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Abstract

Predicting wind speed is challenging due to its dependency on the topography, prevailing weather

conditions, and atmospheric dynamics and its rapid changes. Recent studies have shown that support

vector regression (SVR) has potentials in wind speed prediction. This thesis’s overall objective is to

provide reliable point predictions (i.e., tailored forecasts for a particular location) of the wind speed up

to two days ahead in hourly resolution. For each location, observation data with 10 minutes update

frequency and hourly numerical weather prediction (NWP) model output, such as the high-resolution

NWP model for the alpine region AROME, are available. However, due to the high computational

complexity, the forecasts of NWP models are delayed by several hours.

To obtain more accurate forecasts in the short-range of up to 48 hours ahead, we combine the

observation with the lagged AROME forecasts with a support vector machine (SVM) based algorithm.

In particular, we proceed in two steps: (I) we design a kernel-based support vector regression (SVR)

identifying general relations in the selected time series data; (II) we validate its performance with the

Persistence and the lagged AROME model for a case-study of 28 observation sites located in different

Austrian regions with varying topography and climatology for the testing episode of one month, January

2017. Applying SVR for wind speed prediction requires optimizing a set of parameters. For the SVR

model, different kernels such as linear, sigmoid, and RBF were used and compared. To optimize results,

various feature selection methods for dimensionality reduction were applied, such as principal component

analysis (PCA), mutual information (MI), Pearson correlation, and SHAP (shapley additive explanations).

Due to high computational time in training SVR, we decided to select the 20 most essential features

in every individual forecast hour for each station. We carried out parameter optimization via Grid

Search for one representative station, and applied the result to all other 27 target stations. The SVR

model outperforms other models in predicting wind speed. For nowcasting range (up to about 6 hours),

basic models like the Persistence model, in some cases, outperform complex models like SVR. In the

Persistence model, the most current wind speed measurement of the location is included and, it provides

a computationally efficient forecast for all forecast hours. However, experimental results indicate that

SVR is a suitable technique for performing short-range wind speed predictions.
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Zusammenfassung

Aufgrund der Abhängigkeiten der Windgeschwindigkeit von der Topographie, den vorherrschenden

Wetterbedingungen, der atmosphärischen Dynamik und schnellen Veränderungen des atmosphärischen

Zustands ist die Vorhersage der Windgeschwindigkeit schwierig. Verwandte Arbeiten demonstrieren,

dass Support Vector Regression (SVR) die Kurzfristvorhersage der Windgeschwindigkeit verbessern

können. Das übergeordnete Ziel dieser Arbeit besteht darin, zuverlässige Punktvorhersagen (d.h.

Vorhersagen für einen bestimmten Ort) der Windgeschwindigkeit von bis zu zwei Tagen in stündlicher

Auflösung bereitzustellen. Für jeden Standort stehen Beobachtungsdaten, aktualisiert in 10-Minuten-Takt,

sowie stündliche Vorhersagen von numerischen Wettervorhersagemodellen (NWP, z.B.: AROME, ein

hochauflösende NWP-Modell für die Alpenregion) zur Verfügung. Aufgrund des hohen Rechenaufwands

sind die Vorhersagen von NWP-Modellen jedoch erst mehrere Stunden nach ihrer Initialisierung abrufbar.

Um genauere Kurzfristvorhersagen von den nächsten 48 Stunden zu erhalten, kombinieren wir die

Beobachtung mit den aktuellsten AROME-Vorhersagen mit einem SVM-basierten Algorithmus (Support

Vector Machine). Dazu gehen wir in zwei Schritten vor: (I) Wir entwerfen eine kernelbasierte Support

Vector Regression (SVR), die allgemeine Beziehungen in den ausgewählten Zeitreihendaten identifiziert.

(II) Wir validieren die Vorhersagequalität mithilfe des Persistenz- und dem aktuell verfügbaren AROME-

Modell für eine Fallstudie von 28 Beobachtungsstellen in verschiedenen österreichischen Regionen mit

unterschiedlicher Topographie und Klimaregion für die Testepisode von einem Monat (Januar 2017).

Die Anwendung von SVR auf die Windgeschwindigkeitsvorhersage erfordert die Optimierung einiger

Parametern. Für das SVR-Modell wurden verschiedene Kernel wie Linear, Sigmoid und RBF verwendet

und verglichen. Um die Ergebnisse zu optimieren, wurden verschiedene feature selection Methoden

zur Dimensionsreduktion angewendet, wie zum Beispiel Hauptkomponentenanalyse (PCA), mutual

information (MI), Pearson-Korrelation und SHAP (shapley additive explanations). Aufgrund der hohen

Rechenzeit beim Training des SVR werden die 20 wichtigsten Merkmale für jede Prognosestunde

und Station ausgewählt. Die Optimierung der Parameter mithilfe von Grid Search wurde für eine

repräsentative Station durchgeführt und auf alle übrigen 27 Zielstationen angewendet. Das SVR-Modell

liefert Verbesserungen im Vergleich zu den anderen Modellen. Für den Nowcasting-Bereich (bis zu ca. +6
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Stunden) können Basismodelle, wie das Persistenzmodell, in einigen Fällen bessere Ergebnisse als komplexe

Modelle, wie SVR, erzielen. Im Persistenzmodell wird die aktuellste Windgeschwindigkeitsmessung

des Standorts einbezogen und liefert eine rechnerisch effiziente Prognose für alle Vorhersagestunden.

Experimentelle Ergebnisse zeigen jedoch, dass SVR eine geeignete Technik für die Kurzfristvorhersage

der Windgeschwindigkeit darstellt.
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Chapter 1

Introduction

With changing environmental conditions due to anthropogenic global warming and environmental

issues related to energy sources such as coal, nuclear power, and others, wind power is a green,

and inexhaustible energy source contributing to sustainable energy systems. This source of power

plays an essential role in energy supply in many countries. Wind observations or measurements

are required for weather monitoring and forecasting, for wind-load climatology, for the probability

of wind damage and estimation of wind energy, and as part of the estimation of surface fluxes, for

example, evaporation for air pollution dispersion and agricultural applications [(WMO) Updated

2010(a)]. However, the wind power industries face many technical problems, including the accurate

and fast prediction of wind speed in the short-range (i.e., one to two days ahead).

There are different models for wind speed prediction, primarily physical numerical weather

prediction models (NWP), statistical models, and machine learning models. Machine learning

algorithms are generic models useful for decision support. In recent years, machine learning

models, such as artificial neural networks (ANN) and support vector machine (SVM), were able

to outperform traditional methods. [Lei et al. 2009b].

In this thesis, we implement a new forecasting method based on a machine learning model

to improve the prediction of wind speed in the short-range, which is the time frame of up to 48

hours. This research is conducted in cooperation with ZAMG (Zentralanstalt für Meteorologie

und Geodynamik), the national weather service of Austria.
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1.1 Meteorological Background

Meteorological measurements, i.e., weather observations, have been carried out regularly for

centuries. Around 350 BC, Aristotle, a Greek philosopher, wrote the first weather book, Met-

eorologica, which was describing weather terms like clouds, rain, snow, and wind. Traditional

weather forecasting methods usually relied on observations. However, the modern age of weather

forecasting began in 1835 when the invention of the electric telegraph made an exchange of weather

data from various stations. It was in the 20th century that the advancement of atmospheric

physics led to the foundation of numerical weather prediction (NWP).

Some of the main meteorological parameters used in weather predictions are wind speed, wind

direction, temperature, pressure, humidity, and precipitation at the Earth’s surface [Rösemann

2011]. Wind systems are commonly categorized by their speed, the types of forces that cause

them, the regions where they occur, topographic impacts, and their effects on climate.

Wind velocity is a three-dimensional vector (two horizontal and one vertical) quantity with

small-scale random fluctuations in space and time superimposed upon a larger-scale organized

flow. Three-dimensional vector wind is considered, for example, for airborne pollution and the

landing of aircraft. However, surface wind is mainly considered as a two-dimensional vector. We

neglect the vertical component and only consider the horizontal ones, specified by two numbers

representing direction and speed [(WMO) Updated 2010(a)].

Wind is driven by forces such as gravitation, the gradient of the pressure, friction, and the

Coriolis effect, which can be described formally by motion equations. Wind consists of bulk flow of

air and is generated by differences in temperature within the atmosphere due to differential solar

heating [Manwell, McGowan and Rogers 2009]. Wind speed should be reported to a resolution of

0.5 ms−1 or in knots (0.515 ms−1) to the nearest unit and should represent, for synoptic reports,

an average over 10 minutes. Averages over a shorter period are necessary for specific aeronautical

purposes [(WMO) Updated 2010(b)]. Additionally, wind speed has different behaviors in the

atmospheric boundary layer (ABL), also known as the planetary boundary layer (PBL). ABL is

the lowest part of the atmosphere that is directly influenced by the Earth’s surface and has a very

complex behavior in the Alpine area, due to its high spatial and temporal variability [Ketterer et al.

2014]. Fast changing local wind systems in ABL associated with mountainous regions, make wind

speed predictions much harder.

Wind speed predictions can be divided into four scales: very short-range or nowcasting (up to
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6 hours), short-range (beyond 12 hours and up to 72 hours ), mid-range (beyond 72 hours and up

to 240 hours), and long-range (from 30 days up to two years) [(WMO) n.d.].

Long-range wind speed prediction is vital for the location and dimension decisions of wind

power applications [G, C and M 2009; A and F 2009]. In contrast, short-range forecasting of wind

speed is essential for improving wind power generation systems [Monfared, Rastegar and Kojabadi

2009; P.Pinson et al. 2009] and are usually of great interest for system operators, electricity

companies, and wind farm promoters. Commonly, the temporal resolution can vary between 5

minutes and hours for short-range wind speed forecasts. Short-range forecastings are employed in

the daily and intraday spot market, system management, and maintenance schedules.

1.2 Numerical Weather Prediction Models

Numerical weather prediction models (NWP) are physical-dynamical models of the atmosphere to

forecast the weather based on current weather conditions. The first attempt was made in 1920,

but by 1950, NWP started producing realistic results using computer simulation [Coiffier 2011].

An NWP model is a computer program that produces meteorological information for future

times at given locations and altitudes. By using a set of equations, this program computes, among

others, the density, the pressure, and the wind vector in different vertical layers, from oceans to

the top of the atmosphere. Due to their non-linearity, analytical solutions are computationally

expensive to find, and therefore, numerical approximations are applied.

NWP models divide the atmosphere into 3D cubes, and grid points are put in the middle of

the cube. NWP calculates different weather parameter equations for each atmospheric variable at

each grid point. The result of this calculation represents the grid box area average. The least

distance between the adjacent grid points represents the horizontal model resolution.

Higher-resolution models are more accurate than lower-resolution ones and have more com-

putational needs, which often run on supercomputers in a high-performance computing (HPC)

environment. NWP models divide the atmosphere also vertically into layers to illustrate the weather

phenomena. The more the number of vertical layers, the higher the chance to demonstrate the

weather phenomena, and the more computational power is needed. Besides, higher-resolution

models require shorter time intervals and hence, more computational power [Al-Yahyai, Charabi

and Gastli 2010].
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1.3 Related Work in Wind Speed Forecasting

The stochastic characteristic of wind speed makes the wind speed prediction challenging. Wind

speed forecast results can be distinguished by time horizons, which include short-range predictions

(timescales of minutes, hours, or days) and long-range predictions (timescales of months or years).

Many methods have been developed in the field of wind speed prediction. The state-of-the-art

methods can mostly be classified into physical, statistical, and artificial intelligence methods [Lei

et al. 2009a; Alexandre Costaa and et al. 2007; Carro-Calvoa et al. 2011; D.A.Fadare 2010].

Physical methods use numeric, parameterization, observation, and physical data such as

temperature, pressure, and topography to predict wind speed. Physical methods use the advantages

of physical algorithms to integrate data observed by wind turbines into numerical weather forecast

(NWF) or mesoscale models [Watson, Landberg and Halliday 1994] to improve the prediction

accuracy of wind speed. Statistical methods based on statistical analysis are the main methods

associated with wind energy production forecasting, such as wind speed and temperature. These

methods have a lower horizon validation between 2 and 6 hours. In contrast, conventional statistical

methods use a mathematical model of the problem. Some of these models are auto-regressive

(AR) models [Poggi et al. 2003], auto-regressive moving average (ARMA) models [Erdem and Shi

2011], auto-regressive integrated moving average (ARIMA) models [J.A. 2011; A.Sfetsos 2000],

Markov chain model [A.Shamshad et al. 2005] and Kalman filtering [Bossanyi 1985; O.Carranzaa

et al. 2011].

Artificial intelligence (AI) methods have been the most widely adopted methods for wind speed

prediction. AI methods typically attempt to minimize training errors through the use of historical

wind speed data. Due to their excellent nonlinear mapping, generalization, and self-learning, AI-

based methods prove to be of widespread utility in the wind speed forecasting field. Artificial neural

networks (ANNs) [G. Li and Shi 2010; A.Kalogirou 2001] including (radial basis functions (RBFs)

[Silva, Fonte and Quadrado 2006], recurrent neural networks (RNNs) [Kariniotakis, Stavrakakis

and Nogaret 1996; More and M.C.Deo 2003], Bayesian learning model [G. Li, Shi and Zhou 2011],

fuzzy logic model [K. G., E. and S. G. 1996; Wang et al. 2004], adaptive neuro-Fuzzy inference

model [S.Rehman and S.M.Rahmand 2011; R.Ataa and Y.Kocyigit 2010], K-means clustering

model [Kusiak and W. Li 2010] and KNN (K nearest neighbor) [Yesilbudak, Sagiroglu and Colak

2013] were implemented in the literature.

In recent years, support vector machines (SVMs) has been successfully used for time-series
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prediction with satisfactory prediction results in various fields [T.B., I. and M.B. 2007; Hong 2008;

Osowski and Garanty 2007; Zhou and Shi 2009; Widodo et al. 2009; G.-F. Lin et al. 2009]. SVM

has been used in different applications as well. M.A.Mohandes [M.A.Mohandes et al. 2004] applied

SVM for wind speed prediction and compared its performance with the multi-layer perceptron

(MLP) of neural networks. The results indicate that the SVM method outperforms the MLP

model in terms of root mean squared error (RMSE). [Salcedo-Sanz et al. 2011] studied wind speed

predictions by SVM in a Spanish wind farm. Two new hybrid methods (EP-SVM and PSO-SVM)

were proposed to improve the performance of the classical SVM. Their results showed that both

hybrid models had satisfactory results. Jing Shi, Jinmei Guo and Songtao Zheng compared the

performance of the ARIMA, ANN, or SVM models in wind speed short-range predictions [Shi, Guo

and S. Zheng 2012]. Their results showed that both performances of the hybrid ARIMA-ANN

and the ARIMA-SVM were better than those of the single ARIMA, ANN, and SVM models.

Furthermore, Sreelakshmi and Kumar [K and PR 2008] indicated that SVM models could give

better accuracy than the neural network models in short-range wind forecasts. Kusiak [Kusiak,

H. Zheng and Song 2009] studied the prediction of both wind speed and wind power at forecast

intervals of 10-minutes up to 1-hour. They observed that the SVM method is a better choice

compared to the MLP algorithm.

This thesis aims to present a machine learning methodology based on short-range wind speed

prediction to predict 10-minute frequencies of wind speed by using both Observation and NWP

data as input for 28 observation sites in Austria in different complex/semi-complex terrains. The

aim is to discuss the performance of three types of kernel functions of the SVR regression method

namely radial, linear and sigmoid, and select the best kernel for comparing the results before and

after applying different feature selection methods such as principal component analysis (PCA),

Pearson correlation, mutual information (MI), and SHAP method. We intend to optimize the

well-performing kernel by tuning its parameters to investigate their performance on the prediction.

1.4 Overview

The remainder of this thesis is organized as follows: The machine learning principals for SVM

is introduced in Chapter 2. Chapter 3 describes the data-sets used for this study and explains

the data cleaning and data engineering process. The modeling workflow and optimization of the

model are discussed in Chapter 4. The wind speed prediction results are presented and discussed

in Chapter 5. In Chapter 6, we draw the conclusions.
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Chapter 2

Machine Learning Principals

Data mining is the process of discovering potentially useful information from large amounts of

data [Rushing et al. 2005]. Data mining techniques search for new information without demanding

any a priori hypotheses, and they are added to discover pattern-specific data mining tasks. There

are two types of data mining tasks: a descriptive data mining task describes the general properties

of the existing data, and a predictive data mining task attempts to make predictions based on

inference on available data.

Methods and algorithms used for wind speed prediction in the field of data mining are

supervised and unsupervised machine learning algorithms. The term machine learning is the

system of automatic data processing and decision-making algorithms to improve their operation

according to their work results.

The goal of this thesis is to design an SVM based algorithm as a prediction method. This

section provides an introduction to the SVM and describes the operation of the proposed model.

2.1 Support Vector Machine

SVM is based on statistical learning theory and was proposed by Vapnik in 1995 [Cortes and V.

Vapnik 1995]. SVM is a supervised learning model that analyzes data for classification, regression

analysis, and outlier detection. Supervised learning algorithms are learning algorithms that learn to

associate some input x with some output y. A supervised learning algorithm can infer a function

from labeled training data consisting of a set of training examples [Russell and Norvig 1995].

SVMs can build a hyper-plane to classify the classes. The best hyper-plane is the one that

provides an optimal separation, i.e., maximizes the distance to the nearest data points of any
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class. These data points which influence our hyper-plane are known as support vectors.

SVM has two different classifiers: linear and non-linear. The main task of a classifier is to find

patterns and study the type of associations for different types of data.

SVM Linear Classifier:

The original maximum-margin hyper-plane algorithm proposed by Vapnik in 1963 constructed

a linear classifier.

wT x + b = b +
m∑︂

i=1
αix

T xi (2.1)

In equation 2.1, xi is a training sample, and α is a vector of coeffcients. Linear classifier finds

linear boundaries in the input feature space. If a data point considers a p-dimensional vector,

then the linear classifier separates the points using a (p-1) dimensional hyper-plane. The distance

between the points and the dividing plain is known as margin. The larger the margin, the less

misclassification [Hastie, Tibshirani and Friedman 2008]. Figure 2.1 shows the linear classifier

with the optimal margin.

Figure 2.1: Separates two classes linearly by different hyper-planes with a support vector machine. H1 does not
separate the classes. H2 does, but only with a small margin. H3 separates them with the maximum margin.
Adopted from [wikipedia 2012].
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SVM Non-Linear Classifier:

In the real world, data-sets can be dispersed up to some extent, and are not linearly separable

in a finite space. In 1992 [Boser, Guyon and V. N. Vapnik 1992] proposed the kernel trick, a way

to create non-linear classifiers by maximum-margin hyper-planes. Kernel tricks implicitly project

the data from a lower dimension into a higher feature space and can be written exclusively in

terms of dot products between examples. If we replace x from Equation 2.1 with the output

of a feature function Φ(x), then the dot product with a function k(x, xi) =Φ(x)T .Φ(xi) can

create a kernel function. Kernels allow the algorithm to fit the maximum-margin hyper-plane

in a transformed feature space. By replacing dot products with kernel functions, we can make

predictions using the equation 2.2.

f(x) = b +
∑︂

i

αik(x, xi) (2.2)

This function is linear in the space that Φ maps to, but non-linear as a function of x.

Besides a linear classifier, we compare two widely-used kernels, namely the sigmoid and radial

basis function (RBF). They are defined as follows.

• Sigmoid kernel:

k(x, xi) = tanh(γ||x − xi||2) (2.3)

• Gaussian Radial Basis Function kernel: The most commonly used kernel in wind speed

prediction

k(x, xi) = exp(−γxT − xi + r) (2.4)

where ||.|| denotes the 2-norm, and γ must be greater than 0.

Figure 2.2 shows how kernel functions are used to compute a non-linearly separable function

into a higher dimension linearly separable function.

2.2 Support Vector Regression

SVM was initially employed to solve the classification problem, and later on, in 1997, it was

applied to the regression field and referred to as support vector regression (SVR) by Vapnik,
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Figure 2.2: Non-linear SVM classifier. Adopted from [wikipedia 2011].

Steven Golowich, and Alex Smola [Vladimir Vapnik, Golowich and Smola 1997]. In this type, SVR

predicts a numerical value.

SVR uses the same principles as the SVM for regression, with only a few minor differences.

The main idea is to minimize error by individualizing the hyper-plane, which maximizes the margin.

Nevertheless, SVR also supports linear and non-linear regression. As the SVR output is a real

number, it becomes challenging to predict the information at hand, which has infinite possibilities.

In this case, a margin of tolerance (ϵ) is set in approximation to the SVR. The goal of SVR is

to find a function f(x) that has at most a ϵ deviation from the targets for all the training data

[J.Smola and Schölkopf 1998]. In other words, errors must remain within the ϵ, and therefore,

should not accept deviations more significant than this. Using the ϵ intensive loss function,

we ensure the global minimum and, at the same time, optimization of reliable generalization

boundaries. As we discussed in SVM, the linear function is in the form of

f(x) = wT x + b (2.5)

Where with a small w, flatness occurs, i.e., a smaller slope. One way to ensure this is to minimize

the euclidean norm,2, i.e ||w||2. Formally we can write this problem as a convex optimization

problem by requiring

minimize : 1
2 ||w||2 (2.6)

Constraints :

⎧⎪⎨⎪⎩ yi − wxi − b ≤ ε

wxi + b − yi ≤ ε

The assumption in 2.6, function f , actually exists that approximates all pairs (xi, yi) with ε

precision, or in other words, that the convex optimization problem is feasible.
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In order to cope with the infeasible constraints of the optimization problem in equation 2.6,

Vapnik introduced slack variables ξi, ξ∗
i .

minimize : 1
2 ||w||2 + C

ℓ∑︂
i=1

(ξi + ξ∗
i ) (2.7)

Constraints :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
yi − wxi − b ≤ ε + ξi

wxi + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0

w is the learned weight vector, xi is the i-th training instance, yi is the training label, and ξi is the

distance between the boundaries and the predicted values outside the boundaries. The constant

C>0 determines the trade-off between the flatness of f and the extend of derivation larger than ϵ

being tolerated, thereby reducing over-fitting. Figure 2.3 depicts the defined optimization problem

where the data points represent the predicted values (ŷ), and the line represents the label (y)

data. The two dashed lines are the bounds that are in an ϵ distance of the reference data, where

ϵ is an arbitrarily chosen parameter. The SVR algorithm uses only values outside the dashed lines

to optimize the model.

Figure 2.3: Schematic of the one-dimensional support vector regression (SVR) model. Adopted from [Kleynhans
et al. 2017].
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Chapter 3

Data Analyse

3.1 Data Characteristic

The two data-sets used in this study are Observation and AROME. The data-sets were selected

from 28 representative stations in Austria and include different topography characteristics.

Fig 3.1 shows the 273 observation site locations in Austria. Blue points show all of the stations,

and the red points are the 28 selected stations.

Figure 3.1: Location of Austrian weather stations (TAWES network).

3.1.1 Observation Data

In various regions, the meteorological data are obtained by insite-observation or remote-sensing.

In 1980 the observing weather stations became semi-automatic weather stations (TAWES) and
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climate stations. The semi-automatic weather stations (TAWES) operated by ZAMG, take

measurements of air temperature, wind speed, wind direction, pressure, and relative humidity and

transmit the data with a frequency of 10 minutes. Table 3.1 shows the parameters in Observation

data, their data types, and units.

Table 3.1: Observation data description. In the unit column, m/s refers to meter/second, mm refers to millimeter,
hPa refers to hectopascal (1 hPa = 100 Pa).

Attributes Data type Unit Description
Statnr int station number
Datum + Stdmin int observed timestamp
Tl int ◦C observed air temperature
Rf int percent observed relative humidity
Td int ◦C observed dew temperature
Dd int 1-360 ◦ observed wind direction
Ff int m/s observed wind speed
rr int mm observed precipitation
P int hPa observed pressure
Pred int hPa observed reduced pressure
So int seconds observed sunshine duration
Ffx int m/s observed gust
Ddx int 1-360 ◦ observed gust direction
Ts int ◦C observed soil temperature

3.1.2 AROME Data

In Austria, the current operational NWP model is AROME (Application of Research to Operations

at Mesoscale). AROME is a mesoscale NWP model, developed at Meteo-France since December

2008. It was designed to predict small-, or mesoscale (10 to 100 km) weather phenomenon

(e.g., thunder-storms, squall-lines, mesoscale convective systems). Thus, this model has a spatial

resolution of at least 2.4 km and hourly temporal resolution, which executes eight times a day (00,

03, 06, 09, 12, 15, 18, and 21 UTC) and the output is, at the earliest, available after three hours

of computation. AROME produces a 48-hour forecast to support the very short-range forecasting

in Austria [Seity and Brousseau 2011]. Table 3.2 shows the description of AROME data.

3.2 Data Preprocessing

Data cleaning is the process of correcting or deleting data or manually processing them as needed

to prevent the error from happening. Also, ensuring that our data is correct, consistent, and
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Table 3.2: AROME data description. In the unit column, m/s refers to meter/second, mm refers to millimeter,
hPa refers to hectopascal (1 hPa = 100 Pa).

Attributes Data type Unit Description
Statnr int station number
Datumagl + Stdmagl int initialized timestamp
Stdragl int lead time in hours
Datum + Stdmin date forecasted timestamp
Rrr int mm predicted precipitation
Tl int ◦C predicted air temperature
Ff int m/s predicted wind speed
Dd int 1-360 ◦ predicted wind direction
Rf int percent predicted humidity
P int hPa predicted pressure
Pred int hPa predicted reduced pressure

usable by identifying any errors in the data. Old and inaccurate data can have an impact on

results. In many cases, more accurate data beats fancier algorithms. Different types of data will

require different types of cleaning. For this thesis, some data cleaning steps, like quality control

of data-sets, dealing with missing values, outliers detection, and scaling the features, were made.

3.2.1 Quality Control

In the first step, we examined and then cleaned the data from errors. For instance, errors in

the data arise during measurement or data transfer. Generally, the SVR method can use this

imperfect record for predictions but can skew a model to discover the wrong patterns in the

data-sets. Both AROME and Observation data had significant errors. The names of the features

were based on ZAMG format (the first column of Tables 3.1 and 3.2), which we changed into a

more compact and problem specific data format. Both data-sets, provided by ZAMG, were in .asc

format which we convert to .csv files.

Observation data:

Total instances for Observation data were 4, 988, 639. High dimensionality and a skewed

distribution of wind speed between stations in Fig 3.4 indicated that we needed to divide the

Observation data before data cleaning. Fig 3.2a shows the boxplot of observed wind speed by 28

stations. The plot shows that the distribution of wind speed can be very different due to the

region (e.g., mountains vs. urban). Station Wien-Jubiläumswarte (station number 11044) shows
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a higher variability for wind speed area_mean in the Vienna urban area; it is because this station

is located at a higher altitude (450 meters) than the other stations in Vienna. We can find the

description of each station in Table 3.3. Station Gaschurn in Vorarlberg (station number 11108)

shows less wind speed area_mean. Also, the mountain station Patscherkofel (station number

11126) contains too many outliers and can be challenging for predictions.

AROME data:

The total data-set resulted in 13, 704, 288 instances, including performed outlier detection.

An outlier may occur due to variability in the measurement or by experimental error. Outliers can

cause severe problems in statistical analyses, so their elimination is necessary. After removing the

outliers, the maximum predicted wind speed in AROME data showed 21 m/s, which is reasonable

(before it was up to 1400 m/s). The AROME data is also divided into stations due to high

dimensionality and the differences between single stations in wind speed behavior. The number of

instances for each station in Observation and AROME data is presented in Table 3.3. Fig 3.5b

shows the boxplot of AROME wind speed by 28 stations. The distribution of wind speed indicates

a similar behavior as in the Observation data. For example, station 11126 shows a high number

of outliers compared to other stations. Stations in the equivalent region, like Vienna (stations

11034, 11035, 11040, 11042, 11044, 11080, and 11090), show the same distribution as in the

Observation data-set.
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(a) Observed wind speed [m/s] of 28 stations in Austria.

(b) Predicted wind speed [m/s] of 28 stations in Austria (AROME data).

Figure 3.2: Observed and predicted wind speed of 28 stations in Austria
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Figure 3.3: Schematic illustration of Föhn.

The histograms in Fig 3.4 show the different distribution of observed wind speed (Observation

data) and predicted wind speed (AROME data) for four stations. Stations 11034 and 11044 are

in Vienna; station 11108 is in a village area in Gaschurn, Vorarlberg, and station 11126 is in the

region of Tirol on a mountain top named Patscherkofel with an altitude of 2251 meters. Fig 3.4

shows that wind is not normally distributed but skewed to the right, i.e., low wind speeds are

dominant. In all of the stations, the AROME model predicted a higher density of wind speed. We

see higher density for lower wind speed in station 11108.

Station 11126 is located in the Alpine region, where Föhn conditions prevail. Föhn (foehn

or foehn wind in English) frequently occurs in the Alps and is a warm, dry downslope wind on

the lee side of mountain ranges (see Fig 3.3). When it blows, the leeward mountain slope’s

temperature rises; the topography of mountainous regions forces the air to flow uphill, which leads

to the formation of clouds and often leads to precipitation on the windward side of the mountain.

Thereby, the air loses its moisture and gains heat. Turbulence over the mountain removes moisture

from the air and increases its temperature. Hence, the now dry air flows downslope on the lee

side and is heated by solar radiation (adiabatic warming). Föhn can be very turbulent and gusty

and, thus, remixes the air of valleys if it breaks through the inversion layer [Heimann et al. 2007;

AFAC Research Dissemination Pilot Study 2012]. This weather phenomenon can cause faster

wind speed. As we see in the Fig 3.4, observation wind speed shows wind speed even more than

35 m/s, which is much faster than other stations. Both data-sets, AROME, and Observation were

from 2015-01-01 until 2017-01-31.
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Table 3.3: Selection of 28 stations: number of attributes for AROME and Observation data (OBS). In the State
column, the words represent: OOE: Oberösterreich , NOE: Niederösterreich, WIE: Wien, VBG: Vorarlberg, TIR:
Tirol, BGL: Berchtesgadener Land, KNT: Kärnten, STMK: Steiermark, SAL: Salzburg.

Station Station Name State Altitude (m) AROME OBS
11007 KOLLERSCHLAG OOE 714 428,254 155,933
11012 KREMSMÜNSTER OOE 382 428,254 155,909
11025 WEITRA NOE 572 428,254 155,942
11034 WIEN-INNERE STADT WIE 177 428,254 155,930
11035 WIEN-HOHE WARTE WIE 198 428,254 155,883
11040 WIEN-UNTERLAA WIE 200 428,254 155,919
11042 WIEN-STAMMERSDORF WIE 191 428,254 155,923
11044 WIEN-JUBILÄUMSWARTE WIE 450 428,254 155,921
11070 KREMS NOE 203 428,254 155,805
11080 WIEN-MARIABRUNN WIE 225 428,254 155,934
11090 WIEN-DONAUFELD WIE 160 428,254 155,645
11101 BREGENZ VBG 424 428,254 155,951
11108 GASCHURN VBG 976 428,254 155,936
11126 PATSCHERKOFEL TIR 2251 428,254 155,918
11170 LINZ NOE 612 428,254 155,929
11180 RAX/SEILBAHNBERGSTATION NOE 1547 428,254 155,915
11198 GÜSSING BGL 215 428,254 155,941
11216 KANZELHÖHE KNT 1520 428,254 155,898
11246 FÜRSTENFELD STMK 271 428,254 155,911
11273 GMÜND KNT 738 428,254 155,929
11290 GRAZ-UNIVERSITÄT STMK 367 428,254 155,884
11320 INNSBRUCK-UNIV. TIR 578 428,254 155,897
11344 KOLM SAIGURN SAL 1626 428,254 155,775
11346 RAURIS SAL 934 428,254 155,928
11358 BAD MITTERNDORF STMK 814 428,254 155,925
11380 REICHENAU/RAX NOE 488 428,254 155,929
11383 SEMMERING NOE 988 428,254 155,924
11384 HIRSCHENKOGEL NOE 1318 428,254 155,924
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Figure 3.4: Histograms of Observation and AROME wind speed for stations 11034, 11044, 11108, 11126.

3.2.2 Dealing with Missing Values

SVR cannot control missing values in the data and need to be handled. Data containing missing

values is usually due to machine failure, routine maintenance, and human errors. Both AROME

and Observation data had missing values filled with −999 or −998 values. These values impact

the wind speed predictions and should be converted to an appropriate value acceptable by SVR.

Fig 3.5 shows the percentage of missing values for each column. The pressure column from

AROME data had no entries, and we removed this column. Other columns with missing values

were transformed into no value first in order to apply different missing values methods, like

dropping and imputation.

Dropping:

Drop the rows that have missing values. Dropping missing values is sub-optimal because by

dropping observations, we lose information. The most significant advantage of this method is its

simplicity. It is always reasonable to use it when the number of dropped observations is relatively

small compared to the total [C.M. et al. 2016].
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(a) Missing values of each column for Observation data

(b) Missing values of each column for AROME data

Figure 3.5: Percentage of missing values of each column for AROME and Observation data.
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Imputation:

Impute the missing values based on other observations. Imputing missing values is also

sub-optimal because it reduces variability, which can leads to a loss in information, no matter how

sophisticated our imputation method is. However, the imputation method, i.e., the Median, is

more robust in the presence of outliers in the observed data.

Missing values imputation is performed through the random forest (RF) algorithm, then the

performance of the RF algorithm using different techniques, Constant, Mean, Median and Most

Frequent were compared. The imputation performance of RF is computationally efficient and,

therefore, not computationally time-consuming due to the use of high dimensional data-set.

• Constant: Replace missing values with a value. It can be with strings or numeric data. In

this project, zero used for the fill-value.

• Mean: Replace missing values using the mean along each column.

• Median: Replace missing values using the median along each column.

• Most Frequent: Replace missing values using the most common value along each column.

Wind speed is the only feature from AROME data that we consider for further analysis, and

because there are no missing values in the wind speed feature, handling missing value was not

needed. For Observation data, the result of handling missing values shows in Fig 3.6 that we get

better forecast results, i.e., less mean square error (MSE), by dropping the missing values. Here is

how we proceeded with the imputation and the evaluation in Observation data:

1. Select all of the data-set including missing values.

2. Reconstruct the missing data using the mentioned imputation methods.

3. Apply RF algorithm on the altered data-sets with the artificially imputed missing

values using different methods (with five-fold cross-validation) and compute the

forecasting performance of each method (MSE).

4. Plot the MSE for each method, which is shown in Fig 3.6.
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Figure 3.6: Comparing missing values methods for Observation data.

Fig 3.6 indicates that dropping missing values yields sufficiently reasonable results, and

additionally it is very fast. However, by dropping missing values 8 stations (particularly 11036,

11126, 11180, 11343, 11344, 11358, 11380, 11383) were excluded from data-set. In Table 3.4

we can see station numbers 11383, 11380, 11358, 11343, 11344, 11126, 11180 are completely

empty in dew temperature and soil temperature columns. The correlation between features was

checked in order to preserve these stations. Dew temperature and soil temperature have a high

correlation (more than 80%), with air temperature. The heat-map plot for stations 11383 and

11343 is shown in Fig 3.7 and Fig 3.8 respectively. The color bar next to the figures represents

the correlation between features on the color scale. High correlation tends to dark blue, and low

correlation tends to light yellow color. Fig 3.7 shows the correlation of features in station 11343.

We see air temperature is almost 80% correlated with dew temperature, and in Fig 3.8, station

11383 has a more than 90% correlation between air temperature and soil temperature. The same

behavior has been seen in the rest of the stations. These results indicate that by eliminating soil

temperature and dew temperature, simplify the data-set, and are able to keep the aforementioned
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Figure 3.7: Correlation in station 11343.

target sites. On the other hand, station number 11036 has 100% empty gust direction, and

station number 11343 has 63.05% missing values in precipitation.

After excluding stations 11036 and 11343, and removing soil temperature and dew temperature

from data-sets, the highest missing values reduced to 0.6% and 0.2% which is for precipitation in

Observation and AROME data respectively. Dropping the missing values is sufficient, because

there is yet enough data with various dates and times for modeling the SVR method, and doing

so much is beyond the scope of the thesis.

Both AROME and Observation data had 30 stations at first, but due to missing-values issues,

we neglect station 11343, 11036 in our further analysis, and continued with 28 stations.
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Figure 3.8: Correlation in station 11383.

3.2.3 Feature Scaling

Before the model training stage, the data processed by the SVR algorithm should be normalized

to the [0,1] interval. The main advantage of scaling is that it avoids attributes in higher numeric

ranges, dominating those in smaller numeric ranges. Feature scaling avoids numerical difficulties

during the calculation because kernel functions for SVR usually depend on the inner products of

feature vectors [Hsu, Chang and C. J. Lin 2003]. It enables the algorithm to converge faster.

Experiments using SVR with and without scaling methods were conducted. The scaling

methods are standard-scaling, min-max-scaling, robust-scaling, and normalizing.
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Table 3.4: Percentage of missing values in Observation data.

Station dew temperature gust direction precipitation soil temperature
11383 100% – – –
11380 100% – – –
11358 100% – – 100%
11090 25.69% – – –
11036 – 100% – –
11343 – – 63.05% 100%
11384 – – – 46.71%
11344 – – – 100%
11126 – – – 100%
11044 – – – 96.78%
11180 – – – 100%

Standard-scaling:

One common and widely used scaling method is standard-scaling [A. Y. Lin, Zhang and Selpi

2017]. The idea is to standardize features by removing the mean and scaling to unit variance. For

a given data-set X, a standard-scaling data-set (XSS) is typically done via the following equation:

XSS = X − mean(X)
StandardDeviation(X) (3.1)

Min-Max-scaling:

It rescales the data-set X to a fixed range, usually [0,1] or [-1,1], according to

XMMS = lb + X − min(X)
max(X) − min(X)(ub − lb) (3.2)

Where lb is a lower bound of the range, ub is an upper bound, and XMMS is the normalized data-set.

Robust-scaling:

It is based on the median and the interquartile range (IQR). IQR is the range between the 1st

quartile (25th quantile) and the 3rd quartile (75th quantile). If the data-set X contains many
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outliers, robust-scaling often gives better results. Robust-scaling is defined as

XRS = X − median(X)
IQR

(3.3)

Where XRS is the normalized data-set.

Normalizing:

It rescales the vector for each sample to have a unit norm, independently of the distribution of

the samples. Based on the l2 (or Euclidean) norm with data-set X of length n, we obtain the

normalized data-set ||X||2 by:

||X||2 =
⌜⃓⃓⎷ n∑︂

i=1
X2

i (3.4)

Fig 3.9 shows that Observation data with the scaled feature has better results with min-max-

scaling and normalized-scaling. Furthermore, AROME data with min-max-scaling shows a better

outcome for scaling the wind speed feature in Fig 3.10. Thus, the normalizing method was used

as a scaling method for all further experiments performed in this thesis.

3.3 Feature Engineering

Choosing the right features to train a model can boost the forecasting performance. Creating

new features by combining or dividing existing ones is a basic but powerful feature engineering

technique. In time-series data, we must choose the best variables as input to predict future time

series. In this thesis, lag features were created for both AROME and Observation data. Creating

lag features is a classical way for time series forecasting. We use a random number of previous

time steps (t-1, t-2, ...) to predict the next time steps (t+1, t+2, ...). To create the shift or lag

features, we used PostgreSQL, for faster computations. For Observation data, new features were

generated based on current Observation features: wind speed, wind direction, gust, gust direction,

pressure, reduced pressure, air temperature, precipitation, humidity, and sunshine duration. The

new features were shifted until the previous 2 hours with 10 minutes frequency, e.g., past 10

minutes, past 20 minutes, past 30 minutes, past 40 minutes, past 50 minutes, past 60 minutes,

past 70 minutes, past 80 minutes, past 90 minutes, past 100 minutes, past 110 minutes and past

120 minutes. Therefore, we generate 120 new features. Table 3.5 shows an example of the lag
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Figure 3.9: Comparing different scaling methods for Observation data.

features for wind speed. Shifting the values creates NaN (unknown) in some entries.

Table 3.5: An example of the new features with lags for Observation data. The column names refer to: ObsTimeStamp: observed
time-stamp, which is the combination of observation date and observation minute columns, ObsWindSpeed: observed wind speed,
Past10mWindSpeed: past 10 minutes observed wind speed, Past20mWindSpeed: past 20 minutes observed wind speed.

ObsTimeStamp ObsWindSpeed Past10mWindSpeed Past20mWindSpeed
2015-01-01 00:10:00 2.6 NaN NaN
2015-01-01 00:20:00 2.8 2.6 NaN
2015-01-01 00:30:00 3.4 2.8 2.6

The first 11 rows were discarded because of NaN entries (i.e., assigned to not a numeric
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Figure 3.10: Comparing different scaling methods for AROME data.

value) while creating lag features, because we do not have enough wind speed data for observed

timestamp from 2015-01-01 00:10:00 until 2015-01-01 02:00:00 in our data-set, for the past 10

minutes wind speed Past10mWindSpeed until past 2 hours wind speed past2hWindSpeed. After

removing NaN values, the first time-stamp in the new data starts from 2015-01-01 02:10:00.

The wind speed feature for 48 hours in the future was shifted (t+1, t+2, ..., t+48) and added to

the data-set.

For AROME data, merely wind speed is used for creating lag features. Forty-eight columns

were added to the data-set, based on the calculation of wind speed with 4 hours delay. AROME

model needs 4 hours after model initialization before it is available for further use. It means when
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AROME starts a forecast run at 00 UTC, it takes ∼ 3.XX hours to finish, and also 1 hour extra

for data reduction and transferring. As we know, AROME initial forecast runs are issued every

three hours at 00, 03, 06, 09, 12, 15, 18, 21 UTC, but they are only available four hours after

their initial time, at 04, 07, 10, 13, 16, 19, 01 UTC. The finishing time of lagged AROME features

is shown in Table 3.6. The number xx UTC in AROME specifies the run, which is eight times per

day [Papazek n.d.].

Table 3.6: An example of finishing and initialization times for AROME model run.

time of availability time of initialization
04:15 - 04:45 UTC 00:00 UTC
07:15 - 07:45 UTC 03:00 UTC
10:15 - 10:45 UTC 06:00 UTC
13:15 - 13:45 UTC 09:00 UTC
16:15 - 16:45 UTC 12:00 UTC
19:15 - 19:45 UTC 15:00 UTC
22:15 - 22:45 UTC 18:00 UTC
01:15 - 01:45 UTC 21:00 UTC
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Chapter 4

Modeling

4.1 Machine Learning Workflow

The diagram in Fig 4.1 shows the machine learning workflow of this thesis for one station. The

same was carried out for all stations. The machine learning steps used in this thesis are:

1. Gathering data

2. Data pre-processing

3. Select the best model

4. Training and testing the model

5. Evaluation

Gathering data and data pre-processing steps were already discussed in Chapter 3. In this

chapter, we discuss the process of selecting the best model.

4.2 Software Details and Environment

For this thesis, python version 3.6 was used as the main programming language. PostgreSQL

version 10.6 was used to store the data-sets in order to archive lagged features in Observation and

AROME data, joining the two data-sets, and calculating the Persistence and AROME models. Ob-

servation and AROME original data were consisted of separated .asc format files for each time series

and each day of each month from 02015-01-01 until 2017-01-31. To merge the time series files
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Figure 4.1: Machine learning workflow.

into one file and convert to a .csv format file, scripting in Bash was used. As an operating system,

Linux - Ubuntu-based version 18.4 - was used, with 12 CPUs and 96 Gigabyte RAM. In addition, we

employed Microsoft Azure and the Google cloud to run the SVR method for each lead time for all

stations, due to the high dimensional data and lack of high-performance systems. For using cloud

systems, pre-processed data were used due to data privacy. The python modules that were used are:
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pandas to perform data manipulation

numpy is the fundamental package for scientific computing with python

sklearn for featuring regression algorithms including support vector machines, scaling the

data for pre-processing, impute the missing values, feature selection methods, calculating

evaluation metrics and hyper-parameter optimization techniques

statistics to use the mean function

matplotlib, seaborn and plotly for plotting and figures

time to record the time during training and testing

xgboost for the SHAP method. Before one can apply SHAP for feature selection, it is

necessary to convert the data to a data matrix format, because of memory efficiency and

training speed.

SHAP for feature selection

scipy to calculate the Spearman’s correlation metric

psycopg2 is the PostgreSQL database adapter for the python

sqlalchemy creates a connection to the database and reads the data from the database

with SQL queries.

4.3 Training and Testing Data-set

It was necessary to join the two AROME and Observation data for each station. The final number

of features is 133 in each station, with a combination of shifted and original features.

For faster computation, it is helpful to use cross-validation, which divides the training-set into

two sets and validates the model in one set and builds the model in another one. To keep the

model unbiased, we used cross-validation just for hyper-meter tuning and trained the models with

the full training-set.

The test data contains a time-range from 2017-01-01 until 2017-01-31 (January) for all of the

selected stations.

4.4 Evaluation Metrics

In weather forecasting, the forecast performance of different models is evaluated by multiple

metrics. For feature selection and hyper-meter tuning, accuracy, MSE (mean square error), and
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bias were used as evaluation metrics. We used RMSE (root mean square error) for final testing

among previous metrics and Spearman’s correlation to measure regression performances.

Accuracy:

It indicates the goodness of fit and is usually denoted as R2, which computes the determination

coefficient. It represents the proportion of variance (of y), which has been explained by the model’s

independent variables. The best score is 1.0. The result can be negative because the model can

be arbitrarily worse. If yî is the predicted value of the i sample and yi is the corresponding real

value for total n as the total number of samples, the estimated R2 is defined as:

R2(y, ŷ) = 1 −

n∑︂
i=1

(yi − yî)2

n∑︂
i=1

(yi − yī)2
(4.1)

where ȳ = 1
n

n∑︂
i=1

yi.

MSE (Mean Square Error):

This function computes a metric corresponding to the expected value of the squared (quadratic)

error or loss. MSE of zero indicates a perfect model with no error. If yî is the predicted value of

the i sample, and yi is the corresponding real value, then the MSE estimated over n as the total

number of samples is defined as:

MSE(y, ŷ) = 1
n

n∑︂
i=1

(yi − yî)2 (4.2)

RMSE (Root Mean Square Error):

It is the square root of the MSE. It has a stronger influence on higher errors than smaller

errors, which may be useful if higher errors are especially undesirable. The perfect score is 0.

RMSE(y, ŷ) =
⌜⃓⃓⎷ 1

n

n∑︂
i=1

(yi − yî)2 (4.3)
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Bias:

Bias measures the mean of the difference between the forecasts and the observations. An

estimator or a model with zero bias is called unbiased. An unbiased estimator is preferable to

a biased estimator, but in practice, biased estimators are frequently used, generally with small

bias [Hardy 2002]. A bias value other than zero suggests the model’s tendency to be over-fitted

(negative bias) or under-fitted (positive bias). If yî is the predicted value of the i sample, yi is the

corresponding real value, and n the total number of samples, then the bias is defined as:

BIAS(y, ŷ) = 1
n

n∑︂
i=1

(yi − yî) (4.4)

Spearman’s Correlation:

It assesses how well the relationship between two variables, the real and the predicted values,

can be. Spearman’s correlation assesses monotonic relationships (whether linear or not) [Fieller,

Hartley and Pearson 1957]. A perfect spearman’s correlation (or identical for a correlation of +1)

means a similar rank between the two variables, and a dissimilar (or fully opposed for a correlation

of −1) rank between the two variables indicates a perfect negative association. Zero correlation

indicates no association between the true and the predicted variables. Spearman’s correlation is

often denoted as rs. If yî is the predicted value of the i sample, yi is the corresponding true value,

and n the total number of samples, then rs can be computed using the formula

rs(y, ŷ) = 1 − 6 ∑︁n
i=1 d2

i

n(n2 − 1) (4.5)

where di = yi − yî.

4.5 SVR Configuration

Kernel Function:

Among the three standard kernels mentioned in Chapter 2, we must select one kernel, then

the penalty parameter C and other kernel parameters. We carry out the following steps:
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1. Run the three kernels for station 11007 for 14 lead times (1, 2, 3, 4, 5, 6, 8, 10, 12,

15, 18, 24, 36, 48), then select the best two kernels.

2. Run the best two kernels for the rest of the stations and select that one kernel that

performs best in all stations.

The gamma parameter is the kernel coefficient for radial basis function (RBF) and sigmoid,

in which the default value is scale. The scale value can be calculated like in Equation 4.6, where

n_features is the number of features, X is the data-set and .var() is a numpy variance function,

which computes the variances for each individual feature. However, gamma can take the value of

any float number, and for this part of the thesis, gamma = 100 was used. For linear kernel and

other parameters of RBF, and sigmoid, the default parameters were used.

scale = 1/(n_features ∗ X.var()) (4.6)

In general, in most short-range wind speed forecasting, RBF kernel is a reasonable first choice,

because it can handle the non-linearly relations between the labels and the attributes. On the other

hand, with a penalty parameter C, the linear kernel can have the same performance as the RBF

kernel with parameters (C and gamma) since the linear kernel is the special case of RBF [Keerthi

and C.-J. Lin 2003]. Also, the sigmoid kernel can have the same behavior as RBF for specific

parameters [H.-T. Lin and C.-J. Lin 2003]. From the first run, we noticed that th polynomial

kernel does not converge with our data-set, and we neglected it from further experiments. Table

4.1 shows that the sigmoid kernel surpassed by linear and RBF kernels.

One of the biggest challenges was to reduce the computational complexity and run-time. Due

to high dimensional data, and lack of a high-performance environment, we focused on 14 selected

lead times with more time steps in nowcasting and fewer in short-range. The average of R2, MSE,

bias, and the run-time for training the SVR model are shown in Fig 4.2. Our results show that for

the second run, the linear kernel had the best performance in 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 24,

36, 48 lead times. As we aimed to select the best kernel, the linear kernel was chosen for further

analysis. The reason for selecting a linear kernel is when the number of features increases, the

problem is more likely to be linearly separable, and one may not need to map the data. However,

linear kernel function corresponds to a dot product in the feature space, where the number of

features can be much larger than the number of dimensions of the input space (in principle even
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Table 4.1: Comparison of three kernels, linear, RBF, and sigmoid for 14 lead times - station 11007. Best results of
each score are printed bold, worst are underlined.

Lead-Time Linear RBF Sigmoid
R2 MSE Bias R2 MSE Bias R2 MSE Bias

1-h -30.02 8.37 -2.14 -14.95 7.40 0.98 -17.63 7.57 1.06
2-h -9.76 7.06 -1.86 -14.99 7.39 0.98 -17.69 7.57 1.06
3-h -0.41 6.45 -1.72 -15.01 7.39 0.98 -17.74 7.57 1.06
4-h 16.63 5.35 -1.47 -15.00 7.39 0.98 -17.77 7.56 1.06
5-h 25.32 4.79 -1.32 -15.03 7.38 0.98 -17.81 7.56 1.06
6-h 35.86 4.11 -1.09 -15.01 7.38 0.98 -17.80 7.56 1.06
8-h 48.72 3.29 -0.71 -15.00 7.38 0.98 -17.84 7.56 1.07
10-h 43.59 3.61 -15.07 -0.84 7.37 0.98 -17.93 7.55 1.07
12-h 41.22 3.76 -0.79 -15.12 7.37 0.98 -18.01 7.55 1.07
15-h 27.5 4.64 -0.95 -14.95 7.36 0.97 -17.93 7.55 1.07
18-h 6.95 5.95 -1.31 -14.99 7.35 0.98 -18.05 7.54 1.07
24-h 37.48 3.99 -0.72 -15.04 7.34 0.98 -18.11 7.54 1.07
36-h 48.65 3.29 -0.49 -14.30 7.34 0.95 -17.23 7.52 1.05
48-h 23.20 5.00 -1.17 -12.87 7.35 0.91 -15.81 7.55 1.01

infinite). Using the linear kernel is good enough, and one only searches for the parameter C [Hsu,

Chang and C. J. Lin 2003]. In the next section, we optimize the parameter of C by applying an

optimization algorithm to the model training stage to obtain higher forecasting accuracy.

Figure 4.2: Comparison of different metrics for linear and RBF kernels for all stations.
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Hyper-parameter Tuning:

Hyper-meters are settings that we can use to control the algorithm’s behavior. The values of

hyper-parameters are not directly adopted within the learning algorithm itself.

In SVR, we can tune six hyper-parameters: kernels, C (for all kernels), ϵ (for all kernels),

sigma (for radial kernel), scale, and degree (only for polynomial kernel). Indeed, the selection of

the optimal parameter for a given data-set is an important step to configure SVR since it can

cause significant differences in forecast performance.

Scikit-learn library offers two popular methods for fine-tuning the hyper-parameters, Grid

Search and Random Search. One approach for sampling the search candidates is Grid Search, and

it can be used for tuning all hyper-meters mentioned above. Grid Search exhaustively considers all

the parameter combinations specified in a grid of parameter values. Hence, a high computational

effort is required for large grids. Although such optimization strategy explored quite a large set of

parameter combinations, it proceeded by force with predefined steps and did not try to exploit

the information collected at best while performing. Moreover, it is computationally expensive

[Corazza et al. 2010].

By contrast, Random Search sets up a grid of hyper-parameter values and uses random

combinations of hyper-parameters to find the best solution for the model. The chances of finding

the optimal parameter are higher in Random Search because of the random search pattern, and

also for lower dimensional data since the time taken to find the right set is less. Although Grid

Search is computationally too expensive, it is more accurate than Random Search. Thus, we

decided to continue with Grid Search as the hyper-parameter tuning technique for this thesis.

To decrease the length of CPU time for training the linear kernel, we reduced the number of

features by using feature selection techniques (See details in section 4.6). We should also note

that the cross-validation procedure’s random splits can have small differences in score results.

Different variations of the training-set can be done by setting the number of cross-validation (CV)

iterations in Grid Search. The cross-validation procedure can prevent the over-fitting problem

[Hsu, Chang and C. J. Lin 2003] and give us a less biased estimate of the error on the testing-set.

Five-fold cross-validation was used for hyper-meter tuning. It first divides the training-set into five

subsets of equal size. Sequentially one subset is for testing, and the SVR trained on the remaining

four subsets. Grid Search picks the best cross-validation accuracy for each C value.

The linear kernel takes two parameters, C and ϵ. C is the regularization parameter which
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controls the softness of the boundary margin. Lower values for C draws smoother decision

boundaries (less flexible), whereas higher values give more rugged boundaries that can fit the

training data better (more flexible) [Academy n.d.] and it must be strictly positive. The parameter

ϵ defines a margin of tolerance. It affects the smoothness of the SVR’s response, and the number

of support vectors. Both the complexity and the generalization capability of the network depend

on its value [Horváth 2003]. Intuitively, the value of ϵ can affect the number of support vectors

used to construct the regression function. The bigger ϵ is, the fewer support vectors are selected.

On the other hand, bigger ϵ-values result in more flat estimates. Hence, both C and ϵ-values

affect model complexity (but in a different way) [Cherkassky and Ma 2004]. The default value

for each parameter is C = 1 and ϵ = 0.1. For the coarse grid, different values for C and ϵ were

chosen.

C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]

ϵ = [0, 0.1, 0.2, 0.3, 0.5, 0.8, 1]

Due to computational performance issues, we were not able to complete the Grid Search (i.e.,

to optimize the parameters for 1-hour forecasting, it took 146 hours). The run-time analysis was

mandatory in this phase. Run-time analysis estimates and anticipates the increase in running

time (or run-time) of an algorithm as its input size increases [Wikipedia n.d.]. Each training-set

contains more than 145, 000 instances. One idea was to reduce the number of rows by dividing

each training-set into years, tune each year on a coarse grid, and then based on the performance

scores, tune the full data set again on a finer grid.

The years 2015 and 2016 have almost the same size for training (≈ 52, 600 rows), but the

year 2017 has less training size (≈ 46, 300 rows) because we use January 2017 as a testing-set.

Now each year takes 5 - 6 hours for Grid Search to find the optimized parameters.

Fig 4.3 shows the optimized parameters for each year, and for 12 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12) lead times. The x-axis shows the ϵ parameters, and the y-axis shows the C parameters

in 2015, 2016, and 2017 plots. In 2015 and 2016, most of the lead times are optimized within

C = 1, ϵ = 10 (blue point), and in 2017 optimized parameters are C = 1, ϵ = 1 (orange point).

The bottom right plot shows the tuned parameters’ scores for the 12 lead times. From the plot,

we can see the scores decrease when lead times increase. It is possible to have more optimized

results in the first lead times than the others.

To limit the overall computational time, we decided to select a small number of grid values.

For the final grid search on the full data-set, the chosen grid is:
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Figure 4.3: Optimized C and ϵ for years 2015, 2016 and 2017 in 12 lead times in station 11007, and scores of
hyper-meters for three years.

C = [1, 10, 100, 1000]

ϵ = [1]

Generally, the best performing hyper-parameter combinations are limited to these grid choices.

Grid Search workflow to select the best parameters and retrain the model is shown in Fig 4.4.

4.6 Feature Selection

Feature selection is the process of selecting the most useful features in a data-set. It is a crucial

step in machine learning. The top reasons to use feature selection are to reduce the complexity of a

model, which makes it easier for interpretation, and to improve the accuracy of the model. Feature

selection reduces the dimensionality of the data and enables machine learning algorithms to be
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Figure 4.4: Grid Search workflow to find the optimized parameters of SVR.

trained faster. Another reason to use feature selection is the over-fitting problem. Over-fitting

problems or the curse of dimensionality occurs when the dimensionality of the feature space

increases. In this case, the number of configurations can grow exponentially, and thus the number

of configurations covered by an observation decrease. To avoid the curse of dimensionality, we

select only useful features. There are various methodologies to subset the feature space and

improve model performances, for example:

• Filter Method:

In the Filter method, the selection of features is based on their scores in various statistical

metrics. Various techniques, such as mutual information (MI), Pearson correlation, and

principal component analysis (PCA), were selected for applying the filter method. Fig 4.5

show the process of using the filter method.
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Figure 4.5: Overview of the filter method, adopted from [Kaushik n.d.].

• Wrapper Method:

As we see in Fig 4.6, wrapper methods can always select the best subset of features, but

because these methods must train the model, they are computationally expensive. It follows

a greedy search approach by evaluating all the possible combinations of features against the

performance measure.

Figure 4.6: Overview of the wrapper method, adopted from [Kaushik n.d.].

The most common examples of wrapper methods are recursive feature elimination and

forward feature selection. Due to the lack of access to a high-performance system, we did

not use the wrapper methods for feature selection.

• Embedded Method:

The embedded method is a combination of filter and wrapper methods. We use algorithms

that have their built-in feature selection methods like tree-based models. The shapely

additive explanation (SHAP) method was used as a feature selection technique from the

embedded method. Fig 4.7 shows how the embedded method works.

Figure 4.7: Overview of the embedded method, adopted from [Kaushik n.d.].
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Mutual Information:

Mutual information (MI) estimates mutual information for a continuous target variable. MI

between two random variables is a non-negative value, which measures the statistical dependency

between the variables [Cover and Thomas n.d.]. It is equal to zero if and only if two random

variables are independent, where higher values mean higher dependency [Kraskov, Stögbauer,

Andrzejak et al. 2003].

If we consider X as a feature matrix and Y as the target vector, the function M(X, Y )

returns the mutual information of each feature with the target variable. The function relies on

non-parametric methods based on entropy estimation from k-nearest neighbors’ distances. It

means that data is efficient (with k=1 we resolve structures down to the smallest possible scales),

adaptive (the resolution is higher where data are more numerous), and have minimal bias [Kraskov,

Stögbauer and Grassberger 2004; BC 2014].

The selected number of features are 5, 20, 50, 100. The number of neighbors to use for MI

estimation for continuous variables is three. The higher number of neighbors reduces the variance

of the estimation but could introduce a bias.

Table 4.2: Result of mutual information on 1-12 lead times of station 11007.

Number of features Accuracy(%) MSE Bias
5 features 24.52 4.84 -1.06
20 features 24.34 4.86 -1.07
50 features 28.22 4.56 -1.02
100 features 28.22 4.61 -1.12
All features (132) 23.26 4.92 -1.26

As we can see from Table 4.2, selecting 50 features with high MI has better results compared

to others.

Pearson Correlation:

Hereabouts, we use a correlation matrix based on the Pearson correlation. The correlation

coefficient has a range of values between -1 to 1. A value closer to 0 implies a weaker correlation

(exact 0 implying no correlation), a value closer to 1 implies a stronger positive correlation, and a

value closer to -1 implies a stronger negative correlation. We were selecting features with different
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correlation thresholds. We only selected n top features with correlate above 0.2, 0.5, and 0.8

with the target variable, and then we compared the results.

Table 4.3: Result of the Pearson correlation on 1-12 lead times of station 11007.

Number of features Accuracy(%) MSE Bias
>20 16.01 5.39 -1.06
>50 16.35 5.37 -1.08
>80 26.23 4.73 -1.10
All features (132) 23.26 4.92 -1.26

Table 4.3 shows that the remaining features after dropping the features which had more than

80% correlation between each other, performs better.

Principal Component Analysis:

Another feature selection method that we used is PCA. PCA is a linear dimensionality reduction

method using singular value decomposition of the data and projects it to a lower-dimensional

space [Scikit-Learn n.d.]. PCA is mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the highest variance by some scalar

projection of the data comes to lie on the first coordinate (called the first principal component),

the second-highest variance on the second coordinate, and so on [I.T 2002].

The principal component transformation associated with the singular value decomposition

(SVD) of X can be written as

X = P∆QT (4.7)

Here ∆ is an n-by-p diagonal matrix of singular values of X; P is an n-by-n matrix, the

columns of which are orthogonal unit vectors of length n called the left singular vectors of X; and

Q is a p-by-p whose columns are orthogonal unit vectors of length p and called the right singular

vectors of X [Abdi and Williams 2010].

We employed PCA with 20, 50, 80, and 100 components. From Table 4.4, we can see if we

keep 50 components from the data-set, the linear kernel performs better.

Shapely Additive Explanations:

Shapley additive explanations (SHAP) is a game-theoretic approach to explain the output
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Table 4.4: Result of PCA on 1-12 lead times of station 11007.

Number of Features Accuracy(%) MSE Bias
20 components 16.66 5.35 -1.15
50 components 27.81 4.63 -1.07
80 components 25.57 4.78 -1.18
100 components 26.03 4.75 -1.16
All features (132) 23.26 4.92 -1.26

of any machine learning model, and it is a subset of the embedded method. SHAP values are

defined as a unified measure of feature importance.

Let f be the original prediction model to be explained and g the explanation model. Here,

we focus on local methods designed to explain a prediction f(x) based on a single input x, as

proposed in [Ribeiro, Singh and Guestrin 2016]. Explanation models often use simplified inputs x′

that map to the original inputs through a mapping function x = hx(x′). Local methods try to

ensure g(z′) ≈ f(hx(z′)) whenever z′ ≈ x′.

Definition 1: Additive feature attribution methods

Have an explanation model that is a linear function of binary variables:

g(z′) = ϕ0 +
M∑︂

i=1
ϕiz

′
i (4.8)

where z′ ∈ {0, 1}M is the simplified input, M is the number of simplified input, and ϕi ∈ R

is the feature attribution for a feature i, the Shapley values.

Methods with explanation models according to Definition 1, attribute an effect ϕi to each

feature, and summing the effects of all feature attributions approximates the output f(x) of the

original model. SHAP is a model that follows the Definition 1.

Shapley regression values are feature importances for linear models in the presence of multicol-

linearity. This method requires retraining the model on all feature subsets S ⊆ F , where F is the

set of all features. It assigns an importance value to each feature that represents the effect on the

model prediction of including that feature. To compute this effect, a machine learning model fS∪{i}

is trained with that feature present, and another model fS is trained with the feature withheld.

Predictions from the two models then compared to the current input fS∪{i}(xS∪{i})-fS(xS), where

xS represents the values of the input features in the set S. Since the effect of withholding a

feature depends on other features in the model, the other differences are computed for all possible
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subsets S ⊆ F \ {i}. The Shapley values are then computed and used as feature attributions

[Lundberg and Lee 2017]. They are a weighted average of all possible differences:

ϕi =
∑︂

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i}) − fS(xS)] (4.9)

For Shapley regression values, hx maps 1 or 0 to the original input space, where one indicates

the input is included in the model, and 0 indicates exclusion from the model. If we let ϕ0 = fϕ(ϕ),

then the Shapley regression values match Equation 4.8 and are hence an additive feature attribution

method. The output of Equation 4.8, is the Shapley value of the features which are included in

the model [Molnar n.d.]. Historical accuracy, missingness, and consistency will be satisfied if and

only if ϕi are Shapley values defined in Equation 4.9.

Table 4.5: Average results of SHAP for 1-12 lead times in station 11007.

Number of Features Accuracy(%) MSE Bias
5 features 28.62 4.58 -0.99
20 features 31.41 4.40 -1.04
50 features 29.21 4.54 -1.09
80 features 26.67 4.71 -1.16
100 features 24.93 4.82 -1.21
All features (132) 23.26 4.92 -1.26

After applying the SHAP algorithm, 5, 20, 50, 80, and 100 important features were selected

and compared. After selecting a different number of important features for modeling the linear

kernel from SVR, Table 4.5 shows that keeping 20 most important features performs better than

the others.

In the above results, it is evident that an optimized feature selection improves the predictions.

To select the 20 most important features, we have to look at the importance of each lead time

individually. Selecting important features in predicting wind speed for the next 1, 2, 6, and 12

hours will be discussed below.

The wind speed forecasting in the next 1, 2, 6, and 12 hours shown in Fig 4.8 is driven by

a set of features. The SHAP summary plot shows how far features contribute to pushing the

output value from the original value (the average of the model output over the training-set) to the

predicted value. Features pushing the wind speed prediction higher are shown in red, those pushing

the wind speed prediction lower are in blue. The magnitude of impact sorts each feature, and

the features with the most significant impact are labeled. We can visualize features importance
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(a) + 1-hour

(b) + 2-hours

(c) + 6-hours

(d) + 12-hours

Figure 4.8: SHAP summary plots for 1, 2, 6 and 12 lead times.

such as Shapley values as "forces". In the plot, each Shapley value is an arrow that pushes the

prediction to increase (positive value) or decrease (negative value). These forces balance each

other out at the actual prediction of the data instance [Molnar n.d.].

Fig 4.8a shows observed_wind_speed and observed_gust (See the description in Table 3.1)

have the highest impact in our prediction, but both of them push the prediction to the lower value.

Hence, if our base value wind speed is 1.971, both observed_wind_speed and observed_gust try

to lower the wind speed prediction to 0.74. Nevertheless, this is the best we can get for a 1-hour

ahead prediction. The same can be observed in Fig 4.8b, which is for a 2-hours ahead prediction.

However, results in Fig 4.8c and Fig 4.8d indicate that observed_timestamp feature tries to push

the output value to the base value, which explains the effect of specific times in our prediction. In

46



addition arome_6hplus_wind_speed (lag feature for AROME data, predicted wind speed for the

next 6 hours) and arome_12hplus_wind_speed (lag feature for AROME data, predicted wind

speed for the next 12 hours) have more importance compared to observed_wind_speed in 1-hour

and 2-hours forecasting. It seems when lead times increase, the impact of AROME data is more

than Observation data. Also, we see in Fig 4.8d, for a 12-hours ahead prediction, the output

value is 1.76. The wind speed prediction increasing effects such as observed_air_temperature is

offset by decreasing effects such as arome_12hplus_wind_speed.

The 20 most important features for 1 and 2 hours lead time are shown in Fig 4.9 and for 6

and 12 hours lead time in Fig 4.10. The idea behind the SHAP feature importance plot is simple:

features with large absolute Shapley values are important.

In this plot, we see the sorting features by decreasing importance. The x-axis shows the mean

absolute Shapley values. In Fig 4.9a, for 1-hour ahead wind speed prediction, observed_wind_speed

is the most important feature, changing the prediction on average by 160 percentage points (1.6

on the x-axis). On the other hand, arome_12hplus_wind_speed in Fig 4.10b has the effect of

almost 1.04 for 12-hours ahead prediction. From the importance plots, we can see it is better

to consider the effect of arome_XXhplus_wind_speed feature in the wind speed prediction for

higher lead times.

As we can see from Fig 4.9 and Fig 4.10, each lead time shows different optimized features,

and all 28 stations may have the same behavior. However, it is too time-consuming to select

the best features for 48 lead times in 28 stations for the final run. The main idea followed in

this thesis was to choose a unique list of optimized features for each lead time to decrease the

computational running time and also for better interpretability. By preliminary experiments, Table

4.6 shows the defined list of the 20 most important features for the target stations.
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(a) + 1-hour

(b) + 2-hours

Figure 4.9: SHAP feature importance plots for 1 and 2 hours lead times
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(a) + 6-hours

(b) + 12-hours

Figure 4.10: SHAP feature importance plots for 6 and 12 hours lead times
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Table 4.6: List of 20 most important features. * All wind parameters are observed at 10 meters above the surface,
and all temperature parameters are observed at 2 meters above the surface.

Features Description
1 observed_timestamp observation day + observation minutes
2 observed_wind_speed observed wind speed*
3 observed_gust observed gust
4 past_2h_observed_air_temperature past 2 hours observed air temperature*
5 observed_reduced_pressure observed reduced pressure
6 observed_pressure observed pressure
7 past_2h_observed_humidity past 2 hours observed humidity
8 observed_air_temperature observed air temperature*
9 observed_sunshine_duration observed sunshine duration
10 past_2h_observed_pressure past 2 hours observed pressure
11 past_2h_observed_sunshine_duration past 2 hours observed sunshine duration
12 observed_humidity observed humidity
13 past_1h50m_observed_humidity past 1 hour and 50 minutes observed humidity
14 observed_wind_direction observed wind direction*
15 past_10m_observed_air_temperature past 10 minutes observed air temperature*
16 past_2h_observed_wind_direction past 2 hours observed wind direction*
17 past_2h_observed_reduced_pressure past 2 hours observed reduced pressure
18 past_10m_observed_gust past 10 minutes observed gust
19 past_1h50m_observed_air_temperature past 1 hour and 50 minutes observed air temperature*
20 past_1h40m_observed_air_temperature past 1 hour and 40 minutes observed air temperature*
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By 20 features and arome_XXhplus_wind_speed being added in each lead time, we obtained

a total of 21 features for the hyper-parameter tuning and our final SVR model. The choice of

features (feature selection) may have an impact on which hyper-parameters for our algorithm

are optimal, and which hyper-parameters we select for our algorithm may have an impact on

which choice of features would be optimal. The best solution is to make the feature selection

simultaneously with hyper-parameter tuning to achieve high performance and reduce complexity.

1. Feature selection with a decently configured machine learning algorithm significantly

has a high impact on our performance. Finding the best kernel in section 4.5, improves

having a more configured model to find the best selection of features.

2. Tuning hyper-parameters with the features selected in the step above. A list of good

feature set increases the chance of having more optimized hyper-meters.

Feature selection is more time consuming than hyper-parameter tuning. With an optimized

feature selection, it is sufficient to apply a coarse grid for a hyper-parameter search.

To evaluate the SVR performance, we compared the forecasting results with two baseline

models, the Persistence model, and the AROME model. Both models have evolving wind speed

values, which is regressed on its own lagged prior values. The purpose of creating new features

(lagged wind speed) is to make the model fit the data as well as possible.

4.7 Baseline Models

4.7.1 Persistence Model

One of the simplest methods for predicting time series is the so-called Persistence model. Per-

sistence implies that future values of the time series are calculated on the assumption that

conditions remain unchanged between current observation time and the later time [F.M.Coimbra

and T.C.Pedro 2013]. A straightforward implementation of the Persistence model for multi-step

ahead prediction is:

ŷ(ti) = y(t0) (4.10)

for i = 1, 2, ,3 , ... , 48 and t0 as initial time.
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Multi-step ahead prediction by means is to predict observed wind speed for 48-hours ahead (in

this case, 43-hours). The Persistence forecast may be the best possible model for nowcasting. An

example of creating the Persistence model is provided in Table 4.7. The Persistence model can be

easily generated. We assume the wind speed to remain constant for all forecasting hours of the

run.

Table 4.7: Persistence model

Persistence model time forecast hour Observed time
2015-01-01 03:00:00 +1 2015-01-01 03:00:00
2015-01-01 04:00:00 +1 2015-01-01 04:00:00
2015-01-01 03:00:00 +2 2015-01-01 03:00:00
2015-01-01 04:00:00 +2 2015-01-01 04:00:00
2015-01-01 03:00:00 +43 2015-01-01 03:00:00
2015-01-01 04:00:00 +43 2015-01-01 04:00:00

4.7.2 AROME Model

Table 4.8: AROME model

AROME model time forecast hour AROME computational time
2015-01-01 03:00:00 +1 2015-01-01 00:00:00 (+4h)
2015-01-01 04:00:00 +1 2015-01-01 00:00:00 (+5h)
2015-01-01 05:00:00 +1 2015-01-01 00:00:00 (+6h)
2015-01-01 06:00:00 +1 2015-01-01 03:00:00 (+4h)
2015-01-01 03:00:00 +2 2015-01-01 00:00:00 (+5h)
2015-01-01 04:00:00 +2 2015-01-01 00:00:00 (+6h)
2015-01-01 05:00:00 +2 2015-01-01 00:00:00 (+7h)
2015-01-01 06:00:00 +2 2015-01-01 03:00:00 (+5h)
2015-01-01 03:00:00 +43 2015-01-01 00:00:00 (+46h)
2015-01-01 04:00:00 +43 2015-01-01 00:00:00 (+47h)
2015-01-01 05:00:00 +43 2015-01-01 00:00:00 (+48h)
2015-01-01 06:00:00 +43 2015-01-01 03:00:00 (+46h)
2015-01-01 03:00:00 +44 2015-01-01 00:00:00 (+47h)
2015-01-01 04:00:00 +44 2015-01-01 00:00:00 (+48h)
2015-01-01 05:00:00 +44 2015-01-01 00:00:00 (+49h)

AROME model is also fitted to time series data for a better understanding of the data or

forecasting future points in the series. For the AROME model, shifting the features to the future

is necessary, as we know from section 3.1.2. Table 4.8 shows a small example of AROME model.
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The AROME computational times are at 00, 03, 06, 09, 12,15, 18, 21 UTC (eight times per day).

For the initial time + 1-hour at the initial time 2015-01-01 03:00:00, we retrieved the most recent

AROME model output, which is 2015-01-01 00:00:00 with the lead time +4. Choosing this model

output originates in the delayed model availability of NWP, which is assumed to be four hours

for the AROME model. Also, for 2015-01-01 04:00:00 and 2015-01-01 05:00:00, we should take

computed wind speed in AROME data at 2015-01-01 00:00:00 for 5-hours and 6-hours ahead

respectively, until the next available AROME computational time, which is 2015-01-01 03:00:00.

The same applies for 2, 3, up to 42 forecast hours. Because our last AROME forecasting hour

is 48, we have the wind speed shifted feature for AROME data up to 43 hours. Thus, the last

possible forecasting hour in the AROME model is 43-hours, and we will predict the wind speed in

the Persistence and the final SVR model until 43-hours.
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Chapter 5

Results

Our objective was to evaluate the forecast skill of different setups of a SVR model for 1-hour to

43-hours ahead forecasts of wind speed based on the data-sets from 28 observation sites and 28

NWP AROME data for each station in Austria. The data was taken from the period 2015-01-01

until 2017-12-31 with a resolution of 10 minutes. We divided the data into a section for the SVR

training and a test part to evaluate the generalization ability of the prediction models, which was

January 2017. The time period for the test part was entirely outside the time period for training.

The evaluation results are based on test data.

To test the performance of the models, different metrics proposed in section 4.4 were used.

Therefore, we needed to evaluate the performance based on multiple metrics, like accuracy, MSE,

RMSE, bias, and Spearman’s correlation.

A linear SVR, which is equivalent to an SVR without kernel transformation, was used considering

the SVM regression. For all of the linear SVR models, it was necessary to drive the value of the

regularization parameters C and ϵ. In the next section, we discuss the final evaluation scores and

the results.

5.1 SVR Configuration

The training-data was used to optimize the parameters C and ϵ described in Section 4.5. Several

trials were used to find reasonably good values of these parameters for the wind speed prediction

for 28 different stations in Austria. As expected, the results showed that for each lead time, the

SVR model performed better with different values of C and one value for the ϵ parameter.

Fig 5.1 shows the scores of Grid Search for three different lead times in station 11007. The
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(a) + 1-hour (b) + 7-hours (c) + 18-hours

Figure 5.1: R2 score for three lead times in station 11007.

purple color shows the highest score for each lead time. Fig 5.1a shows when C = 1000 and ϵ = 1,

we get the highest R2 ≃ 0.7533. And Fig 5.1b, 5.1c show the highest score of R2 ≃ 0.3624 when

C = 100, ϵ = 1 and R2 ≃ 0.35863209, when C = 10, ϵ = 1 respectively.

Results for other lead times showed for 1-3 hours forecasting C = 1000, ϵ = 1; for 4-17 hours

forecasting C = 100, ϵ = 1 and for 18-43 hours forecasting C = 10, ϵ = 1 have the highest

scores.
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(a) + 1-hour

(b) + 7-hours

(c) + 18-hours

Figure 5.2: Different value of C for three lead times in station 11007.
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Fig 5.2 shows how SVR, with its hyper-planes, separates the testing points for the three

previous lead times, 1-hour, 7-hours, and 18-hours, when the C parameter changes. For a better

understanding, only two features for each lead time were considered, the highest two important

features. A linear model has linear decision boundaries (intersecting hyper-planes). We have to

consider that these plots only give an intuitive understanding of their respective expressive power,

and we cannot generalize them to more realistic high-dimensional problems. The difference of the

regularization parameter C might be not significant, specially in Fig 5.2b and 5.2c, but in Fig 5.2a,

we see a significant difference between two plots. The left plot shows the decision boundaries

when C = 1000, and the right shows the decision boundaries when C = 1. We can see the slope

of the decision boundaries in C = 1000 has slightly turned anticlockwise. All plots on the left

side show the C parameter with its tuned value, and all the plots on the right side show the C

parameter with its default value.

In SVR, the fitting time complexity is more than quadratic with the number of samples, and

even using SVR in Grid Search, it gets extremely slow, and may lead to a very long execution

time. Especially with the high values of C, the computational time increases significantly. Fig 5.3

shows that when the C value decreases, the fitting time also decreases.

Figure 5.3: Fitting time for different parameter C for each lead time in station 11007.

Due to the high time complexity of the Grid Search algorithm, and the lack of access to

high-performance systems, we used the selected parameters from station 11007 for other stations

as well.
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5.2 Feature Selection

Two different approaches were used for feature selection. The first approach is to use the 21

unique lists (see page 50) for each lead time in each station. The second approach is to employ

the SHAP method (See Section 4.6) to select the 20 most important features for each lead time

in each station. The second approach was more time-consuming because the SHAP algorithm

needs to be applied 43 times to each of the 28 stations.

In Fig 3.4, the distribution of wind speed for four stations was presented (11034, 11044,

11108 and 11126). They represent different topological and climatological regions in Austria. The

comparison of the models for stations 11034, 11044, 11108, and 11126 are shown in Fig 5.4,

Fig 5.5, Fig 5.6 and Fig 5.7 respectively. The three models used are: SVR-Linear model with

default parameters and all features, SVR-Linear (fs(unique) + tune) model with a selection of a

different list of 21 features plus the tuned regularization parameter C and SVR-Linear(shap+tune)

model which shows SVR with a linear kernel with the 20 most important features with tuned

regularization parameter C for each lead time.

Figure 5.4: Comparison of three SVR models for station 11034.

The blue line shows the SVR-Linear model with default parameters, and using all the features

(132 features); the red line is the SVR-Linear model with 21 selected features and tuned C

parameter; and the green line is the SVR-Linear model with 20 most important features and tuned

C parameter. Four different plots are shown in each figure: the accuracy plot, MSE plot, RMSE

plot, and bias plot.
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Figure 5.5: Comparison of three SVR models for station 11044.

Fig 5.4 and Fig 5.5 shows the evaluation metrics in the Vienna region. Unexpectedly, SVR-

Linear (shap+tune) model does not a show better performance; however, close to the original

model, SVR-Linear, which indicates that we can use fewer features but get the same results.

Figure 5.6: Comparison of three SVR models for station 11108.

Fig 5.6 shows station 11108 in Vorarlberg and Fig 5.7 shows station 11126 in Tirol. Fig

5.6 shows really poor results regarding both SVR-Linear (fs(unique)+tune) and SVR-Linear

(shape+tune). Both feature selection and hyper-meter tuning did not improve the results in this

station. Low bias (over-fitting problem) causes high error (MSE) and it is a possibility that SVR

is not a suitable model for this station. Fig 5.7 shows performance issues with SVR model.

59



Figure 5.7: Comparison of three SVR models for station 11126.

After achieving the previous results for the four stations, we compared the three models in all

stations to see the performance of these models before we took any further action. Fig 5.8 shows

the accuracy, MSE, RMSE and bias for all stations.

Figure 5.8: Comparison of the three SVR models for all lead times in all stations.

According to the bias shown in Fig 5.8, the difference of the three models is neglectable, but

SVR-Linear and SVR-Linear (shap+tune) perform better than SVR-Linear (fs(unique)+tune),

especially in almost up to 15 hours forecasting.

Due to high computational costs, we decided to use the SVR-Linear (shap+tune) model for
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optimization. Fig 5.9 shows the fitting time and prediction time for the two different models:

SVR-Linear with almost 132 features and default parameters versus SVR-Linear (shap+tune) with

20 features and tuned parameters. The blue bar shows the fitting time, and the orange bar shows

the prediction time. For 1-hour to 3-hours forecasting in SVR-Linear (shap+tune) model, the

fitting time is higher than the SVR-Linear model. The overall results show that the fewer the

features, the faster the computations and the better the forecast results.

Figure 5.9: Fitting and predicting time, for two models, SVR-Linear(shap+tune) and SVR-Linear.

5.3 Wind Speed Forecast

Next, we will compare the results of the two basic models, Persistence, and AROME models with

SVR-Linear (shap+tune). We first compare the results for four stations, 11034, 11044, 11108,

and 11126, and then compare the results for all stations.

Fig 5.10, Fig 5.11, Fig 5.12, and Fig 5.13 show the performance of the three models:

Persistence, AROME and SVR with the linear kernel using the 20 most important features
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and tuned regularization parameter C. We expected to see SVR outperform the AROME and

Persistence models. All figures show four plots: MSE plot, RMSE plot, bias plot, and Spearman’s

correlation plot.

Figure 5.10: Comparison of three models for station 11034: SVR, Persistence and AROME models.

Figure 5.11: Comparison of three models for station 11044: SVR, Persistence and AROME models.

Although both stations 11034 and 11044 are in the Vienna region, station 11044 performed

better with SVR than station 11034. In station 11034, we see more errors for SVR in early

forecasting. The Persistence model shows errors for each lead time in both stations. As we see in

the Spearman’s correlation plot, the Persistence model tends to approach zero; when the lead
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time increases, there is not a high correlation between the predicted wind speed and the actual

wind speed. The same result happened in station 11044.

Figure 5.12: Comparison of three models for station 11108: SVR, Persistence and AROME models.

Figure 5.13: Comparison of three models for station 11126: SVR, Persistence and AROME models.

Station 11108 in Fig 5.12 shows the limited performance of the AROME model. As we saw in

Fig 5.6, station 11108 also showed unsatisfactory results for different SVR models, but compare

to the AROME and Persistence model, the SVR model performed better. The Persistence model

shows periodic results in MSE and Spearman’s correlation plots, which are presumably diurnal

variations in this station. On the other hand, station 11126 in Fig 5.13, shows an inadequate
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performance of all models, The MSE error is high for all models, and AROME shows an under-

fitting problem in the bias plot. We assume this is due to the outliers problem, as we saw in Fig

3.2a and Fig 3.5b. Station 11126 had the most outliers among other stations in both AROME

and Observation data-sets, and because of the location of station 11126 in Alpine region, wind

speed prediction is a challenge.

As an example, we analyzed the wind speed forecasting in station 11044 for 1-hour, 2-hours,

6-hours, 25-hours, 36-hours, and 43-hours lead time. The reason to chose this station is that in

Fig 5.11, the MSE plot of station 11044 shows different behavior in each model for each lead

time. The black points are the observed wind speed points based on the test month of January

2017. The red line shows the predicted wind speed with the Persistence model; the predicted

wind speed with the AROME model is shown in the blue line; and the green line shows the SVR

model wind speed prediction.

Figure 5.14: 1-hour wind speed forecasting for station 11044.

The Persistence and SVR models show a good forecast in Fig 5.14 and Fig 5.15, whereas

the AROME model does not. In Fig 5.16, the Persistence model performed better, but again

in 12-hours forecasting (Fig 5.17) performance of the SVR model is superior to the other two

models. In 25-hours forecasting, we see in Fig 5.18 that the Persistence model has an insufficient
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Figure 5.15: 2-hours wind speed forecasting for station 11044.

performance compared to the SVR and AROME models, and the AROME model performed

slightly better. The behavior of the 36-hours and 43-hours lead times in Fig 5.19 and Fig 5.20

show better performance again with the SVR model. The differences between the models in

the station 11044 could be because of the station’s location at a higher altitude, and the data

captured by this station is not represented reasonably enough.

Fig 5.21, 5.22 and 5.23 show wind speed predictions for 1-hour until 43-hours using the three

models and compared them with observation points for three initial times in stations 11108 and

11126, and all stations respectively. The initial times were chosen randomly. The black color

shows the observation points, the teal color shows the wind speed prediction of the SVR model,

the blue color is the wind speed prediction of the Persistence model, and the brown color shows

the wind speed prediction of the AROME model. It is hard to find a pattern in Fig 5.21 for station

11108, but we can see that the values of predicted wind speeds from the Persistence model have

less difference than the observed wind speed compared to other models. Nevertheless, in Fig 5.22,

it is more obvious that the AROME model does not have good performance compared to the SVR

model in initial time 2017-01-21 05:00:00, and the Persistence model shows better nowcasting (up

to 6-hours) forecast. Overall, both the SVR and AROME models performed better in all initial
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Figure 5.16: 6-hours wind speed forecasting for station 11044.

times compared to the Persistence model in Fig 5.23 for all stations, but in Fig 5.21a, the SVR

model does not meet our expectations for predicting wind speed between 16-hours and 26-hours

lead times. Some stations do not represent well-performed SVR models in these lead times for

the initial time 2017-01-10 12:00:00. Also, we can see that the Persistence model has a better

forecasting performance for nowcasting for all stations in the initial time 2017-01-21 05:00:00.

In Fig 5.24, we see the results of the three models on all stations. Fig 5.24 shows our SVR

model outperforms the Persistence and AROME models. However, we have to consider the lead

times between 6-17 hours; better performance of SVR here might suggest an under-fitting problem

of the model. In general, the AROME model yields better error scores compared to the Persistence

model. In conjunction with Observation data, AROME data provides sufficient information for

learning (or improving existing) wind speed forecasts due to its higher spatial resolution and

physical parameterizations. Besides, the Persistence model uses the most recent measurement for

all forecast hours. Hence, in the Persistence model, we assume the value of the currently observed

wind speed for all the future time steps. As we can see from Fig 5.24, this model works well for

the next hours, but the quality deteriorates more than with more sophisticated approaches.

Fig 5.25 shows a map with the locations of the 28 selected stations. The different colors of

66



Figure 5.17: 12-hours wind speed forecasting for station 11044.

markers are indications of the MSE performance of each station. The stations with red markers

indicate that the SVR performance was better than the AROME and Persistence models in terms

of MSE; the blue markers indicate the AROME model had better performance compared to others,

and the black markers show the stations with the lower MSE compared to the AROME and SVR

models. This figure indicates that the model’s performance is somehow related to the station’s

location for the test month of January 2017.

In Fig 5.26a, we see the bar-plot on their MSE performances of each station. The results

show that the performances are region and altitude dependent. For example, in lower Austria,

SVR performed better, or in upper Austria, the AROME model performed better. In Vienna, both

SVR and AROME performed well in different stations. The reason for these differences might be

the occurrence of unusual wind behavior in different parts of Vienna or an unusual occurrence of

specific weather types. Station 11126 shows the worst error in all three models, but the AROME

model performed best.

Overall results in Fig 5.26 indicate that the SVR with a linear kernel method achieves better

forecast in short-range wind speed forecasts. The Persistence model performs better in the

nowcasting range. However, for lead times beyond 6-hours, the SVR model performs better than

the AROME and Persistence models. It can be concluded that the proposed SVR model with a

67



Figure 5.18: 25-hours wind speed forecasting for station 11044.

linear kernel is preferable for short-range wind speed prediction.
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Figure 5.19: 36-hours wind speed forecasting for station 11044.

Figure 5.20: 43-hours wind speed forecasting for station 11044.
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(a) Initial time: ’2017-01-10 12:00:00’

(b) Initial time: ’2017-01-16 21:00:00’

(c) Initial time: ’2017-01-21 05:00:00’

Figure 5.21: Comparison of models with three initial times for the station 11108.
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(a) Initial time: ’2017-01-10 12:00:00’

(b) Initial time: ’2017-01-16 21:00:00’

(c) Initial time: ’2017-01-21 05:00:00’

Figure 5.22: Comparison of models with three initial times for the station 11126.
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(a) Initial time: ’2017-01-10 12:00:00’

(b) Initial time: ’2017-01-16 21:00:00’

(c) Initial time: ’2017-01-21 05:00:00’

Figure 5.23: Comparison of models with three initial times for all stations.
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Figure 5.24: Comparison of three models for all lead times in all stations: SVR, Persistence and AROME models.

Figure 5.25: Map with stations with best MSE performance. Red: SVR best performance, Blue: AROME best
performance, Black: Persistence best performance.
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(a) Average MSE performance for 28 stations.

(b) Average R2 score of all station for each lead time.

Figure 5.26: a) Average MSE of all stations. and b) R2 score for all station in each lead time.
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Chapter 6

Discussion

Discussion of Results
In this thesis, we investigated predicting the wind speed in the short-range (0-43 hours ahead)

by using a support vector regression model. The SVR’s performance depends on the selection

of the kernel function, selection of features, and optimizing the hyper-parameters. Linear, RBF,

sigmoid, and polynomial kernel functions were chosen to build the SVR model for the short-range

wind speed prediction. We excluded the polynomial kernel from the preliminary experiments

because it could not converge with the data-sets. The forecast results show that the SVR model

based on the linear kernel function is superior to that of other kernel functions.

We extended the SVR model by using the SHAP method for selecting the most important

features. By Grid Search method, we optimized the parameters of the SVR’s kernel function. Two

different approaches for feature selection, namely SVR (fs(unique)+tune) and SVR (shap+tune),

were studied and compared with a simple SVR-Linear model. We showed that a selection of the

20 most important features by the SHAP method for each lead time for each individual station,

can improve the forecast performance. The SVR model was applied to forecast the short-range

wind speed. Compared with the forecast results of the Persistence and AROME model, the SVR

model can improve the prediction accuracy of the short-range wind speed.

In comparison to the AROME and Persistence model, we reduce the prediction error by using the

SVR model for most stations. In particular, 16 stations out of 28 stations showed fewer prediction

errors with SVR. The mean RMSE for all lead times in all stations for AROME, Persistence, and

SVR model is 2.07, 2.26, and 1.79 respectively, which means the mean improvement of SVR in

the prediction error in comparison to the Persistence model is 22% and to the AROME model

is 15%. The average R2 score for AROME, Persistence, and SVR model is -58%, -38%, 11%,
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respectively, which shows SVR’s superior performance compared to the other models. For some

stations, the SVR model does not yield improvements over the AROME model. Further research

is necessary, e.g., calculating the SVR parameter choices for each lead times in each station by

optimization algorithms, or dividing the data into testing-set and training-set with other different

periods.

A disadvantage of the SVR model is the high algorithmic complexity and long training times.

The Persistence model performs better, especially for nowcasting with a time horizon up to

6-hours, but for longer time horizons, the machine learning model usually performs better than

the Persistence model. Nonetheless, the Persistence model could be an excellent alternative only

in nowcasting and simple situations.

To further improve the models, various measures can be taken. More advanced outlier detection

can be applied. For instance, we saw that station 11126 suffered from the wrong prediction

because it contained many outliers. It would be interesting to investigate more on the nature of

the outliers in the data-sets. One idea would be to carry out a transformation for outliers, like log

transformations. Another solution for the station with high altitudes would be to use another grid

point in those areas or use an average of near grid points. Additionally, it is recommended to

do an in-depth investigation of feature selection. In an operational setup, applying one method

of feature selection may cause over-fitting or under-fitting, but combining two or three feature

selection methods and building one model from those adjusted selections can improve the results

and give more knowledge about the stations and their data.

Overall, the performance of the machine learning model support vector regression was more

successful when compared to the AROME and Persistence models in predicting short-range wind

speed based on available data with reasonable accuracy.

Outlook

The empirical analysis results have highlighted that with applying SVR, we achieved a significant

improvement in the overall performance. However, we can not guarantee that this is the global

optimum for each station in each lead time. The obtained results suggest the use of SVR as a

forecasting model at ZAMG, among their other statistical and physical techniques for short-range

wind speed prediction, along with further improvements.
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