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Abstract

This thesis explores aspects of Ramsey theory in the descriptive set-theoretic
context. The motivating question was: When does a Borel function from a
countable Borel equivalence relation E to 2 admit an E-complete homoge-
neous Borel set? This thesis mostly focuses on two related questions: When
is the underlying space a countable union of homogeneous Borel sets? In
the new context, what is the relevance of the usual method of constructing
counterexamples to infinitary Ramsey statements by comparing two linear
orders?

First, we look at the Hausdorff condensation of linear orders and give two
proofs of the fact that ω1 is a strict upper bound for the supremum of the
Hausdorff ranks of certain definable sets of scattered linear orders. Then,
we deal with continuous embeddability in the class ΓG2 of pairs of analytic
directed graphs on a Polish space whose joint Borel chromatic number is un-
countable. Many results from a paper by Miller and Lecomte are generalized
to pairs of analytic directed graphs, most importantly the basis and anti-basis
results. Finally, we look at the class ΓF∗ of Borel functions f : E\∆(X)→ 2,
where E is a non-smooth Borel equivalence relation on a Polish space X, with
the property that every Borel set B for which f � ((E \∆(X)) � B) is con-
stant is E-smooth. There is a natural example f0 of such a function, which
turns out to be minimal among the functions in ΓF∗ whose domain comes
from a countable equivalence relation.



Zusammenfassung

In dieser Masterarbeit erkunden wir Aspekte der Ramsey-Theorie im Kon-
text der Deskriptiven Mengenlehre. Die motivierende Fragestellung lautete:
Wann gibt es für eine borelsche Funktion von einer abzählbaren borelschen
Äquivalenzrelation E nach 2 eine E-vollständige homogene Borel-Menge?
Wir beschäftigen uns hauptsächlich mit zwei verwandten Fragen: Wann kann
der darunterliegende Raum als abzählbare Vereinigung von homogenen Bo-
rel-Mengen geschrieben werden? Welche Relevanz hat die übliche Methode,
um Gegenbeispiele für Ramsey-Aussagen im Unendlichen zu konstruieren,
i.e. das Vergleichen von zwei linearen Ordnungen, im neuen Kontext?

Zu Beginn untersuchen wir die Hausdorff-Kondensation von linearen Ord-
nungen und geben zwei Beweise dafür, dass ω1 eine strikte obere Schranke für
das Supremum der Hausdorff-Ränge von bestimmten definierbaren Mengen
von zerstreuten linearen Ordnungen ist. Anschließend untersuchen wir die
stetige Einbettbarkeit in der Klasse ΓG2 von Paaren analytischer gerichteter
Graphen auf polnischen Räumen, deren gemeinsame borelsche chromatische
Zahl überabzählbar ist. Viele Resultate einer Arbeit von Miller und Lecom-
te werden zu Paaren von analytischen gerichteten Graphen verallgemeinert,
insbesondere die Basis- und Anti-Basis-Resultate. Abschließend untersuchen
wir die Klasse ΓF∗ von borelschen Funktionen f : E\∆(X)→ 2, wobei E eine
nicht-glatte borelsche Äquivalenzrelation auf einem polnischen Raum ist und
jede Borel-Menge B, für welche f � ((E \∆(X)) � B) konstant ist, E-glatt
ist. Es gibt ein natürliches Beispiel f0 einer solchen Funktion, die minimal
unter jenen Funktionen in ΓF∗ ist, deren Domäne von einer abzählbaren
Äquivalenzrelation kommt.



Introduction

The original motivation for this thesis was to investigate to what extent there
is an analog of Ramsey’s Theorem in the descriptive set-theoretic context.
For each binary relation R on a set X, function f : R → 2 and k < 2, we
call a set Y ⊆ X f -homogeneous (with value k) if f � (R � Y ) is constant
(with value k). For each equivalence realtion E on a set X, a subset of X is
E-complete if it intersects every E-class.

Question 1. Given a countable Borel equivalence relation E on a Polish
space, under what circumstances does a Borel function f : E → 2 admit an
E-complete f -homogeneous Borel set?

A graph on a set X is a symmetric irreflexive subset of X ×X, a directed
graph on X is an irreflexive subset of X ×X and an oriented graph on X is
an anti-symmetric directed graph on X. For each directed graph G on a set
X, let G±1 = {(x, y) ∈ X ×X | (x, y) ∈ G or (y, x) ∈ G}.

Although Question 1 served as a starting point, this thesis mostly deals
with the following two related questions:

Question 2. Given an analytic directed graph G on a Polish space X and a
Borel function f : G→ 2, under what circumstances is X a countable union
of f -homogeneous Borel sets?

Question 3. Does the usual method of building counterexamples to infinitary
Ramsey statements, i.e. by comparing two linear orders, also work in the
descriptive set-theoretic context, and to what extent are such counterexamples
canonical?

For each set X, let ∆(X) denote the diagonal {(x, x) ∈ X2 | x ∈ X} on
X. For each linear order R on a set X, let dom(R) = X, <R = R \∆(X),
(x, y)R = {z ∈ X | x <R z <R y} and [x, y)R = {z ∈ X | x R z <R y}. A
linear order R on a set X is dense if ∀x, y ∈ X (x <R y =⇒ (x, y)R 6= ∅),
and a set Y ⊆ X is R-convex if ∀x, y ∈ Y (x, y)R ⊆ Y .

Given a linear order R on a set X and an equivalence relation E on X
whose classes are R-convex, let R/E denote the linear order on X/E given
by

[x]E R/E [y]E ⇐⇒ x R y,

and let E ′R denote the superequivalence relation of E given by

x E ′R y ⇐⇒ |([x]E, [y]E)R/E ∪ ([y]E, [x]E)R/E| < ℵ0.

Note that the classes of E ′R are R-convex. Recursively define an increasing
sequence of equivalence relations whose classes are R-convex by setting E0

R =
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∆(X), Eα+1
R = (Eα

R)′R for all ordinals α and Eλ
R =

⋃
β<λE

β
R for all limit

ordinals λ. The Hausdorff rank ρH(R) of R is the least ordinal α with the
property that Eα

R = Eα+1
R .

Let ≤Q denote the usual order on Q. A linear order R is scattered if there
is no embedding of ≤Q into R. For each equivalence relation E, we abuse
language by saying that a partial order R ⊆ E is an assignment of linear
orders to the classes of E if the restriction of R to each E-class is a linear
order. A Borel space (X,S) is a set X together with a σ-algebra S on X,
and (X,S) is standard if there is a Polish topology on X whose Borel sets
are exactly the elements of S.

Section 1 deals with the Hausdorff condensation of linear orders and re-
lates to Question 3. We give two different proofs of the following well-known
result:

Theorem 1.8. Suppose that E is a countable Borel equivalence relation on
a standard Borel space X and R is a Borel assignment of scattered linear
orders to the classes of E. Then supx∈X ρH(R � [x]E) < ω1.

For each directed graph G on a set X, a set Y ⊆ X is G-dependent if
∃y, y′ ∈ Y (y, y′) ∈ G. For each sequence (Gi)i∈I of directed graphs on a
set X, a set Y ⊆ X is (Gi)i∈I-dependent if ∀i ∈ I Y is Gi-dependent, and
(Gi)i∈I-independent if it is not (Gi)i∈I-dependent, and a function c : X → Z
is a coloring of (Gi)i∈I if ∀z ∈ Z c−1({z}) is (Gi)i∈I-independent. For each
sequence (Gi)i∈I of analytic directed graphs on a Polish space X and class Γ,
define χΓ((Gi)i∈I) to be the least cardinal κ for which there is a Polish space
Y and a Γ-measurable coloring c : X → Y of (Gi)i∈I such that |c[X]| = κ.
When Γ is the class of all Borel subsets of X, we use χB((Gi)i∈I) to denote
the Borel chromatic number of (Gi)i∈I , and when Γ is the class of all subsets
of X with the property of Baire, we use χBP ((Gi)i∈I) to denote the respective
chromatic number.

For all sequences (Ri)i∈I and (Si)i∈I of binary relations on sets X and
Y , a map π : X → Y is a homomorphism from (Ri)i∈I to (Si)i∈I if (x, x′) ∈
Ri =⇒ (π(x), π(x′)) ∈ Si for each x, x′ ∈ X and i ∈ I, a reduction of (Ri)i∈I
to (Si)i∈I if (x, x′) ∈ Ri ⇐⇒ (π(x), π(x′)) ∈ Si for each x, x′ ∈ X and i ∈ I,
and an embedding of (Ri)i∈I into (Si)i∈I if it is an injective reduction of (Ri)i∈I
to (Si)i∈I . For each pair of functions f : G→ 2 and g : H → 2, where G and
H are directed graphs on the sets X and Y , we call π : X → Y an embedding
of f into g if π is an embedding of (f−1({k}))k<2 into (g−1({k}))k<2. Note
that every embedding of f into g is an embedding of G into H.

A quasi-order on a set X is a reflexive transitive binary relation on X.
For each quasi-order v on a set X, a set A ⊆ X is an v-antichain if ∀a, b ∈
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A (a 6= b =⇒ a 6v b), and a strong v-antichain if ∀a, b ∈ A (a 6= b =⇒
∀x ∈ X (x 6v a or x 6v b)).

Let ΓG = {G | G is an analytic directed graph on a Polish space X such
that χB(G) > ℵ0}, ΓG2 = {(Gk)k<2 | G0 and G1 are analytic directed graphs
on a Polish space X such that χB((Gk)k<2) > ℵ0} and ΓF = {f : G→ 2 | G
is an analytic directed graph on a Polish space X and f is a Borel function
such that χB((f−1({k}))k<2) > ℵ0}. As it should cause no confusion, we
use vc to denote the quasi-order of continuous embeddability on all three of
these classes.

In Section 2, we deal with Question 2 by looking at continuous embed-
dability in the classes ΓG2 and ΓF . Many results from [8] by Miller and
Lecomte are generalized to pairs of directed analytic graphs, most impor-
tantly the basis and anti-basis results stated in the following paragraphs.

Theorem 2.36. There is a continuum-sized strong vc-antichain of minimal-
under-vc pairs of graphs in ΓG2. In particular, any basis for ΓG2 with respect
to vc is at least continuum-sized.

Let par : N → 2 be the unique map satisfying par(n) ≡ n (mod 2) for
each n ∈ N. For each pair S ∈ P(

⋃
n∈N 2n × 2n)2 and k < 2, let Sk be given

by Sk(i) = {s ∈ S(i) | par(|s(0)|) = k} for each i < 2, let GS be the directed
graph on 2N given by GS = {(s(j) a (|j − i|) a c)j<2 | i ∈ 2, s ∈ S(i), c ∈
2N}, and for each n > 0, let GS

n be the finite approximation of GS on 2n

given by GS
n = {(s(j) a (|j − i|) a t)j<2 | i ∈ 2, s ∈ S(i) ∩ (2<n × 2<n), t ∈

2n−(|s(0)|+1)}.
Let v and @ denote extension and strict extension on both N≤N and

2≤N. Fix a sequence sn ∈ 2n for each n ∈ N such that {s2n+k | n ∈ N}
is dense in 2<N for each k < 2, and let S0 = ({(sn, sn) | n ∈ N}, ∅). We
call S ∈ P(

⋃
n∈N 2n × 2n)2 dense if ∀r ∈ 2<N∃s ∈ S(0)∀j < 2 r v s(j) and

strongly dense if S(0) ⊇ S0(0). We call S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
strongly

dense if S(k)(0) ⊇ Sk0(0) for each k < 2.
A subset B of a Polish space X is ℵ0-universally Baire if for every Polish

space Y and Borel function π : X → Y , the set π−1(B) has the property of
Baire.

Theorem 2.31. Suppose that Γ = {f : G→ 2 | G is an analytic graph on a
Polish space which admits an ℵ0-universally Baire measurable reduction to a
locally countable analytic graph on a Polish space, as well as an ℵ0-universally
Baire measurable reduction to an analytic acyclic graph on a Polish space, and
f is a symmetric Borel function such that χB((f−1({k}))k<2) > ℵ0}. Then

the set {f0}, where f0 : (GS0)
±1 → 2 is given by f0(x) = k ⇐⇒ x ∈ (GSk0 )

±1

for each k < 2, is a one-element basis for vc � Γ.
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Theorem 2.32. Suppose that Γ = {f : G → 2 | G is an analytic oriented
graph on a Polish space which admits an ℵ0-universally Baire measurable
reduction to a locally countable analytic directed graph on a Polish space, as
well as an ℵ0-universally Baire measurable reduction to an analytic directed
graph H on a Polish space for which H±1 is an acylic graph, and f is a
Borel function such that χB((f−1({k}))k<2) > ℵ0}. Then the set {f0}, where

f0 : GS0 → 2 is given by f0(x) = k ⇐⇒ x ∈ GSk0 for each k < 2, is a
one-element basis for vc � Γ.

We let ≤lex denote the lexicographic ordering on 2N as well the lexico-
graphic ordering on 2n for each n ∈ N. An aligned function on 2<N is a func-

tion f : 2<N → 2<N given by f(s) =
⊕

n<|s| u
f
n(s(n)), where ufn ∈ (2k

f
n)

2
for

some positive natural number kfn for each n ∈ N , and where the empty con-
catenation denotes the empty sequence. For each aligned function f : 2<N →
2<N, let f∞ : 2N → 2N be given by f∞(c) =

⋃
n∈N f(c � n) for all c ∈ 2N. An

aligned function f : 2<N → 2<N is order-preserving if ∀c, d ∈ 2N (c ≤lex d =⇒
f∞(c) ≤lex f∞(d)), or equivalently, if ∀n ∈ N ufn(0) ≤lex ufn(1), and is order-
reversing if ∀c, d ∈ 2N (c ≤lex d =⇒ f∞(c) ≥lex f∞(d)), or equivalently,
if ∀n ∈ N ufn(0) ≥lex ufn(1). An aligned function is monotonic if it is ei-
ther order-preserving or order-reversing. For pairs S, T ∈ P(

⋃
n∈N 2n × 2n)2,

an aligned embedding of S into T is an aligned function f : 2<N → 2<N for
which f � 2n is an embedding of GS

n into GT

kf0+...+kfn−1

for each n > 0. We

use va to denote the quasi-order of monotonic aligned embeddability on the
set of dense pairs in P(

⋃
n∈N 2n × 2n)2. As a consequence of Proposition 2.8,

for each S, T ∈ P(
⋃
n∈N 2n × 2n)2, we call an embedding of GS into GT an

(order-preserving, order-reversing or monotonic) aligned embedding if it is
of the form f∞ for some (order-preserving, order-reversing or monotonic)
aligned embedding f : 2<N → 2<N of S into T .

Theorem 2.27. (cf. [8, Theorem 3.10]) Suppose that G0 and G1 are analytic
directed graphs on a Polish space X such that there is an ℵ0-universally Baire
measurable reduction of (Gk)k<2 to a pair of locally countable analytic directed

graphs on a Polish space, T is a finite subset of (P(
⋃
n∈N 2n × 2n)2)

2
, and

πT is an ℵ0-universally Baire measurable reduction of (Gk)k<2 to (GT(k))k<2

for each T ∈ T . Then exactly one of the following holds:

(1) χB((Gk)k<2) ≤ ℵ0.

(2) There is a strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
and a continu-

ous embedding π : 2N → X of (GS(k))k<2 into (Gk)k<2 such that πT ◦ π
is an aligned embedding of (GS(k))k<2 into (GT(k))k<2 for each T ∈ T .
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A Borel equivalence relation E on a standard Borel space X is smooth
if it is Borel reducible to equality on a standard Borel space, and a Borel
set B ⊆ X is E-smooth if E � B is smooth. In particular, if E is a non-
smooth Borel equivalence relation and B is an E-complete Borel set, then
B is E-non-smooth. Let E0 be the non-smooth countable Borel equivalence
relation on 2N given by c E0 d ⇐⇒ ∃n ∈ N∀m > n c(m) = d(m) and let
R0 ⊆ E0 denote the Borel relation on 2N given by c R0 d ⇐⇒ (c = d or
∃n ∈ N (c(n) < d(n) and ∀m > n c(m) = d(m))).

Section 3 is related to Questions 1 and 3, and here we look at continuous
embeddability on the class ΓF∗ of Borel functions f : E \∆(X) → 2, where
E is a non-smooth Borel equivalence relation on a Polish space X, with the
property that every f -homogeneous Borel set is E-smooth. There is a natural
example f0 : E0 \∆(2N)→ 2 of such a function given by f0(c) = 0 ⇐⇒ (c ∈
≤lex ⇐⇒ c ∈ R0), and the following hold:

Theorem 3.9. Suppose that Γ is the class of symmetric Borel functions
f : E \∆(X) → 2 in ΓF∗ of the form f(x) = 0 ⇐⇒ (x ∈ R ⇐⇒ x ∈ S),
where R and S are Borel assignments of linear orders to the classes of E.
Then {f0} is a one-element basis for vc � Γ.

Theorem 3.11. Suppose that Γ = {f : E \ ∆(X) → 2 | f ∈ ΓF∗ and E is
a countable Borel equivalence relation}. Then f0 is minimal with respect to
vc � Γ.

For each S ∈ P(
⋃
n∈N 2n × 2n)2, we let ∼S ∈ P(

⋃
n∈N 2n × 2n)2 denote

the pair given by ∼S(i) = (
⋃
n∈N 2n × 2n) \ S(i) for each i < 2. Note that

G∼S = E0 \ (∆(2N) ∪GS).
We also show that the functions from E0 to 2 that are fully determined

by a function from
⋃
n∈N 2n × 2n to 2 form a basis for a large subclass of

ΓF∗ . In fact, one can show that functions generated by strongly dense pairs
which satisfy a certain technical condition (see the following definition and
theorem) form such a basis. For each pair S ∈ P(

⋃
n∈N 2n × 2n)2, we say

that an aligned embedding g : 2<N → 2<N is S-homogeneous if the pair given
by T ∈ P(

⋃
n∈N 2n × 2n)2 given by T (i) = {(g(s(j)) a (ugn(|j − i|) � k))j<2 |

n ∈ N, s ∈ 2n × 2n, k is minimal such that ugn(0)(m) = ugn(1)(m) for each
k < m < kgn and ugn(0)(k) = i} for each i < 2 is such that either T (i) ⊆ S(i)
for each i < 2 or T (i) ⊆ ∼S(i) for each i < 2. Note that g is S-homogeneous
if and only if g∞[2N] is f -homogeneous for the function f : E0 \ ∆(2N) → 2
given by f(c) = 0 ⇐⇒ c ∈ GS.

Theorem 3.14. Suppose that Γ = {f : E \∆(X) → 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a Borel function such

5



that there is an ℵ0-universally Baire measurable reduction of (f−1({k}))k<2

to a pair of locally countable analytic directed graphs on a Polish space, and
there is no E-non-smooth f -homogeneous Borel subset of X}. Then the set
{(GS, G∼S) | S ∈ P(

⋃
n∈N 2n × 2n)2 is a strongly dense pair such that there

is no S-homogeneous aligned embedding} is a basis for vc � Γ.
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1 Hausdorff condensation

Proposition 1.1. Suppose that R is a linear order on a set X and f : Q→ X
is an embedding of ≤Q into R. Then for each ordinal α, the map fα : Q →
X/Eα

R given by fα(q) = [f(q)]EαR
is an embedding of ≤Q into R/Eα

R.

Proof. For each ordinal α, the fact that the quotient map from X to X/Eα
R

is a homomorphism from R to R/Eα
R ensures that fα is a homomorphism

from ≤Q to R/Eα
R, so the fact that ≤Q is a linear order and R/Eα

R is a partial
order ensures that it is sufficient to show that fα is injective. Since f0 = f
and the least ordinal β for which two elements are Eβ

R-related is never a
limit ordinal, it is sufficient to show that if fα is an embedding of ≤Q into
R/Eα

R, then fα+1 is injective. To see this, note that if fα is an embedding
of ≤Q into R/Eα

R and q0 <Q q1, then (fα(q0), fα(q1))R/EαR
is infinite, thus

[f(q0)]Eα+1
R
6= [f(q1)]Eα+1

R
.

Proposition 1.2 (Hausdorff [4]). Suppose that R is a linear order on a set

X. Then E
ρH(R)
R = X ×X if and only if R is scattered.

Proof. To see (=⇒), it is sufficient to show that if R is not scattered, then

E
ρH(R)
R 6= X ×X, which is a direct consequence of Proposition 1.1.

To see (⇐=), it is sufficient to show that if E
ρH(R)
R 6= X × X, then R

is not scattered. To see this, note that if C and D are E
ρH(R)
R -classes with

C <
R/E

ρH (R)

R

D, then the definition of ρH(R) ensures that the open interval

(C,D)
R/E

ρH (R)

R

is infinite, so R/E
ρH(R)
R is a dense linear order. In particular,

if E
ρH(R)
R 6= X × X, then R/E

ρH(R)
R is a non-trivial dense linear order, and

therefore is not scattered.

Let LO(N) ⊆ P(N2) be the set of linear orders on N.

Proposition 1.3. The Hausdorff rank of each R ∈ LO(N) is countable.

Proof. It is sufficient to note that (Eα
R)α<ω1

is an increasing sequence of
equivalence relations on N and N is countable.

It is straightforward to check that LO(N) is closed, hence a Polish space.
Note that the map from P(N2) × LO(N) to P(N2) given by (E,R) 7→ E ′R
if E is an equivalence relation whose classes are R-convex and (E,R) 7→
∅ otherwise is Borel, so a straightforward induction ensures that for each
countable ordinal α, the map from LO(N) to P(N2) given by R 7→ Eα

R is
Borel.

7



For each tree T on a set X, let Prune(T ) be the set of all elements
of T with a proper extension in T . Let Prune0(T ) = T , Pruneα+1(T ) =
Prune(Pruneα(T )) for all ordinals α and Pruneλ(T ) =

⋂
α<λ Pruneα(T ) for

all limit ordinals λ. Let the pruning rank ρP (T ) of T be the least ordinal
α for which Pruneα(T ) = Pruneα+1(T ), and for each t ∈ T , let the pruning
rank ρTP (t) of t within T be the maximal ordinal α for which t ∈ Pruneα(T )
and∞ if no such ordinal exists. For each x ∈ X, let (x) a T denote the tree
{(x) a t | t ∈ T}.

Proposition 1.4. Suppose that A ⊆ LO(N) is an analytic set of scattered
linear orders on N. Then supR∈A ρH(R) < ω1.

Proof. For an injective enumeration Q = (qn)n∈N of a subset of Q and a
linear order R on a subset of N, define the tree TQ(R) on N of attempts at
embedding ≤Q � Q[N] into R by

t ∈ TQ(R) ⇐⇒ ∀n,m < |t| (qn ≤Q qm ⇐⇒ t(n) R t(m)).

Lemma 1.5. Suppose that R is a scattered linear order on a subset of N
for which ρH(R) ≥ λ + 2n for some limit ordinal λ and natural number
n, and Q = (qk)k∈N is an injective enumeration of a subset of Q. Then
ρP (TQ(R)) ≥ λ+ n.

Proof. We proceed by induction on λ + 2n. To see the base case where
λ = ω and n = 0, it is sufficient to note that the domain of R is infinite,
so for each l ∈ N, there is an embedding of ≤Q � {qk | k < l} into R, thus
ρP (TQ(R)) ≥ ω.

To see the limit case, suppose that ρH(R) ≥ λ for some limit ordinal
λ > ω. Fix an increasing sequence (µm)m∈N of limit ordinals such that
(µm +m)m∈N is cofinal in λ, and note that the induction hypothesis ensures
that ρP (TQ(R)) ≥ µm +m for every m ∈ N, thus ρP (TQ(R)) ≥ λ.

To see the successor case, suppose that ρH(R) ≥ λ + 2n for some limit
ordinal λ and n > 0. Let α = λ+ 2(n− 1), and note that there are infinitely
many Eα

R-classes, since otherwise ρH(R) ≤ α+1. Also note that for (R/Eα
R)-

adjacent Eα
R-classes C and D, at least one of ρH(R � C) and ρH(R � D)

is equal to α, since otherwise C and D are contained in the same Eα
R-class.

Therefore, there are Eα
R-classes C0 and C1 and a natural number m such that

ρH(R � C0) = ρH(R � C1) = α and C0 <R/EαR
[m]EαR

<R/EαR
C1.

Let Q0 and Q1 be the unique subsequences of Q such that for all q ∈ Q[N]:

(i) q ∈ Q0[N] ⇐⇒ q <Q q0, and

(ii) q ∈ Q1[N] ⇐⇒ q0 <Q q.

8



Let f : N→ 2×N be the unique bijection such that qk+1 = Qf(k)(0)(f(k)(1))
for all k ∈ N. Let T = {s ∈ N<N | (m) a s ∈ TQ(R)} and Ti = TQi(R � Ci)
for each i < 2.

[9, Proposition 1.1.7] ensures that there is a homomorphism ϕ from @ � Tj
to @ � T1−j for some j < 2. Without loss of generality, we can assume that
j = 0. Let π :

∏
i<2 Ti → T be the map given by

π(s0, s1) = (sf(k)(0)(f(k)(1)))
k<min (|s0|,|s1|)

and note that if si @ ti for i < 2, then π(s0, s1) @ π(t0, t1). Therefore, the
map ψ : T0 → T given by

ψ(s0) = π(s0, ϕ(s0))

is a homomorpism from @ � T0 to @ � T , thus [9, Proposition 1.1.7] ensures
that ρTP (∅) ≥ ρT0P (∅). The induction hypothesis ensures that ρP (T0) ≥ λ+(n−
1), so the fact that ρ

TQ(R)
P (∅) ≥ ρTP (∅)+1 ensures that ρ

TQ(R)
P (∅) ≥ λ+(n−1),

thus ρP (TQ(R)) ≥ λ+ n. ��

Fix an injective enumerationQ = (qn)n∈N of Q. The relation S ⊆ A2 given
by R0 S R1 ⇐⇒ ρP (TQ(R0)) < ρP (TQ(R1)) is clearly well-founded. Note

that if R is scattered, then ρ
TQ(R)
P (∅) is countable, thus [9, Proposition 1.1.7]

implies that if R0 and R1 are scattered, then ρP (TQ(R0)) < ρP (TQ(R1))
if and only if there is a homomorphism from @ � (0) a TQ(R0) to @ �
TQ(R1). As TQ is Borel and A is analytic, S is analytic. The Kunen-Mar-
tin Theorem (see [9, Theorem 1.4.31]) ensures that supR∈A ρP (TQ(R)) < ω1,
and Lemma 1.5 ensures that ρH(R) < ρP (TQ(R)) + ω for all R ∈ A, thus
supR∈A ρH(R) < ω1.

One can also give a more direct proof of Proposition 1.4 using the follow-
ing lemma:

Lemma 1.6. Suppose that R is a linear order on a set X, L is a linear
order with minimal element 0L and {F l | l ∈ dom(L)} is a set of equivalence
relations on X whose classes are R-convex such that F 0L = ∆(X) and ∀l >L

0L F
l =

⋃
k<Ll

(F k)′R. Then

(1) F l = Eαl
R for all l in the well-founded part of L, where αl is the unique

ordinal for which L � [0L, l)L
∼= ≤ � αl, and

(2) F l ⊇ E
ρH(R)
R for all l in the ill-founded part of L.

9



Proof. By the definition of Eαl
R , (1) holds.

To see (2), it is sufficient to show that if α is an ordinal and F l is a
superequivalence relation of Eα

R for all l in the ill-founded part of L, then F l

is a superequivalence relation of Eα+1
R for all l in the ill-founded part of L.

To see this, it is sufficient to note that if l is in the ill-founded part of L, then
there is a k <L l in the ill-founded part of L, and since Eα

R ⊆ F k, it follows
that Eα+1

R ⊆ F l.

Alternative proof of Proposition 1.4. Define S ⊆ A2 by R0 S R1 if and only

if there is a triple (L, (F l
0)l∈dom(L), (F

l
1)l∈dom(L)) ∈ P(N2) × P(N2)

dom(L) ×
P(N2)

dom(L)
such that:

(i) L is a linear order on a subset of N with minimal element 0,

(ii) ∀i < 2∀l ∈ dom(L) F l
i is an equivalence relation on N whose classes

are Ri-convex,

(iii) ∀i < 2 F 0
i = ∆(N),

(iv) ∀i < 2∀l >L 0 F l
i =

⋃
k<Ll

(F k
i )′Ri and

(v) ∃k ∈ dom(L) F k
0 = N× N 6= F k

1 .

Notice that (i)–(v) are Borel conditions, thus S is analytic.

Lemma 1.7. Suppose that R0, R1 ∈ LO(N) are scattered. Then ρH(R0) <
ρH(R1) if and only if R0 S R1.

Proof. To see (=⇒), suppose that ρH(R0) < ρH(R1). Let L be a linear order
on a subset of N with minimal element 0 such that L ∼= ≤ � (ρH(R0) + 1).
For all i < 2 and l ∈ dom(L), set F l

i = Eαl
Ri

, where αl is the unique ordinal
for which L � [0, l)L

∼= ≤ � αl. Then the triple (L, (F l
0)l∈dom(L), (F

l
1)l∈dom(L))

witnesses that R0 and R1 are S-related.
To see (⇐=), suppose that the triple (L, (F l

0)l∈dom(L), (F
l
1)l∈dom(L)) wit-

nesses that R0 S R1, and fix k ∈ dom(L) such that F k
0 = N × N 6= F k

1 .
Since the triple satisfies (i)–(iv), Lemma 1.6 implies that every such k is
in the well-founded part of L and also that F k

i = Eαk
Ri

for each i ∈ 2,
where αk is the unique ordinal for which L � [0, k)L

∼= ≤ � αk. Therefore
ρH(R0) ≤ αk < ρH(R1). ��

Lemma 1.7 implies that S is well-founded, so an application of the Kunen-
Martin Theorem yields a countable upper bound on the rank of S. Lemma 1.7
also implies that any upper bound on the rank of S is an upper bound for
{ρH(R) | R ∈ A}, completing the proof.
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Theorem 1.8. Suppose that E is a countable Borel equivalence relation on
a standard Borel space X and R is a Borel assignment of scattered linear
orders to the classes of E. Then supx∈X ρH(R � [x]E) < ω1.

Proof. Applying Proposition 1.4 to the analytic set A ⊆ P(N2) given by

a ∈ A ⇐⇒ ∃x ∈ X R � [x]E
∼= a

yields the desired bound.
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2 Continuous embeddability of pairs of di-

rected graphs of uncountable Borel chro-

matic number

Proposition 2.1. Suppose that S ∈ P(
⋃
n∈N 2n × 2n)2 is dense and B ⊆ 2N

is non-meager and has the property of Baire. Then B is GS-dependent.

Proof. Let B be a non-meager set with the property of Baire. [9, Proposi-
tion 1.7.4] ensures that there is an r ∈ 2<N such that B ∩ Nr is comeager
in Nr. The fact that S is dense ensures that there is an s ∈ S(0) such
that r v s(j) for each j < 2. Let ϕ : 2N → 2N be the map given by
ϕ(s(j) a (j) a c) = s(1 − j) a (1 − j) a c for each j < 2 and c ∈ 2N,
and ϕ(t a c) = t a c for each t ∈ 2<N \ {s(j) a (j) | j < 2} and c ∈ 2N. The
fact that ϕ is a homeomorphism ensures that B∩ϕ−1(B)∩Nr is comeager in
Nr. It remains to note that if x ∈ B∩ϕ−1(B)∩Nr, then (x, ϕ(x)) ∈ GS � B,
thus B is GS-dependent.

Proposition 2.2. Suppose that B ⊆ 2N is non-meager and has the property

of Baire, and S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
is such that S(k) is dense for each

k < 2. Then χBP ((GS(k) � B)k<2) > ℵ0.

Proof. Assume, towards a contradiction, that the coloring c : 2N → N wit-
nesses that χBP ((GS(k) � B)k<2) ≤ ℵ0. Since c is Baire measurable, there is
an n ∈ N such that B ∩ c−1({n}) is non-meager. Since S(k) is dense for
each k < 2, two applications of Proposition 2.1 yield that B ∩ c−1({n}) is
GS(k)-dependent for each k < 2, a contradiction.

Proposition 2.3. [8, Proposition 1.2] The directed graph GS0 is an oriented
treeing of E0.

Proposition 2.4. [8, Proposition 1.3] Suppose that S ∈ P(
⋃
n∈N 2n × 2n)2

is strongly dense and GS is an acyclic graph. Then S(i) = S0(0) for each
i < 2.

Proposition 2.5. [8, Proposition 1.4] Suppose that S ∈ P(
⋃
n∈N 2n × 2n)2

is strongly dense and GS is an oriented graph such that (GS)
±1

is an acyclic
graph. Then S = S0.

Proposition 2.6. Suppose that S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
is strongly dense

such that GS(0) and GS(1) are disjoint graphs and GS(0) ∪GS(1) is an acyclic
graph. Then S(k)(i) = Sk0(0) for each k, i < 2.
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Proof. As (S(0)(i) ∪ S(1)(i))i<2 is strongly dense and GS(0)∪S(1) is an acyclic
graph, Proposition 2.4 ensures that S(0)(0) ∪ S(1)(0) = S0(0), and the fact
that GS(0) and GS(1) are disjoint ensures that S(0)(0) and S(1)(0) are disjoint.
Therefore, the fact that S is strongly dense ensures that S(k)(0) = Sk0(0) for
each k < 2. Finally, the fact that GS(k) is symmetric ensures that if (s, t) ∈
S(k)(0), then (t, s) ∈ S(k)(1), thus S(k)(i) = Sk0(0) for each k, i < 2.

Proposition 2.7. Suppose that S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
is strongly dense

such that GS(0) and GS(1) are disjoint, GS(0) ∪GS(1) is an oriented graph and

(GS(0) ∪GS(1))
±1

is an acyclic graph. Then S(k) = Sk0 for each k < 2.

Proof. Since (S(0)(i) ∪ S(1)(i))i<2 is strongly dense, GS(0)∪S(1) is an oriented

graph and (GS(0) ∪GS(1))
±1

is an acyclic graph, Proposition 2.5 ensures that
S(0)(0) ∪ S(1)(0) = S0(0) and S(k)(1) = ∅ = Sk0(1) for each k < 2, and the
fact that GS(0) and GS(1) are disjoint ensures that S(0)(0) and S(1)(0) are
disjoint. Therefore, the fact that S is strongly dense ensures that S(k)(0) =
Sk0(0) for each k < 2.

Proposition 2.8. [8, Proposition 1.6] Suppose that S, T ∈ P(
⋃
n∈N 2n × 2n)2

and f : 2<N → 2<N is an aligned embedding of S into T . Then f∞ is a
continuous embedding of GS into GT .

For each directed graph G on a set X, let EG denote the equivalence
relation on X generated by G, and for each x ∈ X, let Gx = {y ∈ X |
(x, y) ∈ G} and Gx = {y ∈ X | (y, x) ∈ G}.

Proposition 2.9. (cf. [8, Proposition 2.2]) Suppose that X and Y are Polish
spaces, G0 and G1 are locally countable Borel directed graphs on X such that
χB((Gk)k<2) > ℵ0, H0 and H1 are directed graphs on Y and π : X → Y is
a Borel reduction of (Gk)k<2 to (Hk)k<2. Then there is a Borel set B ⊆ X
such that χB((Gk � B)k<2) > ℵ0 and π � B is injective.

Proof. Let G = G0 ∪ G1, H = H0 ∪ H1 and X ′ = {x ∈ X | Gx ∪ Gx 6= ∅},
and note that χB((Gk � X ′)k<2) > ℵ0. The fact that G0 and G1 are locally
countable and the Lusin-Novikov Uniformization Theorem (see, for example,
[5, Theorem 18.10]) ensure that X ′ is Borel.

Lemma 2.10. The map π � X ′ is countable-to-one.

Proof. The fact that G0 and G1 are locally countable ensures that it is suf-
ficient to show that

∀x0, x1 ∈ X ′ (π(x0) = π(x1) =⇒ x0 EG x1).
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Towards this end, suppose that x0, x1 ∈ X ′ are such that π(x0) = π(x1). Fix
x2 ∈ Gx0 ∪ Gx0 and note that π(x2) ∈ Hπ(x0) ∪Hπ(x0) = Hπ(x1) ∪Hπ(x1), so
x2 ∈

⋂
i<2(Gxi ∪Gxi), thus x0 EG x2 EG x1. ��

Lemma 2.10 ensures that we may apply the Lusin-Novikov Uniformization
Theorem to get Borel sets Xn ⊆ X ′ such that X ′ =

⋃
n∈NXn and π � Xn is

injective for each n ∈ N. Fix m ∈ N such that χB((Gk � Xm)k<2) > ℵ0 and
let B = Xm.

Proposition 2.11. Suppose that (Gi)i∈I is a sequence of analytic directed
graphs on a Polish space X and B is a countable Borel partition of X such
that χB((Gi � B)i∈I) ≤ ℵ0 for each B ∈ B. Then χB((Gi)i∈I) ≤ ℵ0.

Proof. For each B ∈ B, fix a Borel coloring cB : B → N witnessing that
χB((Gi � B)i∈I) ≤ ℵ0. Let c : X → B×N be given by c(x) = (B, cB(x)) ⇐⇒
x ∈ B. For each B ∈ B and n ∈ N, the fact that CB,n = c−1({(B, n)}) =
cB
−1({n}) is (Gi � B)i∈I-independent and the fact that CB,n ⊆ B ensure that

CB,n is (Gi)i∈I-independent, thus c witnesses that χB((Gi)i∈I) ≤ ℵ0.

Theorem 2.12. (cf. [8, Theorem 2.4]) Suppose that G0 and G1 are locally
countable Borel directed graphs on a Polish space X, T is a finite subset of

(P(
⋃
n∈N 2n × 2n)2)

2
and πT is a Borel reduction of (Gk)k<2 to (GT(k))k<2

for each T ∈ T . Then exactly one of the following holds:

(1) χB((Gk)k<2) ≤ ℵ0.

(2) There is a strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
and a continu-

ous embedding π : 2N → X of (GS(k))k<2 into (Gk)k<2 such that πT ◦ π
is an aligned embedding of (GS(k))k<2 into (GT(k))k<2 for each T ∈ T .

Proof. Proposition 2.2 and the fact that colorings can be pulled back through
homomorphisms ensure that conditions (1) and (2) are mutually exclusive,
thus it is sufficient to show that ¬(1) =⇒ (2). Towards this end, suppose
that χB((Gk)k<2) > ℵ0. By repeatedly applying Proposition 2.9, we may
assume that πT is injective for each T ∈ T .

By the Feldman-Moore Theorem (see [3, Theorem 1]), there is a countable
group Γ of Borel automorphisms of X such that EG0∪G1 =

⋃
γ∈Γ graph(γ).

Fix an increasing sequence (Γn)n∈N of finite symmetric neighborhoods of 1Γ

such that Γ =
⋃
n∈N Γn. Let Fn denote the equivalence relation on 2N given

by c Fn d if and only if c(m) = d(m) for all m ≥ n.
By standard change of topology results (see, for example, [5, Chapter 13]),

we may assume that X is a zero-dimensional Polish space, Γ acts on X
by homeomorphisms, and the sets {x ∈ X | (γj · x)j<2 ∈ Gk}, {x ∈ X |
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πT(x) Fn π
T(γ0 ·x)} and {x ∈ X | s v πT(x)} are clopen for each γ0, γ1 ∈ Γ,

k < 2, T ∈ T , n ∈ N and s ∈ 2<N.

We will recursively define clopen subsets Un of X, Sn ∈ (P(2n × 2n)2)
2
,

γn ∈ Γ, kn ∈ N and πT
n : 2n → 2k0+···+kn−1 for each T ∈ T and n ∈ N. For

each sequence s ∈ 2<N and k < 2, let γs : X → X be the Borel automorphism
given by γs = γ

s(0)
0 · · · γs(n)

n and Gs
k be the Borel directed graph on Un given

by
Gs
k = {x ∈ Un × Un | (γs · x(j))j<2 ∈ Gk}.

Let U0 = X and πT
0 (∅) = ∅ for each T ∈ T . By construction, the

sequences (Um, (π
T
m)T∈T )

m≤n and (γm,Sm, km)m<n will satisfy the following
conditions:

(i) ∀m ≤ n χB((Gs
k)k<2,s∈2n) > ℵ0.

(ii) ∀m < n∀k < 2 (sm, sm) ∈ Sm(par(m))(0)).

(iii) ∀m < n Um+1 ⊆ Um ∩ γm−1(Um).

(iv) ∀m < n∀x ∈ Um+1∀s ∈ 2m × 2m∀i, k < 2

(s ∈ Sm(k)(i) ⇐⇒ (γs(j)γ
|j−i|
m · x)

j<2
∈ Gk).

(v) ∀m < n∀x ∈ Um+1∀T ∈ T πT(x) Fk0+···+km πT(γm · x).

(vi) ∀m ≤ n∀x ∈ Um∀s ∈ 2m∀T ∈ T πT
m(s) v πT(γs · x).

(vii) ∀m < n∀s, t ∈ 2m∀γ ∈ Γm γγs[Um+1] ∩ γtγm[Um+1] = ∅.

(viii) ∀m < n∀s ∈ 2m+1 diam(γs[Um+1]) ≤ 1/(m+ 1).

Granting that we have already found such sequences (Um, (π
T
m)T∈T )

m≤n and

(γm,Sm, km)m<n, let Pn be the set of tuples p of the form (γp,Sp, kp, (π
T
p )

T∈T ),

where γp ∈ Γ, Sp ∈ (P(2n × 2n)2)
2

is such that (sn, sn) ∈ Sp(par(n))(0),
kp ∈ N and πT

p : 2n+1 → 2k0+···+kn−1+kp for each T ∈ T . For each p ∈ Pn, let
Up be the open set of x ∈ X which satisfy the following (open) conditions:

(iii’) x ∈ Un ∩ γp−1(Un).

(iv’) ∀s ∈ 2n × 2n∀i, k < 2 (s ∈ Sp(k)(i) ⇐⇒ (γs(j)γ
|j−i|
p · x)

j<2
∈ Gk).

(v’) ∀T ∈ T πT(x) Fk0+···+kn−1+kp π
T(γp · x).

(vi’) ∀s ∈ 2n∀i < 2∀T ∈ T πT
p (s a (i)) v πT(γsγ

i
p · x).

(vii’) ∀s, t ∈ 2n∀γ ∈ Γn γp · x 6= γt
−1γγs · x.
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For each p ∈ Pn, s ∈ 2n and i, k < 2, let G
p,sa(i)
k be the Borel directed graph

on Up given by

G
p,sa(i)
k = {x ∈ Up × Up | (γsγip · x(j))

j<2
∈ Gk}.

Lemma 2.13. There is a p ∈ Pn such that χB((Gp,s
k )k<2,s∈2n+1) > ℵ0.

Proof. Suppose, towards a contradiction, that for each p ∈ Pn, there are
(Gp,s

k )k<2,s∈2n+1-independent Borel sets Bp,m for m ∈ N such that Up =⋃
m∈NBp,m. For each p ∈ Pn and m ∈ N, fix ip,m < 2 such that γ

ip,m
p [Bp,m] is

(Gs
k)k<2,s∈2n-independent. Let

U = Un \
⋃

p∈Pn,m∈N

γip,mp [Bp,m]

and note that χB((Gs
k � U)k<2,s∈2n) > ℵ0. Let K be the Borel graph on U

given by

K = {(x, y) ∈ U × U | ∃s, t ∈ 2n∃γ ∈ Γn γt
−1γγs · x = y}.

Since K has bounded vertex degree, [7, Proposition 4.5] ensures that there
is an m ∈ N and a Borel coloring c : U → m of K. Since {c−1({l}) | l ∈ m}
is a finite Borel partition of U , Proposition 2.11 ensures that there is a K-
independent Borel set U ′ ⊆ U such that χB((Gs

k � U
′)k<2,s∈2n) > ℵ0.

Fix x ∈ U ′ × U ′ such that (γsn · x(j))j<2 ∈ Gpar(n). We will show that
conditions (iii’) through (vii’) hold for x(0). The definition of Γ ensures that
there is a γp ∈ Γ such that γp · x(0) = x(1), thus condition (iii’) holds. Let

Sp ∈ (P(2n × 2n)2)
2

be given by

Sp(k)(i) = {s ∈ 2n × 2n | (γs(j)γ|j−i|p · x(j))
j<2
∈ Gk},

for each k < 2, thus (sn, sn) ∈ Sp(par(n))(0) and condition (iv’) holds.
For each T ∈ T , the fact that πT is a reduction of (Gk)k<2 to (GT(k))k<2

and the fact that x(0) EG0∪G1 x(1) ensure that there is a kT ∈ N such
that πT(x(0)) FkT πT(x(1)), thus there is a kp ∈ N large enough, so that
condition (v’) holds. For each T ∈ T , let πT

p : 2n+1 → 2k0+···+kn−1+kp be
given by πT

p (s a (i)) = πT(γsγ
i
p · x(0)) � (k0 + · · · kn−1 + kp), thus condition

(vi’) holds. The fact that U ′ is K-independent ensures that condition (vii’)
holds. It follows that the tuple p = (γp,Sp, kp, (π

T
p )

T∈T ) ∈ Pn, thus there

is an m ∈ N such that {x(0),x(1)} ∩ γip,mp [Bp,m] 6= ∅, contradicting the fact
that x(0),x(1) ∈ U ′ ⊆ U . ��
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Lemma 2.13 ensures that there is a p ∈ Pn such that χB((Gp,s
k )k<2,s∈2n+1) >

ℵ0. Let γn = γp, Sn = Sp, kn = kp and πT
n+1 = πT

p for each T ∈ T . The
fact that X is zero-dimensional and condition (vii’) ensure that there is a
countable clopen partition V of Up such that the following conditions hold:

(vii”) ∀V ∈ V∀s, t ∈ 2n∀γ ∈ Γn γγs[V ] ∩ γtγn[V ] = ∅.

(viii”) ∀V ∈ V∀s ∈ 2n+1 diam(γs[V ]) ≤ 1/(n+ 1).

By Proposition 2.11, there is a V ∈ V such that χB((Gp,s
k � V )k<2,s∈2n+1) >

ℵ0. Let Un+1 = V . Conditions (iii’)–(vi’) and (vii”)–(viii”) and the fact
that χB((Gs

k)k<2,s∈2n+1) = χB((Gp,s
k � V )k<2,s∈2n+1) ensure that conditions

(i)–(viii) hold at stage n+ 1. This completes the recursive construction.
Let π : 2N → X be given by

{π(c)} =
⋂
n∈N

γc�n [Un] ,

and note that conditions (iii),(vii) and (viii) ensure that π is well-defined and
a continuous injection.

Lemma 2.14. Suppose that n ∈ N, s ∈ 2n and c ∈ 2N. Then π(s a c) =
γs · π((0)n a c).

Proof. Note that

{π(s a c)} =
⋂
m≥n

γ(sac)�m [Um]

=
⋂
m≥0

γsγ(0)nac�m [Um+n]

= γs

[⋂
m≥0

γ(0)nac�m [Um+n]

]

= γs

[⋂
m≥n

γ((0)nac)�m [Um]

]
= {γs · π((0)n a c)},

thus π(s a c) = γs · π((0)n a c). ��

Let S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
be given by S(k)(i) =

⋃
n∈N Sn(k)(i) for

each i, k < 2, and note that S is strongly dense.
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Lemma 2.15. Suppose that n ∈ N, s ∈ 2n × 2n, i < 2, d ∈ 2N, and
c ∈ 2N × 2N is given by c(j) = s(j) a (|j − i|) a d for all j < 2. Then
c ∈ GS(k) ⇐⇒ (π × π)(c) ∈ Gk for each k < 2.

Proof. Lemma 2.14 ensures that π(c(j)) = γs(j)a(|j−i|) · π((0)n+1 a d) for
each j < 2, and since π((0)n+1 a d) ∈ Un+1, condition (iv) ensures that
c ∈ GS(k) ⇐⇒ s ∈ Sm(k)(i) ⇐⇒ (π × π)(c) ∈ Gk for each k < 2. ��

Lemma 2.16. Suppose that c /∈ E0. Then (π × π)(c) /∈ EG0∪G1.

Proof. To see that c /∈ E0 implies (π × π)(c) /∈ EG0∪G1 , it is sufficient to
show that if n ∈ N and c(0)(n) 6= c(1)(n), then there is no γ ∈ Γn such that
γ · π(c(0)) = π(c(1)). To see this, suppose, towards a contradiction, that
n ∈ N is such that c(0)(n) 6= c(1)(n), and γ ∈ Γn is such that γ · π(c(0)) =
π(c(1)). Fix s ∈ 2n × 2n, i < 2 and d ∈ 2N × 2N such that c(j) = s(j) a
(|j − i|) a d(j) for all j < 2. Since Γn is symmetric, we may assume that
i = 0. Lemma 2.14 ensures that π(c(j)) = γs(j)γ

j
n · π((0)n+1 a d(j)) for each

j < 2, so the fact that π((0)n+1 a d(j)) ∈ Un+1 for each j < 2 ensures that
π(c(1)) ∈ γγs(0)[Un+1] ∩ γs(1)γn[Un+1], which contradicts condition (vii). ��

Lemma 2.15 and Lemma 2.16 ensure that π is an embedding of (GS(k))k<2

into (Gk)k<2. It remains to show that πT ◦ π is an aligned embedding of
(GS(k))k<2 into (GT(k))k<2 for each T ∈ T . For the rest of the proof, we may
assume that T 6= ∅, as otherwise, there is nothing left to show.

Lemma 2.17. Suppose that T ∈ T , n ∈ N and c ∈ 2N. Then πT
n (c � n) v

(πT ◦ π)(c).

Proof. It is sufficient to note that if x ∈ Un is such that π(c) = γc�n · x, then
condition (vi) ensures that πT

n (c � n) v πT(γc�n · x). ��

Lemma 2.17 ensures that if T ∈ T and n ∈ N, then πT
n (sn) v πT

n+1(sn a
(j)) for each j < 2. In particular, it follows that for each n ∈ N, there is a
unique pair un ∈ 2kn × 2kn such that πT

n+1(sn a (j)) = πT
n (sn) a un(j) for

each j < 2.

Lemma 2.18. Suppose that n ∈ N. Then un(0) 6= un(1).

Proof. Fix T ∈ T . The fact that π and πT are injective ensures that
((πT ◦ π)(sn a (j) a (0)N))j<2 is injective. Lemma 2.17 and condition (v)

ensure that there is a c ∈ 2N such that (πT ◦π)(sn a (j) a (0)N) = πT
n (sn) a

un(j) a c for each j < 2. It follows that un(0) 6= un(1). ��

Lemma 2.19. Suppose that n ∈ N, s ∈ 2n, j < 2 and T ∈ T . Then
πT
n+1(s a (j)) = πT

n (s) a un(j).
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Proof. Since πT
n+1(sn a (j)) = πT

n (sn) a un(j), Lemma 2.14 and Lemma 2.17
ensure that

πT
n (s) v πT

n+1(s a (j)) v (πT ◦ π)(s a (j) a (0)N) = πT(γsγ
j
n · π((0)N)).

Since condition (v) ensures that πT(γsγ
j
n · π((0)N)) Fk0+···kn−1 πT(γsnγ

j
n ·

π((0)N)), it follows that πT
n+1(s a (j)) = πT

n (s) a un(j). ��

Let T ∈ T , n > 0, s ∈ 2n × 2n and k < 2, and note that

s ∈ GS(k)
n ⇐⇒ (s(j) a (0)N)j<2 ∈ G

S(k)

⇐⇒ (π(s(j) a (0)N))j<2 ∈ Gk

⇐⇒ ((πT ◦ π)(s(j) a (0)N))j<2 ∈ G
T(k)

⇐⇒ (πT
n (s(j)))j<2 ∈ G

T(k)
k0+···kn−1

,

thus πT ◦ π is an aligned embedding of (GS(k))k<2 into (GT(k))k<2, which
completes the proof.

Remark 2.20. The directed graphs G0 = <lex∩E0 and G1 = >lex∩E0 on 2N

satisfy χB((Gk)k<2) > ℵ0 and, together with the set of reductions T = {id2N},
show that requiring each πT ◦ π to be a monotonic aligned embedding in the
conclusion of Theorem 2.12 is not possible.

In order to generalize Theorem 2.12, we first need to generalize the G0-
dichotomy and a few technical results to pairs of analytic directed graphs.

Theorem 2.21. (cf. [9, Theorem 2.2.1]) Suppose that G0 and G1 are analytic
directed graphs on a Hausdorff space X. Then exactly one of the following
holds:

(1) χB((Gk)k<2) ≤ ℵ0.

(2) There is a continuous homomorphism π : 2N → X from (GSk0 )k<2 to
(Gk)k<2.

Proof. [9, Proposition 1.4.8] ensures that there is a continuous surjection
ϕGi : NN → Gi for each i < 2, and [9, Propositions 1.4.1, 1.4.4 and 1.4.8]
ensure that there is a continuous function ϕX : NN → X for which ϕX [NN] is
the union of the left and right projections of G0 ∪G1 onto X.

We will recursively define a decreasing sequence (Bα)α<ω1
of Borel subsets

ofX such that χB((Gk � ∼Bα)k<2) ≤ ℵ0 for each α < ω1. Let B0 = X and for
each limit ordinal λ < ω1, let Bλ =

⋂
α<λB

α. To describe the construction
of Bα+1 from Bα, we require several preliminaries.
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An approximation is a triple of the form a = (na, ϕa, (ψan)n<na), where
na ∈ N, ϕa : 2n

a → Nna and ψan : 2n
a−(n+1) → Nna for each n < na. A one-

step extension of an approximation a is an approximation b for which the
following hold:

(i) nb = na + 1.

(ii) ∀s ∈ 2n
a∀t ∈ 2n

b
(s v t =⇒ ϕa(s) v ϕb(t)).

(iii) ∀n < na∀s ∈ 2n
a−(n+1)∀t ∈ 2n

b−(n+1) (s v t =⇒ ψan(s) v ψbn(t)).

A configuration is a triple of the form γ = (nγ, ϕγ, (ψγn)n<nγ ), where
nγ ∈ N, ϕγ : 2n

γ → NN and ψγn : 2n
γ−(n+1) → NN for each n < nγ, and

(ϕGpar(n)
◦ ψγn)(t) = ((ϕX ◦ ϕγ)(sn a (j) a t))j<2

for each n < nγ and t ∈ 2n
γ−(n+1). A configuration γ is compatible with an

approximation a if the following conditions hold:

(i) na = nγ.

(ii) ∀t ∈ 2n
a
ϕa(t) v ϕγ(t).

(iii) ∀n < na∀t ∈ 2n
a−(n+1) ψan(t) v ψγn(t).

A configuration is compatible with a set Y ⊆ X if (ϕX ◦ ϕγ)[2n
γ
] ⊆ Y . An

approximation a is Y -terminal if no configuration is compatible with a one-
step extension of a and with Y . Let A(a, Y ) denote the set of points of the
form (ϕX ◦ ϕγ)(sna), where γ varies over all configurations compatible with
both a and Y .

Lemma 2.22. Suppose that Y ⊆ X, a is a Y -terminal approximation. Then
A(a, Y ) is Gpar(na)-independent.

Proof. Suppose, towards a contradiction, that there are configurations γ0 and
γ1, which are compatible with both a and Y , such that ((ϕX ◦ ϕγj)(sna))j<2 ∈
Gpar(na). Fix d ∈ NN such that ϕGpar(na)

(d) = ((ϕX ◦ ϕγj)(sna))j<2 and let γ
be the configuration given by nγ = na+1, ϕγ(t a (j)) = ϕγj(t) for each j < 2
and t ∈ 2n

a
, ψγn(t a (j)) = ψ

γj
n (t) for each j < 2, n < na and t ∈ 2n

a−(n+1),
and ψγna(∅) = d. It follows that γ is compatible with a one-step extension of
a, which contradicts the fact that a is Y -terminal. ��

For each Bα-terminal approximation a, [9, Proposition 2.2.15] ensures
that there is a Gpar(na)-independent Borel set B(a,Bα) ⊇ A(a,Bα). For each
α < ω1, let ABα denote the set of all Bα-terminal approximations, which is
countable, and let Bα+1 = Bα \

⋃
a∈ABα B(a,Bα). It follows that Bα is Borel

for each α < ω1.
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Lemma 2.23. Suppose that α < ω1 and a is an approximation which is
not Bα+1-terminal. Then there is a one-step extension of a which is not
Bα-terminal.

Proof. Fix a one-step extension b of a for which there is a configuration γ
compatible with both b and Bα+1. Then (ϕX ◦ϕγ)(snb) ∈ Bα+1, so A(b, Bα)∩
Bα+1 6= ∅, thus b is not Bα-terminal. ��

Fix α < ω1 such that ABα = ABα+1 , and let a0 be the unique approx-
imation for which na0 = 0. Note that A(a0, Y ) = Y for each Y ⊆ X, so
if a0 is Bα-terminal, then Bα+1 = ∅, which, together with the fact that
B(a,Bβ) is Gpar(na)-independent for each β ≤ α and a ∈ ABβ , implies that
χB((Gk)k<2) ≤ ℵ0.

Otherwise, if a0 is not Bα-terminal, by recursively applying Lemma 2.23,
we construct for each n ∈ N, a one-step extension an+1 of an, which is not
Bα-terminal. Define ϕ, ψn : 2N → NN by ϕ(c) =

⋃
n∈N ϕ

an(c � n) and ψn(c) =⋃
m>n ψ

am
n (c � (m− (n+ 1))) for each n ∈ N. Clearly, these functions are

continuous.
It remains to show that the function π = ϕX ◦ϕ is a homomorphism from

(GSk0 )k<2 to (Gk)k<2. To see this, it is sufficient to show that if c ∈ 2N and
n ∈ N, then

(ϕGpar(n)
◦ ψn)(c) = ((ϕX ◦ ϕ)(sn a (j) a c))j<2.

And to see this, it is sufficient to show that if U is an open neighborhood
of ((ϕX ◦ ϕ)(sn a (j) a c))j<2 and V is an open neighborhood of (ϕGpar(n)

◦
ψn)(c), then U ∩ V 6= ∅. Fix m > n such that

∏
j<2 ϕX(Nϕam (sna(j)as)) ⊆ U

and ϕGpar(n)
(Nψamn (s)) ⊆ V , where s = c � m− (n+ 1). The fact that am is

not Bα-terminal ensures that there is a configuration γ which is compatible
with am. It follows that ((ϕX ◦ ϕγ)(sn a (j) a s))j<2 ∈ U and (ϕGpar(n)

◦
ψγn)(s) ∈ V , thus U ∩ V 6= ∅, which completes the proof.

Proposition 2.24. (cf. [8, Proposition 3.7]) Suppose that G0 and G1 are
locally countable analytic directed graphs on a Polish space X such that
χB((Gk)k<2) > ℵ0. Then there is a Borel set B ⊆ X such that Gk � B
is Borel for each k < 2 and χB((Gk � B)k<2) > ℵ0.

Proof. By Theorem 2.21, there is a continuous homomorphism π : 2N → X
from (GSk0 )k<2 to (Gk)k<2, and for each k < 2, an application of [8, Propo-
sition 3.5] to π and Gk yields a Borel set Bk ⊆ X such that π−1(Bk) is
comeager in 2N and Gk ∩ (Bk × X) is Borel. Let B =

⋂
k<2Bk, and note

that Gk � B is Borel for each k < 2. Since π−1(B) =
⋂
k<2 π

−1(Bk) is comea-

ger in 2N, Proposition 2.2 ensures that χB((GSk0 � π−1(B))k<2) > ℵ0, thus
χB((Gk � B)k<2) > ℵ0.
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Proposition 2.25. (cf. [8, Proposition 3.8]) Suppose that X and Y are Pol-
ish spaces, G0 and G1 are analytic directed graphs on X, A ⊆ X is analytic,
χB((Gk � A)k<2) > ℵ0, and ϕ : A → Y is ℵ0-universally Baire measurable.
Then there is a Borel set B ⊆ X such that B ⊆ A, ϕ � B is Borel and
χB((Gk � B)k<2) > ℵ0.

Proof. Since χB((Gk � A)k<2) > ℵ0, Theorem 2.21 ensures that there is a con-

tinuous homomorphism π : 2N → X from (GSk0 )k<2 to (Gk � A)k<2. It follows
that π[2N] ⊆ A, so [8, Proposition 3.3] ensures that there is a Borel set B ⊆ X
such that ϕ � B is Borel and π−1(B) is comeager. Therefore, Proposition 2.2
ensures that χB((GSk0 � π−1(B))k<2) > ℵ0, thus χB((Gk � B)k<2) > ℵ0.

Proposition 2.26. (cf. [8, Proposition 3.9]) Suppose that X and Y are
Polish spaces, G0 and G1 are analytic directed graphs on X, H0 and H1 are
analytic directed graphs on Y , χB((Gk)k<2) > ℵ0, and π : X → Y is an ℵ0-
universally Baire measurable reduction of (Gk)k<2 to (Hk)k<2. Then there is
a Borel set B ⊆ Y such that χB((Hk � B)k<2) > ℵ0 and (Hk � B)k<2 admits
a Borel embedding into (Gk)k<2.

Proof. Proposition 2.25 ensures that there is a Borel set BX ⊆ X such that
χB((Gk � BX)k<2) > ℵ0 and π � BX is Borel, thus χB((Hk � π[BX ])k<2) >
ℵ0. The Jankov-von Neumann Uniformization Theorem (see, for exam-
ple, [5, Theorem 18.1]) ensures that there is a σ(Σ1

1)-measurable function
ϕ : π[BX ]→ BX such that

∀y ∈ π [BX ] π(ϕ(y)) = y.

It follows that ϕ is an embedding of (Hk � π[BX ])k<2 into (Gk)k<2. By [5,
Theorem 21.6], ϕ is ℵ0-universally Baire measurable, thus Proposition 2.25
ensures that there is a Borel set B ⊆ π[BX ] such that χB((Hk � B)k<2) > ℵ0

and ϕ � B is Borel. It follows that ϕ � B is a Borel embedding of (Hk � B)k<2

into (Gk)k<2.

Theorem 2.27. (cf. [8, Theorem 3.10]) Suppose that G0 and G1 are analytic
directed graphs on a Polish space X such that there is an ℵ0-universally Baire
measurable reduction of (Gk)k<2 to a pair of locally countable analytic directed

graphs on a Polish space, T is a finite subset of (P(
⋃
n∈N 2n × 2n)2)

2
, and

πT is an ℵ0-universally Baire measurable reduction of (Gk)k<2 to (GT(k))k<2

for each T ∈ T . Then exactly one of the following holds:

(1) χB((Gk)k<2) ≤ ℵ0.
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(2) There is a strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
and a continu-

ous embedding π : 2N → X of (GS(k))k<2 into (Gk)k<2 such that πT ◦ π
is an aligned embedding of (GS(k))k<2 into (GT(k))k<2 for each T ∈ T .

Proof. Proposition 2.2 and the fact that colorings can be pulled back through
homomorphisms ensure that conditions (1) and (2) are mutually exclusive,
thus it is sufficient to show that ¬(1) =⇒ (2).

Towards this end, suppose that χB((Gk)k<2) > ℵ0. By Proposition 2.26
there are locally countable analytic directed graphs H0 and H1 on a Polish
space Y for which χB((Hk)k<2) > ℵ0, as well as a Borel embedding ϕ of
(Hk)k<2 into (Gk)k<2. By Proposition 2.24, there is a Borel set B′ ⊆ Y such
that χB((Hk � B′)k<2) > ℵ0 and Hk � B′ is Borel for each k < 2. Since
πT ◦ (ϕ � B′) is ℵ0-universally Baire measurable for each T ∈ T , |T |-many
applications of Proposition 2.25 ensure that there is a Borel set B ⊆ B′ such
that χB((Hk � B)k<2) > ℵ0 and πT ◦ (ϕ � B) is Borel for each T ∈ T .

By standard change of topology results, there is a Polish topology τ on
B which is compatible with the Borel structure on B and for which ϕ � B is
continuous. Since χB((Hk � B)k<2) > ℵ0, Theorem 2.12 ensures that there is

a strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
and a continuous embedding

ψ : 2N → (B, τ) of (GS(k))k<2 into (Hk � B)k<2 such that πT◦(ϕ � B)◦ψ is an
aligned embedding of (GS(k))k<2 into (GT(k))k<2 for each T ∈ T . It follows
that the function π = (ϕ � B) ◦ ψ is as desired.

Corollary 2.28. Suppose that Γ = {(Gk)k<2 | G0 and G1 are analytic di-
rected graphs on a Polish space such that χB((Gk)k<2) > ℵ0, and there is
an ℵ0-universally Baire measurable reduction of (Gk)k<2 to a pair of lo-
cally countable analytic directed graphs on a Polish space}. Then the set

{(GS(k))k<2 | S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
is strongly dense} is a basis for vc � Γ.

Proof. This follows directly from Theorem 2.27.

Corollary 2.29. Suppose that G0 and G1 are disjoint analytic graphs on a
Polish space X such that χB((Gk)k<2) > ℵ0, and there is an ℵ0-universally
Baire measurable reduction of (Gk)k<2 to a pair of locally countable analytic
graphs on a Polish space, as well as an ℵ0-universally Baire measurable re-
duction of (Gk)k<2 to a pair of analytic graphs (Hk)k<2 on a Polish space Y
for which H0∪H1 is an acyclic graph. Then there is a continuous embedding

of ((GSk0 )
±1

)k<2 into (Gk)k<2.

Proof. An application of Proposition 2.26 yields a Borel set B ⊆ Y such that
χB((Hk � B)k<2) > ℵ0 and a Borel embedding ϕ : B → X of (Hk � B)k<2 into
(Gk)k<2. By standard change of topology results, there is a Polish topology
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τ on B which is compatible with the Borel structure on B and for which
ϕ is continuous. It follows that there is an ℵ0-universally Baire measurable
reduction of (Hk � B)k<2 to a pair of locally countable analytic graphs on
a Polish space, and since χB((Hk � B)k<2) > ℵ0, Theorem 2.27 yields a
continuous embedding π : 2N → (B, τ) of (GS(k))k<2 into (Hk � B)k<2 for a

strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
. Note that ϕ◦π is a continuous

embedding of (GS(k))k<2 into (Gk)k<2. The fact that G0 and G1 are disjoint
ensures that GS(0) and GS(1) are disjoint, and the fact that H0 ∪ H1 is an
acyclic graph ensures that that GS(0) ∪GS(1) is an acyclic graph. Therefore,
Proposition 2.6 ensures that S(k)(i) = Sk0(0) for each k, i < 2, thus GS(k) =

(GSk0 )
±1

for each k < 2.

Corollary 2.30. Suppose that G0 and G1 are disjoint analytic directed graphs
on a Polish space X such that G0∪G1 is an oriented graph and χB((Gk)k<2) >
ℵ0, and there is an ℵ0-universally Baire measurable reduction of (Gk)k<2

to a pair of locally countable analytic directed graphs on a Polish space, as
well as an ℵ0-universally Baire measurable reduction of (Gk)k<2 to a pair of

analytic directed graphs (Hk)k<2 on a Polish space Y for which (H0 ∪H1)±1

is an acyclic graph. Then there is a continuous embedding of (GSk0 )k<2 into
(Gk)k<2.

Proof. An application of Proposition 2.26 yields a Borel set B ⊆ Y such that
χB((Hk � B)k<2) > ℵ0 and a Borel embedding ϕ : B → X of (Hk � B)k<2 into
(Gk)k<2. By standard change of topology results, there is a Polish topology
τ on B which is compatible with the Borel structure on B and for which ϕ
is continuous. It follows that there is an ℵ0-universally Baire measurable re-
duction of (Hk � B)k<2 to a pair of locally countable analytic directed graphs
on a Polish space, and since χB((Hk � B)k<2) > ℵ0, Theorem 2.27 yields a
continuous embedding π : 2N → (B, τ) of (GS(k))k<2 into (Hk � B)k<2 for a

strongly dense pair S ∈ (P(
⋃
n∈N 2n × 2n)2)

2
. Note that ϕ ◦ π is a contin-

uous embedding of (GS(k))k<2 into (Gk)k<2. The fact that G0 and G1 are
disjoint ensures that GS(0) and GS(1) are disjoint, the fact that G0 ∪ G1 is
an oriented graph ensures that GS(0) ∪ GS(1) is an oriented graph, and the

fact that (H0 ∪H1)±1 is an acyclic graph ensures that (GS(0) ∪GS(1))
±1

is
an acyclic graph. Therefore, Proposition 2.7 ensures that S(k)(i) = Sk0(i) for
each k, i < 2.

Theorem 2.31. Suppose that Γ = {f : G→ 2 | G is an analytic graph on a
Polish space which admits an ℵ0-universally Baire measurable reduction to a
locally countable analytic graph on a Polish space, as well as an ℵ0-universally
Baire measurable reduction to an analytic acyclic graph on a Polish space, and
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f is a symmetric Borel function such that χB((f−1({k}))k<2) > ℵ0}. Then

the set {f0}, where f0 : (GS0)
±1 → 2 is given by f0(x) = k ⇐⇒ x ∈ (GSk0 )

±1

for each k < 2, is a one-element basis for vc � Γ.

Proof. This follows directly from Corollary 2.29 and Propositions 2.2 and
2.3.

Theorem 2.32. Suppose that Γ = {f : G → 2 | G is an analytic oriented
graph on a Polish space which admits an ℵ0-universally Baire measurable
reduction to a locally countable analytic directed graph on a Polish space, as
well as an ℵ0-universally Baire measurable reduction to an analytic directed
graph H on a Polish space for which H±1 is an acylic graph, and f is a
Borel function such that χB((f−1({k}))k<2) > ℵ0}. Then the set {f0}, where

f0 : GS0 → 2 is given by f0(x) = k ⇐⇒ x ∈ GSk0 for each k < 2, is a
one-element basis for vc � Γ.

Proof. This follows directly from Corollary 2.30 and Propositions 2.2 and
2.3.

Now we turn our attention to anti-basis results.

Proposition 2.33. Suppose that T ∈ P(
⋃
n∈N 2n × 2n)2 is a pair minimal

under va such that χB(GT , G∼T ) > ℵ0. Then (GT , G∼T ) is minimal under
vc.

Proof. Suppose that G0 and G1 are analytic directed graphs on a Polish space
X for which χB((Gk)k<2) > ℵ0, and ϕ : X → 2N is a continuous embedding
of (Gk)k<2 into (GT , G∼T ). To see that (GT , G∼T ) is minimal under vc, it is
sufficient to show that (GT , G∼T ) vc (Gk)k<2.

Towards this end, note that χB(G0) > ℵ0, thus [8, Theorem 3.10] ensures
that there is a strongly dense S ∈ P(

⋃
n∈N 2n × 2n)2 and a continuous em-

bedding π : 2N → X of GS into G0 such that ϕ ◦ π is a monotonic aligned
embedding of GS into GT . The fact that every monotonic aligned embedding
is a reduction of E0 to E0 ensures that ϕ ◦ π is a reduction of G∼S to G∼T ,
which, together with the fact that ϕ is a reduction of G1 to G∼T , ensures that
π is a reduction of G∼S to G1. It follows that π is a continuous embedding
of (GS, G∼S) into (Gk)k<2.

The minimality of T under va ensures that there is a monotonic aligned
embedding ψ : 2N → 2N of GT into GS. The fact that every monotonic
aligned embedding is a reduction of E0 to E0 ensures that ψ is a continuous
embedding of (GT , G∼T ) into (GS, G∼S), thus π◦ψ is a continuous embedding
of (GT , G∼T ) into (Gk)k<2.
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For each A ∈ P(2<N)
2
, let SA ∈ P(

⋃
n∈N 2n × 2n)2 be given by SA(i) =

{(s, s) | s ∈ A(i)} for each i < 2. A nicely aligned function on 2<N is a
function f : 2<N → 2<N given by f(s) =

⊕
n<|s|(u

f
n a |s(n)− cf (n)|), where

cf ∈ 2N and ufn ∈ 2k
f
n for some natural number kfn for each n ∈ N, and where

the empty concatenation denotes the empty sequence. Note that a nicely
aligned function f is an aligned function, and f is order-preserving if cf =
(0)N and order-reversing if cf = (1)N. We say that f is an aligned embedding
of A into B if it is an aligned embedding of SA into SB, or equivalently, if
∀i < 2∀s ∈ 2<N (s ∈ A ⇐⇒ f(s) ∈ B). We call A ∈ P(2<N)

2
dense if SA is

dense. As it should cause no confusion, we let va also denote the quasi-order
of monotonic aligned embeddability on the set of dense pairs in P(2<N)

2
.

For each c ∈ 2N \ {(0)N}, let Ac ∈ P(2<N)
2

be given by Ac(0) = Ac(1) =
{s ∈ 2<N | ∃m ∈ supp(c) |supp(s)| ≡ 22m (mod 22m+1)}.

Proposition 2.34. [8, Proposition 6.15] The set {Ac | c ∈ 2N \ {(0)N}} is
a continuum-sized strong va-antichain of minimal-under-va dense pairs in
P(2<N)

2
.

Proposition 2.35. Suppose that c ∈ 2N \ {(0)N}. Then χB(GSAc , G∼S
Ac

) >
ℵ0.

Proof. Since Proposition 2.34 ensures that SAc is dense, Proposition 2.2 en-
sures that it is sufficient to show that ∼SAc is dense. Towards this end,
suppose that r ∈ 2<N, and fix an s w r such that |supp(s)| ≡ 2 (mod 4). It
follows that (s, s) /∈ SAc(0), thus ∼SAc is dense.

Theorem 2.36. There is a continuum-sized strong vc-antichain of minimal-
under-vc pairs of graphs in ΓG2. In particular, any basis for ΓG2 with respect
to vc is at least continuum-sized.

Proof. [8, Theorem 5.5, Proposition 5.14] and Proposition 2.34 ensure that
{GSAc | c ∈ 2N \ {(0)N}} is a strong vc-antichain, thus Proposition 2.35
ensures that A = {(GSAc , G∼S

Ac
) | c ∈ 2N \ {(0)N}} is a strong vc-antichain.

Finally, Proposition 2.33 and Proposition 2.34 ensure that each element of
A is minimal under vc.

Let ΓE0 = {f : E0 \∆(2N)→ 2 | f is Borel, χB((f−1({k}))k<2) > ℵ0}.

Theorem 2.37. There is a continuum-sized strong vc-antichain of minimal-
under-vc functions in ΓE0. In particular, any basis for ΓE0 with respect to
vc � ΓE0 and any basis for ΓF with respect to vc is at least continuum-sized.
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Proof. For each c ∈ 2N \ {(0)N}, let fc : E0 \∆(2N)→ 2 be given by fc(d) =
0 ⇐⇒ d ∈ GSAc . [8, Theorem 5.5, Proposition 5.14] and Proposition 2.34
ensure that {GSAc | c ∈ 2N \ {(0)N}} is a strong vc-antichain, thus Proposi-
tion 2.35 ensures that A = {fc | c ∈ 2N \ {(0)N}} is a strong vc-antichain,
and in particular A ⊆ ΓE0 . Finally, Proposition 2.33 and Proposition 2.34
ensure that each element of A is minimal under vc.

Let A0 ∈ P(2<N)
2

be given by A0(0) = A0(1) = {s ∈ 2<N | ∃m ∈
supp(s) |supp(s)| ≡ 22m (mod 22m+1)}.

Proposition 2.38. Suppose that A ∈ P(2<N)
2

and f is an aligned embedding
of A into A0. Then χB(GSA , G∼S

A
) > ℵ0.

Proof. [8, Proposition 7.1] ensures that SA is dense, so Proposition 2.2 en-
sures that it is sufficient to show that ∼SA is dense. Towards this end,
suppose that r ∈ 2<N, and note that the properties of nicely aligned func-
tions ensure that there is a sequence s ∈ 24 such that |f(r a s)| ≡ 2 (mod 4).
It follows that f(r a s) /∈ A0, so r a s /∈ A, thus ∼SA is dense.

Theorem 2.39. Suppose that A ∈ P(2<N)
2

and there is a monotonic aligned
embedding of A into A0. Then there is a continuum-sized strong vc-antichain
A ⊆ ΓG2 such that G vc (GSA , G∼S

A
) for each G ∈ A.

Proof. By [8, Proposition 7.8], there is a continuum-sized strongva-antichain

B of dense pairs in P(2<N)
2

such that B va A for each B ∈ B. Let A =
{(GSB , G∼S

B
) | B ∈ B}. The fact that every monotonic aligned embedding

is a reduction of E0 to E0 ensures that G vc (GSA , G∼S
A

) for each G ∈ A.
[8, Theorem 5.5 and Proposition 5.14] ensure that {GSB | B ∈ B} is a strong
vc-antichain, thus Proposition 2.38 and the fact that B va A0 for each B ∈ B
ensure that A is a strong vc-antichain.

For each A ∈ P(2<N)
2
, let fA : E0\∆(2N)→ 2 be given by fA(c) = 0 ⇐⇒

c ∈ GSA . In particular, note that {fA | A ∈ P(2<N)
2} ⊆ ΓE0 .

Theorem 2.40. Suppose that A ∈ P(2<N)
2

and there is a monotonic aligned
embedding of A into A0. Then there is a continuum-sized strong vc-antichain
A ⊆ ΓE0 such that f vc fA for each f ∈ A.

Proof. By [8, Proposition 7.8], there is a continuum-sized strongva-antichain

B of dense pairs in P(2<N)
2

such that B va A for each B ∈ B. Let A = {fB |
B ∈ B}. The fact that every monotonic aligned embedding is a reduction
of E0 to E0 ensures that f vc fA for each f ∈ A. [8, Theorem 5.5 and
Proposition 5.14] ensure that {GSB | B ∈ B} is a strong vc-antichain, thus
Proposition 2.38 and the fact that B va A0 for each B ∈ B ensure that A is
a strong vc-antichain.
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3 Borel functions without homogeneous E-

non-smooth Borel sets

Proposition 3.1. Suppose that G is a directed graph on a Polish space X
and f : G→ 2 is a Borel function. Then the following are equivalent:

(1) There is no sequence (Bn)n∈N of Borel subsets of X such that X =⋃
n∈NBn and Bn is f -homogeneous for each n ∈ N.

(2) χB((f−1({k}))k<2) > ℵ0.

Proof. This directly follows from the fact that for each k < 2, a subset of X is
f−1({k})-independent if and only if it is f -homogeneous with value 1−k.

Remark 3.2. Proposition 3.1 ensures that the class of functions {f : G →
2 | G is an analytic directed graph on a Polish space X and f is a Borel
function for which there is no sequence (Bn)n∈N of Borel Bn ⊆ X such that
X =

⋃
n∈NBn and Bn is f -homogeneous for each n ∈ N} is the same as ΓF .

Proposition 3.3. Suppose that E is a non-smooth Borel equivalence rela-
tion on a Polish space X and f : E \ ∆(X) → 2 is a Borel function for
which there is no E-non-smooth f -homogeneous Borel subset of X. Then
χB((f−1({k}))k<2) > ℵ0.

Proof. This follows from Proposition 3.1 and the fact that if X =
⋃
n∈NBn

for Borel sets Bn ⊆ X, then there is an m ∈ N such that Bm is E-non-
smooth.

Let ΓF∗ be the class of functions {f : E \∆(X)→ 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a symmetric Borel
function such that there is no E-non-smooth f -homogeneous Borel subset of
X}, and note that Proposition 3.3 ensures that ΓF∗ ⊆ ΓF . The next result
ensures that ΓF∗ is non-empty.

For each binary relation R ⊆ X × Y , the flip of R is the relation R−1 on
Y ×X given by y R−1 x ⇐⇒ x R y.

Proposition 3.4. Suppose that E is a non-smooth Borel equivalence relation
on a Polish space X, R is a Borel linear order on X, and S is a Borel
assignment of scattered linear orders to the classes of E. Then the function
f : E \∆(X)→ 2 given by f(x) = 0 ⇐⇒ (x ∈ R ⇐⇒ x ∈ S) is in ΓF∗.

Proof. It is sufficient to show that if B ⊆ X is an f -homogeneous Borel
set, then E � B is smooth. The fact that B is f -homogeneous ensures that
(R ∩ E) � B ∈ {S � B, S−1 � B}, so (R ∩ E) � B is a Borel assignment
of scattered linear orders to the classes of E � B, thus [2, Proposition 2.9]
ensures that E � B is smooth.

28



Proposition 3.5. For each c ∈ 2N, R0 � [c]E0
is a scattered linear order.

More precisely, the order type of R0 � [c]E0
is N if c ∈ [(0)N]E0

, −N if c ∈
[(1)N]E0

and Z otherwise.

Proof. Suppose that g : 2N \ {(1)N} → 2N is the function given by g((1)n a
(0) a c) = (0)n a (1) a c for each n ∈ N and c ∈ 2N. It is straightforward
to check that c R0 d ⇐⇒ ∃n ∈ N gn(c) = d, and that this implies the
conclusion of the proposition.

We let f0 : E0 \ ∆(2N) → 2 be the symmetric Borel function given by
f0(c) = 0 ⇐⇒ (c ∈ ≤lex ⇐⇒ c ∈ R0), and note that Proposition 3.4
ensures that f0 ∈ ΓF∗ .

Proposition 3.6. Suppose that E ⊆ E0 is a non-smooth countable Borel
equivalence relation. Then there is an order-preserving aligned embedding
g∞ : 2N → 2N of (E0,R0) into (E,R0).

Proof. Note that if h′ : 2<N → 2<N is an aligned embedding with respect to
Conley’s notion (see [2, page 3]), then there is an aligned embedding with
respect to our notion h : 2<N → 2<N such that h∞(c) =

⋃
n∈N h

′(c � n) for
each c ∈ 2N, thus [2, Proposition 2.1] ensures that there is an order-preserving
aligned embedding h∞ : 2N → 2N of E0 into E. Let g : 2<N → 2<N be the
aligned embedding given by ugn(j) = uh2n(j) a uh2n+1(|in − j|) for each j < 2
and n ∈ N, where in < 2 is unique such that (uh2n+1(|in − j|) a (0)∞)

j<2
∈ R0

for each n ∈ N, and note that g∞ is as desired.

Proposition 3.7. There is a continuous embedding of f0 into 1− f0.

Proof. The map π : 2N → 2N given by π(c)(2n) = 1−π(c)(2n+ 1) = c(n) for
all n ∈ N and c ∈ 2N is a continuous embedding of (≤lex,R0) into (≤lex,R−1

0 ),
thus π is also a continuous embedding of f0 into 1− f0.

Proposition 3.8. Suppose that R and S are Borel assignments of linear
orders to the classes of E0 and f : E0 \ ∆(2N) → 2 is the symmetric Borel
function given by f(c) = 0 ⇐⇒ (c ∈ R ⇐⇒ c ∈ S). Then at least one of
the following holds:

(1) There is an E0-non-smooth f -homogeneous Borel set.

(2) There is a continuous embedding of f0 into f .

Proof. An application of [2, Theorem 2.12] yields an E0-non-smooth compact
set K ⊆ 2N such that R � K ∈ {(≤lex ∩ E0) � K, (≥lex ∩ E0) � K, R0 � K,
R−1

0 � K}. Proposition 3.6 ensures that there is an order-preserving aligned
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embedding π : 2N → 2N of (E0,R0) into (E0 � K,R0). Let R′ and S ′ be the
pullbacks of R and S under π, and note that S ′ is a Borel assignment of
linear orders to the classes of E0. The fact that π is an embedding of (E0,
≤lex, R0) into (E0 � K, ≤lex, R0) ensures that R′ ∈ {≤lex ∩E0, ≥lex ∩E0, R0,
R−1

0 }.
A second application of [2, Theorem 2.12] yields an E0-non-smooth com-

pact set K ′ ⊆ 2N such that S ′ � K ′ ∈ {(≤lex ∩ E0) � K ′, (≥lex ∩ E0) � K ′,
R0 � K ′, R−1

0 � K
′}. Proposition 3.6 ensures that there is an order-preserving

aligned embedding ψ : 2N → 2N of (E0,R0) into (E0 � K ′,R0). Let R′′ and
S ′′ be the pullbacks of R′ and S ′ under ψ. The fact that ψ is an embedding
of (E0, ≤lex, R0) into (E0 � K ′, ≤lex, R0) ensures that R′′, S ′′ ∈ {≤lex ∩ E0,
≥lex∩E0, R0, R−1

0 }. Let f ′′ : E0\∆(2N)→ 2 be the symmetric Borel function
given by f ′′(c) = 0 ⇐⇒ (c ∈ R′′ ⇐⇒ c ∈ S ′′), and note that π ◦ ψ is a
continuous embedding of f ′′ into f .

The fact that R′′, S ′′ ∈ {≤lex ∩ E0, ≥lex ∩ E0, R0, R−1
0 } ensures that

f ′′ ∈ {0, 1, f0, 1 − f0}. If f ′′ is constant, then (π ◦ ψ)[2N] is an E0-non-
smooth f -homogeneous Borel set, thus condition (1) holds, and if f ′′ is not
constant, then Proposition 3.7 ensures that there is a continuous embedding
ϕ : 2N → 2N of f0 into f ′′, so π ◦ ψ ◦ ϕ is a continuous embedding of f0 into
f , thus condition (2) holds.

Theorem 3.9. Suppose that Γ is the class of symmetric Borel functions
f : E \∆(X) → 2 in ΓF∗ of the form f(x) = 0 ⇐⇒ (x ∈ R ⇐⇒ x ∈ S),
where R and S are Borel assignments of linear orders to the classes of E.
Then {f0} is a one-element basis for vc � Γ.

Proof. Fix f ∈ Γ and let R and S be the Borel assignments of linear orders
to the classes of E that define it. Since E is a non-smooth Borel equiva-
lence relation, [6, Theorem 1.1] ensures that there is a continuous embedding
π : 2N → X of E0 into E. Let R′ and S ′ be the pullbacks of R and S under π,
and note that R′ and S ′ are Borel assignments of linear orders to the classes
of E0. Let f ′ : E0 \ ∆(2N) → 2 be the symmetric Borel function given by
f ′(c) = 0 ⇐⇒ (c ∈ R′ ⇐⇒ c ∈ S ′), and note that π is a continuous
embedding of f ′ into f .

Note that if B ⊆ 2N is an E0-non-smooth f ′-homogeneous Borel set, then
π[B] is an E-non-smooth f -homogeneous Borel set, thus the fact that f ∈ ΓF∗

ensures that there is no E0-non-smooth f ′-homogeneous Borel set. Therefore,
Proposition 3.8 ensures that there is a continuous embedding ψ : 2N → 2N of
f0 into f ′, thus π ◦ ψ is a continuous embedding of f0 into f .

Proposition 3.10. Suppose that E is a non-smooth countable Borel equiva-
lence relation on a Polish space X, f : E\∆(X)→ 2 is Borel, and ϕ : X → 2N
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is a Borel reduction of (f−1({k}))k<2 to (f0
−1({k}))k<2. Then there is a con-

tinuous embedding π : 2N → X of f0 into f .

Proof. By replacing X with X \ {x ∈ X | |[x]E| = 1} if necessary, we may
assume without loss of generality that every E-class consists of at least two
elements. The fact that ϕ is a reduction of E \ ∆(X) to E0 \ ∆(2N) then
ensures that ϕ is injective, thus ϕ is a reduction of E to E0.

By the Lusin-Novikov Uniformization Theorem, there is a Borel function
ψ : ϕ[X]→ X such that

∀y ∈ ϕ [X] ϕ(ψ(y)) = y,

thus the fact that ϕ is a reduction of (f−1({k}))k<2 to (f0
−1({k}))k<2 ensures

that ψ is an embedding of (f0
−1({k}) � ϕ[X]))k<2 into (f−1({k}))k<2. The

fact that ϕ is a reduction of E to E0 ensures that ϕ[X] is an E0-non-smooth
Borel set, thus Proposition 3.6 yields an order-preserving aligned embedding
g∞ : 2N → ϕ[X] of (E0,R0) into (E0 � ϕ[X],R0 � ϕ[X]). By [9, Proposi-
tion 1.7.5], there is a dense Gδ set C ⊆ 2N such that (ψ ◦ g∞) � C is contin-
uous, and since every dense Gδ set in 2N is comeager, [10, Proposition 12.7]
ensures that C is E0-non-smooth. A second application of Proposition 3.6
yields an order-preserving aligned embedding h∞ : 2N → C of (E0,R0) into
(E0 � C,R0 � C). It remains to note that g∞ ◦ h∞ is a continuous em-
bedding of (f0

−1({k}))k<2 into (f0
−1({k}) � ϕ[X])k<2, thus it follows that

π = ψ ◦ g∞ ◦ h∞ is a continuous embedding of f0 into f .

Theorem 3.11. Suppose that Γ = {f : E \ ∆(X) → 2 | f ∈ ΓF∗ and E is
a countable Borel equivalence relation}. Then f0 is minimal with respect to
vc � Γ.

Proof. This follows directly from Proposition 3.10.

Question 3.12. Is the set {f0} a one-element basis for vc � ΓF∗?

Proposition 3.13. Suppose that E and F are Borel equivalence relations
on a Polish space X, E is non-smooth and f : E \ ∆(X) → 2 is the Borel
function given by f(x) = 0 ⇐⇒ x ∈ F . Then there is an E-non-smooth
f -homogeneous Borel set.

Proof. The Kanovei-Zapletal Canonization Theorem (see, for example, [1,
Theorem 8]) ensures that there is an E-non-smooth Borel set B such that
F � B ∈ {∆(B), E � B, B×B}. It remains to note that B is f -homogeneous
with value 1 in the first case, and B is f -homogeneous with value 0 in the
latter two cases.
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Theorem 3.14. Suppose that Γ = {f : E \∆(X) → 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a Borel function such
that there is an ℵ0-universally Baire measurable reduction of (f−1({k}))k<2

to a pair of locally countable analytic directed graphs on a Polish space, and
there is no E-non-smooth f -homogeneous Borel subset of X}. Then the set
{(GS, G∼S) | S ∈ P(

⋃
n∈N 2n × 2n)2 is a strongly dense pair such that there

is no S-homogeneous aligned embedding} is a basis for vc � Γ.

Proof. Fix f : E \∆(X)→ 2 in Γ, and note that since E is a non-smooth Bo-
rel equivalence relation, [6, Theorem 1.1] ensures that there is a continuous
embedding π : 2N → X of E0 into E. Let f ′ : E0 \ ∆(2N) → 2 be the Borel
function given by f ′(c) = f((π × π)(c)), and note that π is an embedding
of f ′ into f . If B ⊆ 2N is an E0-non-smooth f ′-homogeneous Borel set, then
π[B] is an E-non-smooth f -homogeneous Borel set, thus, without loss of
generality, we may assume that f = f ′.

By Proposition 3.3 and [8, Theorem 3.10], there is a strongly dense pair
S ∈ P(

⋃
n∈N 2n × 2n)2 and a continuous embedding ϕ : 2N → 2N of GS into

f−1({0}) such that id2N ◦ϕ is a monotonic aligned embedding of GS into
f−1({0}). The fact that every aligned embedding is a reduction of E0 to
E0 ensures that ϕ is an embedding of (GS, G∼S) into (f−1({k}))k<2, and
together with [5, Corollary 15.2], it ensures that if g : 2<N → 2<N is an
aligned embedding, then (ϕ ◦ g∞)[2N] is an E0-non-smooth Borel set. The
fact that if g is S-homogeneous, then (ϕ ◦ g∞)[2N] is f -homogeneous and the
fact that there is no f -homogeneous E0-non-smooth Borel set ensure that
there is no S-homogeneous aligned embedding, thus S is as desired.

We finish with a proposition that is complementary to a special case of
[2, Proposition 2.9].

For each c, d ∈ 2N, let c∧ d denote c � n for the maximal n ∈ N satisfying
c � n = d � n. For each linear order R on a set X, x, y ∈ X are R-adjacent if
x 6= y and ¬∃z ∈ X (x <R z <R y or y <R z <R x), and x is an R-endpoint
if x is R-minimal or R-maximal.

Proposition 3.15. Suppose that E is a countable Borel equivalence relation
on a Polish space X and R is a Borel linear order on X which admits a Borel
reduction ϕ : X → 2N to ≤lex. Then B = {x ∈ X | R � [x]E is not a dense
linear order without endpoints} is an E-smooth Borel set.

Proof. The fact that ϕ is a reduction of a linear order ensures that ϕ is
injective, thus [5, Corollary 15.2] ensures that ϕ[B] is Borel and the inverse
map ϕ−1 : ϕ[B]→ B is Borel. It follows that the relation F = {(ϕ(x), ϕ(y)) |
(x, y) ∈ E} ∪∆(2N) is a Borel equivalence relation on 2N. Let C = {c ∈ 2N |

32



≤lex � [c]F is not a dense linear order without endpoints}, and note that
the fact that (R,E) is the pullback of (≤lex, F ) under ϕ and the fact that
[ϕ(x)]F ⊆ ϕ[B] for each x ∈ X ensure that ϕ[B] ⊆ C. It follows that if C is
an F -smooth Borel set, then B is an E-smooth Borel set, thus, without loss
of generality, we may assume that X = 2N and R = ≤lex.

Let B′ = {c ∈ 2N | ≤lex � [c]E has an endpoint} and B′′ = {c ∈ 2N \
B′ | [c]E contains (≤lex � [c]E)-adjacent elements}, and note that since E is
countable, the Lusin-Novikov Uniformization Theorem ensures that B′ and
B′′ are Borel. Also note that (B′×B′′)∩E = ∅. The fact that a linear order
without endpoints is not dense if and only if there are adjacent elements
ensures that B = B′ ∪ B′′, thus B is Borel. Let T ′ = {c ∈ B′ | c is the
≤lex-least (≤lex � [c]E)-endpoint}, and note that T ′ is a Borel transversal of
E � B′. To construct a Borel transversal of E � B′′, we require the following
lemma:

Lemma 3.16. Suppose that C ⊆ 2N, d, e ∈ C are (≤lex � C)-adjacent,
d′, e′ ∈ C are (≤lex � C)-adjacent and d ∧ e = d′ ∧ e′. Then {d′, e′} = {d, e}.

Proof. Without loss of generality, we may assume that d ≤lex d′, (d ∧ e) a
(0) @ d, d′ and (d ∧ e) a (1) @ e, e′. Note that d ≤lex d′ ≤lex e, thus the fact
that d and e are (≤lex � C)-adjacent ensures that d = d′, and also note that
at least one of the following holds:

(1) d ≤lex e′ ≤lex e.

(2) d = d′ ≤lex e ≤lex e′.
If (1) holds, then the fact that d and e are (≤lex � C)-adjacent ensures that
e = e′, and if (2) holds, then the fact that d′ and e′ are (≤lex � C)-adjacent
ensures that e = e′, completing the proof of the lemma. ��

Fix a well-order ≤w of 2<N. Let σ : B′′ → 2<N be the function sending
c to the ≤w-minimal s ∈ 2<N for which there are (≤lex � [c]E)-adjacent
d, e ∈ [c]E with d∧e = s, and note that the definition of B′′ ensures that ϕ is
well-defined and Borel. Let T ′′ = {d ∈ B′′ | ∃e ∈ [d]E (d, e are (≤lex � [d]E)-
adjacent and d ∧ e = σ(d)) and σ(d) a (0) @ d}, and note that T ′′ is Borel.
For each c ∈ B′′, the fact that there are (≤lex � [c]E)-adjacent d, e ∈ [c]E
ensures that T ′′ ∩ [c]E 6= ∅, and if d′, e′ ∈ [c]E are (≤lex � [c]E)-adjacent
and d′ ∧ e′ = d ∧ e, then Lemma 3.16 ensures that {d′, e′} = {d, e}, thus
|T ′′ ∩ [c]E| = 1. It follows that T ′′ is a Borel transversal of E � B′′, and the
fact that (B′ × B′′) ∩ E 6= ∅ ensures that T = T ′ ∪ T ′′ is a Borel transversal
of E � B. Therefore, the map π : B′ → T with graph(π) = {(c, t) | c ∈
B, t ∈ [c]E ∩ T} is a Borel reduction of E � B to equality on T , thus B is
E-smooth.
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