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Introduction 

 

Is brain size associated with intelligence? Is it true that big-brained people are smarter 

on average? The search for answers to this question has had an eventful history. From early 

pioneering work with all sorts of obstacles, through dark chapters of colonialism, racism and 

even genocide, to successes in the development of measuring instruments, heated debates 

about the value of this question, curiosities such as the "heavy-weight champion" among 

celebrities´ brains (2kg, Ivan Turgenev) to modern imaging technology and genome-wide 

association studies, following this history is like looking through a burning glass at the study 

of differential psychology. Even though that we have nowadays a good picture of the 

association between brain volume and intelligence after almost 200 years of research, not all 

questions have been answered yet. This master´s thesis is another attempt to provide some of 

them. 

The first systematic examinations took place in the 1830s in Western Europe and the 

Russian Empire (Tiedemann, 1836; Morton, 1849; Vein & Maat-Schieman, 2008). Since 

then, this question occupied some influential minds (e.g. Broca, 1861; Darwin, 1871). These 

early efforts have been difficult and ineffective. Neither brain volume, nor intelligence were 

directly quantifiable. A popular stream of research was the evaluation of skull and brain 

characteristics after death, which led to inferences about the behavioral qualities of their 

deceased owners. Posthumous brain examinations of famous intellectuals considered to be 

highly intelligent in their lifetime have been especially popular (Vein & Maat-Schieman, 

2008). One of the first large-scale studies linking brain size and intelligence (the used proxies 

have been head height and academic achievement) was conducted by Galton (1889). He 

concluded that despite some measurement problems, there seems to be some evidence for an 

association. In 1905 Alfred Binet and Theodore Simon published their famous IQ test (Binet 

& Simon, 1916), the first measurement breakthrough for researchers interested in brain 

volume and intelligence. Although there had been other intelligence tests before, their test has 

been the first one to be demonstrably valid (Boake, 2002). Nevertheless, the first reviewers of 

evidence on the topic of brain size and intelligence have concluded that on the one hand 

measurement problems (e.g. reliability) were a handicap to the correct assessment of the 

association between brain size and intelligence, and that on the other hand there was a rather 

insignificant, if any, correlation between them (Whipple, 1914; Paterson, 1930; see Jensen & 

Sinha, 1993). 

In the wake of the horrors of the Second World War research activities on the topic 

were relatively sporadic. The racial connotations (see section “Ethnicity”) and the lack of any 
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substantial advances in the measure of in vivo brain volume were discouraging aspects. In the 

early 1970s the interest raised again (e.g. van Valen, 1974), although met with criticism and 

doubts about the value of any such pursue (e.g. Gould & Gold, 1996). With the advent of 

highly precise and harmless in vivo imaging technology in the 1980s came the second 

measurement breakthrough. Researchers were able to measure in vivo brain volume directly 

(see Rushton & Ankney, 1996). Since then, numerous narrative reviews have been published, 

unanimously concluding that there indeed is a relevant positive association between brain 

volume and intellectual intelligence (Jensen & Sinha, 1993; Vernon et al., 2000; Gignac et al., 

2003; Miller & Penke, 2007; Ruston & Ankney, 1996, 2000, 2009). Still, effect size estimates 

as well as discussion of influential aspects (moderators) have yielded different results. 

In 2005 the first meta-analysis concerning brain volume and IQ was published 

(McDaniel, 2005). A meta-analysis applies statistical methods aiming at obtaining a refined 

weighted average across studies addressing the same question, while offering the possibility 

to explore potential moderators and effect size inflation due to various sources of bias. 

Succeeding the two above mentioned measurement breakthroughs, analytical benefits of the 

meta-analytic approach were the last missing pieces of the puzzle. McDaniel´s meta-analysis 

consisted of 37 correlations based on 1530 participants. In 2015 Pietschnig et al. conducted a 

meta-analysis that expanded the body of data (148 correlations based on 8036 participants) 

and the scope of analysis (e.g. including clinical samples as well as verbal and performance 

subdomains of intelligence) substantially. Subsequently, an additional meta-analysis applying 

different methods to a subset of the Pietschnig et al. (2015) data was conducted (Gignac & 

Bates, 2017). But still, the estimates differed substantially in size. The result of McDaniel´s 

(2005) analysis was an overall effect of r = .33. This dropped in the Pietschnig et al. (2015) 

analysis to r = .24 and then increased again in the Gignac and Bates (2017) analysis to r = .39. 

It should not go unnoticed that the latter two meta-analyses were based on the very same data 

set. The examination of potential influences of other variables (moderators) has yielded 

different results as well. Whereas McDaniel (2005) identified sex and age to be significant 

moderators, Pietschnig et al. (2015) concluded the opposite. Some moderators have been 

examined by only one research team and, considering the differences above, need conceptual 

replication. Ethnicity as a possible moderator has been discussed thoroughly in the literature 

(e.g. Rushton & Ankney, 2007), but has never been included in a meta-analysis due to lack of 

data (McDaniel, 2005). Additionally, there was no agreement on the extent of dissemination 

bias in the used literature. 
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 To sum up, the general association between in vivo brain volume and intelligence has 

been firmly established, a lot of questions remain unanswered though. How strong is the 

association? Do age, sex or other variables moderate the effect? How are (sub-)domains of 

intelligence linked to brain volume? In order to look into these questions, this thesis contains 

a (further) meta-analysis based on an update of the Pietschnig et al. (2015) data pool and 

alternative analysis procedures. In the following sections, before the aims and hypotheses will 

be devised, the operationalization and measurement of brain volume and intelligence will be 

discussed in order to provide context for their bivariate association. These sections focus on 

basic concepts and measurement related considerations which have been usually skipped in 

research papers for the sake of brevity. 

Brain Volume 

The following section presents a short overview of the imaging technologies used in 

primary studies which have been included in the three above-mentioned meta-analyses. Those 

technologies are complex and develop fast. This thesis refers interested readers to the 

excellent review of imaging technology in Bigler (2017) as a starting point. Erin Bigler is one 

of the pioneers in the field of brain behavior association research and co-authored the first 

studies associating in vivo brain volume and intelligence via in vivo imaging (Yeo et al., 

1987; Willerman et al., 1991) along with five subsequent studies on this topic. 

Before the emergence of in vivo imaging techniques in the 1980s, brain volume was 

assessed with several surrogate measures both before and after death of subjects. Posthumous 

methods included filling skulls with pellets or water to calculate cranial capacity (Sahin, 

2012). As direct in vivo assessment was not possible, researchers used external head measures 

like head circumference (e.g. Murdoch & Sullivan, 1923). All these surrogate measures 

provide a reasonable estimate of brain volume but are not as precise and reliable as needed in 

order to examine the association of brain volume and intelligence thoroughly. For example, 

head circumference correlates highly with brain volume in children, but only moderately in 

adults (Bartholomeusz et al., 2002).  

The most precise estimates of in vivo brain volume come from studies that used either 

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). CT was developed in 

the 1970s. A CT machine sends x rays in direction of the brain, and detectors behind it 

measure the attenuation by brain tissue and structures (Coffrey, 2000). Computers relate this 

information to the density of tissue, fluids and bones, and construct a series of images. In the 

1980s MRI technology emerged. MRI is a vastly complex technology. This basic description 
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illustrates it: “MRI […] measures radio-frequency signals emitted from hydrogen atoms after 

the application of electromagnetic (radio-frequency) waves, localizing the signal using 

spatially varying magnetic gradients. Contrast from each voxel (a three-dimensional pixel) 

depends on the density of protons within the voxel and properties of the local tissue 

microenvironment that are either directly related to the magnetic properties of hydrogen or 

that can be detected through manipulation of magnetic fields.” (Lerch et al., 2017, 314). In a 

comparison of both methods, MRI scores with higher spatial resolution and much greater 

flexibility. The brain can be examined with MRI in a variety of ways from every angle. This 

technology provides the most accurate results. Nevertheless, the use of CT has some practical 

advantages in certain situations. CT scans are less expensive, faster, and available in almost 

every hospital. The speed advantage can be useful in populations where head movements are 

not easily controlled (e.g. infants). There are also more personnel that can perform CT scans. 

However, these advantages are limited to clinical samples only, as subjects are exposed to 

irradiation. Exposing healthy participants to irradiation for purely scientific purposes is 

ethically unacceptable. Moreover, the weight of these benefits is steadily decreasing due to 

technological advancements in MRI technology (Zijl & Knutsson, 2019). The outcomes of 

both approaches relating to the brain size are usually measured in mm³ or ml (mass, at 1ml ~ 

1g). 

The quality of images from both methods depends on several hardware and analysis 

factors. The former includes the capability of the used scanner, scanner calibration and head 

movement (Coffey, 2000). Other confounds may be as complex as magnetic field 

inhomogeneities (Lerch et al., 2017). The latter factors include the effectiveness of the used 

computer program to process data, the criteria to define structures of interest, and the skills 

and unbiasedness of the image quality rater (Coffey, 2000). Additionally, difficulties in 

automatic separation of dura mater and cortical volume can arise as well as problems with 

spatial normalization due to the unique sulcal structure of every individual brain (Lerch et al., 

2017). Researchers´ chosen settings can also influence the results. Slice thickness settings for 

example can influence estimates when using CT (Sahin, 2012). 

There are clearly many factors which may influence the assessment of brain volume 

(Shinohara et al., 2017). Nonetheless the results are still exceptionally precise and reliable 

(McGuire et al., 2017; Maclaren et al., 2014; Madan & Kensinger, 2017; Reid et al., 2017). In 

addition to technical factors, there are some practical concerns which are easier to specify and 

can have a substantial impact. The operationalization of brain volume in studies is 

heterogenous. Total brain volume (TBV), synonyms are whole brain volume (WBV) and total 
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tissue volume, is variably operationalized as the sum of grey matter (GM) and white matter 

(WM) or GM, WM and cerebrospinal fluid (CSF). Occasionally the cerebellum is excluded. 

This fact alone is noteworthy as the cerebellum has a considerable size (Sereno et al., 2020) 

and is linked to intelligence (Hogan et al., 2011). Another way to operationalize brain volume 

is intracranial volume (ICV) or its synonym total intracranial volume (TIV). ICV measures 

usually contain all brain structures within the skull, including the meninges, ventricles and 

brain stem. The maximal axial limit is the foramen magnum. There are several ways to derive 

an estimate of brain volume (see Lyden, 2015, 20). For example, some studies use 

intracranial area (ICA) to obtain a quick estimate of ICV. Both correlate highly at about r = 

.88 (Ferguson et al., 2005). 

 The comparison of studies using different operationalizations may pose a threat to 

internal validity. Fortunately, the use of heterogenous operationalizations diminishes since 

dedicated software like Freesurfer (Fischl, 2012) makes standardized, automatic, and reliable 

segmentation of brain structures readily available while also reducing dependence on 

personnel skills. Naturally, automatization software also allows a lot of different settings 

influencing the outcome (Haller et al., 2016), but establishes standard settings enhancing 

comparability of the average neuroscientific study. To further enhance comparability and 

resolve issues of small sample sizes, a current trend are efforts to accumulate large public data 

sets and implement big data and machine learning techniques (van Zijl & Knutsson, 2019). A 

considerable number of studies included in the previous meta-analyses are from the manual 

and semi-automatic era (Bigler, 2017). 

In conclusion, in vivo imaging techniques are relatively precise and reliable methods 

to assess brain volume. Especially MRI keeps improving and provides vast possibilities for 

researchers. Large consortia are working hard on resolving issues regarding low sample sizes 

and measurement heterogeneity (see Bigler, 2017). Measurement issues regarding brain 

volume are noteworthy but minimal compared to the average psychological instrument. This 

may mean that operationalization differences pose the biggest, albeit modest, threat to internal 

validity.  

Intelligence 

Not only the history of research on brain volume, but some intelligence research as 

well got caught up in ugly phantasies about human hierarchies based on race, sex and social 

status. This turbulent past was often a focus of criticism of intelligence concepts (e.g. Gould 

& Gold, 1996). There were some authors who argued that intelligence is just another concept 



12 

 

which justifies and solidifies social differences. Although it was important to demonstrate the 

harm some research had done in the past, some critical remarks were one-sided or false (see 

Fletcher & Hattie, 2011). Nowadays, basic concepts of intelligence are of little dispute. 

Intelligence test scores predict major life outcomes showing consistent results across lifetime 

(Goriounova & Mansvelder, 2019).  

Many definitions of intelligence exist. Gilles Gignac describes shortly and accessibly 

intellectual intelligence “as an entity’s maximal capacity to achieve a novel goal successfully 

using perceptual-cognitive abilities.” (Gignac, 2018, 440). By adding an operational definition 

of psychometric intelligence, he bridges the often-criticized gap of theory and application. 

Gignac defines psychometric intelligence “as an entity’s maximal capacity to complete a 

novel, standardized task with veridical scoring using perceptual-cognitive abilities.” (Gignac, 

2018, 440). This interpretation gives a good account on what was measured in the primary 

studies included in the three previous meta-analyses. Worthy of note is that only intellectual 

intelligence is considered in this thesis. Other constructs like emotional or social abilities are 

beyond the scope, although interesting brain-behavior studies exist (e.g. Tan et al., 2014). 

Neither executive functioning is considered here. Intelligence and executive functioning share 

some conceptual similarities and partly the same underlying biological foundation (Duggan et 

al., 2014), but they remain distinct concepts.  

Intellectual intelligence is usually conceptualized hierarchically. The most prominent 

concept is the Cattell-Horn-Carroll (CHC) model of intelligence (see Schneider & McGrew, 

2012), yet there are other models (e.g. Johnson & Bouchard, 2005). The CHC model has three 

levels. The first level consists of several related narrow abilities combined into broader ability 

types or intelligence domains. These domains all contribute to g, residing at the top of the 

hierarchy. The general factor of intelligence – g is a phenomenon important for subsequent 

analyses. It describes the observation that persons doing well in one test tend to do well in 

others, and an underlying factor of general intelligence is thus displayed. The extraction of g 

is accomplished by applying factor analysis to a variety of tests and is stable across different 

analysis methods (Jensen & Weng, 1994). The existence of g is relatively undisputed and has 

been observed in various samples around the world (Warne & Burningham, 2019).  

One of the most prominent and persistent intelligence tests are the Wechsler 

intelligence scales (Wechsler, 1939). The majority of studies included in the previous three 

meta-analyses have applied these scales. The structure of the Wechsler scales is very similar 

to the CHC model of intelligence. The individual subtests of the whole scale represent the 

narrow abilities. These are for example vocabulary, arithmetic, and symbol search tests.  
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The second level is represented by four cognitive domains or indices comprising those 

individual tasks tapping into a specific group of abilities. These four indices are the Verbal 

Comprehension Index (VCI), the Working Memory Index (WMI), the Perceptual 

Organization Index (POI), and the Processing Speed Index (PSI).  

On a third level, the VCI and WMI combine to an index of verbal IQ, and the POI and 

PSI to an index of performance IQ. The fourth and last level at the top of the hierarchy is 

called full-scale IQ and refers to the concept of g (for a comprehensive look at the Wechsler 

scales, see Deary, 2020). The subsequent meta-analyses in this thesis are based on this 

categorization structure. Study outcomes are classified as either reflecting the association of 

brain volume and full-scale, verbal, or performance IQ.  

 

Research Questions and Hypotheses 

Goals 

As mentioned in the introduction, we already know a lot about the association between 

brain volume and intelligence. At the same time there are both some contradictory findings 

and open questions. This thesis aims to solidify the understanding of this association, 

strengthen the confidence in examined effects, work out inconsistencies, and add analysis 

ideas. The leading research questions are formulated as follows:  

How does the association of in vivo brain volume and intellectual intelligence quantify for 

each population? How trustworthy is the accumulated data? How do researchers´ 

specification choices affect summary effects? Does interpreting the lower or upper bound of 

overall effects lead to different conclusions? What do results mean for the neuroscientific 

research of human intellectual intelligence?  

In order to outline the path to answers to these questions, a list of objectives of this 

master´s thesis follows. These goals were derived from the questions which remained 

unanswered after reading several publications on the topic (especially the previous meta-

analyses). The first goal (1) is to once again estimate the strength of the association between 

brain volume and intelligence based on updated data and a variation of analysis procedures. 

The three previous meta-analyses came to different results. In order to discuss the reasons for 

these differences, (2) I will investigate how differences in data construction (which data was 

analyzed) and analysis procedures (how were they analyzed) have affected the outcome. Not 

only the general strength of the association between brain volume and intelligence was 



14 

 

assessed differently, but also the potential influence of relevant variables. One question, for 

example, was whether the correlation changes with the age of the subjects. Some of these 

variables were either assessed unanimously or only examined by one research group. The 

results concerning the influence of these variables are (3) to be replicated conceptually. 

Differences in conclusions about potentially influential variables are (4) to be worked off. 

One variable was discussed extensively in the relevant literature, but never considered in a 

meta-analysis, because not enough data were available. This variable is (5) to be included. 

Another point of contention in previous meta-analyses was the extent to which various forms 

of bias (mainly publication bias) could influence the interpretation of the results. Therefore 

(6) it should be evaluated how bias threats interpretation on the basis of the updated data. This 

will include a replication of a decline effect (Schooler, 2011; Pietschnig et al., 2019) observed 

by Pietschnig et al. (2015). In a final step (7), it will be discussed to what extent these goals 

have been achieved and what do the results mean for the knowledge about the association 

between brain volume and intelligence. The next section discusses which variables actually 

matter in the pursuit of the goals outlined above. 

Hypotheses 

The goals stated above translate into hypotheses specified in this section. They are 

necessary to make the questions asked scientifically auditable. This section is structured 

according to the above-mentioned state of agreement or disagreement on different aspects. 

The section "Replication" deals with questions or variables that have been unanimously 

assessed or have only been examined once. The section "Inconsistencies" shows controversial 

topics. The section "Ethnicity" presents the variable of the same name which could not be 

included in any previous meta-analysis due to lack of data. The last section is dedicated to the 

question why previous meta-analyses came to different results about the general strength of 

the association between brain volume and intelligence, and how the influence of data and 

analysis procedures can be investigated. All hypotheses formulated here were preregistered. It 

means that they have been published online before the data collection and analysis were 

carried out. This preregistration includes a presentation of the topic, the hypotheses, and the 

exact analysis procedures that were used, and is available on https://osf.io/r6gnk. Further 

documentation as well as the complete data set on which all analyses are based will be 

uploaded to this webpage at the latest one year after publication of this master´s thesis. A 

preregistration corresponds to the Open Science criteria and should relief some concern about 

https://osf.io/r6gnk
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psychological research reporting habits, which have been increasingly discussed in recent 

years (see Ioannidis et al., 2014). 

Replication 

Positive Association Between In vivo Brain Volume and Intelligence. Most authors 

of reviews on the association between brain volume and intellectual intelligence came to the 

same conclusion: the association is significant and positive (van Valen, 1974; Vernon et al., 

2000; Gignac et al., 2003; Miller & Penke, 2007; Ruston and Ankney, 1996, 2000, 2009; 

McDaniel, 2005; Pietschnig et al., 2015; Gignac & Bates, 2017). The following hypotheses 

are the foundation of all subsequent analyses. The hypotheses were preregistered as follows: 

H1.1: There is a positive association between in vivo brain volume and full-scale IQ. 

H1.2: There is a positive association between in vivo brain volume and verbal IQ. 

H1.3: There is a positive association between in vivo brain volume and performance IQ. 

One of the main research goals of this thesis is to explore how the previous meta-

analysts have arrived at different effect sizes for the association between brain volume and 

full-scale IQ. The means to achieve this goal are devised in section “Exploration: 

Researchers´ Degrees of Freedom”.  

Differences by Domain. Pietschnig et al. (2015) expected the correlations between in 

vivo brain volume and full-scale IQ to be stronger than between brain volume and verbal or 

performance IQ. They explained their expectation with g theory (Jensen, 1998). As g should 

consist of all relevant domains of intelligence, full-scale intelligence tests map this broadness 

better, and correlate stronger with g than subdomain tests. Pietschnig et al. (2015) observed 

lower summary effects by domain based on healthy samples (full-scale: r = .26; verbal: r = 

.18; performance: r = .22). Especially the association between brain volume and verbal IQ 

was lower. It was not examined whether these results were statistically significant. Most 

studies provided correlations for more than one domain based on the same participants. To 

include all these results in one standard analysis would violate the assumption of independent 

effects. However, there are methods providing a solution for these cases. I used one of them 

(see section “Robust Variance Estimation Meta-Regression”). The other previous meta-

analysts, McDaniel (2005), Gignac and Bates (2017), concentrated on full-scale intelligence. 

Therefore, a replication of these associative differences by intelligence domain as well as a 

robustness test is needed. These replicative hypotheses were preregistered as follows: 
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H2.1: The association between in vivo brain volume and full-scale IQ is significantly larger 

than between in vivo brain volume and verbal IQ. 

H2.2: The association between in vivo brain volume and full-scale IQ is significantly larger 

than between in vivo brain volume and performance IQ. 

Health-Status. Whether participants are considered healthy or not is an assessment 

comparative to the research question. In context of brain volume and intelligence, participants 

are classified healthy if they can be considered representative for the general healthy 

population concerning brain structure and intelligence. They have no clinical condition which 

is likely to affect assessments or cognitive processing (e.g. schizophrenia). For example, a 

participant with mildly high blood pressure belongs to a healthy sample, because her 

condition will not have an extraordinary effect on the assessments and is highly prevalent in 

the general population. Sometimes classification in healthy or clinical samples is not 

straightforward. Being born preterm is a regular phenomenon, and, although it might 

influence both variables (Arhan et al., 2017; Boberg & Wallström, 2015), it is not considered 

a clinical condition in this thesis. Being born extremely preterm is less common, does have a 

stronger impact on both variables (Bjuland et al., 2014; McCoy et al., 2014; Grunewaldt et al., 

2014) and is thus considered a clinical condition. The classification at which gestational age 

births are viewed as preterm and extremely preterm is a bit arbitrary. However, in most cases 

classification is straightforward (and done by primary researchers labelling their samples as 

healthy or not). A substantial number of healthy samples in the Pietschnig et al. (2015) data 

were control groups. 

The comparison of results from healthy and clinical samples showed one of the most 

notable effects in previous meta-analyses. Pietschnig et al. (2015) were the first researchers to 

include clinical samples in their analyses. They have discovered a statistically significant 

difference of r = .06 based on full-scale intelligence data (healthy r = .26; patients r = .20). In 

a narrative review Rushton and Ankney (1996) have reported a larger difference (r = .40 for 

healthy samples, and r = .20 for clinical samples). The “headline” correlation of brain volume 

and intelligence from Pietschnig et al. (2015) was based on both populations. The result was r 

= .24. Gignac and Bates (2017) criticized this combined analysis of healthy and clinical 

samples mainly for two reasons: (1) intelligence testing of participants affected by various 

conditions might not be accurate to their true potential and (2) the various clinical conditions 

might affect associations between brain volume and intelligence in different ways. Both 

objections are legitimate, but one may argue that Pietschnig et al. (2015) merely selected a 

different approach of reporting. Their headline correlation based on both sample types 
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(healthy and clinical) comprised all obtainable effect sizes representing the general population 

without any restrictions (other than data availability). They proceeded to report the subgroup 

differences between healthy and clinical samples. Whereas this reporting order is perfectly 

sensible, it may have not been tactically wise, because readers tend to skim reports and miss 

important subgroups differences (Borenstein, 2019, 209). Although concerns about internal 

validity in the clinical groups raised by Gignac and Bates (2017) are important to consider, a 

gross overall comparison between subgroups is better than none. Since Pietschnig et al. 

(2015) have been the only meta-analysts who had taken clinical samples into account, 

subgroup differences in the association between brain volume and intelligence have to be 

replicated. The hypothesis regarding health-status was preregistered as: 

H3: The association between in vivo brain volume and intelligence is significantly larger in 

non-clinical samples than in samples of patients. 

Correlation of Applied IQ Measurement With g. Pietschnig et al. (2015), and 

Gignac and Bates (2017) observed that studies in which full-scale intelligence has been 

measured with a wider range of different ability tests yielded higher correlations for brain 

volume and IQ. Both research groups reasoned that the better reflection of all intelligence 

abilities in humans is the most likely explanation. In the section “Intelligence” above g was 

characterized as a factor of general intelligence. The phenomenon of higher effect sizes based 

on extensive intelligence measurement can thus be seen as founded in higher correlations of 

those measurements with g. For instance, the complete Wechsler Adult Intelligence Scale IV 

correlates extremely high with g (~ r = .95, Wechsler, 2008). The vocabulary subtest of the 

same scale correlates about r = .7 with g (Hunt, 2010). The theoretical basis for hypotheses 

2.1, 2.2 and the correlation of the applied IQ measuring with g is the same in principle.  

The methods that led to the detection of the moderating effect of the correlation with g 

differed between research groups. Pietschnig et al. (2015) ran a regression analysis 

distinguishing between Wechsler type tests and other tests. Gignac and Bates (2017) used a 

refined approach specifically designed to detect this effect. They constructed a rating system 

which should, in absent of empirical information in the literature, approximate the correlation 

with g. The rating categories were number of intelligence dimension assessed, number of tests 

and testing time. Each category could be rated from 1 (“poor”) to 4 (“excellent”).  

In order to replicate this effect, I used the same rating system with one exception; 

testing time was not taken into consideration anymore. Although some tests are of a 

considerable length, they test only one dimension (e.g. sustained attention tests). There are 

some other factors (e. g. adaptive testing) which may influence the testing time, however, are 
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not linked to g. Gignac explains the importance of testing time in more detail, e.g. refuting the 

argument with the sustained attention test by pointing out that this is a core feature of g, and 

therefore longer intelligence testing will result in a better reflection of g (Gignac, 2018). Both 

approaches are reasonable, and, in the end, a little variation is a useful sensitivity check. 

Results should not differ substantially, because the rating system was slightly changed. The 

following hypothesis was preregistered: 

H4: Higher correlations of applied intelligence measurements with g, in absence of 

information about the correlation with g assessed with the number of tests and the number of 

tested dimensions, are associated with larger positive associations between in vivo brain 

volume and general intelligence. 

Decline Effect. The decline effect refers to a decrease of effect sizes over time as 

evidence accumulates starting with the first study addressing a specific research question 

(Schooler, 2011). There are various alleged causes of declining effect sizes (Protzko & 

Schooler, 2017). Sometimes an observed effect does decrease genuinely over time. In other 

cases, decreases may be rooted in strategic research behavior or publication bias and have 

false positives as a result (e.g. the “Mozart effect”, see Pietschnig et al., 2010). In their meta-

analysis about brain volume and intelligence, Pietschnig et al. (2015) observed an inflated 

decline effect for healthy samples based on full-scale IQ data, meaning that there was a true 

effect, but the observed effect size was smaller than previously reported. This finding is in 

line with a recent investigation of widespread declining effects in intelligence research 

(Pietschnig et al., 2019). Nujiten et al. (2019) found no compelling evidence for 

disproportionally numerous decline effects in that area. 

The following preregistered hypothesis addresses the question, if a decline effect 

persists in the updated data: 

H5: The magnitude of effect size estimates from included studies diminishes systematically 

over time (from earlier to recent studies). 

Inconsistencies 

Age. Ageing seems to impact brain volume and intelligence in the same way. In 

absolute terms, brain volume and general intelligence increase to early adulthood, and then 

decline steadily. However, the developmental trajectories differ slightly. Over the lifespan, 

total brain volume increases until the age of 13, followed by a slight decrease until the age of 

18 (Hedman et al., 2012). From then, brain volume increases (or at least does not change) 
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until 35, after which a relatively steady decline takes place, accelerating from age 65. Brain 

tissue volume decreases, ventricle volumes and sulcal cerebrospinal fluid increase. General 

intelligence decreases from the twenties to older age, but patterns differ by domain (Deary et 

al., 2014). Whereas the intelligence domain processing speed declines consistently over time, 

reasoning decreases not linearly and vocabulary knowledge increases. A steeper decline in 

fluid than crystalline intelligence is usually observable.  

Because of these slightly different developmental trajectories of brain volume and 

intelligence, their associations could be affected by age. Pietschnig et al. (2015) observed no 

effect for the association between brain volume and either full-scale IQ, neither verbal nor 

performance IQ. McDaniel (2005) observed an effect of age, if sex was also considered. He 

reported higher correlations for female adults than for male children. Both used categorial 

variables (children vs. adults) for their moderator tests. Pietschnig et al. (2015) coded also the 

mean age of samples but decided against using it, because that would have led to data loss. It 

is possible that these variable operationalizations were too insensitive to detect effects. 

Another potential obstacle of those moderator tests may have been that the operationalization 

of brain volume has not been taken into account (TBV or ICV). Linking ICV and intelligence 

may not be adequate to detect an impact of age, especially in older age, because ICV 

measurements do not reflect decreases in brain volume as effective as measurements of TBV 

(Caspi et al., 2020). In sum, evidence for a potential effect of age is conflicting. Hence the 

meta-analysis based on the largest data set (Pietschnig et al., 2015) did not detect any effects 

of age I devised the following preregistered hypotheses as null effects:   

H6.1: Participants´ age has no significant effect on the association between in vivo brain 

volume and full-scale IQ. 

H6.2: Participants´ age has no significant effect on the association between in vivo brain 

volume and verbal IQ. 

H6.3: Participants´ age has no significant effect on the association between in vivo brain 

volume and performance IQ. 

Sex. On average, males have larger brain volumes than females (Ruigrok et al., 2014). 

These differences persist after accounting for body height (Ankney, 1992). Evidence for 

divergent averages of scores in full-scale intelligence tests between sexes is conflicting, and 

ranges from non-existent (Deary et al., 2003; 2007) to a small advantage for males (Nyborg, 

2005; Daseking et al., 2017). In any case, sex differences in brain volumes are much more 

pronounced than alleged differences in general intelligence. The association of brain volume 
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and intelligence could thus be varied for sexes. The evidence for sex as a moderator is mixed, 

too. Whereas McDaniel (2005) reported higher correlations for females (r = .40) than for 

males (r = .34), the larger meta-analysis from Pietschnig et al. (2015) showed no effect of sex.  

Another matter is the association of brain volume and domain intelligence. Some 

studies reported subtle differences in confined intelligence subdomains (e.g. Strand et al., 

2006). If the average IQ scores vary by domain, the association between brain volume and 

domain intelligence could be dissimilar, too. Burgaleta et al. (2012) for example reported that 

sex differences in brain volume were not related to general intelligence, but to visuo-spatial 

skills. The only meta-analysis considering domains unveiled no evidence in this direction 

(Pietschnig et al., 2015). To formalize the test of these questions, the following preregistered 

hypotheses have been devised: 

H7.1: Participants´ sex has no significant effect on the association between in vivo brain 

volume and full-scale IQ. 

H7.2: Participants´ sex has no significant effect on the association between in vivo brain 

volume and verbal IQ. 

H7.3: Participants´ sex has no significant effect on the association between in vivo brain 

volume and performance IQ. 

Lynn (1994, 2017) proposed that differences in IQ only begin at age 16 and develop to 

a sex gap favoring males of approximately 4 IQ points in adulthood. He pointed out that this 

influence of age could explain the conflicting evidence regarding sex differences in IQ. The 

results of a recently published large-scale study (n > 10000) supported Lynn’s theory 

(Arribas-Aguila et al., 2019). McDaniel (2005) observed indeed more pronounced sex 

differences in the association between brain volume and intelligence in children than in 

adults. In order to reflect these possibilities an age - sex interaction effect will be considered 

in subsequent analyses (see section “Moderators”). I considered this possibility only after the 

preregistration, since I have not been aware of Lynn´s theory before. 

Ethnicity 

Ethnicity is a social category used to describe a group of people who identify with 

each other on the basis of shared nationality, language and culture (Betancourt & López, 

1993, 631). Ethnicity is sometime used interchangeable with the term race, which is a concept 

trying to describe groups based on phenotypic similarities (Braje & Hall, 2015). From early 

on, research that links brain volume and intelligence has been accompanied by attempts to 
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establish ethnicity or race as important factors (Rushton & Ankney, 1996). Efforts in 

measuring brain size and intelligence were embedded in their times. Especially colonialist 

motives, and social interpretations of Darwin´s evolution theory influenced thinking about 

this topic in 19th and first half of the 20th century. Unfortunately, this led in some cases to 

efforts aiming to demonstrate race hierarchies among humans, and some skull “data” have 

been gathered under horrific circumstances. For example, some German researchers profited 

from the colonial oppression in Namibia (which ultimately led to a genocide) by receiving 

skulls from deceased Nama and Herero (Heller & Pesmen, 2020; Adhikari, 2008). However, 

most of this dark research history was concerned with hard differences between population 

groups, either in cranial capacity or intelligence (or alleged proxies), assuming a stable link 

between brain volume and intelligence across ethnicities. In this thesis only relative 

differences in the magnitude of the association of brain volume and intelligence are of 

interest. This means not asking if certain populations differ in their average brain volume and 

IQ, but if the link between brain volume and intelligence (i.e. higher brain volume relates to 

higher intelligence) is of the same magnitude in all humans, regardless of ethnicity or race. 

Ironically, this much less controversial question has gained little attention. In fact, so little that 

McDaniel (2005) could not investigate it due to lack of data. 

Research using categorization terms like ethnicity and race is challenging. Both terms 

are imprecise and arbitrarily defined and contain a high risk of being misunderstood (Heinz et 

al., 2014). Especially race is defined arbitrarily. It is not clear which phenotypic differences 

are relevant to separate human races or how many there are. If these terms are used in a 

context with a noticeable biological framing like brain volume and intelligence, biological 

inferences can be made without these concepts supporting any theoretically sound basis for 

such inferences. A related problem is the confusion with social variables like socioeconomic 

status (SES). Jensen & Sinha (1993) showed that people of color in the United States tend to 

have an increased prevalence of premature births. Premature birth is linked to lower brain 

volume (e.g. Bjuland et al., 2014), so the association between brain volume and intelligence 

under consideration of ethnicity could be confounded by SES. The effect of SES on brain 

volume and intelligence is an interesting research area of itself, but when considering 

ethnicity, we usually think of natural (i.e. genetic) variation. Reasons for why the association 

between brain volume and intelligence could vary naturally are sparse. One may argue that 

the only testable contender when using a bivariate correlational design is climate. The 

Bergmann´s rule (Bergmann, 1848) states that the body volume of animals tends to increase 

in colder climate zones. This leads to a lower body surface area to volume ratio, which helps 
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to save energy for keeping warm. The rule does apply for most mammals and birds, and has 

been observed in humans, too. If body volume increases in colder climates, brain volume 

could be enlarged, too, without being related to higher intelligence. That would lead to a 

variation in effect strength between brain volume and intelligence. Aspects of the Cold Winter 

Theory do argue in this direction, although more based on the notion that living in colder 

climates favored the development of higher intelligence (Lynn, 1991). In sum, reading the 

existing literature on ethnicity in the context of brain volume and intelligence produces two 

paradoxes: (1) Ethnicity is mentioned extensively in context with brain volume and 

intelligence, but research on the actual association between them considering ethnicity is 

sparse. Researchers mostly focused on hard differences in one variable while using the other 

for leverage. (2) Researchers try to capture biological, climatic, and genetic influences with 

social categories. 

Nevertheless, the topic of brain volume and intelligence is strongly connected with 

these types of questions, so I did not want to disregard them altogether. Keeping these 

considerations in mind, two goals were pursued: (1) review if data availability has improved 

and (2) explore if moderator analyses based on ethnicity and race conceptualizations can 

supply further insight into the association of brain volume and intelligence. The following 

preregistered hypothesis was devised:  

H8: Participant´s ethnicity has a significant effect on the association between in vivo brain 

volume and full-scale intelligence. 

Exploration: Researchers´ Degrees of Freedom 

Besides the potential effects of certain variables on the association between brain 

volume and intelligence, the methods to look into this topic may also affect outcomes. There 

are a lot of ways to study a phenomenon. In reference to brain volume and intelligence, we 

have seen above that researchers can use different intelligent scales or composite their own. 

They can operationalize and estimate brain volume in different ways, and they can compute 

their association with different types of correlations and regressions, controlling for potential 

confounds or not. They may also assemble the sample they like to test and choose what to 

report and what not. Each of those options and their combinations may affect the outcome. 

These choices have been termed researchers´ degrees of freedom (Simmons et al., 2011). The 

potential implications for the replicability of observed effects gained attention in the last 

decade (Wicherts et al., 2016). In the worst-case scenario opportune use of the possibilities to 

assemble data and analyze it can lead to increased rates of false positives (Ioannidis et al., 
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2005). Furthermore, effect sizes can be inflated (Simonsohn et al., 2014). As primary studies, 

meta-analyses are not protected against this kind of bias. There are vast possibilities to decide 

where to look for data, which to include and how to analyze it (Voracek et al., 2019). In the 

introduction I mentioned that all previous meta-analysts found different summary effects. 

Especially the difference between the Pietschnig et al. (2015), and the Gignac and Bates 

(2017) analyses is striking, since the same pool of data was used. The results differed between 

r = .24 and r = .39, depending on what parts of the data were analyzed, and how. Gignac and 

Bates (2017) decided to include a subsample of the data accumulated by Pietschnig et al. 

(2015) comprising healthy adult participants only. The upside is, we already know that it is no 

worst-case scenario, where the very existence of an effect is in question. Nevertheless, the 

differences, based on the same data set, are unsatisfactory. Where do they stem from? How 

can we decide what estimate is more accurate? The obvious way is to look for inconsistencies, 

errors, and implausibility in these analyses, evaluate their quality and decide which to rely on. 

There are two pitfalls with this approach. (1) Besides obvious mistakes, there are many 

reasonable ways to do the work. Comparing them can lead to long, tiresome and unfruitful 

discussions about which choices are most appropriate (Voracek et al., 2019). (2) There are 

sometimes no criteria on which basis to decide, because approaches are just equally 

appropriate or there is not enough supporting evidence for one or the other. This is the case 

for the previous three meta-analyses on the association between brain volume and 

intelligence. All are of high quality and justified their choices reasonably. For example, 

McDaniel (2005), and Gignac and Bates (2017) used psychometric meta-analytic methods 

(Hunter & Schmidt, 2015), whereas Pietschnig et al. (2015) used methods in tradition of 

Hedges and Olkin (1985). In the briefest possible way to compare both approaches, the 

former is primarily concerned with the underestimation of effects due to measurement errors, 

the latter provides a vast array of methods to detect bias and safeguard conclusions with 

sensitivity analyses. There are endless arguments for and against certain specifications, but in 

the end, both methods are accepted, validated approaches, their application was accurate, and 

a discussion will not yield a satisfactory result.  

Fortunately, Voracek et al. (2019) developed a method to resolve this problem. Their 

approach is a meta-analytic adaption of solutions for primary studies (Simonsohn et al., 2015; 

Steegen et al., 2016). The idea is to incorporate every reasonable choice made by meta-

analysts and show what consequence each decision has on the overall effect. With this 

information at hand, readers can see the range of reasonable estimates, as well as decide 

which parameters are relevant for themselves and ultimately, which point or range estimates 
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to prefer. The approach has not seen much use as it was developed only recently. The 

implementation is one of the main goals of this thesis. Due to the lack of experience using it 

and the lack of interpretation guidelines, results are considered exploratory (as preregistered). 

Specifics are denoted in section “Exploring the Multiverse”. 

 

Methods 

 

The following sections describe how the meta-analyses in this thesis were performed. 

The first three sections "Inclusion and Exclusion Criteria", "Information Sources", and "Data 

Collection" explain which study results (data) were searched for in order to update the data 

pool, where they were searched for, and how this information was processed into a data set. 

The following section "Summary Measures" describes which metrics were used as effect 

measures and which transformations were applied. The sections on "Methods of Synthesis" 

deal with the meta-analytical calculation methods. A number of different approaches have 

been chosen, each with its advantages and disadvantages. The main goal is to obtain a refined 

weighted average across study results and evaluate differences between them. In the 

following, the section "Moderators" deals with the statistical means to test the influence of the 

above-mentioned variables (e.g. age). The penultimate section "Dissemination Bias" is 

dedicated to methods for the detection of effect sizes inflations due to various sorts of bias. 

The last section "Exploring the Multiverse" deals with the above-mentioned researchers' 

degrees of freedom and their impact on the estimation of the association between brain 

volume and intelligence. 

Inclusion and Exclusion Criteria 

For the insurance of a reasonable scope of the meta-analyses the potentially eligible 

studies needed to meet eight inclusion criteria first. Since most of those criteria were 

consistent with the previously conducted meta-analyses a direct comparison of results is 

warranted. There were no deviations from the preregistered inclusion and exclusion criteria. 

In order to be included each respective study was required to (1) assess the association 

between in vivo brain volume and intelligence. However, it was not relevant whether this has 

been the primary goal of the study. (2) In vivo brain volume has had to be measured by either 

MRI or CT. Studies had to provide measurements of the whole brain volume (TBV or ICV). 

If both have been reported in the study, TBV took precedence over ICV. Partial 

measurements (of brain areas) were excluded. (3) Intelligence have had to be measured 

directly via standardized tests. Standardized meant that the test has been administered in a 



25 

 

standardized way, has been objectively scored and offered norms allowing comparisons to the 

norm sample. Only measurements of intellectual abilities were included, whereas constructs 

like social or emotional intelligence were excluded. (4) Effect sizes had to be based on 

individual participant data. Associations based on group means (e.g. from high and low IQ 

groups) were not eligible. (5) There were no population restrictions. Both clinical and non-

clinical participants across all ages and both sexes were included. There were (6) no 

restrictions on location, type of report or language either. Studies with abstracts or full texts in 

languages other than English and German were translated with the free version of the online 

translator DeepL (https://www.deepl.com/translator). This translator was used approximately 

15 times while screening Chinese studies, and dissertations in various languages. In the end 

all eligible studies included in subsequent meta-analyses have been written in English or 

German. 7) If more than one publication of the same study was found the alternative with the 

best proximity to the goals of this thesis and most extensive data display was chosen. In case 

no informed choice was possible, the earlier publication was included. The same procedure 

was applied to studies from different authors, who had analyzed the same data. For instance, 

if a study displayed effect sizes based on sex separated samples, it took preference over a 

study displaying an effect size based on a mixed sample, because this was advantageous for 

moderator analyses regarding sex. 8) In order to avoid a dependent data structure study effect 

sizes were coded separately by intelligence domain (full scale IQ, verbal IQ and performance 

IQ). If more than one effect size fitting the same domain were available, the one based on the 

most comprehensive domain assessment was chosen. All things being equal, verbal 

comprehension took priority over working memory and perceptual organization over 

processing speed. An integration of available dependent (domain specific) effect sizes in one 

data sheet was also achieved via robust variance estimation (RVE) meta-regression. More 

information about the RVE approach is displayed in the section of the same name.  

If a potentially eligible study displayed no effect size or enough information to 

compute one the authors were contacted. When necessary information was not obtainable the 

study was not considered further. Study authors reporting only that the association was non-

significant, were contacted, too. If no additional information could be obtained, the effect size 

was set to zero (Pigott, 2009, 408-409). A codebook delineating all coded variables and 

abbreviations is available at https://osf.io/75b8s/.  

https://www.deepl.com/translator
https://osf.io/75b8s/
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Information Sources 

The basis for the data update was the data set from Pietschnig et al. (2015). These data 

are openly accessible (supplemental material to their publication). In order to find any 

additional eligible studies online databases PubMed, ISI Web of Science, Scopus and Google 

Scholar were searched using the following search string:  

(brain size AND intelligen*) OR (brain volume AND intelligen*) OR (brain size AND IQ) 

OR (brain volume AND IQ). 

Some databases (especially for grey literature) did not support a search with all terms 

simultaneously via parentheses. In those cases, the search terms were entered individually. 

Sometimes the search string contained additional specifications (e.g. to exclude non-relevant 

collections from the search). Comprehensive information including the full search strings, 

dates, number of hits and extracted search files are available on https://osf.io/hfkmj/. Results 

from PubMed, ISI Web of Science and Scopus were exported and integrated in an Excel file 

for screening. Google Scholar did not offer this feature. The first 250 hits of the Google 

Scholar search were screened in a browser. Step 2 involved a forward citation search of all 

three published meta-analysis on the subject (McDaniel, 2005; Pietschnig et al., 2015; Gignac 

& Bates, 2017) using the Google Scholar feature. ISI Web of Science and Scopus provided 

similar functions but yielded together far less hits than Google Scholar. In step 3 an extensive 

search for grey literature was conducted. It contained a wide range of sources, covering (1) 

grey literature data bases, search engines and repositories, (2) sources dedicated to theses and 

dissertations, (3) conference materials, (4) registries for active studies and (5) contact to 

experts. A list of all resources is provided in the same document containing the search 

information (see above). Lastly, reference lists of all as eligible identified studies were 

searched for additional studies.  

Study selection involved a screening of both the study title and abstract. Full text from 

all studies passing the screening were obtained and checked for eligibility. 

Data Collection 

The above-mentioned openly accessible data sheets from Pietschnig et al. (2015) 

contain the following variables: study (first author), sample sex, sample type (healthy or 

clinical), test measure, year, sample age, male ratio, number of participants, effect size 

estimate (r), number of corrections (to the correlation coefficient), reported vs. personal 

communication, children/adolescents vs. adults and study goal. I adopted these variables and 

https://osf.io/hfkmj/
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their categories. In order to achieve the stated goals of this thesis I added the following 

variables: study ID, effect size ID, review coverage, the standard deviation of the sample age 

mean, ethnicity (coded categorially and as ratios), page of effect size in study, brain volume 

measurement tool (MRI or CT), type of whole brain volume measurement (TBV or ICV), IQ 

domain, sample standard deviation of the intelligence test and the corresponding population 

standard deviation, u-ratios, ratings concerning the number of tests used, number of 

dimensions assessed, alleged correlation with g, a combined rating of the correlation with g, 

and lastly the reliability of the intelligence test application as examined by the study authors. 

A coding book containing data sheets and a coding manual explaining all variables and their 

categories is available at https://osf.io/75b8s/.  

The whole process of study selection and data collection was conducted by me alone. I 

had minimal prior experience in conducting a systematic literature search for a meta-analysis 

and coding data, gained in a seminar during my master. Reliabilities of the study selection or 

data collection processes were not assessed. However, the coding of eligible studies was 

repeated one time to minimize potential coding errors. 

Summary Measures 

Sometimes studies display their results in different metrics and indices. Before meta-

analyzing study outcomes, they must be transformed to the same metric. All eligible studies 

considered in this thesis have used correlation or standardized regression coefficients (β) as 

their effect size metric. No conversions among effect size metrics were necessary. This was 

mostly because the inclusion and exclusion criteria specified effect sizes based on group 

means as not eligible. Effect sizes had to be based on individual participant data. Therefore, 

conversions from means and their standard deviations, t-tests or χ² values to correlation 

coefficients were not eligible for inclusion. In subsequent analyses, the effect sizes were 

transformed and/or corrected in some way to. These transformations and corrections were not 

applied due to different metrics but to benefit analyses mathematically and analytically. These 

procedures are described in the following sections. 

Methods of Synthesis 

The following sections describe the meta-analytical methods used to calculate a 

weighted average of the correlations of brain volume and intelligence reported in the 

literature. Another goal of the following first method was to investigate heterogeneity among 

these correlations, e.g. whether there were extreme correlations and whether these had a large 

https://osf.io/75b8s/
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influence on the weighted mean (summary effect). Different methods were applied, since each 

of them has certain advantages, which are even more useful in combination. The first two 

methods below are those used by previous meta-analysts. The main differences between the 

methods are their primary concerns (what they are particularly good at, what is the focus), the 

weighting of the individual study results, how heterogeneity in the data is estimated, and 

which transformations or corrections are usually applied. The main basis for all meta-

analytical methods were study results based on healthy samples. Data from clinical samples 

were used in an appropriate place for comparison with results from healthy samples, or for 

comparison with results from previous meta-analyses. Analyses for full-scale IQ were 

repeated for verbal and performance IQ. All analyses were performed using the statistical 

programming language R. "Packages" refer to functions written by users that enable or 

simplify certain analyses. 

The first method, a "Hedges and Olkin Meta-Analysis" has the advantage of providing 

a huge range of analysis tools, options and sensitivity analyses. It is a good start to get first 

results and to get to know the data thoroughly. The second method, "Psychometric Meta-

Analysis", is primarily concerned with the question of how measurement errors in the 

included studies could influence the summary effect. For this purpose, the individual 

correlations are "corrected" before synthesizing effect sizes. The third method "Robust 

Variance Estimation Meta-Regression" makes it possible to process dependent data in an 

analysis. What this means and why it was useful is briefly explained at the beginning of that 

section. The fourth method "Bayesian Meta-Analysis" is based on a slightly different 

conception of statistical testing than the previous models and was performed as an explorative 

complementary analysis. All methods used have in common that they were based on a 

random-effects model. This approach assumes that the true effect differs between studies. In 

contrast, the fixed-effect model assumes that all studies measure the same true effect and 

differ only in their respective sampling error. The random effects model was chosen, because 

I assumed that the included studies were representative of all studies assessing the association 

between in vivo brain volume and intellectual intelligence, and the goal was to make 

inferences about that larger universe of studies. The true effect size was expected to vary 

across studies. These criteria ruled out the use of fixed-effect (fixed true effect) and fixed-

effects (no generalization beyond included studies) models. Congenial to this choice, prior 

meta-analyses found considerable between-study variance.  

Appendix A lists all primary used programs, packages, and R codes. 
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Hedges and Olkin Meta-Analysis 

The first approach resembled the path taken by Pietschnig et al. (2015). A random 

effects meta-analysis in the tradition of Hedges and Olkin (1985) was conducted based on 

independent effect sizes.  

Fisher's r-to-z transformed correlation coefficients (Fisher, 1921) were used for the 

computation of results. These were obtained with the “ZCOR” command of the escalc 

function within the metafor package (Viechtbauer, 2010). This is a standard procedure 

accounting for the skewed distribution of the Pearson correlation. The transformation leads to 

a stabilization of variance. For ease of interpretation results were transformed back to the r 

metric prior to reporting. Some researchers criticized this procedure to introduce a substantial 

upward bias (see Hunter & Schmidt, 2015). Therefore, a sensitivity analysis with the 

“UCOR” (correlation corrected for its slight negative bias, see Olkin & Pratt, 1958) command 

was conducted. To calculate sample variances, the escalc function within the metafor package 

was used. Effect sizes were weighted according to study precision, defined as the inverse 

standard error: 1 / (n – 3). Precision of the effect size estimates was displayed with 95 % 

confidence intervals (CI). The Knapp-Hartung adjustment (Knapp & Hartung, 2003; Sidik & 

Jonkman, 2002) was used, as generally advised when using random-effects models (Inhout et 

al., 2014; Jackson et al., 2017). With this adjustment, the CIs are computed based on a t-

distribution, not a z-distribution. This leads to more appropriate and usually wider CIs. 

Because the t-distribution works with k – 1 degrees of freedom, the differences between CIs 

based on z- or t-distributions are expected to be minimal when the number of studies is large.  

Since the choice of a random-effects model assumes that there is between-study 

heterogeneity, this must be taken into account in the calculation of the summary effect. For 

this purpose, a τ²-estimator is used. As such, the restricted maximum likelihood estimator 

(REML) was utilized. The Paule-Mandel estimator (PM) was utilized for a sensitivity 

analysis. Those two estimators were chosen, because the data from Pietschnig et al. (2015) 

had properties concerning the number of studies and differences of study sizes, which can 

favor either estimator. The REML is regarded a solid choice in a wide range of contexts. It is 

advantageous when large studies are included (Viechtbauer et al., 2005) and when study sizes 

differ substantially (Langan et al., 2018). Both properties apply to the Pietschnig et al. (2015) 

data. The PM estimator can outperform the REML estimator, if the number of studies is large 

and heterogeneity substantial (Veroniki et al., 2016). This applies to the data, too. Therefore, 

both were used.  
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Heterogeneity was described by reporting Cochran´s Q, τ, τ², I² and the prediction 

interval. Cochran´s Q is a robustness test that tells us if heterogeneity is present or not. I² 

describes the proportion of variance in the observed effects that is due to variance in true 

effects (Borenstein et al., 2017). The prediction interval displays the absolute variation of true 

effects. A normal quantile-quantile (QQ) plot showed if the residual heterogeneity in true 

effects was normally distributed (Wang & Bushman, 1998). To enquire the contribution of 

each study to the overall heterogeneity, a Baujat plot (Baujat et al., 2002) was used. A leave-

one-out analysis was conducted to evaluate influences of individual studies on the overall 

effect size. All possible subsets of studies were examined with a GOSH plot (Olkin et al., 

2012) to explore potential subgroup effects. To assess potential distorting effects of outliers, 

nine outlier evaluation statistics described by Viechtbauer and Cheung (2010) were used via 

the “influence” command in metafor. If distorting effects of individual effect sizes occurred, 

the possible implications of the presence of outliers were discussed, but no numeric 

alterations applied. In the preregistration I have explained how I would handle missing data. 

No situation arose in which dedicated methods were used. The data were analyzed as they 

were. Missing data were considered to be missing at random (MAR). 

Psychometric Meta-Analysis 

The second approach resembled the paths taken by McDaniel (2005), and Gignac and 

Bates (2017). A random-effects psychometric meta-analysis (Hunter & Schmidt, 2015) was 

conducted. This type of meta-analysis originated in the area of personnel selection (Schmidt, 

2015), a field with some instruments of low reliability and unbalanced samples. As Hunter 

and Schmidt (2015) have demonstrated several measurement errors, also called “artifacts”, 

can have an impact on results. For example, if an instrument of low reliability was used in a 

study, results will be attenuated. The main difference to the above-mentioned approach is the 

desire to correct for these potential measurement errors. In my view, a good way to think 

about these corrections is a simulation, asking how results could have looked like if studies 

have had used perfect measurement instruments on perfectly balanced samples under the 

assumption of perfect construct validity. 

There are 4*2 corrections possible (Hunter & Schmidt, 2015). In this thesis only a 

correction for range departure in intelligence measures was applied. As stated in the section 

“Brain Volume”, MRI measurement properties are excellent, especially in reference to 

psychological standards. For the most prominent “artifacts” unreliability and range departure, 

there was not much to correct. Reliabilities are usually very high and near to 1 in studies using 
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recent automatic extraction software. Range departure could not be corrected since there are 

no firmly established standard deviations of brain volume means for all populations (e.g. for 

every age group). 

Reliability of intelligence measures is usually also quite high but does fluctuate more 

between different intelligence tests or versions. It could have been worth the effort to try to 

correct for attenuation due to unreliability, but almost no study had reported reliability 

coefficients from their measurements. Previous psychometric meta-analysts have not done 

this either (McDaniel, 2005; Gignac & Bates, 2017). McDaniel has not done it as he thought 

the usually high reliabilities leave not much to correct for. Gignac and Bates have not wanted 

to use reliability coefficients reported in test manuals, because “reliability is a property of test 

scores derived from a particular sample, rather than a property of a test” (Gignac & Bates, 

2017, 27), and data loss would have been considerable. I would like to state further that the 

moderator analysis in reference to correlation of applied intelligence measurement with g 

does already give us some idea about how reliability might have impacted results. Brief tests 

rated “fair” have lower reliabilities than tests rated “excellent”. Their reliability, for example a 

full Wechsler scale, is near to 1. Nevertheless, there are several reasons why a correction 

could have been worthwhile. (1) Tests for adults usually have higher reliabilities than for 

children, even if this difference is very subtle. (2) Domain tests were not rated or corrected 

for, which makes their interpretation less informed than those of full-scale IQ tests. (3) The 

rating procedure does only show differences in correlation magnitude, but not to what extent 

differences were due to artifacts or the correlation with g. To conclude, there are some 

arguments to correct unreliability, however in light of the resulting data loss due to missing 

information the benefits seem doubtful. 

A correction for direct range departure (concerning the intelligence measures) was 

applied to effect sizes and their standard errors. Some samples did deviate from the normative 

standard deviation of test scores (usually SD = 15). In case the range was restricted, effects 

may have been attenuated. If the range was enhanced effects may have been overestimated. 

This is reflected in u-ratios, which were computed by dividing the sample standard deviation 

by the population standard deviation. Ratios greater than one represent range enhancement, 

ratios lower than 1 range restriction. In order to obtain corrected correlations, the Case II 

formula (Thorndike, 1949) was used. There are some mathematically identical variations of 

this formula. I used the R package psychmeta (Dahlke & Wiernik, 2019) which applied the 

following formula for univariate direct range departure: 
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This version of the formula can correct for range departure in both variables 

simultaneously. Since range departure was only considered in one variable, the u-ratio of the 

other is set to 1 (no correction).  

To estimate the range departure corrected correlation standard errors the formula from 

Kelley (1923) was used. The formula was: 

                      

where r is the observed correlation, R the corrected correlation and n the sample size 

(Duan & Dunlap, 1997, 256). Information regarding range departure was available in Gignac 

and Bates (2017) for healthy adult samples from the Pietschnig et al. (2015) data. I adopted 

this information in cases where they had obtained it via personal communication. 

Some meta-analytic computational features were different from the first approach. The 

correlation coefficients were corrected for their slight negative bias via the “UCOR” 

command in metafor. Studies (effect sizes) were weighted according to their number of 

participants. To estimate between-study heterogeneity, the Hunter & Schmidt estimator (HS) 

was used. The HS method to estimate τ² is the standard estimator to be used in psychometric 

meta-analyses. It has a downward bias (Viechtbauer, 2005; Hunter & Schmidt, 2015). While 

results of both approaches to assess heterogeneity were compared, the parameters derived 

from the REML and PM estimators were considered less biased in that regard. 

Robust Variance Estimation Meta-Regression 

In a third approach, studies were able to provide more than one effect size based on the 

same participants within one intelligence domain. Data dependencies were modelled using 

RVE meta-regression (Hedges et al., 2010). For example, when a study reported one 

correlation between in vivo brain volume and the score of the VCI of a Wechsler test, and 

another correlation based on the WMI score, both were integrated in the verbal intelligence 

data sheet. In the other meta-analytic approaches only one correlation has been coded to retain 

data independence. Another cause of dependence were multiple effect sizes from the same 

participants at different times (cohort waves). Both types primarily concerned the verbal and 
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performance domains. The use of RVE meta-regression is considered best practice in meta-

analyses dealing with dependent effect sizes (Pigott & Polanin, 2020). 

One strength of the approach is that it is agnostic to the type of dependence in the data 

(Tanner-Smith et al., 2016). It can be used to model correlated effects and hierarchical 

dependence. In order to better illustrate what correlated effects are it should be recalled that 

persons who do well in one type of intelligence tests tend to do well in others. Thus, their 

scores in e.g. verbal comprehension and vocabulary tests will correlate. Intelligence is a good 

example for hierarchical dependence, too. We have conceptualized intelligence hierarchically 

with distinct levels of domains. If we would desire to analyze full-scale, verbal, and 

performance IQ together, full-scale IQ would be hierarchically higher, and some variance of 

lower level test scores would be part of the full-scale IQ scores. It is also useful to incorporate 

hidden data dependency. Researchers favor a certain style in conducting studies. Study 

outputs from the same researchers may thus be more similar to each other than expected when 

outputs from different researchers are compared. 

For the estimation of summary effects between brain volume and intelligence I left the 

data sheets separated by domain. Combining data in one sheet was only necessary to evaluate 

if correlations differed statistically significant by domain. Although both types of data 

dependency were present, I decided to use the formula for correlated effects to determine 

study weights (Tanner-Smith et al., 2016). The choice between a hierarchical- and correlated 

effects model only affects efficiency, not inference. A correlated effects model was 

considered more efficient, because data dependence was primarily caused by correlations 

between participants´ domain intelligence scores from different (sub-)domains. The 

heterogeneity statistic τ² (REML) and the weighting statistic ω² are calculated via simplistic 

methods of moments estimators and are primarily needed for the estimation of inverse 

variance weights (Tanner-Smith et al., 2016). These statistics were not interpreted. Fisher’s z-

transformed correlation coefficients were used. 

Other methods for modeling dependent effect sizes, full multivariate methods and 

multilevel meta-analyses, could not have been used. Full multivariate methods require 

extensive knowledge about the relation between variables, e.g. through a correlation matrix 

reported in a study. These were not provided in many studies. The use of those methods 

would have thus led to substantial data loss. RVE meta-regression leads to close 

approximations of full multivariate methods when the number of studies is large (Hedges, 

2019). Multilevel meta-analyses, called three-level meta-analyses also, were not appropriate, 

since the same participants provided data for multiple effect sizes within the same intelligence 
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domain (Tanner-Smith et al., 2016). This violated the model assumption of independent 

sampling errors within clusters (domains). 

Bayesian Meta-Analysis 

In order to complement the frequentist meta-analytic approaches displayed above a 

Bayesian meta-analyses was conducted via the bayesmeta package (Röver, 2020). The debate 

about the merits of Bayesian over frequentist inference received a new boost with the advent 

of the replication crisis in psychology (e.g. Wagenmakers et al., 2018). The most important 

difference in the context of this master thesis between these two approaches is that a Bayesian 

framework allows the inclusion of previous knowledge or assumptions. Since the meta-

analysis of Pietschnig et al. (2015) at the latest, we know that brain volume and intelligence 

correlate. We also know that the effect size is approximately in the range of r = .20 to r = .40. 

We can incorporate this knowledge in a Bayesian meta-analysis and compare the results to 

other approaches. The goals were thus (1) to obtain an additional overall estimate 

incorporating prior information, (2) to define the probability that the estimate is below or 

above a certain value, and (3) to explore the possibilities of using Bayesian inference in 

addition to the used frequentist approaches. In contrast to the other approaches, the Bayesian 

meta-analysis was an exploratory endeavor.  

When applying a Bayesian meta-analysis is it important to specify what kind of prior 

information or assumptions were used before fitting the model. Otherwise, we could play 

around with specifications and report the one that flatters our analytical skills the most. Prior 

specifications for the summary effect were μ∼N(0.3, 1) with sensitivity analyses μ∼N(0.2, 1) 

and μ∼N(0.4, 1). The values of 0.2, 0.3 and 0.4 represent the range of summary effects 

observed in previous meta-analyses. There was no reason to doubt that the summary effects 

would be normally distributed. Specifications concerning heterogeneity were τ∼HC(0, 0.2) 

with sensitivity analysis τ∼HC(0, 0.5). HC is an abbreviation for the Half-Cauchy 

distribution, which was chosen due to its favorable properties examining heterogeneity in a 

meta-analysis (Harrer et al., 2019). The values 0.2 and 0.5 for τ represent moderate to high 

heterogeneity among effect sizes not explained by sampling error. These values were also 

derived from previous meta-analyses. Fisher´s z-transformed correlation coefficients were 

used. Shortest credible intervals served as indicators of precision. In the preregistration I 

announced that I would like to conduct the Bayesian meta-analysis on the basis of the newly 

accumulated studies only. Reconsidering, there was no reason to limit the analysis to new 

data. A strong point of Bayesian methods is the possibility to update analyses as soon as new 
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data are available. Analyses were based on the entire data set separated by sample type and 

included all three intelligence domains. 

Dissemination Bias 

Dissemination bias refers to the problem that not all studies or study outcomes are 

published, equally accessible or visible. As with any missing data problem, if studies easily 

accessible and visible differ from unpublished or hidden ones systematically for other reasons 

than study quality, results of systematic reviews could be biased (Mueller et al., 2016). 

Dissemination bias can arise on the level of whole studies (publication bias), or individual 

outcomes (outcome bias) that were not reported. There are a lot of reasons, why results may 

not be equally accessible. Some results may have been not reported, because statistical 

significance has not reached a certain threshold, the magnitude or direction of an effect was 

not considered interesting, results differed from expectations from funding parties, study 

authors have not published in a recognized journal due to various reasons, or current 

preferences and trends drove reporting in a certain direction (see Vevea et al., 2019). 

I tried to tackle this problem in various ways. (1) Dissemination bias was avoided 

through an extensive search for grey literature and contact to authors and experts. (2) In-depth 

use of statistical methods allowed the detection and the assessment of the potential impact of 

dissemination bias. All these procedures were executed based on the meta-analytic approach 

in tradition of Hedges and Olkin (1985). This approach offers by far the widest (readily 

available) arsenal of methods to examine dissemination bias. The use of several methods is 

necessary because of the different potential causes of dissemination bias, and considered to 

best practice (Carter et al., 2019). The focus of these analyses was on published results based 

on healthy samples. Fisher´s r-to-z transformed correlation coefficients were used, except for 

analyses based on p-values. These utilized raw correlation coefficients, since this does not 

assume researchers´ p-values were derived from analyses using z-transformed correlations. 

All analyses were repeated for full-scale, verbal, and performance IQ data. 

In previous meta-analyses researchers have reached different conclusions about the 

extent and impact of dissemination bias in the data. Whereas McDaniel (2005) has merely 

expressed concerns, Pietschnig et al. (2015) have found substantial bias leading to an 

overestimation of summary effects. Gignac and Bates (2017) have found no substantial bias in 

a healthy adult subset of the data. 

Dissemination bias analyses started with a power-enhanced funnel plot (sunset plot, 

Kossmeier et al., 2020b), created with the R package metaviz (Kossmeier et al., 2020a). 
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Additional to basic funnel plot features e.g. the distribution of effect sizes in regard to 

summary effect and p-values, the sunset plot displayed the median power of all studies, the 

true effect size necessary such that the median power of the studies would have been 33% or 

66%, results of a test of excess significance (Ioannidis & Trikalinos, 2007), and the R-Index 

for expected replicability (Schimmack, 2016). It provided information on whether low-

powered significant studies were overrepresented, if studies generally were too successful in 

finding statistically significant results compared to expectations based on power, and about 

the replicability of the results. The x-axis of the sunset plot was set to display the Pearson 

correlation scale. The y-axis was set to display the standard error of effect sizes. Statistical 

power was calculated in reference to the meta-analytic summary effect obtained through the 

Hedges and Olkin meta-analysis. 

As the next step, two versions of the Sterne and Egger regression (Sterne & Egger, 

2005) and the trim-and-fill method (Duval & Tweedie, 2000) were applied. The Sterne and 

Egger regression showed, if funnel plot asymmetry was present, meaning if more studies 

reported positive effects compared to negative effects than expected by statistical probability. 

A weighted regression with a multiplicative dispersion term and a random-effects meta-

regression model were computed to check if conclusions differed depending on the regression 

approach. In both cases, the regression analysis was based on the standard error of effect 

sizes. A one-tailed α level of .10 was used. Applying the trim-and-fill method allowed to 

visualize “missing” studies due to asymmetry. The left side of the funnel plot, the area of 

negative correlations, was of interest because researchers have more incentive to report 

positive correlations between brain volume and intelligence. Negative correlations are 

counterintuitive and may not have been reported. Recomputing the summary effect including 

these studies gave an impression about how the summary effect may have been affected by 

this selection mechanism. Both procedures were displayed in another, contour-enhanced 

funnel-plot to avoid overcrowding information in the sunset plot. I used the metafor for the 

Sterne and Egger regression, and trim-and-fill analyses. 

In order to investigate the possibility of p-hacking, p-curve (Simonsohn et al., 2014), 

p-uniform (van Assen et al., 2015) and p-uniform* (van Aert & van Assen, 2018) were 

applied. The p-curve analysis was performed using the website www.p-curve.com. For p-

uniform and p-uniform* I used the package puniform (van Aert, 2020). The term p-hacking 

describes a form of strategic research behavior. Results which are statistically significant 

might be easier to publish, gain more attention and affirm researchers´ interests or theories. In 

order to obtain significant results researchers could intentionally or unknowingly focus on 

http://www.p-curve.com/
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analyses producing them while discarding statistically insignificant results. When effect sizes 

included in a meta-analysis have been influenced by this type of behavior, overall results may 

have been biased. The method of p-curve assumes, that if the summary effect estimate indeed 

reflects a true effect, the distribution of p-values must be right-skewed (more very small p-

values). If the distribution is left-skewed, meaning there are more barely significant p-values, 

some researchers could have looked for significant effect sizes to report. P-uniform looks for 

similar p-value patterns with different algorithms. The drawback of both methods are their 

limitations in working with heterogeneous data (van Aert et al., 2016; McShane et al., 2016). 

P-uniform* is designed to make it more robust when model assumptions, such as no 

heterogeneity in the data, are not met. Comparison with selection model approaches showed 

enhanced performance in case of heterogeneity (van Aert & van Assen, 2018). P-uniform* is 

a relatively new method and needs further evaluation. Therefore, methods were used that have 

proven their effectiveness in case of heterogeneity. Two further selection model approaches 

were applied. The first approach was based on p-values (Vevea & Hedges, 1995), whereas the 

second one on the standard error of the effect sizes (Copas & Shi, 2001). With the use of 

selection model approaches researchers can specify different scenarios in which effect sizes 

may have been suppressed, and compute adjusted estimates in reference to these 

specifications (Hedges & Vevea, 2005). I set the α cut-offs for the p-value based analytic 

model from Vevea and Hedges (1995) to .010, .025, .050, .100, .250, .500, and .750 

representing highly significant, the positive tail in a two-tailed test, barely significant, 

potential trends to significance and statistically insignificant thresholds. I used the weightr 

package (Coburn & Vevea, 2019) for this latter approach, and metasens (Schwarzer et al., 

2020) to conduct the Copas and Shi analysis. 

Two cumulative meta-analyses conducted, too. In one case, study results were sorted 

by publication year, in the other case by sample size. Cumulative meta-analyses help to 

examine the stability of the meta-analytic results in relation to one variable. The former was 

conducted to identify a possible time trend. Pietschnig et al. (2015) observed declining sizes 

from early studies to recent ones. The latter was conducted to determine if study precision 

(size) is related to the magnitude of the effect size estimate, a potential sign of publication 

bias. 

Moderator analyses tested possible effects of dissemination bias related variables. A 

meta-regression with the type of report (reported in a journal or grey literature or through 

personal communication) as the predictor was conducted to examine effects of publication 

choices on effect size estimates. Lastly, a meta-regression with publication year as the 
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predictor served as an addition to the cumulative meta-analyses ordered according to 

publication year. 

Moderators 

The correlation of brain volume and intelligence may have been influenced by several 

factors. As explained in the chapter "Hypotheses", the correlation may have changed with the 

age, sex or health-status of the subjects. A variable that influences a correlation is called a 

moderator variable. In the above-mentioned section can be seen which potential moderators 

were investigated. This section explains the methods used to do this. Categorical variables 

(variables with two or more levels) were investigated mainly with subgroup analyses, 

continuous variables (e.g. mean age) with meta-regressions. I used the metafor package for all 

following analyses. 

Subgroup Analysis 

Potential categorial moderators were assessed with a series of mixed effects subgroup 

analyses. These are called mixed effects analyses, because the within subgroup estimates were 

based on random-effects and the between group analyses were based on fixed-effect analyses. 

This is the crucial difference between subgroup analyses and meta-regressions (see below). In 

the former, the possibility is conceded that the heterogeneity patterns between the groups 

analyzed differ. For the latter, it is assumed that they are identical. The following variables 

were incorporated in subgroup analyses according to hypotheses: sample type (healthy or 

clinical), age (children or adults), sex (females or males), ethnicity (White, African, 

Hispanic/Latin, Asian). Other subgroup analyses were conducted for sensitivity or bias 

checks: type of report (published in a peer-reviewed journal or grey literature or personal 

communication), type of brain volume measurement (TBV or ICV). Analyses were mostly 

based on healthy samples. Data from clinical samples was incorporated to test hypothesis 3. 

Meta-Regression 

Univariate. Continuous moderators were assessed with weighted linear meta-

regressions. Tested moderators were the proportion of males in samples, the publication year 

of studies, and the correlation of applied intelligence measurement with g. Defined as the 

percentage of male participants in a sample, the male ratio analysis complemented the 

subgroup analysis of sex categorially coded. The year of publication was tested as a predictor 

in order to identify a decline effect found in a previous meta-analysis (Pietschnig et al., 2015). 
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It complemented the cumulative meta-analysis ordered by publication year (see section 

“Dissemination Bias”). To test hypothesis 2 an RVE meta-regression approach was used.  

Multiple. First, a potential interaction effect of age and sex was tested. Second, a 

theory-guided hierarchical weighted multiple mixed effects meta-regression included a 

combined assessment of potential moderators with reference to overall model fit. This way it 

was possible to examine potential moderators in one model, allowing comparison of effects. 

Multicollinearity was checked with an intercorrelation matrix. Noticeable correlations were 

assessed regarding meaning, possible influence and solutions. The presence of 

multicollinearity was formally defined as variance inflation factors (VIF) being above 4. 

Predictors with largest VIFs were dropped until all VIFs were below 4. The following 

predictors were included (in that order): correlation of applied intelligence measurement with 

g, study year, type of report (block 1); male ratio, ethnicity, mean age (block 2); study goal, 

number of included covariates in study (block 3). A permutation test, conducted with the 

“permutest” function within the metafor package, assessed the robustness of the final model. 

The whole procedure was repeated based on a subset excluding studies which only reported 

ICV. Results were compared, especially the effect on the predictor age. An age sex interaction 

effect was tested as well. 

Exploring the Multiverse 

This section describes methods used to explore the impact of specification choices 

made by previous meta-analysts including my own. Reasons why this was necessary are listed 

in section “Exploration: Researchers´ Degrees of Freedom”. In the following three methods 

are discussed: combinatorial meta-analysis, multiverse analysis and specification curve 

analysis. The context in which they have been developed is briefly described, as how they can 

be applied to a meta-analytic context. I followed the guide by Voracek et al. (2019) and used 

their openly accessible R code in an adapted form. This code is available at 

https://osf.io/nkv46/.  

Combinatorial Meta-Analysis 

Combinatorial meta-analysis (Olkin et al., 2012) is a brute-force method aiming at 

analyzing all possible subsets of available data. The goal is to provide a sensitivity analysis 

asking if summary effects are substantially inflated by varying combinations of data subsets. 

Combinatorial meta-analyses can be regarded as sweeping variants of leave-one-out analyses. 

Leave-one-out analyses help to evaluate if a particular study has an inflating effect. 

https://osf.io/nkv46/
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Combinatorial meta-analyses evaluate if there are study subsets yielding substantially 

different results. Two peculiarities of this approach must be noted. First, this method does 

compute all possible subsets, meaning that there will be (lots of) implausible combinations, 

too. Secondly, it can be computed for only one meta-analytical method at a time. This means 

that the method focuses on data, not analysis procedures.   

The total amount of possible subsets is defined as 2^k-1. In the case of our full-scale 

IQ data based on healthy samples, there were 2122-1 possible subsets of data. An 

inconceivably high number. Therefore, a random sample of 100,000 subsets was analyzed. I 

used the code by Voracek et al. (2019) which is designed to undersample intermediate subset 

sizes and oversample extreme subset sizes (containing either very few or most of the available 

studies). Under- and oversampling lead to a more rigid stress test. This is the only 

computational difference to the GOSH plots computed with the metafor package (see section 

“Hedges and Olkin Meta-Analysis”). The latter just fits 100,000 models based on random 

subsets. 

Multiverse & Specification-Curve Analyses 

What if we do not want to incorporate every possible subset, but reasonable ones 

only? If we believe, for example, that age plays a role in the relationship between brain 

volume and intelligence, then we will hardly construct the subset we want to analyze 

randomly, but in accordance to our intentions, believes or interests. Gignac and Bates (2017) 

have focused their analysis on adult samples. However, McDaniel (2005), and Pietschnig et 

al. (2015) have taken children into account as well. In 2016, Steegen et al. have introduced a 

well named method to look into the influence of specific data choices in primary studies. A 

multiverse analysis includes not only data construction options, but also data cleaning 

processes, such as handling outliers and missing data. Results from all possible combinations 

of these reasonable specifications are computed. The output is usually a histogram showing 

the distribution of p-values according to specifications. If the distribution of p-values is right-

skewed, meaning most specification combinations yield highly significant results, we can 

assume with great confidence that a found effect is not the result of inflation based on data 

decisions.  

Not only that data choices are important, but there are many ways how to analyze it, 

too. Specification-curve (Simonsohn et al., 2015) is a method originally focusing on analysis 

specifications. The intention is the same as in multiverse analysis with a focus on analytical 

decisions, for example which statistical methods and corrections are chosen. Graphical 
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displays show how effects are influenced by each analysis combination. Specification-curve 

also adds inferential statistical procedures to further examine the results. This is not typically 

done in multiverse analyses, where inference relies on visual interpretation of histograms. The 

next section explains how these methods developed for primary studies can be applied to 

meta-analysis. 

Specifications in Meta-Analysis 

Data and analysis decisions also influence meta-analyses. A good example comes 

from previous meta-analysts working on brain volume and IQ. Gignac and Bates (2017) have 

reanalyzed the data which Pietschnig et al. (2015) had accumulated, and by choosing different 

data construction, data cleaning and analysis procedures, they have yielded a difference in 

results which has not been trivial in size (r = .39; r = .24). If such differences can occur when 

using the same data set, meta-analysts who collect data individually may obtain even more 

pronounced differences in results.   

Voracek et al. (2019) have transferred the multiverse, and specification curve analysis 

to the meta-analytic context. The first step is to identify reasonable data and analysis 

specifications which might influence results. Following their title “Which data to meta-

analyze, and how?”, Voracek et al. (2019) have termed data specifications “which” factors 

and analysis specifications “how” factors. The first step of their approach is identical for 

multiverse and specification curve analysis, as all (data and analysis) specifications can be 

included in both approaches. The integration of specifications in the R-code provided by 

Voracek et al. (2019) yields an Excel sheet with all possible combinations of specifications 

and their results. These data are used to create graphical outputs. Differences between 

multiverse and specification curve analyses are the different graphical outputs to be used, and 

that specification curve has inferential statistics aiding interpretation. 

When performing a specification analysis, it must be decided which specifications will 

be considered. These decisions are degrees of freedom and must be substantiated. I 

concentrated on decisions of previous meta-analysts, including my own. I think these 

specifications are a good representation of reasonable choices to conduct a meta-analysis on 

the topic, leaving not much else to do. In order to be transparent, I also report which 

specifications were not included and explain why. 

The following data or “which” factors were considered: (1) age group (adults only, 

children/adolescents, or both combined), (2) sample type (healthy samples only, clinical 

samples, or both combined) and (3) rating groups according to the correlation of the applied 
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IQ test with g (“abbreviated”, “full”, or all IQ tests). All incorporated data specifications made 

up for 3³ = 27 combinations. Verbal and performance IQ analyses did not include the rating 

factor. Therefore 3² = 9 factors applied to verbal and performance IQ analyses. A coding 

approach by Gignac and Bates (2017) was not considered. They have chosen to code effect 

sizes preferably based on samples not separated in males and females. McDaniel (2005), and 

Pietschnig et al. (2015) have preferably coded effect sizes based on sex-separated samples. 

This coding choice was also applied in this thesis. Gignac and Bates (2017) explained their 

choice by saying that they were not interested in differences between the sexes. There are no 

apparent reasons why this could have an effect on results. Additionally, the number of 

affected correlations would have been small (less than 20%). Another factor which was not 

included was the handling of outliers by Gignac and Bates (2017). They have chosen to 

Winsorize sample sizes of studies identified as outliers. There was no outlier with substantial 

influence on summary effect in this thesis according to results from leave-one-out analyses. 

Furthermore, McDaniel (2005) has not included effect sizes based on estimates from brief 

intelligence tests, like the National Adult Reading Test (NART; Nelson, 1982). Potential 

effects are already considered in the correlation with g moderator analysis, so including this 

specification was unnecessary. McDaniel (2005) has also imputed missing standard deviations 

of intelligence scores with the mean range restriction in the data. This was infeasible to do 

with the updated data, because of the vastly different sample sizes easily inflating results. 

Nowadays, there are refined methods for imputing that kind of information, based on artifact 

distributions. Only about 50% of all studies contained information on range departure. 

Especially the lack of this information in some large-scale studies weighted heavily (e.g. 

Takeuchi et al., 2018; Cox et al., 2019; Mathias et al., 2020). Imputations based on a rather 

poorly informed distribution with very large differences in sample sizes did not seem 

appropriate. 

The following meta-analytic analysis, or “how” factors were included: (1) The effect 

size to be used in analysis (r-to-z transformed coefficients, correlations corrected for their 

slight negative bias, correlations corrected for range departure, or raw correlation coefficients) 

and (2) the meta-analytic method of synthesis (the Hedges and Olkin method with the REML 

estimator and inverse variance weights, the Hunter and Schmidt method with the HS 

estimator and sample sizes as weights, or an unweighted approach resembling the numerous 

narrative reviews). The same “how” factors were applied to verbal and performance analyses. 

Not included were the RVE meta-regression and Bayesian approaches used in this thesis. 

Results of both approaches were highly similar to those obtained by the Hedges-Olkin 
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approach. Analysis factors made up for 3*4 = 12 combinations. Together, data and analysis 

specification made up for 27*12 = 324 ways to construct and analyze the data. For verbal and 

performance IQ there were 9*12 = 108 combinations. Analyses were restricted to unique 

combinations with at least two studies. 

 

Results 

Study Selection 

Efforts to update the data yielded 48 eligible citations, comprising 116 independent 

effect sizes (68 effect sizes based on full-scale IQ, 26 on verbal IQ and 22 on performance 

IQ). The total number of individual participants from newly accumulated studies was 21071 

for full-scale IQ, 2545 for verbal IQ and 2265 for performance IQ. The number of total 

individual participants tripled due to the inclusion of studies based on very large data sets 

compared to the Pietschnig et al. (2015) data. Although my search was limited to studies 

published 2012 or later, I found some earlier eligible studies. The number and sample sizes 

were low, indicating that Pietschnig et al. (2015) covered the previous time frame 

comprehensively. My search included results until May 2020. 

Data for the RVE meta-regressions (modeling data dependence) comprised more 

effect sizes than stated above. Characteristics of these additional effect sizes are discussed 

below in section “Robust Variance Estimation Meta-Regression”. 

The study selection process is illustrated in Figure 1. Considering the total number of 

screened citations and the ratio of this number and the overall yield, the process was 

characterized by high recall and low precision. This was true for standard data base searches, 

as well as for grey literature.  

I applied some minor changes to the Pietschnig et al. (2015) data set. Two effect sizes 

concerning verbal IQ associated with Egan et al. (1994) were deleted. The same correlations 

were already included with the Egan et al. (1995) results. Furthermore, one effect size (also 

verbal IQ) associated with Raz et al. (1995) was deleted. I could not find the effect size in the 

paper and suspected it to be a coding error (r = .9). Five effect sizes from Witelson et al. 

(2006) were also excluded as brain volume was evaluated postmortem. One effect size 

associated with Shapleske (2002) was deleted. It was based on four participants. Variances 

cannot be computed for sample sizes below five. 

As part of the strategy to search for grey literature, I contacted experts, authors of 

studies with good proximity to the here posed questions but lacking necessary information, 
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and authors of eligible studies missing information for further analyses (e.g. studies reporting 

an effect as not significant). In my e-mails I asked for that specific information and/or general 

advice on further relevant studies, while attaching a reference list with already included 

studies and a data sharing agreement. 

Figure 1 

 

Note. Template retrieved from  www.prisma-statement.org; see Moher et al. (2009).  
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The data sharing agreement was intended as a convenience option for busy researchers, who 

were willing to provide data so I could extract information on my own. 26% of my e-mails 

were answered. I am most grateful to all responders in a busy time. I would like to thank Wai 

Kwong Tang from Hong Kong University to make the effort to look for results associated 

with Lin (2016). Unfortunately, the obtained correlations could not be used, because they 

were based on GM-ICV ratios. I also would like to thank Birgitte Fagerlund from 

Copenhagen University for six eligible correlations associated with Jensen et al. (2019) 

provided via e-mail (October 10, 2020). 

Study Characteristics 

A list of all studies considered in this thesis is provided in Table 1. It contains 434 

effect sizes in total. These include dependent effect sizes used in the RVE approach. The 

variables displayed are a selection intended to provide an overview. Data with all variables 

are available at https://osf.io/y6msp/  

Results of Individual Studies 

Figure 2 shows a rainforest plot (Schild & Voracek, 2015) based on full-scale IQ data 

from healthy samples. Studies are ordered by publication year from early to recent studies. 

The rainforest plot shows a consistent pattern of positive associations between in vivo brain 

volume and full-scale IQ. From approximately 2010 the “raindrops” gets thicker in color and 

diminish in width indicating growing sample sizes. Results from the most recent studies come 

from large samples. Figure 3 shows results for full-scale IQ data from clinical samples. The 

pattern of effect sizes is not as consistent as for healthy samples. The majority of studies 

yielded positive associations between in vivo brain volume and full-scale IQ, too, but with 

more variation in effect sizes. There is also an increased number of negative correlations. 

Rainforest plots for verbal and performance IQ show comparable patterns and are available in 

Appendix B.  

https://osf.io/y6msp/


Table 1                                                                                                                                                                                                                     

Details of Included Studies 

46 

 

Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Yeo et al. 1987 2 patients 38.4 34.00% reported FSIQ CT WAIS 41 .07 

Yeo et al. 1987 2 patients 38.4 34.00% reported performance CT WAIS 41 .06 

Yeo et al. 1987 2 patients 38.4 34.00% reported verbal CT WAIS 41 .12 

Willerman et al. 1991 1 healthy 18.9 0.00% reported FSIQ MRI WAIS-R 20 .33 

Willerman et al. 1991 1 healthy 18.9 100.00% reported FSIQ MRI WAIS-R 20 .51 

Andreasen et al. 1993 2 healthy 38 0.00% reported performance MRI WAIS-R 30 .30 

Andreasen et al. 1993 2 healthy 38 100.00% reported performance MRI WAIS-R 37 .43 

Andreasen et al. 1993 2 healthy 38 0.00% reported verbal MRI WAIS-R 30 .43 

Andreasen et al. 1993 2 healthy 38 100.00% reported verbal MRI WAIS-R 37 .33 

Andreasen et al.  1993 1 healthy 38 0.00% reported FSIQ MRI WAIS-R 30 .44 

Andreasen et al.  1993 1 healthy 38 100.00% reported FSIQ MRI WAIS-R 37 .40 

Raz et al. 1993 2 healthy 43.8 59.00% reported verbal MRI V3 29 .10 

Raz et al. 1993 1 healthy 43.8 59.00% reported FSIQ MRI CFIT 29 .43 

Castellanos et al. 1994 2 healthy 12.1 100.00% reported verbal MRI WISC-R 46 .33 

Castellanos et al. 1994 1 healthy 12.1 100.00% reported FSIQ MRI WISC-R 46 .33 

Harvey et al. 1994 2 healthy 31.6 55.00% reported verbal MRI NART 34 .69 

Harvey et al. 1994 2 patients 35.6 38.00% reported verbal MRI NART 26 .38 

Harvey et al. 1994 2 patients 31.1 77.00% reported verbal MRI NART 48 .24 

Jones et al. 1994 2 healthy 31.7 64.00% reported verbal CT NART or […] 67 .30 

Wickett et al.  1994 1 healthy 25 0.00% reported FSIQ MRI MAB FS 40 .40 

Wickett et al.  1994 2 healthy 25 0.00% reported performance MRI MAB 40 .28 

Wickett et al. 1994 2 healthy 25 0.00% reported verbal MRI MAB 40 .44 

Bigler  1995 2 patients 29.4 71.00% reported FSIQ MRI WAIS-R 72 -.03 

Egan et al. 1995 1 healthy 22.5 100.00% reported FSIQ MRI WAIS-R 40 .31 

Egan et al.  1995 2 healthy 22.5 100.00% reported performance MRI WAIS-R 40 .22 

Egan et al. 1995 2 healthy 22.5 100.00% reported verbal MRI WAIS-R 40 .21 

Haier et al.  1995 2 patients 26.39 54.00% reported FSIQ MRI WAIS-R 28 .65 

Kareken et al. 1995 3 healthy 27.66 63.00% reported performance MRI WAIS-R 68 .26 

Kareken et al. 1995 3 patients 29.75 63.00% reported performance MRI WAIS-R 68 .18 

Kareken et al. 1995 3 healthy 27.66 63.00% reported verbal MRI COWA […] 68 .24 

Kareken et al. 1995 3 patients 29.75 63.00% reported verbal MRI COWA […] 68 .36 

Kareken et al.  1995 1 healthy 27.66 63.00% PC FSIQ MRI WAIS-R 68 .30 

Raz et al.  1995 2 patients 35.2 77.00% reported FSIQ MRI WPPSI-R + BCS 11 -.24 

Reiss et al.  1995 2 healthy 11.28 42.00% PC FSIQ MRI WISC-R or […] 87 .00 
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Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Reiss et al.  1995 2 patients 10.8 35.00% reported FSIQ MRI WISC-R or […] 51 .25 

Reiss et al. 1996 1 healthy 10.6 0.00% PC FSIQ MRI unknown 57 .37 

Reiss et al.  1996 2 healthy 10.1 100.00% PC FSIQ MRI unknown 12 .52 

Blatter et al. 1997 2 patients NA NA reported performance MRI WAIS-R 21 .47 

Blatter et al. 1997 2 patients NA NA reported verbal MRI WAIS-R 22 .57 

Mori et al. 1997 2 patients 70.2 38.00% reported performance MRI WAIS-R 60 .37 

Mori et al. 1997 2 patients 70.2 38.00% reported verbal MRI WAIS-R 60 .37 

Mori et al. 1997 2 patients 70.2 38.00% reported FSIQ MRI WAIS-R 60 .40 

Paradiso et al. 1997 2 healthy 24.8 53.00% reported performance MRI WAIS-R 62 .32 

Paradiso et al. 1997 2 healthy 24.8 53.00% reported verbal MRI WAIS-R 62 .27 

Paradiso et al. 1997 3 healthy 24.8 53.00% reported verbal MRI WAIS-R 62 .11 

Paradiso et al.  1997 2 healthy 24.8 53.00% reported FSIQ MRI WAIS-R 62 .38 

Flashman et al. 1998 2 healthy 27 53.00% reported performance MRI WAIS-R 90 .26 

Flashman et al. 1998 2 healthy 27 53.00% reported verbal MRI WAIS-R 90 .16 

Flashman et al. 1998 1 healthy 27 53.00% reported FSIQ MRI WAIS-R 90 .25 

Gur et al. 1999 3 healthy 25 0.00% reported performance MRI WAIS-R […] 40 .57 

Gur et al. 1999 3 healthy 27 100.00% reported performance MRI WAIS-R […] 40 .35 

Gur et al. 1999 2 healthy 25 0.00% reported verbal MRI WAIS-R […] 40 .40 

Gur et al. 1999 2 healthy 27 100.00% PC verbal MRI WAIS-R […] 40 .00 

Gur et al. 1999 1 healthy 25 0.00% reported FSIQ MRI WAIS-R 40 .40 

Gur et al.  1999 1 healthy 27 100.00% reported FSIQ MRI WAIS-R […] 40 .39 

Leonard et al. 1999 2 healthy 42 100.00% PC performance MRI WAIS-R 33 .00 

Leonard et al. 1999 2 patients 43 100.00% PC performance MRI WAIS-R 37 .00 

Leonard et al. 1999 2 healthy 42 100.00% PC verbal MRI WAIS-R 33 .00 

Leonard et al. 1999 2 patients 43 100.00% PC verbal MRI WAIS-R 37 .00 

Tan et al. 1999 1 healthy 22 0.00% reported FSIQ MRI CFIT 54 .62 

Tan et al. 1999 1 healthy 22 100.00% reported FSIQ MRI CFIT 49 .28 

Warwick et al. 1999 2 healthy 21.5 0.00% PC verbal MRI Quick IQ Test 13 .00 

Warwick et al. 1999 2 healthy 21.5 100.00% PC verbal MRI Quick IQ Test 25 .00 

Warwick et al. 1999 2 patients 21.6 0.00% PC verbal MRI Quick IQ Test 11 .00 

Warwick et al. 1999 2 patients 21.8 100.00% PC verbal MRI Quick IQ Test 10 .00 

Warwick et al. 1999 2 patients 21.8 100.00% PC verbal MRI Quick IQ Test 10 .00 

Warwick et al. 1999 2 patients 21.63 100.00% reported verbal MRI Quick IQ Test 45 .31 

Warwick et al. 1999 2 patients 21.55 0.00% reported verbal MRI Quick IQ Test 24 .53 
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Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Garde et al.  2000 1 healthy 80.7 0.00% PC FSIQ MRI WAIS 22 .22 

Garde et al.  2000 1 healthy 80.7 100.00% PC FSIQ MRI WAIS 46 .07 

Isaacs et al.  2000 2 healthy 7.75 73.00% PC FSIQ MRI WISC-III 11 -.03 

Isaacs et al.  2000 2 healthy 7.75 73.00% PC performance MRI WISC-III 11 -.18 

Isaacs et al.  2000 2 healthy 7.75 73.00% PC verbal MRI WISC-III 11 -.04 

Isaacs et al.  2000 2 healthy 7.75 38.00% PC FSIQ MRI WISC-III 8 .55 

Isaacs et al.  2000 2 healthy 7.75 38.00% PC performance MRI WISC-III 8 .35 

Isaacs et al.  2000 2 healthy 7.75 38.00% PC verbal MRI WISC-III 8 .57 

Kumra et al.  2000 2 patients 12.3 81.00% PC FSIQ MRI WISC-III or […] 27 .00 

Kumra et al. 2000 2 patients 14.4 57.00% PC FSIQ MRI WISC-III or […] 44 .00 

Lawson et al. 2000 2 patients NA NA reported FSIQ MRI WISC-III or […] 47 .43 

Pennington et al.  2000 1 healthy 19.06 44.00% reported FSIQ MRI WISC-R or […] 36 .31 

Pennington et al.  2000 2 healthy 16.97 58.00% reported FSIQ MRI WISC-R or […] 96 .42 

Schoenemann et al. 2000 2 healthy 23.2 0.00% reported verbal MRI MAB 36 .12 

Schoenemann et al.  2000 1 healthy 23.2 0.00% PC FSIQ MRI RSPM 72 .21 

Wickett et al.  2000 1 healthy 24.97 100.00% reported FSIQ MRI MAB 68 .35 

Wickett et al.  2000 2 healthy 24.97 100.00% reported performance MRI MAB 68 .31 

Wickett et al.  2000 2 healthy 24.97 100.00% reported verbal MRI MAB 68 .33 

Castellanos et al.  2001 1 patients 9.7 0.00% reported FSIQ MRI WISC-R or […] 40 .36 

Coffey et al. 2001 2 healthy 74.85 38.00% reported performance MRI WAIS-R […] 318 .06 

Coffey et al. 2001 2 healthy 74.85 38.00% reported verbal MRI Verbal fluency 319 -.06 

Aylward et al. 2002 2 healthy 18.9 92.00% reported performance MRI unknown 83 .09 

Aylward et al. 2002 2 patients 18.8 87.00% reported performance MRI unknown 67 .10 

Aylward et al. 2002 2 healthy 18.9 92.00% reported verbal MRI unknown 83 -.01 

Aylward et al. 2002 2 patients 18.8 87.00% reported verbal MRI unknown 67 .08 

Aylward et al.  2002 1 healthy NA 100.00% PC FSIQ MRI unknown 46 -.13 

Aylward et al. 2002 1 healthy NA NA PC FSIQ MRI unknown 30 .08 

Aylward et al.  2002 1 patients 18.8 87.00% reported FSIQ MRI unknown 67 .10 

MacLullich et al. 2002 2 healthy 67.8 100.00% reported verbal MRI NART 97 .30 

MacLullich et al.  2002 1 healthy 67.8 100.00% reported FSIQ MRI RSPM 95 .39 

Nosarti et al.  2002 1 healthy 14.9 65.00% PC FSIQ MRI unknown 42 .37 

Shapleske et al.  2002 1 healthy 33.3 100.00% PC FSIQ MRI unknown 23 .13 

Collinson et al. 2003 2 healthy 16.4 60.00% PC FSIQ MRI WISC-R or […] 22 -.13 

Collinson et al. 2003 2 patients 16.8 67.00% PC FSIQ MRI WISC-R or […] 32 -.27 
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Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Collinson et al.  2003 2 healthy 16.4 60.00% PC performance MRI WISC-R or […] 22 -.17 

Collinson et al. 2003 2 patients 16.8 67.00% PC performance MRI WISC-R or […] 32 -.19 

Collinson et al.  2003 2 healthy 16.4 60.00% PC verbal MRI WISC-R or […] 22 -.09 

Collinson et al. 2003 2 patients 16.8 67.00% PC verbal MRI WISC-R or […] 32 -.28 

Giedd  2003 1 healthy NA 0.00% PC FSIQ NA unknown 8 .46 

Giedd  2003 1 healthy NA 100.00% PC FSIQ NA unknown 7 .17 

Giedd 2003 1 healthy NA 0.00% PC FSIQ NA unknown 7 -.67 

Giedd 2003 1 healthy NA 100.00% PC FSIQ NA unknown 7 .67 

Giedd 2003 1 healthy NA 0.00% PC FSIQ NA unknown 39 .34 

Giedd 2003 1 healthy NA 100.00% PC FSIQ NA unknown 63 .27 

Kesler et al. 2003 2 patients 26.16 52.00% reported verbal MRI WAIS-R 25 .57 

Kesler et al. 2003 2 patients 26.16 52.00% reported FSIQ MRI WAIS-R 25 .47 

Yurgelun-Todd et al. 2003 3 healthy 14.6 0.00% reported performance MRI WAIS-III 24 .07 

Yurgelun-Todd et al. 2003 3 healthy 14.5 100.00% reported performance MRI WAIS-III 13 .48 

Yurgelun-Todd et al. 2003 2 healthy 14.6 0.00% reported verbal MRI Shipley 24 .17 

Yurgelun-Todd et al. 2003 2 healthy 14.5 100.00% reported verbal MRI Shipley 13 .19 

Yurgelun-Todd et al. 2003 3 healthy 14.6 0.00% reported verbal MRI WAIS-III 24 .19 

Yurgelun-Todd et al. 2003 3 healthy 14.5 100.00% reported verbal MRI WAIS-III 13 .55 

Yurgelun-Todd et al. 2003 2 healthy 14.6 0.00% reported FSIQ MRI Shipley 24 .20 

Yurgelun-Todd et al.  2003 2 healthy 14.5 100.00% reported FSIQ MRI Shipley 13 .26 

Frangou et al.  2004 1 healthy 15.05 50.00% reported FSIQ MRI WISC-III or […] 40 .41 

Isaacs et al. 2004 2 healthy 15.9 0.00% PC FSIQ MRI Wechsler 38 .24 

Isaacs et al.  2004 2 healthy 15.9 100.00% PC FSIQ MRI Wechsler 38 .27 

Isaacs et al.  2004 2 healthy 14.86 50.00% PC FSIQ MRI Wechsler 16 .49 

Isaacs et al.  2004 2 healthy 15.9 0.00% PC performance MRI Wechsler 38 .21 

Isaacs et al.  2004 2 healthy 15.9 100.00% PC performance MRI Wechsler 38 .15 

Isaacs et al.  2004 2 healthy 15.6 0.00% PC verbal MRI Wechsler 38 .20 

Ivanovic et al. 2004 2 healthy 18 0.00% reported performance MRI WAIS-R 49 .38 

Ivanovic et al. 2004 2 healthy 18 100.00% reported performance MRI WAIS-R 47 .52 

Ivanovic et al. 2004 2 healthy 18 0.00% reported verbal MRI WAIS-R 49 .33 

Ivanovic et al. 2004 2 healthy 18 100.00% reported verbal MRI WAIS-R 47 .55 

Ivanovic et al. 2004 1 healthy 18 0.00% reported FSIQ MRI WAIS-R 49 .37 

Ivanovic et al. 2004 1 healthy 18 100.00% reported FSIQ MRI WAIS-R 47 .55 

Rojas et al. 2004 2 healthy 43.62 47.00% PC FSIQ MRI WAIS-R or […] 17 .31 
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Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Rojas et al. 2004 2 patients 30.3 87.00% PC FSIQ MRI WAIS-R or […] 15 .07 

Rojas et al. 2004 2 healthy 43.62 47.00% PC performance MRI WAIS-R or […] 17 .27 

Rojas et al. 2004 2 patients 30.3 87.00% PC performance MRI WAIS-R or […] 15 .15 

Rojas et al. 2004 2 healthy 43.62 47.00% PC verbal MRI WAIS-R or […] 17 .19 

Rojas et al.  2004 2 patients 30.3 87.00% PC verbal MRI WAIS-R or […] 15 .30 

Toulopoulou et al. 2004 2 patients 42.23 50.00% reported verbal MRI WAIS-R 201 .28 

Toulopoulou et al. 2004 2 patients 42.23 50.00% reported FSIQ MRI WAIS-R 201 .28 

Waiter et al. 2004 2 healthy 15.5 100.00% PC performance MRI WISC-III-R 16 .23 

Waiter et al. 2004 2 patients 15.4 100.00% PC performance MRI WISC-III-R 16 .10 

Waiter et al. 2004 2 healthy 15.5 100.00% PC verbal MRI WISC-III-R 16 .20 

Waiter et al. 2004 2 patients 15.4 100.00% PC verbal MRI WISC-III-R 16 -.17 

Waiter et al. 2004 2 healthy 15.5 100.00% PC FSIQ MRI WISC-III-R 16 .13 

Waiter et al. 2004 2 patients 15.4 100.00% PC FSIQ MRI WISC-III-R 16 -.06 

Antonova et al. 2005 2 healthy 33.72 58.00% PC verbal MRI WAIS-III 43 .24 

Antonova et al. 2005 2 patients 40.49 60.00% PC verbal MRI WAIS-III 44 .16 

Lodygensky et al. 2005 2 healthy 8.42 57.00% PC FSIQ MRI WISC-R 21 .46 

Lodygensky et al. 2005 2 patients 8.58 53.00% PC FSIQ MRI WISC-R 60 .35 

Thoma et al. 2005 2 healthy 23.5 100.00% reported FSIQ MRI RPM + […] 19 .27 

Debbané et al. 2006 2 healthy 15.1 43.00% PC FSIQ MRI WISC-III or […] 41 .16 

Debbané et al. 2006 2 patients 16.7 37.00% PC FSIQ MRI WISC-III or[…] 43 .16 

Rojas et al. 2006 2 healthy 21.41 100.00% PC FSIQ MRI WAIS-III or […] 23 .46 

Rojas et al. 2006 2 patients 20.79 100.00% PC FSIQ MRI WAIS-III or […] 24 .30 

Rojas et al. 2006 2 healthy 21.41 100.00% PC performance MRI WAIS-III or […] 23 .09 

Rojas et al. 2006 2 patients 20.79 100.00% PC performance MRI WAIS-III or […] 24 .31 

Rojas et al. 2006 2 healthy 21.41 100.00% PC verbal MRI WAIS-III or […] 23 .55 

Rojas et al. 2006 2 patients 20.79 100.00% PC verbal MRI WAIS-III or […] 24 .28 

Staff et al. 2006 1 healthy 79.5 61.00% PC FSIQ MRI RSPM 102 -.10 

Staff et al. 2006 2 healthy 79.5 61.00% PC verbal MRI NART 102 -.14 

Voelbel et al. 2006 2 healthy 10.77 100.00% PC performance MRI WISC-III 13 .06 

Voelbel et al. 2006 2 patients 10.16 100.00% PC performance MRI WISC-III 38 -.02 

Voelbel et al. 2006 2 patients 10.16 100.00% PC verbal MRI WISC-III 38 .08 

Voelbel et al. 2006 2 patients 10.08 100.00% PC performance MRI WISC-III 12 -.48 

Voelbel et al. 2006 2 healthy 10.77 100.00% PC verbal MRI WISC-III 13 -.15 

Voelbel et al. 2006 2 patients 10.08 100.00% PC verbal MRI WISC-III 12 .23 
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Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Voelbel et al. 2006 2 healthy 10.77 100.00% PC FSIQ MRI WISC-III 13 -.11 

Voelbel et al. 2006 2 patients 10.16 100.00% PC FSIQ MRI WISC-III 38 .02 

Voelbel et al. 2006 2 patients 10.08 100.00% PC FSIQ MRI WISC-III 12 -.14 

Wozniak et al. 2006 2 healthy 12.4 46.20% PC FSIQ MRI WISC-III or […] 13 .59 

Wozniak et al. 2006 2 patients 12.3 50.00% PC FSIQ MRI WISC-III or […] 14 .41 

Chiang et al. 2007 2 healthy NA NA reported performance MRI WAIS 16 .41 

Chiang et al. 2007 2 patients 29.2 45.00% reported performance MRI WAIS 39 .10 

Chiang et al. 2007 2 healthy NA NA reported verbal MRI WAIS 16 -.44 

Chiang et al. 2007 2 patients 29.2 45.00% reported verbal MRI WAIS 39 -.02 

DeBoer et al. 2007 2 healthy 10.5 NA PC performance MRI WISC-III or […] 20 -.22 

DeBoer et al. 2007 2 patients 10.75 NA PC performance MRI WISC-III or […] 21 .38 

DeBoer et al. 2007 2 healthy 10.5 NA PC verbal MRI WISC-III or […] 20 -.20 

DeBoer et al. 2007 2 patients 10.75 NA PC verbal MRI WISC-III or […] 21 .30 

DeBoer et al. 2007 2 healthy 10.5 NA PC FSIQ MRI WISC-III or […] 20 -.55 

DeBoer et al. 2007 2 patients 10.75 NA PC FSIQ MRI WISC-III or […] 21 .25 

Doernte 2007 3 healthy 58.5 0.00% grey verbal MRI HAWIE-R 18 -.23 

Doernte 2007 3 healthy 58.5 100.00% grey verbal MRI HAWIE-R 17 .18 

Doernte 2007 3 patients 59.1 0.00% grey verbal MRI HAWIE-R 12 -.02 

Doernte 2007 3 patients 59.1 100.00% grey verbal MRI HAWIE-R 23 -.01 

Fine et al.  2007 2 healthy 40.1 45.00% PC FSIQ MRI WASI 44 -.11 

Fine et al. 2007 2 healthy 10.47 63.00% PC FSIQ MRI WASI 24 .23 

Luders et al. 2007 2 healthy 28.48 45.00% reported FSIQ MRI WAIS-R 62 .28 

Nakamura et al. 2007 2 healthy 40.8 90.00% PC performance MRI WAIS-III 43 .29 

Nakamura et al. 2007 2 patients 40.6 90.00% PC performance MRI WAIS-III 44 .34 

Nakamura et al. 2007 2 healthy 40.8 90.00% PC verbal MRI WAIS-III 44 .40 

Nakamura et al. 2007 2 patients 40.6 90.00% PC verbal MRI WAIS-III 44 .26 

Nakamura et al. 2007 2 healthy 40.8 90.00% PC FSIQ MRI WAIS-III 44 .38 

Nakamura et al. 2007 2 patients 40.6 90.00% PC FSIQ MRI WAIS-III 43 .32 

Narr et al. 2007 3 healthy 28.24 46.20% reported FSIQ MRI WAIS 63 .36 

Schottenbauer et al. 2007 2 healthy 34.32 0.00% PC performance MRI WAIS-R 22 .30 

Schottenbauer et al. 2007 2 healthy 37.77 100.00% PC performance MRI WAIS-R 35 .17 

Schottenbauer et al. 2007 2 patients 40.9 0.00% PC performance MRI WAIS-R 68 .29 

Schottenbauer et al. 2007 2 patients 39.65 100.00% PC performance MRI WAIS-R 203 .17 

Schottenbauer et al. 2007 2 healthy 34.32 0.00% PC verbal MRI WAIS-R 22 .54 
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Schottenbauer et al. 2007 2 healthy 37.77 100.00% PC verbal MRI WAIS-R 35 .38 

Schottenbauer et al. 2007 2 patients 40.9 0.00% PC verbal MRI WAIS-R 68 .43 

Schottenbauer et al. 2007 2 patients 39.66 100.00% PC verbal MRI WAIS-R 202 .28 

Schottenbauer et al. 2007 2 healthy 34.32 0.00% PC FSIQ MRI WAIS-R 22 .60 

Schottenbauer et al. 2007 2 healthy 37.77 100.00% PC FSIQ MRI WAIS-R 35 .33 

Schottenbauer et al. 2007 2 patients 40.96 0.00% PC FSIQ MRI WAIS-R 69 .34 

Schottenbauer et al. 2007 2 patients 39.64 100.00% PC FSIQ MRI WAIS-R 205 .28 

Schumann et al. 2007 2 healthy 13.1 100.00% reported performance MRI WASI 22 .25 

Schumann et al. 2007 2 healthy 13.1 100.00% reported verbal MRI WASI 22 .38 

Schumann et al. 2007 2 healthy 13.1 100.00% reported FSIQ MRI WASI 22 .41 

Amat et al. 2008 2 healthy 31.5 56.00% PC performance MRI WAIS-R 27 .18 

Amat et al. 2008 2 healthy 31.5 56.00% PC verbal MRI WAIS-R 27 -.29 

Amat et al. 2008 2 healthy 31.5 56.00% PC FSIQ MRI WAIS-R 27 -.11 

Choi et al. 2008 3 healthy 21.6 54.30% reported FSIQ MRI WAIS-R 164 .35 

Ebner et al. 2008 2 healthy 32.45 51.00% PC verbal MRI MWT-B 37 -.13 

Ebner et al. 2008 2 patients 34.52 68.00% PC verbal MRI MWT-B 44 .15 

Raz et al. 2008 2 healthy 51.11 43.00% PC FSIQ MRI CFIT 55 .18 

Raz et al. 2008 2 patients 59.75 25.00% PC FSIQ MRI CFIT 32 -.02 

Raz et al. 2008 2 healthy 51.11 43.00% PC verbal MRI V2 & V3 55 .13 

Raz et al. 2008 2 patients 59.75 25.00% PC verbal MRI V2 & V3 31 .15 

Castro-Fornieles et al. 2009 2 healthy 14.6 11.00% PC performance MRI WISC-R 9 .55 

Castro-Fornieles et al. 2009 2 patients 14.5 8.00% PC performance MRI WISC-R 12 .38 

Castro-Fornieles et al. 2009 2 healthy 14.6 11.00% PC verbal MRI WISC-R 9 .43 

Castro-Fornieles et al. 2009 2 patients 14.5 8.00% PC verbal MRI WISC-R 12 .11 

Miller et al. 2009 2 healthy 12.08 NA reported verbal MRI WJIII 11 -.65 

Miller et al. 2009 2 patients 9.25 NA reported verbal MRI WJIII 5 .84 

Miller et al. 2009 2 patients 16.53 NA reported verbal MRI WJIII 6 .76 

Miller et al. 2009 2 healthy 9.25 33.00% reported FSIQ MRI WJIII 12 .23 

Miller et al. 2009 2 healthy 12.08 NA reported FSIQ MRI WJIII 11 -.11 

Miller et al. 2009 2 patients 16.53 63.00% reported FSIQ MRI WJIII 16 -.30 

Qiu et al. 2009 2 healthy 10.5 53.00% PC performance MRI WISC-III or […] 66 .12 

Qiu et al. 2009 2 patients 10.4 57.00% PC performance MRI WISC-III or […] 47 .20 

Qiu et al. 2009 2 healthy 10.5 53.00% PC verbal MRI WISC-III or […] 66 .35 

Qiu et al. 2009 2 patients 10.4 57.00% PC verbal MRI WISC-III or […] 47 .21 
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Qiu et al. 2009 2 healthy 10.5 53.00% PC FSIQ MRI WISC-III or […] 66 .26 

Qiu et al. 2009 2 patients 10.4 57.00% PC FSIQ MRI WISC-III or […] 47 .26 

Shenkin et al. 2009 2 healthy 78.4 29.00% reported verbal MRI CWA 107 .13 

Shenkin et al. 2009 2 healthy 78.4 29.00% reported FSIQ MRI MHT + […] 99 .21 

Van Leeuwen et al. 2009 2 healthy 9.1 50.00% reported performance MRI WISC-III 209 .28 

Van Leeuwen et al. 2009 3 healthy 9.1 50.00% reported performance MRI WISC-III 209 .12 

Van Leeuwen et al. 2009 2 healthy 9.1 50.00% reported verbal MRI WISC-III 209 .33 

Van Leeuwen et al. 2009 2 healthy 9.1 50.00% reported FSIQ MRI RSPM 209 .20 

Weniger et al. 2009 2 healthy 33 0.00% PC performance MRI HAWIE-R 25 .24 

Weniger et al. 2009 2 patients 32 0.00% PC performance MRI HAWIE-R 10 .23 

Weniger et al. 2009 2 healthy 33 0.00% PC verbal MRI HAWIE-R 25 .00 

Weniger et al. 2009 2 patients 32 0.00% PC verbal MRI HAWIE-R 13 .35 

Weniger et al. 2009 2 patients 32 0.00% PC performance MRI HAWIE-R 13 .16 

Weniger et al. 2009 2 patients 32 0.00% PC verbal MRI HAWIE-R 10 -.17 

Weniger et al. 2009 2 patients 32 0.00% PC FSIQ MRI HAWIE-R 10 .02 

Weniger et al. 2009 2 healthy 33 0.00% PC FSIQ MRI HAWIE-R 25 .15 

Weniger et al. 2009 2 patients 32 0.00% PC FSIQ MRI HAWIE-R 13 .27 

Zeegers et al. 2009 2 patients 3.72 91.00% reported FSIQ MRI unknown 21 .06 

Zeegers et al. 2009 2 patients 3.44 92.00% reported FSIQ MRI unknown 10 .73 

Betjemann et al. 2010 2 healthy 11.4 52.00% reported performance MRI WISC-R 142 .42 

Betjemann et al. 2010 2 healthy 11.4 52.00% reported verbal MRI WISC-R 142 .14 

Hermann 2010 2 healthy 33.34 42.00% PC performance MRI Wechsler 67 .33 

Hermann 2010 2 patients 36.09 35.00% PC performance MRI Wechsler 77 .09 

Hermann 2010 2 healthy 33.34 42.00% PC verbal MRI Wechsler 67 .23 

Hermann 2010 2 patients 36.09 35.00% PC verbal MRI Wechsler 77 .28 

Hermann 2010 2 healthy 33.34 42.00% PC FSIQ MRI Wechsler 67 .31 

Hermann 2010 2 patients 36.09 35.00% PC FSIQ MRI Wechsler 77 .21 

Hogan et al. 2010 2 healthy 68.69 53.00% PC FSIQ MRI RSPM 234 .11 

Hogan et al. 2010 2 healthy 68.69 53.00% PC verbal MRI NART 235 .00 

Isaacs et al. 2010 2 healthy 15.75 0.00% PC performance MRI WISC-III or […] 24 .00 

Isaacs et al. 2010 2 healthy 15.75 100.00% reported performance MRI WISC-III or […] 26 .19 

Isaacs et al. 2010 2 healthy 15.75 0.00% PC verbal MRI WISC-III or […] 24 .00 

Isaacs et al. 2010 2 healthy 15.75 100.00% reported verbal MRI WISC-III or […] 26 .48 

Isaacs et al. 2010 2 healthy 15.75 0.00% PC FSIQ MRI WISC-III or […] 24 .00 



Table 1                                                                                                                                                                                                                     

Details of Included Studies 

54 

 

Study Year Review Sample type Mean age Male ratio Reporting IQ domain Measure  Type of test n r 

Isaacs et al. 2010 2 healthy 15.75 100.00% reported FSIQ MRI WISC-III or […] 26 .36 

Lange et al. 2010 2 healthy 10.88 0.00% reported FSIQ MRI WASI 166 .22 

Lange et al. 2010 2 healthy 10.95 100.00% reported FSIQ MRI WASI 143 .23 

Wallace et al. 2010 2 healthy 11.8 48.00% reported performance MRI WASI 649 .14 

Wallace et al. 2010 2 healthy 11.8 48.00% reported verbal MRI WASI 649 .13 

Wallace et al. 2010 2 healthy 11.8 48.00% reported FSIQ MRI WASI 649 .14 

Ashtari et al. 2011 2 healthy 18.5 100.00% reported FSIQ MRI WRAT-III 14 .57 

Ashtari et al. 2011 2 patients 19.3 100.00% reported FSIQ MRI WRAT-III 14 .29 

Chen et al.  2011 3 healthy 22.56 44.00% reported FSIQ MRI WASI 27 .02 

Chen et al.  2011 3 patients 23 27.00% reported FSIQ MRI WASI 37 .41 

Chen et al. 2011 3 patients 23.07 47.00% reported FSIQ MRI WASI 30 .68 

Kievit et al. 2011 2 healthy 21.1 36.00% PC FSIQ MRI WAIS-III 80 .29 

Kievit et al. 2011 2 healthy 21.1 36.00% PC verbal MRI WAIS-III 80 .23 

Tate et al. 2011 2 patients 81.7 43.00% PC FSIQ MRI Shipley 194 .00 

Aydin et al. 2012 2 healthy 15.1 100.00% reported FSIQ MRI WISC-R 30 .40 

Aydin et al. 2012 2 healthy 15.1 100.00% reported performance MRI WISC-R 30 .34 

Aydin et al. 2012 2 healthy 15.1 100.00% reported verbal MRI WISC-R 30 .26 

Burgaleta et al. 2012 2 healthy 19.88 44.00% reported FSIQ MRI APM, […] 100 .17 

Bigler et al. 2013 3 patients 10.66 58.00% reported performance MRI WISC-IV: PSI 47 .00 

Bigler et al. 2013 3 patients 10.67 68.00% reported performance MRI WISC-IV: PSI 32 .00 

Bigler et al. 2013 3 patients 10.14 58.00% reported performance MRI WISC-IV: PSI 27 .00 

Royle et al. 2013 2 healthy 72.47 100.00% reported FSIQ MRI WAIS-III 293 .26 

Royle et al. 2013 2 healthy 72.6 0.00% reported FSIQ MRI WAIS-III 327 .27 

Royle et al. 2013 3 healthy 72.47 100.00% reported performance MRI WAIS-III 293 .25 

Royle et al. 2013 3 healthy 72.6 0.00% reported performance MRI WAIS-III 327 .25 

Royle et al. 2013 3 healthy 72.47 100.00% reported performance MRI WAIS-III 293 .14 

Royle et al. 2013 3 healthy 72.6 0.00% reported performance MRI WAIS-III 327 .18 

Royle et al. 2013 3 healthy 72.47 100.00% reported performance MRI WAIS-III 293 .22 

Royle et al. 2013 3 healthy 72.6 0.00% reported performance MRI WAIS-III 327 .33 

Royle et al. 2013 3 healthy 72.47 100.00% reported performance MRI WAIS-III 293 .17 

Royle et al. 2013 3 healthy 72.6 0.00% reported performance MRI WAIS-III 327 .34 

Royle et al. 2013 3 healthy 72.47 100.00% reported verbal MRI WAIS-III 293 .10 

Royle et al.  2013 3 healthy 72.6 0.00% reported verbal MRI WAIS-III 327 .22 

Royle et al. 2013 3 healthy 72.47 100.00% reported verbal MRI WAIS-III 293 .11 
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Royle et al. 2013 3 healthy 72.6 0.00% reported verbal MRI WAIS-III 327 .23 

Zelko et al. 2013 3 healthy 14.9 53.00% reported performance MRI WAIS or […] 36 .30 

Zelko et al. 2013 3 healthy 14.9 53.00% reported performance MRI WAIS or […] 36 -.12 

Zelko et al. 2013 3 patients 14.6 49.00% reported performance MRI WAIS or […] 108 .21 

Zelko et al. 2013 3 patients 14.6 49.00% reported performance MRI WAIS or […] 108 .09 

Zelko et al. 2013 3 healthy 14.9 53.00% reported verbal MRI WAIS or […] 36 .04 

Zelko et al. 2013 3 healthy 14.9 53.00% reported verbal MRI WAIS or […] 36 .33 

Zelko et al. 2013 3 patients 14.6 49.00% reported verbal MRI WAIS or […] 108 .23 

Zelko et al. 2013 3 patients 14.6 49.00% reported verbal MRI WAIS or […] 108 .26 

Zelko et al. 2013 3 healthy 14.9 53.00% reported FSIQ MRI WAIS or […] 36 .25 

Zelko et al. 2013 3 patients 14.6 49.00% reported FSIQ MRI WAIS or […] 108 .23 

Bjuland et al. 2014 3 patients 20.1 41.00% reported performance MRI WAIS-II 43 .48 

Bjuland et al. 2014 3 patients 20.1 41.00% reported performance MRI WAIS-II 43 .48 

Bjuland et al. 2014 3 patients 20.1 41.00% reported verbal MRI WAIS-III 43 .44 

Bjuland et al. 2014 3 patients 20.1 41.00% reported verbal MRI WAIS-III 43 .54 

Bjuland et al. 2014 3 healthy 20.3 42.00% reported FSIQ MRI WAIS-III 60 .36 

Bjuland et al. 2014 3 patients 20.1 41.00% reported FSIQ MRI WAIS-III 43 .56 

Grunewaldt et al. 2014 3 patients 10.17 34.80% reported verbal MRI WISC-III 21 .00 

Grunewaldt et al. 2014 3 patients 10.17 34.80% reported FSIQ MRI WISC-III 21 .00 

Jenkins et al. 2014 3 healthy 11.7 42.00% reported FSIQ MRI WASI or […] 102 .19 

MacDonald et al. 2014 3 healthy 11.6 100.00% reported performance MRI WASI 142 .29 

MacDonald et al. 2014 3 healthy 11.3 100.00% reported performance MRI WASI 161 .19 

MacDonald et al. 2014 3 healthy 11.6 100.00% reported verbal MRI WASI 142 .13 

MacDonald et al. 2014 3 healthy 11.3 100.00% reported verbal MRI WASI 161 .18 

MacDonald et al. 2014 3 healthy 11.6 100.00% reported FSIQ MRI WASI 142 .23 

MacDonald et al. 2014 3 healthy 11.3 0.00% reported FSIQ MRI WASI 161 .22 

McCoy et al. 2014 3 patients 13 100.00% reported FSIQ MRI WISC-IV 10 .59 

McCoy et al. 2014 3 patients 13 0.00% reported FSIQ MRI WISC-IV 16 .62 

Zhu et al. 2014 3 healthy 20.41 41.00% reported FSIQ MRI WAIS-R 316 .10 

Boberg et al. 2015 3 healthy 8.00 55.00% grey FSIQ MRI WISC-IV 10.00 .69 

Boberg et al. 2015 3 healthy 8.30 50.00% grey FSIQ MRI WISC-IV 21.00 .00 

Grazioplene et al. 2015 3 healthy 26.26 51.00% reported performance MRI WAIS-IV 285 .30 

Grazioplene et al. 2015 3 healthy 21.73 54.00% reported performance MRI WASI 125 .04 

Grazioplene et al. 2015 3 healthy 22.94 100.00% reported performance MRI WAIS-III 107 .04 
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Grazioplene et al. 2015 3 healthy 26.26 51.00% reported verbal MRI WAIS-IV 285 .18 

Grazioplene et al. 2015 3 healthy 21.73 54.00% reported verbal MRI WASI 125 .04 

Grazioplene et al. 2015 3 healthy 22.94 100.00% reported verbal MRI WAIS-III 107 .10 

Grazioplene et al. 2015 3 healthy 26.26 51.00% reported FSIQ MRI WAIS-IV 285 .28 

Grazioplene et al. 2015 3 healthy 21.73 54.00% reported FSIQ MRI WASI 125 .04 

Grazioplene et al. 2015 3 healthy 22.94 100.00% reported FSIQ MRI WAIS-IV 107 .08 

Lefebvre et al. 2015 3 healthy 17 83.00% reported performance MRI unknown 284 .18 

Lefebvre et al. 2015 3 patients 16.6 88.00% reported performance MRI unknown 254 .17 

Lefebvre et al. 2015 3 healthy 17 83.00% reported verbal MRI unknown 354 .22 

Lefebvre et al. 2015 3 patients 16.6 88.00% reported verbal MRI unknown 318 .08 

Lefebvre et al. 2015 3 healthy 17 83.00% reported FSIQ MRI unknown 354 .23 

Lefebvre et al. 2015 3 patients 16.6 88.00% reported FSIQ MRI unknown 318 .04 

Paul et al. 2015 3 healthy 24.57 0.00% reported verbal MRI Span, […] 90 .25 

Paul et al. 2015 3 healthy 24.07 100.00% reported verbal MRI Span, […] 121 .18 

Paul et al. 2015 3 healthy 24.57 0.00% reported FSIQ MRI BOMAT, […] 90 .14 

Paul et al. 2015 3 healthy 24.07 100.00% reported FSIQ MRI BOMAT, […] 121 .13 

Walters et al. 2015 3 patients 17.32 100.00% reported FSIQ MRI WAIS or […] 178 .19 

Ballester-Plane et al. 2016 3 patients 25.1 67.00% reported performance MRI WASI 30 .72 

Ballester-Plane et al. 2016 3 patients 25.1 67.00% reported verbal MRI PPVT-III 30 .71 

Ballester-Plane et al. 2016 3 patients 25.1 67.00% reported FSIQ MRI RCPM 30 .73 

Bathelt et al. 2016 3 healthy 9.93 54.00% reported FSIQ MRI WASI-II 63 .07 

Bathelt et al. 2016 3 patients 9.35 64.70% reported FSIQ MRI WASI-II 139 .02 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported performance MRI WAIS-III 164 .31 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported performance MRI WAIS-III  164 .12 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported verbal MRI WAIS-III 164 .18 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported verbal MRI WAIS-III 164 .26 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported verbal MRI WAIS-III 164 .00 

Bohlken et al. 2016 3 healthy 32.7 42.00% reported FSIQ MRI WAIS-III 164 .26 

Ferreira et al. 2016 3 healthy 45.1 49.00% reported performance MRI WAIS-III 73 .33 

Ferreira et al. 2016 3 healthy 45.1 49.00% reported verbal MRI WAIS-III 73 .36 

Ferreira et al. 2016 3 healthy 45.1 49.00% reported verbal MRI WAIS-III 73 .50 

Gregory et al. 2016 3 healthy 14.7 42.90% reported FSIQ MRI Matrix, […] 662 .24 

Monson et al. 2016 3 patients 7.5 50.00% reported performance MRI WASI 134 .31 

Monson et al. 2016 3 patients 7.5 50.00% reported verbal MRI WASI 134 .11 
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Monson et al. 2016 3 patients 7.5 50.00% reported FSIQ MRI WASI 134 .26 

Nikolaidis et al. 2016 3 healthy 21.15 34.00% reported verbal MRI Memory, […] 71 .13 

Nikolaidis et al. 2016 3 healthy 21.15 34.00% reported FSIQ MRI RAPM, […] 71 .44 

Treit et al. 2016 3 healthy 11.9 48.00% reported FSIQ MRI WRIT or […] 66 .09 

Treit et al. 2016 3 patients 12.5 53.00% reported FSIQ MRI WRIT or […] 50 .21 

Amaral et al. 2017 3 healthy 3 100.00% reported FSIQ MRI MSEL 49 .35 

Amaral et al. 2017 3 patients 3.075 100.00% reported FSIQ MRI MSEL 19 -.18 

Amaral et al. 2017 3 patients 3.133 100.00% reported FSIQ MRI MSEL 110 .01 

Arhan et al. 2017 3 healthy 9.2 46.00% reported performance MRI WISC-R 46 .77 

Arhan et al. 2017 3 healthy 9.2 46.00% reported performance MRI WISC-R 46 .24 

Arhan et al. 2017 3 healthy 9.2 46.00% reported performance MRI WISC-R 46 .04 

Arhan et al. 2017 3 healthy 9.2 46.00% reported performance MRI WISC-R 46 .04 

Arhan et al. 2017 3 healthy 9.2 46.00% reported performance MRI WISC-R 46 .27 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R 46 .71 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R 46 .54 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R  46 .38 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R 46 .45 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R 46 .24 

Arhan et al. 2017 3 healthy 9.2 46.00% reported verbal MRI WISC-R 46 .31 

Arhan et al. 2017 3 healthy 9.2 46.00% reported FSIQ MRI WISC-R 46 .51 

Martinez et al. 2017 3 healthy 19.6 0.00% reported performance MRI DAT-SR, […] 40 .39 

Martinez et al. 2017 3 healthy 20.2 100.00% reported performance MRI DAT-SR, […] 40 .24 

Martinez et al. 2017 3 healthy 19.6 0.00% reported verbal MRI DAT-VR, […] 40 .28 

Martinez et al. 2017 3 healthy 20.2 100.00% reported verbal MRI DAT-VR, […] 40 -.04 

Ritchie et al. 2017 3 healthy 92.1 45.00% reported FSIQ MRI WAIS-III 34 .23 

Ritchie et al. 2017 3 healthy 92.1 45.00% reported performance MRI WAIS-III 34 .19 

van der Linden et al. 2017 3 healthy 28.82 0.00% reported FSIQ MRI Matrices, […] 503 .26 

van der Linden et al. 2017 3 healthy 28.82 100.00% reported FSIQ MRI Matrices, […] 393 .25 

van der Vlugt et al. 2017 3 patients 7 83.00% reported FSIQ CT MSEL or […] 70 .00 

Vreeker et al. 2017 3 healthy 44.6 49.00% reported FSIQ MRI WAIS-III 160 .28 

Annink et al. 2018 3 patients 9.79 48.00% reported FSIQ MRI WISC-III 52 .43 

Jensen et al. 2018 3 healthy 24.91 59.00% PC FSIQ MRI WAIS-III 56 .30 

Jensen et al. 2018 3 patients 24.69 57.40% PC FSIQ MRI WAIS-III 54 .14 

Jensen et al. 2018 3 healthy 24.91 59.00% PC performance MRI WAIS-III 56 .19 
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Jensen et al. 2018 3 patients 24.69 57.40% PC performance MRI WAIS-III 54 .20 

Jensen et al. 2018 3 healthy 24.91 59.00% PC verbal MRI WAIS-III 56 .30 

Jensen et al. 2018 3 patients 24.69 57.40% PC verbal MRI WAIS-III 54 .09 

Lammers et al. 2018 3 patients 72 61.00% reported FSIQ MRI Memory, […] 282 .27 

Mankovsky et al. 2018 3 patients 62.3 34.00% reported performance MRI processing speed 93 .08 

Mankovsky et al. 2018 3 patients 62.3 34.00% reported verbal MRI RAVL […] 93 .02 

Nygaard et al. 2018 3 patients 18.96 60.00% reported FSIQ MRI WASI 82 .30 

Sreedharan et al. 2018 3 patients 10.8 66.00% reported FSIQ MRI WISC 30 .00 

Takeuchi et al. 2018 3 healthy 20.8 58.00% reported FSIQ MRI Tanaka B 1319 .07 

Tozer et al. 2018 3 patients 70.01 65.00% reported performance MRI BIRT, […] 121 .28 

Tozer et al. 2018 3 patients 70.01 65.00% reported FSIQ MRI span, […] 121 .23 

Ahn et al. 2019 3 patients 32.97 42.00% reported FSIQ MRI K-WAIS-R 38 .00 

Cox et al. 2019 3 healthy 63.13 100.00% reported FSIQ MRI Matrix, […] 3900 .21 

Cox et al. 2019 3 healthy 63.13 0.00% reported FSIQ MRI  Matrix, […] 4192 .26 

de Zwarte et al. 2019 3 patients 27.49 60.00% reported FSIQ MRI WAIS-III 516 .29 

de Zwarte et al. 2019 3 patients 52.85 32.00% reported FSIQ MRI GIT 85 .06 

Elliott et al. 2019 3 healthy 45 48.00% reported FSIQ MRI WAIS-IV 596 .35 

Elliott et al. 2019 3 healthy 22.23 47.00% reported FSIQ MRI Shipley 1163 .12 

Elliott et al. 2019 3 healthy 20.26 47.00% reported FSIQ MRI WASI 515 .16 

Hiraiwa et al. 2019 3 patients 9.43 52.00% reported FSIQ MRI WISC-IV 27 .34 

van Haren et al. 2019 3 healthy 12.74 53.00% reported FSIQ MRI WISC-III or […] 40 .34 

van Haren et al. 2019 3 patients 13.77 30.00% reported FSIQ MRI WISC-III or […] 40 .53 

van Haren et al. 2019 3 patients 14.52 56.00% reported FSIQ MRI WISC-III or […] 66 .39 

Mathias et al. 2020 3 healthy 39.6 43.00% reported FSIQ MRI Verbal Learning 1216 .12 

Mitchell et al. 2020 3 healthy 22.3 38.00% reported FSIQ MRI MAB + […] 1097 .25 

Note. NA = info not available; Review: 1 = included in McDaniel (2005), 2 = additional studies gathered by Pietschnig et al. (2015), 3 = newly accumulated studies; Reporting: 

reported = published in a journal article, grey = published as thesis/dissertation, PC = result obtained via personal communication; FSIQ = full-scale IQ; Measure: technology 

used to measure in vivo brain volume, either CT or MRI. Type of test: IQ test, sometimes only example of used tests displayed (indicated by brackets), full information 

explaining all abbreviations are available in codebook and data files at https://osf.io/y6msp/. Published study outcomes with r = exactly 0 represent correlations set to zero, 

because no eligible numerical value was available.  

https://osf.io/y6msp/
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Figure 2 

Rainforest Plot for Associations of In Vivo Brain Volume and Full-scale IQ Based on Healthy Samples 

 

Note. Summary effect is based on a random effects model and represented by the diamond; symbol size and 

coloring of raindrops are varied according to relative study weight within analysis. 
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Figure 3 

Rainforest Plot for Associations of In Vivo Brain Volume and Full-scale IQ Based on Clinical Samples 

 

Note. Summary effect is based on a random effects model and represented by the diamond; symbol size and 

coloring are varied according to relative study weight within analysis. 
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Results of Synthesis 

The meta-analytical results are reported below. Some non-crucial results and graphs 

are not presented to avoid cluttering. All exact results are noted by comment in the respective 

R script. These can be found at https://osf.io/y6msp/. All plots are also available there. 

Appendix C lists all results obtained by the different approaches for a better overview. 

Hedges and Olkin Meta-Analysis 

Summary Effects. Synthesis of 122 correlation coefficients based on healthy samples 

using the REML estimator yielded a highly significant overall effect of r = .24 (p < .0001, 

95% CI [.21, .26]) for full-scale IQ. The effect for verbal IQ was r = .19 (k = 73, p < .0001, 

95% CI [.14, .23]) and for performance IQ r = .22 (k = 49, p < .0001, 95% CI [.18, .26]). 

Results for clinical samples were r = .22 (k = 66, p < .0001, 95% CI [.16, .27]) for full-scale 

IQ, r = .21 (k = 44, p < .0001, 95% CI [.15, .27]) for verbal IQ and r = .19 (k = 32, p < .0001, 

95% CI [.13, .26]) for performance IQ. In order to allow comparison with results from 

Pietschnig et al. (2015), summary effects based on mixed (healthy and patient) samples were 

computed, too. The results were r = .23 (k = 188, p < .0001, 95% CI [.21, .26]) for full-scale 

IQ, r = .19 (k = 118, p < .0001, 95% CI [.16, .23]) for verbal IQ and r = .21 (k = 81, p < .0001, 

95% CI [.18, .24]) for performance IQ. Results did not differ beyond the third decimal in all 

analyses using the PM estimator. The meta-analytic results from correlations corrected for 

their slight negative bias (“UCOR”) instead of Fisher´s r-to-z transformed correlations 

(“ZCOR”) were marginally higher (deviation ≤ .03). 

Heterogeneity. Based on full-scale IQ data from healthy samples, the Cochran´s Q 

test for heterogeneity was highly significant (Q(121) = 257.08, p < .0001). Total 

heterogeneity estimates were τ = .086 and τ² = .007. The percentage of total variation across 

effect sizes due to the variation of true effects was moderate according to standard guidelines 

(Higgins & Thompson, 2002; I² = 56.35%, 95% CI [42.76%, 78.53%]). The true effect size 

varied substantially across observed effect sizes (95% PI [.07, .39]). A QQ plot (Figure 4) 

showed no obvious pattern of non-normally distributed residual heterogeneity of true effect 

sizes. Several studies were identified as contributing exceptionally to heterogeneity with the 

use of a Baujat plot (Figure 4). Most had negatable effect on the overall effect estimate due to 

small sample size (e.g. an effect size associated with de Boer (2007), r = -0.55, n = 20). An 

effect size from a study by Tan et al. (1999) was the only one deviating strongly and having a 

(small) effect on the overall effect estimate (effect size number 023, r = .64, n = 54). This 

effect size was also identified as an outlier by using the “influence” command in the metafor 

https://osf.io/y6msp/
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package (Figure 4). The function identified two effect sizes associated with Cox et al. (2019) 

as influential, too, because of their large sample sizes (n = 3900 and n = 4192). A leave-one-

out analysis indicated negatable impact of individual studies on the overall estimate. All 

estimates were within the range r = .23 to r = .24. Sampling of all possible subsets of studies 

yielded an overall estimate range of GOSH [.17, .33]. The corresponding plot (Figure 4) 

shows a unimodal pattern centered around the summary effect, which indicates that there are 

no distorting effects of deviant subsets. 

The assessment of heterogeneity in the verbal IQ data based on healthy samples 

produced similar results. Total heterogeneity estimates were τ = .126 and τ² = .016. The 

percentage of total variation across effect sizes due to the variation of true effects was 

moderate (I² = 52.04%, 95% CI [38.25%, 75.92%]). An effect size associated with Harvey et 

al. (1994, n = 34, r = .69) contributed exceptionally to heterogeneity, however, did have a 

negatable impact on the overall effect size. The overall effect range was GOSH [.06., .31].  

Heterogeneity analyses for performance IQ data based on healthy samples produced 

lower results for heterogeneity descriptors. The results were τ = .076 and τ² = .006 and I² = 

29.33%, 95% CI [0%, 45.35%]. The PM estimator yielded an even lower result (I² = 13.85%). 

Two effect sizes with an exceptional contribution to heterogeneity were identified. Coffey et 

al. (2000) offered one of them (n = 318, r = .06), Betjemann (2010) the other (n = 142, r = 

.42). Both effect sizes had negatable impact on the overall result. The overall effect range was 

GOSH [.08, .37]. Plots assessing heterogeneity in verbal and performance IQ data based on 

healthy samples can be found in Appendix D. 

Figure 4 

Collection of Plots Assessing Heterogeneity in Full-Scale IQ Data Based on Healthy Samples 
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Figure 4 (continued) 

 

 

Note. Plots from left to right: normal QQ plot, Baujat plot, influence diagnostics, GOSH plot. All plots were created with the 

metafor package. 

Psychometric Meta-Analysis 

The “bare-bones” meta-analysis (without corrections) of full-scale IQ data based on 

healthy samples yielded an overall estimate of r = .22 (k = 122, p < .0001, 95% CI [.15, .28]). 

Heterogeneity estimates were very similar to the results of the Hedges-Olkin meta-analysis, 

with τ² = .0084 and I² = 62.97%. After correcting each effect size individually for range 

departure and computing the corresponding standard errors, another meta-analysis was carried 

out. The result was r = .28 (k = 64, p < .0001, 95% CI [.23, .33]). Since sample standard 

deviations for IQ scores were not obtainable for half of all effect sizes, data loss was 

considerable. Bare-bones meta-analytic results for verbal IQ were r = .16 (k = 73, p < .0001, 

95% CI [.09, .23]) and r = .20 (k = 49, p < .0001, 95% CI [.16, .25]) for performance IQ. 

After applying range departure corrections, results increased to r = .24 (k = 31, p < .0001, 

95% CI [.17, .31]) for verbal IQ and r = .28 (k = 28, p < .0001, 95% CI [.22, .33]) for 

performance IQ. 

The bare-bones meta-analysis of full-scale IQ data based on clinical samples brought 

similar results compared the Hedges-Olkin approach. The results were r = .21 (k = 66, p < 

.0001, 95% CI [.13, .28]) for full-scale IQ, r = .16 (k = 73, p < .0001, 95% CI [.09, .23]) for 

verbal IQ and r = .20 (k = 49, p < .0001, 95% CI [.16, .25]) for performance IQ. However, the 

meta-analysis of range departure corrected correlations produced lower estimates than the 
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bare-bones meta-analyses. Results were r = .20 (k = 32, p < .0001, 95% CI [.11, .29]) for full-

scale IQ, r = .16 (k = 16, p = .007, 95% CI [.05, .27]) for verbal IQ and r = .20 (k = 15, p = 

.006, 95% CI [.07, .33]) for performance IQ. In contrast to studies based on healthy samples, 

the average clinical sample standard deviation of IQ scores was enhanced in range leading to 

corrected coefficients lower than uncorrected ones. 

Robust Variance Estimation Meta-Regression 

Data for the RVE models were similar for full-scale IQ effect sizes compared to the 

other approaches not modeling dependency. The following two effect sizes were added. (1) A 

study from Ritchie et al. (2017) used data from a later wave (approximately 20 years) from 

the same sample as in Staff et al. (2006). (2) Vreeker et al. (2017) used data from the Dutch 

Bipolar Cohort Study, which other researchers have done, too (e.g. Bohlken et al., 2016; de 

Zwarte et al., 2019). The amount of data overlap was unclear, so the study of Vreeker et al. 

(2017) was included in the RVE data sheet only. Differences in terms of added effect sizes 

were larger in the verbal RVE sheet (19 added) and performance RVE sheet (23 added). The 

main reason for dependency among effect sizes were added tests from the same sample in a 

different intelligence dimension (e.g. an effect size based on the Wechsler WMI was added 

next to an effect size based on the VCI).   

Fitting an RVE meta-analytic model based on 92 studies comprising 124 full-scale IQ 

effect sizes produced an overall estimate of r = .24 (p < .01, 95% CI [.21, .26]). For verbal IQ 

the result was r = .19 (p < .01, 95% CI [.14, .23]) based on 63 studies comprising 92 effect 

sizes. The overall estimate for performance IQ was r = .22 (p < .01, 95% CI [.18, .27]) based 

on 46 studies comprising 72 effect sizes.  

Results for clinical samples were r = .22 (k = 56 (66), p < .01, 95% CI [.17, .28]) for 

full-scale IQ, r = .21 (k = 36 (48), p < .01, 95% CI [.15, .28]) for verbal IQ, and r = .21 (k = 

28 (35), p < .01, 95% CI [.14, .27]) for performance IQ.  

Changing the value for ρ or removing the small sample bias correction did not affect 

the outcome beyond the third decimal in all analyses. 

Bayesian Meta-Analysis 

The results of the Bayesian meta-analysis were also similar to those of the other meta-

analyses. The result of the full-scale IQ data (k = 122) based on healthy samples was r = .24. 

The shortest credible interval was 95% CI [.21, .26]. Changing informative prior 

specifications (μ and τ values) did not affect results. Figure 5 shows four plots in which it is 
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easy to see that the probability distributions for both the mean effect and the heterogeneity are 

normally distributed within a limited range of values. The fourth plot shows a comparison 

between the posterior and predictive (i.e. “future” results) probability density. The predictive 

probability density was consistent with the prediction interval displayed in section “Hedges 

and Olkin Meta-Analysis”. Results for clinical samples, verbal IQ, and performance IQ were 

nearly identical to the Hedges and Olkin approach (results annotated in R script 

“BayesianMetaAnalysis” available at https://osf.io/e24zq/). Overall, the inclusion of 

preliminary information had no influence on the results, probably due to the relatively large 

amount of data. 

Figure 5 

Collection of Descriptive Plots for the Distributions of the Effects and Heterogeneity Based on Full-Scale IQ Data 

Comprising Healthy Samples 

 

 

Note. Plots from left to right: plot displaying the density distribution in reference to summary effects and heterogeneity; plot 

of summary effect posterior density, plot of heterogeneity posterior density, plot showing posterior (red line) and predictive 

(blue line) probability densities. 

https://osf.io/e24zq/
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Dissemination Bias 

First, a power-enhanced funnel plot (Kossmeier et al., 2020b) was used to obtain an 

overview of how well published full-scale IQ studies based on healthy samples were powered. 

Figure 6 shows that most studies had lower power than desirable. The median power was 

49.1%. The test for excess significance suggested that studies were more successful in finding 

significant results compared the expected number of significant results based on their power 

(8 more significant results than expected, p = .064). The Replicability-Index was 31%, 

indicating low chance of replication for the average individual effect size. 

Next a contour-enhanced funnel plot (Figure 7) was created to assess funnel plot 

asymmetry and the impact of potentially missing studies due to publication bias. The Egger´s 

regression line is askew to right side of the funnel plot, indicating asymmetry. Tests of 

robustness of this asymmetry were statistically significant (p = .008 for the weighted 

regression with a multiplicative dispersion term and p = .006 for the mixed-effects meta-

regression model). The trim-and-fill analysis suggested 16 potentially missing effect sizes. 

Recalculating the overall estimate including these supposedly missing effect sizes revealed a 

negatable impact (r = .22, 95% CI [.19, .25]). 

Figure 6 

Sunset Plot of Published Full-Scale IQ Studies Based on Healthy Samples 
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The p-curve analysis did not indicate the presence of p-hacking. Figure 8 shows a 

right-skewed distribution of p-values, meaning substantially more highly than barely 

significant results. Binominal and continuous tests confirmed this impression (binominal test: 

p < .0001; full p-curve: z = 16.16, p < .0001; half p-curve: z = 15.07, p < .0001). Results from 

p-uniform did not indicate the presence of p-hacking, too. The adjusted estimate was r = .25 

The test for publication bias was statistically insignificant (p = .958). The adjusted estimate 

from the p-uniform* analysis was r = .22. The H0 of no publication bias was not rejected (p = 

.154). Applying a selection model based on p-values (Vevea & Hedges, 1995) yielded an 

adjusted estimate of r = .21. The weight function might not have been well informed, since 

few studies results are not highly significant. 

A selection model based on the standard error of effect sizes (Copas & Shi, 2001) 

suggested the presence of selection bias inflating the summary effect. The model´s adjusted 

estimate was r = .21 assuming 32 missing studies. The hypothesis that no selection remained 

unexplained did not reach significance (p = .135). 

Figure 7 

Contour-Enhanced Funnel Plot of Full-Scale IQ Studies Based on Healthy Samples 

 

Note. The red dashed line represents the Egger´s regression, the dashed black line the estimate from the trim-and-fill analysis, 

the black continuous line the meta-analytic summary effect. The black dots on the left side represent potentially missing 

studies due to publication bias as computed by the trim-and-fill analysis. 

 



68 

 

 

 

Standard errors are closely related to sample size. A cumulative meta-analysis ordered 

by sample size showed that studies with comparatively medium number of participants 

reported higher effect sizes than studies with small or large samples (plot available at 

https://osf.io/47nwj/). 

Lastly, a potential moderating effect regarding the publication year of each study was 

examined. Fitting a meta-regression with year as the predictor produced a significant result (p 

= .008, R² = 13.34%). The slope was -.005 indicating a slight decrease of effect sizes per year 

(Figure 9). Results were more pronounced when only considering published results. A 

cumulative meta-analysis ordered from early to recent publication confirmed this finding 

(Figure 10). The summary effect from around 2009 to 2015 was significantly reduced by the 

studies during this period.  

 

Figure 8 

p-Curve Analysis of Published Full-Scale IQ Studies Based on Healthy Samples 

 

Note. The blue line shows the distribution of observed p-values. The red dashed line represents the expected distribution 

under the null hypothesis of no effect. The green dashed line shows a scenario of a true effect and underpowered studies 

(33% power). 

 

https://osf.io/47nwj/


69 

 

 

 

In the verbal IQ data, most analyses did not indicate the presence of dissemination 

bias. Only a trim-and-fill analysis suggested six missing studies. The adjusted estimate of r = 

.17 (95% CI [.11, .23]). was only slightly below the meta-analytic summary effect though. 

Publication year as a predictor did not reach statistical significance (slope = -.005, p = .169, 

R² = 4.12%). 

Results for performance IQ were comparable. The trim-and-fill analysis and the 

selection model based on standard errors of effect sizes suggested nine missing studies. The 

adjusted estimates were r = .19 (95% CI [.14, .24]) and r = .20 respectively. An influence of 

publication year was not observed (slope = -.001, p = .761, R² = 0 %). 

 

Figure 9 

Bubble Plot of Meta-Regression with Predictor Publication Year Based on Full-Scale IQ Data from Healthy Samples 

 

Note. Bubbles represent individual study outcomes and are varied in size according to relative weight in the meta-regression. 

The blue line shows the slope. 
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Figure 10 

Cumulative Forest Plot of Studies Ordered by Year of Publication Based on Full-Scale IQ Data from Healthy Samples 

 

Note. The plot shows a sequence of random-effects meta-analyses starting with the first published study by Willerman et al. 

(1991) and adding the other studies one at a time. Each correlation (on the right side) corresponds to the summary effect of 

the study pool up to a given study. Correlations obtained via personal communication are not included. 
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Moderators 

Subgroup Analysis 

Table 2 summarizes results from subgroup analyses of categorial moderators. The only 

statistically significant subgroup differences in the full-scale IQ data concerned the rating 

groups of the correlation with g. The summary effect for studies based on IQ tests rated “fair” 

was r = .23 (CI [.09, .37]), for ratings “elevated” r = .20, (CI [.17, .23]), and for ratings “high” 

r = .31, (CI [.27, .34]). A further noticeable difference was observed between reported 

correlations (r = .26, CI [.23, .29]) and those obtained via personal communication (r = .20, 

CI [.13, .26]). It should not go unnoticed that the number of total participants per reporting 

group was unevenly distributed (reported: n = 21455; PC: n = 1838). Results from subgroup 

analyses regarding ethnicity were not interpretable due to lack of data. Most study authors 

reported no information on ethnicity. Those who did tested predominantly white samples, or 

samples with whites as the majority. Other ethnic categories comprised few samples (less than 

five per category). 

 In the verbal IQ data, comparing summary effects of studies using either TBV or ICV 

as their brain volume operationalization showed a trend to statistically significant differences. 

Correspondingly, comparison of samples of children/adolescents and adults reached 

significance when only studies using TBV were considered (k = 46, Q = 4.17, p = .041). The 

comparison of studies using TBV or ICV may have been affect by an uneven distribution of 

the number of studies and number of total participants. The summary effect of reported 

correlations was higher than the summary effect of correlations obtained via personal 

communication in the verbal IQ data as well.  

The difference between reporting groups was also observed in the performance IQ 

data. No other noticeable differences emerged. Descriptive information and summary effects 

for all subgroups are provided in Appendix E.  
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Table 2 

Results of Subgroup Comparisons Based on Healthy Samples 

      Full-scale IQ     

      k Q p 

Healthy vs. clinical samples  188 0.29 .591 

Reported r vs. in grey literature  122 2.90 .240 

vs. via personal communication*    

Children vs. adults*  122 0.05 .829 

TBV vs. ICV   91 0.37 .546 

Females vs. males  60 0.22 .643 

Fair vs. elevated vs. high  166 20.5 < .001 

correlation with g         

 

      Verbal IQ     

      k Q p 

Healthy vs. clinical samples  118 0.59 .442 

Reported r vs. in grey literature  73 3.29 .193 

vs. via personal communication*    

Children vs. adults*  73 1.10 .295 

TBV vs. ICV   60 3.07 .080 

Females vs. males  37 0.01 .920 

Fair vs. elevated vs. high  - - - 

correlation with g         

 

      Performance IQ   

      k Q p 

Healthy vs. clinical samples  81 0.46 .497 

Reported r vs. in grey literature  49 3.41 .065 

vs. via personal communication*    

Children vs. adults*  49 0.27 .607 

TBV vs. ICV   38 1.90 .168 

Females vs. males  25 0.05 .802 

Fair vs. elevated vs. high  - - - 

correlation with g         

Note. Subgroup comparison of healthy vs. clinical samples utilized the whole data, all other results are based on healthy 

samples. Only few studies were categorized as grey literature. Repeating analyses with only reported r and personal 

communication did not change results in the verbal IQ data meaningfully but produced a higher Q value and a trend to 

significance (p = .107) in the full-scale IQ data. There were no studies categorized as grey literature in the performance IQ 

data. Recalculating the children vs. adults comparison based on studies using TBV operationalization did not change results 

in full-scale or performance IQ, but produced a significant result in the verbal IQ data (p = .041). 
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Meta-Regression 

Univariate. Fitting a meta-regression based on healthy samples with male ratio as a 

predictor showed no statistically significant effects in all three intelligence domains (FSIQ: 

slope < -.001, p = .998; VIQ: slope .004, p = .953; PIQ: slope -.047, p = .463). Considering 

the mean age of a sample as a predictor produced two statistically insignificant results for full-

scale and performance IQ (FISQ: slope -.001, p = .388; PIQ: slope -.0018, p = .177). Mean 

age had an effect on the association between brain volume and verbal IQ (slope -.003, p = 

.020). Ratings of the correlation between applied intelligence measurement and g had a 

notable influence on effect sizes (F(2,104) = 7.57, p = .001). Effect sizes differed particularly 

between rating group 4 (excellent correlation with g; r = .31) and ratings groups 2 and 3 (fair: 

r = .22; elevated r = .20). Heterogeneity patterns between the rating group differed, so a 

mixed-effects subgroup analysis was conducted as a sensitivity analysis. The results are 

displayed in section “Subgroup Analysis”. 

Utilizing an RVE meta-regression approach showed that neither differences of 

summary effects for full-scale and performance IQ (p = .739), nor full-scale and verbal IQ (p 

= .128) were statistically significant. Although the comparison was based on numerous 

studies (104 studies comprising 286 correlations), one may interpret the latter result as a trend 

to statistical significance, considering the relatively weak power of RVE meta-regressions 

(Tanner-Smith et al., 2016).  

Multiple. First, a potential interaction effect of age and sex was examined. Fitting a 

meta-regression with a mean age * male ratio term showed no evidence for such an effect 

based on full-scale IQ data (k = 112, F(1, 110) = 0.53, p = .467, R² = 0%). A subgroup 

comparison of girls, boys, men, and women confirmed these results (Q(3) = 3.49, p = .322). 

Results for verbal and performance IQ were comparable, although some variance was 

“explained” (R² = 9.11%, p = .162, and R² = 12.83%, p = .140 respectively). 

A hierarchical multiple meta-regression for full-scale IQ data based on healthy 

samples was performed. In a first step, the year of publication, the correlation with g and the 

type of report were included as predictors in the model. The rating group "4" (excellent 

correlation with g) and the year of publication were significant predictors (R² = 53.84%). In a 

second step, the average age and sex ratio were added to the model. Rating group 4 and the 

year of publication remained the only significant predictors (R² = 55.27%). In a third step, the 

number of corrections of effect strengths and the objective of the study (by-product or not) 

were added (R² = 46.09%). Rating group 4, study goal "other" and number of corrections “3” 

were significant predictors. If we take economy and explained variance into account, model 1 
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had the best model fit. VIFs were checked at each step. In all three models, the two levels of 

type of report appeared with high VIFs (> 17). VIFs of all other predictors were 

unremarkable. Since the type of report proved to be an important predictor in the univariate 

analysis, I decided not to remove it permanently. Instead, each sub-step of the analysis was 

performed without this variable and results were compared. Small differences were visible 

without changing the inference or conclusion for individual variables as for the model fit.  

The procedure was repeated for verbal and performance IQ, except that the 

correlations with g was not included as a predictor. For verbal IQ model 2 had the best model 

fit (R² = 38.04%). Publication year and sample mean age were significant predictors. The only 

model explaining any variance (R² = 4.51%) for performance IQ was model 2. Mean age 

showed a trend to significance. 

Permutation tests (1000 iterations) confirmed the robustness of the results in all 

analyses. 

Specification Analyses 

Figure 11 shows the results of the combinatorial meta-analysis for performance IQ 

studies based on healthy samples. There is little difference in numerical output discernable 

compared to the GOSH plot generated with metafor (see Appendix D). The oversampling of 

subsets with particularly many or fewer studies did not influence subset patterns. A feature of 

the GOSH plot according to Voracek et al. (2019) is the ability to mark subsets that contain a 

particular study result (this is applicable to the metafor GOSH output as well). These specific 

subsets can then be compared with all the others. This is useful, for example, if a first study 

on an issue has produced particularly extreme results that could not be confirmed in the 

following (i.e. "winner's curse"). Although this was not the case in the first MRI study on the 

association between brain volume and performance IQ, subsets with the study by Andreasen 

et al. (1993) were highlighted for illustration purposes. The comparison between subsets with 

and without this study shows little influence on the summary effect or proportion of variation 

due to the variation of true effects (I²). The overall GOSH plot shows a unimodal pattern 

centered around the results of the Hedges-Olkin meta-analysis (r = .22, I² = 29.33%). There 

are no branching patterns to indicate different results when only certain subsets are 

considered. The subsets that are close to the x-axis are based on very few study results and do 

not give cause for concern. Overall, the meta-analytical results were stable under all possible 

combinations of studies. The same applied to the full-scale and verbal IQ data. 
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Figure 11 

GOSH Plot of the Combinatorial Meta-Analysis for Full-Scale IQ Data Based on Healthy Samples 

 

Note. The plot shows random-effects meta-analytic summary effects on the x-axis and the relative between-study 

variance statistic I² on the y-axis for 100000 random study subsets. Subsets containing the first MRI investigation of the 

association between in vivo brain volume and intelligence (Andreasen et al., 1993) is highlighted red. Distributional densities 

are shown on the top (summary effects) and on the right side (I² values) of the plot. 

Next, the influence of all reasonable meta-analytical data and analysis specifications 

on the summary effect was examined. Figure 12 shows a combination of several descriptive 

meta-analytic specification plots. These should be read vertically. The upper panel of the plot 

shows the effect sizes resulting from the corresponding specifications together with the 

respective 95% confidence intervals. The panel in the middle shows the number of included 

study results. The lower panel shows the same information considering the individual 

specifications. The color spectrum ranges from red to green to violet. The former stands for 

relatively few included study results, the latter for many. 
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Figure 12 

Descriptive Meta-Analytical Specification Plot for Full-Scale IQ Data 

 

Note. Vertical columns in the lower half of the plot represent which and how factors that constitute a given specification. 

Coloring displays the number of studies a specification is based on (red colors indicate less, blue colors a larger number of 

studies). The panel in the middle likewise shows on how many studies a specification is based on. The top panel displays the 

corresponding effect sizes along with their 95% confidence intervals. 

How can we interpret the plot? The range of effect sizes in the upper panel is the most 

important information. Depending on the combination of specifications a summary effect of r 

= .10 to r = .37 was observed. However, the outermost results are based on very few study 

results leading to wide confidence intervals. If only results based on a reasonable number of 

studies are considered, the range shrinks to about r = .20 to r = .35. This is approximately the 

range of results achieved by Pietschnig et al. (2015) and McDaniel (2005). The result of 

Gignac and Bates (2017; r = .39) can no longer be achieved on the basis of the updated data. 

In order to find out which specifications have led to higher effect sizes the lower panel is 

useful. We see that clinical samples as well as abbreviated IQ tests lead to lower effect sizes. 

In these specifications only white space is visible vertically below the higher effect sizes in 

the upper plot (no specifications). In contrast, meta-analyses that take only extensive IQ tests 
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(“full IQ test”) and range departure corrected correlations (“rc”) into account often lead to 

higher effect sizes. For all other specifications no special patterns are visible. This visual 

interpretation fits well with the results from previous sections, which showed the influence of 

the same variables. Note that there is no benefit in taking an average of the effect size range or 

the center of their distribution as all specifications are equally reasonable. Doing so would 

invite fruitless discussions about the ideal route to a result which we sought to avoid. 

There was a total of 108 possible combinations of specifications for the association 

between brain volume and verbal IQ (Figure 13). No rating categories are available for 

correlation with g in the verbal IQ data.  

Figure 13 

Descriptive Meta-Analytical Specification Plot for Verbal IQ Data 

 

Note. Vertical columns in the lower half of the plot represent which and how factors that constitute a given specification. 

Coloring displays the number of studies a specification is based on (red colors indicate less, blue colors a larger number of 

studies). The panel in the middle likewise shows on how many studies a specification is based on. The top panel displays the 

corresponding effect sizes along with their 95% confidence intervals. 
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These specifications were thus dropped. If we ignore the inaccurate estimates on the 

two outsides, the range of the resulting effect sizes was approximately between r = .16 and r = 

.26. It is interesting to note that the effect size of the Hedges and Olkin Meta-Analysis (r = 

.18) is in the lower part of the range. If we had only reported this result, this would have been 

limited information. At the variable level the range departure correction of correlation 

coefficients was associated with higher effect sizes. In comparison with the results for the 

full-scale IQ data, the trend for lower effect sizes associated with clinical samples turned 

towards higher effects sizes. The age categories as well as other metrics did not suggest any 

specific patterns for verbal IQ either.   

The range for performance IQ was approximately r = .17 to .29 (Figure 14). 108 

combinations of specifications were possible. Besides the slightly increased range, the 

specification patterns were the same as for verbal IQ. 

Figure 14 

Descriptive Meta-Analytical Specification Plot for Performance IQ Data 

 

Note. Vertical columns in the lower half of the plot represent which and how factors that constitute a given specification. 

Coloring displays the number of studies a specification is based on (red colors indicate less, blue colors a larger number of 

studies). The panel in the middle likewise shows on how many studies a specification is based on. The top panel displays the 

corresponding effect sizes along with their 95% confidence intervals. 
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Discussion 

Discussion of Meta-Analytic Results 

Overall, the results of this thesis suggest that the association between in vivo brain 

volume and intelligence is stable regarding intelligence domains, populations, and the type of 

data construction or analysis. There is some variation in effect sizes due to meta-analytic 

specifications. The range of results for full-scale IQ data from reasonable specifications is r = 

.20 to r = .35. Variation in summary effect sizes come primarily from the application of range 

departure corrections and the consideration of the type of test (shortened intelligence 

measurement or complete battery). The meta-analytical method which is used to determine 

the overall effect is of little influence. These outcomes show that the meta-analytical estimate 

of McDaniel (2005; r = .33) are at the upper end of the possible effect sizes able to be 

observed. The estimate from Pietschnig et al. (2015; r = .24) is approximately in the middle of 

the distribution. The result of Gignac and Bates (2017; r = .39) is outside the range and can 

probably be regarded as an overestimation of the correlation. Comparing the range of effect 

sizes with typical results from differential psychology research reveals a medium to strong 

correlation (Gignac & Szodorai, 2016). From a traditional perspective, the correlation is of 

small to medium strength (Cohen, 1988). Whichever view one prefers, brain volume is one of 

the strongest predictors of intelligence in the context of brain-behavior research (Richie et al., 

2015).  

But how trustworthy are these results in terms of dissemination bias? In consensus 

with Pietschnig et al. (2015), extensive analyses found signs of dissemination bias in the full-

scale IQ data based on published results from healthy samples. This bias is likely not caused 

by p-hacking. A focus on p-values was infeasible for primary researchers in the light of low to 

medium average power and the bivariate correlational study design. The detected bias seems 

more related to sample size, a known problem in the field of neuroscientific research (Button 

et al., 2013). Although the median power (49.1%) of published studies is an encouraging 

improvement compared to power estimates in neuroscientific research, it is nevertheless 

insufficient from a statistical point of view, and lead to several statistically insignificant 

results. The problem is that some of those results were not reported. The funnel plot 

asymmetry as well as the “missing” studies indicators from the trim-and-fill, and Copas and 

Shi (2001) analyses support this interpretation. The comparison of the published and 

unpublished correlations show that the latter are lower on average. Not reporting them may 

have thus been one cause of the effect size inflation. This reporting behavior is understandable 
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from the perspective of primary study authors. Especially when the primary goal of a study is 

not to give an estimate of the association of brain volume and IQ, not reporting null or 

negative effects can happen easily (as well as reporting larger effects although not originally 

intended). 

Several protective factors prevented a more substantial effect size inflation. Two of 

them are comprehensive literature screening and a relatively high number of included studies 

(Mathur & VanderWeele, 2019). McDaniel (2005) as well as Pietschnig et al. (2015) have 

carried out a careful literature screening in combination with (very successful) efforts to 

obtain unpublished results. Nevertheless, dissemination bias analyses still gave rise to 

concern. The inclusion of several large-scale studies with the data update in this thesis 

represents a further protective factor. Efforts of national and international consortia generated 

sample sizes that would have been impossible to accumulate by individual research teams. 

Although the majority of the applied methods, especially those that deal well with 

heterogeneity, still show an upward effect size inflation of about r = .02 to r = .04 based on 

published full-scale IQ data, this inflation is reduced when considering unpublished results as 

well. The remaining extent of bias is less than the variation due to estimate imprecision or the 

influence of individual studies. In general, the meta-analytic investigation of brain volume 

and intelligence is an encouraging example of how international cooperation combined with 

Open Science practices, careful literature searches, and the improvement of meta-analytic 

methods can together effectively reduce threats due to various sources of bias. 

Attempts to conceptually replicate moderator effects that have been observed 

unanimously or only once in the past show mixed results.  

First, differences in effect sizes between full-scale, verbal and performance IQ are not 

statistically significant. Nevertheless, a tendency for smaller effect sizes for brain volume and 

verbal IQ may be observed. Pietschnig et al. (2015) have argued that the smaller correlations 

could be due to the lower saturation in g. However, it is difficult to evaluate this assumption 

based on these results. The performance IQ tests contained in the data would have to show 

higher average g loadings than verbal IQ tests in order to explain the difference in the effect 

sizes between brain volume and verbal or performance IQ. This is conceivable, but not 

certain. An evaluation is difficult because many different tests have been used. To distinguish 

between perceptual organization tests and processing speed tests in the performance IQ data 

in the style of the Wechsler scales would be an indirect approach. The former usually have a 

higher saturation in g (e.g. van der Linden, 2017). Correlations between brain volume and 

perceptual organization tests must thus be stronger than those between brain volume and 
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processing speed. To test this assumption, I conducted a supplementary RVE meta-regression 

analysis. Correlations based on tests categorized as measuring perceptual organization 

abilities are higher indeed than those based on processing speed tests (results are displayed in 

Appendix F). Correlations based on verbal comprehension or working memory tests do not 

differ from each other systematically. These results indicate that the saturation in g might play 

a role in domain differences. However, this approach is rather indirect. It is of relatively weak 

power and cannot rule out alternative explanations like systematic variations in subtest 

reliability. The results presented here do not allow a final assessment. Generally, it can be said 

that the differences in effect sizes between brain volume and full-scale, and verbal IQ are 

rather small, and that there is no noticeable difference in full-scale and performance IQ 

correlations.  

Second, a difference in effect size between brain volume and intelligence based on 

healthy or clinical samples is no longer discernible when utilizing uncorrected correlations. 

This can be explained by the wide range of effect sizes within the clinical population. The 

correlation disappears completely in some diagnostic groups within the autism spectrum 

(Amaral et al., 2017) or even becomes negative in the case of megalocephaly (Petersson et al., 

1999), whereas it is strong for patients with cerebral-palsy (Ballester-Plane et al., 2016). Some 

rather strong correlations based on clinical samples were added in the course of the data 

update in this thesis (e.g. Bjuland et al., 2014; van Haren et al., 2019; Annink et al., 2018), 

leading to a little higher summary effect compared to Pietschnig et al. (2015). However, using 

range departure corrected correlations leads to more pronounced differences in summary 

effects. The average standard deviation of IQ scores from healthy samples was restricted in 

range but was enhanced in clinical samples. Hypothesis 3 is therefore not to be rejected. The 

association between brain volume and IQ is usually weaker under clinical conditions. The 

value of this information is limited since the variation between conditions is high. For a 

precise effect size determination, separate analyses by diagnostic groups must be performed.  

However, some general patterns of effect size differences per condition are 

identifiable. Brain volume and intelligence are stronger correlated in conditions where 

maturation is hindered due to confined space (volume). Examples are microencephaly, 

children extremely born preterm, patients suffering from cerebral palsy, and developmental 

delay due to alcohol abuse during pregnancy. Every gain in brain volume is a reduction of this 

confinement and benefits maturation. Brain volume is therefore used as a developmental 

marker in those contexts (e.g. Katušić et al., 2020). The correlation between brain volume and 

intelligence disappears when clinical conditions lead to an enlargement of brain volume. In 
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this case gains in brain volume do not enhance efficiency of the brain, and compartments of 

cerebrospinal fluids are disproportionally enlarged compared to grey and white matter tissue 

(e.g. de Zwarte et al., 2019). For conditions where brain volume is not obviously affected 

matters are more complex. The results of this thesis demonstrate that on average the 

correlation of brain volume and intelligence is weakened. Reasons for weakened correlations 

depend on the context of measurement (e.g. state of condition, medication) and on the way a 

clinical condition does affect cognition in general. A comparison of offspring from 

schizophrenic and bipolar patients shows that brain volume is more affected by schizophrenia 

than bipolar disorder (van Haren et al., 2019). The correlation between brain volume and IQ 

does not differ much between bipolar patients and controls (Vreeker et al., 2017). The 

comparison of healthy and clinical samples therefore provides interesting starting points for 

why brain volume and intelligence are correlated in the first place. 

Third, the use of extensive intelligence batteries, usually a full Wechsler scale, is 

associated with higher effect sizes. However, a gradual sequence as in Gignac and Bates 

(2017) was not observed. Studies utilizing intelligence tests that correlate quite well with g 

(rating "3", 2-8 subtests assessing 2-3 intelligence dimensions) reported on average lower 

effect sizes than studies with rating "2" (1-2 subtests assessing 1-2 dimensions). Also, the 

differences between the rating groups are not as large as in Gignac and Bates (2017). The 

difference between rating groups 2 and 4 was remarkably high (r = .18) in their meta-analysis. 

The difference is r = .10 in this master’s thesis. 

 Gignac and Bates (2017) have described the influence of test extensiveness as 

"measurement quality". From my point of view, there are some arguments against this label. 

(1) Classical measurement quality criteria, for example the experience and competence of test 

givers, the appropriateness of the testing environment, or the condition of participants on the 

day of testing have not been considered. The number of subtests and domains involved have 

been assessed. The authors acknowledge that classic measurement quality criteria as 

mentioned above may act as a confound, because comprehensive IQ tests might have been 

administered more likely by trained personnel than abbreviated IQ tests or subtests (Gignac & 

Bates, 2017, 28). (2) The label measurement quality implies that primary researchers have 

made either a better or worse job measuring intelligence. While this is true if one only 

considers how broad the assessment was, measurement quality is an infelicity chosen 

expression from the perspective of primary researchers in this context. Research goals, 

economic constraints and ethical considerations (like burden of total testing time) are different 

across studies. A full-scale intelligence battery may not be cost effective (when the main goal 



83 

 

 

 

is not an estimate of the association between brain volume and intelligence) or ethically 

desirable. (3) The label does not enhance concept precision. Other terms like “measurement 

modality” might be conceivable, but there is no benefit in using those. To call a spade a 

spade, I suggest naming the variable operationalization criteria (number of subtests and 

domains). Calling this influence correlation with g as I did is partly warranted as there is 

likely a moderate influence of g loadings on the association between brain volume and 

intelligence (Woodley of Menie et al., 2016), but the exact composition of this moderating 

influence cannot be clearly determined. It remains unresolved what part g theory and other 

factors such as test quality criteria (e.g. reliability) or the type of variable operationalization 

(coding) have. 

Fourth, a decline effect was observed in the updated full-scale IQ data, 29 years after 

the first MRI study by Willerman et al. (1991). Especially study results between 2009 and 

2016 based on larger samples have amended the summary effect downwards. This inflated 

decline effect is most likely rooted in the average underpowered design of earlier studies and 

missing zero or negative correlations due to selective reporting. Both factors are typically 

associated with decline effects (Protzko & Schooler, 2017). Other explanations such as 

changing measurement or analysis procedures seem unlikely as there were no dramatic 

changes in any of them in the context of in vivo brain volume, intelligence and bivariate 

correlational study designs. Interestingly, the effect of publication year is reduced in the 

verbal IQ and vanishes in the performance IQ data. This agrees well with the fact that 

dissemination bias analyses for verbal and performance IQ data generally showed a reduced 

impact compared to full-scale IQ data. The concentration of effect size inflation on headline 

effects suggests that strategic research and reporting behavior may have contributed to an 

overestimation of effects in earlier studies. 

Fifth, analyses in this thesis suggest that the correlation between brain volume and 

full-scale IQ based on healthy samples is not influenced by age. No matter how the variable 

age was operationalized, whether categorically with two levels, or continuously as mean age, 

analyses showed no systematic influence. The same applies to performance IQ. However, for 

verbal IQ data an influence is observable. The younger the mean age of the sample, the higher 

the correlation between brain volume and verbal intelligence. This result can be interpreted in 

such a way that with increasing age educational experiences (building up knowledge) gain in 

importance and the relevance of brain volume thus decreases a little. A more detailed analysis 

of the influence of certain verbal IQ subtests would provide further insight. General 

intelligence, processing speed and visuospatial ability for example decrease, however memory 
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does not decrease as much (Hoogendam et al., 2014). Even within different memory functions 

diverging patterns of aging can be detected. In old age some components of working memory 

are better preserved than others. Episodic and prospective memory, and the ability to divide 

attention decreases with age, while implicit and semantic memory and sustained attention 

remain stable (Oschwald et al., 2019). Examining if brain volume operationalization (TBV or 

ICV) influenced results lead to a more pronounced result for verbal IQ but otherwise was not 

inconspicuous. 

The association between brain volume and IQ could very well vary with age. For 

example, the indirect factors (compensatory scaffolding) of the revised scaffolding theory of 

aging and cognition (STAC-r; Reuter-Lorenz & Park, 2014) suggest a variation in the 

association between brain volume and intelligence with age, since brain tissue loss is not 

necessarily accompanied by worse cognitive performance. Longitudinal studies have shown 

that a reduction in brain volume does need not be associated with a reduction in cognitive 

performance (Jäncke et al., 2020), at least in a limited period of time. There are some other 

factors such as lifestyle and health which might be important for further consideration. For 

example, sporting activities protect against accelerated loss of brain volume (Pruimboom et 

al., 2015). The decline in fluid intelligence could even be entirely due to deteriorating health 

(Bergman & Almkvist, 2013). Reasons for why no influence of age was detected may also lie 

aside from theoretical considerations in coding decisions. It might have been that the 

categorial coding of children/adolescents vs. adults was too insensitive to detect age effects. 

Mean age is somewhat more informative, but standard deviations of age means were 

sometimes large. In order to test this possibility, I conducted a supplementary mixed effects 

meta-regression based on a refined categorization of age groups (results can be found in 

Appendix G). There were indeed some differences between younger age groups and older 

adults (> 35 years), especially between adolescents and elderly, but group sizes were too 

small to have great confidence in these results (results were statistically insignificant). They 

rather suggest that moderator tests of age might be (in a small degree) sensitive to variable 

operationalization choices. The focus on studies using TBV was not possible due to lack of 

data. Although a greater level of detail might answer some remaining questions, age seems to 

have limited influence on the association between brain volume and (performance) IQ.   

Sixth, there is no difference in the association between brain volume and intelligence 

domains for females and males. Neither the use of categories, nor using male ratio of samples 

as a predictor revealed noticeable effects. As there are no other coding options, and data 

availability is satisfactory, we can be fairly certain that one´s sex alone does not influence the 
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association between brain volume and intelligence. An analysis based on correlation 

coefficients corrected for range departure did not change the results. This finding is in line 

with previous results (Burgaleta et al., 2012; Escorial et al., 2015; Pietschnig et al., 2015). In 

contrast, van der Linden et al. (2017) have observed small differences in general intelligence 

between females and males in a large sample (n = 896), which were mediated by brain size. 

Although there may be small variations within individual samples, the majority of the results 

suggests that there is no difference in brain volume and intelligence association for females 

and males. Some researchers have suggested that there might be an interaction effect of sex 

and age (Lynn, 1994; McDaniel, 2005). The analyses in this thesis provide no support for the 

existence of such an effect. 

Brain volume and intelligence correlate. The brain volume of males is larger on 

average. Females and males show no (or very small) differences in general intelligence. How 

is this possible? Some study results indicate anatomical and functional differences that 

compensate for a difference in brain volume (see van der Linden et al., 2017). Recent research 

has expanded insights into these differences by using transcriptomic analysis methods (Liu et 

al., 2020). The exact mechanisms of this compensation are not yet understood. 

Seventh, a reopening of the topic of ethnicity/race which has accompanied research 

into the association between brain volume and intelligence for so long failed due to a lack of 

data as well as conceptual problems. On the one hand, the overwhelming majority of study 

participants of in vivo brain volume studies is white. There are only eight correlations based 

on other ethnic categories available in the entire full-scale IQ dataset. On the other hand, 

using race or ethnicity might not be adequate to obtain meaningful results in this context. 

Most theories on differences in brain volume and intelligence include the factor climate zone. 

So even if we had enough data for group comparisons based on race, this comparison would 

be ineffective because each of the categories includes several climate zones. With the help of 

the concept of ethnicity it would at least be possible to define population groups more precise 

and to make targeted comparisons. For example, Kura et al. (2014) compared a certain ethnic 

minority, called Ainu, with the rest of the Japanese population in terms of brain volume. The 

problem with this approach is that it is very data intensive. A large number of data sets from 

all over the world in which in vivo brain volume and intelligence were measured would be 

needed. This is far from reality, especially in structurally weak regions. The data set collected 

for this thesis contains almost exclusively studies that have differentiated participants into 

White, Black, Hispanic or Asian following the North American habit. There are hardly any 

classifications according to ethnic criteria. Almost no study from Europe covered the race or 
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ethnicity of their participants. These problems are compounded by the difficulty of controlling 

potential confusions, such as SES (Jensen & Sinha, 1993). Not to be forgotten, studies based 

on social classification variables in the context of intelligence are sensitive, and results need 

to be robust. This may mean that large-scale genetic association studies are a better starting 

point for meaningful results. These avoid both the data problem and conceptual difficulties. 

Genetic clusters or geographic variations of allele frequencies offer a much finer construction 

of variables (Heinz et al., 2014).  

Generally, the association of brain volume and intelligence is expected to apply to 

people from all continents. In addition to the studies used in this thesis, further studies using 

surrogate measures to estimate brain volume support this assumption (Bakhiet et al., 2016; 

Hein et al., 2014; Ivanovic et al., 2014). Whether the association of brain volume and 

intelligence varies between ethnic groups is not yet foreseeable. 

One of the main objectives of this thesis was the application of methods to examine 

the influence of meta-analytical specifications on the result. Since this thesis used those 

methods as one of the first, some remarks regarding their application may be useful. (1) Many 

other methods were used; however, none was able to model data and analytical specifications 

simultaneously. The execution of different meta-analytical approaches side by side is not an 

alternative, because this way one data set only can be used at a time, or the presentation of 

results quickly becomes cluttered. Interesting alternatives are currently being developed (e.g. 

Bayesian model averaging for meta-analysis, Heck et al., 2019), however they are not yet as 

flexible in the inclusion of data and analysis procedures. Bayesian methods may have 

advantages when the data pool is small. (2) The approach of Voracek et al. (2019) is very 

flexible. There is no limit to the number or type of specifications that can be modeled. The 

only practical limit is computational feasibility. (3) The application serves several purposes. 

On the one hand the possible result space of the summary effect is determined, on the other 

hand influential specifications can be identified more easily. This implies a time saving in the 

research process by anticipating repetitions due to other specifications and avoids tedious 

discussions about the best way forward. In addition, it offers the possibility to use several 

tools at the same time in a clear and concise way, and to perform the ultimate robustness 

check of your results. (4) The code from Voracek et al. (2019) is relatively easy to use. In 

principle you only have to enter relevant specifications and adjust some parameters. (5) The 

graphical outputs of the specification curve analyses are in my opinion more flexible and 

detailed. The p-value histogram from the multiverse analysis is suitable to inspect the 

evidence against the H0. Depending on the size of the data pool the inferential statistical 
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validation by bootstrapping in the specification curve plots is more robust. If effect sizes are 

to be evaluated the descriptive output of the specification curve analysis is most suitable. It 

provides the opportunity to interpret the influence of individual specifications. An advantage 

of p-value histograms might be that they are easier to read. (6) According to Voracek et al. 

(2019) the increased use of multiverse and specification curve analyses could reveal whether 

data or analysis specifications have more influence on the result in a meta-analytical context. 

In this thesis it was one specification each that influenced the summary effect in somewhat 

equal parts. The "which" factor is the selection of a set of study results based on the scope of 

the intelligence testing. The "how" factor is whether correlation coefficients were corrected 

for range departure. In sum, multiverse and specification curve analyses by Voracek et al. 

(2019) enrich the meta-analytical arsenal of methods. The prospective power of specification 

analyses can be used to clarify or even anticipate inconsistencies and to report the entire range 

of results of all reasonable meta-analytical specifications. 

Limitations 

By applying a variety of diverging methods based on a relatively large data set, the 

results presented in this thesis stand, from an analytical point of view, on solid ground. 

However, there are some limitations worth considering. First, neither the literature search nor 

the coding was reviewed by a second person. The reliability of these processes was also not 

determined intrapersonally. Neither complies with current recommendations (e.g. Higgins et 

al., 2009). However, the entire coding process was repeated, and inconsistencies were 

corrected. Since any analysis can only be as good as the data set on which it is based, an 

external review of the data update is desirable. 

There are also some open questions from an analytical point of view. For example, it 

was not possible to clearly determine how the saturation in g influences differences between 

intelligence domains or the extent of intelligence testing. To exclude alternative explanations, 

a correction for unreliability and construct validity in the manner of psychometric meta-

analyses would be helpful. Although reliability measures have hardly been reported in 

included studies, the use of reliability measures from the respective manuals could at least 

exclude systematic variations due to reliability differences between IQ tests.  

Gignac and Bates (2017) point out in the discussion of their meta-analysis that the 

measurement of brain volume could be evaluated in a similar way as the measurement of 

intelligence. In addition to range departure corrections, the capability of the MRI device used, 

corrections for measurement artifacts (e.g. head movement) and the data extraction method 
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could be considered. An influence of the measurement modality on the outcome could thus be 

determined. Even though the determination of brain volume by MRI is precise, there have 

been improvements of this technology over the time span of the included studies. However, it 

is unclear how a rating procedure could be constructed to capture differences in the 

measurement modality and fit the reporting habits in the literature. This aspect may resolve 

itself over time. More and more large data sets with harmonized measurement procedures are 

published. Due to their great weight in meta-analyses it is questionable whether the effort 

described above is worth it. It is also unclear to what extent current trends in the 

implementation of machine learning will determine measurement or analysis modalities in the 

future. 

Why Is Brain Volume Associated with Intelligence? 

The results of this master thesis show that the association of brain volume and 

intelligence is surprisingly stable. Neither age nor sex influence the association, and it remains 

noticeable even under many clinical circumstances. But why do brain volume and intelligence 

correlate? The most common theory of their association is quite simple. Larger brains contain 

more (cortical) neurons and therefore have more computational power to solve complex tasks 

(see van der Linden et al., 2017). Some examples were already mentioned rendering this 

explanation problematic, if it stands alone. An IQ difference between females and males is 

absent, or at least much less obvious than the difference in average brain volumes (Ruigrok et 

al., 2014). In some forms of autism larger brain volumes are also not associated with increases 

in intelligence (Amaral et al., 2017). Lower intelligence due to extremely large brains is a 

particularly striking illustration of the problem (Petersson et al., 1999). Considering other 

structural brain properties like grey matter cortical thickness and surface area, or white matter 

integrity (see Mathiesen, 2015) does not solve this problem either, since in a comparison brain 

volume explained by far the most variance (Ritchie et al., 2015). The number of neurons may 

have played a role from an evolutionary perspective (Pietschnig et al., 2015), but these 

examples show that other factors must be combined with the number of neurons. A useful 

refinement is the conceptualization of brain volume as a function of cortical neuron numbers 

and degree of myelination (Roth & Dicke, 2005). Although this concept does not fully resolve 

the outlined problems, it opens possibilities to integrate functional properties like network 

flexibility and dynamics (Barbey, 2017). Together with theories trying to identify those 

structures and networks considered to be particularly important for intelligence performance 

(for a review see Jausovec, 2019), the role of brain volume may be clearer to determine. But 



89 

 

 

 

the quest for a full picture does not end there. Further factors could be neurogenesis (Hill et 

al., 2019), neuro-hormonal regulation (Saniotis, 2020), and cell properties (see Goriounova & 

Mansvelder, 2019). Understanding a variety of these factors and their complex interactions is 

likely to be necessary in order to understand how exactly the size of the brain relates to 

intelligence. A promising array of research are genome-wide association studies (GWAS). 

GWAS examine genetic variations in a genome by associating a phenotype (e.g. brain 

volume) to alleles within genomic loci. Jansen et al. (2019) identified 67 shared genes as well 

as five genomic loci that may drive the genetic correlation between brain volume and 

intelligence. These genes are involved mainly in regulating cell growth. Further research in 

that area might provide true insight. Whether deciphering this fascinating complexity will 

ultimately result in brain size being seen as a "poor proxy" (Woodley of Menie et al., 2016, 

218) for all things we did not understand or whether brain size provides direct functional 

benefits is not yet clear. Recent research favors the view of a causal influence of brain volume 

on IQ (Lee et al., 2019), and found a functional equivalent of their association in the sense 

that fMRI signals of intelligent people wander in a larger space (Dizaji et al., 2019). 

Conclusion 

 

The association between in vivo brain volume and intelligence in humans is robust 

across age, sex, intelligence domain, various clinical conditions, and meta-analytical data and 

analyses specifications. The careful search for grey literature and the success of consortia in 

collecting large samples has efficiently reduced the impact of dissemination bias. This gives 

reason for optimism in the study of brain-behavior associations. However, an inflated decline 

effect is observed over the entire time span of the included publications in this thesis. 

The use of specification curve in a meta-analytical context according to Voracek et al. 

(2019) enabled the modeling of all data and analysis specifications used by meta-analysts on 

the topic. The summary effect ranges from approximately r = .20 to r = .35. The exclusive 

consideration of study results based on extensive IQ tests, and the use of correlation 

coefficients corrected for range departure yield higher effect sizes. Data subsets by age and 

sex, the meta-analytic model, and analyses using various r metrics have little impact. 

It could not have been clarified to what extent the saturation in g leads to slight 

differences in effect sizes between domains, and whether other factors such as fluctuating 

reliability between used tests play a role.  

Although there are still some open questions, the correlative study design is reaching 

its limits when investigating the association between in vivo brain volume and intelligence. 
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Progress in genetic research methods, and improved data availability and precision of brain-

behavior studies offer the prospect of elucidating causal relations between brain volume and 

intelligence as well as the complex interplay of factors at different levels of neuroscientific 

research of individual differences in which brain volume and intelligence are embedded.  
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Abbreviations 

 

Abbreviation Meaning 

CHC Cattell-Horn-Carroll 

CSF Cerebrospinal Fluid 

CT Computed Tomography 

GM Grey Matter 

GOSH Graphical Display of Study Heterogeneity 

HS Hunter-Schmidt 

ICV Intracranial Volume 

IQ Intelligence Quotient 

MRI Magnetic Resonance Imaging 

POI Perceptual Organization Index 

PM Paule-Mandel 

PSI Processing Speed Index 

QQ Quantile-Quantile 

REML Restricted Maximum Likelihood  

RVE Robust Variance Estimation 

SES Socioeconomic Status 

TBV Total Brain Volume 

VIF Variance Inflation Factor 

VCI Verbal Comprehension Index 

WM White Matter 

WMI Working Memory Index 
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Appendices 

Appendix A – Software Documentation 

Documentation of Used Programs, Packages and R Codes. 

Name Version Platform Reference/Source 

bayesmeta 2.5 R Röver (2020) 

clubsandwich 0.5.0 R https://cran.r-project.org/package=clubSandwich 

gsl 2.1-6 R Hankin (2006) 

metafor 2.4-0 R Viechtbauer (2010) 

metasens 0.4-1 R https://cran.r-project.org/package=metasens 

metaviz 0.3.1 R https://cran.r-project.org/package=metaviz 

p-curve 4.06 website www.p-curve.com 

Prediction 

interval 
18.12.2016 Excel sheet https://www.meta-analysis.com/pages/prediction.php 

psychmeta 2.4.2 R Dahlke & Wiernik (2019) 

psychometrica 10/2020 website Lenhard & Lenhard (2014) 

readxl 1.3.1 R https://cran.r-project.org/package=readxl 

robumeta 2.0 R https://cran.r-project.org/package=robumeta 

Rstudio 1.3.1093 R https://rstudio.com/products/rstudio/download/ 

vioplot 0.3.5 R Adler & Kelly (2020) 

Voracek et al. 

(2019) 
10.08.2018 R Voracek et al. (2019) 

weightr 2.0.2 R https://cran.r-project.org/package=weightr 
Note. The website Psychometrica was used to obtain z-to-r transformed correlation coefficients. Full documentation of used 

R packages and their dependencies is available at https://osf.io/47ygt/.  

 

https://osf.io/47ygt/
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Appendix B – Rainforest Plots for Verbal and Performance IQ 

Figure B.1 

Rainforest Plot for Associations of In Vivo Brain Volume and Verbal IQ Based on Healthy Samples 

 

Note. Summary effect is based on a random effects model and represented by the diamond; symbol size and coloring of 

raindrops are varied according to relative study weight within analysis. 
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Figure B.2 

Rainforest Plot for Associations of In Vivo Brain Volume and Performance IQ Based on Healthy Samples 

 

Note. Summary effect is based on a random effects model and represented by the diamond; symbol size and coloring of 

raindrops are varied according to relative study weight within analysis. Rainforest plots for verbal and performance IQ based 

on clinical samples are available at https://osf.io/t24wg/ and https://osf.io/qxhdu/ respectively. 

https://osf.io/t24wg/
https://osf.io/qxhdu/


121 

 

 

 

Appendix C – Overview of Meta-Analytic Summary Effect 

Overview of Summary Effects Based on Healthy Samples as Computed by the Different Meta-Analytical Approaches 

  Full-scale IQ           

  k n I² r LCI UCI 

Hedges-Olkin 122 23359 56.35% .24 .21 .26 

"Bare-Bones" 122 23359 62.97% .22 .15 .28 

Psychometric 64 8315 36.80% .28 .23 .33 

RVE 124 (94) 23553 51.84% .24 .21 .26 

Bayesian 122 23359  - .24 .21 .26 

  Verbal IQ           

  k n I² r LCI UCI 

Hedges-Olkin 73 5322 52.04% .19 .14 .23 

"Bare-Bones" 73 5322 66.15% .16 .09 .23 

Psychometric 31 2541 35.67% .24 .17 .31 

RVE 92 (63) 7633 57.04% .18 .14 .23 

Bayesian 73 5322 -  .18 .14 .23 

  Performance IQ         

  k n I² r LCI UCI 

Hedges-Olkin 49 3837 29.33% .22 .18 .26 

"Bare-Bones" 49 3837 29.87% .20 .16 .25 

Psychometric 28 2236 15.28% .28 .22 .33 

RVE 72 (46) 7366 29.44% .22 .18 .26 

Bayesian 49 3837  - .22 .18 .26 
Note. In the RVE approach the number of synthesized effect sizes is followed by the number of individual samples in 

parentheses. I² = percentage of variability due to variability of true effects. LCI = lower bound of 95% confidence interval. 

UCI = upper bound of 95% confidence interval. In the Bayesian approach these are shortest credible intervals. 
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Appendix D – Heterogeneity Plots for Verbal and Performance IQ Data 

Figure D.1 

Collection of Plots Assessing Heterogeneity in Verbal IQ Data Based on Healthy Samples 

 

 

Note. Plots from left to right: normal QQ plot, Baujat plot, influence diagnostics, GOSH plot. All plots were created with the 

metafor package. 
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Figure D.2 

Collection of Plots Assessing Heterogeneity in Performance IQ Data Based on Healthy Samples 

 

 

Note. Plots from left to right: normal QQ plot, Baujat plot, influence diagnostics, GOSH plot. All plots were created with the 

metafor package. Plots based on clinical verbal and performance IQ data are available at https://osf.io/y6msp/.  

 

 

 

 

 

https://osf.io/y6msp/
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Appendix E – Subgroup Results 

Meta-Analytic Results for Subgroups Based on Healthy Samples 

  Full-scale IQ           

  k n I² r LCI UCI 

Healthy  122 23359 56.35% .24 .21 .26 

Clinical 66 4481 58.95% .22 .16 .27 

Reported 72 21455 64.12% .25 .22 .28 

Grey 4 66 46.41% .13 -.49 .66 

PC 46 1838 34.43% .19 .13 .26 

Children 54 4035 17.13% .24 .20 .28 

Adults 68 19324 69.36% .23 .20 .27 

TBV 74 17484 42.11% .24 .21 .26 

ICV 17 4682 79.64% .26 .18 .34 

Females 24 5994 0.02% .26 .23 .29 

Males 36 6094 10.97% .25 .21 .29 

"Fair" 12 980 71.69% .23 .09 .37 

"Elevated" 45 18174 56.70% .20 .17 .23 

"High" 50 3355 4.07% .30 .27 .34 

 

  Verbal IQ           

  k n I² r LCI UCI 

Healthy  73 5322 52.04% .19 .14 .23 

Clinical 45 2263 36.30% .22 .15 .28 

Reported 42 4081 54.81% .21 .15 .27 

Grey 2 35 20.27% -.03 -1 1 

PC 29 1206 43.03% .13 .05 .22 

Children 27 2234 31.91% .22 .15 .29 

Adults 46 3088 54.59% .17 .11 .23 

TBV 47 4076 40.67% .18 .13 .22 

ICV 13 765 64.64% .30 .15 .43 

Females 15 650 0.03% .24 .15 .32 

Males 22 1038 25.72% .23 .15 .31 
 

  Performance IQ         

  k n I² r LCI UCI 

Healthy  49 3837 29.33% .22 .18 .26 

Clinical 32 1840 23.82% .19 .13 .26 

Reported 28 3224 46.71% .24 .19 .29 

Grey 0 0 - - - - 

PC 21 613 0% .17 .10 .23 

Children 24 2108 30.03% .23 .17 .29 

Adults 25 1729 27.75% .21 .16 .26 

TBV 32 3375 40.91% .22 .17 .26 

ICV 6 180 0% .29 .17 .40 

Females 9 429 0% .25 .17 .32 

Males 16 717 17.44% .24 .16 .31 
Note. I² = percentage of variability due to variability of true effects. LCI = lower bound of 95% confidence interval. UCI = 

upper bound of 95% confidence interval. “Fair”, “elevated”, “high” refer to the rated correlation of the IQ tests with g. 
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Appendix F – RVE Meta-Regression for Verbal and Performance IQ Subdomains 

A potential difference in effect size between brain volume verbal or performance IQ 

subdomains was examined. Verbal and performance IQ domains were divided into verbal 

comprehension, working memory, perceptual organization and processing speed. The 

subsequent coding was based on the tests used and followed the structure of Wechsler 

intelligence scales. Correlations where no subdomain assignment was possible were 

categorized as "overall". The variable was named "IQdomain2" in the data set. A comparison 

using RVE meta-regression between 32 verbal comprehension and 15 working memory 

correlations showed no statistically significant differences (r = .21, r = .19, p = .745). 

Differences between 26 perceptual organization and 12 processing speed correlations were 

also not statistically significant, but more pronounced (r = .24, r = .16, p = .241). The 

inconspicuous p-value may have been a result of the relatively low power. Since the 

difference in effect size was theorized before conducting the analysis, I interpreted the result 

as meaningful despite the p-value.  

 

Appendix G – Meta-Regression of Five-Level Age Factor 

A five-level coding approach was applied to test a potential moderating role of age 

ones more. The levels were: children (0-12yr), adolescents (13-18yr), young adults (19-34yr), 

adults (35-64yr), and elderly (65+yr). Coding focused on mean age under consideration of the 

standard deviation of mean age in a sample. Age intervals have been chosen according to 

stages of brain volume increases and decreases across lifetime (Hedman et al., 2012). In cases 

where a substantial overlap of age groups hindered categorization, samples were categorized 

as “mixed”. Coding choices were therefore sometimes a bit arbitrary. A random-effects meta-

regression with the same specifications as the two-level moderator test was conducted. The 

robustness test of a moderating effect was statistically insignificant (F(5, 96) =  1, p = .422). 

Summary effects of age groups differed. The correlation for children was r = .25 (k = 17), for 

adolescents r = .32 (k = 15), for young adults r = .23 (k = 31), for adults r = .20 (k = 8), for 

elderly r = .19 (k = 8), and for mixed groups r = .24 (k = 23). Power was greatly reduced in 

comparison with other moderator analyses concerning age. Results should be interpreted in a 

way that age moderating effects might be sensitive (in a small degree) to variable 

operationalization, not as hard evidence.  
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Appendix H – English Abstract 

Attempts to link brain volume and intelligence go back over 180 years. In numerous narrative 

reviews and three meta-analyses no agreement could have been reached on the effect size or 

their association. Although recently published meta-analyses (Pietschnig et al., 2015; Gignac 

& Bates, 2017) have been based on the same data pool, they have reported divergent results (r 

= .24 and r = .39). There was also no agreement on the influence of potential moderators and 

dissemination bias. In order to address these unresolved questions, a meta-analysis was 

conducted based on an update of the data pool by Pietschnig et al. (2015). Forty-eight new 

studies were included; the total number of study participants tripled. The correlation between 

in vivo brain volume and intelligence was estimated to be r = .24 based on healthy subjects 

using three different approaches (Hedges-Olkin, robust variance estimation, Bayesian meta-

analysis). Performing a psychometric meta-analysis resulted in a higher estimate (r = .28). By 

applying meta-analytical specification analyses according to Voracek et al. (2019), the range 

of results under all possible specifications of previous meta-analysts was estimated to be r = 

.20 to r = .35. The use of range departure corrected correlations and the exclusive 

consideration of results based on extensive intelligence assessment had the most notable 

influence. The association between brain volume and intelligence generalized over age, sex, 

and intelligence domains. Dissemination bias was detectable in the data but had little impact 

on effect estimates. Nevertheless, decreasing effects were observed over the entire time span 

of the studies considered. 

Appendix I – German Abstract 

Die Geschichte von Versuchen Gehirnvolumen und Intelligenz in Zusammenhang zu bringen 

zählt über 180 Jahre. In zahlreichen narrativen Reviews und drei Meta-Analysen konnte keine 

Einigkeit über die Größe des Zusammenhangs erzielt werden. Kürzlich publizierte Meta-

Analysen (Pietschnig et al., 2015; Gignac & Bates, 2017) basierten auf demselben Datenpool, 

berichteten aber auseinandergehende Ergebnisse (r = .24 und r = .39). Auch über den Einfluss 

von potenziellen Moderatoren sowie Disseminationsbias bestand keine Einigkeit. Um diese 

offenen Fragen aufzuklären, wurde eine neuerliche Meta-Analyse auf Grundlage eines 

Updates des Datenpools von Pietschnig et al. (2015) unternommen. Es wurden 48 neue 

Studien aufgenommen; die Gesamtzahl der Studienteilnehmer*innen konnte verdreifacht 

werden. Der Zusammenhang von in vivo Gehirnvolumen und Intelligenz wurde auf 

Grundlage von gesunden Proband*innen mit drei verschiedenen Ansätzen (Hedges-Olkin, 

Robust Variance Estimation, Bayesianische Meta-Analyse) auf r = .24 geschätzt. Die 

Durchführung einer psychometrischen Meta-Analyse führte zu einer höheren Schätzung (r = 

.28). Durch die Anwendung von meta-analytischen Spezifikationsanalysen nach Voracek et 

al. (2019) konnte der gesamte Ergebnisraum unter allen möglichen Spezifikationen vorheriger 

Meta-Analyst*innen auf r = .20 bis r = .35 geschätzt werden. Den größten Einfluss auf das 

Ergebnis hatte die Anwendung von Methoden zur Simulation von Bereichsabweichungen der 

Standardabweichung von Intelligenztestergebnissen sowie die Berücksichtigung ob eine 

umfassende Intelligenztestung stattfand oder nicht. Der Zusammenhang zwischen 

Gehirnvolumen und Intelligenz zeigte sich robust gegenüber Alter, Geschlecht und 

Intelligenz-Domänen. Disseminationsbias war in den Daten nachweisbar, hatte aber wenig 

Einfluss auf die Effektschätzungen. Es wurden jedoch abnehmende Effektschätzungen über 

die gesamte zeitliche Spanne der berücksichtigten Studien beobachtet. 


