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Kurzfassung 

Das Multiple Myelom ist eine im Knochenmark entstehende Krebserkrankung die zu einer 

erhöhten Anzahl an Plasmazellen führt. Das Multiple Myelom ist eine unheilbare Krankheit, 

an der jährlich tausende von Menschen sterben. [1] Es gibt keine effektive Behandlung dieser 

Erkrankung, weshalb lediglich eine Steigerung der Lebensqualität möglich ist. 

 

Neuere computergestützter Studien haben einen Signalweg identifiziert, welcher zu einer 

Hochrisikokrankheit führt und unter anderem die Proteinkinase TTK (auch MPS1 genannt) 

mit dualer Spezifizität beinhaltet. [2] Dieses Enzym stellt einen entscheidenden mitotischen 

Kontrollpunkt während der Zentrosomen Duplikation dar und führt zu Aneuploidie und 

letztendlich zum Zelltod. [3] 

 

Ziel dieser Arbeit ist es, potentielle Inhibitoren der TTK Kinase mittels in-silico Methoden 

zu identifizieren. Zuerst wurden die verfügbaren TTK-Liganden Komplexe in der 

Proteindatenbank analysiert und anschließend ein virtuelles Screening-Verfahren 

implementiert, welches strukturbasiertes Pharmacophore Modeling, molekulare Docking-

Simulationen, MM-GBSA-Berechnungen und manuelle Vergleiche von Posen kombiniert. 

Durch Clustering und Ähnlichkeitssuche wurde das Ergebnis des virtuellen Screenings 

verfeinert um unterschiedliche Scaffolds zu gewährleisten. Schließlich wurde eine Liste 

potentieller neuer TTK-Inhibitoren für weitere Experimente vorgeschlagen. 

Schlagwörter: Kinase, TTK, Multiples Myelom, Inhibitoren 
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Abstract 

Every year thousands of people die as a result of multiple myeloma. [1] This type of cancer 

is located in the bone marrow and leads to an increased amount of plasma cells and multiple 

myeloma is a terminal illness. Currently there is no effective treatment available, but there 

are possibilities to improve the patients quality of life. 

 

Recent computational studies have identified a pathway that leads to a high-risk disease and 

includes the dual specificity protein kinase TTK (also called MPS1) as one of the factors. [2] 

This enzyme is a crucial mitotic checkpoint during the centrosome duplication and, if 

inhibited, leads to aneuploidy and ultimately to cell death. [3] 

 

The aim of this thesis is to identify potential inhibitors of the TTK kinase using in-silico 

methods. Starting from the analysis of TTK-ligand complexes available on the Protein Data 

Bank, a virtual screening method that combines structure-based pharmacophore modeling, 

molecular docking simulations, MM-GBSA calculations and pose comparison was 

developed. To guarantee different scaffolds, a refinement of the virtual screening output with 

clustering and similarity search was done. Finally a list of potential new TTK inhibitors was 

proposed for further experiments. 
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1 Introduction 

Studies of the American Cancer Society Inc. show that in 2019 more than 1.7 million new 

cancer cases are expected to be diagnosed in the United States of America only. About 

606.880 Americans are expected to die of cancer in 2019 (Figure 1), which translates to about 

1.660 deaths per day. Cancer is the second leading cause of death in the US, after heart 

diseases. [1] 

 

Figure 1: Estimated number of new cancer cases by sex, US 2019 

Figure 1 shows the different types of cancer and the frequency of each type. Relating to 

myeloma, the estimated number of new cancer cases including male and female is about 

32.100. In comparison to that, the digestive system, the most frequent type of cancer, has an 

count of 328.030 including male and female. Based on this counts, the digestive system 
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cancer occurs 10 times more often compared to the myeloma. This disorder is uncommon, 

therefore this type of cancer has not been explored so far and thereby the treatment options 

are limited. 

 

1.1  Multiple myeloma 

Multiple myeloma (MM) is a rare cancer of plasma cells. It is important to understand the 

further development of a blood stem cell to a plasma cell (Figure 2). Normal plasma cells are 

in the bone marrow, a spongy tissue inside the bones. The bone marrow produces red blood 

cells along with white blood cells and platelets every day. Red blood cells are essential for 

the carriage of oxygen to supply every part of the body. A low count of red blood cells can 

lead to impaired physical capability. The function of the white blood cells is to protect against 

foreign bodies, such as viruses, bacteria and molds. A low count of white blood cells reduces 

the body’s ability to fight diseases. The platelets play an important role in blood clotting to 

help to prevent bleeding. If the blood has a low number of platelets the risk for serious 

bleeding is increased. 

 

 

Figure 2: Blood cell development [3] 

Normal plasma cells play an essential role for our immune system that is made from a network 

of various types of cells to protect the body from germs and other harmful substances. 
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Lymphocytes are one of the main types of white blood cells in the immune system and include 

T- and B-cells. They are located in many areas of the body, such as lymph nodes and the bone 

marrow. When B-cells react to an infection they change into plasma cells. When plasma cells 

become cancerous and begin to grow unregulated and form tumors in bones of the body, this 

is called multiple myeloma. [4] 

 

 

Figure 3: Development of M-Proteins [5] 

Normal plasma cells produce antibodies to combat infections. Malignant plasma cells clone 

and accumulate in the bone marrow. The number of normal plasma cells is reduced, which 

can lead to a number of signs and symptoms. In most patients the malignant plasma cells 

secrete an antibody called the M- protein or M-spike (Figure 3). Their presence is mostly 

associated with MM and they are detectable in blood or urine. [6] 
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Figure 4: Serum Protein Electrophoresis (SPEP) [7] 

Figure 4 shows an abnormal serum protein electrophoresis in a patient with multiple 

myeloma. SPEP is used to separate and identify the presence of M-Proteins. The M-Spike 

appears as a large peak on the graph in the gamma region and this is an indication of MM. 

 

1.1.1 Epidemiology 

Multiple myeloma is the second most common hematological malign disease with an 

incidence of six per 100.000 per year in the USA and Europe. The incidence of MM is up to 

three times higher within African Americans,  therefore it is the most frequent hematological 

malignancy in this ethnic group. The risk of developing MM in old age is higher, therefore 

the average age at diagnosis is 69 years. 75% of patients being diagnosed above the age of 55 

years and 66% of patients being men. With the development of effective therapeutic strategies 

and enhancements in supportive treatment, the median survival has raised from three to six 

years in the past two decades. [8] 

 

1.1.2 Symptoms 

Multiple myeloma symptoms may develop slowly over time. Oftentimes early-stage multiple 

myeloma is asymptomatic and symptoms does not appear until the serious illness reaches an 

advanced stage. Multiple myeloma symptoms can vary widely for each patient. 
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The most common symptoms are: [9] 

 Renal failure 

 Anemia 

 Bone pain, often in the back or ribs 

 Frequent infections 

 Hypercalcemia  

 Unintentional weight loss 

 

There is also a rare type of MM called smoldering multiple myeloma (SMM). In this case no 

symptoms or signs occur. This type of MM is not a cancer but it can develop to a cancer, so 

it is important to get a regular medical checkup. Damage of bones or the kidneys can happen 

in a small amount. 

 

1.1.3 Causes 

Scientists still do not realize exactly what causes the development of malignant plasma cells, 

thus it is a genetically complex disorder. The following genetic changes in DNA can cause 

cancer: [10] 

 Mutation: Cancer can be caused by mistakes or defects in the DNA that turn on 

oncogenes or turn off tumor suppressor genes. Studies have found that abnormalities 

of some oncogenes develop early in the course of plasma cell tumors 

 Duplication: Normal human cells contain 46 chromosomes, some cancer cells may 

have extra chromosomes 

 Deletion: Some cancer cells have all or a part of a chromosome missing. These leads 

to more aggressive myeloma cells and to resistance of the treatment 

 Translocation: This means that a part of one chromosome has switched with a part 

of another chromosome. This happens in about 50% of all patients. Some of those 

higher-risk genetic changes are translocations involving chromosome 14 with 

chromosomes 4, 11 or 16 and deletion of a section of chromosome 17 [11] 
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1.1.4 Risk factors 

Factors that may increase the risk of multiple myeloma:  

 Age: The median age at diagnosis is 69 years [8] 

 Sex: Male are more prone [12] 

 Race: The risk is three times higher within African Americans [8] 

 Genetic predisposition: Having a brother or mother with MM [12] 

 

1.1.5 Complications 

Typical complications of MM consist of: [12]  

 Frequent infections: The immune system is often weakened or not fully functional 

 Bone problems: Figure 5 displays osteoporosis, which leads to bone pain and 

thinning bones. Bones become less dense and so they are more likely to break 

 Reduced kidney function: MM may cause kidney failure, therefore it is necessary to 

get dialysis or if the worst comes to the worst kidney transplantation 

 Anemia: Multiple myeloma can lead to a significant reduction of red blood cells 

 

 

Figure 5: X-ray with multiple osteolytic lesions in the forearm [13] 

1.1.6 Diagnosis 

In most cases, multiple myeloma will not be diagnosed directly. Often the diagnosis happens 

accidentally by another medical investigation. Various methods can be applied to confirm the 

diagnosis of a suspected MM patient (Figure 6) : [14] 
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Figure 6: Different possibilities to diagnose MM 

1.1.7 Treatments  

Multiple myeloma is a type of blood cancer which is not curable yet but there are effective 

ways of treatment to improve life quality and slow down the progress of cancer growth. 

Patients diagnosed with MM today have a much greater life expectancy due to the newest 

development of medicines. 

 

There are two kinds of treatments: 

 Non-intensive: for older and less fit patients, lower doses 

 Intensive: for younger and fitter patients, higher doses, stem cell transplantation (stem 

cells will be collected before the treatment or they will be donated by a suitable 

person). [14]  

 

This cancer is often treated with a combination of drugs including alkylating 

chemotherapeutic agents, glucocorticoids, Thalidomide / Lenalidomide or Bortezomib, 

nitrogen-containing bisphosphonates together with a support therapy (antiemetic therapy, 

blood transfusions, dialysis and pain therapy). [15] 
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1.2 Multiple myeloma pathway 

Ludwig et al. [2] have developed a computational model that helps researchers to focus on 

the most promising targets referring to multiple myeloma. The result from this model includes 

the identification of a pathway, driving a high-risk disease (progression or death within 18 

months). [16] There are 17 genes detected as high risk drivers, which can be seen in Table 1.  

 

CDK1 

 

Unconfirmed in IFM / DFCI 

Experimental validation 

RELA Confirmed in IFM / DFCI 

PLK4 

 

Confirmed in IFM / DFCI 

Experimental validation 

E2F1 Confirmed in IFM / DFCI 

MELK 

 

Confirmed in IFM / DFCI 

Experimental validation 

TONSL Confirmed in IFM / DFCI 

TTK Confirmed in IFM / DFCI FOXM1 Confirmed in IFM / DFCI 

BUB1B Confirmed in IFM / DFCI MYBL2 Confirmed in IFM / DFCI 

PKMYT1 Confirmed in IFM / DFCI WDHD1 Confirmed in IFM / DFCI 

CREBL2 Confirmed in IFM / DFCI NEK2 Unconfirmed in IFM / DFCI 

ZBTB4 Confirmed in IFM / DFCI AURKA Unconfirmed in IFM / DFCI 

PHF1 Confirmed in IFM / DFCI   

Table 1: 17 genes detected as high risk drivers in MM [16] 
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2 Aim of the thesis 

The aim of this thesis is to identify potential inhibitors of the TTK kinase by using in silico 

methods. Based on the analysis of the TTK-ligand complexes available in the protein 

database, a virtual screening method was performed, which includes structure-based 

pharmacophore modeling, molecular docking simulations, MM-GBSA calculations and pose 

comparisons. To ensure diverse compounds, a refinement of the virtual screening result was 

carried out with clustering and similarity search. In a final step a list of potential new TTK 

inhibitors for additional experiments was recommended. 

 

2.1 Scheme of the thesis 
 

 

 

Figure 7: schematic overview of the thesis 
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3 Computational background 

In the last few years, Computer-Aided Drug Design (CADD) has evolved into a powerful 

technology that is used in the development of new drug candidates. Using sophisticated in 

silico methods to accelerate the drug discovery process of new molecules is state of the art. 

[17] In this thesis several relevant databases and many essential techniques of CADD were 

used. In structure-based drug design, the first priority is to obtain the target structure before 

the receptor-ligand relationship can be explored. Therefore, protein structures can be easily 

retrieved from protein databases such as Protein Data Bank and Uniprot. An additional 

essential database for working in silico is ChEMBL. The database contains the required 

knowledge about the bioactivity of small molecules. ChEMBL has become a very valuable 

resource due to the large number of entries. Another highly useful database is the DUD-E 

database. It is one of the largest databases of decoys available to the public. With all these 

fundamental data from a variety of databases, the design of a pharmacophor model can be 

started. 

 

3.1 Databases and online resources 

3.1.1 Protein Data Bank 

In 1970 an association of crystallographers founded the Research Collaborators for Structural 

Bioinformatics Protein Data Bank (RCSB PDB). The basis for this is the three-dimensional 

structural data acquisition of biomolecules including proteins and nucleic acids. Experimental 

methods such as X-RAY crystallography, NMR spectroscopy and electron microscopy make 

a significant contribution to the visualization of biological molecules. The database can easily 

be searched for the three-dimensional protein structure using different search options. [18]  

The identification of active substances by means of in silico is only possible with the aid of 

crystallography, so the PDB often forms the basis for further scientific research and 

development. 
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3.1.2 Uniprot 

The Universal Protein Resource (UniProt) is a reliable, comprehensive, freely accessible, 

funded collection of protein sequences. [19] The aim of the database is to provide scientists 

with a resource of sequence and functional information available for proteins. The UniProt 

database contains over 60 million protein sequences with further information about the 

biological function of proteins. [20]  

3.1.3 ChEMBL 

ChEMBL is a large open bioactivity database containing approximately 15.504.603 activities, 

12.482 targets, 1.879.206 compounds. 

In addition, ChEMBL contains compounds in clinical development and patents. The data are 

taken from the scientific primary literature. The database aims to help scientists to improve 

their understanding of what constitutes an effective drug. [21] 

 

3.1.4 DUD-E 

The database of useful decoys-enhanced (DUD-E) is a tool for researches and contains decoys 

for virtual screening. DUD-E decoys are based on physical properties of ligands such as, 

molecular weight, calculated logP, number of rotatable bonds, and hydrogen bond donors and 

acceptors. The decoys were selected to be physically similar to ligands, which makes docking 

difficult, but topologically dissimilar to minimize the likelihood of actual binding. DUD-E 

uses 2-D similarity fingerprints to minimize the topological similarity between decoys and 

ligands. [22] 

 

3.1.5 ChemMine 

ChemMine is an online platform for the analysis and clustering of small molecules. 

[23] Clustering of compounds according to structural or property similarity is a relevant 

approach and is also frequently used for diversity analysis. ChemMine offers three clustering 

algorithms consisting of hierarchical clustering, multidimensional scaling (MDS) and binning 

clustering.  
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3.2 Pharmacophore modeling 

3.2.1 Introduction 

The International Union of Pure and Applied Chemistry (IUPAC) defines a pharmacophore 

model as “an ensemble of steric and electronic features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological target and to trigger (or block) its 

biological response”. [24]  

A three-dimensional pharmacophore model can be defined as set of chemical features or 

functionalities aligned in a three-dimensional space.  

The pharmacophore reduces a molecule to a collection of features at the 2D or 3D level. Any 

type of atom or functional group in a molecule can be converted to a pharmacophore feature. 

[25] 

A pharmacophore is not equivalent to a specific molecule, but an abstract concept that reflects 

the shared molecular properties of the interaction with the receptor. [26] 

 

 

Figure 8: Basic chemical features of LigandScout 
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Depending on the situation there are two major approaches for pharmacophore modeling 

available to construct pharmacophore models, either the structure-based design or the ligand-

based design. 

The structure-based approach is valuable for in silico drug discovery to explore the bonding 

between a ligand and a biological structure. This model requires knowledge of the three-

dimensional structure of the biological target. It involves an analysis of the possible 

interaction sites between the macromolecular target and the ligands. [24]  

Ligand-based pharmacophore modeling has also become an important computational 

technique for drug development. In the absence of the macromolecular target structure, the 

ligand-based method is required. The ligand-based pharmacophore extracts common 

chemical properties from 3D structures of a number of known ligands and superimposes 

them. [27] 

Commercial software products such as LigandScout, MOE and Phase are available for 

structure- and ligand-based pharmacophore modeling. 

The tool of choice for evaluating the performance of the pharmacophore model is the ROC 

curve. A ROC curve illustrates the rate of active compounds on the x axis and the rate of 

decoys on the y axis. When following the dashed diagonal line, an insignificant classification 

model that cannot distinguish between decoys and actives is visualized. 

The enrichment factor describes the number of active chemical compounds detected by using 

a specific pharmacophore model, as opposed to the amount hypothetically found when 

compounds are arbitrarily investigated. [28] 

 

3.3 Docking 

Docking has become a relevant and efficient tool of drug discovery and design. It shows the 

interaction between a small molecule and a protein. (Figure 9) There are two major reasons 

for performing docking studies. The first one is to predict the binding mode of a ligand into 

a receptor and the second is to obtain new hits in virtual screening. It is an optimization task 

to identify the ligand conformation bound to the target with the most favorable binding 

energy. Docking requires two operations: sampling conformations of the ligand in the active 

site of the protein and ranking these conformations via scoring functions afterwards. Docking 

is especially effective in reducing a collection of virtual compounds down to a feasible 

number to focus the researcher's attention on the most meaningful compounds. 
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Some of the most widely used docking programs are DOCK, Gold, FlexX, Glide and 

AUTODOCK.  

 

Figure 9: Schema of molecular docking (PDB: 5N7V)  

3.3.1 Scoring functions  

Scoring functions are one of the most important components in the evaluation of, for example, 

a docking run. Docking algorithms generate scores that allow ideally to distinguish between 

strong-binding and weak-binding molecules (according to their active site). A scoring 

function is used to rank ligand orientations/conformations according to their quality of 

binding. An ideal scoring function would rank the experimentally determined binding mode 

on top of all poses. [29]  

 

3.4 Virtual screening 

Virtual screening, also known as in-silico screening, is a cost-efficient, powerful and rapid 

technology for hit identification. It is commonly used in academic laboratories as well as in 

pharmaceutical companies. The objective of screening a large virtual database of chemical 

compounds is to identify a set of potential candidates via computer-aided methods, followed 

by synthesizing and experimental testing for their biological activity. There are various 

programs for virtual screening available, in this thesis LigandScout was used. 
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3.5 Software 

3.5.1 LigandScout (Inte:ligand) 

LigandScout is a powerful structure- and ligand-based program for generating 

pharmacophore models. It uses fast algorithms to perform alignments and to interpret ligand-

macromolecule interactions. It extracts and interprets ligands and their macromolecular 

environment from PDB files and creates three-dimensional pharmacophore models. Fast and 

accurate in silico screening of compound libraries is integrated along with tools to analyze 

the performance of the models. [30]  

 

3.5.2 PyMOL (Schrödinger Inc.) 

PyMOL generates three-dimensional images of small molecules and biological 

macromolecules (e.g. proteins) and can visualize and analyze their structure. The user can 

select parts of the protein and change the color to highlight relevant structural features or to 

change the view of the protein. The advantage of PyMOL is that it is an open-source software. 

 

3.5.3 Glide (Schrödinger Inc.) 

Glide is used for ligand-receptor docking and offers a high-throughput virtual screening mode 

for efficient enrichment of millions of compound libraries, either with the standard precision 

mode (SP) or with the extra precision mode (XP). Glide searches for favorable interactions 

between one or numerous ligands and a receptor. Docking calculations require a meaningful 

and careful preparation before a docking operations is performed. Receptor preparation is 

carried out with the Protein Preparation Wizard and ligand preparation with the Ligand 

Preparation Wizard.  

 

3.5.4 Knime Analytics Platform 

Knime is an open source software workflow management system for creating data science 

applications and services. The software helps to understand data and to design data science 

workflows. In KNIME, the user can build workflows, which are made up of nodes and 

connections in a simple way, and the data can be transferred between the individual nodes.  

A workflow usually starts with a node that reads data from a data source that is usually text 

files. Imported data is stored in an internal table-based format consisting of columns with a 
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certain data type and a variable number of rows conforming to the column specifications. 

These data tables are sent along the connections to other nodes that modify, transform, model, 

or visualize the data. [31]  

 

There are many opportunities to process data: 

 Create visual workflows with an intuitive user interface 

 2000 available nodes for precise workflow design 

 Model each step of your analysis, control the flow of data and ensure your work is 

always up to date 

 Open and combine simple text formats (CSV, PDF, XLS, XML, etc.) or unstructured 

data types (images, documents, molecules, etc.) 

 Aggregate, sort, filter, and join data either on your local machine, in-database, or in 

distributed big data environments 

 Visualize data with classic (bar chart, scatter plot) as well as advanced charts (heat 

map) and customize them to your needs [32]  



 

   24 

4 Results and discussion 

4.1 Phylogenetic tree 

A phylogenetic tree shows similarities between different species. It is capable to construct a 

phylogenetic tree based on a hypothesis consisting on available information.  

 

 

Figure 7: Organization of a phylogenetic tree [33] 

 

The pattern of branch-connections represents how the species evolved in the tree from a series 

of common ancestors. Each branch point represents the division of a single group into two 

descendant groups. Each horizontal line in our phylogenetic tree represents a series of 

ancestors, leading up to the species at its end. Whether A and B are closer related than C and 

D cannot be determined. The aim of creating a phylogenetic tree is to compare and analyze 

many characteristics of species. These characteristics can include for example biochemical 

pathways, DNA and protein sequences. [33] 

 

Figure 10 and Table 2 shows the relationships between the 17 gene targets. The phylogenetic 

tree was created with Knime. The phylogenetic tree shows the number of patents for each 

gene (purple), the count of the proteins that are a target for drugs (light blue), how many 

diseases are related to this gene (red) and the number of available activity data in ChEMBL 

(green). 
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Database Property Count 

SureChEMBL Patents ± 350 

DrugBank Protein as TARGET for drugs ±  2 

DisGeNET Diseases ± 1 

ChEMBL Activity values present in the 

ChEMBL for given protein 

± 2300 

Table 2: Additional information for Figure 10 
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Figure 10: Phylogenetic tree of the involved genes in the multiple myeloma pathway 
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4.2 PDB extraction 

In this project, the number of crystal structures available in the protein database for each 

protein of the pathway was investigated. These were automatically retrieved starting with the 

Uniprot ID, which is an unique identifier for every protein in the database, and using a Knime 

workflow available in house. 

Table 3 illustrates the number of available PDB structures for each Uniprot ID according to 

the 17 genes of the multiple myeloma pathway (paragraph 1.2). 

 

UNIPROT ID PROTEIN NAME NUMBER OF PDBs 

O00444 PLK4 10 

O14965 AURKA 142 

O43189 PHF1 6 

O60566 BUB1B 8 

O75717 WDHD1 4 

P06493 CDK1 5 

P33981 TTK 64 

P51955 NEK2 25 

Q96HA7 TONSL 1 

Q01094 E2F1 5 

Q04206 RELA 10 

Q08050 FOXM1 1 

Q14680 MELK 29 

Q99640 PKMYT1 9 

Table 3: Number of PDBs correlated to the Uniprot ID 
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4.3 Target selection 

The next step, after the PDB extraction, was to select one target out of the 17 genes (Figure 11). 

 

 

Figure 11: Target selection
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4.3.1 TTK 

The monopolar spindle 1 (MPS1, also known as TTK) is a kinase that regulates the biological 

activity of proteins. TTK is a mitotic target and plays a crucial role in the transition from 

metaphase to anaphase. The kinase is one of the central components of the Spindle Assembly 

Control Point (SAC). TTK is up-regulated in various tumor types. [34] 

 It represents a relevant potential target for new therapeutic agents in cancer treatment. 

Therefore, there are numerous small molecule inhibitors in development or in clinical trials. 

By inhibiting TTK kinase activity, cells leave mitosis prematurely and die. [35] 

 

Figure 12 represents the overall structure of the human TTK catalytic domain. The N-terminal 

small lobe consists of a standard five-stranded β sheet (turquoise) and a αC helix (turquoise). 

Besides there is an additional β-strand (turquoise) at the N-terminus of the small lobe. The 

large lobe consists of a β sheet of two strands, namely β6 and β7 (purple) close by the small 

lobe, seven α helices (blue), the catalytic loop (purple) and the activation loop (yellow). 

Although the activation loop is partially disordered (dotted lines), the N-terminus and C-

terminal P+1 (yellow + blue) loop assume well-defined conformation. [36] 

 

 

Figure 12: Structure of the human TTK [37]  
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4.3.2 TTK selective inhibitors 

The efficacy of a kinase inhibitor is determined by its selectivity. The potency of a kinase 

inhibitor for its target can be measured as an IC50 value.  

Table 4 displays the measured IC50 values for TTK inhibitors collected from different papers. 

The table also includes several IC50 values for other kinases, which were retrieved from the 

ChEMBL database. These molecules are highly selective, as their activity differs significantly 

as compared to other kinases. 

 

INHIBITOR 

NAME 

IC50 

TTK 

(nM) 

IC50 

PLK1 

(nM) 

IC50 

AURORA-A 

(nM) 

IC50 

AURORA-B 

(nM) 

IC50 

YES 

(nM) 

IC50 

PLK1 

(nM) 

AZ3146 5,2    34499  

MPI-0479605 1,9 >5000 >10 000 >5000   

NMS-P715 1,3 >10 000 >30 000    

MPS-IN-3 15      

CFI-401870 3,1  1300 1700   

CHEMBL2089255 6,4  >100 000    

CHEMBL3410084 2,8      

CCT251455 3  >40 000    

CHEMBL2380586 10,4     >5000 

NTRC 0066-0 0,90      

MPS-BAY2B 6,7      

BAY 1161909 2,4      

BAY 1217389 1,0      

Table 4: Measured IC50 values of selective TTK inhibitors[38][39][40][41] 

 

 

 

 

 



 

   31 

Table 5 contains thirteen selective TTK inhibitors, which are shown in two dimensional 

representation generated by LigandScout.  

 

 

 
 

Myrexis compound MPI-0479605 [42] AstraZeneca’s AZ3146 [42] 

 

 

 

Nerviano compound NMS-P715 [42] MPS-IN-3 [42] 

 

 

CFI-401870 [42] Shionogi compound CHEMBL2089255 [42] 
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Shionogi compound CHEMBL3410084 [42] CCT251455 [43] 

 

 

 

 

CHEMBL2380586 [43] NTRC 0066-0 [38] 

 

 
 

Mps-BAY2b [38] BAY 1161909 [38] 
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BAY 1217389 [27]  

Table 5: Selective Inhibitors 

 

4.4 Crystal selection and generation of the shared 

pharmacophore model 

The first step was to create a structure-based pharmacophore model based on crystal 

structures from the RCSB Protein Data Bank. 

As described in 4.2, an in house Knime workflow was used to obtain 64 files of TTK (Uniprot 

ID P33981). After downloading the files, these were filtered according to the following 

criteria: 

 Resolution < 2.5Å 

 IC50 of the cocrystallized ligand < 10nM 

 Cocrystallized with selective inhibitor 

 

Based on such criteria, the following crystal structures were selected for structure-based 

pharmacophore modeling (Table 6): 

 4C4J   

 5AP0 

 5AP7 

 5N7V 
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 Pharmacophore superimposed to the crystal 4C4J Pharmacophore superimposed to the crystal 5AP0 

  
Pharmacophore superimposed to the crystal 5AP7 Pharmacophore superimposed to the crystal 5N7V 

Table 6: Four pharmacophores 
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Using LigandScout 4.3, four three-dimensional structure-based pharmacophore models were 

generated in respect of the chosen crystal structures. These models were aligned by reference 

points (Figure 13) to create a shared feature pharmacophore. 

 

Figure 13: Alignment by reference points performed by LigandScout  

 

 

Figure 14: Minimum shared pharmacophore features with the ligand of 5N7V 

 

During the generation of pharmacophores, LigandScout analyzes the shape of the active site 

and places excluded volume spheres in positions that are sterically claimed by the protein 

environment. This process ensures that the compounds obtained in virtual screening match 

the steric requirements of the active site while drastically increasing selectivity. The 

pharmacophore model with the minimum shared pharmacophore features (Figure 14) has 

been modified by adding a second hydrophobic area, a couple of hydrogen bond acceptors 

(one of them is optional) and another hydrogen bond donor as an optional feature. Therefore, 

the combination of the four pharmacophores shown in Figure 15 consists of two lipophilic 

areas represented as spheres (yellow), one hydrogen bond donor (green) and two hydrogen 
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bond acceptors (red) as directional vectors. The model contains also one hydrogen bond 

donor (green) and one hydrogen bond acceptor (red) as optional vectors. In addition to the 

chemical features, 26 excluded volume spheres (grey) were added to increase the selectivity 

of the pharmacophore model (Figure 16).  

The hydrogen bond donor (green) forms an interaction with the carboxyl group of the residue 

Gly 605. The hydrogen bond acceptor (red) forms an interaction with the secondary amine of 

the residue Gly 605. The optional hydrogen bond donor (dotted line, green) forms an 

interaction with the carboxyl group of the residue Glu 603. Besides there may also be 

interactions with the residues Lys 553 and Ser 611 if a different ligand is present. 

 

 

Figure 15: Generated pharmacophore (four PDBs) 

 

Figure 16: Generated pharmacophore with excluded volume spheres 
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4.5 Evaluation procedure of the pharmacophore model 

4.5.1 Dataset preparation 

In order to evaluate the pharmacophore model a series of screening databases were generated. 

Compounds tested on TTK and with a bioactivity value expressed as IC50 were downloaded 

from the ChEMBL database (ChEMBL ID: ChEMBL3983). Data points were collected in a 

Microsoft Excel spreadsheet. A Knime workflow (Figure 17) was used to divide the collected 

database between active and inactive molecules. Molecules with activity lower than 10nM 

were considered active, inactive when such a value was reported to be greater than 1000nM. 

For the screening process, a multi-conformational database was generated containing a 

maximum of 200 confirmations per ligand. The remaining compounds were checked for 

duplicates. In the end, two different screening databases were created. One dataset consisted 

of 477 active compounds and the other of 26 inactive compounds. 

 

 

Figure 17: Knime workflow bioactivity data TTK 

Figure 18 illustrates the bioactivity data downloaded from the ChEMBL database. The data 

can be divided into four IC50 groups visualizing the distribution of the compounds.  
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Figure 18: Distribution of bioactivity data 

Considering the low number of inactive molecules retrieved, the DUD-E (Enhanced Database 

of Useful Decoys) database was used to obtain kinase specific decoys. Potential duplicates 

were eliminated using the duplicate removal node inside the aforementioned Knime 

workflow (Figure 19). In addition, the Icon node was inserted to generate a three-dimensional 

multiconformational database for virtual screening. This database contained 35.091 

molecules after processing. 

 

These decoys were added to the inactive molecules and used for the subsequent evaluation of 

computational models. The ratio of active/inactive-decoy compounds is above the suggested 

1/40. 

 

 

Figure 19: Knime Workflow Decoy 

 

4.5.2 Pharmacophore screening of ChEMBL and DUD-E 

The validation of the structure-based pharmacophore model included the screening of the 

prepared database which contained 477 active and 26 inactive compounds from ChEMBL 

and decoys of the DUD-E database with a total of 35.091 compounds. The 35.594 compounds 
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were used for a Receiver Operating Characteristics (ROC) curve and the calculation of an 

enrichment factor. The structure-based pharmacophore model was used to screen the 

ChEMBL and DUD-E database. Figure 20 shows the result of the screening that led to the 

identification of 34 hits. 

 

Figure 20: Screening actives / inactives / decoys 

 

 

Figure 21: ROC curve validation of the three-dimensional structure-based pharmacophore model using 477 

active compounds and 35.091 decoys 

Figure 21 shows the ROC curve, the enrichment factor (EF) and the area under the curve 

(AUC). The ROC curve was used to validate the structure-based pharmacophore model. The 

ROC curve represents the sensitivity versus specificity. The screening of the database with 

the selected pharmacophore model using LigandScout generated a ROC curve that is above 

the diagonal of the random hits, indicating that the model is able to distinguish active from 
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inactive compounds. The virtual screening included 477 active molecules and 35 117 decoys 

from the extended database of useful decoys (DUDE). The pharmacophore obtained 26 of 

477 active compounds from the ChEMBL database. The area under the curve (AUC) was 

measured as 1.0, 1.0, 0.77 and 0.53 in the upper 1, 5, 10 and 100% of the screened database. 

Additionally, the enrichment factor (EF) was calculated as 57.1 in the upper 1, 5, 10 and 

100% of the screened database. Altogether, the validation study has shown that the chosen 

pharmacophore model has a certain selectivity among the active substances and the decoys 

in the database. 

The 26 active substances of the screening result were analyzed to determine to what extent 

they exhibit highly selective activity for TTK or not. Table 7 below contains data from the 

ChEMBL database showing that the compounds are highly selective for TTK according to 

IC50, whereas they are not selective for any other kinase.  
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CHEMBL ID TARGET IC50 
TTK 

IC50 
AURORA-A 

IC50 
AURORA-B 

IC50 
CDK 2 / CYLCIN A 

IC50 
NEK2 

IC50 
PLK1 

2047943 PLK1, Aurora-A, TTK, Aurora-B 1.8 nM, 5 nM, 4 nM >10000 nM >5000 nM   >5000 nM 

2047951 TTK 1 nM      

2047952 TTK 1 nM      

2047956 TTK 1 nM      

3109933 PLK1, Aurora-A, TTK, NEK2, CDK2/Cyclin A 6 nM 23000 nM  1900 nM >10000 nM >10000 nM 

3109936 TTK, Aurora-A, CDK2/Cyclin A 7 nM >100000 nM  5500nM   

3109938 TTK, Aurora-A, CDK2/Cyclin A 4 nM 17000 nM  680 nM   

3109939 TTK, Aurora-A, CDK2/Cyclin A 5 nM 53000 nM  750 nM   

3109972 TTK, Aurora-A, Aurora-B, CDK2/Cyclin A 8 nM >100000 nM >100000 nM 4200 nM   

3808471 TTK, CDK2/Cyclin A 8 nM, 10 nM      

3905145 TTK 8 nM      

3907428 TTK 3 nM      

3908898 TTK 5 nM      

3910420 TTK 10 nM      

3924132 TTK 3 nM      

3928170 TTK 1 nM      

3932702 TTK 1 nM      

3936850 TTK 4 nM      

3942820 TTK 2 nM      

3943079 TTK 6 nM      

3943432 TTK 2 nM      

3944328 TTK 5 nM      

3946383 TTK 2 nM      

3959503 TTK 10 nM      

3967693 TTK 3 nM      

3979350 TTK 4 nM      

Table 7: Bioactivity of active compound
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4.6 Receptor selection for Docking 

In the next step, the four chosen protein structures were prepared using the Protein 

Preparation Wizard of the Schrödinger suite with standard settings. All water molecules were 

deleted because none of them were considered as structural water. PEG and DMSO were also 

deleted. With the aid of the ligand preparation part of LigPrep, the chosen PDB entries as 

well as the hitlist of the screening were then prepared with default settings for the following 

docking procedure. The cocrystallized ligands of the PDB entries were docked into each 

receptor grid (PDB IDs: 4C4J, 5AP0, 5AP7, 5N7V) using Schrödinger Glide with default 

settings. This was done to determine a suitable receptor with a significant docking score and 

a reasonable pose of the ligands. After comparing the docking scores and poses of four PDB 

entries, two (5N7V and 5APO) were selected for further research. The two preselected PDB 

entries showed high docking values, besides the poses of the cocrystallized ligands were 

nicely reproduced.  

Finally, the PDB entry 5N7V was selected for the following reasons: 

 The structure of the protein is more complete 

 Good docking scores of the ligands into the receptor  

 Good reproduction of the ligand crystallographic pose 

 

Figure 22: PDB entry 5N7V in PyMOL 

Figure 22 reproduces the structure of the 5N7V receptor in complex with a ligand. 
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4.6.1 Docking of ChEMBL and DUD-E 

Subsequentially, the dataset of molecules compiled from ChEMBL and DUD-E was docked 

into the selected receptor (PDB ID: 5N7V). Two docking methods were used: SP (Single 

Precision) and XP (Extra Precision). Then, the results of the two docking methods were 

compared and ultimately it was decided to use the SP, since this method produced results 

much faster and there were hardly any differences between the poses generated with SP and 

XP. The same default docking settings were applied. The objective of docking the molecules 

into a receptor was to get suitable scoring functions for further research. 

 

4.7 Consensus scoring 

Consensus scoring combines multiple scoring functions and strongly reduces the number of 

false positives. Therefore, consensus scoring can improve hit rates. It has been proven to be 

more robust and accurate than single scoring. The best way is to use a moderate number of 

scoring functions such as three or four. [44] I chose four scoring functions (Figure 23) to 

achieve a higher precision.  

  

Figure 23: Applied scoring functions 

4.7.1 Docking score 

In pharmaceutical drug discovery, molecular docking is typically used to predict the favored 

orientation of two molecules to provide a stable complex. The prediction of the binding 

affinity between two molecules is defined by the scoring function. Docking can also be seen 

as a key-lock mechanism, where the correct orientation of a key can open the lock. [25] The 

docking score was calculated with a program called Schrödinger's Glide. Glide uses a series 
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of hierarchical filters to search for possible positions of the ligand in the active region of the 

receptor. The preparation procedure is important to achieve precise docking with Glide. [45] 

 

4.7.2 Pharmacophore fit score 

The pharmacophore fit score measures the geometric fit of the features of a molecule to the 

three-dimensional structure-based pharmacophore model. A higher fit score indicates a better 

fit to the pharmacophore model. A lower pharmacophore fit score indicates that the features 

cannot be matched. [46] LigandScout was used to calculate the pharmacophore fit score. 

 

4.7.3 RMSD 

The RMSD is the most commonly used parameter to measure the similarity between two 

superimposed compounds. For this reason a Knime workflow that calculates the RMSD of 

two different ligand poses was created. The compounds submitted to the workflow were the 

ligand poses resulting from the pharmacophore screening with LigandScout, and the docked 

poses of Maestro. Only heavy atoms were considered for the “inplace” RMS alignment inside 

the RMSD Schrödinger Knime node. Figure 24 shows the implemented workflow. First the 

SDF reader node loads molecules from sdf files for further processing. The Sorter node sorts 

the lines by user-defined criteria.  

Afterwards the Molecule-to-MAE node converts Smiles, Mol2, SD or PDB to Maestro. The 

Chunking Loop Start node is the beginning of the loop, where you can define the frequency 

of the loop execution. Next, the RMSD node calculates the RMSD between the ligand pose 

resulting from the pharmacophore screening with LigandScout, and the docked pose of 

Maestro. The loop end node is used to indicate the end of a workflow and collects the output 

by linking the incoming tables line by line. [47] The output of the implemented Knime 

workflow was checked for accuracy with PyMOL. 

 



 

   45 

 
Figure 24: RMSD calculation 

 

4.7.4 MM/GBSA 

The MM/GBSA approach (Molecular Mechanics Generalized Born Surface Area) is a 

popular way to estimate the free energy of the binding of small ligands to biological 

macromolecules. This method improves the result of virtual screening and docking and 

calculates the binding-free energy of a ligand within a protein. [48] The standard settings in 

Maestro were used for the calculation. 
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4.8 Rankings for the ChEMBL and DUD-E dataset 

The following tables show the results of the four applied scoring functions from the ChEMBL and DUD-E database. The vales are NOT sorted according to the score. 

 
ID TITLE MMGBSA DG BIND ACTIVE/DECOY 

34 Row10855 -36,67 decoy 

28 Row117 -47,86 active 

17 Row120 -59,62 active 

33 Row12355 -37,97 decoy 

3 Row133 -71,96 active 

11 Row176 -65,17 active 

32 Row19338 -40,27 decoy 

27 Row20063 -48,54 decoy 

29 Row20300 -45,79 decoy 

21 Row204 -55,59 active 

16 Row213 -61,48 active 

5 Row217 -69,74 active 

15 Row24 -61,69 active 

30 Row2409 -44,96 decoy 

2 Row250 -74,82 active 

24 Row254 -54,43 active 

26 Row27 -49,12 active 

14 Row3210 -61,9 decoy 

6 Row337 -68,64 active 

7 Row35 -68,26 active 

10 Row386 -65,21 active 

18 Row401 -58,52 active 

22 Row402 -55,4 active 

23 Row409 -54,95 active 

13 Row419 -62,49 active 

4 Row435 -69,77 active 

31 Row462 -44,02 active 

20 Row497 -56,19 active 

19 Row529 -57,75 decoy 

8 Row62 -66,82 active 

9 Row65 -65,43 active 

25 Row78 -51,11 active 

12 Row8 -63,31 active 

1 Row86 -75,61 active 

Table 8: MM/GBSA calculation 

 

ID TITLE DOCKING SCORE ACTIVE/DECOY 

26 Row10855 -7,58 decoy 

29 Row117 -6,93 active 

14 Row120 -8,446 active 

27 Row12355 -7,526 decoy 

2 Row133 -9,929 active 

7 Row176 -9,696 active 

24 Row19338 -7,62 decoy 

20 Row20063 -8,148 decoy 

23 Row20300 -7,8 decoy 

33 Row204 -6,297 active 

11 Row213 -9,052 active 

9 Row217 -9,52 active 

22 Row24 -7,948 active 

30 Row2409 -6,757 decoy 

5 Row250 -9,812 active 

18 Row254 -8,203 active 

34 Row27 -5,809 active 

28 Row3210 -7,093 decoy 

6 Row337 -9,734 active 

10 Row35 -9,151 active 

4 Row386 -9,813 active 

17 Row401 -8,224 active 

19 Row402 -8,161 active 

13 Row409 -8,792 active 

16 Row419 -8,259 active 

1 Row435 -10,013 active 

31 Row462 -6,51 active 

25 Row497 -7,614 active 

21 Row529 -8,14 decoy 

8 Row62 -9,645 active 

12 Row65 -8,936 active 

32 Row78 -6,346 active 

15 Row8 -8,401 active 

3 Row86 -9,913 active 

Table 9: Docking score calculation 
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ID TITLE PHARMACOPHORE 

SCORE 

ACTIVE/DECOY 

19 Row10855 56,21 decoy 

6 Row117 65,95 active 

1 Row120 66,14 active 

20 Row12355 56,08 decoy 

4 Row133 66 active 

18 Row176 56,31 active 

25 Row19338 56,04 decoy 

13 Row20063 64,7 decoy 

21 Row20300 56,08 decoy 

11 Row204 65,46 active 

31 Row213 55,34 active 

15 Row217 56,64 active 

12 Row24 65 active 

34 Row2409 54,63 decoy 

33 Row250 54,63 active 

17 Row254 56,52 active 

3 Row27 66,02 active 

24 Row3210 56,04 decoy 

29 Row337 55,57 active 

32 Row35 54,81 active 

10 Row386 65,7 active 

30 Row401 55,38 active 

9 Row402 65,75 active 

14 Row409 56,8 active 

2 Row419 66,14 active 

28 Row435 55,61 active 

7 Row462 65,92 active 

5 Row497 65,99 active 

23 Row529 56,04 decoy 

27 Row62 55,65 active 

26 Row65 55,97 active 

8 Row78 65,78 active 

16 Row8 56,55 active 

22 Row86 56,06 active 

Table 10: Pharmacophore score calculation 

ID TITLE RMSD ACTIVE/DECOY 

28 Row10855 8,25 decoy 

21 Row117 4,17 active 

23 Row120 4,77 active 

32 Row12355 11,75 decoy 

2 Row133 1,35 active 

14 Row176 2,06 active 

34 Row19338 13,06 decoy 

27 Row20063 7,87 decoy 

30 Row20300 9,65 decoy 

24 Row204 5,28 active 

8 Row213 1,58 active 

6 Row217 1,54 active 

12 Row24 1,85 active 

26 Row2409 7,31 decoy 

7 Row250 1,56 active 

25 Row254 5,55 active 

20 Row27 3,83 active 

31 Row3210 10,46 decoy 

16 Row337 2,64 active 

9 Row35 1,58 active 

5 Row386 1,53 active 

17 Row401 2,65 active 

22 Row402 4,76 active 

11 Row409 1,59 active 

18 Row419 3,07 active 

4 Row435 1,47 active 

19 Row462 3,67 active 

15 Row497 2,26 active 

29 Row529 9,39 decoy 

3 Row62 1,45 active 

1 Row65 1,34 active 

33 Row78 11,8 active 

13 Row8 1,97 active 

10 Row86 1,58 active 

Table 11: RMSD calculation 
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4.9 RBR for the screening database (ChEMBL and DUD-E) 

With all the compounds having four different scores (Docking Score, MM/GBSA, 

Pharmacophore Fit Score and RMSD), a Rank by Rank resorting was applied to improve the 

individual results. In the end, all compounds were ranked according to the average rank 

among all four scoring functions. 

In the following table below you can see the combination of the four rankings (fictive values) 

into a Rank by Rank list. 

 

PHARMACOPHORE 

SCORE 

DOCKING 

RANK 

MM-GBSA 

RANK 

RMSD 

RANK 

R.B.R 

MOL A: 8 MOL A: 3 MOL A: 10 MOL A: 5 MOL A: 6,5 

MOL B: 3 MOL B: 5 MOL B: 7 MOL B: 8 MOL B: 5,75 

MOL C: 2 MOL C: 5 MOL C: 8 MOL C: 12 MOL C: 6,75 

Table 12: Explanation of the RBR using an example 

After several combinations the RBR with four scoring functions was the best one, rank 1-23 

were only active compounds. The first decoy appears at rank 24. The table below 

demonstrates that active substances have a higher rank than decoys. Only 3 out of 23 active 

substances are ranked lower than the active compounds above. There were no inactive 

compounds retrieved out of the ChEMBL database. 

 

RBR 4  TITLE ACTIVE/DECOY 

2,75 Row133 active 

7,25 Row386 active 

8,75 Row217 active 

9 Row86 active 

9,25 Row435 active 

11,5 Row62 active 

11,75 Row250 active 

12 Row65 active 

12,25 Row419 active 

12,5 Row176 active 

13,75 Row120 active 
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14 Row8 active 

14,25 Row337 active 

14,5 Row35 active 

15,25 Row24 active 

15,25 Row409 active 

16,25 Row497 active 

16,5 Row213 active 

18 Row402 active 

20,5 Row401 active 

20,75 Row27 active 

21 Row117 active 

21 Row254 active 

21,75 Row20063 decoy 

22 Row462 active 

22,25 Row204 active 

23 Row529 decoy 

24,25 Row3210 decoy 

24,5 Row78 active 

25,75 Row20300 decoy 

26,75 Row10855 decoy 

28 Row12355 decoy 

28,75 Row19338 decoy 

30 Row2409 decoy 

Table 13: Rank by Rank including four scoring functions 

 

4.10  Vendors database 

In Knime, a database of commercially available compounds from several vendors has been 

created with a special focus on libraries for kinases. All the molecules were standardized and 

then converted into three-dimensional conformational chemical compounds using the 

advanced algorithm idbgen of LigandScout 4.3. The prepared library contains 87151 unique 

molecules from eight different suppliers. (Figure 25) 
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Figure 25: Percentage composition of vendors 

Table 14 shows the used settings to standardize the vendors database with the help of an in 

house Knime workflow. 

 

SETTINGS VALUE 

KEEP ALL STRUCTURES No 

FILTER BY WEIGHT No 

CLEAR STEREO? No 

IF KEEP STEREO: STANDARDIZE STEREO? No 

KEEP SALTS OR SOLVENT MOLECULES? No 

MOLECULAR WEIGHT  1000 

KEEP MIXTURES OF MOLECULES? No 

KEEP MOLECULES WITH NONORGANIC ATOMS? No 

Table 14: Standardizer for vendors database 

 

 

4.11  Pharmacophore model modification and screening 

Too few hits were found in the screening of the vendors database, therefore it was necessary 

to refine the generated pharmacophore model. Therefore the h-bond acceptor was set to 

optional. Figure 26 shows the final structure-based pharmacophore model. 
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Figure 26: Refined pharmacophore superimposed to the crystal 5N7V 

The pharmacophore consisted of two lipophilic areas (yellow), one hydrogen bond donor 

(green) and one hydrogen bond acceptor (red). The model also consisted of one hydrogen 

bond donor and two hydrogen bond acceptors as optional vectors (dotted lines). The feature 

marked in red shows the refinement of the pharmacophore, which led to significantly more 

hits because it is now marked as an optional feature. The refined pharmacophore model was 

used to screen the vendors library. Figure 27 shows screening results of the vendors database. 

 

Figure 27: Screening results of Vendors database 

The modified pharmacophore model was used to find molecules with the required features 

from the vendors database. The screening resulted in 1285 hits from 87151 commercially 
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available compounds (1,47%). The analysis showed that the pharmacophore is still highly 

selective, although the optional hydrogen bond acceptor has been modified.  

 

4.12  Ranking the Vendors database 

The docking software Glide was again used to dock the 1.285 hits out of the vendors database 

into the 5N7V receptor. Due to the large amounts of data, not all scoring functions can be 

listed in this thesis. 

After calculating all scores using the scoring functions, the top 100 highest RBR ranked 

compounds of the vendors database where selected (see Annex B). Figure 24 shows the 

implemented workflow for calculating the RMSD between the offered compounds of the 

vendors in LigandScout and Maestro.  

The output of the implemented Knime workflow was checked for accuracy with PyMOL. 

 

4.13  Binning clustering with ChemMine 

Clustering is a widely used technique to divide a large hitlist of compounds into small groups 

with high similarity and is very useful on large datasets. As a result, I used the 100 highest 

ranked compounds from Rank by Rank and clustered them using ChemMine. 

Binning clustering was performed with a Tanimoto coefficient of 0.6. The compounds with 

a similar or greater value were clustered into groups, using a single linkage rule for cluster 

joining. This gave as a result 49 different clusters for the 100 compounds. 

A representative compound with the best rank by rank was chosen for each cluster. As an 

example, the clusters in Figure 28 and Figure 29 (e.g. cluster 1 and 2) show the similarity of 

the compounds in each cluster. Cluster 1 and cluster 2 show that the chemical structure of the 

compounds per cluster are very homogeneous. With the help of ChemMine, a meaningful 

clustering was implemented. Binning clustering has made it easier to select suitable 

compounds. 
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Figure 28: Cluster 1 

 

Figure 29: Cluster 2 

4.14  Visual inspection 

A representative compound for each cluster, which I obtained from the binning clustering 

with ChemMine, was selected. The compounds with the highest rank in each group were 

visually inspected. As a criteria, both the ligand pose as well as the interactions from the 
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docking experiment (Glide), should have shown strong similarity with the poses retrieved 

with the pharmacophore screening (LigandScout). 

The examples below show, that the poses and interactions of the compounds are similar in 

both LigandScout and Maestro, increasing the confidence in the procedure. 

 

 

Figure 30: Comparison of compound E715-0971 in LigandScout (left) and Maestro (right) 

 

Figure 31: Comparison of compound F091-1168 in LigandScout (left) and Maestro (right) 
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Figure 32: Comparison of compound C387-1105 in LigandScout (left) and Maestro (right) 

  

Figure 33: Comparison of compound D153-0152 in LigandScout (left) and Maestro (right) 

 

4.15  Solubility and permeability predictions 

The compounds resulting from the vendors library screening were evaluated for their drug-

like behavior using Schrödinger QikProp, since nearly 40% of drug candidates in clinical 

trials fail due to poor ADME (absorption, distribution, metabolism, and excretion) properties. 

Standard ADME properties were used. Special attention was paid to the QPlogS as well as to 

the QPPCaco property. The QPlogS descriptor predicts the water solubility, therefore the 

solubility of a compound. The recommended range should be between – 6.5 to + 0.5. [49] 

The results are within an acceptable range, four values deviate very slightly. 

The QPPCaco descriptor predicts the apparent Caco-2 cell permeability in nm/sec of a 

compound. Caco-2 cells are a model for the gut-blood barrier, so they directly reflect the 

ability of a molecule to permeate the gut-blood barrier. Compounds display good 
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permeability if values > 500 are reached.  If the values are < 25, this suggests that the cell 

permeability is poor. [49] 20 of 23 compounds had QPPCaco values of over 500, which 

means that cell permeability is excellent. The three compounds with a value below 500 are 

still in a good range and there should be no problem with cell permeability. 

 
NAME LIGANDSCOUT  PRODUCT ID VENDOR QPLOGS 

C387-0954 C387-0954 -6,621 

C387-1105 C387-1105 -6,592 

D042-0041 D042-0041 -4,413 

D153-0152 D153-0152 -6,516 

D367-0335 D367-0335 -4,825 

D463-0064 D463-0064 -5,917 

D727-0702 D727-0702 -4,996 

E715-0971 E715-0971 -5,198 

F047-0446 F047-0446 -5,905 

F091-0077 F091-0077 -4,685 

F091-1168 F091-1168 -5,215 

F532-0990 F532-0990 -4,382 

J013-1406 J013-1406 -7,116 

K405-2966 K405-2966 -5,516 

L656-0064 L656-0064 -5,862 

M008-8339 M008-8339 -5,267 

ROW13081 Z990847972 -5,477 

ROW13258 Z909612044 -3,565 

ROW13542 Z729071454 -4,903 

ROW15273 Z1647890721 -3,666 

ROW3845 Z1611173508 -3,772 

ROW4557 Z101408880 -3,602 

ROW8325 Z1173566458 -4,274 

Table 15: QplogS property of final compounds 
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NAME LIGANDSCOUT  PRODUCT ID VENDOR QPPCACO 

C387-0954 C387-0954 1968,714 

 

C387-1105 C387-1105 2573,034 

 

D042-0041 D042-0041 452,22 

 

D153-0152 D153-0152 1612,694 

 

D367-0335 D367-0335 1286,276 

 

D463-0064 D463-0064 4872,783 

 

D727-0702 D727-0702 1411,799 

 

E715-0971 E715-0971 3005,963 

 

F047-0446 F047-0446 1739,637 

 

F091-0077 F091-0077 797,744 

 

F091-1168 F091-1168 595,014 

 

F532-0990 F532-0990 404,987 

 

J013-1406 J013-1406 964,967 

 

K405-2966 K405-2966 2724,083 

 

L656-0064 L656-0064 3072,677 

 

M008-8339 M008-8339 1868,416 

 

ROW13081 Z990847972 1306,512 

 

ROW13258 Z909612044 852,014 

 

ROW13542 Z729071454 2869,197 

 

ROW15273 Z1647890721 380,46 

 

ROW3845 Z1611173508 3423,858 

 

ROW4557 Z101408880 1128,939 

 

ROW8325 Z1173566458 814,977 

 

Table 16: QPPCaco property of final compounds 
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4.16  Chemical diversity 

It is often worthless to test many compounds with high similarity, as similar compounds 

generally have similar bioactivity. For this reason, MACCS fingerprints were calculated and 

the Chart View node in Knime (Figure 34) was used to graphically illustrate the diversity of 

the substances.  

 

 

Figure 34: Diversity check executed by Knime 

Heatmaps are excellent for visualizing large amounts of datasets and are used to highlight 

compounds with similar structures because they are displayed as areas of similar color. 

The heatmap in Figure 37 shows the structural diversity of the 23 selected compounds using  

MACCS fingerprints and the chart view node in Knime. The graphical representation of the 

result was according to the requirements and there were only a few compounds that are 

slightly similar, e.g. C387-1105 and C387-0954. (Figure 35) Furthermore the chemical 

structures of L656-0064 and F047-0446 (Figure 36) appeared to be slightly similar, as you 

can see here in the heatmap. The preset color gradient sets the lowest value in the heatmap to 

dark blue, the highest value and thus the highest similarity to a bright green. The brighter the 

shade of green, the more similar the objects are.   

 

       

Figure 35: Comparison of compound C387-1105 (left) and C387-0954 (right) 
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Figure 36: Comparison of compound L656-0064 (left) and F047-0446 (right) 

 

 

Figure 37: Heatmap of final compounds executed by Knime 
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4.17  PAINS check 

The last step was the verification of PAINS (Pan-assay interference compounds) via an in 

house Knime workflow. They are classes of chemical compounds that can interfere with 

bioassays and often give false positive results in high-throughput screens. More than 450 

compound classes have been designated as PAINS to date. Classified PAINS are typically 

small reactive or otherwise liable molecules that are contained as substructures in larger 

compounds. [50] The 23 final compounds were successfully transferred through a Knime 

workflow in the format of a csv file. The csv file is containing the 23 compounds represented 

as canonical SMILES. Using the PAINS method, it was ensured for each compound that there 

should be no interaction with the bioactivity assay. (Table 17) 

 
NAME 2D STRUCTURE PAINS PROCESSED 

C387-0954 Cc1ccc(C)c(Nc2cc(C(=O)NCc3ccccn3)c3ccccc3n2)c1 0 True 

C387-1105 CCOCCCNC(=O)c1cc(Nc2ccc(C)cc2C)nc2ccccc12 0 True 

D042-0041 COc1ccc(N(Cc2cc3cccc(C)c3[nH]c2=O)S(C)(=O)=O)cc1 0 True 

D153-0152 CC(=O)c1nn(-c2ccc(OC(F)(F)F)cc2)nc1Nc1cccc2ncccc12 0 True 

D367-0335 Cc1ccc(Nc2ncc3c(n2)CC(C)CC3=O)cc1C 0 True 

D463-0064 CCCNc1cc(C)nc2c(-c3ccc(F)cc3)c(C)nn12 0 True 

D727-0702 COc1ccc(OCc2nn3c(-c4cc5ccccc5[nH]4)nnc3s2)cc1 0 True 

E715-0971 Cc1cc(Cl)ccc1Nc1ncnc2c1nc1n2CCCC1 0 True 

F047-0446 COc1ccc(NC(=O)c2ccnc(Nc3ccc(C)c(Cl)c3)c2)cc1 0 True 

F091-0077 Cc1ccc(Cl)cc1Nc1nc(N)c(C(=O)C(C)C)s1 0 True 

F091-1168 Cc1ccc(C)c(Nc2nc(N)c(C(=O)c3ccc(F)cc3)s2)c1 0 True 

F532-0990 CCc1nc(-c2ccc(NC(=O)Nc3ccccc3C)cc2)no1 0 True 

J013-1406 CCCCOc1ccc(C(=O)C2CC(=O)Nc3c2c(C)nn3-

c2cccc(C)c2C)cc1OC 

0 True 

K405-2966 Cc1ccccc1Nc1ncnc2c1cnn2-c1ccc(F)cc1 0 True 

L656-0064 Cc1cc(C)n(-c2cc(Nc3ccc(C)c(Cl)c3)ncn2)n1 0 True 

M008-8339 COc1ccc(NC(=O)c2sc(Nc3ncccc3C)nc2C)cc1OC 0 True 

ROW13081 Cc1nn(-c2ccccc2)c(C)c1CNc1nc2ccccc2c(=O)[nH]1 0 True 

ROW13258 O=C1NCCCCC1Nc1nc(C(F)(F)F)nc2ccccc12 0 True 

ROW13542 Cc1nn(C(C)C)c(C)c1Nc1cnc2ccccc2n1 0 True 

ROW15273 Cc1noc(C)c1CC(=O)Nc1ncnc2[nH]c(C)c(C)c12 0 True 

ROW3845 COCCc1ccc2oc(NCc3scnc3C)nc2c1 0 True 

ROW4557 CCN(Cc1nc2cc(OC)c(OC)cc2c(=O)[nH]1)C(=O)c1ccoc1C 0 True 

ROW8325 COc1cc2nc(NCc3scnc3C)nc(N)c2cc1OC 0 True 

Table 17: PAINS results
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5 Conclusion and outlook 

As a result of this study 23 compounds were selected using different in silico methods and 

proposed for biological testing as potential TTK inhibitors. In detail, after the selection of the 

appropriate crystal structures available on the Protein Data Bank, a structure‐based 

pharmacophore model was developed. Its performances were evaluated using compounds 

tested on TTK present on the ChEMBL database. Molecular docking studies were performed 

in Glide and the hit compounds were further ranked with the combination of four different 

scoring functions. The procedure includes a refinement of the virtual screening output with 

comparing of docking poses, clustering, similarly search to ensure good diversity coverage 

and also solubility and permeability prediction was used as final filter. After final visual 

inspection the 23 best compounds were selected out of 1285 hits. The list was refined 

according to the availability of the molecules from the vendors. The potential inhibitors of 

TTK kinase were biologically tested at 10 µM by CEREP. [51] Unfortunately this first 

iteration of the project didn’t give the wanted outcome, by showing no biological activity for 

the selected molecules. However, one of the compounds was tested also at 100 µM and found 

having a weak activity against the target. Such a molecule might be considered as a new 

starting point for the second iteration of the project in which new compounds will be selected 

taking into consideration the work done within this thesis. 
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ANNEX A: 23 compounds for experimental testing  
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ANNEX B: 23 compounds - vendors information  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAME VENDOR PRODUCT ID  

C387-0954 

 

ChemDiv C387-0954 

C387-1105 

 

ChemDiv C387-1105 

D042-0041 

 

ChemDiv D042-0041 

D153-0152 

 

ChemDiv D153-0152 

D367-0335 ChemDiv D367-0335 

D463-0064 ChemDiv D463-0064 

D727-0702 ChemDiv D727-0702 

E715-0971 ChemDiv E715-0971 

F047-0446 ChemDiv F047-0446 

F091-0077 ChemDiv F091-0077 

F091-1168 ChemDiv F091-1168 

F091-1168 ChemDiv F091-1168 

J013-1406 ChemDiv J013-1406 

K405-2966 ChemDiv K405-2966 

L656-0064 ChemDiv L656-0064 

M008-8339 ChemDiv M008-8339 

ROW13081 Enamine Z990847972 

ROW13258 Enamine Z909612044 

ROW13542 Enamine Z729071454 

ROW15273 Enamine Z1647890721 

ROW3845 Enamine Z1611173508 

ROW4557 Enamine Z101408880 

ROW8325 Enamine Z1173566458 
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ANNEX C: Workflow overview 

 

• selected TTK

• enough activity data present in ChEMBL

• structures on PDB
1. Choose gene of MM-Pathway

• resolution <2,6 Å

• low IC50 of the ligand of the crystal structures

• selective inhibitors

• choosing 5AP0, 5AP7, 5N7V,4C4J 

2. Select crystal structures for 
structure-based pharmacophore 

modeling

• generated pharmacophore with Ligandscout

• aligned selected crystal structures-> shared features
3. Pharmacophore

• 2 lipophilic areas as spheres

• 1 h-bond donor as directed vector

• 2 h-bond acceptors as directed vectors

• 1 h-bond donor and 1 acceptor as optional vector 

3.1 Pharmacophore

• actives (<10nM) / 477 compounds

• inactives (>1000nM) / 26 compounds

• decoys / 35091 compounds 

4.Database generation for model 
validation

• 34 hits of 35 594 compounds

• 26 actives

• 8 decoys

5.Pharmacophore Screening

• of selective inhibitors into receptors

• of cocrystallized ligand into receptor from 5AP0, 5AP7, 5N7V, 
4C4J

6.Docking

• good docking ccore, good pose of the ligand, alignment of ligands 
fit

• picked 5N7V
7.Select best receptor 

• of hitlist of the pharmacophore into 5N7V8.Docking

• to estimate the binding free-energy of a ligand into a protein9.MM/GBSA Rescoring

• 4 Scoring functions: Docking Score, MM/GBSA, Pharmacophore 
Score, RMSD

10.Rank by Rank
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• Used libraries of vendors11. Database Generation

• 1 hydrogen bond acceptor as optional fisher
12. Refinement of the 

Pharmacophore 

• 1285 hits out of 87 151 compounds13.Pharmacophore Screening

• Docked Vendors hitlist into 5N7V14.Docking

• to estimate the binding free-energy of a ligand into a protein15.MM/GBSA Rescoring

• 4 Scoring functions: Docking Score, MM/GBSA, Pharmacophore 
Score, RMSD

16. Rank by Rank

• Similarity Cutoff 0,6 

• 49 Clusters out of 100 best compounds (RBR)

• Best RBR in each cluster = representative compound

17. Binning Clustering with 
ChemMine

• Compared the pose and interactions in LS and Maestro

• Checked availability and price at Vendors Stores

• Checked references and patents on SciFinder

• Qickprop  - ADME Prediction- good results

• Calculated Fingerprints-> checked Diversity with Chart View 

18. Final Selection out of 49 
compounds

• 23 compounds

• Perform suitable assay
19. Result
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ANNEX D: 100 best ranked compounds of the rank by rank 

(vendors library) 

 
100 BEST RBR NAME NEW NAME VENDOR 

58,5 F091-1168 F091-1168_1 ChemDiv 

61,25 K402-0096 K402-0096_1 ChemDiv 

76,25 K405-2966 K405-2966_1 ChemDiv 

84,75 K405-2965 K405-2965_1 ChemDiv 

85 K405-2947 K405-2947_1 ChemDiv 

91,25 F091-0068 F091-0068_1 ChemDiv 

117 F091-0918 F091-0918_1 ChemDiv 

131 K405-2935 K405-2935_1 ChemDiv 

155,5 D042-0041 D042-0041_1 ChemDiv 

157,75 F091-1010 F091-1010_1 ChemDiv 

162 3486-0389 3486-0389_1 ChemDiv 

163,25 F091-0645 F091-0645_1 ChemDiv 

164,25 K405-3595 K405-3595_1 ChemDiv 

166,5 E715-0971 E715-0971_1 ChemDiv 

170,75 C387-0954 C387-0954_1 ChemDiv 

172,5 F091-0456 F091-0456_1 ChemDiv 

173,5 J013-1406 J013-1406_1 ChemDiv 

176 F091-0077 F091-0077_1 ChemDiv 

176 K405-2159 K405-2159_1 ChemDiv 

178,5 3486-0352 3486-0352_1 ChemDiv 

179,75 Row15273 Row15273_1 Enamine 

180,75 Row15274 Row15274_1 Enamine 

186 BDE 32453687 BDE 32453687_1 Asinex 

187,75 E715-0803 E715-0803_1 ChemDiv 

188,75 E715-0743 E715-0743_1 ChemDiv 

188,75 F091-0075 F091-0075_1 ChemDiv 

202,25 F550-3891 F550-3891_1 ChemDiv 

204 F532-0990 F532-0990_1 ChemDiv 

204,75 E715-0727 E715-0727_1 ChemDiv 

213,5 E715-0850 E715-0850_1 ChemDiv 

228,25 Row15271 Row15271_1 Enamine 

229,5 S7807 S7807_1 Selleckchem 

238 LAS 57281172 LAS 57281172_1 Asinex 

239,5 F091-0920 F091-0920_1 ChemDiv 

242,75 F091-0092 F091-0092_1 ChemDiv 

242,75 Row7636 Row7636_1 Enamine 

243 K402-0208 K402-0208_1 ChemDiv 

244,75 62927947 62927947_1 ChemBridge 

249,25 D463-0064 D463-0064_1 ChemDiv 

254,75 Row13081 Row13081_1 Enamine 

255 F091-0247 F091-0247_1 ChemDiv 

259,5 E715-0927 E715-0927_1 ChemDiv 

260 D393-0086 D393-0086_1 ChemDiv 

261 E679-0771 E679-0771_1 ChemDiv 

262,5 Row4623 Row4623_1 Enamine 

262,75 Row17707 Row17707_1 Enamine 

265,75 E679-0616 E679-0616_1 ChemDiv 
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265,75 L656-0064 L656-0064_1 ChemDiv 

273,25 F091-0227 F091-0227_1 ChemDiv 

274,75 Row3845 Row3845_1 Enamine 

275,25 Row15276 Row15276_1 Enamine 

278,5 C387-1105 C387-1105_1 ChemDiv 

279,5 F091-0897 F091-0897_1 ChemDiv 

282,5 Row15772 Row15772_1 Enamine 

285 F091-0647 F091-0647_1 ChemDiv 

288,25 F091-1031 F091-1031_1 ChemDiv 

288,75 F091-0575 F091-0575_1 ChemDiv 

290,75 Row4557 Row4557_1 Enamine 

292 Row13258 Row13258_1 Enamine 

292,75 J013-1389 J013-1389_1 ChemDiv 

294 D463-0097 D463-0097_1 ChemDiv 

294,25 S8523 S8523_1 Selleckchem 

294,75 Row12162 Row12162_1 Enamine 

295,5 F091-0264 F091-0264_1 ChemDiv 

296 M008-8339 M008-8339_1 ChemDiv 

297,25 F091-1180 F091-1180_1 ChemDiv 

300,75 F091-0222 F091-0222_1 ChemDiv 

305,5 F091-1021F F091-1021F_1 ChemDiv 

306,75 Row3393 Row3393_1 Enamine 

308,5 K402-0322 K402-0322_1 ChemDiv 

309,75 D367-0335 D367-0335_1 ChemDiv 

310,25 E679-0804 E679-0804_1 ChemDiv 

312,75 D153-0152 D153-0152_1 ChemDiv 

316 Row8325 Row8325_1 Enamine 

317 F091-1040 F091-1040_1 ChemDiv 

318 K402-0100 K402-0100_1 ChemDiv 

319,75 Row10181 Row10181_1 Enamine 

320,5 E679-0598 E679-0598_1 ChemDiv 

321,75 F254-3113 F254-3113_1 ChemDiv 

322,25 Row13542 Row13542_1 Enamine 

322,75 F360-0652 F360-0652_1 ChemDiv 

326,5 S7709 S7709_1 Selleckchem 

327,5 F091-0322 F091-0322_1 ChemDiv 

327,75 D463-0090 D463-0090_1 ChemDiv 

327,75 F873-0470 F873-0470_1 ChemDiv 

328,25 65209451 65209451_1 ChemBridge 

328,5 F091-1235 F091-1235_1 ChemDiv 

328,5 Row14366 Row14366_1 Enamine 

328,75 F532-3260 F532-3260_1 ChemDiv 

330,5 F873-0492 F873-0492_1 ChemDiv 

331,75 F091-0621 F091-0621_1 ChemDiv 

332 60494006 60494006_1 ChemBridge 

332,25 F047-0446 F047-0446_1 ChemDiv 

332,75 D727-0702 D727-0702_1 ChemDiv 

333 E679-0605 E679-0605_1 ChemDiv 

335,25 Row4100 Row4100_1 Enamine 

336 E715-0919 E715-0919_1 ChemDiv 

336,5 8137-0130 8137-0130_1 ChemDiv 

336,5 97912743 97912743_1 ChemBridge 

338,25 LAS 57279675 LAS 57279675_1 Asinex 


