
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Subverting Network Intrusion Detection:
Crafting Adversarial Examples

Accounting for Domain-Specific Constraints“

verfasst von / submitted by

Martin Teuffenbach, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt / A 066 910
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Master Computational Science
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Inform.Univ. Dr. Claudia Plant

Contents

1 Introduction 2

2 Related Work 3
2.1 Use of Machine learning for intrusion detection systems 3
2.2 Adversarial Examples . 4

2.2.1 De�nition . 4
2.2.2 Taxonomy . 5
2.2.3 Transferability of adversarial examples . 7
2.2.4 Adversarial Examples in Computer Vision . 7
2.2.5 Adversarial Examples in Network Intrusion Detection Systems 8
2.2.6 Robustness against Adversarial Examples . 8

3 Preliminaries 10
3.1 Threat Model . 10
3.2 Models . 11

3.2.1 Objective . 11
3.2.2 Deep Neural Network . 11
3.2.3 Deep Belief Network . 12
3.2.4 Outlier Detection . 13
3.2.5 Evaluation Metrics . 14

3.3 Datasets . 15
3.3.1 NSL-KDD . 15
3.3.2 CICIDS2017 . 16
3.3.3 CIDDS . 17
3.3.4 Preprocessing . 18

3.4 Attack Algorithms . 19
3.4.1 Fast Gradient Sign Method . 19
3.4.2 Carlini and Wagner Attack . 20
3.4.3 Optimizer . 21

4 Methodology 22
4.1 Grouping . 22
4.2 Crafting . 23
4.3 Vulnerability Score . 24

5 Results 26
5.1 Model Evaluation . 26

5.1.1 Objective and setup . 26
5.1.2 Deep Belief Network . 26
5.1.3 Deep Neural Network . 28
5.1.4 Outlier Detection . 32
5.1.5 Comparative Evaluation of Network-based Intrusion Detection System (NIDS)

models . 32
5.2 Attack Evaluation . 33

5.2.1 Grouping . 34

1

5.2.2 Comparative evaluation of the attack algorithms 34
5.2.3 Transferability . 37
5.2.4 Attack on Network Intrusion Detection models 40
5.2.5 Vulnerability Score . 43

6 Conclusion 45

7 Appendix 52
7.1 Model architecture . 52
7.2 Results Transferability . 53
7.3 Results Attack Evaluation . 54

2

Abstract

With the growing amount of data in today's internet tra�c, the demand for faster and
more robust NIDS is increasing. Therefore, application of Deep Learning (DL) algorithms to
intrusion detection is gaining more interest. Deep learning algorithms outperform other de-
tection algorithms when it comes to computational e�ciency and accuracy. However, machine
learning based detectors and in particular deep learning approaches have recently been found
vulnerable to so called adversarial examples, inputs crafted with the intent of causing classi�c-
ation algorithms to misclassify with high con�dence. Adversarial examples were discovered in
the �eld of image recognition, where the concept of 'imperceptibility' for a human observer is
vital. Researchers managed to fool an classi�er into labelling a STOP-sign as a 'Speed Limit
45' sign with a con�dence over 90% by adding a Sticker [1]. With the growing interest in DL
applied in NIDS adversarial examples must be considered as a potential threat.
This thesis will showcase how adversarial example attacks might be used to evade network
intrusion detection systems. To transfer the idea from computer vision to the network security
domain restrictions on the features were formulated and a metric for evaluating the risk was
developed. An extended version of the Carlini and Wagner Attack algorithm [2] alongside
with feature-restrictions for adversarial examples for network-�ow datasets to ensure validity
constraints is proposed. To highlight the threat the possibility of a black-box attack utilizing
the phenomenon of transferability [3] is elaborated.

Zusammenfassung

Durch die stetig wachsenden Datenmengen die heutzutage im Internet verschicket wer-
den ist der Bedarf an schnellen und zuverlässigen Network-based Intrusion Detection System
(NIDS) gestiegen. Um dem nachzukommen sind Deep Learning (DL) Algorithmen in den Fokus
der Wissenschaft gekommen, da diese akkurater und e�zienter sind als andere Detektions-
Techniken. Jedoch zeigten aktuelle Publikationen, dass vor allem Deep Neural Network (DNN)
basierte Algorithmen, anfällig gegen sogenannte Adversarial Examples sind. Bei Adversarial
Examples handelt es sich um Daten, welche manipuliert wurden um einen klassi�zierungs
Algorithmus zu täuschen. Dieses Phänomen wurde erstmal im Bereich Computer-Vision un-
tersucht. Forscher haben es gescha�t, ein Bild eines Stoppschilds so zu verändern, dass das in
einem Auto implementierte DNN es fälschlicherweise als Geschwindigkeitsbegrenzung 45mph
Schild erkannt hat [1]. In diesem Bereich spielt die Ununterscheidbarkeit für einen mensch-
lichen Beobachter eine wichtige Rolle, das Ziel ist Daten nur minimal zu verändern, sodass kein
visueller Unterschied zu echten Daten besteht, der Algorithmus jedoch nicht korrekt klassi�z-
iert.
Mit dem steigenden Interesse von DL Algorithmen im NIDS Bereich müssen Adversarial Ex-
amples als reale Bedrohung untersucht werden. Diese Masterarbeit wird zeigen, wie sich dieses
Phänomen gegen Algorithmen zur Detektion von Angreifern verwendet werden können. Im
Zuge dessen werden für den Internet Verkehr typische Beschränkungen formuliert und eine
Metrik zur Evaluierung des Risikos eines Adversarial Example Angri�s entwickelt. Ein in der
Forschung etablierten Algorithmus, der Carlini und Wagner Algorithmus [2], wird erweitert um
Validitäts Beschränkungen zu berücksichtigen. Die Möglichkeit eines Angri�s auf ein Black-Box
NIDS wird durch Anwendung des Transferabiltiy Theorems [3] untersucht.

3

Acknowledgements

This Project has been done in a collaboration between the Austrian Institute of Technology (AIT)
and the University of Vienna.

I wish to express my gratitude to my supervisors at AIT, Dr. Ewa Piatkowska and Dr. Paul
Smith, for giving me the opportunity to do my research and for their guidance, as well as for their
encouragement and their passion. Thanks to them and my colleagues at AIT I had the privilege to
work in a supportive and friendly environment in the course of the project.
Furthermore, I would like to thank my University supervisor Professor Claudia Plant for her con-
structive feedback and for helping me to realize my project, and Professor Kerstin Hummer, without
whom this thesis would not have been possible.
Last but not least I want to thank my caring partner Victoria and my family for their support
throughout the project.

1

1 Introduction

The goal of an Intrusion Detection System (IDS) in the IT domain is to monitor a network or
devices for suspicious activities and to detect intrusions. We distinguish two types of detection
systems: Host-based Intrusion Detection Systems (HIDS) and Network-based Intrusion Detection
System (NIDS). HIDS run on a particular device on the network and monitor activities on the
machine, like log �les, to detect malware in the system, whereas NIDS are installed on a point
on the network, to monitor network segments of all the devices online and monitors for suspicious
patterns. Most NIDS rely on a library of known attacks to detect malicious tra�c.

Major challenges of NIDS are the rapidly growing volume of network data and the increasing
number of di�erent protocols and the diversity of data in modern networks. Detection systems are
required to process data with high speed and to accurately deal with unknown behaviour. To match
those requirements researchers investigate the use of Machine Learning (ML) techniques for NIDS.
([4] and [5]). Particularly, Deep Learning (DL) methods such as deep neural networks are receiving
substantial interest as they outperform shallow networks in accuracy. Several DL algorithms have
been proposed for NIDS, some reaching an average accuracy score up to 99% for speci�c datasets
([6], [7]).

However, DL algorithms were found to be vulnerable to adversarial examples [8], i.e. inputs
crafted to cause a misclassi�cation. A lot of research on this phenomenon has been done in the
image recognition domain, where a small modi�cation of pixel values, which is imperceptible to
a human observer, causes an algorithm to misclassify the image. Most algorithms make use of
gradient information of the model to craft adversarial examples ([9], [8], [10]) or query the model
in order to approximate the gradient ([11]).

There are several techniques to defend against adversarial examples. One of the main coun-
termeasures is called Adversarial Training ([10]), which simply retrains a model using adversarial
examples. Others tried to increase robustness by training an additional binary classi�er to detect
adversarial examples, stacked on to the Deep Neural Network (DNN) [12] or network distillation,
which transfers knowledge from a network to a smaller to improve the training [13]. However, these
defence strategies are shown to be e�ective only for part of attacks and most fail to defend unseen
attacks. Stronger defence strategies are urgently required.

This thesis is a continuation/extension of the work done by Teu�enbach et al.[14], submitted
for the 15th International IFIP Cross Domain Conference for Machine Learning & Knowledge
Extraction (CD-MAKE 2020). Parts of the Introduction, Related work and Preliminary Section
in [14] have been adapted for this thesis. The Methodology Section (4) is content wise similar.
The Experiments (Section 5) have been improved and evaluated again entirely and an extensive
Transferability evaluation has been added.
This thesis aims to further improve the understanding of adversarial examples against NIDS. The
following steps are elaborated to approach the objective:

1. Transfer the concept of Adversarial Examples to NIDS domain.
As a �rst step it is elaborated how the concept of imperceptibility in image recognition
translates to an NIDS dataset. In addition, a threat model for attacking a NIDS utilizing
adversarial examples are proposed. To approach this attack, challenges and constraints are
discussed. A framework to categorize features in order to generalize restrictions is presented.
Utilizing this framework, a crafting algorithm for adversarial examples that is aligned with
these restrictions are proposed.

2

2. Reproduce state-of-the-art DL models for NIDS.
The performance of di�erent classi�ers trained to perform the intrusion detection task is in-
vestigated. A representative sample of proposed IDS algorithms is implemented and evaluated
on benchmark network tra�c datasets. These datasets are analysed according to the proposed
framework.

3. Evaluate the impact of adversarial example attacks on NIDS.
The robustness of the DL models against adversarial examples is evaluated with various
budget constraint. In this process, a metric to measure the vulnerability against these attacks
is proposed.

The reminder of this thesis is structured as follows: Section 2 reviews related work in this domain
and in Section 3 the theoretical background for evaluation of the objective will be elaborated.
Section 4 derives the grouping of features alongside with the crafting algorithms, as well as the
robustness metric. Section 5 will discuss obtained results. Finally, the conclusions are given in
Section 6.

2 Related Work

In this section, related work is presented. First about DL in the NIDS domain, followed by research
about adversarial examples in general, in the computer vision, and �nally in the NIDS domain.

2.1 Use of Machine learning for intrusion detection systems

An IDS is a software or a device that monitors a systems for malicious activity. The goal is to detect
and report any intrusion activity. Hamed et al.[15] categorizes IDS components into three parts: (i)
pre-processing/feature extraction, (ii) pattern analyser, which involves knowledge representation,
and learning processes, and (iii) decision making. Distinguishing normal from di�erent types of
anomalous behaviour in a network is usually equivalent to a classi�cation problem, i.e. the goal
is to assign a label to every network tra�c instance. This could be done in the form of binary
classi�cation (normal or anomalous) or multi-label classi�cation.
The �rst challenge arising is to de�ne an input instance, and to �nd enough training data to build
a robust classi�er. Most publicly available datasets are highly imbalanced and outdated, as recent
years have seen an increase in the number of new protocols used in modern networks. For example,
the KDD99 Cup dataset [16], which is used in around 50% of all NIDS research of the last decade
[17], even though it was generated over 20 years ago in 1999. In addition to that, most ML tech-
niques require a comparatively high level of human interaction to process data (identifying useful
data and patterns).
To deal with those limitations, DL, a subset of ML, is increasingly utilized by the research com-
munity. These algorithms have the potential to extract better representations from the data (un-
supervised learning) to create robuster models with fewer training samples.
There are two main approaches used in NIDS, the �rst one is Anomaly Detection (AD), which is a
binary classi�cation into two classes (anomalous and normal). AD methods based on DL techniques
can deal with high volumes of data and have the potential to detect novel attacks. Basically, these
techniques assign labels based on the distance to the normal behaviour. If the distance exceeds a
prede�ned threshold, anomaly is reported.

3

The de�nition of the distance measure depends on the algorithm. One example for an AD algorithm
would be an Auto Encoder (AE) [6], which is an unsupervised neural network-based feature ex-
traction algorithm, which can also be used for dimensionality reduction [18]. This method uses the
reconstruction error as a measure of distance to �nd anomalies.
The second main methodology is signature-based detection, mostly in the form of multi-class clas-
si�cation. Hereby, patterns of the input data are extracted and compared to known malicious
samples. The major limitation of this approach is that it is restricted to detect known attacks. An
obstacle of both methods, signature-based and anomaly-based detection systems, in an IDS setting
is the lack of labeled data. To overcome this issue unsupervised (or semi-supervised) learning tech-
niques such as Deep Belief Network (DBN) ([19], [20]) are used. To increase the performance of a
single DNN for intrusion detection ([21], [7]) researchers are combining various DL algorithms,[22]
for example stacked an AE onto the DNN. Hodo at al. [23] and Xin at al. [24] made a comprehensive
analysis of DL techniques in NIDS.

2.2 Adversarial Examples

2.2.1 De�nition

Adversarial Examples where �rst discussed by Szegedy et al.[8]. In this work they are referred to as
blind-spots of neural network. Later Ian Goodfellow et al.[10] named and de�ned the phenomenon.
They formulated the following de�nition.

De�nition 1. Adversarial examples are inputs to machine learning models that an attacker has
intentionally designed to cause the model to make a mistake.

The idea is to get the classi�er to misclassify an instance by adding a small perturbation to the
input. Figure 1 shows an example presented by Goodfellow et al..

Figure 1: Adversarial Example Source: [10]

A small distortion (size ϵ in �gure 1) causes the classi�er to change the originally correct predic-
tion. An important aspect of this is that a human observer is not able to distinguish the adversarial
example from the original image. This idea is often referred to as imperceptibility for a human
observer and is almost always implied when adversarial examples in the computer vision domain
are investigated. Formally, for a classi�er F:

F : x ↦→ y

(where x ∈ χ sample-space and y ∈ Υ set of labels) an Adversarial Example x′ is de�ned as

x′ = x+ δ s.t F (x) ̸= F (x′) (2.1)

4

In practice, equation (2.1) is often formulated as an optimization problem, where one solves for the
minimal distance δ that full�lls F (x) ̸= F (x+ δ).

2.2.2 Taxonomy

A classi�cation model is a multidimensional function F : x → y where X is the input vector and
Y the output vector. In the case of AD, Y would be a scalar indicating whether or not the input
is anomalous. The objective of an adversary is to �nd the optimal perturbation δ in equation
(2.1). Researchers came up with various optimization approaches to this objective, most prominent
algorithms are the Fast Gradient Sign Method (FGSM) [10], Jacobian based Saliancy Map Attack
(JSMA) [9], Deepfool [25] and the Carlini and Wagner L2 norm Attack (C&W) [26]). A review of
proposed adversarial examples crafting algorithms can be found in [27]. The following taxonomy
is taken from Papernot et al.[9] and Carlini et al.[28]. Papernot et al.elaborated the Threat model
of an adversarial attack by de�ning the Adversarial Goal and the Adversarial Capabilities. The
Adversarial Goal is to impact the integrity of the classi�er output. The four primary goals of an
adversary, enumerated by increasing di�culty, are:

A. Con�dence reduction:
Reduce the output con�dence of classi�cation. This goal does not require the model to
misclassify, but only to increase the uncertainty.

B. Misclassi�cation/Non targeted attacks:
Alter the output classi�cation to a class di�erent from the original class (equation (2.1))

C. Targeted misclassi�cation:
Produce inputs (generate new input) that are classi�ed as a speci�c target class y∗. The idea
is not to add a perturbation to an existing instance, but to generate an instance of class y
(y ̸= y∗) that is misclassi�ed.

D. Source/Target misclassi�cation:
Add perturbation to an existing input to force the classi�er to classify it as an speci�c target
class y∗. Formally the objective is to �nd δ to solve the following equation:

argminδ||δ|| s.t F (x+ δ) = y∗ (2.2)

Similar to the Adversarial Goal, the Adversarial Capabilities can be categorized in �ve levels:

A. Training data and network architecture:
The adversary has perfect knowledge of the classi�cation model (weights, biases, number of
layers) and access to the training data. The attacker can analyse the training data and has
full gradient information.

B. Network architecture:
The adversary has perfect knowledge of the classi�cation model (weights, biases, number
of layers) without the training data. With this the adversary has access to the gradient
information.

C. Training data:
The adversary can collect pairs of input and output data in the training phase. The adversary
has no knowledge of the models architecture, but can reproduce the original model using the
training data.

5

D. Oracle:
The adversary has no information about the original model but can query it. Using various
inputs the adversary can approximate the gradient using a �nite di�erence approach.

E. Samples:
The adversary can collect pairs of input and output data in the test phase. He cannot modify
these inputs.

The �rst two bullet points are called white-box attacks and the latter three black-box attacks.
Figure 2 depicts this taxonomy.

Figure 2: Threat Model Taxonomy Source: [9]

In order to tailor this taxonomy to other domains Carlini et al.[28] extended the Adversarial
Capabilities by splitting it into 2 subcategories: Adversarial Knowledge, which is de�ned as the Ad-
versarial Capabilities by Papernot et al.[9] (see above) and Adversarial Capabilities. This includes
reasonable constraints for the adversarial instances, for example restrict the norm of the perturba-
tion δ in equation (2.1) to be small (perturbation budget) or restrictions in the feature space (feature
budget). This convention is used in this thesis.
There is some research done about adversarial examples in the NIDS domain (for example [29]),
most papers, however, often treat network-tra�c datasets arbitrarily. Adversarial capabilities have
not been discussed properly, as they hardly made any restrictions in feature space, which makes
sense for attacking an image input, but not for an network-tra�c input. To the authors knowledge
the feasibility of an adversarial example-attack on a NIDS has not yet been discussed properly.

6

2.2.3 Transferability of adversarial examples

Papernot et al.[3] observed, that adversarial examples generated for a speci�c model may also fool
a di�erent model with a di�erent architecture or even a di�erent ML algorithm. He referred to this
phenomenon as transferability. The following theorem is given.

De�nition 2. Adversarial examples that a�ect one model often a�ect another model, even if the
two models have di�erent architectures or were trained on di�erent training sets, so long as both
models were trained to perform the same task.

Mathematically, an adversarial instance x′ that full �lls equation(2.1) might also fool a di�erent
classi�er F̃ : x → y, that is trained to perform the same classi�cation task as F , but with F̃ (x) ̸=
F (x):

F (x+ δ) = F̃ (x+ δ) = y∗ (2.3)

This phenomena can be utilized for black-box attacks against an IDS. A substitute model with
known architecture is trained to reproduce the output of an detection system in order to craft
adversarial examples. The success of those transferred samples strongly depends on the threat
model. An attacker with Oracle knowledge, e.g., is able to train a substitute model using e�cient
sampling techniques to even achieve source/target misclassi�cation. Furthermore, it is possible
[3] to use data augmentation to generate samples around the decision boundary of the original
classi�er to train a substitute model and increase its quality. Training the substitute model is
done by maximisation of the quality measure, e.g., a relative number of matching labels of a test
set. Achieving robust adversarial examples by training a model with only input-output samples is
signi�cantly more di�cult and has not been researched yet in the NIDS domain. A threat model
with Oracle knowledge is not particularly realistic in an NIDS setting, as querying a system would
be detected immediately.

2.2.4 Adversarial Examples in Computer Vision

Early research about adverarial examples ([9], [10], [13]) is done almost exclusively for computer
vision, due to extensive use of DL in this domain. Publicly available benchmark datasets are
used to showcase the phenomenon of adversarial examples. Potential consequences of intentional
degradation of image recognition capabilities can have quiet sever safety impact, e.g. in the domain
of self driving cars. To demonstrate the risk of an adversarial example attack in the physical
world, Eykholt et al.[1] proposed the stop-sign attack, which is designed to fool the DNN-based
classi�er deployed in an self driving car to misclassify a stop sign as a 45mph sign. For evaluation
the adversarial images were printed, captured with an standard video-camera and forwarded to
an convolutional neural network classi�er. The proposed algorithm [1] incorporates environmental
constraints, like di�erent lightning conditions, limits of printability and spatial constraint, as only
perturbations on the actual sign and not the background are possible. To deal with the spatial
constraints, a mask-matrix was introduced, which sets perturbations in undesired areas, i.e. in the
background of the image, to 0. Despite all this restrictions, success rates are rather high and vary
from 73% to 100% for di�erent scenarios were achieved. Figure 3 depicts an example image of the
printed adversarial posters. This attack on an AI installed in an self-driving car was one of the �rst
real-world adversarial example attacks.

7

Figure 3: Stop-Sign attack Source: [1]

2.2.5 Adversarial Examples in Network Intrusion Detection Systems

Due to the growing interest in adversarial example for image recognition, researchers tried to transfer
this concept to the NIDS domain. Currently, the challenge is to design a realistic scenario to attack
an intrusion detection system using adversarial examples. Machine Learning in the NIDS domain is
quit di�erent in the computer vision domain with respect to feature properties. An image consists
only of numerical features (i.e. pixels) with the same numerical range, in a network-tra�c instance
binary and categorical features, as well as feature dependencies, may appear. Additionally, the range
of numerical features can vary signi�cantly. However, early research, for example [29], often treat
network-tra�c datasets arbitrarily. Adversarial capabilities have not been discussed properly for
most proposed attacks, as they hardly made any restrictions in feature space, which makes sense for
attacking an image input, but not for an network-tra�c input. Recently, Zhang et al.[30] investigate
a reinforcement learning approach to match IDS dataset speci�c restrictions. The action space of
their algorithm only contains valid actions, meaning actions that would not degrade the compliance
of the instance. Hashemi [31] introduced the idea of treating features based on their properties
di�erently when crafting adversarial examples for �ow-based NIDS and also takes dependencies of
features into account. Crafting valid adversarial Examples to evade network intrusion detection in
black-box setting remains an open research challenge.

2.2.6 Robustness against Adversarial Examples

In general classi�cation models are characterised by parameters like accuracy and precision, which
re�ect the models performance on a given testest. As recent research has showcased that adversarial
examples are a potential threat to ML models, the demand of a metric for robustness against those
samples arises. Di�erent ideas on how to measure the vulnerability against adversarial examples
are proposed frequently. As the concept of adversarial examples in image recognition involves the
imperceptibility from the original image for a human observer, a lot of metrics use the distance
(L1/L2 norm) as a measure for robustness ([25], [13]). This makes sense in the computer vision
domain, as the distance between original input and adversarial example is correlated with visible
di�erences. Moosavi et al.[25] de�ne the expectation value of the minimal perturbation over a
testset as a measure of robustness.

8

This Adversarial Robustness is de�ned (see equation (2.4)) as the average distance to the closest
decision boundary for each instance in a given testset. The proposed crafting algorithm aims to
�nd the closest decision boundary and ,therefore, has an untargeted misclassi�cation as adversarial
goal.

∆(x;F) := min
δ

||δ||2 subject to F (x+ δ) ̸= F (x) (2.4)

The Adversarial Robustness ρadv(F) of a model F is then de�ned as the expectation value of the
minimum perturbation ∆(x, F) required to misclassify a sample x.

ρadv(F) = Eµ(∆(x, F)) (2.5)

Where µ is the data distribution of the samples x. This score is dependent on the testset. The
visualization of this metric is depicted in �gure 4.

Figure 4: Adversarial Robustness ∆(x, F) Source: [13]

Using a theoretical approach, Weng et al.[32] developed the CLEVER score (Cross Lipschitz
Extrem Value Network Robustness), which is also an estimation of the minimal distance required
to fool a neural network classi�er. This score uses the Lipschitz constant (approximated using
extreme value theory) as a measure, which brings the advantage that it is data-independent. In
the NIDS domain Hartl et al.[33] developed the Adversarial Risk Score (ARS), which is a distance-
based robustness score for classi�ers trained for network intrusion detection. In the paper [33],
they use a recurrent neural network for classi�cation and investigate the feature sensitivity of
their classi�er. However, without considering properties of features, a distance based approach for
measuring e�ectiveness of adversarial examples against NIDS might not re�ect the true security
threat. A lot of defence strategies utilise gradient masking ([34]), which relies on 'hiding' the
gradient information by using hard-labels or by using a non-di�erentiable classi�er instead of the
DNN. However, these techniques do not prevent adversarial examples, but hide them.
This thesis aims to show, that in the security domain, the question about the robustness evaluation
of NIDS algorithms should check whether or not there are adversarial examples reachable for an
adversary, not how hard it is to �nd them. Therefore, robustness evaluation should consider white-
box knowledge with useful gradient information. This work does not focus on how proposed defence
techniques would improve the robustness against certain attacks. The goal is to show how vulnerable
a given classi�er is against a constrained adversary.

9

3 Preliminaries

3.1 Threat Model

First, the de�nition of an adversarial examples needs to be adapted to the NIDS domain. As already
discussed, the concept of imperceptibility is not applicable anymore. The following equivalent to
this concept is proposed.

De�nition 3. Adversarial Examples in the NIDS domain are instances with anomalous proper-
ties/characteristics that are intentionally designed to cause the detection model to classify them as
benign.

As an adversarial image should appear to be the original image, a network-�ow instance should
still have the same impact as the original one. With the elaborated taxonomy (Section 2.2.2) and
the extended de�nition above the Treat Model for the adversarial example attack will be derived.
One of the main goals for an attack on a NIDS is to stay stealthy. In other words the attacker wants
to bypass the detection system, which means attacking while being labelled as benign. In the tax-
onomy, this would translate to a Source/Target misclassi�cation. Starting with an attack-instance
the attacker wants to add perturbation to fool the classi�er, while maintaining the characteristics
of the attack.
Figure 5 depicts the architecture of the target system. An unknown NIDS is monitoring the network
tra�c of a small environment (�gure 5a), e.g. a business network. Assuming that an attacker is
able to monitor the system or to gain access to input-output samples, the attacker is able to repro-
duce the target detection system (�gure 5b). By crafting adversarial examples for this substitute
model, an attacker might be able to bypass the original detection system. For the �rst part of the
evaluation presented in this thesis, samples knowledge is assumed (knowledge about the training
samples). With this approach the transferability between a black-box and a substitute model will
be evaluated. For the �nal robustness evaluation Network architecture knowledge is assumed, which
is equivalent to assuming the substitute model is a perfect copy of the original system. As men-
tioned earlier, assuming limited knowledge would be a case of security via obscurity, not robustness
against adversarial examples.
One key di�erence in the NIDS to the image recognition domain is re�ected in the Adversarial
Capabilities. Pixels in images can be changed more or less arbitrarily, without the need of taking
dependencies and physical limits into account. Network tra�c dataset, however, often inherits
feature-dependencies value range constraint for certain values. To de�ne the Adversarial Capabil-
ities for the attack scenario, an approach for categorizing and a rule-set for manipulating features
of an IDS dataset will be elaborated in Section 4.1. This contains a restricted feature-space and
a maximum perturbation budget. The idea is to restrict the feature-space to feasible features,
i.e. features an attacker can change without losing important properties of the attack, similar to
feature-space reduction technique done by Eykholt et al.[1].

10

(a) Target Network

(b) Proposed attack scenario

Figure 5: Attack on a Black-Box NIDS

3.2 Models

3.2.1 Objective

The objective of this thesis is to fool DL classi�cation models, trained to perform network intrusion
detection, utilizing adversarial examples. As a �rst step towards this goal, di�erent DL models are
reproduced, trained and optimized to classify instances from a NIDS dataset. To get a representative
sample, the following 3 models were implemented: A Deep Neural Network [22] (DNN) and a
Deep Belief Network [19](DBN) for supervised and semi-supervised multiclass classi�cation, and
an AE [35] trained to perform outlier detection for unsupervised anomaly detection. The anomaly
detection uses a distance based technique to detect outliers, which is fundamentally di�erent from
the other two models that compare patterns between known samples. The di�erence of the models
in robustness and accuracy will be evaluated. The goal was to implement models that di�er in their
training algorithms in order to get a better understanding of feature importance for classi�cation.
All three models will be trained with the same datasets and attacked utilizing the same attack-
algorithms to get comparable results.

3.2.2 Deep Neural Network

A feed-forward neural network, also often referred to as multilayer perceptron, is an arti�cial neural
network consisting of an input layer, hidden layers and an output layer. The layers of the network
are fully connected with directed connections (input to output). When speaking of a DNN, one
refers to an arti�cial neural network with 2 hidden layers or more.

11

In this thesis, a DNN is trained using the Back Propagation (BP) algorithm [36] to perform a clas-
si�cation task. To extend the functionality of a regular DNN, which usually works as a supervised
classi�er, Rezvy et al.[22] proposed the idea to stack an AE on top of a neural network. An AE is a
neural network trained to reconstruct the input with a low-dimensional hidden layer (smaller than
the input-dimension). This technique is often used for dimensionality reduction, in [22] it is used to
�lter out noise. The network learns how to project an input to a smaller dimension and reconstruct
it as accurate as possible and, therefore, learns which features contain most information. Figure 6
depicts the basic architecture of an AE (taken from [37]) with the input layer l1, one hidden layer
l2 and an output layer l3. The '+1' in this image represent the bias terms.

Figure 6: AE architecture Source: [37]

The proposed algorithms [22] are trained in three stages: First the unsupervised training of AE
is performed, second, the classi�er is trained to perform a supervised classi�cation using with the
output of the AE as input and in the third step, the network as a whole is trained with a few training
samples in supervised manner. By training the DNN on the de-noised samples in the second stage,
the classi�cation is restricted the most informative features. This technique is intended to improve
the robustness of the decision boundaries. Intuitively, the �rst two training stages initialize the
weights to improve the training done by the last �ne-tuning stage. This Auto-encoded Deep Neural
Network (AEDNN) should outperform a regular DNN in scenarios, where there is only a limited
amount of labelled training-samples available.

3.2.3 Deep Belief Network

A DBN is a generative model that consists of several layers of Restricted Boltzmann machines
(RBMs), with a classi�er stacked on top. A RBM is a generative stochastic arti�cial neural network
that is often used for dimensionality reduction, classi�cation and investigating feature importance.

12

Figure 7: RBM architecture Source: [19]

Analogically to an AE, a RBM is trained to
reproduce the input, however, trained with
a probability-distribution based algorithm
and with only two layers. Given the visible
layer {vi} a (lower) dimension set of hidden
layers {hi} can be sampled by the posterior
distributions p({hi}|{vi}). With this hidden
layer, a new representation of the visible
layer can be sampled by the posterior
distributions p({vi} | {hi}). The parameters
of these probability distributions are learned
with maximum likelihood learning. The goal
is to reproduce the visible layer as close as
possible.

In the basic RBM architecture there are no connections between nodes of the same layer and each
layer is fully connected to the adjacent layer, with undirected connections. Figure 7 depicts the
graphical representation of an RBM.
The second layer (similarly to the low-dimensional hidden layer in the AE) is the input layer of the
following RBM when constructing a DBN. A DBN can be represented as a graphical model, where
the joint distribution of the visible layer ν and the hidden layer hk (1 ≤ k ≤ n, n=number of layers)
is de�ned as follows:

p(ν, h1, ..., hn) = p(ν|h1)

n−2∏︂
k=1

p(hk|hk+1)p(hn−1|hn) (3.1)

where ν = {νi} are the nodes of the visible layer and hi = {hj} are the nodes of the i -th hidden
layer (see Figure 7). The DBN proposed by [19] is trained in 2 phases: First the RBM are trained
layer-by-layer in an unsupervised manner with maximum likelihood learning. In the second phase,
the parameters of the DBN are �ne-tuned using BP. The top layer RBM outputs the prediction
of the model using exact gradient descent on a global supervised cost function between the output
predictions and the true labels.

3.2.4 Outlier Detection

In contrast to the previous models, the implemented outlier-detection model is trained in an un-
supervised manner. This classi�er utilizes the reconstruction error of an AE as a measure of
outlyingness. This concept goes back to Hawkin et al.[35]. The idea is to train an AE on only with
benign data, such that anomalous (attack) samples are unknown to the model and, have therefore a
higher reconstruction error. To detect outliers Hawkins de�ned the Outlier Factor (OF) of a record
i as follows:

OFi =
1

n

n∑︂
j=1

(xij − x̂ij)
2 (3.2)

Where n is the number of features (input dimension), xij the j-th feature of record xi and x̂ij is
the j-th feature of the i-th reconstructed record (see Figure 6).

13

In their work, Hawking et al.compared the OF of benign and anomalous samples of a network-tra�c
dataset to illustrate.
As this thesis aims to get the model to output a more general score, which re�ects the outlier-
probability, it was combined with the method of Azami et al.[38] of converting distance based
outlier detection methods to probabilities using a sigmoid function:

P (i is outlier) = (1 + exp(
OFi − γ

σ
))−1 (3.3)

where γ is the anomaly threshold (OFi ≥ γ ⇒ P(i is outlier) ≥ 50%) and σ is a scaling constant.
This function maps real numbers to [0, 1]. As this model does not require known attack samples to
train, it is also able to detect novel attacks (unknown behaviour). The fact, that the model trains
only on benign samples makes it more feasible for application in network systems, as samples with
attack-behaviour are rarely available. The algorithm projects the features to a smaller dimension
and back to the original dimension. In this process information which is not required to reconstruct
original features, is discarded. In order for this anomaly detection to work, the method assumes
that anomalous data instances contain information that is lost in the compression step and can
therefore not be reconstructed correctly. The algorithm will work only if benign samples in AE
representation are signi�cantly di�erent than anomalous samples.

3.2.5 Evaluation Metrics

In this thesis, the algorithms are evaluated using the following metrics: accuracy, recall, precision
and F1-score are used. They are derived from the values of the confusion matrix True Positive of
label i (TPi), which is the number of correctly classi�ed instances with true label i, False Positive of
label i (FPi), which is the number instances with true label not i but classi�ed as i, True Negative
of label i (TNi)-the number of correctly classi�ed instances with true label not i, and False Negative
of label i (FNi), which is the number of misclassi�ed instances with true label i. The metric values
are de�ned in Table 1:

Metric Formula Description

Accuracyi
TPi+TNi

TPi+TNi+FNi+FPi
Relative number of correct predictions

Recalli
TPi

TPi+FNi

Proportion of actual positives that are
correctly classi�ed

Precisioni
TPi

TPi+FPi

Ratio of actual positives that are correctly
classi�ed to all correctly classi�ed instances

F1-scorei
2∗Precisioni∗Recalli
Precisioni+Recalli

Harmonic mean of Precision and Recall.

Table 1: Metrics used for model evaluation

The overall Accuracy, Recall, Precision and F1-score are then the averages over all labels i
weighted by support (the number of true instances for each label). As the testsets of the datasets
are primarily benign instances (see Section 3.3), the accuracy alone does not re�ect the detection
performance of the models. Therefore the precision, which is intuitively measures the amount false
alarms, and the recall, which measures the hit rate, are computed as well, alongside with their
harmonic mean.

14

3.3 Datasets

For evaluation of the reproduced DL models, three di�erent network-tra�c datasets are used. In
order to get comparable results, datasets with similar features and attack-labels were chosen. The
NSL-KDD [39], the CIDDS-001 [40] and the CICIDS2017 [41] dataset are used for evaluation. All
three of them can be considered as benchmark-datasets.

3.3.1 NSL-KDD

The NSL-KDD dataset is a re�ned version of the KDD99 dataset. The KDD99 dataset was de-
veloped in 1999 by the Defence Advanced Research Projects Agency (DAPRA) and contains la-
belled data of several weeks of internet tra�c of a test environment. A variety of cyber attacks were
launched during the measurement. To cope with the shortcomings of the original KDD dataset,
all duplicate records have been removed and the selection of instances was altered to achieve a
more realistic dataset, denoted as the NSL-KDD dataset. The NSL-KDD set is already split into a
train set (125.973 records) and a test set (22.544 record), both with 41 features (Intrinsic, Content,
Time-based and Host-based). In total, the sets contain 49 di�erent labels, grouped into 5 attack
categories: Normal, DoS (Denial of Service), Probe, U2R and R2L.

no
rm

al DoS
Pro

be R2L U2R
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

fre
qu

en
cy

Trainset
Testset

Figure 8: Label distribution of NSL-dataset

Dhanab et al.[39] summarized these attacks alongside with a more detailed analysis of the data-
set.
DoS : Denial of service is an attack category, which depletes the victims resources thereby making
it unable to handle legitimate requests.
Probe: Surveillance and other probing attacks objective is to gain information about the remote
victim, e.g. port scanning

15

U2R (User to Root): Unauthorized access to local super user (root) privileges is an attack type,
by which an attacker uses a normal account to login into a victim system and tries to gain
root/administrator privileges by exploiting some vulnerability in the victim, e.g. bu�er over�ow
attacks.
R2L (Remote to Local): Unauthorized access from a remote machine. The attacker intrudes into a
remote machine and gains local access.

One challenge about the dataset is the higher diversity in the testset. For examples in the
trainset only 53 instances of the group U2R appear and 995 R2L instances, whereas in the testset
there are 200 U2R and 2754 R2L instances. There are also several attack-categories in the testset
that do not appear in the trainset. Figure 8 depicts this diversity problem.

3.3.2 CICIDS2017

The intrusion detection dataset of the Canadian Institute of Cybersecurity (CICIDS2017) was
developed by the University of New Brunswick in 2017. They monitored 5 days of internet tra�c
in a test-environment with 25 simulated users. In this 5 days, they conducted 14 types of attacks
(most common attacks based on the 2016 McAfee report). The data was collected using the software
CICFlowMeter. A more detailed analysis of the CICIDS2017 dataset is presented in Sharafaldin et
al.[41]. The most dominant attacks (most instances) present in the dataset are the following:
DDoS Attack: It typically occurs when multiple systems,�ood the bandwidth or resources of a
victim. Such an attack is often the result of multiple compromised systems (for example, a botnet)
�ooding the targeted system with generating the huge network tra�c.
In�ltration Attack: The in�ltration of the network from inside is normally exploiting a vulnerable
software such as Adobe Acrobat Reader. After successful exploitation, a backdoor will be executed
on the victim's computer and can conduct di�erent attacks on the victim's network such as IP
sweep, full port scan and service enumerations using Nmap.
The DoS attack type is not listed here as it was already described in the previous Section. In
total, this set contains about 2.8 million records with 80 features per record, grouped in 15 label
categories (14 attack + benign).
The CICIDS2017 dataset is highly imbalanced, the attack-label Heartbleed, for example, appears
only 11 times in the 2.8 million records, the label Normal 2.36 million times. This dataset has no
prede�ned train- and testset, to divide the dataset a random 80/20 split was applied, depicted in
Figure 9. In this �gure, only the top 5 labels are depicted, as the other 10 labels are below 0.3% of
the instances.

16

BEN
IGN

DoS
 Hulk

Po
rtS

can DDoS

DoS
 Gold

en
Ey

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

fre
qu

en
cy

Trainset
Testset

Figure 9: Label distribution of CICIDS2017-dataset

3.3.3 CIDDS

CIDDS-001 (Coburg Intrusion Detection Data Sets) [40] is a dataset for anomaly-based NIDS. It
is a labelled �ow-based set created in a virtual environment using OpenStack. A small business
environment was emulated using python scripts. The emulation includes benign tra�c and 4 types
of malicious tra�c, Denial of Service, Brute Force attacks and Port Scans. As these attack types
are fairly similar to the attacks of the other datasets they will not be described further here. The
dataset contains 2 weeks of records, one with only benign tra�c (≈ 6M instances) and one with
benign and malicious tra�c (≈ 10M instances). As the available data is not split into train- and
testset a 80/20 train-test-split was performed.
Figure 10 depicts the label distribution of the 2nd week of records. It can be seen that over 90%
of the instances are labelled as benign ('�'), which potentially results in a biased classi�cation.
In contrast to the other two datasets, this dataset contains, apart from �ow-speci�c features (IP
adresses and ports), only 5 numerical and 2 categorical features.

17

--- do
s

po
rtS

can

bru
teF

orc
e

pin
gS

can
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Re
la

tiv
e

fre
qu

en
cy

90.348%

9.040%
0.562% 0.032% 0.018%

Trainset
Testset

Figure 10: Label distribution of CIDDS-dataset

3.3.4 Preprocessing

Similar to Gao et al.[19], three preprocessing methods were applied. These are necessary for the
datasets to be used as input to machine learning models. First, all categorical features are converted
to numerical values and then, all features are normalized to have the range [0, 1]. The following 3
preprocessing steps were done for the datasets:

1. 1 to N Encoding (one-hot-encoding):
Mapping categorical features to numerical values. For example 'Protocol' feature in the NSL-
KDD set (3 distinct categories: 'TCP', 'UDP' and 'ICMP') is replaced by a 3x1 vector.'TCP'
protocol would translate to [1, 0, 0], 'UDP' to [0, 1, 0]. With this preprocessing step, the
41 attributes of the NSL-KDD set are numeralized as 122 features and the 7 features of
the CIDDS-001 dataset to 29 features. As there are no categorical features in the available
CICIDS2017 Machine learning �les (without IP-addresses and ports), this step was skipped.

2. Log-Transformation:
As the range of the features in the datasets varies signi�cantly (some package-size related
features range from 0 to 108, others from 0 to 103), the following log-transformation to all
features xi:

xi = log(1 + xi)

A value xi ∈ [0, 108] is transformed to xi ∈ [0, 18]. This transformation was also applied by
Hawkins et al.[35]. Without this transformation, outliers would cause most other values to
be set to zero in the next step.

18

3. Min-Max transform:
To set the range of all features to [0, 1], a min-max transform has been applied to each feature
xi as follows:

xi =
xi − xmin

xmax,i − xmin,i

where xmax,i and xmin,i are the maximal/minimal appearing value of feature i. After this
step the range of all features is [0, 1]

A challenge when using the NSL-KDD dataset is the high diversity of testing samples (the
testing set contains labels that are not included in the training set). In addition, for U2R and R2L
attacks, the training set is smaller than the testing set, which can have a negative impact on the
accuracy of trained classi�ers. To address this issue, Rezvy et al.[22] de�ned their own training and
testing subsets by merging and re-splitting the existing sets (further referred to as NSL-KDD*) to
train their classi�ers with more samples of U2R and R2L attacks. For the experiments, the goal is
to reproduce the results of the Rezvy et al.DNN model; therefore, both variants, of the NSL-KDD
train- and testset were used for evaluation.
Due to the extensive size of the CICIDS2017 and the CIDDS-001 datasets, both were reduced in
size by randomly removing instances. By reducing the set to 10% the size of the two datasets is
about the same as in the NSL-KDD-dataset (≈ 220.000 train- and 55.000 testsamples).
To deal with labels with low frequency in the three datasets, an over- and under-sampling technique
was utilized in the training phase. The number of instances of each label with low frequency was
increased by randomly adding redundant data and the benign label was undersampled by removing
random instances. For the training, all labels were oversampled to have at least 10% the size of the
benign label. Note that the testsets were not over- nor undersampled.

3.4 Attack Algorithms

To �nd the perturbation δ that satis�es equation (2.1), three crafting algorithms were implemented.
The iterative FGSM [42], the C&W [2], and an extension of the C&W, that will be derived in Section
4.2, are used to evaluate the models. The objective of these algorithms is to �nd a perturbation for
a given instance that satis�es equation (2.1) for a given model by utilizing gradient information.
The C&W is still one of the most powerful white-box techniques to craft adversarial examples and
therefore used in this paper. The iFGSM is used for comparison.

3.4.1 Fast Gradient Sign Method

The FGSM, proposed by Goodfellow et al.[10], was the �rst algorithm designed speci�cally to fool
neural network classi�ers to misclassify images. Goodfellow et al.implemented a simpli�ed version of
gradient descent (GD) in order to proof the theory, that DNN classi�ers are particularly vulnerable
to the new phenomenon of adversarial examples. They derived Equation (3.4) to showcase this.

x∗ = x+ ϵ · sign(∇xFθ(x)) (3.4)

Where, x is a data sample, Fθ(x) the output activation function of the targeted classi�er with
parameters (weights and biases) θ, ϵ the stepsize and x∗ is the adversarial sample with F (x∗) = t, t
being the targed label. In the original paper, the algorithm is implemented as an one step method.
Later, this method was extended by Kurakin et al.[42] using an iterative approach.

19

This simple algorithm was proven to be e�cient in white-box settings, where gradient information is
available. It does not, however, ensure a minimum perturbation size, which would be desirable for a
stealthy attacker. This algorithm was considered in this thesis as it was one of the �rst and still one
of the mostly used adversarial example crafting technique. The iterative version extends equation
(3.4) with a while-loop that terminates when the goal is reached, or at a prede�ned maximum
number of iterations. Algorithm 1 depicts this method.

Algorithm 1: Iterative FGSM

Result: Adversarial Example x∗ with Fθ(x
∗)=t

1 Classi�er Fθ, instance x, desired label t, maximum number of iterations maxiter;
2 while Fθ(xi) ̸=t and i <maxiter do
3 xi+1 = xi + ϵ · sign(∇xFθ(xi));
4 if Fθ(xi+1)=t then
5 x∗=xi+1;
6 return x∗;

7 else
8 i = i+1;
9 end

10 end

To prevent the risk of getting stuck in an local optimum, Dong et al.[43] further extended this
algorithm with momentum. This is done by adding prior gradients to the current gradient value in
line 3 of algorithm 1.

gi+1 = µgi +
∇xFθ(xi)

||∇xFθ(xi)||
(3.5)

3.4.2 Carlini and Wagner Attack

To �nd Adversarial examples with minimal distance to the original input, Carlini and Wagner [2]
formulated the following optimisation problem:

�nd (min
δ

||δ||p + c · g(x+ δ)) s.t. x+ δ = x∗ ∈ [0, 1]n (3.6)

where δ = x − x∗ is the distance between the input and the adversarial sample, c is a coupling
constant and g(x) is a target function. This approach ensures minimal perturbation, while max-
imizing the desired target function. Three distance measurements of perturbation δ in equation
(3.6) are discussed in [2]: The L0, the L2 and the L∞ norm. The L0 corresponds to the number of
features that have been altered in an instance. The L2 distance measures the standard Euclidean
distance between x and x0 and the L∞ the maximum change to any of the features. For each norm
an attack algorithm was proposed. For this thesis, the L2-norm attack is utilized. In the original
paper [2], seven possible target functions g(x) where listed, where all basically are minimal when
the classi�er outputs the desired label. The constant c links the minimization of the distance with
the minimization of the target function, the smaller c, the more weight goes into the minimization
of the distance. An example for such a target function would be the following:

g(x) = max(max
i ̸=t

(F (x)i)− F (x)t, −κ) (3.7)

where t is the target label and kappa a constant. This function is minimal when the output
probability of the target class is signi�cantly higher then the output probability of all other classes.

20

The box-constraints in this algorithm are ensured by introduced a new variable ω:

δ =
1

2
(tanh(ω) + 1)− x (3.8)

and optimized over this substituted variable. Since −1 ≤ tanh(ω) ≤ 1, it follows that 0 ≤ x+δ ≤ 1,
the box-constraints are matched. Carlini and Wagner used the Adam [44] optimization algorithm
[2] to solve the problem. For the implementation in this thesis, the Nadam [45] algorithm, an
updated version of the Adam optimizer was used, described in the following Section .

3.4.3 Optimizer

The output-function of a DL classi�er, as well as the optimisation objective described in equation
(3.6) is, is in most cases, assumed to be a non-convex function. To solve this objective function,
a variant of stochastic gradient descent (SGD), the Nadam-optimizer [45] (Nesterov-accelerated
Adaptive Moment Estimation) was utilized. This algorithm improves the Adam optimizer [44],
that is used in Carlini and Wagners paper, by combining it with the Nesterov accelerated gradient
(NAG) algorithm. The Adam optimizer extends the regular SGD by adding an exponentially
decaying average of past squared gradients and an exponentially decaying average of past gradients.
These gradients can be understood as the momentum of the optimization and are used to prevent
the algorithm from getting stuck in a local minimum. The NAG algorithm places an update rule
for the momentum term in order to perform a more accurate step in the gradient direction. The
authors of [45] claim to achieve not only faster convergence, but also improved quality of the models
compared to the regular Adam optimizer.

21

4 Methodology

In this section, the Adversarial Capabilities described in Section 3.1, are further analysed and an
approach for crafting adversarial examples for NIDS is derived. Finally, a metric will be de�ned
to measure NIDS robustness (vulnerability) against adversarial examples. The metric intends to
re�ect the trade-o� between attack budget and success rate.

4.1 Grouping

Hashemi et al.[31] proposed the idea of grouping �ow-based features by their 'feasibility'. He divided
them into 4 groups:

1. Features that should not be changed because they are extracted from backward �owing packets

2. Features that can be changed independently of each other by using the legitimate transform-
ations

3. Features whose values depend on the second group and can be calculated directly by a set of
them

4. Features that cannot be directly recalculated based on independent features values

Based on this grouping, he developed an iterative crafting algorithm for adversarial examples. With
restricted feature space (�rst only group 2, features, then 2 + parts of 4 and �nally 2+4), GD steps
are performed until the goal of misclassi�cation is reached. Each step the features of group 3 are
recalculated. As the objective function, the output (prediction) function of the classi�er is used.
The algorithm stops when a certain con�dence threshold is reached. In this thesis, the feature
grouping is adapted to the considered adversarial example crafting algorithm. Like in Hashemi et
al.[31], group 1 and 3 are considered as inaccessible by the crafting algorithm. Therefore, those two
groups are merged into one group '0'. Next group 2 was split into 'independent and not used to
derive group 3 features' (group 1) and 'independent and used to derive group 3 features' (group 2).
The last group was not changed, but a more precise description was added. This group considers
features that depend on batches of other instances, for example mean-values and frequency-based
features. Features with underlying physical constraints are put in this group. Changing those
features (e.g., inter arrival time (IAT)) might violate physical limits.
Based the proposed feature grouping, weights (bias-variables) υ were assigned to each group of
features, that are used for the crafting algorithm. These weights should indicate how di�cult it
is for an adversary to perturb each feature. The weights are assigned to each group according to
the enumeration above. Weight 0 indicates that features of this group are not accessible by the
attacker. Weights 1 to 3 should indicate increasing di�culty. The crafting algorithm should favour
features with weight 1 over 2 and 3. The comparison of the proposed grouping method with the
one form Hashemi et al.[31] is summarized in Table 2

22

Group [31] Description weight υ

G0 (1) Features extracted from backward �ows 0

(3) Features whose values depend on the other features
and can be calculated directly by a set of them

0

G1 (2) Independent and not used to derive other features 1

G2 (2) Independent and used to derive other features 2

G3 (4) Features dependent on batches of packets (e.g., mean
and frequency based features)

3

Features with underlying physical constraints (e.g.,
IAT)

3

Table 2: The proposed feature grouping, including those from Hashemi et al.[31]

4.2 Crafting

For crafting adversarial examples the C&W algorithm by Carlini and Wagner [2] is used, as this
method is among the most powerful crafting algorithms up to date and a benchmark technique to
evaluate robustness of deep learning algorithms. Carlini and Wagner formulated an optimisation
based approach to craft adversarial examples. They derived an objective function that maximizes
the desired target-prediction while minimizing the size of the perturbation (see equation (3.6)). As
this crafting algorithm performs a straight forward distance minimization, it is simple to extend it
with the weighted feature grouping idea.

Based on the groups, weights υ (0 to 3, see 2) were assigned to each feature, according to
the enumeration of the groups above. Using these weights υ along with a mask (set of features
considered by the algorithm), the C&W (equation (3.6)) was extended with the new bias-variable
υ:

min
δ

(||δ ⊙ υ||2 + c · g(x+ δ ⊙mask)) s.t. x+ δ = x∗ ∈ [0, 1]n (4.1)

where ⊙ indicates an element-wise vector-vector multiplication. The weights added to the distance
in equation 4.1 forces the algorithm to favour perturbations on low-weighted features and avoid
adding large perturbation on high-weighted features. The mask represents the proposed restriction
on the featurespace. This mask sets the perturbation of undesired features to 0, here the mask
acts on group 0 features. As the target function g(x) in equation 4.1, the 'f5' function was used,
presented in [2]:

g(x) = log(2− 2 · F (x)t) (4.2)

where F (x)t is the prediction of the classi�cation model of target label t. This function becomes
minimal when the prediction of the desired class F (x)t ≈ 1.

The idea using the weighted crafting algorithms is to get a bias of the perturbation towards
easily accessible features. Ideally, an attacker would want to only alter features of group 1 and
avoid changes of group 3 features. Here, the weights are set arbitrarily from 1 to 3, if necessary
these weights could be adapted to achieve the desired outcome. Further restrictions, like for example
an increase only restriction on IAT features, might be added in the update step of the optimizer.

23

For the evaluation in this thesis, the extended C&W presented in equation (4.1) was utilized. The
pipeline of crafting the adversarial examples attack is depicted in Figure 11. As a �rst step, the
features are analysed and grouped accordingly. In this �gure, a few example features are listed.
After the grouping, a few features are considered as not accessible (i.e. group 0 features, crossed
in Figure 11) and weights are assigned to the other groups (di�erent shades of grey in Figure 11).
With these weights in place, the adversarial examples are crafted for each targeted instance. For
the evaluation, several feature budgets are investigated.

Figure 11: Example pipeline of Adversarial Example Crafting

4.3 Vulnerability Score

Finally, utilizing the weights derived in the previous section, a vulnerability score will be derived
to measure the robustness of a NIDS against adversarial examples. First, to quantify the feature-
budget and to link it to the crafting algorithm, the weighted featurespace-size f is introduced. This
parameter gives an indication of the cost of an attack. The f-budget is calculated with the following
formula:

f =
mask · υ

|υ|1
(4.3)

where mask · υ indicates a vector-vector product. If all features of group 1-3 are used, the f-budget
is equal to 1, with fewer features goes to 0. Therefore, an attack is considered as a strong attack
if the f-budget is close to 0 (only few features with low weights). The size of the mask is set with
a prede�ned budget f. In addition to the restriction on the featurespace, the attacks are restricted
with a maximum perturbation δmax. The second parameter for the vulnerability metric is the
success rate of a given dataset. The goal is to compute the worst-case success rate for a given
perturbation and feature budget. This value is dependent on the classi�er F, the desired target
label t and the distribution of attack-instances Dj :

sj→t =
1

N

∑︂
x∈Dj

1F (x+δx)=t s.t. |δx|¯ ≤ δmax (4.4)

Where F is a given classi�er, with F : D → Y (Y being a set of labels), t the desired label (t ∈ Y)
and Dj is the data-distribution of instances with true and predicted label j (Dj ⊂ D with f(x) = j
for all x ∈ Dj and |Dj | = N).

24

1condition is an indicator function, which is 1 if the condition is true, 0 otherwise. The perturbation
δx which aims to turn x into an Adversarial Example is restricted with the mask, alongside with a
maximum perturbation restriction on the average perturbation per feature |δx|¯ . As only attacks that
aim to be stealthy (target label t is benign) are considered, sj→t as is denoted sj for the reminder
of this thesis. The overall success rate s would then be the average over all labels j sj . Note,
that this value only makes sense for a su�ciently large N. For one-hot-encoded labels the predicted
label i of instance x is de�ned as i =: argmax(F (x)). As a matter of course, this success rate is
dependent on the technique used for crafting adversarial examples. The algorithm could fail to �nd
the optimal δx, that would be within my constraints. Therefore, the evaluation must be restricted
to the empirical success rate, which is the overall success rate for a given crafting algorithm. In the
evaluation section, s denotes the empirical success rate. Goodfellow et al.[10] interpreted adversarial
examples as blind spots due to incomplete training data. Using this metaphor, the success rate can
intuitively be seen as the relative number of attack-instances that have benign-blind-spots within a
sphere in the 'mask'-hyperspace, with radius δmax. This parameter gives an insight of the reliability
of the models decision boundaries. With all the parameters in place, the Vulnerability Score (VS)
is proposed, as a metric for measuring the robustness of NIDS against adversarial examples:

V S =
2 · (1/f) · s
(1/f) + s

(4.5)

which is the harmonic mean between the success rate (given the restrictions) and the inverse-f-
budget. Therefore, the VS ∈[0, 2], a score close to 2 means high vulnerability. The harmonic mean
is chosen, as it is commonly used to compute the average of rates. This score re�ects the trade-o�
between s and the size of the hyperspace. It gives an intuition of how di�cult it is to bypass NIDS.
For the evaluation of the NIDS, the value s was determined for various perturbation and f-budgets.

25

5 Results

This section is structured as follows. First, the model evaluation will be presented. The objective
and the setup of this evaluation is outlined, followed by the architectures and classi�cation results of
the implemented models. Finally, the most important part of this section is the attack evaluation. In
this �nal part, the process of the grouping, the transferability evaluation and the success-evaluation,
alongside with the VS score, is presented and analysed.

5.1 Model Evaluation

5.1.1 Objective and setup

The NIDS models described in Section 3.2 were trained and evaluated using the three datasets
described in Section 3.3. The two multiclass classi�ers, (AEDNN and DBN), were evaluated on
the CICIDS2017, the CIDDS-001, the original NSL-KDD and the modi�ed NSL-KDD dataset.
The preprocessing steps, elaborated in Section 3.3.4, were performed for all three datasets. The
anomaly-based classi�er (AE) was evaluated on the CICIDS2017, the CIDDS-001 and the original
NSL-KDD dataset. For this model, no over-/undersampling was performed. Furthermore, the eval-
uation metrics of all models were optimized using a trail-and error approach.
The architecture and parameters, that yielded the best results, are listed in Table 9 in the Ap-
pendix.
As a contribution of this thesis, a framework was developed to enable evaluation and testing of
NIDS against adversarial examples. The proposed framework was implemented using the program-
ming language python 3 [46], with the modules keras [47] and tensor�ow [48].
In addition, the sklearn [49] framework was used to derive performance metrics (see Section 3.2.5).
More speci�cally, the functions confusion_matrix, accuracy_score, precision_score and recall_score
were used. In the following sections, the parametrization of the above-mentioned models are de-
scribed in more detail.

5.1.2 Deep Belief Network

In the implementation of the Deep Belief Network, the model and parameters proposed in Gao et
al. [19] were used.
Figure 12 depicts the architecture of the model, which was developed for the KDD99 dataset. In
this thesis, a publicly available framework [50], which implements the DBN proposed by Hinton et
al.[18], was utilized.

26

Figure 12: DBN architecture Source: [19]

A two-RBM-layer model was trained for all three
datasets. Table 9 (Appendix Section 7.1) depicts
the architectures chosen for each dataset. For the
modi�ed NSL-KDD dataset, an overall accuracy
of 0.985 was achieved, respectively 0.764 for the
original dataset. These results are aligned with
0.935 accuracy reported by Gao et al.[19], as the
testset of the KDD99 dataset is less challenging
than the NSL-KDD testset. The model yielded
an accuracy of 0.993 for the CICIDS2017, and
0.989 for the CIDDS-001 dataset. The resulting
confusion matrix for the two variants of the
NSL-KDD dataset can be seen in Figure 13, and
the confusion matrix for the other two datasets
in Figure 14.

For the visualization of the CICIDS2017 dataset, all labels with less than 200 instances were
put together and denoted as 'Other'.

Benign DoS Probe R2L U2R

Benign

DoS

Probe

R2L

U2R

96.87%

0.08%

0.29%

25.17%

14.93%

0.60%

99.75%

0.12%

0.00%

0.00%

2.31%

0.14%

99.59%

8.94%

0.00%

0.09%

0.00%

0.00%

65.42%

0.00%

0.13%

0.03%

0.00%

0.47%

85.07%

(a) Confusion Matrix NSL-KDD* DBN

Benign DoS Probe R2L U2R

Benign

DoS

Probe

R2L

U2R

92.83%

11.34%

24.82%

89.96%

53.73%

5.00%

87.29%

6.85%

0.03%

0.00%

2.09%

1.37%

68.21%

0.82%

0.00%

0.01%

0.00%

0.12%

8.72%

0.00%

0.06%

0.00%

0.00%

0.47%

46.27%

(b) Confusion Matrix NSL-KDD DBN

Figure 13: Normalized confusion matrices DBN for NSL-KDD dataset

As expected, the models performance of the R2L and U2R label is rather poor, as depicted in
Figure 13b. After merging and re-splitting, however, the results show a signi�cant improvement.
Furthermore, the results of the CICIDS2017 and the CIDDS-001 dataset are su�ciently good. In
Table 6, a more detailed analysis of the results is listed.

27

Benign Dos Hulk DDos Portscan Other

Benign

Dos Hulk

DDos

Portscan

Other

99.29%

0.02%

0.08%

0.06%

3.64%

0.40%

99.98%

0.08%

0.00%

0.12%

0.02%

0.00%

99.80%

0.00%

0.00%

0.09%

0.00%

0.04%

99.94%

0.00%

0.20%

0.00%

0.00%

0.00%

96.24%

(a) Confusion Matrix CICIDS2017 DBN

Benign BruteForce Dos PingScan PortScan

Benign

BruteForce

Dos

PingScan

PortScan

99.47%

20.69%

0.04%

14.29%

5.71%

0.32%

79.31%

0.00%

0.00%

0.00%

0.21%

0.00%

99.96%

0.00%

0.00%

0.00%

0.00%

0.00%

85.71%

3.00%

0.00%

0.00%

0.00%

0.00%

91.29%

(b) Confusion Matrix CIDDS-001 DBN

Figure 14: Normalized confusion matrices DBN for CICIDS2017 and CIDDS-001 dataset

5.1.3 Deep Neural Network

Figure 15 depicts the architecture of the model proposed by Rezvy et al. [22]. The same basic
architecture was implemented for the CICIDS2017, the CIDDS and the NSL-KDD model (clas-
si�cation and detection), but with a di�erent layer dimension of the classi�er's hidden-layer (61
instead of 66 neurons depicted in Figure 15). For all datasets, the hidden layer of the AE was
set to be di

2 , di being the input dimension (for example 122 for the NSL-KDD dataset). Fifteen
�ne-tune epochs were performed for all datasets. The parameters were optimised with a trail-and-
error approach. The python I framework was used for the implementation of the AEDNN model.
The binary-crossentropy was used as the loss function and the Adam algorithm for the objective
optimization. The architecture and parameters are summarized in Table 9 (Appendix, Section7.1).

28

Figure 15: DNN architecture Source: [22]

Table 3 compares the accuracy per label achieved by the algorithms implementation in this
project, and the results reported in Rezvy et al.[22]. As expected, the undersampling decreases the
accuracy for the normal label, therefore, the overall-accuracy. However, this technique signi�cantly
improved the results of the Probe, R2L and U2R.

29

Normal Dos Probe R2L U2R Overall
Rezvys Model [22] 0.996 0.999 0.984 0.943 0.892 0.993
Reproduced Model 0.989 0.996 0.995 0.979 0.955 0.991

Table 3: Accuracy per label achieved by the AutoEncoded DNN on NSL-KDD* dataset

The key di�erence between the proposed model in [22] and a regular DNN are the �rst two
training stages. In [22] the model is initialized utilizing an AE. To investigate the bene�ts and
shortcomings of this approach, the algorithm was compared to DNN with the exact same archi-
tecture. The latter one is trained in only one stage, in a supervised manner, with given subset of
the training samples S1. The extended AEDNN is pre-trained in the �rst unsupervised training
stage, with a subset S2 and then trained in supervised way with the S1 set. Both methods were
trained with the same number of epochs for the supervised stage. The impact of di�erent sizes
of supervised training set (S1) on the overall detection accuracy were evaluated. The results are
listed in Table 4 For the evaluation, S2 was set to be 50% of the NSL-KDD* trainset and the full
S1 (100% in table 4) the complementary 50%.

% of S1 100% 50% 10% 1%
Regular DNN 0.99 0.99 0.97 0.78
Auto encoded DNN 0.99 0.98 0.98 0.91

Table 4: Overall accuracy of full and reduced NSL-KDD* S1 training set

It seems, that for a large enough supervised training phase, the AEDNN does not provide
better performance than a regular DNN. However, by reducing the S1 set, one can see the bene�t
of the pre-training. For classi�cation tasks with a limited amount of labelled input-output samples,
the AEDNN algorithm might improve the performance, however, if a su�cient amount of data is
available, a one-stage training might even perform slightly better.
Figure 16 depicts the normalized confusion matrix of the classi�er, trained on the NSL-KDD*-set
(16a) and the original NSL-KDD-set (16b). As for the DBN, the lack of samples with label R2L and
U2R is re�ected by the poor performance of the model trained on the original set. However, the
results for the modi�ed dataset are remarkably better than the DBN results for the same dataset.

30

Benign DoS Probe R2L U2R

Benign

DoS

Probe

R2L

U2R

98.93%

0.11%

0.25%

1.92%

1.49%

0.16%

99.85%

0.21%

0.00%

0.00%

0.25%

0.04%

99.51%

0.03%

0.00%

0.65%

0.00%

0.04%

97.89%

2.99%

0.01%

0.00%

0.00%

0.16%

95.52%

(a) Confusion Matrix NSL-KDD* (modi�ed)
AEDNN

Benign DoS Probe R2L U2R

Benign

DoS

Probe

R2L

U2R

96.90%

5.30%

7.71%

89.33%

74.63%

0.82%

88.52%

6.89%

0.13%

0.00%

2.17%

1.16%

74.60%

0.09%

0.00%

0.07%

4.76%

9.98%

10.16%

11.94%

0.03%

0.27%

0.82%

0.28%

13.43%

(b) Confusion Matrix NSL-KDD (original) AE-
DNN

Figure 16: Normalized confusion matrices AEDNN for NSL-KDD dataset

The resulting confusion matrix for the CICIDS2017 and the CIDDS-001 dataset can be seen in
Figure 17. Again, all labels with less than 200 instances were aggregated as Other.

Benign Dos Hulk DDos Portscan Other

Benign

Dos Hulk

DDos

Portscan

Other

98.78%

0.04%

0.04%

0.03%

0.61%

0.44%

99.96%

0.04%

0.00%

0.24%

0.02%

0.00%

99.92%

0.00%

0.00%

0.06%

0.00%

0.00%

99.97%

0.00%

0.70%

0.00%

0.00%

0.00%

99.15%

(a) Confusion Matrix CICIDS2017 AEDNN

Benign BruteForce Dos PingScan PortScan

Benign

BruteForce

Dos

PingScan

PortScan

99.51%

8.62%

0.04%

14.29%

5.43%

0.34%

91.38%

0.00%

0.00%

0.19%

0.11%

0.00%

99.96%

0.00%

0.00%

0.02%

0.00%

0.00%

85.71%

3.09%

0.02%

0.00%

0.01%

0.00%

91.29%

(b) Confusion Matrix CIDDS-001 AEDNN

Figure 17: Normalized confusion matrices AEDNN for CICIDS2017 and CIDDS-001 dataset

The results are pretty similar to the DBNs results, with a slightly better performance on the
NSL-KDD* dataset.

31

5.1.4 Outlier Detection

Although Hawkins et al.[35] used the KDD99 dataset for evaluation of his algorithm, their results
can not be directly compared with the implementation proposed in this work, due to di�erences in
features pre-processing stage. Instead of using one-hot encoding, the authors [?] grouped the dataset
by categories and evaluated the model for each category separately. They concluded, that for most
categories, the records with the highest reconstruction error are instances with an attack label. For
this thesis, their evaluation was extended to three datasets and the accuracy was measured. In the
implementation of this thesis, parameter σ in equation (3.3) was set as the standard derivation of
the outlier factors of the train-set. The hidden-layer dimension and the percentile were optimized
with a trail-and-error approach. As this model only trains on benign samples, no over- nor under-
sampling of the datasets was performed. Table 5 depicts the results of the evaluation, alongside
with the model architecture (dimension of hidden layers) and the threshold (percentile) used for all
three datasets.

Layer-
Dimensions

Percentile Accuracy Precision Recall F1-Score

CICIDS2017 78-4-78 75 0.770 0.455 0.831 0.588
CIDDS-001 29-3-29 83 0.840 0.524 0.952 0.675
NSL-KDD 122-20-122 80 0.863 0.862 0.904 0.883

Table 5: Results and hidden layer dimension Outlier Detection

Surprisingly, the Outlier detection outperformed the AEDNN on the original NSL-KDD testset
(as can be seen in Table 5). The fact that the diversity in this testset is higher seems to increase
the performance of the distance-based anomaly detection. By evaluating the benign-samples of the
test-set, an accuracy of 0.809 is achieved, and 0.904 for the anomaly-samples. The results for the
benign sample re�ect, as expected, the 80% percentile.
Choosing the threshold is a trade-o� between the False-Alarm-Rate (FAR) and the False-Negative-
Rate (FNR). A threshold of 95%, for example, would decrease the FAR to 5%, however, a lot
more attacks would not be detected (high FNR). As 80% of the instances in the test-set of the
CICIDS2017 dataset are benign samples, a high accuracy could be achieved by setting the percentile
≈99%, however, hardly any anomalies would be detected. To overcome this problem, the optimal
threshold would result in balanced (similar) benign as well as anomaly sample accuracy. With
a 75% threshold, an accuracy of 0.754 for benign samples and 0.831 for anomaly instances was
achieved. This results in a low FNR, but high number of false positives (FAR), which is re�ected
by low precision, as depicted in Table 5. The results of the CICIDS2017 dataset are signi�cantly
lower then the results of the NSL-KDD dataset, however, a detection rate 80% of the anomalies is
adequate for a unsupervised model. For the CIDDS, the accuracy on the attacks reached 95.2%.
With a FAR of only 17%, these results can be considered quite impressive.

5.1.5 Comparative Evaluation of NIDS models

A summary of results achieved by the detection models on the three datasets are listed in Table 6.
The denomination NSL-KDD is the test-set with the original train-test-split, and NSL-KDD* the
test-set that has been merged, oversampled and re-splitted. The results are reasonable and aligned
with the results of the original papers ([22], [19]).

32

Model Dataset Accuracy Precision Recall F1

AEDNN

CICIDS2017 0.989 0.993 0.989 0.991
CIDDS-001 0.995 0.998 0.995 0.996
NSL-KDD 0.794 0.763 0.794 0.778
NSL-KDD* 0.997 0.997 0.997 0.997

DBN

CICIDS2017 0.993 0.994 0.993 0.993
CIDDS-001 0.989 0.995 0.989 0.992
NSL-KDD 0.764 0.810 0.764 0.786
NSL-KDD* 0.985 0.985 0.985 0.985

AE
CIDDS-001 0.840 0.524 0.952 0.675
CICIDS2017 0.770 0.455 0.831 0.588
NSL-KDD 0.863 0.862 0.904 0.883

Table 6: Results NIDS models

The AEDNN yields slightly better results than the DBN model for all three datasets. Both
models have the advantage of unsupervised pre-training steps to improve the performance.The F1-
score of the AE model appear to be fairly poor, however, as discussed in Section 5.1.4 the objective
was to optimize the FNR. As the testset consists of over 80% benign samples, this objective leads
to a poor F1 score, but to a 80% detection rate. To conclude, in this thesis a sample of deep-
learning algorithms for NIDS was reproduced. The Accuracy and F1-score (Table 6 prove that these
models achieve a su�cient performance. As the research interest in this �eld is high, there are new
techniques, like Recurrent Neural Network (RNN) based [33], proposed which outperform previous
models. However, the goal of this work was to craft adversarial examples against representative
classi�ers from the �eld, which can achieve decent accuracy. As the classi�ers show signi�cantly
better results for the merged and re-shu�ed NSL-KDD* set, than for the original NSL-KDD, these
models (except for the Auto Encoder) were used in the following Sections in order to challenge
the attack algorithm. The aim to get comparable results for the datasets only makes sense if the
classi�ers achieve similar results.

5.2 Attack Evaluation

Using the implemented NIDS models, adversarial example attacks will be investigated. This Sec-
tion will be structured in �ve parts. Before the attacks against the NIDS models are launched, the
grouping of features described in Section 4.1 is done for the three considered datasets (NSL-KDD,
CICIDS2017, CIDDS-01). Next, the attack algorithms described in Section 3.4 are compared with
the proposed version of the C&W algorithm (Section 5.2.2). This comparison aims to showcase the
characteristics of the di�erent algorithms .
Then, inter-model transferability is presented (Section 5.2.3). As mentioned before, the threat
model considered in this work is to launch a stealthy attack on a NIDS. The idea is to add per-
turbations to an instance with an anomaly label (true and predicted), such that it is misclassi�ed
as benign. To justify that assumption, transferability between the NIDS models and more import-
antly, transferability from a substitute model to the original models, is investigated.
Subsequently, the success rate of the proposed adversarial example attack on the original NIDS-
models is evaluated (Section 5.2.4). This evaluation is focused on �nding the highest success rate
possible for a given budget.

33

Several attacks were simulated, with various feature- and perturbation -budgets, and the best suc-
cess rate recorded.
Finally, the results from Section 5.2.4 are used to compute the VS in Section 5.2.5.

5.2.1 Grouping

In Table 7, the grouping of features are presented for the datasets considered in evaluation. There
are 78 (CICIDS), 29 (CIDDS) and 122 (NSL-KDD) features in the sets, only the general categories
and a few examples of the grouping are listed.

Dataset Group (0) Group (1) Group (2) Group (3)

CICIDS
2017

Flows in bwrd dir
Features considering
bwrd �ows
Total: 46 features

Flows in fwd not
used for calculation
of mean values
'Fwd Packet Length
Max',
...
Total: 7 features

Flows in fwd
direction used
for calculation of
mean values
Total: 4 features

IAT-features
Mean values
of �ow in fwd
direction
Total: 21 features

CIDDS-001
Categorical Features
Total: 26 features

Duration, Packets
and Bytes
Total: 3 features

- -

NSL-KDD

Categorical features
Binary features
'src_bytes' (bytes
send from source
to dst)
Total: 92 features

'Duration
'dst_bytes' (bytes
from dst to source),
...
Total: 5 features

Counters used to
compute frequency
based features
'count',
...
Total: 5 features

Frequency based
features
'Serror_rate' (% of
connections with the
'�ag' feature
aggregated in
'count')
Total: 20 features

Table 7: Features of datasets grouped into categories by their accessibility

Overall, 32 out of 78 (41%) for the CICIDS2017 set, 3 out of 29 for the CIDDS-001 and 30 out
of 122 (25%) features were considered for the NSL-KDD set as accessible features. The number of
considered features has a direct impact on the previously mentioned feature-budget parameter. The
upper bound on the f-budget is de�ned by the number of features which are feasible to change. In
other words, the f-budget equal to 1 would mean that all feasible features are used. Note that the
set of accessible features of CIDDS-001 only consists of 3 features. The evaluation of this dataset
will demonstrate, whether or not an attacker can fool a NIDS by only increasing/decreasing the
duration of the �ow, the number and size of packets sent.

5.2.2 Comparative evaluation of the attack algorithms

The �rst part of the evaluation aims to showcase the impact of the weights in equation (4.1). The
AEDNN classi�er of the evaluation trained with the CICIDS2017 dataset was attacked. The label
DDoS was used to attack. No maximum distance constraint was applied, as this restriction does
not in�uence crafting algorithm itself. The following three di�erent algorithms were investigated:
Regular C&W [2], proposed extended C&W attack and iterative FGSM [42]. Two di�erent c-values
(see equation (4.1)) were used, and the average distortion for the successful adversarial examples
for each feature and algorithm, was stored.

34

As considered features, four arbitrarily chosen features of each group were picked. The f-budget is
computed using equation (4.3), with the grouping depicted in table 7 as follows:

f =
number of considered features times their weight

number of accessible features times their weight
=

4 · (1 + 2 + 3)

7 · 1 + 4 · 2 + 21 · 3
= 0.31 (5.1)

This adds up to an f-budget of 0.31. In Figures 18a and 18b, the results of the DDos attack of the
CICIDS2017 dataset are depicted. The number in parenthesis indicate to which group the feature
belongs. The results for the iFGSM were only computed once and used in both plots. As mentioned
before, the hyper-parameter c is a trade-o� between distance and target-function minimization. A
low c-value (here c=1 in �gure 18a) pushes the algorithm to enforce a small distance over the desired
misclassi�cation. With this con�guration, the weights of the extended C&W algorithm strongly
in�uence the results. Comparing the results of the original and extended C&W algorithms, it can
be observed that the algorithm favours features of group 1 over group 2 and 3. In Figure 18b
this in�uence can still be seen, however, not as apparent as in Figure 18a. Those two �gures also
visualize the advantage of being able to control the perturbation size of the C&W over the iFGSM.
For an adversary who intents to attack a NIDS utilizing adversarial examples, it is vital not just
to restrict the featurespace to accessible features, but also to avoid larger perturbations to certain
features, while keeping the overall perturbation as small as possible. The results suggest that this
goal can be achieved with the proposed C&W approach. The weighted algorithm managed to keep
the changes in IAT features (group 3, important for DoS attacks) low, which supports maintaining
the impact of the attack. In the experiments, weight values from 1 to 3 (1:2:3) were assigned,
however, the impact depicted in �gure 18a could be ampli�ed by using di�erent weight-ratios.
Carlini and Wagner developed their algorithm for computer vision tasks. In [2] they compared
the success rate of a targeted adversarial example attack, utilizing the C&W and other state-of-
the-art crafting algorithms, including the iFGSM, against a DNN model. The authors observe a
success rate of 100% for the C&W and iFGSM algorithms, evaluated on 3 di�erent computer vision
datasets. However, their C&W attack achieved a 2 to 10 times lower distortion than the iFGSM.
With the weight-extension, the C&W algorithm can also be used in the NIDS domain, as with this
modi�cation the distortion is restricted to easy to access features.

35

Fw
d P

ack
et

Len
gth

 Max
 (1

)

Fw
d P

ack
et

Len
gth

 Min
(1)

Fw
d H

ea
de

r L
en

gth
 (1

)

Ini
t_W

in_
by

tes
_fo

rw
ard

 (1
)

Flo
w Dura

tio
n (

2)

To
tal

 Fw
d P

ack
ets

 (2
)

To
tal

 Le
ng

th
of

Fw
d P

ack
ets

 (2
)

Fw
d P

ack
ets

/s (
2)

Fw
d I

AT T
ota

l (3
)

Fw
d I

AT S
td

(3)

Fw
d I

AT M
ax

 (3
)

Fw
d I

AT M
in

(3)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

di
st

or
tio

n

C&W
ext C&W
iFGSM

(a) Average distortion c=1

Fw
d P

ack
et

Len
gth

 Max
 (1

)

Fw
d P

ack
et

Len
gth

 Min
(1)

Fw
d H

ea
de

r L
en

gth
 (1

)

Ini
t_W

in_
by

tes
_fo

rw
ard

 (1
)

Flo
w Dura

tio
n (

2)

To
tal

 Fw
d P

ack
ets

 (2
)

To
tal

 Le
ng

th
of

Fw
d P

ack
ets

 (2
)

Fw
d P

ack
ets

/s (
2)

Fw
d I

AT T
ota

l (3
)

Fw
d I

AT S
td

(3)

Fw
d I

AT M
ax

 (3
)

Fw
d I

AT M
in

(3)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

di
st

or
tio

n

C&W
ext C&W
iFGSM

(b) Average distortion c=10

Figure 18: Average distortion per feature AEDNN model with (a) c=1 and (b) c=10

36

5.2.3 Transferability

This section aims to answer two questions about the transferability:
(1) To what extent adversarial examples can be transferred between two classi�ers trained to per-
form the same task and (2) how e�ective adversarial examples crafted for a substitute model are
on the original model.
To investigate the �rst question, 200 adversarial samples were crafted for each classi�er (AE, DBN
and AEDNN) for two attack-labels of each dataset, utilizing the extended C&W algorithm (f5
function), solved with the Nadam-Optimizer (α = 0.02, β1 = 0.9, β2 = 0.999). This evaluation
was done twice, with c=1 (equal weight on distance and con�dence optimization) and c=10 (bias
towards con�dence optimization). For the second c value, one can expect larger distances, and
higher con�dences for the misclassi�cation. To get an intuition of the impact of this hyperparamer,
Figure 20 depicts the average perturbation per feature for the two c values for the DBN model.
Figure 19 depicts the results for the DoS attack with a colormap, where columns represent the
classi�ers that the samples were crafted for and rows the evaluated classi�ers. For example, the
samples of the NSL dataset with c=1 crafted for the DBN achieved a 64.0% success rate for the
AEDNN. It is worth to note, that the compared models are trained with the same training-set to
perform the same task. The colormaps for the other attacks (PortScan and Probe) are depicted in
Figure 25 (Appendix Section 7.2).

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

64.0%

 0.0%

21.0%

100.0%

 0.5%

 0.0%

 0.0%

 0.0%

(a) NSL-KDD DoS c=1

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

90.5%

 4.0%

65.0%

100.0%

 0.0%

 7.3%

 9.8%

100.0%

(b) CICIDS DDoS c=1

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

99.0%

 0.0%

31.5%

100.0%

 0.0%

 0.0%

 0.0%

100.0%

(c) CIDDS DoS c=1
DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

70.5%

 0.0%

24.5%

100.0%

 0.0%

 1.0%

 3.0%

 0.0%

(d) NSL-KDD DoS c=10

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

94.5%

 0.5%

77.0%

100.0%

 0.0%

49.5%

21.0%

100.0%

(e) CICIDS DDoS c=10

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

98.5%

 0.0%

36.0%

100.0%

 0.0%

 0.0%

 0.0%

100.0%

(f) CIDDS DoS c=10

Figure 19: Transferability success DoS attack

37

Analysing the results, one can observe the signature-based classi�ers and the distance (anom-
aly) based AE use di�erent patterns to classify, as samples hardly transfer at all between those two
types. As for transferability between the two signature-based models, a rather high success rates
can be observed, especially for the CICIDS2017 dataset, where a success rate up to 99% for DBN to
AEDNN has been achieved. Surprisingly, the other direction (AEDNN to DBN) has a signi�cantly
lower success rate. This indicates, that the AEDNN, despite having achieved a higher accuracy in
Section 5.1.5 than the DBN, is less robust with respect to adversarial examples.
Assuming the knowledge of the underlying model of the target NIDS, it is possible to craft ad-
versarial samples indirectly and attack the system. The key factor is to know the approach used
for detection. Signature-based models appear to be vulnerable against transferred samples of other
signature-based models, however, not as vulnerable against samples crafted for distance-based mod-
els.
Figure 20 depicts the average perturbation per features for the two c-values of the three models for
the DoS attack type. Except for the AE models result on the CIDDS dataset, the higher c value
provides a larger average distance per feature.

NSL,
 DoS

CICIDS,
DDoS

CIDDS,
do

s0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

Pe
rtu

rb
at

io
n

DBN, c=1
DBN, c=10

AEDNN, c=10
AENN, c=10

AE, c=10
AE, c=10

Figure 20: Average perturbation per features DBN model

The second part was approached as follow (for each NIDS model as target model):

1. Train a substitute Model
With the test-set of each dataset, labels were generated utilizing the predictions of the target
model. Then, the substitute model was trained with the test-set as input and the predictions
as labels.

38

2. Craft Adversarial Samples
Perform a white-box attack on the substitute model. Utilizing the extended C&W algorithm
(equation (4.1)), 200 adversarial samples were crafted per label. For this evaluation, only
successful adversarial examples were considered, meaning instances which are classi�ed as
benign by the classi�er after adding the perturbation. Additionally, only instances which
were classi�ed correctly at the beginning are considered. To see the impact of the trade-o�
parameter c (see equation (4.1)), di�erent c-values were evaluated.

3. Transfer the Samples back to the target model
Evaluating the relative amount of samples classi�ed as benign by the target model.

The threat model assumes white-box knowledge of the NIDS, which is not very realistic in a
real world scenario. However, with only access to input-output samples of the system, a substitute
model can be trained and used to attack the system. To train this model, samples from the test-set
were used, together with the prediction of the original classi�er (target model) as labels.
A DNN with the same architecture and parameters for each classi�er was trained. All values and
parameters can be found in the Appendix. Evaluated against the predicted labels of the original
classi�er on the test-sets, all transfer models achieved over 97% accuracy.
As in the �rst part, 200 adversarial samples were crafted for two di�erent c-values, for each transfer
model. Then, the relative amount of samples which are classi�ed as benign were evaluated by the
target model. Table 8 depicts the results of this evaluation.

Model c NSL DoS NSL Probe CICIDS DDoS CICIDS PortScan CIDDS CIDDS

DBN
1 0.34 0.44 0.90 0.83 0.75 0.95
10 0.46 0.42 0.90 0.86 0.87 0.91

AEDNN
1 0.39 0.42 0.70 0.88 0.39 0.34
10 0.46 0.5 0.80 0.92 0.76 0.75

AE
1 0.08 0.1 0.0 0.0 0.68 0.15
10 0.05 0.08 0.0 0.0 0.38 0.15

Table 8: Success rate Transferabilty between Transfer DNN and target model

Again, it can be observed, that transferability between the anomaly-based and the signature-
based models is not very successful. So far the AE model, even though it is trained with an
unsupervised algorithm using only benign samples, appears to have the highest robustness against
adversarial examples. As before, rather high success rates for the DBN and AEDNN model were
achieved. This observation is fairly surprising, given the fact, that the substitute DNN model is
more similar to the AEDNN model. The highest success rate for transferred samples was achieved
for the CICIDS2017 dataset.
Given access to the monitoring system (NIDS), it is possible to perform undetected attacks by
bypassing the NIDS with adversarial examples. A transferability success rate of at least 30% for
signature-based detection is for this scenario a considerable threat.

39

5.2.4 Attack on Network Intrusion Detection models

In this Section, the empirical success rate for each classi�er is evaluated under various conditions.
To get an overview, two labels of each dataset are used for an attack. This choice was made based
on high label-accuracy, su�cient number of records and comparability. For the NSL-KDD dataset,
the DoS and Probe label, for the CICIDS2017 set, DDoS, as it was the DoS type attack with the
highest detection accuracy, and PortScan, as it is similar to the NSL-KDD Probe attack. For the
CIDDS-001 set, the same two attack-types, DoS and PortScan, are used.

First, parameter c in equation (4.1) was set empirically with a trail-and error approach. Next,
restrictions on the success rate were placed. The following list sums up the restrictions under which
the attacks were evaluated:

� An attack is considered successful, if an attack-instance, that was predicted correctly with
at least 80% con�dence, was transformed by adding a perturbation δ to an instance that is
classi�ed as benign

� The average weighted perturbation per feature must be smaller than a prede�ned δmax

� To incorporate the weights, the perturbation of each feature was multiplied with the corres-
ponding group-weight of the features (δ = avg(ν· (adversarial - original sample))). By doing
this, perturbations of group 3 features have higher in�uence on the average perturbation than
group 1 features.

� Only features in the considered features list can be changed (group 1 to 3)

Attacks were launched with �ve di�erent f-budgets ∈ [0, 1] (three for the CIDDS-001 dataset as
there are only three features that can be accessed). The considered features (mask) were de�ned
by randomly adding features to a list, starting by group 1, then group 2 and �nally group 3, until
the desired f-budget is reached. If f = 1, all features of group 1 to 3 were added, if f ≈ 0, only a
few features from group 1 were considered. For all classi�ers, the same combinations of considered
features were used for a given budget, to achieve comparable results. The average of the weighted
absolute distances between original and adversarial sample is then calculated and compared to
δmax. As before two di�erent labels were used for attacking.
Figures 21, 22 and 23 depict the success rate plotted against the f-budget (21a, 22a and 23a) and
against the maximum distance δmax (21b, 22b and 23b) for the models trained on the NSL-KDD*
dataset. The results of the other two datasets can be found in the Appendix (Section 7.3 �gures
26 to 31). Each plot depicts the resulting success rates for three di�erent δmax and three di�erent
f-budgets, respectively.
Analysing the righthandside of those plots, one can see that for almost every attack, there exists a
threshold-distance, that includes all adversarial samples. Further increase of the distance does not
improve the success rate anymore. For most attacks, this threshold is at δ ≈ 0.2, which denotes an
average weighted change per feature of 0.2. Surprisingly, this is also true for the CIDDS dataset,
even though only 3 out of the 29 are considered as feasible features.
Furthermore, the success rates are also dependent on the f-budget utilized for the attack, as one
can see in plots. The left side of the plots depict the success rate plotted against the f-budget. Note
that for the CIDDS dataset only three di�erent budgets are possible. As expected, the success rate
grows with the budget. A threshold for the f-budget, similar to one for the distance restriction
(δ-budget), does not seem to exist.

40

Over all three datasets, the CICIDS2017 yields the highest success rates for all models. As 41%
of the features in the CICIDS2017 dataset, and only 25% of the NSL-KDD dataset (see Section
5.2.1) are considered accessible, this result is reasonable. The fact that the CICIDS2017 datasets
uses several features related to 'packages in forward direction' for classi�cation increases the risk
of an adversary managing a stealthy attack. As the CIDDS-001 dataset uses only 3 features for
detection, that can be realistically accessed by an attacker, the attacks on this dataset appear to
be weaker.

Considering the di�erent models, it appears that the outlier detection (AE) is by far the most
robust model against adversarial example attacks. It can be observed that it is not possible to
�nd a lot of adversarial instances for low budgets. The results for the DBN and the AEDNN are
comparable, the AEDNN being slightly more robust for most attacks.

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DoS
max=0.11 DoS
max=0.53 DoS

max=0.05 Probe
max=0.11 Probe
max=0.53 Probe

(a) DBN success rate vs. f-budget NSL

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DoS
f=0.50 DoS
f=1.00 DoS

f=0.10 Probe
f=0.50 Probe
f=1.00 Probe

(b) DBN success rate vs. δmax NSL

Figure 21: Success rate DBN NSL-KDD dataset plotted (a) against f-budget (b) against δmax

41

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DoS
max=0.11 DoS
max=0.53 DoS

max=0.05 Probe
max=0.11 Probe
max=0.53 Probe

(a) AEDNN success rate vs. f-budget NSL

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DoS
f=0.50 DoS
f=1.00 DoS

f=0.10 Probe
f=0.50 Probe
f=1.00 Probe

(b) AEDNN success rate vs. δmax NSL

Figure 22: Success rate AEDNN NSL-KDD dataset plotted (a) against f-budget (b) against δmax

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DoS
max=0.11 DoS
max=0.53 DoS

max=0.05 Probe
max=0.11 Probe
max=0.53 Probe

(a) AE success rate vs. f-budget NSL

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DoS
f=0.50 DoS
f=1.00 DoS

f=0.10 Probe
f=0.50 Probe
f=1.00 Probe

(b) AE success rate vs. δmax NSL

Figure 23: Success rate AE NSL-KDD dataset plotted (a) against f-budget (b) against δmax

42

5.2.5 Vulnerability Score

In the previous Section, the results of the success rate of the attacks against the models were
presented and discussed. This Section aims to show, how the proposed metric (Vulnerability Score
described in Section 4.3) re�ects the robustness of a classi�er. The Vulnerability Score (VS) should
give an intuition, of how vulnerable the considered NIDS classi�ers are to an adversarial example
threat. For evaluation, a reasonable value for δmax should be chosen. Standard deviation of each
feature or similar measures could be used here. It is worth to mention that this score does not
require normalized data, because the size of the distortion is not included in the calculation. Figure
24 depicts the highest achieved Vulnerability Score for the δmax values 0.05, 0.11 and 0.53. As
before, a weighted average distance was used.

AE

AE
DN

N

DB
N AE

AE
DN

N

DB
N AE

AE
DN

N

DB
N AE

AE
DN

N

DB
N AE

AE
DN

N

DB
N AE

AE
DN

N

DB
N0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

VS
 sc

or
e

 CIDDS Dos CIDDS Portscan IDS DDoS IDS PortScan NSL DoS NSL Probe

max=0.05 max=0.11 max=0.53

Figure 24: Vulnerability Score for all classi�ers using the attacks from CIDDS, CICIDS, and NSL-
KDD dataset

The results of this score re�ect the comparatively high success rates for the CICIDS2017 dataset,
as well as the advantage of the outlier detection. One can observe, that there is hardly any di�erence
for the 0.11 and 0.53 δmax restriction. Quite a few model-attack combinations reached a VS above
1, indicating a rather high success rate for low budgets, e.g. DBN on CICIDS2017 PortScan.
Under the assumption of an possible average perturbation per feature of 0.05, the classi�cations
models are more robust against the DoS, than against the Probe/PortScan attacks. In the proposed
feature grouping, IAT-features and frequency based features are considered as group 3 features (i.e.
features that are hard to access by an attacker). Considering using a lot of features of this group
would increase the f-budget and therefore decrease the VS. These types of features, however, are
characteristic for a Denial of Service attack, which results in a low VS for these attacks. The VS for
the CIDDS dataset (except for the AE model) are considerably high, as only 3 out of 29 features
are considered feasible.

43

Given that the lowest possible budget is 1
3 , the highest achievable score is 1.5. By far the highest

score was achieved by the DBN model for the PortScan attack of the CICIDS2017 dataset.
The purpose of the Vulnerability Score is to get a theoretical estimation of the risk of an adversarial
threat. With knowledge of the features properties used for classi�cation, one can group them
according to their accessibility and estimate a possible perturbation per feature to estimate the
threat of an adversarial example attack. Achieving the highest possible VS is related to a knapsack-
problem, as the optimal combination of features that leads to a high success rate with a low f-
budget is not known beforehand and can not be determined exactly without a brute-force approach.
However, simulating all possible combinations is computationally not feasible, one might perform
a feature-sensitivity evaluation ([33]) to estimate a promising combination.

44

6 Conclusion

In this thesis, a framework was developed to enable evaluation and testing of NIDS against ad-
versarial examples, including a novel approach to crafting adversarial examples, which accounts
for domain-speci�c constraints. To create an adversarial example, the algorithm only considers
features that are accessible, i.e. possible to modify without violating the validity of input data. For
evaluation, weights were assigned to features to re�ect the di�culty of their modi�cation.
Furthermore, a metric has been proposed to assess the vulnerability of NIDS models with respect
to relation between success rate of an attack and di�culty of its implementation (constraints). The
success rates achieved by adversarial examples presented in this thesis, demonstrate credibility of
this type of threat in the NIDS domain. It has been shown that a classi�ers can be fooled with
high success rate (≈ 98%) even at a low budget.
To showcase the possibility of a black-box attack against a NIDS, the phenomenon of transferab-
ility has been utilized. Two approaches were used to investigate transferability of the adversarial
examples. In the �rst one, samples are transferred between di�erent models trained on the same
dataset. It has been demonstrated that from 21%, up to 99% of adversarial examples can be trans-
ferred from one NIDS model to another. The second approach evaluates transferability between a
NIDS model and a substitute model, trained with input-output samples. Around 90% of adversarial
instances of an PortScan attack (CICIDS2017) were transferable from the substitute model to the
original AEDNN classi�er. This observation veri�es that attacks with a low budget against a black-
box system are feasible and should be considered when deploying the NIDS.
To improve robustness against those attacks an ensemble-detection approach with di�erent detec-
tion techniques could be used to decrease the risk. Since the transferability between signature-
and anomaly-based was proven to be ine�ective, a combination of both solutions could be very
bene�cial. With the increasing DL models deployed in safety-critical environments, the research of
potential threats becomes vital. For computer-vision models real-world attacks have been proven
possible. In a matter of time, attacks like this will be possible on various intrusion detection sys-
tems.
For future work, the realisation of adversarial examples in network tra�c will be investigated. In
this process, the goal is to identify further restrictions on the crafting algorithm to enable the imple-
mentation of those attacks. The goal is to derive a comprehensive framework to evaluate robustness
of DL models deployed in NIDS.

45

Acronyms

AD Anomaly Detection.

AE Auto Encoder.

AEDNN Auto-encoded Deep Neural Network.

BP Back Propagation.

C&W Carlini and Wagner L2 norm Attack.

DBN Deep Belief Network.

DL Deep Learning.

DNN Deep Neural Network.

FAR False-Alarm-Rate.

FGSM Fast Gradient Sign Method.

FNR False-Negative-Rate.

GD gradient descent.

IAT inter arrival time.

IDS Intrusion Detection System.

JSMA Jacobian based Saliancy Map Attack.

ML Machine Learning.

NIDS Network-based Intrusion Detection System.

OF Outlier Factor.

RBM Restricted Boltzmann machine.

RNN Recurrent Neural Network.

SGD stochastic gradient descent.

VS Vulnerability Score.

46

List of Figures

1 Adversarial Example: [10] . 4
2 Threat Model Source: [9] . 6
3 Stop-Sign attack Source: [1] . 8
4 Adversarial Robustness Source: [13] . 9
5 Attack on a Black-Box NIDS Source: author . 11
6 AE architecture Source: [37] . 12
7 RBM architecture Source: [19] . 13
8 Label distribution of NSL-dataset Source: author . 15
9 Label distribution of CICIDS2017-dataset Source: author 17
10 Label distribution of CIDDS-dataset Source: author 18
11 Example pipeline of Adversarial Example Crafting Source: author 24
12 DBN architecture Source: [19] . 27
13 Normalized confusion matrices DBN for NSL-KDD dataset Source: author 27
14 Normalized confusion matrices DBN for CICIDS2017 and CIDDS-001 dataset Source:

author . 28
15 DNN architecture Source: [22] . 29
16 Normalized confusion matrices AEDNN for NSL-KDD dataset Source: author 31
17 Normalized confusion matrices AEDNN for CICIDS2017 and CIDDS-001 dataset Source:

author . 31
18 Average distortion per feature Source: author . 36
19 Transferability success DoS attack Source: author . 37
20 Average perturbation per features DBN model Source: author 38
21 Success rate DBN NSL-KDD dataset Source: author 41
22 Success rate AEDNN NSL-KDD dataset Source: author 42
23 Success rate AE NSL-KDD dataset Source: author 42
24 Vulnerability Score Source: author . 43
25 Transferability success Portscan/Probe attack Source: author 53
26 Success rate DBN CICIDS2017 Source: author . 54
27 Success rate AEDNN CICIDS2017 dataset Source: author 54
28 Success rate AE CICIDS2017 dataset Source: author 55
29 Success rate DBN CIDDS-001 dataset Source: author 55
30 Success rate AEDNN CIDDS-001 dataset Source: author 56
31 Success rate AE CIDDS-001 dataset Source: author 56

47

References

[1] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and
D. Song. Robust Physical-World Attacks on Deep Learning Models. arXiv:1707.08945 [cs],
2017.

[2] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks.
arXiv:1608.04644 [cs], 2016.

[3] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in Machine Learning: from
Phenomena to Black-Box Attacks using Adversarial Samples. arXiv:1605.07277 [cs], 2016.

[4] B. Dong and X. Wang. Comparison deep learning method to traditional methods using for
network intrusion detection. In 2016 8th IEEE International Conference on Communication
Software and Networks (ICCSN), pages 581�585. IEEE, 2016.

[5] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli. A Detailed Investigation and Analysis
of Using Machine Learning Techniques for Intrusion Detection. IEEE Communications Surveys
Tutorials, pages 686�728, 2019.

[6] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A Deep Learning Approach to Network
Intrusion Detection. IEEE Transactions on Emerging Topics in Computational Intelligence,
pages 41�50, 2018.

[7] Jin K., Nara S., S. Y. Jo, and Sang H. K. Method of intrusion detection using deep neural net-
work. In 2017 IEEE International Conference on Big Data and Smart Computing (BigComp),
pages 313�316, 2017.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv:1312.6199 [cs], 2013.

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The Limitations
of Deep Learning in Adversarial Settings. In arXiv:1511.07528 [cs, stat], pages 372�387, March
2016.

[10] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572 [cs, stat], 2014.

[11] P. Chen, H. Zhang, Y. Sharma, J. Yi, and C. Hsieh. ZOO: Zeroth Order Optimization based
Black-box Attacks to Deep Neural Networks without Training Substitute Models. Proceedings
of the 10th ACM Workshop on Arti�cial Intelligence and Security - AISec '17, pages 15�26,
2017.

[12] J. Lu, T. Issaranon, and D. Forsyth. SafetyNet: Detecting and Rejecting Adversarial Examples
Robustly. arXiv:1704.00103 [cs], 2017. arXiv: 1704.00103.

[13] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a Defense to Ad-
versarial Perturbations against Deep Neural Networks. arXiv:1511.04508 [cs, stat], 2015.

[14] M. Teu�enbach, E. Piatkowska, and P. Smith. Subverting network intrusion detection:
crafting adversarial examples
accounting for domain-speci�c constraints. In CD-Make Conference 2020, 2020.

48

[15] Kremer S.C. Hamed T., Ernst J.B. A survey and taxonomy of classi�ers of intrusion detection
systems. Daimi K. (eds) Computer and Network Security Essentials, 2018.

[16] A. Shiravi, H. Shiravi, M. Tavallaee, and A. Ghorbani. Toward developing a systematic ap-
proach to generate benchmark datasets for intrusion detection. Computers & Security, 2012.

[17] H. Hindy, E. Bayne, A. Seeam, C. Tachtatzi, R. Atkinson, and X. Bellekens. A Taxonomy of
Network Threats and the E�ect of Current Datasets on Intrusion Detection Systems. IEEE
Access.

[18] G. E. Hinton. Reducing the Dimensionality of Data with Neural Networks. Science, pages
504�507, 2006.

[19] N. Gao, L. Gao, Q. Gao, and H. Wang. An Intrusion Detection Model Based on Deep Belief
Networks. In 2014 Second International Conference on Advanced Cloud and Big Data, pages
247�252, 2014.

[20] K. Alrawashdeh and C. Purdy. Toward an Online Anomaly Intrusion Detection System Based
on Deep Learning. In 2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 195�200, 2016.

[21] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Ven-
katraman. Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access,
pages 41525�41550, 2019.

[22] S. Rezvy, M. Petridis, and A. Lasebae. Intrusion detection and classi�cation with autoencoded
deep neural network. Springer International Publishing, 2018.

[23] E. Hodo, X. Bellekens, A. Hamilton, and C. Tachtatzis. Shallow and Deep Networks Intrusion
Detection System: A Taxonomy and Survey. arXiv:1701.02145, 2017.

[24] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. Machine
Learning and Deep Learning Methods for Cybersecurity. IEEE Access, pages 35365�35381,
2018.

[25] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A Simple and Accurate Method
to Fool Deep Neural Networks. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2574�2582, 2016.

[26] N. Carlini and D. Wagner. Adversarial Examples Are Not Easily Detected: Bypassing Ten
Detection Methods. arXiv:1705.07263 [cs], 2017.

[27] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial Examples: Attacks and Defenses for Deep
Learning. IEEE Transactions on Neural Networks and Learning Systems, pages 1�20, 2019.

[28] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Goodfellow,
A. Madry, and A. Kurakin. On Evaluating Adversarial Robustness. arXiv:1902.06705 [cs,
stat], 2019.

[29] K. Yang, J. Liu, C. Zhang, and Y. Fang. Adversarial Examples Against the Deep Learn-
ing Based Network Intrusion Detection Systems. In MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), pages 559�564, 2018.

49

[30] X. Zhang, Y. Zhou, S. Pei, J. Zhuge, and J. Chen. Adversarial Examples Detection for XSS
Attacks Based on Generative Adversarial Networks. IEEE Access, 2020.

[31] M. Hashemi, G. Cusack, and E. Keller. Towards Evaluation of NIDSs in Adversarial Setting. In
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Arti�cial
Intelligence for Data Communication Networks - Big-DAMA '19, pages 14�21, 2019.

[32] T. Weng, H. Zhang, P. Chen, J. Yi, D. Su, Y. Gao, C. Hsieh, and L. Daniel. Evaluating the
Robustness of Neural Networks: An Extreme Value Theory Approach. arXiv:1801.10578 [cs,
stat], 2018.

[33] A. Hartl, M. Bachl, J. Fabini, and T. Zseby. Explainability and Adversarial Robustness for
RNNs. arXiv:1912.09855 [cs, stat], 2020.

[34] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical Black-
Box Attacks against Machine Learning. arXiv:1602.02697 [cs], 2016.

[35] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier Detection Using Replicator Neural
Networks. In Data Warehousing and Knowledge Discovery, pages 170�180, 2002.

[36] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 1986.

[37] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An Ensemble of Autoencoders
for Online Network Intrusion Detection. arXiv:1802.09089 [cs], 2018.

[38] M. Azami, C. Lartizien, and S. Canu. Converting SVDD Scores into Probability Estimates.
Computational Intelligence, 2016.

[39] L. Dhanabal and S. P. Shantharajah. A Study on NSL-KDD Dataset for Intrusion Detection
System Based on Classi�cation Algorithms. Computer Science, 2015.

[40] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho. Flow-based benchmark data sets
for intrusion detection. Proceedings of the 16th European Conference on Cyber Warfare and
Security (ECCWS), 2017.

[41] I. Sharafaldin, A. Habibi, and A Ghorbani. Toward Generating a New Intrusion Detection
Dataset and Intrusion Tra�c Characterization:. In Proceedings of the 4th International Con-
ference on Information Systems Security and Privacy, pages 108�116, 2018.

[42] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Machine Learning at Scale.
arXiv:1611.01236 [cs, stat], 2017.

[43] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting Adversarial Attacks with
Momentum. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9185�9193, 2018.

[44] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs],
2017.

[45] T. Dozat. Incorporating Nesterov Momentum into Adam. 2016.

50

[46] G. Van Rossum and F. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009.

[47] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[48] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vas-
udevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 2011.

[50] albertbup. A python implementation of deep belief networks built upon numpy and tensor�ow
with scikit-learn compatibility, 2017.

51

https://github.com/fchollet/keras

7 Appendix

7.1 Model architecture

Model Dataset Layer dim Epochs Percentile Optimizer Loss

DBN
NSL 1-6/5-4/5 5-150 - SGD reduce mean

CICIDS 1-6/5-4/5 5-150 - SGD reduce mean
CIDDS 1-6/5-4/5 5-150 - SGD reduce mean

AEDNN
NSL 1-1/2-1-3/2 50-150-40 - Adadelta-Adam binary crossentropy

CICIDS 1-1/2-1-3/2 50-150-25 - Adadelta-Adam binary crossentropy
CIDDS 1-1/2-1-3/2 50-150-20 - Adadelta-Adam binary crossentropy

AE
NSL 1-1/6-1 15 80 Adam mean sqare error

CICIDS 1-1/20-1 6 75 Adam mean square error
CIDDS 1-1/15-1 2 83 Adam mean square error

Subst. DNN all 3 1-5/3-2/3-1/3 200 - Adam poisson

Model Dataset Batch size activation output activation dropout batchnoorm/regularizer

DBN
NSL 50 relu sigmoid 0.2 Flase/False

CICIDS 40 relu sigmoid 0 Flase/False
CIDDS 80 relu sigmoid 0 False/False

AEDNN
NSL 50 relu sigmoid 0.3 last layer True/True

CICIDS 30 relu sigmoid 0.3 last layer True/True
CIDDS 30 relu sigmoid 0.3 last layer True/True

AE
NSL 200 relu sigmoid 0 False/False

CICIDS 100 relu sigmoid 0 False/False
CIDDS 200 relu sigmoid 0 False/False

Subst. DNN all 3 40 relu sigmoid 0.2 last layer True/True

Table 9: Model architecture. Layer dim as multiples of the input dimensionS

52

7.2 Results Transferability

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

52.0%

 3.5%

22.5%

100.0%

 7.0%

 0.0%

 0.0%

 0.0%

(a) NSL-KDD Probe attack c=1

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

80.5%

 0.0%

79.5%

100.0%

 0.0%

 0.5%

25.0%

100.0%

(b) CICIDS PortScan attack c=1

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

38.5%

 0.0%

54.0%

100.0%

 0.0%

 0.0%

 0.0%

100.0%

(c) CIDDS PortScan attack c=1
DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

48.5%

 2.5%

23.5%

100.0%

 3.5%

 0.5%

 2.0%

 0.5%

(d) NSL-KDD Probe attack c=10

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

94.0%

 0.0%

88.0%

100.0%

 0.0%

 2.0%

27.5%

100.0%

(e) CICIDS PortScan attack c=10

DBN AE_DNN AE

DBN

AE_DNN

AE

100.0%

45.5%

 0.0%

40.0%

100.0%

 0.0%

 0.0%

 0.0%

100.0%

(f) CIDDS PortScan attack c=10

Figure 25: Transferability success Portscan/Probe attack

53

7.3 Results Attack Evaluation

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DDoS
max=0.11 DDoS
max=0.53 DDoS

max=0.05 PortScan
max=0.11 PortScan
max=0.53 PortScan

(a) DBN success rate vs. f-budget CICIDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DDoS
f=0.50 DDoS
f=1.00 DDoS

f=0.10 PortScan
f=0.50 PortScan
f=1.00 PortScan

(b) DBN success rate vs. δmax CICIDS

Figure 26: Success rate DBN CICIDS2017 dataset plotted (a) against f-budget (b) against δmax

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DDoS
max=0.11 DDoS
max=0.53 DDoS

max=0.05 PortScan
max=0.11 PortScan
max=0.53 PortScan

(a) AEDNN success rate vs. f-budget
CICIDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DDoS
f=0.50 DDoS
f=1.00 DDoS

f=0.10 PortScan
f=0.50 PortScan
f=1.00 PortScan

(b) AEDNN success rate vs. δmax CICIDS

Figure 27: Success rate AEDNN CICIDS2017 dataset plotted (a) against f-budget (b) against δmax

54

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 DDoS
max=0.11 DDoS
max=0.53 DDoS

max=0.05 PortScan
max=0.11 PortScan
max=0.53 PortScan

(a) AE success rate vs. f-budget CICIDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.10 DDoS
f=0.50 DDoS
f=1.00 DDoS

f=0.10 PortScan
f=0.50 PortScan
f=1.00 PortScan

(b) AE success rate vs. δmax CICIDS

Figure 28: Success rate AE CICIDS2017 dataset plotted (a) against f-budget (b) against δmax

0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 portScan
max=0.11 portScan
max=0.53 portScan

max=0.05 dos
max=0.11 dos
max=0.53 dos

(a) DBN success rate vs. f-budget CIDDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.40 portScan
f=0.70 portScan
f=1.00 portScan

f=0.40 dos
f=0.70 dos
f=1.00 dos

(b) DBN success rate vs. δmax CIDDS

Figure 29: Success rate DBN CIDDS-001 dataset plotted (a) against f-budget (b) against δmax

55

0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 portScan
max=0.11 portScan
max=0.53 portScan

max=0.05 dos
max=0.11 dos
max=0.53 dos

(a) AEDNN success rate vs. f-budget CIDDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.40 portScan
f=0.70 portScan
f=1.00 portScan

f=0.40 dos
f=0.70 dos
f=1.00 dos

(b) AEDNN success rate vs. δmax CIDDS

Figure 30: Success rate AEDNN CIDDS-001 dataset plotted (a) against f-budget (b) against δmax

0.40 0.50 0.60 0.70 0.80 0.90 1.00
f-budget

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

max=0.05 portScan
max=0.11 portScan
max=0.53 portScan

max=0.05 dos
max=0.11 dos
max=0.53 dos

(a) AE success rate vs. f-budget CIDDS

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
max

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s-

Ra
te

f=0.40 portScan
f=0.70 portScan
f=1.00 portScan

f=0.40 dos
f=0.70 dos
f=1.00 dos

(b) AE success rate vs. δmax CIDDS

Figure 31: Success rate AE CIDDS-001 dataset plotted (a) against f-budget (b) against δmax

56

	Introduction
	Related Work
	Use of Machine learning for intrusion detection systems
	Adversarial Examples
	Definition
	Taxonomy
	Transferability of adversarial examples
	Adversarial Examples in Computer Vision
	Adversarial Examples in Network Intrusion Detection Systems
	Robustness against Adversarial Examples

	Preliminaries
	Threat Model
	Models
	Objective
	Deep Neural Network
	Deep Belief Network
	Outlier Detection
	Evaluation Metrics

	Datasets
	NSL-KDD
	CICIDS2017
	CIDDS
	Preprocessing

	Attack Algorithms
	Fast Gradient Sign Method
	Carlini and Wagner Attack
	Optimizer

	Methodology
	Grouping
	Crafting
	Vulnerability Score

	Results
	Model Evaluation
	Objective and setup
	Deep Belief Network
	Deep Neural Network
	Outlier Detection
	Comparative Evaluation of nids models

	Attack Evaluation
	Grouping
	Comparative evaluation of the attack algorithms
	Transferability
	Attack on Network Intrusion Detection models
	Vulnerability Score

	Conclusion
	Appendix
	Model architecture
	Results Transferability
	Results Attack Evaluation

