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Abstract

Recent studies suggest members of the FGF family as possible targets for new pharmaceuticals in 

human hepatocellular carcinoma (HCC), a cancer type with low chances of survival due to high 

resistance against drugs. In this study we analysed the interaction of the FGF family in HCC with an 

analysis  pipeline programmed mainly in  R. Data was obtained from the TCGA/GDC database. 

Besides  the  pre-processing  steps  in  this  pipeline,  we  also  implemented  DeMixT,  which  is  a 

deconvolution  algorithm  performing  an  in-silico  microdissection  on  expression  data. 

Microdissection in-vitro is a necessary step to get refined samples for sequencing in cancer, but it is 

also expensive and time-consuming. Computational approaches, on the other side, are relatively 

cheap and provide good results. Here we calculated gene expression profiles where no infiltration of 

stromal and immune cells occurred. We performed differential gene expression analysis, gene set 

enrichment analysis, gene regulatory network analysis and survival analysis on the given and on the 

deconvolved data. In both the convoluted and the deconvolved data, the expression of FGF12 and 

FGF13 is upregulated and the expression of FGF2 is downregulated. To get deeper insight into the 

resulting gene sets of the gene set enrichment analysis with focus on the members of the FGF 

family, we created mutual information networks of these gene sets using Aracne-AP. Comparing the 

deconvolved normal and the deconvolved tumour compartment showed changes of the interaction 

between  FGFs  and  all  other  genes. Furthermore,  results  of  the  survival  analysis  of  both  the 

convoluted  and the  deconvolved data  overlap  on  FGF18 and FGFR3. According to  these,  low 

chances of survival correlate with low expression of FGF18 and high expression of FGFR3.
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Zusammenfassung

Jüngste Studien legen nahe, dass Mitglieder der FGF-Familie mögliche Ziele für neue Arzneimittel 

gegen  humanen  hepatozellulären  Krebs  (HCC)  sein  können,  einem  Krebstyp  mit  geringen 

Überlebenschancen  aufgrund  hoher  Resistenz  gegen  Medikamente.  In  dieser  Studie  wurde  die 

Interaktion  der  FGF-Familie  in  HCC  mittels  einer  Analysepipeline,  welche  in  der 

Programmiersprache  R  geschrieben  wurde,  untersucht.  In  dieser  Studie  wurden  Daten  aus  der 

TCGA/GDC-Datenbank verwendet. Zusätzlich zur Standardisierungsprozedur wurde DeMixT, ein 

Programm  zur  in-silico  Mikrodissektion,  implementiert.  Die  Mikrodissektion  in  vitro  ist  eine 

Technik um Zielzellen von umliegenden Gewebe zu befreien und so Proben zu erhalten die bei der 

Sequenzierung eine  höhere  Genauigkeit  besitzen.  Diese  Methode  ist  jedoch kostenintensiv  und 

zeitaufwendig. Computergestützte Ansätze sind dagegen relativ billig und liefern gute Ergebnisse. 

Es  wurden  Genexpressionsprofile  berechnet,  bei  denen  keine  Infiltration  von  Stroma-  und 

Immunzellen auftrat. Sowohl an den gegebenen Daten wie auch an den Ergebnissen des DeMixT 

Algorithmus wurde eine differentielle Genexpressionsanalyse, eine Gen-Set-Anreicherungsanalyse 

(GSEA),  eine  Genregulations-Netzwerkanalyse  und  eine  Überlebensanalyse  durchgeführt.  Das 

reguläre Genexpressionsprofil wie auch das mittels DeMixT berechnete zeigen eine Überexpression 

von FGF12 und FGF13 und eine Unterexpression von FGF2. Um einen tieferen Einblick in die 

resultierenden  Gen-Sets  der  GSEA mit  Schwerpunkt  auf  den  Mitgliedern  der  FGF-Familie  zu 

erhalten, wurden mithilfe von Aracne-AP MI-Netzwerke von diesen Gen-Sets erstellt. Der Vergleich 

der  berechneten  normalen  und  der  berechneten  Tumor-Komponente,  des  DeMixT Algorithmus, 

zeigte  Veränderungen  der  Wechselwirkung  zwischen  FGFs  und  allen  anderen  Genen.  Darüber 

hinaus einigen sich die Ergebnisse der Überlebensanalyse des regulären Genexpressionsprofils und 

des mit DeMixT berechneten Genexpressionsprofils auf FGF18 und FGFR3. Demnach korrelieren 

niedrige Überlebenschancen mit einer niedrigen Expression von FGF18 und einer hohen Expression 

von FGFR3.
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1 Introduction

1.1 Hepatocellular Carcinoma

According  to  statistics  of  the  Global  Cancer  Observatory  (GCO)  from  2018,  hepatocellular 

carcinoma (HCC) is the sixth most common cancer type. Among all other cancer types, it is the 

fourth most common which leads to death. Around 70% of new cases happen to be in Asia. In 

general, HCC occurs about twice as often in men than in women.[1]

Chronic liver disease and cirrhosis are the most relevant risk factors in HCC development. Due to 

high  amounts  of  damaged  tissue,  repair  mechanisms  are  activated  and  cells  show  higher 

proliferation rates. High activity of cell division cycles therefore lead to accumulation of mutations 

in the genome with some mutations being carcinogenic. The premalignant cells accumulate more 

and more mutations which provide a selective advantage. Known risk factors for HCC are viral 

hepatitis  infections  and  excessive  alcohol  consumption. Other  important  risk  factors  can  be 

aflatoxins, smoking and gender.[2]
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Figure  1.1.1:  Schematic  view  of  the  development  of  cancer  cells. Figure  adapted  from: 

https://www.carolina.com/teacher-resources/Interactive/the-effects-of-cell-cycle-deviation-on-

cancer-development/tr38703.tr[56]



Early diagnosis can guarantee better chances for therapy and survival of patients. Radiodiagnostics 

and serological markers are used for detection. There are several therapy options available to deal 

with hepatocellular cancer. Among those options surgical resection and liver transplantation show 

the best chances for survival of patients. Other options are transarterial-chemo-embolization, trans-

arterial radiation, percutaneous local ablation, microwave ablation and systemic therapy. According 

to GCO only 7% of people worldwide survive HCC.[1] This is due to pre-existing liver damage and 

its high resistance against pharmaceuticals.

1.2 Hallmarks of Cancer

Hanahan and Weinberg[3] suggested certain characteristics every tumour shows, namely the so-

called hallmarks of cancer. The first important hallmark for cancer cells is sustaining proliferative 

signalling. While in normal tissue the cell cycle is under control, cancer cells manage to deregulate 

certain pathways to keep growing and multiplying. Cancer cells not only need to keep proliferation 

high, but also have to prevent control mechanisms which negatively affect proliferation. This leads 

to the next hallmark, which is called evading growth suppressors. It has been proven that cancer 

cells were able to inactivate different tumour suppressor genes like RB (retinoblastoma associated) 

protein,  which  is  an  important  gatekeeper  in  the  growth-and-division  cycle. In  this  way,  cell 

proliferation is not controlled any more.

The next crucial step is to avoid apoptosis. Tumour cells have lots of different strategies to avoid 

cell death. The most common way is knocking down the tumour suppressor TP53. This protein 

plays an important role in inducing apoptosis. It senses critical mutations during the cell cycle and 

can signal for cell death if necessary. Losing this function leads to multiplication of damaged cells. 

Another important characteristic of cancer is replicative immortality. Typically, cells lose part of 

their  genetic  information  during  the  process  of  DNA replication. To  avoid  loss  of  important 

information, chromosomes possess multiple tandem hexanucleotide repeats at their ends, the so-

called telomeres. These telomeres get shortened every cell cycle, meaning the cell has a given life 

span. Cancer cells can re-elongate these telomeres by activating the enzyme. In this way, the cancer 

cell becomes immortal.
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Another important step for tumour tissue to keep growing is to ensure sufficient supply of nutrients 

and oxygen. Usually, the formation of new blood vessels from existing ones (=angiogenesis) is 

strictly regulated. Tumours, However, manage to increase the formation by upregulating certain 

genes like VEGF-A or members of the FGF family. Probably the most dangerous ability of cancer is 

to leave its primary site and spread to other parts of the body. Metastasis is a multistep process that 

includes  the  alteration  of  the  cell-to-cell  adhesion  molecule  E-cadherin. The  mutation  of  this 

molecule allows cancer cells to leave the tissue and spread in the body.[3]

Figure 1.2.1: Schematic view on the hallmarks of cancer. Figure adapted from: D. Hanahan and R.  

A. Weinberg, ‘Hallmarks of cancer: the next generation’, Cell, vol. 144, no. 5, pp. 646–674, Mar.  

2011.[3]
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1.3 Role of the FGF family in Tumour Progression

1.3.1 Basics

Fibroblast Growth Factors (FGFs) are a large family of secreted signalling proteins with 23 known 

members in humans. They play important roles in early stages of life during embryogenesis and 

organogenesis. Later  on  in  adults  they  show  homeostatic  functions  like  wound  repair,  tissue 

maintenance,  regeneration and metabolism. From these 22 proteins 18 are ligands and four are 

corresponding receptors with tyrosine kinase activity (FGFR1 – 4). The FGFR protein structure 

consists of the following domains: Two intracellular tyrosine-kinase domains (TK1 and TK2) for 

interaction with other mediates, one transmembrane domain (TM) and three immunoglobulin like 

domains on the outside of the cell (IgI, IgII, IgIII). Regulation of the ligand-receptor interaction is 

established through protein or proteoglycan cofactors and by extracellular binding proteins. Ligands 

bind on immunoglobulin-like domain III. FGFR1 – 3 can show two major splice variants in this 

domain, which are referred to as IIIb and IIIc. These splice variants have an impact on the ligand-

binding specificity. Activation of FGFRs is coupled to intracellular signalling pathways like RAS-

MAPK, PI3K-AKT and PLCɣ. For example, these pathways play important roles in regulating cell 

growth and proliferation.[4]

Figure  1.3.1:  Schematic  view on  the  structures  of  the  two splice  variants  among  the  FGFRs.  

Original figure adapted from: D. M. Ornitz and N. Itoh, ‘The Fibroblast Growth Factor signalling  

pathway’, Wiley Interdiscip. Rev. Dev. Biol., vol. 4, no. 3, pp. 215–266, May 2015.[4]
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Figure 1.3.2: Simplified overview showing the different pathways FGFRs are involved in. 

Figure adapted from: R. Diez del Corral and A. V. Morales, ‘The Multiple Roles of FGF  

Signalling in the Developing Spinal Cord’, Front. Cell Dev. Biol., vol. 5, 2017.[57]



1.3.2 FGF Family in Hepatocellular Carcinoma

In the last years, several studies suggested new evidence for the importance of the FGF family in 

HCC. Tsunematsu et  al.[5] showed that  serum FGF2 levels  were high in  patients  with chronic 

hepatitis C infection or liver cirrhosis and decreased during tumour progression. Stimulation with 

FGF2 led to higher expression of the membrane-bound major histocompatibility complex class I 

related chain A (MICA), which is a natural killer cell activating molecule. They concluded that 

FGF2 may play an important role in eliminating HCC cells by innate immunity.[5] According to 

another independent study, at least one of the members of the FGF8 subfamily (FGF8, FGF17 and 

FGF18) were upregulated in HCC patients. Due to the enhanced survival of HCC cells, the results 

of  this  study  led  to  the  conclusion  that  members  of  the  FGF8  subfamily  promote  malignant 

behaviour  and  neoangiogenesis  in  hepatic  tumours.[6] More  studies  also  suggest  FGFR3  and 

FGFR4 as potential therapeutic targets.[7], [8] Moreover, FGF19 is suggested to be an important 

factor for proliferation, cell survival and evasion of HCC.[9] In another recent study, the FGF9-

FGFR3-IIIb/IIIc axis is considered to be a potential target for therapy.[10]

1.4 Aims of the Project

The aims of this project are to answer the following questions: Which differences exist in the gene 

expression of the FGF family between normal and cancer tissue? Is the expression of FGFs and 

FGFRs relevant for prognosis? How does high and low expression of FGFs and FGFRs impact 

biological processes and pathways?

To achieve  this  goal,  high  throughput  sequencing data  from the  TCGA/GDC database  will  be 

analysed using bioinformatics tools. These tools will be implemented in an analysis pipeline using 

the R programming language and will be focused on a given set of genes, viz. the FGF family. 

Furthermore, this project shall give a small overview of the available software, how it works and 

what the possible benefits and limitations are.
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2 Mathematical Background

2.1 Workflow

The  workflow  for  the  analysis  pipeline  was  established  step  by  step.  Figure  2.1.1  shows  the 

workflow  steps  with  data  pre-processing  in  light-blue,  survival  analysis  in  salmon-pink  and 

differential  gene-expression analysis,  gene set  enrichment  analysis  and gene regulatory network 

analysis in darker pink. The analyses in darker pink are grouped together because the results from 

every previous analysis step was used either as input or only as additional information for the next  

analysis step. (see Materials and Methods for more details)

Pre-procession of the data included downloading, filtering and standardization of the data as well as 

the deconvolution of it into three compartments. Deconvolution was integrated in this study with 

the idea of using the resulting data in an ensemble approach. In this way, it was possible to compare 

results from analyses on the convoluted and the deconvolved data and see in which ways they differ 

and which  results  show an overlap.  The following chapters  give  insight  into  the  mathematical 

principles of the software tools which were considered for this pipeline as well as the final choice  

for each.
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2.2 The Problem of Compartment Mixing in Tumour Samples

Every tumour is a heterogeneous tissue. It consists of tumour cells (also divided into stem cells and 

their  offspring),  stromal  cells  and immune cells  (either  attacking the  tumour  or  supporting  it). 

Therefore, analysing gene expression data can be difficult. Microdissection offers a solution to this 

issue.

8

Figure 2.2.1: Schematic view on the tumour microenvironment. Figure adapted from: J. 

Kuen, ‘Influence of 3D tumor cell/fibroblast co-culture on monocyte differentiation and  

tumor progression in pancreatic cancer’, 2017[58]



2.2.1 Laser Microdissection

Laser  Microdissection  can  be  performed  in  the  following  ways. The  first  is  Laser  Capture 

Microdissection. A thermoplastic membrane attached to a plastic cap rests on the cells that need to 

be microdissected. The target cells are identified by using an inverted bright-field light microscope. 

Then the membrane on the identified cells is briefly melted by a low power, narrow beam infra-red 

laser. After some cooling, the cells are attached to the membrane and can easily be lifted off the 

tissue section.

The second approach is Laser Cutting Microdissection. Here the cells of interest are cut out of the 

surrounding tissue by using a narrow-beam ultraviolet laser. The laser “draws around” the cells of 

interest, and then they get collected in a tube. Depending on the used system, the cells may either be 

collected by “catapulting” them out of the tissue, because of gravity or by using a fine stainless-

steel needle.[11]

These  approaches  are  needed to guarantee  high  level  of  purity  and quality  of  cells  for  further 

analyses, but they happen to be expensive and time-consuming. The cells need to be prepared with 

expensive systems by specially trained personal. Therefore, algorithmic approaches are preferable.
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Figure 2.2.2: Simple illustration of a  laser microdissection. Figure adapted from:  

M. Brazier, ‘Microdissection of Alzheimer Brain Tissue for the Determination of  

Focal Manganese Accumulation’, vol. 124, 2017, pp. 109–118.[59]



2.2.2 In-silico Microdissection

Two general approaches for algorithms exist: Algorithms that estimate tumour purity and algorithms 

that calculate deconvolved gene expression profiles. Both algorithms need estimations as input. One 

algorithm which estimates purity is ABSOLUTE, for example. It uses somatic DNA copy number 

data to calculate the fraction of tumour cells in a tumour sample and based on that calculates the 

tumour  purity[12]. Another  approach  is  offered  by  the  ESTIMATE  package. The  ESTIMATE 

algorithm  performs  a  single-sample  gene  set  enrichment  analysis  (ssGSEA),  uses  this  data  to 

calculate stromal- and immune-scores and combines those two scores to the so-called ESTIMATE-

score, which then makes it possible to infer tumour purity for microarray data[13].

A common  algorithm  for  deconvolving  gene  expression  profiles  is  CIBERSORT,  in  which  a 

machine learning approach is used. By providing an input matrix as reference, the CIBERSORT 

algorithm can deconvolve mixed datasets by using linear support vector regression[14]. A further 

approach is provided by the ISOPure algorithm. It  is based on a statistical  model in which the 

tumour  profiles  are  multinomial  distributed  and  the  non-cancerous  profiles  are  represented  as 

convex combination. It has two major steps. In the first step, the “complete likelihood” function 

undergoes a maximum a posteriori (MAP) estimation by using numerical optimization. In step two 

the estimated values of their model get fixed and MAP estimation is used to optimize the cancer 

profiles[15]. The DeMixT algorithm was quite new at the time of this study and showed better 

performance than CIBERSORT according to Wang et al.[16] Therefore DeMixT has been chosen 

for this study.

2.2.3 Final Choice: DeMixT

In the DeMixT algorithm, the expression levels of the normalized measured data are modelled as 

linear combination of two or three components where one component is unknown:

Y ig=π1 ,i N1 ,ig+ π2 ,i N2 ,ig+ (1−π1 ,i−π2 ,i)T 1, ig

The  model  is  described  as  convolution  of  the  log2-transformed  normal-distributions  of  the 

components. Deconvolution of a dataset with three components is done in two steps, which both use 

Iterated Conditional Modes (ICM) for optimization.
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Parameter Estimation using Iterated Conditional Modes (ICM)

The parameters of the unknown component can be divided into gene-wise and sample-wise sets and 

are conditionally independent. Therefore, the parameters of the unknown component can be derived 

iteratively  (ICM)  by  using  a  golden  section  search  in  combination  with  successive  parabolic 

interpolations.

Step 1

The  two  known  components  are  merged  and  the  third  component’s  parameters  are  estimated 

relatively quickly in an artificial two-component setting using ICM. This method is called Gene Set-

based Component Merging (GSCM).

Step 2

After fixing the parameters of the unknown component, the parameters of the two known 
components are estimated. Finally, three deconvolved expression profiles can be calculated by using 
the obtained parameters.[16]

2.3 Reverse Engineering: Gene Regulatory Networks

Determining relations between genes and thereby constructing a network from this information can 

be an intense computational task. Several approaches are available. In general, a network can be 

represented by an adjacency matrix with some sort of association measure between the nodes. The 

most  recent  approaches  for  reconstructing  gene  regulatory  networks  are  correlation  networks, 

polynomial and spline regression networks and mutual information (MI) networks.

2.3.1 Correlation Networks

One package, which constructs networks using correlation as association measure is the so-called 

WGCNA package (Weighted Gene Co-expression Network Analysis). Here the adjacency matrix is 

constructed by using either the Pearson-, Spearman- or biweight-midcorrelation. 

The  co-expression  similarity sij is  defined  as: s ij=|cor (x i, x j)| ,  where  x  is  the  expression 

profile. The according adjacency matrix A ij can be defined either as unweighted network using a 

hard  threshold  τ  with  the  expression A ij={ 1       if sij  ≥  τ
0       otherwise

or  as  weighted  network  using  the 
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power of s ij in the following expression A ij= sij
β    ,  β  ≥  1 . Later, the adjacency matrix can be 

transformed using the topological overlap measure (TOM). This transformation can help to create a 

more robust network by filtering out spurious or weak connections:

ATOM ( Aoriginal
)ij=

∑l≠i , j
Ail

original
∗A l , j

original
+ Aij

original

min(∑l≠i
A il

original ,∑l≠ j
A jl

original
)−A ij

original
+1

The advantages of WGCNA are the relatively easy and fast calculations of the adjacency matrix and 

the straightforward implementation. A major disadvantage though is the fact that these correlation 

measures can only find linear relationships. Genes do not necessarily rely on linear relationships. A 

more robust approach was needed for this challenge[17], [18].

2.3.2 Polynomial and Spline Regression Networks

The WGCNA package also offers two other ways of calculating association measures. The first one 

uses polynomial regression:

E( y )=β0 1+ β1 x+ β2 x2 . . .+ βd xd
=M β

This leads to:

R2
=cor ( y , ŷ )

2
=cor ( y , M β̂)

2

Here R² is the explained variance.

Spline regression can be seen as a local variant of the polynomial regression model. In this case, 

local means that the model tries to fit to a subinterval with range x. This is done by introducing so-

called knots, which are transformed by a hockey stick function ( )+ , as additional parameters to 

the polynomial regression model.

E.g. some variable s → (s )+={s     if s  ≥  0
0     if s  <  0

The final model for a cubic spline with two knots, for example, would look like this:

E( y )=β0 1+ β1 x+ β2 x2
+β3 x3

+β4 (x − knot1)+
3
+β5(x− knot 2)+

3

Because the networks constructed with a correlation coefficient showed no relationship between 

any of the genes and the workflow for polynomial and spline regression networks seemed to be still 

under development at the time of this study[18], the final choice was to use mutual information as 

association measurement for network construction.
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2.3.3 Final Choice: Mutual Information Networks

Mutual Information (MI) is a statistical measure for the dependency of two variables. In contrast to 

correlation measures (e.g. Pearson correlation), it can determine non-linear relationships, which is 

of great value for analysing gene expression data. A major disadvantage though is the inability to 

tell  if  the  found  relationship  is  positively  or  negatively  orientated. There  are  a  few  software 

packages  which  are  used  for  estimating  mutual  information. For  this  project,  the  Aracne-AP 

package has been chosen[19]. The basic Aracne algorithm (Algorithm for the Reconstruction of 

Accurate Cellular Networks) is an extension of the RELNET algorithm[18].

Mutual Information

Mutual information for a pair of random variables x and y is defined as:

MI (x , y )=Entropy (x)+Entropy ( y )−Entropy (x , y )

For a discrete variable, the entropy is defined as:

Entropy( t)=− log ( p(t i))=− ∑i p (ti) log ( p(t i))

The  computation  of  MI  is  not  a  simple  task. It  requires  estimation  of  the  joint  and  marginal 

expression  probability  densities. To  handle  this  problem,  a  Gaussian  Kernel  estimator  was 

implemented. For  a  set  of  two-dimensional  measurements z⃗i={ x i , y i } , i=1 .... M ,  the  joint 

probability distribution (JPD) can be approximated with:

f ( z⃗ )=
1
M ∑i

h−2
∗G(h−1

|⃗z− z⃗i|)

Here G is the bivariate standard normal density.

Considering f (x) and f ( y) as marginals of f ( z⃗ )  the MI can be calculated in the following 

way:

MI ({ x i} , { y i})=
1
M

∑i
log

f (xi , yi)

f (x i)∗f ( y i)
[20], [21]
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Adaptive Partitioning

In the original Aracne implementation, the estimation was achieved by dividing the gene expression 

space into discrete bins of fixed size which thereby was called fixed bandwidth (FB) estimation. In 

this approach the number of bins had to be chosen in a preprocessing step. Aracne-AP, on the other 

side, uses an Adaptive Partitioning estimator, which chooses the number of bins automatically. The 

AP-algorithm divides the space recursively into quadrants at the means of the data. This recursion 

stops either if a uniform distribution between the new quadrants is met or if the split of a quadrant 

creates new splits with less than three data points[19], [21], [22].

Threshold for Mutual Information

Because MI is always non-negative even variables from random samples show positive results even 

though they are truly mutually independent. The algorithm handles this issue by shuffling the gene 

expression across  all  samples,  calculating the MI for  those genes and assigning a  p-value to  a 

threshold MI0 by estimating the fraction of the estimates below MI 0 . This is done for different 

sample sizes and numerous gene pairs[20].

Data Processing Inequality

If genes g1 and g3 interact only through gene g2 then the DPI states the following:

MI (g1, g3)≤min[ MI (g1, g2); MI (g2, g3)]

The DPI allows checking if the least of three MI values might be due to indirect interaction or not. 

In this scenario, Aracne starts with a network graph where each pair of genes with a MI value 

greater than  MI 0 gets an edge. Then the algorithm examines all gene triplets and removes the 

edge with the smallest MI value[20].
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2.4 Analysis Tools

2.4.1 Differential Gene Expression Analysis using Limma/Voom

Limma was chosen for this study because it performed well against other DGE analysis tools[23]. 

Furthermore,  it  is  possible  to  correct  for  batch  effects  and  comparing  two  (or  even  more) 

experimental conditions can be easily implemented. In the Limma approach, the gene expression is 

seen as a linear model:

E( y gi)=x i
T
∗βg

x i
T is  the  vector  of  covariates  and βg represents log2 -fold-changes  between  experimental 

conditions. Using matrix terms, it can be written like this:

E( y g)=Xβg

yg is the vector of log-cpm values for gene-expression g and X is the design matrix[24].

Extremely variable data gets modelled by the Voom approach. In this case the fitted log-cpm values

μ̂gi are converted to fitted counts:

λ̂gi=μ̂gi+ log2(R i+1)−log2(106
)

Here Ri is  the  geometric  mean. Additionally,  the  LOWESS  curve  can  be  used  to  define  a 

piecewise  linear  function lo () . The  predicted  square-root  standard  deviation  of  ygi is  the 

function  value lo ( λ̂gi) . Precision  weights  are  calculated  by  simply  using  the  inverse  of  this 

function value[25].

The linear models for each gene are then put into an empirical Bayes framework, which allows 

borrowing information between genes and therefore moderate the residual variances. Final variance 

estimates for each gene are a compromise between the estimated variance for each gene and the 

global variability from the pooled ensemble of all genes[24], [26].
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2.4.2 Gene Set Enrichment Analysis

The basic idea of GSEA is to check if certain genes are over- or under-represented in a gene set (e.g. 

pathway). This is done by a Kolmogorov-Smirnoff-like statistic. First,  one has to supply a pre-

ranked list of genes, for example according to their log-fold changes. Then the algorithm starts a 

running sum. Every gene of the pre-ranked gene list, which can be found in the gene set, increases 

the sum by a certain weighted value and every other gene decreases the sum in a similar way. This 

sum describes a curve where the optimum is the enrichment score (ES).

The next step is to check if the calculated ES is significant in comparison to random ESs. For this 

task, the gene names of the pre-ranked gene list are shuffled up to n times (e.g. n = 1000) and ESs 

are calculated. The p-value is estimated by comparing the original ES to the distribution of the ESs 

of the randomly permuted gene lists.

In the last step, every distribution of ESs, from the random gene lists, is normalized by its mean. 

This provides a null distribution of normalized enrichment scores (NESs). Finally, the FDR can be 

calculated[27].

2.4.3 Survival Analysis

Kaplan-Meier Curve

The  Kaplan-Meier  curve  is  a  stepwise  function  which  describes  the  descending  probability  of 

survival  over  a  given  time  period. Estimating  the  intervals  of  this  function  is  done  with  the 

following formula:

S (t i)=S (t i− 1)(1 −
d i

ni

)

S (t i) is  the  probability  of  survival  at  time ti ,  d i is  the  number  of  events  (an  event  is 

categorical variable, e.g. “death”) at ti and ni is the number of patients alive before ti .

Comparing two curves for significant difference can be achieved by performing the log-rank (LR) 

test:

LR=
(O1−E1)

2

E1

+
(O2−E2)

2

E2
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O1  and O2 are  the  total  numbers  of  observed  events  and E1 and E2 are  the  calculated 

expected numbers of events for each group. LR then gets compared with the critical value of a 

chi-square distribution with one degree of freedom[28]–[30].

Stratification into high and low expressing Genes

Dividing a given continuous variable X (e.g. gene expression) into two categorical groups (e.g. low 

and high) can be achieved with a maximally selected rank statistic. M=maxμ|Sμ| , where M is the 

maximum of the standardized statistic and can be used as estimate for the unknown cut-point[31].
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3 Material and Methods

3.1 Data

Samples of this dataset were obtained in the following way: Biopsy bio-specimens were gathered 

via surgical resection from HCC patients who had no treatment before the resection (e.g. ablation, 

chemotherapy,  etc.). From the  obtained tumour  samples  only  some came with  adjacent  normal 

tissue samples as well. Every tumour and their adjacent normal tissue (if available) were controlled 

for quality.  The controlled frozen section slides were either prepared by the Biospecimen Core 

Resource or by the Tissue Source Site. Sections of the samples were stained with haematoxylin and 

eosin and independently reviewed. Tumour specimens which showed histological characteristics of 

HCC and adjacent tissue specimens with no tumour cells were confirmed for further analysis. RNA 

and DNA samples were extracted from tissue specimens  with a modified  DNA/RNA AllPrep kit 

from QIAGEN[32].

Sequencing data was stored in BAM files and converted into FASTQ files with Biobambam[33] for 

further processing. Splice junction detection and alignment of the sequences was done using the 

STAR  2-pass  alignment  tool[34].  Quality  assessment  took  place  before  alignment  using 

FASTQC[35] and after the alignment using Picard Tools[36]. After these steps, HTSeq was used for 

gene expression quantification. HTSeq produces three outputs: first a raw read count expression 

matrix,  second  a  FPKM normalized  expression  matrix  and  third  a  FPKM-UQ (upper  quartile) 

normalized expression  matrix.  For  this  study the raw expression matrix  as  well  as  the  clinical 

information about  the patients  (e.g. age,  gender,  etc.)  and the annotation information about  the 

sequenced  genes  (e.g. gene  location  on  chromosome)  were  downloaded  from the  TCGA/GDC 

database[37].
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3.2 Pre-processing

Filtering and Normalization

At the beginning gene IDs of the raw expression matrix needed to be mapped from Ensembl IDs to 

Entrez IDs, because most of the used software works with Entrez IDs. To achieve this goal, the 

AnnotationDbi package was used, which allows mapping from one ID to another[38]. Due to many 

Ensembl entries mapping to one Entrez entry, the raw expression matrix got filtered by choosing the 

maximum interquartile range (IQR) for every gene with the same Entrez entry. This procedure was 

implemented in the MapByIQR() function.

Further, filtering was done with respect to the counts per million (CPM). This filtering procedure 

had four steps: First, the values of the raw expression matrix were transformed to CPM using the 

cpm()  function  of  the  edgeR  package[39],  [40]. In  the  next  step,  a  boolean  matrix  with  the 

dimensions of the CPM-transformed expression matrix was created. Every entry of the boolean 

matrix was set to one (or TRUE) for each of their corresponding CPM-value being greater or equal 

than a given threshold. Next, a boolean vector was built with length equal to the number of rows of 

the CPM expression matrix. The row sums of the boolean matrix were divided by the total number 

of columns and every calculated value greater or equal than a second threshold (e.g. 10%) changed 

the according position in the boolean vector from zero to one. Finally, the raw expression matrix 

was filtered using the boolean vector. We implemented these steps in the FilterByCPM() function.

The filtered  expression matrix was normalized with  the calcNormFactors() function of the edgeR 

package. Here  the  TMM normalization (trimmed mean  weight)  is  implemented[41]–[43]. This 

normalization method takes into account that most genes are not differentially expressed. The so-

called TMM factor is computed, which can provide an estimate for correction of the library sizes. 

Normalization factors are re-scaled by the mean of the normalized library sizes. Finally, the raw 

read  counts  are  divided  by  these  factors[41]. Depending  on  the  range  of  its  library  size,  the 

normalized  expression  matrix  either  gets  transformed  to  counts  per  million  or  by  the  Voom 

approach.
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Building an Expression Set

An expression set is a data object with an expression matrix as core and clinical and annotation 

information as metadata[44]. The standardized gene expression matrix needed to be aligned sample-

wise with the clinical information and gene-wise with the annotation information. First, the clinical 

data got filtered for all empty columns, columns with redundant information and columns with less 

valuable information content. Then the clinical information was filtered for patients with primary 

tumour  and/or  normal  tissue. Finally,  the  expression  matrix,  the  clinical  information  and  the 

annotation information were aligned and stored in an expression set.

3.3 Deconvolution

DeMixT needs as input a normalized expression matrix and, depending on the setting, either one or 

two subsets of the expression matrix as starting guess. In this case a three-component setting was 

chosen,  meaning two components needed to be provided as  a  starting guess. Creating the first 

subset was done by using only the tumour samples of the expression matrix and a table provided by 

TCGA, which contained information about the sample wise tumour purity[37]. Tumour purities 

were estimated from different algorithms and combined to a consensus. This consensus estimation 

was used to create the subset of the tumour expression matrix with high tumour purity samples. The 

second subset was created by selecting all normal tissue samples from the expression matrix with 

low immune score according to the ESTIMATE algorithm. Finally, DeMixT was started with the 

expression matrix and the two subsets.

3.4 Differential Gene Expression Analysis

In general, the Limma analysis pipeline consists of three main steps. First, a design matrix which 

divides the standardized expression matrix into groups has to be constructed. Then, a linear model 

to the expression matrix according to the design matrix has to be applied and, finally, moderated 

variances using the empirical Bayes framework have to be calculated[45].

For this study, two similar pipelines were created. One for the convoluted and the second one for the 

deconvolved data. The idea was to compare differentially expressed genes between tumour and 

normal tissue. In the convoluted data were 355 tumour samples, of which 49 samples also had 

adjacent normal tissue entries. These two groups were used to construct the design matrix in the 

Limma pipeline in two scenarios.
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In the first scenario all 355 tumour samples were compared against the 49 normal tissue samples 

and in the second scenario a pairwise comparison was done. Put differently, 49 tumour samples 

were compared against their corresponding normal tissue samples. In the case of the deconvolved 

data, the computed tumour- and normal tissue expression matrices were used as groups. After this, 

the linear model was applied in both pipelines.

The Limma package provides two useful functions for comparing groups with each other. The first 

one is makeConstrasts(). This function constructs a contrast matrix using the coefficients of the 

linear model. The second one is the contrasts.fit() function. It re-calculates the coefficients of the 

linear model according to the contrast matrix.

Finally, empirical Bayes can be applied to the new linear model. The result is a table where every 

gene has the following values: the log-fold change, average expression, t-statistic, p-value, adjusted 

p-value and the B-statistic.

3.5 Gene Set Enrichment Analysis

The gene set enrichment analysis was performed with the three results from the differential gene 

expression analysis using the gseGO and the gseKEGG function of the clusterProfiler package[46]. 

These two functions perform the f-GSEA algorithm[47] on the gene sets from the gene ontology 

(GO) and the Kyoto encyclopedia of genes and genomes (KEGG) database respectively[48], [49]. 

Filtering these results for the genes of interest (FGFs and FGFRs) was done by simply selecting 

those significant gene sets which included at least one of the genes of interest.

To provide useful information for the gene regulatory network analysis, a consensus was made from 

all  three  GSEA results  by  intersecting  the  filtered  significant  gene  sets  with  each  other. This 

consensus was saved as an R-object.

3.6 Gene Regulatory Network Analysis

Constructing gene regulatory networks was done with the Aracne-AP software[19]. Aracne-AP is a 

collection of Java classes, which are gathered in a JAR file. It needs two inputs, a gene expression 

matrix and a list of regulators (transcription factors). Here, the list of regulators equals the genes of 

interest. The output is a table with four columns stored in a text-file: the regulator gene, the target  

gene, their calculated mutual information (MI) and the according p-value.
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The Aracne-AP pipeline consists of three steps. First, a threshold for the MI, which depends mainly 

on the sample size is calculated, then bootstrap networks of the input matrix are constructed and 

finally all bootstrap networks are consolidated and combined into a final network.

This pipeline can be used to construct a network from a standardized expression matrix which is not 

log-transformed. However, after the deconvolution step in the analysis pipeline, there is not only 

one expression matrix but in total  three valuable expression matrices: The convoluted data,  the 

tumour compartment and the normal tissue compartment. Therefore, it was of great interest to get 

networks for each of these data sets. Furthermore, to get a better insight into the interaction of genes 

in each pathway, the consensus gene sets of the gene set enrichment analysis were used to build 

subsets for every data set. For this task, the Aracne-AP pipeline was parallelized in a bash script 

using GNU Parallel[50].

Some  resulting  networks  were  empty  and  removed  afterwards. Adjacency  matrices  were 

constructed  from these  network  tables  with  the  mutual  information  value  as  edge  weight. To 

compare  networks  against  each  other,  row  sums  for  each  gene  of  the  adjacency  matrix  were 

calculated and divided by the maximum of all row sums. Compensating for the missing information 

about the orientation of the relationship between two genes was achieved by adding the information 

of the DGE analysis. The information for the convoluted networks was adapted from the results of 

the DGE analysis with all samples. For the deconvolved compartments, the DGE results and their 

inverted  form  were  used  for  the  tumour  compartment  networks  and  the  normal  compartment 

networks respectively. Finally, graph objects were built with the adjacency matrix as core and row 

sums,  symbol  identifiers  and information  about  regulation  as  vertex attributes. The final  graph 

objects were saved as GML file, which made it possible to visualize them with Cytoscape[51].

3.7 Survival Analysis

Computing  and  visualizing  survival  curves  for  all  genes  of  interest  for  the  convoluted  and 

deconvolved tumour samples was performed with the Survminer package[52]. The main process 

consists of five steps. First, the needed columns get extracted out of the data sets. Second, the cut-

point of the gene expression dividing it into low and high expressing genes was evaluated with the 

surv_cut()  function. Third,  for each gene of  interest  all  samples  get  divided into low and high 

expressing genes. Then, the survival curve was drawn and the p-value, indicating for a significant 

difference  between  the  curves,  was  calculated. Finally,  all  p-values  were  gathered  and  were 

corrected using Benjamini-Hochberg[53] to address for multiple hypothesis testing.
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4 Results

4.1 Differential Gene Expression Results

The Limma package offers a great function to explore the landscape of the expression data and to 

get an idea of how to design the analysis. This function is called plotMDS() and it shows the leading 

log fold changes of the provided expression data. The following MDS (Multidimensional scaling) 

plots show the leading log fold changes for the whole and the pairwise generated convoluted data 

set as well as for the deconvolved compartments.
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Figure  4.1.1:  MDS plots  for  all  three  different  

approaches.  a)  blue  =  49  NT  (normal  tissue),  

orange = 355 TP (tumour primary), red = 3 TR  

(tumour recurrent); b) blue = 49 NT, orange =  

49  TP;  c)  blue  =  404  Normal  (compartment),  

orange = 404 Tumour (compartment).

a b

c



The results of the DGE analysis are shown in the following heat maps. Here, upregulated genes are 

presented in orange and downregulated genes are presented in blue. Tables of the differential gene 

expression results for all three figures are provided in the supplementary material section.
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Figure  4.1.2:  Heatmaps  showing  the  

differentially  expressed  genes  of  interest  as  

contrast  between  the  tumour  tissue  and  the  

normal  tissue.  a)  355  Tumour  vs.  49  Normal  

Tissue; b) 49 Tumour vs. 49 Normal Tissue; c)  

404  Tumour  Compartment  vs.  404  Normal  

Compartment.

a b

c



4.2 Gene Set Enrichment Results

The following histograms show the differences between the GSEA results of the three DGE analysis 

approaches and the normalized enrichment scores. Due to a low number of enriched KEGG gene 

sets, these histograms depict only the GO gene sets. While for the convoluted data the majority of 

the  gene  sets  are  significantly  downregulated,  they  are  equally  distributed  in  case  of  the 

deconvolved compartments.
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Figure 4.2.1: Histogram for all three approaches.  

On  the  x-axis  are  the  NE scores.  NES  > 0  =  

upregulated genesets; NES < 0 = downregulated  

genesets. Frequencies are shown on the y-axis. a)  

GSEA of  355  tumour  vs.  49  normal  tissue.  b)  

GSEA of 49 tumour-normal-tissue pairs. c) GSEA 

of deconvolved compartments.

a b

c



Three  gene  sets  have  been  chosen  to  show  further  the  differences  between  the  results  of  the 

convoluted and deconvolved data, namely “regulation of angiogenesis”, “regulation of vasculature 

development” and “PI3K-Akt signalling pathway”. Furthermore, the top 50 enriched gene sets for 

all GSEA results are provided in the supplementary material. While “regulation of angiogenesis” 

and  “regulation  of  vasculature  development”  occur  in  all  three  different  analysis  approaches, 

“PI3K-Akt  signalling  pathway”  only  occurs  in  all  convoluted  samples  and  the  deconvolved 

compartments. The  following  graphs  show  the  pre-ranked  list  and  the  running  score  for  the 

convoluted data set  with all  samples,  the pairwise comparison and the comparison between the 

deconvolved tumour and normal compartment.
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Figure 4.2.2: Pre-ranked  list and running score  

for  “Regulation  of   Angiogenesis”.  a)  355  

tumour  vs.  49  normal  tissue.  b)  49  tumour-

normal-tissue  pairs.  c)  deconvolved  

compartments.

a b

c



27

Figure 4.2.3: Pre-ranked  list and running score  

for  “Regulation  of   Vasculature  Development”.  

a)  355  tumour  vs.  49  normal  tissue.  b)  49  

tumour-normal-tissue  pairs.  c)  deconvolved  

compartments.

Figure 4.2.4: Pre-ranked  list and running score for “PI3k-Akt signalling pathway”. a) 355 tumour  

vs. 49 normal tissue. b) deconvolved compartments.

a b

c

a b



4.3 Gene Regulatory Network Results

To provide a better insight into the above shown gene sets (regulation of angiogenesis, regulation of 

vasculature development and PI3K-Akt signalling pathway), networks of the deconvolved normal 

and tumour compartment are presented here. Networks of the convoluted data are provided in the 

supplementary materials section. The size of the nodes (=genes) in the deconvolved normal and 

tumour compartment networks are weighted with the normalized row sums, meaning that the bigger 

the node,  the greater  the normalized row sum. Similarly to  the plots  of  the DGE analysis,  the 

colouring of the nodes encodes the gene regulation. Orange nodes represent upregulated genes, 

lightblue nodes show downregulated genes and white nodes are not significantly deregulated. The 

transparency and width of the edges is weighted by the mutual information value between two 

nodes. The darker and broader the edge is, the greater the mutual information value. These networks 

do not depict real pathways. They only show association between the genes of interest and other 

genes in the given genes sets. 
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Figure  4.3.1:  MI  network  of  “regulation  of  angiogenesis”  from  the  deconvolved  normal  

compartment. The following members  of  the FGF family  are included in this  network:  FGF18  

(down, greatest row sum), FGF2 (up, smallest row sum), FGF1 (down, second greatest row sum).



30

Figure  4.3.2:  MI  network  of  “regulation  of  angiogenesis”  from  the  deconvolved  tumour  

compartment. The following members of the FGF family are included in this network: FGF18 (up,  

smallest row sum), FGF2 (down, greatest row sum), FGF1 (up, the second greatest row sum).
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Figure 4.3.3: MI network of “regulation of vasculature development” from the deconvolved normal  

compartment. The following members  of  the FGF family  are included in this  network:  FGF18  

(down, greatest row sum), FGF2 (up, second smallest row sum), FGF1 (down, second greatest row  

sum), FGF9 (not deregulated, smallest row sum).
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Figure 4.3.4: MI network of “regulation of vasculature development” from the deconvolved tumour  

compartment. The following members of the FGF family are included in this network: FGF18 (up,  

second smallest row sum), FGF2 (down, greatest row sum), FGF1 (up, second greatest row sum),  

FGF9 (not deregulated, smallest row sum).
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Figure  4.3.5:  MI  network  of  “PI3K-Akt  signalling  pathway”  from  the  deconvolved  normal  

compartment. The  following  members  of  the  FGF family  are  included  in  this  network:  FGF1  

(down), FGF2 (up), FGF7 (down), FGF9 (not deregulated), FGF17 (up), FGF18 (down), FGF19  

(down, second greatest row sum), FGF21 (up), FGF22 (down), FGFR1 (down, greatest row sum),  

FGFR2 (down), FGFR3 (up), FGFR4 (up).
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Figure  4.3.6:  MI  network  of  “PI3K-Akt  signalling  pathway”  from  the  deconvolved  tumour  

compartment. The following members of the FGF family are included in this network: FGF1 (up),  

FGF2 (down, greatest row sum), FGF7 (up), FGF9 (not deregulated), FGF17 (down), FGF18 (up),  

FGF19 (up), FGF21 (down), FGF22 (up), FGFR1 (up, second greatest row sum), FGFR2 (up),  

FGFR3 (down), FGFR4 (down, third greatest row sum).



4.4 Survival Analysis Results

In  this  section,  only  those  results  are  shown  which  occur  in  both  the  convoluted  and  the 

deconvolved tumour data. All other results showing a significant difference between high and low 

expressing  genes  are  provided  in  the  supplementary  material. The  max-rank  plots  show  the 

computed  distributions  after  estimating  the  optimal  cut-point. The  survival  plots  show  the 

comparison between the estimated low (= blue colour) and high expressing genes (= salmon-pink 

colour). Adjusted p-values are given for each plot individually. 
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Figure  4.4.1:  Max-rank  plots  and  survival  plot  of  

FGF18 in the convoluted data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 0.44. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

pBH≈0.02535
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Figure  4.4.2:  Max-rank  plots  and  survival  plot  of  

FGF18 in the deconvolved data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 0.64. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

pBH≈0.04563
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Figure  4.4.3:  Max-rank  plots  and  survival  plot  of  

FGFR3 in the convoluted data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 19.37. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

pBH≈0.04060
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Figure  4.4.4:  Max-rank  plots  and  survival  plot  of  

FGFR3 in the deconvolved data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 1.54. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

pBH≈0.04060



5 Discussion

5.1 Software

In this  thesis, we have implemented an analysis pipeline in R and some parts as bash script to 

analyse the gene expression data of HCC with respect to the FGF family. First,  the expression 

matrix  was  mapped  from Ensembl  to  Entrez  ID,  then  filtered  for  noisy  genes  considering  the 

counts-per-million values, normalized by TMM and transformed to log-counts per million.

Because of multiple values for one gene or even genes without a complementary, mapping from one 

gene identifier to another can be challenging. The avereps() function of the Limma package does 

provide a solution for this problem. However, it can only be applied after the log-transformation 

step, meaning that all calculations of the normalization procedure are partly performed on genes 

with multiple identifiers or genes which get removed anyway. MapByIQR() on the other side deals 

with  this  issue by mapping from one gene identifier  to  another  before  the  normalization. This 

method works for cases where only a few genes with multiple identifiers occur. However,  it  is 

inefficient for data with larger sets of multiple gene identifiers.

In general, the filterByExprs() function of the edgeR package should be good enough for filtering. 

Nevertheless, we tried a different approach, namely FilterByCPM(). In the case of the TCGA HCC 

data set, ~25 000 genes get filtered and ~17 000 genes remain with the FilterByCPM() approach. 

The filterByExprs()  function removes  around 5000 more genes  by default,  but  by relaxing the 

parameters this function can be used as well.

Deconvolving  data  to  get  refined  expression  matrices  for  further  analysis  steps  is  a  great 

accomplishment in the analysis of RNA-Seq data. The DeMixT algorithm does a great job, but has 

some disadvantages. Despite the documentation, it  was not entirely clear how to implement the 

DeMixT software correctly. It took a lot of time and several trials with the help of different forums 

to get the deconvolution working properly. Especially getting the right information for the two 

compartments as starting guess in addition to the expression matrix as input was difficult. For this 

study, the additional information was provided using the Estimate package, which gives hints for 

purity in form of the stromal- and immune-score as well as downloaded tumour purity data from the 

TCGA database.
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Another issue with the DeMixT algorithm is its gene filter function. Before the actual deconvolution 

process begins, DeMixT removes all genes with at least one value equal to zero. In our case, this 

step would have removed around 5000 genes. One way of avoiding this is to add pseudo counts, but 

genes with lots of small values lead to a program crash. Therefore, the GeneSaver() function was 

created. It removes all genes which have more than a given percentage of zero-values (default is 

25%) and adds a pseudo count to the remaining expression matrix. Furthermore, it can keep genes 

of interest if a list,  containing the gene identifiers, is provided. Due to lack of time, it was not 

possible to test different deconvolution methods and look for an overlap in results. However, it is 

clear that in-silico micro dissection is a promising approach to deal with data from heterogeneous 

tissues.

Limma  offers  an  easy-to-use  framework  to  perform differential  gene  expression  analysis. The 

implementation of the analysis steps is easy and the software package allows for designing even 

more complex models, depending on the asked research question and available data. The results of 

the DGE analysis can be provided for gene set enrichment analysis. A good tool for this kind of 

analysis is the ClusterProfiler package. It provides lots of functions for enrichment analysis, post-

processing of the results and visualization.

Calculating  gene  regulatory  networks  seemed  challenging  at  first. The  results  of  the  WGCNA 

software package suggested that no linear relations could be found between almost all the genes. 

Therefore, Aracne-AP was used, a Java software which constructs gene regulatory networks with 

mutual  information  as  association  measurement. Using  Java  software  within  R  is  theoretically 

possible but was problematic for this study. That is why the construction of the MI networks was 

implemented in a bash script. The general idea of calculating gene regulatory networks with gene 

sets considering the genes of interest from the data sets was computationally expensive and needed 

improvements. Using only significantly enriched gene sets from the previous GSEA and parallelize 

computations  with  GNU  Parallel  made  it  possible  to  calculate  gene  regulatory  networks  in  a 

reasonable amount of time. Nevertheless, for future work, I would consider the software package 

SJ-Aracne[54]. It  is a python implementation of the Aracne-AP algorithm, which has a smaller 

memory footprint than the original Aracne-AP. Moreover, switching between R and Python should 

be less problematic. At the time of this study, it was, however, not possible to install it and make it 

work properly.
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The Survminer  package is  a  good choice  for  survival  analyses.  It  is  well  documented  and the 

implementation  is  straightforward. Survival  analysis  of  gene  expression  data  has  its  downside 

though, namely the categorization of continuous variables which leads to loss of information[55].

5.2 Biology

In this study, we analysed the role of the FGF family in HCC. The original convoluted data set with 

355 tumour samples and 49 normal tissue samples makes differential expression analysis difficult 

due to unbalanced group sizes. Nevertheless,  the model  used by the Limma software is  robust 

enough for this type of issue. Moreover, three different approaches for analysis were used: first, 

using  the  whole  data  set  and compare  355 tumour  samples  against  49  normal  tissue  samples; 

second, a more conservative approach to compute differential gene-expression with pairs (meaning 

49  normal  tissue  samples  with  their  according  tumour  samples)  and  third,  comparing  the 

computationally generated tumour and normal tissue compartments from the DeMixT software. In 

this  study,  the  DeMixT algorithm calculated gene  expression  profiles  where  no  infiltration  of 

stromal and immune cells occurs. The results of the different approaches show only overlap on 

certain genes. FGF12 and FGF13 are in all three approaches significantly overexpressed and FGF2 

is significantly under expressed. Gene expression of those three genes is different between normal 

and cancer tissue in all three approaches suggesting that these genes might be potential candidates 

for further research.

The results of the gene set enrichment analysis show differences between the convoluted and the 

deconvolved data. More gene sets of the deconvolved data are upregulated than they are for the 

approaches  with  the  convoluted  data. Three  of  these  differing  gene  sets  are  “regulation  of 

angiogenesis”, “regulation of vasculature development” and “PI3K-Akt signalling pathway”. While 

the first  two gene sets were significantly enriched for all  three analysis approaches,  “PI3K-Akt 

signalling  pathway” was not  enriched in  the case  of  the pairwise  compared data.  Interestingly, 

compared to the results of the convoluted data, the results for the deconvolved data suggest up-

regulation of these three gene sets.
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Gene regulatory networks allow for a deeper insight into the interactions of the FGF family with all 

other genes in the above-mentioned gene sets. In both “regulation of angiogenesis” and “regulation 

of vasculature development” interaction with FGF18 decreases and interaction with FGF2 increases 

from normal tissue to tumour tissue. Here, interaction means the amount of mutual information. 

Moreover, FGF18 is upregulated and FGF2 is downregulated in the tumour compartment. “PI3K-

Akt signalling pathway” shows the same changes for  FGF2. Furthermore,  FGF19, FGFR1 and 

FGFR4 are the most affected genes of the FGF family. FGF19 shows the second highest interaction 

after  FGFR1 in  the  normal  compartment,  but  in  contrast  to  FGFR1 the  interaction  of  FGF19 

decreases  in  the  tumour  compartment. FGFR4  has  the  third  highest  interaction  in  the  tumour 

compartment. Additionally, FGFR1 and FGF19 are upregulated and FGFR4 is downregulated in the 

tumour compartment. According to the GSEA results of the deconvolved data, all changes of the 

interaction between the FGF family members and the other genes contribute to an upregulation of 

the  three  before  mentioned  gene  sets,  namely  “regulation  of  angiogenesis”,  “regulation  of 

vasculature development” and “PI3K-Akt signalling pathway”. Comparatively, the GSEA results of 

the  convoluted  data  show that  all  changes  in  the networks  (see Supplementary Material,  Gene 

Regulatory Networks) contribute to a downregulation of the three before mentioned gene sets.

Results of the survival analysis overlap on two genes for both convoluted and deconvolved data. 

Lower chances for survival are associated with low expression of FGF18 and high expression of 

FGFR3. The results of the survival analysis show that those two members of the FGF family might 

be potential targets for therapy.

To get reliable results, an ensemble approach was used by simply creating different kinds of data 

sets. In this way it was possible to look for overlaps in results and also to compare the different 

approaches.  Especially, comparing the results between the convoluted and the deconvolved data. 

Even though the MDS “landscapes” of the whole convoluted and the deconvolved data look similar, 

the results of all analysis steps show differences between those data sets. The best example here for 

are the results of the gene set enrichment analysis. Expression profiles generated by the DeMixT 

algorithm depend on the initially provided data. As a result, it is important to think about what data 

(or information) you have available and what the generated expression matrices shall represent. In 

the case of this study, the expression profiles shall represent gene expression of tumour and normal 

tissue without infiltration of immune cells or stromal cells respectively.

42



6 Conclusion

The Results  of the developed analysis  pipeline shall  give researchers  different  insights into the 

mechanisms of the FGF family in cancer and help investigate possible new targets for therapy. We 

addressed the power as well as the limitations of the used computational methods. Hopefully, the 

results of this study provide new hints for further research and can be proved in future work.
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8 Supplementary Material

8.1 Differential Gene Expression Tables
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Table 8.1.1: DGE results of all convoluted samples. This table shows  
the results for the DGE analysis of all convoluted samples for all  
members of the FGF family. It displays the following information:  
log  fold  change,  average  expression  of  gene,  t-statistic,  p-value,  
adjusted  p-value  and  B-statistic  from  the  empirical  Bayes.

logFC AveExpr t P.Value adj.P.Val B
FGFR1 -1.12283 3.07380 -5.59284 0.00000 0.00000 7.70047
FGF17 1.34932 -3.22026 4.46249 0.00001 0.00003 2.36421
FGFR2 -2.17551 4.15811 -4.44327 0.00001 0.00003 2.28277
FGF12 1.03079 0.57533 3.80138 0.00017 0.00037 -0.25183
FGF2 -1.09900 1.04851 -3.56303 0.00041 0.00085 -1.09956

FGF13 0.97119 1.42993 3.46735 0.00058 0.00118 -1.42539
FGF7 -1.17761 -1.35327 -3.29857 0.00106 0.00206 -1.97971
FGF1 -0.70016 -0.59007 -2.84944 0.00460 0.00801 -3.32641
FGF9 -0.79267 -4.83089 -2.82236 0.00500 0.00864 -3.40160

FGFR4 0.53394 7.26522 2.64447 0.00850 0.01407 -3.87820
FGF22 0.69619 -3.89885 2.63582 0.00871 0.01440 -3.90062
FGF14 -0.79677 0.06039 -2.28352 0.02292 0.03494 -4.75290

Table  8.1.2:  DGE results  of  the  pairwise  comparison.  This  table  
shows  the  results  for  the  DGE analysis  of  the  paired  convoluted  
samples for all members of the FGF family. It displays the following  
information: log fold change, average expression of gene, t-statistic,  
p-value, adjusted p-value and B-statistic from the empirical Bayes.

logFC AveExpr t P.Value adj.P.Val B
FGF13 1.67275 1.43291 5.64987 0.00000 0.00000 6.67505
FGFR1 -1.13909 3.49859 -5.57401 0.00000 0.00000 6.35160
FGFR2 -2.47691 4.85919 -4.73963 0.00001 0.00003 2.95696
FGF12 1.10739 0.22731 3.90059 0.00018 0.00051 -0.09727
FGF1 -0.70763 -0.31942 -2.74412 0.00721 0.01428 -3.55670
FGF9 -0.78688 -4.51761 -2.71164 0.00790 0.01548 -3.63941
FGF7 -0.96910 -0.78919 -2.57413 0.01154 0.02171 -3.98019
FGF2 -0.81616 1.57959 -2.55844 0.01204 0.02256 -4.01809
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Table 8.1.3: DGE results of the deconvolved data. This table shows the  
results for the DGE analysis of the deconvolved compartments for all  
members of the FGF family. It displays the following information: log  
fold change, average expression of gene, t-statistic, p-value, adjusted  
p-value  and  B-statistic  from  the  empirical  Bayes.

logFC AveExpr t P.Value adj.P.Val B
FGFR4 -2.71888 6.74290 -18.34977 0.00000 0.00000 132.96745

FGF7 2.59182 -2.59921 15.66858 0.00000 0.00000 99.37412
FGF18 1.72834 -3.38154 15.25964 0.00000 0.00000 94.48853
FGFR3 -2.28181 4.74924 -14.83991 0.00000 0.00000 89.54908
FGFR2 4.43562 -1.42115 13.06717 0.00000 0.00000 69.60713
FGF19 2.60607 -3.03828 12.55206 0.00000 0.00000 64.11796
FGF14 2.25778 -2.50500 10.67924 0.00000 0.00000 45.47712
FGF12 1.31880 -0.62744 8.24505 0.00000 0.00000 24.76198
FGF13 1.35077 -0.29768 7.12578 0.00000 0.00000 16.74652
FGF21 -1.82456 1.10045 -6.06292 0.00000 0.00000 10.09660
FGFR1 0.72179 1.56005 4.91997 0.00000 0.00000 4.04792
FGF17 -0.61093 -3.19181 -4.81268 0.00000 0.00000 3.54068
FGF1 0.68149 -1.59296 4.59464 0.00001 0.00001 2.54246
FGF2 -0.72338 -1.85080 -3.17113 0.00158 0.00184 -2.88002

FGF22 0.21579 -3.75633 2.12737 0.03369 0.03729 -5.62015



8.2 GSEA Results
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Figure  8.2.1: Dotplot of the top 50 gene sets with all convoluted samples. The x-axis shows the  

percentage of genes which contribute to the enrichment score. Descriptions for all gene sets are on  

the y-axis. Dot colour resembles the adjusted p-value and dot size is equal to the total number of  

included genes.



Figure 8.2.2: Dotplot of the top 50 gene sets with the paired convoluted samples. The x-axis shows  

the percentage of genes which contribute to the enrichment score. Descriptions for all gene sets are  

on the y-axis. Dot colour resembles the adjusted p-value and dot size is equal to the total number of  

included genes.
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Figure 8.2.3: Dotplot of the top 50 gene sets with the deconvolved compartments. The x-axis shows 

the percentage of genes which contribute to the enrichment score. Descriptions for all gene sets are  

on the y-axis. Dot colour resembles the adjusted p-value and dot size is equal to the total number of  

included genes.
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Table 1: All GSEA results of the analysis with the KEGG database. The following information is  
displayed: description of the gene set, enrichment score, normalised enrichment score, p-value,  
adjusted p-value, signal strength of the genes, the used analysis approach. Note that no results  
could  be  found  for  the  paired  convoluted  samples.

Description ES NES p-value p.adjust Signal (%) Approach
Proteoglycans in cancer -0.35143 -1.49885 0.00604 0.02957 30 convoluted all
PI3K-Akt signaling pathway -0.32071 -1.45100 0.00772 0.03407 29 convoluted all
Rap1 signaling pathway 0.28966 1.53353 0.00476 0.01736 26 deconvolved
Regulation of actin cytoskeleton 0.27715 1.45280 0.00488 0.01736 21 deconvolved
PI3K-Akt signaling pathway 0.28002 1.58228 0.00730 0.02316 24 deconvolved
Ras signaling pathway 0.27093 1.45746 0.01026 0.02873 25 deconvolved
Pathways in cancer 0.23894 1.39923 0.01163 0.03110 25 deconvolved



8.3 Gene Regulatory Networks (Convoluted)
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Figure  8.3.1:  MI  network  of  “regulation  of  angiogenesis”  from  the  convoluted  data  set. The 

following  members  of  the  FGF family  are  included  in  this  network:  FGF18 (not  deregulated,  

smallest row sum), FGF2 (down, greatest row sum), FGF1 (down, second greatest row sum).
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Figure 8.3.2: MI network of “regulation of vasculature development” from the convoluted data set. 

The following members of the FGF family are included in this network: FGF18 (not deregulated,  

second smallest  row sum), FGF2 (down, greatest  row sum), FGF1 (down, second greatest  row  

sum), FGF9 (down, smallest row sum).
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Figure  8.3.3: MI network of “PI3K-Akt signalling pathway” from the convoluted data set. The 

following members of the FGF family are included in this network: FGF1 (down), FGF2 (down),  

FGF7 (down, second greatest row sum), FGF9 (down), FGF17 (up), FGF18 (not deregulated),  

FGF19 (up), FGF21 (not deregulated), FGF22 (up), FGFR1 (down, greatest row sum), FGFR2  

(down), FGFR3 (not deregulated), FGFR4 (up, third greatest row sum).



8.4 Survival Analysis Results
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Figure 8.4.1: Max-rank plots and survival plot of FGF1 

in  the  convoluted  data  set.  a)  Gene  expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 0.64. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.02744
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Figure 8.4.2: Max-rank plots and survival plot of FGF2 

in  the  convoluted  data  set.  a)  Gene  expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 0.48. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.04060
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Figure 8.4.3: Max-rank plots and survival plot of FGF7 

in  the  convoluted  data  set.  a)  Gene  expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 1.34. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.04432
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Figure 8.4.4: Max-rank plots and survival plot of FGF9 

in  the  convoluted  data  set.  a)  Gene  expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 0.01. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.02535
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Figure  8.4.5:  Max-rank  plots  and  survival  plot  of  

FGFR1 in the convoluted data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 5.17. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.02535
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Figure  8.4.6:  Max-rank  plots  and  survival  plot  of  

FGFR4 in the convoluted data set. a) Gene expression  

distribution divided by the cut-point. b) Maximal rank  

statistic at 76.83. c) Survival plot → x-axis = time (in  

days), y-axis = survival probability.

a

b

c

p≈0.02535
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