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Abstract

In the first part of this thesis, we will prove duality and existence of optimal couplings for
the (bi)causal optimal transport problem with looser conditions than the current theory
allows for. Subsequently, we will give a characterization of the support of cost functions
for which the optimal (bi)causal value vanishes by decomposing the underlying measures
and using already existing general transport theory. This characterization will prove
useful when it comes to counterexamples where the causal and bicausal problem do not
agree. In the end, we will use recent theory in the area of weak transport to establish a
Kantorovich-Rubenstein type result for the causal case, considering only two-step stochastic
processes.






Kurzfassung

Der erste Teil der Arbeit beschéftigt sich mit Dualitdt und Existenz von optimalen Coup-
lings fiir das (bi)kausale Transportproblem. Dabei werden weniger restriktive Annahmen
als in &hnlichen bereits existierenden Resultaten bendtigt. Anschliefiend wird, mithilfe einer
Zerlegung des jeweiligen Mafses, eine Charakterisierung des Trégers einer Kostenfunktion
gegeben, deren optimale Transportkosten verschwinden. Diese Charakterisierung stellt sich
als hilfreich bei Gegenbeispielen heraus, bei denen das kausale und bikausale Problem nicht
iibereinstimmt. Den Abschluss der Arbeit bildet eine Art Kantorovich-Rubenstein Dualitét
fiir kausalen Transport. Dies wird ermoéglicht durch eine Briicke zwischen kausalem und
schwachem Transport. Dadurch kénnen vor kurzem bewiesene Dualitétsresultate fiir
schwachen Transport genutzt werden.
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1 Introduction and outline

In the usual optimal transport problem we are confronted with a source measure p on
some space X and a target measure v on some space Y. The goal is to find couplings
between these two measures (i.e. measures on X x Y, such that their projection on X is
equal to p and their projection on Y is equal to v), which give us the minimal amount of
cost. This notion of cost arises from a function defined on X x Y, which heuristically tells
us the cost of moving mass from some point z € X to some point y € Y.

Throughout this thesis we will deal with discrete-time stochastic processes and transport
plans between them. In this setup one only allows transport plans which do not have
to “look into the future” of the first process in order to assign mass to the second one.
Couplings which have this property are called causal and if this property holds true in
“both directions” (interchanging what we consider the first and the second process) they
are called bicausal.

At the beginning, we will generalize Theorem 2.5 in [BBLZI17| on the duality and
existence of optimal couplings by omitting the continuity assumption on the stochastic
kernels. The proof is based on Kantorovich duality (see e.g. Theorem 5.9 in [Vil16]) and
the fact that we can see causal transport as a special case of the usual transport problem
with some additional linear constraints.

The next chapters are inspired by Theorem 2.21 in [Kel84|, which characterizes the
structure of subsets of X x Y which have mass zero with respect to all couplings. We will
derive a similar result for the bicausal transport problem by decomposing couplings and
recursively applying Theorem 2.21 in [Kel84]. This characterization will prove useful when
it comes to various examples in which the bicausal optimal transport value differs from
the causal one. By adapting Theorem 2.6 in [BBLZ17], we can also give a characterization
in the causal case, although it will be less illustrative.

At the end of the thesis, we will build a bridge between causal transport and the recent
theory of weak transport. Using this bridge and already established duality theory for
weak transport (see [BBP19]), we will prove a Kantorovich-Rubenstein type result for the
causal transport problem.

To ease notation we will often work on R™V. Notice that we can replace RY by SV for
an abstract Polish space S. The only difference is that the proof of Lemma [5.1] will be less
constructive.






2 Definitions and notations

The purpose of this chapter is to introduce notations and some concepts that may not
be familiar to the reader who does not have a lot of measure-theoretic background.
Nevertheless the concept of universal measurability and analytic sets/measurability will
not be discussed, but will be used every now and then. For a detailed explanation on these
topics see [BS96].

Remark 1. Let X be a Polish space and A its Borel sigma-algebra. We denote the set of
all probability measures on the space (X, A) by P(X). Recall that the space P(X) is again
a Polish space if endowed with the weak topology. By this construction P(P(X)) is again a
Polish space as well. If not mentioned otherwise we always endow P(X) with the weak
topology.

Definition 1. Let X,) be Polish spaces. We call a collection of probability measures
in P()) parametrized by = € X a stochastic kernel and denote it by ¢,(dy). We call
it measurable (resp. continuous) if ¢ : X — P(}), © — ¢.(dy) is measurable (resp.
continuous).

Definition 2. Let (X, .A), (Y, B) be measurable spaces and let f : X — Y be a measurable
map. For a measure ;1 on X we denote its f-pushforward measure by fup. The measure
fup is given by

(fp)(B) = p(f~1(B)), for B € B.

Theorem 2.1. (Disintegration on product spaces)

Let X = X1 x Xo be a Polish space, u € P(X) and let m; : X — X; be the natural
projection for i = 1,2. Identifying 7r1_1(x1), for x1 € X1, with Xo, there exist a collection
of probability measures {iz, }z1ex, n P(X2), such that

WA X B) = /A b (B)A((m1)12) (1)

for A C X1,B C X5 measurable. The collection of probability measures {fiz, tz,ex, S
unique (1) yf1-a.s.

Definition 3. Let X be a topological space and f : X — R, where R := RU{+o00}U{—00}.
We call f lower semicontinuous if {z € X : f(z) < ¢} is closed for all ¢ € R. We will
abbreviate this by f being l.s.c.

By abuse of notation we will denote both (z1,...,zx) — 21 and
(21, .0, TN, YL, oy YN) = (21, ..., xN) by p'. For a measure p € P(RY) and the first of the
above functions we use the notation p! := (pl)#(p).

Let u,v € P(RY), where RY is endowed with the filtration generated from the coordinate
processes (i.e. F; is the smallest sigma-algebra such that (z1,...,xx) — (21, ..., 2¢) i Fy-
measurable). We denote the set of all transport plans between p and v by

(p,v) = {y € PRYN x RY) : plyy = p, py = v}



2 Definitions and notations

Definition 4. We call v € II(i, v) a causal transport plan, if = — ~,(B) is F;-measurable
for all t < N and for all B € F; and we denote the set of all causal transport plans between
p and v by Il.(p, v). If it also holds true that exy € I (v, 1), for e(z,y) := (y,x), we call
~ a bicausal coupling and we denote the set of all bicausal couplings between p and v by
ITpe(u, v). Notice that the coupling v = p ® v is bicausal.

The idea we have in mind here is that for two stochastic processes, knowing the future
of one of them does not provide any additional information about the status quo of the
other process. So for two stochastic processes X and Y causality tells us that, knowing
X up to some point, Y up to this point is independent of the future of X. To be more
precise this means that for 1 <t < N and B; € F;, for 1 <1 < t,

P(Yl € By,...Y, € Bt’Xl,...,XN) = P(Yl € By,...,.Y, € Bt‘Xl, ...,Xt).

Throughout the thesis we will use the notion of a Bochner integral. We will give a very
brief overview of the kind of Bochner integral we need. For a thorough construction see
for example [Cohl13].

Remark 2. Let (X, A, u) be a measure space and E a separable Banach space endowed
with its Borel sigma-algebra. We call f : X — E Bochner integrable if it is measurable and
x || f(z)|| is integrable.

For a simple function f = 31 1a,a; we define [ fdu to be Y i i a;ju(A;). For an
arbitrary Bochner integrable function we define the integral by the usual approximation by
simple functions. (see [Cohl3])

We will often need a special case of a Bochner integral. Let X be a Polish space endowed
with its Borel sigma-algebra A. Let the Banach space E be the space of bounded signed
measures on X’ with the total variation norm, which we denote by Ba(X'). In this setup
f:P(X)— Ba(X), & +— & is integrable with respect to any u € P(P(X)). We will also
refer to [ 2p(d2) as mean(p).

Lemma 2.2. Let A€ A and pp € P(P(X)). Then we have that

([ ) (A)u(d).

Proof. Let f : P(R) - P(R) C Ba(X), & — &. Let (fn)nen be a sequence of simple
functions with f(2) = lim,, f,(Z) for all ﬁc € P(R), such that ||f.(2)|| < ||f(2)] for all n
and for all Z € P(X).

Then we have that

The first equality holds true, as convergence w.r.t. total variation implies strong
convergence and the third equality follows from dominated convergence. O



For a metric space X we denote the set of 1-Lipschitz functions mapping to R by
Lipy(X). If it is clear which space X is meant, we just write Lip;.

For a Polish metric space X we denote by P;(X) the set of probability measures with
finite first moment (i.e. P1(X) :={p € P(X): [ d(x, zo)p(dr) < co Vg € x}). The space
P1(X) is again Polish. The underlying topology can be characterized in the following way:
A series of measures pu, € P1(X) converges to u if it converges weakly and the series of
their first moments converge to the first moment of . A complete metric can be given by
the first order Wasserstein-distance

W)= nt [ do.y)e(do.dy).

Let
Cin(R) :={f € C(R): 3C, 29 € R s.th. |f(x)| < C(1+ d(zo,x)) Vz € R}.

Notice that for ¢ € C;,(R) and p € P1(P1(R)) we have that

[ @ inan) ) = [a@ida) (2.)
In particular [ Zp(dz) € P1(R) because both sides in (2.1)) are finite. To see this, first
notice that for arbitrary g € P1(R)
/ W (2, #0)p(di) < oc.

Let C € R such that |¢p(x)| < C(1 + |z|) for all z € R. Therefore, choosing zy = dy and
using Kantorovich duality we have that

o> [ W aop(a) = [ suw ( [v@atan - | w<x>fco<dx>) p(di)

WE Lipy

> [ ([alabitan) s -1

> & [ [ o@lataps - 1.

Definition 5. Let (2, A, 1) be a measure space. For 0 < p < oo we denote the vector
space LP(Q, A, p) := {f : @ = R measurable : [ |f|Pdu < co} by LP(u).






3 Duality for (bi)causal transport

Let p,v € P(RY) and ¢ some ls.c. cost function on RY x RY. The main result in this
chapter will be to establish attainment and duality of

inf / cdm and  inf / cdr. (3.1)
WEHC(/J,,V) WEHbc(/J"V)

We will refer to the first expression in as (Pc) and to the second one as (Pbc). Our
main results in this chapter (Theorem and generalize Theorem 2.5 and Corollary
3.3 in [BBLZI17]. Indeed, compared to Theorem 2.5 and Corollary 3.3 in [BBLZ17]|, we do
not impose the assumption that p and v have continuous kernels. We rely on arguments
similar to the ones used in [BBLZ17|. Additionally we make use of the following: for Polish
spaces X and Y and finitely many Borel measurable functions f; : X — Y we can find a
finer topology on X, with the same Borel sets as the original topology, such that all f; are
continuous.

Lemma 3.1. Denote the usual topology on RN by 7. Let ¥ O 7 such that their correspond-
ing Borel sets are equal. Lett < N and assume that (x1,..., 24, Tiq1, .00, TN) > gy, zp 1S
continuous with respect to 7. For g € Cy(RN, 1), the function defined by

(:L’l, ...,IL’N) — g(ml, ...,gN) — /g(azl, ...,a:t,aét“, "‘7'%N)/’Lx1,...,$t(d'%t+17 ...,d.%N)

belongs to Cp(RN, 7).

Proof. 1f ||g||cc = 0 the statement is clearly true, so we assume that ||g||cc # 0. As 7 D T,
it suffices to check the continuity of

(wla--'axN) '_>/g(mh"'7mt7i.t+17"'7§3N)/fLZ‘1 ..... xt(djt-&-la"';di.]\f)'

It suffices to show sequential continuity as (R",7) is a Polish space and therefore we
can describe its topology by a metric. Let (27, ...,z%;) converge to (yi,...,yn) w.r.t. 7 and
therefore also w.r.t. 7. We denote (z7,...,z}) by 2™ and (y1, ..., yt) by .

Let € > 0. By assumption, u,» converges weakly to u,, so the sequence is tight by Prok-
horov’s Theorem. Hence, there exists K C (RV~! 7) compact such that sup,, p.»(K¢) <
m. Notice that B = {z" : n € N} U {y} is sequentally compact and therefore also
compact in (RV,7). In particular B is compact in (RV,7). Its projection B on (R, 7)
is compact as well. So B x K C (RN, 7) is compact as well. Note that if (27, ...,2%)
converges to (y1,...,yn) in (RN, 7), (27, ..., 2) converges to (y1,...,y;) in (RY, 7).

We then get for n large enough that

‘ [ st 2pntaz) = [ o(0. 2 ta)

<a+ B+,



3 Duality for (bi)causal transport

where

o= ‘/Kg(x”&)—g(% 2) o (dz) '/ (2", 2) — g(y, z)pan (d2)| ,

v = ‘/g(y,zmazn(dz) - /9(1/, 2)py(dz)| -

Each of the terms «, 8 and + is smaller than /3. This is true for o because for n large
enough sup,,-,,. ek [9(z", 2) — g(y, 2)| < &/3, for B because sup,, pzn (K°) < and

13
6[gMleo
for v because g € Cp(RY) and p1zn — py.

O

With the previous Lemma we are ready to prove a duality result for the causal transport
problem. The proof of Theorem resembles the proof of Theorem 2.1 in [Zael5].
For p € P(RY), v € P(RY) and ¢ : RV x RY — R measurable, let

Al v, ) = {(69) : 6 € L), 6 € L), d(x) + P(y) < ez, y) Yz, y) € RY x RV},
Theorem 3.2. Let ¢ : RY x RV — R be Ls.c. and bounded from below. Then

inf /cd'y = sup (/ <bd,u—|—/¢dz/> (3.2)
velle(pv) (GEAlame—)
€F

for
F:RN xRN 5 R: F(zy,..,oN, Y1, - YN) =

F = Zt<Nht(y1)"')yt)[gt(l‘lu"‘7'1"N)
— [ (@1, ot Tig1, oo TN ) Hiy oo (ATpg 15 o, ATN)],
gt € Cb(RN), h € Cb(Rt) Vt< N

and the infimum on the left hand side of 1s attained.

Proof. Let 7 be the usual topology on RY. By Prop. 2.80 in [Dob14] there exists a topology
7 on RY such that RY endowed with 7 is still a Polish space, (21, ..., %) — fay,. .z, 18
continuous for all ¢ < N and all Borel sets are preserved. By Lemma BI]all f €F are
continuous w.r.t. (RY x RV 7 x 7). By Proposition 2.3 in [BBLZI17] we know that

ey, v) = T, v) 0 () 67 (0), (3:3)

feF

where ¢(m) = [ fdr. For f continuous and bounded, ¢y is continuous due to the definition
of weak convergence. As II(u,v) is compact, IT.(u, v) is compact and attainment follows
by lower semicontinuity of v — [ cdy (see Theorem 4.1 in [Vil16]).

Notice that we have

sup </ qbd,u—k/z/;dl/) = sup sup </ ¢du+/¢du)
(CXD) eA u,vc ) fEF (¢,9)eA(pve—f)

=sup inf )/C—fd?T. (3.4)

feF m€ll(p,y



In the second line we used Kantorovich duality (see Theorem 5.9 in [Vill6]), which is
possible as we equipped RY x RN with 7 x 7 and therefore f is continuous and bounded.
Hence ¢ — f is L.s.c.

Now, we can interchange supremum and infimum, because I(u, ) C P(RY x RY) is
compact, F is convex and w.r.t. 7 x 7, ¢ — f is Ls.c. and therefore 7 — [ ¢ — fdr is as
well by Lemma 4.3. in [Vill6] . These are all the conditions necessary to apply Theorem

2.3. in |Zaeld]. So (3.4) is equal to

inf Sup/cfdw. (3.5)

n€ll(p,v) feF

For 7 ¢ II.(p,v) we can choose an f € F s.th. [ fdr < 0 as F is stable under scalar
multiplication. Choosing af for a — oo gives us that it is sufficient to consider the
infimum over all causal couplings. By the integral of f with respect to a causal
coupling vanishes, so we get that is equal to

inf sup/c— fdm = inf /cdﬁ.
n€lle(u,v) feF melle(p,v)

O]

The proof of the bicausal equivalent to Theorem is very similar to the proof of
Theorem [3.2] so we will omit it and just state the result.

Theorem 3.3. Let ¢ : RN x RN — R be l.s.c. and bounded from below. Then

inf /cd’y = sup (/ odp + /¢dl/> (3.6)
Y€ pe (1) (P )EA(p,v,c—f)

fer

F:RN xRN % R: F(zy,..,TN, Y1, - YN) =
ZKNht(yl,...,yt)[gt(xl,...,x]v)—

IF/ fgt(.’lfl,. $t,ft+1,.. EN)/J/xl,...,xt(djt—‘,-ly-u7d§;N)]+

Doten M@, )9 (Y, - yN) —

fg;t(yla' yt,yt+1,---7yN)Vy1 ----- yt(d@t—i-l?"wdyN)]
gt,gé S Cb(RN),ht,hg IS Cb(Rt) Vt< N

and the infimum on the left hand side of (@) is attained.






4 Bicausal 0-sets for N=2

In the following two chapters, for a function f: X — Y, we will use the notation
Gr(f) == {(, f(2)) 1w € X}.

Let X, Y be Polish spaces and p € P(X),v € P(Y). By Theorem 2.21 in [Kel84] we
know that if, for nonnegative f,

sup /fd7r =0
meIl(p,v)

then there exist functions g and h with f < ¢ @ h and p(g) = v(h) = 0.
In this chapter we will derive a similar result in the case of bicausal couplings.

Lemma 4.1. Let u,v € P(RY). Let X and Y be closed subsets of RN. Then

D := {(xlayhﬂ-) 1T € pl(X)ayl S pl(y)vﬂ- S H(,u:tl)yyl)}
1s an analytic set.

Proof. As we already did before, we can equip R with a topology 7, maintaining Borel-sets,
such that R is still Polish and 21 — i, and y1 +— 1, are continuous. Let (27, Y7, Tn)nen €
{(z1,y1,7) 21,71 € (R, 7), 7 € II(fta,, 1%, ) } converge to some (z1,y1,m). As m, — ™ we
have that, for f € Cp(R),

lim fd(p;mn):nlgrgo/fopldwn:/fopldﬂ:/fd(p%&ﬂ).

n—oo

Hence p;#w = Uz, and by the same considerations piw = vy,. Therefore {(x1,y1,7) :
z1,y1 € (R, 7),m € I(fta,, vy, ) } is closed, in particular it is Borel and also analytic.

As the projections of closed sets are analytic sets and their product is again analytic,
we have that p!(X) x p' () x P(RN¥~1 x RN¥~1) is analytic. Hence

D= {(xl’yhﬂ-) 1x1,Y1 € R,ﬂ' € H(IU’CUNVZA)}
N (PH(X) x pH(Y) x PRV x RV 1))

is also analytic as a finite intersection of analytic sets is analytic.
O

Remark 3. Note that D := {(z1,y1,7) : x1,y1 € R, m € Ipe(piq,, vy, )} is not necessarily
closed for p,v € P(RY), for N > 2, even if 1 = gz, and y1 + vy, are continuous. To
see this let 7 — z1, yI — y1 and

1 1 1 1
P = 55(1/71,1) + 56(—1/n,—1)a Vyp = 55(1,1) + 55(_1,—1),

11



4 Bicausal 0-sets for N=2

where pap — @ = 5801y + 5001 Then T = 581/m111) + 30(-1/n-1-1,-1) €
Hpe(pan, vyp) and converges weakly to m = %6(071’171) + %5(0’_17_17_1), which is not bi-
causal.

Lemma 4.2. Let p,v € P(R?). Let D := {(z1,y1,7) : 1,71 € R, 7 € W(pz,,vy,)}. Let
f:R%2x R? = R be upper semianalytic and nonnegative. Then

sup /fdﬂ' = sup / sup /fdAd’y. (4.1)
mE€Mpe (v yel(ptwt) S Xell(paq vy, )

Proof. Let f : R x R x P(R?) = R, (z1,51,A) — [ fd\. We can use Proposition 7.48 in
[BS96]| to see that f is upper semianalytic, choosing, using the notation of Proposition 7.48
in [BS96], X to be R x R x P(R?) and Y to be R x R. Let Dy, ) :={A € P(R x R) :

(x1,91,A) € D}. By Proposition 7.47 in [BS96| (z1,y1) — SUDrep, . flxy,y1,m) is
upper semianalytic as well as D is an analytic set by Lemmau In particular (z1,y1) —
SUPreD, ) [ fdr is universally measurable. This combined with nonnegativity shows

that the integral on the right hand side of (4.1)) is well defined.
By Proposition 5.1 in [BBLZ17| we have that

sup /fd7r— sup //fd)\d’y.
w€llpe (p,v ye(pt,wh)

ARXR—TII(p. . )univ.meas.

Now we can use Proposition 7.50 in [BS96|, again because D is an analytic set. So for
arbitrarily chosen ¢ > 0, we find a universally measurable function ). : R? — P(R?) with
Gr(X\:) C D such that

}l(xlvyla)‘&(‘rhyl))> sup }l(xlvylaﬂ-)_g
€Ttz i)

for all (z1,y1) for which sup,cpy (jtay ) | (F1, 91, ™) < 00 and

Vyy)
f(x1,y1, (1, 1)) > 1/e otherwise.

Therefore, if

7({(z1, 1) : sup  flz1,y1,7) <oo}) =1V y e, vh), (4.2)
YE(ptay ;1 )

we have that

sup [ [sixar= sup [ Farpdo )
mell(pt,vl) mell(pt,vl)
ARXR—II(p.,v. )univ.meas.

> sup / sup  f(a1,y1,7)dm —e.
nell(pt ) S yEl(pay vy, )

Letting € go to zero gives us that the LHS in (4.1]) is greater or equal than the RHS in
this case. If (4.2) does not hold true both expressions in (4.1)) are equal to oo as we can

12



make f(z1,y1, \e(21,y1)) arbitrarily large on a set of positive measure for some coupling
.
To see that the LHS in (4.1)) is smaller or equal than the RHS assume that there exists a
bicausal coupling v = 7(dz1, dy1)YVa, 4 (dx2, dy2) such that [ fdy is strictly greater than the
RHS. By Proposition 5.1 in [BBLZIT] we have that 5 € TI(u!, ') and va, 4, € H(pzy, vy, )-
Choosing 4 and 7z, 4, as couplings on the RHS immediately leads to a contradiction.

O

Theorem 4.3. Let p,v € P(R?). Let f : R? x R? — R be upper semianalytic and
nonnegative. Then the following are equivalent:

1. SUprem,, (uv) [ fdr =0

2. There exist nonnegative functions g, h, g°*¥* and h* 9" with g =0 p'-a.s, h =0 v!-
a.s., g"1Y =0 g, -a.s. and h*¥* =0 vy, -a.s. such that

f(@1, 22,91, 92) < g(z1) + h(y1) + g™ (x2) + K™Y (y2)
for all (x1,x2,y1,y2) € R? x R2,

Proof. 1. = 2.: Using equation , by Theorem 2.21 in [Kel84] this implies
that there exist functions ¢ and h with ¢ = 0 pu'-a.s. and h = 0 v'-a.s. such that
SUPAETI (112, 1y, ) [ fdx < g(z1) + h(y1) for all (x1,y1) € R% We set the functions equal
to oo for all points on which they do not vanish. Repeating the same argument, for
(x1,y1) € A = {(z1,y1) : g(x1) + h(y1) = 0}, we get functions ¢g**¥' and h*'"¥! with
g™V = 0 g, -a.s. and B0 = 0 vy -a.s. such that f(x1, z2, y1,y2) < g7VY (22)+h"1 Y (y2)
for all (z9,y2) € R? and (z1,%1) € A. Therefore we get that

f(x1,22,y1,y2) < g(z1) + h(yr) + g™ Y (22) + R™Y (y2)

for all (z1,z2,y1,12) € R? x R2.

2. = 1. Take m € I(u,v). By Proposition 5.1 in [BBLZ17| it is of the
form 7(dz1, dxa, dy1, dy2) = 7(dx1, dy1 )Tz, 4, (do2, dys) With 7(dzy,dyr) € O(pt, v!) and
Ty (d22, dy2) € I1(fig, , vy, ). So we have

/fdﬂ S //g Sho gt @ hxl’yldﬂ'wl,wdﬁ =0.

13






5 Bicausal 0O-sets for general N

For the following Lemma let p,v € P(RY) and let D]\N4 be a countable dense subset of
Cy([~M, M]N), endowed with the topology induced by || - ||so, Which is possible as Cy(K)
is separable for K compact. For every § € D ~ Wwe can choose a continuous extension g
to RY, such that ||g||cc < ||7]lec by Tietze’s extension Theorem. Let DY be the union of
these g and Dy = (Jy;eny DN Let

F:RN xRN 5 R: F(xy,..., 2N, 91, .. YN) =
>oten Pa(yn, s v)lge (s 2w)
— [gi(z1, i, Tyg1, ooy TN ) oy ooy (AT g1, oo, dTN) |+
>oten (@1, s )91 (Y1, - YN)

- fgilf(yb Yt Y1 o yN)Vy1,...,yt (dl_/t+1, cery dﬂN)}
96,9t € Dy, he,hp € DVt < N

=
I

Lemma 5.1.
7 € pe(p,v) <= /fdﬂ' =0 for all f €F.

Proof. = : Clear by the characterization of bicausal couplings in Proposition 2.3 in
[BBLZ17].

<= Again by Proposition 2.3 in [BBLZ17| and by symmetry it is sufficient to show that,
for fixed bicausal m and t < NV,

/flt(yh---,yt)<§t($17---a$N)
—/gt(xl,...,xt,itﬂ,...,EJN),uxh_,,zt(ditH,...,diN)dﬂ'> =0

for all h; € Cy(R?) and g, € Cy(RN).

Let hy € Cy(R) and g, € Cy(RY) be arbitrary and let v := max{||7,||, | 7| }.

Due to Lusin’s Theorem we find a compact set K; C RY such that
(21, ey TN) = fhy ...z, 15 continuous on K; and 7w(KF) < e. Choose a hypercube K with
K; C K By Prokhorov’s Theorem, the Compactness of K; gives us that {,uxh g -
(1, ..., 7¢) € Ky} is tight and we can find a hypercube K such that i, w0 (K) < ¢ for
all (zq,....,x¢) € K. Let K = K UK. Now we can choose gt € Dy and hy E Dy, such that
13, — g¢l| < & and ||hy — he|| < e on K. W.Lo.g. |lg:]| < [13¢]l and |[he]| < ||

Due to our assumption we have that

/ﬁt(gt_/gtduwl,...,mt>dﬂ-:
/ e <§t— / gtdnm,...,xt> dr — / he <gt— / gtdum,...,m> dr.
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5 Bicausal 0-sets for general N

Notice that
‘/ ilt <§t - /gtd,u:r:l,...,:ct> dﬂ- _/ ht <gt - /gtdﬂxl,...,xt) dﬂ-‘
b K3
</ A2 dm < dev?.
K3
We also have that

< 27, (5.1)

‘/ hegy — higednm
K

using that

ey — Tugell < 1y — Tugell + [ huge — Pugell < N1Relll@ — gell + [lgell e — Rell-
Due to the tightness of {jg,, 4, @ (z1,...,2¢) € K¢} we have that

‘/ ht/cgtdﬂm,...,wt _ilt/:cgtdum,---,ItdF
K K K

Notice that [ g; — §;dpta; ...z, < € and by the same argument as in (5.1 we get

’/ ht/~ gtdﬂm,---,xt _i’/t/~ gtdﬂx1,---7wtdﬂ
K K K

All in all we have

‘/il’t <§t /gtdl‘til,...,xt) d7T

Therefore it is equal to zero, by the arbitrary choice of e. ]

< 2692

< 2e7.

< e(672 +49).

Lemma 5.2. The set By := {m € Iy.(u,v) : p,v € P(RY)} is Borel.
Proof. For h € Cy(R?) and g € Cp(RY) let gbg’h : P(RY x RY) = R,

wer [ b (9001, n)
_ /g(ml, s B B 1 s BN APY T (B, 0, ) )
and ¢!, : P(RY x RY) — R,
7rr—>/h(:vl,...,:Ut)<g(y1,...,yN)

- /g(yh o Yt Ypg s o @N)d(PiW)yl,---,yt (7S @N)) dm.

By Lemma [5.1] we know that

Bv=[) () M@ O ) () @en) 0

t<N g€DN heDy t<N g€DN heDy

By Proposition 7.29 in [BS96] both gb; 5 and w; 5, are measurable functions. Hence By is
Borel as it is a countable intersection of Borel sets. O
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Lemma 5.3. Let X and Y be closed subsets of RN. Then D = {(x1,y1,7) : 21 €
pH(X),y1 € pP(V), 7 € Wpe(zy s vy, )} is an analytic set.

Proof. Using the set By from the previous Lemma we get that

D= (p"(X) x p' (V) x Bn-1)
N {(«leyl;ﬂ') 1T € pl(X)vyl € pl(y)ﬂr € H(/"Ll'17yy1)}'

Note that p!(X) and p'())) are both analytic sets, as they are projections of Borel sets.
By Lemma Lemma [£.1] and the fact that finite products and finite intersections of
analytic sets are still analytic we get that D is an analytic set. O

Lemma 5.4. Let p,v € P(RN). Let D = {(x1,y1,7) : 21 € R,y1 € R, 7 € Wpe (g vy ) }-
Let f: RN x RN — R be upper semianalytic and nonnegative. Then

sup / fdm = sup / sup / fdAidy. (5.2)
WGHbC(/—L,V) ’YGH(M17V1) )‘enbc(/"‘l‘l’l”yl)

Proof. By Proposition 5.1 in [BBLZ17| we have that 7 is a bicausal coupling of y and v
iff 7= 7Amy, ,, with 7 € H(pt, vt) and 74, € U(la,y, vy, ) T-a.s. Hence

sup /fdﬂ': sup //fd)\dy.
WEHbC(M,V) 'Yen(ﬂl’yl)

ARXR—ITpe (p-,v. )univ.meas.

Let f:R xR x PRV~ x RV~-1) = R be defined by

(wl,yl,)\) i—>/f(.%'l,ﬁig,...,5?]\[,]./1,@2,...,ﬂN)/\(dﬁfg,...,d:i’N,d@Q,...,d@N).

We can use Proposition 7.48 in [BS96] to see that f is upper semianalytic, choosing,
using the notation of Proposition 7.48 in [BS96], X to be R x R x P(R¥~1 x R¥~1) and
Y to be RV=1 x RV=1 Let D(xhyl) ={\ € P(RN_I X ]RN_I) : (z1,y1,A) € D}. By

Proposition 7.47 in [BS96|, (z1,v1) — SUDXeD(, 1) f(z1,y1, ) is upper semianalytic as
well, as D is an analytic set by Lemma In particular (z1,y1) — SUPXeD(,, ,1) [ fdXx =

SUP\ETI (11, 1y, ) J fdX is universally measurable. This combined with nonnegativity shows
that the integral on the right hand side of is well defined.

By Proposition 7.50 in [BS96] (again using that D is an analytic set), for arbitrarily
chosen € > 0, we find a universally measurable function ). : R? — P(RY¥~! x RV~1) with
Gr(A\) € D such that

oy, y1, Ae(21,91)) > sup flxi,y1,m) —¢€
ﬂ'enbc(ﬂzlﬂ/yl)

for all (z1,y1) for which sup f(x1,y1,7) < 00 and
WEHbc(lenyl)

[, y1, Ae(z1,y1)) > 1/e
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5 Bicausal 0-sets for general N

otherwise.
Therefore, if

m({(z1,91) : sup f(@1,91,7) < o00}) =1 for all w € H(p', "), (5.3)
’VeHbc(UZl 7Vy1)

then

sup //fd)\dﬂ> sup /}(xlaylaAa(ﬂfl,yl))dﬂ'
mell(p' vh) mell(pt,vt)
ARXR—ITpe (- ,v. )univ.meas.

= sup / sup }(x17 Y1, W)dﬂ- —&.
mell(ptvl) J  vEllpe(pay vy )

Letting € go to zero gives us that the LHS in is greater or equal than the RHS in
this case. In the case of not holding true both expressions in are equal to co as
we can make f(z1,y1, Ae(21,1)) arbitrarily large on a set of positive measure for some
coupling 7.

Assume there exists a coupling v € IIp.(u, ), such that the LHS in is strictly
greater. Choosing ¥ and v, ,, immediately leads to a contradiction.

O

Theorem 5.5. Let p,v € P(RN). Let f: RV x RN — R be upper semianalytic and
nonnegative. Then the following are equivalent:

1. supﬁenbc(my) ffd’iT =0

2. There exist nonnegative functions g, h, g**¥1 hFLYL L gTlr o EN=1YLYN-1
REL BN =LY YUN=1 qith g = 0 pl-a.s, h = 0 vl-a.s, g¥L®i¥ie¥i = () [y ;02 5.
and h*t-oToYtYioy, o -a.s for i@ < N such that

f(:L‘la TNy YLy oeey yN) < g(xl) =+ h(yl)
N-1

+ Z GEL T i () R B YL Y (g (5.4)
=1

for all (z1,...,xN, Y1, ..., yn) € RV x RV,

Proof. 1. = 2.: We will do an induction over N. The implication holds true by Theorem
for N = 2. Assume it holds true for N — 1. Using equation , by Theorem 2.21 in
[Kel84] this implies that there exist functions g and h with ¢ = 0 p'-a.s. and h = 0 v'-as.
such that superr, . (10, y,) [ fdx < g(@1)+h(yr) for all (z1,y1) € R% We set the functions
equal to oo for all points on which they do not vanish. By the induction hypothesis, for
pairs (z1,y1) for which g(x1) + h(y1) vanishes, there exist functions g¥1»%i¥1-¥ and
h¥TisllYi for ¢ < N such that

N-1

f(IEl, ey EN YLy s yN) < Z gm,mz,...,mi,yl,...,yi ($i+1) + RELT2 T Y15 Yi (yi+1)
=1

for all (z2,...,zN,¥2,...,yn) € RV 71 x RN-L,
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For all other points the inequality holds true because for these points (x1,y;) we
either set g(x1) = oo or h(y;) = occ.

2. = 1.: We prove this direction by induction over N as well. For N = 2 the
implication is true due to Theorem By Lemma [|5.4] we have that

sup /der = sup / sup /fd)\dfr (5.5)
WGHbc(H,V) ﬁen(ﬂlv’/l) AGHbC(H‘wl ’Vyl)
< sup /g(:vl) + h(y1)
mell(pt,pl)

N—1
+ sup / Z gx1,~--,1’i,y17---,yi(xz._H)
)Y i=

AEMpe (Haq Vyq
T e R I (TR )Y 3

Therefore for all (x1,y;) for which

N-1

F(@1, s 2N YL, s YN < Z GELTOY LY (1) o EL T LY () (5.6)
i=1

for all (z2,..., 2N, %2, ...,yn) € RY71 x RV~1 we have by the induction hypothesis that
SUP\ETTy (f12; 7y, ) J fdx = 0. As g and h vanish u' respectively v! a.s., lb holds true
7-a.s. Combining this with (5.5 we get the desired result. O
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6 Counterexamples

By Theorem 2.9 in [BBLZ17]|, the causal and bicausal problem coincide in the case that
the starting measure p is the product of its marginals and the cost function has a separable
structure (i.e. is of the form c(x1,...,xN,y1,..., ynN) = Zfil ¢i(zi,yi)). The following two
examples show that one cannot drop either of the two assumptions, using the results from
the last chapters. Although there are already counterexamples in [BBLZI17]|, we will give
some other examples which are more intuitive. In the following examples we denote the
Lebesgue measure on [0, 1] by A.

Example 1. Consider the non-separable cost function ¢ = lge for
C = {(z1,22,23,21) : x1,22,23 € [0,1]} and p=v =A@ X\. Then

inf /]]_Ccdﬂ' =0, but inf /]]_Ccdﬂ =1. (6.1)
melle(p,v) m€Mpe (p,v)

The first equality in holds true as we can choose the causal coupling ™ = fu(ARARN)
for f(x1,z2,x3) := (z1, T2, T3, 1) which is supported on C. Heuristically 7 is causal, as
the third component is independent both from the first and the second component. The idea
why w is not bicausal is that knowing the third component, the fourth component tells us
exactly what the first component should be. To be more precise on why the coupling is causal
we can use the characterization from Proposition 2.3 in [BBLZ17]. It is easy to verify that
we can decompose m into T(dx1, dy) Ty, 4, (dz2, dy2) with @ =A@ X and 7y, 4, = A ® Oy, .
Hence 7 € TL(p*, vY), (pY) g (Tauy ) = pays = A and for A C [0, 1] measurable

/ Ly, (dy2) = / / 14Ty g (dya)y, (1) = A(A) = vy (A),

By Proposition 2.3 in [BBLZ1l| this implies that w is a causal coupling between p and v.

For the second equality in notice that the functions g = h = ¢g®*% = 0 and
h*1YL = T,y fulfill the requirements given in Theoremfor f=1c¢ (ie. g =0 pl-as.,
h=0v-as., g""9 =0 pig,-a.s, K" =0 vy, -a.s. and 1o < g @ h & g* ¥ @ K™Y ) and
therefore for all v bicausal [ 1cdy = 0. Hence [1oedy = 1.

The next example shows that we can also not drop the assumption that p is a product
of its marginals

Example 2. Let i = fy for f(z) = (z,7), v =50 ® X and ¢ := 14,4,y Then

inf )/Cdﬂ' =0, (6.2)

welle(p,v

whereas

inf /chr =1.
WEHbC(,u,l/)
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6 Counterexamples

We can see that equation holds true by choosing ™ = gy for g(x) = (z,z,0,x).

For the bicausal case notice that the functions g = h = 0, g*' ¥ (z9) = 1 — Lizy and
R4 (ya) = Lyp,y fulfill all the requirements from Theorem|{.5, choosing f(x1,T2,y1,Y2) =
Uizy—y,y- Therefore

sup /ﬂ{x2:y2}dﬂ' =0.
WEH{,C(#,V)

This gives us that for every bicausal coupling

/H{IQ;éyg}dﬂ =1

and therefore we have that

inf 1ipsyydr = 1.
IR RIEeT
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7 Causal 0O-sets

From now on, for Polish spaces X,Y, m € P(X) and p € P(X xY) we will also use the

notation
[ midzyuatay
X

for the Bochner integral [ pi.(dy)m(dz) and in the same way we will also frequently
interchange the integrand and the underlying measure in usual integrals, if convenient.

Apart from Theorem [7.4] the results in this chapter and the idea of their proofs resemble
IBBLZI17]. Nevertheless we cannot directly use the results from [BBLZ17| as we are
interested in obtaining slightly different ones (considerung suprema instead of infima).
These considerations will lead to Theorem [7.4] which can be seen as the equivalent to
Theorem [5.5] considering causal instead of bicausal couplings.

Lemma 7.1. Let p € P(RN). Then, fort < N, f : P(R) — P(R) given by m
J m(dzi—1)ps,_, (dxy) is measurable.

Proof. For g € P(R), g; € Cp(R) and € > 0 let

/Qidu—/gz‘duo <€}-

Recall that {N(po, 91, 95, €) : o € P(R), g1, ..., 9x € Cp(R),e > 0} is a basis for the
weak topology. As P(R) is a Polish space, we can write every open set as a countable union
of base elements. We will show that the preimage of every base element is measurable,
then it easily follows that every preimage of an element of its generated sigma algebra is
also measurable. So we look at

N(:u()vgla“"gkv ) {,u max

1<i<k

f_l(N(,U’Oaglv -9k, €

1<i<k

:{mGP : max

/ / gi(xe) pre,_, (de)m(dri—1) — /gid,UO <6}-
Tt

By Proposition 7.29 in [BS96] we have that g(z¢—1) := [ gi(@¢)ps,_, (dz¢) is measurable and
it is bounded as g; is bounded. By Corollary 7.29. 1 in [BS96] m — [ gdm is measurable
as well. Therefore f~*(N(uo, g1, ..., g, €)) is measurable.

O

Definition 6. Let u,v € P(RY). We call 7 € .(u,v) causal quasi-Markov, denoted by
7 € Iegm(p, v), if for 1 <t < N — 1 we have that

7711,...,mt,y1,...,yt (d$t+1, dyt+1) — Wxt,yl,...,yt (dl’t+1, d?/t+1)-
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7 Causal 0-sets

Remark 4. The set of causal quasi-Markov couplings is non-empty if p is a Markov
measure, but there may also be causal quasi-Markov couplings if i is non-Markov. This
fizes a little inaccuracy in [BBLZ17)].

If 1 is a Markov measure we can take the independent coupling of u and v, which is
obviously quasi-Markov.

To see that we can have quasi-Markov couplings, even though p is not Markov, take
N > 2 and let 4 = v € P(RY) be non-Markov. Then taking the coupling 7 = fap, for

flxy,..zny) = (1, .., TN, T1, ..., TN),
we get that

TCEY ooyt YLy Yt (d$t+la dyt+l) = Ty1,...,yt (d$t+1, dyt+1) = Txt,y1,.. Yt (d'xt-‘r-la dyt-‘r].)'

Theorem 7.2. Let p, v € P(RY). Let pu be Markov and c be semiseparable (i.e. ¢ =
Zi\il ce(xe, Y1, ..., y¢) for ¢¢ measurable and nonnegative). We set Vi = 0 and define
recursively fort = N, ..., 2:

Vi (yts s yr—1,m(dae—1)) = (7.1)

sup /’Y(dl’t,dyt)(c(ﬁtayl, °'7yt)
VEN(f,, | mdai—1)ita_ (A0, y s (d00))

+ ‘/tc(ylv e Yty ’Yyt (dl’t)))

If we set
Vo= sup /’Y(diﬁbdyl) (clz1,y1) + Vi (1, vy, (1))
ye(pt,pt)
we get that
Vo= sup /Cdﬂ'. (7.2)
wElegm (1,v)

We will refer to the right hand side in as value(Pcgm).

Proof. First we show that the sets

Dt—l = {(yl) "'7yt—17m’r>/) et € H( f m(dxt—l)lu’:ct_l(dxt)u Vyl,.,.,yt_l(dyt))}

Tt—1

are Borel and therefore also analytic. Let D = {(p,¢,7) : p,q € P(R),~ € II(¢,p)} which
is closed by a similar argument as in the proof of Lemma [£.1] Let ®;_; be defined by

(yl) "'7yt—17m7fy) = (Vy1,---,yt—1(dyt), ./ m(dl‘t—l)uxt_l(dxt)a’y)'

Tt—1

By the way we defined ®;_1 we have that D;_1 = CID;_II (D), so it suffices to show that
m fxt_l m(dzi—1) g, (dz:) is measurable in order to obtain measurability of Dy 1,
which is true by Lemma
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Now we will show that all the integrals in the recursive formula are well defined by
showing that the integrands are upper semianalytic and therefore universally measurable.

By Corollary 7.27.2 in [BS96] we can choose the kernel vy, (dx;) such that y; — v, (dz;) is
measurable. Therefore (y1,...,y,7) — (Y1, ..., Ut, Yy, (dxt)) is measurable as well. If we show
that (y1,...,ys,m) — Vi€(y1, ..., yt, m) is upper semianalytic, we get that (y1,...,y,7) —
VE(1, -y Yt, Ty, ) is upper semianalytic because the composition of an upper semianalytic
function with a measurable function is upper semianalytic by Lemma 7.30 (3) in [BS96].

We will show that V¢ is upper semianalytic by reverse induction. First we show that

<yh.n,yN_1nn,w>F»L/lnvw<dxw,dyw> (7.3)

is Borel measurable, so in particular upper semianalytic. To see this we can use Proposition
7.29 in [BS96] and its notation, defining ¢, (dzn,dyn) as y(dxn,dyn), which is clearly
measurable as the function q : P(R?) — P(R?) from Definition [1]is the identity. We can
use Proposition 7.47 in [BS96| to get that V_, is upper semianalytic, because we already
showed that Dy_; is an analytic set.

Suppose now that V¢ is upper semianalytic. Let us look at

(Y15 ees Ye—1, My 7y) > /v(d:vt,dyt)Ct(fﬂt,yl,.--,yt)

+/%M%Mwwmwwmw. (7.4)

The integrand of the second integral is upper semianalytic by the induction hypothesis
and as it is the composition of an upper semianalytic function with a Borel measurable
function. Its integral is also upper semianalytic by Proposition 7.48 in [BS96]. The first
summand on the right hand side of is measurable by the same argument as for
(7.3). By Lemma 7.30 (4) in [BS96| their sum is upper semianalytic as well. Again by
Proposition 7.47 in [BS96|, which we can apply as we showed that D,_; is analytic, we
conclude that V,° | is upper semianalytic.

We wrote V¢ (y1, ..., yt—1,m) as a supremum of an upper semianalytic function over
a fiber of the analytic set D;_1. Hence we can use Proposition 7.50 in [BS96] to get an
universally measurable function defined by

(yla ces Yt—1, m) = Ltyri;'g,yt_hm € H( f m(dxt—l):u'zt—l(dxt)? Vy1,...,yt71(dyt)):

Tt—1

such that

V(s ye—1,m) —€ < /Li’i’i',gytl’m(dwt,dyt)[C(fvt,yh e Ut) (7.5)
+ VEWL sy (L))

for all (y1,...yt—1,,m) for which V¢ ;(y1,...yt—1,, m) < oo and for all others we can make
the RHS in greater than 1/e. We will now build a measure that solves the recursion
up to an € margin each step, or gives us arbitrary large values if necessary.

Suppose that c is bounded from above and therefore also that every V¢ is finite, in par-
ticular Vi£. We choose an e optimizer v%¢(dzy,dy;). Then we take y; ’y;f(dxg, dyo) ==

0,e
Lllﬂe’(’y )yl, which is universally measurable as it is the composition of two universally
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7 Causal 0-sets

measurable functions (see Proposition 7.44 in [BS96]). Suppose that (yi,...,y—1) —
’yél_,,l_’fytfl(da;t, dy:) is universally measurable. We define

t—1,e
Yiyeees yt7(yy1 ..... yt—l)yt (

W1y yt) = Ve (dzeg, dyyr) == Ly, dziy1, dyei1),

which is universally measurable, because we can write it as the composition of the universally
measurable functions

(yla E3) yt) = (yla co Yty 7;/1_,.1.’.6,%_1)7

(yla cey Yty m(dajt’ dyt)) — (yl, ey Yty myt) and
(ylv N2 m(dﬂft)) — Lty71€7m7yt7m(dxt+1, dyt+l)-

By definition we have that

VB (darsr, dyn) €11 ( [ Gl e ), uyl,..‘,yxdym))
Tt

£

and the integral w.r.t. 4., attains V,(y1, ..., v, (’Yzi?,-lffyta)yt) up to an € margin. Let

-----

(xtv [ZACREEY yt) = th;,yh...,yt (dxt-‘rlv dyt+1) = My (dxt-i-l)(%ji...,yt)mt+1 (dyt—i-l)a (7'6)

which is again measurable by Proposition 7.44 and Proposition 7.45 in [BS96]. By
Proposition 7.45 in [BS96| successive composition of these kernels gives us a unique Borel
measure [z such that

. (dxy,...,dx N, dyi, ..., dyn) = Yo (dx1, dyl)I‘f}e’yl (dzo, dys)...

TtsYLyeeey TN —-1,Y1s-sYN—-1
Ly ¥ (dey, dyea) - Ty, (drn, dyn).

By construction I'; is causal quasi-Markov and we will show that I'c € II(p,v) as well.

The first projection is equal to p as by the definition of the’yl""’yt in 1) after integrating
the y; out, we are left with

Fs(dxla e dwN) = VO,E(dI‘I)Mm (de)"'MIBN71 (d.ﬁ]\[)
and by definition v%¢ € II(u!, ).

Now we will also show that I'c«(dy1,...,dyn) = v(dy1,....,dyn). The definition of 7o .
gives us that I'.(dy1) = v(y1) and therefore also

Le(dyr, dya) = / VO (dy, dyy) pray (de2) (7,7 ) oo (dy2)

1,22

= [ A, () )
XT1,22

~ i) [ (/ o (@) Ofalin) (0D

= v(dy1)vy, (dy2)-
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The last equality is true, as the expression inside the brackets in the penultimate line is
the first marginal of fy;f. Inductively we will show that we can write I'c(dyz, ..., dyy) in
the following way:

Ce(dy, ..., dyn) = v(dyr)vy, (dy2).- vy, yn_o (dyn—1)

/ ( / (vﬁf..?,’;vz)yN_l(d:vN—l)uxN_l(dzN)) (oo (dyn) — (7.8)
TN TN-1
Then we can conclude our argument as (7.8)) is equal to

(dy)o Vs, (A1) / AN-Le iy, dyy)

TN

— U(dy1) V.o (dyn—1) / (=L ) ey s (dyy)

TN

= V(dyl)'”yyh---,yzv—z (dnyl)Vyh--wyN—z,yN—l (dyN)'

By ([7.7) we can write it in the way like in for N = 2. The induction step works as well
as

Le(dyr, ..., dyn, dyn+1) = v(dyr)...Vy, ... yn o (dYN—1)

/ (/ ('ng\lf,_...z,ﬁN,g)nyl(de—l):uqu (de)> ('77?1[,_...1,’51\7,1)931\/ (dyN)
TN, TN+1 TN-_1

K (dl’N+1)(’7ﬁ:‘,€_.7yN )Z‘N+1 (dyN+1)

= v(dy1).-vy,.yn_o(dyn-1)

N o s T S G N ey
TN ;TN+1

— (dy1) V. o (dyn—1) / (Nl ), (dey)

TN, TN+1
Vin ooy QYN g (A1) (Vo (AYN£1)

= V(dyl)"'l/ylv--~7yN72 (dyN—l)Vyhm,yNﬂ (dyn)

/ ( / <fy;¥,...1;5N_l>yN<de>um(de+1>) (2 s (s,
TN+1 TN

By the arguments above we know that I'. is a causal quasi-Markov coupling and we
designed it to be € optimal at every step. Hence

Vo — Ne < /cdl} < sup /cd7r.
V)

WGchm(

As € was chosen arbitrarily we have that V{’ < value(Pcgm). Now we show the reverse
inequality. Let v € IL.qm (u, ). Notice that

e (2010 (1) = / ot (A7) e (A1),

Tt

Yy1,-yt (dwt-&-l) = /

a3
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7 Causal 0-sets
where the last inequality holds true due the v being causal quasi-Markov and Proposition

2.3 in [BBLZI17]. Also by Proposition 2.3 in [BBLZI17| we have that vy, .y, (dyit1) =
Vyr,.ye (Ayi4+1) and therefore

v (desr dysr) € 11 ( [ e @ 12). 1 <yt+1>) . (19)

Furthermore for 1 <t < N
/Ctd')’: /'y(dy1,---,dyt_1)’yy1,...,yt1(da:t,dyt)ct(:ct,y1,--.,yt)
= /V(dyl)%u (dZJQ)'Yyl,yz(dy3)---'7y1,...,yt71(dl'tadyt)ct(l't,yla "'ayt)

= /v(dw’hdy1)7y1(dw2,dyz)--ﬁyl,...,yt_l(dxt,dyt)Ct(wt7y1,--.,yt)'

As we assumed c to be of the form ¢ = Zi\il ce(we, y1, ..., y¢) we have that

/cdfy: /v(dxl,dyl) [01 +/7y1(dx2,dy2) [02 +/’)/y17y2(d$3,dy3) [03 —1—/]” )

Combining this with (7.9) we get that value(Pcgm) < V.
Let us treat the case that ¢ is possibly not bounded from above. For M € N let
M .— ¢, NM. By the considerations up to this point, we have that

ear = o eM | where ¢f
Ve = sup /chﬂ. (7.10)
mEeqm (pv)

Using monotone convergence and equation (|7.10)) we have that

sup / cdm = sup  sup [ cyydm =sup  sup / cpdm
TFEchm(,u,V) ﬂ—EchnL(H,V) M M Wechm(N,”)

= sup V™.
M

Inductively applying monotone convergence we get that this is equal to

Supsup/d7 [c{w +sup/d71 [céw —l—sup/dw [cg/[ + ]”
M v 71 Y2

:sup/d’y {cl —{—Supsup/d'yl [céw —l—sup/d'yg [céw—l— ]H = ..

ol M m Y2
o c
=Vy.
]

Theorem 7.3. Let u be Markov and ¢ be semiseparable. Then value(Pc) = value(Pcgm).
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Proof. Let v € II.(p,v) and

¥ = y(dw, dyl)%fhyl (dz2, dy2)7w27y1,y2 (ds, dy3)""7-TN717y17~~~:yN71 (dxn,dyn).

We will show that 74 is causal quasi-Markov and that the integrals of a semiseparable cost
function with respect to v and 7 coincide.
By definition §(dx1, dy;) € I(u!, ). We also have that

f?xl,...,mt,yl,...,yt (df]}'t.i,.l) = fyxtyylv---vyt (d.’]}'t_i'_l)

:/ 'Ya:t,yh--.,yt(dxlv---vdwt—l)%l ,,,,, 5Ut7y17--~7yt(dxt+1)
TlyeeesTt—1

= / Vot ,y1,e Yt (dxlv Sx3) dxtfl),uxt (dwt+1) = Mz (d$t+1)‘ (711)
1 Tt—1

[ARR)

The last line in holds true due to Proposition 2.3 in [BBLZ17] and p being Markov.
Therefore p*(7) = p.

Let H := H(xt,y1,-..,yt) be nonnegative and measurable. If we show that [ Hdy =
[ Hdy for every such H we get that p?(7) = v and for a cost function with semiseparable
structure the integrals w.r.t. v and 7 coincide. Notice that p?(§) = v gives us in particular
that vy, . v, (dYit1) = vy, (dYe+1). Combining this with (7.11) and the fact that

Var oo oo = Yoty = Yoo,y S1ves us that § € Tlegm (1, v) by Proposition 2.3 in
[BBLZ17].

We have that [ Hdy = [ Hd¥ holds true as

[ a5 = [ty drs dyn, g s (o )
=/H’Y(dm,dyl,dyz)%g,yl,yg(dSC&d?/3)-~
= / Hry(dxo, dx3, dyi, dy2, dYs3)Ves g1 ys.ys (d2a, dys)...

:/H’y(dl’tlady17-..,dyt1)7$t1,y1,..,,yt1(d$t,dyt) :/Hd’}/

Theorem 7.4. Let p,v € P(R?) and ¢ be semiseparable. If

sup /Cdﬂ' =0,
’YEHC(MVV)

then we have, for all (x1,z2,y1,y2) € R? x R?, that

c(z1, w2, y1,92) < g(@1) + h(yr) + g° ¥ (z2) + A7 (y2),
where g (resp. h) is equal to zero py-a.s. (resp. vi-a.s.), "'oY =0 vy, -a.s. and g"*¥ =0

a.s. w.r.t. the measure [, 7y, (dr1)ps, (dxs) for every v € I(u1,v1). In particular
goYt =0 g, -a.s.
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7 Causal 0-sets

Proof. Combining Theorem [7.2] with Theorem we can recursively apply Theorem 2.21
from [Kel84], as we already did in the proof of Theorem to obtain this result.
To see that the last line of the Theorem is indeed true, assume that there exists a set

A C R with p'(A) > 0 such that p,, (¢%1¥1) > 0 for 21 € A. Let v = u! @ v1. Then

</ Ty (dm)ﬂxl(dmg)> (g%191) = /xl p(dy ), (g7191) > 0,

xr1

which contradicts that g% = 0 a.s. with respect to the measure fml Yoo (dx1) pg, (da2). O
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8 Weak transport

Let X be a Polish space with a compatible metric d. We denote by ¥(X) the set of all
continuous functions ¢ : X — R, which are bounded from below and satisfy that

[¢(z)] < a+ bd(z,20),

for all x € X, for some a > 0, b > 0 and some zg € X.
In this chapter we will consider cost functions, which may also depend on the chosen
coupling. Let p € P(X), v € P(Y) for Polish spaces X,Y. Consider a ls.c. cost function

C:XxPY)—RU{+o0}

which is convex in the second component and bounded from below. Then we call

inf / O, ) u(de)

mell(p,v)

the weak transport problem between p and v.

We will frequently encounter the Polish space Pi(R x P;(R)) in this chapter. A
complete metric on this space can be given by the 1-Wasserstein metric w.r.t. the metric
d((x,2),(y,9)) = |z —y| + W(&, 7). For more details see [BBEP20].

More concretely, in Theorem we will establish duality for the cost function

C:Rx Pi(R) x Pi(R x Pi(R)) — R,
Can) = [ le=slpldy) + W ( / @p(d.@)) ,

which is the cost function we consider for the remainder of the chapter. This duality in
Theorem will prove to be useful in the next chapter in order to make a connection to
causal transport.

Definition 7. Let (X, X*, (-,-)) be a dual pair and let f : X — R be a proper convex
function (i.e. f is convex, f > —oc and there exists an z € X s.th. f(x) < +o0). Then
we call f*: X* — R, defined by

fH(a") = sup{(a”, z) — f(x)},

zeX
the conjugate function of f.

Lemma 8.1. Let ¢ : P1(R) — R be conver and l.s.c. Then

/qﬁ(u)a(du) > ¢ (/ ua(du)>

for a € P1(P1(R)).
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8 Weak transport

Proof. Notice that P1(R) C M;(R) is closed and convex. Here M;(R) denotes the the
space of signed measures with finite first moment endowed with the initial topology with
respect to the family of functions of the form p — [ fdu, for f € Cjip(R). So we are looking
at the dual pair (M;(R),Cjin(R), (-, -)), where (m, f) := [ fdm. Restricted to P;(RR) this
topology coincides with the topology on P;(R) arising from the Wasserstein-distance (see
Definition 6.7 in [Vil16]). Let ¢ : M1(R) — R be defined by

{@(fc) o(#) @ e Pi(R),
$(z) =400  z ¢ P1(R).

By definition ¢ is clearly convex. Notice that {&# € M (R) : ¢(z) < ¢} = {2 ePi(R):
¢(Z) < c} is closed for ¢ € R by the lower semicontinuity of ¢ and therefore ¢ is Ls.c. as
well. So we can use Theorem 2.3.3 in [Zal02] in order to get ¢ = ((¢)*)* and therefore

$(pu) = sup (/ fep — ) (8.1)
feclzn (R)
Using we get, for a € P1(P1(R)), that

/ $(u)a(dp) = / Hu
-f (/ o <eb>*<f>) ot
g feizljfﬂx) </ (/ fdp = > (dﬂ)>

— sw ([ @ ataan - @)

feclzn R)

=5 ([ nataw)
p ( / ua(du)> .

We will need the following two results characterizing convex functions, in which we
denote the pointwise supremum of all convex functions, which are dominated by ¢, by ¢.
It is easily seen that ¢ is convex.

O

Lemma 8.2. Let ¢ : P1(R) — R be conver and 1-Lipschitz. Then
7 f d
QZ)(I‘) acePy(P1(R H} mean(a) (;5 @

Proof. One inequality can directly be seen by choosing a = d;.
For the reverse inequality let v € P1(P1(R)) with mean(a) = &, we can use the version
of Jensen’s inequality from Lemma [8.1] to get

qﬁ(ﬁ:):qﬁ(/zadz) /qsz dz

Passing over to the infimum we get the result. O
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Corollary 8.3. For ¢ : P1(R) — R I-Lipschitz we have that

o(2) = inf » / #(2)a(d?). (8.2)

a€P1(P1(R)), mean(a)=

Proof. Tt is easily seen that the function on the right hand side is convex and that it is
dominated by ¢ as we can again choose p = d;. Hence the right hand side in is
dominated by the left hand side. For the reverse inequality let ¢ be a convex function
with ¢ < ¢ and o with mean(a) = 2. Then, due to Lemma [3.1]

¢<@>—w</zadz) [veat) < o).

Again we can pass over to the infimum on the right side. O
Lemma 8.4. The function

C:Rx Pl(R) X Pl(R X Pl(R)) — R,
Clp) = [ o= vln(dy) + W (x / @p(dm)

18 1-Lipschitz in p.

Proof. Let p,q € P1(R x Pi(R)). We assume w.l.o.g. that [ |z —y|p(dy) > [ |z — y|q(dy).
For ¢ € Lipi(R) the function g4 : P1(R) = R, & — &(¢) is also 1-Lipschitz, because

‘/gb(x)i’(dx) —/cb(y):i/(dy)‘ S s (/f )2(dz) /f )

= W(z,7).
Using ([2.1)) we have that

w ([ avtan), [nan) = s ( [aotomtan) - [otoan). 63
Applying and the fact that g, is 1-Lipschitz for ¢ 1-Lipschitz we get
Cw,2.9) — Clanira)l < [ 1o = slpld) ~ [ 1o = slata)
ww (2 fantan) - w (2. [aatan) |
< [te =t~ [ 1o vlatan) +w [ anti), [ satan)

< sup </!x—y!+g¢> 9)p(dy,dy) — /\w—y\+g¢()(dy,dy>>

¢eLip1(R)

< < / fdp — / qu>
fELZpl RX'P1 (]R))

= W(p7 )

33



8 Weak transport

Lemma [8.5] and Theorem [8.8] and the idea of their proof resemble Theorem 2.11 in
[GRSTTY].

Lemma 8.5. For all ¢ € U(R x P1(R)) N Lipy and for all (z,%) € R x P1(R) we have
that

Qp(w,2) :=  inf {/¢ y, 9)p(dy, dy) /!w—ylp(dy)JrW( /yp(di))>}

PEP (RX'P1 R)
= ng(.’E, x)a

where <E$ denotes the supremum of all functions which are dominated by ¢ and convex in
the second component and Qf(z,%) := infsep my){f (7, 2) + W (2, 2)}.

Proof. First we will show that

Q(z,2) = _inf {g(z,2) + W(%,2)},

zeP1(R)

where

,2) = inf d+/—d ,/AdA:A}
9(z, 2) pem(ﬁ{ipl(m){/‘z’p |z —yldp(y), | yp(dy) = 2

Then we conclude by showing that g = g?)
">": Let p € P1(R x P1(R)) be arbitrary. Let A\, = [ §p(dy). Then

/ odp + / & — ylp(dy) + W@, Ap) > g(z, Ay) + W )

> inf {o(r.2) + W@ ).

Therefore we can also pass over to the infimum over all p.

"<": Let 2 € Pi1(R) be arbitrary. Then we have

mf{/sbder/lx—ylpdy)/yd }+W( 2)
—int { [dp [0~ slptan) +w (2. [nian). [ o2}
> int { / i+ [ o= vloian + (2. [ inian)) |
= Qé(x
Therefore we can also pass over to the infimum over all Z.
Now we will show that g is indeed equal to ¢. Let 21, 29 € P1(R), e > 0and X € [0,1]. To
show convexity in the second argument of g choose an £/2-optimal measure p; for g(z,21)

and an ¢/2-optimal measure ps for g(z, 22). Then, choosing the measure Ap; + (1 — \)pa,
we have that
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g(z, 21+ (1 — M) 29)
<) (/ 6z, ) + |z — z|p1(dx,dgz«)> (1= </ 6(z,2) + & — 2|pa(da, d:f:))
< Ag(z,21) + (1 = Ng(z, 22) + &

As € was chosen arbitrarily this shows that g is convex in the second variable.
As we can choose p = 0, ® d; we also have that g < ¢ and therefore g < ¢. Now we
show that g > gb as well. By Corollary [8.3| and Lipschitz continuity of ¢ we have that

o(x,7) = pEPlu%?fl(R {/¢ /Zp(dz) B x}
:pepl([g;fpl {/¢ x, Z dCE(],dz) / (d%) — ‘,%}

< inf {/qﬁ x0,2) + |x — xo|p(dxo, dZ), / Zp(dz) = i} = g(z, 7).

peP1(RxP1(R
O
Lemma 8.6. For ¢ € Lip;(R x P1(R)) we have that
Qo(x, ) := inf {é(x 2)+W(E,2)} = ¢(,2) (8.4)

ZG'Pl
for all (x,%) € R x P1(R).

Proof. The LHS in (8.4) is dominated by the RHS as we can choose z = . To see that
the other inequality holds true as well assume that there exists some z € P;(R) such that

oz, 2) + W(Z,2) < ¢, 7).
This immediately leads to a contradiction as ¢ is 1-Lipschitz. ]
Lemma 8.7. The function ¢(x, %) is 1-Lipschitz, for ¢ : R x Pi(R) — R 1-Lipschitz.

Proof. For notational simplicity we assume that ¢ : P;(R) — R and we show that ¢ is
1-Lipschitz.

Let 2,5 € Pi(R) and m € II(&,§) such that W(z,9) = [ |z — y|r(dz,dy), which is
possible by Theorem 4.1 in [Vill6]. Let A be the Lebesgue measure on [0,1]. We choose
T :R x [0,1] — R such that, for all z € R, (y — T'(x,y))#(\) = 7. Then we have that

/|x—y|7rdxdy //];1:— (z,u)|A(du)z(dzx).

Let p € P1(P1(R)) with [ 2p(dZ) = & such that

/ P(2)p(dz) — e < ¢(). (8.5)

For u € [0,1] and T, := (z — T(x,u)) let ¢, := (2 — (Ty,)#2)xp. Let g := [ quA(du).
First we verify that [ 2¢(d%) = §. For A measurable we have that
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8 Weak transport

(/mu@)mwa/%mumﬂwwx&>
| etmiars
/ / p(d2)A(du)
- / / s T(z,u) € A)p(d2)A(du)
— [ [ [ 1eremensdpani
— [ [ trmenitinr@
~ [ [ turewen i)

_ / 7o (A)i(dz)

— (R x A) = §(A)

Moreover, using the Lipschitz continuity of ¢ and (8.5)), we have that

<o)+ W(z,g) +e.

The fourth line holds true as we can choose the coupling 7 between 2 and (T,)42 given
byﬂ_f#z for f( ) (.’E,T(ZL‘,U))

By the arbitrary choice of ¢ and by passing over to the infimum of all measures
m € P1(P1(R)) with mean(m) = § on the left hand side, we get the desired result.

O]

Lemma enables us to use an already established duality result on weak transport (see
Lemma 5.7 in [BBP19]). Putting this together with Lemma Lemma [8.6{ and Lemma
[87 we will be able to prove the following duality Theorem:
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Theorem 8.8. For u,v € Pi(R x Pi(R)) and
C:RxPi(R)xPi1(RxPi(R)) =R,
Clastn) = [ o =slotas) +w (2. [ antai)).
we have that

inf /C x, &,y ) p(de, dz) =

mell(p,v

sup {/ odp — /qbdu, ¢ € U(R x P1(R)) N Lipy and conv. in sec. var.} i

Proof. By Lemma and the fact that ¢ < ¢ we have, for ¢ € U (R x P1(R)), that

[ @odu— [oav< [ Qadu- [ dan (3.6)

We also notice that ¢ € W(R x P1(R)) as it also satisfies the growth constraint and it
is bounded from below if ¢ is. Moreover, by Lemma it is also Lipschitz-continuous.
Using all these considerations we get that

inf /oxmm) (dx, dm)—sup{/Qqﬁdu /gbdugzbe\IJ(RxPl( ))mszl}

eIl (p,v)

< sup /Q(;Sdu qbdl/, p e VR xPI(R))N Lipl}

= sup

< sup {/ Qudu — wdy,w € U(R x P1(R)) N Lip;, conv. in sec. V&I‘.}
{/1,/1du /wdu 1 € U(R x P1(R)) N Lipy, conv. in sec. Var.}

< sup /Qzﬁdu /@bdu ¥ € (R x Pi(R)) N Lipy, conv. in sec. var.}

sup{/deu /wdv ¥ € (R x Py (R >>mLz'p1,}

= inf /C’ T, &, Ty 5) p(de, d).

m€Il(p,v)

The first and the last equality are due to Lemma 5.7 in [BBP19], the first inequality is
due to . the second inequality due to Lemma E 7l the second equality due to Lemma
and the third inequality is true because ¢ = 1, so we can use Lemma O
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9 Weak transport meets causal transport

In the whole chapter i, v € P(R?). Using Theorem from the last chapter and Theorem
2.6 in [BBLZ17|, we will derive duality for causal transport between the measures p and v
w.r.t. the cost function ¢ = |21 — y1| + |x2 — y2| in Theorem First though, we need to
rewrite the causal problem as a weak problem in the following way, in order to be able to
apply the duality results from Chapter 8:

Lemma 9.1. Let pu,v € P(R?). Let fi:=p' ®6,, € P(Rx Pi(R)) and v :=v' ®46,, €
P(R x P1(R)). Then we have that

inf - — yoldy =
'yeﬁrcl(u,u)/’xl yi| + @2 — yaldy
inf //\acl Y17y, 5(dz1) + W (/ 7y, 5 (dT), >'_y(dy1,df/).

yell(m,v)

Proof. Notice that p is Markov because it is a measure on R?. Hence we can apply
Theorem 2.6 in [BBLZ17|, as ¢ has a separable structure, in order to get

inf 1 —y1| + |22 — yo|dy =
yElle(p,v) / | [+ |

inf /ﬁ(diﬁhdyl)(‘iﬁl -1

mell(pl,pl)
inf /7‘(’ dxs, dys)|zs — y2| ).
€[z, Tyy (dx1)pay (do2),vy, (dy2)) ( ) |>

Also notice that for 4 € TI(f1, 7) we have that

Yy, (dz1,dT) = /vyly(dxl,dzn)vyl (dy) = Vo vy (dzq,dz). (9.1)

Let v € I(u', v!). Choose 5 € (i, 7) with vy, (dz1) = 7,, (dz1), then

JE R S PR RCS) T
/|$1 |+ W </=’L‘7y1 vy, (A2), vy, (dy2 ) y(dx1, dyr)

= [le1- ylwyly(dmwvv( 7, (i), y) S(dyn).

39



9 Weak transport meets causal transport

The second line holds true, as

[ stz o) = [ as(doon, o) = [ [7,,0875,, @)

= [ ) = [ 33,4, (@)

where we used (9.1)) in order to obtain the last equality. We could have also started with a
coupling 7 € II(jz, 7) and chosen y € II(u!, ') such that v, (dz1) = 7, (dz1) and hence
we get that

inf — 1] + |2 — pold
A/Erl[l;l(uvy)/m y1| + |x2 — yo|dy
- v |x1—y1|+W( [ ), ) +(dzy, dyy)

'yEH,u vt

=t [ [lo by gtaen W ( [ a3,50000.5) ..

O
Theorem 9.2. Let u,v € P(R?). Then we have that
inf /|1‘1 —y1| + |z2 —yp|dy =
yElle(p,v)
sup { /d)(yb vy )v(dy1) — /625(9517%1)#(61%1),@5 € U(R x P(R)) N Lipy
& conv. in sec. Uar.}.
Proof. By Lemma [9.1] we know that
inf /|x1 —yi| + |z2 — yo|dy = (9.2)
yEe(p,v)

= int [ [her = bt - ([ 85,56000.5) st ai)

The RHS in (9.2) can be interpreted as a weak transport with the cost function
C:RxPi(R) x Pi(RxPi(R)) = R,

Clunivr) = [ les = wilpldes) + W ( / ﬁ:p(dfe),@)

and therefore we can use Theorem [B.§] to get that
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in / 21— | + o2 — oldy
y€Elle(p,v)

= sup {/qﬁdl/ - /d)d,u, ¢ € U(R x Pi1(R)) N Lip1& conv. in sec. Var.}

= Sup { /d)(yl’ Vyl)y(dyl) - /¢($1,uzl)u(dl‘1), ¢ € \IJ(R X PI(R)) N Lip;

& conv. in sec. var.}
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