
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Blockchain as a Service Solution for Ethereum Smart
Contract Based Micro-Service Cloud Architecture“

verfasst von / submitted by

Zheng Li, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt / A 066 935
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Medieninformatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.Prof.Dr. Wolfgang Klas

Mitbetreut von / Co-Supervisor: Dr. Belal Abu Naim

1

Declaration of Originality

I hereby declare that except where specific reference is made to the work of
others, the content of this thesis is original and has not been submitted in whole
or in part for any other degree or qualification in this, or any other university.
I confirm that the submitted thesis is original work and was written by me
without further assistance. Appropriate credit has been given where reference
has been made to the work of others.

(Date) (Signature)

2

Zheng Li
13. Nov. 2020

3

Zusammenfassung
Blockchain ist eine neu entwickelte Technologie, die in den letzten Jah-

ren erhebliche Beachtung gefunden hat. Die Industrie in verschiedenen

Bereichen versucht nun, die Technologie zu nutzen, um von ihrer hoch-

sicheren, transparenten und dezentralen Natur zu profitieren. Die dras-

tischen einzigartigen Eigenschaften der Blockchain stellen jedoch sowohl

die Hardware-Infrastruktur als auch die Software-Entwicklung vor große

Herausforderungen für die Nutzung der Technologie. Das Konzept von

"Blockchain-as-a-Service"(BaaS) konzentriert sich darauf, die Lösung an-

zubieten, mit der der technische Aufwand und die hohe Arbeitsbelas-

tung für die Bereitstellung, Verwaltung und Wartung des Blockchain-

Netzwerks in einer Cloud-Umgebung erhöht werden können. Diese Ar-

beit befasst sich mit den neuesten Technologien und Lösungen in den

aktuellen verwandten Bereichen, diskutiert die mögliche Lösung zur Ver-

besserung der Benutzerfreundlichkeit der Blockchain-Technologie mit ei-

nem Cloud-Computing-Ansatz und präsentiert einen Prototyp, der für

die Verwendung der Blockchain-Technologie im Kontext entwickelt wur-

de mit Microservice-Architektur in einer Cloud-Umgebung. Der Prototyp

wird anhand der vordefinierten funktionalen Anforderungen, der Benut-

zererfahrung und der Systemleistung bewertet. Es werden weitere Ver-

besserungen und Erweiterungen vorgeschlagen, die auf den im gesamten

Forschungsprozess gesammelten Erkenntnissen und Kenntnissen beruhen.

4

5

Abstract
Blockchain is a newly emerged technology that gained significant at-

tention in recent years. Industry in various fields are now attempting to

adopt the technology to benefit from its highly secure, transparent, decent-

ralized nature. However, the blockchain’s drastic unique characteristics

present serious challenges in both hardware infrastructure and software

development for utilizing the technology. The concept of "Blockchain-as-

a-Service" (BaaS) focuses on offering the solution of lifting the technical

overhead and the heavy workload of deploying, managing, and maintain-

ing the blockchain network in a cloud environment. This work looks into

the state-of-the-art technologies and solutions in the current related fields,

discusses the possible solution to improve the usability of the blockchain

technology with a cloud computing approach, and presents a prototype

designed for utilizing blockchain technology in context with microservice

architecture in a cloud environment. It evaluates the prototype based on

the pre-defined functional requirements, user experience, and the system’s

performance. It proposes further improvements and extension based on

the findings and knowledge gathered along the entire research process.

6

7

Contents

1 Motivation 10
1.1 Objectives . 11

1.1.1 Specification of Functional Requirements 11
1.1.2 Focused research questions 12

2 Background 14
2.1 Micro-service oriented cloud architecture 14
2.2 Ethereum . 14
2.3 Blockchain as a Service (BaaS) 15
2.4 Docker and container technology 15
2.5 Kubernetes and container-orchestration 16

3 Related Work 18
3.1 Blockchain as a service architecture design research 18
3.2 Amazon Managed Blockchain . 18
3.3 IBM Blockchain Platform . 19
3.4 Microsoft Azure Blockchain Workbench 19
3.5 Overview . 21
3.6 Technology and design pattern choices 21

3.6.1 VM vs Docker Container 21
3.6.2 Kubernetes cluster for container orchestration 22
3.6.3 Node.js and JavaScript . 22
3.6.4 RESTful API design and Express.js 22
3.6.5 MongoDB for document-based database 23
3.6.6 Task Queue and Redis . 23
3.6.7 React for Single-page Web Application 23

3.7 System components . 23
3.8 Deployment View . 25

3.8.1 Kubernetes basic concepts 25
3.8.2 Deployment View in Kubernetes Cluster 26

4 Design and Implementation 28
4.1 Terminology . 28
4.2 Use Cases . 29

4.2.1 User Account Use Cases 29
4.2.2 User Chain Use Cases . 30
4.2.3 User Project Use Cases 31
4.2.4 User Service Use Cases . 31
4.2.5 User Datastore Use Cases 32

4.3 System Features Design . 34
4.3.1 User Registration . 34
4.3.2 User Login . 36
4.3.3 Tasks . 37
4.3.4 User Chain Deployment 38

8

4.3.5 User Project . 40
4.3.6 Contract Deployment . 42
4.3.7 User Service . 43
4.3.8 User Datastore . 44
4.3.9 User Datastore Data Operations 46
4.3.10 User Database Data Query 47
4.3.11 API Access Control . 47

4.4 Backend RESTful API . 49
4.5 Frontend Web Application . 59

5 Evaluation 75
5.1 User Hands-on Experiment . 75
5.2 Experiment Survey . 75
5.3 System Performance Test . 77

6 Conclusion 81
6.1 Summary of the prototype . 81
6.2 Limitation of the prototype . 82

7 Future Work 83

A User Manual 87

B User Hands-on Experiment Guide 93

C Source Code 98

9

1 Motivation

The blockchain is a revolutionary technology that keeps gaining more and more
attraction in both industry and people’s everyday life. Raising earlier from the
concept of cryptocurrency, namely the Bitcoin, this technology went through
rapid growth and evolution in a short period, and the hype seems not getting
colder anytime sooner.

Nowadays, we see a lot of implementation and utilisation of this brilliant
concept like Ethereum and Hyperleger. Many of these newly emerged blockchain
technologies focus mainly on a common goal together, that is to extend the
usability of blockchain technology further into a broader and generalized field.
Down to the basic, blockchain technology works as a decentralized database that
stores transaction data in a chain of blocks in which adjacent blocks on the chain
are interconnected and dependent. By using encryption and digital signatures,
the data stored on a blockchain is highly secured and tamperproof. Outside users
can interact with the blockchain via a personal account, which is protected by
asymmetry encryption. All the changes a user made are permanently stored on
the blockchain and never changed.

This highly secure, transparent, and decentralized nature makes the block-
chain technology a perfect solution for use cases where data security and integ-
rity are required, for example, in financial, health care, and so on.

With the rise of the concept like IoT, cloud computing has become widely
used and well accepted in both the enterprise and consumer market. Cloud
service providers like AWS, Microsoft Azure, and Google nowadays offer a wide
range of cloud computing solutions and resource to allow both companies or
individuals to deploy easily accessible cloud service in a simple fashion.

The beauty of cloud computing services is that it releases developers from the
heavy workload of infrastructure configuration and management, allows them
to focus on the implementation of the service itself. By utilising technology like
Content Delivery Network (CDN) and Virtual Machine (VM), cloud computing
can achieve high accessibility, reliability, and scalability. By migrating from
traditional web services architecture to cloud computing, small businesses can
start up any idea without high financial risk. Large companies can benefit from
reducing network infrastructure management costs hugely while maintaining
and improving the quality of the service.

Typically, in a cloud architecture, a sophisticated use case is divided into
small independent running micro-services. It breaks down complicated busi-
ness logic that is hard to implement and deploy, allowing developers to work
cooperatively on a large scale. Because each micro-service only handles a tiny
part independently, not only is the risk of a single point of failure significantly
reduced, but network resources can also be efficiently distributed.

Although blockchain is the buzzword in recent years, the technology is still
in its infancy. As we know, many current major platforms are still under de-
velopment and facing dramatic changes in the future. A considerable challenge
it faces is to generalize its usability in the broader field. On the other hand,
with its distinct difference to the other technologies, the learning curve is much

10

higher. Setting up a project with blockchain technology requires a lot of ex-
perience and expertise. In many cases, developers are designing project-specific
architectures to utilize blockchain technology.

Currently, well-known cloud service providers like AWS and Microsoft are
trying to combine the blockchain technology with the cloud computing service
they offer. The idea is to provide a complete and easy-to-use solution for block-
chain development and consumption. The advantage of combining these two
technologies is that they are complementary in many aspects. To ensure the
security of the service, a cloud service provider needs to invest a large amount of
effort to protect user’s data. Blockchain provides a simple yet elegant solution
for data security and integrity. With a systemic cloud architect, we can reduce
the complexity of developing a blockchain system and extend the functionality
of the blockchain technology. Both developers and end-users will benefit from
it.

1.1 Objectives
The primary challenge of this thesis is to provide an acceptable prototype solu-
tion that embeds the Blockchain technology in a cloud architecture and offer it
to the end-users as a Blockchain-as-an-Service (BaaS) and allow users to create,
deploy, and access micro-service architecture use cases, which are backed-up by
Blockchain technology, without much technological overhead.

1.1.1 Specification of Functional Requirements

This section discusses the specific functional requirements of the prototype solu-
tion based on the objective of this thesis. Comprehensive and detailed architec-
ture and design decisions are discussed in Section 3.4 and Section 4. On a grand
level, the prototype solution should meet the following functional requirements.

� Cloud-based Blockchain management
A user should be able to configure, deploy, and manage Blockchain in-
stances that run in the cloud environment. These Blockchain instances
serve as the foundation of the micro-service architecture applications that
are created and consumed by end-users of the platform. The prototype
should be a user-friendly solution that eliminates unnecessary technical
details from the conventional blockchain setup and flats the steep learning
curve of the Blockchain technology.

� Smart Contract IDE
Although the primary focus of the prototype solution is not about provid-
ing users a state-of-the-art, full functional online smart contract IDE, users
should be able to compose, compile, and at some level, debug smart con-
tracts in an embedded environment. The prototype solution should offer a
project-based code repository functionality as well to allow users to deploy
and manage smart contracts with flexibility.

11

� Smart contract driven micro-services
Micro-service architecture lives in the center of the concept. In a clas-
sical cloud architecture, database and traditional computing powers the
micro-service. In comparison, the prototype solution should utilize smart
contract that deployed on a blockchain instance as the back-end of the
micro-service users created and have access to. The owner of the micro-
service should be able to expose the service without spending excess effort
or diving deep into the actions that take place behind the scene.

� Blockchain-based cloud data management
One most prominent and commonly known disadvantage of the current
blockchain technology is its lack of performance in terms of data storage
and query. As data storage and query functionality plays a vital role in
micro-service cloud architecture, the prototype solution must demonstrate
its capability regarding handling data storage and query requests at a large
scale and, meanwhile, reflects the highly secure, tamper-proof nature of
the blockchain technology.

� Authentication and data privacy control
Data transparency is a fundamental aspect of a blockchain system, but
it also presents challenges in terms of personal privacy. We discuss this
matter later in Section 4.3.11. In combination of a cloud architecture, the
prototype solution must offer the possibility for end-users to take access
control of their exposed micro-services, thus ensure their data privacy.

1.1.2 Focused research questions

Considering the functional requirements discussed in Section 1.1.1, I will focus
on answering the following research questions in this thesis.

• How can we improve the usability and productivity of the Blockchain-
as-an-Service (BaaS) solution? To which level can we simplify the whole
blockchain application workflow?,

• How to associate the smart contract with micro-service architecture? What
role can smart contracts, or generally speaking the Blockchain technology
play in a cloud architecture?.

• How to improve the performance, availability, and scalability of the block-
chain cloud solution, or what is the limitation that the solution face in the
current state?

• What is the workflow for an end-user to create blockchain-based micro-
services look like? How to handle the supporting requirements like data
storage?

12

• In terms of security and privacy, how can user authentication be defined
and handled in a BaaS context? What strategies can we take to protect
users’ privacy?

13

2 Background

In this section, we discuss the technologies that are chosen for implementing the
prototype solution.

2.1 Micro-service oriented cloud architecture
The concept of micro-service was initially introduced as a software architec-
ture to build large, replaceable, and maintainable systems. Generally speaking,
micro-services are small, independently deployed service-oriented components
that are loosely bounded in a correlated context. Micro-service should always
be goal-oriented rather than solution-focused. By breaking down a complex
system into small parts, developers can provide particular approaches for solv-
ing specific tasks. Thus avoid the problem of the system being too big and
too complicated. Another design principle of micro-service is its replaceability.
Rather than spending efforts and resources to maintain a service, replacing the
component should always be the prioritised consideration for developers. [14]

Adapting to micro-service architecture provides many benefits. From de-
velopers’ perspective, making system components individual and independent
makes the team cooperation flexible and efficient. The choice of technology,
language, and framework is no longer restricted. Different technologies, lan-
guages, and frameworks can co-exist in the same system and achieve solution
optimisation. From the view of the whole system, a system can start small and
grow large and complex at a steady pace. Developments can be run in parallel
without much interference from other parts of the system. The system can up-
grade or down-grade parts of its services gracefully at any given time to improve
its robustness and minimises the cost of failure. [15]

2.2 Ethereum
Ethereum is an open-source, blockchain-based distributed computing platform.
It was proposed in late 2013 by Vitalik Buterin and initially released in mid-
2015. In the Ethereum paradigm, the Ethereum Virtual Machine (EVM) sits
in a decentralized peer to peer network and processes transactions using public
nodes in the network. In comparison to the transaction in other blockchain
networks that serve as a decentralized ledger, the transactions in an Ethereum
network can also be used for generalized computing. Generally speaking, Eth-
ereum can be viewed as a transaction-based state machine. The starting point
of the state is called the genesis state. As the state machine keeps on running,
new transactions are executed and the state morphed consistently. During the
transaction, the Ethereum state transition function carries out computation
that modifies the chain to its next valid state, and arbitrary states between
transactions are stored. All transactions are settled into blocks that are chained
together with cryptographic hashes.

Ethereum supports both "proof-of-work" and "proof-of-stake" consensus al-
gorithms. Under the "proof-of-work" protocol, network nodes invest a substan-

14

tial amount of computing resources in completing transactions and get Ethers
as the reward. This process is also referred to as mining and acts as a firm
guarantee of data integrity. However, as the network grows, the difficulty of
solving the mathematical puzzle increases, and the amount of transactions the
network can handle per time unit is restricted. [16]

"Proof-of-stake" is a protocol that attempts to solve the throughput issue.
It allows nodes to reach consensus without mining. Instead of generating new
blocks competitively, the next node to create a new block on the chain is selected
based on its stake. The stake of the node can vary based on the requirement. For
instance, it can be the number of coins it holds or voting in a non-cryptocurrency
scenario. "Proof-of-authority" is a specific case of "proof-of-stake". Instead of
electing and changing stakeholder on the go, a validator’s identity takes the role
of the stake. Blocks are exclusively added by those who are officially determ-
ined as a validator.[17] The advantage of "proof-of-stake" protocol is that it
increases the efficiency of transaction time and overall network consensus. It is
particularly constructive in a private chain environment where authority needs
to be assigned.

2.3 Blockchain as a Service (BaaS)
With the constant maturity of the blockchain technology, many transitional
cloud service providers start to extend their cloud service solutions toward block-
chain. One of the reasonable motivations is the growth of the IoT usage. By
its nature, the secure and tamper-proof decentralized public ledger function
provided by blockchain technology is an ideal solution for public infrastructure
in fields such as energy, public security, and public health. However, because IoT
devices are typically restricted in size and production costs, the computation
power, data storage, and network capacity they can offer are usually limited.
Running a blockchain network in such an environment is extremely difficult, and
even if we leave out the consideration of the financial costs, we can not ignore
the computational resources wasted to maintain such a project. [18]

Recently, to solve the problem of where should be blockchain be hosted, the
concept of Blockchain-as-a-Service (BaaS) has emerged. It focuses on construct-
ing a cloud-based solution for hosting blockchain instances to lift the obstacles
the user faces in building and utilising blockchain technology. Users no longer
have the burdensome task of managing the infrastructure for a blockchain pro-
ject. Currently, service providers like AWS, Microsoft, and IBM offers BaaS
with different approaches. Other providers like Google have announced their
plan to join in the future. In Section 3, we discuss two well-known cloud service
providers and their BaaS solutions in-depth, namely AWS Blockchain Template
and Microsoft Azure Blockchain Workbench.

2.4 Docker and container technology
Docker aims to solve the "dependency hell" problem in modern applications. It
is a Platform-as-a-Service (PaaS) solution that encapsulates a complete applic-

15

ation runtime environment in a container. Under the hood, docker utilises the
resource isolation feature of the Linux kernel like cgroups and namespaces to
create isolated lightweight run time environments. It differs from the approach
that is taken by other hypervisor-based virtualisation methods. Traditionally,
hypervisor-based virtualisation runs either directly on the hardware(Xen) or as
an additional software layer on a guest OS (VirtualBox). Both of these two
types of virtualisation suffers from performance bottle-neck because they run a
full-fledged operating system on top of another operating system and requires
more resources like CPU, RAM, storage, and network bandwidth.

Containers, on the other hand, only take a protected portion of the Linux
operating system. Each container then has its own isolated processing power,
storage, and network resources. This approach provides significant benefits, as
resources are more efficiently distributed and consumed. When the container
stays in an idle state, it wastes almost nothing from the system resources. Fur-
thermore, the cost of creating, running, and destroying containers is low.

Another great feature that docker offers is that it depends on the Advanced
Multi-layered Unification Filesystem(AuFS) to deliver a copy-on-write experi-
ence. Advanced Multi-layered Unification Filesystem(AuFS) layers filesystem
transparently in a stack. This allows the docker container to be composed of
basis images, and basis images can be cross-referenced in different containers.
[11]

Since its release, docker has been quickly adopted by both developer com-
munity and enterprise. Its use cases extends from professional development
environments to large scale production environments. Especially in the cloud
computing area, where performance, availability, and scalability is required,
docker shows excellent potential.

2.5 Kubernetes and container-orchestration
Nowadays, more and more systems that rely on delivering service over the net-
work via APIs face the challenge of high demand. Often in times, high availab-
ility and minimum failure tolerance are the critical driving force of a successful
business. Kubernetes, an open-source container orchestration system developed
by Google, gave the answer and provided the solution for building scalable,
reliable distributed systems.

In traditional software systems, components are considered to be a mutable
infrastructures. Developers use imperative approaches to bring the system to
a desired state. Imperative means that the developers interact and change the
system by giving descriptive instructions that bring the system from point A
to point B. In contrast, in Kubernetes, software components and containers are
treated as immutable assets of the system, and developers control the system
primarily by declarative configuration. The declarative configuration approach
generally allows the developer to control the system by describing the desired
state of the system, and the heavy-duty of maintaining the system in the con-
figured state is left to Kubernetes entirely. For example, if the developer tells the
Kubernetes to run 3 instances of an application container in the cluster, Kuber-

16

netes runs exactly 3 replicas of that container. When replicas failed, Kubernetes
starts up new replicas to the meet the configuration, oppositely, it kills running
replicas if there are too many.

The Kubernetes approach provides several advantages over the traditional
approach. First, software components can be divided into smaller units and
kept isolated from other parts of the system. This not only prevents the situ-
ation where a single point of failure can bring the entire system down, but also
divides the software components into much smaller chunks so that development
teams can work more efficiently and flexibly. Second, the declarative nature
of Kubernetes allows easy scaling for applications. Operators can make wise
decisions and balances the operation costs based on the demands, starting low
and gradually scale up while the business grows.

Additionally, because containers are immutable and can be replaced easily,
developers can roll out new features and updates at a steady pace without
bringing down the entire system, different versions of the system can co-exist
without interference. In case of a failed upgrade, developers roll back to the old
version and reverse all the changes. The system keeps on running without any
downtime. [8]

17

3 Related Work

In this section, we take a look at some of the state-of-the-art researches regarding
Blockchain-as-a-Service technology since the prototype is built on this concept.
We also discuss and compare a few commercialized solutions that are currently
offered on the market by some big players like Microsoft, Amazon, and IBM.

3.1 Blockchain as a service architecture design research
Many researchers in academia are exploring the possible architecture design of
a Blockchain-as-a-Service focused cloud architecture nowadays. In work from
Qinghua Lu et al. [10], the authors presented a unified and vendor-independent
solution to address the scalability and security issues of blockchain-based applic-
ations. The solution consists of three categories of services, namely deployment
as a service, design pattern as a service, and auxiliary-based application. Ser-
vices in deployment as a service category allows users to configure and deploy
customised blockchain network, monitor the status of the network, and deploy
smart contracts on the blockchain. With an up and running blockchain network,
users can utilize services in design pattern as a service category to manage data
and smart contracts on the chain. Services in this category use concepts like
off-chain data caching, smart contract design patterns, and data hashing and en-
cryption to ensure both the accessibility and privacy of the on-chain data. Data
integrity services like encryption key pairs management and file comparison are
provided in the third category of auxiliary services.

NutBaaS [19] is another example of the Blockchain-as-a-Service architecture.
The researchers proposed a four-layers design that places reliability and secur-
ity at first and complements the shortcomings of the current BaaS platform.
At ground level, the model is built on the resource layer, which provides cloud
resource and infrastructure support for deploying blockchain networks with a
variety of service providers, including Amazon Web Service, Microsoft Azure,
and Alibaba Cloud. Above the resources layer lies the service layer in which
blockchain essential services and advanced services like developer tools are im-
plemented. It provides the users with the required functionalities for blockchain
application development. By combining the functions offered by these two base
layers, the third layer, the application layer, provides some abstracted applica-
tions to help create solutions faster according to business requirements. On top
of that, the fourth layer, which is the business layer, explores business scenarios
suitable for using blockchain technology.

3.2 Amazon Managed Blockchain
Amazon’s "Amazon Managed Blockchain" solution is a fully managed service
that gives the users ability to create and manage scalable blockchain networks.
By the time of this thesis, the platform supports the Hyperledger Fabric block-
chain framework and promise to extends the support for Ethereum in the future.
The platform generally takes care of provisioning nodes, setting up the network,

18

managing certificates and security, and scaling the network. User has the flexib-
ility of managing network membership, inviting additional members from other
AWS accounts, or add and remove new members by a voting API. Members
of the network configure peer nodes that run the decentralized network and
have the ability to scale up and add new nodes to increase the transaction
processing power of the network. Communication within the blockchain net-
work is secured by AWS Key Management Service, which is a component that
manages user identities and issues enrolment certificates. Additionally, Amazon
managed blockchain depend on Amazon QLDB technology to record immutable
change logs and maintain the entire history of all transactions in the blockchain
network, thus improving the reliability of the data.

3.3 IBM Blockchain Platform
The IBM Blockchain Platform provides a managed, full-stack enterprise-ready
Blockchain-as-a-Service platform that aims at simplicity, flexibility, and reliabil-
ity. Build on top of open-source technology like Red Hat OpenShift and Kuber-
netes, the solution is not vendor locked. Users have the flexibility of selecting
the deployment platform on IBM Cloud or hybrid and multi-cloud environment.
It uses Hyperledger Fabric as the core of the open-source component. To ensure
the governance capabilities, the platform provides democratic management tools
that allow members to manage the rules and policies of the decentralized net-
work. Members must be known before joining the network, and new members
can be dynamically added or removed. The system leverages protocols on the
side of the blockchain network to ensure the validity of the transaction. This in-
cluding authorizing client by initiation, validation by endorsers, confirmation of
endorser response, and validation of the transaction by all network peers. Mech-
anisms like channels, private databases, and zero-knowledge proof technologies
give a high protection of the data privacy on the network.

3.4 Microsoft Azure Blockchain Workbench
Microsoft offers "Azure Blockchain Workbench" as blockchain as a service solu-
tion in its whole cloud service ecosystem. Aside from the same fast and straight-
forward blockchain network deployment feature, the service is tightly packed
with other Azure cloud services to create a hybrid environment. Smart con-
tracts deployed on Azure Blockchain Workbench are more deeply controlled
and managed by the workbench. To maintain the authentication and security
of the blockchain application, Azure Blockchain Workbench depends on Azure
Active Directory (Azure AD). It’s a one-stop solution for the Azure cloud user
to manage their user identities and create intelligence-driven access policies to
secure resources. Not only is Azure AD the security gateway for all the other
Azure cloud services that connected with the workbench, but it is also capable
of providing access control down to each smart contract deployed on the work-
bench. Once a blockchain application is deployed, the workbench can generate
a web-based client application automatically and provide an interface for users

19

to interact with. Developers can also choose to expose the blockchain applic-
ation via the RESTful gateway service API. To improve the performance of
the blockchain application, the workbench keeps an off-chain SQL database and
Azure Storage as the replica of the on-chain contract definition, configuration,
and SQL-accessible data stored in contracts. Users can perform data queries
by directly accessing this database, makes it easier to visualize and analyse the
current state of the blockchain application. For application requires storage for
large data, the workbench supports storing documents or other kinds of media
content with blockchain business logic.

20

lize This section covers the software architectural design decisions of the
prototype solution. In context of the functional requirements in Section 1.1.1,
we discuss the structure of the prototype solution, suitable technologies and
design patterns choices and take an in-depth view of the sub-components design
of the system.

3.5 Overview
The prototype is a typical client-service architecture web-based application that
offers user fast and straightforward blockchain-based micro-service functionality.
At the front end, users interact with the system via a graphical user interface de-
ployed as a web application, and the front end communicates with the backend
via HTTP requests to invoke API that controls the whole system. In compar-
ison to a typical data-oriented web service, deploy and maintaining blockchain
instance in a cloud environment presents many challenges. To begin with, block-
chain instances are basically sets of peer to peer network, to let them run on the
cloud without interference with each other, suitable virtualisation and cluster
management technologies are essential. Additionally, blockchain nodes consume
a large amount of computing and storage resources, the performance and scalab-
ility of the prototype must be considered beforehand. Moreover, the control of
users’ access and interaction with the system, including with the blockchain
instances they owned, is a crucial aspect that not to be neglected.

3.6 Technology and design pattern choices
3.6.1 VM vs Docker Container

As we discussed in Section 2.4, the main advantage that the container tech-
nology has against the hypervisor-based virtualisation is its fast deployment
speed and high efficiency on resource usage. In our scenario, fast blockchain
network nodes provision is the fundamental presupposition of a functional and
user-friendly system. Although a hypervisor-based virtual machine may give
more flexibility and control in terms of hardware specifications like computing
power, RAM, and storage capacity, the isolated environment that a docker con-
tainer provided is more than enough for a running blockchain node. Because
a new NET namespace is instantiated separately from the Linux kernel NET
namespace for each docker container created, the container has its own network
stack, and the network stack is isolated and can not be seen from outside the
container and from other containers. This simplifies the network configuration
and prevent nodes interference in a virtual cluster setup. Most importantly, as
nodes in a blockchain network have the same software framework stack, it is
much faster to start up a node from a docker image due to the time freed from
OS boot up and software installation. [7]

21

3.6.2 Kubernetes cluster for container orchestration

Due to the nature of the prototype and the choice of using docker containers as
the base layer of the system, the prototype uses Kubernetes for container or-
chestration. By utilising the declarative configuration approach, we can create a
system with high scalability. The decoupling of the hardware management and
software deployment means more productive hardware resources utilisation, and
simplified capacity extension. Kubernetes offers a flexible and highly customis-
able RESTful style API for managing in-cluster containers, which helps create
and remove blockchain network on the fly.

To ensure continuous development, I used Skaffold as a helper in the devel-
opment environment. Skaffold is a command-line tool that handles the workflow
for building, pushing, and deploying Kubernetes-native applications.

3.6.3 Node.js and JavaScript

Node.js is a JavaScript runtime environment that executes JavaScript server-
side code. Chrome’s V8 JavaScript engine, which Node.js is built on, compiles
JavaScript code directly to machine code before execution. As a result, applic-
ations run at high speed, despite that JavaScript is a scripting language. It
is stable in building real-time network applications thanks to its event-based
loop non-blocking execution. In spite of being a single-thread process, Node.js
applications usually accomplish high throughput and low latency, especially in
handling large amounts of requests simultaneously. A Node.js application can
scale up both vertically by expanding resources in a single node and horizontally
by adding additional nodes. Node.js, together with JavaScript, is the primary
development language of choice for the prototype.

3.6.4 RESTful API design and Express.js

RESTful is a stateless client-server protocol for building service APIs. Each
HTTP request encapsulates all the information required, and can be handled
separately without the need of previous state. Each resource in a REST system
is represented in the form of a unique URI, and is manipulated via action spe-
cified by HTTP request methods (POST for creation, GET for retrieving, PUT
for update, and DELETE for removing). REST protocol separates the client
and server-side development, improves the overall portability, visibility, and re-
liability of the system. There is no bound of format for information exchange,
whether it’s XML, JSON, or even plain text.

Express.js is a flexible and minimal framework for creating APIs in Node.js
environment. The most significant advantage of the Express.js framework is its
capability of fast application prototyping. In the prototype, the backend is a
RESTful style API built with Express.js framework.

22

3.6.5 MongoDB for document-based database

MongoDB is a document-based, distributed database for general purposes. Data
is stored in JSON-like documents and is retrieved as an object. By design,
MongoDB suits well in cloud scenarios where high availability and scalability is
required. Although it is not well known for data aggregation because of its lack
of query support, the schema-less operation is well adapted for data structures
that change over time. For a typical user-oriented web application, MongoDB
is clearly the right candidate for the database.

3.6.6 Task Queue and Redis

Many actions in the prototype takes a certain amount of time to finish. Take
the deployment of a blockchain network for example, and the system must first
collect the configuration of the network, then send provision requests for each
chain node and waiting for all the nodes to be online. Although Node.js support
non-blocking execution and node scaling, it is a better practice to isolate these
tasks away from the API server. A FIFO Task queue with a task agent pool
is a suitable pattern here to deal with the problem. Whenever a user requests
a certain task to the API server, API server publishes the task to the task
queue, a subscribed task agent in the agent pool retrieves the task and execute
it. In this way, the system can behave more responsive to the user and allows
the developer to efficiently and reasonably distribute resources when scaling the
system. To achieve this pattern, the prototype utilizes the Pub/Sub feature of
the Redis database to implement the task queue.

3.6.7 React for Single-page Web Application

Currently, in the world of JavaScript web front-end development, there are
many outstanding framework. React.js is one of them which gained the most
popularity over the last few years due to its excellent performance in building
Single-page applications (SPA). The term "Single-page Application", according
to A. Mesbah and A. van Deursen, generally means "the single-page web in-
terface is composed of individual components which can be updated/replaced
independently, so that the entire page does not need to be reloaded on each
user action". [13] Behind the scene, a single-page application relies on AJAX
(Asynchronous JavaScript And XML) to communicate state changes with the
server asynchronously, and achieves a faster response and better user experience.
[12] The front-end of the prototype is a Single-page Application developed with
React.js

3.7 System components
Six major components work together in the system, Web UI, API Gate, Data-
base Gate, Transaction Gate, Chain Agent ,and Task Agent. Their relationship
is shown in Figure 1.

23

Figure 1: System Components of the Prototype BCCloud

Web UI is a single-page React.js application that acted as a front-end user
interface of the system. It provides graphical user interfaces for interaction
with the system. In the background, the Web UI communicates with API
Gate via External Control API, User Service API, and External Control API
implemented by the API Gate. For security concerns, communication between
the WebUI and API Gate is governed by the authorisation policy of the system
and isolated from other system components. Section 4.3.11 provides more detail
on the authorisation and security control of the system

API Gate is the entry point of the backend system. It implements three
access interfaces, namely the External Control API, the User Service API and
the User Datastore API. The External Control API provides access point func-
tionality for user account management and authentication, private blockchain
instance deployment and management, project-based smart contract develop-
ment and deployment, micro-service and datastore creation and management,

24

and user task monitoring. The User Service API and The User Datastore API
route requests to exist User Service and User Datastore that are created by
users.

Database Gate is the gatekeeper for the MongoDB and Redis databases of
the backend. It implements the Internal Database API for caching on-chain
data and storing information of user accounts, private chain instances, smart
contract project, micro-services, and datastore. It also provides the Internal
Task Queue API for coordinating task execution in the system.

Transaction Gate offers the Internal Transaction API for chain transaction
control in the system. Because process like contract deployment and contract
method call are similar procedures for all blockchain network deployed in the
system, a universal API that abstract these operations can lead to a compact
design and ensure unified authorisation.

Task Agent subscribes to the Task Queue via the Internal Task Queue API
and continuously monitoring for new tasks, whenever a task is published and
acquired by a task agent, the agent executes the task and publish task process
and result. The tasks carried out by Task Agent are usually time-consuming
and doesn’t require users attention to endure. For instance, deploying a private
chain instance, compiling a smart contract, and deploying a datastore.

Chain Agent is a complementary component that sits alongside each private
chain instance. It provides chain-data monitoring and on-chain data caching
for User Datastores deployed on the chain instance. Through the event and
log mechanism in Ethereum, the chain agent listens to chain transaction events
and updates the caching status in the database once a transaction is mined.
Further explanation of how Chain Agents work with Datastore can be found in
Section 4.3.8.

3.8 Deployment View
Considering that Kubernetes provides an abstraction of the hardware infra-
structure and enables developers to build, deploy and manage applications truly
portable across environments [9] , in order to give a clear view of the deployment
structure of the system, we focus here on describing the internal organization
of the Kubernetes cluster.

3.8.1 Kubernetes basic concepts

Namespace creates virtual clusters in the same physical cluster. Objects
within the same namespace must have a unique name, however, across the
namespace, objects names do not interfere with others. For this reason, namespace
is a practical way of dividing resources between users in the same cluster. [2]

25

Pods are the smallest execution unit in the Kubernetes cluster. It contains
single or multiple application containers that work cooperatively as a unit that
ideally can not be separated in terms of functionality. Each pod has a unique
IP address, and containers inside all share the same network namespace. A set
of shared volumes can be attached to a pod to provide persistent data storage
for all containers in the pod. [3]

Deployments Although pods are the basic unit in the Kubernetes, it is often
deployed with a controller to enable more control features like replication, failure
recovery, and rollout. A deployment lets users describe the desired state of
an application deployment, and matches the actual state to the desired state
constantly at a controlled cycle. The most common use cases, for example, are
application scaling and non-interrupt feature rollout. [1]

Service As pods in the cluster are dynamically created and destroyed, their
IP address can not stay constant. Service exposes a set of pods by selector
mechanism, decouples the binding of network address and network requests. [4]

3.8.2 Deployment View in Kubernetes Cluster

Figure 2 depicts the deployment view of the prototype Kubernetes cluster. Sys-
tem components are wrapped in Kubernetes Pods(round rectangle), their de-
sired running state is described and encapsulated by the Kubernetes deploy-
ment(raised up rectangle box). Communications between components are de-
picted as solid black lines. User interact with the system from outside using a
browser by sending request into the cluster. The ingress guards the entrance
of the cluster and route the top-level domain traffic to WebUI Deployment and
External Control API, User Service API and User Datastore API request to
API Gate Deployment. Other components communicate internally and are isol-
ated from outside the cluster. All system components except user-created chain
instance components are deployed in the default Kubernetes namespace. For
each user chain instance created by Task Agent, a unique namespace is created
for the deployment to prevent interference.

Generally speaking, each deployment in the cluster can be scaled up and
down by increasing or reducing the replicas count, as it can be seen from Task
Agent Deployment. Furthermore, the component Chain Agent are bounded
with the same pod in which the chain transaction node is deployed. It allows
the Chain Agent to easily monitor the chain event via the shared network stack
in the pod.

26

Figure 2: Deployment View of the Prototype BCCloud

27

4 Design and Implementation

4.1 Terminology
In this section we take a look at some of the basic terminologies and concepts
used in the prototype.

� User and user account
A user in the system is a person who has a registered account and performs
interaction with his or her assets, namely private chain instances, projects,
services, and datastores. The account encapsulated the user’s identity
information and authentication credentials. In the prototype system, a
unique Ethereium user account is bounded with each user account in order
to achieve a unified authentication mechanism and provide access control
to the system.

� User chain
User chain is the private blockchain instance configured and deployed by
a user in the system and is the groundwork of other system features like
user service and datastore. Because each instance is placed in a unique
namespace in the Kubernetes cluster, a chain instance must have a unique
name across the entire system.

� User project and project artifacts
A user project is where a user develops, stores, and compiles smart con-
tracts that are related to the same project. Compiled smart contracts are
stored in the project as the project artifacts and can be later deployed on
to a running user chain instance.

� User service
A user service is the "micro-service" like feature of the prototype. In a
word, it represents the entry point of the invocation call to a smart contract
function on the blockchain. It handles the process by converting HTTP
requests to blockchain transactions, thus allows the service consumers to
interact with the services without knowing much details on the underlying
smart contracts and chain instances. The user who created the service
controls the access to the service via the consumers’ identity, namely the
Etherium account bounded by the user account.

� User datastore
User datastore is a concept designed for improved data storage and query
experience on blockchain. In a datastore, users can store data entries
in a table like fashion. The data is saved on the chain and cached in
a complementary database to ensure its integrity and offers faster query
speed. Like user services, datastore implement the same access control
the secure the data stored inside.

28

4.2 Use Cases
In this section, we discuss the use cases of the prototype by function group.
Figure 3 shows the use case diagram of the prototype.

Figure 3: User Case Diagram of the Prototype BCCloud

4.2.1 User Account Use Cases

� Create Account
A User must create an account before interacting with the system. For
registration, the user needs to provide a valid ID (E-mail address) and

29

a password to the system. The system generates account credentials, an
Ethereum account with a public account address and a private sign key,
and informs the user that the account is ready. User ID must be unique
across the system.

� Login
After the user creates an account, he or she needs to login to interact
with the system. The user provides the user ID to retrieve the encrypted
account credentials and decrypts it locally with the password. Then user
authenticates with the server using the decrypted account credentials to
finish the process and gain access to the system. At login, users have the
option to stay logged in to skip this action in the future access, in which
case, account credentials is preserved locally in the browser.

� Logout
The user logs out to end the interaction with the system. The account cre-
dentials stored locally is then cleared no matter whether the user chooses
to stay logged in or not. Afterward, further requests to the system is
unauthorized due to the absence of the account credentials.

4.2.2 User Chain Use Cases

� Create User Chain
The user can create private chains in the system. Each private chain
has its unique name across the system, which is provided by the creator.
Once created, the user chain is listed in the user’s chain list and can be
configured for deployment. Create a user chain does not create an actual
chain instance, it only reserve the name of the chain in the system.

� Configure User Chain
After creating a user chain, the user can set up the chain configuration,
including its type, nodes, and parameters for mining activity. Chain’s
configuration can only be modified if there is no active instance deployed,
or the previous instance is removed. Only after a chain is configured, the
user can carry out further deployment. Access to the chain configuration
is restricted to the chain creator only.

� Deploy User Chain Instance
Once the user chain is configured, the user can start the deployment of
the instance. The deployment task is firstly sent to the system task queue
and then picked up and processed by a running task agent. During the
deployment process, the task agent publishes task steps and logs. User
has the option to monitor the process via a task console. Chain instance
information is updated at the end of the task. Access to this function is
restricted to the chain creator only.

30

� Remove User Chain Instance
The user can remove the deployed running chain instance. Like deploy-
ing an instance, the un-deployment is handled by a task agent as well.
The user is responsible for removing or shutting down user services and
datastores that are deployed on to this instance. The chain configura-
tion can be modified again after the task is finished. Access to the chain
configuration is restricted to the chain creator only.

� Delete User Chain
The User can delete a user chain with its configuration. The name of
the user chain will be free for others once the chain is deleted. The pre-
condition is that there is no deployed chain instance running. Access to
this function is restricted to the chain creator only.

4.2.3 User Project Use Cases

� Create User Project
The user can create a project for developing smart contracts. User only
need to provide a name for the project. Afterward, the project will be
listed in the user’s project list. Access to the project is restricted to the
creator only.

� Develop Smart Contract
In a project, the user can create, edit, and delete smart contracts. The
in-browser smart contract editor supports Solidity language high light and
code hint. The user saves the smart contracts for compile into artifacts
later. Smart contracts are only visible to the project owner.

� Compile Project Artifacts
After the user saves the smart contract code, the contracts can be compiled
and used as the project artifacts. The user can choose which version of
the Solidity compiler to use, and the choice must be coherence with the
code pragma. The compile task is sent to the task queue and executed
by a task agent. The task agent publishes the artifacts in the project if
the compile is successful. User then see the artifacts information like ABI,
bytecodes in the artifact list. Otherwise, it stores the errors in the project.
User can then see code error hints in the editor.

4.2.4 User Service Use Cases

� Create User Service
The user can expose deployed smart contract function call as a micro-
service by creating a user service. Pre-condition is a running user chain
instance, and a smart contract with at least a callable method deployed
successfully on that chain instance. For the creation, the user chooses the

31

target chain instance, target smart contract on chain, and the method
to invoke. Afterward, the service is listed in the user’s service list. The
service list is only visible to the user.

� Remove User Service
The user can remove a running service. The service is not accessible once
removed. Requests that are made before the removal of the service but
still being processing in the system will not be terminated. The access to
this function is restricted to the service creator.

� Set Service Access Policy
The creator of a user service can define the access policy in two ways,
a whitelist and a blacklist. If the whitelist is populated by at least one
Ethereum account address, only the user accounts associated with those
addresses have granted access to the service. On the other hand, if an
Ethereum account address is on the blacklist, the user account associated
with the address is forbidden from accessing the service.

� Service Call via GUI
After the user service is created, the creator of the service can request
the service in the GUI of the WebUI. The interface shows the required
arguments of the call if there is any. The user sees the request result after
the call is finished. Depends on the type of the call, its either returned
data or transaction receipts.

� Service Call via API
After the user service is created, users with the access to the service, which
is defined and governed by the access policy of the service, can request the
service via an exposed API point call. The API point and call format are
visible to the creator of the service, and published by the creator. The
requester sees the request result after the call is finished. Depends on the
type of the call, its either returned data or transaction receipts.

4.2.5 User Datastore Use Cases

� Create User Datastore
The user can create a datastore for storing data in a table like fashion. Pre-
condition is a running user chain instance. At creation, the user provides a
datastore name, type of the datastore, and the schema of the datastore(the
columns). The creation task is handled by a task agent, and the datastore
shows up in the user’s datastore list after successful creation.

� Remove User Datastore
The creator of the datastore can remove the datastore from the system.
Afterward, the cached data will be deleted and further access to the data-
store is not possible anymore.

32

� Set Datastore Access Policy
The creator of a datastore can define the access policy in three ways, a
read whitelist, a write whitelist, and a blacklist. If the read/write whitelist
is populated by at least one Ethereum account address, only the user
accounts associated with those addresses have granted read/write access
to the service. On the other hand, if an Ethereum account address is on
the blacklist, the user account associated with the address is forbidden
from accessing the datastore.

� Data Manipulation via GUI
Users with granted access, defined and governed by the access policy of
the datastore, can create, edit, and revoke data entries in the GUI of the
WebUI. The interface shows the state of the data, namely cached and
mined.

� Data Manipulation via API
Users with granted access, defined and governed by the access policy of
the datastore, can create, edit, and revoke data entries via an exposed
API endpoint.

� Data Query via GUI
Users with granted access, defined and governed by the access policy of
the datastore, can query the data by data position and column filters in
the GUI of the WebUI. The interface shows the state of the data, namely
cached and mined.

� Data Query via API
Users with granted access, defined and governed by the access policy of
the datastore, can query the data by data position and column filters via
an exposed API endpoint.

33

4.3 System Features Design
4.3.1 User Registration

Users interacting with the system need to apply for an account to represent
and authenticate the identity. The platform does not differentiate users from
different roles, as all users are entitled to use all the functionality the platform
provides. For the registration, the user needs to provide two parameters, namely
a username and a password. The parameter username serves solely for authen-
tication and is by no means used as a representation code of a user. For that
purpose, the system generates a unique randomized user ID to represent a user
across the system.

Each user account is associated with an Ethereum externally owned ac-
count(EOA), which consists of an account address and a private key. The ac-
count address, which takes the form of a long hexadecimal address, is essentially
the matching public key of the private key as part of asymmetric key crypto-
graphy. [6] Although this public and private key pair is not stored directly on the
Ethereum blockchain instances that the user created, similar in the Ethereum
world, it is used for validating and verifying user interaction in the prototype
system.

Figure 4: Sequence Diagram - User Registration

Figure 4 depicts the process of user registration. At the beginning, the user
provides a username and a password in the WebUI interface and requests to
create an account in the system. To prepare for the registration, the WebUI

34

first generates an Ethereum externally owned account(EOA) with the Web3.js
framework function web3.eth.accounts.create() and then encrypts the gener-
ated private key with the password provided by the user by using the function
web3.eth.account.encrypt(). The output of the encrypt function, which is called
a keystore, is a JSON format object with the following structure.

{
"version ": 3,
"id": "04 e9bcbb -96fa -497b-94d1 -14 df4cd20af6",
"address ": "2 c7536e3605d9c16a7a3d7b1898e529396a65c23

",
"crypto ": {

"ciphertext ": "a1c25da3ec ... e906e6df24d251",
"cipherparams ": { "iv": "2885

df2b63f7ef247d753c82fa20038a" },
"cipher: "aes -128-ctr",
"kdf: "scrypt",
"kdfparams ": {

"dklen": 32,
"salt": "4531 b3c17 ...4807 b2d216d022318ceee50be10

",
"n": 262144 ,
"r": 8,
"p": 1

},
"mac": "b8b010fff3 ...7 f7a9f1bd4e82a5dd35468fc7f6"

}
}

WebUI then sends a request to the API Gate alone with the username, ac-
count address, and the keystore to create the user account. The API Gate
processes the request by calling Database Gate to write the user account in-
formation and returning the generated user ID.

At this point, the user account is stored in the database as a document in
the user collection, and has the following structure.

{
"username ": "",
"accountAddr ": "",
"keystore ": "",
"projects ": [],
"chains ": [],
"tasks": [],
"services ": [],
"datastores ": []

35

}

Here, properties projects, chains, tasks, services, and datastores are array
object for storing the related system entities of the user.

In the end, the WebUI informs the user that the account is created and ready
for use.

4.3.2 User Login

After the registration, the user can then log into the platform with the username
and password, Figure 5 shows the login process.

First, the user provides the username and password used in the registration
process via the WebUI interface. The WebUI requests the user’s account cre-
dentials from the API Gate by the username. The API Gate handles the request
by reading the user’s encrypted keystore from the Database Gate out, and re-
questing the Database Gate to refresh the token of this particular user. Here the
token is stored in the Redis database under the key "auth:token:userId" where
the "userID" is replaced by the user ID of the user, this token is used later in
the process to verify the identity of the user.

After the WebUI receives the encrypted keystore, and the token from the
API Gate, it decrypts the keystore using the password provided by the user. It
is done by using the Web3.js framework function web3.eth.accounts.decrypt().
This function decrypts a keystore in JSON format and creates an Ethereum
EOA that has the following format.

{
"address ": "0

x2c7536E3605D9C16a7a3D7b1898e529396a65c23",
"privateKey ": "0 x4c088 ...92 ae468d01a3f362318",
"signTransaction ": function(tx){...},
"sign": function(data){...},
"encrypt ": function(password){...}

}

At this point, WebUI acquired the public account address and the private
key of the user. It can then sign the token by using web3.eth.account.sign()
function. This Web3.js function signs arbitrary data with a private key and
returns a signature object in following JSON structure.

{
"message ": "token string",
"messageHash ": "0 x1da44b586eb07 ...056

e7f47fbc6e58d86871655",
"v": "0x1c",
"r": "0 xb91467e ... aba02900b8979d43fe208a4a4f339f5fd

",

36

"s": "0 x6007e74cd8 ...8 a5f5d4300f8e1a029",
"signature ": "0 xb91467e570a6466aa ...5

d18a5f5d4300f8e1a0291c"
}

The signature object is then sent to API Gate along with the username
again to the API Gate for user identity verification. API Gate infers the signing
account address and the original token from the signature string by Web3.js
function web3.eth.account.recover(). By comparing both the inferred address
and the token with the data from Database Gate, the API gate can decide who
is requesting login and verify the identity of the requestor. Consequently, the
API Gate responds to the WebUI, who then informs the user with the result.
By the end of a successful login, the user acquires the user ID, account address,
and private key.

4.3.3 Tasks

As we discussed in Section 3.6.6, many of the time-consuming system activities
are abstract into system tasks and are managed and executed by task queue and
task agent. Many system components are involved from the creation of the task
to the execution finish of the task. We first take a look at the task creation.

Figure 6 explains the process of the task creation. Usually, a task is initiated
by the user in the WebUI interface, for instance, a chain instance deployment
task. The WebUI collects the task parameter and sends task creation request
to the API Gate along with the user’s ID, the type and name of the task. There
are six types of tasks that are defined in the prototype.

� CHAIN_INSTANCE_DEPLOY
Deploy a user chain instance according to the configuration, required para-
meters: chain ID and user ID.

� CHAIN_INSTANCE_DELETE
Delete a chain instance but keeps the chain configuration, required para-
meter: chain ID.

� CHAIN_DELETE
Delete a chain entirely, including the chain instance and configuration.
Remove it from the user’s chain list, required parameters: chain ID, user
ID.

� DATASTORE_DEPLOY
Deploy a user datastore according to the configuration, required para-
meters: chain ID, user ID, name, type, columns(column name and data
type).

� PROJECT_COMPILE
Compile all smart contracts in a project, required parameters: project ID,
user ID.

37

� PROJECT_ARTIFACT_DEPLOY
Deploy a compiled smart contract to a running user chain instance, re-
quired parameters: project ID, artifact name, chain ID, contract con-
structor arguments, gas(optional), gas price(optional).

Then, the API Gate calls Database Gate API to store the task information
into the task collection in the following document structure.

{
"userId ": "user id",
"type": "type of the task",
"name": "name of the task",
"params ": {},
"status ": "Created",
logs: [

{ "timestamp ": 139374736 , type: ’INFO ’, message: ’
Task created.’ }

]
}

The task ID, which is the document ID generated from MongoDB, is then
published to the Redis task queue. The API Gate then updates status and
the logs of the task before it sends back the task ID as the response to the
WebUI request. The user can then monitor the running process of the task in
the WebUI with the task ID.

Once the task is published to the task queue, one of the subscribed task
agents gets the task and executes it. The activity of the task agent is described
in Figure 7.

When started, an agent first sleeps a random period of time between 1 and
10 seconds before asking the queue for tasks. This prevents simultaneous task
retrieval and request overflow from all the agents as the retrieval is implemented
as an API call to the the Internal Task Queue API on Database Gate. The
agent then executes the retrieved task based on the type and parameter of the
task, publishing logs to the task along the way, and updating the task status
subsequently. When there is no task retrieved or the agent finishes the task, it
goes back to the random sleep state and keeps on the activity in loops

4.3.4 User Chain Deployment

The user chain is the building blocks for system features like user service and
user datastore. The prototype supports the Ethereum private chain with Clique
protocol. For exploration purposes, the number of chains a user can create is
not restricted in the system.

To create a user chain, the user must provide a chain name. The name of the
chain must be unique and never been used across the entire system. The reason
being that each chain is deployed into a separate namespace in the Kubernetes
cluster in order to isolate chain resources. It also makes the chain removal

38

Parameter Description
type The consensus protocol of the chain
sealerNodeCount The number of sealer nodes in the chain network.
trasactionNodeCount The number of transaction nodes (non-sealer) in the chain

network.
gasPrice Minimum gas price for mining a transaction.
gasLimit Target gas ceiling for mined blocks.
gasTarget Target gas floor for mined blocks.
txpoolPriceLimit Minimum gas price limit to enforce for acceptance into the

pool.

Table 1: User Chain Configuration Parameters

straightforward and less error-prone. The system stores user-created chain in
the database in the chain collection with the following structure.

{
"userId ": "5 eb51340e552560029c3b304",
"name": "test -chain",
"createdOn ": 1588925263213 ,
"status ": "Deployed",
"config ": {

type: "clique",
sealerNodeCount: 1,
transactionNodeCount: 2
gasPrice: 0,
gasLimit: 900000000 ,
gasTarget: 800000000 ,
txpoolPriceLimit: 0

},
"deployment ": {

"namespace ": "test -chain",
"createdOn ": 1588925320628

},
"contracts ": [],
"services ": [],
"datastores ": []

}

Under field "config" sits the chain configuration parameters provided by the
user. Table 1 describes each parameter in detail.

The chain is only ready for deployment once the user finishes the configur-
ation. The deployment task is handled by a task agent in a sequence depicted
by Figure 8.

When the agent retrieves a chain instance deployment task, it first ready the

39

chain configuration from the Database Gate. It then creates the namespace in
the Kubernetes cluster, and all the related chain instance Kubernetes objects
in later steps are then placed in this particular namespace.

To deploy a complete private chain network, the task agent needs to create
the following resources objects.

� Sealer account for each sealer node
This is the account which the sealer node used to perform mining. It is
stored inside the namespace as a Secret object, and is available for access
later when the sealer node starts up.

� Network configuration
The network configuration is a JSON object that consists of a randomly
chosen network ID, which is the network ID used for the peer-to-peer chain
network, and the genesis block generated based on the chain configuration.
This network configuration is stored inside the namespace as a ConfigMap
object, and is available for access later when the chain nodes startup.

� Storage for each sealer node
The storage of each sealer node is provisioned by a persistent volume
claim(PVC). The persistent volume claim is a Kubernetes Object that
abstracts storage from pods. The data stored in a PVC persists after
pods attached to it are destroyed. In the case of a signer node crash, the
chain data is not lost, and the operation keeps on once the restarted node
reattach itself to the PVC. The system provisions no persistent storage for
transaction nodes. When a transaction node fails, it restarts and re-sync
the chain data with other nodes.

The agent continues the task once the resources are available. To deploy a
chain network, the agent first deploys a bootnode for coordinate node discovery
in the network. Then, according to the setup, the agent deploys all the signer
nodes and transaction nodes.

Depends on whether the chain is configured to be exposed, after all nodes
are online, the agent either patches the cluster ingress to allow external access
to the chain or creates a master account for making transactions in the network.

4.3.5 User Project

In the platform, users develop and organize smart contracts in a user project.
When the user creates a project, it is stored in the database in the following
document structure.

{
"userId ": "5 eb51340e552560029c3b304",
"name": "test -project",
"createdOn ": 1588939932350 ,

40

"files": {
"Person.sol": "pragma solidity >=0.5.0;...."

},
"compilerVersion ": "v0 .5.0+ commit .1 d4f565a",
"compileErrors ": [],
"artifacts ": {}

}

The contract source code written by the user is stored under the "files" prop-
erty after the file name of the contract. Once all the source codes are written,
the user can compile the source codes into project artifacts. The compile job is
handle by the task agent with the project compile task. The process is described
in Figure 9.

When a task agent picks up a project compile task from the task queue, the
agent retrieves the source files and the selected compiler version of the project
from the Database Gate. The source files and the compiler version are then sent
to the Transaction Gate for a contract compile request.

The Transaction Gate loads the selected compiler, compiles the source codes
into artifacts, and send the artifacts along with compile errors, if there is any, as
the response to the agent. At last, the agent calls the Database Gate to update
the project’s artifacts and compiling errors. The artifacts, sorted after contract
name, are stored under the "artifacts" properties of the project document in
the following structure.

{
"artifacts ": {

"Person ": {
"abi": [{...} , {...} , {...}] ,
"devDoc ": {...},
"evm": {

"assembly ": "..." ,
"bytecode ": {...} ,
"gasEstimates ": {...} ,

...
},

...
}

}

The ABI and bytecode are used later for contract deployment. The compile
errors are stored under the property "compileErrors" in the following structure.

"compileErrors ": [
{

"component ": "general",

41

"formattedMessage ": "Person.sol :19:5:
ParserError: Expected ’;’...",

"message ": "Expected ’;’ but got ’}’",
"severity ": "error",
"sourceLocation ": {

"end": 316,
"file": "Person.sol",
"start": 315

},
"type": "ParserError"

}
]

These compiler errors are then visiualized in the code editor for the user to
correct.

4.3.6 Contract Deployment

Task agents deploy compiled project artifacts into contracts on chain instances.
Figure 10 shows the deploy task procedure.

The task agent begins with retrieving the selected artifact, more precisely,
the ABI and the bytecode of the artifact, from the Database Gate. It then
reads the information of the target deploy chain instance to decide where to
store the contract metadata later. Next, the agent requests the Transaction
Gate to deploy the artifact to the target chain with the deployment arguments
provided by the user.

For contract deployment, the Transaction Gate requires the master account
of the chain instance to sign the transaction. After the contract deployment
transaction is created and signed, Transaction Gate sends the signed transaction
to the target chain network, and when the transaction is mined, it returns the
transaction receipt.

Finally, the agent creates a contract document and attach it to the chain
document and updates the database. The structure of the contract document
is shown as follows.

{
"chainId ": "5 eb51340e5525600w2c3b304",
"name": "Person",
"deployedOn ": 1588939932350 ,
"compilerVersion ": "v0 .5.0+ commit .1 d4f565a",
"abi": [{...} , {...} , {...}] ,
"receipt ": {

"status ": true ,
"transactionHash ": "0 x9fc7 ...5836 d8b",
"transactionIndex ": 0,

42

"blockHash ": "0 xef95f2f1 ...
cbea9a2c4e133e34b46",

"blockNumber ": 3,
"contractAddress ": "0

x11f4d0A3c12e86B4b5F39B213F7E19D048276DAe
",

"cumulativeGasUsed ": 314159 ,
"gasUsed ": 30234,
"logs": [{
// logs as returned by getPastLogs ,

etc.
}, ...]
}

}

4.3.7 User Service

The user service feature is the micro-service solution of the platform. Generally
speaking, a user service uses a deployed contract as the computing backend, and
gives users straightforward access to the contract’s function.

By design philosophy, a micro-service focuses on solving one single problem
of a system. It is lightweight, easy to be replaced, and not mean to interfer-
ence but work with other micro-services to create solutions for a complicated
system. Ethereum smart contract shares some common characteristics. Due
to the high computational cost of the blockchain mining process and the limit
of gas consumption, the best practice of designing a smart contract is to keep
the complexity low. Once a smart contract is deployed, it is not mean to be
updated, as an alteration of the historical chain data is not possible. Further-
more, contracts can interact with other contracts on the same chain and work
together coordinately.

For these reasons, the idea of using smart contract as the backend for a micro-
service is attempting and promising, and is the core concept of the prototype.

The prerequisite for creating a user service is a contract deployed on the user
chain instance. To create a user service based on a deployed contract, the user
provides the name of the service and the contract methods to be invoked. The
user service is stored in the "service" document collection in the database with
the following structure.

{
"serviceID ": "5 eb6add7e552560029c3b311",
"name": "person_get_name",
"createdOn ": 1589030359277 ,
"type": "common",
"config ": {

"chainID ": "5 eb5134fe552560029c3b305",

43

"contractID ": "5
eb562dae552560029c3b310",

"functionName ": "getName"
}

}

After creation, the user service is exposed via the API Gate under the API
point "/api/service/:serviceId". When the service is called, the system invokes
the backend contract call in the process describted in Figure 11.

The API Gate first route the request to the Transaction Gate, where all
the contract call transactions are handled. The Transaction Gate retrieves the
target contract data, including contract address and ABI, as well as the data
of the chain where the contract is deployed. Based on the ABI of the contract
and method to be invoked, the Transaction Gate exams whether or not the
transaction requires to be signed. This is determined by the nature of the
contract method. In a word, transactions that modify the state of the blockchain
is required to be signed. As a result, if a contract method does not perform a
purely "read-only" operation, the call must be signed.

At deployment, each chain that is not exposed has a master account bound
to it. The master account is used for signing all sign required transactions
in the chain. This approach moves the signing process from the client-side to
the server-side, and provides a centralized control to the transaction request on
the chain. Additionally, it allows arbitrary user to interact with the service,
without that the user’s Ethereum account being stored locally on the chain
nodes. However, this leads to the loss of the initiator identity information
because the same account signs all the transactions. The drawback can be
encountered by the platform user identity verification mechanism described in
Section 4.3.11.

Finally, after the transaction finishes, the Transaction Gate responses with
either the transaction receipt or the call result, which is then returned to the
caller by the API Gate.

4.3.8 User Datastore

In a typical blockchain environment, bulk operations like querying and filter-
ing on discrete data are tricky. On the one hand, depending on the design of
the smart contract, indexing and querying a large amount of structured data
can pose severe challenges in both the algorithm design and storage capacity.
Sophisticated indexing or querying algorithm usually bears a non-constant com-
putational footprint, can cause transaction failure due to probable exceed in gas
limit. Although the gas limit of a blockchain network can be tweaked to meet
the demands, the computing overhead created by the blockchain mining process
is not neglectable. On the other hand, chain data are replicated and stored
on each chain node. Supplementary data generated for indexing causes storage
waste on the chain node and dramatically increases the capacity requirement for
chain nodes. Additionally, because that transaction mining is a time-consuming

44

process, operations requested by users take a substantial amount of waiting
time.

User Datastore is a special type of pre-defined user service that implements
a data storage solution on the blockchain instance. Like a standard user ser-
vice, user datastores are powered by smart contracts behind the scene. Each
datastore has its table-like schema, which describes what and how the data are
stored. Data operations from users are cached for data operation performance
improvement. The Chain Agent component, which is deployed beside the trans-
action node, monitors the datastore activity via the chain event and updates the
cache state when the data operation is finalized, i.e., the transaction is mined.
In other words, the user datastore stores data in smart contract with a table-like
structure and keeps off-chain replicas of the on-chain data to offers enhanced
functionality.

Initially, the user configures the name, the datastore type, and the desired
data schema. The data schema describes the columns and the type of data in
each column. To deploy a user datastore, a task agent executes the "DATA-
STORE_DEPLOY" task, the procedure of the task is depicted in Figure 12.

After retrieving the namespace and the configuration of the target deploy
chain, the Task Agent first requests the Database Gate to create a datastore
document in the "datastore" collection. The datastore document is structured
as follows.

{
"name": "test -datastore",
"type": "Datastore",
"createdOn ": 1588925345 ,
"userId ": "5 eb51340e552560029c3b304",
"chainId ": "5 eb5134fe552560029c3b305",
"contract ": "5 eb513a3e552560029c3b309",
"monitoring ": true ,
"columns ": {

"personName ": {
"columnIndex ": 1,
"columnName ": "personName",
"columnDataType ": "string"

}
},
"currentRowIndex ": 0

}

The Task Agent then compiles the chosen types of datastore contract and
deploy it via the contract deployment API from the Transaction Gate. The de-
ployed contract is then stored in the database like we discussed in Section 4.3.6,
and the contract ID is written to the "contract" property of the datastore docu-
ment to associate the contract and the datastore together. Afterward, the Task
Agent publishes the datastore and waiting for the Chain Agent to start monit-

45

oring the chain events. As soon as the monitoring status is confirmed, the Task
Agent sends transactions to the Transaction Gate to create all columns defined
in the datastore schema. Eventually, when all the transaction is mined, the Task
Agent binds the deployed user datastore to its creator and target deployment
chain and creates its access policy.

4.3.9 User Datastore Data Operations

In a datastore contract, data entries are represented and organized by a data
rows. Each data row is a mapping of a unique numeric row index to a data
row struct. Inside each data row struct, the actual data is then stored in a
mapping to the corresponding column index. Because Ethereum uses a "zero"
state to represent non-initialized values, each data row struct contains boolean
variables to indicate the existing state of the data. The contract implements an
index-based interface for data operations like create, update and revoke, when
invoked, the contract emits chain event that encapsulates the alteration to the
on-chain data, including indexes, value, and block time.

An abstracted data operation process is depicted in Figure 13. When the API
Gate receives a data operation request (create, write or revoke), it first caches
the operation to the off-chain data at the corresponding data index. After the
state of the off-chain data is altered to the desired state, the API Gate requests
the Transaction Gate to execute all the contract method call transactions. The
Transaction Gate sends the transactions into the chain network, and when the
transaction is mined, the contract emits the chain events. The Chain Agent
picks up the events and updates the cached data operation to finalize the state
of the off-chain data.

The off-chain data cache organizes each data row as a document stored under
the document collection named by the ID of the datastore. The following JSON
object shows a typical data row cache structure.

{
"indexID ": "5 eb513d4e552560029c3b30b",
"rowIndex" : 0,
"columns ": {

"personName ": {
"columnIndex ": 0,

"columnName ": "personName",
"columnDataType ": "string",
"history ": [{

"value": "John",
"actor": "0

x8f8c3ea438376A248DaA347850f841790eFA48a0
",

t_cached ": 1588925396 ,
"t_bc": 1588925398 ,
}],

46

}
},
"revoked ": {

"actor": "0
x8f8c3ea438376A248DaA347850f841790eFA48a0",

"t_cached ": 1588925396 ,
"t_bc": 1588925398 ,

}
}

All the modifications to the data are cached in the history property under
each column. The "t_cached" and "t_bc" property are the cache operation
timestamp and the transaction mining timestamp. The non-empty state of the
"revoked" property represent that the data row has been revoked by a user.
Once a data row is revoked, no further alteration can be done to the data row.

4.3.10 User Database Data Query

Usually, in Etherium smart contracts, due to the high cost of loop operation and
the lack of data aggregation functionality, discrete data query in large quantity
is hard to implement. By keeping the off-chain data replicas in the MongoDB
database, we can achieve significant performance enhancement and flexibility
for data query operations. The User Datastore API implemented in API Gate
offers two types of data query mechanism in the system.

Position-based query allows users to query data based on the row index,
users request with a starting row index, and the number of rows to retrieve.

Filter-based query allows users to define a query filter in the following
format,

[columnName]: [filter value or filter operators]

where "columnName" is the name of the column the filter to be applied. The
filter can either be a specific value, or a valid comparison operator supported
by MongoDB(listed in Table 2). Filters can be aggregated by logical operators
supported by MongoDB as well(listed in Table 3).

In both position-based and filter-based query, users retrieve the whole data
row cache as the query result. In the case of the filter-based mechanism, data
rows with historical values that fill the filter condition are included in the query
result as well.

4.3.11 API Access Control

In the platform, the majority of the API access points are guarded by one of
the following access control groups.

47

Operator Description Example
$gt greater than {"age": {"$gt": 18}}
$gte greater than or equal {"age": {"$gte": 18}}
$lt less than {"age": {"$lt": 18}}
$lte less than or equal {"age": {"$lte": 18}}
$in matches values in an array {"bloodType": {"$in": ["A", "B"]}}
$nin matches values not in an array {"bloodType": {"$nin": ["A", "B"]}}
$ne not equal {"gender": {"ne": "male"}}

Table 2: User Datastore Query Filter Comparsion Operators

Operator Description Format
$and logical AND {$and: [{f1}, {f2}, ...]}
$not logical NOT {$not: {f}}
$nor logical NOR {$nor: [{f1}, {f2}, ...]}
$or logical OR {$or: [{f1}, {f2}, ...]}

Table 3: User Datastore Query Filter Logical Operators

� Ownership Control Group
Resources created by users, for instance, user chains, projects, services,
datastores, and contracts, have the access and modify rights bound with
the creator of the resource. In other words, only the owner of a particular
resource can retrieve, adjust, and eliminate the resource.

� Security Rule Control Group
User interactions with a published user service and user database are con-
trolled by a set of security rules. Possible security rules are listed in
Table 4.

The whitelist rules, when populated with the Ethereum EOAs of platform
users, allow the governed interactions only from users on the list. The blacklist
rule, on the opposite, blocks access from the users on the list.

Security rules are stored separately from the parent resource in the "access"
document collection in the database in the following structure,

{
"parentId ": "",

Security Rule Applicable Resource Governed Interaction
read-whitelist service and datastore call, read
write-whitelist datastore write
blacklist service and datastore call, read, write

Table 4: Access Control Security Rules

48

"readWhiteList ": [],
"writeWhiteList ": [],
"blackList ": []

}

,where the "parentId" property is the ID of the parent resource. As a part
of a platform resource itself, it falls under the ownership policy control group,
only the creator of a particular service or datastore can view, define and update
the security rules.

The API Gate implements the platform access control, as it is the only entry
point of all external user interactions. To cope with the access control, users need
to submit to the identity verification protocol when communicating with the API
Gate. In each API Gate request, the user must include "Token-Timestamp" and
"Token-Signature" fields in the HTTP request header. The "Token-Timestamp"
is simply the time, in the format of "YYYY-MM-DDTHH:MM:SSZ", when the
request is generated at the client-side. The "Token-Signature" is the signature
generated from the user by signing the "Token-Timestamp" with the private
key of the Ethereum EOA.

The API Gate then verifies the identity of the user and authorizes the access
in the process depicted in Figure 14.

First, the API Gate recovers the signer’s account address with the timestamp
and signature from the request headers and validate the timestamp against the
current system time. A valid timestamp must not exceed the maximum tolerate
time, which is defined as five minutes in the prototype. When the signer account
is recovered successfully, and the timestamp of the request is not expired, the
API Gate authorizes the request based on the access control group it belongs to.
In the case of ownership control group, access is granted if the signer account is
the same with the owner account. For security rules control group, API Gate
reads the security rules and check the signer account against all the security
rules.

4.4 Backend RESTful API
The RESTful backend API implemented by the API Gate can be divided by
the system feature groups. Table 5 to table 12 describe each API endpoint
in feature groups user, user chain, user project, user service, user datastore,
contract, task, and external call of user service and user datastore. Details
including the resource URI, HTTP call method, access control group, required
parameters, and the response of each API endpoint. The API HTTP are routed
by the cluster ingress uniformly by the "/api" pre-fix route. An example call
to get a user’s own profile takes the URL in the form of "/api/user/:userId".
Requests with required parameters must use the "application/json" mime type
and include the required parameters in the JSON body. Responses also use
JSON as the returned data format.

49

Table 5: RESTful API - User

API Endpoint /user/
Method POST
Access Control None
Description Create a new user account.

Required Parameter

"username": The username of the account.
"accountAddr": The Ethereum EOA address of the
user.
"keystore": The encrypted user keystore.

Response "userId": User ID of the user created.
API Endpoint /user/credential
Method POST
Access Control None
Description Retrieve a user’s login credential by username.
Required Parameter "username": The username of the account.

Response
"keystore": The encrypted user keystore.
"token": Login token for the user to sign with private
key.

API Endpoint /user/login
Method POST
Access Control None
Description Login a user by the user’s identity authentication.

Required Parameter
"username": The username of the account.
"tokenSignature": The token from the /user/credential
request signed by the user’s private key.

Response "userId": User ID of the user.
API Endpoint /user/:userId
Method GET
Access Control None
Description Retrieve a user’s profile without the "accountAddr" and

the "keystore".
Required Parameter None.
Response The profile of the user (see Section 4.3.1).

Table 6: RESTful API - User Chain

API Endpoint /user/:userId/chain
Method POST
Access Control Ownership
Description Create a new user chain.
Required Parameter "name": The name of the chain.
Response "chainId": Chain ID of the chain created.
API Endpoint /user/:userId/chain/:chainId

50

Method PUT
Access Control Ownership
Description Update the configuration of the chain.

Required Parameter "config": The configuration of the chain(see Sec-
tion 4.3.4) .

Response Empty
API Endpoint /user/:userId/chain/
Method GET
Access Control Ownership
Description Retrieve the user’s chains as a list.
Required Parameter None
Response A list of chain ID owned by the user.
API Endpoint /user/:userId/chain/:chainId
Method DELETE
Access Control Ownership
Description Delete a chain in the database, remove it from the user’s

chain list.
Required Parameter None.

Response "taskId": The ID of the task which performs the chain
delete.

API Endpoint /user/:userId/chain/:chainId/deployment
Method POST
Access Control Ownership
Description Deploy a chain instance after its configuration.
Required Parameter None.

Response "taskId": The ID of the task which performs the chain
instance deployment.

API Endpoint /user/:userId/chain/:chainId/deployment
Method DELETE
Access Control Ownership
Description Delete a running chain instance.
Required Parameter None.

Response "taskId": The ID of the task which performs the chain
instance delete.

API Endpoint /user/:userId/chain/:chainId/deployment/
artifact_deploy

Method POST
Access Control Ownership
Description Deploy an artifact from a user project to the running

chain instance.

51

Required Parameter

"projectId": The ID of the project which contains the
artifact.
"artifactName": The name of the artifact to be de-
ployed.
"args": The deployment arguments required for the ar-
tifact deployment.

Response "taskId": The ID of the task which performs the artifact
deployment.

Table 7: RESTful API - User Project

API Endpoint /user/:userId/project
Method POST
Access Control Ownership
Description Create a new user project.
Required Parameter "name": The name of the project.
Response "projectId": Project ID of the project created.
API Endpoint /user/:userId/project
Method GET
Access Control Ownership
Description Retrieve a user’s project list.
Required Parameter None
Response A list of IDs of the user owned project.
API Endpoint /user/:userId/project/:projectId
Method GET
Access Control Ownership
Description Retrieve the information of a project by project ID.
Required Parameter None
Response The project information(see Section 4.3.5).
API Endpoint /user/:userId/project/:projectId/files
Method PUT
Access Control Ownership
Description Update the files in project.
Required Parameter "files": The files to be updated(see Section 4.3.5).
Response 200.OK
API Endpoint /user/:userId/project/:projectId/compilerVersion
Method PUT
Access Control Ownership
Description Update the files in project.
Required Parameter "compilerVersion": The version of compiler to be used.
Response 200.OK
API Endpoint /user/:userId/project/:projectId/compile
Method PUT

52

Access Control Ownership
Description Update the files in project.
Required Parameter None

Response "taskId": The ID of the task which performs the arti-
facts compile.

Table 8: RESTful API - User Service

API Endpoint /user/:userId/service
Method POST
Access Control Ownership
Description Create a new user service.

Required Parameter

"name": The name of the service.
"type": The type of the service, current support "com-
mon".
"config": The configuration of the service(see Sec-
tion 4.3.7).

Response "serviceId": The ID of the service created.
API Endpoint /user/:userId/service
Method GET
Access Control Ownership
Description Retrieve the user’s service list.
Required Parameter None
Response A list of service IDs owned by the user
API Endpoint /user/:userId/service/:serviceId
Method GET
Access Control Ownership
Description Retrieve the information of the service by its ID.
Required Parameter None
Response Service information(see 4.3.7)
API Endpoint /user/:userId/service/:serviceId
Method DELETE
Access Control Ownership
Description Delete a service, remove it from the user’s service list.
Required Parameter None
Response 200.OK
API Endpoint /user/:userId/service/:serviceId/access
Method GET
Access Control Ownership
Description Retrieve a service’s security rules.
Required Parameter None
Response The security rules of the serivce(see Section 4.3.11).
API Endpoint /user/:userId/service/:serviceId/access/blacklist

53

Method PUT
Access Control Ownership
Description Append a EOA address to the blacklist of the service.

Required Parameter "actor": The EOA address to be appended to the black-
list.

Response 200.OK
API Endpoint /user/:userId/service/:serviceId/access/blacklist/:actor
Method Delete
Access Control Ownership
Description Remove a EOA address to the blacklist of the service.
Required Parameter None
Response 200.OK
API Endpoint /user/:userId/service/:serviceId/access/whitelist
Method PUT
Access Control Ownership
Description Append a EOA address to the whitelist of the service.

Required Parameter "actor": The EOA address to be appended to the
whitelist.

Response 200.OK
API Endpoint /user/:userId/service/:serviceId/access/whitelist/:actor
Method DELETE
Access Control Ownership
Description Remove a EOA address to the whitelist of the service.
Required Parameter None
Response 200.OK

Table 9: RESTful API - User Datastore

API Endpoint /user/:userId/chain/:chainId/deployment/datastore
Method POST
Access Control Ownership
Description Deploy a new datastore to a running chain instance.

Required Parameter

"name": The name of the datastore.
"type": The type of the datastore, current support
"Datastore".
"columns": The schema of the datastore(See Sec-
tion 4.3.8).

Response "taskId": The ID of the task that handles the datastore
deployment.

API Endpoint /user/:userId/chain/:chainId/deployment/datastore
Method GET
Access Control Ownership

54

Description Retrieve the list of datastore that is deployed to a run-
ning chain instance.

Required Parameter None

Response A list of IDs of the datastores deployed on the running
chain instance.

API Endpoint /user/:userId/chain/:chainId/deployment/datastore/
:datastoreId

Method GET
Access Control Ownership
Description Retrieve information of the datastore.
Required Parameter None
Response The information of the datastore(see Section 4.3.8).
API Endpoint /user/:userId/chain/:chainId/deployment/datastore/

:datastoreId
Method DELETE
Access Control Ownership
Description Delete a datastore and remove it from user’s datastore

list
Required Parameter None
Response 200.OK
API Endpoint /user/:userId/datastore/
Method GET
Access Control Ownership
Description Retrieve a user’s datastore list
Required Parameter None
Response A list of ID of user’s datastore
API Endpoint /user/:userId/datastore/:datastoreId
Method GET
Access Control Ownership
Description Retrieve information of the datastore.
Required Parameter None
Response The information of the datastore(see Section 4.3.8).
API Endpoint /user/:userId/datastore/:datastoreId/access
Method GET
Access Control Ownership
Description Retrieve the security rules of a datastore
Required Parameter None
Response The security rules of a datastore(see Section 4.3.11).
API Endpoint /user/:userId/datastore/:datastoreId/access/

readWhiteList
Method PUT
Access Control Ownership
Description Append a EOA to the read whitelist of the datastore.

55

Required Parameter "actor": the EOA address to be appended.
Response 200.OK
API Endpoint /user/:userId/datastore/:datastoreId/access/

readWhiteList/:actor
Method DELETE
Access Control Ownership
Description Remove a EOA from the read whitelist of the datastore.
Required Parameter "actor": the EOA address to be removed.
Response 200.OK
API Endpoint /user/:userId/datastore/:datastoreId/access/

writeWhiteList
Method PUT
Access Control Ownership
Description Append a EOA to the write whitelist of the datastore.
Required Parameter "actor": the EOA address to be appended.
Response 200.OK
API Endpoint /user/:userId/datastore/:datastoreId/access/

writeWhiteList/:actor
Method DELETE
Access Control Ownership
Description Remove a EOA from the write whitelist of the datastore.
Required Parameter "actor": the EOA address to be removed.
Response 200.OK
API Endpoint /user/:userId/datastore/:datastoreId/access/blacklist
Method PUT
Access Control Ownership
Description Append a EOA to the blacklist of the datastore.
Required Parameter "actor": the EOA address to be appended.
Response 200.OK
API Endpoint /user/:userId/datastore/:datastoreId/access/blacklist/

:actor
Method DELETE
Access Control Ownership
Description Remove a EOA from the blacklist of the datastore.
Required Parameter "actor": the EOA address to be removed.
Response 200.OK

Table 10: RESTful API - Contract

API Endpoint /user/:userId/chain/:chainId/deployment/contracts
Method GET
Access Control Ownership

56

Description Get the list of contracts deployed on the running chain
instance.

Required Parameter None

Response A list of contract IDs on deployed on the running chain
instance.

API Endpoint /user/:userId/chain/:chainId/deployment/contracts/
:contractId

Method GET
Access Control Ownership
Description Get contract information by ID.
Required Parameter None
Response The information of the contract(see Section 4.3.6)
API Endpoint /user/:userId/chain/:chainId/deployment/contracts/

:contractId
Method DELETE
Access Control Ownership
Description Delete the contract, remove it from the chain’s contract

list.
Required Parameter None
Response 200.OK

Table 11: RESTful API - Task

API Endpoint /user/:userId/task
Method GET
Access Control Ownership
Description Get the list of tasks belongs to the user.
Required Parameter None
Response A list of task IDs that belongs to the user.
API Endpoint /user/:userId/task/:taskId
Method GET
Access Control Ownership
Description Get the information of the task.
Required Parameter None
Response The information of the task(see Section 4.3.3).

Table 12: RESTful API - User Service and Datastore External Call

API Endpoint /service/:serviceId
Method POST
Access Control Security Rules
Description Call the service by service ID.

57

Required Parameter

"option": The call option, including callArgs, gas, gas-
Price. "callArgs": One of the options, the arguments
for the contract method invocation if any is defined by
the contract.

Response

"type": The type of call result data. Depends on the
contract method, either the value or a transaction re-
ceipt.
"data": The call result.

API Endpoint /datastore/:contractId/row
Method POST
Access Control Security Rules
Description Write a new row of data into datastore.

Required Parameter "row": The row of data to insert in the form of $colum-
nName: $columnIndex, $columnDataType, $datavalue.

Response "rowIndex": The row index of the new data row created.
API Endpoint /datastore/:contractId/data/:rowIndex
Method DELETE
Access Control Security Rules
Description Revoke a row of data.
Required Parameter None
Response 200.OK
API Endpoint /datastore/:contractId/data/:rowIndex/

:columnIndex/dataValue
Method PUT
Access Control Security Rules
Description Update a data field by its row and column index.

Required Parameter
"columnName": Name of the column.
"columnDataType": Data type of the column.
"dataValue": The actual value of the data.

Response 200.OK
API Endpoint /datastore/:datastoreId/read
Method PUT
Access Control Security Rules
Description Query data from datastore by datastore ID.

Required Parameter

"rowIndexSkip": Used together with retrieveCount,
starting point of the row index to be retrieved.
"retrieveCount": Used together with rowIndexSkip, the
number of rows to be retrieved.
"filters": The filter for data query, can not be used with
"rowIndexSkip" and "retrieveCount" together(see Sec-
tion 4.3.10).

Response The query result.

58

4.5 Frontend Web Application
The frontend WebUI is an HTML single page application written with the Re-
act.js framework and served on a Node.js HTTP server. The cluster ingress
routes root HTTP requests to the frontend WebUI server.

The entry point of the website is the login page(Figure 15). First-time users
need to sign up for an account before login. At the login, users can choose
to select the "Remember me" option to keep the login session and avoid login
for the next visit. The user ID and the associated EOA account(including the
private key) are stored in the browser local storage. Due to security reason,
users should log out after each session if the website is accessed in a public
environment, so that the data in the local browser is cleared.

The WebUI consists of five function areas, and users navigate via the left
main function menu.

Dashboard (Figure 16) provides an overview of the user’s profile and the
resources of the user on the platform, including the number of chains, projects,
services, datastores, and the task history. It is the first page the user is redirected
to after a successful login.

My Chain is where users create, manage, and delete their user chains. Fig-
ure 17 is the detailed information view of a user chain named "test-chain". The
view shows the status of the chain instance, deployed contracts and datastores
on the chain instance. Users can deploy chain instance, create datastore on the
chain instance in this view.

My Project helps users to develop smart contracts in Solidity language.
Users create and edit their smart contracts in the in-browser IDE editor (Fig-
ure 18), compile the smart contracts into artifacts, and then deploy the ar-
tifact on to a running chain instance here. The smart contracts are stored
under "FILES", and successfully compiled artifacts can be viewed under "AR-
TIFACTS".

My service is the user services created by the user across all the chain in-
stances. The graphical interface (Figure 19) helps users to call the service and
check the result. The exposed service API can be found here.

My datastore displays user datastore data in a table (Figure 16). Here, users
create new data rows, modify the value of a data field, and revoke unwanted
data rows.

59

Figure 5: Sequence Diagram - User Login

60

Figure 6: Sequence Diagram - Task Creation

61

Figure 7: Activity Diagram: Task Agent

62

Figure 8: Sequence Diagram - Chain Instance Deployment Task

63

Figure 9: Sequence Diagram - Project Compile Task

64

Figure 10: Sequence Diagram - Project Artifact Deployment Task

65

Figure 11: Sequence Diagram - User Service Call

66

Figure 12: Sequence Diagram - User Datastore Deployment

67

Figure 13: Sequence Diagram - User Datastore Data Operation

68

Figure 14: Activity Diagram - API Access Control

69

Figure 15: WebUI - Login

Figure 16: WebUI - Dashboard

70

Figure 17: WebUI - My Chain

71

Figure 18: WebUI - Project IDE Editor

72

Figure 19: WebUI - User Serivce Call GUI

73

Figure 20: WebUI - User Datastore Data Table

74

5 Evaluation

The evaluation of the prototype focuses mainly on two directions, namely the
user experience and the performance of the prototype. In the user experience
evaluation, a group of 10 people from IT background, in which 4 of them have
extended blockchain knowledge and experience, are invited to a preliminary
hands-on experiment with a follow-up feedback survey. Based on the feedback,
we investigate the usability of the prototype and verify, from the user’s aspect, if
the prototype fulfills its design goal in terms of simplifying the overall workflow
of the blockchain technology use case.For the performance test, the prototype is
put through several designed tests. These test scenarios represent the system’s
primary functions and produce a measurement of the system performance with
statistic. Based on the result, we evaluate the performance and analyse the
potential bottleneck.

5.1 User Hands-on Experiment
At the beginning of the experiment, each tester is briefly introduced to the
prototype and provided with a test manual and a guide throughout the test.
The test manual can be found in Appendix. Leading by the test manual, the
tester performs the following tasks with the prototype.

1. Register a user account and login to the platform.

2. Create a user chain and deploy the chain instance.

3. Write and compile a simple smart contract in a user project. Deploy it to
the chain instance.

4. Create a user service that uses the deployed smart contract. Make requests
to call the service in the WebUI graphical interface.

5. Create a user datastore, try out all the data operations.

The tasks cover the major functionalities of the prototype, also represent
workflows that users typically perform. The tester should grasp an overall ex-
perience with the prototype and gain insight into what the prototype can offer.

5.2 Experiment Survey
To evaluate the usability, the testers are asked a series of questions directly after
the experiment. The first ten questions are taken from the standard version of
the System Usability Scale, namely,

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

75

Table 13: User Experience SUS Questionary Result
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Q1 4 5 5 4 5 5 3 4 5 5
Q2 1 1 1 1 1 1 1 1 1 1
Q3 5 5 5 5 5 5 4 5 5 5
Q4 3 2 4 2 1 2 3 1 1 2
Q5 5 5 5 5 5 5 5 5 5 5
Q6 1 2 1 1 1 1 1 2 1 1
Q7 5 5 5 5 5 5 5 5 5 5
Q8 2 1 1 1 1 1 1 1 1 1
Q9 4 5 5 5 5 5 4 4 5 5
Q10 4 1 4 4 1 4 5 2 1 3

4. I think that I would need the support of a technical person to be able to
use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very
quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The System Usability Scale (SUS) is a simple, ten-item scale questionary
giving a global view of subjective assessments of usability. For each item, tester
gives score by choosing a scale from 1(represent strongly disagree) to 5(strongly
agree). The SUS score is then calculated based on the score contribution of each
item. Each item’s score contribution ranges from 0 to 4. For items 1,3,5,7,and
9 the score contribution is the scale position minus 1. For items 2,4,6,8 and 10,
the contribution is 5 minus the scale position. Multiply the sum of the scores
by 2.5 to obtain the overall value of SUS. [5]

The survey result is listed in Table 13 and plotted in Figuren 21. The rows of
the table represent 10 questions from the SUS questionary. The columns repres-
ent 10 testers, in which tester 2, 5, 8, and 9 are testers who have pre-knowledge
and experience with blockchain technology. The prototype achieves an average
total of 89 SUS scores in the experiment. We can see a clear polarization from
question 10 between the tester groups with and with no pre-knowledge. How-
ever, the overall statistic is not dramatically influenced, which indicates that
the prototype effectively reduced the complexity of the blockchain application
use case.

76

Figure 21: SUS Questionary Result

To further determine whether the prototype reaches its design goal of sim-
plifying the overall workflow of the blockchain technology use case. The testers
who already have pre-knowledge and experience with the blockchain technology
are asked the following 4 additional questions.

11. The prototype provides a straightforward solution for you to create and
deploy a private blockchain network without much technical overhead com-
pared to the traditional workflow.

12. The smart contract development workflow offered by the prototype satis-
fies your needs as an online integrated IDE.

13. The user service you created is a meaningful way to utilize smart contract
in a micro-service based cloud architecture.

14. The user datastore provides you a suitable solution for storing and query-
ing data based on blockchain technology.

Table 14 shows the result of the extended questionary by testers with pre-
knowledge and experience of the blockchain technology.

The data indicates that the testers are satisfied with the user experience,
and the design goal is achieved.

5.3 System Performance Test
There are altogether 5 designed test scenarios that focus mainly on the perform-
ance of the user service and user datastore functions of the prototype. The test

77

Table 14: User Experience Addtional Questionary Result
T2 T5 T8 T9

Q11 Strongly Agree Strongly Agree Agree Strongly Agree
Q12 Agree Neutral Agree Agree
Q13 Agree Agree Agree Agree
Q14 Agree Agree Agree Agree

Table 15: Service Performance Test Call Only (Unit in Milliseconds)
Round 1 Round 2 Round 3 Round 4 Round 5 Average
10338 10228 10210 10214 10217 10241.4

environment is a managed Kubernetes cluster on Microsoft Azure Cloud with
5 nodes of the standard F8s_v2 virtual machine, each of the virtual machine
is equipped with 8 virtual CPUs and 16GiB of memory. The prototype is in-
ternally scaled to avoid bottleneck, the API Gate, Database Gate, Transaction
Gate components each has 5 load-balancing replicas.

Service Performance Test (call only) is a test in which 5 rounds of 100
requests are sent to a user service created on a user chain instance with one
transaction node and one signing node. The service invokes a transaction call
with no mining in the chain instance required. In other words, a read-only
function of a smart contract. The requests are dispatched sequentially in a 100
milli-second interval to overload the service capacity but avoid pertential request
lost in the mean time. In each round, the time duration from sending the first
request to all requests are answered is measured in millisecond. Table 15 listed
the measured values and the average of the 5 rounds. The prototype achieved
10241.4 milliseconds per 100 requests on average. Based on the hardware of the
test environment, the performance is good.

Service Performance Test (mining) has a similar test process and setup,
except the service call invokes a transaction call with mining required in the
chain instance. From the measurements in Table 16, we see that the average
duration time increased to 12223 milliseconds due to the added mining pro-
cess. However, this increase is foreseeable, and the overall performance did not
drastically decrease.

Table 16: Service Performance Test Mining (in Milliseconds)
Round 1 Round 2 Round 3 Round 4 Round 5 Average
12256 12235 12218 12194 12212 12223

78

Service Performance Comparison Test performs 5 rounds of 50 requests
described in Service Performance Test(call only and mining) to two chain in-
stances, one with one transaction node one the two transaction nodes. In theory,
because Kubernetes automatically balances the request loads between transac-
tion nodes, the service on the chain instance with two transaction nodes has
double transaction call handling throughput. Based on the data in Figure 22
and Figure 23, the performance improvement is limited in both case, around 10
to 20 milliseconds.

Figure 22: Service Performance Comparison Test Call Only (in Milliseconds)

Figure 23: Service Performance Comparison Test Mining (in Milliseconds)

Datastore Read Test records the time duration for 100 read operations of
10 data rows from a datastore with two columns. The requests are dispatched in

79

the same fashion as the service performance test. It took 101304 milliseconds for
all the requests to finish. The performance is good, because only the off-chain
data replica is involved in the read operation.

Datastore Write Test writes 100 data rows with two columns into a data-
store. The requests are dispatched in the same fashion as the service per-
formance test. The recorded timestamps are the test start, all writing request
answered, and all transaction mined. It took 101359 millisecondes for all the
write requests to finish, by which point, the changes are cached and visible to the
user. Till all changes are confirmed, namely all mining completed, the system
took another 11019 milliseconds.

80

6 Conclusion

This thesis aimed to create a Blockchain-as-an-Service(BaaS) solution that al-
lows users to create, deploy, and access micro-service architecture use cases
backed up by the blockchain technology. We introduced related background
concept and technology, surveyed and reviewed the state-of-the-art approaches
from current commercialized products. We implemented a prototype and eval-
uated it from both user experience and performance aspects as the concrete
outcome of this thesis.

6.1 Summary of the prototype
• The technical overhead of blockchain technology is usually challenging but

can be greatly reduced with abstraction and automation of the workflow.
The prototype provided an effortless way for end-users to deploy block-
chain instance with a few essential parameter settings and a few clicks.

• Smart contract has a close and meaningful connection to the micro-service
architecture because of its lightweight and immutable nature. The user
service feature of the prototype utilizes smart contracts as the backend
for micro-services. This allows the micro-services benefits from the data
security and integrity features from the blockchain technology.

• Combining the traditional blockchain technology with the Docker Con-
tainer and the Kubernetes cluster orchestration technology, the prototype
achieves good availability and scalability by dividing the system into func-
tional components. Each component is individually scalable and kept at
the desired state by Kubernetes. However, this does not solve the bottle-
neck created by the blockchain mining process.

• The prototype defined a clear workflow for the end-users from creating
a blockchain network in the cloud, to deploy a public accessible smart
contract-based micro-service. The user datastore combines the off-chain
data cache concept with on-chain data storage, and offers an efficient solu-
tion for the end-users to store and query data with blockchain technology.

• In comparison to the traditional network authorization and authentication
methods, the prototype takes advantage of the protogenic authentication
mechanism from the Ethereum blockchain by associating the user profile
with an EOA and produces several benefits. First, users’ passwords are
neither transmitted nor stored at the server-side. Second, users’ commu-
nications with the system are authenticated by a non-constant signature
signed by the EOA private key. Additionally, the EOA address allows
users to identify and control access from other users in user service and
datastore to ensure data privacy.

81

6.2 Limitation of the prototype
Regarding to the scope of this thesis and by the extended analyzation of the
questions answered above, we formulatete following limitations of the prototype.

• Restricted blockchain model
The prototype currently only supports the deployment of an Ethereum
"proof-of-authority" private chain network with the clique protocol. Many
configuration options of the peer-to-peer chain network are hidden from
the end-users to provide a straightforward experience.

• Fixed and isolated data structure in datastore
The user datastore only stores data in a table-like data structure. Despite
the query filter, there is no support for cross datastore data aggregation
and internal data exchange between user service and user datastore.

• No flexibility in the chain network after deployment
Once a chain instance is deployed, the user has no way of re-configure
the network setup(adding or removing sign node and transaction node)
without un-deploy and re-deploy.

• The mining process bottleneck
The mining process in the blockchain network causes delay to user service
calls and user datastore operations. However, this can not be avoided or
improved without significant technical updates from the Ethereum block-
chain itself and is beyond the scope of this thesis.

82

7 Future Work

The thesis topic covers a wide range of research areas, and both the blockchain
technology and concept of "Blockchain-as-a-Service" are undergoing a rapidly
evolving process. The prototype achieved the design goal and covered all the
functional requirements. However, from the limitation analysis and comparison
with other state-of-the-art solutions, many improvements and extended features
can be integrated.

• Extend the supported blockchain protocols
Besides "proof-of-authority", Etheruem also supports the "proof-of-work"
protocol. Although the "proof-of-work" protocol generally requires more
computing resources and producing longer mining delay, it does offer a
higher security level in terms of data integrity and can be more useful in
many scenarios.

• Precise control of the blockchain instance
The configuration of a blockchain network can be overwhelming, the pro-
totype only exposed very few of them to reduce the complexity of the
problem. However, in a real-world production environment, a more precise
control over the configuration can fit more scenarios. Instead of masking
them, conducting further research on exposing more configuration para-
meters is constructive to the project. Additionally, mechanisms to dy-
namically scale the network nodes in runtime can bring more flexibility
to the end-users and fits the distributed nature of the blockchain network
closely.

• User datastore in more data structures
Provides more data structures gives users more versatility when organizing
their data in the datastore. Traditional database technologies nowadays
have different data structures that suit different requirements. Other than
the table-based data structure, document-based and graph-based data
structure received much attention as well. Exploring more blockchain-
based data structures can elongate the application range of the user data-
store.

• Internal data interface between user service and datastore
Currently, the data stored in a user datastore is isolated from the user
services and other user datastores in the same chain instance. In theory,
data referencing a user service to one or multiple user datastores is possible
as both utilize smart contracts as the backend. By implementing a uni-
versal internal data interface, end-users can create complex systems with
multiple user services and datastore without handling the business logic
outside the platform. Thus, it makes the prototype a complete standalone
solution.

83

• Comprehensive user profile
As for now, the user profile implemented in the prototype is simplistic.
A complete implementation of the user profile with more user identity
information can make system features like security rules of user services
and user datastores more intuitive and, therefore, improve the overall user
experience.

84

References

[1] Kubernetes Documentation - Deployments. https://kubernetes.io/
docs/concepts/workloads/controllers/deployment/. [Online; ac-
cessed 04-May-2020].

[2] Kubernetes Documentation - Namespace. https://kubernetes.io/docs/
concepts/overview/working-with-objects/namespaces/. [Online; ac-
cessed 04-May-2020].

[3] Kubernetes Documentation - Pod Overview. https://kubernetes.io/
docs/concepts/workloads/pods/pod/. [Online; accessed 04-May-2020].

[4] Kubernetes Documentation - Service. https://kubernetes.io/docs/
concepts/services-networking/service/. [Online; accessed 04-May-
2020].

[5] Brooke, J., et al. Sus-a quick and dirty usability scale. Usability eval-
uation in industry 189, 194 (1996), 4–7.

[6] Dannen, C. Introducing Ethereum and Solidity, vol. 1. Springer, 2017.

[7] Dua, R., Kohli, V., and Konduri, S. K. Learning Docker Networking.
"Packt Publishing Ltd", 2016.

[8] Hightower, K., Burns, B., and Beda, J. Kubernetes: up and running:
dive into the future of infrastructure. " O’Reilly Media, Inc.", 2017.

[9] Hightower, K., Burns, B., and Beda, J. Kubernetes: up and running:
dive into the future of infrastructure. " O’Reilly Media, Inc.", 2017.

[10] Lu, Q., Xu, X., Liu, Y., Weber, I., Zhu, L., and Zhang, W. ubaas:
A unified blockchain as a service platform. Future Generation Computer
Systems 101 (2019), 564–575.

[11] Merkel, D. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

[12] Mesbah, A., and Van Deursen, A. An architectural style for
ajax. In 2007 Working IEEE/IFIP Conference on Software Architecture
(WICSA’07) (2007), IEEE, pp. 9–9.

[13] Mesbah, A., and Van Deursen, A. Migrating multi-page web applica-
tions to single-page ajax interfaces. In 11th European Conference on Soft-
ware Maintenance and Reengineering (CSMR’07) (2007), IEEE, pp. 181–
190.

[14] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M.

Microservice architecture: aligning principles, practices, and culture. "
O’Reilly Media, Inc.", 2016.

85

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

[15] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M.

Microservice architecture: aligning principles, practices, and culture. "
O’Reilly Media, Inc.", 2016.

[16] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Tech. rep.,
Manubot, 2019.

[17] Network, P. Proof of authority: consensus model with identity at stake,
2017.

[18] Samaniego, M., and Deters, R. Blockchain as a service for iot. In
2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cy-
ber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) (2016), IEEE, pp. 433–436.

[19] Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., and Chen, R.

Nutbaas: A blockchain-as-a-service platform. IEEE Access PP (09 2019),
1–1.

86

A User Manual

The following user manual provides a short overview of the basic concept of
the technologies behind the prototype and offers a description of the system
functionalities and step-by-step usage instructions for end-users.

87

USER MANUAL
The following user manual provides a short overview of the basic concept of the technologies behind the
prototype and offers a description of the system functionalities and step-by-step usage instructions for end-
users.

INTRODUCTION

Micro-service architecture is a software architecture for building large, replaceable, and maintainable systems.
A micro-service is a small, independent service-oriented component that is loosely bounded with other micro-
services to create a complex system. Each micro-service is designed to be atomic and replaceable to avoid
spending efforts and resources on service maintenance. Adapting to micro-service architecture gives the benefits
of efficient team cooperation for the developers, and flexible and progressive development strategies for the
company.

Ethereum is an open-source, blockchain-based distributed computing platform. It was proposed in late 2013 by
Vitalik Buterin and initially released in mid-2015. Ethereum is an open-source, blockchain-based distributed
computing platform. It was proposed in late 2013 by Vitalik Buterin and initially released in mid-2015.
Ethereum supports both "proof-of-work" and proof of stake consensus algorithms. Under the proof of work
protocol, network nodes invest a substantial amount of computing resources in the process of "mining" to
completing transactions and get Ethers as the reward. "Proof-of-stake" allows nodes to reach consensus without
mining, the next node to create a new block on the chain is selected based on its stake. "Proof-of-authority" is a
specific case of "proof-of-stake", in which a validator's identity takes the role of the stake.

Blockchain-as-a-Service(BaaS) is a recently emerged concept that focuses on constructing a cloud-based
solution for hosting blockchain instances to lift the obstacles the user faces in building and utilizing blockchain
technology. Users no longer have the burdensome task of managing the infrastructure for a blockchain project.
Currently, service providers like AWS, Microsoft, and IBM offers BaaS with different approaches.

The prototype is a solution that embeds the Blockchain technology in a cloud architecture and offer it to the end-
users as a Blockchain-as-an-Service (BaaS) and allow users to create, deploy, and access micro-service
architecture use cases, which are backed-up by the Blockchain technology, without much technological
overhead.

PROTOTYPE FUNCTIONS AND USAGE INSTRUCTION

REGISTRATION AND LOGIN

To access the platform, registration is required to acquire a unique user profile representing the user's identity on
the platform.

To register for a new account, at the registration part of the front page, type in a username and password and
click "sign up" button. "Password repeat" and "Accept Terms" is no enforced in this prototype implementation.

After registration, type in the username and password and click login at the login part of the frontpage to login.

To avoid login next time, click "Remember Me". The user's account credentials, including the private key for
authentication, will be stored in the browser's local storage until the user log out. Use it only in a private and
trustable environment.

USER DASHBOARD

After successful login, the user is taken to the dashboard page. The page provides the user with an overview of
the profile information and the resources the user created in the platform. The user can also monitor all the
system tasks in the task list.

CREATE AND DEPLOY USER CHAIN

User chain is the private blockchain instance configured and deployed by a user in the system and is the
groundwork of other system features like user service and datastore. Each user chain must have a unique name
across the entire system.

To create a user chain:

• Go to "My Chain" in the left navigation menu, click "Create Chain".

• Type in a chain name in the left pop-up panel, and click "Create" .

The new user chain is then listed in "Chain List" table. View the user chain by clicking on the eye icon under
"Action" column. The user is then taken to the chain view where chain information is displayed. The user can
then configure the chain instance and deploy it.

To configure and deploy the user chain:

• Click "Configuration" button in the chain view, select chain type, sealer node count, and transaction
node count and click "OK". Leave other parameters to its default if you are not familiar with the
blockchain network setup.

• Click "Deploy" to initiate the deploy task. A task monitor will pop up and displaying the task status and
log outputs. Once the task states is "Finished" close the pop-up.

The chain instance is now deployed.

WORKING WITH USER PROJECT

A user project is where a user develops, stores, and compiles smart contracts related to the same project.
Compiled smart contracts are stored in the project as the project artifacts and can be later deployed on to a
running user chain instance.

To Create a user project:

• Go to "My Project" in the left navigation menu, click "Create Project".

• Type in a project name in the left pop-up panel, and click "Create" .

The new project is then listed in "Project List" table. View the project by clicking on the eye icon under
"Action" column.

In the project view, the user can create new files to write smart contracts in solidity. The code editor provides
basic code high-lighting and a mini-map of the code. After saving the project, the smart contract's code can then
be compiled into artifacts. The user can also specify the compiler version for the compile.

After the code is compiled, the compiled contracts are listed under the project artifacts, where information like
the contract ABI and bytecode are displayed. If the compile encounters errors, the user will see error hints in the
code editor's corresponding code position.

Once a project is successfully compiled and artifacts are generated, the user can deploy the artifact to a running
user chain instance.

To deploy an artifact to a running chain instance:

• Select the artifact to be deployed from the project artifact list.

• Click "Deploy".

• Select the target deploy chain instance from the left panel, and provide contract constructor argument if
any is required.

• Click "Confirm"

Once the deploy task is finished, the deployed contract can be found under the chain view under "My Chain".

CREATE AND ACCESS USER SERVICES

A user service is the "micro-service" like feature of the prototype. In a word, it represents the entry point of the
invocation call to a smart contract function on the blockchain.

User services can be created from deployed contracts on running chain instances. It handles the process by
converting HTTP requests to blockchain transactions, thus allows the service consumers to interact with the
services without knowing much details on the underlying smart contracts and chain instances.

To create a user service:

• Navigate to the chain view of the chain on which the contract is deployed.

• Under the "Contracts on Chain" list, click the "Create Service" icon under the actions column.

• In the right panel opened, name the service, and select the target function of the contract to be invoked.

• Click "Confirm".

• Navigate to "My Service" from the left navigation menu.

The created service can be seen under the service list.

To call the service from the WebUI interface, click on the view icon under the action column. Provides any
required arguments and click "Call" button. The result will be displayed once the call is finished. The RESTful
API endpoint is published in the service view, and users can access the service via AJAX call outside the
WebUI interface.

CREATE AND USE USER DATASTORE

User datastore is a concept designed for improved data storage and query experience on blockchain. In a
datastore, users can store data entries in a table like fashion. The data is saved on the chain and cached in a
complementary database to ensure its integrity and offers faster query speed. User datastore can be created from
the chain view of a running chain instance.

To create a user datastore:

• Navigate to the chain view of the chain on which the datastore is deployed.

• Under the "Datastores on Chain" list, click the "Create" button.

• In the right panel opened, name the datastore, select the type.

• Adding columns to the datastore by giving column name and selecting column data type and click
"Append Column".

• Click "Create".

Once the task is finished, the newly deployed datastore appears under the "Datastores on Chain" list. The user
can then navigate to "My Datastore" in the left navigation menu to use the datastore in the datastore view.

In the datastore view, the user can create new data by data rows, newly created data(marked with a star after the
data) is first cached in the off-chain data replica, and then confirmed(no star after the data) once mined on the
blockchain.

By clicking the "View" link under the "Action" column, the user can have a detailed view of the data row and its
modification history. Values are displayed in columns with additional information, including cached time,
mining time, and the EOA address that triggered the action. The user can update the values of each column by
giving the new value and click the "Update" button. The operation will be recorded in the data row history.

Data row can be revoked if it is never needed again. Revoking the data row does not delete it from the datastore,
it is marked as revoked to mark the state of unused and prevent further changes.

Search filters allow the users to query the datastore with custom conditions. Single filter is written in the JSON
format like

{[columnName]: [filter value or filter comparison operators]},

Aggregated filters are written in the JSON format like

{[Logical Operators]: [filter1, filter2, ...]},

The supported comparison operators and logical operators are listed in the following tables.

Comparsion Operator Description Example
$gt Greater than {"age": {"$gt": 18}}
$gte Geater than or equal {"age": {"$gte": 18}}
$lt Less then {"age": {"$lt": 18}}
$lte Less than or equal {"age": {"$lte": 18}}
$in Matches values in an array {"bloodType": {"$in": ["A", "B"]}}
$nin Matches values not in an array {"bloodType": {"$nin": ["A", "B"]}}
$ne Not equal {"gender": {"ne": "male"}}

Logical Operators Description Example
$and logical AND {$and: [{f1}, {f2}, ...]}
$not logical NOT {$not: {f}}
$nor logical NOR {$nor: [{f1}, {f2}, ...]}
$or logical OR {$or: [{f1}, {f2}, ...]}

B User Hands-on Experiment Guide

The following guide is provided to the participants for user experience exper-
iment. The guide consisits of a foreword, a to-do list, a survey questionary,
and an example smart contract code piece for participants with limited smart
contract development experience.

93

USER HANDS-ON EXPERIMENT
GUIDE

FOREWORD
Dear participants, for this experiment, we ask you to evaluation the user experience
of our prototype. Please take some time and read the user manual provided to you
first, and then perform the tasks listed in the To-Do list below. Finally, based on your
user experience, please answer the 14 questions in the user experience survey
section.

The experiment should take around 30 minutes, and if you have any questions
during the experiment, we are glad to assist you. We appreciate your participation,
and thank you for your opinions.

TO-DO L IST
• Register on the platform
• Log into the platform with the user account created
• Create and deploy a user chain instance. Due to the hardware limitation,

we recommend no more one to three signer nodes and a maximum of four
transaction nodes.

• Create a user project and develop some smart contract within the WebUI
editor. If you don't have much experience in writing smart contracts, we
provide an example code piece at the end of this guide.

• Create user services with the smart contract you deployed in the previous
task. Try invoking the service inside the WebUI interface.

• Create a user datastore on the chain instance you deployed. You can define
the columns of the datastore as you wish.

• Add some data rows into the datastore and observe the state of the data.
• Update some data in the datastore, and revoke some data rows, observe

the state changes as well.
• Try the search filter function in the datastore, try out some filter operators

described in the user manual.

USER EXPERIENCE SURVEY

1) I think that I would like to use this system frequently.
c Strongly Disagree

c Disagree
c Neutral
c Agree
c Strongly Agree

2) I found the system unnecessarily complex.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

3) I thought the system was easy to use.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

4) I think that I would need the support of a technical person to be able to use

this system.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

5) I found the various functions in this system were well integrated.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

6) I thought there was too much inconsistency in this system.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

7) I would imagine that most people would learn to use this system very

quickly.
c Strongly Disagree
c Disagree
c Neutral
c Agree

c Strongly Agree

8) I found the system very cumbersome to use.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

9) I felt very confident using the system.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

10) I needed to learn a lot of things before I could get going with this system.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

11) The prototype provides a straightforward solution for you to create and

deploy a private blockchain network without much technical overhead
compared to the traditional workflow.

c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

12) The smart contract development workflow offered by the prototype

satisfies your needs as an online integrated IDE.
c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

13) The user service you created is a meaningful way to utilize smart contract in

a micro-service based cloud architecture.
c Strongly Disagree
c Disagree
c Neutral
c Agree

c Strongly Agree

14) The user datastore provides you a suitable solution for storing and querying
data based on blockchain technology.

c Strongly Disagree
c Disagree
c Neutral
c Agree
c Strongly Agree

EXAMPLE SMART CONTRACT CODE

pragma solidity >=0.5.0;

contract Person {

 string public name;

 constructor(string memory _name) public {
 name = _name;
 }

 function changeName(string memory _name) public {
 name = _name;
 }

 function getName() public view
 returns (string memory _name)
 {
 _name = name;
 }

}

C Source Code

The GitLab repository of the prototype project is at https://git01lab.cs.univie.ac.at/thesis/0906101-
zheng-li.git

98

	Motivation
	Objectives
	Specification of Functional Requirements
	Focused research questions

	Background
	Micro-service oriented cloud architecture
	Ethereum
	Blockchain as a Service (BaaS)
	Docker and container technology
	Kubernetes and container-orchestration

	Related Work
	Blockchain as a service architecture design research
	Amazon Managed Blockchain
	IBM Blockchain Platform
	Microsoft Azure Blockchain Workbench
	Overview
	Technology and design pattern choices
	VM vs Docker Container
	Kubernetes cluster for container orchestration
	Node.js and JavaScript
	RESTful API design and Express.js
	MongoDB for document-based database
	Task Queue and Redis
	React for Single-page Web Application

	System components
	Deployment View
	Kubernetes basic concepts
	Deployment View in Kubernetes Cluster

	Design and Implementation
	Terminology
	Use Cases
	User Account Use Cases
	User Chain Use Cases
	User Project Use Cases
	User Service Use Cases
	User Datastore Use Cases

	System Features Design
	User Registration
	User Login
	Tasks
	User Chain Deployment
	User Project
	Contract Deployment
	User Service
	User Datastore
	User Datastore Data Operations
	User Database Data Query
	API Access Control

	Backend RESTful API
	Frontend Web Application

	Evaluation
	User Hands-on Experiment
	Experiment Survey
	System Performance Test

	Conclusion
	Summary of the prototype
	Limitation of the prototype

	Future Work
	User Manual
	User Hands-on Experiment Guide
	Source Code

