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Abstract

In this thesis the method of regularization by projection is investigated, which
allows to reconstruct the possible unbounded inverse of a linear operator using
provided training data. The method is applied to the example of tomography.
Different possible realizations of this approach using orthonormalization and
frames are presented and investigated. Performance and errors of the variants
are compared for different image data sets, which differ in size and number
of images. The results show that the methods can be successfully applied
for the reconstruction of images, but that there are limitations regarding the
quality of the output, which result from the finiteness of the data (compared to
convergence analysis), only approximately fulfilled model assumptions (linear
independence of the image vectors) and numerical errors.
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Zusammenfassung

In dieser Arbeit wird die Methode der Regularisierung durch Projektion unter-
sucht, die es erlaubt, die möglicherweise unbeschränkte Inverse eines linearen
Operators über bereitgestellte Trainingsdaten zu rekonstruieren. Die Methode
wird am Beispiel der Tomographie angewendet, wobei verschiedene mögliche
Realisierungen dieses Ansatzes mittels Orthonormalisierung und Frames vor-
gestellt und untersucht werden. Performance und Fehler der Varianten werden
für verschiedene Bilddatensätze, die sich in Größe und Anzahl der Bilder unter-
scheiden, verglichen. Die Ergebnisse zeigen, dass die Methoden erfolgreich für
die Rekonstruktion von Bildern eingesetzt werden können, dass jedoch Gren-
zen hinsichtlich der Qualität der Ausgabe bestehen, die sich aus der Endlich-
keit der Daten (im Vergleich zur Konvergenzanalyse), nur annähernd erfüllten
Modellannahmen (lineare Unabhängigkeit der Bildvektoren) und numerischen
Fehlern ergeben.
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1 Introduction

The main idea of regularization operators is the solving of the linear equation Tx = yδ

for x with bounded operator T and possibly noisy right-hand side yδ. Since the so-
lution of the least-squared problem x† = T †yδ, which can in general be expressed by
the (possibly unbounded) Moore-Penrose inverse T †, does not depend continuously
on x, small perturbations of yδ can have a rather undesired impact on the solution
x†. In even worse cases, the perturbed data is not even in the domain of T †. Various
approaches can be used to overcome this issues. In the following thesis we present
the regularization by projection approach with application to the Radon transform
in image processing.
The next following Section 2 summarizes the main results of spectral and frame
theory, which will be used in the applications afterwards. Section 3 appeals to the
problem of regularization in general and present possible approaches and mathemat-
ical facts concerning this topic. In Section 4 we introduce the usage of training data
in the regularization approach, which we finally use in Section 5 for our numerical
experiments with image data sets. We summarize and conclude the results of the
thesis in Section 6.

2 Preliminaries

2.1 Basic definitions

We start with the well-known Cauchy-Schwarz inequality (see [3, 18.1]):

Lemma 2.1 (Cauchy-Schwarz inequality). Let X be a linear space with inner product
and x, y ∈ X , then

|〈x, y〉| ≤
√
|〈x, x〉| ·

√
|〈y, y〉| = ‖x‖ · ‖y‖.

This inequality is an equality if and only if x, y are linearly dependent.

Given a linear operator A between two Hilbert spaces, we recall the definition of its
adjoint operator A∗ as in [3, Chapter 58]:

Definition 2.2 (Adjoint operator). Let X and Y be Hilbert spaces and A : X −→ Y
a linear and bounded operator. Then there exists a linear and continuous operator
A∗ : Y −→ X , which is uniquely defined by the equality

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ X , y ∈ Y ,

which is called the adjoint operator.

5



In [3, Theorem 58.1] some properties of the adjoint operator are given:

Lemma 2.3 (Properties of adjoint operators). Let X ,Y and Z be Hilbert spaces and
A : X −→ Y and B : Y −→ Z be two linear and continuous operators. Then their
adjoint operators A∗ : Y −→ X and B∗ : Z −→ Y fulfill:

(i) (BA)∗ = A∗B∗

(ii) (A∗)∗ = A

Proof. (i). For x ∈ X and z ∈ Z, we apply the definition of the adjoint operator
twice:

〈BAx, z〉 = 〈Ax,B∗z〉 = 〈x,A∗B∗z〉 (1)

So the adjoint operator of BA is equal to A∗B∗.
(ii). For x ∈ X and y ∈ Y the defining property of the adjoint operator applied to
A∗ leads to:

〈A∗y, x〉 = 〈y, (A∗)∗x〉 (2)

Since the inner product is hermitian, we get on the other hand:

〈A∗y, x〉 = 〈x,A∗y〉 = 〈Ax, y〉 = 〈y, Ax〉 (3)

Comparison of the results together with the fact that the adjoint operator is uniquely
defined by the equality in Definition 2.2, yields (A∗)∗ = A.

Definition 2.4 (Self-adjoint). If the target set of A is equal to its domain, i.e.
A : X −→ X , the operator is called self-adjoint, if A∗ = A.

We now define some concepts concerning the eigenvalues of an operator (see e.g.
[3, Chapter 29]):

Definition 2.5. For a linear operator T : X → Y, we call the scalar λ 6= 0 an
eigenvalue of T , if there exists x ∈ X\{0} with Tx = λx. x is called eigenvector
of T . Since for all eigenvalues λ, the operator (λI − T ) is not injective (otherwise
it would not be possible to find an x 6= 0 with (λI − T )x = 0 ⇔ Tx = λx) and the
dimension of N (λI − T ) > 0 is called multiplicity of λ.

Self-adjoint linear operators have special properties regarding their eigenvectors (see
[3, Theorem 29.9]):

6



Lemma 2.6. Eigenvalues of self-adjoint operators are always real and eigenvectors
to different eigenvalues are orthogonal.

This allows to define the following term:

Definition 2.7 (Eigensystem). For a self-adjoint operator A : X −→ X we define
the eigensystem as the set of all pairs (λi, xi), where λi ∈ R are eigenvalues of A
and xi are the corresponding orthonormal eigenvectors of A.

Note that due to the multiplicity of eigenvalues, there may exist more than one pair
corresponding elements in the eigensystem with different (orthonormalized) eigen-
vectors. Furthermore, the family of pairs (λi, xi) may be uncountable. This circum-
stance does not appear, if the operator A is additionally compact, which we will refer
to in the next subsection. In the following subsection we present the concept of the
Moore-Penrose generalized inverse of an operator and some of its properties.
They correspond to the results of [1, Sec. 2.1] and [16, Chapter III].

2.1.1 The Moore-Penrose Generalized Inverse

We start with a definition about the context in which the Moore-Penrose generalized
inverse is used: least-squares solution of linear equations.

Definition 2.8. For a bounded linear operator T : X → Y and y ∈ Y, we call

(i) x ∈ X is called a least-squares solution of Tx = y if

‖Tx− y‖ = inf
{
‖Tz − y‖

∣∣ z ∈ X} .
(ii) x ∈ X is called a best-approximate solution of Tx = y if x is least-squares

solution and additionally

‖x‖ = inf
{
‖z‖

∣∣ z is a least-squares solution of Tx = y
}

holds.

The following theorem defines the Moore-Penrose generalized inverse of the operator
T :

Theorem 2.9. Let T : X −→ Y be linear. We define the restricted operator

T̃ := T |N (T )⊥ : N (T )⊥ → R(T ).
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Since N (T̃ ) = {0} and R(T̃ ) = R(T ), T̃ is injective and has an inverse T̃−1 :
R(T ) → N (T )⊥. The unique linear extension T † of this inverse to D(T †) :=
R(T )+̇R(T )⊥ is called Moore-Penrose generalized inverse. Furthermore for
all y ∈ D(T †) the result x† := T †y is the best-approximate solution of Definition 2.8
and all least-squares solutions are x† +N (T ).

The following proposition characterises T † uniquely:

Proposition 2.10. Let P and Q be the orthogonal projectors onto N (T ) and R(T ),
respectively. Then T † : D(T †)→ X satisfies:

(i) R(T †) = N (T )⊥,

(ii) TT †T = T ,

(iii) T †TT † = T †,

(iv) T †T = I − P ,

(v) TT † = Q|D(T †).

The concept of the square root of a positive operator is given by the following lemma
in [3, page 552]:

Lemma 2.11 (Square root of operator). Let A : X −→ X be a positive operator,
i.e. A is self-adjoint and it holds 〈Ax, x〉 ≥ 0 for all x ∈ X . Then there exists an
operator B : X −→ X , which fulfills B2 = A. This operator is called the square
root of A and is also written as B =

√
A = A

1
2 .

The next definition describes compact linear operators, a subset of all continuous
operators:

Definition 2.12 (Compact linear operator). A linear operator K : X → Y between
two normed spaces X and Y is called a compact linear operator if for every bounded
sequence (xn)n≥1 in X , the sequence (Kxn)n≥1 has a convergent subsequence.

We present an example of a compact linear operator (see [1, Sec. 2.2]):

Example 2.13. Let Ω ⊆ Rn and k ∈ L2(Ω× Ω). The integral operator K : L2(Ω)→
L2(Ω) with kernel k is defined by:

Kx(s) =

∫
Ω

k(s, t)x(t) dt (4)

Under the following two requirements, the integral operator K is compact:
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(i) Ω is a compact set.

(ii) There exist M > 0 and ε > 0 so that

|k(s, t)| ≤ M

|s− t|n−ε
(5)

holds for all s 6= t ∈ Ω.

With the assumption that (i) and (ii) hold, integral operator K is compact iff k can
be written as

k(s, t) =
N∑
i=1

ϕi(s)ψi(t), s, t ∈ Ω (6)

with ϕi, ψi ∈ L2(Ω) and N ∈ N.

2.2 Introduction to spectral theory

Most of the definitions and results of this section can be found in [1, chapters 2.2
and 2.3] (unless otherwise indicated).

Theorem 2.14. All self-adjoint compact linear operators K with eigensystem (λi, vi)
have the representation

Kx =
∞∑
i=1

λi 〈x, vi〉 vi. (7)

In particular, compactness implies that the eigensystem defined in Def. 2.7 is count-
able.

If the compact linear operator is not self-adjoint, the previous representation does not
necessarily exist. Nevertheless, a decomposition with the following defined singular
system is possible.

Lemma 2.15. For any bounded linear operator K and its adjoint operator K∗, the
compositions KK∗ : Y −→ Y and K∗K : X −→ X are both self-adjoint operators.
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Proof. According to Lemma 2.3, it holds

(KK∗)∗ = (K∗)∗K∗ = KK∗,

(K∗K)∗ = K∗(K∗)∗ = K∗K.

Lemma 2.16. The self-adjoint operators KK∗ and K∗K have the same non-negative
eigenvalues {σ2

i }i∈N. For the corresponding eigensystem {(σ2
i , vi)}i∈N of K∗K, the

system {(σ2
i , ui)}i∈N with ui := Kvi

‖Kvi‖ is an eigensystem of KK∗. This means that

{σ2
i }i∈N are spectral values of those operators and belong to the point spectrum (see

[3, Chapter 96]).

Definition 2.17 (Singular system). For a compact linear operator K, let ui, vi the
eigenvectors and σ2

i eigenvalues of K∗K and KK∗, respectively according to Lemma
2.16. Further σi > 0 denote the positive square roots of the values σ2

i indicated in
decreasing order with their multiplicity. The values σi are called singular values
of the operator K. We denote furthermore (σi, ui, vi)i∈N as the singular system of
K.

In [5, Section 21.4], the singular value decomposition for the finite dimensional
case of a n×m matrix (which can be interpreted as a specific coordinate represen-
tation of a linear operator between two finite dimensional vector spaces) is stated:

Lemma 2.18 (Singular value decomposition). For each matrix A ∈ Rn×m, there
exist two orthogonal matrices U ∈ Rn×n and V ∈ Rm×m such that

A = UΣV T , (8)

where Σ := diag(σ1, . . . , σr) ∈ Rn×m is the generalized diagonal matrix of all r sin-
gular values of the matrix A.

The next lemma is some kind of a generalization of the previous lemma:

Lemma 2.19. For a compact linear operator K and its singular system (σi, ui, vi)i∈N,
the following equations hold:

Kvi = σiui (9)

K∗ui = σivi (10)

Kx =
∞∑
i=1

σi 〈x, vi〉ui, x ∈ X (11)

K∗y =
∞∑
i=1

σi 〈y, ui〉 vi, y ∈ Y (12)
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Remark 2.20. Equations (11) and (12) are called singular value expansions
and the infinite dimensional analogues of the singular value decomposition in Defi-
nition 2.18.

The basis for the following lemmata is the following well-known result about finite
dimensional spaces, which can be found in [3, Theorem 11.4]:

Theorem 2.21. Every finite dimensional subspace of a normed space is closed.

This implies the lemmata (see [1, Sec. 2.2]):

Lemma 2.22. If the compact linear operator K has finite dimensional range, only
finitely many singular values exist. If this is not the case, then limi∈N σi is zero.

Lemma 2.23. For the compact linear operator K, the range R(K) is closed iff it is
finite dimensional.

Proof. If R(K) is finite dimensional, it is closed according to Theorem 2.21.
If R(K) is closed, then it is also complete and according to Banach’s open map-
ping theorem, the restricted operator on the ortogonal complement of the nullspace
N (K)⊥, K|N (K)⊥ : N (K)⊥ → R(K), is continuously invertible. Since the composi-

tion K ◦
(
K|N(K)⊥

)−1

= IR(K) is compact, the dimension of R(K) is finite.

Proposition 2.24. If the compact linear operator K has infinite dimensional range
R(K), the Moore-Penrose generalized inverse K† is a densely defined unbounded
linear operator with closed graph.

Given y ∈ Y , consider the linear equation Kx = y, where x is the unknown. Then,
for a compact linear operator K with non-closed range, the best approximation
x∗ = K†y does not depend continuously on the right hand side y.
The following theorem shows some basic properties of the Moore-Penrose inverse.
The whole domain of K† is denoted by D(K†).

Theorem 2.25. For the singular system (σi, ui, vi) of a compact linear operator K
holds:

1. y ∈ D
(
K†
)
⇐⇒

∑∞
i=1

|〈y, ui〉|2

σ2
i

<∞

2. For every y ∈ D(K†), the operator K† can be written as

K†y =
∞∑
i=1

〈y, ui〉
σi

vi.
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The following definitions are motivated by the aim of applying functions to self-
adjoint operators. First we define the following orthogonal projector Eλ, which
projects for every λ > 0 onto the set Eλ := span

{
vn
∣∣n ∈ N, σ2

n < λ
}

+N (K∗K) , for
every x ∈ X as

Eλx :=


∞∑
i=1
σ2
i
<λ

〈x, vi〉 vi + Px if λ > 0,

0 if λ ≤ 0.

(13)

Here, P denotes the orthogonal projection onto N (K∗K). The following two Lem-
mata contain some properties of this operator:

Lemma 2.26. For λ > σ2
1 the image set of the projector Eλ fulfills

Eλ = R (K∗K) +N (K∗K) ,

since the set {vi}i∈N spans R (K∗K) because of the representation in (12).

Lemma 2.27 (monotonicity property). For all λ ≤ µ, it holds

〈Eλx, x〉 ≤ 〈Eµx, x〉 ∀x ∈ X . (14)

Proof. The only relevant case is 0 < λ ≤ µ, otherwise Eλ = 0 and the claim if
fulfilled trivially. To see this let

〈Eλx, x〉 =
∞∑
i=1
σ2
i
<λ

|〈x, vi〉|2 + ‖Px‖2 ≤
∞∑
i=1
σ2
i
<µ

|〈x, vi〉|2 + ‖Px‖2 = 〈Eµx, x〉 . (15)

With these projections, we define the integration of a (piecewise) continuous function
f over the so-called spectral family {Eλ}λ∈R for a singular system (σi, ui, vi)i∈N as
(integral bounds are always −∞ and +∞)∫

f(λ) dEλx :=
∞∑
i=1

f
(
σ2
i

)
〈x, vi〉 vi, (16)

∫
f(λ) d 〈Eλx, y〉 :=

∞∑
i=1

f
(
σ2
i

)
〈x, vi〉 〈y, vi〉 , (17)

∫
f(λ) d ‖Eλx‖2 :=

∞∑
i=1

f
(
σ2
i

)
|〈x, vi〉|2 . (18)
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for all x, y ∈ X .
In the special case for the identity function f = id, we observe in (16) that∫

λ dEλx =
∞∑
i=1

σ2
i 〈x, vi〉 vi (19)

and Theorem 2.14 together with Definition 2.17 show that this is furthermore equal to
K∗Kx. With this summary we are finally able to define the application of functions
to arguments K∗K in the form of the following definition:

f (K∗K) :=

∫
f(λ) dEλ :=

∞∑
i=1

f
(
σ2
i

)
〈·, vi〉 vi (20)

Analogously, the previous steps can be done for the self-adjoint and compact operator
KK∗ instead of K∗K, what leads to the spectral family {Eλ}λ∈R of the form

Eλy :=
∞∑
i=1
σi<λ

〈y, ui〉ui + (I −Q)y (21)

for λ > 0 with (I − Q) denoting the orthogonal projector onto N (KK∗). Finally,
(17) and (18) imply the properties

〈f (K∗K)x, y〉 =

∫
f(λ) d 〈Eλx, y〉 , (22)

‖f (K∗K)x‖2 =

∫
f 2(λ) d ‖Eλx‖2 . (23)

In the following we skip the assumption of compactness and turn to the case of
general linear self-adjoint operators A in a Hilbert space X . These results can be
found in [2, Chapter 3].

Definition 2.28. A family {Eλ}λ∈R orthogonal projections in X is called a spectral
family or else a resolution of the identity if it satisfies these conditions:

(i) EλEµ = Emin{λ,µ}, λ, µ ∈ R,

(ii) E−∞ = 0, E+∞ = I, where E±∞x = limλ→±∞Eλx for all x ∈ X ,

(iii) Eλ+0 = Eλ, where Eλ+0x = limε→0+ Eλ+εx for all x ∈ X .

13



In the following we state some properties of the spectral family. We start with a
lemma.

Lemma 2.29. The operator defined by E(α,β] := Eβ − Eα is also an orthogonal
projector, i.e. the following two properties hold:

(i) E2
(α,β] = E(α,β],

(ii) E∗(α,β] = E(α,β].

Proof. We show the two properties by using Definition 2.28 and the fact that Eα and
Eβ are both orthogonal projections:

(i) E(α,β]E(α,β] = Eβ−EαEβ−EβEα+Eα = Eβ−Eα−Eα+Eα = Eβ−Eα = E(α,β]

X

(ii) E∗(α,β] = E∗β − E∗α = Eβ − Eα = E(α,β]X

Proposition 2.30. For a spectral family {Eλ}λ∈R the function

λ 7−→ 〈Eλx, y〉 (24)

is a function of bounded variation on every finite interval, with total variation V (λ;x, y)
satisfying

V (λ;x, y) ≤ |x| · |y|, ∀x, y ∈ X , λ ∈ R. (25)

Proof. We numerate λ1 < λ2 < . . . < λn and use the orthogonal projection E(α,β] of
Lemma 2.29. Applying the Cauchy-Schwarz inequality of Lemma 2.1 twice, we get

n∑
j=2

∣∣(E(λj−1,λj ]x, y
)∣∣ =

n∑
j=2

∣∣(E(λj−1,λj ]x,E(λj−1,λj ]y
)∣∣ (26)

≤
n∑
j=2

∣∣E(λj−1,λj ]x
∣∣ · ∣∣E(λj−1,λj ]y

∣∣ (27)

≤

(
n∑
j=2

∣∣E(λj−1,λj ]x
∣∣2)1/2

·

(
n∑
j=2

∣∣E(λj−1,λj ]y
∣∣2)1/2

(28)

=
(∣∣E(λ1,λn]x

∣∣2)1/2

·
(∣∣E(λ1,λn]y

∣∣2)1/2

≤ |x| · |y|, (29)

14



where the last line is implied by the property E(λj−1,λj ] · E(λi−1,λi] = 0, i 6= j and so
(see [2, Eq. (3.12)]) for m > n

∣∣E(λn,λm]x
∣∣2 =

∣∣∣∣∣
m−1∑
i=n

E(λi,λi+1]x

∣∣∣∣∣
2

=
m−1∑
i=n

∣∣E(λi,λi+1]x
∣∣2 . (30)

Corollary 2.31. Let {Eλ}λ∈R be a spectral family. Then, for all λ ∈ R, there exist
the operators

Eλ+ = lim
µ→+λ

Eµ, Eλ− = lim
µ→−λ

Eµ.

Proof. Application of (30) implies that if λ −→+ λ, then

lim
j,k→∞

|E(λj ,λk]x|2 = 0. (31)

For the operator Eλ+0, one can directly apply property (iii) of Definition 2.28.

Proposition 2.32. Let f be a continuous function on R with complex function values
and x ∈ X . Then for α < β, [α, β] ⊂ R it is possible to define the integral∫ β

α

f(λ) dEλx (32)

as the strong limit in X of the Riemann sum:∑
i

f (λ′i)E(λi,λi+1]x where α = λ1 < λ2 < . . . < λn = β and λ′i ∈ (λi, λi+1) , (33)

where the fineness of the Riemann sum maxi |λi+1 − λi| converges to zero.

Proof. On every compact interval [α, β], f is uniformly continuous. That means that
for every ε > 0 exists δ > 0 so that for all λ, λ′ ∈ [a, b] the implication

|λ− λ′| < δ ⇒ |f(λ)− f (λ′)| < ε (34)

holds. We consider two partitions of the interval [α, β] with fineness < δ, i.e.

α = λ1 < λ2 < . . . < λn = β, max
i
|λi+1 − λi| < δ, (35)

α = µ1 < µ2 < . . . < µm = β, max
j
|µj+1 − µj| < δ. (36)
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We denote the partition resulting from the union of {λi}i=1,...,n and {µj}j=1,...,m by
{νs}s=1,...,p with p ≤ m+n. For µ′j ∈

(
µj, µj+1

]
, we get with the uniformly continuity

of f the equality∑
i

f (λ′i)E(λi,λi+1]x−
∑
j

f
(
µ′j
)
E(µj ,µj+1]x =

∑
s

εsE(vs,vs+1]x, with |εs| ≤ 2ε,

(37)

where εs denotes the difference of the function values f(λ′i) and f(µ′j) on the specific
interval of the resulting partition {νs}s=1,...,p. This result can finally be estimated in
the following∣∣∣∣∣∑

s

εsE(vs,vs+1]x

∣∣∣∣∣
2

≤ ε2

∣∣∣∣∣∑
s

E(vs,vs+1]x

∣∣∣∣∣
2

= ε2
∣∣E(α,β]x

∣∣2 ≤ ε2|x|2.

This means that the difference in (37) converges to zero for ε −→ 0 and the sequence
is Cauchy and therefore convergent. The existing limit can therefore be defined as
the integral in (32).

It is also possible to define improper integrals.

Definition 2.33. For any continuous real function f and x ∈ X , the improper
integral ∫ +∞

−∞
f(λ) dEλx (38)

is defined as the (strong) limit

lim
α−→−∞
β−→+∞

∫ β

α

f(λ) dEλx, (39)

in the case that this limit exists in X .

The existence of improper integrals is characterized by the following theorem. We
skip the proof, which is given in [2, page 115 f.].

Theorem 2.34. In the context of the previous definition, the following three condi-
tions are equivalent:

(i)
∫ +∞
−∞ f(λ) dEλx exists ,
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(ii)
∫ +∞
−∞ |f(λ)|2 d |Eλx|2 < +∞,

(iii) y 7→ F (y) :=
∫ +∞
−∞ f(λ) d 〈Eλy, x〉 and F is a linear functional.

The next theorem allows to define a self-adjoint operator to any real-valued contin-
uous function. Again the proof is given in [2, page 117].

Theorem 2.35. Let f be an arbitrary real-valued continuous function, D(A) ⊆ X a
domain defined by

D(A) =

{
x ∈ X

∣∣∣∣∣
∫ +∞

−∞
f(λ)2 d |Eλx|2 < +∞

}
(40)

and A : D(A) −→ X the corresponding self-adjoint operator defined by

〈Ax, y〉 =

∫ +∞

−∞
f(λ) d〈Eλx, y〉, ∀x ∈ D(A), y ∈ X . (41)

Then D(A) is a dense set in X and this operator A is self-adjoint and fulfills AEλ ⊃
EλA in the sense that AEλ is an extension of EλA with domain X instead of D(A).

A special case of the previous theorem leads to the spectral representation of the
self-adjoint operator A and is given by the following:

Corollary 2.36. We consider the special case of Theorem 2.35 where f(λ) = λ.
Then we have

〈Ax, y〉 =

∫ +∞

−∞
λ d 〈Eλx, y〉 , x ∈ D(A) ⊂ X , y ∈ X , (42)

D(A) =

{
x ∈ X

∣∣∣∣∣
∫ +∞

−∞
λ2 d |Eλx|2 < +∞

}
. (43)

In this case we formally write

A =

∫ +∞

−∞
λ dEλ, (44)

which is called the spectral representation of the self-adjoint operator A in X .

Corollary 2.37. For A =
∫ +∞
−∞ f(λ) dEλ, it holds

‖Ax‖2 =

∫ +∞

−∞
f(λ)2 d |Eλx|2 , x ∈ D(A). (45)
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Proof. According to Theorem 2.35, it holds EλAx = AEλx for all x ∈ X . Using this,
we have

‖Ax‖2 = 〈Ax,Ax〉 =

∫
R
f(λ) d 〈Eλx,Ax〉 =

∫
R
f(λ) d 〈AEλx, x〉 (46)

=

∫
R
f(λ) dλ

(∫
R
f(µ) dµ 〈EµEλx, x〉

)
(47)

Def. 2.28(i)
=

∫
R
f(λ) dλ

〈∫ λ

−∞
f(µ) dµ (Eµx, x)

〉
(48)

Def. 2.28(ii)
=

∫
R
|f(λ)|2 d |Eλx|2 . (49)

Finally we note the following proposition about the ranges of operators between two
Hilbert spaces X and Y , which is proven in [1, Proposition 2.18]:

Proposition 2.38. Let T : X −→ Y be a linear bounded operator. Then

R (T ∗) = R
(

(T ∗T )
1
2

)
, (50)

where (T ∗T )
1
2 denotes the operator square root of Lemma 2.11.

2.3 Introduction to frame theory

In this chapter we introduce the basic properties of frames. Frames are, compared
to a basis, not necessarily linear independent spanning sets of vectorspaces. The
following definitions and results are based on [12, Chapter 1.3]. For the whole chapter
we assume that Xn is a finite dimensional real Hilbert space with dim(Xn) ≤ n. First
we give the formal definition of a frame.

Definition 2.39. A family (x̂i)i=1,...,n ⊆ Xn is called a frame of Xn, if there exist
two constants A,B > 0 with

A‖x‖2 ≤
n∑
i=1

∣∣〈x, x̂i〉∣∣2 ≤ B‖x‖2 for all x ∈ Xn. (51)

Those constants are called frame bounds.

The following Lemma gives an alternative characterization for frames.
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Lemma 2.40. Let (x̂i)i=1,...,n be a family of vectors in Xn. Then the family is a
frame of Xn, iff it is a spanning set of Xn.

We now define three operators, which are quite important for handling with frames,
even though they can be defined for an arbitrary family of vectors (not necessarily a
frame) within a Hilbert space.

Definition 2.41. With (x̂i)i=1,...,n ⊆ Xn we define the analysis operator T :
Xn −→ Rn by

Tx :=
(〈
x, x̂i

〉)n
i=1

, x ∈ Xn. (52)

The adjoint operator T ∗ : Rn −→ Xn according to Definition 2.2 is called synthesis
operator. Furthermore, the operator S : Xn −→ Xn with S := T ∗T is called frame
operator. It is explicitly given by

Sx = T ∗Tx =
n∑
i=1

〈
x, x̂i

〉
x̂i, x ∈ Xn. (53)

The following theorem states some properties of the frame operator:

Theorem 2.42. The frame operator S of Definition 2.41 based on a frame (x̂i)i=1,...,n ⊆
Xn is a positive, self-adjoint and invertible operator. Given A,B as in Defini-
tion 2.39, the operator satisfies

A · Id ≤ S ≤ B · Id (54)

in the sense that for all x ∈ Xn, it holds

〈Ax, x〉 ≤ 〈Sx, x〉 ≤ 〈Bx, x〉. (55)

The previous Lemma 2.40 guarantees that a frame is always a spanning set of the
corresponding Hilbert space. The question arises, how an arbitrary element of the
Hilbert space can be expressed as linear combination of the frame elements. The next
theorem states, how this expression can be found with the help of the frame operator.
It makes use of the invertibility of the frame operator S in the finite dimensional case
(see [12, Sec. 1.4.2]).

Theorem 2.43. Let (x̂i)i=1,...,n be a frame in Xn with frame operator S. Then, for
every x ∈ Xn, it holds

x =
n∑
i=1

〈
x, x̂i

〉
S−1x̂i =

n∑
i=1

〈
x, S−1x̂i

〉
x̂i. (56)

In this case it is sufficient to invert S only on span(x̂i)i=1,...,n.
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This last equality in the statement of this theorem motivates the following definition:

Definition 2.44. In the setting of Theorem 2.43, the family (S−1x̂i)i=1,...,n is called
the canonical dual frame of (x̂i)i=1,...,n.

Since {x̂i} is only a spanning set, there exist many different representations of x.
In general, a representation similar to (56) can also be found without application of
S−1. So we define a general dual frame.

Definition 2.45. For a frame (x̂i)i=1,...,n in Xn, the frame (x̂′i)i=1,...,n is called dual
frame, if

x =
n∑
i=1

〈
x, x̂i

〉
x̂′i for all x ∈ Xn. (57)

Even though the dual frame is not unique, the canonical dual frame has a special
property, which is presented in the following proposition and the corollary below:

Proposition 2.46. For a frame (x̂i)i=1,...,n in Xn we assume that x ∈ Xn can be
written as x =

∑n
i=1 aix̂

i with appropriately chosen scalars ai. Then the equality

n∑
i=1

|ai|2 =
n∑
i=1

∣∣〈x, S−1x̂i
〉∣∣2 +

n∑
i=1

∣∣ai − 〈x, S−1x̂i
〉∣∣2 .

holds with the frame operator S.

Proof. With the analysis operator T of Definition 2.41, we obtain(〈
x, S−1x̂i

〉)n
i=1

=
(〈
S−1x, x̂i

〉)n
i=1
∈ ranT

Since x =
∑M

i=1 aix̂
i, it follows by calculating the scalar product of vectors in Rn

(
ai −

〈
x, S−1x̂i

〉)n
i=1
· Tx =

(
ai −

〈
x, S−1x̂i

〉)n
i=1
·
(〈
x, x̂i

〉)n
i=1

=

〈
x,

n∑
i=1

aix̂
i

︸ ︷︷ ︸
=x

〉
−

〈
x,

n∑
i=1

〈x, S−1x̂i〉x̂i︸ ︷︷ ︸
=x

〉
= 0

and therefore
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(
ai −

〈
x, S−1x̂i

〉)n
i=1
∈ kerT ∗ = (ranT )⊥

Considering the trivial decomposition

(ai)
n
i=1 =

(〈
x, S−1x̂i

〉)n
i=1

+
(
ai −

〈
x, S−1x̂i

〉)n
i=1

,

squaring both sides and using the orthogonality of the terms on the right hand side
proves the claim.

Corollary 2.47. In the setting of the previous proposition, we assume that (x̂′i)i=1,...,n

is an arbitrary dual frame. Then we have the inequality∥∥(〈x, S−1x̂i
〉)n

i=1

∥∥
2
≤
∥∥(〈x, x̂′i〉)n

i=1

∥∥
2
.

This means that the canonical dual frame (S−1x̂i)i=1,...,n of Definition 2.44 is a dual
frame that minimizes the `2-norm.

In the general case of frames, it is sometimes difficult, numerically instable and
computationally expensive to calculate a dual frame analytically. Therefore it is
interesting to observe algorithms that approximate a dual frame in iterative steps.
One example for that purpose is called the frame algorithm:

Proposition 2.48. (Frame Algorithm) Let A,B ∈ R be the bounds of a frame
(x̂i)i=1,...,n and S the frame operator in the vector space Xn. For x ∈ Xn the sequence
(yj)

∞
j=0 given recursively by

y0 = 0, yj = yj−1 +
2

A+B
S (x− yj−1) for all j ≥ 1

converges to x with the rate

‖x− yj‖ ≤
(
B − A
B + A

)j
‖x‖, j ≥ 0.

Since the previous proposition requires the frame bounds A,B explicitly, which might
not be known in some cases, we also present an alternative algorithm that is called the
Conjugate Gradient Method in frame theory. The formulas in the method are
similar to the conventional Conjugate Gradient Method for solving systems of linear
equations given in [17, Chapter 2]. It constructs a sequence without the knowledge
of A and B.
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Proposition 2.49. (Conjugate Gradient Method) Let (x̂i)i=1,...,n be a frame in Xn
with frame operator S. For a given x ∈ Xn, we define three sequences (yj)

∞
j=0 , (rj)

∞
j=0

and (pj)
∞
j=−1 ∈ Xn and a sequence of scalars (λj)

∞
j=−1 by the initial values

y0 = 0, r0 = p0 = Sx, and p−1 = 0

and recursively by

λj =
〈rj, pj〉
〈pj, Spj〉

, yj+1 = yj + λjpj, rj+1 = rj − λjSpj

and

pj+1 = Spj −
〈Spj, Spj〉
〈pj, Spj〉

pj −
〈Spj, Spj−1〉
〈pj−1, Spj−1〉

pj−1.

Then the sequence (yj)
∞
j=0 converges to x with the rate

|||x− yj||| ≤
2σj

1 + σ2j
|||x||| with σ =

√
B −

√
A√

B +
√
A

with the norm |||·||| := ‖S1/2(·)‖.

3 Regularization Operators

3.1 Motivation

The main idea of regularization is to find the solution x of the equation

Tx = y (58)

for a given noisy data yδ of y fulfilling

‖yδ − y‖ ≤ δ. (59)

Even though the best approximation x† of the exact equation (58) can be written
with the Moore-Penrose inverse (see Theorem 2.9) in the form x† = T †y, it is in
general not the best idea to take T †yδ as solution of the noisy problem, if T † is
unbounded. Furthermore it is possible that yδ does not even belong to the domain
D(T †) of T †. So the goal is to find a clever way to calculate an approximating solution
xδα of x†, which does depend continuously on the noisy data yδ and has furthermore
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the property of converging to x† in the case that the noise level δ decreases to zero.
The trick is now to replace T † by the parameter dependent operator family {Rα},
which depends on a regularization parameter α and is continuous. Then the solution
of the approximating problem is defined by xδα := Rαy

δ. Since δ −→ 0 should result
in xδα −→ x† (which is called pseudo convergence of these approximations to the
free noise solution), α has to be somehow linked to δ. The definition of Rα and
detailed properties are presented in the following subsection.

3.2 Definition and properties

Definition 3.1. Let T : X −→ Y be a bounded linear operator between the Hilbert
spaces X and Y and α0 ∈ (0,∞]. For every α ∈ (0, α0), let Rα : Y −→ X be a
continuous (not necessarily linear) operator. We call the operator family {Rα} a
regularization for T †, if for all y ∈ D(T †) there exists a parameter choice rule
(δ, yδ) 7−→ α(δ, yδ) such that

lim
δ→0

sup

{∥∥Rα(δ,yδ)y
δ − T †y

∥∥ ∣∣∣∣ yδ ∈ Y ,∥∥yδ − y∥∥ ≤ δ

}
= 0 (60)

with α : R+ × Y −→ (0, α0) fulfilling

lim
δ→0

sup

{
α
(
δ, yδ

) ∣∣∣∣ yδ ∈ Y , ∥∥yδ − y∥∥ ≤ δ

}
= 0. (61)

If a pair (Rα, α) fulfills (60) and (61) for a specific y ∈ D(T †) (not necessarily for
all y ∈ D(T †)), we call it a regularization method for Tx = y.

Dependent on their properties, we distinguish between two different types of param-
eter choice rules:

Definition 3.2. If the parameter choice rule α(δ, yδ) in Definition 3.1 does not
depend explicitly on yδ, we call it an a-priori parameter choice. Otherwise it is
called a-posteriori parameter choice rule.

The following theorem (with proof in [1, Theorem 3.3]) presents a connection between
the properties of α and T †.

Theorem 3.3. Let T : X −→ Y be a bounded linear operator. If the parameter
choice rule α of the regularization {Rα} only depends on yδ (not explicitly on δ)
and the regularization method (Rα, α) is convergent for every y ∈ D(T †), then T † is
bounded.
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This means that the choice α = α(yδ) can never lead to a convergent realization
method if T † is unbounded. Anyhow it is possible that such a parameter choice
rule behaves suitable for finite noise levels δ. The following proposition (with proof
in [1, Proposition 3.4]) gives a hint, how regularization operators can actually be
constructed.

Proposition 3.4. If {Rα} is a family of continuous (not necessarily linear) operators

with Rα
α→0−−−→ T † pointwise on D(T †). Then it is a regularization for T † and for every

y ∈ D(T †) and an a-priori parameter choice rule, there exists α such that (Rα, α) is
a convergent regularization method for the problem Tx = y.

The converse of this proposition holds in the following sense:
For every convergent regularization method (Rα, α) and when yδ = y, Equation (60)
implies immediately limδ→0Rα(δ,y)y = T †y for all y ∈ D(T †). Note that this limit
holds in comparison to the previous proposition only for the α values, which are in the
range of the parameter choice strategy α(δ, yδ). With the additional assumption of

continuity of δ 7−→ α(δ, yδ), we also get the pointwise limit in the form Rαy
α→0−−−→ T †y

for all y ∈ D(T †).
The next proposition describes the behavior of the solution of the approximating
problem xα in the case of regularizations Rα, which are linear operators (i.e. linear
regularizations). The proof is given in [1, Proposition 3.6].

Proposition 3.5. If {Rα} is a linear regularization and xα := Rαy, which is

defined for all y ∈ Y. Then xα
α→0−−−→ T †y for all y ∈ D(T †). If additionally

sup {‖TRα‖ |α > 0} < ∞ (i.e. the operator norms are uniformly bounded in α),

then it holds additionally that ‖xα‖
α→0−−−→ +∞ for all y ∈ Y\D(T †).

In Proposition 3.4, we mentioned under which assumptions an a-priori parameter
choice with a convergent regularization method (Rα, α) exists. Such a rule can be
characterized in the following, at least for linear regularizations. The statement is
proved in [1, Proposition 3.7].

Proposition 3.6. For a linear regularization {Rα} let α = α(δ) be an a-priori
parameter choice rule. Then (Rα, α) is a convergent regularization method iff

lim
δ→0

α(δ) = 0 (62)

and

lim
δ→0

δ‖Rα(δ)‖ = 0. (63)
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Remark 3.7. If we replace (63) by the condition

lim sup
δ→0

δ
∥∥Rα(δ)

∥∥ < +∞, (64)

then (Rα, α) is only weakly convergent in the sense that for all sequences δk −→ 0
and yk ∈ Y chosen so that ‖yk − y‖ ≤ δk for all k, {Rα(δk)yk} converges weakly to
T †y. If (64) does not hold, it is further possible to find sequences such that the norm
of {Rα(δ)yk} diverges. The proof of this statement can be found in [4].

3.3 Regularization by Projection

In the previous section we presented some general properties of regularization. In
this chapter, we start with a concrete possible method of implementing such a reg-
ularization, namely projection onto suitable subspaces. The idea is very simple and
natural: Instead of finding the minimum-norm solution of Tx = y in X , we choose
some finite dimensional subspaces X1 ⊂ X2 ⊂ X3 ⊂ . . ., such that

⋃∞
n=1Xn is dense

in X and solve the problem

Tnx = y, (65)

where Tn := TPn and Pn denotes the orthogonal projection onto Xn. The solution
xn := T †ny is a stable approximation of x†, since Tn has finite dimensional and thus
closed range (see Theorem 2.21) and the operator T †n is bounded. Nevertheless, it is
not guaranteed that xn converges to x†. We now give an example, where this is not
the case (see Example 3.8 [1, Example 3.19] and [6], respectively).

Example 3.8. For an infinite dimensional Hilbert space X , let {en} be an orthonormal
basis. Since each x ∈ X can be written as x =

∑∞
i=1 ξiei, we define the operator

T : X −→ X by:

T :
∞∑
i=1

ξiei 7→
∞∑
i=1

(aiξi + biξ1) ei

with

ai :=

{
i−1, i odd,

i−
5
2 , i even.

bi :=

{
0, i = 1
i−1, i > 1
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We show that this operator is linear, injective and compact: The linearity is clear,
since for x, x′ ∈ X we have

T (x+ x′) = T

(
∞∑
i=1

ξiei +
∞∑
i=1

ξ′iei

)

= T

(
∞∑
i=1

(ξi + ξ′i)ei

)

=
∞∑
i=1

(ai(ξi + ξ′i) + bi(ξ1 + ξ′1))ei

=
∞∑
i=1

(aiξi + biξ1)ei +
∞∑
i=1

(aiξ
′
i + biξ

′
1)ei

= T (x) + T (x′)

and for a scalar λ, it holds

T (λx) = T

(
λ
∞∑
i=1

ξiei

)

= T

(
∞∑
i=1

λξiei

)

=
∞∑
i=1

(aiλξi + biλξ1)ei

= λ
∞∑
i=1

(aiξi + biξ1)ei

= λT (x).

To show the injectivity, we assume T (x)− T (x′) = T (x− x′) = 0 for x, x′ ∈ X . We
observe

0 = T

(
∞∑
i=1

(ξi − ξ′i)ei

)

=
∞∑
i=1

(ai(ξi − ξ′i) + bi(ξ1 − ξ′1))ei
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and since {ei} is a linearly independent set, this implies ai(ξi−ξ′i)+bi(ξ1−ξ′1)) = 0 for
all i ∈ N. In the case i = 1 we get 1−1(ξ1−ξ′1)+0(ξ1−ξ′1)) = ξ1−ξ′1 = 0 and therefore
ξ1 = ξ′1. Using this for i ≥ 2, we observe ai(ξi−ξ′i)+bi(ξ1−ξ′1)) = ai(ξi−ξ′i) = 0. Since
ai 6= 0 per definition we also get ξi = ξ′i in this case and therefore x = x′, which finally
implies the injectivity. For the compactness, we define finite dimensional subspaces
of X by Xn := span{e1, . . . , en} and the approximating operators Tn : X −→ Xn by

Tn :
∞∑
i=1

ξiei 7→
n∑
i=1

(aiξi + biξ1) ei.

Since the range of Tn is finite dimensional, these operators are compact. We show
that ‖T − Tn‖ −→ 0 for n −→∞ to prove also the compactness of T . For x ∈ X we
have

‖(T − Tn)x‖2 = ‖
∞∑

i=n+1

(aiξi + biξ1)ei‖2

=
∞∑

i=n+1

|aiξi + biξ1|2

≤
∞∑

i=n+1

a2
i |ξi|2 + |ξ1|2

∞∑
i=n+1

b2
i

≤
∞∑

i=n+1

a2
i

∞∑
i=n+1

|ξi|2 + ‖x‖2

∞∑
i=n+1

b2
i

≤

(
∞∑

i=n+1

a2
i +

∞∑
i=n+1

b2
i

)
‖x‖2.

Since the infinite series
∑∞

i=1 a
2
i and

∑∞
i=1 b

2
i are both convergent since they are

bounded by
∑∞

i=1 i
−2 <∞, the upper expression in the bracket converges to zero for

n −→∞. This concludes the compactness.
For x† :=

∑∞
i=1 i

−1ei (which is an element of X because of ‖x‖2 =
∑∞

i=1 i
−2 < ∞)

we set

y := Tx† = T

(
∞∑
i=1

i−1ei

)
=
∞∑
i=1

(aii
−1 + bi1

−1)ei =
∞∑
i=1

(aii
−1 + bi)ei,
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then because of the injectivity the problem Tx = y has trivially the unique solution
x†.
We seek for the best-approximate solution xn :=

∑n
i=1 ξi,nei in Xn. The unknown

coefficients in the representation of xn can be calculated by the minimization problem

‖Txn − y‖2 → min .

Inserting for xn and y and applying the Parseval’s identity leads to

n∑
i=1

(
ai
(
ξi − i−1

)
+ bi (ξ1 − 1)

)2
+

∞∑
i=n+1

i−2 (1 + ai − ξ1)2 → min, (66)

so that (ξ1,n, . . . , ξn,n) is equal to (ξ1, . . . , ξn), for that (66) is minimized. The van-
ishing first partial derivatives lead to the solution

ξ1,n = 1 +

(
∞∑

i=n+1

aii
−2

)(
1 +

∞∑
i=n+1

i−2

)−1

,

ξi,n = i−1 + (aii)
−1 (ξ1,n − 1) , 2 ≤ i ≤ n.
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We compute, that

∥∥xn − Pnx†∥∥2
= ‖

n∑
i=1

ξi,nei −
n∑
i=1

i−1ei‖2

= ‖
n∑
i=1

(ξi,n − i−1)ei‖2

=
n∑
i=1

|ξi,n − i−1|2

= |ξ1,n − 1−1|2 +
n∑
i=2

|ξi,n − i−1|2

= |ξ1,n − 1|2 +
n∑
i=2

∣∣(aii)−1 (ξ1,n − 1)
∣∣2

=
n∑
i=1

(aii)
−2 (ξ1,n − 1)2

=

(
n∑
i=1

(aii)
−2

)(
∞∑

i=n+1

aii
−2

)2(
1 +

∞∑
i=n+1

i−2

)−2

.

This shows that ∥∥xn − Pnx†∥∥ ∼ n

and since
⋃∞
n=1Xn is dense in X by definition and therefore Pnx

† → x†, this shows
that xn does not converge to x†.

Now we will present the dual least-squares method given in [1, 7]. This is a
projection method with ensured convergence. It chooses a sequence Y1 ⊂ Y2 ⊂
Y3 ⊂ . . . of finite-dimensional subspaces of R(T ) = N (T ∗)⊥ ⊆ Y , whose union is
dense in N (T ∗)⊥. If we denote the orthogonal projectors onto Yn by Qn, we define
the approximating sequence (xn)n∈N by the least-squares solution of Tnx = yn with
Tn := QnT and yn := Qny. Then xn is a stable approximation of x† for the same
reasons above. This means that in contrast to the beginning of this section, the
projections take place in the space Y instead of X . The connection to the initially
space X can be done via the adjoint operator T ∗, as we show in the following theorem
(see [1, Theorem 3.24], which gives an alternative characterization of xn.
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Theorem 3.9. Is y ∈ D(T †) and xn defined as above. If we define Xn := T ∗Yn and
Πn is the orthogonal projector onto Xn in X , then it holds

xn = Πnx
† and xn

n→∞−−−→ x†.

Proof. Due to the definition of the spaces and projectors, we haveN (Tn) = R(T ∗Qn)⊥ =
(T ∗Yn)⊥ = X⊥n . Since Πn is the projector onto Xn, I −Πn projects onto X⊥n and we
get

QnT (I − Πn) = Tn(I − Πn) = 0.

If we denote the orthogonal projector onto R(T ) by Q, we get

‖Tnx−Qny‖ =
∥∥QnT

(
x− x†

)∥∥ =
∥∥QnTΠn

(
x− Πnx

†)∥∥ .
So {Πnx

†} + X⊥n is the set of least-squares solutions of the equation Tnx = y and
therefore xn = Πnx

†. Since Yn ⊂ Yn+1 implies Xn ⊂ Xn+1 by definition,
⋃
n∈NXn is

dense in N (T )⊥ and x† ∈ N (T )⊥, we conclude xn
n→∞−−−→ x†.

This theorem shows that with Tn defined as above, the set {T †n} is a regularization
operator according to Proposition 3.4. Even though this family of operators are not
introduced with an explicit regularization parameter, the following theorem shows
that the smallest singular value of the operator Tn, which we denote by µn can be
seen as a hidden regularization parameter. As in Sec. 3.2, we assume for the noisy
data yδ that ‖Qn(y − yδ)‖ ≤ δ. The noisy least-squares solution with yδ instead of
y is denoted by xδn. Then we state:

Theorem 3.10. Let y ∈ D(T †) and µn denote the smallest singular value of the
above introduced operator Tn. We further assume that δ/µn → 0 as δ → 0 and
n→∞. Then it holds

xδn → x† as δ → 0 and n→∞.

Proof. We can estimate∥∥xδn − x†∥∥ ≤ ‖xn − x†‖+ ‖xδn − xn‖ (67)

=
∥∥xn − x†∥∥+

∥∥T †nQn

(
y − yδ

)∥∥ (68)

≤
∥∥xn − x†∥∥+

∥∥T †n∥∥ δ (69)

≤
∥∥xn − x†∥∥+

δ

µn
. (70)

With Theorem 3.9 the assertion follows.
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4 Regularization with training data

In this section we present a very practical application of Regularization by Pro-
jection presented in Sec. 3.3. The context is the following (see also [8]): We aim to
solve the equation Tx = y for unknown linear operator T between two Hilbert spaces
X ,Y and given right hand side y ∈ R(T ). The only available information about T
are so-called training pairs (x̂i, ŷi) ∈ X × Y with T x̂i = ŷi for all i. We furthermore
assume that {x̂i}i=1,...,n are linearly independent for every n ∈ N. With the notation
Xn := span{x̂1, . . . , x̂n} and Yn := span{ŷ1, . . . , ŷn}, we get the finite dimensional
subspaces of X and Y , respectively. With these spaces we can apply the theory at
the beginning of Sec. 3.3. Assuming the injectivity of the operator T , we can give
an explicit expression of the regularized solution xn in terms of the training pairs.
In order to do that, we need the following theorem.

Theorem 4.1. Let T be injective. Then it holds

T †n = T−1Qn, (71)

where Qn is defined as in the previous section.

Proof. We proof the claim by showing (i)-(v) of Proposition 2.10 for the operator
T−1Qn. Due to the injectivity of T and the fact that the training pictures {x̂i}i=1,...,n

are linearly independent, the set {ŷi}i=1,...,n is also linearly independent and therefore
a basis of Yn. Thus, for every y ∈ Y , Qny ∈ Yn can be written as

Qny =
n∑
i=1

λi(n)ŷi.

Using this, we get

x = T−1Qny = T−1

(
n∑
i=1

λi(n)ŷi

)
=

n∑
i=1

λi(n)ûi ∈ Xn.

Since the last term in the equation is just a linear combination in Xn, we can conclude
that for any x ∈ Xn we find some y ∈ Y , so that x = T−1Qny. This shows that

R(T−1Qn) = Xn. (72)

For every x′ ∈ N (APn), thus to the injectivity of T , x′ ∈ N (Pn) = X⊥n . Since those
spaces are finite dimensional, this implies

N (TPn)⊥ = Xn. (73)
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Equations (72) and (73) show (i) in Proposition 2.10. Equations in (ii)-(v) come
from straightforward calculation, where we use the notation PU⊥n and PN (TPn) for the
projectors onto the space in the subscript:

(ii) TPnT
−1QnTPn = TPnT

−1TPn = TPn,

(iii) T−1QnTPnT
−1Qn = T−1QnTT

−1Qn = T−1Qn,

(iv) T−1QnTPn = T−1TPn = Pn = I − PU⊥n = I − PN (TPn),

(v) TPnT
−1Qn = TT−1Qn = Qn = PR(TPn).

Thanks to the previous theorem, we observe:

Remark 4.2. The solution of the projected problem (65) can be written as

xn = T †ny
(71)
= T−1Qny.

Let {ŷ1, . . . , ŷn} be an orthonormal basis of Yn and {x̂1, . . . , x̂n} defined by x̂i :=

T−1ŷi for i = 1, . . . , n the preimages of the orthonormal basis. Then the orthogonal
projector Qn can be written as

Qn =
n∑
i=1

〈·, ŷi〉ŷi (74)

and we get for the regularized solution xn the representation

xn = T−1Qny = T−1

n∑
i=1

〈y, ŷi〉ŷi =
n∑
i=1

〈y, ŷi〉T−1ŷi =
n∑
i=1

〈y, ŷi〉x̂i. (75)

5 Simulations

In this section, we show a practical application of the results of the previous Chap-
ter 4. As linear operator according to (58), we choose T : L2(Ω) −→ L2(R × [0, π])
as the Radon transform R with a parallel beam geometry (see [18]).

5.1 Algorithm

The computation algorithm written in MATLAB consists of several parts:
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5.1.1 Import of training data

We test the algorithm on three different data sets:

• Numbers

• Sunflowers

Each set includes n different pictures to the corresponding topic of equal image
resolution consisting of N gray scale data points in [0, 1], which can be represented
as linearly independent elements of RN . Thay are used as training data and Radon
transformed by the build in MATLAB-function for K different angles θk ∈ [0, 2π).
The results are n different elements of RM×K ' RM ·K , where M is the length of
a Radon projection at a specific angle. In the case of quadratic pictures with size√
N ×

√
N , this implies that M ≈

√
2 ·N, which is the length of the diagonal of

the square. All pictures x̂i ∈ RN and Radon transformed ŷi ∈ RM ·K represent the
training data pairs (x̂i, ŷi)i=1,...,n described in Chapter 4. An overview to these
introduced variables is given by Tab. 1.

N Size of images
n Number of training images
M Length of Radon projection
K Number of Radon angles

Table 1: Legend of the used variables in this chapter.

Note that in our following investigations, it holds (M ·K) >> n, i.e. the picture size is
large compared to the number of training pairs. We also use the variable n as regular-
ization parameter according to Sec. 3.2. In order to perform the orthonormalization
of the set {ŷi}i=1,...,n, we use four different methods of the following subsections and
compare their outcomes.

5.1.2 Gram Schmidt method

The vectors defined by

ci := ŷi −
i−1∑
j=1

〈ŷi, ŷj〉ŷj i = 1, . . . , n (76)
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are an orthogonal system (see [5, page 754]). After normalizing, we get the orthonor-
mal system by

ŷi :=
ci

‖ci‖
. (77)

The computational effort of this algorithm is O(MKn2) according to [11, Section
5.2.8].

5.1.3 Modified Gram Schmidt method

An alternative version of the Gram Schmidt method is given by [11, Section 5.2.8,
Algorithm 5.2.5].

Algorithm 1: Modified Gram Schmidt

input : The matrix A ∈ RM ·K×n with columns {ŷi}i=1,...,n

output: QR factorization Q ∈ RM ·K×n, R ∈ Rn×n, where Q contains the
columns {ŷi}i=1,...,n

for k = 1 : n do
R(k, k) = ‖A(1 : M ∗K, k)‖2;
Q(1 : M ∗K, k) = A(1 : M ∗K, k)/R(k, k);
for j = k + 1 : n do

R(k, j) = Q(1 : M ∗K, k)TA(1 : M ∗K, j);
A(1 : M ∗K, j) = A(1 : M ∗K, j)−Q(1 : M ∗K, k)R(k, j);

end

end

The orthonormal system is then given by the colunms of the This version is a sounder
computational procedure, since the calculation steps are rearranged in comparison
to the straight forward calculation of (76) and (77) presented in the previous section.
The computational effort of this algorithm is O(MKn2).

5.1.4 Householder reflections

Applying Householder transformations in [9, Section 5.2.1, Algorithm 5.2.1] to the
set, we receive again an orthonormal system of vectors.
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Algorithm 2: Householder reflection vector

input : vector x ∈ Rn

output: Householder vector v ∈ Rn, β ∈ R
function: [v, β] = house (x);
n = length(x);
σ = x(2 : n)Tx(2 : n);

v =

[
1

x(2 : n)

]
;

if σ = 0 then
β = 0

else

µ =
√
x(1)2 + σ;

if x(1) <= 0 then
v(1) = x(1)− µ

else
v(1) = −σ/(x(1) + µ)

β = 2v(1)2/ (σ + v(1)2);
v = v/v(1);

Algorithm 3: QR decomposition with Householder reflections

input : The matrix A ∈ RM ·K×n with columns {ŷi}i=1,...,n

output: QR factorization Q ∈ RM∗K×n, R ∈ Rn×n, where Q contains the
columns {ŷi}i=1,...,n

for j = 1 : n do
[v, β] = house(A(j : M ∗K, j));
A(j : M ∗K, j : n) =

(
IM∗K−j+1 − βvvT

)
A(j : M ∗K, j : n) ;

if j < M ∗K then
A(j + 1 : M ∗K, j) = v(2 : M ∗K − j + 1)

end

end

The computational effort of this algorithm is O(M2K2n −MKn2 + n3/3) (see [11,
Section 5.2.1]).

5.1.5 QR MATLAB native

If we write all vectors ŷi as columns of a matrix and perform the MATLAB native
QR decomposition, we also receive an orthonormal system with the same span as
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the columns of the original matrix, since the columns of Q represent an orthonormal
system.

5.1.6 Givens rotations

In [11, Section 5.2.3, Algorithm 5.2.2], the orthonormalization of the columns of a
matrix via Givens rotations is presented. However, the application of this algorithm
to a (M · K) × n matrix leads to a Q ∈ R(M ·K)×(M ·K) orthogonal matrix, which is
in our case (M · K) >> n very inefficient in terms of memory usage. In all other
versions of the previous subsections, it is possible to calculate the QR decomposition
with Q ∈ R(M ·K)×n and R ∈ Rn×n. Therefore, we do not implement and skip this
version in the in the following.

5.1.7 Arnoldi iteration

The Arnoldi algorithm in [12, Section 4.4] is also a possible orthonormalization
method, but since it works on Krylov spaces of quadratic matrices, we do not use it
in the context of this thesis.

5.1.8 Backtransformation of test data

Finally for each Radon transformed picture y of the test data, we are able to use
the formula in (75) for the reverse transformation to the image space. Note that the
orthonormal system {ŷ1, . . . , ŷn} has to be backtransformed via the exact inverse

Radon transform before, to receive the preimages {x̂1, . . . , x̂n} of Remark 4.2. The
result can then be compared to the original image to investigate the quality of the
procedure.

5.1.9 Inverse Radon transfomation

Independent of the chosen orthonormalization method, we apply the MATLAB-
function of the inverse Radon transform to the whole set {ŷi}i=1,...,n afterwards to

get the corresponding set {x̂i}i=1,...,n according to Proposition 4.2.

5.2 Reconstruction via frames

In the previous section, we described the reconstruction of test images by orthonor-
malization of the training data and application of the formula in (75). In this section
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we present a method, which avoids the necessity of this additional exact backtransfor-
mation of the orthogonalized system by avoiding the orthogonalization and directly
the original training images and their radon transformations instead.
Since the set {ŷ1, . . . , ŷn} ⊆ RM ·K is a basis set of Yn by definition, it is also a frame
for Yn according to Section 2.3. A corresponding dual frame {ŷ′1, . . . , ŷ′n} ⊆ RM ·K

is defined by the property

〈ŷ′i, ŷj〉 = δij,

which allows to represent each vector y ∈ Yn as

y =
n∑
i=1

〈ŷ′i, y〉ŷi.

A general y ∈ RM ·K can uniquely be written as y = yYn + yY⊥n with yYn ∈ Yn and
yY⊥n ∈ Y

⊥
n . We therefore receive the formula

n∑
i=1

〈ŷ′i, y〉ŷi =
n∑
i=1

〈ŷ′i, yYn + yY⊥n 〉ŷ
i =

n∑
i=1

〈ŷ′i, yYn〉ŷi +
n∑
i=1

〈ŷ′i, yY⊥n 〉ŷ
i

︸ ︷︷ ︸
=:ε

= yYn + ε.

(78)

The error ε ∈ RM ·K can be reduced by choosing n sufficiently large. For our studies
we combine the vectors {ŷ1, . . . , ŷn} to a matrix Ŷ ∈ RM ·K×n and use the backslash
operator in MATLAB to get a matrix Ŷ ′ ∈ RM ·K×n that fulfills

Y ′T · Y = I.

The resulting columns of Y ′ build then a dual basis {ŷ′1, . . . , ŷ′n} ⊆ RM ·K . With
this, we can then calculate the backtransformed xn similar to (75) by

xn ≈
n∑
i=1

〈ŷ′i, y〉x̂i. (79)

5.3 Reconstruction via frame iteration

In this section, we present another method which is based on frame theory in Sec-
tion 2.3 and further the iterative construction methods of the dual frames in Propo-
sitions 2.48 and 2.49. Since we aim to solve the problem Tx = y for unknown x (see
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Chapter 4) with training data as in Section 5.1.1, we need to find a way to calcu-
late the frame operator (see Definition 2.41) of a vector Sx within the algorithms.
Note at this point, that all frame results in Section 2.3 require x ∈ X , i.e. that the
test picture is in the span of the training pictures. This is in general not true, but
a reasonable approach for a sufficient number of training pictures. The following
derivation shows a possible realization for the Radon transform (see [14, Chapter
2.3]), which we will use in the numerical investigations later on: With the definition
of the frame operator in (53) and the filtered backprojection formula

x =
1

4π
R∗
(
I−1 ◦R

)
x, (80)

for the Radon transform R, the Hilbert transform I−1, the backprojection R∗ (adjoint
with respect to `2 norm) and an arbitrary x, we get

Sx =
n∑
i=1

〈
x, x̂i

〉
x̂i =

n∑
i=1

〈
x,R∗(R−1)∗x̂i

〉
x̂i =

n∑
i=1

〈 Rx︸︷︷︸
=y

, (R−1)∗x̂i〉x̂i

=
1

4π

n∑
i=1

〈
y, (I−1 ◦R)x̂i

〉
x̂i =

1

4π

n∑
i=1

〈
y, I−1ŷi

〉
x̂i.

(81)

The result shows that it is sufficient to determine the filter I−1 of the given training
data {ŷi}i=1,...,n. This is a subfunction in the Image Processing Toolbox of MAT-
LAB. The remaining part of the iteration methods follows exactly the formulas in
Propositions 2.48 and 2.49. Since the possible frame bounds A and B in 2.39 depend
on the chosen test data and are therefore in general unknown in our case, we set
A+B = 106 for the algorithm according to Proposition 2.48. This value was deter-
mined experimentally and led to fairy good convergence. The number of iteration
steps is fixed to 104 for both algorithms, since optical observations of the results lead
to no significant change above 103 iteration steps, so we assume already very good
convergence after 104 steps.

5.3.1 Numerical effort

In this section we analyse the numerical effort of the iterative frame algorithms and
compare it to the effort of the orthonormalization methods. Since the computational
effort of the Hilbert transform I−1 is N ·K as given in [15] and we have to calculate
additionally an inner product (O(M ·K) flops) and a multiplication (O(N) flops) in
the sum of (81), the frame operator has a total effort of O

(
n ·(M ·K+M ·K+N)

)
'

O
(
n · (2 ·M · K + N)

)
. This is calculated in i iteration steps, so we finally get a
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computational effort of O
(
i · n · (2 · M · K + N)

)
for the whole iteration of the

algorithms in Propositions 2.48 and 2.49. Note that this effort is just linear in
n, which is the number of training pictures. If we compare that dependency to the
convergence rates of Sec. 5.1.2–5.1.4, we see that the effort of the frame reconstruction
is lower, since the orthonormalization step is avoided. We observe this reduced effort
in Fig. 1. However, we will observe in the following sections, that this reduction of
effort reduced also the quality of the reconstruction.

5.4 Numerical investigations

In this chapter we present the results of some numerical investigations.

5.4.1 Accuracy of the orthogonalization methods

In the orthogonormalization step, we have four possible methods of sections 5.1.2–
5.1.5. We now investigate the stability of the algorithms on the example of our
imaging application. We assume the set {ŷi}i=1,...,n being available and analyse the
error of the resulting orthonormal system. We first define an appropriate measure
of this error, which quantifies the success of the orthogonalization procedure as a
numerical value.

Definition 5.1. For a set {ŷi}i=1,...,n ⊂ RM ·K, which is assumed to be approximately
orthonormal, we define the matrix Y ∈ Rn×n by

(Y )ij := 〈ŷi, ŷj〉. (82)

Furthermore, we define the orthonormality error εortho by

εortho := ‖Y − I‖1, (83)

where I denotes the Rn×n identity matrix and ‖ · ‖1 maximum absolute column sum
of the matrix.

Remark 5.2. For an orthonomal system {ŷi}i=1,...,n, we observe

(Y )ij = 〈ŷi, ŷj〉 = δij = I

and therefore εortho = 0. If the set is only an approximate orthonomal system, the
matrix Y is only close a identity matrix, so εortho becomes positive.
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Figure 1: Computation time vs. number of training data for the different methods
with orthonormalization and frames. Whereas the effort of all four methods based on
orthonormalization increases at least quadratically, the effort of the frame iteration
methods increases linearly with the number of pictures.
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(a) Gram-Schmidt method (b) Modified Gram-Schmidt method

(c) Householder reflections (d) QR decomposition in MATLAB

Figure 2: Error εortho for different numbers of images n. Each color represents a
different sequential order of the vectors, to which each method is applied.
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We test the methods on the example of the Sunflower data set with different numbers
of images and plot the error εortho over the number n. We furthermore investigate
the impact of random permutation of the images, before the method is applied. The
results can be observed in Fig. 2.
We see that the error increases with increasing number of images. The sequential or-
der of the images generates slight deviations, but the increasing trend remains similar.
We can furthermore observe that the numerical errors of the Gram Schmidt method
(∼10−11) and modified Gram Schmidt method (∼10−12) are 2 to 4 magnitudes larger
that the orthonormalization errors of the Householder reflections (∼10−14) and the
QR decomposition in MATLAB (∼10−15).

5.4.2 Visual observations

In this section, we want to observe the reconstructed images of the methods visually.
Applying the method on the Radon transforms of the test images, we can compare
the original test image with the output of our algorithm. Again, this is possible with
all orthonormalization and frame theory methods. Furthermore, we also compare the
projected Radon transform Qny according to Equation (74) to the radon transform
of the original image for the orthonormalization methods. In the frame methods,
there is no similar equation available.

Sunflowers We use n = 726 training images (150×150 pixels each) of the sunflower
data set. Seven additional images, which are not part of the training images are
used as test images. These test images contain 4 images with typical motives of
sunflowers, where a good approximation on base of the training data is supposed
and further 3 images with atypical content, which do not fit to the training data
that well. On each test image, the reconstruction procedure is applied individually.
The results can be seen in Figs. 3 and 5. The Figs. 4 and 6 show the same results for
permuted images as input for the orthogonalization methods. We observe a better
similarity of the pictures in Fig. 3, since due to the similarity of sunflowers, the
radon transformations of sunflower motives can assumed to be ”closer” to the finite
dimensional subspace spanned by the training data, than other arbitrary motives.
Therefore the projection error (I − Qn)y of the map onto the subspace Qn in (74)
might be smaller and therefore the solution xn in (75) lies closer to the original image.
The outcome of the variant with permuted images look almost identical compared
the to original results, so the sorting order of the sunflower pictures does not seem to
affect the results significantly. Furthermore we could see, that the orthogonalization
methods perform at almost the same level. In the results of the frame methods, we
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clearly see the systematic error described in Sec. 5.2 and 5.3.

Digits Similar observations are done with a digits data set with n = 95, 495, 995
and 4995 training images (28× 28 pixels each) and 5 test images in Figs. 7–10. We
see a clear improvement of the result with the frame method for increasing training
images. We also observe that the reconstruction via frames of Sec. 5.2 improves a
lot for increasing number of pictures. The reason for this behavior is the small value
for ε in (78), if the large number of pictures already leads to Yn ≈ Y and therefore
yY⊥n becomes very small.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 3: Reconstructed images via the different methods in comparison to the
original image for sunflower pictures.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 4: Reconstructed images via the different methods with permuted training
image data set as input in comparison to the original image for sunflower pictures.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 5: Reconstructed images via the different methods in comparison to the
original image for untypical pictures of the data set, which contain a person and the
sunflower motive is only incidental.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 6: Reconstructed images via the different methods with permuted order of the
training data as input in comparison to the original image for untypical pictures of
the data set, which contain a person and the the sun flower motive is only incidental.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 7: Number of training images: 100.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 8: Number of training images: 500.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 9: Number of training images: 1000.
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(a) Original image

(b) Gram-Schmidt method

(c) Modified Gram-Schmidt method

(d) Householder reflections

(e) QR decomposition

(f) Frame

(g) Frame iteration

(h) Frame iteration Conjugate Gradient Method

Figure 10: Number of training images: 5000.
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6 Summary and conclusion

In this thesis, we presented and investigated the regularization by projection on the
example of the Radon transform. In the first part of the work, we gave an introduc-
tion into spectral and frame theory to build a foundation of the following chapter
about regularization methods. We have the goal to find an unknown operator, which
maps between two sets. For given training data pairs, this operator can be ap-
proximated. As an application, we demonstrate the reconstruction of the inverse
Radon transform with training data of various image data sets. The functionality of
the methods was afterwards demonstrated on test data. An important component
of the reconstruction was the orthonormaliziation of the data. Therefore different
orthonormalization methods were used and both quantitatively and qualitatively
compared. Furthermore, alternative approaches based on frame theory instead of
orthonormalization were presented and discussed. We could show, that depending
on the dimension of the vector spaces, which are given by the size and number of
pictures, the methods have different properties in terms of performance and quality
of the output. With a smaller amount of training data, we observe a better visual
output with the orthogonalization methods, whereas a high amount of training data
leads to a better output with frames. In the latter case, the frame iteration methods
are even preferable in terms of computational effort, since they increase only linearly
with the number of pictures, whereas the orthogonalization does at least quadratic.
We furthermore observed the numerical precision of the different orthogonalization
methods in MATLAB arithmetic and compared the residual of the orthogonal (up
to rounding errors) outcomes and gave several visual examples to illustrate the func-
tional of our methods.
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