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Introduction

The underlying topic of my PhD thesis is the problem of resolution of singular curves. My thesis
aims to present a geometrically flavoured approach to resolution of unibranched singular alge-
braic curves. The goal is to construct geometrically inspired modifications of varieties which
may be able to advance in the resolution of surface singularities and to provide a geometric ap-
proach complementing the known more algebraic algorithms.

The key players to achieve this are so-called algebraic curvatures representing “higher or-
der tangent spaces”. They describe each curve in its smooth points completely and thus provide
already information on how the curve runs into a singular point. Finally, using the limits of the
“higher order tangent spaces” when running into a singularity, I define by means of algebraic
curvatures the center of the blowup which already resolves the singularity.

The second topic of this thesis is another application of algebraic curvatures outside alge-
braic geometry. The algebraic curvatures represent a complete system of so-called geometric
invariants, rational expressions in parametrizations and their derivatives of analytic varieties
that are equivariant under the natural action of the group of reaparametrizations. I show that the
“minimal” geometric invariants are in one-to-one correspondence with rational functions

C(x) := C(xi,j : i = 1, . . . ,m; j = 1, . . . , n)

that are invariant under the action of GLm(C). As such they already determine the invariant
field C(x)GLm and yield thus a new insight into the First Fundamental Theorem for GLm(C).
A proof of the First Fundamental Theorem for SLm(C) is also provided in my thesis as well as
proofs for GLm(K) and SLm(K) for an arbitrary infinite field K.

Let me give a brief description of the results of this thesis starting with results gained to-
wards resolution of singularities of algebraic curves.

The history of resolution of singularities of algebraic curves goes back more than 150 years
to the work of M. Noether [Noe71, Noe75] who used it in order to find a formula for the
genus of plane algebraic curves. More on the analytic side, at that time, the concept of Puiseux
parametrizations was known as well — first discovered by I. Newton [Ne36, pp. 191-209] and
later rediscovered by V. A. Puiseux [Pu50] while studying the solution space of f(x, y(x)) = 0
— yielding an analytic form of resolution. Nowadays, several methods for resolution of singular
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algebraic curves are available (see J. Kollár’s book [Ko07]): Successive blowups of the singular
points eventually resolve all singularities since it can be shown that certain well chosen local
invariants improve under each blowup. By induction on these invariants — usually lexicograph-
ically ordered string of integers — one is done after finitely many steps. A one step resolution
is obtained by normalization but here, the geometric intuition is hidden behind commutative
algebra machinery, see [MZ39]. As the resolution of each algebraic curve is unique up to iso-
morphisms and the normalization is a finite map, it can also be used together with the result of
A. Nobile [No75] saying the Nash modification is an isomorphism on whole curveX if and only
if X is smooth, to prove that performing successively the Nash modification yields resolution
after finitely many steps.

Let us now fix the setting: Let X ⊆ An+1
C be an algebraic space curve with a singularity

at the origin 0 ∈ X defined by polynomials f1, . . . , fr ∈ C[x1, . . . , xn, y]. Assume that X is
unibranched at the origin. Let us for each x ∈ X denote by [x] its corresponding projective
point in PnC. A comparison of the standard blowup of X at 0 with its Nash modification shows
immediately that the Nash modification is a more refined approach to improve singularities.
With the standard blowup of X , one associates to each smooth point x on X the slope of the
secant going through x and the origin:

X\{0} → PnC, x 7→ [x]

and finally takes the Zariski closure of the graph of this map in An+1
C ×PnC. The Nash modifica-

tion looks into the local geometry of X at a point more closely. One associates to each smooth
point x ∈ X the tangent line s(x) = TxX of X at x as an element of the projective space PnC
and takes then the Zariski closure of the graph of the map

X\{0} → PnC, x 7→ s(x)

in An+1
C × PnC. This corresponds, for plane curves, to the blowup of the curve in the Jacobian

ideal of the defining equation of the curve. Thus, the Nash modification represents already a
more geometric treatment of curve singularities. However, at the same time, in general many
repetitions are necessary to achieve the resolution.

As any composition of blowups can be seen as a single blowup in a (in general) non-radical
and very complicated ideal, one knows, by Hironaka’s result (see [Hi64a, Hi64b]), that the res-
olution of singularities can be obtained by a single blowup. One “just” has to define the correct
center. But as far as I know, aside from trivial examples, the choice of such a center is com-
pletely unknown and mysterious.

In this thesis, I present a more refined procedure to resolve singularities based on the consid-
eration of algebraic curvatures — a variation of the classical curvature known from differential
geometry — which captures more accurately than the tangent lines how the curve runs into a sin-
gular point. The main trick I use to establish a resolution ofX with one blowing up is to use local
parametrizations of X at the origin providing very precise information about the complexity of
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the singularity itself: Look at X at 0 from the perspective of parametrizations. Let

γ : t 7→ (x1(t), . . . , xn(t), y(t))

be an analytic parametrization of X at 0. Construct a rational expression z(t) = z1(t)
z2(t) in

x1(t), . . . , xn(t), y(t) and their derivatives such that:

(i) z(t) is a power series of order one,

(ii) z(t) admits a rational expression as a formula in the polynomials defining X (and their
partial derivatives), i.e., there exists

z̃ =
z̃1

z̃2
∈ C[∂ifj : i ∈ Nn+1, j = 1, . . . , r] ⊆ C[x1, . . . , xn, y],

such that the equality
z(t) = z̃(γ(t))

is fulfilled. Here, for i = (i1, . . . , in+1) ∈ Nn+1, by ∂i we denote ∂i1x1 · · · ∂
in
xn∂

in+1
y .

It is then not hard to see that the graph of the “height function”

φ : X\{0} → P1
C, x 7→ (z̃1(x) : z̃2(x))

defines a quasi-affine space curve. Let us denote its Zariski closure by ‹X .

X

‹X
•

•

•

φ

Figure 1: Resolution of singularities of the node given by the equation y2 − y3 = x3.

The curve ‹X together with the morphism π : ‹X → X induced by the projection onto the first
n + 1 components An+1

C × P1
C → An+1

C is the blowup of X in the ideal (z̃1, z̃2). It follows by
the properties of blowups that

π : ‹X\E → X\{0}
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is an isomorphism outside the preimage of the singular point E = π−1(0) (by our assumption
on X to be unibranched at the origin, the morphism π is injective on X), let us denote it by x̃.
Moreover, by the property (ii), in one of the affine charts, ‹X is parametrized at x̃ by the vector

(x1(t), . . . , xn(t), y(t), z(t)),

which is, according to (i) an order-one parametrization. This shows, that ‹X is locally at x̃
biholomorphic to the germ (C, 0) and thus smooth. Thus, ‹X together with the projection mor-
phism defines already resolution of singularities of X .

The goal now is, therefore, to construct a rational expression z(t) in x1(t), . . . , xn(t), y(t)
and their derivatives satisfying (i) and (ii) and thus defining the resolving height function φ.
Now, it is time to explain what the algebraic curvatures are: Inspired by the differential geometric
notion of the slope of the tangent vector, curvature and torsion of space curves in A3

C, we define

κ0,j(t) :=
x′j(t)

y′(t)
, for j = 1, . . . , n,

to be the slopes (of the tangent vector) or 0-th algebraic curvatures of X . Further, we define the
first and higher algebraic curvatures of X via

κ1,j(t) :=
x′′j (t)y

′(t)− x′j(t)y′′(t)
y′(t)

and κi,j(t) :=
∂tκi−1,j(t)

y′(t)
for i ≥ 2, j = 1, . . . , n,

respectively. The observation now is that each of the algebraic curvatures is equivariant under
reparametrizations and thus defines a quantity of the curve which does not depend on a choice
of parametrization. As such, intuitively, they should admit also an implicit description as a
rational function in the implicit equations f1, . . . , fr of X and their partial derivatives. In fact,
this intuition is confirmed by a rigorous proof. I have even proven a more general statement
(see Theorems 1.1.5, 1.2.2 and 1.1.12, 1.2.6 for curves and 1.3.4, 1.4.5 and 1.3.6, 1.4.7 for their
generalization to higher dimensional varieties):

Let us call each rational function in x1(t), . . . , xn(t), y(t) and their derivatives that is equiv-
ariant under reparametrizations, a geometric invariant of X .

Theorem. Consider an algebraic space curve X ⊆ An+1
C with parametrization

γ(t) = (x1(t), . . . , xn(t), y(t)) ∈ C[[t]]n+1.

Let p(t) be a rational function in x1(t), . . . , xn(t), y(t). Then the following statements are
equivalent:

(i) p(t) is a geometric invariant.

(ii) p(t) admits a representation as a rational function in x1(t), . . . , xn(t), y(t) and κi,j(t)
for i ∈ N and j = 1, . . . , n.

(iii) p(t) admits an implicit expression as a rational function in the defining equations of X
and their partial derivatives.
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Now, based on this theorem, the algebraic curvatures seem already as natural candidates for
the searched rational expression z(t) establishing resolution. Actually, each of the algebraic
curvatures looks more closely into the local geometry of the curve at the point. In fact, these
curvatures determine the curve locally and as such they provide a new way to look at singulari-
ties, see Corollaries 1.1.13 and 1.2.7. One could, hence, think of testing successively the height
functions defined by the algebraic curvatures. In general, the algebraic curvatures themselves,
however, do not yield resolution of X immediately. This is due to the fact that parametrizations
usually do not have only one characteristic pair but admit more characteristic exponents. This
can be seen on the following example:
Let us consider the plane curve

X = {−x3 + (3y2 − 6y + 1)x2 + (−3y4 − 2y3)x+ y6 = 0}

with parametrization γ(t) = (t6, t2 + t3) at the origin. Then, each κi,1(t) has an even order as
ord(κi,1(t)) = 6− 2(i+ 1) for all i ∈ N.

In order to be able to construct a geometric invariant of order one, one needs to extract from
the parametrization γ(t) of X all characteristic exponents — supposing that γ(t) is of the form
(x1(t), . . . , xn(t), tm) (which can always be reached with a linear coordinate change), these are
the “minimal” elements a1, . . . , ak of the union

∪nj=1 supp(xj(t))

of supports of all power series xj(t), j = 1, . . . , n, satisfying the condition

gcd(m, a1, . . . , ak) = 1.

An algorithm providing a systematic treatment of all characteristic exponents by means of alge-
braic curvatures and finally constructing a geometric invariant of order one as a rational function
in the algebraic curvatures is established in this thesis. As such the following theorem (see
Theorems 2.1.11 and 2.2.6) is proven:

Theorem. Let X ⊆ An+1
C be an algebraic space curve with a singularity 0 ∈ X . Assume that

X is unibranched at the origin and that γ(t) is a parametrization of the branch at 0. Then, there
exists z(t), a rational function in algebraic curvatures ofX , let z̃ = z̃1

z̃2
be its implicit expression

in terms of the defining polynomials of X , such that the blowup of X in the ideal (z̃1, z̃2) yields
resolution of singularities of X .

Once resolution of one point on a curve is established, one proceeds inductively with curves
with multiple singular points in order to resolve all their singularities as proven in Theorem 2.3.3.

The concept of geometric invariants of varieties of arbitrary dimensions as well as their com-
plete characterization are presented in Section 1.4 of this thesis. Moreover, in Sections 3.1 and
3.2 of this thesis, I describe their application to the problem of the moduli space of n points
in the (m − 1)-dimensional projective space Pm−1

C and to the First Fundamental Theorems for
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GLm(C) and SLm(C).

Let me present briefly the main constructions towards this problem on the simple case of the
moduli space of n points on the projective line P1

C. The techniques used in the general case are
then more technical but they follow the same argument.

Let us consider the set of n points on the projective line over C,

P1×n := {
(
(x1 : y1), . . . , (xn : yn)

)
| (xi : yi) ∈ P1

C}.

The projective linear group PGL2(C) acts naturally from the left on the set P1×n by the usual
matrix-vector multiplication on each of the projective points (xi : yi). The goal is to determine
the structure of the geometric invariant theory (GIT) quotient P1×n//PGL2(C).

In order to study the scheme structure of P1×n//PGL2(C), we have to consider the in-
variant field C(xi, yi : 1 ≤ i ≤ n)GL2 , where the general linear groups acts on the field
C(xi, yi : 1 ≤ i ≤ n) from the right by the matrix-vector multiplication on the pairs of vari-
ables (xi, yi).

It is not difficult to find an element of the invariant field. Let us set

fi,j := xiyj − xjyi.

It is obvious that each polynomial fi,j satisfies the equality σ · fi,j = det(σ)fi,j . Hence, it
is invariant under the action of SL2(C) and semi-invariant under the action of GL2(C). Thus,
the rational functions fi,j

fk,l
are invariant under the action of GL2(C). Actually, we can translate

each rational function fi,j
fk,l

into a “minimal” geometric invariant of surfaces and the condition of
being invariant under the action of GL2(C) into being equivariant under linear transformations
as a rational function on a parametric surface. In this way, I created a bridge between the problem
of the moduli space and the problem of the classification of “minimal” geometric invariants of
surfaces. Finally, using the fact that the “minimal” geometric invariants of a parametric surface
(x1(t, s), . . . , xn(t, s)) ∈ C[[t, s]]n are generated over C by the algebraic curvatures of minimal
order given by

∂txi · ∂sxj − ∂sxi · ∂txj
∂txk · ∂sxl − ∂sxk · ∂txl

, with 1 ≤ i, j, k, l ≤ n,

I proved that the function field of the set P1×n//PGL2(C) contains only rational functions
in fi,j whose numerator and denominator are homogeneous of the same degree. Moreover,
from this I concluded the First Fundamental Theorems for SL2(C) and GL2(C) stating that
the polynomials fi,j and the rational functions fi,j

fk,l
generate the whole invariant ring and field,

respectively:

First Fundamental Theorem for SL2(C). The invariant polynomial ring under the action of
SL2(C) is generated over C by the polynomials fi,j for 1 ≤ i < j ≤ n, i.e., we have the equality

C[xi, yi : 1 ≤ i ≤ n]SL2 = C[fi,j : 1 ≤ i < j ≤ n].

12



First Fundamental Theorem for GL2(C). The field of invariant rational functions under the
action of GL2(C) is generated over C by fi,j

fk,l
, i.e., we have

C(xi, yi : 1 ≤ i ≤ n)GL2 = C
Å
fi,j
fk,l

: 1 ≤ i, j, k, l ≤ n
ã
.

The statements of the First Fundamental Theorems remain valid also over an arbitrary infi-
nite field K. However, they are wrong for any finite field K. Counterexamples are provided.

The general proofs of the First Fundamental Theorems for SLm(K) and GLm(K) for arbi-
trary m ≥ 2 and an infinite field K as well as counter examples for their statements over finite
fields are provided in Section 3.2.

13
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Chapter 1

Geometric Invariants

In this chapter I introduce the concept of the so-called geometric invariants of algebraic vari-
eties. They are a very powerful tool in the problem of resolution of algebraic curves which is a
classical and very famous problem in algebraic geometry, and also the objective of the second
chapter of this thesis. The geometric invariants admit applications outside algebraic geometry as
well. It turns out that they describe completely the structure of the moduli space of n points on
the projective line and, even more, they give a geometric explanation for it. The problem of the
moduli space, itself a subfield of invariant and group theory, and its connection to the geometric
invariants is the topic of the third chapter.

First we investigate geometric invariants of (plane) curves, as the techniques used here are
very instructive and also apply in the higher dimensional case. Since the geometric invariants of
space curves are just a generalization of the concept of geometric invariants of plane curves, we
will start with the study of the plane curve case in detail. The results about geometric invariants
of plane curves will then be extended to the space curves case and later, also to surfaces and
higher dimensional varieties. Throughout this chapter we will frequently use the existence of
D-transcendental power series and D-algebraically independent families of power series whose
basic properties are listed in Section 4.1.

1.1 Geometric Invariants of Plane Curves

The aim of this section is to introduce the geometric invariants of plane curves and to study their
basic properties. In this section we will extend the concept of under reparametrizations equiv-
ariant rational functions in the components of a parametrization γ(t) = (x(t), y(t)) ∈ C[[t]]2, of
a plane algebraic curve and their derivatives to a more general setting. We replace the deriva-
tives ∂itx(t) and ∂ity(t) for i ∈ N by new variables x(i) and y(i), respectively, and translate the
property of being equivariant under reparametrizations into a new invariance property on these
variables. We study the structure of the field of these invariants and provide with Theorem 1.1.5
a minimal countable system of generators over C. Further, we show in Theorem 1.1.12 that
these invariants can be described in terms of the implicit equation of the plane curve and that
they already uniquely determine its smooth analytic branches, see Corollary 1.1.13.
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Let us consider two sets of countably many variables x(i) and y(i), i ∈ N (we think of x(i)

as a symbolic derivative of x(i−1)). We consider the field

F := C(x(i), y(i) : i ∈ N)

generated by all x(i), y(i), equipped with the C-derivation

∂ : F → F

x(i) 7→ x(i+1)

y(i) 7→ y(i+1).

It thus becomes a differential field (F, ∂). Let ϕ(i), i ∈ N, be another set of variables (they play
a different role than x(i), y(i)). Let

L := F (ϕ(i) : i ∈ N) = C(x(i), y(i), ϕ(i) : i ∈ N),

and extend ∂ toL by ∂(ϕ(i)) = ϕ(i+1).OnLwe simulate the chain rule by another C-derivation:

χ : L→ L

x(i) 7→ x(i+1)ϕ(1)

y(i) 7→ y(i+1)ϕ(1)

ϕ(i) 7→ ϕ(i+1).

We think of ϕ as a symbol for reparametrization of a parametrized curve (x(t), y(t)). More
precisely, given a parametrized curve (x(t), y(t)) ∈ C[[t]]2, we associate

x(0) ↔ x(t),

y(0) ↔ y(t),

and

x(i) ↔ ∂itx(t),

y(i) ↔ ∂ity(t),

for i ≥ 1. Letϕ ∈ Aut(C[[t]]) be an algebra automorphism. We call each suchϕ a reparametriza-
tion. Note that ϕ is given by a power series ϕ(t) ∈ C[[t]] with ord(ϕ(t)) = 1. The automorphism
group Aut(C[[t]]) acts then from the right on C[[t]]2 via

Aut(C[[t]])× C[[t]]2 → C[[t]]2(
ϕ, (x(t), y(t))

)
7→
(
x(ϕ(t)), y(ϕ(t))

)
.

From now on, by a reparametrization ϕ we always mean the power series reprezentation ϕ(t) of
the automorphism ϕ ∈ Aut(C[[t]]). We associate now

ϕ(0) ↔ ϕ(t)

16



and
ϕ(i) ↔ ∂itϕ(t)

for i ≥ 1. With this, the derivation χ reflects the chain rule

∂t
(
(∂itx)(ϕ(t))

)
= (∂i+1

t x)(ϕ(t)) · ϕ′(t).

Next we define a C-morphism, i.e., a field homomorphism whose fixed field equals C, on L by

Λ : L→ L

x(i) 7→ χi(x(0))

y(i) 7→ χi(y(0))

ϕ(i) 7→ χi(ϕ(0)).

where χi denotes the composition χ ◦ · · · ◦ χ︸ ︷︷ ︸
i−times

. In terms of power series, this means

∂itx(t) 7→ ∂it(x ◦ ϕ)(t),

∂ity(t) 7→ ∂it(y ◦ ϕ)(t),

∂itϕ(t) 7→ ∂itϕ(t),

So for x(t) and y(t), their higher derivatives are replaced by the derivatives of the compositions
(x ◦ ϕ)(t) and (y ◦ ϕ)(t), respectively, for which the iterated chain rule applies. From now on
we will denote the vectors (x(0), x(1), . . . ) and (y(0), y(1), . . . ) by x and y, respectively, and for
p(x(i), y(i) : i ∈ N) we will use the notation p(x, y).

Definition 1.1.1. A rational expression p ∈ F is called a geometric invariant of plane curves if
it is fixed under Λ, namely

Λ(p) = p.

In terms of power series (parametrizations) this means

p
(
∂itx(t), ∂ity(t) : i ∈ N

)
◦ ϕ(t) = p

(
∂it(x ◦ ϕ)(t), ∂it(y ◦ ϕ

)
(t) : i ∈ N). (1.1)

Being a geometric invariant is hence a property which reflects the equivariance of a rational
expression in power series x(t), y(t) and their derivatives under reparametrizations as the next
proposition shows. We denote the vectors (x(t), ∂tx(t), ∂2

t x(t), . . . ) and (y(t), ∂ty(t), ∂2
t y(t), . . . )

by x(t) and y(t), respectively.

Proposition 1.1.2. Let p(x, y) =
g(x,y)

h(x,y) be an element of F = C(x(i), y(i) : i ∈ N). Then the
following statements are equivalent:

(i) p is a geometric invariant of plane curves.
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(ii) The equality
p
(
x(t), y(t)

)
◦ ϕ(t) = p

(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
holds for all power series x(t), y(t) ∈ C[[t]] with h

(
x(t), y(t)

)
6= 0 and all reparametriza-

tions ϕ(t), i.e., p
(
x(t), y(t)

)
is equivariant under reparametrizations.

Proof. (ii)⇒ (i): Let x(t), y(t), ϕ(t) ∈ C[[t]] be a family of D-algebraically independent power
series (see Appendix 4.1 for the definition and basic properties of D-algebraically independent
power series) satisfying the condition ∂tϕ(0) 6= 0, i.e., ϕ(t) is a reparametrization. Then the
higher derivatives ∂itx, ∂

i
ty and ∂tϕ do not satisfy any polynomial equation and clearly this re-

mains true also after reparametrization. Thus, they can be considered as variables x(i), y(i), ϕ(i).
Then according to the chain rule and after rewriting the derivatives ∂itx ◦ ϕ, ∂ity ◦ ϕ, ∂itϕ as
x(i), y(i), ϕ(i), respectively, we have

p(x, y) = p
(
x(t), y(t)

)
◦ ϕ = p

(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
= Λ(p)

(
x(t) ◦ ϕ, y(t) ◦ ϕ,ϕ(t)

)
= Λ(p)(x, y, ϕ).

From this we conclude p = Λ(p), which shows that p is a geometric invariant of plane curves.
(i) ⇒ (ii): This follows from the fact that reparametrizations act exactly in the same way as
Λ.

Lemma 1.1.3. For an element p ∈ F we have the following two equalities

(i) χ(p) = ∂(p)ϕ(1),

(ii) Λ(∂(p)) = χ(Λ(p)).

Proof. (i) : As χ is a derivation and acts on the generators of F by χ(x(i)) = ∂(x(i))ϕ(1) and
χ(y(i)) = ∂(y(i))ϕ(1), the claimed equality follows.
(ii) : Take an element p ∈ F . Since the maps Λ, ∂ and χ are additive, we may assume that p is
of the form

p =
∏
i∈I

x(i)
∏
j∈J

y(j)

with some index sets I and J . A short computation shows then

Λ(∂(p)) =Λ

Ñ∑
i∈I

(
x(i+1)

∏
k∈I\{i}

x(k)
∏
j∈J

y(j)
)

+
∑
j∈J

(
y(j+1)

∏
i∈I

x(k)
∏

k∈J\{j}

y(k)
)é

=
∑
i∈I

(
χ(i+1)(x(0))

∏
k∈I\{i}

χ(k)(x(0))
∏
j∈J

χ(j)(y(0))
)
+

+
∑
j∈J

(
χ(j+1)(y(0))

∏
i∈I

χ(k)(x(0))
∏

k∈J\{j}

χ(k)(y(0))
)

=χ
(∏
i∈I

χ(i)(x(0))
∏
j∈J

χ(j)(y(0))
)

= χ
(
Λ(
∏
i∈I

x(i)
∏
j∈J

y(j))
)

= χ(Λ(p)).
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Using the last proposition and lemma, we can construct a whole family of geometric invari-
ants:

Example 1.1.4. The variables x(0), y(0) are of course geometric invariants. But there are more
interesting examples.

(1) The slope of the tangent vector

s(t) =
x′(t)

y′(t)

of the parametrized curve γ(t) is obviously equivariant under reparametrizations. Hence,

κ0 :=
x(1)

y(1)

is a geometric invariant, called the slope (of the tangent vector).

(2) The formula for the classical curvature

κ(t) =
x′′(t)y′(t)− x′(t)y′′(t)»(

x′(t)2 + y′(t)2
)3

does not yield a geometric invariant in our sense (although it is equivariant under reparametriza-
tions) since we do not allow square roots in our definition. However, a little modification
of the denominator leads to the rational expression

x′′(t)y′(t)− x′(t)y′′(t)(
x′(t) + y′(t)

)3
which is also equivariant under reparametrizations. Note that any linear combination
ax′(t) + by′(t) with a 6= 0 or b 6= 0 in the denominator also yields a geometric invariant.
(For further computations it is convenient to choose a = 0, b = 1.) We set

κ1 :=
x(2)y(1) − x(1)y(2)

(y(1))3
.

(3) The rational expressions

κi+1 :=
∂(κi)

y(1)
for any i ≥ 1,

are again geometric invariants. This follows directly from Lemma 1.1.3.

The slope of the tangent vector s(t) and the curvature κ(t) of parametric plane and also
space curves over R are well-known and standard notions in differential geometry. The classical
literature (for instance, R. Goldman in [Go05], or M. P. do Carmo in [dCa76, Chapter 1, §5])
often refers to them as “invariants (under reparametrizations)”. So the classical curvature κ is the
differential geometric analog to the more algebraically defined geometric invariant κ1. Actually,
the origin of the definition of geometric invariants as rational functions, that are equivariant under
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reparametrizations, comes exactly from the fact that being “invariant” is a crucial property of the
classical curvature. The classical curvature is clasically defined as the reciprocal of the radius
of the osculating circle of the curve at a given point (see e.g. [Sp99, Chapter 1], [Be02, §1.3.2],
[Ei09, Chapter 1,§7], or [CH99, §26]). Nowadays, there are several equivalent definitions for
the curvature of plane curves in A2

R:

• intrinsic definition as reciprocal of the radius of the osculating circle,

• in terms of a general parametrization γ(t) = (x(t), y(t)) (for instance in [Pr01, Proposi-
tion 2.1], [Ei09, Chapter 1, §4-§7], or [Ha99, Example 3.1.2]):

κ(t) =
x′′(t)y′(t)− x′(t)y′′(t)√

(x′(t)2 + y′(t)2)3
,

• rate of change of the tangent direction, in terms of an arc-length parametrization
γ(t) = (x(t), y(t)) (see e.g. [Pr01, Definition 2.1], [dCa76, Chapter 1,§5], or [Sp99,
Chapter 1]):

κ(t) = |γ′′(t)| =
»
x′′(t)2 + y′′(t)2,

• in terms of the implicit equation f ∈ R[x, y] (for example in [Go05, Proposition 3.1], or
[Ha99, Example 3.1.1]):

κ(f) =
fxxf

2
y − 2fxyfxfy + fyyf

2
x»

(f2
x + f2

y )3

• via the Frenet-Serret formula for a curve parametrized by arc-length γ(t) (see e.g. [Go05]
or [Sp99, Chapter 1]):

γ′′(t) = κ(t) · n(t),

where n(t) is the unit normal vector in the direction of γ′′(t).

We will show later that, similarly to the classical curvature, each κi, i ≥ 0 admits an expression
in terms of the implicit equation f ∈ C[x, y] of a given plane curve.

Since the geometric invariant κ1 constructed above was derived from the formula for the
classical curvature, we call κ1 the first algebraic curvature (of plane curves) and κi, i > 1 the
higher algebraic curvatures (of plane curves). Notice that since Λ is a field homomorphism, the
geometric invariants of plane curves form a field. We set

IF := field of geometric invariants (of plane curves).

The algebraic curvatures do not only represent a family of geometric invariants, but even more,
they generate the whole field IF .

Theorem 1.1.5. The field of geometric invariants of plane curves is generated over C by the
variables x(0), y(0), the slope of the tangent vector and the first and higher algebraic curvatures,
i.e., we have

IF = C(x(0), y(0), κi : i ∈ N).
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We prove the theorem in two different manners. The first proof presented here uses differ-
ential field extensions. This proof was done in collaboration with J. Schicho and M. Gallet. The
second proof follows a different strategy. It uses Proposition 1.1.2 and the correspondence be-
tween geometric invariants and rational expressions in parametrizations and their higher deriva-
tives which are equivariant under reparametrizations. The second proof will show us even more.
Given a geometric invariant p, the second proof tells us how to find the representation of p as a
rational function in the generators x(0), y(0) and κi, i ∈ N.

Let us now start with the first proof. Set

J := C(x(0), y(0), κi : i ∈ N) ⊆ F and Y := {y(i) : i ∈ N, i 6= 0} ⊆ F.

Lemma 1.1.6. The field F is generated by Y over the subfield J , i.e., F = J(Y ).

Proof. From ∂(κi) = κi+1y
(1) ∈ J(Y ) and ∂(Y ) ⊆ Y , it follows that J(Y ) is closed under ∂,

i.e., ∂(J(Y )) ⊆ J(Y ). Further, since x(0), y(0) ∈ J(Y ), all higher derivatives x(i), y(i), i ≥ 1
are elements of J(Y ) as well. Hence, the generators of F lie in J(Y ) and so F ⊆ J(Y ). Since
J(Y ) ⊆ F by construction, the statement is proven.

For i ≥ 1 set Vi := F [ϕ(j) : 1 ≤ j ≤ i] ⊆ L. Notice that for each i we have the inclusion
χ(Vi) ⊆ Vi+1.

Lemma 1.1.7. For each i ≥ 1 we have Λ(y(i))− ϕ(i)y(1) ∈ Vi−1.

Proof. We proceed by induction. The induction base follows immediately from Λ(y(1)) =
ϕ(1)y(1). For i ≥ 2 we use Lemma 1.1.3 and obtain

Λ(y(i+1))− ϕ(i+1)y(1) = Λ
(
∂(y(i))

)
− ϕ(i+1)y(1) = χ

(
Λ(y(i))

)
− ϕ(i+1)y(1).

According to the induction hypothesis, we have Λ(y(i)) = ϕ(i)y(1) + vi−1 for some element
vi−1 ∈ Vi−1. Thus, we can express

χ
(
Λ(y(i))

)
− ϕ(i+1)y(1) = χ(ϕ(i)y(1) + vi−1)− ϕ(i+1)y(1) = ϕ(i)ϕ(1)y(2) + χ(vi−1).

But ϕ(i)ϕ(1)y(2) + χ(vi−1) ∈ Vi and the claim follows.

Proposition 1.1.8. The set Y is algebraically independent over IF .

Proof. Let us assume indirectly that Y is algebraically dependent over IF . Let m ∈ N be the
minimal positive integer such that there exists a polynomial in m variables

g(w) ∈ IF [w] = IF [w1, . . . , wm], g(w) 6= 0 with g(Y ) := g(y(1), . . . , y(m)) = 0.

Let us denote by w′ the vector (w1, . . . , wm−1) and write

g(w) =
∑
j

αj(w
′)wjm
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as a polynomial in wm with coefficients in IF [w′] = IF [w1, . . . , wm−1]. Set

βj := Λ
(
αj(Y )

)
= Λ

(
αj(y

(1), . . . , y(m−1))
)
.

Then we get the equality

0 = Λ
(
g(Y )

)
=
∑
j

βj ·
(
Λ(y(m))

)j
.

Notice that βj ∈ Vm−1 and with Lemma 1.1.7 it holds also Λ(y(m)) − ϕ(m)y(1) ∈ Vm−1. All
this applied to the above equality gives us

Vm−1 3
∑
j

βj ·
(
(Λ(y(m)))j − (ϕ(m))j(y(1))j

)
= 0−

∑
j

βj · (ϕ(m))j(y(1))j ,

whence follows βj = 0 for all j ≥ 1 because no power ϕ(m) belongs to Vm−1. Since Λ is a
field homomorphism, it is injective, so αj(Y ) = 0 for all j ≥ 1. But as m was chosen minimal,
we have αj(w′) = 0 for any j ≥ 1. Further, as g(Y ) = 0, g cannot have a constant term and
therefore g(w) = 0, a contradiction.

First Proof of Theorem 1.1.5. The inclusion J ⊆ IF is clear. It thus remains to show the inclu-
sion IF ⊆ J. Let p ∈ IF be a geometric invariant of plane curves. Since IF is generated as a field
over J by Y , there exist f, g ∈ J [w] = J [w1, . . . , wn], g(w) 6= 0, polynomials in n variables
for some n ∈ N, with p = f(Y )

g(Y ) . From J ⊆ IF we conclude that 0 = f(w) − pg(w) ∈ IF [w].

Now, as g(w) 6= 0, the comparison of coefficients in the equality 0 = f(w) − pg(w) yields
p ∈ Quot(J) = J which finishes the proof.

Now we move to the second and more geometric proof of Theorem 1.1.5. Consider the
C-morphism

iκ : F → F

x(0) 7→ x(0), x(i) 7→ κi−1 for all i ≥ 1,

y(0) 7→ y(0), y(1) 7→ 1, y(i) 7→ 0 for all i ≥ 2.

The goal is to prove that each geometric invariant stays invariant under iκ.

Proposition 1.1.9. For each geometric invariant of plane curves p ∈ IF we have the following
equality

p = iκ(p).

Once the Proposition 1.1.9 is proven, the statement of Theorem 1.1.5 follows immediately.
Let us mention that the key argument in the following proof is strongly inspired by the idea used
by J.-P. Demailly in the proof of Theorem 6.8 in [De97].
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Second Proof of Theorem 1.1.5 and Proposition 1.1.9. Let p ∈ IF be a geometric invariant of
plane curves. Then for all power series x(t), y(t) ∈ C[[t]], equality (1.1) is satisfied by p. Let us
choose x(t) and y(t) to be D-algebraically independent and such that ord(y(t)) = 1. Denote by
ϕ(t) the inverse of y(t), i.e., the power series satisfying (y ◦ ϕ)(t) = t. Applying the chain rule
to y ◦ ϕ yields

ϕ′(t) =
1

y′(ϕ(t))

and so for the first derivative of x ◦ ϕ we have the equality

(x ◦ ϕ)′(t) =
x′(ϕ(t))

y′(ϕ(t))
= κ0(x(t), y(t)) ◦ ϕ(t) = κ0

(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
.

For the first and the higher derivatives of y ◦ ϕ we have obviously

∂t(y ◦ ϕ)(t) = 1,

∂it(y ◦ ϕ)(t) = 0 for all i ≥ 2,

and for x ◦ ϕ, with the iterated chain rule, by induction we get

∂it(x ◦ ϕ) = κi−1

(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
for all i ≥ 2.

For x(t), y(t) and ϕ(t) as above, equality (1.1) composed with ϕ−1 on both sides becomes then

p(x(t), y(t)) = p(x(t), y(t)) ◦ (ϕ ◦ ϕ−1)(t) = p
(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
◦ ϕ−1(t)

= iκ(p)
(
(x ◦ ϕ)(t), (y ◦ ϕ)(t)

)
◦ϕ−1(t) = iκ(p)(x(t), y(t)) ◦ (ϕ ◦ ϕ−1)(t)

= iκ(p)(x(t), y(t))

and thus, (
p− iκ(p)

)
(x(t), y(t)) = 0.

But since x(t), y(t) were chosen to be D-algebraically independent, it follows

p− iκ(p) = 0,

which finishes the proof.

So for a given geometric invariant of plane curves p ∈ IF , Theorem 1.1.5 ensures that it can
be written as a rational function in the slope of the tangent vector and algebraic curvatures and
Proposition 1.1.9 explains how to construct such a rational function. Namely, one can replace
each x(i), with i ≥ 1, by κi−1, the element y(1) by 1, and all y(i) for i ≥ 2 by 0 to obtain the
required representation of p as a rational function in the generators x(0), y(0), κi of IF .

Remark 1.1.10. It is clear that the field of geometric invariants of plane curves can be generated
over C also by elements x(0), y(0), κ̃i, i ∈ N, where

κ̃0 := κ−1
0

κ̃i :=
∂(κ̃i−1)

x(1)
.
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But it is less clear how to represent a given geometric invariant as a rational function in x(0), y(0)

and κ̃i, i ∈ N. However, if we in the second proof of Theorem 1.1.5 require ord(x(t)) = 1
instead of ord(y(t)) = 1, denote by ϕ(t) the inverse of x(t) and adapt the argument of the proof
to this new setting, i.e., we substitute 1

x′(ϕ(t)) for ϕ′(t), we will see that each geometric invariant
of plane curves is invariant under the following C-morphism:

iκ̃ : F → F

x(0) 7→ x(0), x(1) 7→ 1, x(i) 7→ 0 for all i ≥ 2,

y(0) 7→ y(0), y(i) 7→ κ̃i−1 for all i ≥ 1.

Thus, we obtain the following extension of Proposition 1.1.9:

Lemma 1.1.11. For each geometric invariant of plane curves p ∈ IF we have the following
equalities

p = iκ(p) = iκ̃(p).

Implicit description of geometric invariants (of plane curves)

As next, we will discuss the interaction between the parametric and implicit representation of
plane curves and its impact on (the implicit formulas for) geometric invariants. The equation
(1.1) shows that for a parametrized curve γ(t) = (x(t), y(t)), each geometric invariant yields
a geometric numeral which does not depend on a chosen parametrization. Hence, it should be
possible to describe each such geometric numeral given by a geometric invariant also without
using local parametrizations of a plane algebraic curve, namely, just by its defining implicit
equation. We will now prove that such a description in terms of the defining implicit equation
is always possible, and, moreover, we will also present implicit formulas for the slope of the
tangent vector and algebraic curvatures, the generators of the field of geometric invaraints. Once
their implicit expressions are known, one is able to find an implicit expression for an arbitrary
geometric invariant.

Consider a plane algebraic curve X = V (f), f ∈ C[x, y], defined by a square-free poly-
nomial f with f(0, 0) = 0. We assume that 0 is a smooth point of the curve X . Thus X is
necessarily analytically irreducible at the origin. Let us w.l.o.g. assume fx(0) 6= 0. Let γ(t) be
a parametrization of X at the origin, i.e., γ(t) = (x(t), y(t)) ∈ C[[t]]2 a pair of power series for
which the ring map

γ∗ : C[[x, y]]/(f)→ C[[t]]

x 7→ x(t)

y 7→ y(t)

is injective (one possibility would be to take a Puiseux parametrization – this kind of parametriza-
tions is discussed in more detail in Appendix 4.2). Differentiating now both sides of the equality
f(x(t), y(t)) = 0 with respect to t gives us

fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t) = 0. (1.2)
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Notice, that from fx(0) 6= 0 it follows that every parametrization γ(t) satisfies fx(γ(t)) 6= 0.
Therefore, from equality (1.2), we immediately see

(1) κ0(x(t), y(t)) = −fy
fx

(x(t), y(t)),

(2) κ1(x(t), y(t)) = −
fxxf

2
y − 2fxyfxfy + fyyf

2
x

f3
x

(x(t), y(t)),

(3) κi(x(t), y(t)) =
∂yκi−1(f) · fx − ∂xκi−1(f) · fy

fx
(x(t), y(t)), for i ≥ 2.

Hence, we set

κ0

(
f
)
(x, y) := −fy

fx
,

κ1

(
f
)
(x, y) := −

fxxf
2
y − 2fxyfxfy + fyyf

2
x

f3
x

,

κi
(
f
)
(x, y) :=

∂yκi−1(f) · fx − ∂xκi−1(f) · fy
fx

, for i ≥ 2,

to be the implicit expressions of the algebraic curvatures. Together with the fact that the field of
geometric invariants of plane curves is generated over C by x(0), y(0), the slope of the tangent
vector and the (first and the higher) algebraic curvatures, we obtain the following theorem:

Theorem 1.1.12. Given p = p1
p2
∈ IF a geometric invariant of plane curves, then there exist

polynomials p
(
f
)

1
(x, y), p

(
f
)

2
(x, y) in f and its partial derivatives, i.e.,

p
(
f
)

1
, p
(
f
)

2
∈ C[∂ix∂

j
yf : i, j ∈ N] ⊆ C[x, y]

such that

p(x(t), y(t)) =
p
(
f
)

1
(x(t), y(t))

p
(
f
)

2
(x(t), y(t))

for all parametrizations (x(t), y(t)) of X with p2(x(t), y(t)) 6= 0. In other words, each geo-
metric invariant (of a given plane curve) admits an implicit description (in terms of its defining
equation and its derivatives).

Finally, we prove that we are able to reconstruct the analytic branch of X at the origin from
the values of the implicit expressions of the slope and of algebraic curvatures of plane curves
κi
(
f
)
(x, y) at (0, 0).

Corollary 1.1.13. Let us assume that κi
(
f
)
(0) <∞ for all i ∈ N. Then the equation

x−
∑
i≥0

κi
(
f
)
(0)

(i+ 1)!
· yi+1 = 0

defines the analytic branch of X at the origin.
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Proof. Notice first that by the assumption κi
(
f
)
(0) < ∞, the case fx(0) 6= 0 is excluded.

Hence, the Implicit Function Theorem applies to f and guarantees the existence of a parametriza-
tion of the form (x(t), t) ∈ C[[t]]2 of X at 0, where x(t) is even a convergent power series (since
it is algebraic). The analytic branch of X at 0 is thus defined by the equation g = x− x(y). The
power series x(t) can be expressed by the Taylor expansions as

x(t) =
∑
i≥1

∂itx(0)

i!
· ti =

∑
i≥0

κi(x(t), t)|t=0

(i+ 1)!
· ti+1.

After rewriting each κi(x(t), t) as κi
(
f
)
(x(t), t) and substituting t = 0, we obtain the claimed

equality.

Remark 1.1.14. Notice that for each plane algebraic curve X = {f = 0} ⊆ A2
C that is smooth

at the origin, either fx(0) 6= 0 or fy(0) 6= 0 holds. Therefore, in the case of fx(0) = 0, we can
just use coordinate change x 7→ y, y 7→ x, in order to reach the assumptions of Corollary 1.1.13.
In such case, the theorem gives us for the analytic branch of X at the origin an analytic equation
of the form y − y(x) = 0.

1.2 Geometric Invariants of Space Curves

The goal of this section is to generalize the concept of geometric invariants to space curves of
arbitrary embedding dimensions and to introduce for them the concept of algebraic curvatures.
Further, with Theorem 1.2.2, we show that the algebraic curvatures together with the slopes (of
the tangent vector) generate the field of geometric invariants completely. We also provide their
implicit formulas in terms of the defining polynomial equations of algebraic curves and their
partial derivatives from which we conclude that an arbitrary geometric invariant admits and im-
plicit expression as well, see Theorem 1.2.6. Finally, we explain with Corollary 1.2.7 how to
reconstruct analytic branches of space curves from their algebraic curvatures.

As already mentioned, the concept of geometric invariants and the ideas and techniques used
in the case of plane curves can be easily extended to space curves in An+1

C as well. There are
only few technicalities we have to deal with and which have to be carried out explicitly. Hence,
as the proofs of the most results about geometric invariants of space curves follow the same
punch line as in the plane curve case, we will not repeat them completely. Instead of that we
will often refer to the corresponding statements and proofs from the previous section and will
rather concentrate on fixing new difficulties which appear when considering higher embedding
dimensions n+ 1 with n ≥ 2.

For each n ∈ N, n ≥ 1 let us consider the set of variables x(i)
j , y

(i) for i, j ∈ N, 1 ≤ j ≤ n
and the field

Fn := C(x
(i)
j , y

(i) : i, j ∈ N, 1 ≤ j ≤ n).

The integer n + 1 stands for the embedding dimension of the space curves. We extend the
derivation ∂ to Fn by ∂(x

(i)
j ) = x

(i+1)
j and thus, obtain the differential field (Fn, ∂). Let us
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define
Ln := Fn(ϕ(i), i ∈ N) = C(x

(i)
j , y

(i), ϕ(i) : i, j ∈ N, 1 ≤ j ≤ n).

Further, we extend the symbolic chain rule χ and the field homomorphism Λ to Ln by

χ(x
(i)
j ) = x

(i+1)
j ϕ(1) and Λ(x

(i)
j ) = χi+1(x

(0)
j ),

respectively and define geometric invariants of space curves as those rational expressions that
are invariant under Λ.

Definition 1.2.1. We call a rational expression p(xj , y : 1 ≤ j ≤ n) in x(0)
j , y(0) and their

higher symbolic derivatives a geometric invariant of algebraic space curves (of embedding di-
mension n+ 1) if it stays fixed under Λ, i.e., if the following equality is fulfilled

p = Λ(p).

By IFn we denote the corresponding invariant field, the field of all geometric invariants of
space curves of embedding dimension n+ 1.

Let us mention at this point, that the notion of tangent vector and curvature exists also for real
parametrized space curves in A3

R. The curvature, in literature often called the first curvature, is
intrinsically defined as the reciprocal of the radius of the osculating circle (or osculating sphere)
defined with help of the osculating plane (see e.g. [CH99, §27], [Kue06, §2C], or [Sp99, Chapter
1]). Another definition of the curvature uses a local parametrization γ(t) ∈ R[[t]]3 of the curve:

κ(t) =
|γ′′(t)× γ′(t)|
|γ′(t)|3

,

and can be found for example by A. Pressley in [Pr01, Proposition 2.1] or R. Goldman in [Go05,
§2.1], where also its corresponding expression in terms of the implicit equations can be found.
Another source mentioning the implicit expression for the curvature is for instance the work by
T. J. Willmore [Wi59, §5]. In the case that γ(t) is an arc-length parametrization, the curvature
is given by κ(t) = |γ′′(t)| as discussed for example by L. P. Eisenhart in [Ei09, §6-§11] where
the author describes also a connection to the other definitions. This definition of curvature can
be extended even to space curves in AnR parametrized by arc-length. In [Kue06, §2A] W. Kühnel
introduces the so-called osculating conic for space curves in AnR that are parametrized by arc-
length. Further, Kühnel defines in §2D of his book the concept of Frenet curvatures and Frenet
torsion of space curves in AnR. There is also the notion of torsion, often called the second
curvature, for curves in A3

R. It should measure the “deviation of the curve from the osculating
plane” and in terms of a parametrization γ(t) it is given by

τ =
det
(
γ′(t) γ′′(t) γ′′′(t)

)
|γ′(t)× γ′′(t)|2

.

For more details on torsion see for instance the paper by R. Goldman [Go05], where the author
provides also an implicit description. For other, equivalent definitions of the torsion one can
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have look into the works by M. P. do Carmo [dCa76, Chapter 1, §5] or L. P. Eisenhart [Ei09,
§10].

It can be shown that the classical curvature and also the torsion are equivariant under reparam-
etrizations. Therefore, they would be natural candidates also for geometric invariants. However,
here we have the same problem as in the plane curve case, namely the normalization factor con-
taining the square root which does not allow us to consider the classical curvature and the torsion
as geometric invariants of space curves in our sense.

We follow here a different strategy for the construction of geometric invariants of space
curves. We will use geometric invariants of plane curves, which we have already studied and
whose basic properties are already known to us. Notice that each geometric invariant of plane
curves, except for polynomials in y(0) with coefficients in C, gives rise to n different geometric
invariants of space curves of embedding dimension n + 1: Each geometric invariant p of plane
curves is a rational function in variables x(i), y(i), i ∈ N. Let us emphasize the set of variables
by writing p(x, y) instead of just p. Hence, replacing each variable x(i) in p(x, y) by x(i)

j , for
some j, does not disturb the invariance and yields therefore a geometric invariant of algebraic
space curves. Using this substitution we define

κi,j := κi(xj , y),

and call these expressions again the slopes (of the tangent vector) in the case i = 0 and (the first
if i = 1 and the higher for i ≥ 2) algebraic curvatures (of space curves) otherwise. In this way
we obtain the following system of geometric invariants of space curves:

x
(0)
j , y(0), κi,j , where i, j ∈ N and 1 ≤ j ≤ n.

It turns even out that they represent a complete system of generators of the field of geometric
invariants of space curves of embedding dimension n + 1 and that each geometric invariant of
space curves can be written as a rational function in the algebraic curvatures when applying the
following C-morphism to it

iκ : Fn → Fn

x
(0)
j 7→ x

(0)
j , x

(i)
j 7→ κi−1,j for all i, j ≥ 1

y(0) 7→ y(0), y(1) 7→ 1, y(i) 7→ 0 for all i ≥ 2.

More precisely:

Theorem 1.2.2. The field of geometric invariants of space curves of embedding dimension n+1

is generated over C by the variables x(0)
j , y(0), the slopes and the first and higher algebraic

curvatures κi,j , i, j ∈ N, 1 ≤ j ≤ n, i.e.,

IFn = C(x
(0)
j , y(0), κi,j : i, j,∈ N, 1 ≤ j ≤ n). (1.3)

Moreover, for each geometric invariant p(x1, . . . , xn, y) the following equality is fulfilled

p = iκ(p). (1.4)
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There are again two proofs of this theorem. If we just replace the field F by Fn and
J = C(x(0), y(0), κi : i ∈ N) by the field Jn := C(x

(0)
j , y(0), κi,j : i, j ∈ N, 1 ≤ j ≤ n)

in Lemma 1.1.6, Proposition 1.1.8 and the first proof of Theorem 1.1.5, we obtain already one
proof of the equality (1.3). However, this proof does not explain the second part of Theorem
1.2.2, namely the equality (1.4). For this we need again the trick from the second proof pre-
sented in the previous section.

Proof. The proof follows the same line as the second proof of Theorem 1.1.5. We consider
again x1(t), . . . , xn(t), y(t) ∈ C[[t]] a family of D-algebraically independent power series with
the property that ord(y(t)) = 1. Using equation (1.1), which obviously holds also for (n + 1)-
tuples of power series, the equality

p(x1(t), . . . , xn(t), y(t)) = iκ(p)(x1(t), . . . , xn(t), y(t))

can be shown with the same trick as in the proof of Theorem 1.1.5. Finally, we use the D-
algebraically independence of the power series x1(t), . . . , xn(t), y(t) and conclude the required
equality in the field of geometric invariants of space curves.

Remark 1.2.3. Notice that, given a system of generators of the field of geometric invariants
of space curves, we can always produce another set of generators by switching the roles of the
variables y(i) and x(i)

j in the generators. Let us set κ̃i,j,k := κi(xj , xk) and κ̃i,n+1,k := κi(y, xk)
for each k = 1, . . . , n and obtain n different sets of generators, namely for each k = 1, . . . , n,
the set

x
(0)
j , y(0), κ̃i,j,k, i ∈ N, j ∈ {1, . . . , n+ 1}\{k}.

We define for each k = 1, . . . , n, the following C-morphism:

iκ̃k : Fn → Fn

x
(0)
j 7→ x

(0)
j , x

(i)
j 7→ κ̃i−1,j,k for all i ≥ 1, j ∈ {1, . . . , n}\{k}

x
(0)
k 7→ x

(0)
k , x

(1)
k 7→ 1, x

(i)
k 7→ 0 for all i ≥ 2

y(0) 7→ y(0), y(i) 7→ κ̃i−1,n+1,k for all i ≥ 1,

where 1 ≤ k ≤ n. With the last remark, we are able to extend Lemma 1.1.11:

Lemma 1.2.4. For each geometric invariant of space curves p ∈ IFn we have the following
equalities

p = iκ(p) = iκ̃k(p),

for all k = 1, . . . , n.

Implicit description of geometric invariants (of space curves)

Similarly to the plane curve case, geometric invariants of space curves do admit implicit expres-
sions in terms of the defining implicit equations of space curves and their higher derivatives as
well. To find these implicit expressions we differentiate again the composition of the implicit
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equations with a parametrization and use the chain rule.

More precisely, consider an algebraic space curve X = V (I) ⊆ An+1
C defined by a radical

ideal I . Further assume 0 being a smooth point on X . Let γ(t) be a parametrization of X
at 0. Here by a parametrization we again mean an (n + 1)-tuple of univariate power series
γ(t) = (x1(t), . . . , xn(t), y(t)) ∈ C[[t]]n+1 for which the corresponding ring map γ∗ between
the local rings C[[x1, . . . , xn]]/I and C[[t]] is injective. Let us write I = (f1, . . . , fr), with
fj ∈ C[x1, . . . , xn, y] the generators of I for some r ≥ n. If we differentiate the equalities
fj(γ(t)) = 0 for all 1 ≤ j ≤ r with respect to t, we get the following system of equations:

Jf1,...,fr(γ(t)) · γ′(t) = 0, (1.5)

where

Jf1,...,fr(γ(t)) =

Ö
∂x1f1(γ(t)) · · · ∂xnf1(γ(t)) ∂yf1(γ(t))

...
. . .

...
...

∂x1fr(γ(t)) · · · ∂xnfr(γ(t)) ∂yfr(γ(t))

è
denotes the evaluation at γ(t) of the Jacobian matrix of the polynomials f1, . . . , fr. The strategy
to find implicit expressions for the slopes κ0,j is to eliminate all components of the vector γ′(t)
except for x′j(t) and y′(t) in equation (1.5), or, in other words, to express each x′j(t) as a linear
function in the parameter y′(t). For this purpose we need only n rows of the Jacobian matrix
Jf1,...,fr that are linearly independent, let us say the first n rows.

Remark 1.2.5. Recall that for any point a ∈ X we have rk(Jf1,...,fr(a)) ≤ codim(X) = n
and the equality holds if and only if a is a smooth point of X . Hence, as 0 is a smooth point
of X , if it happens that the first n rows of the Jacobian matrix Jf1,...,fr are linearly dependent
at 0, we can always reorder the generators of the ideal I , let us say fσ(1), . . . , fσ(r) for some
permutation σ ∈ Sr, so that Jfσ(1),...,fσ(n) is invertible at 0. Thus, we can always w.l.o.g. assume
that det(Jf1,...,fn(0)) 6= 0.

Let us rewrite now the first n rows of the equation (1.5) into

J (γ(t)) ·
Ç
x′j(t)

y′(t)

ån
j=1

= −
(
∂yfj(γ(t))

)n
j=1

,

with

J :=

Ö
∂x1f1 · · · ∂xnf1

...
. . .

...
∂x1fn · · · ∂xnfn

è
.

Applying the Cramer’s rule to the above system of linear equations yields for each j = 1, . . . , n
the equality

κ0,j(xj(t), y(t)) =
x′j(t)

y′(t)
=

detJj(γ(t))

detJ (γ(t))
,

whereJj is the matrix formed by replacing the j-th column ofJ by the column vector−(∂yfj)
n
j=1,

i.e.,
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Jj :=

Ö
∂x1f1 · · · ∂xj−1f1 −∂yf1 ∂xj+1f1 · · · ∂xnf1

...
...

...
...

...
∂x1fn · · · ∂xj−1fn −∂yfn ∂xj+1fn · · · ∂xnfn

è
.

We set
κ0,j

(
f1, . . . , fr

)
(x1, . . . , xn, y) :=

detJj
detJ

to be an implicit expression for the slope κ0,j .

Let us assume that we have already computed κi,j(f1, . . . , fr), an implicit expression for κi,j .
Then, for the higher algebraic curvatures κi,j , i ≥ 1 we have by definition

κi+1,j(xj(t), y(t)) =
1

y′(t)
· ∂tκi,j(xj(t), y(t))

=
1

y′(t)

(
n∑
k=1

∂xkκi,j
(
f1, . . . , fr

)
(γ(t))x′k(t) + ∂yκi,j

(
f1, . . . , fr

)
(γ(t))y′(t)

)

=
n∑
k=1

∂xkκi,j
(
f1, . . . , fr

)
(γ(t)) · κ0,k

(
f1, . . . , fr

)
(γ(t))

+ ∂yκi,j
(
f1, . . . , fr

)
(γ(t)).

We set

κi+1,j

(
f1, . . . , fr

)
:=

n∑
k=1

∂xkκi,j
(
f1, . . . , fr

)
· κ0,k

(
f1, . . . , fr

)
+ ∂yκi,j

(
f1, . . . , fr

)
to be an implicit expression for the algebraic curvature κi+1,j .

Now, since the algebraic curvatures generate the whole field of geometric invariants of space
curves, we conclude the existence of an implicit expression for all geometric invariants of space
curves.

Theorem 1.2.6. For each geometric invariant p = p1
p2
∈ IFn of space curves of embedding

dimension n + 1 there exist polynomials p
(
f1, . . . , fr

)
1
, p
(
f1, . . . , fr

)
2

in f1, . . . fr and their
partial derivatives, i.e.,

p
(
f1, . . . , fr

)
i
,∈ C[∂i1x1 · · · ∂

in
xn∂

in+1
y fk : i0, . . . , in ∈ N, 1 ≤ k ≤ r] ⊆ C[x1, . . . , xn, y],

with i = 1, 2, such that the equality

p
(
x1(t), . . . , xn(t), y(t)

)
=
p
(
f1, . . . , fr

)
1
(γ(t))

p
(
f1, . . . , fr

)
2
(γ(t))

is satisfied for all parametrizations γ(t) of X for which p2(γ(t)) 6= 0. In other words, each geo-
metric invariant (of a given space curve) admits an implicit description (in terms of its defining
equations).
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As in the case of plane curves, the values of the (higher) algebraic curvatures of a given
space curve at a smooth point describe the curve completely. More precisely:

Corollary 1.2.7. Suppose that κi,j
(
f1, . . . , fn

)
(0) < ∞ for all i ∈ N, 1 ≤ j ≤ n. Then then

analytic branch of X at 0 is defined by the ideal

IX =

Ñ
xj −

∑
i≥0

κi,j
(
f1, . . . , fn

)
(0)

(i+ 1)!
yi+1 : 1 ≤ j ≤ n

é
.

Proof. Since 0 is a smooth point on X , the curve X is locally at 0 biholomorphic to an open
subset of C containing 0. Thus, X can be parametrized at 0 by a parametrization γ(t) =
(x1(t), . . . , xn(t), y(t)) with at least one component of order equal to one. Further, the first
n rows of equality (1.5) can be written as

x′j(t) · detJ (γ(t)) = y′(t) · detJj(γ(t)). (1.6)

From the assumption κi,j
(
f1, . . . , fn

)
(0) < ∞ it follows that detJ (0) 6= 0. Evaluating both

sides of equality (1.6) at t = 0 and using detJ (0) 6= 0, we see that ord(y(t)) = 1. There-
fore, X admits a parametrization γ(t) of the form (x1(t), . . . , xn(t), t) ∈ C{t}n+1 at 0. Once
we have determined the components xj(t), j = 1, . . . , n, of the parametrization, we conclude
immediately that the analytic branch of X at 0 is contained in the analytic variety defined by the
ideal (xj − xj(y) : 1 ≤ j ≤ n). But this ideal has height equal to n and is a prime ideal. Hence,
it defines already the analytic branch of X at 0. To determine the components xj(t), 1 ≤ j ≤ of
the parametrization, we argue again with the Taylor expansion:

xj(t) =
∑
i≥0

∂itxj(0)

i!
· ti =

∑
i≥0

κi,j(xj(t), t)|t=0

(i+ 1)!
· ti+1

for all 1 ≤ j ≤ n. Rewriting each κi,j(xj(t), t) as κi,j
(
f1, . . . , fr

)
(γ(t)) and substituting t = 0

finishes now the proof.

1.3 Geometric Invariants of Surfaces

Whereas the step from the geometric invariants of plane curves to the geometric invariants of
space curves was rather an “easy” generalization — we just had to rewrite the definitions and
statements to the multivariate case — the step from the geometric invariants of curves to the
geometric invariants of surfaces will be more tricky as the Krull dimension increases by one. In
this section we show that the construction of the normal vector of a parametric surface is the
key tool in the construction process of a complete system of generators of the field of geometric
invariants of surfaces. We provide then again a ring map under which each geometric invariant
is stable and which determines a representation of a given geometric invariant as a rational func-
tion in the elements of the generating system, see Theorem 1.3.4. Finally, we present implicit
expression for the generators of the field of geometric invariants and conclude Corollary 1.3.6
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saying that each geometric invariant admits such an implicit expression.

Let x(i,j), y(i,j), z(i,j), i, j ∈ N be three sets of countably many variables and set

F :=
(
C(x(i,j), y(i,j), z(i,j) : i, j ∈ N); ∂1, ∂2

)
,

to be the differential field generated by all x(i,j), y(i,j), z(i,j) equipped with the two commutative
C-derivations

∂1 : F → F, x(i,j) 7→ x(i+1,j), y(i,j) 7→ y(i+1,j), z(i,j) 7→ z(i+1,j),

and
∂2 : F → F, x(i,j) 7→ x(i,j+1), y(i,j) 7→ y(i,j+1), z(i,j) 7→ z(i,j+1).

Let us consider another set of variables ϕ(i,j)
k , i, j ∈ N, k = 1, 2 (similarly to the curve case,

they play a different role than the variables x(i,j), y(i,j), z(i,j)). Set

L := F (ϕ
(i,j)
k : i, j ∈ N, k = 1, 2) = C(x(i,j), y(i,j), z(i,j), ϕ

(i,j)
k : i, j ∈ N, k = 1, 2)

and extend ∂1 and ∂2 to L by ∂1(ϕ
(i,j)
k ) = ϕ

(i+1,j)
k and ∂2(ϕ

(i,j)
k ) = ϕ

(i,j+1)
k . On L we simulate

the chain rule with respect to the two C-derivations by

χ1 : L→ L,

x(i,j) 7→ x(i+1,j)ϕ
(1,0)
1 + x(i,j+1)ϕ

(1,0)
2

y(i,j) 7→ y(i+1,j)ϕ
(1,0)
1 + y(i,j+1)ϕ

(1,0)
2 ,

z(i,j) 7→ z(i+1,j)ϕ
(1,0)
1 + z(i,j+1)ϕ

(1,0)
2 ,

ϕ
(i,j)
k 7→ ϕ

(i+1,j)
k ,

and

χ2 : L→ L

x(i,j) 7→ x(i+1,j)ϕ
(0,1)
1 + x(i,j+1)ϕ

(0,1)
2 ,

y(i,j) 7→ y(i+1,j)ϕ
(0,1)
1 + y(i,j+1)ϕ

(0,1)
2 ,

z(i,j) 7→ z(i+1,j)ϕ
(0,1)
1 + z(i,j+1)ϕ

(0,1)
2 ,

ϕ
(i,j)
k 7→ ϕ

(i,j+1)
k .

We think of ϕ1 and ϕ2 as symbols for the components of a reparametrization of a parametrized
surface

(
x(t, s), y(t, s), z(t, s)

)
. To be more precise let us consider a parametrized surface

γ(t, s) =
(
x(t, s), y(t, s), z(t, s)

)
∈ C[[t, s]]3.
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We then associate

x(0,0) ↔ x(t, s)

y(0,0) ↔ y(t, s)

z(0,0) ↔ z(t, s)

and

x(i,j) ↔ ∂it∂
j
sx(t, s)

y(i,j) ↔ ∂it∂
j
sy(t, s)

z(i,j) ↔ ∂it∂
j
sz(t, s)

for i+j ≥ 1. Letϕ ∈ Aut(C[[t, s]]) be a (local) algebra automorphism, also called reparametriza-
tion. Notice that ϕ is given by a pair of power series ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) ∈ C[[t, s]]2

with linearly independent vectors of linear terms. We then associate

ϕ(0,0) ↔ ϕ(t, s),

and
ϕ(i,j) ↔ ∂it∂

j
sϕ(t, s),

for i+ j ≥ 1. The derivation χ1 reflects the chain rule with respect to t:

∂t
(
(∂it∂

j
sγ) ◦ ϕ

)
= ∂tϕ1 · (∂i+1

t ∂jsγ) ◦ ϕ+ ∂tϕ2 · (∂it∂j+1
s γ) ◦ ϕ,

and analogously, the derivation χ2 stimulates the chain rule with respect to s. Next, we define a
C-morphism on L by

Λ : L→ L,

x(i,j) 7→ χi1χ
j
2(x(0,0)),

y(i,j) 7→ χi1χ
j
2(y(0,0)),

z(i,j) 7→ χi1χ
j
2(z(0,0)),

ϕ
(i,j)
k 7→ ϕ

(i,j)
k ,

which in terms of power series means

∂it∂
j
sγ(t, s) 7→ ∂it∂

j
s

(
(γ ◦ ϕ)(t, s)

)
,

∂it∂
j
sϕ(t, s) 7→ ∂it∂

j
sϕ(t, s).

Let us use again the notation p(x, y, z) for p(x(i,j), y(i,j), z(i,j) : i, j ∈ N) and let us denote the
evaluation p(∂it∂

j
sx(t, s), ∂it∂

j
sy(t, s), ∂it∂

j
sz(t, s) : i, j ∈ N) at the triple (x(t, s), y(t, s), z(t, s)) ∈

C[[t, s]]3 shortly by p(x(t, s), y(t, s), z(t, s)).

34



Definition 1.3.1. We call an element p of F a geometric invariant of surfaces if it is fixed
under Λ :

Λ(p) = p,

and set
IF := the field of geometric invariants of surfaces.

For geometric invariants of surfaces, we have following extension of Proposition 1.1.2:

Proposition 1.3.2. Let p(x, y, z) =
f(x,y,z)

g(x,y,z) ∈ F = C(x(i,j), y(i,j), z(i,j) : i, j ∈ N). Then the
following statements are equivalent:

(i) p is a geometric invariant of surfaces, i.e., p ∈ IF .

(ii) The equality

p((x ◦ ϕ)(t, s), (y ◦ ϕ)(t, s), (z ◦ ϕ)(t, s)) = p(x(t, s), y(t, s), z(t, s)) ◦ ϕ (1.7)

holds for all power series x, y, z ∈ C[[t, s]] with g(x(t, s), y(t, s), z(t, s)) 6= 0 and all
reparametrizations ϕ ∈ Aut(K[[t, s]]), i.e., p(x(t, s), y(t, s), z(t, s)) is equivariant under
reparametrizations.

More on differential geometry side, there are two examples of invariants, the so-called Gaus-
sian and mean curvature. They were first investigated by L. Euler in 1760. The idea was to
reduce the problem of describing points on surfaces to the problem of studying plane curves by
intersecting the surface with various normal planes at a given point. Euler observed that, if all the
intersections do not have the same curvature, then there exists an intersection curve, which has
minimal curvature k1 at the intersection point, and another intersection curve which has maxi-
mal curvature k2. These are called the principal curvatures and as they are defined intrinsically
as curvatures of certain plane curves, they are invariant under rotations and translations. The
Gaussian curvature κG is defined as their product k1k2 and the mean curvature κM is defined
as their average (k1 + k2)/2 (for more details see for instance the work by M. Spivak [Sp99,
Chapater 2] or M. P. do Carmo [dCa76, Chapater 3, §2]). Both curvatures can be expressed also
in terms of a parametrization or implicit equation. If γ(t, s) ∈ R[[t, s]]3 is a parametric surface,
then the Gaussian and mean curvature are respectively given by

κG =
〈(γt × γs), (nt × ns)〉

|γt × γs|2
and κM =

〈(γt × γs), ((ns × γt)− (nt × γs))〉
2|γt × γs|2

,

where n(t, s) = (γs × γt)/|γs × γt| is the unit normal vector. These formulas can be found for
example by R. Goldman [Go05] together with their corresponding implicit equations. For the
implicit definitions we should mention also the paper by E. Hartmann [Ha99, Chapter 4].

We will present now another system of “invariants” of surfaces which is strongly inspired
by the concept of the classical Gaussian and mean curvature. Let us consider the following two
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C-derivations on F :

∆1 : F → F

q 7→ ∂1(q) · y(0,1)

x(1,0)y(0,1) − x(0,1)y(1,0)
− ∂2(q) · y(1,0)

x(1,0)y(0,1) − x(0,1)y(1,0)

and

∆2 : F → F

q 7→ −∂1(q) · x(0,1)

x(1,0)y(0,1) − x(0,1)y(1,0)
+ ∂2(q) · x(1,0)

x(1,0)y(0,1) − x(0,1)y(1,0)
.

Using the fact that ∂1 and ∂2 commute, it can be shown by a computation that the drivations ∆1

and ∆2 commute as well, i.e.,
∆1∆2 = ∆2∆1.

It should be clear from the construction of the derivations ∆1 and ∆2 that for a given geometric
invariant p, the elements ∆1(p) and ∆2(p) are again geometric invariants. Thus, the derivations
∆1 and ∆2 generate a whole system of geometric invariants, more precisely we have the follow-
ing geometric invariants:

Example 1.3.3.

0) The elements x(0,0), y(0,0), z(0,0) are obviously geometric invariants.

(1) As the normal vector
nγ = ∂tγ × ∂sγ

defined by the cross product of the two tangent vectors ∂tγ and ∂sγ is semi-equivariant
under reparametrizations. Namely, for any ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) ∈ C[[t, s]]2 rep-
resenting a reparametrization, we have

nγ◦ϕ = det(Jϕ) · nγ ◦ ϕ.

Hence, all the components of the normal vector are semi-equivariant with the same char-
acter det(Jϕ). Here

Jϕ =

Å
∂tϕ1 ∂sϕ1

∂tϕ2 ∂sϕ2

ã
denotes the Jacobian matrix of ϕ. Therefore, the rational expressions

κ1,0 :=
y(0,1)z(1,0) − y(1,0)z(0,1)

x(1,0)y(0,1) − x(0,1)y(1,0)
= ∆1(z(0,0)),

κ0,1 :=
x(1,0)z(0,1) − x(0,1)z(1,0)

x(1,0)y(0,1) − x(0,1)y(1,0)
= ∆2(z(0,0)),

are geometric invariants.
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(2) For i, j ∈ N, i+ j ≥ 2 the rational expressions

κi+1,j := ∆1(κi,j), κi,j+1 := ∆2(κi,j)

are geometric invariants again.

We call, analogously to the curve case, the elements κi,j the algebraic curvatures of sur-
faces. The advantage of the curvatures is that they already generate the whole field of geometric
invariants. Moreover, for an arbitrary geometric invariant, we can determin its representation as
a rational function in the algebraic curvatures easily by applying the following C-morphism:

iκ : F → F

x(0,0) 7→ x(0,0), x(1,0) 7→ 1, x(0,1) 7→ 0, x(i,j) 7→ 0 for all i+ j > 1,

y(0,0) 7→ y(0,0), y(1,0) 7→ 0, y(0,1) 7→ 1, y(i,j) 7→ 0 for all i+ j > 1,

z(0,0) 7→ z(0,0), z(i,j) 7→ κi,j for all i+ j ≥ 1.

Theorem 1.3.4. The field of geometric invariants of surfaces is generated over C by the vari-
ables x(0,0), y(0,0), z(0,0) and the algebraic curvatures, i.e.,

IF = C(x(0,0), y(0,0), z(0,0), κi,j : i, j ∈ N, i+ j ≥ 1).

Moreover, for each geometric invariant p ∈ IF we have

p = iκ(p).

Recall that in the case of geometric invariants of (plane and space) curves, we proved the
first part of this theorem in two different ways. The first proof was more combinatorial and used
transcendence basis of a certain differential field extensions. The second proof used the idea by
Demailly and provided also a geometrical explanation of the nature of the geometric invariants.
We will prove now this theorem using the techniques of the second proof. Unfortunately, the
combinatorial arguments contained in the first proof are much more technical and involved in
the surface case than in the curve case, so we have not managed to generalize this proof to the
higher dimensional case yet and it still remains on a list with open question (see the Section 5.1).

Proof. Let p be a geometric invariant of surfaces. Then, according to Lemma 1.3.2, p sat-
isfies equality (1.7) for arbitrary power series x(t, s), y(t, s), z(t, s) ∈ C[[t, s]] (for which the
denominator of p does not vanish). Let us choose now the power series in such a way that
the family x(t, s), y(t, s), z(t, s), ϕ1(t, s), ϕ2(t, s) is D-algebraically independent and such that
(xsyt − xtys)(0, 0) 6= 0. Let ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) be the unique reparametrization
satisfying

(x ◦ ϕ, y ◦ ϕ) = (t, s). (1.8)

Applying the chain rule to equality (1.8) with respect to the variables t and s yields the following
system of linear equations:Ü

xt ◦ ϕ xs ◦ ϕ 0 0
yt ◦ ϕ ys ◦ ϕ 0 0

0 0 xt ◦ ϕ xs ◦ ϕ
0 0 yt ◦ ϕ ys ◦ ϕ

êÜ
∂tϕ1

∂tϕ2

∂sϕ1

∂sϕ2

ê
=

Ü
1
0
0
1

ê
.
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Solving this system for ∂tϕ1, ∂tϕ2, ∂sϕ1 and ∂sϕ2 gives us

∂tϕ1 =
ys ◦ ϕ

(xtys − xsyt) ◦ ϕ
,

∂sϕ1 =
−xs ◦ ϕ

(xtys − xsyt) ◦ ϕ
,

∂tϕ2 =
−yt ◦ ϕ

(xtys − xsyt) ◦ ϕ
,

∂sϕ2 =
xt ◦ ϕ

(xtys − xsyt) ◦ ϕ
.

After substituting the above equalities for ∂tϕ1, ∂tϕ2, ∂sϕ1 and ∂sϕ2 into the partial derivatives
of compositions x ◦ ϕ, y ◦ ϕ and z ◦ ϕ, we obtain

∂t(x ◦ ϕ) = 1, ∂s(x ◦ ϕ) = 0,

∂t(y ◦ ϕ) = 0, ∂s(y ◦ ϕ) = 1,

and

∂t(z ◦ ϕ) =

Å
yszt − ytzs
xtys − xsyt

ã
◦ ϕ = κ1,0

(
x(t, s), y(t, s), z(t, s)

)
◦ ϕ,

∂s(z ◦ ϕ) =

Å
xtzs − xszt
xtys − xsyt

ã
◦ ϕ = κ0,1

(
x(t, s), y(t, s), z(t, s)

)
◦ ϕ.

By induction we then have

∂it∂
j
s(x ◦ ϕ) = 0, ∂it∂

j
s(y ◦ ϕ) = 0,

and
∂it∂

j
s(z ◦ ϕ) = κi,j

(
x(t, s), y(t, s), z(t, s)

)
◦ ϕ,

for all i+ j > 1. With these equalities, equation (1.7) becomes

p
(
x(t, s), y(t, s), z(t, s)

)
= p
(
(x ◦ ϕ), (y ◦ ϕ), (z ◦ ϕ)

)
◦ ϕ−1 =

= p
Ä
(x ◦ ϕ), 1, 0, . . . , (y ◦ ϕ), 0, 1, 0, . . . , (z ◦ ϕ), κ1,0

(
(x ◦ ϕ), (y ◦ ϕ), (z ◦ ϕ)

)
, . . .
ä
◦ϕ−1 =

= p
Ä
x(t, s), 1, 0, . . . , y(t, s), 0, 1, 0, . . . , z(t, s), κi,j

(
x(t, s), y(t, s), z(t, s)

)
: i+ j ≥ 1

ä
=

= iκ(p)
(
x(t, s), y(t, s), z(t, s)

)
.

Now, as the power series x(t, s), y(t, s), z(t, s) and ϕi(t, s), for i = 1, 2 were chosen to be
D-algebraically independent, we can consider them as variables and conclude the equality

p(x, y, z) = p(x(0,0), 1, 0 . . . , y(0,0), 0, 1, 0, . . . , z(0,0), κi,j : i+ j ≥ 1) = iκ(p)(x, y, z),

which finishes the proof.
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Let us notice that the invariance of each κi,j is preserved under any permutation of vari-
ables. More precisely, there are 6 possibilities how to permute the triple (x, y, z) and hence also
(x, y, z). We denote by (σ(x), σ(y), σ(z)) the one of these possibilities which corresponds to
the permutation σ ∈ S3. The vector (x, y, z) maps then under σ to (σ(x), σ(y), σ(z)). It is obvi-
ous that each κi,j(σ(x), σ(y), σ(z)) defines again a geometric invariant of surfaces. Moreover,
considering all possible permutations of the variables gives us 5 other sets of generators for the
field of geometric invariants, namely for each σ ∈ S3 the following one:

x(0,0), y(0,0), z(0,0), κi,j(σ(x), σ(y), σ(z)).

We can now use the same method as in the proof of Theorem 1.3.4, just adapted to the permuted
set of variables, to construct for each σ ∈ S3 the C-morphism

iκ,σ : F → F

σ(x)(0,0) 7→ σ(x)(0,0), σ(x)(1,0) 7→ 1, σ(x)(0,1) 7→ 0, σ(x)(i,j) 7→ 0 for all i+ j > 1,

σ(y)(0,0) 7→ σ(y)(0,0), σ(y)(1,0) 7→ 0, σ(y)(0,1) 7→ 1, σ(y)(i,j) 7→ 0 for all i+ j > 1,

σ(z)(0,0) 7→ σ(z)(0,0), σ(z)(i,j) 7→ κi,j(σ(x), σ(y), σ(z)) for all i+ j ≥ 1

and to conclude the following lemma:

Lemma 1.3.5. Each geometric invariant of surfaces p ∈ IF satisfies for any σ ∈ S3 the follow-
ing equality:

p = iκ(p) = iκ,σ(p).

Implicit description of geometric invariants (of surfaces)

As in the curve case, geometric invariants of surfaces admit implicit expressions. Let X =
V (f) be an algebraic surface defined by a square-free polynomial f ∈ C[x, y, z]. Assume that
f(0, 0, 0) = 0. Let us further assume thatX is analytically irreducible at the origin and that it can
be parametrized at the origin by γ(t, s) = (x(t, s), y(t, s), z(t, s)). By a parametrization γ(t, s),
we mean here a triple of power series for which the induced map γ∗ : C[x, y, z]/(f) 7→ C[[t, s]]
is injective. For further purposes, for any q ∈ F we will denote q(x(t, s), y(t, s), z(t, s)) shortly
by q(γ). Now, differentiating the equality f(γ) = 0 w.r.t. t and s yields according to the chain
rule:

fx(γ)xt + fy(γ)yt + fz(γ)zt = 0,

fx(γ)xs + fy(γ)ys + fz(γ)zs = 0,

from which we conclude that the vector (fx(γ), fy(γ), fz(γ)) and the cross product of the two
tangent vectors ∂tγ(t, s)× ∂sγ(t, s) are parallel. Finally, we obtain
(1)

κ0,1(γ) =
xtzs − xszt
xtys − xsyt

(γ) = −fy
fz

(γ),

κ1,0(γ) =
yszt − ytzs
xtys − xsyt

(γ) = −fx
fz

(γ),
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for the first algebraic curvatures and hence we set

κ0,1

(
f
)

:= −fy
fz

and κ1,0

(
f
)

:= −fx
fz

to be the implicit expression of the first algebraic curvatures of X . Further we have

(2)
κi+1,j(γ) =

=
(∂xκi,j

(
f
)
xt + ∂yκi,j

(
f
)
)yt + ∂zκi,j

(
f
)
zt)ys − (∂xκi,j(f)xs + ∂yκi,j

(
f
)
ys + ∂zκi,j(f)zs)yt

xtys − xsyt
(γ) =

=
(
∂xκi,j

(
f
)

+ ∂zκi,j
(
f
)
· κ1,0

(
f
))

(γ),

and
κi,j+1(γ) =

=
(∂xκi,j

(
f
)
xs + ∂yκi,j

(
f
)
ys + ∂zκi,j

(
f
)
zs)xt − (∂xκi,j

(
f
)
xt + ∂yκi,j

(
f
)
yt + ∂zκi,j

(
f
)
zt)xs

xtys − xsyt
(γ)

=
(
∂yκi,j

(
f
)

+ ∂zκi,j
(
f
)
· κ0,1

(
f
))

(γ)

for the higher algebraic curvatures. Therefore, we set

κi+1,j(f) := ∂xκi,j
(
f
)

+ ∂zκi,j
(
f
)
· κ1,0

(
f
)
,

κi,j+1

(
f
)

:= ∂yκi,j(f) + ∂zκi,j
(
f
)
· κ0,1

(
f
)
,

to be the implicit expressions of the higher algebraic curvatures of X . As the field of geometric
invariants of surfaces is generated by the algebraic curvatures, we conclude that every geometric
invariant admits an implicit description in terms of the defining polynomial f and its partial
derivatives:

Theorem 1.3.6. For every geometric invariant p = p1
p2
∈ IF of surfaces there exist polynomials

p
(
f
)

1
, p
(
f
)

2
in f and its partial derivatives, i.e.,

p
(
f
)

1
, p
(
f
)

2
∈ C[∂ix∂

j
y∂

k
z f : i, j, k ∈ N] ⊆ C[x, y, z],

such that

p(γ) =
p
(
f
)

1
(γ)

p
(
f
)

2
(γ)

is fulfilled for all parametrizations γ(t, s) of X for which p2(γ) 6= 0. In other words, each
geometric invariant (of a given surface) admits an implicit expression as a rational function in
the defining equation of the surface and its partial derivatives.

Notice, that with the same argument as in Remark 1.2.5, for a a regular point on X , we can
w.l.o.g. assume fz(a) 6= 0. Thus, the algebraic curvatures are well defined at regular points of
surfaces.
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1.4 Geometric Invariants of Higher Dimensional Varieties

In this section we show that the the concept of geometric invariants can be extended to arbitrary
dimensions. We crate again with Proposition 1.4.2 a bridge between geometric invariants and
rational expressions in parametrizations and their partial derivatives that are equivariant under
reparametrizations. We then introduce the concept of algebraic curvatures of higher dimensional
varieties and show with Theorem 1.4.5 that they generate the whole field of geometric invariants.
Finally, the existence of their implicit expression is provided by Theorem 1.4.7.

Let us consider the set x(i1,...,im)
k , k ∈ [n], ij ∈ N of countably many variables. Here for a

positive integer n we denote by [n] the set {1, . . . , n}. Set

F := C(x
(i1,...,im)
k : k ∈ [n], ij ∈ N, for j ∈ [m]),

to be the differential field generated by all x(i1,...,im)
k and equipped with the following m com-

mutative C-derivations

∂j : F → F

x
(i1,...,im)
k 7→ x

(i1,...,ij−1,ij+1,ij+1,...,im)
k , for k ∈ [n],

for j ∈ [m]. Let us consider another set of countably many variables ϕ(i1,...,im)
l with l ∈ [m] and

ij ∈ N and set

L :=F (ϕ
(i1,...,im)
l : l ∈ [m], ij ∈ N) = C(x

(i1,...,im)
k , ϕ

(i1,...,im)
l : k ∈ [n], l ∈ [m], ij ∈ N).

We extend the derivations ∂j to L by

∂j : ϕ
(i1,...,im)
l 7→ ϕ

(i1,...,ij−1,ij+1,ij+1,...,im)
l ,

for l ∈ [m] and simulate on L the chain rule with respect to each derivation ∂j via the following
C-derivations:

χj : L→ L

x
(i1,...,im)
k 7→

m∑
l=1

∂lx
(i1,...,im)
k ∂jϕ

(0,...,0)
l

ϕ
(i1,...,im)
l 7→ ∂jϕ

(i1,...,im)
l ,

where j, l ∈ [m], k ∈ [n].

We think of each x(i1,...,im)
k again as a symbol for the higher partial derivatives of the k-th co-

ordinate of a parametrized variety γ(t) = (x1(t), . . . , xn(t)) ∈ C[[t]]n, where t = (t1, . . . , tm),
i.e., for each k ∈ [n] we associate

x
(0,...,0)
k ↔ xk(t),

x
(i1,...,im)
k ↔ ∂i1t1 · · · ∂

im
tmxk(t).
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From now on we will use the notation p(x(t)) or p(γ) for p(∂i1t1 · · · ∂
im
tmxk(t) : k ∈ [n], ij ∈ N),

and p(x(i1,...,im)
k : k ∈ [n], ij ∈ N) will be shortly denoted by p(x). Let ϕ ∈ Aut(C[[t]]) be a

(local) algebra automorphism. Notice that ϕ is given by an m - tuple of power series

ϕ(t) = (ϕ1(t), . . . , ϕm(t)) ∈ C[[t]]m

with linearly independent vectors of linear terms. We then associate

ϕ
(0,...,0)
l ↔ ϕl(t),

ϕ
(i1,...,im)
l ↔ ∂i1t1 · · · ∂

im
tmϕl(t)

for each l ∈ [m]. Notice that in terms of parametrizations, the derivation χl reflects the chain
rule with respect to the variable tl. Namely, for each p ∈ C(x(t)) we have

∂tl(p ◦ ϕ)(t) =
m∑
j=1

(∂tjp ◦ ϕ)(t) · ∂tlϕj(t).

Next we define a C-morphism on L

Λ : L→ L,

x
(i1,...,im)
k 7→ χi11 · · ·χ

im
m (x

(0,...,0)
k ),

ϕ
(i1,...,im)
l 7→ χi11 · · ·χ

im
m (ϕ

(0,...,0)
l ) = ϕ

(i1,...,im)
l .

In terms of power series, we can think of Λ as of the following assignment:

∂i1t1 · · · ∂
im
tmxk(t) 7→ ∂i1t1 · · · ∂

im
tm (xk ◦ ϕ)(t),

∂i1t1 · · · ∂
im
tmϕl(t) 7→ ∂i1t1 · · · ∂

im
tmϕl(t).

Definition 1.4.1. We call an element p of F a geometric invariant if it is fixed under Λ, i.e., if
the equality

Λ(p) = p

is fulfilled.

In terms of power series (parametrizations) this means the following equality

p(γ) ◦ ϕ = p(γ ◦ ϕ). (1.9)

We define
IF := the field of geometric invariants.

Notice that Proposition 1.1.2 describing a connection between geometric invariants of plane
curves and the parametric expressions, that are equivariant under reparametrizations, generalizes
not only to space curves and surfaces (Proposition 1.3.2) but also to the higher dimensional case
(with exactly the same proof):
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Proposition 1.4.2. Let p(x) = f(x)
g(x) ∈ F = C(x). Then the following statements are equivalent:

(i) p ∈ IF , i.e., p is a geometric invariant.

(ii) The equality

p((x ◦ ϕ)(t)) = p(x(t)) ◦ ϕ (1.10)

holds for all n-tuples of power series x(t) = (x1(t), . . . , xn(t)) ∈ C[[t]]n with g(x(t)) 6= 0
and all reparametrizationsϕ ∈ Aut(C[[t]]), i.e., p(x(t)) is equivariant under reparametriza-
tions.

Let us now denote by ∂x the following m×m matrix:

∂x :=

Ü
∂1x

(0,...,0)
n−m+1 · · · ∂mx

(0,...,0)
n−m+1

...
. . .

...

∂1x
(0,...,0)
n · · · ∂mx

(0,...,0)
n ,

ê
and set ∂x(i,j) to be the cofactor of the (i, j) entry of ∂x. Further, let us consider the following
C-derivations on F :

∆j : F → F

q 7→ 1

det(∂x)

m∑
l=1

(−1)l+j∂lq · det(∂x(j,l))

for j ∈ [m]. As the derivations ∂j commute with each other, the derivations ∆j are commutative
as well, i.e., we have

∆i∆j = ∆j∆i

for all i, j ∈ [m].

Remark 1.4.3. Notice that det(∂x) · ∆j(q) =
∑m

l=1(−1)l+j∂lq · det(∂x(j,l)) is nothing else
then the Laplace expansion along the j - th row of the matrix ∂x with the j-th row replaced by
the vector (∂1q, . . . , ∂mq), i.e.,

det(∂x) ·∆j(q) = det



∂1x
(0,...,0)
n−m+1 · · · ∂mx

(0,...,0)
n−m+1

...
...

∂1x
(0,...,0)
n−m+j−1 · · · ∂mx

(0,...,0)
n−m+j−1

∂1q · · · ∂mq

∂1x
(0,...,0)
n−m+j+1 · · · ∂mx

(0,...,0)
n−m+j+1

...
...

∂1x
(0,...,0)
n · · · ∂mx

(0,...,0)
n


.

Now, using the derivations ∆j , with j ∈ [m] iteratively, we define a whole system of geo-
metric invariants:
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Example 1.4.4. The variables x(0,...,0)
k , k ∈ [n] are obviously geometric invariants. But more

interesting are the following examples:

(1) The determinant det(∂x) is semi-invariant with character det(∂ϕ) under Λ since

Λ(det(∂x)) = det(Λ(∂x)) = det(∂x · ∂ϕ) = det(∂x) · det(∂ϕ),

where

∂ϕ =

Ü
∂1ϕ

(0,...,0)
1 · · · ∂mϕ

(0,...,0)
1

...
. . .

...

∂1ϕ
(0,...,0)
m · · · ∂mϕ

(0,...,0)
m

ê
.

(2) Given a geometric invariant p ∈ IF , according to Remark 1.4.3 and the observation in the
previous example, the sum

m∑
l=1

(−1)j+l∂lp · det(∂x(j,l))

is semi-invariant under Λ with character det(∂ϕ).

(3) From Examples (1) and (2) we conclude the invariance under Λ of each expression

κk,(i1,...,im)(x) := ∆i1
1 · · ·∆

im
m (x

(0,...,0)
k ).

Let us compare these geometric invariants with the geometric invariants of plane curves, i.e,.
the case n = 2,m = 1 (let us for simplicity denote the variables x(i)

1 and x(i)
2 by x(i) and y(i)).

In the plane curve case, with the derivation ∆1 we obtain the following geometric invariants:

∆1(x(0)) =
x(1)

y(1)
= κ0,

∆2
1(x(0)) = ∆1

Ç
x(1)

y(1)

å
=
x(2)y(1) − x(1)y(2)

(y(1))3
= κ1,

...

∆i+1
1 (x(0)) = ∆1(κi−1) =

∂(κi−1)

y(1)
= κi,

which are exactly the slope (of the tangent vector) and the (first and the higher) algebraic curva-
tures of plane curves. Therefore, we call each κk,(i1,...,im) with i1 + · · · + im = 1 a slope and
all expressions κk,(i1,...,im) with i1 + · · · + im > 1 the algebraic curvatures. Consider now the
following C-morphism

iκ : F → F

x
(0,...,0)
k 7→ x

(0,...,0)
k for all k ∈ [n],

x
(i1,...,im)
k 7→ κk,(i1,...,im) for all k ∈ [n] with i1 + · · ·+ im > 1.

Notice that by definition, κk,(i1,...,im) = 0 for all k = n − m + 1, . . . , n. Analogously to the
plane curve case, these algebraic curvatures generate the whole field of geometric invariants:
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Theorem 1.4.5. The field of geometric invariants is generated over C by the variables x(0,...,0)
k , k ∈

[n], the slopes and the algebraic curvatures κl,(i1,...,im), l ∈ [n−m], i.e.,

IF = C(x
(0,...,0)
k , κl,(i1,...,im)(x) : k ∈ [n], l ∈ [n−m], ij ∈ N).

Moreover, for each geometric invariant p ∈ IF we can find its representation as a rational
function in the generators via applying the C-morphism iκ :

p = iκ(p).

Proof. Let p ∈ IF be a geometric invariant. Then p satisfies the equality (1.10) for arbitrary
power series xk(t) ∈ C[[t]], k ∈ [n]. Let us pick a vector of n D-algebraically independent
power series x(t) := (x1(t), . . . , xn(t)) for which the matrix

∂x(t) :=

Ö
∂t1xn−m+1(t) · · · ∂tmxn−m+1(t)

...
. . .

...
∂t1xn(t) · · · ∂tmxn(t)

è
is invertible at 0. Let ϕ(t) = (ϕ1(t), . . . , ϕm(t)) ∈ C[[t]]m be the unique vector of power series
(defining a reparametrization) satisfying the equality

(xn−m+1, . . . , xn) ◦ ϕ = (t). (1.11)

Differentiating the equality (1.11) with respect to the variables t1, . . . , tm yields according to
the chain rule:á

(∂x ◦ ϕ)(t)

(∂x ◦ ϕ)(t) 0
0 . . .

(∂x ◦ ϕ)(t)

ë
·

á
∂t1ϕ(t)T

∂t2ϕ(t)T

...
∂tmϕ(t)T

ë
=

á
e1

e2

...
em

ë
,

where (∂x ◦ϕ)(t) denotes just the matrix ∂x(t) evaluated at the point ϕ(t) and each ej , j ∈ [m]
denotes the j-th standard basis column vector. To solve this system of equations for ∂tjϕk(t)
with j, k ∈ [m], we apply Cramer’s rule to each subsystem

(∂x ◦ ϕ)(t) · ∂tjϕ(t)T = ej .

This gives us

∂tjϕk(t) = (−1)j+k
det
(
(∂x(j,k) ◦ ϕ)(t)

)
det
(
(∂x ◦ ϕ)(t)

) .

Hence we obtain
∂tj (x ◦ ϕ)(t) = ej ,

and

∂tj (xl ◦ ϕ)(t) =

m∑
i=1

(∂tixl ◦ ϕ)(t) · ∂tjϕi(t) = κl,ej (x(t)) ◦ ϕ
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for all j ∈ [m], l ∈ [n]. By induction we see that

∂i1t1 · · · ∂
im
tm (xl ◦ ϕ)(t) = κl,(i1,...,im)(x(t)) ◦ ϕ, for i1 + · · ·+ im > 1

and, thus, we have the following equality for p:

p((x ◦ ϕ)(t)) = iκ(p)(x(t)) ◦ ϕ.

With this, equality (1.10) transforms into

p(x(t)) = p(x(t)) ◦ (ϕ ◦ ϕ−1) = p((x ◦ ϕ)(t)) ◦ ϕ−1 = iκ(p)(x(t)) ◦ (ϕ ◦ ϕ−1) = iκ(p)(x(t)).

Since the power series x1(t), . . . , xn(t) are D-algebraically independent, we can consider them
as variables in the above equality. This gives the following equality in the field F :

p(x) = iκ(p)(x).

As in the case of geometric invariants of (plane and space) curves and surfaces, we will
again use the fact that the invariance of each κl,(i1,...,im) is preserved under any permutation of
variables to produce further systems of generators of the field of geometric invariants. More
precisely, let σ ∈ Sn be a permutation of n elements. Then after applying σ to the variables
x

(i1,...,im)
k , k ∈ [n] in each curvature κl,(i1,...,im), we obtain the following system of generators

of the field of geometric invariants:

x
(0,...,0)
k , κl,(i1,...,im)(x

(j1,...,jm)
σ(k) : k ∈ [n], ji ∈ N), k ∈ [n], l ∈ [n−m].

Using now the same techniques as in the proof of Theorem 1.4.5, but adapted to the new set of
variables that we obtain after applying a permutation σ ∈ Sn, yields the C-morphism

iκ,σ : F → F

x
(0,...,0)
σ(k) 7→ x

(0,...,0)
σ(k) for all k ∈ [n],

x
(i1,...,im)
σ(k) 7→ κσ(k),(i1,...,im)(x

(j1,...,jm)
σ(k) : k ∈ [n], jl ∈ N) for all k ∈ [n] and i1 + · · ·+ im > 1

and deduce the following lemma:

Lemma 1.4.6. Each geometric invariant p ∈ IF satisfies the following equality:

p = iκ(p) = iκ,σ(p),

for any σ ∈ Sn.
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Implicit description of geometric invariants (of higher dimensional varieties)

Let us now discuss the description of geometric invariants in terms of the defining implicit equa-
tions of a certain variety. Analogously to the previous cases, also here we can find an implicit
formula for each geometric invariant of a given algebraic variety. Consider an algebraic variety
X = V (I) ⊆ An, I ⊆ C[x1, . . . , xn], of Krull dimension m and embedding dimension n with
m ≤ n− 1 defined by a radical ideal I =

√
I . Let us fix a set f1, . . . , fr, r ≥ n−m, of genera-

tors for I . Assume that 0 ∈ X is a non-singular point onX and thatX is analytically irreducible
at the origin. Let us consider a regular parametrization γ(t) = (x1(t), . . . , xn(t)) ∈ C[[t]]n, with
t = (t1, . . . , tm), ofX at the origin. Here, under a parametrization we understand again a vector
of n power series γ(t) for which the corresponding ring map γ∗ : C[[x1, . . . , xn]]/I → C[[t]]
is injective. As γ(t) is a regular parametrization of X at 0, we may w.l.o.g. assume that
det
(
∂x(t)

)
|t=0 6= 0.

We differentiate now the equalities fk(γ) = 0, k ∈ [r] w.r.t. all variables tj , j ∈ [m] and
obtain (according to the chain rule) the following system of equations

n∑
i=1

∂xifk(γ) ·

Ö
∂t1xi(t)

...
∂tmxi(t)

è
= 0. (1.12)

As next, for each j ∈ [m] we consider the vector(
(−1)j+1 det(∂x(t)(j,1)), . . . , (−1)j+m det(∂x(t)(j,m))

)T
and consider the scalar product of this vector with the left hand side of equality (1.12):

0 =

±
n∑
i=1

∂xifk(γ) ·

Ö
∂t1xi(t)

...
∂tmxi(t)

è
,

Ö
(−1)j+1 det(∂x(t)(j,1))

...
(−1)j+m det(∂x(t)(j,m))

èª
=

=

n∑
i=1

∂xifk(γ)

±Ö
∂t1xi(t)

...
∂tmxi(t)

è
,

Ö
(−1)j+1 det(∂x(j,1)(t))

...
(−1)j+m det(∂x(j,m)(t))

èª
=

= det
(
∂x(t)

) n∑
i=1

∂xifk(γ)
(
∆j(x

(0,...,0)
i )

)
(γ) = det

(
∂x(t)

) n∑
i=1

∂xifk(γ)κi,ej (γ),

where ej denotes the j-standard basis vector and where k = 1, . . . , r. Using now the rela-
tions ∆j(x

(0,...,0)
i ) = 0 for all i ∈ {n − m + 1, . . . , n}\{n − m + j}, and the assumption

det
(
∂x(t)) 6= 0, we can for each j ∈ [m] rewrite the above system of equations asÖ

∂x1f1(γ) · · · ∂xn−mf1(γ)
...

. . .
...

∂x1fr(γ) · · · ∂xn−mfr(γ)

è
·

Ö
κ1,ej (γ)

...
κn−m,ej (γ)

è
= −

Ö
∂n−m+jf1(γ)

...
∂n−m+jfr(γ)

è
.
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The goal now is to solve this system of linear equations for κl,ej (γ), l = 1, . . . , n − m. To do
so, it is enough to consider only n−m equations defined by this system, let us say the equations
that are defined by the first n−m rows. Hence, we define the following matrix

J :=

Ö
∂x1f1 · · · ∂xn−mf1

...
. . .

...
∂x1fn−m · · · ∂xn−mfn−m

è
.

Let us denote by Jl,ej the matrix formed from J by replacing the l-th column by the column
vector (∂n−m+jfi(γ))n−mi=1 . Now Cramer’s rule applies and yields

κl,ej (t) =
detJl,ej (γ)

detJ (γ)

for all j ∈ [m], l ∈ [n−m]. We set

κl,ej
(
f1, . . . , fr

)
:=

detJl,ej
detJ

to be the implicit expressions for the slopes. For the algebraic curvatures κl,(i1,...,im) with
i1 + · · ·+ im > 1, we then inductively obtain

κl,(i1,...,im)(γ) =
1

∂x(t)

m∑
u=1

(−1)u+l∂tu(κl,(i1,...,im)−el(γ)) det(∂x(t)(l,u))

=
1

∂x(t)

m∑
u=1

n∑
v=1

∂xv(κl,(i1,...,im)−el
(
f1, . . . , fr

)
)(γ)(−1)l+u∂tuxv(t) det(∂x(t)(l,u))

=
n∑
v=1

∂xv(κl,(i1,...,im)−el
(
f1, . . . , fr

)
)(γ) ·

(
∆l(x

(0,...,0)
v )

)
(γ)

=
n∑
v=1

∂xv(κl,(i1,...,im)−el
(
f1, . . . , fr

)
)(γ) · κv,el

(
f1, . . . , fr

)
(γ).

Hence, for each l ∈ [n−m] and i1, . . . , im ∈ N with i1 + · · ·+ im > 1, we define

κl,(i1,...,im)

(
f1, . . . , fr

)
:=

n∑
v=1

∂xv(κl,(i1,...,im)−el
(
f1, . . . , fr

)
) · κv,(el)

(
f1, . . . , fr

)
to be the implicit expressions of the algebraic curvature κl,(i1,...,im). Using Theorem 1.4.5, we
conclude that each geometric invariant of a given variety can be implicitly described via its
defining equations and their partial derivatives:

Theorem 1.4.7. For each geometric invariant p = p1
p2
∈ IF there exist polynomials p

(
f1, . . . , fr

)
1

and p
(
f1, . . . , fr

)
2

in the polynomials f1, . . . , fr defining X and their partial derivatives, i.e.,

p
(
f1, . . . , fr

)
i
∈ C[∂i1x1 · · · ∂

in
xnfk : ij ∈ N, 1 ≤ k ≤ r] ⊆ C[x1, . . . , xn],
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for i = 1, 2, such that the equality

p(γ) =
p
(
f1, . . . , fr

)
1
(γ)

p
(
f1, . . . , fr

)
2
(γ)

.

holds for all parametrizations γ(t) of X for which p2(γ) 6= 0. In other words, every geometric
invariant admits an implicit description in terms of the defining equations.

Recall that the rank of the Jacobian matrix Jf1,...,fr evaluated at a point a equals n −m if
and only if a is a non-singular point of X , as discussed in Remark 1.2.5. In this case, we may
w.l.o.g assume that the first minor J is invertible at a. Hence, each κl,(i1,...,im)(f), l ∈ [n], ij ∈
N is well defined at any non-singular point of X.

Let me stress, that the notion of geometric invariants of (plane and space) curves, surfaces
and also higher dimensional varieties was introduced over the field of complex numbers and
that we investigated the properties of them only over C through the whole chapter. The reason
for that is the following: Whereas the definition of a geometric invariant can be blindly done
over an arbitrary field in the same way as above, the validity of Theorems 1.1.5, 1.2.2, 1.3.4
and 1.4.5, and hence also the basic properties of geometric invariants, is strongly dependent
on the existence of D-transcendental power series and D-algebraically independent families of
power series. Since we don’t have a proof for the existence of D-transcendental power series
and D-algebraically independent families of power series over fields different from C yet (see
the list with unsolved problems in Section 5.1), we also don’t know whether a generalization of
the theory of geometric invariants to other fields is possible. Hence we put this problem on a list
with open questions.
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Chapter 2

Resolution of Singular Curves via
Geometric Invariants

This chapter of my thesis is dedicated to the problem of resolution of singular curves in AnC for
n ≥ 2. Our ultimate goal is to use their geometric properties described by the (higher) algebraic
curvatures in order to prove that each singularity of an analytically irreducible singular curve can
be resolved just by one blowing up in a suitable center defined in terms of algebraic curvatures.

The problem of resolution of singularities is the following: Given a singular algebraic variety
X one tries to find a non-singular variety ‹X together with a proper birational morphism π : ‹X →
X . Such a variety ‹X is called a resolution of singularities of X .

X

‹X
π

Figure 2.1: Resolution of singularities of the node given by the equation y2 − y3 = x3.

Even in simple examples, the construction of a suitable ‹X from X is highly non-trivial and
has aroused interest of mathematicians since the middle of the 19th century. The big step for-
ward happened in 1964 when H. Hironaka proved the existence of resolution of singularities for
all dimensions, supposing that the ground field is of characteristic 0. This spectacular work —
the proof is 200 pages long and was considered of the time as nearly inaccessible — has been
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used since then in numerous settings (for instance for the computation of the ζ-function [Fk07a],
or the minimal model program [KM98]). For more applications see [Fk07b, Fk12, FP05]. Hi-
ronaka was awarded the Fields Medal for this theorem [Hi64a, Hi64b].

Since then, many contributions towards strengthening Hironaka’s result and simplifications
of his original proof have been done, among them by A. Benito and O. Villamayor [BV12], by
E. Bierstone and P. Milman [BM91], by A. Bravo and O. Villamayor [BV01], or by H. Hauser
together with S. Encinas [EH02], by S. Encinas and O. Villamayor [EV03], H. Hauser [Ha03],
O. Villamayor [Vi89], or by J. Włodarczyk [Wl05].

Nevertheless, the arguments are still very complicated, involve several mutually interwoven
inductions, and do not allow a direct formula for the construction of ‹X and π. And, above all,
they are of purely algebraic nature not allowing any geometric interpretation or insight. In most
algorithms, the construction of the morphism π is done purely algebraically by means of some
numerical invariants attached to the variety and its defining equations. As such they conceal the
geometric content and flavour of the resolution process.

Let us mention here that Hironaka’s proof is strictly restricted to fields of characteristic 0,
and that in positive characteristic the existence of resolution was so far proven only for curves
(see J. Kollár’s book [Ko07]), surfaces (e.g. by S. S. Abhyankar [Ab1], S. D. Cutkosky [Cu04],
or by S. Perlega [Pe17]) and recently also threefolds (by V. Cossart and O. Piltant in [CP08],
[CP09] or by H. Kawanoue and K. Matsuki in [KM16]), but is widely open for higher dimen-
sional varieteis.

Starting from this unsatisfactory situation, there have been several attempts to define a
geometrically motivated resolution process. The most prominent among these approaches is
the Nash modification (see the works by G. González-Sprinberg [Gs87], H. Hironaka [Hi3],
V. Rebassoo [Re77] and M. Spivakovsky [Sp90]). Whereas a classical blowup is defined alge-
braically, Nash modification has a strong differential geometric feature: Divide X into two parts
X0 = Reg(X) and Sing(X) where the first collects all smooth points of X , i.e., the points
where X is locally a manifold. At each smooth point x of X , there is a well defined tangent
space TxX of X and the tangent bundle TX0 over X0 forms a quasi-affine variety inside the
tangent bundle TX . Define now X ′ as the Zariski-closure of TX0 in TX . This X ′ maps nat-
urally to X and the map ν : X ′ → X is an isomorphism over Reg(X). Over a singular point
x ∈ Sing(X), the fiber of ν consists of all limiting positions of tangent spaces TyX at smooth
points y as these tend to x. This can already been illustrated in the simple example of the node:

Example 2.0.1. LetX be defined by the equation x2+x3 = y2, where (0, 0) is the only singular
point (the intersection point of the two analytic branches) and where x = ±y are the two limiting
positions of the tangent lines. The curve X ′ now lies in A2

C×P1
C and, by construction, separates

the two branches. It is thus already a resolution of X . The main issue here is the observation
that sending a smooth point z ∈ X to the point (z, [z, TzX]) ∈ A2

C×P1
C tears apart the curve X

nearby (0, 0). In fact, points on the lower branch will have a tangent with slope close to +1 (the
blue dashed line), whereas on the upper branch the slope is close to −1 (the red dashed line).
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y = x

y = −x

Figure 2.2: The tangent space of the node at the origin (singular point) — defined as the union
of the tangent spaces of its smooth branches.

It can be shown that the Nash modification of a hypersurface X defined by one poly-
nomial equation f(x1, . . . , xn) = 0 is a blowup with center defined by the Jacobian ideal
J(f) = (∂x1f, . . . , ∂xnf). As such, it is a more geometric object. However, its disadvantage
lies in the algebraic complexity of computations. It is not too hard to show that an iteration
of Nash modifications eventually resolves any singular curve, but again, in general many repeti-
tions are necessary. For surfaces, the situation is already much more difficult, and it is not known
whether a resolution is guaranteed by Nash modifications. A famous result of M. Spivakovsky
asserts that an iteration of Nash modifications followed by normalization always suffices to
resolve. The proof is very involved and requires the classification of so-called sandwiched sin-
gularities [Sp90]. So, again the actual knowledge is rather limited. It is, however, known by
results of A. Nobile that the Nash modification is an isomorphism (on whole X) if and only if
X is smooth [No75].

A more refined method was presented by T. Yasuda in [Ya07, Ya09] where he introduced the
concept of higher Nash blowups and proved a stronger statement, namely that each curve can
be resolved by its N -th higher Nash blowup, for N large enough. One decade later, D. Duarte
translated the Yasuda’s abstract definition of higher Nash blowups into a more computational
and algorithmic language which allows to interpret each higher Nash blowup as a blowup in the
center given by a suitable higher Jacobian matrix, see [Du17].

In this context we propose a new and alternative approach based on more refined methods
and the use of “higher order tangent spaces" defined by means of geometric invariants.
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2.1 Analytically Irreducible Plane Curves with one Singularity

Let us fix a plane algebraic curve X ⊆ A2
C with only one singular point 0 ∈ X . Let f ∈

C[x, y] be its defining polynomial. Assume f to be irreducible. Let us further assume that X is
unibranched at the origin. In this section we prove the existence of a resolution of singularities
of X by establishing an algorithm which constructs a geometric invariant

κ̃ =
κ̃1

κ̃2

with the property that the blowup of X in the ideal (κ̃
(
f
)

1
, κ̃
(
f
)

2
) gives a smooth curve ‹Xκ̃.

Or equivalently (see [Ha14, §4]), with the property that the Zariski closure of the graph of the
height function induced by κ̃:

φκ̃ : X\Z → P1
C (2.1)

x 7→
(
κ̃
(
f
)

1
(x) : κ̃

(
f
)

2
(x)
)

is smooth. Here κ̃
(
f
)

1
and κ̃

(
f
)

2
denote the minimal numerator and denominator (by minimal-

ity we mean with no common divisor) of an implicit expression of κ̃ in terms of f , respectively,
and Z = V (f, κ̃

(
f
)

1
, κ̃
(
f
)

2
) the vanishing set of the ideal (f, κ̃

(
f
)

1
, κ̃
(
f
)

2
). From now on,

when talking about the numerator and denominator of an implicit expression of a geometric
invariant, we will always mean two polynomials with no common divisor.

Definition 2.1.1. We call a geometric invariant κ̃ a crucial curvature of X (at (0, 0)) if the
blowup of X in the ideal (κ̃

(
f
)

1
, κ̃
(
f
)

2
) defined by the numerator and denominator of the

implicit expression of κ̃ yields already resolution of X .

Remark that a crucial curvature is not unique as we can see already on the simplest examples:

Example 2.1.2. It is not hard to show that the singularity of the cusp defined by the polynomial
f = x2 − y3 can be resolved by both, the standard blowup, i.e., the monomial blowup in the
ideal (x, y), and by the Nash modification which is defined by the blowup in the ideal (fx, fy) =
(x, y2). These two correspond to the crucial curvatures

κ̃ =
x(0)

y(0)
and κ̂ =

x(1)

y(1)
,

respectively. However, they are not equal.

At this point, it is very instructive to look atX from the perspective of parametrization. So let
us consider a parametrization γ(t) = (x(t), y(t)) ∈ C{t}2 of X at 0 (one can always construct
a convergent parametrization according to the Newton-Puiseux algorithm, see Section 4.2). The
evaluation κ̃(γ(t)) of a crucial curvature at γ(t) gives us the pair

(
κ̃1(γ(t)), κ̃2(γ(t))

)
∈ C{t}2

of power series in t. Intuitively, the vector of power series

γκ̃(t) = γ(t)×
(
κ̃1(γ(t)) : κ̃2(γ(t))

)
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defines a parametrization of ‹Xκ̃, and we will prove this also rigorously with Lemma 2.1.3.
Moreover, with the same lemma we will discuss basic properties of γκ̃(t) and their relation to
the properties of κ̃ which will serve as the most important indicator for recognizing crucial cur-
vatures.

Throughout this section, we use for geometric invariants the same notation as in Section 1.1.
Let IF again denote the field of all geometric invariants of plane curves. Further, for an arbitrary
geometric invariant p ∈ IF , by p we denote the vector (∂ip)i≥0.

Let us prove now a more general statement about maps of type (2.1) induced by a geometric
invariant p ∈ IF .

Lemma 2.1.3. Let Y ⊆ A2
C be a plane algebraic curve and defined by a polynomial f ∈ C[x, y].

Assume that Y is analytically irreducible at each point. Further, let p = p1
p2
∈ IF be a geometric

invariant satisfying pi(γ(t)) 6= 0, for i = 1, 2, and for any parametrization γ(t) of Y and let

p
(
f
)

=
p
(
f
)
1

p
(
f
)
2

be its implicit expression in terms of f and its partial derivatives. Consider the

by p induced map

φp : Y \Z → P1
C

y 7→ (p
(
f
)

1
(y) : p

(
f
)

2
(y)),

where Z = V (f, p
(
f
)

1
, p
(
f
)

2
) is the vanishing set of the ideal generated by f and the numer-

ator and denominator of p
(
f
)
. The Zariski closure ‹Yp ⊆ A2

C × P1
C of the graph of φp then

satisfies:

(i) The projection map π : ‹Yp → Y induced by the first projection π : A2
C × P1

C → A2
C

is a proper birational morphism which is an isomorphism π : ‹Yp\E → Y \Z outside
E = π−1(Z).

(ii) The projection map π : ‹Yp → Y is injective.

(iii) ‹Yp is analytically irreducible at each point.

(iv) Let γ(t) be a parametrization of Y at y ∈ Y . The vector

γ(t)×
(
p1(γ(t)) : p2(γ(t))

)
parametrizes ‹Yp at ỹ = π−1(y).

(v) We have the inclusion Sing(‹Yp) ⊆ π−1(Sing(Y )).

Proof. (ii): Let us consider an arbitrary point y ∈ Y . After a coordinate change we may
assume that y = 0. Let γ(t) ∈ C{t}2 be a parametrization of Y at 0 (notice that according to
the Newton-Puiseux algorithm we can always suppose a parametrization to be convergent, see
Section 4.2). Notice that there exists a small neighbourhood U ⊆ C2 of 0 such that each point of
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Y ∩U is uniquely determined by γ(s) for some s ∈ C as Y is analytically irreducible. Hence to
show that there is only one point on ‹Yp lying over 0 it is enough to show that the preimage under
π of the point 0 = γ(0) lying on the arc given by γ(t) is uniquely determined by the height
function φp. Let us consider the two rational mappings into the affine charts of P1

C induced by
φp:

φp,1 : Y \Z → A1
C

y 7→
p
(
f
)

1
(y)

p
(
f
)

2
(y)

and

φp,2 : Y \Z → A3
C,

y 7→
p
(
f
)

2
(y)

p
(
f
)

1
(y)

and the Zariski closures ‹Yp,1 and ‹Yp,2 in A3
C of their respective graphs. A parametric point γ(t)

on Y maps under φp,1 and φp,2 to

p1(γ(t))

p2(γ(t))
and

p2(γ(t))

p1(γ(t))
,

respectively. Consider now the vectors of Laurent series

γ1(t) =

Ç
γ(t),

p1(γ(t))

p2(γ(t))

å
and γ2(t) =

Ç
γ(t),

p2(γ(t))

p1(γ(t))

å
,

respectively. If it happens that the power series p1(γ(t)), p2(γ(t)) have the same order, then
both their quotients define a power series with a non-vanishing constant term and the evaluation
at 0 of both of them is well defined. In this case γ1(0) and γ2(0) define both the same point ỹ
on ‹Y , the only point lying over (0, 0). In the case that they have distinct orders, one of their

quotients is a power series, let us say p(γ(t)) =
p1(γ(t))

p2(γ(t)) ∈ C{t}, and so its evaluation at 0 is

well defined, and the other quotient is a Laurent series. There is again only one point ỹ on ‹Yp
lying over (0, 0), namely the one which has affine coordinates

(
γ(0), p(γ(t))|t=0

)
= (0, 0, 0) in

the first chart and which is not visible in the second chart.
(i): Let r be the minimum of the radii of convergence of the power series pi(γ(t)), for i = 1, 2,
and let us by Br denote the open ball of radius r centred at 0. Notice that as pi(γ(t)), i = 1, 2
are both convergent power series and different from zero, hence holomorphic functions, they can
vanish simultaneously only at finitely many point of Br. Set

B◦r := {s ∈ Br :
(
p1(γ(s)), p2(γ(s))

)
6= (0, 0)}.

Then, B◦r is an open and dense subset of Br and hence γ(B◦r ) is an open and dense subset of Y ,
since Y is analytically irreducible at each point and hence irreducible as an algebraic curve. As
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the map φp is defined on γ(B◦r ), it follows that π : ‹Yp → Y is a birational morphism with its
inverse map given by

Y \Z → A2
C × P1

C, y 7→ y × φp(y)

on γ(B◦r ). Hence, Z is a finite subset of Y . So, ‹Yp is together with the projection morphism π :‹Yp → Y the blowup of Y in the ideal (f, p
(
f
)

1
, p
(
f
)

2
). It follows now from [Ha77, Chapter II,

Proposition 7.16] that π is a proper birational morphism. That its restriction π : ‹Yp\E → Y \Z
is an isomorphism outside E = π−1(Z), follows now immediately.
(iii): It is clear, that ‹Yp is analytically irreducible outside E = π−1(Z) as π : ‹Yp\E → Y \Z
is an isomorphism. As π is a birational morphism, and even an isomorphism outside the finite
set E, the analytic branches of ‹Yp at the point π−1(0) = ỹ ∈ ‹Yp are uniquely determined by the
images of analytic branches of Y at 0 under the map

Y \Z → A2
C × P1

C, y 7→ y × φp(y).

But as Y has only one branch at 0, so has‹Yp at ỹ which proves the analytical irreducibility of‹Yp.
(iv): As the set γ1(Br) defines an open and dense subset of‹Yp,1, the triple (γ(t), p(t)) parametrizes
the affine chart expression ‹Yp,1 of ‹Yp and the claim follows.
(v): Notice first that as the restriction

π : ‹Y \E → Y \Z

is an isomorphism outside E = π−1(Z), then in the case 0 /∈ Z we have:

π−1(0) = ỹ ∈ Sing(‹Y ) if and only if 0 ∈ Sing(Y ).

Hence, it remains to discuss whether in the case that 0 ∈ Z, the point ỹ can be singular although
0 ∈ Y is not. Let us assume that 0 is a smooth point of Y . As ‹Yp is analytically irreducible
at ỹ, in order to prove that ỹ is a smooth point of ‹Yp, it is enough to show that ‹Yp admits a
regular parametrization at ỹ. Then, ‹Yp is locally at ỹ a manifold and the claim follows. From
the smoothness of Y at 0 it follows that its branch at 0 is biholomorphic to an open subset
V ⊆ C containing 0 and so Y can be parametrized at 0 by a pair of power series γ0(t) =
(z1(t), z2(t)) with one component of order one, let us say z1(t). According to (iii), the vector
γ0(t) ×

(
p1(γ0(t)), p1(γ0(t))

)
parametrizes ‹Yp at ỹ, and moreover, it has one component of

order one which yields a regular parametrization of ‹Yp at ỹ and thus finishes the proof.

Remark 2.1.4. Let us mention that in the proof of item (ii) of Lemma 2.1.3, the fact that Z is
a finite subset of C could be concluded also directly from Bezout’s theorem as

gcd(p
(
f
)

1
, p
(
f
)

2
) = 1.

This argument, in contrary to the argument we use in the proof of Lemma 2.1.3, doesn’t work
for polynomials in more than two variables. For instance, polynomials f = x and g = y have
no common divisor in the power series ring C[x, y, z], their vanishing set V (f, g), however, is
an infinite set as it contains the whole z-axis.
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With Lemma 2.1.3, we obtain the following sufficient and necessary condition on a crucial
curvature κ̃:

Corollary 2.1.5. A geometric invariant p ∈ IF is a crucial curvature of X at 0 if and only if
there exists a parametrization γ(t) of X at 0 with

ord
(
p(γ(t))

)
= 1.

Proof. It follows from (i) of Lemma 2.1.3 that the projection π : ‹Xp → X is a proper birational
morpism. Further, as X is analytically irreducible at the origin, we conclude with (ii) of the
same lemma that there is only one point x̃ ∈ ‹Xp lying over 0 and according to the item (v), ‹Xp

is smooth outside this point. Now, since ord
(
p(γ(t))

)
= 1, so is x̃ visible only in one affine

chart and the affine expression of ‹Xp in this chart is parametrized by the triple
(
γ(t), p(γ(t))

)
∈

C{t}3, which is a regular parametrization and thus the smoothness follows.
For the other implication let us assume that ‹Xp is smooth. Let x̃ be the point on ‹Xp lying
over 0. Investigate now one affine chart expression ‹Xaff of ‹Xp in which x̃ is visible. Let us
w.l.o.g. assume that x̃ = 0 there. Then, as ‹Xaff is smooth at 0, it is locally at 0 biholomorphic
to an open subset U ⊆ C containing 0 and as such it can be parametrized at 0 by a triple of
convergent power series (x(t), y(t), z(t)) ∈ C{t}3 with one component of order one. However,
as the pair γ(t) = (x(t), y(t)) defines a parametrization of X at the singular point 0, we have
min{ord(x(t)), ord(y(t))} > 1. Thus, ord(z(t)) = 1 follows. Now the equality z(t) = p(γ(t))
concludes the proof.

Thus, to resolve X is equivalent to construct a geometric invariant κ̃ ∈ IF which satisfies

ord
(
κ̃(γ(t))

)
= 1

for a suitably chosen parametrization γ(t) of X . The construction of a crucial curvature κ̃ is the
objective of the remaining part of this section.

Let γ(t) be a Puiseux parametrization of X at 0. Notice, that since f is analytically irre-
ducible and defines a singular curve, we have f 6= x as well as f 6= y and so according to
Theorem 4.2.1 and Corollary 4.2.5, the Puiseux parametrization γ(t) is of the form

γ(t) = (x(t), y(t)) = (tn, y(t)) ∈ C{t}2,

with m = ord(y(t)) ≥ 2.
Let us first discuss the behavior of the orders of algebraic curvatures evaluated at γ(t). This
will have significant impact on our algorithm as the algebraic curvatures represent a generating
system of geometric invariants:

Remark 2.1.6. By induction, one can show the following equalities:

ord
(
κ0(γ(t))

)
= ord

Å
x′(t)

y′(t)

ã
= n−m,

ord
(
κi(γ(t))

)
= ord

Ç
∂tκi−1(γ(t))

y′(t)

å
= n− (i+ 1)m, for all i ≥ 1.
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So for each higher algebraic curvature, the order of its evaluation at γ(t) drops by m compared
to the order of the previous one. We can iteratively even construct a geometric invariant κ̂ with

ord
(
κ̂(γ(t))

)
= gcd(n,m).

Euclidean Algorithm for Geometric Invariants Construction of a geometric invariant of order
at γ(t) equal to the greatest common divisor of orders at γ(t) of two other geometric invariants

Input two geometric invariants p and q & pair of power series γ(t) ∈ C[[t]]2

Output geometric invariant κ̂ satisfying ord
(
κ̂(γ(t))

)
= gcd(n,m), where

n = ord
(
p(γ(t))

)
and m = ord

(
q(γ(t))

)
, or FAIL if either n and m both equal zero or

p(γ(t)) · q(γ(t)) = 0 or if at least one of the integers n and m is negative
procedure GCD(p, q; γ(t))

1st step:
Set

n := ord
(
p(γ(t))

)
and m := ord

(
q(γ(t))

)
.

If 0 ≤ n,m <∞ not both equal to 0, then p(γ(t)), q(γ(t)) ∈ C{t} are both power series
different from zero and at least one of them has no constant coefficient. In this case we
continue with the 2nd step of the algorithm.
Otherwise, return FAIL.

2nd step:
We proceed according to the Euclidean algorithm. Let us write the Euclidean algorithm
for n and m as the sequence of following equations:

m = q0n + r0

n = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...

rN−2 = qNrN−1 + rN

rN−1 = qN+1rN + rN+1,

where 0 = rN+1 < rN = gcd(n,m) < rN−1 < · · · < r0 < n.

Define now geometric invariants zi ∈ IF for 1 ≤ i ≤ N according to the Euclidean
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algorithm and investigate with help of Remark 2.1.6 the order of their evaluation at γ(t):

z0 := κqo−1(q, p) ord
(
z0(γ(t))

)
= r0,

z1 := κq1−1(p, z0) ord
(
z1(γ(t))

)
= r1,

z2 := κq2−1(z0, z1) ord
(
z2(γ(t))

)
= r2,

...
...

zN := κqN−1(zN−2, zN−1) ord
(
zN (γ(t))

)
= rN ,

where in the case q0 = 0 we set
κ−1(q, p) := q.

We return
κ̂ := zN .

Example 2.1.7. Let us consider the geometric invariants p = y(0) and q = κ0 and a Puiseux
parametrization γ(t) = (t8, t3). Let us for the orders

5 = ord
(
q(γ(t))

)
= ord

Å
x′(t)

y′(t)

ã
= ord

Å
8t7

3t2

ã
= ord

Å
8

3
t5
ã
,

3 = ord
(
p(γ(t))

)
= ord(y(t)) = ord(t3),

write the Euclidean algorithm and construct:

5 = 1 · 3 + 2 z0 = κ0(κ0, y
(0))

3 = 1 · 2 + 1 z1 = κ0(y(0), z0)

2 = 2 · 1 + 0

Then
z0 =

∂κ0

y(1)
= κ1,

and

κ̂ = z1 = κ0(y(0), κ1) =
y(1)

∂κ1
= κ−1

2 .

With Remark 2.1.6 we see immediately that ord
(
(κ̂)(γ(t))

)
= 1.

Notice, that Remark 2.1.6 guarantees an improvement of the singularity after each blowup in
the ideal defined by a (higher) algebraic curvature (as the order of the power series parametriza-
tion drops). Our wish is to see these improvements also implicitly just by means of transforma-
tions of the defining equation of X , without the need of a parametrization. This we do not know
how to do at the moment. Hence, we refer to this problem also on the list with open questions
in Section 5.2.

Next, we discuss about how the polydromy order of Puiseux series behaves under triangular
coordinate changes:
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Proposition 2.1.8. Let y(t
1
n ) ∈ C[[t

1
n ]] be a Puiseux series of polydromy order n.

(i) The polydromy order of (y◦ϕ)(t
1
n ) is equal to n for any reparametrizationϕ ∈ Aut(C[[t]]).

Here the action of Aut(C[[t]]) on C[[t
1
n ]] is defined by ϕ(t

1
n ) := ϕ(t)|

t=t
1
n

.

(ii) Let x(t) ∈ C[[t]] be a power series of order n. Let ϕ ∈ Aut(C[[t]]) be the unique
reparametrization with (x ◦ ϕ)(t) = tn. Let us write

(y ◦ ϕ)(t) = a1t
n + · · ·+ akt

kn + ŷ(t),

for some k ∈ N and ŷ ∈ C[[x]] a power series with ord(ŷ(t)) > kn and n - ord(ŷ(t)),
i.e., ord(ŷ(t)) = m1 is the first characteristic exponent of (y ◦ ϕ)(t

1
n ). Let us set n1 :=

gcd(n,m1). Then after the triangular coordinate change

y(t) := y(t)−
k∑
i=1

aix(t)i, (2.2)

the Puiseux series y(t
1
n1 ) has polydromy order n1.

Proof. (i): Let n be the polydromy order of y(t
1
n ). Let ϕ ∈ Aut(C[[t]]) be an arbitrary

reparametrization. Let us assume by contradiction that the polydromy order of (y ◦ ϕ)(t
1
n )

equals m < n. Then m is a divisor of n and we can write n = α ·m for some α ∈ N. Thus, the
degree of each term of (y ◦ ϕ)(t

1
n ) is a multiple of α and so

(y ◦ ϕ)(t
1
n ) = ỹ(t

α
n ) = ỹ(t

1
m )

for some power series ỹ ∈ C[[x]]. But, applying the inverse reparametrization ϕ−1 to ỹ would
give us

y(t
1
n ) = (ỹ ◦ ϕ−1)(t

1
m ) ∈ C[[t

1
m ]] with m < n,

which is a contradiction to the minimality of n.
(ii): Let x(t) be a power series with ord(x(t)) = n and let ϕ be the unique reparametriza-
tion satisfying (x ◦ ϕ)(t) = tn. It follows from (i) of the proposition that (y ◦ ϕ)(t

1
n ) has

again polydromy order n. Let m1, . . . ,ml be its characteristic exponents. Recall that they sat-
isfy by definition gcd(n,m1, . . . ,ml) = 1. It is obvious, that after the triangular coordinate
change (2.2), {m1, . . . ,ml} is still a subset of the support of (y ◦ ϕ)(t). Further, we have
gcd(n1,m1,m2, . . . ,ml) = gcd(n,m1, . . . ,ml) = 1, where n1 = gcd(n,m1). Therefore, n1

is the polydromy order of (y ◦ ϕ)(t
1
n1 ). Now, we use again (i) of this proposition to conclude

that n1 is also the polydromy order of y(t
1
n1 ).

Remark, that whereas the polydromy order is stable under reparametrizations, this is in
general no longer true for the characteristic exponents. We demonstrate this phenomenon on the
following example:
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Example 2.1.9. Let us consider the Puiseux series

s(x
1
6 ) = x

2
6 − 2x

3
6 .

Its polydromy order equals 6 and the characteristic exponents are 2 and 3. Consider the reparametriza-
tion ϕ(x) = x− x2. The composition (s ◦ ϕ)(x) defines the Puiseux series

(s ◦ ϕ)(x
1
6 ) = x

2
6 − 5x

4
6 + 6x

5
6 − 2x

6
6 ,

whose polydromy order is again 6. However, the characteristic exponents of (s ◦ ϕ)(x1/6) are
now 2 and 5.

We present now an algorithm for a construction of a crucial curvature. Our algorithm extracts
step by step from the support of y(t) a subset which has the same property as the characteristic
exponents of y(t

1
n ), namely that the greatest common divisor of n and this subset equals one.

We proceed exactly according to the definition of characteristic exponents (4.6).

Resolution algorithm for plane curves with one singularity

Resolution Algorithm for Plane Curves - One Singularity Construction of a Crucial Curva-
ture

Input parametrization γ(t) = (tn, y(t)) ∈ C[[t]]2 of a plane algebraic curve at 0 of poly-
dromy order equal to n

α for some α ∈ N
Output geometric invariant κ̃ satisfying ord

(
κ̃(γ(t))

)
= α

procedure PLANECURVATURE(γ(t))

1st step: Variable declaration:
Set

x0 := x(0), y0 := y(0) and m0 := ord(y(t)), n0 := n.

Further, check whether y0(γ(t)) ∈ C[[tn0 ]]:

If y0(γ(t)) ∈ C[[tn0 ]], then return κ̃ := x0.

Otherwise continue with the next step of the algorithm.

2nd step: Construction of a geometric invariant yi of order equal to the first exponent mi

of yi−1(γ(t)) that is not divisible by ni−1:

Consider the pair of power series(
xi−1(γ(t)), yi−1(γ(t))

)
∈ C[[t]]2

with
ord
(
xi−1(γ(t))

)
= ni−1 and ord

(
yi−1(γ(t))

)
= mi−1.
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Let ϕ ∈ Aut(C[[t]]) be the unique reparametrization satisfying

xi−1

(
(γ ◦ ϕ)(t)

)
= tni−1 .

Let us write

yi−1

(
(γ ◦ ϕ)(t)

)
= a1t

ni−1 + · · ·+ akt
kni−1 + ŷ(t) (2.3)

for some k ∈ N and ŷ(t) ∈ C[[t]] such that ord(ŷ(t)) > kni−1 and ni−1 - ord(ŷ(t)).
Apply now a triangular coordinate change to xi−1

(
(γ ◦ ϕ)(t)

)
and yi−1

(
(γ ◦ ϕ)(t)

)
in

order to eliminate all terms of yi−1

(
(γ ◦ ϕ)(t)

)
which are of degree strictly smaller than

ord(ŷ(t)) and define the geometric invariant

yi := yi−1 −
k∑
i=1

ai(xi−1)i.

Set
mi := ord

(
yi(γ(t))

)
.

3rd step: Construction of a geometric invariant of order equal to gcd(ni−1,mi):

We set
xi := GCD(yi, xi−1; γ(t)).

Then, the geometric invariant xi satisfies

ord
(
xi(γ(t))

)
= gcd(ni−1,mi)

and we set
ni := ord

(
xi(γ(t))

)
.

4th step: Test whether the 2nd and 3rd step of the algorithm can be applied to xi:

Check whether yi(γ(t)) ∈ C[[tni ]]:

If yi(γ(t)) ∈ C[[tni ]], then return κ̃ := xi.

Otherwise repeat the 2nd, 3rd and 4th step of the algorithm.

Termination and Correctness of the algorithm PLANECURVATURE:

Let us first discuss the case when γ(t) = (tn, y(t)) is a Puiseux parametrization, i.e., n is the
polydromy order of y(t

1
n ), and show that the algorithm constructs in that case a crucial curvature

of X at the origin. The general case then follows by a suitable variable substitution.
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1. γ(t) is a Puiseux parametrization:
Observe first that the algorithm terminates in the 1st step if and only if n = 1, which would
mean that the curve parametrized by γ(t) is smooth at the origin and the variable x0 is a
crucial curvature of the curve at 0. Let us therefore consider a Puiseux parametrization
γ(t) = (tn, y(t)) with n > 1.

It is sufficient to verify the following two claims:

1. Each Puiseux series yi(γ(t
1
ni )) has polydromy order equal to ni.

99K Then the algorithm terminates in the 4th step if and only if ni = ord
(
xi(γ(t))

)
= 1.

2. ni > ni+1 ≥ 1 for each i ≥ 0.
99K It follows then that the algorithm terminates as the set of positive integers is a
well-ordered set.

We proceed by induction on i. Notice first that m1 is by construction the first character-

istic exponent of y0(γ(t
1
n0 )) = y(t

1
n ). At the same time, n0 is the polydromy order of

y0(γ(t
1
n0 )) = y(t

1
n ). Hence, we have

n0 > n1 = gcd(n0,m1) ≥ 1,

and the Puiseux series y1(γ(t
1
n1 )) has polydromy order n1 according to Proposition 2.1.8.

Let us now suppose
ni−1 > ni = gcd(ni−1,mi) > 1,

where mi is the order of yi(γ(t)). Suppose further the Puiseux series yi(γ(t
1
ni )) hav-

ing polydromy order equal to ni = gcd(ni−1,mi). Now, Proposition 2.1.8 applies and

shows that for any reparametrization ϕ, the polydromy order of yi
(
(γ ◦ ϕ)(t

1
ni )
)

equals

ni as well. Hence as ni > 1, the Puiseux series yi
(
(γ ◦ ϕ)(t

1
ni )
)

is not contained in the
power series ring and thus has at least one characteristic exponent which shows that the
decomposition (2.3) of the 2nd step of the algorithm is well defined. Actually, mi+1 is by
construction its first characteristic exponent. Now, we again use Proposition 2.1.8 to see

that yi+1(γ(t
1

ni+1 )) has polydromy order equal to ni+1 = gcd(ni,mi+1). But mi+1 is the

first characteristic exponent of the Puiseux series yi
(
(γ ◦ ϕ)(t

1
ni )
)

which has polydromy
order equal to ni. Hence, ni+1 = gcd(ni,mi+1) < ni. Thus, we conclude

ni−1 > ni > ni+1 ≥ 1,

which guarantees that the algorithm terminates in finitely many steps.

2. γ(t) is not a Puiseux parametrization:
In this case there exists some positive integer α ∈ N, α > 1, with α|n so that

y(t) =
∑
i≥0

ait
i·α.
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Let α be maximal with this property. Then, the polydromy order of y(t
1
n ) equals n

α . Thus,

γ(t
1
α ) = (t

n
α , y(t

1
α )) ∈ C{t}2

is a Puiseux parametrization and

κ̃1 = PLANECURVATURE(γ(t
1
α ))

satisfies
ord
(
κ̃1(γ(t

1
α ))
)

= 1.

However, if we construct

κ̃2 := PLANECURVATURE(γ(t)),

we see that after finitely many iterations of the 2nd up to the 4th step of the algorithm, the
algorithm necessarily constructs a geometric invariant xi of order α at γ(t) in its 3rd step.
But at the same time yi ∈ C[[tα]]. More precisely,

κ̃2(γ(t)) = κ̃1(γ(t
1
α ))|t=tα ,

and so
ord
(
κ̃2(γ(t))

)
= α.

Example 2.1.10 (Construction of a crucial curvature with the algorithm PLANECURVATURE).
Consider the curve

X = {−x3 + (3y2 − 6y + 1)x2 + (−3y4 − 2y3)x+ y6 = 0}.

The pair
γ(t) = (t6, t2 + t3)

defines a Puiseux parametrization of X at 0. We construct now κ̃ = PLANECURVATURE(γ(t))
according to the algorithm.

1st step: x0 = x(0), y0 = y(0),m0 = ord(t2 + t3) = 2, n0 = ord(t6) = 6.

And since y0 /∈ C[[tn0 ]] = C[[t6]] we continue with the 2nd step of the algorithm.

2nd step: No triangular coordinate change is needed as n0 = 6 > 2 = m0. Hence,

y1 = y0 and m1 = 2.

3rd step: We write the Euclidean algorithm for 6 and 2 and compute the corresponding geometric
invariants according to the algorithm GCD:

6 = 2 · 2 + 2 x1 = κ1(x0, y1) = κ1, n1 = ord
(
x1(γ(t))

)
= 2

2 = 1 · 2 + 0
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4th step: As n1 6= 1 and y1(γ(t)) = t2 + t3 /∈ C[[t2]] (notice that n1 = 2), we go again through the
2nd - 4th step of the algorithm.

5th step: x1(γ(t)) satisfies x1

(
(γ ◦ ϕ)(t)

)
= t2 for the reparametrization

ϕ(t) =

√
6

6
t+

9

32
t2 +

229
√

6

2048
t3 + . . . .

At the same time we have

y1

(
(γ ◦ ϕ)(t)

)
=

1

6
t2 +

35
√

6

288
t3 + . . .

Hence, in order to eliminate the factor 1
6 t

2, we set

y2 = y1 −
1

6
x1 and m2 = ord

(
y2(γ(t))

)
= 3.

6th step: We write the Euclidean algorithm for the integers 3 and 2 and compute the corresponding
geometric invariant according to the algorithm GCD:

3 = 1 · 2 + 1 x2 = κ0(y2, x1) n2 = ord
(
x2(γ(t))

)
= 1

2 = 1 · 2 + 0

The algorithm stops here, as we have already constructed a crucial curvature

κ̃ = x2 =
∂y2

∂x1
=
∂(y(0) − 1

6κ1)

∂κ1
=
y(1) − 1

6κ2 · y(1)

κ2 · y(1)
=

1

κ2
− 1

6

of order one at γ(t).

Thus, for a plane algebraic curve X ⊆ A2
C with only one singular point 0 ∈ X and only one

analytic branch at the origin, we have just proven the following theorem:

Theorem 2.1.11. For any Puiseux parametrization γ(t) of X at the origin, the algorithm
PLANECURVATURE constructs a crucial curvature of X , i.e., a geometric invariant κ̃ that sat-
isfies

ord
(
κ̃(γ(t))

)
= 1.

Moreover, if f ∈ C[x, y] is a defining polynomial of X , then the blowup of X in the ideal
(κ̃(f)1, κ̃(f)2) defines a resolution of singularities of X .

In this section we established an algorithm only for resolution of plane algebraic curves with
only one singular point. The resolution of plane curves with several singularities is discussed in
Section 2.3 of this note.
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2.2 Analytically irreducible Space Curves with one Singularity

We present in this section an algorithm for resolution of analytically irreducible space curves
with a single singular point. Our algorithm is, as in the plane curve case, based on the existence
of characteristic exponents of Puiseux parametrizations. Given an algebraic space curve X ⊆
An+1
C defined by a radical ideal I ⊆ C[x1, . . . , xn, y] with only one singularity and only one

analytic branch at the origin, our algorithm constructs a geometric invariant of space curves κ̃
satisfying the property

ord
(
κ̃(γ(t))

)
= 1,

for at least one parametrization γ(t) ∈ C[[t]]n+1 of X at the origin.

Definition 2.2.1. We call a geometric invariant κ̃ a crucial curvature of X (at the origin) if the
blowup of X in the ideal (κ̃

(
I
)

1
, κ̃
(
I
)

2
) defined by the (minimal) numerator and denominator

of the implicit expression of κ̃ resolves X .

Given a Puiseux parametrization γ(t) of X at 0, the strategy of our algorithm is to project
the space curve X to coordinate planes and using the algorithm PLANECURVATURE there to
construct for each projection a geometric invariant of minimal possible order (when evaluating
at γ(t)). The orders of the evaluations of these geometric invariants at γ(t) satisfy by construc-
tion the same property as the set of the characteristic exponents of γ(t), namely that the greatest
common divisor of these orders and the polydromy order of the parametrization γ(t) equals one.
Hence, it should be possible to construct with them a geometric invariant whose evaluation at
γ(t) has order equal to 1.

To be more precise: As in the case of plane curves, we will construct a resolution ‹X of X
via a blowup in a suitable ideal (κ̃

(
I
)

1
, κ̃
(
I
)

2
) defined in X by the numerator and denominator

of an implicit expression of a crucial curvature κ̃. The resolution ‹X again equals the Zariski
closure ‹Xκ̃ of the graph of the map induced by the crucial curvature κ̃:

φκ̃ : X\Z → P1
C

x 7→ (κ̃
(
I
)

1
(x) : κ̃

(
I
)

2
(x)),

with Z = V
(
I + (κ̃

(
I
)

1
, κ̃
(
I
)

2
)
)
. This property together with generalization of Lemma 2.1.3

to space algebraic curves turns out to be crucial for the construction of resolution of singularities.

Let us at this point recall the notation IFn for the field of geometric invariants of space curves
in An+1

C and also other standard notation from Section 1.2 which will be used throughout this
section. Further, for an a geometric invariant p ∈ IFn , we again denote the vector (∂ip)i≥0 by p.

Lemma 2.2.2. Let Y ⊆ An+1
C be an algebraic space curve defined by the ideal I ⊆ C[x1, . . . , xn, y].

Assume that Y is analytically irreducible at each point. Further, let p = p1
p2
∈ IFn be a geo-

metric invariant of space curves satisfying p2(γ(t)) 6= 0, for any parametrization γ(t) of Y . Let
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p
(
I
)

= p(I)1
p(I)2

be an implicit expression of p in terms of I . Consider the map

φp : Y \Z → P1
C

y 7→
(
p
(
I
)

1
(y) : p

(
I
)

2
(y)
)

induced by p, with Z = V
(
I + (p

(
I
)

1
, p
(
I
)

2
)
)
. Further, let ‹Yp ⊆ An+1

C × P1
C be the Zariski

closure of its graph. Then the following holds:

(i) The projection map π : ‹Yp → Y induced by the projection An+1
C × P1

C → An+1
C onto

the first n + 1 components is a proper birational morphism which is an isomorphism
π : ‹Y \E → Y \Z outside E = π−1(Z).

(ii) For each y ∈ Y , the fibre π−1(y) is only one point and ‹Yp is analytically irreducible at
this point.

(iii) Let γ(t) be a parametrization of Y at y. Then the vector

γ(t)×
(
p1(γ(t)) : p2(γ(t))

)
parametrizes ‹Yp at ỹ = π−1(y).

(iv) We have the inclusion Sing(‹Yp) ⊆ π−1(Sing(Y )).

Proof. The proof goes along the same line as the one of Lemma 2.1.3.

With this last lemma we obtain:

Corollary 2.2.3. The condition

“ ord
(
κ̃(γ(t))

)
= 1 for at least one parametrization γ(t) of X at 0 ”

is a necessary and sufficient condition for κ̃ being a crucial curvature of X at 0.

The last corollary gives us a characterization for crucial curvatures in terms of parametriza-
tions. However, as we at the end want to construct a resolution of X as the blowup in the ideal
corresponding to a crucial curvature, we would like to have also an equivalent characterization
for the ideals defined by crucial curvatures. Such an implicit characterization is, however, not
known to us at the moment and we hence put this problem on the list with open questions in
Section 5.2.

Let us now assume that X is not contained in the hyperplane {y = 0} and let

γ(t) = (x1(t), . . . , xn(t), tl) ∈ C{t}n+1

be its Puiseux parametrization (the existence of such a parametrization is guaranteed by Theorem
4.2.8). As already mention, the strategy of our algorithm is to project the curve X with the n
projections

πi : An+1
C → A2

C

(x1, . . . , xn, y) 7→ (y, xi)
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to plane curves Xi parametrized by γi(t) = (tl, xi(t)) at the origin and to apply the algorithm
PLANECURVATURE to these projections in order to construct for each of the parametrizations
γi(t) a geometric invariant of minimal possible order. More precisely:

Remark 2.2.4. The polydromy order l of γ(t) = (x1(t), . . . , xn(t), tl) is the product of the
polydromy orders li of the parametrizations γi(t) = (tl, xi(t)) (see Section 4.2), i.e., l =

∏
i li.

By construction we have

ord
Ä(

PLANECURVATURE(γi(t)
)
(γi(t))

ä
=

l

li
.

Resolution algorithm for space curves with one singularity

Resolution Algorithm for Space Curves - one Singularity Construction of a Crucial Curva-
ture

Input Puiseux parametrization γ(t) = (x1(t), . . . , xn(t), tl) ∈ C[[t]]n+1 of an algebraic
space curve at 0 of polydromy order l & the embedding dimension N = n+ 1
Output geometric invariant κ̃ satisfying ord

(
κ̃(γ(t))

)
= 1

procedure SPACECURVATURE(γ(t);N)

1st step: Variable declaration:
Set

x1 := x
(0)
1 , . . . , xN−1 := x

(0)
N−1, y := y(0).

Further let li be the polydromy order of xi(t
1
l ), for i = 1, . . . , N − 1.

2nd step: Construction of curvatures of minimal order of each projection (y, xi):

For each i = 1, . . . , N − 1, set

zi := PLANECURVATURE
(
y(γ(t)), xi(γ(t))

)
.

Each zi is per construction (due to the 1st step “variable declaration” of PLANECURVA-
TURE) a geometric invariant of plane curves, i.e., an invariant rational function in variables
x(j) and y(j) for j ∈ N, and according to Remark 2.2.4 satisfies

ord
Ä
zi
(
(y(t), xi(t))

)ä
=

l

li
.

For each i = 1, . . . , N − 1, we apply the substitution

λi : C(x(j), y(j) : j ∈ N)→ C(x
(j)
i , y(j) : i, j ∈ N, 1 ≤ i ≤ n)

x(j) 7→ ∂jy

y(j) 7→ ∂jxi
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in order to obtain geometric invariants of space curves

zi := λi(zi)

of order at γ(t) equal to

ni := ord(zi(γ(t))) = ord
(
zi
(
(y(t), xi(t))

))
=

l

li
.

3rd step: Construction of a crucial curvature:

Define iteratively and observe

z̃2 := GCD(z1, z2; γ(t)) ord
(
z̃2(γ(t))

)
= gcd(n1, n2),

z̃3 := GCD(̃z2, z3; γ(t)) ord
(
z̃3(γ(t))

)
= gcd(n1, n2, n3),

...
...

z̃N−1 := GCD(̃zN−2, zN−1; γ(t)) ord
(
z̃N−1(γ(t))

)
= gcd(n1, . . . , nN−1).

Finally, return κ̃ := z̃N−1.

Correctness of the algorithm SPACECURVATURE:
In fact, by construction, the order of κ̃ = SPACECURVATURE(γ(t);N) at γ(t) satisfies

ord(κ̃(γ(t))) = gcd

Å
l

l1
, . . . ,

l

ln

ã
= 1.

Remark 2.2.5. Remark that for a Puiseux parametrization γ(t) = (tn, y(t)) ∈ C{t}2 of a plane
algebraic curve in A2

C we have

PLANECURVATURE((tn, y(t))) = SPACECURVATURE((y(t), tn); 2).

Thus, for an algebraic space curveX ⊆ An+1
C with only one singularity 0 ∈ X and only one

analytic branch at the origin, we have just proven the following theorem:

Theorem 2.2.6. For any Puiseux parametrization γ(t) = (x1(t), . . . , xn(t), tl) of X at the
origin, the algorithm SPACECURVATURE constructs a crucial curvature of X , i.e., a geometric
invariant κ̃ that satisfies

ord
(
κ̃(γ(t))

)
= 1.

Moreover, for I ⊆ C[x1, . . . , xn, y] a defining ideal of X , the blowup of X in the ideal

(κ̃
(
I
)

1
, κ̃
(
I
)

2
)

defines a resolution of singularities of X .

However, the algorithm SPACECURVATURE constructs a resolution only for analytically ir-
reducible space curves with only one singular point. If X has more than one singular point,
iterations of the algorithm SPACECURVATURE are needed as we will see in the next section.
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2.3 Analytically irreducible Plane and Space Curves with multiple
Singularities

Let us fix a plane or space curve X ⊆ An+1
C , i.e., n ≥ 1, with m singular points

Sing(X) = {a1, . . . , am}.

Let I ⊆ C[x1, . . . , xn, y] be a defining ideal of X . Let us assume that X is analytically irre-
ducible at each point. The goal of this section is to present an algorithm for construction of a
resolution of X based on the algorithms PLANECURVATURE and SPACECURVATURE presented
in Section 2.1 and 2.2, respectively.

Let us fix for each i = 1, . . . ,m, a Puiseux parametrization γi(t) ∈ C{t}n+1 of X at the
singular point ai. Further consider for each i the following coordinate change:

λai : A
n+1
C → An+1

C
(x1, . . . , xn, y) 7→ (x1, . . . , xn, y)− ai,

under which ai moves to the origin. Let us further denote byXai the image of the curveX under
λai . By definition, γi(t) − ai is a Puiseux parametrization of Xai at 0. Let us w.l.o.g. assume
that it is of the form

γi(t)− ai = (xi,1(t), . . . , xi,n(t), tli)

with li the polydromy order and so that xi,j(t) 6= 0 is fulfilled for all i, j (otherwise we could
embed X in AnC).

For each singular point ai on X , our algorithm constructs with SPACECURVATURE a crucial
curvature κ̃i =

κ̃i,1
κ̃i,2

of X at ai. The claim is that, for γ(t) a parametrization of X , the curve in

An+1
C × (P1

C)m parametrized by the vector

γ̃(t) = (γ)×
(
κ̃i,1(γ(t)) : κ̃i,2(γ(t))

)
× · · · ×

(
κ̃m,1(γ(t)) : κ̃m,2(γ(t))

)
defines a resolution of singularities of X .

Resolution algorithm for curves with multiple singularities

Resolution Algorithm - Multiple Singularities Construction of a crucial curvature at each
singular point

Input number of singularities m & for each i = 1, . . . ,m a Puiseux parametriza-
tion γi(t) = ai + (xi,1(t), . . . , xi,n(t), tli) ∈ C{t}n+1 of X at ai with li its polydromy
order & the embedding dimension N = n+ 1
Output vector κ̃ = (κ̃1, . . . , κ̃m) of geometric invariants satisfying ord

(
κ̃i(γi(t))

)
= 1

procedure CURVATURES(γ1(t), . . . , γm(t) ;m,N)
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For each i = 1, . . . ,m compute

κ̃i := SPACECURVATURE(γi(t)− γi(0) ;N).

Finally return the list
κ̃ := (κ̃1, . . . , κ̃k).

Correctness of the algorithm CURVATURES:

We have
κ̃(γi(t)) = κ̃(γi(t)− γi(0)),

for each i = 1, . . . , n, and so the i-th component of κ̃ is of order one when evaluating at γi(t).

Let κ̃ = (κ̃1, . . . , κ̃m) = CURVATURES(γ1(t), . . . , γk(t);m,n + 1) be the list of crucial
curvatures produced by the algorithm CURVATURES. Consider the map

φκ̃ : X\Z → (P1
C)m

x 7→
(
κ̃1

(
I
)

1
(x) : κ̃1

(
I
)

2
(x)
)
× · · · ×

(
κ̃m
(
I
)

1
(x) : κ̃m

(
I
)

2
(x)
)
,

where Z = V
(
I + (κ̃i

(
I
)
j

: 1 ≤ i ≤ m, j = 1, 2)
)

and where κ̃i
(
I
)
j

denote the (minimal)
numerator for j = 1 and denominator for j = 2 of an implicit expression of κ̃i, respectively.
Let ‹Xκ̃ denote the Zariski closure of the graph of φκ̃.

Proposition 2.3.1. The projection morphism

π : ‹Xκ̃ → X

induced by the projection π : An+1
C × (P1

C)m → An+1
C onto the first n + 1 components is a

birational and projective morphism which is an isomorphism

π : ‹Xκ̃\E → X\Z

outside E = π−1(Z), where Z = V
(
I + (κ̃i

(
I
)
j

: 1 ≤ i ≤ m, j = 1, 2)
)
.

Proof. For each 1 ≤ l ≤ m, we denote by ‹X l
κ̃ the Zariski closure of the graph of the map

φlκ̃ : X\Zl → (P1
C)l

z 7→ (κ̃1

(
I
)

1
(z) : κ̃1

(
I
)

2
(z))× · · · × (κ̃l

(
I
)

1
(z) : κ̃l

(
I
)

2
(z)),

with Zl = V
(
I + (κ̃i

(
I
)
j

: 1 ≤ i ≤ l, j = 1, 2)
)
. The same argument as in the proof

of (i) of Lemma 2.1.3 shows that each projection πl : ‹X l
κ̃ → X induced by the projection

morphism An+1
C ×(P1

C)l → An+1
C defines a birational morphism and, moreover, an isomorphism

πl : ‹X l
κ̃\El → X\Zl outside El = π−1

l (Zl) with the inverse map given by x 7→ x × φlκ̃. We
proceed now by induction on l to show that πl is projective for each l = 1, . . . ,m. For l = 1,
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X1
κ̃ is the blowup of X in the ideal (κ̃1

(
I
)

1
, κ̃1

(
I
)

2
) and the claim follows directly from the

definition. For l + 1, we observe that ‹X l+1
κ̃ is the Zariski closure of the image of the map‹X l

κ̃\V
(
I + (κ̃l+1

(
I
)

1
, κ̃l+1

(
I
)

2
)
)
→ An+1

C × (P1
C)l × P1

C

induced by the geometric invariant κ̃l+1. The claim follows now immediately from the induction
hypothesis on ‹X l

κ̃.

Moreover, using [Ha77, Chapter II, Theorem 7.17.] the following corollary follows:

Corollary 2.3.2. There exists an ideal J ⊆ C[x1, . . . , xn, y] such that the curve ‹Xκ̃ together
with the projection π : ‹Xκ̃ → X is a blowup of X in the ideal J .

Resolution of singularities of X via the height function φκ̃ follows now immediately:

Theorem 2.3.3. The Zariski closure ‹Xκ̃ of the graph of φκ̃ defines together with the projection
morphism π : ‹Xκ̃ → X a resolution of singularities of X .

Proof. According to (iii) of Lemma 2.2.2, for each singular point ai, the vector

γ̃i(t) = (γi)×
(
κ̃i,1(γi(t)) : κ̃i,2(γi(t))

)
× · · · ×

(
κ̃m,1(γi(t)) : κ̃m,2(γi(t))

)
defines a parametrization of ‹Xκ̃ at π−1(ai). Moreover, it follows by construction that γ̃i(t) is
a regular parametrization of ‹Xκ̃ at the point π−1(ai). Therefore, ‹Xκ̃ is smooth at each point
π−1(ai). Further, by (v) of Lemma 2.2.2, ‹Xκ̃ is smooth outside the set {π−1(ai) : 1 ≤ i ≤ k}.
Finally, Proposition 2.3.1 applies and shows that π is a birational morphism and projective,
hence proper by [Ha77, Chapter II, Theorem 4.9].

Theorem 2.3.3 together with Corollary 2.3.2 present already the main results of my PhD
thesis. With this theorem we proved that any analytically irreducible curve X ⊆ An+1

C can be
resolved either in one blowup in an ideal defined by a crucial curvature or that its resolution can
be defined by as many suitably chosen geometric invariants as the number of singular points,
namely crucial curvatures of X at the singular points. Moreover, Corollary 2.3.2 allows a rep-
resentation of the smooth curve ‹Xκ̃ (constructed as the Zariski closure of the image of φκ̃) as a
blowup in a suitable ideal J . However, although the construction of Xκ̃ is not hard to do, it is
not clear at the moment to us how to construct the center J defining the blowup leading to Xκ̃.
We therefore put this problem on a list with open questions (see Section 5.2).

2.4 Analytically Reducible Singular Curves

An obstacle with impact on practical computations is the fact that our algorithms do not give a
resolution of curves with several analytic branches at their singular points. Whereas, it is very
easy to use the minimal curvatures, namely the slopes (of the tangent vectors), to separate two
transversal branches, it is in general not clear how to use the (higher) algebraic curvatures to
separate two analytic branches that meet tangentially.
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Example 2.4.1. Consider the curve X = {x2 − y4 = 0} ⊆ A2
C with a singularity at the origin

and observe that X is a union of two horizontal parabolas:

X = X1 ∪X2 with X1 = {x− y2 = 0} and X2 = {x+ y2 = 0},

with their respective parametrizations

γ1(t) = (t2, t) and γ2(t) = (−t2, t)

at the origin.

x = y2x = −y2

Figure 2.3: Two symmetric horizontal parabolas x = y2 (blue) and x = −y2 (red) meeting at
the origin.

Then each algebraic curvature κi(γj(t)), with j = 1, 2, is a Laurent series of order−2i− 1 and,
moreover, we have the equality

κi(γ1(t)) = (−1)i+1κi(γ2(t)). (2.4)

The two branches of the blowup of X in the ideal corresponding to one κi can be parametrized
by‹γ1i(t) = γ1(t)×

(
κi,1(γ1(t)) : κi,2(γ1(t))

)
and ‹γ2i(t) = γ2(t)×

(
κi,1(γ2(t)) : κi,2(γ2(t))

)
,

respectively. In the affine chart, in which the point lying over 0 is visible, the branches are
parametrized by the triples

(γ1(t), κi(γ1(t))−1) and (γ2(t), κi(γ2(t))−1).

The equality (2.4), however, shows that they meet at 0 again. The (higher) algebraic curvatures
are therefore not able to distinguish between both curves at the origin and hence are also not
able to tear them apart.

We therefore put the problem about resolution of (analytically) reducible curves on a list
with open questions (see Section 5.2).

74



Another point on our list with unsolved problems is the question about validity of our re-
sults gained in this chapter over other fields, fields of characteristic zero different from C and
fields of positive characteristic. There are many problems connected with this question. The
first problem is that the concept of geometric invariants was introduced only over the field of
complex numbers (already mentioned in Section 5.1). Another problem is that the concept of
Puiseux parametrizations, the key tool of this of this chapter, does not exist over an arbitrary
field, especially not over fields of positive characteristic or over fields that are not algebraically
closed. Hence, there will be an additional clue needed to generalize some of the statements of
this chapter also to (some) other characteristic.

One possibility to approach the problem of positive characteristic would be to interpret the
statements and proofs of this chapter implicitly, i.e., in terms of the defining ideal of a curve
instead of using Puiseux parametrizations. The search for an implicit proof of resolution via
geometric invariants is also one of the tasks of our list in Section 5.3.

Finally, the next big step is to carry the results and constructions for singular curves over to
singular surfaces. We are aware that this is a major challenge which will require a very detailed
analysis of the difficulties which make the surface case much more delicate. Let us mention
that a decisive advance in the resolution of surface singularities would present a long-awaited
and certainly highly acclaimed break through (which would also open the door for attacking the
higher-dimensional case).
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Chapter 3

The Moduli Space of n Points on the
Projective Line and the First
Fundamental Theorems for GLm(K)
and SLm(K) for an Infinite Field K

The origin of the moduli problem is dated to the early 1960s and attributed to D. Mumford who
developed a method to study equivalence classes defined by group actions on algebraic objects
and to find their scheme structure and to parametrize them (see the original work by D. Mumford
[FM82] or by P. Deligne and D. Mumford [DM69]). This method is known under the name Geo-
metric Invariant Theory (or shortly GIT). For the foundation of GIT, Mumford drew inspiration
from ideas of D. Hilbert [Hi93] and turned some of the classical techniques and results obtained
by Hilbert into revolutionary tools which can be applied to answer modern algebraic geometric
questions.

The moduli space of n points on the projective line is one of the classical and most impor-
tant examples of a GIT quotient and can be found in many books as one of the first and most
instructive examples, e.g. by I. Dolgachev [Do03, Chapter 11,§2], or in his book with D. Ortland
[DO88, Chapter 1], or by D. Mumford and K. Suominen [MS72, Chapter 2]. Among many other
examples of moduli spaces (see e.g. [Fu69b], [Ha77], [Kr84], [HM98], [Mu03], [Va03], [Br10],
. . . ), the problem of the moduli space of n points on the projective line became very popular and
it is still very popular nowadays. For the study and understanding of its scheme structure, often
fusions of various mathematical fields are demanded, which makes the problem very attractive.
For example to determine the generators of the coordinate ring of the moduli space when con-
sidered as an affine variety, one can use properties of integrally closed rings in combination with
very advanced algebraic and differential geometric techniques like J.-I. Igusa did in his paper
[Ig54], or play with suitably chosen differential operators combined with invariant theory argu-
ments like by I. Dolgachev in [Do03, Chapter 2], or another possibility is to use combinatorial
arguments together with elimination theory modulo Gröbner basis [St08, §3.1, §3.2], etc.
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Let us discuss first the case K = C. Whereas the generators, let us say g1, . . . , gk ∈
C[x1, y1, . . . , xn, yn], of the coordinate ring of the moduli space were known since 1894 (A. B. Kempe
[Ke94] proved that the coordinate ring is generated by the lowest degree invariants, the so-called
Kempe generators), the question about algebraic relations

Fj(g1, . . . , gk) = 0,

for j = 1, . . . , l, among them, which would allow us to write the coordinate ring of the moduli
space as a quotient of a polynomial ring

C[z1, . . . , zk]/{F1, . . . , Fl},

remained open for long time. Very recently, in years 2006-2009, B. Howard, J. Millson, A. Snow-
den and R. Vakil collected in their papers [HMSV1, HMSV2, HMSV3, HMSV4, HMSV5] sev-
eral observations from their investigations of the relations between the Kempe generators. We
have to mention also their nice graph theoretical representation of the relations for the cases
n ≤ 6 presented in these papers, which enlarges again the spectrum of mathematical methods
and fields contributing to this moduli problem. The true breakthrough was made by B. Howard,
J. Millson, A. Snowden and R. Vakil in [HMSV4, Theorem 1.1] where the authors proved that
the relations between the Kempe generators are generated by quadratic binomial relations if
n 6= 6 and by the Segre cubic relations in the case n = 6.

3.1 First Fundamental Theorem for SL2(K) and GL2(K)

In this section we will study the moduli space of n points on the complex projective line given
by the equivalence classes of n-tuples of points (x : y) ∈ P1

C modulo the action of the projective
special linear group, i.e., the orbit space (P1

C)n/PSL2(C). This set has structure of an affine
algebraic variety whose coordinate ring equals C[x1, y1, . . . , xn, yn]SL2 , the invariant ring under
the action of SL2(C), and whose function field is a subfield of the invariant field under the action
of GL2(C), i.e, F((P1

C)n/PSL2(C)) ⊆ C(x1, y1, . . . , xn, yn)GL2 (as we will show later). The
generators of this ring and field are known and given by the First Fundamental Theorem (we
will refer to it shortly as FFT) for SL2(C) and GL2(C), respectively.

I will present in this section of my thesis two different new strategies how to prove the FFT
for SL2(C) and GL2(C) and thus, also describe in two different ways how to find the (Kempe)
generators of the coordinate ring and of the function field of (P1

C)n/PSL2(C). Whereas the first
method is based on results gained in Section 1.4 of the first chapter of my thesis explaining the
properties of geometric invariants, especially on Proposition 1.4.2, and as such provides a ge-
ometrical explanation for the FFT’s, the second method is rather combinatorial and completely
independent of the results of the first and second chapter of my thesis. Let me mention from the
very beginning that the second proof was obtained in collaboration with S. Yurkevich (Univer-
sity of Vienna, Austria).
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The advantage of the second proof of the FFT’s for SL2(C) and GL2(C) is that it is valid over
all infinite fields as well. Thus, we can conclude the FFT’s also for SL2(K) and GL2(K), where
K is an arbitrary infinite field. Moreover, our techniques for proving the FFT’s for SL2(K) and
GL2(K), for K an infinite field, can be generalized easily to polynomial rings and fields of
rational functions in m · n variables and the respective group actions of SLm(C) and GLm(C),
so that we prove even the FFT’s for SLm(K) and GLm(K),m ≥ 2, and obtain as corollary also
the generators of the coordinate ring and the function field of the moduli space of n points in the
(m−1)-dimensional projective space. Further, we provide a family of counter-examples for the
FFT’s over finite fields.

To be more precise, let (P1
C)n = {

(
(x1 : y1), . . . , (xn : yn)

)
: (xi : yi) ∈ P1

C} be the set of
n points on the projective line. The projective general linear group PSL2(C) acts on (P1

C)n by
acting from the left on each point separately:Å

a b
c d

ã
· (xi : yi) = (axi + byi : cxi + dyi). (3.1)

This group action defines an equivalence relation on (P1
C)n and so, the natural question appears:

How does the appropriate moduli spaceM = (P1
C)n/PSL2(C) look like? In order to determine

the structure of the moduli space itself, we will investigate the polynomial and rational functions
on it.

Consider the polynomial ring in pairs of variables C[x,y] := C[x1, y1, . . . , xn, yn] over C
and its quotient field C(x,y). The general linear group GL2(C) acts on C[x,y], and thus also on
C(x,y), from the right by the usual matrix-vector multiplication on the pairs of variables (xi, yi)
as described by (3.1). We denote the corresponding invariant field by C(x,y)GL2 . Clearly, no
polynomial, except for the constant ones, can be invariant under the action of GL2(C), i.e.,
C[x,y]GL2 = C. However, it is easy to construct polynomials that are invariant under the action
of SL2(C). Let us denote the corresponding invariant ring by C[x,y]SL2 . We set

fi,j := xiyj − yixj ∈ C[x,y], 1 ≤ i, j ≤ n,

and denote by C[fij ] the polynomial ring generated over C by all fi,j , 1 ≤ i, j ≤ n and by
C(fij) its quotient field. Notice that these polynomials satisfy the straightforward equalities

fi,i = 0, fj,i = −fi,j , (3.2)

and also the Plücker relation

fi,jfk,l = fi,kfj,l − fi,lfj,k, (3.3)

for all 1 ≤ i, j, k, l ≤ n. Moreover, it is obvious that each fi,j is semi-invariant under the action
of GL2(C), i.e.,

G · fi,j = det(G)fi,j ,
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for any G ∈ GL2(C), and hence invariant under the action of SL2(C), justifying the inclusions
C[x,y]SL2 ⊇ C[fij ] and C(x,y)GL2 ⊇ C

Ä
fi,j
fk,l

: 1 ≤ i, j, k, l ≤ n
ä

.

The goal is to understand the structure of the ring C[fij ] and the field C
Ä
fi,j
fk,l

ä
and to prove

the First Fundamental Theorems for SL2(C) and GL2(C):

First Fundamental Theorem for GL2(C). An element q ∈ C(x,y) is invariant under the
action of GL2(C) if and only if q can be written as a rational function in fi,j/fk,l, 1 ≤ i, j, k, l ≤
n, i.e.,

C(x,y)GL2 = C
Å
fi,j
fk,l

: 1 ≤ i, j, k, l ≤ n
ã
.

Moreover, an invariant q admits the following representation in the generators fi,j/fk,l’s:

q(xi, yi) = q

Å
f1,i

f1,2
,
f2,i

f1,2

ã
.

First Fundamental Theorem for SL2(C). An element p ∈ C[x,y] is invariant under the action
of SL2(C) if and only if p can be written as a polynomial in fi,j , 1 ≤ i, j ≤ n, i.e.,

C[x,y]SL2 = C[fij ].

The history of the First Fundamental Theorem is long and complex. Depending on the
source, it is first attributed to A. Clebsch [Cl70], H. Weyl [We39], W. V. D. Hodge [Ho43] or
J.-I. Igusa [Ig54]. We will explain the contribution of these authors as well as provide insight
into more recent approaches.

Indeed, D. R. Richman [Ri89, page 44] recognized the oldest reference [Cl70, page 51] from
1870, in which A. Clebsch considered GL2(K) semi-invariant polynomials by working with the
so-called Aronhold operator. Note that this proof works for all fieldsK of characteristic 0. Some
30 years later, H. Grace and A. Young found an easier proof of Clebsch’s theorem using the Cay-
ley Ω-operator and compared it with the original one [GY03, §28, §35]. The first reference for
the GLn(K) semi-invariant polynomials for any n ∈ N is [Tu29, §5] in which W. Turnbull gen-
eralized the preceding ideas of the Ω-operator. Then H. Weyl made a first breakthrough in this
area by employing Capelli identities in [We39, Theorem 2.6.A].

Soon after in 1953, J.-I. Igusa [Ig54, Theorem 4] proved the FFT for SLn(K), where K is
any universal domain, by placing it in a completely different, geometric, setting. Embedding
the invariant ring into the coordinate ring of a Grassmann variety and using tools from abstract
algebraic geometry, he was the first one who showed the theorem for any algebraically closed
field K.

The next major change in perspective was done by P. Doubilet, G.-C. Rota and J. Stein
in [DRS74, page 200-202] where the authors first introduced the combinatorial straightening
lemma (see Lemma 3.1.2) and double tableaux, and then proved the FFT for GLn(K) and
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SLn(K) in a different but equivalent setting for arbitrary infinite fields. It shall be noted that the
straightening lemma (while not named like this) was already proven by W. V. D. Hodge [Ho43,
page 27], who attributed ideas to A. Young [Yo28, Theorem 1]. Two years later, C. De Concini
and C. Procesi noted that the paper [DRS74] had a gap and fixed it [dCP76, Theorem 1.2]. A
decade later, M. Barnabei and A. Brini [BB86] published an article with a more elementary
proof, again for infinite fields, where they managed to avoid double tableaux.

An even more recent and new proof for all infinite fields was found by D. R. Richman [Ri89,
§3], in which the author described a reduction to the case n = 2. Then Richman showed that
polynomial invariants under the action of SL2(K) are equal to the ones under the action of the
special upper triangular matrices. It turned out that the latter can be described easier.

Moreover, we mention the paper [SW89] in which B. Sturmfels and N. White presented the
straightening algorithm using reduction modulo Gröbner bases. In his book [St08, §3.2], Sturm-
fels explained how this algorithm can be used to show the FFT for SLn(C). Moreover, it turns
out that the direct straightening algorithm approach is rather slow for practical computations and
so in the same book the author gave another more efficient algorithm for the representation of
SLn(C) invariants in terms of the generators of the invariant ring.

Finally, a more recent proof is due to H. Kraft and C. Procesi [KP96, §8], in which they
deduce the FFT for SLn(K) and GLn(K) for infinite fields from a generalization of Weyl’s
Theorems. We also refer to [Do03] for extended bibliographic notes and a well-written proof
using Cayley’s Ω-operator.

Proofs of the First Fundamental Theorems

Let us start with two proofs of the First Fundamental Theorem for GL2(C). The strategy of
our first proof of the FFT for GL2(C) is to use Proposition 1.4.2 in order to interpret GL2(C)-
invariant rational functions as “minimal” geometric invariants. Then Theorem 1.4.5 applies and
gives us a representation of q as a rational function in the generators of the invariant field.

From now on we will refer to each rational function q = q(x1, y1, . . . , xn, yn) ∈ C(x,y) as
q(xi, yi), in order to shorten the notation.

First Proof of the First Fundamental Theorem for GL2(C). Let q = q1
q2
∈ C(x,y) be invariant

under the action of GL2(C). Then q satisfies the following equality for all a, b, c, d ∈ C with
ad− bc 6= 0:

q1(axi + byi, cxi + dyi) · q2(xi, yi)− q1(xi, yi) · q2(axi + byi, cxi + dyi) = 0. (3.4)

By Weyl’s, principle we conclude the equality even for arbitrary a, b, c, d ∈ C which allows us
to consider them even as variables in the above equality. Hence the equality (3.4) still holds if for
any family of bivariate power series ui ∈ C[[t, s]] and any reparametrization ϕ ∈ Aut(C[[t, s]])
we perform the substitution

xi 7→ ∂tui, yi 7→ ∂sui,

81



a 7→ ∂tϕ1, b 7→ ∂tϕ2, c 7→ ∂sϕ1, d 7→ ∂sϕ2.

Thus, we see that q(∂tui, ∂sui) satisfies the equality (1.10) of Proposition 1.4.2. But as the
power series ui were arbitrary (they only have to satisfy the condition q2(∂tui, ∂sui) 6= 0) it
follows from Proposition 1.4.2, that q(x(1,0)

i , x
(0,1)
i ) is a geometric invariant. Now Theorem

1.4.5 applies and proves the following equality

q(x
(1,0)
i , x

(0,1)
i ) = q(κi,(1,0), κi,(0,1)) = q

(
x

(1,0)
i x

(0,1)
n − x(0,1)

i x
(1,0)
n

x
(1,0)
n−1 x

(0,1)
n − x(0,1)

n−1 x
(1,0)
n

,
x

(0,1)
i x

(1,0)
n−1 − x

(1,0)
i x

(0,1)
n−1

x
(1,0)
n−1 x

(0,1)
n − x(0,1)

n−1 x
(1,0)
n

)
.

According to Corollary 1.4.6, we can apply the substitution

x
(i,j)
1 7→ x

(i,j)
n−1, x

(i,j)
2 7→ x(i,j)

n , x
(i,j)
n−1 7→ x

(i,j)
1 , x(i,j)

n 7→ x
(i,j)
2 ,

with i+ j = 1, to the right-hand side of the above equality in order to find the representation of
the geometric invariant q(x(1,0)

i , x
(0,1)
i ) in another system of generators. This substitution yields,

after renaming the variables, the equality

q(xi, yi) = q

Å
− f2,i

f1,2
,
f1,i

f1,2

ã
. (3.5)

Finally, we let the matrix Å
0 1
−1 0

ã
act on both sides of the equation (3.5) and use the invariance of q to conclude that

q(xi, yi) = q

Å
f1,i

f1,2
,
f2,i

f1,2

ã
.

Notice that the invariant field C(x,y)GL2 is equal to the field of minimal geometric invari-
ants. Here, with “minimal” we mean “of minimal order” with respect to the two derivations
∂1 and ∂2 that generate the differential field F = C(x

(i,j)
k : i, j ∈ N) (see Section 1.4).

More precisely, the minimal geometric invariants are the rational functions in ∂ix
(0,0)
j , with

j = 1, . . . , n, i = 1, 2.

The second proof of the First Fundamental Theorem for GL2(C) we present in this chapter,
is self-contained and very elementary:

Second Proof of the First Fundamental Theorem for GL2(C). Let q ∈ C(x,y) be invariant un-
der the action of GL2(C). Then for any matrix

G =
1

ad− bc

Å
a b
c d

ã
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satisfying ad− bc 6= 0 we have the equality

q(xi, yi) = G · q(xi, yi) = q

Å
axi + byi
ad− bc

,
cxi + dyi
ad− bc

ã
. (3.6)

Now, the equality (3.6) holds on an Zariski open subset of C2n+4, namely on all (2n+4)-tuples
(x1, y1, . . . , xn, yn, a, b, c, d) for which ad − bc 6= 0 and the denominator of q does not vanish.
Moreover, since |C| = ∞, it follows by Weyl’s principle that we can consider a, b, c, d to be
variables. Let us now substitute a = −y1, b = x1, c = −y2, d = x2 into (3.6) and obtain:

q(xi, yi) = q

Å
f1,i

f1,2
,
f2,i

f1,2

ã
.

This proves that K(x,y)GL2 ⊆ C
Ä
fij
fk,l

ä
. The other inclusion is clear from our considerations

before.

Remark 3.1.1. Whereas the first proof of the First Fundamental Theorem for GL2(C) uses
the properties of geometric invariants which were proven only over C (and it is not clear at
the moment whether they can be generalized also to other fields (see a list with open problems
in Section 5.3)), our second proof is based on Weyl’s principle of the irrelevance of algebraic
inequalities which applies to (in-)equalities over any infinite field K. Therefore, if we replace
C by an infinite field K in our second proof, the proof will remain vaild and we obtain even the
statement for GL2(K) for an arbitrary infinite field K.

Let us now move to the First Fundamental Theorem for SL2(C). We start with the explana-
tion of the main ideas of the two proofs of FFT for SL2(C) presented here.

We will reprove and use Hodge’s straightening lemma [Ho43] and draw inspiration from
C. De Concini and C. Procesi [dCP76]. Given an invariant polynomial p ∈ C[x,y]SL2 , one may
assume that p is homogeneous in the variables x1, . . . , xn, let us say of degree m. We then:

• for the first proof use the First Fundamental Theorem for GL2(C),

• for the second proof let a suitably chosen GL2(C)-matrix act on p

in order to show that fm1,2 ·p ∈ C[fij ]. However, from this one cannot immediately conclude that
p ∈ C[fij ]. The problem here is the fact that relations between the elements of this ring exist.
Hence, p does not admit a unique representation as a polynomial in the generators fi,j . There-
fore, we investigate first the ring C[fij ], study its structure, when considered as a C-algebra, and
construct a C-basis. Only then we can eliminate possible relations and deduce that p ∈ C[fij ].

Let us now start with the investigation of the ring C[fij ]. Any product of the form fi1,j1fi2,j2 · · · fim,jm
can be associated with the following diagramï

i1 i2 · · · im
j1 j2 · · · jm

ò
,
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where ik < jk for all k (using relations (3.2)). If we can permute the columns of the diagram in
such a way that i1 ≤ i2 ≤ · · · ≤ im and j1 ≤ j2 ≤ · · · ≤ jm, the diagram becomes a standard
Young tableau and the corresponding product fi1,j1fi2,j2 · · · fim,jm is called a standard product.
Notice, that each product fi1,j1fi2,j2 · · · fim,jm can be transformed into a sum of standard product
just by applying iteratively the Plücker relation.

Lemma 3.1.2 (Straightening lemma). The monic standard products form a C-basis of C[fij ].

This lemma was first proven by Hodge [Ho43], who attributes the idea to consider standard
tableaux to Young [Yo28]. However, Hodge’s proof is lengthy and so we will provide a simpler
argument.

Proof. It follows from the Plücker relations that the monic standard products form a generating
system. Consider now the monomial ordering on N2n given by x1 ≺ y1 ≺ x2 ≺ · · · ≺ yn. In
this way, different standard products have different leading monomials which proves their linear
independence.

Hence, any p ∈ C[fij ] can be uniquely written as p =
∑

α∈I cαFα, for some index set
I ⊆ ({1, . . . , n} × {1, . . . , n})N where N ∈ N, cα ∈ C and the Fα’s are standard products.

Lemma 3.1.3. Let p =
∑

α∈I cαFα be a C-linear combination of standard products Fα. If for
some i, the polynomial p vanishes after the substitution (xi, yi) = (0, 0), i.e.,

p|(xi,yi)=(0,0) = 0,

then each summand Fα is divisible by fi,rα for some rα ∈ {1, . . . , n}.

Proof. Let us assume by contradiction that there are standard products Fα1 , . . . , Fαk , αj ∈ I
which are not divisible by any fi,r, r ∈ {1, . . . , n}. Notice that these standard products satisfy
Fαj = Fαj |(xi,yi)=(0,0) for each j. Then evaluating p at (xi, yi) = (0, 0) gives

0 =
k∑
i=1

cαiFαi ,

which contradicts the linear independence of standard products.

Lemma 3.1.4. Let q ∈ C[x,y] be a polynomial satisfying

f1,2 · q ∈ C[fij ].

Then q already belongs to the ring C[fij ].

Proof. Write p = f1,2 · q uniquely as a linear combination of the standard products

p =
∑
α∈I

cαFα.

We prove that each Fα is divisible by f1,2.
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Notice that p|(x1,y1)=(0,0) = 0 and also p|(x2,y2)=(0,0) = 0. Thus, Lemma 3.1.3 applies and
guarantees that each Fα is divisible by some f1,r and some f2,s. We claim that one can pick
r = 2. Assume by contradiction that Fα1 , . . . , Fαk are not divisible by f1,2 and write

p = f1,2 · P +
k∑
l=1

cαlFαl (3.7)

for some P ∈ C[fi,j ], a sum of standard products of smaller degree than the degree of p, and
some coefficients cαl ∈ C. We enlarge now the polynomial ring C[x,y] to C[x,y, λ] by adding
a new variable λ which will be used for weighting the standard products. The goal now is to
carry out a suitable substitution such that, whereas the left-hand side of the equation (3.7) and
also the summand f1,2 · P of the right-hand side vanish, the sum

∑k
l=1 cαlFαl transforms into

another sum of standard weighted products. This would yield a contradiction.
Let λ be a variable. We perform the substitution ∗ : (x1, y1) 7→ (λx2, λy2) under which

f1,k 7→ λf2,k for all k ≥ 2 and fi,j 7→ fi,j if i, j 6= 1. Obviously, all standard products (and
arbitrary polynomials), that are divisible by f1,2, become zero after this substitution. Further,
each standard product Fαl with the corresponding diagramï

1 · · · 1 2 · · · 2 ibl+1 · · ·
j1 · · · jal jal+1 · · · jbl ibl+1 · · ·

ò
transforms under ∗ into the standard product Fαl |(x1,y1)=(x2,y2), with the corresponding diagramï

2 · · · 2 2 · · · 2 ibl+1 · · ·
j1 · · · jal jal+1 · · · jbl ibl+1 · · ·

ò
,

multiplied by λal , where al is the number of columns with 1 on the top in the diagram of Fαl . It
follows that the substitution ∗ acts injectively on the standard products that are not divisible by
f1,2. After applying ∗, the equality (3.7) becomes

0 = p∗ =

k∑
l=1

cαlF
∗
αl
.

Now, since the substitution ∗ is injective on Fαl’s, we conclude
∑k

l=1 cαlFαl = 0.

Before we move to the proof of the First Fundamental Theorem for SL2(C), let us discuss
the behaviour of an SL2(C)-invariant polynomial under the action of GL2(C).

Lemma 3.1.5. Let p ∈ C[x,y]SL2 be an invariant polynomial.

(i) Then each of its homogeneous parts is itself invariant under the action of SL2(C).

(ii) If p is homogeneous, then it is homogeneous of an even degree 2m, for some m ∈ N.
Moreover, p is homogeneous of degree m as a polynomial in x1, . . . , xn and the same
holds also for p considered as a polynomial in variables y1, . . . , yn.
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Proof. (i) First observe that, if p ∈ C[x,y]SL2 is an invariant polynomial, then by the lin-
earity of the action of SL2(C) it follows that each of its homogeneous summands must be
invariant as well.

(ii) Let p ∈ C[x,y]SL2 be homogeneous of some degree k. Let us now consider the matrix

S =

Å
t 0
0 t−1

ã
,

where t ∈ C∗ is arbitrary. Then, as S is an SL2(C)-matrix, p stays invariant under its
action:

p(xi, yi) = S · p(xi, yi) = p(txi, t
−1yi). (3.8)

Because |C| = ∞ and this equality holds for all t 6= 0, the principle of Weyl applies and
we can consider t as a variable. Now, comparison of terms of equal degree on the left-
and the right-hand sides of (3.8) shows that each term of p must contain as many vari-
ables from the set {x1, . . . , xn} as from the set {y1, . . . , yn}, if counted with multiplicity.
Hence, p is not only homogeneous of an even degree k = 2m, for some m, but it is also
homogeneous in the variables x1, . . . , xn of degree m and also in the variables y1, . . . , yn
of the same degree.

Lemma 3.1.6. Let p ∈ C[x,y]SL2 be a homogeneous invariant polynomial of degree 2m. Then
p is semi-invariant under the action of GL2(C) with character det(G)m, i.e., for any invertible
matrix G ∈ GL2(C), p satisfies the equality

G · p = det(G)mp.

Proof. First notice that according to Lemma 3.1.5, each homogeneous invariant polynomial
p ∈ C[x,y]SL2 of degree 2m is homogeneous in the variables x1, . . . , xn of degree m and also
homogeneous in the variables y1, . . . , yn of degree m.
Let us consider an invertible matrix G ∈ GL2(C) and examine its action on p. We write the
matrix in the following way:

G = G ·
Å

det(G)−1 0
0 1

ã
·
Å

det(G) 0
0 1

ã
.

Obviously, the product

G ·
Å

det(G)−1 0
0 1

ã
is an element of SL2(C). Hence, as p is invariant under the action of SL2(C), the action of G on
p reduces to the action of

G̃ :=

Å
det(G) 0

0 1

ã
.
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Thus, we obtain the equality

p(axi + byi, cxi + dyi) = G · p(xi, yi) = G̃ · p(xi, yi) = p(det(G)xi, yi) =

= det(G)mp(xi, yi) = (ad− bc)mp(xi, yi) = (3.9)

= det(G)mp(xi, yi), (3.10)

using that p has degree equal to m in the variables x1, . . . , xn.

We are now in a position to prove the First Fundamental Theorem for SL2(C).

First Proof of the First Fundamental Theorem for SL2(C). Let p ∈ C[x,y]SL2 be an invariant
polynomial. Let us w.l.o.g. assume that p is homogeneous of degree 2m (use Lemma 3.1.5).
Then according to Lemma 3.1.6, for any invertible matrix G ∈ GL2(C), the equation G · p =
det(G)mp is fulfilled. As fm1,2 is also semi-invariant under the action of GL2(C), and even with
the same character as p, it follows that

q :=
p

fm1,2

is invariant under the action of GL2(C). Now, First Fundamental Theorem for GL2(C) applies
and gives us the equality

p(xi, yi)

fm1,2
= q(xi, yi) = q

Å
f1,i

f1,2
,
f2,i

f1,2

ã
=
p(f1,i, f2,i)

f2m
1,2

,

using that p is homogeneous of degree 2m. Multiplying both sides of this equality with f2m
1,2

yields
fm1,2 · p = p(f1,i, f2,i).

Now, Lemma 3.1.4 applies and finishes the proof.

Notice, that in this proof we used the First Fundamental Theorem for GL2(C). However,
we will present also a second proof of the First Fundamental Theorem for SL2(C) which is
elementary and independent of the FFT for GL2(C).

Second Proof of the First Fundamental Theorem for SL2(C). If p ∈ C[x,y]SL2 is an invariant
polynomial, then according to Lemma 3.1.5 we can w.l.o.g. consider it as a homogeneous poly-
nomial of degree 2m for some m ∈ N. Further, according to Lemma 3.1.6, p satisfies the
equality

G · p = det(G)mp = (ad− bc)mp,
where G ∈ GL2(C) is an arbitrary invertible matrix and a, b, c, d ∈ C its entries. This equality
holds on the Zariski open set

{(x1, y1, . . . , xn, yn, a, b, c, d) ∈ C2n+4 : ad− bc 6= 0}.

As |C| = ∞, Weyl’s principle applies and we can consider a, b, c, d as variables. After substi-
tuting a = −y1, b = x1, c = −y2, d = x2, the equality (3.9) becomes

fm1,2 · p(xi, yi) = p (f1,i, f2,i) ∈ C[x,y]. (3.11)

Now, the claim follows by Lemma 3.1.4.
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Remark 3.1.7. Firstly, remark that proofs of Lemma 3.1.2, Lemma 3.1.3, Lemma 3.1.4, Lemma
3.1.5, Lemma 3.1.6 remain all valid when replacing C by an arbitrary infinite field K.
Secondly, due to the fact that our first proof of the FFT for SL2(C) is based on these lemmata
and on the FFT for GL2(C), whose validity over an arbitrary infinite field was justified as well
(see Remark 3.1.1), our first proof of FFT for SL2(C) can be applied to any infinite field K.
Thirdly, since our second proof of FFT for SL2(C) uses additionally only Weyl’s princpile of the
irrelevance of algebraic inequalities which applies also to (in-)equalities over any infinite field
K, also this proof is valid over K with |K| =∞.
Thus we conclude, that we have even two proofs for the First Fundamental Theorem for SL2(K),
where K is an infinite field.

LetK be an infinite field. Notice that the equality (3.11) also shows that each invariant poly-
nomial p belongs to the intersection K[x,y]∩K(f1,i, f2,i), where K(f1,i, f2,i) = K(f1,i, f2,i :
i = 3, . . . , n). Thus, one could intuitively think that p does not only lie in the polynomial ring
K[fi,j ] but that it belongs already to the subring K[f1,i, f2,i] = K[f1,i, f2,i : i = 3, . . . , n].
However, the inclusion K[x,y] ∩K(f1,i, f2,i) ⊆ K[f1,i, f2,i] is wrong. For example, because
of the Plücker relation, the polynomial f3,4 can be written as

f3,4 =
f1,3f2,4 − f1,4f2,3

f1,2
.

Therefore, f3,4 is obviously an element of K[x,y] ∩K(f1,i, f2,i) but there is no reason for it to
be contained in K[f1,i, f2,i]. In fact, we can easily show the following equality first observed by
Igusa in [Ig54, Theorem 3]:

Corollary 3.1.8 (Igusa). It holds that K(fij) ∩K[x,y] = K[fij ].

Proof. The First Fundamental Theorem ensures that K(fij) ∩C[x,y] ⊆ K[x,y]SL2 = K[fij ].
The other inclusion is obvious.

We have already proven how the coordinate ring of (P1
C)n/ SL2(C) is generated as a C-

algebra, namely by the polynomials fi,j . We can now also conclude with the First Fundamental
Theorems for SL2(C) and GL2(C) that the invariant field C(x,y)GL2 contains the function field
of (P1

C)n/ SL2(C).

Corollary 3.1.9. The function field of (P1
C)n/ SL2(C) is a subfield of the invariant field C(x,y)GL2 .

Proof. Notice first that each element q in the function field of (P1
C)n/ SL2(C) is a rational func-

tion with numerator and denominator both invariant under the action of SL2(C). Due to the fact
that q defines a function on (P1

C)n, its numerator and denominator of must be both homogeneous
of the same degree (even multihomogeneous), otherwise q would not be well defined . Let us
denote their degree bym. Further, Lemma 3.1.6 tells us that both, the numerator and the denom-
inator of q, are semi-invariant under the action of GL2(C) and with character det(G)m. Thus, q
itself is invariant under GL2(C).
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Counterexamples to the First Fundamental Theorems over finite fields

Note that the statements of the First Fundamental Theorems for GL2(K) and SL2(K) are wrong
for any finite field K. In fact, for any prime power q, the polynomials

pi := xqi yi − xiy
q
i , 1 ≤ i ≤ n,

are semi-invariant under the action of GL2(Fq), i.e., we have

G · pi = det(G)pi. (3.12)

Therefore, it follows that pi ∈ Fq[x,y]SL2 and pi/pj ∈ Fq(x,y)GL2 , for i 6= j. However, it is
obvious that pi 6∈ Fq[fij ], showing that Fq(fij) ( Fq(x,y)GL2 and Fq[fij ] ( Fq[x,y]SL2 .

3.2 First Fundamental Theorem for SLm(K) and GLm(K)

The goal of this section is to extend the techniques and methods developed in the previous
section to the ring

C[x] := C[xi,j : i = 1, . . . ,m; j = 1, . . . , n]

and its quotient field C(x) := Quot(C[x]) in order to investigate the correspoding invariant ring
and field under the actions of SLm(C) and GLm(C), respectively.

To keep the notation simple, we will denote the set {1, . . . , n} shortly by [n] and we will
write q(xi,j) for each element q(xi,j : i ∈ [m], j ∈ [n]) ∈ C(x). We let GLm(C) act on the
ring C[x] from the right by the usual matrix-vector multiplication on each of the column vec-
tors (x1,j , . . . , xm,j)

T , j ∈ [n] and extend this to an action on the field C(x). By C(x)GLm we
denote the corresponding invariant field. Obviously, the constant polynomials are the only poly-
nomial invariants under the action of GLm(C), i.e., we have C[x]GLm = C. Hence, we consider
the action of SLm(C) on the polynomial ring C[x], which gives us already more flexibility for
the construction of invariant elements, and study the structure of the invariant ring C[x]SLm .

Let us mention, that the invariant ring C[x]SLm is again equal to the coordinate ring of
the GIT quotient (Pm−1

C )n/ SLm(C), namely the moduli space of n points on the (m − 1)-
dimensional projective space. And we will also see later that the function field of (Pm−1

C )n/ SLm(C)
is a subfield of C(x)GLm .

To each vector (i1, . . . , im), with 1 ≤ ij ≤ n, we associate the matrix

Xi1,...,im =

á
x1,i1 x1,i2 · · · x1,im

x2,i1 x2,i2 · · · x2,im
...

...
. . .

...
xm,i1 xm,i2 · · · xm,im

ë
and set

fi1,...,im := det(Xi1,...,im) ∈ C[x].
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By C[fi1,...,im ] we denote the polynomial ring generated over C by all fi1,...,im , 1 ≤ ij ≤ n, and
by C(fi1,...,im) its quotient field. Obviously, the following relations between the polynomials
fi1,...,im’s are satisfied:

fi1,...,im = 0 if ij = ik for some j 6= k, (3.13)

fi1,...,im = sgn(σ)fiσ(1),...,iσ(m)
for any permutation σ ∈ Sm, (3.14)

where sgn(σ) denotes the sign of the permutation σ. We also have the Plücker relation

m∑
l=1

(−1)lfi1,...,im−1,jl · fj1,...,jl−1,jl+1,...,jm+1 = 0. (3.15)

For a short proof of Plücker relations see for instance the paper by W. V. D. Hodge [Ho43, p. 24].
Further, for any invertible matrix G ∈ GLm(C), the following equality is satisfied:

G · fi1,...,im = det(G)fi1,...,im .

Thus, each polynomial fi1,...,im is semi-invariant under the action of GLm(C) and invariant
under the action of SLm(C) justifying the inclusions

C
Å
fi1,...,im
fj1,...,jm

: 1 ≤ ik, jl ≤ n
ã
⊆ C(x)GLm and C[fi1,...,im : 1 ≤ ik ≤ n] ⊆ C[x]SLm .

Let us denote the field C
(
fi1,...,im
fj1,...,jm

: 1 ≤ ik, jl ≤ n
)

and the ring C[fi1,...,im : 1 ≤ ik ≤ n]

shortly by C
(
fi1,...,im
fj1,...,jm

)
and C[fi1,...,im ], respectively. To understand their structure and to prove

the First Fundamental Theorems for SLm(C) and GLm(C) is the aim of this section.

First Fundamental Theorem for GLm(C). An element q ∈ C(x) is invariant under the action
of GLm(C) if and only if q can be written as a rational function in fi1,...,im

fj1,...,jm
, 1 ≤ ik, jl ≤ n, i.e.,

C(x)GLm = C
Å
fi1,...,im
fj1,...,jm

ã
.

Moreover, an invariant q admits the following representation in the generators fi1,...,im
fj1,...,jm

’s:

q(xi,j) = q

Å
f1,...,i−1,j,i+1,...,m

f1,...,m

ã
.

First Fundamental Theorem for SLm(C). An element p ∈ C[x] is invariant under the action
of SLm(C) if and only if p can be written as a polynomial in fi1,...,im , 1 ≤ ij ≤ n, i.e.,

C[x]SLm = C[fi1,...,im ].
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Proofs of the First Fundamental Theorems

Let us again start with the proofs of the First Fundamental Theorem for GLm(C). In our first
proof we use exactly the same strategy as in the first proof of the FFT for GL2(C), just extended
to the larger set of variables. Namely, we interpret invariants under the action of GLm(C) again
as minimal geometric invariants.

First Proof of the First Fundamental Theorem for GLm(C). Let q = q1
q2
∈ C(x)GLm be an in-

variant rational function. Further, let us consider n power series ui ∈ C[[t1, . . . , tm]], with
i = 1, . . . , n in m variables. Using the same arguments as in the first proof of the FFT for
GL2(C), we show that q(∂tiuj) satisfies equation (1.10) from Proposition 1.4.2 which means
that q(xeij ), i ∈ [m], j ∈ [n] is a geometric invariant. Here, ei denotes the i-th standard basis
vector. Now, we conclude with Theorem 1.4.5 that q satisfies the equality

q(xeij ) = q(κj,ei),

which after renaming the variables can be read as

q(xi,j) = q

Å
fn−m+1,...,n−m+i−1,j,n−m+i+1,...,n

fn−m+1,...,n

ã
.

Now, Corollary 1.4.6 applies and justifies the equality

q(xi,j) = q

Å
f1,...,i−1,j,i+1,...,m

f1,...,m

ã
.

As in the situation of the FFT for GL2(C), also here the first proof of the FFT for GLm(C)
cannot be extended to a proof over fields different from C. The reason is the same as in the
case of GL2(C), namely the fact that we defined geometric invariants and proved their basic
properties only over C. We put the question about possible generalizations of this proof also to
infinity fields on a list with open questions, see Section 5.3. We present now a second proof of
the FFT for GLm(C) which is valid over any infinite field K.

Second Proof of the First Fundamental Theorem for GLm(C). Let q ∈ C(x) be invariant under
the action of GLm(C). Then for any invertible matrix G ∈ GLm(C) we have the equality

q(xi,j) = G · q(xi,j) = q
Ä(
G · (x1,j , . . . , xm,j)

T
)
i

ä
, (3.16)

where (G · (x1,j , . . . , xm,j)
T )i means the i-th entry of the vector that we obtain after performing

the matrix-vector multiplication G · (x1,j , . . . , xm,j)
T . Since G is an arbitrary invertible matrix,

as in the second proof of FFT for GL2(C) we conclude with Weyl’s principle that the entries
gi,j of the matrix G can be considered as variables in the equality (3.16). Now, we perform for
G the substitution

G 7→ 1

f1,...,m
· adj(X1,...,m), (3.17)
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where adj(X1,...,m) denotes the adjoint of the matrix X1,...,m. Let us denote the cofactor of the
(j, i) entry of the matrix X1,...,m by (X1,...,m)(j,i). After the substitution (3.17), each

(G · (x1,j , . . . , xm,j)
T )i =

m∑
l=0

gi,lxl,j

becomes

1

f1,...,m

m∑
l=0

(−1)i+l det
(
(X1,...,m)(l,i)

)
xl,j =

1

f1,...,m
det(X1,...,i−1,j,i+1,...,m) =

f1,...,i−1,j,i+1,...,m

f1,...,m
.

In order to prove the First Fundamental Theorem for SLm(C), we have again to study the
properties of the ring C[fi1,...,im ]. We start with the introduction of standard products in this
larger set of variables.

To any product fi1,1,...,im,1 · · · fi1,k,...,im,k we associate the following diagram
i1,1 i1,2 · · · i1,k
i2,1 i2,2 · · · i2,k
...

... · · ·
...

im,1 im,2 · · · im,k

 ,
with ik,j < il,j for all j and k < l (using relations (3.13) and (3.14)). We call the product
fi1,1,...,im,1 · · · fi1,k,...,im,k a standard product if we manage to permute the columns of the dia-
gram in such a way that ij,1 ≤ ij,2 ≤ · · · ≤ ij,m holds for all j, i.e., if with the permutation
of columns we manage to transform the diagram to a standard Young tableau. Notice, that by
applying iteratively the Plücker relation, each product fi1,1,...,im,1 · · · fi1,k,...,im,k can be trans-
formed into a sum of standard product (for more details see [Ho43, p. 25]).

We prove now the Straightening lemma (compare with Lemma 3.1.2), which implies that any
element p ∈ C[fi1,...,im ] can be uniquely written as a linear combination of standard products.
The Straightening lemma will be again crucial for the proof of the FFT for SLm(C), in this
larger set of variables.

Lemma 3.2.1 (Straightening lemma). The monic standard products form a C-basis of the ring
C[fi1,...,im ].

Proof. The proof goes along the same line as the proof of Lemma 3.1.2. Firstly, that the monic
standard products form a generating system of the ring C[fi1,...,im ], is clear from the Plücker
relations. Secondly, that they are linearly independent over C can be shown again by using the
monomial ordering ≺ on Nmn given by

x1,1 ≺ x2,1 ≺ · · · ≺ xm,1 ≺ x1,2 ≺ x2,2 ≺ · · · ≺ xm,2 ≺ · · · ≺ xm,m.

According to this ordering, different standard products have different leading monomials.

92



Using now the same argument as in the proof of Lemma 3.1.3 in combination with the
Straightening lemma 3.2.1, this gives us the following:

Lemma 3.2.2. Let p =
∑

α∈I cαFα be a C-linear combination of standard products Fα. If for
some i, the polynomial p vanishes after the substitution (x1,j , . . . , xm,j) = (0, . . . , 0), i.e.,

p|(xi,j)mi=1=0 = 0,

then each summand Fα is divisible by fj,r2,α,...,rm,α for some r2,α, . . . , rm,α ∈ {1, . . . , n}.

Lemma 3.2.3. Let q ∈ C[x] be a polynomial satisfying

f1,...,m · q ∈ C[fi1,...,im ].

Then q already belongs to the ring C[fi1,...,im ].

Proof. If we write p = f1,...,m · q uniquely as a linear combination of the standard products

p =
∑
α∈I

cαFα,

then using Lemma 3.2.2, we show by the same argument as in the proof Lemma 3.1.4 that each
Fα is divisible by fj,r2,j ,...,rm,j for all j = 1, . . . ,m and some ri,j ∈ [n]. The goal is to show
that for each k = 2, . . . ,m, we can always take rk,j = k, which would mean that each Fα is
divisible by f1,...,m. We assume by contradiction that Fα1 , . . . , Fαs are not divisible by f1,...,m

and write

p = f1,...,m · P +

s∑
l=1

cαlFαl (3.18)

for some P ∈ C[fi1,...,im ], a sum of standard products of smaller degree than the degree of p,
and some coefficients cαl ∈ C. Let us enlarge the polynomial ring C[x] to C[x, λ2, . . . , λm] by
adding new variables λ2, . . . , λm and consider the following substitution

∗ :(x1,1, . . . , xm,1) 7→
m∑
j=2

λj(x1,j , . . . , xm,j).

Obviously, each polynomial fi1,...,im transforms under ∗ as follows:

f1,...,m 7→ 0

f1,i2,...,im 7→
m∑
j=2

λjfj,i2,...,im

fi1,...,im 7→ fi1,...,im for all 1 < i1, . . . , im.

Moreover, we show using the trick by C. de Concini and C. Procesi [dCP76, p. 333-334] that
∗ acts injectively on standard products that are not divisible by f1,...,m: Each such a standard
product

Fα = fi1,1,...,im,1 · · · fi1,k,...,im,k ,
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whose corresponding diagram we denote by DFα , transforms under ∗ into the sum of

λh22 · · ·λ
hm
m (fi1,1,...,im,1 |(xj,1)mj=1=(xj,a1 )mj=1

· · · fi1,k,...,im,k |(xj,1)mj=1=(xj,ak )mj=1
),

where a1, . . . , ak ∈ {2, . . . ,m}. Let us look at the summand λh22 · · ·λhmm Fα of the maximal
degree (h2, . . . , hm) in λ2, . . . , λm with respect to the ordering λm ≺ · · · ≺ λ2 on Nm−1, study
its corresponding diagram DFα

and explain its connection to the diagram DFα of the standard
product Fα. Obviously,

h2 = number of columns in DFα which start with 1 ν, with ν > 2,

h3 = number of columns in DFα which start with 1 2 ν, with ν > 3,

...

hm = number of columns in DFα which start with 1 2 . . . m− 1 ν, with ν > m.

Therefore, after replacing each 1 by j in the hj rows starting with 1 2 . . . j − 1 ν, ν > j, of the
diagram DFα of Fα



hm︷ ︸︸ ︷
1 · · · 1

hm−1︷ ︸︸ ︷
1 · · · 1 · · ·

h3︷ ︸︸ ︷
1 · · · 1

h2︷ ︸︸ ︷
1 · · · 1 · · ·

2 · · · 2 2 · · · 2 · · · 2 · · · 2 ∗ · · · ∗ · · ·
3 · · · 3 3 · · · 3 · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
...

...
...

...
...

...
...

...
m− 2 · · · m− 2 m− 2 · · · m− 2 · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
m− 1 · · · m− 1 ∗ · · · ∗ · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
∗ · · · ∗ ∗ · · · ∗ · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
...

...
...

...
...

...
...

...


,

the first row of DFα transforms into

(

hm︷ ︸︸ ︷
m · · · m

hm−1︷ ︸︸ ︷
m− 1 · · · m− 1 · · ·

h3︷ ︸︸ ︷
3 · · · 3

h2︷ ︸︸ ︷
2 · · · 2 · · · ).

This arrangement no longer looks like an arrangement of a diagram corresponding to a standard
product. However, it follows from the shape of the diagram DFα that we can turn this according
to the relations (3.14) into a standard Young tableau. Namely, by moving to the top the block of
the second up to the (j−1) - st row of the hj columns starting now with j 2 3 . . . j−1 ν, ν > j
and by moving the first row j . . . j in these hj columns to the (j−1) - st row. After performing
this transformation for each j = 2, . . . ,m, we obtain the diagram DFα
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

hm︷ ︸︸ ︷
2 · · · 2

hm−1︷ ︸︸ ︷
2 · · · 2 · · ·

h3︷ ︸︸ ︷
2 · · · 2

h2︷ ︸︸ ︷
2 · · · 2 · · ·

3 · · · 3 3 · · · 3 · · · 3 · · · 3 ∗ · · · ∗ · · ·
4 · · · 4 4 · · · 4 · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
...

...
...

...
...

...
...

...
m− 1 · · · m− 1 m− 1 · · · m− 1 · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
m · · · m ∗ · · · ∗ · · · ∗ · · · ∗ ∗ · · · ∗ · · ·
...

...
...

...
...

...
...

...


,

which is the diagram of Fα. Therefore, Fα is a standard product. Notice that, we can easily go
back from DFα

to DFα . Thus, it follows that two different standard products Fα 6= Fβ that are
both not divisible by f1,...,m, have after the substitution ∗ different standard products Fα 6= F β
of maximal degree in λ2, . . . , λm and the injectivity of ∗ follows.

Applying now ∗ to the equality (3.18) yields a linear relation between the standard products
of maximal degree in λ2, . . . , λm, which must be trivial as the standard products are linearly
independent. The claim follows now by the injectivity of ∗.

We need two other technical lemmata in order to prove the First Fundamental Theorem for
SLm(C).

Lemma 3.2.4. Let p ∈ C[x]SLm be an invariant polynomial.

(i) Then each of its homogeneous parts is itself invariant under the action of SLm(C).

(ii) If p is homogeneous, then it is homogeneous of degree ml, for some l ∈ N. Moreover, p is
homogeneous of degree l as a polynomial in xj,1, . . . , xj,n for each j = 1, . . . ,m.

Proof. Once we have defined the matrix

S =



t1 0 0 · · · 0 0
0 t2 0 · · · 0 0
0 0 t3 · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · tn−1 0
0 0 0 · · · 0 (t1 · · · tn−1)−1


the proof goes along the same line as the proof of Lemma 3.1.5.

Using Lemma 3.2.4 and the argument in the proof of Lemma 3.1.6, we obtain the following
generalization of Lemma 3.1.6:

Lemma 3.2.5. Let p ∈ C[x]SLm be a homogeneous invariant polynomial of degreeml. Then p is
semi-invariant under the action of GLm(C) with character det(G)l, i.e., for any G ∈ GLm(C),
p satisfies the equality

G · p = det(G)lp.
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Finally, we move to the proof of the First Fundamental Theorem for SLm(C):

First Proof of the First Fundamental Theorem for SLm(C). Let us w.l.o.g consider a homoge-
neous SLm(C)-invariant polynomial p of degree ml. Use Lemma 3.2.4 and Lemma 3.2.5 and
construct from p the following GLm(C)-invariant rational function:

q :=
p

f l1,...,m
.

Now the First Fundamental Theorem for GLm(C) applies and shows the equality

f l1,...,m · p ∈ C[fi1,...,im ].

The claim follows now from Lemma 3.2.3.

Second Proof of the First Fundamental Theorem for SLm(C). SettingG := adj(X1,...,m), where
adj(X1,...,m) denotes the adjoint of X1,...,m (notice that det(adj(X1,...,m)) = fm−1

1,...,m), and using
the same strategy as in the second proof of FFT for SL2(C) proves the FFT for SLm(C).

Let us point out that both our proofs work over any infinite field K as well (for the reason as
in the case of SL2(C)). Further, we conclude Igusa’s Theorem [Ig54, Theorem 3] over infinite
fields:

Corollary 3.2.6 (Igusa). It holds that K(fi1,...,im) ∩K[x] = K[fi1,...,im ].

Further, using the fact that each element p of the function field of (Pm−1
C )n/ SLm(C) has

(as a function on the projective space Pm−1
C ) homogeneous denominator and numerator of the

same degree and using the fact the the numerator and denominator are both SLm(C)-invariant,
we conclude with Lemma 3.2.5 that p is even invariant under the action of GLm(C):

Corollary 3.2.7. The function field of (Pm−1
C )n/ SLm(C) is a subfield of the invariant field

C(x)GLm .

Counterexamples to the First Fundamental Theorems over finite fields

Note that the statements of the First Fundamental Theorems for GLm(K) and SLm(K) are
wrong for any finite field K. For any prime power q, let us associate to any (m − 1) - tuple
(i1, . . . , im−1), ij ∈ [n], of distinct numbers the matrix

Xq
i1,...,im−1

:=

á
x1,i1 x1,i2 · · · x1,im−1 xq1,i1
x2,i1 x2,i2 · · · x2,im−1 xq2,i1
...

...
. . .

...
...

xm,i1 xm,i2 · · · xm,im−1 xqm,i1

ë
.

According to the fact that each element z ∈ K is a fixed point of the iterate of the Frobenius
endomorphism z 7→ zq, we have (G · xi,j)q = G · xqi,j for each G ∈ GLm(C). Thus, the
polynomial

pi1,...,im−1
:= det(Xq

i1,...,im−1
)
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is then semi-invariant under the action of GLm(Fq), i.e., we have

G · pi1,...,im−1 = det(G)pi1,...,im−1 . (3.19)

Thus, it follows that pi1,...,im−1 ∈ Fq[x]SLm and pi1,...,im−1/pj1,...,jm−1 ∈ Fq(x)GLm , for any
(i1, . . . , im−1) 6= (j1, . . . , jm−1). However, pi1,...,im−1 is obviously not an element of the ring

Fq[fi1,...,im ] from which we conclude Fq
(
fi1,...,im
fj1,...,jm

)
( Fq(x)GLm and Fq[fi1,...,im ] ( Fq[x]SLm .

This shows that in the caseK = Fq a finite field, the ringK[fi1,...,im ] and the fieldK
(
fi1,...,im
fj1,...,jm

)
are strictly contained in the SLm(K)-invariant ring and in the GLm(K)-invariant field, respec-
tively. Thus, the question now is: What are the generators of the invariant ring K[x]SLm and the
invariant field K(x)GLm in the case that K is a finite field? We put this question on a list with
unsolved problems (see Section 5.3).
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Chapter 4

Appendix

This appendix serves as a preparation for the main topics of the thesis. Its aim is to collect
some of the basic results about the most important objects frequently used in this thesis. The
proofs and techniques listed here are partially very well known and standard. Some of them are,
however, new and containing innovative ideas.

4.1 D-transcendental Power Series

In this section, we collect some facts about differentially algebraic power series which play an
important role in the theory of geometric invariants. The theorems and their proofs, that we list
here, are either classical results and techniques by J. F. Ritt and E. Gourin [GR27], which can be
found also in Rubel’s survey [Ru89], or their generalizations to the multivariate case which use
the concept of the generalized Wronskian determinant introduced by Ostrowski [Os19]. To our
knowledge, some of these extensions are new, and we have obtained them in collaboration with
A. Bostan (Inria, Saclay, France).

Recall that a power series f ∈ C[[x1, . . . , xn]] in n variables is called algebraic if it is a so-
lution of p(x1, . . . , xn, f(x1, . . . , xn)) = 0 for some nonzero polynomial p ∈ C[x1, . . . , xn, y]
in n + 1 variables, and that f is called transcendental otherwise. But it may happen that, even
though f is transcendental, it satisfies an algebraic differential equation, strictly speaking a par-
tial differential equation, i.e.,

q(x1, . . . , xn, ∂
i1
x1 . . . ∂

in
xnf : 0 ≤ i1, . . . , in ≤ k − 1) = 0 (4.1)

is fulfilled by f for some nonzero polynomial q ∈ C[x1, . . . , xn, y1, . . . , ykn ] in kn + n vari-
ables, with k ∈ N some positive integer. In this case we say that f is differentially algebraic
or D-algebraic and otherwise we call f transcendentally transcendental or hypertranscendental
or D-transcendental. Our definition is due to E. Kolchin [Ko73, Chapter I, §6] and this concept
of D-algebraicity appears for example also in works by L. A. Rubel [Ru92], and T. Dreyfus
and C. Hardouin [DH19]. However, this definition is not considered to be the “classical” one.
In 1920 A. Ostrowski [Os20, §6] defined differentially algebraic power series in several vari-
ables, we will refer to them classically differentially algebraic or CD-algebraic, as those which
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are D-algebraic w.r.t. each variable when the other variables are held fixed, i.e., a power series
f ∈ C[[x1, . . . , xn]] is called CD-algebraic if for each i = 1, . . . , n the family of derivatives
∂jxif , with j ∈ N satisfies an algebraic equation with coefficients in C[x1, . . . , xn]. This def-
inition is more natural as it extends the classical notion of multivariate D-finite power series
(see [Li89]). We call classically differentially transcendental or CD-transcendental each power
series that is not CD-algebraic. This “classical” notion of differential algebraic power series is
used for instance by L. A. Rubel and M. F.Singer [RS85], T. Dreyfus, C. Hardouin, J. Roques
and M. F. Singer [DHRS18], T. Dreyfus and K. Raschel [DR19] and J. van der Hoeven [Ho19].
For CD-algebraic power series we have the following characterization which was shown by
A. Ostrowski [Os20, §5]:

Theorem 4.1.1. A power series f ∈ C[[x1, . . . , xn]] is CD-algebraic if and only if for all n-
tuples (z1(t), . . . , zn(t)) ∈ C[[t]] of D-algebraic power series, f(z1(t), . . . , zn(t)) ∈ C[[t]] is
D-algebraic as a univariate power series.

As the following example shows, the above definitions are equivalent only in the univari-
ate case. Let f(x) ∈ C[[x]] be a D-transcendental power series in one variable. Further, set
F (x, y) = f(x) + y. Then as F satisfies the algebraic differential equation ∂x∂yF = 0, it
is D-algebraic. However, F (x, y) is not D-algebraic w.r.t. the variable x, and thus, it is CD-
transcendental.

One can easily find examples of D-algebraic and also CD-algebraic power series. Notice,
that to construct a CD-algebraic power series is also rather easy. Actually, once we have a uni-
variate D-transcendental power series f(t), we can easily construct a CD-transcendental power
series in n variables by setting F = f(x1)+x2 + · · ·+xn as already discussed above. However,
to construct a multivariate D-transcendental power series is more tricky and requires a deeper
understanding of the concept. Our goal is to prove the existence of D-transcendental power se-
ries (and families of power series).

Before we come to the proof, let us recall the notion of the (generalized) Wronskian determi-
nant. The Wronskian matrix of the family g1, . . . , gm ∈ C[[x]] of m power series in one variable
is defined as á

g1 · · · gm
∂xg1 · · · ∂xgm
...

. . .
...

∂m−1
x g1 · · · ∂m−1

x gm

ë
.

The determinant of this matrix is called the Wronskian determinant of this family. Obviously,
the Wronskian determinant of a linearly dependent family of power series equals zero. And it
can be shown (see e.g. [Bo01, pp. 90-92]) that the converse is true as well. So we have the
following result:

Lemma 4.1.2. A family of finitely many power series in one variable is linearly dependent over
C if and only if its Wronskian determinant equals zero.
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Let us now consider the behavior of the Wronskian determinant in the multivariate case. Let
f1, . . . , fm ∈ C[[x1, . . . , xn]] be a family of power series in n variables. If the family is linearly
dependent, then its Wronskian with respect to any variable xi, 1 ≤ i ≤ n obviously equals zero.
One could naively think now that, if the Wronsikan determinant with respect to each variable
xi, 1 ≤ i ≤ n, equals zero, the family f1, . . . , fm must be necessarily linearly dependent. But
this is not the case:

Example 4.1.3. Let f1 = x1, f2 = x2, f3 = 1 ∈ C[[x1, x2]]. Denote by W1 and W2 the
Wronskian of the family f1, f2, f3 with respect to the variables x1 and x2, respectively. Then
we have

W1 =

Ñ
x1 x2 1
1 0 0
0 0 0

é
, W2 =

Ñ
x1 x2 1
0 1 0
0 0 0

é
,

which have both determinant equal to zero. However, the family f1, f2, f3 is linearly indepen-
dent over C.

In the multivariate case, the notion of the so-called generalized Wronskian determinant is
needed. Let us consider a family f1, . . . , fm ∈ C[[x1, . . . , xn]] of power series in n variables and
m− 1 differential operators ∆0, . . . ,∆m−1, where ∆s = (∂j1x1 . . . ∂

jn
xn) for some j1, . . . , jn ∈ N

with j1 + · · ·+ jn ≤ s. The generalized Wronskian determinant associated to ∆0, . . . ,∆m−1 of
the family f1, . . . , fm is defined to be the determinant of the following generalized Wronskian
matrix: á

∆0(f1) . . . ∆0(fm)
∆1(f1) . . . ∆1(fm)

...
. . .

...
∆m−1(f1) . . . ∆m−1(fm)

ë
.

Similarly to the univariate case, it holds also here that all generalized Wronskian determinants
of a family of power series equal zero as soon as the family is linearly dependent. Moreover,
using the concept of the generalized Wronskian determinant, the statement of Lemma 4.1.2 can
be generalized to the multivariate case:

Theorem 4.1.4. A family of finitely many power series f1, . . . , fm ∈ C[[x1, . . . , xn]] is linearly
independent over C if and only if at least one of the generalized Wronskian determinants of
f1, . . . , fm is not equal to zero.

This generalization is for instance proven by M. Hindry and J. H. Silverman [HS00, Lemma
D.6.1.] and appears also by E. Kolchin in [Ko73, Chapter II, Theorem 1]. Another proof was
done by A. Bostan and Ph. Dumas in [BD10, Theorem 3], where also more historical informa-
tion is provided.

Now we use Theorem 4.1.4 in order to prove the following statement:
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Theorem 4.1.5. Let f ∈ C[[x1, . . . , xn]] be a D-algebraic power series. Then f satisfies an
algebraic differential equation with integer coefficients.

Let us mention that the proof of Theorem 4.1.5 presented here is a multivariate extension of
the proof by E. Gourin and J. F. Ritt [GR27, §2] of the univariate case with generalized Wron-
skian determinants instead of classical univariate Wronskian determinants.

In order to shorten the notation, let us use the following notation for i ∈ Nn :

x = (x1, . . . , xn), xi = xi11 · · ·x
in
n , i! = i1! · · · in!, ∂i = ∂i1x1 . . . ∂

in
xn , |i| =

n∑
j=1

ij .

Lemma 4.1.6. Let k,N ∈ N be two positive integers. Consider arbitrary 2N vectors

ar = (ar1, . . . , a
r
n) ∈ Cn and br = (bri : i ∈ Nn, 0 ≤ i1, . . . , in ≤ k − 1) ∈ Ck

n
,

for 1 ≤ r ≤ N . Then there always exists a polynomial f ∈ C[x1, . . . , xn] satisfying for each
1 ≤ r ≤ N and for each i ∈ Nn with 0 ≤ i1, . . . , in ≤ k − 1 the equality

∂if(ar) = bri . (4.2)

In other words, for any number of points in Cn, we can always construct a polynomial f with
any given values of itself and its first (according to a lexicographical order) kn − 1 partial
derivatives ∂if at these points.

Proof. We prove the claim by induction on N . The induction base follows immediately by
setting

f :=
∑
i∈Nn

b1i
i!

(x− a1)i.

Let now g ∈ C[x1, . . . , xn] be a polynomial satisfying

∂ig(ar) = bri ,

for all i ∈ Nn with 0 ≤ i1, . . . , in ≤ k − 1 and for all 1 ≤ r ≤ N − 1. We then define

f := g +
N−1∏
r=1

(x− ar)(k,...,k) ·
∑
i∈Nn

0≤i1,...,in≤k−1

b̃i
i!

(x− aN )i

︸ ︷︷ ︸
=:g̃

,

where the b̃i’s can be iteratively computed as the solution of the following system of linear
equations:

bNi = ∂ig(aN ) + ∂ig̃(aN ),

where i ∈ Nn with 0 ≤ i1, . . . , in ≤ k − 1. Notice that each b̃i is uniquely given as a linear
combination of b̃j’s with j ≺ i w.r.t. a lexicographical order ≺ on Nn. The polynomial f then
satisfies obviously the condition (4.2).
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Proof of Theorem 4.1.5. Any algebraic differential equation of the form (4.1) satisfied by a
power series f can be written as ∑

j∈J,l∈L
c(j,l)x

jf l = 0, (4.3)

where J ⊆ Nn and L ⊆ Nkn , for some k ∈ N, and f l =
∏
i(∂

if)li . By construction, all the
expressions xjf l are distinct from each other. This means that the family of power series xjf l is
linearly dependent over C and thus all its generalized Wronskian determinants must equal zero.
As the generalized Wronskian determinants are polynomials in ∆sx

jf l with integer coefficients,
they are also polynomials in x and f and their higher partial derivatives with integer coefficients.
Therefore, it is enough to show that at least one generalized Wronskian determinant is a non-
zero polynomial to obtain an algebraic differential equation with integer coefficients as claimed.
Let us assume by contradiction that all generalized Wronskian determinants are identically zero
in x and ∂if for any power series f . According to Theorem 4.1.4, this would mean (again for
any power series f ) that xjf l’s are linearly dependent over C and so they satisfy an equation
like (4.3), let us say ∑

j∈J,l∈L
a(j,l)x

jf l(x) = 0. (4.4)

Further, according to Lemma 4.1.6, for N ∈ N sufficiently large, we can always construct a
polynomial f ∈ C[x1, . . . , xn] with the property that the vectorsÖ

1jf l(1)
...

N jf l(N)

è
, for j and l as in (4.4) ∈ J, l ∈ L,

are linearly independent over C. Here for any s ∈ C, by s we denote the vector (s, . . . , s). But
this contradicts the linear relation (4.4).

Using the same argument as in the proof above, Theorem 4.1.5 can be shown also for CD-
algebraic power series:

Theorem 4.1.7. Let f ∈ C[[x1, . . . , xn]] be a CD-algebraic power series. Then for each
i = 1, . . . , n, the family ∂jxif, j = 0, 1, . . . satisfies an algebraic equation with coefficients in
Z[x1, . . . , xn].

Actually, Theorem 4.1.7 is equivalent to the following one ([Ho19, Chapter 5, Proposition
25]):

Theorem 4.1.8. A power series f ∈ C[[x1, . . . , xn]] in n variables is CD-algebraic if and only
if there exists a field F of finite transcendence degree over Q that contains f and all its higher
partial derivatives.
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Theorem 4.1.7 can be obtained from Theorem 4.1.8 in the following way: Let us consider a
CD-algebraic power series f ∈ C[[x1, . . . , xn]] and let F ⊇ Q(∂if : i ∈ Nn) be a field exten-
sion of finite transcendence degree over Q which contains f and all its higher partial derivatives.
Let us now consider the following chain of field extensions:

Q ⊆ Q(x1, . . . , xn) ⊆ Q(x1, . . . , xn, ∂
if : i ∈ Nn) ⊆ F (x1, . . . , xn).

As F (x1, · · · , xn) has finite transcendence degree over F and F is of finite transcendence de-
gree over Q, it follows that Q(x1, . . . , xn, ∂

if : i ∈ Nn) has finite transcendence degree over
Q(x1, . . . , xn). Thus, an arbitrary family of higher partial derivatives of f satisfies an algebraic
equation over Q(x1, . . . , xn) and after cleaning denominators even over Z[x1, . . . , xn].

We will show now that Theorem 4.1.8 follows directly from Theorem 4.1.7.

Proof of Theorem 4.1.8. The reverse implication is straightforward. So let f ∈ C[[x1, . . . , xn]]
be a CD-algebraic power series. By Theorem 4.1.7 the derivatives of f satisfy the following
system of algebraic equations:

∑
l∈Nk

cj,l

k−1∏
m=0

(∂mxjf)lm = 0, for j = 1, . . . , n,

with coefficients cj,l ∈ Z[x1, . . . , xn] and for some k ∈ N. Differentiating iteratively these
equations with respect to all possible variables yields then algebraic equations with coefficients
in Z[x1, . . . , xn] for all partial derivatives ∂if with |i| ≥ N for some N ∈ N large enough.
Hence, the transcendence degree of Q(x1, . . . , xn, ∂

if : i ∈ Nn) over Q(x1, . . . , xn) is finite.
Obviously, the same holds also for the transcendence degree of Q(x1, . . . , xn) over Q. Thus, the
field F = Q(x1, . . . , xn, ∂

if : i ∈ Nn) cannot have infinite transcendence degree over Q.

Let us remark that, whereas Theorem 4.1.7 holds also for D-algebraic power series (this is
just Theorem 4.1.5), Theorem 4.1.8 is no longer true when replacing the term “CD-algebraic”
by “D-algebraic”. Namely, let us take a univariate D-transcendental power series f(x) and con-
sider the bivariate power series F = f(x) + y ∈ C[[x, y]]. Then F is D-algebraic, as it satisfies
the algebraic differential equation ∂x∂yF = 0, but its higher derivatives w.r.t. x equal ∂jxf(x)
and thus, do not satisfy any algebraic equation as f(x) is D-transcendental. Therefore, any field
containing all the higher derivatives of F w.r.t. x has an infinite transcendence degree over Q.

The next step is to prove the existence of D-transcendental power series. Notice that, the first
proof of the existence of (univariate) D-transcendental power series is due to O. Hölder [Ho87],
who showed that the Gamma function Γ(x) is D-transcendental. We follow here a different
strategy from Hölder’s and use our previous results for the construction of a multivariate D-
transcendental power series.

Theorem 4.1.9. The set of D-transcendental power series in n variables is non-empty for any
positive integer n.
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Proof. Let α0, α1, α2, . . . be any sequence of complex numbers that has an infinite transcen-
dence degree over Q and let Φ : Nn → N\{0, . . . , n − 1} be a bijection between Nn and
N\{0, . . . , n− 1}. Set now f to be

f :=
∑
i∈Nn

αΦ(i)

i!
(x− α)i,

where α = (α0, . . . , αn−1). We now conclude the proof by showing that f is D-transcendental.
Let us assume by contradiction that f is differentially algebraic. Then by Theorem 4.1.5, it sat-
isfies an algebraic differential equation with integer coefficients. However, notice that the partial
derivatives of f satisfy ∂if(α) = αΦ(i) and so substituting xi 7→ αi−1 into the algebraic equa-
tion would yield an algebraic equation with integer coefficients for the sequence α0, α1, α2, . . . .
But this contradicts the fact that the sequence has infinite transcendence degree over Q.

Notice that in the univariate case, several examples of D-transcendental power series are
known. One of them is the already mentioned Gamma function Γ(x). Another D-transcendental
power series, namely

f(x) =

∞∑
n=0

xn

(nn)!
,

was presented by A. Hurwitz [Hu89]. In 1896, E. Moore [Mo96] showed that for any positive
integer k ≥ 2, the series

f(x) =
∞∑
n=0

xn
k

is D-transcendental. Later then, K. Mahler provided in his paper [Ma30] more examples of
univariate D-transcendental power series. Among them e.g.

f(x) =

∞∑
n=0

x2n , f(x) =

∞∑
n=0

x2n

1− x2n
, f(x) =

1

1− x

∞∑
n=0

x2n

1 + x2n
.

M. Heins [He55] constructed the so-called Blaschke product which then later turned out to be
D-transcendental. Another example of a D-transcendental power series would be the generating
function of Bell numbers whose D-transcendence was proved by M. Klazar [Kl03]. Since there
are many examples of univariate D-transcendental power series, it is natural to ask whether start-
ing with a univariate D-transcendental power series it is possible to construct a D-transcendental
power series in n variables out of it. The answer to this question is not clear to us yet, hence
we put this question on a list with open questions (see Section 5.1). We should also mention the
method for constructions of univariate D-transcendental power series in one variable presented
in the paper by J. F. Ritt and E. Gourin [RG27] where the authors use Theorem 4.1.5 (originally,
in the one variable case established by them) and the countability of algebraic numbers. A dif-
ferent way to construct univariate D-transcendental power series is to make the gaps between its
coefficients sufficiently large. This was proven for example by A. Ostrowski [Os20, Theorem
12], L. Lipschitz and L. A. Rubel [LR86], or by K. Mahler [Ma76, §13, Theorem 16]. Many
more examples and methods on constructions of univariate D-transcendental power series as
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well as an historical overview can be found in Rubel’s survey [Ru89]. For further examples and
methods see also the papers by R. D. Carmichael [Ca13] and J. F. Ritt [Ri26].

Concerning the multivariate case, we should mention the paper [Gr98] by H. Grönwall where
the author proves that the multivariate series

f(x) =
∞∑
i=0

xi1x
ii

2 · · ·xi
i
. .
.i

n

is D-transcendental. However, it seems that not much is known about D-algebraic power series
on several variables. Thus, it would be natural, and it is also one of the problems on a list with
open questions in Section 5.1, to study their basic properties and, once this is done, to construct
examples of multivariate D-transcendental power series using these properties.

The concept of D-algebraicity can be extended also to families of power series. We call a
family f1, . . . , fl ⊆ C[[x1, . . . , xn]] of power series in n variables differentially algebraically de-
pendent or D-algebraically dependent if there exists a polynomial q ∈ C[x1, . . . , xn, y1, . . . , yknl]
in knl + n variables, for some k ∈ N, such that

q(x1, . . . , xn, ∂
ifj : 0 ≤ i1, . . . , in ≤ k − 1, 1 ≤ j ≤ l) = 0.

Otherwise, we call the family differentially algebraically independent or D-algebraically inde-
pendent. Let us remark that the concept of D-algebraic dependent families of power series was
used for example by E. Kolchin in [Ko73, Chapter II, §7] or by C. Hardouin and M. F. Singer in
[HS08, §3.1].

Notice first that, similarly to the case of D-algebraic power series (and it can be proven using
the same argument as in the proof of Theorem 4.1.5), a family of D-algebraically dependent
power series satisfies an algebraic differential equation with integer coefficients.

Theorem 4.1.10. Let f1, . . . , fl ∈ C[[x1, . . . , xn]] be a D-algebraically dependent family of
power series. Then the power series f1, . . . , fl satisfy an algebraic differential equation with
integer coefficients.

The question now is whether it is always possible to construct arbitrarily large D-algebraically
independent families of power series. The answer is “yes” as stated in the following theorem:

Theorem 4.1.11. For any given positive integers l, n ∈ N, there exists a D-algebraically inde-
pendent family of l power series in n variables.

Proof. Assume by contradiction that any family f1, . . . , fl of l power series in n variables is
D-algebraically dependent, i.e., the power series satisfy an algebraic differential equation

q(x1, . . . , xn, ∂
ifj : 0 ≤ i1, . . . , in ≤ k − 1, 1 ≤ j ≤ l) = 0, (4.5)

for some k ∈ N. Then by Theorem 4.1.10, we may w.l.o.g. assume that q has integer coefficients.
Let α0, α1, α2, . . . be any sequence of complex numbers that has infinite transcendence degree
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over Q. Further, let Φ : {1, . . . , l}×Nn → N\{0, . . . , n−1} be a bijection between {1, . . . , l}×
Nn and N\{0, . . . , n− 1}. For each j = 1, . . . , l we define

fj :=
∑
i∈Nn

αΦ(j,i)

i!
(x− α)i,

where α = (α0, . . . , αn−1). Hence, each partial derivative of fj satisfies ∂ifj(α) = αΦ(j,i). But
substituting xi 7→ αi−1 into the equation (4.5) yields an algebraic equation over Q for αj’s which
is a contradiction to the infinite transcendence degree over Q of the sequence α0, α1, α2, . . . .

Notice, that we have considered only algebraic differential equations with complex coeffi-
cients and their solutions in the complex power series ring C[[x1, . . . , xn]]. A natural question
would be what happens if we replace C by any other field K (e.g. an infinite field, finite field of
large characteristic,...). Which of the above mentioned results will still remain true? And what
about the existence of D-transcendental power series or D-algebraically independent families of
power series in that case? This question is one among the unsolved problems in Section 5.1.

4.2 Puiseux Parametrizations

This section serves as a preparation for the theory of resolution of singular curves via geometric
invariants. We collect here basic facts about Puiseux parametrizations of algebraic curves (plane
curves in A2

C and space curves in An+1
C ) which play a crucial role in our resolution algorithms

presented in Sections 2.1, 2.2 and 2.3. All the results, and also their proofs, about Puiseux
parametrizations of plane algebraic curves and their analytic branches listed here are standard
and can be found in E. Casas-Alvero’s book [Ca00, Chapter 1]. The results concerning Puiseux
parametrizations of space curves are then extensions and generalizations of the classical results
to the case of higher embedding dimensions.

Let us start by recalling some facts about the classical Newton-Puiseux algorithm for the
search of y-roots of bivariate power series. Let f ∈ C[[x, y]] be a bivariate power series satisfying
f(0, 0) = 0. Recall that a univariate power series y(x) ∈ C[[x]] is called a y-root of f if it satisfies
the equality f(x, y(x)) = 0. The existence of a y-root in the case that fy(0) 6= 0 is guaranteed
by the Implicit Function Theorem. Here fy denotes the partial derivative ∂yf . However, if
fy(0) = 0, there is no reason for f to have a power series y-root. In fact, for an irreducible power
series f ∈ C[[x, y]] with fy(0) = 0, it is impossible to construct a y-root which would be again a
power series, as we will see in Corollary 4.2.5. For instance the polynomial f(x, y) = x3 − y2

defining a cusp obviously does not have any power series y-root. In order to be able to find for an
arbitrary f ∈ C[[x, y]] some y(x) satisfying f(x, y(x)) = 0, we need to enlarge the ring in which
we search for solutions. In our example, the polynomial f(x, y) = x3 − y2 has the fractionary
power series y1(x) = x

3
2 and y2(x) = −x

3
2 as y-roots. The fractionary power series, i.e., power

series with fractional exponents with bounded denominator y(x1/n) ∈ C[[x1/n]] for some n ∈ N,
are called Puiseux series. The Puiseux series ring is defined as the union of all the rings C[[x

1
n ]],
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i.e.,

Puiseux series ring :=
∞⋃
n=1

C[[x
1
n ]].

Puiseux series were discovered in 1671 by I. Newton [Ne36, pp. 191-209] who observed
that they necessarily appear when searching for y-roots of bivariate polynomials. Later, in 1850,
V. A. Puiseux [Pu50] rediscovered Puiseux series again while studying the solution space of
f(x, y(x)) = 0. Using the Newton-Puiseux algorithm for construction of y-roots of formal
power series (see e.g. [Ca00, §1.4], [Te07, Chapter 3], [Wa78, §3]), one proves the following
theorem:

Theorem 4.2.1. If f ∈ C[[x, y]] with f(0, 0) = 0 is irreducible and f 6= xm for all m ∈ N, then
there is a Puiseux series s(x) which is a y-root of f , i.e., f(x, s(x)) = 0.

If we instead of formal power series in x and y consider power series in y with coefficients
rational functions in x, the Newton-Puiseux algorithm gives rise even to Puiseux Laurent series
as y-roots:

Newton-Puiseux theorem. The algebraic closure of the field C((x)) = Quot(C[[x]]) is the
union of the fields C

ÄÄ
x

1
n

ää
for n ≥ 1, i.e.,

C((x)) =

∞⋃
n=1

C
ÄÄ
x

1
n

ää
.

Remark 4.2.2. It can be shown that if f ∈ C{x, y} is a convergent power series, so are all its y-
roots (for more details see [Ca00, §1.7]) and so we obtain even convergent versions of Theorem
4.2.1 and of the Newton-Puiseux theorem.

Let X ⊆ A2
C be a plane algebraic curve. We call a pair of formal power series γ(t) =

(x(t), y(t)) ∈ C[[t]]2 a parametrization of X if the ring map

γ : C[x, y]/I(X)→ C[[t]]

x 7→ x(t)

y 7→ y(t)

is injective. Here I(X) denotes the vanishing ideal of X . Notice that reducible curves admit
no parametrizations according to this definition. Fruther, if we additionally have γ(0) = z for
some point z ∈ X , we say that γ(t) parametrizes X at the point z.

Corollary 4.2.3. Let X and Y be two irreducible plane algebraic curves. The curves have a
common parametrization (x(t), y(t)) ∈ C[[t]]2 if and only if X = Y .

Proof. This follows directly from the fact that the vanishing ideals of X and Y determine both
the kernel of the map

γ : C[x, y]→ C[[t]]

x 7→ x(t)

y 7→ y(t)

and thus, they are equal.
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We conclude now, that two different irreducible polynomials do not have the same y-roots:

Corollary 4.2.4. Let F1, F2 ∈ C[x, y] be two irreducible polynomials. Then the sets of their
y-roots have a non-empty intersection if and only if F1 = F2.

For a Puiseux series s(x), we call the minimal n ∈ N, for which s(x) ∈ C[[x
1
n ]] holds, the

polydromy order of s(x). Let us wirte

s(x) =
∑
i≥0

aix
i
n .

For a primitive n-th root of unity ξ and each j = 1, . . . , n, the substitution x
1
n 7→ ξjx

1
n induces

an automorhpism σξj of C[[x
1
n ]]. We call each Puiseux series

σξj (s) =
∑
i≥0

ai(ξ
j)ix

i
n .

a conjugate of s(x).

Notice that f having a y-root s(x) means that f is divisible by (y−s(x)) in the Puiseux series
ring. Moreover, if s(x) is a y-root of f , so are also all its conjugates σξj (s), j = 1, . . . , n − 1,
where n is the polydromy order of s(x) and ξ is a primitive n-th root of unity. Furthermore, the
product

n∏
j=1

(y − σξj (s))

is an element of C[[x, y]], as it is invariant under conjugation (see [Ca00, Lemma 1.2.1]), and
thus we obtain a unique decomposition of f :

Corollary 4.2.5. Each irreducible power series f ∈ C[[x, y]] with f(0, 0) = 0 can be uniquely
written as

f = u ·
n∏
j=1

(y − σξj (s)),

where u ∈ C[[x, y]]∗ is an invertible power series, s(x) is a y-root of f and n is the polydromy
order of s(x).

It follows now that two different irreducible power series f1, f2 ∈ C[[x, y]], f1 6= f2 have a
common y-root if and only if f1 = u · f2 for some u ∈ C[[x, y]]∗. Therefore, if we consider an
irreducible convergent power series f ∈ C{x, y}, each y-root s(x) of f of polydromy order n
gives rise to precisely n different parametrizations, the Puiseux parametrizations, of the analytic
curve defined by f :

γj(t) = (tn, σξj (s)|x=tn) for j = 1, . . . , n,

where ξ is a primitive n-th root of unity. Here, an analytic curve defined by f is the germ
(V (f), 0) of the vanishing set of f in the neighborhood of 0. Further, under a parametrization of
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the analytic curve (V (f), 0), we understand a pair γ(t) = (x(t), y(t)) ∈ C[[t]]2 of power series
for which the ring homomorphism

γ̂ : C[[x, y]]/f → C[[t]]

x 7→ x(t)

y 7→ y(t)

is injective. If γ(t) = (tn, y(t)) is a Puiseux parametrization at 0, i.e., n is minimal or in
other words n is the polydromy order of y(t

1
n ), we call n also the polydromy order of γ(t).

We call also a parametrization of the form (x(t), tn) ∈ C[[t]]2 a Puiseux parametrization if n
is the polydromy order of x(t

1
n ). Under a Puiseux parametrization of an analytic curve at a

point z 6= 0 we understand the pair of power series γ(t) = (z1 + tn, z2 + y(t)) for which
γ(t)−(z1, z2) = (x(t), y(t)) is a Puiseux parametrization at 0 (i.e., either x(t) = tn or y(t) = tn

with n minimal).

Remark 4.2.6. Notice that given a pair of convergent power series γ(t) = (x(t), y(t)) ∈ C{t}2,
with the same argument as in the proof of Corollary 4.2.3, we always find a reparametrization
ϕ ∈ C{t} which transforms γ(t) into (tn, ỹ(t)), where n = ord(x(t)) and ỹ(t) ∈ C{t}. So,
ỹ(t

1
n ) is a y-root of

g(x, y) :=
n∏
j=1

(y − ỹ(ξjt
1
n )),

where ξ is a primitive n-th root of unitiy. As g is invariant under all substitutions x
1
n 7→ ξjx

1
n

for j = 1, . . . , n, it already belongs to the convergent power series ring g ∈ C{x, y} (see
[Ca00, Lemma 1.2.1]). Moreover, g is irreducible according to Corollary 4.2.5. Hence γ(t)
parametrizes only the analytic curve given by the vanishing set of g.

The Newton-Puiseux algorithm constructs all y-roots of a power series f ∈ C[[x, y]]. Hence,
to a given irreducible plane algebraic curve X ⊆ A2

C defined by the polynomial F ∈ C[x, y]
with factorization F =

∏
i fi into its irreducible convergent factors fi ∈ C{x, y}, the Newton-

Puiseux algorithm constructs all y-roots of the power series fi’s appearing in the factorization
of F . Thus, it gives rise also to all parametrizations of all analytic branches of X at the origin.
Here each fi defines an analytic curve which is called an analytic branch of X at 0. Moreover,
in this way we obtain also all parametrizations of X itself at 0.

Let us now consider a Puiseux series s(x) =
∑

i≥0 aix
i
n ∈ C[[x

1
n ]] of polydromy order n.

Then, by minimality of n, the integer n and the set of integers i with ai 6= 0 have no common
factor and we can define the characteristic exponents of s(x). Let us set

m1 := min{i : ai 6= 0 and n - i}, (4.6)

nj := gcd(n,m1, . . . ,mj),

mj+1 := min{i : ai 6= 0 and nj - i},

and let k be the minimal integer satisfying nk = 1. We define the characteristic exponents of
s(x) to be the set {m1, . . . ,mk}, the “minimal” subset of the support of s(xn), which has no
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common divisor with n. We call the set m1, . . . ,mk also the characteristic exponents of the
Puiseux parametrization γ(t) = (tn, s(tn)) (or of the parametrization γ(t) = (s(tn), tn)).

Example 4.2.7. Let ξ be a primitive 6-th root of unity. Then the polynomial

f(x, y) =

6∏
i=1

(y − ξ3ix1/2 − 2ξ4ix2/3 − 3ξ5ix5/6 − 5ξ7ix7/6) =,

=− 15625x7 + 12000x6 + 9000x5y + 1275x4y2 − 300x3y3 − 90x2y4 + y6 − 5014x5−
− 3312x4y − 846x3y2 − 88x2y3 − 3xy4 + 16x4 + 24x3y + 3x2y2 − x3

is analytically irreducible and admits only one parametrization at the origin (up to conjugation)

γ(t) = (x(t), y(t)) = (t6, t3 − 2t4 − 3t5 − 5t7).

Notice that gcd(6, 3, 4) = 1, hence, the characteristic exponents are 3, 4.

The classical Newton-Puiseux algorithm constructs parametrizations only for plane alge-
braic curves and their analytic branches. However, since Puiseux’ study of fractional power
series, several generalizations of the algorithm for solving more general systems of polynomial
equations were established. In 1980, J. Maurer gave in his paper [Ma80] a constructive proof for
the existence of parametrizations of space curves, i.e., he solved the problem of finding yi-roots
of a system of polynomials

Fj(x, y1, . . . , yn) = 0 (4.7)

defining an algebraic space curve. Maurer replaced the Newton polygon used in the classical
Newton-Puiseux algorithm by the Newton polyhedron and used its edges in order to compute the
so-called tropisms of Fj’s corresponding to the approximations of parametrizations of analytic
branches of a space curve. Another approach for solving (4.7) is for instance by means of
tropical geometry methods as A. N. Jensen, H. Markwig and T. Markwig described in their
paper [JMM08]. Another extension of the Newton-Puiseux algorithm, namely to polynomial
equations of the form

F (x1, . . . , xn, y) = 0,

was done for example by J. McDonald [Md95] and by M. J. Soto and J. L. Vicente [SV11]. In
the case that F is quasi-ordinary w.r.t. the variable y, the existence of Puiseux y-roots of such
F is guaranteed also by the Abhyankar-Jung theorem (see e.g. [Lu83], [Zu93],[PR12]). Further,
for the special case of F defining a quasi-ordinary surface we mention the works by J. Lipman
[Li65] and P. D. González Pérez [Gp00]. For statements and algorithms solving the even more
general system of polynomial equations

Fj(x1, . . . , xl, y1, . . . , yk) = 0

we refer e.g. to [Md02], [Ar04], [AIdM10].
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The method we use to construct parametrizations of space curves follows the following
strategy: we project a space curve to all possible coordinate planes where the classical Newton-
Puiseux algorithm applies and constructs the Puiseux parametrizations of the projections. Then
we glue all the projections together and reconstruct from all their parametrizations a parametriza-
tion of the space curve. To investigate this construction procedure in more detail is the objective
of the remaining part of this section.

Let us consider a space curve X ⊆ An+1
C . As in the plane curve case, we call here an

(n + 1)-tuple of power series γ(t) = (x(t), y1(t), . . . , yn(t)) ∈ C[[t]]n+1 a parametrization of
X if the ring homomorphism

γ∗ : C[x1, y1, . . . , yn]/I(X)→ C[[t]]

x 7→ x(t)

yj 7→ yj(t) for 1 ≤ j ≤ n,

is injective. The notation I(X) stands here again for the vanishing ideal of X . We call a
parametrization γ a parametrization of X at a point z ∈ X , if γ(0) = z is satisfied.

Let us now assume that X is irreducible and that 0 ∈ X . Whereas its vanishing ideal
I(X) is a prime ideal in the polynomial ring C[x, y1, . . . , yn], this is in general no longer true
when considering I(X) as an ideal in the convergent power series ring C{x, y1, . . . , yn}. This
phenomenon shows that an irreducible algebraic space curve can locally at a point be viewed as
a union of analytic curves. More precisely, an irredundant primary decomposition

I(X) = Q1 ∩ · · · ∩Qk

of I(X) into primary ideals Qi ⊆ C{x, y1, . . . , yn} defines a decomposition of X into a union
of irreducible analytic curves defined by Qi’s or, equivalently, their associated prime ideals
Pi =

√
Qi for i = 1, . . . , k. Here again, an analytic curve defined by an ideal Pi is a germ

(V (Pi), 0) at the origin of the vanishing set of Pi, called also an (analytic) branch of X at 0. We
call an (n+ 1)-tuple γ(t) = (x(t), y1(t), . . . , yn(t)) ∈ C[[t]]n+1 a parametrization of the branch
(V (Pi), 0), if the corresponding ring map

γ̂ : C{x, y}/Pi → C[[t]]

x 7→ x(t)

yj 7→ yj(t) for 1 ≤ j ≤ n,

is injective.

Theorem 4.2.8. Let X ⊆ An+1
C be an irreducible algebraic space curve with 0 ∈ X . Assume

that its vanishing ideal I(X) does not contain the polynomial x, i.e., x /∈ I(X). Then X can
be parametrized at the origin by

γ(t) = (tl, y1(t), . . . , yn(t)),

for some l ∈ N and convergent power series yj(t) ∈ C{t} for j = 1, . . . , n.
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Lemma 4.2.9. Let X and Y be two irreducible algebraic space curves in An+1
C . The curves

have a common branch, if and only if X = Y .

Proof. Assume w.l.o.g. that 0 ∈ X∩Y . Let us assume thatX and Y have a common branch at 0
and let P ⊆ C{x, y1, . . . , yn} be its defining prime ideal. Then the Zariski closure of V (P ) has
dimension 1 and defines a subset ofX . Hence, asX is irreducible, it is equal toX . Analogously
for Y . Thus we obtain X = V (P ) = Y .

Proof of Theorem 4.2.8. Notice first that the Zariski closure of the image of X under the projec-
tion morphisms

πj : An+1
C → A2

C

(a, b1, . . . , bn) 7→ (a, bj),

is irreducible and contained in a plane algebraic curve for all j = 1, . . . , n (see e.g. [Mu88,
Proposition 1, pp. 68]). According to the assumption that x /∈ I(X) and that X is irreducible,
it is a consequence of Lemma 4.2.9 that X cannot have an analytic branch entirely contained in
the hyperplane {x = 0}. Let ‹X ⊆ X be a a dense subset of X defining a branch of X at 0.
The image of ‹X under each projection πj is contained in πj(X), and we also have |πj(‹X)| =

∞ for all j. Hence, for each j = 1, . . . , n, the Zariski closures of the image πj(‹X) must
be an irreducible plain algebraic curve and equal to the Zariski closure of πj(X). Denote by›Xj the branch of πj(X) defined by πj(‹X). The power series defining ‹Xj obviously satisfies
the assumptions of Theorem 4.2.1 and so the existence of a Puiseux parametrization γj(t) =

(tlj , yj(t)) ∈ C{t}2, with some lj ∈ N, of ‹Xj is guaranteed. We claim now that the (n + 1)-
tuple

γ(t) =
(
tl, y1(t

l
l1 ), . . . , y1(t

l
ln )
)
,

with l = l1 · · · ln, is a parametrization of X . To prove the claim we need to show firstly that

each polynomial g ∈ I(X) satisfies g
(
tl, y1(t

l
l1 ), . . . , y1(t

l
ln )
)

= 0 and secondly that the cor-
responding ring homomorpism γ∗ is injective. Let us define

S := {s ∈ C : γj(s) ∈ πj(X) for all j = 1, . . . n}.

Then obviously γ(s) ∈ X for all s ∈ S from which we conclude

g
(
γ(t)) = g(tl, y1(t

l
l1 ), . . . , y1(t

l
ln )
)

= 0

for all g ∈ I(X). Using now the fact that the set {γ(s) : s ∈ S} defines infinitely many points
on X und thus a dense subset of X (actually an analytic branch of X), the injectivity of γ∗

follows from Lemma 4.2.9.

We call a parametrization γ(t) of X at 0, which is (up to permutation of the components of
the parametrization) of the form γ(t) = (tl, y1(t), . . . , yn(t)), a Puiseux parametrization of X
at 0 if l is minimal, i.e., l is the product of the polydromy orders of the Puiseux series yj(t

1
l ). We
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call this l the polydromy order of γ. Further, let mj,1, . . . ,mj,kj be the characteristic exponents

of yj(t
1
l ) for j = 1, . . . , n. Then l and the set

n⋃
j=1

{mj,1, . . . ,mj,kj}

have no common factor by the minimality of l. We call the elements of the union
⋃n
j=1{mj,1, . . . ,mj,kj}

of sets of characteristic exponents of yj(t
1
l ) the characteristic exponents of γ(t). As in the plane

curve case, an (n+ 1)-tuple of power series γ(t) ∈ C[[t]]n+1 is a Puiseux parametrization of X
at a point z 6= 0, if additionally to the condition γ(0) = z, the vector of power series γ(t) − z
has one component equal to tl with l minimal.

Analogously to the plane curve case, also here we have that each parametrization of an
algebraic space curve is convergent. Before proving this, let us recall Artin’s Approximation
Theorem.

Artin Approximation Theorem. Let f1, . . . , fk ∈ C{x, y1, . . . , yn} be convergent power se-
ries with fi(0) = 0 for all i. Consider a formal solution y(x) = (y1(x), . . . , yn(x)) ∈ C[[x]]n of
the system

fi(x, y) = fi(x, y1, . . . , yn) = 0, for i = 1, . . . , k. (4.8)

Then for each integer α ≥ 1, there exists a convergent solution

yα(x) = (y1,α(x), . . . , yn,α(x)) ∈ C{t}n

of the system (4.8) which coincides with y(x) up to degree α, i.e.,

y(x) ≡ yα(x) mod (xα).

Nowadays, many different techniques for proving the Artin approximation theorem are
known. Some of them can be found for example by M. J. Greenberg in [Gr66, Theorem 1],
by M. Artin in [Ar68], in J. M. Ruiz’s book [Ru93, Proposition 3.1], or by H. Hauser [Ha17]
and G. Rond in [Ro18, Theorem 1.2].

Proposition 4.2.10. Let X ⊆ An+1
C be an algebraic space curve. Consider a parametrization

γ(t) = (x(t), y1(t), . . . , yn(t)) ∈ C[[t]]n+1 of X at the origin. Then γ(t) is already convergent,
γ(t) ∈ C{t}n+1.

Proof. The strategy of the proof is first to show using the Artin approximation theorem that the
pairs of the components of each parametrization of a space curve X ⊆ An+1

C define already
parametrizations of plane algebraic curves. Then we use the theory of Puiseux parametrizations
of plane curves to conclude the convergence.
Let γ(t) = (x(t), y1(t), . . . , yn(t)) ∈ C[[t]]n+1 be a parametrization of X at 0. Notice first that
at least one component of γ(t) is different from zero (otherwise, we could embed the curve in
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AnC). Let us w.l.o.g. assume x(t) 6= 0. Use the same trick as in the proof of Corollary 4.2.3 to
transform γ(t) into γ̃(t) which still parametrizes X at the origin and which is of the form

γ̃(t) = (x̃(t), ỹ1(t), . . . , ỹn(t)) = (tl, ỹ1(t), . . . , ỹn(t)),

with l = ord(x(t)) and formal power series ỹj(t) ∈ C[[t]], for all j = 1, . . . , n. According to the
Artin approximation theorem, for each integer α ≥ 1 there exists an n-tuple of convergent power
series yα(t) = (y1,α(t), . . . , yn,α(t)) ∈ C{t}n with the property that (x̃(t), yα(t)) parametrizes
X at the origin and satisfying

γ̃(t) ≡ (x̃(t), yα(t)) mod (tα).

Consider the projection morphisms

πj : An+1
C → A2

C

(a, b1, . . . , bn) 7→ (a, bj),

for j = 1, . . . , n. Let us pick an α ≥ 1 and let rα be the minimum of the radii of convergence
of all yj,α’s. The set (x̃(Brα), yα(Brα)) := {(x̃(z), yα(z)) : |z| < rα} defines a branch of X
at 0. Here Brα denotes an open ball of radius rα centred at 0. Hence, for each j = 1, . . . , n,
the image πj(x̃(Brα), yα(Brα)) = (x̃(Brα), yj,α(Brα)) defines a branch of the plane algebraic
curve Xj = πj(X), the Zariski closure of the image πj(X), which is irreducible (compare this
with the argument in the proof of Theorem 4.2.8). Let Fj ∈ C[x, y] be the polynomial defining
Xj . Then we have the following equality

Fj(x̃(t), yj,α(t)) = Fj(t
l, yj,α(t)) = 0, (4.9)

which shows that yj,α(t
1
l ) is a y-root of Fj(t, y).

Let us assume now by contradiction that γ̃(t) 6= (x̃(t), yα(t)) for all α ≥ 1. This gives us
infinitely many convergent parametrizations (x̃(t), yα(t)) of X and hence also infinitely many
y-roots of only finitely many polynomials Fj(t, y) with j = 1, . . . , n, which is a contradiction
to the fact that C{x, y} is a unique factorization domain and to Corollary 4.2.5.

The classical Newton-Puiseux algorithm constructs y-roots not only for power series with
coefficients from C. Even more, it is valid for any bivariate power series f ∈ K[[x, y]], where
K is an algebraically closed field of characteristic 0. Hence all statements and constructions
presented in this section remain true when we replace the field of complex numbers C by any
other algebraically closed field K of characteristic zero.

Concerning the positive characteristic case, the Newton-Puiseux theorem holds under certain
assumptions also there (see e.g. [AM73, pp. 67]):

Theorem 4.2.11. Let K be an algebraically closed field of characteristic p > 0. Let f(x, y) ∈
K((x))[y] be a monic polynomial of degree n in y which is irreducible in K((x))[y]. Let us
assume that p does not divide n. Then there exists a positive integer m ∈ N and an element
y(t) ∈ K((t)) such that

f(tm, y(t)) = 0.
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However, if the assumptions of Theorem 4.2.11 are not satisfied, there is in general no hope
for Puiseux Laurent series y-roots in positive characteristic. C. Chevalley noted in his book
[Ch51, pp. 64] that for any field K of characteristic p > 0, the Artin-Schreier polynomial
f(x, y) = yp − y − 1

x has no y-root in
⋃
i≥1K((x

1
n )). Another proof for this can be found

also in [Ab2] where S. Abhyankar gave a factorization of f into generalized Puiseux series
with unbounded denominator. Later then, in [Ke01] and [Ke17], K. S. Kedlaya showed that in
the search for y-roots in positive characteristic, the generalized Puiseux series with unbounded
denominator observed by Abhyankar cannot be avoided and, moreover, he constructed explicitly
an algebraic closure of K((x)) for any field K of positive characteristic in terms of them. More
results about Puiseux parametrizations and y-roots in positive characteristic can be found for
example in [St82], [Ra68], [Va97], [Va04].
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Chapter 5

Open Questions and Problems

Here I collect all problems related to the topics of my PhD thesis which I have encountered dur-
ing the PhD program and which have not been solved yet. All of these problems and questions
are mentioned in context in the thesis. This list is intended to be used as a starting point for the
followup postdoctoral research.

5.1 Geometric Invariants

(i) Find basic properties of multivariate D-algebraic power series and use them in order to
construct a family of multivariate D-transcendental power series.

(ii) Given a univariate D-trascendental power seires f(t) ∈ C[[t]], is it always possible to
use f(t) and its properties to construct a D-transcendental power series ζ(x1, . . . , xn) ∈
C[[x1, . . . , xn]] in n variables?

(iii) Clarify, which of the techniques used in Chapter 1 for construction of D-transcendental
power series and D-algebraically independent families of power series can be applied also
to other fields different from C. Subsequently, study the basic properties of fields to that
the techniques apply.

(iv) Prove or disprove the existence of D-transcendental power series and D-algebraically in-
dependent families of power series over fields different from C.

(v) Find basic properties of the fields over which D-transcendental power series and D-algebraically
independent families of power series do not exist.

(vi) Generalize the first proof of Theorems 1.1.5 and 1.2.2 also to higher dimensional varieties.
In other words: Prove Theorems 1.3.4 and 1.4.5 in a combinatorial flavour just by use of
the theory of differential field extensions.

(vii) Make clear, whether the concept of geometric invariants can be generalized also to other
fields different from C. In the cases that allow a generalization, generalize it.
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5.2 Resolution of Singular Curves via Geometric Invariants

(i) Characterize crucial curvatures of a curve at a singular point by the properties of the
defining ideal of the curve.

(ii) Find an implicit interpretation for Remark 2.1.6 showing that the maximal order of a
parametrization of an algebraic curve at a singular point drops after each blowup in the
ideal corresponding to an algebraic curvature and which thus guarantees an improvement
of the singularity after the blowup. In other words: Interpret implicitly, i.e., in terms of
transformations of the defining equations of a curve, the improvement of curve singulari-
ties under each blowup in the ideal given by an algebraic curvature.

(iii) Find an implicit proof for the resolution of singularities via the geometric invariants con-
structed with algorithms PLANECURVATURE, SPACECURVATURE and CURVATURES. In
other words, prove that the crucial curvatures constructed by these algorithms yield a res-
olution of singularities of algebraic curves without using parametrizations.

(iv) Clarify which of the results gained in Chapter 2 are valid also over other fields of char-
acteristic zero different from C. In parallel to this question, study the basic properties of
those fields in which our results are still valid.

(v) Generalize the results gained in Chapter 2 to fields of positive characteristic fields.

(vi) Find basic properties of the blowups corresponding to (higher) algebraic curvatures of
(analytically) reducible algebraic curves.

(vii) For any curveX with more than one singularity, Theorem 2.3.3 guarantees the existence of
a resolution X̃ of singularities ofX constructed by means of geometric invariants (namely
with the algorithm CURVATURES). Construct a polynomial ideal J (which according to
Corollary 2.3.2 do always exist) such that ‹X is the blowup of X in J .

(viii) Carry the constructions and methods established in the curve case over to surfaces.

5.3 The Moduli Space of n Points on the Projective Line and the
First Fundamental Theorem for GLn(C) and SLn(C)

(i) Can the First Fundamental Theorems for SLn(K) and GLn(K), where K is an infinite
field, be proven using geometric invariants? (Study for this the properties of minimal
geometric invariants, i.e., geometric invariants that can be written as rational functions in
x

(i1,...,in)
k with i1 + · · ·+ in = 1.)

(ii) Determine the generators of the invariant ring K[x]SLn and the invariant field K(x)GLn

and state the First Fundamental Theorems for SLn(K) and GLn(K) over a finite field K.
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Abstract

Abstract English

The main objective of this thesis is to introduce new geometric algebraic quantities of algebraic
varieties describing their geometry (especially the local geometry of the varieties at their singu-
lar points) and having applications in resolution of singularities. The document is organized in
three main parts.

The first part of my PhD thesis is crucial and very important for the remaining two parts.
I introduce there a new concept of algebraic curvatures — a system of generators of so-called
geometric invariants — of algebraic varieties which are then later the main ingredient of the
resolution algorithm for singular curves presented in the second part of this thesis, and also a
very important tool concerning the problem of the moduli space of n points on the projective line
which is the contents of the third part. Not only the introduction of geometric invariants, but also
their complete classification are done in this part of the thesis by using techniques from invariant
theory, theory of differentially transcendental power series, and the theory of differential fields
and their extensions. Moreover, for plane and space curves, a proof that the algebraic curvatures
already determine algebraic curves completely, is provided as well.

In order to understand singularities better, we define by means of algebraic curvatures and
with help of the local Puiseux parametrizations of a curve at its singular points parametric ex-
pressions that measure how far the singularities are from being smooth. A proof that these
parametric expressions can be defined in terms of the implicit polynomial equations of the curve
is also part of the first chapter of this thesis.

The content of the second part of this thesis is the application of algebraic curvatures to the
problem of resolution of singular curves. In fact, for a given algebraic curve, among all algebraic
curvatures there are some whose corresponding blowup of the curve improves the singularities.
In the second chapter of this thesis, an algorithm constructing a geometric invariant (by means of
algebraic curvatures) whose blowup already resolves a given singularity of a curve is presented.

In the third, and last part, of this thesis, the algebraic curvatures of higher dimensional
varieties are used for the proof of the First Fundamental Theorems for GLm(K) and SLm(K),
for m ≥ 2 and K an arbitrary infinite fields. Actually, I show that the GLm(K)-invariant
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elements are in one-to-one correspondence with the minimal algebraic curvatures. Moreover,
counterexamples to the First Fundamental Theorems for GLm(K) and SLm(K) over finite fields
are provided in the third chapter of this thesis as well.

Zusammenfassung deutsch

Das Hauptziel der vorliegenden Dissertation ist es, neue geometrischen algebraischen Größen
von algebraischen Varietäten vorzustellen, die ihre Geometrie (vor allem die lokale Geometrie
in singulären Punkten) beschreiben und eine Anwendung in der Auflösung von Singularitäten
haben. Dieses Dokument ist in drei Kapitel gegliedert.

Das erste Kapitel meiner Dissertation stellt einen Baustein für die restlichen zwei Kapitel
dar. Ich führe hier das Konzept von algebraischen Krümmungen algebraischer Varietäten ein
— sie bilden ein Erzeugendensystem von sogenannten geometrischen Invarianten. Die algebra-
ischen Krümmungen spielen eine wichtige Rolle in der Auflösung von singulären Kurven (das
Thema des zweiten Kapitels dieser Dissertation) und gleichzeitig können auch als ein sehr nütz-
liches Werkzeug in dem Problem des Modulraums von n Punkten auf der projektiven Gerade
verwendet werden. In dem ersten Kapitel dieser Dissertation werden die algebraischen Krü-
mmungen nicht nur definiert, sondern es werden auch ihre Eigenschaften diskutiert. Mit Hilfe
von Techniken aus der Invariantentheorie, Theorie der differential-transzendenten Potenzrei-
hen, und der Theorie der Differentialkörper und ihrer Erweiterungen werden alle geometrischen
Invarianten klassifiziert. Es wird weiters gezeigt, dass jede algebraische Kurve durch ihre alge-
braischen Krümmungen bereits eindeutig festgelegt wird.

Um Singularitäten von Kurven besser zu verstehen, definieren wir mithilfe der algebrais-
chen Krümmungen und lokalen Puiseux Parametrisierungen von algebraischen Kurven in ihren
Singularitäten parametrisierte Größen von Kurven, die die Komplexität jeder Singularität auf
der Kurve messen. Ausserdem, beschreiben wir jede dieser parametrisierten Größen via die im-
pliziten Polynome der Kurve.

Das zweite Kapitel dieser Dissertation behandelt über die Anwendung der algebraischen
Krümmungen in der Auflösungsproblematik singulärer Kurven. Es ist nicht schwer zu zeigen,
dass es für jede Kurve einige algebraische Krümmungen gibt, sodass die Blowups der Kurve
in den durch diese Krümmungen definierten Ideale die Singularitäten der Kurve verbessern. In
diesem Kapitel wird ein Algorithmus präsentiert, der für jede Singularität einer gegebenen al-
gebraischen Kurve eine geometrische Invariante aus den algebraischen Krümungen konstruiert,
sodass das durch diese geometrische Invariante definierte Blowup bereits die Singularität auflöst.

Im dritten Kapitel der Dissertation wird eine andere Anwendung der algebraischen Krüm-
mungen vorgestellt und zwar, sie werden für den Beweis der Ersten Fundamentalsätze für GLm(K)
und SLm(K) für einen unendlichen Körper K verwendet. Abschliessend präsentiere ich noch
Gegenbeispiele über endliche Körper zu den Aussagen der Ersten Fundamentalsätze für GLm(K)
und SLm(K).
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