015), in particular: (i) steep
foresets (=7°, up to 14°) (Fig. 1C); (ii) a sigmoidal
profile; (iii) development on a narrow shelf (an
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embayment about 14 km wide) (Fig. 13); and
{iv] close proximity to the palaesocoast (indicated
by bioeroded dolostone clasts of the Palomas
Unit). Furthermore, the Pliocene Maolino del Sal-
tador delta occurs 6 km north-east from the base
of the CA section. This implies that La Serrata
and Los Melenchones (Fig. 3B), adjacent to
where this delta developed, were already above
sea-level during the early Pliocene (Fig. 13).

In general, the facies distribution in SP1 shows
a proximal-distal energy gradient with decreas-
ing pgrain-size distally, especially basinward,
bevond the upper rollover (FA3 and FA4). This
grain-size distribution matches systems domi-
nated by physical accommodation in which
facies belts reflect the hydraulic competence of
the sedimentary particles (Pomar & Kendall,
2008). The geometry of the clinoforms is consis-
tent with a prograding distally steepened ramp
(Pomar, 2001; Pomar et al., 2002; Martin et al.,
2004) or an infralittoral prograding wedge (IPW;
Herndndez-Molina et al,, 2000; Pomar et al.,
2015). In both cases, the rollover zone represents
an energy threshold above which episodic high-
energy conditions affect the topset and below
which overall quiet conditions prevail offshore
{seaward of the rollover). According to these
genetic models, the upper rollover corresponds
to the mean storm-weather wave base (SWWB]),
fostering sediment bypass at the topset and sedi-
ment shedding down on the foreset (Herndndez-
Molina et al., 2000; Pomar et al., 2015), the latter
in the form of siltation/suspension fall-out and
as sediment gravity-flows (Massari & Chiocci,
2006). Immediately offshore of the upper rollover
zone, sedimentation rates peak (upper foreset)
and gradually decrease distally, both in fre-
quency and intensity (in the lower foreset and
bottomset) (Walsh et al.,, 2004; Mitchell, 2012).
In the original example of an IPW from off Cabo
de Gata (southern Spain) described by Herndn-
dez-Molina et al. (2000), the rollover lies at
about 25 m water depth coincident with the
mean SWWRB. This bathymetry is compatible
with the coralline algal assemblages in the study
area (outer topset) (Fig. 7), although, during the
early Pliocene, the storm intensities at this lati-
tude were presumably stronger due to warmer
sea-surface temperatures (SST) (Emanuel, 2005;
Beltran et al., 2011). A conservative depth of 25
to 30 m for the upper rollover zone of the
Aguilas subaqueous delta-scale clinoforms is,
therefore, proposed. The location of the SP1 IPW
in the south-western corner of the basin (Fig. 13)
implies that it was probably the area most
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Basin, synthem SP1. (A) Cabezo Alto (CA) sector (photograph parallel to depositional strike). White lines indicate
the stratigraphic logs in (C). (B) Clinothems and facies indicated with colour code. Blue lines indicate beds identi-
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exposed to easterly storms, as opposed to the
laminated silty marls occurring in the north-east-
ern part of the basin, interpreted as a sheltered
bay (Montenat et al., 1978).

Sequence stratigraphy

Two hierarchical sequence ranks were here
interpreted for the early Pliocene (late Zanclean,
MPI3 biozone) SP1 synthem of the Aguilas
Basin. The low rank sequences (LRS) are the
basic building blocks of the high rank sequence
(HRS). In particular, the systems tracts of the
HRS are defined both by the LRS stacking pat-
terns and their bounding surfaces (Zecchin &
Catuneanu, 2013). The LRS are represented by
the identified outcropping clinothems (1 to 22);
older ones were eroded, younger ones truncated
or covered by colluviums.

Architecture of the high rank sequence

The interpreted HRS is bounded at the top by an
extensive unconformity described by Dabrio
et al. (1991). The basal unconformity is inferred
at the Cabezo Alto sector based on changes in
facies, strike, dip and micropalaeontological
assemblages between the top of SPO and base of
SP1. This basal unconformity, however, crops
out at the Terreros section (3-35 km to the south-
west) (Fig. 81). Further work is necessary to con-
firm its presence throughout the study area.

The transgressive systems tract (TST) is inter-
preted here to crop out at the base of the CA sec-
tion (only the youngest LRS) (Figs 4 and 10).
Since the contact between synthems SP0O and
SP1 in the Cabezo Alto does not crop out, the
high rank transgressive ravinement surface has
not been observed. The highstand systems tract
(HST) is interpreted from the forestepping
stacked clinothems 1 to 6 (Fig. 14A and B).
These clinothems overlie the paraconglomerate
at the base of the CA section (facies 4.2, clino-
them 1) (Fig. 10), which is interpreted here as
the maximum flooding zone (MFZ) (see below).
Evidence for the {falling stage systems tract
(FSST) is shown by the generally downstepping
facies stack of clinothems 7 to 22 (Fig. 14). The
high rank lowstand systems tract (LST) has not
been identified and is thought to occur in a dee-
per part in the basin, below the present-day sea-
level. The general offlapping stacking pattern of
the LRS in synthem SP1 (Fig. 14) indicates an
overall regressive trend, typical for subaqueous
deltas, which form during relative stillstands
(highstands or lowstands) (Herniandez-Molina
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et al., 2000; Pepe et al, 2014; Patruno et al,
2015), or during falling stages of relative sea-
level (RSL) (Hansen, 1999; Massari et al., 1999).

High rank fransgressive systems tract aned
maximum flooding zone

The high rank MFZ is interpreted to correspond
to the paraconglomerate interval at the base of the
CA section (facies 4.2) (Fig. 10), implying that
most of the high rank TST does not crop out.
According to Zecchin & Catuneanu (2013), the
maximum flooding surface (MFS) may corre-
spond to: “a ‘cryptic’ conceptual horizon within
condensed deposits during the time of maximum
transgression, without a clear physical expres-
sion”. Condensation is interpreted here from the
pattern of the dispersing upward packing of litho-
clasts and bioclasts (Fig. 10), which can be
explained by the R-sediment model of Kidwell
(1985) (Fig. 10F). This model argues that clasts
are increasingly dispersed upward concomitant
with an increase in burial rates or higher sedi-
mentary dilution (Dattilo et al.,, 2012) at the onset
of the HST, when sedimentation rates outpace
accommodation space. This interpretation
assumes a relatively constant frequency of the
high-density gravity flow events that deliver
allochthonous clasts to these depths (bottomset).
In the rest of the synthem, floating lithoclasts in
FA3-FA4 are rare and isolated, as expected from
higher burial rates during the high rank HST and
FSST (Neal & Abreu, 2009). Furthermore, the
paraconglomerate interval is densely bioturbated
(Zecchin & Catuneanu, 2013) and yields the deep-
est assemblage of benthic (Fig. 9) and planktonic
foraminifera (Leckie & Olson, 2003). This
includes frequent or common outer shell taxa,
such as Planulina ariminensis and Uvigerina
peregrina. The high species richness of macrofos-
sils also implies a longer window of time-aver-
aging. Moreover, the position of this interval at
the base of the prograding low rank clinothems
reinforces its interpretation as the MFZ. Thus the
paraconglomerate interval of clinothem 1 is here
interpreted as a high rank backlap shell/clast bed.
The paraconglomerate interval also coincides
with the strongest magnetic susceptibility in the
whole study area (Fig. 4).

High rank highstand and falling stage systems
tracts

The forestepping stacking pattern (progradation
plus aggradation) of clinothems 1 to 6, coupled
with gradual facies changes, indicates a normal
regression and are attributed to the high rank
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HST (Catuneanu & Zecchin, 2016). In contrast,
clinothems 7 to 22 display a general downstep-
ping stacking pattern with strong shallowing-
upward facies shifts and sharp erosional con-
tacts. These traits are diagnostic for forced
regression, and hence are interpreted as the
FSST (Massari etal, 2002; Massari &
I¥Alessandro, 2012). Forced regression is like-
wise indicated by frequent ‘internal unconfor-
mity surfaces’ (IUS) such as those reported by
Massari & ID’Alessandro (2012). The IUS in the
study area are interpreted here to essentially
represent low rank regressive surfaces of marine
erosion (RSME) (Plint, 1988; Plint & Nummedal,
2000) (Figs 4 and 5). The contact between clin-
othems 13 and 14 in the outer topset and roll-
over zone is a good example of a surface
interpretable as a RSME (Figs 51 and 14D to F).
This surface records a strong facies shift from
F2.3 (lower shaoreface) to F1.2 (middle to upper
shoreface), the latter prograding to F1.1 {upper
shoreface to foreshore). The material of F1.2 pas-
sively filled truncated Thalassinoides burrows
(Glossifungites ichnofacies] in clinohem 13
(Fig. 5]) (MacEachern et al, 1992, 2012b). A
subsequent low rank RSL rise partially eroded
the upper shoreface-foreshore facies of clin-
othem 14 (F1.1) forming a low rank onlap shell
bed (F2.4) (e.g. Zecchin, 2007). The lithofacies
and biofacies F2.3 of clinothem 15 (Fig. 5) sug-
gest an amplitude of about 15 to 20 m of sea-
level rise with respect to clinothem 14.

The erosive surfaces at the CBL section (Figs 4,
6 and 15) are interpreted here to have formed by
scouring associated with high-frequency wvaria-
tions of base level (Massari & D’Alessandro,
2012). However, the ‘master RSME’ or high rank
RSME, which represents the onset of forced
regression in the high rank sequence, is not the
most prominent interpreted RSME in the study
area. This can be explained by gradually stronger
shoreface erosion at increasingly lower sea-levels
(when the amplitude of the RSL fall of the low
rank cycles is enhanced by the falling sea-level
trend of the high rank cycle). In the Cabezo Alto
sector, the erosive surfaces disappear distally
and these distal portions are interpreted here as
basal surfaces of forced regression.

Architecture of proximal low rank sequences

In the context of hierarchical sequence stratigra-
phy, Schlager (2004, 2010) recognized °S-
sequences and P-sequences’. The P-sequences
have only TST and HST, while S-sequences also
contain FSST and LST: P-sequences are
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equivalent to the small-scale cycles (metres to
decametres in thickness) of Zecchin (2007),
where R, T-R or T cycle types were recognized
based on the predominant development of trans-
gressive (T) or regressive (R) deposits. In general,
the clinothems of SP1 can be interpreted as R
and T-R cycles, with variations in the architec-
ture depending on the position in the deposi-
tional profile and the systems tracts of the HRS.
In the Canada Blanca sector, the most common
motif of LRS associated with the high rank FSST
consists of R cycles bounded by erosive surfaces
overlain by thick skeletal concentrations and a
coarsening upward trend (Figs 4, 6 and 15).
Some skeletal concentrations can be attributed to
shelly tempestites because the texture and grain-
size of the matrix is similar to or coarser than
that of the material underlying the erosive sur-
face (Figs 5A, 15A and 15B). Distinguishing low
rank onlap shell beds (OSB) in shoreface envi-
ronments from bedsets, which display tempestite
amalgamation unrelated to shoreline shifts, is
difficult (Zecchin et al., 2017). This is because
high-frequency, low-amplitude RSL fluctuations
result in subtle facies variations in shoreface
environments (Zecchin, 2007). Onlap shell beds
form under low sedimentation rates when trans-
gression creates accommodation space further
onshore. Skeletal material then accumulates in
the shareface, producing loose to dense packing
due to low sedimentary dilution (Fig. 15F). The
resulting biofabric of the OSB thus reflects a
complex history of multiple events of hiotic
{(bulldozing organisms) and/or hydraulic rework-
ing, along with differential winnowing by storms
and tidal currents (Kidwell, 1991: Zecchin et al.,
2017). In the Canada Blanca sector, erosive sur-
faces carved on coarse-grained F1.2 (Fig. 15C
and D) and mantled by thick, shell-rich facies
with fine-grained matrix (F2.4) (Fig. 15E) are
interpreted to reflect RSL fluctuations {(Massari
et al., 2002; Cattaneo & Steel, 2003). The abun-
dance of complete rhodoliths in many of these
shell beds (F2.4) (Fig. 6C) indicates low sedi-
mentation rates (Aguirre et al., 2017).

Architecture of distal low rank sequences

The interpretation here is that the internal archi-
tecture of the clinothems in FA4 consists of low
rank TST formed by Terebratule pavements
(F4.3) and the overlying hybrid packstone, with
dispersed to barren packing (F4.1), represents
the low rank HST. These cycles therefore con-
form to the structure of R ¢ycles. In maore proxi-
mal positions, the Terebratula pavements are

© 2018 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of

International Association of Sedimentologists, Sedimentology

80



Chapter 2: Cycles of Brachiopod Shell Beds

Shell bed cycles and delta-scale clinoforms 35

= - @
= o [ =
S 83853 3 g
. - . s 828 = 2
Partial Canada Blanca section s 85T g Sgs 92
G .S 885w - RIE o6
2 9388 a3 e = L 58 o=
0 S8c3 oy 2 Tuaws SUYT 9
T EESSccesld 0o EL DS : £ O Fal
RSL 3808588485 ,c528 TSs 58
¥ e SSEUUSCTEEZEeR s g9 ES
@ &L 83588 c8s53552m5885¢8 28,
o B & C S o SS52855SsEgTv T e Vg 5SS 0% @
F e & & & 3¢ EcsLsTEos0o0P88c=Sads 28 c
@ P € & o & CE2838090 g3 ecclTO0 SIS S55 06 0
v°o'°_,x‘?‘}‘ § o &8 5 FQATI<dI0Ocxxd00 00 GO UU @
2 N
FERGRT WIS | | ‘ ‘
®_E'..'_k..' = — cur € s )
TST| F2 ]I@ Fig.15E Yisd
i . %QE\%M% 9
S W o~ "

— CBI38

FSST

— CBI37

£ — e n

— (B35

— CBI34 @

— CBI33

Fig.158 — <832
— @BI31 ] @

\
¥
%Q
&
&
T e .
i
%’%
©

L 1
:lslvffmcvc‘g pb <o bd

Mud Sand Gravel O 5

’ = | — E Low rank cyclicity \g(’:c:
St ' : 2 @ Sea-level @_ __________
\g{ Bypass offines %n

s s ey

,wﬁ :‘_mf Cycle 1

= o "_‘*_
Dayyg? D3rpE2
(3 RsLrise (@) RsLstillstand

Bayys?
Sedimentary

dilution
(increasing burial rates)

Condensation
(low burial rates)

Fig. 15. Examples of low rank cycles in the Caniada Blanca section with alternating F1.2 and F2.4. (A) Detailed
log for clinothem 17. (B) Example of tempestite in the upper part of clinothem 16. Yellow stick part for scale is 10
cm long. (C) Transition from clinothems 17 and 18 through an erosive surface (red line) interpreted as an ‘internal
unconformity surface’ (IUS). Hammer is 33 cm long. (D) Rhodolith and Clypeaster fragment in coarse siliciclastic
grains of F1.2, below the IUS. (E) Fine-grained hybrid matrix with loosely packed pectinid shells (F2.4). (F) Inter-
pretation of the high-frequency cycle motifs at the Caniada Blanca section, bound by erosive surfaces overlain by
shell-rich deposits and coarsening upward lithology.

occasionally replaced by the Glossifungites ich- During stillstand stages of the low rank RSL,
nofacies (F5) or shell beds (F3.4). A genetic sediment aggraded in the topset until reaching
model of these R cycles is presented below. the base level. Accommodation space thus
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leading to resedimentation and mixing up downslope.

became unavailable at the topset and prograda-
tion in the foreset resumed, eventually forming
a new clinothem (Rich, 1951; Swift & Thorne,
1991; Pomar & Kendall, 2008; Pomar et al,
2015) (Fig. 16A). Background conditions with
frequent siltation events and high-density grav-
ity flows in the foreset (F3.2) are indicated by
opportunistic faunal responses, including the
dominance of Ditrupa, infaunal benthic forami-
nifera and ichnoassemblages of vagile deposit
feeders. During these stillstand stages, F4.1 was
deposited at the lower rollover and bottomset.
During stages of low rank RSL rise (Fig. 16B),
progradation in the foreset switched off and

clinoforms developed as omission surfaces in the
bottomsets and foresets, and often as transgres-
sive lags or low rank OSB in the upper foresets
and topsets (Massari et al., 1999) (Fig. 5). This is
because the base level rose concomitantly with
the RSL, creating accommodation space in proxi-
mal settings of the tapset. This was accompanied
by reduced fluvial gradients and sediment trap-
ping in nearshore environments, while maore dis-
tal settings (mainly, foreset and bottomset) were
left starved (Brett, 1998; Embry, 2009; Dattilo
ef al., 2012). Compared with other examples of
subaqueous delta-scale clinoforms (Pomar et al.,
2002), low rank RSL rise stages in the study area
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did not result in aggrading clinothems. Rather,
they were non-accretionary, forming only hiatal
skeletal concentrations. This implies lower sedi-
mentation rates of the Aguilas subaqueous delta-
scale clinoforms compared to those at Migjorn
(Pomar et al., 2002). The conditions of low-sedi-
mentation rate fostered: (i) the colonization of
the bottomsets—toesets and foresets by palaeo-
communities of siltation-sensitive suspension
feeders (Brett, 1998), in this case from proximal
to distal: Schizoretepora, Gibbomodiola and Ter-
ebratula (Fig. 1C); (ii) the formation of authi-
genic minerals such as glauconite (Kidwell,
1991; Catuneanu, 2006; Amorosi, 2012); (iii) the
development of densely packed shell beds in the
middle—upper parts of the foresets (Fig. 8B) due
to sediment starvation and differential winnow-
ing (R-sediment model of Kidwell,1985); and (iv)
the formation of firmgrounds associated with
cementation, enabling colonization by callianas-
sid shrimps and development of the Glossifun-
gites  ichnofacies  (Taylor etal,  2003;
MacEachern et al., 2012b) (Fig. 8C and D).

Hypotheses about the formation of the
Terebratula pavements

Three main hypotheses are considered here to
explain the genesis of the Terebratula pave-
ments (Fig. 17):

1 The allochthonous concentration hypothesis
(Kidwell et al., 1986) envisages that the terebrat-
ulids were deposited at the lower rollover and
bottomsets after being entrained in high-density
gravity flows induced by storms or other distur-
bances (for example, internal waves). Their auto-
chthonous habitat would be located in more
proximal environments (for example, the upper
rollover and outer topset) (Fig. 17A). This
hypothesis is rejected because of: (i) the lack of
diagnostic physical sedimentary structures for
shelly tempestites (Einsele & Seilacher, 1991;
Einsele, 2000; Fliigel, 2004; Roetzel & Pervesler,
2004; Myrow, 2005); and (ii) the absence in
nearly all pavements of other taxa that are abun-
dant or dominant in more proximal environ-
ments of the depositional profilee. An
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allochthonous concentration would consist of a
mixture of taxa entrained and mixed up from
different habitats (Leighton & Schneider, 2004).
Furthermore, to produce an allochthonous bra-
chiopod-dominated concentration at the bottom-
sets, there should be high brachiopod
productivity in the presumably autochthonous
habitat in more proximal environments, which
was not observed in the study area.

2 The storm-winnowing model (Dattilo et al.,
2008, 2012) considers that the Terebratula pave-
ments are concentrated autochthonous shell lags
that result from differential winnowing of the
fine-grained sediment during storms (Fig. 17B).
This hypothesis is rejected because, to produce
such a dominance and abundance of terebrat-
ulids, high brachiopod productivity should
occur throughout the stratigraphic intervals of
FA4, between terebratulid pavements. These,
instead, are barren or are characterized by dis-
persed Costellamussiopecten.

3 The episodic starvation model (Dattilo et al.,
2008, 2012) considers that the Terebratula con-
centrations are the result of biological processes
during stages of low sedimentation rates
(Fig. 17C). This hypothesis is supported by the
disrupted biological patchiness, the presence of
juveniles, the dominance of articulated, pristine
shells and by the occurrence of glaucony, a typi-
cal proxy for condensed deposits. The occur-
rence of Terebratula clumps (sensu Kidwell
et al., 1986) in F4.4 demonstrates that Terebrat-
ula is autochthonous to FA4 (Hallam, 1961;
Middlemiss, 1962; Fiirsich, 1995).

Magnetic susceptibility and carbonate content

Quartz, calcite and organic compounds yield
very weak to negative magnetic susceptibility
(MS) values (diamagnetic minerals). In contrast,
paramagnetic minerals such as clays (smectite,
illite and chlorite); ferromagnesian minerals
(biotite, tourmaline, pyroxenes and amphiboles);
iron sulphides (pyrite and marcasite) and iron
carbonates (siderite and ankerite), yield MS val-
ues several orders of magnitude higher than
those of diamagnetic minerals, which dominate
the signal when present in bulk samples (Davies
et al., 2013; Sullivan & Brett, 2013). Magnetic
susceptibility in marine sedimentary rocks is
usually considered as a proxy for the proportion
of iron-rich sediments derived from terrestrial
sources (Ellwood et al., 2000; Sullivan & Brett,
2013). High MS wvalues are considered to be
attained during regressive stages, when

Chapter 2: Cycles of Brachiopod Shell Beds

increased erosion delivers proportionally higher
amounts of terrestrial iron-rich sediments into
the marine basin (Sullivan & Brett, 2013). This
argument has been contradicted by the repart of
distinct MS peaks associated with surfaces of
maximum starvation {Ellwood et al., 2011). This
can be explained by concentration of paramag-
netic particles derived from aeolian sources
(Reuter ef al., 2013). Likewise, very low to nega-
tive MS values, as in the Aguilas Basin, SP1,
may be explained by a very low terrigenous
input and/or dilution of terrigenous particles in
biogenic carbonate (Reuter ef al, 2013). When
distinct positive MS peaks are the result of
increased terrigenous input, MS trends anticor-
relate with those of CaCQj (Davies et al., 2013;
Rothwell & Croudace, 2015). At the CA section,
distinct MS peaks are coincident with a relative
increase in CaCQOj; content (Fig. 4), suggesting
that the MS values in such cases are associated
with condensation. These peaks occur at the
clinothem boundaries that were interpreted as
omission surfaces (Glossifungites ichnofacies) or
condensed intervals (paraconglomerate and Ter-
ebratula pavements) based on sedimentological
and palaeontological features. The weak MS val-
ues are also potentially influenced by the
slightly evolved glauconite content, which is
paramagnetic (Amaorosi, 1997).

Progradation rates of the lower rank cycles

Biostratigraphic data constrain the maximum
possible duration of the HRS to somewhat less
than 700 kyr. The vellowish to light green col-
our of the glauconite grains that separate the
LRS in facies 4.3 suggests that, in terms of matu-
rity, this is a slightly evolved stage. This was
confirmed in one sample, where glauconite
grains had a K,O content of ca 4%. According
to Amorosi {2012), the slightly evolved glaucony
would indicate sediment-starved periods lasting
about 10* years, implying that the LRS in the
study area can be interpreted as high-frequency
cycles in the Milankovitch band. The cyclicity
in variation of terrigenous input is also recorded
in the patterns of magnetic susceptibility and
calcium carbonate content (Fig. 4). These pat-
terns of magnetic susceptibility are similar to
those reported by Davies et al. (2013) for the
high-frequency cycles of the Llucmajor platform
{Miocene, Spain), reinforcing the above interpre-
tation. If this is true, the time-span encompassed
by the HRS is considerably less than the 700 kyr
suggested by biostratigraphic proxies.
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CONCLUSIONS

The Aguilas Basin records subaqueous delta-
scale clinoforms that prograded during the early
Pliocene (MP13 biozone] in mixed temperate car-
bonate-siliciclastic environments. The sedimen-
tological and palaeontological features of these
clinoforms are compatible with the infralittoral
prograding wedge model. The prograding units
formed during the highstand and falling stages
of a high rank relative sea-level cycle, and the
biostratigraphic data indicate that this prograda-
tion lasted for less than 700 kyr. The basic
building blocks of this sequence are clinothems
whose internal architecture generally consists of
skeletal concentrations overlain by a strati-
graphic interval with a more disperse packing.
In distal positions of the depositional profile,
the skeletal concentrations consist of terebrat-
ulid brachiopod pavements. These pavements
are distributed cyclically; they are interpreted
here to have formed during high-frequency rela-
tive sea-level rise pulses that led to sediment
starvation in these distal environments. During
stillstand stages, accommodation space eventu-
ally became unavailable in the topset of the
clinoforms, leading to a resumption in the
progradation of the clinoform system, extirpat-
ing the brachiopod communities until the next
cycle of relative sea-level rise. In other examples
of subaqueous deltas, similar brachiopod assem-
blages bound the clinobedded unit at the base
and the top, but did not occur on the clino-
forms, as seen in the Aguilas Basin. This implies
lower progradation rates of the Aguilas Basin
clinoforms, allowing enough time for these ben-
thic communities to develop. The occurrence of
slightly evolved glauconite in the Aguilas Basin
suggests that these high-frequency cycles fall
within the Milankovitch band, probably preces-
sion.
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Fig. 51. Photomosaic of the base of the Terreros sec-
tion, showing the cyclically bedded synthem SPO
(Zanclean, MPI1 MPIl2 biozones) and the overlying
calcirudites of 8P1 (MPI3 bioczone fide Montenat
et al., 1978) on top, resting on an erosion surface
(SP0 SP1 unconformity).

Fig. 2. Some examples of allochthonous elements
in FA4 and FA3.
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Fig. S1. Photomosaic of the base of the Terreros section, showing the cyclically bedded synthem
SPO (Zanclean, MP11-MPI2 biozones) and the overlying calcirudites of SP1 (MPI13 biozone fide

Montenat et al.,1978) on top, resting on an erosion surface (SPO-SP1 unconformity).

92



Chapter 2: Cycles of Brachiopod Shell Beds

Fig. S2. Some examples of allochthonous elements in FA4 and FA3.
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The environmental factors limiting the distribution of shallow-

water terebratulid brachiopods

Diego A. Garcia-Ramos, Stjepan Corié, Michael M. Joachimski, and Martin Zuschin

Abstract—The Cenozoic genus Terebratula seems to be an exception to the post-Permian trend in
brachiopod retreat to offshore habitats, because it was species rich and numerically abundant in
warm-temperate shallow-water environments in the Mediterranean and the Paratethys realms. This
was so despite the general dominance of bivalves and the pervasive bioturbation and predation
pressure during the Neogene. Terebratula, however, went extinct in the Calabrian (Pleistocene).
The optimal environmental conditions for Terebratula during its prime are poorly known. The
Aguilas Basin (SE Spain) is an ideal study area to investigate the habitat of Terebratula, because
shell beds of this brachiopod occur there cyclically in early Pliocene deposits. We evaluate the
paleoecological boundary conditions controlling the distribution of Terebratula by estimating its
environmental tolerances using benthic and planktic foraminiferal and nannoplanktic assemblages
and oxygen isotopes of the secondary layer brachiopod calcite. Our results suggest that Terebratula
in the Aguilas Basin favored oligotrophic to mesotrophic, well-oxygenated environments at water
depths of 60-90 m. Planktic foraminiferal assemblages and oxygen isotopes point to sea-surface
temperatures between ~16°C and 22°C, and bottom-water temperatures between 17°C and 24°C.
The analyzed proxies indicate that Terebratula tolerated local variations in water depth, bottom
temperature, oxygenation, productivity, and organic enrichment. Terebratula was probably
excluded by grazing pressure from well-lit environments and preferentially occupied sediment-
starved, current-swept upper offshore habitats where coralline red algae were absent. Narrow
temperature ranges of Terebratula species might have been a disadvantage during the high-
amplitude seawater temperature fluctuations that started about 1 Ma, when the genus went extinct.
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Introduction

Brachiopods were the most successful benthic marine animals during the Paleozoic (Thayer
1986), with about 400 species remaining today (Emig et al. 2013). In Recent seas, terebratulids are
by far the most successful of all brachiopod clades (Lee 2008). Like other representatives of the
subfamily Terebratulinae, such as Pliothyrina and Maltaia, some species of “Terebratula’ appear to
stand as an exception to the general progressive trend of brachiopod retreat to deep and/or cryptic
habitats after the Permian—Triassic mass extinction (TomaSovych 2006). This is because
Terebratulinae were numerically abundant above the storm-weather wave base (Kroh et al. 2003;
Gramigna et al. 2008; Pervesler et al. 2011), much like other Terebratulida can dominate in present-
day, shallow-water hard-bottom environments (Logan and Noble 1971; Richardson 1981; Forsterra
et al. 2008; TomaSovych 2008). European Terebratulinae, however, went extinct in the Calabrian
(approximately during or shortly after the Jaramillo Subchron), not surviving beyond the Sicilian
(D’Alessandro et al. 2004; Taddei Ruggiero and Taddei 2006; La Perna and Vazzana 2016; Crippa
et al. 2019), with the last species being Terebratula terebratula and Terebratula scillae. Although
Neogene and Pleistocene Terebratula had to cope with specialized predators, niche competitors
(bivalves), and bulldozing and grazing marine organisms (Thayer 1983), it thrived mainly in warm-

temperate shallow-water detritic-bottom habitats in the Paratethys and the Mediterranean realms
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(Pedley 1976; Bitner and Pisera 2000; Reolid et al. 2012). There are also reports from subtropical
environments, where species of Terebratula infilled cavities in Porites—Tarbellastraea reefs during
the Tortonian (Barbera et al. 1995) or were present on the distal slope of Porites fringing reefs
during the lower Messinian (Llompart and Calzada 1982; Obrador et al. 1983; Videt 2003). Little is
known, however, about the paleoecology of Terebratula (Benigni and Robba 1990; Pavia and
Zunino 2008). Narrowing down the factors that led European Terebratulinae to extinction calls for
improving our knowledge about the habitats and the ecological niche occupied by these
terebratulids in their prime. This study is designed to help fill this gap by evaluating the
environmental conditions in the subenvironments where the Terebratula populations were at their
optimum in the Pliocene outcrops of the Aguilas Basin (SE Spain), as well as the paleoecological
boundary conditions onshore and offshore of this optimum. More specifically, we estimate
environmental tolerances of this brachiopod with respect to water depth, bottom oxygenation,
bottom temperature, productivity, and organic enrichment. This study area is among the most
suitable for this purpose, because abundant and almost monospecific shell beds of Terebratula
occur here cyclically in a mixed temperate carbonate—siliciclastic system (Garcia-Ramos and
Zuschin 2019).
Study Area and Paleoenvironmental Setting

The Aguilas Basin (SE Spain) is located in the southwestern inner sector of the tectonic
Aguilas Arc (Fig. 1A,B), in the Internal Betic Zone (Coppier et al. 1989). The Aguilas Basin was a
small embayment (about 14 km wide) during the early Pliocene (Fig. 1C) (Garcia-Ramos and
Zuschin 2019).

The studied brachiopods belong to a sequence of late Zanclean age (MPI3 planktic
foraminiferal biozone of the Mediterrancan Pliocene; for the biozonation, see Iaccarino et al. [2007]
and Corbi and Soria [2016]). The present study also yielded scarce specimens of the nannoplankton
species Reticulofenestra cf. cisnerosi at the base of the sequence. This occurrence, together with the

absence of Discoaster tamalis and the association with Globorotalia puncticulata and Globorotalia
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margaritae, constrains the age of the base of the sequence to the older part of Subchron C3n.1r

(between 4.52 and 4.42 Ma), according to the biostratigraphic scheme of Lancis et al. (2015).
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FIGURE 1. A, Location of the Aguilas Arc in southeast Spain (adapted from Bardaji et al. 2001). B,
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the Aguilas Basin during the Zanclean (adapted from Garcia-Ramos and Zuschin 2019).

The studied strata define originally inclined units that were deposited on a slope (termed
“clinobeds”), which were interpreted to reflect high-frequency and low-amplitude relative sea-level
changes (Garcia-Ramos and Zuschin 2019). Sedimentologically, these clinobedded units are
consistent with sand-prone subaqueous delta-scale clinoforms (sensu Patruno et al. 2015), which
developed entirely below sea level. The most proximal deposits are bioturbated coarse sands,
followed distally by rhodolith-rich finer-grained sediments (rhodalgal facies). Both facies
correspond to the topset of the clinoforms (Fig. 2A). Following a biological benthic zonation (i.e.,
Gili et al. 2014), these environments were interpreted as mediolittoral to infralittoral (foreshore to
upper shoreface) and lower infralittoral to upper circalittoral (lower shoreface) (Garcia-Ramos and
Zuschin 2019). The rhodolith debris disappears gradually toward the basin, giving way to fine-
grained sands rich in the polychaete Ditrupa arietina along with benthic and planktic foraminifera.
The disappearance of the rhodoliths distally can be interpreted as a transition zone from the upper

circalittoral to the lower circalittoral (Basso 1998; Cameron and Askew 2011; Gili et al. 2014). This
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facies transition between rhodalgal and Ditrupa-rich deposits was also interpreted as the offshore
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FIGURE 2. A, Depositional setting of the late Zanclean sediments in the study area and the

paleoenvironmental distribution of Terebratula across the depositional profile. Included are a
biological benthic zonation slightly modified from Gili et al. (2014) and a sedimentological
zonation based on Pomar and Tropeano (2001) and Garcia-Ramos and Zuschin (2019). The
depositional profile is adapted from Pomar et al. (2015). B, Field photo of subaqueous delta-scale
clinoforms, with outcrop photos of biofacies along a proximal-distal gradient: Schizoretepora-
rhodolith debris, Schizoterepora and Terebratula biofacies (adapted from Garcia-Ramos and

Zuschin 2019).
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transition zone (OTZ) based on sedimentological evidence; it coincides with the topset—foreset
transition (i.e., upper rollover) of the clinoforms (Garcia-Ramos and Zuschin 2019). The Ditrupa
facies in this transition zone to the lower circalittoral corresponds to the foreset of the clinoforms
(Fig. 2A). The most distal facies in our area is fine-grained muddy sands with the characteristic
pectinid Costellamussiopecten cristatum occurring as dispersed, disarticulated shells (Fig. 2A,
bottomset of the clinoforms). These deposits can be interpreted as formed in upper offshore
environments, also within the transition zone to the lower circalittoral.

In the above facies, 5- to 20-cm-thick monospecific pavements of Terebratula calabra
(Figs. 2B and 3A,B) are interspersed cyclically (Fig. 2A). Locally the pavements also yield rare
specimens of the rhynchonellid Aphelesia bipartita. As a rule, the greatest Terebratula
concentrations occur in the transition between the foreset and the bottomset (the lower rollover
zone) (Fig. 2A,B), where the Terebratula pavements show loosely to densely packed biofabrics
(Figs. 2B and 3B). The density of Terebratula decreases toward more proximal (foreset) and more
distal positions (bottomset) (Figs. 2A and 3C) in the depositional profile. The rhodalgal facies
(lower shoreface) also contains rare, isolated specimens of Terebratula (Fig. 3D,E). The shells in
the pavements are mostly complete, articulated, and minimally encrusted by epizoans or bioeroded
(recording rare traces of Podichnus obliquus produced by conspecifics). These concentrations were
interpreted as parautochthonous assemblages in relatively shallow-water but offshore (circalittoral)
environments during stages of reduced sedimentation rates (for details, see Garcia-Ramos and
Zuschin 2019). A recognizable 1.5- to 2-m-thick bed dominated by Terebratula in the study area
shows loose to densely packed biofabrics (Fig. 3F-J). The taxonomic richness in this bed is
distinctly higher than in the pavements. In this bed, the “Terebratula biostrome,” highly altered
shells occur admixed with clusters of well-preserved terebratulids, some of which can be interpreted
as biological clumps (sensu Kidwell et al. 1986). This suggests that the terebratulids were

autochthonous (Garcia-Ramos and Zuschin 2019). Many shells in the biostrome are bioeroded by
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FIGURE 3. Paleoenvironmental features of Terebratula calabra outcrops in the Aguilas Basin. A, An
articulated specimen of 7. calabra. B, Densely packed pavement TP1 at the toeset subenvironment.
C, Loosely packed biofabrics on a plane bed at the bottomset. D, E, isolated Terebratula specimens
in the rhodolithic hybrid floatstone facies. The arrows in D pinpoint typical shoreface taxa:
Gigantopecten latissimus, Spondylus crassicosta, and Aequipecten opercularis, while the circle in
D highlights a Terebratula specimen. F—J, Densely packed biofabrics from the “Terebratula
biostrome.” K—R, Macrobioerosion traces on specimens from the biostrome: Entobia isp. (K),

Gnathichnus pentax (L), Caulostrepsis taeniola (M), Renichnus arcuatus (N), Podichnus obliquus
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(O), same ichnospecies with abrasion marks from the foramen rims (P), Centrichnus
eccentricus(Q), Anellusichnus isp. and Oichnus simplex indicated by arrows (R), specimens of

Novocrania anomala from the biostrome (S).

clionaid sponges (Fig. 3K), although other traces also occur in low abundance (Fig. 3L—R). The
rasping trace Gnathichnus pentax (Fig. 3L) is represented, whereas the rasping trace Radulichnus
isp. 1s absent (Garcia-Ramos and Zuschin 2019). Molinu et al. (2013), who studied microbioerosion
traces affecting Terebratula specimens from the biostrome at the Canada Brusca E-2 section,
reported that the traces produced by fungi were dominant, although the microendolith trace
Rhopalia clavigera (the product of chlorophytes) is also represented. The “Terebratula biostrome,”
compared with the pavements, yields additional brachiopod taxa: the craniid Novocrania anomala
(Fig. 3S), often encrusting disarticulated shells of Terebratula, is relatively common. In contrast,
Megathiris detruncata, Megerlia truncata, Terebratulina retusa, A. bipartita, and Maltaia moysae
are rare or very rare.

From a morpho-sedimentary viewpoint, these clinoform systems have also been referred to
as “infralittoral prograding wedges” (Hernandez-Molina et al. 2000; Pomar and Tropeano 2001).
Assuming the latter genetic model, the transition between the topset and the foreset of the
clinoforms (i.e., the upper rollover) is coincident with the storm-weather wave base (lower
shoreface—offshore transition) (Fig. 2A). A minimum water depth for this environment was
probably about 25-30 m, in line with data from Recent examples from the Western Mediterranean
(Hernandez-Molina et al. 2000; Betzler et al. 2011) and the coralline algal assemblage (Garcia-
Ramos and Zuschin 2019). The vertical distance between the lower and upper rollover in the
clinoform between clinothems 5 and 6 (Garcia-Ramos and Zuschin 2019) is 29 m (Fig. 2B). This
suggests a water depth of 54-59 m for the foreset—bottomset transition of the clinoforms (i.e., the
lower rollover), without considering lithostatic compaction. During stages of low-amplitude (~15—

20 m) relative sea-level rise pulses (Garcia-Ramos and Zuschin 2019), the water depth of the lower
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rollover and bottomset was an estimated 70—80 m (Fig. 2A).
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FIGURE 4. Synthetic sections from the Cabezo Alto, Canada Brusca, and Cafiada Blanca areas
(adapted from Garcia-Ramos and Zuschin 2019). The Cabezo Alto section, the focus of this study,
is also indicated as CA.1. The studied Terebratula samples are indicated with black stars. fs = fine

sand; ms = medium sand; cs = coarse sand; g = gravel.

Material and Methods

Brachiopod assemblages are well represented, and crop out cyclically, in the Aguilas Basin
(SE Spain) (Fig. 1A,B). To evaluate the range of paleoenvironmental conditions, we studied the
micropaleontological content of 26 bulk samples of friable sediment from the Cabezo Alto (CA)

section (Fig. 4). The CA section was chosen because it records a vertical succession continuously
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exposing the main facies in the study area (including two Terebratula pavements: samples CA10
and CA15) (Fig. 4). The CA section is a suitable template for comparison with other Terebratula
outcrops from the same stratigraphic sequence (three additional samples from Terebratula
pavements [TP1, TP2, and TP3] and one from the “Terebratula biostrome” [sample TB]).
Comparison between CA and other outcrops helps assess the variability of the environmental
conditions associated with the presence and absence of Terebratula in the studied localities.

The samples were screened to study benthic and planktic foraminifera and calcareous
nannoplankton. Each of the three taxonomic groups was studied and analyzed as separate data sets.
For each sample, >200 specimens of benthic foraminifera (>100 in the case of planktics) in the
125-500 pm fraction (Weinkauf and Milker 2018) were identified to species level whenever
possible and counted. Only tests >50% complete, which included diagnostic features, were
considered. For calcareous nannoplankton, smear slides were prepared using standard procedures
and examined under the light microscope (cross and parallel nicols) at 1000x magnification. The
occurrence of ascidian spicules was noted. Quantitative data were obtained by counting at least 300
specimens from each smear slide. A further 100 view squares were checked for important species to
interpret the biostratigraphy and paleoecology of the calcareous nannoplankton. Among
reticulofenestrids, we followed the general distinction based on size (Young 1998): Reticulofenestra
minuta (<3 um), Reticulofenestra haqii (3—5 um), Reticulofenestra pseudoumbilica (5—7 pm), and
R. pseudoumbilica (>7 pm).

Before subsequent analyses, differences in sample size were accounted for by rarefying the
Q x R matrix with count abundance data of benthic foraminifera so that each sample contained 200
specimens (100 specimens in the planktic foraminiferal data set). This was accomplished using the
function rrarefy of the package vegan (Oksanen et al. 2018). All subsequent analyses were
conducted in the R statistical environment, v. 3.5 (R Development Core Team 2018). The
resampling process was repeated 100 times, and the mean data set was used for further analysis. For

benthic foraminifera, species with relative abundances below 3% were discarded. The variability of
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the environmental parameters is shown in box plots by comparing samples where Terebratula was
abundant, rare, or formed the biostrome. Samples lacking Terebratula were segregated between
bottomset and foreset subenvironments (both in the transition zone from upper to lower
circalittoral) (Fig. 2A) based on facies analysis conducted by Garcia-Ramos and Zuschin (2019).
Benthic Foraminiferal Assemblages and Bathymetry

We used a Q-mode nonmetrical multidimensional scaling (NMDS) as an ordination method
to visualize in the Bray-Curtis multivariate space the position of the samples containing Terebratula
along the environmental gradient encompassing bottomset and foreset subenvironments at the CA
section. Differences in the composition of benthic foraminiferal assemblages among bottomset,
foreset, and Terebratula samples were additionally evaluated with a test of permutational
multivariate analysis of variance (PERMANOVA, function adonis in package vegan). The variation
in composition of such assemblages was examined with a permutational analysis of multivariate
dispersions (PERMDISP, function betadisper in package vegan). Facies occurring in shallower
environments (e.g., the rhodalgal facies) were excluded from the analysis, because this facies
consists of hardened rock that hampers the extraction of foraminiferal tests. The composition of
benthic foraminifera in the samples containing Terebratula is shown in bar plots. The composition
of the remaining samples can be checked in a two-way cluster analysis (Supplementary Fig. 1).

Additionally, we provide estimates for bathymetry using the transfer function proposed by
Baldi and Hohenegger (2008). This approach was applied using benthic foraminiferal species with
both non-overlapping and overlapping depth ranges. The depth ranges of benthic foraminifera were
mainly compiled from Sgarrella and Moncharmont Zei (1993), Altenbach et al. (2003), Hohenegger
(2005), Rasmussen (2005), Spezzaferri and Tamburini (2007), Sen Gupta et al. (2009), Phipps et al.
(2010), and Milker and Schmiedl (2012). The same transfer function, weighted by the mean, was
applied on the vertical distribution range of planktic foraminiferal species to estimate minimum
water-column depth. The depth ranges of planktic foraminifera were compiled from Rebotim et al.

(2017). For comparison, we also computed depth estimates based on the plankton/benthic ratio
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(P/B) using the regression function by Van der Zwaan et al. (1990).

Ecological Groups of Benthic Foraminifera as Proxies for Oxygenation and Organic Enrichment
Changes in organic matter content are often coupled with reduced oxygen concentrations at
the seafloor (Jorissen et al. 1995; Koho et al. 2008). An increase in organic matter is evaluated by
analyzing changes in the proportional abundance of foraminiferal species assigned to five
ecological groups (EG1 to EGS5). These groups were proposed based on different degrees of
opportunistic species’ response to varying levels of organic matter enrichment (Alve et al. 2016;
Jorissen et al. 2018). We used only species whose proportional abundance was >3%, because
ecological information on rare species is often not available. For visualization in box plots,
percentages were recalculated after discarding rare species (Dominici et al. 2008). For some
quantitatively important species (e.g., Planulina ariminensis) not listed by Alve et al. (2016) and
Jorissen et al. (2018), a tentative attribution to a category of EG was attempted based on literature
evidence (e.g., Rasmussen 2005). In this study, for each EG, we report the proportion of taxa,
including unlisted species that were tentatively attributed to a corresponding group. We denoted this
as the “aggregated ecological group” (AEG). To visualize the results, we used the conceptual
TROX model (Jorissen et al. 1995), representing the Terebratula samples in a scheme adapted from

Koho et al. (2008) by incorporating the main benthic foraminiferal species found in our samples.

Productivity and Water Temperature

The ecological and environmental distribution of extant species of planktic foraminifera is
associated with levels of primary productivity and temperature (roughly warm-oligotrophic vs.
cold-eutrophic species) (Hemleben et al. 1989; Sierro et al. 2003). The taxonomy generally follows
the concepts of Kennett and Srinivasan (1983) with consideration of other sources (e.g., Poore and
Berggren 1975; Malgrem and Kennett 1977; Darling et al. 2006; Schiebel and Hemleben 2017).

Productivity based on planktic foraminiferal assemblages was assessed by comparing samples
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containing Terebratula with those where it was absent. The attribution of the planktic species to a
category (warm-oligotrophic vs. cold-eutrophic) was based on information provided by Spezzaferri
et al. (2002), Sierro et al. (2003), and Incarbona et al. (2013). We performed a modern analogue
technique (MAT) with the packages analogue and analogueExtra (Simpson 2007) to estimate sea-
surface temperature (SST) from the Aguilas Zanclean samples. As a training data set, we used the
modern North Atlantic planktic foraminiferal data set from Kucera et al. (2005), available at the
Pangaea repository. The fossil species were standardized with the closest extant relatives using the
morphogroups proposed by Serrano et al. (2007). The exception was that we included Globorotalia
hirsuta as a proxy for G. margaritae (e.g., Globoturborotalita rubescens was taken as a proxy for
Globoturborotalita gr. apertura;, Globorotalia inflata for G. puncticulata; Globigerinoides ruber
[lumping pink and white types] for Globigerinoides obliquus and Globigerinoides extremus). We
computed an NMDS ordination of the modern data set and the Aguilas samples, and we
superimposed the calculated SST isotherms on the ordination plot using the function ordisurf from
vegan. The variance of the Kucera et al. (2005) data set explained by SST was calculated with
canonical correspondence analysis (CCA).

To evaluate bottom-water temperatures, we selected 12 specimens of Terebratula calabra
collected from different stratigraphic intervals and shell beds from the Aguilas Basin for oxygen
isotope analysis. The specimens were embedded in resin and cut along a longitudinal axis to
produce thin sections, which were subsequently screened for diagenetic alteration with the
cathodoluminescence microscope Technosyn 8200 MK II at the GeoZentrum Nordbayern,
University Erlangen—Nuremberg. Selected samples of nonluminescent 7Terebratula shells were
polished, etched in 5% HCI solution for 15 seconds (Crippa et al. 2016), sputtered with gold, and
photographed under a scanning electron microscope (Jeol JSM 6400) at the University of Vienna.
Carbonate powders extracted with a microdrill from the secondary layer somewhat posterior to the
middle part of the shell were reacted with 100% phosphoric acid at 70°C using a Gasbench II

connected to a Thermo Fisher Delta V Plus mass spectrometer at the GeoZentrum Nordbayern,
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University Erlangen—Nuremberg. All values are reported in per mil relative to VPDB.
Reproducibility and accuracy were monitored by replicate analysis of laboratory standards
calibrated by assigning 8'°C values of +1.95%0 to NBS19 and —47.3%o to IAEA-CO9 and §'*0
values of —2.20%o to NBS19 and —23.2%o to NBS18. Reproducibility for 8"°C and §'*0 was £0.09
and £0.08 (1 SD), respectively. To estimate temperatures from oxygen isotopes, we used the
equation from O’Neil et al. (1969). We assumed a seawater 8'°Ogy = +1.5%0 VSMOW for the
western Mediterranean in the late Zanclean, based on Recent seawater composition in the eastern
Mediterranean (Schmidt 1999; Rohling 2013). Sample S104 was identified as an outlier and was

excluded from analysis.

Results
Benthic Foraminiferal Assemblages and Bathymetry of the Terebratula Samples

The Q-mode NMDS ordination plot (Fig. 5A) shows that the samples with Terebratula
occupy a transitional position between Terebratula-barren bottomset and foreset samples, as was
already observed from lateral facies variations in the field (Fig. 2B). The exceptions are CA10 (a

bottomset sample with rare Terebratula) and TB (“Terebratula biostrome”), which shows affinity
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FIGURE 5. A, Q-mode nonmetrical multidimensional scaling (NMDS) ordination. Samples
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containing Terebratula mostly occur at the transition from foreset to bottomset. B, Box plots of
depth estimates using the transfer function from Baldi and Hohenegger (2008) and the regression
equation for planktic/benthic ratio from van der Zwaan et al. (1990). BF stands for Benthic

Foraminifera and PF stands for Planktic Foraminifera.

with the samples at the base of the CA section. PERMANOVA finds a significant difference among
bottomset, foreset, and Terebratula samples, but only ~19% of the total variance is explained by
these groups. Permutation tests applied on PERMDISP find a significant although moderate
compositional variation between the bottomset and foreset samples (permutest: F* =4.77,df =2, p
= 0.022), whereas a post hoc Tukey’s honest significant difference test for multiple comparisons
among groups indicates a significant compositional difference only between bottomset and foreset
samples (p = 0.013). The benthic foraminiferal composition of the samples containing Terebratula

is characterized, in general, by the dominance of Bolivina gr. dilatata and Cassidulina carinata,
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FIGURE 6. Relative abundane of benthic foraminiferal species in the Terebratula samples with 95%

confidence intervals (percentile method). Only species with relative abundance higher than ~3% are
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shown. CA, Cabezo Alto; TP, Terebratula pavement.

followed by cibicidids and asterigerinids (Fig. 6). The TB sample is dominated by cibicidids. The
equation of Baldi and Hohenegger (2008) yielded depth estimates of ~50 to 90 m for the
Terebratula samples when including non-overlapping shallow-water species and the vertical
distribution range of planktic foraminifera (Fig. 5B). These values are consistent with estimates
based on sedimentological models. Removing non-overlapping shallow-water species yielded
bathymetric estimates of ~90 to 125 m. The regression function by Van der Zwaan et al. (1990)
returned unrealistic depth estimates for the Terebratula samples (50-200 m), most probably

because of onshore transportation of planktic foraminifera by currents (Murray 1976).

Organic Carbon Enrichment and Oxygenation

The box plots show that samples with Terebratula contain a slightly higher proportion of
benthic foraminifera belonging to the EG of “sensitive species” (AEG1) compared with samples
where Terebratula is absent (Fig. 7). The Terebratula-containing samples vary between ~35% to
~60% of AEGI (in the TB sample), the latter being the maximum value in the data set. All these
samples fall within the range shown by samples devoid of Terebratula with regard to the proportion
of benthic species belonging to the EGs of “indifferent species” (AEG2), “tolerant” (AEG3), and
“second-order opportunists” (EG4). Most Terebratula samples, however, display low proportions
(~10%) of benthic species of EG4 (Fig. 7). The exception is sample CA10, a bottomset sample,
which contains ~20% of EG4 species and rare Terebratula. In the whole data set, “first-order

opportunists” (EG5) were absent.

Productivity
The Terebratula samples fall within the ranges of cold-eutrophic and warm-oligotrophic

species contained in the Terebratula-barren samples (Fig. 8A). Sample CAI10 displays the
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maximum proportion of cold-eutrophic species (~60%), whereas TB yields a relatively low
proportion (~30%) (Fig. 8A). Overall, the Terebratula samples are dominated by warm-oligotrophic
species, except for sample CA10 (Fig. 8A). The NMDS ordination of the nannoplankton (Fig. 8B)
shows that the sample with rare Terebratula is associated with a Calcidiscus leptoporus—
Coccolithus pelagicus assemblage, whereas the sample with abundant Terebratula is included in the
Reticulofenestra small assemblage. In six additional Terebratula outcrops, nannoplankton were rare
in four samples and absent in the other two. The samples with rare nannoplankton, however, contain

the Calcidiscus leptoporus—Coccolithus pelagicus assemblage.

Seawater Temperature
The MAT analysis using data from Kucera et al. (2005) shows that SST ranges from ~16°C

(for sample CA10) to ~22°C (samples TP1, TP3, and Terebratula biostrome) (Fig. 9). The
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partitioned into Terebratula-barren bottomset and foreset samples and those samples with rare,
abundant, or biostrome-forming Terebratula. The conceptual scheme regarding the faunal response
of benthic foraminiferal ecological groups (EG) to organic enrichment is based on Alve et al. (2016)

and Jorissen et al. (2018).
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the standardized Pliocene samples from the Aguilas Basin (squares, diamonds, and triangles) and
the Kucera et al. (2005) extant data set (circles). The calculated sea-surface temperature (SST) for
the Pliocene samples is based on the modern analogue technique. SST isotherms are superimposed
on the NMDS plot with the ordisurf function in R. Black line: the range of SST covered by the

Pliocene samples.

ot

500 pm
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FIGURE 10. A—C, Scanning electron microscope (SEM) images of ultrastructural details of
Terebratula from the study area. The shells display good preservation of the fibers in the secondary

layer. D-F, Nonluminescent shells of Terebratula, although some of the punctae are luminescent.

Table 1. Oxygen isotope values from the secondary layer of Terebratula specimens from the study area, with estimation
of the temperature.S104 is an outlier and not considered for the interpretation.

Sample  Outcrop 8"0.a1c "0, Teare °C 8”0, Teare °C
(%o V-PDB) (%o (O’Neil et al., 1969) (%0 VSMOW)  (O’Neil
VSMOW) et al.,
(Rohling, 1969)
2013)
S74 CBl.Tereb.Biost. 1.16 1.5 17.1 0 10.7
S75 CBl.Tereb.Biost. 0.83 1.5 18.6 0 12.1
S77 TP2 0.97 1.5 17.9 0 11.5
S78 CBrE1.Tere.Biost.  0.43 1.5 20.4 0 13.8
S79 Tere.pav.Balsa 1.16 1.5 17.1 0 10.7
S80 TP1 0.92 1.5 18.2 0 11.7
S81 CA.28 0.71 1.5 19.1 0 12.6
S83 Ter.pav.Balsa 0.91 1.5 18.2 0 11.7
S85 TP3 0.53 1.5 19.9 0 13.3
S86 TP2 0.36 1.5 20.7 0 14.1
S87 CA.15 0.84 1.5 18.5 0 12
S88 CBl.Tereb.Biost -0.32 1.5 23.8 0 17
S102 CA.28 0.91 1.5 18.2 0 11.7
S103 CA.28 0.57 1.5 19.7 0 13.2
S104 CA.28 -1.91 1.5 31.6 0 243
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Regarding the oxygen isotopes, the Terebratula samples displayed a good preservation of
the secondary layer fibers (Fig. 10A—C). The exception is sample S86, which shows cracks in the
fibers. All analyzed Terebratula samples were nonluminescent, except for the punctae in some
specimens (Fig. 10D-F). The volume of nonluminescent shell material is far greater than that of the
sediment infilling the punctac. We therefore assume that the oxygen isotopic signal represents
primary, diagenetically unaltered values. The 8'®O, of the 12 Terebratula samples varies between
—0.32 and 1.16, with a mean value of 0.71 (Table 1). Assuming that the seawater 5'°O in the
Aguilas Basin during the late Zanclean was +1.5%o by analogy with the warmer Recent eastern
Mediterranean (Schmidt 1999; Rohling 2013), then the slgomlc values translate into temperatures
between 17.1°C and 23.8°C (mean: 19.1°C). Three measurements, done along the posterior—
anterior axis of an isolated Terebratula shell from the foreset facies (sample CA28) (measurements
S81, S102, S103), yield 81800311C values of 0.71, 0.91, and 0.57 VPDB. The calculated temperatures
are 19.1°C, 18.2°C, and 19.7°C, respectively. A fourth measurement from the anterior part of the

shell (S104) is considered to be an outlier (Table 1).

Discussion
Bathymetric Distribution

Terebratula calabra in the studied sequence of the Aguilas Basin is very rare or absent in
the rhodalgal facies (lower shoreface; ~25-30 m depth) (Figs. 2A and 4D,E) and in the deepest fine-
grained sandy facies (offshore) (Figs. 2A, 4C, and 5). The maximum population density occurs
close to (but notably below) the shoreface—offshore transition in fine-grained sands at estimated
paleodepths of about 60 to 90 m (Figs. 2A,B, 4B, and 5B). The benthic foraminiferal assemblage of
the Terebratula samples (Fig. 6) characterizes an offshore environment (e.g., Sgarrella and
Moncharmont Zei 1993; Rasmussen 2005; Milker et al. 2009; Frezza et al. 2010; Mojtahid et al.

2010).
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Substrate

Modern Terebratulida bathymetrically equivalent to Terebratula mostly occur in shallow
rocky habitats in bays and fjords (Supplementary Table 1). Terebratula species, instead, were
abundant in soft sediments: coarse to muddy sands (e.g., Gaetani 1986; Barrier et al. 1987,
Dominici 2001; Gramigna et al. 2008). Terebratula, like certain other brachiopods (Rudwick 1961;
Richardson 1981; Llompart and Calzada 1982), was potentially attached to ascidians, whose
spicules are pervasive in section CA. We did not quantify the percentage of Terebratula shells
affected by pedicle attachment traces (P. obliquus), but this trace is rare. This matches previous
reports on several species of Terebratula, in which 1% or less were affected by P. obliquus (Taddei
Ruggiero and Bitner 2008). Other members of Terebratulinae are known to facultatively form
clusters, such as Pliothyrina (Bell and Bell 1872; Rudwick 1961) and Liothyrella (Foster 1974;
Richardson 1981; Peck et al. 1997). A cluster of Terebratula calabra from the Aguilas Basin was

illustrated by Garcia-Ramos and Zuschin (2019).

Oxygenation, Organic Enrichment, and Productivity

Among the dominant benthic foraminifera in the Terebratula samples, a first group of
species (B. gr. dilatata, Bulimina aculeata, C. carinata) suggests that Terebratula in this basin was
subject to seasonal inputs of labile organic matter, possibly associated with episodes of dysoxia at
the seafloor (Barmawidjaja et al. 1992; Fontanier et al. 2003; Langezaal et al. 2006; Abu-Zied et al.
2008; Mendes et al. 2012). This interpretation is reinforced by the presence of the Calcidiscus
leptoporus—Coccolithus pelagicus nannoplankton assemblage in several Terebratula samples,
suggesting productivity pulses triggered by coastal upwelling (Silva et al. 2009; Auer et al. 2014).
In contrast, the “Reticulofenestra small” nannoplankton assemblage in sample CA15 points to an
opportunistic response to increased eutrophic levels, environmental disturbance, or water

stratification related to continental runoff or riverine input (Wade and Bown, 2006; Cori¢ and
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Hohenegger 2008; Auer et al. 2014). This latter assemblage correlates with warmer-water SST

T-Biostrome TP1-TP2 CA10-CA15  TP3

Vo

oligotrophic mesotrophic eutrophic

OXIC ZONE

sediment depth
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@
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FIGURE 11. TROX model (adapted from Koho et al. 2008) conceptually representing the range of
conditions interpreted for the Terebratula samples, marked by an inset. CA, Cabezo Alto; TP,

Terebratula pavement.

indicated by planktic foraminiferal assemblages (Supplementary Fig. 2). A second group of benthic
foraminifera (Heterolepa dutemplei, P. ariminensis, Ccibicides gr. refulgens, Discorbinella
bertheloti, Cibicidoides gr. pachyderma, Biasterigerina planorbis, and Cibicidoides lobatulus)
suggests oligotrophic, well-oxygenated background conditions under the influence of strong bottom
currents (Donnici and Barbero 2002; Schonfeld 2002; Szarek et al. 2006; Fontanier et al. 2008;
Koho et al. 2008; Schweizer et al. 2009; Frezza et al. 2010; Buosi et al. 2012). Background
oligotrophism and high oxygen levels are suggested by the proportional dominance of the
“sensitive” and “indifferent” EGs of benthic foraminifera (Fig. 7) and warm-oligotrophic planktic
foraminifera (Fig. 8A). Note here that the sample from the Terebratula biostrome (TB), however, is

mostly characterized by oxiphylic species such as C. gr. pachyderma and C. gr. refulgens, which are
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suspension-feeding epizoans (Koho et al. 2008; Schweizer et al. 2009). Our data from the Aguilas
Basin suggest, overall, that Terebratula preferred oligotrophic and well-oxygenated habitats, under
moderate to strong currents, but tolerated mesotrophic conditions and fluctuating concentrations of

oxygen levels at the seafloor (Fig. 11).
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FIGURE 12. A, Monthly sea-surface temperatures (SST) off Aguilas for the period 1981-2010 (data
from Guijarro et al. 2015). B, Comparison between SST estimated from modern analogue technique
using the Kucera et al. (2005) data set of planktonic foraminifera and bottom temperatures from
oxygen isotopes of Terebratula shells from the Aguilas Basin. Terebratula oxygen isotopes from
Styria, Guadix, and Gallina and Pliothyrina from the Coralline Crag are included for comparison.
The data were taken from Bojar et al. (2004), Clark et al. (2016), Rollion-Bard et al. (2016), and
Vignols et al. (2018). All temperatures were calculated using the equation given by O’Neil et al.
(1969). 8'*0, was assumed based on the values proposed by Lear et al. (2000) for the Styria and

Guadix samples. For the Pliothyrina samples, 8'*Og, was assumed as 0%o VSMOW.

Seawater Temperature
Modern (1981-2010) water temperatures off Aguilas (SE Spain) range from 13.5°C to

28°C (range = 14.5°C). The monthly averages are between 17°C and 22°C, and the annual mean is
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19.4°C (Guijarro et al. 2015) (Fig. 12A). The temperatures calculated from the oxygen isotope
ratios (min = 17.1°C; max = 23.8°C; mean = 19.1°C; Table 1), as well as MAT (min = 16.3°C;
max = 21.9°C; mean = 19.7°C), are consistent with the modern average temperatures. The MAT
results are similar for the Terebratula-barren and Terebratula-bearing samples (Fig. 12B). This
suggests that temperature alone does not explain the presence/absence distribution patterns of
Terebratula during the Zanclean. Given that Terebratula lived in offshore environments, the
temperatures derived from oxygen isotope ratios would not be representative of sea-surface
conditions. The assumption is that, for the Zanclean, Mediterranean SST was higher than today
(Templado 2014; Tindall and Haywood 2015). In the Aguilas Basin, during the late Zanclean,
other paleoclimatic proxies are the species Clypeaster cf. aegyptiacus, Echinolampas spp.,
Hyotissa sp., Talochlamys ercolaniana, Hinnites crispus, Spondylus crassicosta, and
Gigantopecten latissimus (Garcia-Ramos and Zuschin 2019). These species are considered to be
warm-temperate to subtropical taxa (Brébion et al. 1978; Avila et al. 2015). For these species,
Monegatti and Raffi (2001) proposed monthly average SST of 24°C-25°C for at least five to six
months. The relatively narrow range of temperatures obtained from oxygen isotopes (6.7°C; 3.6 °C
without the 23.8 outlier; Fig. 12B) suggests that Terebratula either preferentially lived below the
thermocline (cf. Houpert et al. [2015] for the seasonal thermoclines in the modern Mediterranean)
or grew during particular seasons of the year. “Terebratula” sp. from Styria (Langhian, Austria), 7.
cf. calabra from Guadix (Tortonian, Spain), and 7. scillae from Gallina (Calabrian, Italy) (Bojar et
al. 2004; Clark et al. 2016; Rollion-Bard et al. 2016) also display relatively narrow temperature
ranges: 4.9°C, 3.9°C, and 2.4°C, respectively. An exception is Pliothyrina maxima, another
member of Terebratulinae, from the Coralline Crag (Zanclean, UK), showing a large range of
11.1°C (Vignols et al. 2018). Importantly, however, the data in those studies are derived from a
sclerochronological approach on one or two specimens, sometimes mixing signals from the
primary and secondary brachiopod shell layers. Oxygen isotope ratios measured on the primary

shell layer and posterior and anterior parts of the shell should be interpreted with caution, because
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they are likely affected by nonequilibrium isotope fractionation (e.g., Romanin et al. 2018). The
similar brachiopod species Liothyrella uva from Antarctic waters is subject to temperature ranges
of only 2°C-3°C, not surviving above 4.5 °C (Peck 2005). In contrast, the cool-temperate
Liothyrella neozelanica experiences values between 8°C and 18°C (Lee 1991). The relatively
narrow temperature ranges of different Terebratula species should be further investigated as a
possible cause for their extinction during the dramatic climate changes of the late Pleistocene,
which would have left them insufficient time to adapt (Peck 2007). Note also that Terebratula not
surviving beyond the Jaramillo Subchron coincides with the onset of the strongest glacial—

interglacial shifts during the Pleistocene (e.g., Rohling et al. 2014).

Environmental Factors Limiting the Distribution of Terebratula in the Aguilas Basin

Terebratula had an optimum close to the OTZ, but why was the genus rare or absent in the
shoreface and basinward beyond the OTZ? Our data suggest that oxygenation levels, food
availability, or temperature—which have been invoked to explain the distribution of some
brachiopod species (e.g., Tunnicliffe and Wilson 1988; Kowalewski et al. 2002; Tomasovych et al.
2006; Peck 2007)—might not have acted as limiting factors in the Aguilas Basin. This is because

Terebratula appeared to be fairly tolerant to local variations in these parameters.

Preferred Habitat of Terebratula: Upper Offshore—The consistent pattern in the Aguilas
Basin is the peak abundance of Terebratula in sediments devoid of coralline algae. Accordingly,
light penetration might have exerted an important influence on the distribution of Terebratula in
relation to grazing pressure (Noble et al. 1976; Witman and Cooper 1983; Asgaard and Stenthoft
1984; Asgaard and Bromley 1991; Tomasovych 2008; Zuschin and Mayrhofer 2009; Radley 2010).
The bioerosion assemblages in the Terebratula biostrome are interesting because they display
affinity with the Gnathichnus ichnofacies (Bromley and Asgaard 1993; De Gibert et al. 2007).

Bromley and Asgaard (1993) proposed the Entobia ichnofacies for deep tier—dwelling borings in
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littoral rocky substrates subject to long exposure. The Gnathichnus ichnofacies, instead,
characterizes shallow-tier structures on briefly exposed substrates (i.e., shells) in deeper water (De
Gibert et al. 2007). The outcrop from the Pliocene Roussillon Basin (De Gibert et al. 2007), for
example, was a shoreface environment whose shell beds are mostly composed of ostreids and
pectinids. There, the dominant traces are G. pentax (rasping traces produced by regular echinoids
feeding on algae) and Radulichnus inopinatus (produced by the radular grazing activity of
gastropods or polyplacophorans) (De Gibert et al. 2007). In contrast, the dominant macrobioerosion
trace in the Terebratula biostrome is Entobia isp., whereas other traces such as G. pentax (Fig. 4L)
are rare (Molinu et al. 2013). Garcia-Ramos and Zuschin (2019) argued that the rare occurrence of
the bioerosion trace Gnathichnus on Terebratula shells, coupled with the absence of Radulichnus,
may indicate dim light or aphotic conditions, in line with interpretations elsewhere (Bromley 2005).
This interpretation is consistent with the microendolith assemblages reported by Molinu et al.
(2013) from the Terebratula biostrome. That assemblage is dominated by fungal traces
(Saccomorpha clava, Orthogonum lineare, Flagrichnus isp.), whose producers are more common in
relatively deep aphotic environments (e.g., Glaub 2004; Wisshak 2012). The microendolith trace R.
clavigera is also present in the Terebratula biostrome. The producer of this trace characterizes the
euphotic zone (Golubi¢ and Radtke 2008), but can also be common in deep euphotic habitats
(Wisshak 2012). Overall, the microendolith assemblages suggest irradiances around 0.01% or less
(Wisshak 2012), which classifies the habitat from the Terebratula biostrome as a transition from
upper to lower circalittoral (Cameron and Askew 2011). Such microendolith ichnoassemblages
pointing to dim light are consistent with the absence of coralline algae in the Terebratula samples.
The dysphotic zone (1-0.01% irradiance) can occur at depths between 40 and 120 m in some
Mediterranean localities (Ballesteros 2006). Recent shells of the brachiopod Gryphus vitreus are
affected by the endolithic green alga Ostreobium queketti (which is adapted to extremely low light
conditions) to a depth of 130-135 m off Corsica (Emig 2018). Similar benthic foraminiferal

assemblages as in the “Terebratula biostrome” (Fig. 6) occur at 70-80 m depth in the Strait of
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Bonifaccio (Buosi et al. 2012), which supports the above interpretation based on microendolith

ichnoassemblages.

Exclusion of Terebratula Offshore: The Upper Foreset—The rarity or absence of
Terebratula in shoreface environments was discussed earlier, but in the Aguilas Basin the
distribution of this brachiopod in upper offshore (circalittoral) environments is not homogeneous
(Fig. 2A). The peak density occurs in the foreset—bottomset transition (i.e., the lower rollover of the
clinoforms). Why was Terebratula rare or absent in the upper foreset? The rhodalgal facies
disappears basinward beyond the OTZ (coincident with the topset—foreset transition; i.e., upper
rollover zone) (Fig. 2A). This suggests that the upper foreset was already under poorly lit conditions
or other excluding environmental factors for coralline algae were present. Terebratula could have
potentially colonized this habitat, which was safe from high grazing pressure, but it was absent.
This pattern can be explained by peak sedimentation rates at the upper foreset (upper offshore,
circalittoral) due to its proximity to the upper rollover, which is a threshold between high and low
hydrodynamic conditions (from sediment advection and bypass at the topset to sedimentation at the
foreset) (Driscoll and Karner 1999; Cattaneo et al. 2007; Mitchell 2012). Thus, the environmental
conditions at the upper foreset likely surpassed the physiological capacity of Terebratula to cope
with sedimentation (Williams et al. 2018). Sedimentation rates decrease gradually down the foreset
(Mitchell 2012). Accordingly, the facies belt at the foreset—bottomset transition marks the threshold

of sedimentation rates tolerated by Terebratula.

Exclusion of Terebratula Offshore: Beyond the Lower Rollover—Terebratula density
rapidly decreases beyond the lower rollover basinward (Figs. 2A and 3C). This is coincident with
Gaetani (1986) and Barrier et al. (1987), who report 7. calabra as being restricted to proximal
circalittoral environments, whereas other Terebratulidina such as 7. scillae, G. vitreus, and

Stenosarina sphenoidea display a deeper optimum in the lower circalittoral and bathyal (Gaetani
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and Sacca 1985). A common pattern of subaqueous delta-scale clinoform systems is the
association with offshore currents running parallel to the shoreline along the foreset—bottomset
transition (e.g., Pomar et al. 2002; Cattaneo et al. 2007; Patruno and Helland-Hansen 2018). The
occurrence of aggrading sandwave fields migrating basinward at the localities of Terreros and La
Carolina (Garcia-Ramos and Zuschin 2019) demonstrates the sustained development of cyclonic
current systems during the late Zanclean in the Aguilas Basin (Fig. 1C). This interpretation is
supported by the dominance in the benthic foraminiferal assemblages of suspension-feeding
species that favor vigorous currents and by the abundance in the Terebratula biostrome of clionaid
sponges, which cannot cope with high levels of turbidity (Carballo et al. 1994; Taylor et al. 2003).
This pattern does not seem unique to the Aguilas Basin, because records of Terebratula at the
lower rollover and adjacent bottomset of delta-scale clinoforms are described elsewhere (e.g.,
Llompart and Calzada 1982; Pomar and Tropeano 2001; Soria et al. 2003; Videt 2003; Gramigna
et al. 2012; Massari and D’Alessandro 2012; Reolid et al. 2012). As brachiopods are facultatively
active suspension feeders (La Barbera 1977; Wildish and Kristmanson 1997), the attenuation or
disappearance of the along-slope currents basinward possibly affected the Terebratula
paleocommunity; this reflects the physiological cost of shifting from passive to permanently active
suspension feeding (La Barbera 1977; James et al. 1992). An analogous case of offshore and
onshore decrease in population density as a function of bottom current velocity has been described
for extant communities of the terebratulidine G. vitreus (Emig 1989; Emig and Garcia-Carrascosa

1991).

Environmental Distribution of Terebratulinae in Other Studies

Cenozoic to Quaternary Terebratulinae have often been found in relatively shallow-water
environments, from boulders at the toe of beach cliffs (Aigner 1983; Dixon 2011; Betancort et al.
2014) to intertidal and very shallow subtidal gravelly bottoms (Diedrich 2012). They often occur

adjacent to sandwave fields where tidal or other types of currents are present but attenuated (Barrier
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et al. 1987; Roetzel et al. 1999; Pomar and Tropeano 2001; Courville and Cronier 2003; Kroh et al.
2003; Bosselaers et al. 2004; Calvo et al. 2012; Reolid et al. 2012). Such conditions prevent burial
of the brachiopod paleocommunity by migrating subaqueous sandwaves. These brachiopods have
also been found close to submarine hard-bottom structures that they possibly colonized, including
shallow-water submarine cliffs (Kroh et al. 2003; Pervesler et al. 2011). Smaller species, such as
Maltaia maltensis and “Terebratula” styriaca, were able to inhabit crevices and sheltered
microenvironments in coralline algal buildups (e.g., Bianucci et al. 2011; M. Harzhauser personal
communication, 2019), cavities in coral reefs (Barbera et al. 1995), or in parareefal environments
(Conesa et al. 2007). In the Pleistocene, some species colonized dykes in seamounts and walls on
paleocliffs at bathyal depths (Ietto and Bernasconi 2005; Titschack et al. 2005). Other species have
also been reported from muddy bottoms at bathyal depths (Thomsen et al. 2005; Rogl et al. 2008),
but it remains to be determined whether these assemblages were transported. Most occurrences,
however, are associated with environments close to the lower shoreface—offshore transition and
upper offshore settings, often co-occurring with bryozoans and/or acorn barnacles (De Porta et al.
1979; D’Alessandro and Iannone 1982; Gaetani 1986; Studencki 1988; Taddei Ruggiero 1996;
Bitner and Pisera 2000; Montenat et al. 2000; Gramigna et al. 2008; Pavia and Zunino 2008; Puga-
Bernabéu et al. 2008; Di Stefano and Longhitano 2009; Messina et al. 2009; Long and Zalasiewicz
2011; Giannetti et al. 2018; 2019; Crippa et al. 2019). Terebratulid colonization of the photic zone
and their co-occurrence with coralline algae have sometimes been explained by the onset of
eutrophic conditions triggered by upwelling, which can be deleterious for phototrophic and
mixotrophic organisms (Brandano et al. 2016). Other authors interpreted that Terebratula, which is
often typical of monospecific to paucispecific assemblages, was an opportunist able to colonize
environments subject to disturbance associated with mesotrophic conditions (Massari and
D’Alessandro 2012). Overall, the available evidence points to Terebratula preferring habitats where
grazing disturbance was reduced because of poorly lit environments (e.g., Pedley and Grasso 2002;

Brandano et al. 2015).
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Conclusions

The late Zanclean deposits of the Aguilas Basin record cycles of Terebratula
paleocommunities that developed offshore (circalittoral) on fine-grained sediments deposited at the
foreset—bottomset transition of subaqueous delta-scale clinoforms. These deposits therefore provide
a good scenario to understand the paleoenvironmental distribution of this taxon in space and time.
The analysis of benthic and planktic foraminiferal and nannoplankton assemblages suggests that,
overall, Terebratula thrived in relatively warm, oligotrophic to mesotrophic, well-oxygenated
environments influenced by strong bottom currents. The oxygen isotopes showed that Terebratula
in this basin lived in a relatively narrow range of temperatures (6.7°C). Such narrow ranges have
also been reported for other species, potentially helping explain their extinction during the abrupt
climate changes of the late Pleistocene: these brachiopods may have been unable to adapt quickly
enough to such high-amplitude seawater temperature fluctuations after the Jaramillo Subchron. The
consistent occurrence of terebratulids in sediments devoid of coralline red algae, combined with the
bioerosion assemblages in the Terebratula biostrome, suggest that the limiting factor affecting the
onshore distribution of Terebratula was light penetration and the associated high grazing pressure.
This would explain the virtual absence of Terebratula in shoreface environments. Higher
sedimentation rates at the shoreface—offshore transition also excluded the Terebratula
paleocommunity in the upper foreset. In contrast, further offshore beyond the foreset—bottomset
transition, we conclude that the attenuation or disappearance of along-slope currents was

responsible for the lack of Terebratula populations.
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SUPPLEMENTARY FIGURE 1. Two-way (Q-mode, R-mode) Paired Group Average (UPGMA)

cluster analysis. The samples associated with Terebratula are indicated by thick white vertical lines.
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SUPPLEMENTARY FIGURE 2. Distribution of the main planktonic foraminifera (first two rows)
and calcareous nannoplankton (last row) taxa in the Cabezo Alto section. The red and blue bands
represent warm and cold periods identified with transfer functions of planktonic foraminifera.

Globigerinoides gr. ruber includes G. ruber, G. obliquus and G. extremus.
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equivalent to Terebratula.

Habitats features of modern
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Terebratulida bathymetrically

Species Bathymetry Environment Type of substrate Reference
Terebratalia Shallow (intertidal Small bays and  Rocky habitats Tomasovych (2008)
transversa down to 110 m; marine channels
optimum >20 m)
Terebratulina Mainly shallow Bay Rocks or boulders; Logan and Noble (1971)
septentrionalis (0-750; rarely shell fragments
optimum 35 m)
Magellania Shallow Fjord Solitary or clustered,; Forsterra et al. (2008)
venosa 2-35m; Mainly rocky (overhangs
optimum 15-20 m) at 2 m depth); rarely soft
sediments (attached
to coarse sand grains)
Liothyrella Mainly shallow Fjord Solitary and Foster (1974); Richardson (1981)
neozelanica (predominantly clustered; Rocky habitats
between 10 to 40 m, and sessile animals
but recorded on the substrate
down to 805 m) (also conspecifics)
Calloria Shallow Fjord Solitary and clustered; Richardson (1981)
inconspicua (intertidal to Rock to soft bottoms
subtidal) (mud to shell-gravel;
attached to molluscan,
worm, brachiopod shells
and crustose algae).
Magasella Shallow Fjord Solitary; rock surfaces Richardson (1981)
sanguinea (subtidal) to soft bottoms (mud to

shell gravel; attached
to molluscan, worm,
brachiopod shells
and crustose algae).
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Collective Conclusion

In southern Spain, and elsewhere in the Mediterranean, there are numerous outcrops from
relatively shallow-water environments that record Terebratula concentrations in the form of
pavements. An interesting observation is that these pavements occur embedded in facies which, to
the base or the top of the same unit, appear the same but otherwise lack brachiopods. Therefore at
close-up outcrop scale, facies of brachiopod-bearing units, per se, offer insufficient information to
explain the presence-absence patterns of this brachiopod. This dissertation presents the results of the
detailed studies on the important lower Pliocene outcrops in the Aguilas Basin (SE Spain). The aim
was to elucidate the habitat and the paleoenvironmental factors that shaped the distribution of 7.
calabra in different facies belts along a proximal-distal gradient.

Chapter 2 gathers integrative stratigraphic, sedimentological and paleontological features of
the SP1 informal stratigraphic sequence of the Aguilas Basin (SE Spain), which is exposed in the
Cabezo Alto — Cafiada Brusca — Cafiada Blanca landscapes. Vertical and lateral continuity of
different outcrops in the study area, close inspection of stratigraphic surfaces and stacking patterns
of different stratigraphic units enabled the interpretation of subaqueous delta-scale clinoforms
separating clinothems. Four main facies associations were found. Proximal deposits are
characterized by bioturbated coarse friable sands which grade distally into mixed carbonate-
siliciclastic finer-grained deposits rich in coralline red algae. These first two facies occur at the
topset of the clinoforms. Further distally, red algae disappear and sediments become finer-grained,
strikingly characterized by the dominance of polychaete tubes of Ditrupa arietina. This latter facies
corresponds with the foreset of the clinoforms. Finally, the Ditrupa facies gradually disappears and
gives way to a fine-grained facies characterized by dispersed C. cristatum. These latter materials are
the most distal facies belt recognized in the study area, and correspond with the lower rollover and
bottomset of the clinoforms. The Terebratula pavements occur interspersed in the C. cristatum
facies. A first obvious conclusion from this inhomogeneous presence-absence pattern of

Terebratula is that, whatever the environmental conditions conducive to the formation of the
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pavements, these were changing cyclically. The stratigraphic intervals immediately associated with
the Terebratula pavements contain K-poor glaucony which suggests that the pavements formed
sometime during periods when that particular environment was subject to low sedimentation rates.
The stages of low sedimentation rates were, however, not long enough as to allow maturation of
glaucony. This suggests that the Terebratula pavements were linked to high-frequency cycles of
decreased sedimentation rates. In outcrops recording shallower facies belts, it is possible to
recognize regressive surfaces of marine erosion, which conform with an overall falling stage
systems tracts. These shallower deposits, however, also record ravinement surfaces overlain by
shell-clast lags interpretable as transgressive surfaces. It can be concluded that despite an overall
regressive trend, the basin was punctuated by high-frequency pulses of relative sea-level rise. The
Terebratula paleocommunities were likely favored by the low sedimentation rates derived from
these pulses, when accomodation space was created further onshore and the bottomset of the
clinoforms periodically became sediment starved.

Low sedimentation rates alone, however, do not explain why the peak abundance of
Terebratula specimens was attained at the lower rollover of the clinoforms, because the
transgressive lags at the topset facies contain rare and disperse, or absent Terebratula. The
following step, attained in Chapter 3, tackled the analysis of seafloor oxygenation, nutrient
availability, temperature and light as possible factors influencing the distribution patterns of
Terebratula. These parameters were assessed in samples both containing and lacking Terebratula,
based on the integrative study of benthic and planktic foraminiferal, and nannoplankton
assemblages, and oxygen isotopes of the secondary layer of brachiopod calcite.

Results from microfossil assemblages show that the differences between Terebratula-barren
and Terebratula-abundant samples are not striking . It can be concluded that Terebratula in the
Aguilas Basin lived under background conditions of oxic seafloors and oligotrophism, although this
brachiopod was tolerant to seasonal variations of increased nutrient inputs and the associated

possible decrease in oxygen levels at the seafloor. Local temperature variations inferred from
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planktic foraminiferal assemblages did not likely affect the presence-absence patterns of
Terebratula in the study area.

The most obvious distributional pattern of Terebratula in the analyzed outcrops was its
abundance in sediments invariably lacking coralline red algae, which might indicate dim or aphotic
conditions or other environmental factors deleterious for coralline red algae. Previous studies on the
microbioerosion ichnoassemblages recorded in Terebratula shells from the biostrome, together with
the record of rare Gnathichnus and absence of Radulichnus macrobioerosion traces, also suggest
dim light or aphotic conditions, pointing to light irradiances of 0.01% or less. Turbid conditions as
an explanation for the low light levels are unlikely because the abundance of clionaid sponges, as
evidenced by their bioerosion traces on disarticulated Terebratula shells, indicates otherwise. It is
concluded that Terebratula was likely excluded from well-lit shoreface environments by grazing
pressure. Benthic foraminiferal assemblages in the Terebratula-containing samples are richer in
suspension feeding, current-loving species, compared with Terebratula-barren samples. The peak
density of Terebratula at the lower rollover of the clinoforms is interesting because there is cogent
evidence from recent and fossil examples of prograding wedges where the lower rollover is swept
by offshore along-slope currents. This distribution pattern has been recorded in some other outcrops
elsewhere in Spain and the Mediterranean region.

Oxygen isotope ratios from twelve samples of Terebratula shells from the study area show a
temperature range of about 7°C. This narrow range fits the findings for other species, which
suggests that Terebratula was probably vulnerable to sudden and dramatic temperature drops during
glaciations. The extinction of Terebratula coinciding approximately with the Jaramillo Subchron
supports the hypothesis of a glaciation-mediated extinction mechanism, because the onset of the
strongest streak of temperature drops during the Pleistocene started approximately after the
Jaramillo Subchron. The conclusion from the research presented in this dissertation is that the main
limiting factors for the distribution of Terebratula calabra were low sedimentation rates, dim light

or aphotic conditions (leading to little or no grazing pressure) and the presence of vigorous offshore
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currents which favoured suspension feeding with minimal energetic costs.
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Abstract

The brachiopod genera Terebratula, Pliothyrina and Maltaia, belonging to the subfamily
Terebratulinae, were species-rich and numerically abundant from the Oligocene to the Pleistocene
in relatively shallow-water environments in Europe: the pre-North Sea Basin, the Paratethys, the
Mediterranean, and some localities of Portugal, SW Spain, Morocco and the Canary Islands.
Despite their success in cool-temperate to subtropical environments during the Cenozoic,
overcoming competition and disturbance from mollusks, predators, grazers, bulldozing and
bioturbating organisms, the last representatives of the subfamily went extinct in the Pleistocene
(Calabrian). The optimal environmental conditions for Terebratula and its preferred habitat are
currently poorly known. The present dissertation presents the results about the investigation of the
stratigraphic and paleoenvironmental distribution of the terebratulidine brachiopod Terebratula
calabra from the lower Pliocene deposits in the Aguilas Basin (south-east Spain). This is an ideal
area to investigate the paleoecology of Terebratula because 1) outcrops are widespread and often
continuous vertically and horizontally, enabling the study of the variability of facies belts, the
recognition of important stratigraphic surfaces and the associated stacking patterns of the
stratigraphic units; 2) Terebratula skeletal concentrations are numerous and occur cyclically,
forming disperse to thin, densely packed pavements, and a biostrome (a 2-m-thick densely packed
Terebratula-dominated concentration cropping out along 850 m in the study area). The second
chapter of this dissertation presents sequence stratigraphic and sedimentological models of the
lower Pliocene sequence in the study area. The small-scale stratigraphic units were identified as
clinothems bounded by subaqueous delta-scale clinoforms. Regressive surfaces of marine erosion
coupled with downstepping stacking patterns point to a general trend of relative sea-level fall. It is
concluded that Terebratula paleocommunities thrived cyclically as a response to high-frequency
pulses of relative sea-level rise, due to an increase in accommodation space associated with an
onshore expansion of the coastal facies belts and the concomitant sediment starvation in offshore

environments occupied by the Terebratula paleocommunities. The third chapter of this
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dissertation focuses on paleoecological factors (bottom oxygenation, productivity, temperature and
light irradiance) as explanatory variables for the success of Terebratula along a proximal-distal
gradient. These factors were assessed by investigating the benthic and planktic foraminiferal, and
calcareous nannoplankton assemblages, and oxygen isotope ratios from the secondary layer of
Terebratula shell calcite. It is concluded that Terebratula was versatile, preferring well-oxygenated,
oligotrophic environmental regimes, but was able to tolerate fluctuating pulses of increased organic
matter input and the associated reduced oxygen levels at the seafloor. Paleotemperature derived
from planktic foraminiferal assemblages suggests that this parameter was not important at the local
scale for the success of Terebratula. Terebratula was rare or absent in shoreface environments.
Peak abundances of Terebratula were consistently found close to, but below, the offshore transition
zone where coralline red algae were absent. Previous investigations on microbioerosion
ichnoassemblages recorded in Terebratula shells, together with rare echinoid rasping trace
Gnathichnus pentax and the absence of shallower Radulichnus, suggest that Terebratula thrived in
dim light or aphotic conditions, probably excluded from shallower, better lit environments by
grazing disturbance. The disproportional distribution of Terebratula in offshore environments can
be explained by a combination of sedimentation rate gradients and offshore shore-parallel current
systems. The narrow range of paleotemperatures exhibited by different species of Terebratulinae,
derived from oxygen isotope ratios, suggests that the last members of the subfamily could not
survive the conspicuous temperature drops that occurred approximately during or after the Jaramillo

Subchron.
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Zusammenfassung
Die zur Unterfamilie Terebratulinae gehdrenden Brachiopodengattungen Terebratula, Pliothyrina
und Maltaia waren artenreich und vom Oligozédn bis zum Pleistozdn im relativ flachen
Meeresbereich in Europa hdufig: das Paldo-Nordseebecken, die Paratethys, das Mittelmeer, und
einige Orte in Portugal, Stidwestspanien, Marokko und den Kanarischen Inseln. Trotz ihres Erfolgs
in kiihl-gemaBigten bis subtropischen Umgebungen wihrend des Kinozoikums, der Uberwindung
der Konkurrenz und der Beeintrachtigung durch Mollusken, Rauber, Weidegédnger, Bulldozer und
bioturbierende Organismen, starben die letzten Vertreter der Unterfamilie im Pleistozén
(Kalabrium) aus. Die optimalen Umweltbedingungen fiir Terebratula und seinen bevorzugten
Lebensraum sind derzeit kaum bekannt. Die vorliegende Dissertation prasentiert die Ergebnisse zur
Untersuchung der stratigraphischen und paldodkologischen Verteilung des Terebratuliden
Brachiopodenart Terebratula calabra aus den unteren Pliozdnsedimenten im Aguilas-Becken
(Stidostspanien). Dies ist ein idealer Bereich, um die Paldodkologie von Terebratula zu
untersuchen, da 1) Aufschliisse weit verbreitet und haufig vertikal und horizontal verfolgbar sind,
was die Charakterisierung und Variabilitit von Faziesgiirteln ermdglicht; das Erkennen wichtiger
stratigraphischer Oberflichen und der damit verbundenen Stapelmuster der stratigraphischen
Einheiten; 2) Die Terebratula-Schalenkonzentrationen sind zahlreich, treten zyklisch auf und bilden
dispergierte, diinne, dicht gepackte Pflaster und ein Biostrom (eine 2 m dicke, dicht gepackte
Terebratula-dominierte Konzentration, die iber 850 m im Untersuchungsgebiet verfolgbar ist). Das
zweite Kapitel dieser Dissertation prisentiert sequenzstratigraphische und sedimentologische
Modelle der unteren Pliozénsequenz im Untersuchungsgebiet. Die kleinen stratigraphischen
Einheiten wurden als Klinotheme identifiziert, die durch subaquatische Klinoformen im Delta-
MafBstab begrenzt sind. Regressive Oberfldchen der Meereserosion in Verbindung mit absteigenden
Stapelmustern deuten auf einen allgemeinen Trend des relativen Meeresspiegelabfalls hin. Es wird
der Schluss gezogen, dass die Paliocommunities von Terebratula als Reaktion auf hochfrequente

Impulse desrelativen Anstieg des Meeresspiegels zyklisch erfolgte, da der Akkomodationsraum im
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Zusammenhang mit der Ausdehnung der Kiistenfaziesgiirtel zumLand hin und dem damit
einhergehenden Sedimentmangel in den von den Terebratula-Paliocommunities besetzten
Offshore-Umgebungen zunahm. Das dritte Kapitel dieser Dissertation befasst sich mit
paldodkologischen Faktoren (Sauerstoffanreicherung des Bodens, Produktivitit, Temperatur und
Lichtintensitét) als erkldrende Variablen fiir den Erfolg von Terebratula entlang eines proximal-
distalen Gradienten. Diese Faktoren wurden durch Untersuchung der benthischen und planktischen
Foraminiferen- und kalkigen Nannoplankton-Vergesellschaftungen sowie der
Sauerstoffisotopenverhiltnisse aus der sekundidren Schalenlage von Terebratula-Schalenkalzit
bewertet. Es wird der Schluss gezogen, dass Terebratula vielseitig war und sauerstreiche,
oligotrophe Umweltbedingungen bevorzugte, jedoch schwankende Impulse mit erhohtem Eintrag
organischer Stoffe und den damit verbundenen verringerten Sauerstoffwerten am Meeresboden
tolerieren konnte. Die aus planktischen Foraminiferen-Vergesellschaftungenabgeleitete
Paldotemperatur legt nahe, dass dieser Parameter auf lokaler Ebene fiir den Erfolg von Terebratula
nicht wichtig war. Terebratula war in Kiistengebieten selten oder nicht vorhanden.
Spitzenhdufigkeiten von Terebratula wurden konsistent in der Néhe, jedoch unterhalb der Offshore-
Ubergangszone gefunden, in der keine korallinen Rotalgen vorhanden waren. Frithere
Untersuchungen zurlchnovergesellschaftung von Mikrobioerodierern, die in Terebratula-Schalen
gefundenwurden, zusammen mit der seltenen Seeigel-Raspelspur Grathichnus pentax und dem
Fehlen von flacherem Radulichnus, legen nahe, dass Terebratula in schwachem Licht oder
aphotischen Bedingungen gedieh, wahrscheinlich ausgeschlossen von flacheren, besser
durchlichtetenUmgebungen durch Weidedruck. Die iiberproportionale Verteilung von Terebratula
in kiistenfernenUmgebungen kann durch eine Kombination von Sedimentationsratengradienten und
kiistenparallelen Stromungen erkldrt werden. Der enge Bereich der Paldotemperaturen
verschiedener Arten von Terebratulinae, abgeleitet von Sauerstoffisotopenverhéltnissen, legt nahe,
dass die letzten Mitglieder der Unterfamilie die auffilligen Temperaturabfille, die um den Jaramillo

Subchron auftreten, nicht tiberleben konnten.
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