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Abstract

There is no doubt that the next great technological revolution will be brought about by the
development of quantum technology. There are different approaches to build a universal quan-
tum computer; from cold atoms or trapped ions, all the way to photons or superconducting
circuits. Although these architectures are quite disparate, they each have many advantages
and disadvantages. Therefore, it is not yet clear which the winning horse will be. In pho-
tonic quantum computing, the weak interaction of photons with their environment provides
extremely long coherence times that could enable the realization of complex and intricate
quantum algorithms. On top of this, they already allow one to transmit quantum informa-
tion over very long distances with unbeatable speed and security. However, at the same time,
this weak interaction with their surroundings hinders photon-photon interactions. As a result,
the main drawback of photonic quantum computing is the lack of deterministic single-photon
sources and quantum logic gates. Nevertheless, these challenges could be overcome by strong
nonlinearities at the single-photon level.

In this thesis, I have worked both towards deterministic single-photon sources and quan-
tum logic gates by taking advantage of the strong nonlinearity of graphene. On one hand, I
propose a novel universal square-root of SWAP gate based on surface plasmons in graphene
nanoribbons, whose strong nonlinearity provides a two-plasmon absorption larger than the
single-plasmon absorption. This gives rise to a Zeno effect that prevents the system from
evolving into failure states of the gate. The 99% success probability of our proposed gate
could bring us closer to deterministic quantum gates, which would enable universal and scal-
able quantum computation. The strong two-plasmon absorption that this gate requires arises
from the plasmon-assisted third-order nonlinearity in graphene, which has been predicted to
be unprecedentedly high but has not yet been observed. To this end, we have experimentally
explored the third-order nonlinearity in graphene by combining plasmons in graphene-metal
heterostructures. Although the observed nonlinearity is not yet strong enough to drive non-
linear processes at the single-photon level, we measured an enhancement of 1500 on the
third-harmonic signal and we found evidence of graphene plasmons present in the optical
nonlinearity. This clearly indicates the potential of graphene to perform nonlinearities at the
single-photon level.

Finally, parallel to the graphene investigations, we have implemented the first counterfactual
communication protocol that relies on the Zeno effect to transmit a message without a weak
trace of the photons travelling in the same direction. This experiment was carried out on
a silicon-on-insulator nanophotonic processor, whose stability and tunability allowed us to
counterfactually send a message from Bob to Alice while single-photons traveled from Alice
to Bob with a bit error rate below 1%.
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Zusammenfassung

Die nächste große technologische Revolution wird zweifelsfrei durch Entwicklungen in der
Quantentechnologie eingeleitet werden. Um den erhofften Durchbruch von Quantencomput-
ern zu ermöglichen, gibt es unterschiedliche physikalische Systeme und Herangehensweisen;
von kalten Atomen und Ionen bis hin zu Photonen oder supraleitenden Schaltkreisen. Obwohl
sich diese unterschiedlichen physikalischen Strukturen sehr stark voneinander unterscheiden,
haben alle ihre eigenen Vor- und Nachteile was das Rennen, welches System sich schlussendlich
durchsetzen wird, zum jetzigen Zeitpunkt völlig offenlässt. Photonische Quantencomputer
haben aufgrund der geringen Wechselwirkung zwischen Photonen und ihrer Umgebung, und
den damit verbundenen langen Kohärenzzeiten, das Potential, komplexe Quantenalgorithmen
realisierbar zu machen. Schon jetzt werden Photonen in der Quanteninformationstechnologie
genutzt, um Daten sicher, schnell und über große Distanzen hinweg übertragen zu können.
Andererseits ist genau diese schwache Wechselwirkung zwischen einem Photon und seiner
Umgebung, und damit auch jene zwischen einzelnen Photonen selbst, das größte Hindernis
für photonische Quantencomputer; es fehlt bis heute an deterministischen Einzelphotonen-
quellen und Quantengattern. Diese Herausforderungen könnten jedoch durch den Einsatz von
starken Nichtlinearitäten auf Einzelphotonenniveau überwunden werden.

In dieser Dissertation beschäftige ich mich sowohl mit deterministischen Einzelphotonen-
quellen als auch mit Quantengattern unter Ausnutzung der starken optischen Nichtlinearität
von Graphen. Ich zeige ein neues und universelles Quadratwurzel-SWAP-Gatter basierend
auf Oberflächenplasmonen in Graphen-Nanobändern. Durch die starke Nichtlinearität dieser
Struktur ist die Absorption von zwei Plasmonen stärker als jene eines einzelnen Plasmons;
der damit einhergehende Zeno-Effekt verhindert, dass sich das System in Fehlerzustände des
Gatters entwickelt. Unser vorgeschlagenes Gatter könnte uns durch dessen Erfolgswahrschein-
lichkeit von 99% näher an ein deterministisches Quantengatter bringen, was unter anderem
universelle und skalierbare Quanteninformationsverarbeitung ermöglichen würde. Die starke
zeitgleiche Absorption von zwei Plasmonen, welche diese Gatter benötigt, basiert auf Graphens
starker Nichtlinearität dritter Ordnung, die bisher zwar theoretisch vorausgesagt, aber ex-
perimentell noch nicht beobachtet wurde. In dieser Arbeit zeige ich unsere experimentelle
Herangehensweise, um diesen Effekt dritter Ordnung durch die Kombination von Plasmonen
in Graphen-Metall Heterostrukturen zu erforschen. Obwohl die von uns beobachtete Nicht-
linearität noch nicht stark genug ist, um nichtlineare Effekte auf Einzelphotonenniveau zu
erzeugen, so haben wir trotzdem eine Steigerung des Signals dritter Ordnung um den Fak-
tor 1500 gemessen und zusätzlich experimentelle Beweise für die Existenz von Plasmonen in
diesem Prozess gefunden. Dies zeigt eindeutig das Potential von Graphen, nichtlineare Effekte
selbst auf Einzelphotonenniveau zu erzeugen, was wiederum deterministische Einzelphotonen-
quellen ermöglichen würde.
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Chapter 0: Zusammenfassung

Zusätzlich zur Forschung mit Graphen, haben wir im Laufe meiner Dissertation ein kon-
trafaktisches Kommunikationsprotokoll basierend auf dem Zeno Effekt realisiert. In diesem
Protokoll trennen wir eine eigentliche Nachricht von dem Medium, das die Information trägt,
sodass wir im Experiment Nachricht und Photonen als Informationsträger in unterschiedliche
Richtungen schicken. Dieses Experiment wurde auf einer integrierten photonischen Plattform
durchgeführt, deren Stabilität und Durchstimmbarkeit das kontrafaktische Überbringen einer
Nachricht mit Einzelphotonen zwischen zwei Parteien ermöglichte. Die Bitfehlerrrate bei
einer Nachrichtenübertragung zwischen Alice und Bob ist dabei kleiner als 1%.
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Chapter 1

Introduction

Photons interact weakly with their environment. On one hand, this property makes them
extremely suitable for long-distance communication applications and provides extraordinar-
ily long coherence times for quantum computation applications [79]. On the other hand, this
characteristic hinders photon-photon interactions and hence, strong nonlinear processes at the
single-photon-level remain a challenge. While this can be overcome for quantum computing
applications at the cost of extra photons [48], the additional overhead makes purely linear-
optical schemes difficult to scale up [64]. Alternatively, single-photon-level optical nonlineari-
ties can be used to directly create deterministic gates [70]. Therefore, the main drawbacks of
current photonic quantum computing could be overcome with strong optical nonlinearities.

Nonlinear plasmonics offers an unparalleled spatial control and spectral manipulation of light
in a robust and high-fidelity manner for a wide range of applications, such as quantum infor-
mation processing, ultrafast switching or sensing [8, 30]. In particular, metallic nanostruc-
tures are a promising candidate to enhance the nonlinear optical processes due to the ability
of plasmons to strongly confine the electromagnetic fields down to the atomic scale and en-
hance optical nonlinear processes [56, 47]. Additionally, plasmon properties can be readily
tailored by changing the shape and the materials that enclose these fields [88]. Nevertheless,
as quantum computing is very sensitive to losses, the short lifetime of these metallic plasmons
limits the effective strength of such nonlinear processes and prevents current applications to
quantum information from scaling up.

As an alternative to metallic plasmons, in the last decade, graphene has been confirmed to be
an exceptional platform to sustain electrically tuneable and long-lived plasmonic excitations
in a wide spectral range [6, 49, 35, 28, 46, 97, 23, 96, 10, 24]. As a matter of fact, third-
harmonic generation (THG) [51, 45, 40, 87], four-wave mixing (FWM) [37, 14, 45], optical
Kerr effect [100, 17] and high-harmonic generations [98] have already been observed, exhibit-
ing remarkably large nonlinear effects. This thesis aims to theoretically and experimentally
explore graphene nonlinearities and enhance them by using heterostructures to achieve the
ultimate limit; that is, nonlinear effects at the single-photon level.

We have theoretically developed a square-root of SWAP gate based on a directional coupler
built with graphene nanoribbons as plasmonic waveguides, where the plasmonic excitations
are used to encode qubits. Thanks to the strong two-plasmon absorption in graphene, which
is a direct consequence of its high third-order nonlinearity, the Zeno effect prevents the gate
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Chapter 1: Introduction

from evolving into those failure output states in which two plasmons are found in the same
output port. We have theoretically shown that, even at room temperature, this nonlinear
gate supresses those failure states arising from the Hong-Ou-mandel effect and achieve a 87%
success probability with current state of the art technology. Moreover, this success can be
further enhanced up to 99% when the gate is cooled down to cryogenic temperatures. This
efficiency would thus enable large scale universal quantum computing. This work is described
in detain in Section 7.1.

The main focus of this thesis is the experimental study and characterization of enhanced
optical nonlinearities in graphene heterostructures. Bare graphene has shown unprecedentedly
high optical nonlinearities [45], well above those found in standard nonlinear crystals [37], and
closer to those in atomic systems [5]. However, contrary to atomic systems, graphene does
not require any vacuum or cryogenic environment, making it extremely suitable for scalable
applications. Unfortunately, in practice, this nonlinearity is limited by the nm-scale thickness
of such nonlinear samples; effectively showing weaker nonlinear effects than those in bulk
nonlinear crystals. In order to compensate for this limitation, we study two main approaches
to enhance graphene’s nonlinearity. First, we use graphene-metal heterostructures in which
gold nanoribbons are etched on top of the bare graphene. This allows one to resonantly
excite metallic plasmons in the gold nanoribbons, which will then interact with the graphene
to create nonlinear signals. Using this nanotechnology, we report a three-order of magnitude
enhancement on third-harmonic generation (THG), compared to bare graphene. Secondly,
we electrically dope the graphene. This enables us to tune the Fermi energy of the system
and reach plasmonic resonances. Although we were not able to observe a major enhancement
due to plasmons driving the nonlinearity [42], we did observe a modified THG signal that is
explained by the excitation of surface plasmon polaritons (SPP) in the system. We expect
to see such a plasmonic enhancement in the future, with higher quality devices and different
methods to further tune the Fermi energy. Further details of this experiment can be found
in Section 7.3.

During this thesis, as a parallel project, we had the opportunity to experimentally demon-
strate a new protocol of counterfactual communication, where the single-photons and the
transmitted information travel in opposite directions. This experiment was based on the pro-
tocol introduced by Arvidsson-Shukur, et al. [3], which takes advantage of the Zeno effect to
be the first protocol to achieve counterfactual communication without any weak-trace of the
photons travelling in the same direction as the information. The experiment was performed
in a silicon-on-insulator nanophotonic processor, whose stability allowed us to achieve suc-
cessfull bit transmission rates above 99%. A more comprehensive study of this experiment
can be found in Section 7.2.

In order to provide a pedagogical basis, the first chapters of this thesis are dedicated to the
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Chapter 1: Introduction

introduction of the topics that are significant for the understanding of the work presented
here. We first introduce the fundamentals of photonics (Section 2), which is the most relevant
topic throughout the entire thesis. We continue with the fundamentals of plasmonics (Section
3), in general, and make a special mention to plasmons in graphene. The fundamentals of
graphene itself are given in Section 4. Finally, in Section 5 we talk about the fundamentals
of quantum computing, which is the main motivation of this thesis.

In addition to the publications collected in Section 7, the experimental results given in Sec-
tion 6 aims to provide the reader a reasoning about the course of this thesis. Closing the
thesis, I have added a final section (Section 8), where the promising future directions are
summarized.
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Chapter 2

Fundamentals of Photonics

Photonics is the science of light, studying the generation, manipulation and detection of
photons; i.e. the unit of light, equivalent to the electron in electricity, with both wave-
and particle-like behavior. Scientist have pursued the understanding of light, its properties
and applications for centuries: from the foundation for modern optics established in ancient
Greece by Socrates, Plato, Aristotle and Euclid around the 5th century B.C. [9], to the
latest discovery of self-torquing property of light [78]. However, it was not till 1930s, with
the discovey of the transmission electron microscope (TEM)[81] and the scanning electron
microscope (SEM)[92], that technology allowed us to overcome the diffraction limit associated
with lenses and microscopes [2], and we were able to image at the nanometer scale.

Once the nanoscale could be imaged, the next challenge was to actually squeeze light down
to the nanoscale, achieving confinements well below the wavelength [29]. This field, known
as nanophotonics, investigates materials and techniques to control light in the nanoscale.
An example of these are surface plasmons polaritons in nanometric metal objects [36, 22]
or nanoscale tips such as those used in near-field scanning optical microscopy [38]. This
constitutes a whole field known as plasmonics, which will be further studied in Chapter 3, as
plasmons play an important role in the work presented in this thesis.

Quantum photonics is another important branch of photonics that is relevant to this work
[54]. Quantum photonics aims to understand and prove quantum mechanical effects using
photons, which have been proved to be suitable to exploit quantum phenomena because
of their minimal interaction with the environment. This property allows us to propagate
quantum states for very long distances and to achieve long interaction times. Furthermore,
photons have many degrees of freedom onto which quantum states can be prepared, processed
and measured with relative simplicity. All these characteristics make quantum photonics an
extremely fitting platform for quantum computation and information applications. This will
be further discussed in Chapter 5.

2.1 Linear Optics

Light is an electromagnetic wave created by charge and current densities, ρ and j. As such,
from a classical perspective, it is possible to describe it as a solution of Maxwell’s equations
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Chapter 2: Photonics

given by,

∇ ·D(r, t) = 4πρ(r, t) (2.1a)

∇ ·B(r, t) = 0 (2.1b)

∇×E(r, t) = −1
c

δ

δt
B(r, t) (2.1c)

∇×H(r, t) = 1
c

[
δ

δt
D(r, t) + 4πj(r, t)

]
(2.1d)

where E(r, t) and H(r, t) are the electric and magnetic field, respectively, D(r, t) is the electric
displacement and B(r, t) is the magnetic induction [59]. Before proceeding with the mathe-
matical description of an electromagnetic wave in a nanophotonic platform, we will start with
a deeper explanation of each of the Maxwell’s equations, as they are the main starting point
of any of the topics studied in this thesis.

2.1.1 Maxwell’s 1st equation: Gauss’ Law

This equation dictates how the electric field behaves around electric charges. We first need to
understand the conceptual meaning of the divergence ∇·, which mathematically is equivalent
to

∇ · F = δFx
δx

+ δFy
δy

+ δFz
δz

, (2.2)

where Fx, Fy and Fz are the x, y and z components of the field, respectively. If we consider a
point r = (x, y, z), the divergence is the measure of the vector flow that would cross a certain
surface surrounding this point r.

As sketched in Fig. 2.1a, if the total vector field flows away of this point (flows outside the
surface) the divergence would give a positive result. However, if the total vector field would
flow towards this point r (flows inside the surface), the divergence would be negative. Thus,
Gauss’ law states that the total electric flux exiting any determined volume is equal to the
total charge inside this volume.

2.1.2 Maxwell’s 2nd equation: Gauss’ law for Magnetism

In principle, Gauss’s law for magnetism states the same as his law for electric fields; that the
divergence of the magnetic flux density is equal to the magnetic charge density. However, to
date, no one has found a magnetic charge so we set the right hand side of the equation to
zero. In other words, no particle that produces a magnetic field has yet been discovered.
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2.1 Linear Optics

Figure 2.1. Conceptual sketches to understand Maxwell’s equations a. When the total vector field flows exiting
the surface given by S, the divergence will be positive. In contrast, when the divergence is negative,
it indicates that the total vector field flows inside S. b. Sketch of magnetic fields around a magnet.
The divergence of any given surface, such as S or S’, is always zero, indicating that there is no source
of magnetic field. c. Faraday’s experiment that made him discover that an electric field changing in
space induces a magnetic field changing in time.

But, what about magnets? If one studies the divergence at different points around a magnet
(see Fig. 2.1b), one finds that this is always zero. Even at the edge of the poles, when the field
crossing the magnet (dashed line) is considered, the total vector flow cancels out. Moreover,
this fact also explains the inexistence of monopoles.

2.1.3 Maxwell’s 3rd equation: Faraday’s law of induction

This law shows the relation between electric and magnetic fields and the influence they have
on each other. In Fig. 2.1 we show a sketch of Faraday’s experiment, where he connected a
battery to a magnetic core via a metallic wire and connected an ammeter on the other side of
the core. He observed that when he closed the switch, the current would flow and this could
be measured on the ammeter; say 5A. But this would only hold for a very short time and
then it would only read 0A. On the other hand, if he would open the switch, the ammeter
would show -5A and then go back to 0A. After these observations, Faraday came up with the
following conclusion: a changing electric field in space gives rise to a changing magnetic field
in time and vice versa.

2.1.4 Maxwell’s 4th equation: Ampere’s Law

So as to understand this equation, we will consider the two terms on the right hand side of
the equation independently. In fact, the initial expression derived by Ampere in 1826 only
contained the first term,

∇×H = j. (2.3)
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Chapter 2: Photonics

This claims that if there is a current flowing through a wire, this creates a magnetic field
circling around it, where the circulation direction follows the right-hand rule. It is easier to
see this interpretation when considering the problem in two dimensions; that is,∮

H dL = Ienc (2.4)

where L is the path delimiting an area around the wire where the current flows, and Ienc rep-
resents the enclosed electrical current. This law was well accepted until 1865, when Maxwell
noticed that there was something wrong when the divergence of both sides of the equation
was calculated; namely,

∇ · (∇×H) = ∇ · j. (2.5)

As a matter of fact, the divergence of the curl of any vector is always zero, which would imply
that the divergence of any current density is always zero, which is not true. A capacitor is a
good example of this, since the current flows to one plate but does not flow towards the other
one, resulting in a nonzero divergence. As a solution to this, Maxwell thought about the sym-
metry and reciprocity inherent to all the set of electromagnetic equations. So, if an electric
field changing in space would give rise to a magnetic field changing in time (3rd equation),
why would not a magnetic field changing in space give rise to an electric field (electric density
flux D) changing in time. This is thus the adjustment that Maxwell made to Ampere’s law
to come up with his 4th equation.

Now that we have an intuitive understanding of the effects that Maxwell’s equations describe,
we can proceed to find solutions to them. To solve this set of equations, we first need some
constitutive relations, which give the dependence of the intrinsic fields of materials on the
external electromagnetic fields applied to them; that is, D = D[E,H] and B = B[E,H]].
In the case of an isotropic, homogeneous, linear and nonmagnetic (µ = 1) medium with
permittivity ε, these constitutive relations are

D(r, t) =
∫∫

ε(r− r′, t− t′) E(r′, t′) dt′ dr′ (2.6a)

H(r, t) = B(r, t). (2.6b)

In the case of standard materials and for sufficiently large structures (larger than the Fermi
wavelength λF =

√
4π/n = fvF/EF ∼ 10.33 nm for EF = 0.4 eV), we can neglect the dependence

of the field on position r on the field applied on position r′; i.e. we can ignore any spatial
dispersion or nonlocality. However, at time t we need to consider the field previously applied
at time t′. In other words, temporal dispersion needs to be accounted for. Thus we can
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2.1 Linear Optics

Figure 2.2. Continuity conditions. The fields in the interface between two materials with permittivities ε1 and ε2.

rewrite the first constitutive relation, Eq. eq. (2.6a), as

D(r, t) =
∫
ε(r, t− t′) E(r, t′) dt′. (2.7)

Furthermore, to simplify the equations, it is convenient to get rid off the time convolution by
applying a Fourier transformation to convert the equations to the frequency domain instead.
We do this by exchanging

E(r, ω) =
∫

E(r, t)eiωt (2.8a)

E(r, t) =
∫
dω

2πE(r, ω)e−iωt. (2.8b)

Note that due to the fact that the fields are real values in space-time, we also need to consider
that E∗(r, ω) = E(r,−ω) when tranforming the domain. After these changes, Maxwell’s
equations read

∇ ·D(r, ω) = 4πρ(r, ω) (2.9a)

∇ ·B(r, ω) = 0 (2.9b)

∇×E(r, ω) = ikB(r, ω) (2.9c)

∇×H(r, ω) = −ikD(r, ω) + 4π
c

j(r, ω), (2.9d)

and the constitutive relations simplify to

D(r, ω) = ε(ω)E(r, ω) (2.10a)

H(r, ω) = B(r, ω), (2.10b)

where k = ω/c is the wave number of the incident electromagnetic wave and the characteristics
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Chapter 2: Photonics

of the studied material are contained in ε(ω).

Additionally, Maxwell’s equations should also ensure charge conservation throughout the ap-
plication of electromagnetic fields to the system. This condition leads to the continuity
equation,

∇ · j(r, ω) = iωρ(r, ω), (2.11)

where j(r, ω) and ρ(r, ω) are the frequency-dependent current and charge densities, respec-
tively.

We can further consider these electromagnetic fields in the absence of free charges or currents,
as in the case of vacuum or a dielectric material. In this case, Maxwell’s equations can be
reduced to

∇ ·E(r, ω) = 0 (2.12a)

∇ ·B(r, ω) = 0 (2.12b)

∇×E(r, ω) = ε

c2
δE
δt

(2.12c)

∇×B(r, ω) = −δB
δt
. (2.12d)

By combining the equations with the curls, we can write the so-called Helmholtz wave equa-
tions for the electric and magnetic fields as(

∇2 − 1
v2

δ2

δt2

){
E(r, t),B(r, t)

}
= 0, (2.13)

which is the solution of an electromagnetic wave traveling at speed v = c/
√
ε.

All the equations presented above are applicable inside homogenous media, but very often
electromagnetic waves travel through different materials with different electric or magnetic
properties. In this case, one needs to study the interface between two materials by considering
the following continuity conditions [44]:

nz × (E2 −E1) = 0 (2.14a)

nz · (D2 −D1) = 4πσs (2.14b)

nz · (B2 −B1) = 0 (2.14c)

nz × (H2 −H1) = 4π
c
js (2.14d)

where nz is the unitary normal vector perpendicular to the face between the materials with
permittivities ε1 and ε2, σs is the surface charge density and js is the surface current density. In
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2.2 Nonlinear Optics

Figure 2.3. Sketch of Fresnel coefficients. Refraction and transmission components of an incident a. s-polarized
and (TE mode) b. p-polarized (TM mode) light.

Fig. 2.2 we represent the continuity conditions for fields applied in material 1 and transmitted
to material 2.

More interestingly, these boundary consitions also allow one to calculate the remaining trans-
mitted t and reflected r waves after the incident electromagnetic field reaches the interface.
These relations are known as the Fresnel coefficients and, assuming nonmagnetic materials,
they are given by

rp = ε2k1⊥ − ε1k2⊥
ε2k1⊥ + ε1k2⊥

rs = k1⊥ − k2⊥
k1⊥ + k2⊥

tp =
√
ε2
ε1

k1⊥
k2⊥

ts = 1 + rs

(2.15)

where ki⊥ and εi are the perpendicular components to the interface (parallel to nz) of the
incident wave vector and the dielectric constant of materials 1 and 2, respectively.

Moreover, we consider the polarization of the incoming field as sketched in Fig. 2.3. It is
called the s-polarized or TE mode when the electric component of the field is perpendicular to
the incidence plane and p-polarized or TM when the electric field is parallel to the incidence
plane.[43]

2.2 Nonlinear Optics

Light-light interactions have not yet been observed in vacuum; a nonlinear medium is neces-
sary. These nonlinear materials are characterized by their nonlinear polarization P (ω) (dipole
moment per unit area), which allows mixing different fields to create new ones, respecting
both energy and momentum conservation. This polarization should not be confused with the

13



Chapter 2: Photonics

one presented in the previous section: the former describes the direction in which the electric
field of the wave oscillates with respect to the incidence plane, and the latter specifies the
ease with which the electrons in a material follow the oscillations of the electromagnetic field.
Mathematically, the polarization (as in the electron response) is written as

P(ω) = ε0
(
χ(1)(ω)Eext(ω) + χ(2)(ω)E2

ext(ω) + χ(3)(ω)E3
ext(ω) + . . .

)
(2.16)

where Eext = E0(eiωt + e−iωt) for a monochromatic plane wave with frequency ω, and χ(n)

is the n-order susceptibility [8]. In this expression we can distinguish the linear polarization
to be P (1)(ω) = χ(1)(ω)Eext, while P (2)(ω) = χ(2)(ω)E2

ext and P (3)(ω) = χ(3)(ω)E3
ext are the

second- and third-order polarizations, respectively. It is worth mentioning that there is no
limit to the polarization terms. Now we proceed to study three of the most relevant nonlinear
effects: second harmonic generation (SHG), third harmonic generation (THG) and four-wave
mixing (FWM).

2.2.1 Second Harmonic Generation (SHG)

Recalling the form of Eext, if we expand the second-order polarizability, we can rewrite it as
follows:

P (2)(ω) = χ(2)E2
ext (2.17a)

P (2)(ω) = χ(2)E2
0

[
1 + (e2iωt + e−2iωt)

]
(2.17b)

P (2)(ω) = 2χ(2)E2
0
[
1 + cos(2ωt)

]
(2.17c)

where the first term corresponds to a DC component that does not lead to any photon
emission but simply increases the internal electric field in the nonlinear material. However,
the second term shows a much more exciting term, where an electromagnetic field with double
the frequency is created. Therefore, in this process, two external fields with frequency ω

combine to give rise to the emission of a single field with frequency 2ω. This phenomenon is
known as second harmonic generation (SHG). Note that, in practice, these two fields with ω
can be part of a single beam.
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2.2 Nonlinear Optics

2.2.2 Third Harmonic Generation (THG)

Once again, if we expand the third-order polarization, we end up with the expression

P (3)(ω) = χ(3)E3
ext (2.18a)

P (3)(ω) = 1
8χ

(3)E3
0

[
(e3iωt + e−3iωt) + 3(eiωt + e−iωt)

]
(2.18b)

P (3)(ω) = 1
4χ

(3)E3
0
[
cos(3ωt) + 3 cos(ωt)

]
(2.18c)

Here we also find two different terms. The first one corresponds to the so-called third-
harmonic generation, where three fields with frequency ω combine to create a single field with
frequency 3ω. The second term, on the other hand, has the same frequency as the incident
one. However, this term is responsible for shifting the refractive index of the nonlinear medium
and it is known as the AC Kerr effect.

2.2.3 Four Wave Mixing (FWM)

We can also consider cases in which the fields are non-degenerate; i.e., they have different
frequencies. There are many different combinations that one can study but for this thesis
we will only introduce the case in which two different fields, Eext,1 = E1(eiω1t + e−iω1t) and
Eext,2 = E2(eiω2t + e−iω2t), mix together. This is known as four-wave mixing (FWM) and it
can be derived as

P (3)(ω) = χ(3)E2
ext,1Eext,2 (2.19a)

P (3)(ω) = χ(3)E2
1E2

[
(ei(2ω1+ω2)t + e−i(2ω1+ω2)t) + (ei(2ω1−ω2)t + e−i(2ω1−ω2)t) (2.19b)

+2(eiω2t + e−iω2t)
]

(2.19c)

P (3)(ω) = 2χ(3)E2
1E2

[
cos(2ω1 + ω2)t+ cos(2ω1 − ω2)t+ 2 cos(ω2t)

]
(2.19d)

In this solution we distinguish two main nonlinear processes: the first one where the fre-
quencies are added is known as sum-frequency mixing (SFM) and the second one in which
the frequencies are substracted is called difference-frequency mixing (DFM). Note that, in
practice, when the two input fields are mixed, the process will not distinguish E2

ext,1Eext,2

from Eext,1E
2
ext,2 and both processes will equally happen, given that the intensity of the fields

is the same, unless there is something else going on, like phase matching. The third term
is another field with the same incident frequency ω2, which is responsible for shifting the
refractive index of the material, as explained in the case of THG.

In this chapter we have introduced the basics of photonics and gave special attention to non-
linear processes, as these are fundamental to the work presented in this thesis. In particular,
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we have used THG to characterize the nonlinear strength of our graphene heterostructure
devices and we will proceed with FWM experiments, as this process can lead to the emission
of single-photons.
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Chapter 3

Fundamentals of Plasmonics

One of the main goals of current nanophotonics is the control and manipulation of light in
the nanoscale. However, due to the diffraction limit, one cannot simply focus light as tightly
as one wants [2]. Thus, new venues need to be explored. Here we will introduce plasmons,
which are one of the most promising approaches to confining light beyond the diffraction
limit. When the electromagnetic wave of a photon impinges into a conductive material (most
frequently metals), the free electrons in the conduction band follow the oscillations of the
electrical field of the photon, creating a wave of electrons with a frequency that can be up
to three orders of magnitude larger than that of the initial photon that excited this electron
wave (see Fig. 3.1a) [71]. These electron waves are known as plasmons and their behaviour
is similar to that of electromagnetic waves. Depending on the location of these electronic
oscillations, we distinguish between bulk and surface plasmons. However, the high energy of
the former hinders their applicability in current technology. Among the latter, on the other
hand, there are two main types: surface plasmon polaritons (SPP) and localized surface
plasmons (LSP). In the following sections we aim to emphasize the different nature of these
[56, 33].

3.1 Surface Plasmon Polaritons

Surface plasmon polaritons (SPP) are optical modes found at the interface between two
different materials, confined in the perpendicular direction. In Fig. 3.1b the simplest structure
that can contain plasmons is shown: the interface between a dielectric material with a real
positive dielectric constant, Re[ε2] > 0, and a metal with ε1(ω). The conductive nature of the
first material is given when Re[ε1(ω)] < 0, which in the case of metals happens for frequencies
below the plasma frequency [4],

ωp =
√

4πne2

m∗e
(3.1)

where n is the electron density in the conduction band, e is the electron charge and m∗e is the
effective electron mass.

Starting from Maxwell’s equations one can derive the wave equation as

∇2E− ε

c2
δ2E
δt2

= 0 (3.2)
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Chapter 3: Plasmonics

Figure 3.1. Plasmon. a. When a photon impinges into a metal, the free electrons in the conduction band follow
the electromagnetic oscillation, creating a wave of electrons, known as plasmon, whose wavelength can
be three times shorter than that of the initial photon. b. We look for plasmonic modes in the interface
between two materials with opposite real dielectric constant signs; i.e., a conductor and a dielectric,
where the modes propagate in the x -direction (β = kx) and are confined in the z-direction. Note
that the plasmon field decays in the x -direction as eiβx. However, for the sake of clarity, this is not
represented in the sketch.

from which the TE (s-polarized) and TM (p-polarized) wave solutions can be calculated. Note
that here we will always look for solutions of propagating waves confined in the interface; i.e.
with an evanescent component in the z-direction [56]. In the case of an incident TE mode
the field components are

z > 0


Ey(z) = A2e

iβxe−k2z

Hx(z) = −iA2
1
ωµ0

k2e
iβxe−k2z

Hz(z) = A2
β
ωµ0

eiβxe−k2z

(3.3)

and

z < 0


Ey(z) = A1e

iβxek1z

Hx(z) = iA1
1
ωµ0

k1e
iβxek1z

Hz(z) = A1
β
ωµ0

eiβxek1z

(3.4)

Using the continuity conditions given in Eq. 2.14 we find the relation between A1 and A2 to
be

nz × (E2 −E1) = 0 → E1,y = E2,y

nz × (H2 −H1) = 0 → H1,x = H2,x

 A1(k1 + k2) = 0, A1 = A2 (3.5)

Since Re[k1, k2] > 0, this relation forces A1 = 0 and because A1 = A2 = 0, we conclude that
no plasmonic excitation can occur when the incident light is in a TE mode.

Let us now study the case in which the incident light is in a TM mode. The Field components
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3.1 Surface Plasmon Polaritons

are given by

z > 0


Hy(z) = A2e

iβxe−k2z

Ex(z) = iA2
1

ωε0ε2
k2e

iβxe−k2z

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z

(3.6)

and

z < 0


Hy(z) = A1e

iβxek1z

Ex(z) = −iA1
1

ωε0ε1
k1e

iβxek1z

Ez(z) = −A1
β

ωε0ε1
eiβxek1z

(3.7)

Once again, we use the continuity conditions to find the relations between the parameters to
be

nz × (E2 −E1) = 0 → E1,y = E2,y

nz × (H2 −H1) = 0 → H1,x = H2,x

 k2
ε2

= −k1
ε1
, A1 = A2 (3.8)

This relation is thus a confirmation that plasmons can only exist in the interface between
materials with opposite sign permittivities; that is, a conductor and a dielectric. As a remark,
note that the solutions in equations 3.7 and 3.8 describe an electromagnetic wave propagating
along the x-axis (β = kx), where the electric field oscillates in the x-z plane and the magnetic
field in the x-y plane (see Fig. 3.1b). In the case of TM modes, the Hy field component also
needs to fulfill the wave equation given by

δ2Hy

δz2 + (k2
0ε− β2)Hy = 0, (3.9)

from which we find that

k2
1 = β2 − k2

0ε2 (3.10a)

k2
2 = β2 − k2

0ε1. (3.10b)

Now, by combining these two expressions, we can derive the dispersion relation of the plas-
mon

β = k0

√
ε1ε2
ε1 + ε2

(3.11)

where β = kx is the wave vector in the propagating direction and k0 = ω/c is the wave vector
of the propagating wave in vacuum; i.e. the wave vector of the photon that would excite this
specific plasmon.

For metals, the simplest model to calculate the permittivity is given by the Drude model,
where the electrons are considered to be free [18],

ε(ω) =
ω2

p
ω(ω + iγ) (3.12)
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where γ is the damping parameter of the material. Using this expression, together with the
dispersion relation given in Eq. 3.11, we can derive two of the most relevant properties of
plasmons: the confinement factor that gives the ratio between the plasmon wavelength λSPP

and the free space wavelength of the electromagnetic wave λ0, and the propagation distance
LSPP, which gives the distance at which the field intensity is 1/e of the initial. These are
given by

λSPP
λ0

= 2π
λ0

1
Re[kSPP] (3.13a)

LSPP = 1
2Im[kSPP] , (3.13b)

respectively [33]. The confinement factor is of great interest as it shows the confinement of the
free space light into the plasmonic form. The larger the confinement, the larger the plasmonic
effect, as the field instensity has a cubic dependence on this parameter. On the other hand, the
propagation distance is also of extreme relevance as it is directly related to the plasmon lifetime
and a long interaction time leads to stronger nonlinear effects, which could be applicable to
current technologies. Therefore, the challenge lies on finding materials that would sustain
surface plasmons with a large confinement property; in other words, Re[kSPP] >> 1, and long
propagationg distances; meaning, Im[kSPP] << 1. In the case of metallic plasmons two main
drawbacks are currently holding up the use of SPPs in comercialized devices:

i. The high plasmon confinement hinders the coupling between the incident free space
light k0 and the plasmon kp. This is due to the large wave vector mismatch that these
have, as momentum conservation dictates that these should be equal.

ii. The typical lifetime of metallic plasmons is so short that the plasmon only propagates for
a few cycles before it completely decays and this is a huge limitation in its applicability in
new technologies; especially to quantum technology, where loss is extremely important
and long interaction times are required.

3.2 Localized Surface Plasmons

In summary, we have just seen that SPPs are propagating, dispersive electromagnetic waves
coupled to the electron plasma of a conductor at a dielectric interface. On the other hand,
localized surface plasmons (LSP) are characterized by being non-propagating excitations of
the conduction electrons of metallic nanostructures coupled to the incident electromagnetic
field [56]. To understand the origin of LSPs and their optical response, we will analyze a
small, homogeneous and isotropic sphere with a radius a, a dielectric function ε(ω), and
surrounded by an isotropic and non-absorbing medium with dielectric constant εm (see Fig.
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3.2 Localized Surface Plasmons

Figure 3.2. Metallic sphere in a uniform electrostatic field. We consider a homogeneous and isotropic sphere,
with radious a and dielectric constant ε(ω), in an isotropic and non-absorpbing medium.

3.2). Assuming that the incident wavelength is smaller than the sphere, d � λ0, we can use
the quasi-static approximation, where the harmonic oscillation of the fields is considered to
be time invariant in the entire particle, and we can consider it as an electrostatic field. The
harmonic behaviour can be added later on, after the solutions are found.

Considering the external field to be of the form E = E0ẑ, one can solve the Laplace equation,
∇2 · φ = 0, where E = −∇ · φ, and find the electrical potential φ inside and outside of the
sphere to be

φin(r) = − 3εm
ε+ 2εm

E0r cos θ (3.14a)

φout(r) = −E0r cos θ + ε− εm
ε+ 2εm

E0a
3 cos θ
r2 (3.14b)

Interestingly, φout(r) describes the superposition of the applied field and that of a dipole with
origin at the center of the sphere. Thus, if we rewrite Eq. 3.18b as

φout(r) = −E0r cos θ + pr
4πε0εmr3 , (3.15)

we find the dipole moment p to be

p = 4πε0εma3 ε− εm
ε+ 2εm

E0. (3.16)

Furthermore, we can also find the polarizability α, which is related to the dipole moment as
p = ε0εmαE0 with

α = 4πa3 ε− εm
ε+ 2εm

. (3.17)

From this expression we can conclude that the polarizability shows a resonance when |ε +
2εm| is minimum, which confirms the strong dependence of this resonance frequency on the
dielectric constant of the environment: it red-shifts as εm increases. The mode associated with
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this resonance condition is the so-called dipole surface plasmon on a metal nanoparticle.

Without entering into too much detail, one of the consequences of resonantly exciting a
plasmon in such a small particle is that this radiates electromagnetic fields. This radiation
scatters the plane wave that excited the dipole in the first place. An additional consequence of
this excitation that is more relevant to this work is that the optical scattering and absorption
of such a sphere also depends on whether the sphere has a resonantly enhanced polarization
α. The corresponding scattering Csca and absorption Csca cross sections are

Csca = k4

6π |α|
2 = 8π

3 k4a6| ε− εm
ε+ 2εm

|2 (3.18a)

Cabs = kIm[α] = 4πka3Im[ ε− εm
ε+ 2εm

] (3.18b)

Here we clearly see that when a � λ0, the scattering proportional to a6 dominates the
absorption, which has an a3 dependence. This hinders the excitation of LSPs.

3.3 Graphene Surface Plasmons launched via metallic antennas

We have already mentioned that, although plasmons provide huge field confinements, there
are two main drawbacks related to metallic plasmons that currently hinder their industrial
application. These are the momentum mismatch between the free space wave vector k0

and the plasmon wave vector kp, which makes it almost impossible to excite SPPs in a
homogeneous metal surface, and their short lifetime, which limits their propagation to a few
plasmon wavelengths.

As an alternative to metallic plasmons, in the last decade, graphene has been shown to
sustain long lived plasmons that can be tuned actively via electrostatic gating. Lifetimes of
τp ∼ 500 fs at room temperature [94] and even τp ∼ 10 ps at cryogenic temperatures [65] have
already been observed. However, the momentum mistmatch between the free space photons
and graphene plasmons is as large as that found with metallic plasmons and so the excitation
of graphene plasmons remains a challenge. One promising way around this problem is to use
a metallic structure on top of the graphene sheet. When resonant light impinges on these
structures, they behave like an optical dipole, which is capable of launching SPPs propagating
through graphene.

To better understand this mechanism, we proceed to study one of the simplest systems [33].
As depected in Fig. 3.3, we consider an infinitely long metallic stripe with width L placed on
top of an infinite sheet of phanar graphene. For the mathematical description we will consider
the metal to cover |x| < L/2 with the center at x = 0 and assume that the metal is much
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3.3 Graphene Surface Plasmons launched via metallic antennas

Figure 3.3. Sketch of a metallic stripe on planar graphene. Graphene is infinite in x and y directions and the
metallic stripe has a width L, centered at x = 0 and extends infinitely in the y direction. The incident
electromagnetic wave E propagates in the z direction and is polarized in the x direction.

thinner than the wavelength of the external field Eext, which means that we can consider it
as a 2D structure. Furthermore, we will also assume that the conductivity of this strip is so
high that it effectively behaves as a metal strip between two separated sheets of graphene; in
other words, the graphene enclosed below the metal is negligible.

If there is a monochromatic electromagnetic wave polarized in the x-direction, propagating
in the z direction through the metallic strip, this external field would be described as

Eext = E0e
i(kzz−ωt) (3.19)

where kz =
√
εω/c is the wave vector in the propagation direction z, and ε is the relative

permittivity of the medium. Under these assumptions it is possible to write the linear response
of the entire system as a current density that only varies in x and depends on both the metal
and graphene conductivities, σm and σg, respectively. We should also note that the external
field will induce another field Eind, and that both should be considered in our study; that
is,

Ex = Eext
x + Eind

x . (3.20)

Due to the symmetry of the system, we only need to find the solutions of the electric field
in the x and z directions and the magnetic field in the y direction; that is, E = (Ex, 0, Ez)
and H = (0, Hy, 0). There are some mathematical tricks and approximations that one needs
in order to get the solutions, but these are not relevant in this thesis so we will just provide
the solutions so that we can have a qualitative understanding of the behavior of the in-plane
electric field at z = 0 and analyze the effects that this external field has on the system (refer
to [33], chapter 6 for full mathematical procedure). In the solutions we distinguish between

23



Chapter 3: Plasmonics

Figure 3.4. Electric field outside the metal stripe. As a result of the incident electromagnetic wave Eext, there
is a field originating on the edge of the metal and propagating away from it in the x direction. For
L/λ0/2 the resonance condition is found, where the field strength is much stronger than with the
non-resonant cases. Additionally, the field strength decreases as x increases and far away, there is no
sign of plasmonic behaviour and only a homogenous field above zero can be observed. Image taken
from [33], page 157.

the fields inside and outside the metallic stripe as

Ein
x (x, 0) =

N∑
n=0

An cos
(2nπx

L

)
(3.21a)

Eout
x (x, 0) = 1

ζ0
E0 + 2ησ

π

N∑
n=0

(−1)nAn
∫ inf

0

cos
(
ux/L

)
ζu

u sin
(
u/2

)
u2 − 4n2π2du, (3.21b)

where ησ = σm/σg−1, u = qL, An are the Fourier coefficients and ζu is a function given by

ζu = 1− EF
~ω

2αΩL

~ω + i~γ
√
u2 − a2, (3.22)

where a =
√
ε~ω/ΩL and ΩL = ~c/L.

Fig. 3.4 shows the result of Eq. 3.21b for different metal widths L, a constant Fermi energy,
a largely conductive metal σm/σg � 1 and a fixed incident wavelength. Here we can observe
that there is a strong propagating field when L = λ0/2, which corresponds to the excitation of
a graphene SPP originating at the edge of the metal and propagating through the graphene,
away from the metal. We can also directly find the plasmon wavelength λp and calculate
the confinement ratio to be around 19, as λp ∼ 0.052λ0. Furthermore, we also notice that,
as expected, the plasmonic field decreases as x gets larger. This is due to the Ohmic losses
within the graphene. In fact, far away from the metal one can no longer distinguish the
characteristic oscillations of the plasmon excitations and only the homogenous response of
the system is present; namely, Eext

x /E0 → ζ−1
0 = 1. Thus we have shown that the momentum

mismatch between the free space electromagnetic field and the plasmon can be overcome by
metallic structures that provide a suitable platform for launching such SPPs in graphene.
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In this chapter we have introduced the fundamentals of plasmonics and placed special em-
phasis to graphene surface plasmons, which will later appear both in our theoretical work in
Section 7.1 and experimental work in Section 7.3. The last section about launching graphene
surface plasmons via metallic antennas is particularly interesting because this effect is the
reason of the huge nonlinear optical enhancement that we have observed in our graphene
devices.
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Chapter 4

Fundamentals of Graphene

Carbon is all over the place. From simple rocks to sophisticated diamonds, passing through
uncountable intricate compounds. It constitutes the 15th most abundant element on Earth
and the 4th in the universe, right after hydrogen, helium and oxygen. It is thus not surprising
the curiosity that humans have shown towards this element since early times. Leaving aside
the vast variety of heteronuclear composites that nature displays, this brief introduction will
only focus on homonuclear carbon compounds, also known as carbon allotropes.

The first carbon allotrope ever known was graphite, which happens to be the most stable
under standard conditions. Although it was already used in the 4th century BC, it was not
untill 1789 that geologist A. Werner gave this material its current name, which came from
its use in graphical purposes such as, painting, marking or writing. As shown in Fig. 4.1a,
graphite is formed by layers where the atoms are arranged in a hexagonal structure; that is,
graphene. These layers are weakly bonded to each other by van der Waals forces and this is
why graphite leaves a trace when pressed against another harder material like paper.

Fullerene is another example of a carbon allotrope [50]. This consists of 60 carbon atoms
forming a hollow sphere, where the individual atoms are arranged forming pentagons and
hexagons, just like a soccer ball (see Fig. 4.1b). We should mention that there are other
numbers of atoms and shapes that are also known as fullerenes, but the most known one is
the C60, also known as buckminsterfullerene or bucky ball. This name was given in 1985 as
a homage to the American architect Buckminster Fuller, as his designs resamble to those of
the fullerenes.

A few years later, in 1991, single-walled carbon nanotubes (CNTs) were discovered [41, 7].
As shown in Fig. 4.1c, These are rolled up graphene sheets with a cylindrical structure of a
few nanometer diameter, which makes them effectively two dimensional. Depending on the
edges of the original graphene sheet that leads to the nanotube, we can distinguish between
zig-zag and armchair configurations. This characteristic, together with the angle at which
this graphene sheet is rolled (chirality), CNTs can be manufactured to have very different
electrical properties: from conducting to semiconducting.

Finally, in 2004, the long awaited graphene was isolated in a laboratory [67]. It happened
at the Manchester University thanks to the simple method known as the scotch tape method
developed by K. Novoselov and A. Geim, who later won the Nobel prize in 2010. This original
method consists of literally using scotch tape to tap on a bulk piece of graphite and looking for

27



Chapter 4: Graphene

Figure 4.1. Carbon allotropes. a. Graphite. Graphene layers stick to each other via Van der Waals forces
to form macroscopic size stacks. b. Buckminsterfullerene or bucky ball. 60 carbon atoms form
a mesh of pentagons and hexagons and acquire a stable hollow sphere. c. Single-walled carbon
nanotubes. Graphene sheets are rolled up to form cilinders with different diameters in the nanometer
scale. Depending on the edges of the initial graphene and the chirality at which this is rolled up, its
electronic properties can be tuned. d. Graphene. Carbon atoms form hexagons to build a stable 2D
structure where electrons can hop from atom to atom, leading to extraordinary electronic mobility.

single-layer graphene areas on the tape. Technically, this is known as mechanical exfoliation
and, although it is a tedious and nondeterministic method, it is still the method that provides
best quality graphene today. This is because the exfoliated flakes are single-domain and this
ensures great electron mobility, leading to huge conductivity and other optical properties that
derive from it. However, this method is limited to graphene samples in the order of few tens
of micrometers. For larger samples and industrial applications, the so-called chemical vapor
deposition (CVD) method is used, which allows one to cover areas on the order of tens of
centimeters with a monolayer [89].

4.1 Electronic properties of graphene

The electronic configuration of carbon is

[C] = 1s22s22p2 (4.1)

where the last three electrons (2s, 2px, 2py) combine to give a sp2 hybridization and an electron
is left free [33]. Those electrons in the hybrid orbitals form σ bonds with the neighboring
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Figure 4.2. Graphene’s electronic properties. a. Sketch of the orbitals of a carbon atom. The sp2 hybrid orbitals
lie on the x − y plane with 120◦ separation between them. These have strong σ bonds with the
neighboring atoms. The pz orbital extends along the z axis, with an unpaired electron that can create
weak π bonds. b. Valence and conduction bands of graphene. These are completely symmetric and
intersect at points K and K’, where EF = 0.c. For relatively low energies (|EE| < 2 eV) the dispersion
relation of graphene is linear and has the shape of two cones known as the Dirac cones. This is due to
its similarity to the Dirac equation for massless fermions. At the intersection of the cones, known as
the Dirac point, EF = 0.

carbon atoms, keeping a 120◦ separation in between the arms (see Fig. 4.2a). These strong
bonds are responsible for the extraordinary mechanical properties of graphene. The fourth
orbital (2pz) is perpendicular to the plane defined by the sp2 orbitals and it creates π bonds
between the graphene layers, forming multilayer graphene or even graphite. In the case of
monolayer graphene, these unpared electrons can freely hop from one π orbital to another,
leading to the remarkable electronic and optical properties of graphene.

Mathematically, graphene can be described by two intersecting triangular Bravais sublattices,
with lattice vectors

a1 = a0
2 (3,

√
3) a2 = a0

2 (3,−
√

3) (4.2)

where a0 = 1.421Å is the distance between two neighboring carbon atoms (see Fig. 4.3a).
The corresponding reciprocal space is defined by the vectors

b1 = 2π
3a0

(1,
√

3) b2 = 2π
3a0

(1,−
√

3) (4.3)

which define the first Brillouin zone (see Fig. 4.3b).

The tight binding model considering only π electron hoping between the nearest neighbors
gives the following form of the electronic bands in the reciprocal space:

Ek = ±t

√√√√1 + 4 cos2

(√
3a0
2 ky

)
+ 4 cos

(√
3a0
2 ky

)
cos

(3a0
2 kx

)
(4.4)
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Figure 4.3. Real and reciprocal lattices of graphene. a. In the real lattice, the unit cell is determined by the
shaded area, where A and B are two atoms separeted by the minimum distance a0 = 1.421Å. a1 and
a2 are the lattice vectors of the Bravais sublattice describing the honeycomb structure of graphene. b.
In the reciprocal lattice, the first Brillouin zone is defined by the shaded area with the center at Γ. b1
and b2 are the basis vectors of the reciprocal lattice. Image taken from[91].

where t = 2.8 eV is the hoping energy between neighboring orbitals. In Fig. 4.2b we have
plotted the valence (Ek < 0) and conduction (Ek > 0) bands and find two points at which
they intersect:

K = 2π
3a0

(
1, 1√

3

)
K’ = 2π

3a0

(
1,− 1√

3

)
(4.5)

where EK = EK′ = 0. We can now shift the wave vector coordinates to have the origin at
this K point; that is, k = K + q, where q is the wave vector with respect to this new origin
at point K. The characteristic linear dispersion relation of graphene is then given by

Eq = ~vF|q| (4.6)

where vF = 3ta0
2~ ∼

c
300 ∼ 106m/s is the Fermi velocity of the electrons [82]. If we have a

closer look at the region around these singular points, we distinguish a conical shape, known
as the Dirac cone, as this is similar to that given by the Dirac equation for massless fermions.
Thus, we can conclude that the free electrons in graphene behave like massless particles.

4.2 Optical properties of graphene

Apart from the electronic properties, the linear dispersion relation of graphene also leads to
two very characteristic optical features. On one hand, when graphene is undoped, EF = 0,
it has a constant absorption coefficient A = πα ∼ 2.3% that is independent of the incident
wavelength [29]. This is explained by the symmetry between the valence and the conduction
bands, and the fact that, since the conduction band is empty, any electron excitation is
allowed, regardless of the photon energy, as long as the linearity of the dispersion relation
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4.2 Optical properties of graphene

holds. On the other hand, due to this linear dispersion, the density of states in graphene
is very low and this leads to major changes in the Fermi energy even with weak electronic
doping. To be precise, the dependence of the Fermi energy on the density of injected carriers
n is given by

EF = ~vF
√
πn. (4.7)

In practice, this electrical doping is carried out by an external constant electric field E applied
across the graphene sheet. The resulting carrier density is the n = −|E|/4πe. It should be
mentioned that the carriers could either be electrons in the conduction band or holes in the
valence band, depending on the polarity of the applied field. As expected, shifting the Fermi
energy brings changes to the optoelectrical response of graphene. This can be easily described
by the local random phase approximation model, in which the conductivity is given by:

σ(ω) = −e
2

π~2
i

ω + iγ

∫ ∞
−∞

|E|δfEδE + E/|E|

1−
(

2E
~(ω+iγ)

)2 fE

 dE, (4.8)

where
fE = 1

1 + e(E − EF)/kBT
(4.9)

is the electron distribution with energy E [26]. In this expession for the conductivity we
distinguish two terms in the integral. The first one corresponds to intraband transitions,
where electrons are excited within the band, and the second term corresponds to the interband
transitions, where electrons are excited from one band to another. It is worth mentioning
that by ignoring the second term and taking T → 0 this equation reduces to the conductivity
given by the Drude model [19, 34], where electrons are treated as classical particles bouncing
off of the nuclei in the material,

σ(ω) = e2

π~2
i|E|
ω + iγ

. (4.10)

So as to better explain the optical properties of graphene and understand the difference
between intra- and interband transitions, we will take a step back and focus on the optical
dispersion relation of graphene shown in Fig. 4.4a. In this sketch we have chosen some
arbitrary Fermi energy EF = 0.4 eV . At this doping level, the valence band is completely
filled with electrons and the conduction band is slightly filled. The transitions ocurring
within the same band are known as intraband transitions, and those where an electron from
the valence band fills a hole in the conduction band are called interband transitions. In
this example, intraband transitions are only allowed in the conduction band, as those in the
valence band are Pauli blocked because the band is already full with electrons. It is worth
mentioning that transitions can only occur within states on the surface of the cones.
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Figure 4.4. Dispersion relation of graphene a. Sketch of the optical dispersion relation of graphene and b. density
plot summarizing all the allowed transitions in graphene, including intraband and interband transitions,
and excitations of SPPs. This is calculated via the random-phase approximation (RPA) model for a
free standing graphene (ε1 = ε2 = 1) with EF = 0.4 eV and µ = 104 cm2/Vs. Image taken from [26],
page 37.

Similar to how we derived the Fresnel coefficients (Eq. 2.15) at the interface between two
different materials, one can derive the reflection coefficient of a p-polarized (TM) electromag-
netic wave impinging on a layer of graphene sandwiched between two materials with ε1 and
ε2. This is given by,

rp = ε2k1⊥ − ε1k2⊥ + 4πσ/ωk1⊥k2⊥
ε2k1⊥ + ε1k2⊥ + 4πσ/ωk1⊥k2⊥

(4.11)

The imaginary part of this reflection coefficient corresponds to absorption of the incident light,
which describes the states that can be excited; that is, the density of states. In Fig. 4.4b,
we show Im{rp} as a function of the energy and momentum of the photon for EF = 0.4 eV
and µ = 104 cm2/Vs. In this figure, the light line lies almost on the vertical axis because of
the steep dispersion relation of light, ω = ck, with c = 3 · 108 m/s. Here we distinguish three
main possible transitions. In the bottom right corner we have the intraband transitions that
occur within the conduction band. Note that for k‖ = 0 no intraband transition can occur
because the only allowed transitions are those within the surface of the cone. In the top of
the figure interband transitions are allowed; those from the valence band to the conduction
band. Finally, there is an optical gap in the left bottom corner. This area is limitted by the
conditions k‖ < kF and ~ω < 2EF, where neither intraband nor interband transitions can
occur; in other words, it is impossible to absorb the photon and conserve both energy and
momentum. However, the thick line that crosses the optical gap corresponds to momenta and
energies for which SPPs can be excited.
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4.2 Optical properties of graphene

The dispersion relation of the p-polarized graphene SPPs can then be obtained through the
pole of rp, which satisfies the equation

ε1√
k2

spp − ε1k2
+ ε2√

k2
spp − ε2k2

= −4πiσ
ω

, (4.12)

where kspp is the in-plane component of the plasmon wave vector.

In this chapter we have summarized the timeline of the discovery of the different carbon
allotropes, from the most ancient graphite to the latest graphene. We have then described
the electronic properties of graphene, which lead to its optical properties. Apart from the
constant linear absorption that graphene’s continuous band structure provides, the dispersion
relation of graphene, related to the conductivity given in Eq. 4.8, plays a special role in this
work: we experimentally tune the Fermi energy to enable transitions that would otherwise
be Pauli-blocked. It should be mentioned that the nonlinear optical properties of graphene
are not included in this chapter because it is a very involved calculation that is beyond the
scope of this thesis [60, 61, 11, 12, 80].
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Chapter 5

Fundamentals of Quantum Computing

For decades, scientists developed new theories based on classical mechanics that failed to
explain the observed effects when atoms and photons interacted with each other. Among
others, these include the solution of Max Planck in 1900 to the black body radiation problem
or the photoelectric effect first explained by Albert Einstein in 1905. Finally, in the mid-1920s,
Erwin Schrödinger, Werner Heisenberg, Max Born and other renowned scientists developed
the so-called Quantum Theory, which aims to describe the behavior of the smallest things in
nature, all the way down to the atomic and subatomic scale. In this theory, every particle is
associated to a wave function, which can be used to predict the probabilities of finding the
particle in a certain state.

In the subsequent years, scientific discoveries kept confirming the accuracy of this counter-
intuitive quantum theory and more and more phenomenology was explained on this basis.
However, as computers were becoming the key point in research, and more complex quantum
systems were being studied, in 1982, Richard Feynmann wondered how one could simulate
the probabilistic behaviour of nature based on quantum mechanics with a classical non-
probabilistic computer [25].

So as to understand why this was a major concern and to understand the current push to build
a quantum computer, there are a few concepts that we first need to introduce [1, 66, 75].

5.1 Qubits and entanglement

In quantum mechanics any quantum system can be in a state known as a quantum state [66].
The simplest case is that of a two-level system, known as qubit, which can be in two different
pure states; say 0 or 1. The difference between a bit in a classical computer and a qubit in a
quantum computer is that the latter can also be in any arbitrary superposition of these two
pure states; namely,

|ψ〉 = α |0〉+ β |1〉 (5.1)

where |0〉 =
( 1

0
)
and |1〉 =

( 0
1
)
are normalized and orthogonal states that make up a basis set,

and α and β are complex numbers that, due to conservation of probability, obey |α|2 + |β|2 =
1.
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Generally speaking, this state |ψ〉 can be represented as a vector in the Bloch sphere with
unit length as

|ψ〉 = cos
(
θ/2
)

+ eiφ sin
(
θ/2
)

(5.2)

If we now expand this single-qubit example to a separable n-qubit system, the pure state
would be defined as the tensor product of the individual quantum states as

|ψtot〉sep = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn〉 (5.3)

where
|ψi〉 = αi |0〉+ βi |1〉 (5.4)

This means that, classically, we would need 2n amplitude values to describe the system.
However, if the n-qubit system is entangled or nonseparable, this state could no longer be
written as the tensor product of the individual n-qubits. Instead, we would have to write the
state as

|ψtot〉nonsep =
∑

x∈{0,1}n
αx |x〉 (5.5)

where αx is a vector with all components of the form {α0000...0, α0000...1}, the length of which
scales as 2n. This means that, classically, describing this system requires 2n amplitudes, which
becomes unfeasible very rapidly. To give a more intuitive idea of this magnitude, already for
n = 300, the size of αx is larger than the number of atoms in the universe. This is exactly
part of where the speed up of quantum computers comes from when compared to classical
computers. We should also emphasize that, if resources were unlimited, classical computers
would also be able to simulate quantum systems. However, in practice, the amount of required
resources limits the feasibility to a very little amount of quantum bits.

Apart from the separable and nonseparable (entangled) states, we also distinguish mixed
states, which can be interpreted as probability distributions over quantum superpositions.
Mathematically, we represent these states via the density matrix given by

ρi =
∑
i

pi |ψk〉 〈ψk| (5.6)

where pk is the probability corresponding to the single pure state |ψk〉. So as to ensure that
the density operator is physical, there are three conditions that this needs to fulfill:

• ρ needs to be square.

• ρ needs to be Hermitian; that is, ρ = ρ†.

• ρ must be non-negative, meaning that it has positive eigenvalues; that is, Tr(ρ2) = 1
for pure states and Tr(ρ2) < 1 for mixed states.
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The diagonal terms ρii = 〈i|ρ|i〉 known as the population, indicate the probability of collapsing
the system in the state |i〉 after measuring the observable with eigenstates {|i〉}. The off-
diagonal terms ρij = 〈j|ρ|i〉 are known as the coherences and they assess the interference
between the states |i〉 and |j〉.

The simplest maximally entangled states are those given by two particles. These are the
so-called Bell states, which we introduce here, as they will appear later in the work presented
in Section 7.1,

|φ±〉 = 1√
2
(
|0〉1 |0〉2 ± |1〉1 |1〉2

)
(5.7a)

|ψ±〉 = 1√
2
(
|0〉1 |1〉2 ± |1〉1 |0〉2

)
(5.7b)

where |0〉1 |0〉2 = |0〉1 ⊗ |0〉2 represents the first and the second particle in state |0〉. For
simplicity, here we will also write it as |00〉.

5.2 Quantum logic gates

Classical computers consist of wires that carry information around the circuit and connect
logic gates together. In a similar way, quantum computers can also be described as a circuit,
where qubits are transmitted through a set of quantum logic gates. Although there are
some differences, there is an analogous quantum logic gate for each classical logic operation.
Additionally, due to the special properties that qubits have, such as superposition, there are
also other types of quantum gates that have no classical analogue.

The most elementary single-qubit gates are the 2x2 Pauli matrices (σx, σy, σz) and the identity
operator I:

σx =


0 1

1 0

 σy =


0 −i

i 0

 σz =


1 0

0 −1

 I =


1 0

0 1

 (5.8)

Due to the way in which these alter the state of the qubit, σx and σz are known as the
bit flip and phase gates, respectively. Another very relevant gate in quantum computing
is the Hadamard gate (H), which maps the {|0〉 , |1〉} basis to the {|+〉 , |−〉} basis, where
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Figure 5.1. a. Every point in the Bloch sphere represents a quantum state. The computational basis, |0〉 and |1〉,
is defined along the z-axis, while the diagonal basis, |+〉 and |−〉, lies on the x -axis. b. CNOT and c.
CZ truth tables. These gates flip or change the phase of a target qubit if the control qubit is 1.

|+〉 = 1/
√

2
(
|0〉+ |1〉

)
and |−〉 = 1/

√
2
(
|0〉 − |1〉

)
. In the matrix form this is written as

H = 1√
2

(σx + σz) = 1√
2


1 1

1 −1

 (5.9)

Additionally, there are also rotation gates, Rx(θ) = e−i
θ
2σx , Ry(δ) = e−i

θ
2σy , Rz(δ) = e−i

θ
2σz ,

where the qubit is rotated around the x, y and z axis in the Bloch sphere, respectively (see
Fig. 5.1a).

Another set of very important gates in quantum circuits are the two-qubit gates, as they
create superposition and entanglement between different qubits. The most frequently used
ones are the controlled-NOT (CNOT) and the controlled-Z (CZ) gates (see truth tables in
Fig. 5.1b and c), where the target qubit gets flipped or acquires a phase depending on the
state of the control qubit. In the computational basis |00〉 , |01〉 , |10〉 , |11〉 these are given
by

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(5.10)

Note that in quantum mechanics, in general, and hence also in quantum computation, matrix
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Figure 5.2. Logic gates built from the universal NAND gate.

operations have to be hermitian (A† = A) to ensure that the eigenvalues are real and they need
to be unitary (U †U = I) to ensure that the operation keeps the norm (energy conservation).

5.2.1 Universal quantum gates

In classical computation a logic gate or set of logic gates is known as universal if connecting
together enough gates from this set one can compute any boolean function; i.e. if one can
implement any computation by only using these set of gates. One of the most common
example is the NAND gate, from which one can easily build most of the common gates; such
as, NOT, AND, OR, NOR or XOR (see Fig. 5.2). On the other hand, although it might not
be intuitive, sets like {AND,OR} or {NOT,XOR} are not universal.

Similar in quantum computation, but now the gates need to implement an arbitrary operator.
There are uncountable permutations by which one could find a universal set of gates but,
although not always sufficient, there are certain necessary conditions that these sets need to
fulfill [1]

• The gate set should be able to create interference or superposition.

• The gate set should be able to create entanglement.

• The gate set should contain both real and imaginary gates.
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Although there are many gate combinations that lead to a universal set of quantum gates,
the most well-known sets in quantum computation are centered around the CNOT gate; such
as,

{CNOT,H, S, T}

where H is the Hadamard gate given in eq. 5.9, S is the so-called phase gate or Z90 gate, as
it represents a 90° rotation around the z-axis and T is half of a phase gate; that is, S = T 2.
Another relevant universal set of gates is given by the Toffoli and Hadamard gates. The
former is also known as the CCNOT gate as it acts as the CNOT gate but conditional on two
control qubits. Finally, and relevant to this work, we should point out that the SWAP1/2gate
together with single-qubit gates also forms a universal set of gates. This is due to the fact
that, as shown in Fig. 5.3b, one can implement a CNOT gate using single-qubit rotations
(Ry(θ),Rz(θ)), the Pauli Z gate (σz) and two SWAP1/2gates (1/2).

5.3 Square-root of SWAP gate

Despite the nonlinear nature of logic operations, it is possible to implement any quantum com-
putation based on linear optical elements [48]. Several approaches have beem experimentally
demonstrated [74, 72, 68, 83, 31, 101, 73], including the controlled-NOT (CNOT) gate, which
is considered to be the ultimate universal quantum gate in photonic quantum computing.
However, these linear devices are inherently probabilistic, which conditions their fidelity and
limits their scalability. It is possible to circumvent this probabilistic nature and increase the
success rate of such linear devices by including a large number of entangled ancilla photons
and using high-efficiency detection systems, but scalability remains a problem.

An example of such an implementation is the one developed by Pittman, et al. [72], where
one photon of an entangled Bell pair interacts, via a polarizing beam splitter, with the control
qubit and the other one with the target qubit (see Fig. 5.3a). A successful CNOT operation
will occur if only one photon is detected in each of the polarization-sensitive detectors, which
happens with 25% probability. Thus, such a gate is considered to fail when more than one
photon is found in the same optical mode. Our group has also recently experimentally demon-
strated the implementation of such a gate on a laser-written waveguide [99]. To suppress such
events, Franson, et al. [27] suggested using the Zeno effect to prevent the system from evolv-
ing into failure outcomes. Although they claim that this method could directly be applied
to the original CNOT gate, they propose implementing the Zeno effect on a square-root of
SWAP gate (SWAP1/2), which, together with single-qubit operations, completes a universal
set of quantum gates.
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5.3 Square-root of SWAP gate

Figure 5.3. CNOT gate. a. Implementation of the CNOT gate proposed by Pittman, et al. [72], where the gate
succeeds when a single photon is detected on each polarization-sensitive detector. b. Quantum circuit
of a CNOT gate operation with single-qubit π/2 rotations (Ry, Rz), two SWAP1/2 gates (1/2) and a
Pauli z operator (σz).

Experimentally, the SWAP1/2gate can easily be implemented on a bulk optical beam splitter.
However, as explained in Section 5.4, for the Zeno effect to take place, the observation (or
loss channel in this case) needs to be applied in a continuous manner. To be precise, Franson,
et al. proposed building a SWAP1/2gate on a directional coupler (DC) embedded in single
atoms that are transparent to single photons but show a strong two-photon absorption (see
Fig. 5.4a). The idea of the strong two-plasmon absorption versus single-photon transparency
is explained by the energy level diagrams shown in Fig. 5.4b. Assume a three level system,
equaly separated by energy }ω. If the incident photons are resonant, both single- and two
photon states can be absorbed. However, if the second level is slightly shifted, single photons
are no longer resonant to the transitions but two photons can be simultaneously absorbed, as
energy is conserved.

This was the original idea from which we developed the work presented in Section 7.1, where
instead of using single-atoms, we propose taking advantage of graphene’s strong nonlinear-
ity to achieve strong two-plasmon absorption without requiring any vacuum or cryogenic
technology.
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Figure 5.4. SWAP1/2 gate with a directional coupler and atoms. a. The waveguides of the directional coupler are
surrounded by an atom cloud that shows single-photon transparency and strong two-photon absorption.
b. Energy-level diagram of a three-level atom. Left: If the energy difference between the energy levels
is the same, both single- and two-photon states can be absorbed. Right: However, if the energy of the
second level is shifted, a single photon is no longer resonant but two photons can still be absorbed, as
energy conservation is obeyed.

5.3.1 Optical qubit encoding

We have seen that, in theory, quantum computation can be described in a binary basis (0
and 1) and all its possible superpositions. We will now study how this binary basis can be
implemented when the quantum information is carried by single photons.

The first and most intuitive option is to consider photons as particles in which information
is encoded using some bipartite degree of freedom. Polarization (H, V) and spatial degree of
freedom (path 1, path 2) are two of the most common degrees, which are easily interchangable
using a polarization beam-splitter. Additionally, there are other degrees of freedom that
one could use; such as, temporal encoding (early, late) or frequency encoding (blue, red).
Note that in all these cases, the photons have to be completely identical except for the
degree of freedom used for encoding the information. For example, in the case of polarization
encoding, the spatio-temporal and spectral state of the photons must be identical, and only
the polarization can be different. This kind of encoding requires two optical modes per particle
and we refer to it as dual-rail encoding [48].

An alternative to the dual-rail encoding is the single-rail encoding [76]. In this case the field
mode is considered to be the carrier and the infomation is encoded in the different field states
that this can acquire. A straighforward example is the basis formed by two Fock states. The
most common one is given by the vacuum to be logic |0〉 and the presence of a single photon
to be logic |1〉.

Although there are many distinctions between these two types of encoding, there are two
major differences that are most relevant: the evolution of the information carriers and the
practical implementation of quantum computation. As for the evolution, in the case of dual-
rail encoding, the qubit is in a stationary state; that is, the polarization does not change as
the photon propagates. However, in the single-rail encoding, the optical modes correspond
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to energy states and these experience a phase evolution as the mode propagates. Therefore,
a co-propagating classical mode is needed as a phase reference [76]. With regard to the
implementation, in the dual-rail encoding, single-qubit operations do not pose any challenge
while non-trivial two-qubit gates are difficult and probabilistic. On the contrary, in the case
of single-rail encodings, deterministic two-qubit gates are relatively easy, while single-qubit
gates are difficult and probabilistic [95]. Nonetheless, for two-qubit gates, both encodings fail
when two-photons are found in the same optical mode.

We have previously claimed that quantum logic operations are inherently nonlinear but men-
tioned that Knill, et al. [48] developed the so-called linear optical quantum computing
(LOQC) approach in which only linear elements are required to performed universal quantum
computing. However, this is not entirely true, as the detectors, together with postselection
represent a nonlinear process [16]. When using an single-photon avalanche photodiode, for
example, the nonlinearity is inherent in the exponential dependence of the measured electrical
voltage on the number of excited photons [20]. In fact, both single- and dual-rail encodings
require some sort of nonlinear process to verify that the operation has been successful. In the
case of the dual-rail encoding, one does not require nonlinearities throughout the computa-
tions but needs a detection and postselection process to verify the outcome of the gate. An
example of such process is the CNOT gate presented by Pittman, et al. [72] (see fig.5.3a), in
which the CNOT gate only works when a single photon is detected on each of the polarization-
sensitive detectors. In the case of the single-rail encoding, the nonlinearity is present in the
computation of the scheme but there is no detection required to ensure that the gate has been
successful.

In the work presented in Section 7.1 the information is single-rail encoded. More precisely,
our logic 1 is represented by the presence of a resonant plasmon and the logic 0 is given by the
absence of this plasmon. Neglecting experimental imperfections, this type of encoding enables
creating entanglement in a deterministic manner and there is no need to detect the output to
ensure that the gate has performed correctly. Nonetheless, as mentioned before, single-qubit
operations remain a challenge. However, it has been shown that one can switch encodings [53,
55]. Thus, although our proposed quantum computation platform with graphene plasmons is
based on single-rail encoding, one could switch to dual-rail encoding if needed.

Although we have not studied the self- or cross-phase modulation (XPM) on our SWAP1/2based
on plasmons in graphene nanoribbons, it is important to mention that the strong third-order
nonlinearity of graphene could affect the fidelity of this gate via the Kerr effect. In 1995,
Chuang and Yamamoto [13] suggested that the XPM between two optical fields could be used
for universal quantum computation, provided that the nonlinearity was sufficiently large. In
the Kerr effect, due to the χ(3) of a nonlinear medium, the presence or absence of a photon
conditions the phase shift of another photon. In single-rail encoding, where |0〉 and |1〉 refer
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to the vacuum and single-photon states, respectively, the XPM is given by,

1√
2

(|0〉+ |1〉) |1〉 → 1√
2

(|0〉+ e−iφ |1〉) |1〉 (5.11)

where φ = κn1n2 is the phase shift that depends on the number of photons in each mode, n1

and n2, and κ is a constant that depends on the material’s nonlinear strength. The interesting
thing of such operation is that with κ = π, in the (|0〉 ± |1〉)/

√
2 basis, this is equivalent to a

CNOT operation. However, materials with such strong nonlinearities also lead to large losses
due to absorption. To avoid this problem, in 1996, Schmidt and Imamoǧlu [84] found a giant
Kerr-effect by resonantly enhancing the Kerr nonlinearity while also decreasing the linear
susceptibilities, which is the cause of the strong absorption and consequent losses. Without
entering into too much detail, their scheme took advantage of the strong nonlinearity to induce
a strong electromagnetically induced transparency (EIT) that would diminish the losses, while
still having a strong XPM.

Ever since, these very promising approaches aroused great curiosity and there are several
studies that have put into question the fidelity of such XPM gates. In 2006 Shapiro [85]
carried out a thorough study, where he considered the multimode and continuous-time nature
of the quantized electromagnetic fields taking part in the XPM. In other words, he studied the
response time and duration of the nonlinear response with respect to the temporal duration
of the single-photon pulse, which is related to the bandwidth of the photon. In his article
he considered two regimes. The first one is the fast-response regime, where the nonlinear
response happens very fast compared to the pulse duration. In this case, he found that it
is possible to induce a π phase shift but that it only occurs in a very short region of the
single-photon pulse and at a random time. Therefore, no overall phase shift is observable.
In the second regime, he considered the nonlinear response time to be much longer than the
pulse duration. In this case, he found that an overall π phase shift can be easily achieved but
that the noninstantaneous nonlinear response leads to noise-phase terms that have a large
negative impact on the fidelity of this XPM gate.

Supporting Saphiro’s claims, in 2010, Gea-Banacloche [32] studied a similar XPM gate but he
described the travelling fields as localized single-photon pulses, which would be comparable
to the fast-response regime in Shapiro’s work. He came to the same conclusion: that large
phase shifts would only be possible if the bandwidth of the nonlinear medium is close to the
spectral width of the single-photon pulse; that is, when the response time of the nonlinear
interaction is equivalent to the temporal width of the photon. However, he also pointed out
that in this regime the EIT suggested in [84] would no longer be strong enough to suppress
the losses arising from the strong absorption in the material.

In conclusion, phase modulation induced by third-order Kerr nonlinearities is an extremely
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involved study that has been going on for decades. I would like to point out that the work
presented in Section 7.1, and specially the fidelity estimation of the gate, does not include
a study on the possible phase modulations that plasmons could undergo in the presence of
graphene’s χ(3) nonlinearity. Therefore, beyond the simplistic model in which our work is
based, further analysis are needed to be able to give a quantitative value of the fidelity of the
gate considering these effects.

5.3.2 Mathematics of a SWAP1/2based on a directional coupler

In this section we will introduce the square-root of SWAP (SWAP1/2) gate performed with a
directional coupler, which is the basis of the work presented in Section 7.1. To understand
how this universal SWAP1/2works, let us start by introducing the SWAP gate first. This is
a two input and two output gate, where the qubit input in one of the modes always swaps
to the other output port (see Fig. 5.5a). Now, one can imagine that this swapping process
happens only halfway, so that one can no longer determine whether the qubit was swapped
or not (see Fig. 5.5b). And this is indeed how the SWAP1/2gate works. The name is given
due to the fact that by applying twice the SWAP1/2gate, one ends up with the SWAP gate.

Focusing on photons, this gate can be carried out by a simple 50− 50% beam splitter, where
the photon entering one port ends in a superposition of both output ports. However, this
change of states happens in a single step and, due to the requirements of our work, we need
the SWAP to be a continuous process, where one can interact with the system while the
swapping process is happening. This can be done using a directional coupler to perform the
SWAP1/2gate. As shown in Fig. 5.5c, a directional coupler consists of two photonic waveguides
placed so close to each other that the fields of the waveguide modes overlap due to evanescent
coupling. There is certain length L after which a photon input in the upper port will always
exit the lower port. However, as shown in Fig. 5.5d, if this interaction length is shortened
to half, L/2, one can no longer determine whether the photon swapped modes or not, and
this uncertainty creates a quantum superposition of modes between the upper and the lower
port. Thus, this process corresponds to a SWAP1/2operation. Now we will go through the
theory behind an optical directional coupler built with waveguides to be able to calculate the
interaction length L and its dependence on the evanescent coupling between the waveguides
κ [90].

Let us assume that two waveguides with refractive indices n1 and n2 are placed close to each
other, as shown in fig. 5.6. We will also assume that the waveguides are single-mode and that
the light, polarized along the y-axis, propagates along the z-axis. Under these assumptions,
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Figure 5.5. Concept of a SWAP1/2gate with a directional coupler. a. On a SWAP gate, the
qubit always swaps modes between the input and the output ports. b. When this
SWAP operation is only performed halfway, one can no longer define whether the
qubit has swapped modes or not, thus creating a superposition of output modes. In a
directional coupler, two waveguides are placed so close to each other that the evanescent
field of the photon allows it to swap from one mode to the other. c. There is a certain
interaction length L, after which it is certain that the qubit has swapped modes. d.
However, if this interaction length is shortened to L/2, one can no longer determine
whether the SWAP has happened or not, leading to a superposition of output modes;
that is, a SWAP1/2operation.

we can write the wave equation for each waveguide as

∇2Ei(x, y, z) + n2
i k

2
0Ei(x, y, z) = 0 (5.12)

where i = {1, 2} for waveguide 1 and 2, respectively, and ni = ni(x, y) is the refractive index
that we will assume to be constant over the entire propagation length. The solution to this
wave equation is found to be

Ei(x, y, z) = Ei(x, y)e−iβz, (5.13)

where β = kz is the wave vector in the propagation direction. If we try these solutions in the
wave equation 5.12, we will end up with the following expression, which will come in handy
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Figure 5.6. SWAP1/2gate a. Sketch of the arrangement of the waveguides in a directional coupler. b. Refrac-
tive index as a function of x. In this example the waveguides have different refractive indices but we
have considered the case with identical waveguides. c. Field distributions of both waveguides, where
the overlapping tails contribute to the coupling between them.

couple of steps ahead:
∇2
xyEi(x, y) +

(
n2
i k

2
0 − β2

i

)
Ei(x, y) = 0 (5.14)

where ∇2
xy is the Laplace operator defined as

∇2
xyf(x, y) = ∆xyf(x, y) = δ2f

δx2 + δ2f

δy2 (5.15)

We will now consider the system as a whole, and have a single total refractive index nT(x, y)
that is valid for both waveguides. The total wave equation is then

∇2E(x, y, z) + n2
Tk

2
0E(x, y, z) = 0 (5.16)

and the solution has the form

E(x, y, z) = A1(z)E1(x, y)e−iβ1z +A2(z)E2(x, y)e−iβ2z. (5.17)

If we insert this solution into the wave equation 5.16 and use the single wave equations 5.14
to replace the ∇2

xyEi(x, y) terms, we can reduce the expression to

∑
i={1,2}

[
δ2Ai(z)
δz2 − 2iβi

δAi(z)
δz

+ k2
0(n2

T − n2
i )Ai(z)

]
Ei(x, y)e−iβiz = 0 (5.18)

Note that n2 = ε is the dielectric constant. Therefore, one can interpret (n2
T − n2

i ) as the
perturbation of the dielectric constant in the first waveguide, due to the presence of the field in
the second waveguide, and vice versa. We can further simplify this expression by considering
that the wave amplitudes, A1(z) and A2(z) evolve very slowly in time and thus we can assume
that δ2Ai(z)

δz2 = 0. Moreover, we can divide everything by e−iβ1z and have a single exponential
decay as e−i∆βz, where ∆β = β2 − β1 represents the phase mismatch between the first and
the second mode.
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After some mathematical tricks, we finally reach to the so-called coupled mode equations,
which are given by

δA1
δz

+ iκA2e
−i∆βz = 0 (5.19a)

δA2
δz

+ iκA1e
−i∆βz = 0, (5.19b)

where κ is the coupling constant

κ = k2
0

2β

〈
(n2

T − n2
2)E2, E1

〉
〈E1, E1〉

(5.20)

Here we have used the bracket notation where
〈
Ei, Ej

〉
=
∫∫
EiE

∗
j dxdy and we have assumed

β1 = β2 = β. We will now look for the easiest solution to this system of equations, where the
waves propagate synchronously; that is, without any phase mismatch, ∆β = 0. Under this
assumption, we arrive at the solution

A1(z) = C1 cos (κz) + C2 sin (κz), (5.21)

where C1 and C2 are constants that will be determined by the boundary conditions. To do
so, we can consider that initially, at z = 0, there is only light in one of the waveguides, so
A1 = 1 and A2 = 0. By applying these into equations 5.19, we find

A1(z) = cos (κz) (5.22a)

A2(z) = −i sin (κz) (5.22b)

so the probability of finding light in waveguide 1 and 2 at a specific z are P1 = A1A
∗
1 =

cos2 (κz) and P2 = A2A
∗
2 = sin2 (κz), respectively. This means that the interaction length

between the waveguides, after which the light has swapped from one waveguide to the other
depends on the coupling between these; the stronger the coupling, the shorter the interaction
length needs to be for the SWAP1/2process to happen.

5.4 The Zeno effect

The Zeno effect alters the time evolution of a system depending on the observations that are
made on it [62]. In order to give a comprehensive and intuitive understanding, we will intro-
duce two main interpretations and corresponding examples, where the first one is based on a
quantum system and the second one can be completely explained by classical mechanics.

The first explanation is based on the following claim: Continuous observation of the system
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Figure 5.7. Sketched expamples of the Zeno effect interpretations. a. If the system is prepared in the excited
state at t0, in the absence of external forces, it will decay into the ground state at time td. However,
if continuous observations are carried out, these measurements will keep collapsing the system into
the excited state and will keep it in place. b. If the polarizer is set perpendicular to the incident
light, no light will make it through. However, if the polarizer angle is slowly rotated starting from the
polarization of the incident light, this will evolve in a way to adapt and avoid the loss channel. In this
case the beam will change the polarization to that set by the polarizer.

keeps the system in place. Let us imagine a two-level quantum system, where we define a
ground state |g〉 and an excited state |e〉. As shown in Fig. 5.7a, if the system is prepared in
the excited state at certain initial time t0, |ψ(t = t0)〉 = |e〉, it is inevitable that, without any
external interaction, it will decay back to the ground state within certain time td that will
vary depending on the system’s details; that is, |ψ(t = td)〉 = |g〉. Now, let us assume that
we perform a measurement at a time t1, shortly after t0. At this point, the system will be in
a superposition of states in the form of

|ψ(t = t1)〉 = α(t1) |g〉+ β(t1) |e〉 , (5.23)

where α(t) and β(t) are probability coefficients that vary in time and are normalized such
that |α(t)|2 + |β(t)|2 = 1. In a handwavy manner, from the graph we can see that if the
measurement is carried out right after t0, α(t1) � β(t1), and the probability of finding the
system in the excited state is close to one. If this would indeed be the case, our measurement
would collapse the superposition state into the state |ψ(t1)〉 = |e〉. Therefore, if we would
repeat this measurement within tiny time intervals, ∆t� (td− t0), we would be continuously
collapsing the system into the excited state; i.e., keeping the system in place.

The second interpretation is based on the following statement: The system always evolves in
a way to avoid loss channels. To get a more intuitive understanding of this interpretation,
let us imagine a linear polarizer at which a V polarized wave is impinged (see Fig. 5.7b). If
the polarizer is set to H, within the experimental error, there will be no light passing through
the polarizer. However, if the angle of the polarizer is set close to the vertical, θ � 1, E cos θ
amount of light will make it through the polarizer and this will have the same polarization
as that from the polarizer. If we stack n polarizers, each one rotated by θ with respect to the
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previous one, where θ = π/2n, we will end up with (E cos θ)n field transmitted through the
final polarizer. For n→∞, the system would slowly change the polarization and all the light
would be transmitted through the polarizer. Thus, the system would have evolved to avoid
the loss channel. [43]

5.4.1 The Elitzur-Vaidman Bomb experiment

We now present one of the first applications of the quantum Zeno effect: the bomb-tester,
which will be the basis of the work presented in Section 7.2. This is a thought experiment
presented by Avshalom Elitzur and Lev Vaidman in 1993 [21]. It is based on interaction-free
measurements, in which one can obtain information about a system without actually interact-
ing with it. This is indeed a controversial concept given the disruptive nature of measurements
in quantum mechanics. In principle, measuring a quantum state in a superposition of pure
states collapses it into a single pure state, thus destroying and erasing all the information
about the initial state of the system.

To understand their proposed experiment, let us assume a perfectly balanced Mach-Zehnder
interferometer (MZI) composed by two perfect 50/50 beam splitters (BS) and two perfect
mirrors (m), which we arrange as shown in Fig. 5.8a

If the upper and lower arms of the interferometer are balanced, when a photon is input in the
lower path, self-interference makes it exit the upper output port with 100% probability. Now
imagine that, as shown in Fig. 5.8b, a photon-sensitive bomb is placed on the upper arm of
the MZI; i.e. the bomb explodes if there is a photon in the upper path. If we input a photon
into the lower input port, there is a 50% chance that the photon will be transmitted into
the upper path and the bomb will explode, but there is also a 50% chance that the photon
will be reflected into the lower path, the bomb will not explode and the photon will bounce
off the lower mirror and impinge on the lower input port of the second BS. Here again the
photon has 50 − 50% probability of outputing the upper or lower path. Hence, in total, if
the bomb does not explode, we have a 75% chance of finding the photon in the upper output
port and 25% probability of finding it in the lower output port. This means that if, with 25%
chance, the photon is found in the lower port, we can be sure that there is a bomb without
ever detonating it.

As a follow up to this thought experiment, in 1995 Paul Kwiat, et al. [52] realized that the
probability of detecting the bomb without interacting with it can be made arbitrarily close
to unity if many MZIs are concatenated as shown in Fig. 5.9. As we will show, this success
probability depends on the number of BSs in the concatenated MZI (cMZI).
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Figure 5.8. Bomb-tester thought experiment. a. When the upper and lower arms of a Mach-Zehnder interfer-
ometer are balanced, if a photon is inserted in the lower input port, its self-interference will make it
always exit through the upper output port. b. However, when a bomb is placed on the upper arm, if
the bomb is not detonated, the photon has 75% and 25% probability of exiting the upper and upper
ports, respectively. Thus, one can detect whether a bomb is present without ever interacting with it.

We will use the matrix notation where a BS is represented by

B̂(θ) =


cos θ sin θ

− sin θ cos θ

 ; B̂(θ = π/4) =


0 1

−1 0

 (5.24)

where the θ = π/4 corresponds to a 50− 50 BS. It is easy to show that when N BS operations
are applied, the operator can simply be written as

B̂(θ)N =


cosNθ sinNθ

− sinNθ cosNθ

 (5.25)

where we need θ = π/2N to achieve perfect interference in the absence of bombs in the cMZI.
Let us first consider what happens when a photon enters the empty cMZI in the lower input
port of the first BS.

B̂(θ = π/2N)N |↓〉 =


cosN π

2N sinN π
2N

− sinN π
2N cosN π

2N




0

1

 =


1

0

 = |↑〉 (5.26)

where we define the input basis to be |↑〉 =
( 1

0
)
and |↓〉 =

( 0
1
)
representing the upper and

lower arms, respectively. This solution shows that, regardless of N , in the absence of a bomb,
the photon always outputs the upper port.

We now consider the case in which bombs are placed along the upper arm of the cMZI.
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Figure 5.9. Concatenated Mach-Zehnder interferometers. Kwiat, et al. noticed that the probability of deter-
mining whether a bomb is present in the interferometer or not can be arbitrarily high if one concatenates
several Mach-Zehnder interferometers. The success probability is thus proportional to the total number
of BSs chained.

After the first BS, the probabilities of the photon being transmitted to the upper path |↑〉 or
reflected to the lower arm |↓〉 are

B̂(θ = π/2N) |↓〉 =


cos θ sin θ

− sin θ cos θ




0

1

 = sin θ |↑〉+ cos θ |↓〉 (5.27)

where |sin θ|2 and |cos θ|2 are the probabilities of finding the photon in the upper and lower
paths, respectively. Since we are only interested in the probability of detecting the bomb
without interacting with it, we will only pay attention to the second term. If we expand this
solution to N number of BSs, the probability would be

∣∣∣(cos π/2N
)N ∣∣∣2, which in the N →∞

limit goes to 1. Thus, we have shown that the success probability does indeed depend on the
number of concatenated BSs, where already N = 4 gives a > 50% success.

In this chapter we have gone through the basic mathematical description of quantum compu-
tation and paid special attention to quantum logic gates. In particular, we have introduced
the universal SWAP1/2gate, which we have implemented on a plasmon-based directional cou-
pler, shown in Section 7.1. In the final part, we have put our focus on the Zeno effect, which
is the key effect in both the theoretical work presented in Section 7.1 and the experimental
work introduced in Section 7.2.
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Experimental Graphene Research

6.1 Quantum proposal

This thesis work was initially funded by the European project called Graphene-based single-
photon nonlinear optical devices (GRASP). Based on the goals of this project, the purpose of
this thesis is to find an approach to achieve nonlinear optical properties at the single-photon
level and on a chip scale. This achievement would revolutionize classical infomation technolo-
gies, enabling all-optical routing and switching, wavelength conversion or high-bandwidth
communication in the nanoscale and open the door to quantum computing. Ultimately, the
realization of such a device would leave aside high-power optics and bulk systems, which is
the current major limitation toward universal and scalable photonic quantum computing.

This regime of single-photon nonlinear optics would thus enable to create new ways to manipu-
late photons beyond what classical technology allows. The goal of this project is an extremely
important building block for quantum technologies and could result in single-photon sources,
secure quantum communication, metrology or quantum sensing.

The main limitation of nonlinear optical approaches to quantum computing is the weak non-
linearity of currently available materials, which leads to setups with high intensities and long
interaction lengths, thus hindering their scalability and industrial applicability. This project
aims to overcome this barrier by using graphene-based nanostructures, where the nonlinearity
surpasses that of bulk nonlinear crystals by several orders of magnitude. Apart from the huge
intrinsic nonlinearity of graphene that is given by its particular band structure, nonlinearities
in graphene can be driven by plasmons, whose wavelength can be three orders of magnitude
smaller than that of the free space field exciting them. Therefore, this feature results in huge
field confinements, leading to unprecedented effective optical nonlinearities.

The aim was originally to observe strong graphene-based nonlinearities via the so-called
photon-blockade effect. To explain how this classical nonlinearity can lead to a quantum
emission of light, let us imagine a bulk cavity with a third-order nonlinear media inside (see
Fig. 6.1a). Classically, the resonance frequency of the cavity depends on the nonlinear re-
fractive index of this media, which, at the same time, depends on the incident intensity I

as
ω(I) = ω0 + βI (6.1)
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Figure 6.1. Photon-blockade. a. Classically, when a nonlinear medium is placed in a cavity, the resonance
frequency depends on the refractive index of the material. At the same time, this refractive index varies
with intensity. Thus, when a resonant photon enters the cavity, the refractive index of the nonlinear
media changes, which leads to a shift of the cavity resonance, which means that the next photon will
need some extra energy to be resonant. b. A graphene nanostructure works as a cavity for plasmons.
When a photon excites a plasmon in the graphene, the resonance energy of the nanostructure shifts so
a second photon would require a different frequency to be resonant to the system.

where ω0 is the resonance of the empty cavity and β is a material-dependent parameter that
contains the nonlinearity.

From a quantum mechanics perspective, the energy is quantized and the nonlinear interaction
can be interpreted as an extra energy u required to add a second photon into the cavity after
a photon is already present. In other words, as shown in Fig. 6.1a, the interaction between
the first photon with ω and the nonlinear media leads to a shift of energy u in the resonance
frequency of the system (now consisting of the nonlinear media and the first photon). Thus,
the second photon can only enter the cavity if its energy is ω + u. This energy shift depends
on the third-order nonlinearity χ(3) and the mode volume of the cavity V as

u ∝ χ(3)

V
. (6.2)

In the ideal case, we want u to be as big as possible so that no second photon can enter the
cavity, but in practice, it is enough if the energy shift is larger than the bandwidth of the
photon; u� ∆ω.

In the case of graphene nanostructures, the nanostructure itself acts as a cavity (see Fig.
6.1b). If the first photon is resonant to the cavity, ω = ωc, this will excite a graphene
plasmon and the resonance of this excited cavity will be shifted by u. Here the shift and
bandwidth relation is given by,

u

∆ω ∝
χ(3)Q

V
(6.3)

where Q is the quality factor of the cavity, which will depend on the edges and impurities
of the graphene, and V is the mode volume of the plasmon, which can be a million times
smaller than that of the free space, as λsp ∼ αλ0, where α ∼ 1/137, and V ∼ λ3

sp. Thus,
combining all the properties of these graphene nanostructures (strong χ(3), high Q and small
V ), it is relatively easy to reach the ultimate condition for deterministic photon-blockade;
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u/∆ω � 1.

For this ambitious project, four different institutions and six research groups worked together
for 3 years. At the Institut de Ciencies Fotoniques, in Spain, the group of Frank Koppens was
responsible for the fabrication and linear optical characterization of graphene nanostructure
samples and the groups of Darrick Chang and Javier García de Abajo were in charge of the
theory development. At the University of Exeter, in the United Kingdom, the group of Prof.
Euan Hendry was in charge of the nonlinear experiments, the group of Fariba Hatami at the
Humbolt University in Germany, developed technology for photon-plasmon coupling and at
the University of Vienna,in Austria, we were responsible for the development of single-photon
detectors in the NIR. Although the original plan was adapted as experimental difficulties were
found on the way, the main steps in which the whole project was divided were:

• Producing graphene nanostructures that are capable of sustaining high-quality (long
lived) plasmons in a broadband wavelength in the NIR and visible regime.

• Observing and studying the plasmonic nonlinear enhancement in such structures.

• Comfirming classical optical switching at the level of several-photon occupation numbers
in the graphene nanostructures.

• Measuring photon antibunching provided by the photon-blockade in the cavities defined
by the nanostructures.

• Observing quantummode-splitting arising from the second-order nonlinearity of graphene.

• Developing comprehensive theories for second- and third-order nonlinear processes in
graphene nanostructures.

• Proposing novel applications for this technology in areas such as quantum information
processing or quantum simulation.

• Implementing photonic-plasmonic structures to overcome the huge momentum mist-
mach and consequent coupling limitations.

6.2 Towards the quantum regime

Initially, the group of Prof. Euan Hendry was going to perform the measurements of nonlin-
ear effects with graphene nanostructures, as they had already observed nonlinear signals from
graphene before [37]. Our goal was to develop single-photon detectors in the 1−2µm regime.
However, since our best bet was using superconducting nanowire single-photon (SNSP) detec-
tors, we needed to perform the measurements in Vienna, as these detectors require cryogenic
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temperatures and cannot be transported easily. In addition, we also needed a laser system
that would allow us to characterize the detectors in the NIR, as we only had sources with
longest wavelengths at the telecom regime (∼ 1550 nm). Thus, we decided to take part in
the experimental observations of the nonlinear effects with graphene based devices.

As we had little experience in the field of classical nonlinear optics, we joined Prof. Euan
Hendry and his students on two different occasions, for a total of 20 days, to both acquire
the required experience for us to be able to set our own experiments in Vienna, and to
together characterize the first set of samples that the group of Frank Koppens had fabricated.
This consisted of CVD graphene, where arrays of nanoribbons with widths ∼ 100 − 500 nm
were etched. Although these measurements did not succeed, it is relevant for this thesis to
introduce the original setup and its characteristics as we now understand the reasons why we
could not observe any nonlinear signal from graphene with Exeter’s setup.

6.2.1 First steps in Exeter

Due to the collaboration with Prof. Euan Hendry at the University of Exeter we had access to
two independent optical parametric amplifiers (OPA) that were pumped by a Ti:sapph laser
with 1 kHz repetition rate and ∼ 200 ps pulse length. These led to tunable wavelengths in
the 0.2− 10 µm range. This would allow any nonlinear measurement without any restriction
on the incident wavelengths, as these two beams are not spectrally correlated. In this case,
we performed four-wave mixing experiments, where the beam from the first ω1 and second
ω2 OPAs are mixed as

2ω1 − ω2 = ωFWM (6.4)

As shown in Fig. 6.2, both beams where focused and impinged on the sample with angles
α and β with respect to the normal. This configuration was designed both for convenience
to spatially overlap the beams into the sample and for spatially separating the FWM signal
ωFWM at the output.

Due to the momentum conservation, it is straightforward to calculate where the FWM signal
should be collected:

2k1 − k2 = kFWM (6.5a)
2
λ1

sinα− 1
λ2

sin β = 1
λFWM

sin γ (6.5b)

This detection was done using an avalanche photodiode (APD) (Thorlabs APD120A) with a
sensitivity of 0.20 pW/

√
Hz. The measurements consisted of recording the collected power

as a function of the delay stage, as it was moved back and forth to bring both beams in and
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Figure 6.2. Setup in Exeter. A 1kHz pulsed laser pumps two independent OPAs with tunable wavelengths in the
480−2600 nm. These two beams are then spatially and temporally overlapped on the graphene sample
and the generated FWM signal is collected at the angle given by momentum conservation. This is done
with an APD. Hence, the measurement consists of monitoring the detected signal as a function of the
temporal overlap between the beams; only when both beams coincide temporally will the FWM process
take place.

out of time overlap. Thus, only when the beams were temporally overlapped would the signal
appear. As a practical note, bear in mind that, due to the repetition rate and pulse length
of such laser systems, the pulses are meters apart from each other and that one needs to find
the time overlap with micrometer precision prior to the actual measurement. We did this by
first inserting a nonlinear crystal in the position where the sample would be placed later.

During the time we spent in Exeter, we did not manage to measure any FWM signal generated
by the graphene nanoribbons, but we saw a FWM signal from the SiO+Si substrate on which
the graphene was grown, which is known to have an optical third-order nonlinearity. This
confirms that, although we could not distinguish a signal from graphene, the method was not
the problem, as we had both spatial and temporal overlap between the two beams.

We later realised that because of the low repetition rate of the laser, the incident fluence was
way above the damage threshold of graphene [15] so we had to lower it. We had high peak
powers, low average power, and this lead to extremely low average powers of the nonlinear
signal.
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Figure 6.3. Setup in Vienna. A 80MHz pulsed laser pumps an OPO, whose signal and idler beams cover the
1 − 4 µm wavelength range. These are further mix on a DFG process, covering the spectrum all the
way to 10 µm. Due to the architecture of the setup, both spatial and temporal overlap are given. The
beams are then focused down and collimated via two short focal length lenses, in between which the
sample is placed. A set of series will then filter the pump beams from the created nonlinear signal
(FWM, THG...) and these are measured using a single-photon APD or a SNSP detector, depending
on the wavelength. The measurement thus consists on detecting the nonlinear signal as the sample is
moved in and out of the focus; the signal is biggest at the focal point.

6.2.2 First steps in Vienna

The acquired expertise from Prof. Euan Hendry’s group, allowed us to quickly start our own
research at the University of Vienna. We purchased a Mira-OPO-XP from Coherent and APE,
which combines three modules to cover the 1− 10 µm wavelength. A 80 MHz repetition rate
Ti:sapph tunable in the 775− 825 nm range pumps the OPO with ∼ 200 fs pulses. The OPO
can be considered as a stimulated down conversion process, where the cavity set resonant
to the signal beam and the phase matching conditions of the nonlinear crystal determine
the preferable conversion wavelengths, always respecting energy conservation. In our OPO
system, the cavity and crystal position are automatically optimized to have nonlinear emission
in the 1−4 µm, considering both the signal (1000−1600 nm) and idler (1600−4000 nm). The
third and last module consists of a difference frequency generator (DFG), where the signal
and idler beams from the OPO are spatially and temporally overlapped on another nonlinear
crystal to generate a DFG signal in the 4 − 10 µm range. The lower peak powers of this
system let us get higher average power without reaching the damage threshold of graphene.

At first we tried to replicate the setup from Exeter but because our signal and idler beams
are spectrally correlated, instead of pursuing FWM, we decided to look for THG, which is
also a third-order nonlinear process but only needs a single input wavelength. In addition,
we also simplified the measurement by using standard monolayer CVD graphene, as this had
been previously observed [40]. So the difference in comparison to the scheme in Exeter is that
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we would first split the beam into two and recombine them onto the sample, and look for the
THG signal as a function of the delay.

For almost two years we tried different input wavelengths, spatial configurations and beam
collection methods, including a home made spectrometer with a grating that would spatially
separate the input from the generated THG signal, but we did not succeed to observe any sig-
nal from graphene. During this time, we developed the theoretical proposal of the SWAP gate
presented in Section 7.1.

6.2.3 Success in Vienna

When looking for the THG signal, we realised that we had to change the way in which we
were trying to perform the measurement. So we listed the main challenges of our setup, and
looked for a configuration that would overcome all these problems.

In summary, the main issue was the number of uncertainties in the setup due to the required
spatial and temporal overlap to create the nonlinear signal. This resulted in an inability to
properly debug and fine-tune these parameters due to the long acquisition times required to
compensate for the low signal-to-noise ratio of the detector. Therefore, we needed a scheme
that would avoid the need for spatial and time overlap, and a detection method with higher
sensitivity to reduce the measurement time.

As for the spatial and temporal overlap, the solution that we came up with is what we call the
modified z-scan, shown in Fig. 6.3, where the measurement consists of looking at the filtered
THG signal as a function of the sample in and out of the focal point of the incoming pump.
Only when the intensity is maximum, at the focal point, would we expect a strong signal.

With regard to the detection problems, we decided to leave the photodiode aside and work
with the tools that we felt most comfortable with: single-photon detectors. So, depending on
the generated wavelength, we would either use an avalanche photodiode detector (APD) or a
superconducting nanowire single-photon (SNSP) detector.

With this new setup, we finally succeeded in finding a THG signal and we were able to perform
the measurements that are summarized in the paper in Section 7.3.

6.2.3.1 Experimental details

In this section I am going to go through the basics of the setup alignment and provide worth
mentioning insights that I found out over the years looking for a TH signal via the well-known
try and error method. Although the setup is not too complex (there is no interferometer or
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Figure 6.4. Optical components. a. It is recommendable screwing the post holder directly on the table holes
instead of using clamps. This way it is easier to keep the beamline straight when other optical compo-
nents are added. b. Sketch of the pinhole with the dispersed beam after this goes through the tight
focus lens. c. Sketch of the lend holders with translation degree in the x and y direction.

Figure 6.5. Alignment procedure step 1. Place pinholes p1 and p2 on the chosen line and steer the beam to
follow this line by using mittors m1 and m2. First do it roughly using the IR card that allows you
seeing the beam at 1500 nm and then proceed with the fine alignment by walking the beam into the
powermeter, as explained in the main text.

component that requires active stabilisation), the main challenge relies on the operation in
the regime of the NIR wavelength, which is invisible to the naked eye. The advantage, and
sometimes disadvantage, is that, when using the DFG module, there is some leakage from
the MIRA pump and the signal and idler beams. These shorter wavelengths can be very
convinient when aligning, as these are visible with the help of an IR card.

As shown in Fig. 6.3, the light in the setup follows a stright line, so the main priority is to
place the optical elements along this beam without distorting its path. I recommend using
pinholes that are attached to the table, directly using the holes in the table, instead of using
a clamp (see Fig. 6.4a). In this way, we make sure to always keep the straigh line, parallel
to the line of holes on the table. Regarless of the wavelength that we are using, the light
beam always comes out of the DFG box. Although, in principle, one can align the setup with
any wavelength, experience has taught me that the best is to start with the signal beam at
1500 nm. The first step is to direct the beam in a straight line parallel to the table holes.
To be able to reach all the degrees of freedom you will need two mirrors, m1 and m2 in
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Figure 6.6. Alignment procedure step 2. Once the beam is properly align, proceed inserting the first lens L1 by
taking pinhole p3 as a reference. Afterwards, collimate back the beam with lens L2. Use pinhole p4 as
a reference, both close to L2 and very far from it. Placing L2 on a translation stage will provide you
the required accuracy to find the optimal distance between L1 and L2.

Fig. 6.5. Our mirrors are protected silver mirrors that have close to unity reflectivity in an
extremely broadband that include all our wavelengths. Screw the pinholes along the chosen
line of holes, and place them around 40 cm away from each other. To redirect the beam, you
will first roughly do it with the help of an IR card, with which the 1500 nm beam is visible.
After the rough alignment, place the powermeter at the end of the beam line and tune the
alignment. To do so, open p2 and close p1. Note that close means leaving a hole of about
1 − 2 mm of diameter. Now move m1 to maximize the power at the powermeter. Once you
have reached the maximum, open p1 and close p2 and maximize the power by moving m2

this time. You have to iterate this procedure until you reach a point, where you barely need
to move the mirror in order to read the maximum value on the powermeter. This step has
crucial importance because it sets the base of the entire setup so, as irrelevant as it might feel,
do not rush it. Once this alignment is finished, I recommend never touching these pinholes
again; they will alyways be your initial reference.

The second step is to place the lenses. Now the challenge is the extremely short focal length of
these. This means that the beam suffers a large dispersion and thus it is difficult to determine
the beam direction. I recommend screwing another pinhole p3 on a hole along the beam line,
very close to the first lens L1 (see Fig. 6.6). This time make sure that the pinhole is centered
and then use the IR card in front of it to make sure that the focused beam is still following
the initial line. Place the lens roughly in position and fine-tune its position by using the
translation degress provided by the lens holder (see Fig. 6.4c). If you can place the pinhole
close enough, you might be able to make the beam go through the pinhole but if you place
the pinhole in a further position, it will be very dispersed so you will have to estimate the
center. To have an idea, it will look similar to the inset in Fig. 6.4b. For the second lens,
you can remove the pinhole and place it on position p4. Bare in mind that the second lens
will collimate the tightly focused beam and that, to achieve a good collimation, the distance
between the two lenses needs to be extremely precise. Therefore, you will need to mount L2

on a translation stage that will allow you to fine tune its position along the beam line. Once
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Figure 6.7. Alignment procedure step 3. After setting the lenses, you need to couple the light into a multi-mode
fiber. Use mirrors m3 and m4 to walk the beam into the fiber coupler. Use the x-y-z defrees of freedom
of the coupling lens to further optimize the coupling. Spectral filters will clear the desired wavelength
from leakage light from the MIRA pump, and signal and idler beams of the OPO.

again, I recommend closing p4 as tight as possible and maximizing the power at the other
side of the pinhole by changing the x and y positions of L2, together with the translation in
z. Do the same thing with p4 at a further distance. Remember that, experimentally, you will
never achieve a perfectly collimated beam but the closes to that configuration will be when
the beam waist is minimum at a very far distance; even a few meters away from L2.

The third and last step is to couple the beam into a fiber. As shown in Fig. 6.7, you will
need two mirrors, m3 and m4, that will provide you with the necessary degrees of freedom.
In addition to the spatial degrees, note that our fiber coupler has a movable coupling lens L3,
which means that the focal point, together with its position in y and z will also have to be
optimized.

At this point the setup is ready to create and detect THG signals. Place the graphene sample
on a x-y-z stage and in between L1 and L2. If the lenses do not have the same focal lengths,
determine the position of the focal point, which will not be in the middle of the lenses.
Although it is more difficult to understand, in Fig. 6.8 I have added a real picture of the
setup and sample to show how these look in reality.

Since we want to work at longer wavelengths, you can now switch to the idler beam at 1800 nm
and optimize the coupling again. Note that whenever you change the wavelength, the beam
walks off and both focusing and collimating distances will change. Thus, everytime you want
to change the working wavelength, you need to optimize the collimation lens L2 and the
coupling into the fiber. It is also worth mentioning that if you want to switch wavelengths
by a large amount, you will have to do it step by step and always making sure that you do
not completely lose the signal. If you lose it, unless you get lucky, you will have to start the
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Figure 6.8. Picture of the setup and sample. a. Top view of the setup. The red line is a visual guide representing
the laser beam that travels from right to left in the picture. p1 and p2 are the pinholes used for the
initial alignment, L1 and L2 are the tight focusing and collimating lenses, respectively, and m3 and m4
are the mirrors to walk the beam and couple it into the multi-mode fiber. In this case, the collected
signal is detected with an avalanche photodiode (APD). Note that all the optical components in the
setup are standard parts from Thorlabs. b. Sample with gold nanoribbons. The visible gold pads
correspond to the source and drain connections of the different graphene stripes shown in Fig. 6.9.
These are connected one at a time, depending on the stripe that is being measured. On the other
hand, the gate is shared.

alignment through p1 and p2. Here are some of the spectral filter combinations (Thorlabs
serial numbers) that might be useful to walk the beam towards longer wavelengths.

• λpump = 2550 nm, λTHG = 850 nm→ BP-850-10 + BP-850-40 + FESH1000

• λpump = 3600 nm, λTHG = 1200 nm→ BP-1200-10

• λpump = 3900 nm, λTHG = 1300 nm→ BP-1300-10 + BP-1300-30

Once you have reached the desired wavelength you are ready to measure the TH signal of any
sample. In our case we used the samples with gold nanoribbons built by the group of Frank
Koppens at ICFO. As shown in Fig. 6.9, the gold nanoribbons are distributed in different
arrays with different nanoribbon widths. The first step is to map the sample so that one
knows where the nonlinear signal comes from. To do so, I recommend using the powermeter
instead of the single-photon detector because it is faster and easier to use because you do not
need to worry about the coupling. In this case, since the nanoribbons are all oriented in the
same direction, they only absorb light polarized perpendicular to the nanoribbon orientation.
Our incoming beam is already linearly polarized so you only need to rotate it with a half-wave
plate (HWP).

After mapping the sample you first need to make sure that the detected signal corresponds
to the TH signal that you are looking for. In order to distinguish the different contributions
of the components in the sample, we proceed performing z-scans on the four different areas:
substrate, substrate+gold, substrate+graphene and substrate+graphene+gold. In Fig. 6.10
we show the ideal result; that is, a very small contribution for both substrate and gold,
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Figure 6.9. SEM images of the graphene with gold nanoribbon sample. The samples build by the group of
Prof. Frank Koppens at ICFO have different arrays of nanoribbons with different widths, indicated in
the image in nm units. The dark vertical stripes are the areas where there is graphene. There is a
replica of the same kinf of nanoribbon arrays with and without graphene in order to make reference
measurements. On the right panel, the good quality of the nanoribbons can be appreciated.

Figure 6.10. Sample component contributions to the TH signal. The sample allows us to study the individual
contribution of each component of the sample. a. We find no nonlinear signal when there is only
substrate or gold nanoribbons and b. shows a significant signal with bare graphene and an extremely
enhanced signal when gold nanoribbons are added on top of the graphene. Note the logarithmic scales
of the plots.

a noticeable signal from bare graphene and a hugely enhanced TH signal when the gold
nanoribbons are on top of the graphene layer.

Among the different measurements that we have carried out, I would make a clear distinction
between three types of measurements: enhancement characterization, where we quantify the
signal enhancement provided by the gold nanoribbons; polarization measurements, where
we confirm the cubic dependence of the TH signal on the pump beam, together with the
copolarization between these; and gating measurements, where we apply a gate voltage to
the sample in order to tune the Fermi energy EF and observe the role of plasmon excitation
in the THG process.
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Figure 6.11. TH signal enhancement quantification. a. Power dependence of the TH for bare graphene (red)
and graphene with gold nanoribbons of different widths (yellow through blue). The interception points
found with the fits, whose slopes are set to 3, enable calculating the enhancement of the signals due
to the field confinement. In the case of THG, the maximum enhancement it 1580 for W = 200 nm.
b. Calculated χ(3) for different nanoribbon widths with input power P = 0.4 mW.

Enhancement

We calculate the enhancement of the nanoribbons for different widths by measuring the TH
signal as a function of the input power. As expected, the TH signal dependence on the pump
is cubic. To verify this, we plot the data on a logarithmic scale and fit a line to it, where we fix
the slope to 3 and keep the interception point as a free parameter (see Fig. 6.11a). Comparing
the values of the nanoribbon interception points with the one from bare graphene, we find
the enhancement factors. In Fig. 6.11b, we can clearly see that the signal enhancement
depends on the nanoribbon width and that the optimal is at W ∼ 200 nm. The conversion
from the observed TH signal in photon counts to the χ(3) value is calculated following the
supplementary information in [45] and it is further detailed in the Methods section in our
papaer presented in Section 7.3.

Polarization

For the polarization study, we change the input polarization with a HWP and a polarizer, and
make sure that the input power is constant. As shown in Fig. 6.12a, the THG signal from
graphene (red triangles) is isotropic and shows no dependence on the input polarization. On
the contrary, when the gold nanoribbons take part (blue squares), there is a cos6 θ dependence
on the input polarization angle θ. This is due to the cubic dependence of the TH process on
the input power.

In the measurement shown in Fig. 6.12b, we check the polarization of the TH signal with
respect to the input polarization. To do so, we fix the input power and polarization and rotate
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Figure 6.12. Study of the input and output polarization. a. When rotating the polarization of the input
light, as theoretically predicted, bare graphene is isotropic to the incident polarization while the gold
nanoribbons impose a cos6 θ dependence for TH , maximizing the signal when the incident light is
perpendicular to the direction of the nanoribbons. b. Changing the output polarization while keeping
the input polarization fixed shows that the pump and TH signals are copolarized. The discrepancies
between the theory and data are due to the polarization-dependent efficiency of the SNSP detectors.

the output polarization with a HWP. As expected, the data confirms that the input pump
and the output TH signal are indeed copolarized. Note that the disagreement of the data
with the theoretical prediction is due to the polarization-dependent efficiency of the SNSP
detectors.

Gating

Gating measurements are technically more challenging because there is a gate voltage that one
needs to apply to the sample in order to be able to tune the Fermi energy EF. Precisely, we
need three electrical connections to the sample. We apply a small current (∼ 10−7 A, 1 mV)
between the source and drain and monitor the resistance of graphene as EF is changed. The
maximum resistance corresponds to the Dirac point, where EF = 0. The actual change of EF

is carried out by the gate voltage applied between the graphene and the substrate. A way
of understanding this is by picturing a capacitor defined by the conductive graphene and Si
layer, with the dielectric SiO2 in between.

The samples that we measured could be gated in the ±200 V range, which was equivalent
to EF = ±0.5 eV. In this gating measurements we were interested in observing the single-,
two- and three-photon transition resonances and the shift of these resonance energies when
changing the pump wavelength (see Fig. 6.13a). We also performed the same measurements
on graphene with nanoribbons. In Fig. 6.13b and c we show the results for nanoribbon
width and gap of (W = 55 nm, g = 45 nm) and (W = 47 nm, g = 53 nm), respectively. In
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Figure 6.13. Fermi energy tuning via electrical doping. a. TH signal as a function of the Fermi energy EF tuned
by an applied gate voltage. When the EF increases, the TH signal increases as it matches the single-,
two- and three-photon transitions. As expected, these resonances shift with the input wavelength. b.
and c. show TH signal gating measurements for nanoribbon arrays with widths W = (55 nm, 47 nm)
and gap between nanoribbons g = (45 nm, 53 nm), respectively. Apart from the large modulation due
to the single-, two- and three-photon transition resonances, there are some additional signal variations
that can be explained by the excitations of plasmons in graphene.

some of the measurements it is possible to see that, apart from the single-, two- and three-
photon resonances, the TH signal has some characteristic modulations. According to the
simulations developed by the group of Frank Koppens at ICFO, these variations of the TH
signals are explained by the excitation of plasmons. Although we would initially expect a
plasmon excitation to enhance the TH signal, the short lifetime of these plasmons (∼ 25 fs)
makes them manifest as a dip in the signal. A handwavy explanation of this phenomenom
is that when a short lifetime plasmon is excited, the absorption increases because the input
beam is resonant with this transition but the nonradiative decay channels are stronger than
the lifetime of the plasmon. Therefore, the TH signal is not radiated and we observe a dip in
the signal. More details on this matter can be found in our paper in Section 7.3.
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7.1 Quantum computing with graphene plasmons

Current photonic quantum computing faces two main drawbacks: the probabilistic nature of
the available single-photon sources and logic gates. The lack of these deterministic processes
limits the scalability and universality of photonic quantum computation. In this article, we
introduce a square-root of SWAP gate, which, as discused in Chapter 5, is a universal gate,
based on a directional coupler built with graphene nanoribbons as waveguides and plasmons as
qubits. In such devices, with two input and two output ports, when a single indistinguishable
plasmon is inserted in each of the input ports, the Hong-Ou-Mandel (HOM) [39] effect leads
to a bunching effect at the output ports, in a way that both plasmons are always found at
the same output port.

Here we take advantage of the Zeno effect, which alters the evolution of the system when a
loss channel is added to the system. More precisely, the strong third-order nonlinearity in
graphene provides a strong two-plasmon absorption rate, which acts as the loss channel in
the Zeno effect.

For further understanding this topic, I recommend reading Sections 3.1-Surface Plasmon
Polaritons and 5-Fundamentals of Quantum Computing; in particular 5.2-Quantum logic
gates and 5.4-The Zeno effect.

70



7.1 Quantum computing with graphene plasmons

ARTICLE OPEN

Quantum computing with graphene plasmons
I. Alonso Calafell 1, J. D. Cox2, M. Radonjić 1,4, J. R. M. Saavedra2, F. J. García de Abajo 2,3, L. A. Rozema1 and P. Walther 1

Among the various approaches to quantum computing, all-optical architectures are especially promising due to the robustness and
mobility of single photons. However, the creation of the two-photon quantum logic gates required for universal quantum
computing remains a challenge. Here we propose a universal two-qubit quantum logic gate, where qubits are encoded in surface
plasmons in graphene nanostructures, that exploits graphene's strong third-order nonlinearity and long plasmon lifetimes to
enable single-photon-level interactions. In particular, we utilize strong two-plasmon absorption in graphene nanoribbons, which
can greatly exceed single-plasmon absorption to create a “square-root-of-swap” that is protected by the quantum Zeno effect
against evolution into undesired failure modes. Our gate does not require any cryogenic or vacuum technology, has a footprint of a
few hundred nanometers, and reaches fidelities and success rates well above the fault-tolerance threshold, suggesting that
graphene plasmonics offers a route towards scalable quantum technologies.

npj Quantum Information            (2019) 5:37 ; https://doi.org/10.1038/s41534-019-0150-2

INTRODUCTION
Quantum computing could efficiently solve many essential
problems. However, building a quantum computer is not an easy
task. One particularly promising approach is to use single-photons,
whose weak interaction with the environment makes them
perfectly suitable for encoding and transmitting quantum
information. Nonetheless, this weak interaction strength makes
the implementation of photon–photon interactions a significant
challenge. While this can be overcome at the cost of extra
photons,1 the additional overhead makes purely linear-optical
schemes difficult to scale up.2 Alternatively, single-photon-level
nonlinearities can be used to directly create deterministic gates.3

However, this typically requires complex interactions with atomic
systems that cannot readily be miniaturized. Recent work shows
that graphene can provide a strong enough nonlinearity without
the technical drawbacks of those atomic systems.
Our graphene-based two-qubit logic gate is centered on

Franson's quantum Zeno gate,4 which is a universal “square-
root-of-swap” (SWAP1/2) gate.5 If two separable single-qubit states
|ϕ〉 and |ψ〉 enter modes 1 and 2, respectively, the gate creates an
entangled superposition of these states being swapped and not
swapped, i.e.,

ϕj i1 ψj i2!
1ffiffiffi
2

p ϕj i1 ψj i2þ ψj i1 ϕj i2
� �

; (1)

where the subscripts indicate the mode. As illustrated in Fig. 1a,
such an operation can be achieved by sending two photons to a
50:50 beamsplitter (BS): The gate succeeds when the two photons
exit in different modes, generating the state of Eq. (1), while, half
of the time, the gate will fail by allowing both photons to exit the
same mode (in reality, the situation is even more complicated
because of two-particle interference effects and the logical qubit
encoding).

If the SWAP process is made continuous by replacing the 50:50
beamsplitter with coupled waveguides, the quantum Zeno effect6

(wherein continuous measurement prevents a quantum system
from evolving), can boost the success probability of the gate to
100%.4 In this scenario, however, the quantum Zeno effect
requires nonlinear two-photon absorption to occur at the single-
photon-level. To date, such a strong optical nonlinearity has only
been achieved via complex interactions with atomic systems,7

which lack scalability.
Plasmon-polaritons, formed when light hybridizes with the

collective charge-carrier density oscillations in conducting materi-
als, confine electromagnetic energy to deeply-subwavelength
scales, and could potentially enable extremely strong optical
nonlinearities in nanoscale photonic circuits8—an ideal situation
for a scalable quantum logic gate. While plasmons supported by
noble metals provide large nonlinear enhancements and are
compatible with single-photon-level quantum experiments,9,10

they suffer from intrinsically high ohmic losses, severely limiting
their application to quantum technologies.
Graphene has recently arisen as a robust material platform for

plasmonics, capable of sustaining plasmon resonances with
extremely long lifetimes11,12 that can be tuned actively via
electrostatic gating.13 Furthermore, its low-dimensionality pro-
vides unprecedented levels of optical field confinement,14

boosting optical nonlinearities well above those in noble
metals,15–18 potentially enabling nonlinearities on the single- or
few-plasmon level.19,20 Here we propose that this system can be
used to implement a two-qubit quantum logic gate using
nanoplasmonic graphene waveguides.
We will use the so-called single-rail encoding, just as in the

original Zeno-gate proposal,4 where the absence of a particle
represents a logical 0, and the presence of a particle a logical 1. In
other words, |0〉 (|1〉) in the Fock basis represents a logical |0〉 (|1〉)
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state of the qubit. Higher-order Fock states fall out of this logical
subspace. Although the single-rail encoding has limitations,21 it
can be transformed into the more well-known dual-rail encoding
with linear optical elements.22

Implementing the SWAP1/2 gate with a BS is not straightforward
(Fig. 2a): If the logical input state is |00〉, |01〉, or |10〉 (encoded by
no particles in either mode, or one particle in the first or second,
respectively), the gate functions perfectly. In contrast, when one
particle is incident in each mode (a logical state |11〉) the correct
output is |11〉. Unfortunately, the Hong-Ou-Mandel (HOM) effect,
already observed for single plasmons,9,10,23 causes the particles to
bunch and exit in the same mode, implying that the gate always
fails. Since the HOM effect is independent of the relative phase
between the two modes, this holds in general. Even if the particles
are made indistinguishable, to circumvent HOM bunching, the
gate fails 50% of the times (see Fig. 1a).
In a Zeno gate, the swap between the two modes has to be a

continuous process, so that a “Zeno measurement” can be applied
as the system evolves. Such a continuous swap can be achieved
with a directional coupler (DC). To prevent the system from
evolving into a state in which both particles are in the same mode,
one must continuously monitor whether both particles are in the

same mode. In practice, the presence of a sufficiently strong two-
photon absorber can perform this measurement.4 At first glance, it
appears that in such a DC, when the particles bunch into the same
mode, they would be absorbed. However, when the swap
probability is much smaller than the two-particle absorption, the
Zeno effect does not even allow the particles to bunch in the
first place.
In graphene, this Zeno condition can be easily achieved. When

a single plasmon has less energy than the Fermi level, it is not
absorbed via electron-hole pair excitation. At the same time, a
mode containing two plasmon quanta can have enough energy to
be absorbed via an interband transition (Fig. 1b). Since the two-
plasmon absorption depends on the field strength while the
single-plasmon absorption does not, confining the graphene
plasmon field to a nanostructure enhances the two-plasmon
absorption rate, while leaving the single-plasmon absorption rate
unaffected20 (Fig. 1c).

RESULTS
As a physical realization of such a graphene-based quantum gate,
we envision a system of two graphene nanoribbons that support

Fig. 1 Basic operating principles of our nanoplasmonic quantum logic gate. a Simplest square-root-of-swap gate. Two photons are sent in the
two ports of a 50:50 beamsplitter. If the photons are distinguishable, half of the times the photons exit from different ports and a square-root-
of-swap gate is achieved. The other half of the times the two photons exit through the same port and the gate fails. If the photons are
indistinguishable, they bunch and always exit from the same port, so the gate always fails. b Electronic band structure of graphene with a
non-zero Fermi energy EF. Two photons can produce an interband transition and be absorbed, whereas single-photon absorption is forbidden
for photon energies below 2EF. c Ratios between the two-plasmon absorption rate, γ(2) (at the plasmon resonance frequency), and the intrinsic
damping rate, γ = 500 fs−1, for a range of nanoribbon widths, W, and Fermi energies, EF. The blue areas are regions in which two-plasmon
absorption is two to six orders of magnitude faster than linear absorption, providing a strong γð2Þ � γ condition that leads to extremely high
success probabilities for the gate

Fig. 2 Surface-plasmon-based SWAP1/2 gate comprised of nonlinear graphene nanoribbons. Nanoribbons are brought together so that the
plasmonic modes couple to each other via a Coulomb interaction. For a separation dz between the ribbons, there is an interaction length
L ¼ LSWAP1=2 after which the plasmon has 50-50% probability of remaining in the same mode or having swapped across ribbons. Thus, when a
single plasmon is input in each mode, |1〉1|1〉2, we find the output state with a one plasmon in each mode, |1〉1|1〉2, in which case the gate
succeeds, or b both plasmons in one of the modes, |2〉1|0〉2 or |0〉1|2〉2, in which case the gate fails. When a separable single-qubit is input into
each mode (|ϕ〉, |ψ〉), an entangled state is created, ϕj i1 ψj i2! 1ffiffi

2
p ϕj i1 ψj i2þ ψj i1 ϕj i2
� �

. In the absence of nonlinearity in the waveguide and
assuming indistinguishable plasmons, the HOM effect forces the plasmons to exit the gate in the same output mode, meaning that the gate
always fails for |1〉1|1〉2. However, driven by the Zeno effect, the strong nonlinearity of the graphene waveguides reduces the probability that
two plasmons are found in the same nanoribbon and increases the success probability. c We describe the SWAP1/2 gate as a six-state system
where U is the coupling between ribbons, while γ and γ(2) are the intrinsic damping and two-plasmon absorption rates, respectively
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7.1 Quantum computing with graphene plasmons

propagating single plasmons (see Fig. 2). In this work we will
assume that the single plasmons are already excited, which could,
in principle, be achieved through the emission of a quantum light
source.24–27 The two nanoribbons are brought close to each other,
so that the plasmons are coupled via Coloumb interaction,
forming a graphene plasmon DC, whereby a plasmon starting in
one ribbon can couple to the other ribbon. The interaction length,
the ribbon width, and the ribbon spacing set the splitting ratio of
the DC. At the same time, the ribbon width and the Fermi energy
of the nanoribbons determine the two-plasmon absorption rate.
To model this system, we describe each ribbon as a two-level

system with energy ℏω, where ω is the resonant plasmon
frequency that depends on the nanoribbon width W and doping
level (Fermi energy) EF. As shown in Fig. 2c, we consider a
maximum of two plasmons, limiting the Hilbert space to six states.
States with an equal number of plasmons are coupled via a
Coulomb interaction of strength U. Decay processes are governed
by inelastic scattering rate γ, and γ(2) denotes the two-plasmon
absorption rate.
We quantify the Coulomb interaction by describing plasmons in

semi-infinite graphene nanoribbons within the so-called plasmon
wave function (PWF) formalism,28 adapted here to include the
effect of a non-vanishing optical wave vector k|| in the direction of
the ribbon transversal symmetry. Setting the nanoribbons to be
aligned horizontally, and separated by a distance dz in the z-
direction (see Fig. 2a), the interaction between N plasmons in one
ribbon and N′ plasmons in the neighboring one, both of them
propagating with parallel wave vector k||, is given by

Ukjj;NN0 ¼ 1
2

Z
d2R
Z

d2R0
ρindkjj;N

ðR;ωÞ
h i�

ρindkjj ;N0 ðR0;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� R0Þ2 þ d2z

q ; (2)

where the integrals are evaluated over the nanoribbons in a 2D
space R= (x, y) and ρindkjj ;N

ðR;ωÞ is the induced charge associated
with N plasmons (see Methods and Fig. S1).
Next, we compute γ(2) from the nonlinear conductivity σ

ð3Þ
ω , for

which an analytical expression in the local and zero-temperature
approximation is obtained quantum-mechanically in the Dirac
cone approximation and reported in ref. 29. As shown in the
Methods, the two-plasmon absorption rate is given by

γð2Þ ¼ �hωβð4Þq;1

Wβ
ð2Þ
q;1Δ

γ

Refσð1Þ
ω g

 !2

Refσð3Þω g; (3)

where β
ð2Þ
q;1 and β

ð4Þ
q;1 are the momentum-dependent field normal-

izations, which we consider to be unity for low momentum values.
Here Δ characterizes the spatial extent of the propagating
plasmon along the direction of transversal symmetry, which we
set to be equal to the ribbon width. We set the single-plasmon
lifetime to be γ= 500 fs−1, which is a realistic value, measured at
room temperature.11 Note that this lifetime can be extended by
going to cryogenic temperatures; for which lifetimes up to 10 ps
have recently been measured.12

We can now calculate the density matrix ρ(t) of the system by
solving the time-dependent Lindblad master equation, which is
the most general type of Markovian and time-homogeneous
master equation describing an open-quantum-system evolution
that is both trace-preserving and completely positive for any initial
condition30

_ρ ¼ � i
�h
H; ρ½ � þ

X
n;m¼1;2

γðnÞ anmρa
yn
m � 1

2
aynm anm; ρ
� �� �

; (4)

where γ(1)≡ γ, aym (am) denote plasmon creation (annihilation)
operators, n is the number of absorbed plasmons and m is the
nanoribbon mode. The Hamiltonian of the two-nanoribbon

system is

H ¼ �hω
X
m¼1;2

aymam þ Uðay1a2 þ ay2a1Þ (5)

where U is the Coulomb interaction given in Eq. (2), while ω is the
plasmon frequency of each nanoribbon mode.
We numerically solve Eq. (4) using Mathematica, from which we

obtain the required time tSWAP1=2 at which a single plasmon
incident in either nanoribbon is placed in an equal superposition
of both nanoribbon modes at the output. This time is related to
the Coulomb interaction U from Eq. (2) (i.e. stronger Coulomb
interaction U resulting in shorter tSWAP1=2 ). To calculate tSWAP1=2 we
define our initial state to be ρ(t= 0)= |ψi〉〈ψi|, where |ψi〉= |1〉1|
0〉2, and let it evolve until the probability of the plasmon being in
either of the modes is equal: P 10j iðtSWAP1=2Þ ¼ P 01j iðtSWAP1=2Þ. We
convert this time to a length LSWAP1=2 , by computing the plasmon
group velocity as shown in Fig. S2. The resulting LSWAP1=2 is plotted
in Fig. 3a. For EF > 0.1 eV the required LSWAP1=2 is always less than
the single-plasmon decay length, thus showing the potential of
long-lived graphene plasmons: novel physical effects can manifest
before the plasmon decays.
For all the results presented here, we set the spacing between

the two nanoribbons to dz= 1 nm. With current technology, such
atomically thin spacings can be realized by taking advantage of
2D materials like graphene.31 This parameter only affects the
Coulomb interaction strength, which will determine LSWAP1=2 . The
PWF used in our calculations is applicable for these scales, as
discussed in detail in ref. 28. Furthermore, for our parameter
regime, the Coulomb interaction does not depend very strongly
on dz (see Fig. S4 of the Supplementary Information).
Once LSWAP1=2 is determined, we proceed to analyze the system

when a single plasmon is input in each mode; that is,
ρ(t= 0)= |ψi〉〈ψi| where |ψi〉= |1〉1|1〉2. For this input, the gate
functions correctly if there is still one plasmon in each output
mode, which occurs with probability P 11j iðtSWAP1=2Þ.

DISCUSSION
In Fig. 3a–c we show the success probability P 11j iðtSWAP1=2Þ, the
probability of the plasmons bunching in the same nanoribbon
P 20j iðtSWAP1=2Þ þ P 02j iðtSWAP1=2Þ, and the probability for both plas-
mons to decay P 00j iðtSWAP1=2Þ, for a range of nanoribbon widths W
and Fermi energies EF. Notice the similarity of the contour features
between these figures and the γ(2)/γ ratio shown in Fig. 1c. In the
upper right corner the two-plasmon absorption is much weaker
than the single-plasmon absorption, leading to a very weak Zeno
effect, so the HOM effect prevails: that is, P 20j iðtSWAP1=2Þþ
P 02j iðtSWAP1=2Þ � P 11j iðtSWAP1=2Þ.
As we decrease both W and EF, γ

(2) increases, but not enough to
drive a noticeable Zeno effect. Instead, both of the plasmons are
likely to be absorbed, which is reflected in P 00j iðtSWAP1=2Þ � P 20j iþ
P 02j iðtSWAP1=2Þ.
In the region where γð2Þ=γ � 104 � 106, a strong Zeno effect

can be realized (light blue area of Fig. 1c). This leads to a large
increase in the success probability P 11j iðtSWAP1=2Þ, while P 20j i þ
P 02j iðtSWAP1=2Þ becomes negligible, meaning that the Zeno effect
completely suppresses the HOM effect. Despite the large γ(2),
P 00j iðtSWAP1=2Þ shows a minimum when γð2Þ � γ. In this optimal
region, we find a maximum success probability of 87.0% for W=
5 nm and EF= 0.335 eV, which is an increase in the success
probability of the SWAP1/2 gate from 0 to 87.0%. This already
places us well above the gate success probability rate required to
generate universal cluster states for quantum computation.32 This
performance is limited by the single plasmon lifetime. In Fig. 3e
we plot the success probability, maximized over the range of W
and EF shown in pannels a-d, versus the plasmon lifetime given by
1/γ. For lifetimes longer than 7.5 ps the success probability
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increases above 99%, reaching fault-tolerance regimes for surface
codes.33 Nevertheless, edge imperfections and structural defects
would decrease the plasmon lifetime and thus the fidelity of the
gate. The predicted nonlinearities, nevertheless, should persist in
their presence.
Since single-plasmon decay can also result in logical states

changing into other logical states, this process fidelity will be
further decreased. To quantify this, we evaluated the process
fidelity34,35 of our gate by simulating process tomography for the
complete range of W and EF under consideration (see Methods).
The resulting process matrix for W=5 nm and EF= 0.335 eV with a
lifetime of 500 fs is plotted in Fig. 4, and has a fidelity of 93.3%.
When the lifetime is increased to 10 ps, the fidelity is 99.6%.
Our proposed gate achieves process fidelities in the fault-

tolerance regime for relatively reasonable physical parameters.
Doping levels as high as 1–2 eV have been achieved,36,37

nanoribbon widths in the range of 10–40 nm have been
constructed using different means,31,38–40 and separation distances
≈1 nm are routinely achieved through single-atomic hexagonal
boron nitride spacers, which additionally guarantees the preserva-
tion of high-quality graphene optical response.31 Furthermore, by
combining ideas from quantum optics with nanoplasmonics, our
work opens up an entirely new and promising avenue in the
search for single-photon nonlinearities. While we have studied the
application of graphene nanoplasmonics to a quantum logic gate,
this could also be used for deterministic optical implementations

of quantum teleportation,41 cluster state generation,42 and single-
photon sources,19 underlining the applicability of this platform.

METHODS
Classical electrostatic description of plasmons in graphene
nanoribbons
We consider a single graphene nanoribbon occupying the R= (x, y) plane
that has a finite width W in the x-direction and is infinitely-extended along
the y-direction. In the linear approximation, following refs., 19,23 the self-
consistent electric field within the ribbon Eq produced by an impinging
field EextðR; tÞ ¼ Eextq eiðky y�ωtÞ þ c:c:, i.e., having frequency ω and momen-
tum ky ≡ q/W along y, is given by

EqðR;ωÞ ¼ Eextq ðR;ωÞ � 1
εabω

∇R

Z
d2R0

R� Rj j0ρ
ind
q ðR0;ωÞ; (6)

where εabω ¼ εaω þ εbω
� �

=2 is the average of the dielectric functions
describing media above (ðεaωÞ) and below ðεbωÞ the 2D layer and
ρindq ðR;ωÞ is the induced charge. From the continuity equation, we express
ρindq in terms of the local, linear 2D graphene conductivity σ

ð1Þ
ω as

ρindq ðR;ωÞ ¼ � i
ω
σð1Þω ∇R � fREqðR;ωÞ

	 

; (7)

where we have introduced the occupation factor fR, which is equal to one
when −W/2 ≤ x ≤W/2 and is vanishingly small everywhere else. In practice,
we employ the optical conductivity obtained for zero temperature in the
local limit (i.e., for vanishing in-plane optical momentum) of the random-

Fig. 3 Performance of the graphene-based SWAP1/2 for different nanoribbon width W and Fermi energy EF. Here the separation between the
nanoribbons is set to dz = 1 nm, and the in plane momentum along the ribbon to kjjjW ¼ 0:4. a Probability of still having one plasmon in each
mode when one plasmon is input into each mode after the input plasmons evolve along the interaction length LSWAP1=2 . We find a range
(shown in white) where the success probability is over 80% for reasonable physical parameters. b Probability of finding two plasmons in one
nanoribbon after the interaction between the initial plasmons occurs. This is the “failure probability” of the gate, as it corresponds to events
which take us out of the logical qubit subspace. As expected, these data show that in the region where P|11〉 is maximized the failure
probability is significantly suppressed. c Probability of losing both initial plasmons after they evolve along a distance LSWAP1=2 . d Interaction
length LSWAP1=2 required to perform the SWAP1/2 logic gate. For the plotted range, we find that, above EF= 0.1 eV, the required interaction
length is always shorter than the plasmon decay length (which is ≈ 500 nm for a 500 fs lifetime). e Success probability of the |11〉 input state as
a function of the plasmon lifetime 1/γ, maximized over the same W and EF range as in panels a–c
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phase approximation (RPA) as18

σð1Þω ¼ ie2

π�h2
EF

ωþ iτ�1
þ e2

4�h
Θð�hω� 2EFÞ þ i

π
log

�hω� 2EF
�hωþ 2EF

� �
; (8)

where the Fermi energy EF is related to the graphene Fermi velocity vF ≈ c/
300, doping charge-carrier density n according to EF ¼ �hvF

ffiffiffiffiffiffi
πn

p
and τ= 1/γ

is a phenomenological inelastic scattering rate. The first and second terms
in Eq. (8) describe the optical response arising from intraband and
interband electronic transitions, respectively, with the latter becoming
unimportant when EFtω.13 Incidentally, we have neglected inelastic
damping in the interband transitions. In terms of normalized coordinates
~θ � R=W and the normalized electric field~εqð~θ;ωÞ � W

ffiffiffiffi
f~θ

p
Eqð~θ;ωÞ, Eq. (6)

can be expressed as

~εqð~θ;ωÞ ¼~ε extq ð~θ;ωÞ þ ηð1Þω

Z
d2~θ0Mð~θ;~θ0Þ �~εqð~θ0;ωÞ; (9)

where η
ð1Þ
ω � iσð1Þω =εabω ωW is a dimensionless parameter characterizing the

intrinsic linear optical response of graphene, and

Mð~θ;~θ0Þ ¼
ffiffiffiffiffiffiffiffi
f~θf~θ0

q
∇~θ 	∇~θ

� � 1

~θ�~θ0
  ; (10)

which we identify as a real, symmetric operator that admits a complete set
of real eigenvalues. The electric field of Eq. (9) is expanded in eigenmodes
of the matrix Mð~θ;~θ0Þ as
~εqð~θ;ωÞ ¼

X
m

am~εq;mðθxÞeiqθy ; (11)

where the modes ~εq;mðθxÞeiqθy and their corresponding eigenvalues ηq,m
satisfy

~εq;mðθxÞeiqθy ¼ ηq;m

Z
d2~θ0Mð~θ;~θ0Þ �~εq;mðθ0xÞeiqθ

0
y (12)

and form an orthonormal setZ
dθx~ε

�
q;mðθxÞ �~εq;mðθxÞ ¼ δmm0: (13)

Inserting Eq. (11) into Eq. (9), we make use of Eqs. (12 and 13) to write

am ¼ bq;mð1� η
ð1Þ
ω =ηq;mÞ�1, where

bq;mðθyÞ ¼
Z

dθx~ε
�
q;mðθxÞ~ε extq ð~θ;ωÞ (14)

is a coefficient that depends on the form of the external field. In what
follows we take Eextq to be independent of x, so we may write

bq;mðθyÞ ¼ �WEextq �~ξ �
q;mcqðθyÞ, where cq(θy) contains the y-dependence

of the external field and ~ξq;m � �Rdθx~εq;mðθxÞ, so that the normalized

electric field in Eq. (11) becomes

~εqð~θ;ωÞ ¼
X
m

�WEextq �~ξ�q;m
1� η

ð1Þ
ω =ηq;m

~εq;mðθxÞcqðθyÞ: (15)

Electrostatic energy in nanoribbons
The electrostatic energy for identical, parallel ribbons separated by a
distance dz in the z-direction is given by

Uq;ll0 ðdzÞ ¼ W3

2

Z
d2~θ
Z

d2~θ0
ρindq;l ð~θ;ωÞ
h i�

ρindq;l0 ð~θ0;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθx � θ0xÞ2 þ ðθy � θ0yÞ2 þ ðdz=WÞ2

q ; (16)

where, from Eq. (7) (taking εabω ¼ 1 for simplicity), we can express the
induced charge in ribbon l as

ρindq;l ð~θ;ωÞ ¼
η
ð1Þ
ω

W
∇~θ �

ffiffiffiffi
f~θ

q
~εq;lð~θ;ωÞ

h i
: (17)

Inserting the above expression into Eq. (16) and making use of Eq. (15),
the electrostatic energy becomes

Uq;ll0 ðdzÞ ¼ W3

2

X
mm0

Eextq;l �~ξq;m
1=ηð1Þω � 1=ηq;m

 !�
Eextq;l0 �~ξq;m0

1=ηð1Þω � =ηq;m0

 !
Iq;mm0 ðdzÞ; (18)

where

Iq;mm0 ðdzÞ ¼ R 1=2
�1=2dθx

R L=2W
�L=2Wdθy

R 1=2
�1=2dθ

0
x

´
R L=2W
�L=2Wdθ

0
y

∇~θ
�cqðθy Þ~εq;mðθxÞ½ ��∇~θ 0 �cqðθ0yÞ~εq;m0 ðθ0x Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθx�θ0xÞ2þðθy�θ0y Þ2þðdz=WÞ2
p (19)

and L → ∞ is the nanoribbon length.
Assuming a plane wave field profile along the y-direction corresponding

to cqðθyÞ ¼ eiqθy , in a single ribbon (i.e., taking l= l′ and dz= 0), the use of
Eqs. (10) and (13) yields Iq,mm(0)=−Lδmm′/Wηq,m, and so the electrostatic
energy per unit length in ribbon l is

~Uq;l ¼ W2

2

X
m

�1
ηq;m

Eextq;l �~ξ�q;m
1=ηð1Þω � 1=ηq;m



2

: (20)

In practice, we restrict our study to the lowest-order m= 1 mode, and fix
the number of plasmon quanta in this mode using the condition
l�hωp ¼ 2Δ~Uq;l , where Δ is an effective length for the plasmon mode along
the ribbon (i.e., the characteristic spatial width of a pulse), leading to

Eextq;l �~ξ�2q;1
 2¼ � l�hωηq;1

W2Δ

1

η
ð1Þ
ω

� 1
ηq;1



2

; (21)

where it is now understood that the indices l and l′ denote the number of
plasmons in the first and second ribbon, respectively. Using the above

Fig. 4 Process Matrix of the SWAP1/2 gate based on graphene surface plasmons. a Simulated process matrix of the SWAP1/2 gate at 93.3%
process fidelity for W= 5 nm and EF= 0.335 eV, with a lifetime of 500 fs. The axis label corresponds to the product of the Pauli operators used
to construct the two-qubit basis, as defined in the Methods section. Note that we only plot the magnitude of the process matrix elements.
b Residual between the simulated and ideal process matrices (||χideal|− s|χsim||) at the point of maximum fidelity

I. Alonso Calafell et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2019)    37 

75



Chapter 7: Publications

condition, the coupling energy between ribbons containing l and l′
plasmons is obtained directly from Eq. (18), again considering only the
m=m′= 1 contribution.

Plasmon normalization
We normalize the electric field amplitude of the plasmon mode by
equating the absorbed and dissipated power at linear order, i.e.,

l�hωpγ ¼
Z

d2Rjð1Þq ðR; tÞ � EqðR; tÞ
� �

; (22)

where l is the number of plasmon quanta, jð1Þq ðR;ωÞ ¼ σ
ð1Þ
ω EqðR;ωÞ, and 〈...〉

denote the time-average. Using the result of Eq. (15) with only the m = 1
mode, we obtain

l�hωpγ ¼ 2W2

L
Refσð1Þω g Eextq;l �~ξ�q;1

1� η
ð1Þ
ω =ηq;1



2

β
ð2Þ
q;1

ZL=2W
�L=2W

dθy cqðθyÞ
 2; (23)

where β
ðnÞ
q;1 ¼

R 1=2
�1=2dθx~εq;1ðθxÞn . For a mode defined as a plane-wave along

the ribbon, such that cyðθyÞ ¼ eiqθy within an effective length Δ, we write
the normalization condition for N plasmons as

Eextq;l �~ξ�q;1
 2¼ l�hωpγ 1� η

ð1Þ
ω =ηm

 2
2WRefσð1Þω gβð2Þq;1Δ

(24)

Two-plasmon absorption rate
Power absorption in a nanoribbon via two-plasmon absorption arises from

the nonlinear current jð3ÞðR; tÞ ¼ jð3Þq ðR;ωÞeiky y�iωt þ c:c:, where

jð3Þq ðR;ωÞ ¼ σ
ð3Þ
ω EqðR;ωÞ
 2EqðR;ωÞ, and is given by

PTPA ¼
Z

d2Rjð3Þq ðR; tÞ � EqðR; tÞ; (25)

where jð3Þq ðR;ωÞ ¼ σ
ð3Þ
ω EqðR;ωÞ
 2EqðR;ωÞ and σ

ð3Þ
ω is the local third-order

conductivity of extended graphene, for which we adopt the analytical
result obtained quantum-mechanically at zero temperature in the Dirac
cone approximation, as reported in ref. 29 Using Eq. (15) we write the time-
average of the absorbed power per unit length as

h~PTPAi ¼ 2W2

L
Refσð3Þω g Eextq;l �~ξ�q;1

1� η
ð1Þ
ω =ηq;1



4

β
ð4Þ
q;1

ZL=2W
�L=2W

dθy cqðθyÞ
 4: (26)

Equating 〈PTPA〉 with the power dissipated by two-plasmon absorption,
2ℏωγ(2), we make use of the field normalization condition in Eq. (24) to
write the two-plasmon absorption rate for a ribbon containing l = 2
plasmons in the m = 1 mode as

γð2Þ ¼ �hωβð4Þq;1

Wβ
ð2Þ
q;1Δ

γ

Refσð1Þω g

 !2

Refσð3Þω g: (27)

In obtaining the above expression, we have again chosen the field along
the ribbon to have the form of a plane-wave (i.e., cyðθyÞ ¼ eiqθy ), and an
effective length Δ.

Process tomography
We send a complete set of 16 two-qubit states through our simulation and
compute the output states at tSWAP1=2 . To deal with failure events, when
|2〉1|0〉2 and |0〉1|2〉2 terms arise in the output states, we truncate the
output density matrix and renormalize the result. Such events only occur
when states involving two plasmons are input. We also numerically correct
for local single-qubit phases which arise in the output of the simulation.
We feed these output states in a least-squares process tomography
routine, generating a process matrix χsim. This process matrix is defined as,

ρout ¼
X
m;n

χm;nE
y
mρinEm; (28)

where ρin(out) is the input (output) density matrix, and Ei are the basis
operators constructed from the Kronecker product of the Pauli matrices
(labels of Fig. 4. We calculate the process fidelity between these, and the
ideal process (given by Eq. (10) of ref. 12 as Tr{χsimχideal}.

34,35

Numerical solution of the linblad master equation
We use the Lindblad equation introduced in Eq. (4) to describe and solve
the density matrix of our system. The first term of the Lindblad equation
contains the Hamiltonian given in Eq. (5). This Hamiltonian describes the
two identical graphene nanoribbons as a two-level system, where the
coupling between the levels is given by the Coulomb interaction U. We
define a 6-state Hilbert space that contains a vacuum state (|0〉1|0〉2), two
single-plasmon states (|1〉1|0〉2, |0〉1|1〉2) and three two-plasmons states
(|1〉1|1〉2, |2〉1|0〉2, |0〉1|2〉2). In this basis, the matrix form of the Hamiltonian
is

H ¼

0 0 0 0 0 0

0 �hω U 0 0 0

0 U �hω 0 0 0

0 0 0 2�hω
ffiffiffi
2

p
U

ffiffiffi
2

p
U

0 0 0
ffiffiffi
2

p
U 2�hω 0

0 0 0
ffiffiffi
2

p
U 0 2�hω

0
BBBBBBBB@

1
CCCCCCCCA
; (29)

where ℏω is the energy of the plasmon. The second term of the Lindblad
equation contains the loss channels of the system; namely, the single-
plasmon absorption γ(1) and the two-plasmon absorption γ(2). In matrix
form, this second term reduces to

H ¼

γð1Þðρ0101 þ ρ1010Þ þ γð2Þðρ0202 þ ρ2020Þ γð1Þ � 1
2 ρ0010 þ ρ0111 þ

ffiffiffi
2

p
ρ1020

� �
γð1Þ � 1

2 ρ0001 þ ρ1011 þ
ffiffiffi
2

p
ρ0102

� �
γð1Þ � 1

2 ρ1000 þ ρ1101 þ
ffiffiffi
2

p
ρ2010

� �
γð1Þð�ρ1010 þ ρ1111 þ 2ρ2020Þ γð1Þð�ρ1001 þ

ffiffiffi
2

p ðρ1102 þ ρ2011ÞÞ
γð1Þ � 1

2 ρ0100 þ ρ1110 þ
ffiffiffi
2

p
ρ0201

� �
γð1Þð�ρ0110 þ

ffiffiffi
2

p ðρ0211 þ ρ1120ÞÞ γð1Þð�ρ0101 þ 2ρ0202 þ ρ1111Þ
�γð1Þρ1100 � 3

2 γ
ð1Þρ1110 � 3

2 γ
ð1Þρ1101

� 1
2 ð2γð1Þ þ γð2ÞÞρ2000 � 1

2 ð3γð1Þ þ γð2ÞÞρ2010 � 1
2 ð3γð1Þ þ γð2ÞÞρ2001

� 1
2 ð2γð1Þ þ γð2ÞÞρ0200 � 1

2 ð3γð1Þ þ γð2ÞÞρ0210 � 1
2 ð3γð1Þ þ γð2ÞÞρ0201

0
BBBBBBBBBB@

�γð1Þρ0011 � 1
2 ð2γð1Þ þ γð2ÞÞρ0020 � 1

2 ð2γð1Þ þ γð2ÞÞρ0002
� 3

2 γ
ð1Þρ1011 � 1

2 ð3γð1Þ þ γð2ÞÞρ1020 � 1
2 ð3γð1Þ þ γð2ÞÞρ1002

� 3
2 γ

ð1Þρ0111 � 1
2 ð3γð1Þ þ γð2ÞÞρ0120 � 1

2 ð3γð1Þ þ γð2ÞÞρ0102
�2γð1Þρ1111 � 1

2 ð4γð1Þ þ γð2ÞÞρ1120 � 1
2 ð4γð1Þ þ γð2ÞÞρ1102

� 1
2 ð4γð1Þ þ γð2ÞÞρ2011 �ð2γð1Þ þ γð2ÞÞρ2020 �ð2γð1Þ þ γð2ÞÞρ2002

� 1
2 ð4γð1Þ þ γð2ÞÞρ0211 �ð2γð1Þ þ γð2ÞÞρ0220 �ð2γð1Þ þ γð2ÞÞρ0202

1
CCCCCCCCCCA

(30)

where ρijkl ¼ ij i1 jj i2ρ̂ kj i1 lj i2. So as to obtain the time-dependent density
matrix of the system, we numerically solve the system of ordinary
differential equations in Wolfram Mathematica. We employ the variable
stepsize implicit Backward Differentiation Formulas (BDF) or order 5. The
WorkingPrecision used in this algorithm was set to the MachinePrecision,
which, in our case, corresponds to 16 digits. In addition, the AccuracyGoal
and PrecisionGoal options are set to 10. The diagonal elements of this
density matrix exactly correspond to the probability of the plasmons being
in different modes. For example, ρ1111(t) is the probability that one
plasmon is found in each nanoribbon at a given time, ρ2020(t)+ ρ0202(t) is
the probability that two plasmons are found in a single nanoribbon at a
given time, and ρ0000(t) is the probability of not having any plasmon in the
system at a given time.
Once the density matrix of our system is found, we proceed to find the

required interaction time between the nanoribbons to implement a SWAP1/2.
To do so, we set our initial state to be ρ(t= 0)= |ψi〉〈ψi|, where
|ψi〉= |1〉1|0〉2, let it evolve in time and find tSWAP1=2 by looking for the time
at which the probability of the plasmon being in either of the modes is equal;
i.e., P 10j iðtSWAP1=2 Þ ¼ P 01j iðtSWAP1=2 Þ. The solution to this condition was found
numerically using Wolfram Mathematica with a minimum accuracy and
precision of 10 digits. Once tSWAP1=2 is determined, we define our initial state
to be ρ(t= 0)= |ψi〉〈ψi|, where |ψi〉= |1〉1|1〉2, and find the success probability
of the gate P11 at time tSWAP1=2 . Representative time-dependent density-
matrix elements are plotted in Fig. S6 in the Supplementary Information.
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FIG. S1: Study of the coupling between graphene nanoribbons. a. Coupling energy between adjacent nanoribbons
(dz = 1 nm) given by the Coulomb interaction as a function of wave vector parallel to ribbons, k‖W . b. Plasmon field
distribution across the graphene nanorribbon for different parallel wave vectors k‖W , plotted as a function of normalized
transverse coordinate θ = x/W .
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2

FIG. S2: Group velocity of graphene plasmon-polaritons for different nanoribbon widths W and Fermi energies
EF. This velocity is calculated from the dispersion relation as vp = dω

dk‖
, where ω is the plasmon frequency plotted in Fig. S3

and k‖ is the plasmon wave vector [1].
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3

FIG. S3: Plasmon dispersion relation. We show the dispersion relation of graphene plasmons for different nanoribbon
widths W [1].

80



7.1 Quantum computing with graphene plasmons

4

FIG. S4: Coulomb interaction as a function of spacing between nanoribbons dz for different nanoribbon widths
W and Fermi energies EF. For the results presented in the main text we set dz = 1 nm. For smaller dz the interaction
strength increases, which results in shorter interation lengths LSWAP1/2 . This could thus improve the success probability of
the gate in the presence of shorter plasmon lifetimes. In contrast, if dz is too large, depending on the plasmon lifetime, the
plasmons could decay before the root-SWAP condition is achieved.
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5

FIG. S5: Linear and nonlinear conductivities. We plot the real and imaginary parts of a. the linear conductivity σ(1) and
b. the third-order conductivity σ(3) as a function of the plasmon frequency, at EF = 0.3 eV and plasmon lifetime 1/γ = 500 fs.
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6

FIG. S6: Time evolution of the density matrix elements. We study the time evolution of the elements of the calculated
density matrix for three different cases: γ(2) � γ(1), γ(2) ≈ γ(1) and γ(2) � γ(1), corresponding to the 1st, 2nd and 3rd row
of the table, respectively. In the first column, we set our initial state to be ρ(t = 0) = |ψi〉 〈ψi|, where |ψi〉 = |1〉1 |0〉2, let it
evolve in time and find tSWAP1/2 by looking for the time at which the probability of the plasmon being in either of the modes
is equal; i.e. P|10〉(tSWAP1/2) = P|01〉(tSWAP1/2). Once tSWAP1/2 is determined, in the second column, we define our initial
state to be ρ(t = 0) = |ψi〉 〈ψi|, where |ψi〉 = |1〉1 |1〉2, and find the success probability of the gate P|11〉 at time tSWAP1/2 . As

expected, when γ(2) � γ(1), the absence of two-plasmon absorption leads to a strong Hong-Ou-Mandel effect. As the strength
of the two-plasmon absorption increases, γ(2) ≈ γ(1), the losses start increasing as the Zeno effect is not yet significant and this
leads to a high population of the vacuum state. Finally, when two-plasmon absorption prevails, γ(2) � γ(1), the strong Zeno
effect prevents the system from evolving into those undesired states in which the plasmons are found in the same mode and
the success probability of the gate increases largely, reaching up to 87% for EF = 0.335 eV and W = 5 nm.
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7.2 Trace-free counterfactual communication with a nanophotonic
processor

In standard communication, the transmission of a message is always associated with a particle
or entity travelling in the same direction. In this paper we present an experiment performed
in a silicon-on-insulator nanophotonic processor, where we demonstrate the transmission of a
message from Bob to Alice, while single-photons travel in the opposite direction, from Alice
to Bob. We do this without any weak trace of the photon travelling in the same direction as
the message, while simultaneously achieving a bit error rate below 1%.

For further understanding this topic, I recommend reading Sections 2-Fundamentals of Pho-
tonics and 5.4.1-The Elitzur-Vaidman Bomb experiment.
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ARTICLE OPEN

Trace-free counterfactual communication with a nanophotonic
processor
I. Alonso Calafell 1, T. Strömberg1, D. R. M. Arvidsson-Shukur2,3, L. A. Rozema1, V. Saggio1, C. Greganti1, N. C. Harris4, M. Prabhu4,
J. Carolan4, M. Hochberg5, T. Baehr-Jones5, D. Englund 4, C. H. W. Barnes2 and P. Walther 1

In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication
particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by
encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on
thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus
employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called
“weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the
protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable
nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This,
together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a
versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us
to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection
and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to
more complex counterfactual tasks and quantum information protocols.

npj Quantum Information            (2019) 5:61 ; https://doi.org/10.1038/s41534-019-0179-2

INTRODUCTION
Interaction-free measurements allow one to measure whether or
not an object is present without ever interacting with it.1 This is
made clear in Elitzur and Vaidman’s well-known bomb-testing
gedanken experiment.2 In this experiment, a single photon used
in a Mach-Zehnder interferometer (MZI) sometimes reveals
whether or not an absorbing object (e.g., a bomb) had been
placed in one of the interferometer arms, without any interaction
between the photon and the bomb. It was later shown that the
quantum Zeno effect, wherein repeated observations prevent the
system from evolving,3,4 can be used to bring the success
probability of this protocol arbitrarily close to unity.3–6 Such
protocols are often referred to as “counterfactual”, and have now
been applied to quantum computing,7 quantum key
distribution8–10 and communication.11,12 Here, we experimentally
implement a counterfactual communication (CFC) protocol where
information can propagate without being carried by physical
particles.
The first suggested protocol for CFC was developed by Salih

et al., and it is based on a chain of nested MZIs.11,13 Following its
publication, this fascinating protocol has been subject to both
intense criticism and vigorous defense. There are four main points
of discussion: (1) Achieving a high success probability (say > 95%)
requires thousands of optical elements.11,12,14 (2) An analysis of
the Fisher information flow indicates that to retain

counterfactuality in Salih’s protocol, perfect quantum channels
are needed.15 (3) If one performs a weak measurement in Bob’s
lab, one can detect the presence of photons that are later found in
Alice’s laboratory. Some authors have argued that the presence of
the “weak trace” renders the counterfactuality of the protocol
invalid,16–19 but others have dismissed the weak trace as a
consequence of the unwanted weak measurement’s distur-
bance.20–22 (4) Unless operated in the theoretical limit of infinite
optical operations, this scheme requires post-selection to remove
the CFC violations.13,21,23 It has recently been shown that also a
classical communication protocol can be counterfactual if post-
selection is allowed.14

To circumvent these issues, we implement a novel CFC
protocol12 that does not need post-selection and requires orders
of magnitude fewer optical elements than nested MZI protocols.
In our scheme single photons travel from Alice to Bob but
information from Bob to Alice; this has been dubbed type-II CFC,
in contrast to type-I schemes, where the photon should remain
with Alice throughout the protocol.15 In both types the particles
and the information never co-propagate, thereby making the
communication counterfactual. Note that the very recent
proposals23,24 discussing means of making the Salih scheme
trace-free still require the post-selected removal of non-
counterfactual events, as well as thousands of ideal optical
operations.
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RESULTS
We perform our experiment using telecom single-photons in a
state-of-the-art programmable nanophotonic processor (PNP),25

which is orders of magnitude more precise and stable than
previous bulk-optic approaches.5,6 Our PNP also provides unpre-
cedented tunability, which we use to investigate the scaling of the
protocol by changing the number of chained interferometers. By
combining the novel CFC protocol with our advanced photonic
technology, we are able to implement counterfactual commu-
nication with a bit success probability above 99%, without post-
selection. As in previous CFC protocols, the interferometer
implementing the quantum Zeno effect is shared between Bob’s
laboratory and the fully passive transmission channel. In contrast
to these protocols, ours protocol allows for Alice’s laboratory to be
situated outside the interferometer. As a result, even our proof-of-
principle demonstration would allow for counterfactual commu-
nication over arbitrary distances, even if the region in which the
non-local information transfer takes place is bounded by the size
of the PNP.
Our protocol uses a series of N beamsplitters with reflectivity

R= cos2(π/2N), which, together with mirrors, form a circuit of
N− 1 chained MZIs. As shown in Fig. 1, the communication
protocol begins with Alice injecting a single photon into her input
port. If Bob wants to send a logic 0 he leaves his mirrors in place,
causing the photon to self interfere such that it exits in DB with
unit probability (Fig. 1a). To send a logic 1 Bob locally modifies the
circuit to have the upper paths open (Fig. 1b). In this case the
photon will successfully reflect off of all the beamsplitters and exit
in DA with probability RN. Removing the mirrors effectively
collapses the wavefunction after every beamsplitter, suppressing
interference and implementing the Zeno effect. The probability
that the photon remains in the lower arm after N beamsplitters
can be made arbitrarily high by increasing N (and changing the
reflectivities accordingly).
Since any implementation is restricted to a finite number of

beamsplitters, there will be a probability for a photon to exit the
wrong port when Bob tries to send a logic 1. This error probability
is a function that decreases with N as P1,err= 1− R(N)N. In the non-
ideal case, optical losses in the system will increase this probability
further. The errors associated with Bob’s attempt to transmit a
logic 0 are of a different nature. In theory, he can always perfectly
transmit a logic 0, independent of N; that is, P0,err= 0. In practice,

however, imperfections in the interferometers will lead to cases in
which the photon re-enters Alice’s laboratory and she incorrectly
records a logic 1. This leads to a rare counterfactual violation, as
the wavefunction “leaks” from Bob’s to Alice’s laboratory,15 leaving
a weak trace in Bob’s lab, while the photon is detected in Alice’s
laboratory. The high-fidelity operations enabled by our PNP allows
us to make the probability of such violations vanishingly small.
Although they do not contribute to a counterfactual violation,
dark counts in Alice’s detector will also increase this error rate.
We can overcome the bit errors by encoding each logical bit

into M single photons, at the cost of slightly increasing the CFC
violation. If Alice sends M photons into the transmission channel
without detecting any at DA, she will record a logic 0. On the other
hand, if she detects one or more photons in her laboratory, she
will record a logic 1. Assuming messages with a balanced number
of 0s and 1s, the average bit error probability is given by:

PerrðMÞ ¼ 1
2
½ðP1;errÞM þMP0;err� (1)

where the second term is an approximation of 1� PM0 valid for
small values of MP0,err. By increasing M we can thus decrease the
contributions of P1,err exponentially while only increasing those of
P0,err linearly. The counterfactual violation probability for a random
bit is given by

PCFCðMÞ ¼ 1
2η

MP0;err; (2)

where η is the detector efficiency. We can thus find an M that
minimizes the average bit error, while also maintaining a low
counterfactual violation probability. In our experiment this
expression slightly overestimates the violation probability, as it
includes the detector dark counts.
As illustrated in Fig. 2, we implement a series of chained MZIs

using a PNP. At the intersections of each of the modes shown in
the figure there are smaller MZIs that act as beamsplitters with
tunable reflectivities and phases. Since each of the MZIs is
completely tunable, we were able to implement our CFC protocol
using two to six concatenated beamsplitters on the same
photonic chip. Given the layout of our chip, six is the maximum
number of beamsplitter that we can concatenate. In addition, the
high interferometric visibility of the PNP, which we measure to be
99.94% on average, allows us to keep the rate of counterfactual
violations low, without post-selection. The single photons are
generated in a spontaneous parametric down conversion process
and detected using superconducting nanowire single-photon
detectors with detection efficiencies η ~ 90% (see Methods).

DISCUSSION
To study the performance of this CFC protocol we measure the
average bit error, as a function of the number of photons in which
the bit is encoded, M, for five different values of N number of BSs.
For the logic 0, we configure the MZIs in Bob’s laboratory as
mirrors (see Fig. 2), while for the logic 1 we let the MZIs in Bob’s
laboratory act as SWAP gates, routing the light out of the
interferometer chain. Since Alice cannot access detector DB, she
assumes that a photon is injected in the transmission channel
every time she detects a heralding photon in DH. We thus run the
measurement until we have M recorded single-photon events in
DH (typical rates were 1.1 MHz) and look for the coincidences that
these events have with DA within a set coincidence window Δτ=
2.5 ns that is shorter than the pulse separation. Our heralding
efficiency was ~3% through the PNP.
Figure 3a shows the experimental average error probability of

our CFC protocol as a function of M for different N. We also include
a theoretical calculation of the expected error probabilities, which
considers the heralding efficiency of the single photons and the
success probability of the interferometer that is in good

Fig. 1 Architecture of the chained MZI protocol. Alice inputs a
photon into the transmission channel, consisting of a row of
beamsplitters (BSs) and the lower row of mirrors (marked with an
‘m’). a If Bob intends to send a logic 0, he places mirrors in his
laboratory to form MZIs that span his lab and the transmission
channel, creating constructive interference in Bob’s port (DB). b If he
intends to send a logic 1, he removes the mirrors, causing the
photons to arrive back in Alice’s laboratory (DA) with high probability
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agreement with the experimental data. Note that these are not fits
to the data, but rather models with no free parameters. As
theoretically predicted, the error rate of the logic 1 decreases
exponentially with increasing M and the error rate of the logic 0
increases linearly with M. We observe that higher N requires
smaller M, and also results in lower bit error probabilities.
The success probability of this CFC scheme is highly sensitive to

the fidelity of the interferometers and the overall heralding
efficiency, which depends on the single-photon source and the
coupling efficiency throughout the system. Hence, we optimized
the setup for the N= 6 case. Figure 3b shows the corresponding

error probability of the logic 1 and the logic 0. The inset in Fig. 3b
shows the average error probability, where we find a minimum of
1.5% for M= 320, while the average counterfactual violation is
kept at 2.4%. Owing to backscattering in Bob’s laboratory (i.e.,
imperfect SWAP operations) small “amounts” of wavefunction
amplitude leak back into the transmission line in the 1 bit process.
Although these do not all lead to detection events in Alice’s
laboratory, the sum of their squares provides an upper bound on
the probability of a counterfactual violation. We estimate that the
probability for a photon to reflect off of a SWAP operation is at
most 1%. Hence, in our experiment (Fig. 4) with M= 320 and N=

Fig. 3 Success probabilities of the CFC communication. The curves are theoretical models of our experiment with no free parameters, and the
points are experimental data. a Measured average bit error (as defined in the main text) of the protocol for different number of beamsplitters
(N) as a function of the number of photons (M) used to encode each bit. For small M the cos2N(π/2N) dependence of the logic 1 error
dominates the average error, making the latter decrease with M as expected. As M is increased more, the linearly growing error in the logic 0,
caused by imperfect destructive interference in Alice’s port (DA), starts to dominate. b In the N= 6 case, the optimization of the interferometer
fidelity and heralding efficiency leads to an average bit error rate of 1.5% for M= 320, where the average CFC violation probability is 2.4%

Fig. 2 Experimental setup. a Our experiment is implemented in a programmable nanophotonic processor (PNP), which is composed of 26
interconnected waveguides. The waveguides are coupled by 88 Mach-Zehnder interferometers (MZIs), as indicated by the top-left inset. Each
MZI is equipped with a pair of thermo-optic phase shifters, which allows us to treat them as beamsplitters with fully tunable reflectivities (set
via θ∈ [0, 2π]) and phases ((ϕ∈ [0, 2π]). In our work, we set θ to π, 0 or π/2N, to implement mirrors (circles), SWAPs (triangles) or beamsplitters
(squares), respectively. In Alice’s laboratory (the pink shaded region) a spontaneous parametric down-conversion source creates a frequency
non-degenerate photon pair at λH= 1563 nm and λT= 1565.8 nm. Detection of the λH photon in detector H heralds the λT photon that is
injected into the transmission channel. This channel is comprised of the lower half of the PNP, in which MZIs are set to act as mirrors, as well as
the MZIs that couple the upper and lower half of the waveguide. The latter of these MZIs are configured to act as beamsplitters, whose
reflectivity varies with N (the number of beamsplitters used in the protocol) as R(N)= cos2(π/2N). Bob’s laboratory consists of the upper set of
MZIs (blue shaded area), which he can set as mode swaps to send a logic 1 or b as mirrors to send a logic 0. Thus in total we used 48 MZIs: 6 to
implement the tunable beamsplitters, 30 to implement the loss channels, 6 for the mirrors in the transmission channel, and 6 for the mode
swaps/mirrors in Bob’s laboratory. The photons are detected in Alice’s laboratory by superconducting nanowire single-photon detectors with
detection efficiencies of approximately 90%. Coincident detection events are recorded with a custom-made Time Tagging Module (TTM).
c Micrograph of the PNP with dimensions 4.9 × 2.4 mm
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6, the weak trace is vanishingly small and the contribution from
the logic 1 to a CFC violation is less than 1.1%. Note that this
violation probability decreases with N, even if the errors remain
the same.
To demonstrate the performance of the communication

protocol we proceed to analyze the quality of a message in the
form of a black and white image, sent from Bob to Alice, for N= 6
and M= {10, 50, 320, 500}. We arbitrarily define the white and
black pixels of the image as logic 1 and logic 0, respectively.
Figure 4 shows the message transmitted from Bob to Alice for

different numbers of encoding photons. We define the image
fidelity as

F ¼
XT

i¼1

1þ ð�1ÞAiþBi

2T
(3)

where Bi is the bit that Bob intended to send, Ai is the bit that Alice
recorded, and T is the total number of bits in the image. In this
case we define the CFC violation probability as the number of
incorrectly transmitted logic 0 s (black pixels) over T. The encoding
using M= 10 is clearly not enough to overcome the losses of the
system, with a very low image fidelity of 31.77%. As we increase M,
the success probability and legibility of the message increases (the
individual fidelities are listed below each panel). The image fidelity
reaches 99.09% at M= 320, at which point the CFC violation
probability from 0 bit errors remains as low as 0.6%. For M= 500
the image fidelity does not noticeably change; however, the CFC
violation increases slightly. If the CFC violation of the 1 bit (caused
by on-chip beamsplitter imperfections) is accounted for, the CFC
violation at M= 320 increases to 2.3%. Note that these values are
lower than the value in Fig. 3b due to the unbalanced distribution
of black and white pixels in the image.
Our high-fidelity implementation of a counterfactual commu-

nication protocol without post-selection was enabled by a
programmable nano-photonic processor. The high (99.94%)
average visibility of the individual integrated interferometers
allowed bit error probabilities as low as 1.5%, while, at the same
time, keeping the probability for the transmission of a single bit to
result in a counterfactual violation below 2.4%. By combining our
state-of-the-art photonic technology with a novel theoretical
proposal we contradicted a crucial premise of communication
theory:26 that a message is carried by physical particles or waves.
In fact, our work shows that “interaction-free non-locality”, first
described by Elitzur and Vaidman,2 can be utilized to send
information that is not necessarily bound to the trajectory of a
wavefunction or to a physical particle. In addition to enabling
further high-fidelity demonstrations of counterfactual protocols,
our work highlights the important role that technological
advancements can play in experimental investigations of funda-
mentals of quantum mechanics and information theory. We thus

anticipate nanophotonic processors, such as ours, to be central to
future photonic quantum information experiments all the way
from the foundational level to commercialized products.

METHODS
Telecom photon source
We use a pulsed Ti:Sapphire laser with a repetition rate of 76MHz, an
average power of 0.2 W, a central wavelength of 782.2 nm, and a pulse
duration of 2.1 ps. The repetition rate is doubled via a passive temporal
multiplexing stage.27,28 This beam pumps a periodically poled KTP crystal
phase matched for collinear type-II spontaneous parametric down
conversion, generating frequency non-degenerate photon pairs at λH=
1563 nm, λT= 1565.8 nm. Registering the shorter wavelength photon at
the detector DH heralds the presence of the longer wavelength one, which
is sent to the waveguide.

Programmable nanophotonic processor
Our chained Mach-Zehnder interferometers (MZIs) are implemented in a
silicon-on-insulator (SOI) programmable waveguide, developed by the
Quantum Photonics Laboratory at the Massachusetts Institute of
Technology.25 The device consists of 88 MZIs, each accompanied by a
pair of thermo-optic phase shifters that facilitate full control over the
internal and external phases of the MZIs. The phase shifters are controlled
by a 240-channel, 16-bit precision voltage supply, allowing for a phase
precision higher than 250 μrad. The switching frequency of these phase
shifters is 130 kHz. The coupling of the single photons in/out of the chip is
performed using two Si3N4–SiO2 waveguides manufactured by Lionix
International, that adiabatically taper the 10 × 10 μm mode from the single
mode fiber down to 2 × 2 μm, matching the mode field diameter of the
programmable waveguide at the input facet. The total insertion loss per
facet was measured as low as 3 dB.

Superconducting nanowire single-photon detectors
The photons are detected using superconducting nanowire single-photon
detectors.29,30 These detectors are produced by photonSpot and are
optimized to reach detection efficiencies ~90% at telecom wavelengths.

DATA AVAILABILITY
The datasets generated and analyzed during the current study are available from the
corresponding author if you ask nicely.
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7.3 Giant enhancement of third-harmonic generation in graphene-metal
heterostructures

We have seen that currently photonic quantum computing is limited by the probabilistic
nature of available single-photon sources and quantum logic gates. However, we also know
that these drawbacks could be overcome with strong nonlinear effects at the single-photon
level. As an alternative to standard nonlinear crystals mostly used in spontaneous paramet-
ric down-conversion (SPDC) systems, here we study the optical nonlinear enhancement in
graphene heterostructures. These devices consist of gold nanoribbons deposited on top of
planar graphene. We find that the excitation of metallic plasmons in the nanoribbons leads
to a large field confinement that, at the same time, interacts with the graphene nonlinearity,
providing a THG signal enhancement three orders of magnitude stronger than that mesured
in bare planar graphene.

In this paper we also change the Fermi energy of the system via electrical doping and observe
a THG signal, which according to the theoretical model, could be explained by the excitation
of graphene plasmons.

For further understanding this topic, I recommend reading Sections 4.2-Optical properties of
graphene, 2.2-Nonlinear Optics and 3-Fundamentals of Plasmonics.
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Nonlinear nanophotonics leverages the spectral and spatial control of optical fields achieved
through engineered nanostructures to funnel light into small volumes and enhance its intensity
in nonlinear materials. The intrinsically large and electrically tunable nonlinear optical response of
graphene, together with its ability to strongly concentrate optical fields, make it a promising candi-
date for nonlinear optoelectronic applications such as switches and frequency converters. Here we
report unprecedentedly strong optical nonlinearities in graphene-insulator-metal heterostructures,
demonstrating an enhancement of three orders of magnitude in the third-harmonic signal com-
pared to bare graphene. Furthermore, by increasing the graphene Fermi energy through an external
gate voltage, we find multiple peaks and dips in the nonlinear signal that are consistent with the
mediation of graphene plasmons in the nonlinear signal. Our findings demonstrate that graphene-
insulator-metal heterostructures are a promising building block for optically-controlled ultra-fast
miniaturised nano-optoelectronic components enabled by tunable and ultra-strong nonlinear light-
matter interactions.

The ability to concentrate light into nanometric vol-
umes enables access to an ultrastrong light-matter cou-
pling regime that opens applications in fields rang-
ing from optical sensing1 to quantum information
processing.2 In this context, metallic nanostructures sup-
porting plasmons - the collective electron oscillations -
can concentrate electromagnetic fields, and they have
even been demonstrated to enhance nonlinear optical
processes.3 While the properties of plasmons can be tai-
lored by the shape, size, and composition of their sup-
porting conductive media,4 these properties are notori-
ously difficult to actively tune in noble metals.5–9 Fur-
thermore, noble metals suffer from large intrinsic ohmic
losses that limit their nonlinear optical response and co-
herence lifetime.10 Over the last decade, graphene has
been shown to have an intrinsically large and tunable
optical nonlinearity associated with third-harmonic gen-
eration (THG),11–14 four-wave mixing,12,15,16 the opti-
cal Kerr effect,17,18 and high-harmonic generation.19,20

While the nonlinear optical response of graphene is com-
paratively intense when normalized per carbon atom, its
atomic thickness presents an inherent limitation to the
light-matter interaction volume.

Here we use a heterostructure consisting of graphene,
an insulator spacer, and nanometer-thick gold nanorib-
bons to concentrate the electric field of a far-field pump
beam into graphene. We experimentally find that the
gold structures act as antennas that increase the THG by
three orders of magnitude above that of bare graphene.

We confirm that the THG originates entirely in the
graphene layer, which enables us to actively tune the en-
hanced nonlinear signal by simply controlling the Fermi
energy of graphene via an externally applied voltage.

In addition to its intrinsic nonlinearity, graphene sup-
ports highly-confined and long-lived plasmonic excita-
tions that can be electrically tuned over a wide spec-
tral range.21–32 Graphene-insulator-metal heterostruc-
tures have been used to demonstrate strong optical con-
finement, down to the scale of one atom,6 and nearly
perfect absorption of the incident field.33–35 It has also
been argued that such systems can reach a strong-
coupling quantum regime.36–38 Nonetheless, despite nu-
merous theoretical predictions of an intense coher-
ent nonlinear plasmonic response in graphene,36,37,39–46

there are currently few experimental demonstrations of
plasmon-assisted optical nonlinearities in extended47 and
structured48,49 graphene. Our experiments display an in-
triguing peaks and dips in the third-harmonic signal as
a function of the carrier concentration. We find that a
model wherein graphene surface plasmon polaritons are
excited by the gold nanoribbons is consistent with the
experimental observations, whereas elimination of plas-
mons from the model results in poor agreement. These
signatures of plasmon-enhanced and -suppressed third-
harmonic generation provide a new route toward the am-
plification and control of light at strong subwavelength
dimensions.
Experiment– Our samples consist of a graphene sheet
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2

Figure 1. Gate-tunable graphene heterostructures. a. Graphene is encapsulated by a few-nm-thick Al2O3 or a monolayer
h-BN film, setting the space s between the graphene and the gold nanoribbons. The nanoribbons are characterized by their
width W and gap g. Normally-incident pump light at a frequency ω undergoes third-harmonic generation in the sample, and
is collected in transmission. A gate voltage (V) tunes the Fermi energy of the graphene EF. b. The conical electron dispersion
relation of graphene can be tuned in resonance with one, two, or three pump photons. c. Scanning electron microscopy image
of one of our high-quality nanoribbon arrays. d. Sketch of our experimental setup. Difference-frequency generation (DFG)
between signal and idler beams of an optical parametric oscillator (not shown) provides mid-IR ≈ 260 fs pulses. A half-wave
plate (HWP), together with a polarizer (pol), selectively rotate the polarization of the pump, which is then focused onto the
sample. A second lens collimates the pump and the third harmonic. A band-pass filter (BP) isolates the third-harmonic signal,
which is coupled into a multimode fiber and sent to a superconducting nanowire single-photon detector (SNSPD). The sample
is moved in the z direction, in and out of the focal point of the beam.

with a metallic nanoribbon array separated by an insulat-
ing Al2O3 or h-BN spacer, as depicted in Fig. 1a,b,c. In
order to isolate the nonlinear signal from the heterostruc-
ture, we use a modified z-scan setup with a tight depth
of focus (Fig. 1d). In our configuration, the sample
is moved through the focal point of a fs-pulsed mid-IR
pump beam (with a wavelength of 5500 nm or 3900 nm),
and a third-harmonic signal (at 1833 nm or 1300 nm,
respectively) is measured in transmission (as detailed in
the Methods section). All the measurements in this work
are performed under normal conditions. A set of repre-
sentative z-scan measurements is presented in Fig. 2a,
showing that we only observe signals from bare graphene,
and gold+graphene heterostructures (see Supplementary
Figure S2 for more detail). The spectrum of the non-
linear signal (with a 3900 nm pump beam) is presented
in Fig. 2e, showing a clear peak at the third-harmonic
wavelength. The wavelength of the THG signal with a

5500 nm pump is confirmed in supplementary Fig. S1.

Our data clearly shows that the THG signals from the
heterostructures are greatly enhanced compared to bare
graphene, and additional control experiments (see Sup-
plementary Figure S2) show that the metal structures
alone do not produce a measurable THG signal. More-
over, the THG signal is maximized when the polarization
is perpendicular to the direction of the nanoribbons (blue
squares in Fig. 2c,d). Additionally, as shown in Fig. 2d,
the THG signal of bare graphene is co-polarized with
the incoming light (red triangles), and the THG signal
of the heterostructures is perpendicular to the nanorib-
bons (blue squares). In both cases, the strongly polarized
signal indicates a coherent nonlinear process.

We quantify the enhancement and verify the third-
order nature of our signal by measuring the power
dependence of bare graphene (red triangles) and the
gold+graphene heterostructures (squares), shown in Fig.
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Figure 2. Characterization of the third-harmonic signal. a. Z-scan measurements on four different regions of the
sample. The Gaussian fits to the data provide visual guides. b. Power scaling of the measured third-harmonic signal (symbols)
in bare graphene and in gold-graphene heterostructures for different nanoribbon widths with a monolayer h-BN spacer. The
pump wavelength for this data is 3900 nm and the Fermi energy is EF ≈ 150 meV. The linear fits (lines) to these data are
used to calculate the enhancement of the heterostructure over bare graphene. c. Third-harmonic signal of bare graphene and
heterostructures when the input polarization is rotated. Bare graphene is isotropic with respect to the incident polarization,
while the gold nanoribbons result in a cos6 θ dependence with polarization angle θ relative to the direction perpendicular to
the ribbons (i.e., as expected from a third-order power scaling). d. Third-harmonic emission when the input polarization is
fixed, and a polarizer after the sample is rotated. For bare graphene, the third-harmonic signal is co-polarized with the input
pump light, while for the heterostructures the third-harmonic polarization is always orthogonal to the nanoribbons. In both
cases, the polarization of the third-harmonic signal is coherent. For the data presented in panels c and d, the pump wavelength
is 5500 nm and the Fermi energy is EF ≈ 150 meV. The studied heterostructure has dimensions s = 5 nm, W = 200 nm, and
g = 50 nm. e. Spectrum of third-harmonic generation from bare graphene, measured with a 3900 nm pump beam.

2b. The slope of the linear fits on a log-log scale is fixed
to 3 and the y-intercepts are free parameters, which we
use to calculate the enhancement of the heterostructures
over bare graphene. Although at higher powers a small
saturation effect can be observed in the gold+graphene
data, a clear third-order power scaling is supported by
the data. We experimentally find the maximum enhance-
ment for a 3900 nm pump with a monolayer h-BN spacer
and a ribbon width of W = 200 nm. Under these condi-
tions, the heterostructures produce a THG signal that is
1580 times larger than that of bare graphene.

To understand the enhancement mechanism and the
role of the metal, we perform finite-difference time-
domain (FDTD) simulations that are presented in Fig.
3a. These show a strong concentration of the electric
field in the gap between the nanoribbons only when the
polarization of the incident field is perpendicular to the

ribbons. In contrast, the bare graphene signal is inde-
pendent of the incident polarization (red triangles Fig.
2c). Note that the slight asymmetry is caused by a
polarization-dependent detection efficiency of our super-
conducting detector.50 Therefore, we conclude that the
enhancement is mediated by the gold nanoribbons, which
amplify the electric near-field in the graphene layer. The
simulations in Fig. 3a also show that the field strength
in the gap depends on the width of the nanoribbons. To
verify this experimentally, we performed a series of THG
measurements for different nanoribbon widths , with a
spacer thickness of s = 3 nm and an input pump at
5500 nm (results for other spacers are shown in Fig. S4.
From the THG signals we estimate an effective third-
order susceptibility χ(3) as described in the Methods sec-
tion. The result is shown in Fig 3b. The experimental
data agree well with our FDTD simulations, which as-
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Figure 3. Third-order nonlinear susceptibility and electrical gating dependence. a. Field confinement in the gap
between the gold nanoribbons plotted for different nanoribbon widths. The width of the nanoribbons increases along the
vertical axis from bottom to top, while the horizontal axis represents the transverse coordinate. The color plot indicates the
calculated product of electric fields of the third harmonic and the pump E3

x(ω)Ex(3ω), relevant for third-harmonic generation. b.

Effective χ(3) versus nanoribbon width. The measured χ(3) for different nanoribbon widths (red circles) is compared with the
one theoretically calculated from |E3

x(ω)Ex(3ω)|/E0 (solid green curve). The thickness of the theory curve shows the associated
uncertainty in the estimate. The pump wavelength is 5500 nm, while we take EF ≈ 150 meV, s = 5 nm, and g = 50 nm. In
the simulations, the electron relaxation time is set to τe = 25 fs. c. Dirac cone representation of several different resonant
conditions for third-harmonic generation. When EF = 0, all three transitions are allowed but they almost cancel out, resulting
in a very small THG signal. d. Dependence of the optimal Fermi energy on the pump wavelength. We plot the Fermi energy
at which the third-harmonic signal is maximized versus the input pump energy. e-f. Gate dependence of the third-harmonic
signal for 3900 nm and 5500 nm pump wavelengths. Panel e corresponds to bare graphene without nanoribbons, while f stands
for the heterostructure with W = 200 nm, g = 50 nm, and s = 5 nm. The red and green curves stand for the third-harmonic
signals versus Fermi energy. The gray curves are the measured resistances of the the sample. The peak in the resistance
indicates the charge neutrality point. The red dashed lines in panel f. indicate the one-, two-, and three-photon transitions for
5500 nm pump.

sume an uncertainty of ±20% on the gap size (nominally
set to 50 nm) caused by experimental imperfections.

While using gold nanribbons of the appropriate width
can greatly enhance the nonlinear response of the sys-
tem, this width cannot be actively changed. In contrast,
the optical nonlinearity in graphene can be electrically
tuned, thus providing a practical way of achieving active
control. This is because the optical response in graphene
depends on the strength of the intraband and interband
transitions,12,14,45,51 which in turn depend on the ratio
of the impinging light energy ~ω0 to the graphene Fermi
energy EF. The latter can be tuned in-situ by applying
an external voltage to the graphene layer relative to the
silicon substrate.

Conceptually, we can understand the effect of EF-
tuning on THG as illustrated in Fig. 3c. By sweep-
ing the gate voltage, one can match the Fermi energy
to be resonant to an interband transition for one, two

or three incident photons. This results in three differ-
ent resonances in the third-order nonlinear susceptibility
χ(3) for THG.52,53 For small Fermi energies compared to
the photon energy 2EF < ~ω0, all three transitions can
occur; however, because they contribute to χ(3) with dif-
ferent signs, they nearly cancel out.12 For large Fermi
energies compared to the photon energy, 2EF > 3~ω0,
all three of these transitions are Pauli-blocked and there
is only a non-resonant intraband contribution. As a re-
sult χ(3) becomes very small (theoretically it vanishes at
zero temperature).12,14 At intermediate Fermi energies
~ω0 < 2EF < 3~ω0, it is possible to increase THG by, for
example, Pauli blocking the one-photon and two-photon
transitions, so that only the three-photon transitions are
allowed and the other two transitions no-longer cancel it
out. For low electron temperatures the gate response is
expected to result in several sharp features as the sys-
tem is tuned in and out of resonance. However, thermal
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Figure 4. The role of graphene plasmons in THG. The third-order susceptibility χ
(3)
sim is calculated from the integral

of the simulated gate dependent spatial distribution of the nonlinear in-plane field at graphene, which is shown in a and b
as amplitude and phase, respectively, for 2 periods of the structure in the inset of c. The electron relaxation time is set to
τe = 25 fs and the fundamental wavelength is λ = 5.5 µm. c. Gate-dependent relevant response functions, normalized to their

maxima: experimental (red squares) and simulated (solid green curve) third-order nonlinear susceptibility χ
(3)
sim, third-order

nonlinear conductivity σ
(3)
sim (dashed-dotted violet curve), and nonlinear in-plane field integral result (dashed fuchsia curve).

The complex multiplication of the last two of them (see integral in Eq. 4) provides the key signatures (peaks and dips) of

χ
(3)
exp for a relaxation time τe = 25 fs in the model. d. Simulated gate-dependent third-order nonlinear susceptibility χ

(3)
sim for

various electron relaxation times τe, showing stronger features for larger τe, and demonstrating that our measurements are not
explained by effectively excluding plasmons from the model as τe is reduced down to 10 fs.

broadening turns these features into broad shoulders.
The observed THG signal as a function of EF is shown

in Fig. 3e, in this case for bare graphene, for two different
pump wavelengths, 5500 nm (0.225 eV) and 3900 nm
(0.318 eV).

A clear peak is observed that shifts to larger EF for
shorter wavelengths and thus larger ~ω0. In order to
better visualize this wavelength shift, we normalize both
curves to the same maximum. This is more clearly re-
vealed in Fig. 3d, where we plot the Fermi energy at
which the THG is maximized versus the pump wave-
length. As we show in the Supplementary Information,
the exact location of the maximum Fermi energy is af-
fected by the electron temperature, which depends on
the pump fluence. Importantly, these gating data show
that we can actively modulate the THG signal in bare
graphene. While the electron temperature and electron
relaxation time affect the degree to which the THG sig-
nal can be modulated, we can change the intensity of the
THG by a factor ≈ 5 for bare graphene.

Similar gating measurements on the heterostructure
are shown in Fig. 3f, for the geometry in which we
obtain a maximum field enhancement (W = 200 nm,
g = 50 nm). Once again, we observe the expected shift
as a function of the energy of the incident photons. We
can modulate the THG by a factor of 7.4 ± 0.2 with a

3900 nm pump, and by a factor of 4.7± 0.2 with a 5500
nm pump. We stress that this active tunability comes
from the unique combination of atomic thickness and lin-
ear electronic dispersion in graphene, which cannot be
achieved in standard noble metal plasmonics.3

Interestingly, the THG signal for a much larger range
of EF reveals two peaks and a dip in the gate response as
shown in Fig. 4c for a heterostructure with parameters
W = 55 nm, g = 45 nm. To provide a possible interpre-
tation, we note that the graphene third-order nonlinear-
ity associated with THG is determined by the interplay
between the third-order nonlinear graphene conductivity

σ
(3)
3ω and the nonlinear field integral

∫
L
Ex(ω)3Ex(3ω)dx

(i.e., the cubic of the linear field is associated with the
THG current amplitude, while the field at 3ω represents
the enhancement in the emission produced by the het-
erostructure at the THG frequency). We also note that
tuning the Fermi level to higher energies can lead to the
excitation of (acoustic) graphene plasmons6 that can af-
fect the non-linear response. The third-order conductiv-

ity σ
(3)
3ω depends on the excitation frequency ω, Fermi

energy EF, the electron relaxation time τe, and electron
temperature Te associated with the pump absorption.
The latter can reach high values relative to the ambi-
ent room temperature and can cause anomalous behavior
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such as shifts in the features of the optical conductivity as
a function of doping, compared to constant Te (see Sup-
plementary Figure 4). The second contribution (fields
integral) depends only on the spatial field distribution,
which is a consequence of varying the linear graphene
conductivity with EF . This in turn modifies the plasmon
wavelength differently in the gap and below the metal re-
gions (see simulations in Fig 4 a,b). Obviously, different
spatial regions can produce contributions of different sign
that cancel each other, thus affecting the overall nonlin-
ear performance.

It is thus important to stress that, as we show in the
Fig. 4c, the third-order conductivity alone, despite its
rich dependence on these parameters, cannot fully ex-
plain the observed THG signal. However, the peaks
and dips appearing in the response at specific values of
2EF/hν correlate well with the integral of the electric
fields, stemming in part from plasmonic interferences,
and driving the nonlinear response. This integral, shown
as a dashed line in Fig. 4c, is found to exhibit the same
trend as the data. The situation is further complicated
by absorption from the pump, which increases the elec-
tron temperature Te, leading to the shifts noted above
(see Supplementary Information).

From our simulations, we conclude that the nonlin-
ear response in our experiment is mainly driven by the
field in the gap region where it takes comparatively larger
values (see Fig 4a). In particular, at λ = 5500 nm, for
W = 55 nm, g = 45 nm, and s = 3 nm, we find a dip
at ∼ 3 × 2EF/hν and a peak at slightly larger EF. The
dip in the data can then be interpreted as the partial
cancellation of positive and negative complex field com-
ponents throughout the whole period, which produces a
reduction of the observed χ(3). More precisely, it appears
that at the dip the acoustic plasmon field partially can-
cels out the field in the gap. This is modeled well in our
simulations with τe = 25 fs. However, for larger values
of τe, the acoustic plasmon field seems to overcome the
field in the gap, thus turning the dips in the THG signal
into peaks (Fig 4d).

A quantitative comparison of the calculated and mea-
sured χ(3) is shown in Fig. 4c, and the main features are
clearly reproduced by the model. An alternative sim-
ulation in which graphene plasmons are explicitly sup-
pressed by decreasing the plasmon lifetime τe is unable
to reproduce the dips and peaks in our data (see the pur-
ple curve in Figure 4d), thus suggesting the excitation of
plasmons in our graphene heterostructures as a mech-
anism assisting THG. Nevertheless, further studies are
needed to rigorously confirm the effect of these surface
plasmon polaritons on the graphene optical nonlinearity.

Conclusion— Recent studies have reported a wide
range in the estimate of χ(3) using third-harmonic
generation.11–13,54–56 In our experiment, we find an effec-
tive third-order susceptibility of χ(3) ≈ 10−7 esu in bare
graphene, consistent with the highest values reported
in the literature. Moreover, our experimental measure-
ments agree well with simulations based on the third-

order nonlinear conductivity taken from Refs. [45,57]. Re-
markably, by calculating an effective nonlinearity for the
200 nm heterostructure with a monolayer h-BN spacer

we find χ
(3)
exp ≈ 5.6 × 10−6 esu, which is larger than any

value ever reported for THG in graphene.54

Unlike in metal plasmonics, we can actively modulate
the nonlinearity of our graphene heterostructures by con-
trolling EF with an external gate voltage. Graphene-
based linear optical devices have already been shown to
operate at GHz speeds58 and hence, our system provides
a new route toward ultrafast nonlinear optoelectronic
switches and frequency converters. Additionally, our
measurements reveal intriguing plasmonic effects sup-
ported by simulations in which graphene surface plas-
mon polaritons appear to directly modify the nonlinear
optical response of our structures. These plasmonic exci-
tations potentially provide a novel approach to the ma-
nipulation and amplification of light at subwavelength
scales. In particular, our simulations suggest that im-
proving the plasmon lifetime by a factor of five would in-
crease the nonlinear response by an order of magnitude.
This suggests that graphene plasmonic devices could pro-
vide unprecedentedly strong nonlinearities, potentially
resulting in nonlinear optical effects at the single-photon
level.2,36,38
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METHODS

Experimental details— We carry out our THG mea-
surements using a modified z-scan setup, where the TH
signal is measured while the sample is moved along the
z axis through the focus of the laser beam (see Fig. 1d).
Our pump beam consists of linearly-polarized pulses of
∼ 260 fs duration with a tunable carrier wavelength of
5.5µm (0.225 eV) at a 80 MHz repetition rate, which
we create by performing Difference-Frequency Genera-
tion (DFG) between the signal and the idler beams of
an Optical Parametric Oscillator (OPO). We use a Half-
Wave Plate (HWP) to tune the polarization of the in-
coming beam to that set by the polarizer (pol). By ro-
tating the HWP and the polarizer together we can rotate
the pump polarization relative to the orientation of the
nanoribbons. Then, a lens with a 5.26 mm focal length
focuses the pump down to a waist of ≈ 20 µm for the

5500 nm pump and ≈ 13 µm for the 3900 nm pump.
When the sample is moved parallel to the pump beam
(along the z axis), the nonlinear emission occurs most ef-
ficiently where the fluence is maximum, i.e. at the focal
point. Afterwards, a lens with a 11 mm focal length col-
limates the beam, which is then sent through a bandpass
filter (BP) to separate the THG signal from the excita-
tion beam. Finally, the signal is coupled into a multimode
fiber and sent to a large-area Superconducting Nanowire
Single-Photon (SNSP) detector, with a ≈ 20 % detection
efficiency at the third-harmonic wavelength, 5500/3 nm
= 1833 nm.

We verify the wavelength of this signal by removing all
spectral filters, keeping the sample in the focus, and using
a NIREOS GEMINI interferometer to perform Fourier
transform spectroscopy on the signal.
Extracting the third-order susceptibility— Exper-

imentally we extimate χ
(3)
exp starting with the expression

of the input (i) and output (o) average power as a func-
tion of the field as,

P (ωi,o) =
1

8

(
π

ln 2

)3/2

fτW 2nωi,o
ε0c
|E(ωi,o)|2

2
(1)

where we assume laser pulses with repetition rate f , du-
ration τ , waist W on the sample and Gaussian profile,
and nωi,o

= 2.4 is the refraction index, and ε0 and c are

the permittivity and speed of light in vacuum.12 Addi-
tionally, we can write the THG process as a function of

the input and output fields as follows and solve for χ
(3)
exp:

E(ωo) =
1

4

iωi

2πc
χ(3)
expdgrE(ωi)

3 (2)

where ωi = ωo/3 and dgr = 0.33 nm is the effective thick-
ness of graphene.
Simulating the third-order susceptibility— To sim-
ulate the third-order susceptibility we begin with the ex-
pression

χ
(3)
sim =

∣∣∣∣∣
α(3)

dgrL

∣∣∣∣∣ (3)

where α(3) is third-order polarizability given by

α(3) =
iσ

(3)
ω

3ωi

∫

L

Ex(ω)3Ex(3ω)dx (4)

and σ
(3)
ω is the analytical third-order conductivity in

graphene derived by Mikhailov in Ref.57], and L is the
length of the simulated region used for integration along
the direction perpendicular to the nanoribbon width. Eq.
(4) represents the contribution of the THG current to the

far field. In particular, the E3
x(ω) factor times σ

(3)
ω is the

THG current, which we represent as a polarization den-
sity at the emission frequency 3ω by multiplying by i/3ω.
Also, the factor Ex(3ω) represents the enhancement in
the emission from such polarization density depending
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on the position x along the graphene film. Indeed, be-
cause of reciprocity, the latter is exactly given by the
enhancement amplitude in the near field relative to free
space when the structure is illuminated with 3ω radia-
tion. More precisely, we calculate Ex(3ω) as the complex
factor of enhancement relative to the incident field in the
field acting on the graphene layer when it is illuminated
by a 3ω plane wave impinging from the detector direction.
The electric fields Ex(ω) entering the above expression
are obtained using a RCWA (Rigurous Coupled Wave
Analysis) Ref.59–61 Matlab script Ref.62,63 and adapted
to include graphene as an interface material adopting
the nonlocal 2D optical conductivity of graphene σ(Q,ω)
that depends on the chemical potential µ and electronic
temperature Te. It requires periodicity of the structure
perpendicular to the layered dimension. Here we consider
the influence of electronic heating by the pump pulse in
the optical response of the graphene-metal hybrid sys-
tem. In particular, following the procedure in Ref.,64 we
make use of the implicit relation between EF, Te, and µ

obtained from conservation of doping charge,

(
EF

kBTe

)2

= 2

∫ ∞

0

dxx
[(
ex−µ/kBTe + 1

)−1

−
(
ex+µ/kBTe + 1

)−1 ]
,

(5)

along with the graphene heat capacity

F = β
(kBT )3

(~vF)3
, (6)

where F is the energy of the pulse absorbed (i.e., F = ηF0

where η is the absorbed fraction of power as obtained
from the linear RCWA simulations) and

β =
2

π

{∫ ∞

0

dxx2
[(
ex+µ/kBTe + 1

)−1

+
(
ex−µ/kBTe + 1

)−1 ]
−1

3

(
EF

kBTe

)3
}
,

(7)

to obtain the µ and Te satisfying the above relations
simultaneously; these values are then inserted into the
graphene linear conductivity directly, and for the non-
linear conductivity we compute the temperature depen-
dence using Maldague’s identity:65

σ(3)(ω, τ, µ, T ) =
1

4kBT

∫ ∞

−∞
dE

σ(3)(ω, τ, µ, 0)

cosh2 ( E−µ2kBT
)
. (8)
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Abajo, F. J. & Lukin, M. D. Single-photon nonlinear optics
with graphene plasmons. Phys. Rev. Lett. 111, 247401
(2013).

37 Jablan, M. & Chang, D. E. Multiplasmon absorption in
graphene. Phys. Rev. Lett. 114, 236801 (2015).

38 Alonso Calafell, I. et al. Quantum computing with
graphene plasmons. npj Quantum Information 5, 37
(2019).

39 Mikhailov, S. A. Theory of the giant plasmon-enhanced
second-harmonic generation in graphene and semiconduc-
tor two-dimensional electron systems. Phys. Rev. B 84,
045432 (2011).

40 Gorbach, A. V. Nonlinear graphene plasmonics: Ampli-
tude equation for surface plasmons. Phys. Rev. A 87,
013830 (2013).

41 Yao, X., Tokman, M. & Belyanin, A. Efficient nonlinear
generation of thz plasmons in graphene and topological
insulators. Phys. Rev. Lett. 112, 055501 (2014).
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SUPPLEMENTARY INFORMATION

Figure 1. Confirmation of the third-harmonic signal wavelength with a 5500 nm pump beam. The transmission of
the third-harmonic signal through a bandpass filter at 1750 nm with a 500 nm bandwidth as the pump wavelength is changed.
The points are the meassured transmission of the third-harmonic signal and the solid curve is the transmission of the filter
measured with standard FTIR.
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Figure 2. Comparisson of the third-harmonic signal with an SEM image of the sample. The left pannel shows the
third-harmonic signal as the entire sample is moved tranversly through the pump beam. The corresponding SEM image of the
sample is shown on the right. Strong third-harmonic signals can be distinguished in the regions with both graphene and golden
nanoribbons, as well as a weaker signals from the strips of bare graphene surounding the nanoribbons. There is no discernable
signal from the nanoribbons without graphene. The darker areas indicating the contacts are also evident. As a reference, the
SEM image on the right hand side confirms the structure of the sample, where the dark horizontal bands indicate the presence
of bare graphene. The brighter squares on top of these bands are different arrays of golden nanoribbons with widths W ranging
from 20 − 5000 nm. Note that some of the arrays noticeable on the SEM image do not show any THG signal. This is due to
experimental imperfactions of the golden nanoribbons during the fabrication process.

Figure 3. Comparission of the magnitude of the experimentally estimated χ(3) with the calculated value. The
shaded areas around the green points represent the experimental uncertainty in our estimation of χ(3). We calculate the error
bars of the experimental data (green dots) with an uncertainty of 5% and 10% on the experimentally measured parameters,

defined by the dark and light grey areas, respectively. The red solid lines show the theoretically calculated χ(3) at different
electron temperatures for 10 fs, 25 fs and 1 ps, from left to right.
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Figure 4. Field confinement in the gap between the nanoribbons and χ(3) as a function of the nanoribbon width.
Each pannel corresponds to a different Al2O3 spacing s = [1, 3, 5, 20] nm.
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Figure 5. Effect of the electron temperature on the optimum Fermi energy. a-c. Simulations of the third-order
susceptibility χ(3) as a function of the Fermi energy EF for pump wavelengths in the λpump = 4000 − 5510 nm (Epump =
0.23−0.31 eV) range and electron temperatures of 300 K, 1100 K and 1600 K, respectively. d. Blue dots show the experimental

values of the EF at which the maximum χ(3) are found in the gate measurement, for λpump = [5510, 5000, 4500, 4100] nm
(Epump = [0.225, 0.248, 0.276, 0.302] eV). The green solid lines are simulations at Te = [300, 1100, 1600] K and the solid yellow
line is a linear fit of the data points.
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Outlook

8.1 Superconducting Nanowire Single-Photon detectors (SNSP)

As previously mentioned in Section 6.2.3, we used SNSP detectors for the THG measurements.
Here we will go through the basics of this detection system, as part of this thesis involved
the installation, troubleshoot and characterization of a large cryogenic system containing 20
of these detectors. However, these detectors can only detect wavelengths up to 2 µm, which
is limiting the THG experiments to observe plasmons at longer wavelengths.

As its name indicates, this technology is based on a superconducting nanowire [63]. Currently
there are two main superconducting materials that are used: niobium nitride (NbNi) and
tungsten-silicide (WSi). The former is a crytalline material, which hinders the fabrication of
smooth nanowires on a large area, but it also has a slightly higher critical temperature around
Tc ∼ 10.5 ◦K [86]. The latter, on the other hand, is an amorphous material, which facilitates
the production of smooth and narrow nanoribbons. However, the critical temperature of this
material is slightly lower, Tc ∼ 3.7 ◦K [58]. Our detectors, built by PhotonSpot Inc., are
WSi-based.

Superconducting materials only superconduct (R = 0 Ω) when they are cooled down below a
certain critical temperature, T < Tc, and the bias current driven through is below a certain
critical current, I < Ic. As shown in Fig. 8.1, under these conditions, when a photon strikes
the nanowire, if it is absorbed, the photon energy is converted into heat energy that warms
up a spot in the nanowire. In this so-called hotspot, the temperature surpasses the critical
temperature, T > Tc, and the superconductivity is broken. This causes the resistance on this
spot to increase rapidly. As a consequence, the current is forced to flow around this hotspot,
leading to a current density larger than the critical current density, I > Ic, which also leads to
a break of the superconductivity. As a result, the superconductivity breaks across the entire
nanowire and this manifests as a drop in the bias current driven through it, which is actively
monitored.

Due to the nanometric absorption cross section of a ∼ 100 nm wire, there are some tricks
that one needs to engineer in order to reach high detection efficiencies. On one hand, as
shown in Fig. 8.2a, one can shape the nanowire as a meander, so as to cover an area as large
as the photon mode. With this method, the detection efficiency can be as high as ∼ 30%.
Additionally, as shown in Fig. 8.2b, one can add a gold layer and upper mirror (anti-reflecting
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Figure 8.1. Conceptual sketch of the mechanism of SNSP detectors. The superconducting nanowire only shows
this property (R = 0Ω) when it is cooled down below certain critical temperature T < Tc and the
bias current driven through is below certain critical current I < Ic. When a photon is absorbed, its
energy creates a hotspot, where the temperature raises above Tc and the superconductivity breaks.
The current bunches around this hotspot, increasing the current density above Ic, which also breaks
the superconductivity. Therefore, the absorption of a photon breaks the superconductivity throught the
entire nanowire and this can be monitored by the bias current.

coating) that acts as a cavity resonant to the incident photon. This method increases the
number of times that the photon crosses the nanowire and can reach detection efficiencies as
high as 98% [77]. In our case, this cavity was designed to resonantly enhance the detection
of photons in the telecom range (∼ 1550 nm). Nevertheless, due to the low quality factor of
this cavity, as shown in Fig. 8.2c, the linewidth is very broad, allowing us to measure photons
even at 1850 nm with up to 10% total detection efficiency, which is the longest wavelength at
which we measured the THG signal in the work presented in Section 7.3.

In principle, there is no wavelength limitation inherit to this SNSP detectors. Longer wave-
lengths require narrower nanowires, due to their lower energy and consequently smaller
hotspot. Furthermore, the cavity can also be designed to be resonant at longer wavelengths.
Nevertheless, current SNSP detectors have only been demonstrated to work up to 5 µm
with extremely low detection efficiency [57]. Apart from the decreased quality of narrower
nanowires, the main current limitation is set by the silica fibers that bring the single photons
to the detectors in the cryostat. The transmission of these fibers plummets above 2.1 µm,
due to the absorption of silica.

Since the plasmon resonances in graphene are around 8 − 10 µm, we have a great interest
in developing single-photon detectors with high efficiencies at these wavelengths, or more
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realistically, at the third-harmonic wavelengths of these resonances (∼ 2− 3 µm). To do so,
our collaborators at PhotonSpot Inc. grew thinner nanowire detectors with cavities resonant
at ∼ 3 µm. As for the optical fiber limitation, we tried two different fibers: chalcogenide
fibers, which are available without any protective jacket but are extremely expensive and
fragile, and fluoride fibers, which are affordable but always have a protective polymer jacket.
In both cases, the main challenge was the feedthrough connecting the fiber from the outside to
the inside of the cryostat. We first opted for chalcogenide fibers, as we needed to minimize the
heat load in the cryostat. However, these turned out to be too fragile and expensive in order
to pursue many trials, so we discarded these fibers as a feasible solution. We then switched
to fluoride fibers (Single-mode ZrF4 fiber, Thorlabs P1-23Z-FC, with > 97.5% transmission
for 2.3− 3.6 µm and single-mode InF3 fiber, Thorlabs P1-32F-FC, with > 95% transmission
for 3.2− 4.6 µm). The main challenge of these fibers was dealing with their protective jacket.
Aside from the heat load that this jacket brings into the cryostat, this also requires a different
method to feed the fiber into the cryostat. As a preliminary solution, we have designed the
feedthough shown in Fig. 8.3. The idea is to use a fiber mating sleeve to couple a fiber in the
inside to a fiber in the outside. This sleeve is glued to a swagelok-type feedthrough, where
we match the hole in the teflon part, which squeezes the mating sleeve and keeps it vacuum-
tight. This design was tested to hold vacuum down to 10−5 mbar and we also characterized
its optical transmission to be ∼ 85% in the 2.2− 3.8 µm range. Unfortunately, the first tests
showed detection efficiencies of < 10−3% at 3 µm. We believe that this was associated to the
mistmatch between the field mode of the fiber and the nanowire itself, and the possible higher
temperature of the nanowire due to the heatload provided by the fluoride fiber. Unfortunately,
in order to debug and optimize this system, one would need to constantly warm up and cool
down the cryostat, which leads to very long down times of all the detectors. This was not
possible at that moment, as many people in the group rely on the SNSP detectors. We plan
to pursue the development of a long wavelength detector system in the near future, as we will
have a new cryostat that will contain most of the detectors used by other projects. This will
enable us to debug the problem without interrupting other experiments.
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Figure 8.2. SNSP detector fabrication details. a. The nanowire can be designed as a meander to cover the
entire optical mode of the photon coming out of the optical fiber. b. On the growing process, one can
add a layer of gold, creating a cavity around the nanowire, which will increase the number of times the
photon crosses it and thus the detection efficiency. c. Absorption of our cavities optimized at 1550 nm.

8.2 Looking for the first quatum signatures

Although we successfully observed a giant enhancement of the THG signal with graphene-
metal heterostructures, all the measurements performed until now are classical and show no
quantum features. The most straighforward way to move towards a quantum third-order
nonlinear process, is spontaneous FWM. In Section 2.2.3 we introduced the FWM process,
where two photons with the same frequency ω1 mix together with a third photon with ω2

to give rise to a new photon with energy ωFWM = 2ω1 − ω2. This process is conventionally
known as FWM, and refers to a stimulated FWM process, where ω2 stimulates the system to
decay into that ωFWM determined by energy conservation. Specially in graphene, where the
atomic thickness of the nonlinear medium discards any phase-matching condition, the absence
of this stimulation photon ω2 would allow the system to freely decay into any two photons
that obey energy conservation. This process without any stimulating photon is spontaneous
FWM and it does correspond to a quantum process, where the heralded decay photons would
be antibunched and show strong spectral correlations [69].

However, the lack of phase matching conditions or any other constrain would make the process
extremely inefficient at any specific wavelength. Note that, although one could simply not
constrain the wavelengths, experimental devices are usually optimized for a narrow range of
wavelengths, which would limit the collection of these photon pairs over the entire wavelength
regime. Hence, we need some external stimulation that would keep the quantum nature of
the process but yet guide the system into certain specific decay wavelengths. For this goal we
have two approaches in mind that we will start testing in the near future.

The first idea is to place a monolayer graphene in a microcavity [93], which would act as
the stimulation for the nonlinear process, forcing the system to decay into the resonance of
the cavity and its corresponding energy-conservation photon pair. To be more precise, with
the MIRA set at 780 nm, we would pump the system with ω1 = 1454 nm (signal), and
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Figure 8.3. Designed optical feedthrough. We use a swagelok-type feedthrough with a mating sleeve to couple
a fiber outside the cryostat to a fiber inside the cryostat. All the parts are glued using vacuum-friendly
epoxy.

collect the photon pairs at the cavity resonance ωc = 1280 nm and the corresponding energy-
conserved pair ωFWM = 1683 nm (idler). Together with the group of Michael Trupke at the
University of Vienna, we have already designed and built microcavities with a monolayer
CVD graphene grown on the flat mirror of the cavity. These have not yet been characterized
but the experimental design and measurement procedure have been already developed.

The first stage of the setup will be similar to that introduced in Section 6.2.3, where the
pump beams are first tightly focused onto the graphene sample, which is moved in and out
of the focal point, and the signal is later collimated before being coupled into the detector.
For this experiment, we plan to first measure the stimulated FWM signal, so we would use
the signal at ω1 = 1454 nm and idler at ω2 = 1683 nm from the OPO and look for the
stimulated FWM signal at ωFWM = 1280 nm. In the collection stage, we will use a notch
filter to supress the pump, and will use a dichroic mirror to separate ω2 from ωFWM. These
would then be collected and detected by two independent SNSP detectors. Finally, using a
coincidence counter, we would look for coincidences between these two signals. The jump
from the stimulated to the spontaneous process will, in theory, just require turning off the
stimulating beam ω2 and looking for coincidences.

Although the efficiency of such a process would be extremely low, we believe it would be a
stepping stone towards strong nonlinear effects at the single-photon level. Indeed, such an
emission could be used as a heralded single-photon source, where the detection of a photon
on one arm ensures the presence of another photon in the other arm.

The second idea towards spontaneous FWM would be based on graphene plasmon resonances.
In this case, the idea would be substituting the resonance of the microcavity by the resonance
of the plasmon itself. The measurement method would thus be exactly the same but the input
wavelengths ω1 and ω2 would have to be adapted so that the stimulating beam matches the
plasmon resonance, ω2 = ωp.
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Conclusion

When I started this thesis I had barely heard about graphene in the news and all I knew about
my project was summarized in a very ambitious grant proposal. At first, I was incredibly
excited about it. A single layer of carbon atoms interacting with light to create single photons
with unprecedented efficiency. Can you imagine? Coming from the field of photonic quantum
computation, the promise of a deterministic single-photon source was indeed a reason to be
eager.

However, reality struck me after the first meeting with our collaborators, when I understood
all the challenges that the project entailed. In a nutshell, we needed a tunable laser in the mid-
IR, we needed single-photon detectors with high efficiency at longer wavelengths than had ever
been achieved and we needed graphene devices with strong nonlinear plasmonic resonances
that we could excite. We could buy the tunable laser, the rest we and our collaborators had
to develop ourselves. Does not sound so bad, does it?

This was the beginning of an incredible journey; we were given an empty lab and a large
amount of resources to make this happen. What else did we need? Time, persistence and
patience. And this is what we did. We tackled each problem along the way for 5 years and the
details are collected in the previous 100 pages. However, I just want to end with a sweet taste
and a sense of achievement. Because we should not underestimate what we have done and I
believe we are indeed not so far from achieving our ultimate goal of measuring single-photon
level effects from graphene plasmons.

After our thorough study of the third-order nonlinearity in graphene via THG, we now have
the tools and knowledge to continue our research towards spontaneous FWM, and measure the
first signatures of quantum light with graphene. Additionally, we have also demonstrated that
graphene-based quantum logic gates can beat the performance of their classical equivalents,
potentially overcoming the scalability limitation of current quantum computations.

In summary, the work presented in my thesis brings us closer towards deterministic single-
photon sources and quantum logic gates, which are the two main drawbacks of current pho-
tonic quantum computation.
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5.1 a. Every point in the Bloch sphere represents a quantum state. The compu-
tational basis, |0〉 and |1〉, is defined along the z-axis, while the diagonal basis,
|+〉 and |−〉, lies on the x-axis. b. CNOT and c. CZ truth tables. These gates
flip or change the phase of a target qubit if the control qubit is 1. . . . . . . . 38

5.2 Logic gates built from the universal NAND gate. . . . . . . . . . . . 39
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5.3 CNOT gate. a. Implementation of the CNOT gate proposed by Pittman,
et al. [72], where the gate succeeds when a single photon is detected on each
polarization-sensitive detector. b. Quantum circuit of a CNOT gate operation
with single-qubit π/2 rotations (Ry, Rz), two SWAP1/2 gates (1/2) and a Pauli
z operator (σz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 SWAP1/2 gate with a directional coupler and atoms. a. The waveg-
uides of the directional coupler are surrounded by an atom cloud that shows
single-photon transparency and strong two-photon absorption. b. Energy-level
diagram of a three-level atom. Left: If the energy difference between the energy
levels is the same, both single- and two-photon states can be absorbed. Right:
However, if the energy of the second level is shifted, a single photon is no longer
resonant but two photons can still be absorbed, as energy conservation is obeyed. 42

5.5 Concept of a SWAP1/2gate with a directional coupler. a. On a SWAP gate,
the qubit always swaps modes between the input and the output ports. b.
When this SWAP operation is only performed halfway, one can no longer de-
fine whether the qubit has swapped modes or not, thus creating a superposition
of output modes. In a directional coupler, two waveguides are placed so close
to each other that the evanescent field of the photon allows it to swap from
one mode to the other. c. There is a certain interaction length L, after which
it is certain that the qubit has swapped modes. d. However, if this interaction
length is shortened to L/2, one can no longer determine whether the SWAP
has happened or not, leading to a superposition of output modes; that is, a
SWAP1/2operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 SWAP1/2gate a. Sketch of the arrangement of the waveguides in a directional
coupler. b. Refractive index as a function of x. In this example the waveguides
have different refractive indices but we have considered the case with identical
waveguides. c. Field distributions of both waveguides, where the overlapping
tails contribute to the coupling between them. . . . . . . . . . . . . . . . . . . 47

5.7 Sketched expamples of the Zeno effect interpretations. a. If the system
is prepared in the excited state at t0, in the absence of external forces, it will
decay into the ground state at time td. However, if continuous observations
are carried out, these measurements will keep collapsing the system into the
excited state and will keep it in place. b. If the polarizer is set perpendicular
to the incident light, no light will make it through. However, if the polarizer
angle is slowly rotated starting from the polarization of the incident light, this
will evolve in a way to adapt and avoid the loss channel. In this case the beam
will change the polarization to that set by the polarizer. . . . . . . . . . . . . 49
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5.8 Bomb-tester thought experiment. a. When the upper and lower arms
of a Mach-Zehnder interferometer are balanced, if a photon is inserted in the
lower input port, its self-interference will make it always exit through the upper
output port. b. However, when a bomb is placed on the upper arm, if the
bomb is not detonated, the photon has 75% and 25% probability of exiting the
upper and upper ports, respectively. Thus, one can detect whether a bomb is
present without ever interacting with it. . . . . . . . . . . . . . . . . . . . . . 51

5.9 Concatenated Mach-Zehnder interferometers. Kwiat, et al. noticed that
the probability of determining whether a bomb is present in the interferometer
or not can be arbitrarily high if one concatenates several Mach-Zehnder inter-
ferometers. The success probability is thus proportional to the total number
of BSs chained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Photon-blockade. a. Classically, when a nonlinear medium is placed in a
cavity, the resonance frequency depends on the refractive index of the mate-
rial. At the same time, this refractive index varies with intensity. Thus, when
a resonant photon enters the cavity, the refractive index of the nonlinear me-
dia changes, which leads to a shift of the cavity resonance, which means that
the next photon will need some extra energy to be resonant. b. A graphene
nanostructure works as a cavity for plasmons. When a photon excites a plas-
mon in the graphene, the resonance energy of the nanostructure shifts so a
second photon would require a different frequency to be resonant to the system. 54

6.2 Setup in Exeter. A 1kHz pulsed laser pumps two independent OPAs with
tunable wavelengths in the 480−2600 nm. These two beams are then spatially
and temporally overlapped on the graphene sample and the generated FWM
signal is collected at the angle given by momentum conservation. This is done
with an APD. Hence, the measurement consists of monitoring the detected
signal as a function of the temporal overlap between the beams; only when
both beams coincide temporally will the FWM process take place. . . . . . . 57
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6.3 Setup in Vienna. A 80MHz pulsed laser pumps an OPO, whose signal and
idler beams cover the 1 − 4 µm wavelength range. These are further mix on
a DFG process, covering the spectrum all the way to 10 µm. Due to the
architecture of the setup, both spatial and temporal overlap are given. The
beams are then focused down and collimated via two short focal length lenses,
in between which the sample is placed. A set of series will then filter the
pump beams from the created nonlinear signal (FWM, THG...) and these are
measured using a single-photon APD or a SNSP detector, depending on the
wavelength. The measurement thus consists on detecting the nonlinear signal
as the sample is moved in and out of the focus; the signal is biggest at the focal
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Optical components. a. It is recommendable screwing the post holder
directly on the table holes instead of using clamps. This way it is easier to keep
the beamline straight when other optical components are added. b. Sketch
of the pinhole with the dispersed beam after this goes through the tight focus
lens. c. Sketch of the lend holders with translation degree in the x and y
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Alignment procedure step 1. Place pinholes p1 and p2 on the chosen line
and steer the beam to follow this line by using mittors m1 and m2. First do it
roughly using the IR card that allows you seeing the beam at 1500 nm and then
proceed with the fine alignment by walking the beam into the powermeter, as
explained in the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Alignment procedure step 2. Once the beam is properly align, proceed
inserting the first lens L1 by taking pinhole p3 as a reference. Afterwards,
collimate back the beam with lens L2. Use pinhole p4 as a reference, both close
to L2 and very far from it. Placing L2 on a translation stage will provide you
the required accuracy to find the optimal distance between L1 and L2. . . . . 61

6.7 Alignment procedure step 3. After setting the lenses, you need to couple
the light into a multi-mode fiber. Use mirrors m3 and m4 to walk the beam
into the fiber coupler. Use the x-y-z defrees of freedom of the coupling lens to
further optimize the coupling. Spectral filters will clear the desired wavelength
from leakage light from the MIRA pump, and signal and idler beams of the
OPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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6.8 Picture of the setup and sample. a. Top view of the setup. The red line is
a visual guide representing the laser beam that travels from right to left in the
picture. p1 and p2 are the pinholes used for the initial alignment, L1 and L2 are
the tight focusing and collimating lenses, respectively, and m3 and m4 are the
mirrors to walk the beam and couple it into the multi-mode fiber. In this case,
the collected signal is detected with an avalanche photodiode (APD). Note
that all the optical components in the setup are standard parts from Thorlabs.
b. Sample with gold nanoribbons. The visible gold pads correspond to the
source and drain connections of the different graphene stripes shown in Fig.
6.9. These are connected one at a time, depending on the stripe that is being
measured. On the other hand, the gate is shared. . . . . . . . . . . . . . . . . 63

6.9 SEM images of the graphene with gold nanoribbon sample. The
samples build by the group of Prof. Frank Koppens at ICFO have different
arrays of nanoribbons with different widths, indicated in the image in nm
units. The dark vertical stripes are the areas where there is graphene. There
is a replica of the same kinf of nanoribbon arrays with and without graphene
in order to make reference measurements. On the right panel, the good quality
of the nanoribbons can be appreciated. . . . . . . . . . . . . . . . . . . . . . . 64

6.10 Sample component contributions to the TH signal. The sample allows
us to study the individual contribution of each component of the sample. a. We
find no nonlinear signal when there is only substrate or gold nanoribbons and
b. shows a significant signal with bare graphene and an extremely enhanced
signal when gold nanoribbons are added on top of the graphene. Note the
logarithmic scales of the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.11 TH signal enhancement quantification. a. Power dependence of the
TH for bare graphene (red) and graphene with gold nanoribbons of different
widths (yellow through blue). The interception points found with the fits,
whose slopes are set to 3, enable calculating the enhancement of the signals
due to the field confinement. In the case of THG, the maximum enhancement
it 1580 for W = 200 nm. b. Calculated χ(3) for different nanoribbon widths
with input power P = 0.4 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

118



List of Figures

6.12 Study of the input and output polarization. a. When rotating the
polarization of the input light, as theoretically predicted, bare graphene is
isotropic to the incident polarization while the gold nanoribbons impose a
cos6 θ dependence for TH , maximizing the signal when the incident light is
perpendicular to the direction of the nanoribbons. b. Changing the output
polarization while keeping the input polarization fixed shows that the pump
and TH signals are copolarized. The discrepancies between the theory and
data are due to the polarization-dependent efficiency of the SNSP detectors. 66

6.13 Fermi energy tuning via electrical doping. a. TH signal as a function of
the Fermi energy EF tuned by an applied gate voltage. When the EF increases,
the TH signal increases as it matches the single-, two- and three-photon tran-
sitions. As expected, these resonances shift with the input wavelength. b. and
c. show TH signal gating measurements for nanoribbon arrays with widths
W = (55 nm, 47 nm) and gap between nanoribbons g = (45 nm, 53 nm),
respectively. Apart from the large modulation due to the single-, two- and
three-photon transition resonances, there are some additional signal variations
that can be explained by the excitations of plasmons in graphene. . . . . . . . 67

8.1 Conceptual sketch of the mechanism of SNSP detectors. The super-
conducting nanowire only shows this property (R = 0Ω) when it is cooled down
below certain critical temperature T < Tc and the bias current driven through
is below certain critical current I < Ic. When a photon is absorbed, its energy
creates a hotspot, where the temperature raises above Tc and the superconduc-
tivity breaks. The current bunches around this hotspot, increasing the current
density above Ic, which also breaks the superconductivity. Therefore, the ab-
sorption of a photon breaks the superconductivity throught the entire nanowire
and this can be monitored by the bias current. . . . . . . . . . . . . . . . . . 106

8.2 SNSP detector fabrication details. a. The nanowire can be designed
as a meander to cover the entire optical mode of the photon coming out of
the optical fiber. b. On the growing process, one can add a layer of gold,
creating a cavity around the nanowire, which will increase the number of times
the photon crosses it and thus the detection efficiency. c. Absorption of our
cavities optimized at 1550 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Designed optical feedthrough. We use a swagelok-type feedthrough with
a mating sleeve to couple a fiber outside the cryostat to a fiber inside the
cryostat. All the parts are glued using vacuum-friendly epoxy. . . . . . . . . . 109
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