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1.1 A biological phenomenon : Autophagy

1.1.1 Presentation of selective autophagy
Autophagy, from the greek αυτoς (self) and ϕαγειν (to eat) is a process during which eu-
karyotic cells degrade unwanted or harmful intracellular substances and recycle their com-
ponents. Together with the ubiquitin-proteasome system (UPS), autophagy constitutes one
of the two major routes for the degradation of intracellular material. Several types of au-
tophagy have been described but hereafter we will only consider macroautophagy, which
will be referred to as autophagy. During autophagy, double membrane organelles called
autophagosomes are created. Autophagosomes form from vesicular membrane precursors
and grow as crescent-shaped membranes called isolation membranes. Isolation membranes
engulf cytoplasmic material (cargo) until they seal into a closed double membrane vesicle,
in which the cargo remains trapped. The autophagosomes then fuse with lysosomes, which
contain enzymes able to degrade the autophagosomes’ cargoes. These steps are recalled in
Figure 1.1.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Autophagy delivers cytoplasmic material to the lysosomal compartment for
degradation. (1) Membrane donors including Atg9 vesicles nucleate an isolation membrane.
(2) The isolation membrane expands and engulfs cytoplasmic cargo material including or-
ganelles and macromolecules. (3) The isolation membrane matures into a closed double-
membrane autophagosome. (4) The outer autophagosomal membrane fuses with a lysosome
(or the vacuole in yeast), leading to the degradation of the inner membrane and the cargo.
(5) Components are recycled back into the cytoplasm. This figure and the caption are taken
from [64].

Autophagy is thought to be both non-selective and selective towards its cargoes. Non-
selective autophagy happens during starvation and mainly serves to recycle building blocks,
while selective autophagy degrades specific cargoes such as protein aggregates, damaged mi-
tochondria, and intracellular pathogens. As a consequence, defects in autophagy have been
associated with a wide range of diseases, such as neurodegeneration, cancer, and decreased
innate immunity. For the rest of this dissertation only selective autophagy will be taken into
account. Selective autophagic cargos are typically tagged with poly-ubiquitin (i.e. chains of
ubiquitin molecules linked via different linkage types). Ubiquitinated cargos are then teth-
ered to the isolation membranes by a cargo receptor protein. The most studied mammalian
cargo receptor is p62/SQSTM1.

1.1.2 The cargo receptor p62/SQSTM1

The linking of the ubiquitinated cargo to the isolation membrane through p62/SQSTM1 is
made possible thanks to two sites : the LIR motif, which is a binding site to molecules of the
Atg8 family such as LC3B that are found attached to the membranes of autophagosomes,
and the UBA domain, which is a binding site to Ubiquitin (See Figure 1.2). p62/SQSTM1
possess also a third site called PB1 domain that mediates self-oligomerization. To bind
LC3B molecules, it is not enough for p62 to have a functional LIR motif domain (See [59]),
it is also required that the PB1 oligomerization domain of p62 be functional, which means
that the ability of p62 to bind cargoes depends on its ability to self-oligomerize. In addition
to this role of cargo receptor, p62 has also been involved in the formation of ubiquitinated
protein aggregates, which subsequently become cargos for autophagy (See [7] and [31]).
This activity has been reconstituted in vitro in [65], which constitutes the object of the
model presented in this dissertation. The capacity of p62 to self-oligomerize plays again an
important role for the interaction between p62 and ubiquitin as discussed in further detail
in 1.1.3.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Schematic representation of the p62 domain architecture.

1.1.3 Interaction between p62/SQSTM1 and ubiquitin in vitro

The isolated UBA domain of p62 binds mono-ubiquitin with a relatively low affinity (Ac-
cording to [39], Kd ≈ 540µM). Oligomers of p62 show a higher avidity with ubiquitin chains
and in general with locally concentrated ubiquitin and, thus, stabilize the binding with the
ubiquitinated cargo material (See [64]). However, the strength of this interaction depends
also on the form of the ubiquitin with which oligomers of p62 binds. In [65], different forms
of ubiquitin have been tested, among them ubiquitin chains but also mono-ubiquitin and
multi-mono-ubiquitin. The conclusion of the study is that the interaction is the strongest
(compared with mono-, bi-, tri-ubiquitin, and ubiqutin chains K48 and K63), when oligomers
of p62 are in presence of tetra-ubiquitin.

1.2 First model
We designed a new model, which focuses on the interaction in vitro between oligomers of
p62 and tetra-ubiquitin in the in vitro reconstitution of [65].

1.2.1 Modelling assumptions
We consider thus two types of basic particles:

1. Oligomers of the protein p62, where we assume for simplicity that all oligomers contain
the same number n ≥ 3 of molecules. These oligomers are denoted by p62n and are
assumed to possess n binding sites for ubiquitin each,

2. Cross-linkers in the form of tetra-ubiquitin, denoted by Ubi and assumed to have two
ubiquitin ends each. When one end of a Ubi is bound to a p62n, we call it one-hand
bound, when both ends are bound we call it both-hand bound.

The modelling of the experiments [59] is quite complex and requires to consider aggregates
formed from different particles. This corresponds also to a growing concern in Biology, as
it is now clear that the heterogeneity of aggregates plays a major role in some phenomena
such as the explanation of abnormal functionality in amyloid fibrils for instance (See [2]). To
our knowledge, all the existing models in the literature consider aggregates described by one
parameter, which is its unidimensional size (for polymers, it corresponds to the number of
monomers it contains). For the majority of them, the aggregates are formed from one type of
particle or species leading to a huge literature. Considering aggregates coming only from one
species, has enabled to investigate a wide variety of phenomena : nucleation, polymerization
(See [6]), depolymerization, fragmentation and coagulation (See [18], [3], [35]), although it
does not describe the majority of the aggregates biologists and physicists face. This is why,
reflecting the growing interest in Biology for taking into account the diversity of aggregates,
very recent attempts (2018 for [17] and 2020 for [10]) have been made to take into account
the plurality of monomers, such as in [17], where two types of monomers are considered, or
as in [10]. Nevertheless, in the end, these attempts consider aggregates described by one
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CHAPTER 1. INTRODUCTION

parameter, and thus fail to take into account the heterogeneity of real aggregates. When
two types of particles are involved, which affects the structure of the aggregate as in our
model, this is not anymore possible. It should be described at least by two parameters.
In our model, we decide to describe an aggregate by three parameters, in order to take
into account the two different ways the two particles we are considering (Ubiquitin one-
hand bound or both-hand bound to p62n) could bind. Hence, in our model, an aggregate is
represented by a triplet (i, j, k) ∈ N3

0, where :

1. i denotes the number of one-hand bound Ubi,

2. j denotes the number of both-hand bound Ubi,

3. k denotes the number of p62n.

However, even by taking into account three parameters, our model fails to associate bijec-
tively an aggregate with a triplet. In other words, as soon as i, j, k > 1, a same triplet
represents several different aggregates.
In the first version of our model, we consider that :

1. aggregates grow in a medium with unlimited quantities of our two basic particles
namely p62n and Ubi

2. they do not interact with each other (no coagulation).

Thus we do not take into account in the first version of our model either coagulation or
nucleation or fragmentation.

1.2.2 Model

To account for growth and shrinking of aggregates, we consider only three possible reactions
that could be related to polymerization in some sense (adding of one of the two basic particles
that play an equivalent role as the one played by monomers) and their reverse counterparts
with associated (positive) kinetic reactions rates κ1, κ2, κ3, κ−1, κ−, that are introduced in
Chapter 2. This leads to an infinite discrete system similarly as the Becker-Döring system
presented in [5] or as in [17], that we do not explicitely write because of the complexity
brought by the three instead of one parameters describing one aggregate. We consider the
growth of a population of aggregates of same size (i, j, k) with i, j, k large enough, so that
they can be replaced by continuous parameters p = i

k0
, q = j

k0
and r = k

k0
, with k0 a typical

value of [Ubi] and [p62n], assumed of the same order of magnitude. The system rewritten
in terms of these continuous parameters is a transport equation (See Appendix A for the
derivation). Finally, the equation satisfied by the characteristic curves of this transport
equation is given by the following nonlinear ODE model :

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r) , r(0) = r0 ,

(1.1)

where
α(q, r) :=

nr − 2q

(n− 2)r
, 0 ≤ α(q, r) ≤ 1, nr − p− 2q ≥ 0. (1.2)

1.2.3 Analysis of the first model

We observe numerically three mutually exclusive regimes depending on the values of the
parameters (the reactions rates κ1, κ2, κ3, κ−1, κ−). We make the following conjecture :
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CHAPTER 1. INTRODUCTION

Conjecture 1 (Chapter 2). We define

ᾱ =
n

n− 2
+
κ−1 + κ1 −

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

κ−(n− 1)
. (1.3)

Then,

1. if 0 < ᾱ < 1, then all solutions of (3.1) converge to (p̄, q̄, r̄) as t→∞,

2. if ᾱ ≥ 1, then all solutions of (3.1) converge to (0, 0, 0) as t→∞,

3. if ᾱ ≤ 0, then for all solutions of (3.1) we have p(t), q(t), r(t)→∞ as t→∞.

One can note that ᾱ does not depend on the value of κ3. Hence, it could seem that the
different regimes do also not depend of the value of κ3, which may question the relevance
of the third reaction. In fact, the definition of the non-trivial steady-states p̄, q̄ and r̄ as
well as the expressions of p, q and r in the growing polynomial regime involve κ3. The only
necessary condition is that κ3 > 0 (See Chapter 2). In the same chapter, we also study the
case where κ3 = 0 in which we do not observe these three regimes. The aim of the Chapter
3 is to prove partially this conjecture using dynamical systems tools, that we introduce
hereafter in Subsection 1.3.1.

1.3 Dynamical systems tools used for the study of the
first model

Basic notions of dynamical systems will not be recalled. The interested reader could have a
look at [9], [46], [34] and [26].

In the Subsection 1.3.1, we recall the classical method to study of an ODE system, in
order to show in the Subsection 1.3.2 that it does not apply to prove the Conjecture 1. In
the Subsections 1.3.3 and 1.3.4, we introduce other dynamical system tools that enable us
to prove partially the Conjecture 1 in the Chapter 3.

1.3.1 Classical study of the stability of the steady states of a non-
linear ODE system

We consider the following general ODE system :

ẋ = f(x) (1.4)

with x ∈ Rn is a vector and f : Rn → Rn a continuously differentiable function.

Definition. A steady-state x0 ∈ Rn is called hyperbolic, when all the eigenvalues of the
Jacobian matrix at x0, denoted hereafter Dfx0

, have their real part different from zero.

Theorem (Hartman Grobman - quoted as in [9]). If x0 is a hyperbolic rest point for the
autonomous differential equation (1.4), then there is an open set U containing x0 and a
homeomorphism H with domain U such that the orbits of the differential equation (1.4) are
mapped by H to orbits of the linearized system ẋ = Dfx0

(x− x0) in the set U .

1.3.2 Application to the ODE model
The ODE system (1.1) can be rewritten in the general form (1.4) with n = 3 and x = (p, q, r).
It admits two steady-states (See Section 2) :

1. the origin or zero steady-state (p, q, r) = (0, 0, 0)

5



CHAPTER 1. INTRODUCTION

2. a non-trivial steady-state (p̄, q̄, r̄) given by :

p̄ = κ−κ2

κ3

(n−(n−2)ᾱ)(1−ᾱ)
2ᾱ(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) ,

q̄ =
κ2
2

κ3

(1−ᾱ)
ᾱ2(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) ,

r̄ = 2
κ2
2

κ3

(1−ᾱ)
ᾱ2(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) .

(1.5)

1.3.2.1 Study of the zero steady-state

α(0, 0) is not well-defined. Notwithstanding, the zero steady-state can still be defined be-
cause α(q, r) is bounded (see (1.2)), so that we have nevertheless that qα(q, r) is equal to
0 in (q, r) = (0, 0). However, the derivatives are not smooth. Consequently, the Jacobian
matrix cannot be defined at the origin (0, 0, 0). Thus, the stability of the zero steady-state
(0, 0, 0) cannot be studied using the methods mentioned in 1.3.1. To remove the singularity,
we make the following time-change of variable t→ τ :=

∫ t
0

ds
r(s) , which transforms the system

(1.1) into the polynomial system (1.6), which is well-defined at (p, q, r) = (0, 0, 0) :

dp

dτ
= (κ1 − κ3p)(nr − p− 2q)r + κ−q

(
r − (n− 1)p

(n− 2)

)
− (κ2 + κ−1)pr , p(0) = p0 ,

dq

dτ
= κ2pr + κ3pr(nr − p− 2q)− κ−q , q(0) = q0 ,

dr

dτ
= κ2pr − κ−q(nr − 2q) , r(0) = r0 .

(1.6)
The Jacobian matrix associated with (1.6) at (0, 0, 0) is the zero matrix. Therefore, its
three eigenvalues are zero, which makes (0, 0, 0) a non-hyperbolic point for (1.6). Hence, the
theory introduced in 1.3.1 cannot apply and we cannot study the stability with the classical
theory the stability of the origin of our system. We introduce the blow-up theory that apply
for non-hyperbolic points in the next subsection.

1.3.2.2 Study of the non-trivial steady-state

Before to studying the stability of the non-trivial steady-state, one should check its existence
conditions. The formulae (1.5) are indeed not always defined. In Section 2, we show that
they are well defined and positive when the quantity ᾱ defined by (1.3) is between 0 and
1. When ᾱ ∈ [0, 1], one could theoretically compute the Jacobian matrix Df(p̄,q̄,r̄) and
look at its eigenvalues. However, because of the formulae (1.5), this computation becomes
intractable and not solvable even using computer tools such as Mathematica. Nevertheless,
we conjecture in Section 2 from simulations of the system (1.1) that the non-trivial steady-
state is stable for values of parameters κ1, κ2, κ3, κ−1, κ−, such that ᾱ ∈ [0, 1].

1.3.3 Blow-up and application to the first model

To have a deeper understanding of blow-up, we refer to [26].

Blow-up enables to gain insight into what is happening in a neighbourhood of a non-
hyperbolic point of a dynamical system. The idea is to blow up the non-hyperbolic point
to a higher-dimensional structure such as a sphere, thanks to a change of variables that is
not a diffeomorphism. The blow-up of a point into a sphere is called homogeneous blow-up.
Although other forms are possible, we will not consider them as they are not necessary for
the understanding of our case presented in Section 3. Then, one studies the singularities
appearing on this new structure. If these new singularities are still non-hyperbolic, the
procedure is repeated. We show hereafter the different steps of the blow-up of the origin
of a vector field in R3 into a sphere S2(R), similar as the one we do in Section 2.3. The

6



CHAPTER 1. INTRODUCTION

homogeneous blow-up (See Figure 1.3) Γ : S2(R) × R∗+ → R3 is a map that uses the same
weights for each coordinate of the vector field :

Γ(p̄, q̄, r̄, ρ) = (ρp̄, ρq̄, ρr̄) = (p, q, r).

Figure 1.3: Blow-up of the origin (0, 0, 0) into a sphere of radius ρ.

The dynamics in spherical coordinates is quite difficult to study. This is why often while
not always suitable charts are chosen, where the computations of the blow-up are done in
local coordinates. In R3, this defines the six following usual charts on the sphere S2(R): Kp
defined by Kp := {(p, q, r) ∈ S2(R) : p > 0}, Kq defined by Kq := {(p, q, r) ∈ S2(R) : q > 0},
Kr defined by Kr := {(p, q, r) ∈ S2(R) : r > 0}, K−p defined by K−p := {(p, q, r) ∈
S2(R) : p < 0}, K−q defined by K−q := {(p, q, r) ∈ S2(R) : q < 0}, and K−r defined by
K−r := {(p, q, r) ∈ S2(R) : r < 0}. Only the three charts Kp, Kq and Kr are necessary to
describe the dynamics, when p, q, r ≥ 0 as in Section 2.

Then, we have that for each i = p, q, r,−p,−q,−r, we have Γ = Ki ◦ µi, where µi is
the local blow-up map on Ki. In each blow-up map, the dynamics is studied using the
local coordinates. Typically, for the chart Kq used in Chapter 3, the local coordinates are
(p1, q1, r1) = (pq, q, rq). Then, the dynamics of the local coordinates is computed from the
original dynamics in each chart. In our case, because p,q and r are positive, we only have
to consider the first positive octant of S2(R). This means that we only have to consider the
charts Kp, Kq, Kr. Moreover, because of the two inequalities (1.2), the dynamics evolves
only in a subset of this octant, where all the information could be provided by the chart Kq.
Studying the dynamics in the chart Kq, we are able to prove the following theorem.

Theorem 5 (Chapter 3). Let ᾱ be defined by (1.3). Then the steady state (0, 0, 0) of the
system (1.1) is locally asymptotically stable for ᾱ > 1 and unstable for ᾱ < 1.

It proves partially the local stability of the trivial steady-state (0, 0, 0) under the condition
ᾱ > 1, which is a weakened version of the first conjecture of Conjecture 1. We now present
the tools necessary to understand a proof of a weakened (also local) version of the third
conjecture of Conjecture 1.

1.3.4 Poincaré-compactification, geometric singular perturbation
theory and application to the first model

In fact, the third conjecture of Conjecture 1 can be refined using the following theorem (See
Chapter 2).

7
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Theorem 2 (Chapter 2). If ᾱ < 0, then there exists a formal approximation of a solution
of (3.1) of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) =

2q2

n
t2 + o(t2) , as t→∞ , (1.7)

with
p1 = κ−n

κ3(2nκ2+κ−n+4κ−1)

(
κ1κ2 − κ−n

2(n−2)

(
κ1 + κ−1 + κ−n(n−1)

2(n−2)

))
> 0 ,

q2 = n
2 r2 = κ3(n−2)(2nκ2+κ−n+4κ−1)

κ−(4κ1(n−2)+κ−n2) p2
1 .

The approximation is (from a formal point of view) unique, including the choice of the
exponents of t, among solutions with polynomially or exponentially growing aggregate size r.

Hence, we can reformulate the third conjecture of Conjecture 1 by excluding the case
ᾱ = 0 into the following :

Conjecture 2. if ᾱ < 0, then all solutions converge towards infinity in the polynomial
manner introduced in Theorem 2.

In Chapter 3, we only prove a local result of this conjecture, which means that we have
to look at p(0), q(0), and r(0) close to infinity (actually, more detailed conditions expressing
that q(0) and r(0) should be of the order of p(0)2 are needed). To do so, we perform the
change of variable (p, q, r)→ (u = p√

p+q
, v = 2p+2q−nr√

p+q
, w = 1√

p+q
), which has been inspired

by the Poincaré compactification that we explain hereafter.

1.3.4.1 Poincaré compactification

The Poincaré compactification allows to look at the behavior near infinity of a dynamical
system. Basically, points x ∈ Rn, with n ≥ 2 are projected onto the sphere Sn. The points
x ∈ Rn that are near infinity, i.e. the points who have at least one of their coordinates xi
with i ∈ J1, nK close to infinity are projected onto the sphere Sn−1 (See Figure 1.4). There
is one projection in the upper-sphere f+(x) and one projection in the lower-sphere f−(x)
(See Figure 1.4). Hereafter, we decided to present the theory for n = 2, which, we hope, will
help the reader to better understand. The idea is to consider R2 as a plan in R3. A point
(x1, x2) in R2 is thus bijectively associated to the point (x1, x2, 1).

f+(x) = (
x1

∆(x)
,
x2

∆(x)
,

1

∆(x)
)

f−(x) = (
−x1

∆(x)
,
−x2

∆(x)
,
−1

∆(x)
) (1.8)

with :
∆(x) =

√
x2

1 + x2
2 + 1.

This dynamics is quite complicated to study on S2(R), this is why we consider it in the
same local charts as in Blow-up (See Subsection 1.3.3). In the exact same way as in 1.3.3,
the dynamics of the local coordinates can be rewritten and studied. Typically, in the chart
K1 = {(x1, x2) ∈ S2(R) : x1 > 0}, the local coordinates are (x2

x1
, 1
x1

) (For more details,
see [26]).

1.3.4.2 Application

In our case p+ q goes towards +∞ and plays the role of the variable x1, which goes towards
+∞ Hence, the variable w is equivalent to the variable 1

x1
and w goes to 0. Similarly,

assuming that under the condition ᾱ < 0, the solutions converge towards the formal solution

8
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Figure 1.4: The point x = (x1, x2) has two projections F1 := f+(x) and F2 := f−(x) defined
by (A.2) on the sphere S2(R). Points at infinity will be projected onto the circle which is
the sphere S1(R).

presented in Theorem 2, then u and v converge towards steady-states, similarly as the
variable x2

x1
is also going towards a steady-state of the sphere S1(R). Thus, we are able to

translate the ODE for (p, q, r) into an ODE for (u, v, w). If we can prove locally that w
goes like 1

t2 when t goes to infinity while u and v go towards steady-states when t goes to
infinity, then we would have proven that (p, q, r) go towards infinity in the manner stated in
Theorem 2. This is done in Chapter 3 using geometric singular perturbation theory, whose
basic results are recalled in the following subsection.

1.3.4.3 Geometric singular perturbation theory

References for geometric singular perturbation theory are [34] and [11].

Now, we consider dynamical systems of the particular form :

ẋ = εf(x, y, ε) (1.9)
ẏ = g(x, y, ε) (1.10)

where :

x ∈ Rm, y ∈ Rn, 0 < ε� 1, f : Rm × Rn × R→ Rm, g : Rm × Rn × R→ Rn.

x is called the slow variable and y the fast variable. Under the change of variable τ := εt,
(1.9)-(1.10) becomes :

x′ = f(x, y, ε) (1.11)
εy′ = g(x, y, ε) (1.12)

where ′ := d
dτ . The system (1.11)-(1.12) (respectively (1.9)-(1.10)) is called the slow (re-

spectively fast) system because the time τ is slower than the time t. When ε is equal to
zero, on the one hand (1.9)-(1.10) becomes the system (1.13)-(1.14), which is called the
layer problem. On the other hand, (1.11)-(1.12) becomes (1.15)-(1.16), which is called the
reduced problem.

ẋ = 0 (1.13)
ẏ = g(x, y, 0) (1.14)

9
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x′ = f(x, y, 0) (1.15)
0 = g(x, y, 0) (1.16)

Now, we recall some definitions in order to quote the Fenichel’s theorem which links the
dynamics (1.9)-(1.10) and the dynamics (1.15)-(1.16) .

Definition. The manifold C0 defined by (1.16) is called the critical manifold, i.e. C0 =
{(x, y) ∈ Rm × Rn : g(x, y, 0) = 0}.
Definition (as in [34]). A subset S ⊂ C0 is called normally hyperbolic if the n × n matrix
(Dyg)(p, 0) of first partial derivatives with respect to the fast variables has no eigenvalues
with zero real part for all p ∈ S.
Definition. A normally hyperbolic subset S ⊂ C0 is called attracting if all eigenvalues of
(Dyg)(p, 0) have negative real parts for p ∈ S.
Theorem (Fenichel - adapted and simplified from [34]). Suppose S = S0 is a compact
normally hyperbolic submanifold (possibly with bound- ary) of the critical manifold C0 of the
slow system (1.11)-(1.12) and suppose that f, g smooth. Then for ε > 0 sufficiently small
the following hold :

1. There exists a locally invariant manifold Sε, diffeomorphic to S0. Local invariance
means that trajectories can enter or leave Sε only through its boundaries.

2. Sε is close to S0.

3. The flow on Sε converges to the slow flow as ε→ 0.

4. Sε is normally hyperbolic and has the same stability properties with respect to the fast
variables as S0 (attracting, repelling or saddle-type).

Applying this theorem twice in Chapter 3 enables us to prove the two following theorems.

Theorem 6 (Chapter 3). Let ᾱ < 0 hold. Then, for ε > 0 small enough, the solution of
(3.12) with initial conditions

u(0) = u0 > 0 , v(0) = v0 ∈ R , w(0) = ε ,

satisfies

u(τ) = û(τ)− U(v0) + U(ṽ(ετ)) +O(ε) ,

v(τ) = ṽ(ετ) +O(ε) ,

w(τ) = ε(1 + 2A∗ε2τ)−1/2 +O(ε2) ,

uniformly in τ ≥ 0, where U , û, ṽ, and A∗ are introduced in Chapter 3.

This theorem states that the variables u and v go towards steady-states and w goes
towards 0 when t→∞, under the condition ᾱ < 0, which is exactly what we aimed at using
the change of variable (p, q, r) → (u, v, w). This allows us to prove the last theorem which
proves locally the third conjecture of Conjecture 1.

Theorem 7 (Chapter 3). Let ᾱ < 0 hold, let c2 ≥ c1 > 0, and let δ > 0 be small enough.
Let the initial data satisfy

p0 =
c1
δ
, q0 =

1

δ2
, r0 =

2

nδ2
+
c2
nδ

Then the solution of (3.1) with (p(0), q(0), r(0)) = (p0, q0, r0) satisfies

p(t) = u∗A∗t+o(t) , q(t) = (A∗)2t2+o(t2) , r(t) =
2

n
(A∗)2t2+o(t2) , as t→∞ .

Hence, we have proven that under the condition ᾱ < 0, starting with initial conditions
quoted as in Theorem 7, the solutions of (1.1) converge towards the formal solutions found
in Theorem 2.

10
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1.4 Improved model and perspectives

1.4.1 Adding coagulation
As explained in Chapter 4, it seems biologically relevant to take into account coagula-
tion between aggregates in our model, which leads to unidimensional transport-coagulation
or growth-coagulation equations, which have never been studied to our knowledge. The
transport-coagulation equations that we study can be apparented to the following equation
: 

∂
∂tf(x, t) + ∂

∂x

(
v(x)f(x, t)

)
= 1

2

x∫
0

k(x− y, y)f(x− y, t)f(y, t)dy

−
∞∫
0

k(x, y)f(y, t)f(x, t)dy,

f(0, t) = f0.

(1.17)

with f0 > 0, v(x) a C1 decreasing function and x0 > 0 such that v(x0) = 0, K(x, y) a
symetric coagulation kernel - we shall consider here only K(x, y) = 2, K(x, y) = x+ y and
K(x, y) = xy. In the following, we present properties of the classical continuous coagulation
or Smoluchowski equation (See [54]) that will be useful for Chapter 4.

1.4.2 Continuous coagulation equations
Coagulation equations and its variant fragmentation-coagulation equations have been ex-
tensively studied in details these last years. Among many other, important references for
coagulation equations are [1], [16] and for fragmentation-coagulation equations [18], [21], [4].

The continuous coagulation equation considers coagulation only between two particles and
reads as follows :

∂tf(x, t) = C(f, f) (1.18)
f(0, t) = f0,

with :

C(f, f) = C1(f, f)− C2(f, f) (1.19)

C1(f, f) =
1

2

∫ x

0

k(x− y, y)f(x− y, t)f(y, t)dy (1.20)

C2(f, f) = f(x, t)

∫ ∞
0

k(x, y)f(y, t)dy. (1.21)

k is the coagulation kernel, whose form is chosen depending on the physical experiment con-
sidered (See [50], [1]). C is the coagulation term. It can be divided in two terms C1(f, f) and
C2(f, f), which expresses respectively how the system can gain (respectively lose) a particle
of size x. A particle of size x is formed by coagulation between two particles of size y ≤ x
and x − y ≥ 0, while it is consumed by coagulation with particles of any size y ≥ 0. The
coagulation process decreases the number of particles and formally conserves the mass. Nev-
ertheless, the conservation of mass can be violated at infinity when coagulation kernels are
large enough (typically the multiplicative kernel K(x, y) = xy). This phenomenon is called
gelation (See e.g. [21], [1], [16], [22]). Necessary and sufficient conditions to lead to gelation
have been studied, especially, while adding other terms such as fragmentation, which is the
opposite reaction of coagulation. Fragmentation counter-balances coagulation and a strong
enough fragmentation kernel can prevent gelation (See [22]). Analogously, in Chapter 4, we
proved for the multiplicative kernel that there exists a unique steady-state under certain
assumptions on the transport term, which means that gelation can be prevented by a strong
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enough transport term. Other phenomena have been extensively studied for coagulation
and fragmentation-coagulation equations including self-similar solutions ( [23]), stationary
solutions ( [36]) and convergence to equilibrium ( [37]). We are especially interested in study-
ing steady states that are biologically relevant. Steady-states have been previously studied
for fragmentation-coagulation equations (See [19]). In Chapter 4, we find that transport-
coagulation equations can admit exponential steady-states when prescribing very special
transport speeds. Existence of steady-states for the multiplicative kernel is performed using
a fix point theorem, inspired by [19]. We also studied Laplace transforms such as in [40]
and [16], where the equations for the Laplace transforms (and desingularized Laplace trans-
forms) and moments derived from the coagulation equation (1.19) are computed for the
constant, additive and multiplicative kernels i.e. respectively K(x, y) = 2, K(x, y) = x+ y,
K(x, y) = xy. The equations derived for the desingularized Laplace transforms are partic-
ularly simple and allow to obtain information on the initial equation. Unfortunately, in the
case of transport-coagulation equation, the equations derived from the Laplace transforms
(or desingularized transforms) are far more complicated.

1.4.3 Perspectives
Perspectives of our work is an extensive study of the improved model both theoretically but
also numerically in order to compare with biological data. Theoretically, we expect at short
term to solve the moment problem presented in Chapter 4 and a convergence rate of the
convergence toward the steady state obtained for the multiplicative kernel. At long term, we
expect to have more general results and conditions on mass-conserving solutions and gelation
for different types of kernels (not necessarily explicit). Numerically, we are currently working
on a numerical scheme of a transport-coagulation equation inspired by [8], [29] and [25]. We
expect to obtain simulations that could help us to make conjectures for the theoretical results
but above all that could be compared to biological videos of G. Zaffagnini.
Other perspectives are adaptation of our model to other problems involving aggregates made
out of two particles in biology.
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Chapter 2

A mathematical model of
p62-ubiquitin aggregates in
autophagy
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This chapter comes from an article that has been submitted to the Journal of Mathemati-
cal Biology and has been written in collaboration with M. Doumic, S. Martens, C. Schmeiser
and G. Zaffagnini.

2.1 Introduction

Autophagy is an intracellular pathway, which targets damaged, surplus, and harmful cyto-
plasmic material for degradation. This is mediated by the sequestration of cytoplasmic cargo
material within double membrane vesicles termed autophagosomes, which subsequently fuse
with lysosomes wherein the cargo is hydrolyzed. Defects in autophagy result in various
diseases including neurodegeneration, cancer, and uncontrolled infections [38]. The selec-
tivity of autophagic processes is mediated by cargo receptors such as p62 (also known as
SQSTM1), which link the cargo material to the nascent autophagosomal membrane [13]. p62
is an oligomeric protein and mediates the selective degradation of ubiquitinated proteins.
Its interaction with ubiquitin is mediated by its C-terminal UBA domain, while it attaches
the cargo to the autophagosomal membrane due to its interaction with Atg8 family proteins
such as LC3B, which decorate the membrane [45]. Additionally, p62 serves to condensate
ubiquitinated proteins into larger condensates or aggregates, which subsequently become
targets for autophagy [55,62]. It has been reported that this condensation reaction requires
the ability of p62 to oligomerize and the presence of two or more ubiquitin chains on the
substrates [59,62].

In this chapter a mathematical model for the condensation process is derived and an-
alyzed. It is based on cross-linking of p62 oligomers by ubiquitinated substrate [62]. A
cross-linker is assumed to be able to connect two oligomers, where each oligomer has a num-
ber of binding sites corresponding to its size. As an approximation for the dynamics of large
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aggregates, a nonlinear system of ordinary differential equations is derived.
The oligomerization property of p62 has been shown to be necessary in the formation of

aggregates [62]: too small oligomers of Ubiquitin do not form aggregates [59].
The dynamics of protein aggregation has been studied by mathematical modelling for

several decades, but most models consider the aggregation of only one type of protein,
which gives rise to models belonging to the class of nucleation-coagulation-fragmentation
equations, see e.g. [6,48,60] for examples in the biophysical literature, and [3,12,18,35] for a
sample of the mathematical literature. Contrary to these studies, the present work considers
aggregates composed of two different types of particles with varying mixing ratios, which
drastically increases the complexity of the problem.

In the following section the mathematical model is derived. It describes an aggregate
by three numbers: the number of p62 oligomers, the number of cross-linkers bound to one
oligomer, and the number of cross-linkers bound to two oligomers. The model considers
an early stage of the aggregation process where the supply of free p62 oligomers and of
free cross-linkers is not limiting. Since no other information about the composition of the
aggregate is used, assumptions on the binding and unbinding rates are necessary. In the
limit of large aggregates, whose details are presented in an appendix, the model takes the
form of a system of three ordinary differential equations. Section 3 starts with a result on the
well posedness of the model, and it is mainly devoted to a study of the long-time behaviour
by a combination of analytical and numerical methods. Depending on the parameter values,
three different regimes are identified, where either aggregates are unstable and completely
dissolved, or their size tends to a limiting value, or they keep growing (as long as they do
not run out of free oligomers and cross-linkers). In Section 4 we discuss the parametrization
of the model and a comparison with data from [62].

2.2 Presentation of the model

Discrete description of aggregates: We consider two types of basic particles:

1. Oligomers of the protein p62, where we assume for simplicity that all oligomers contain
the same number n ≥ 3 of molecules. These oligomers are denoted by p62n and are
assumed to possess n binding sites for ubiquitin each,

2. Cross-linkers in the form of ubiquitinated cargo, denoted by Ubi and assumed to have
two ubiquitin ends each. When one end of a Ubi is bound to a p62n, we call it one-hand
bound, when both ends are bound we call it both-hand bound.

An aggregate is represented by a triplet (i, j, k) ∈ N3
0, where i denotes the number of

one-hand bound Ubi, j denotes the number of both-hand bound Ubi, and k denotes the
number of p62n. It is a rather drastic step to describe an aggregate only by these three
numbers, since the same triplet might represent aggregates with various forms. This will
affect our modelling below.

An aggregate will be assumed to contain at least two p62n, i.e. k ≥ 2, and enough
both-hand bound Ubi to be connected, i.e. j ≥ k − 1. Furthermore, an aggregate contains
nk binding sites for Ubi, implying i + 2j ≤ nk. A triplet (i, j, k) ∈ N3

0 satisfying the three
inequalities

k ≥ 2 , j ≥ k − 1 , i+ 2j ≤ nk , (2.1)

will be called admissible. An example of an admissible triplet describing a unique aggregate
shape is (0, k−1, k), representing a chain of p62n. Adding one both-hand bound Ubi already
creates a shape ambiguity: The triplet (0, k, k) can be realized by a circular aggregate or by
an open chain, where one connection is doubled.
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Figure 2.1: Examples for Reactions 1 (left) and 2 (right) with p625 in black, one-hand bound
Ubi in green, two-hand bound Ubi in red, free particles in blue. Reaction 1: Ubi+(1, 3, 3)→
(2, 3, 3). Reaction 2: p625 + (2, 3, 3)→ (1, 4, 4).

The reaction scheme: Basically there are only two types of reactions: binding and
unbinding of Ubi to p62n. However, depending on the situation these may have various
effects on the aggregate, whence we distinguish between three binding and three unbinding
reactions.

1. Addition of a free Ubi, requiring at least one free binding site, i.e. nk − i− 2j ≥ 1,
(see Fig. 2.1):

Ubi+ (i, j, k)
κ′1−→ (i+ 1, j, k)

The reaction rate (number of reactions per time) is modeled by mass action kinetics
for a second-order reaction with reaction constant κ′1 and with the number [Ubi] of free
Ubi. Since free Ubi and free p62 oligomers will be assumed abundant, their numbers
[Ubi] and [p62n] will be kept fixed and the abbreviation κ1 = κ′1[Ubi] will be used.
This leads to a first-order reaction rate

r1 = κ1(nk − i− 2j) . (2.2)

2. Addition of a free p62n, requiring at least one one-hand bound Ubi, i.e. i ≥ 1:

p62n + (i, j, k)
κ′2−→ (i− 1, j + 1, k + 1)

Analogously to above, we set κ2 = κ′2[p62n] and

r2 = κ2i . (2.3)

3. Compactification of the aggregate by a Ubi binding its second hand, requiring
at least one one-hand bound Ubi, i.e. i ≥ 1, and at least one free binding site, i.e.
nk − i− 2j ≥ 1:

(i, j, k)
κ′3−→ (i− 1, j + 1, k)

This is a second-order reaction with rate

r3 = κ′3i(nk − i− 2j) . (2.4)

4. Loss of a Ubi, requiring at least one one-handed Ubi, i.e. i ≥ 1. This is the reverse
reaction to 1:

(i, j, k)
κ−1−−→ Ubi+ (i− 1, j, k)

Its rate is modeled by
r−1 = κ−1i . (2.5)
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5. Loss of a p62n (leading to loss of the whole aggregate if k = 2):

(i, j, k)
κ−αj,k−−−−→ p62n + ` Ubi+ (i+ 1− `, j − 1, k − 1)

This and the following reaction need some comments. They are actually both the same
reaction, namely breaking of a cross-link, which we assume to occur with rate κ−j.
However, this can have different consequences. Here we consider something close to
the reverse of reaction 2. This means we assume that the broken cross-link has been
the only connection of a p62 oligomer with the aggregate, such that the oligomer falls
off. This requires the condition nk−2j ≥ n−1, meaning the possibility that the other
n− 1 binding sites of the lost oligomer are free of two-hand bound Ubi. It is not quite
the reverse of reaction 2, since we have to consider the possibility that ` one-hand
bound Ubi, 0 ≤ ` ≤ n− 1, are bound to the lost oligomer. The conditional probability
αj,k to be in this case, when a cross-link breaks, is zero for a very tightly connected
aggregate where each oligomer is cross-linked at least twice, i.e. nk − 2j ≤ n− 2, and
it is one for a very loose aggregate, i.e. a chain with j = k−1. This leads to the model

αj,k =
(nk − 2j − n+ 2)+

(n− 2)k + 4− n
, (2.6)

and to the rate
r−2 = κ−αj,kj . (2.7)

In the framework of our model, ` should be a random number satisfying the restrictions

(n− 1− nk + i+ 2j)+ ≤ ` ≤ min{i, n− 1} , (2.8)

where the upper bound should be obvious and the lower bound implies that the last
condition in (2.1) is satisfied after the reaction. We shall use the choice

` = `i,j,k :=

⌊
(n− 1)i

nk − 2j

⌉
, (2.9)

which can be interpreted as the rounded (b·e denotes the closest integer) expectation
value for the number of one-hand bound Ubi on the lost oligomer in terms of the
ratio between the number n− 1 of available binding sites on the lost oligomer and the
total number nk − 2j of available binding sites for one-hand bound Ubi in the whole
aggregate. It is easily seen that in the relevant situation αj,k > 0, i.e. nk−2j ≥ n−1,
the choice (2.9) without the rounding satisfies the conditions (2.8). Since the bounds
in (2.8) are integer, the same is true for the rounded version.
Note that we neglect the possibility to lose more than one oligomer by breaking a
cross-link, i.e. the fragmentation of the aggregate into two smaller ones. This is a
serious and actually questionable modelling assumption. An a posteriori justification
will be provided by some of the results of the following section, showing that growing
aggregates are tightly connected.

6. Loosening of the aggregate by breaking a cross-link, requiring at least one excess
both-hand bound Ubi, i.e. j ≥ k:

(i, j, k)
κ−(1−αj,k)−−−−−−−→ (i+ 1, j − 1, k) .

This is the reverse of reaction 3 with the rate

r−3 = κ−(1− αj,k)j , (2.10)

which respects the requirement j ≥ k for a positive rate, because of

1− αj,k = min

{
1,

2(j − k + 1)

(n− 2)k + 4− n

}
.
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Figure 2.2: Examples for Reaction 3 (left, (2, 3, 3) → (1, 4, 3)), Reaction 5 (right, up,
(1, 3, 3)→ p625 + (2, 2, 2), ` = 0), and Reaction 6 (right, down, (1, 3, 3)→ (2, 2, 3)).

A deterministic model for large aggregates: The next step is the formulation of an
evolution problem for a probability density on the set of admissible states (i, j, k). In this
problem the discrete state is scaled by a typical value k0 of [Ubi] and [p62n], assumed of the
same order of magnitude:

p :=
i

k0
, q :=

j

k0
, r :=

k

k0
. (2.11)

It is then consistent with the definitions of κ1 and κ2 above to introduce κ3 := κ′3k0. In the
large aggregate limit k0 →∞, the new unknowns become continuous, and the equation for
the probability density becomes a transport equation (see Appendix A for the details). It
possesses deterministic solutions governed by the ODE initial value problem

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r) , r(0) = r0 ,
(2.12)

where
α(q, r) :=

nr − 2q

(n− 2)r
(2.13)

is the limit of αj,k as k0 →∞. The conditions for admissible states (p, q, r) ∈ [0,∞)2×(0,∞)
are obtained in the limit of (2.1):

s := nr − p− 2q ≥ 0 , q ≥ r , (2.14)

implying, as expected,

0 ≤ α(q, r) ≤ 1 . (2.15)

The equations satisfied by s and q − r,

ṡ = (n− 1)κ2p+ κ−1p+ κ−q
2(q − r)
(n− 2)r

− s
(
κ3p+ κ1 + κ−q

n− 1

(n− 2)r

)
,(2.16)

(q − r)˙ = κ3ps−
2κ−q

(n− 2)r
(q − r) , (2.17)

show that the conditions (2.14) are propagated by (3.1).

2.3 Analytic results
Global existence: Since the right hand sides of (3.1) contain quadratic nonlinearities, it
seems possible that solutions blow up in finite time. On the other hand, the right hand sides
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are not well defined for r = 0. The essence of the following global existence result is that
neither of these difficulties occurs.

Theorem 1. Let 3 ≤ n ∈ N and κ1, κ2, κ3, κ−1, κ− ≥ 0. Let (p0, q0, r0) ∈ (0,∞)3 satisfy
(2.14). Then problem (3.1) has a unique global solution satisfying (p(t), q(t), r(t)) ∈ (0,∞)3

as well as (2.14) for any t > 0. Also the following estimates hold for t > 0:

p(t) + q(t) + r(t) ≤ (p0 + q0 + r0) exp (t max{κ1n, κ2}) , (2.18)

r(t) ≥ 2

n
q(t) ≥ 2q0

n
exp(−κ−t) . (2.19)

Proof. Local existence and uniqueness is a consequence of the Picard-Lindelöf theorem.
Global existence will follow from the bounds stated in the theorem. Positivity of the solution
components, of s = nr− p− 2q, and of q− r is an immediate consequence of the form of the
equations (3.1), (2.16), (2.17). This also implies

ṗ+ q̇ + ṙ ≤ κ1nr + κ2p ≤ max{κ1n, κ2}(p+ q + r) ,

which shows (2.18) by the Gronwall lemma. With (2.14), the equation for q in (3.1) implies

q̇ ≥ −κ−q ,

and another application of the Gronwall lemma and of (2.14) proves (2.19) and, thus, com-
pletes the proof of the theorem.

Long-time behaviour: The first step in the long-time analysis is the investigation of
steady states. Although the right hand sides of (3.1) are not well defined for r = 0, the
origin p = q = r = 0 can be considered as a steady state since

0 ≤ α(q, r) ≤ 1 and
p

r
≤ n

hold for admissible states satisfying (2.14). The origin is the only acceptable steady state
with r = 0, since α(q, r) and p/r are not well defined in this case, so the factor q, multiplying
them in the equations, needs to be zero. Finally, for a steady state this implies also p = 0.
The following result shows that at most one other steady state is possible which, somewhat
miraculously, can be computed explicitly.

Theorem 2. Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1, κ− > 0, and let

ᾱ :=
n

n− 2
+
κ−1 + κ1 −

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

κ−(n− 1)
(2.20)

satisfy 0 < ᾱ < 1. Then there exists an admissible steady state (p̄, q̄, r̄) ∈ (0,∞)3 of (3.1)
given by

p̄ =
κ1κ2(n− 2)

κ3(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ

,

q̄ =
κ1κ

2
2(n− 2)

κ3κ−(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ2

,

r̄ =
κ1κ

2
2(n− 2)

q̂κ3κ−(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ2

,

with ᾱ = α(q̄, r̄) and q̂ = (n − (n − 2)ᾱ)/2 ∈ (1, n/2). There exists no other steady state
(besides the origin).
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Proof. Assuming r̄ > 0, we introduce

p̂ =
p̄

r̄
, q̂ =

q̄

r̄
, (2.21)

and rewrite the steady state equations in terms of p̂ and q̂:

0 = (κ1 − κ3p̄)(n− p̂− 2q̂) + κ−q̂

(
1− p̂n− 1

n− 2

)
− (κ2 + κ−1)p̂ , (2.22)

0 = κ2p̂+ κ3p̄(n− p̂− 2q̂)− κ−q̂ , (2.23)

0 = κ2p̂− κ−q̂ᾱ , with ᾱ =
n− 2q̂

n− 2
. (2.24)

From (2.24) we obtain

p̂ =
κ−q̂

κ2
ᾱ =

κ−q̂(n− 2q̂)

κ2(n− 2)
, (2.25)

which is substituted into the sum of (2.22) and (2.23):

(n− 2q̂)

(
κ1 −

κ1κ−
κ2(n− 2)

q̂ −
κ2
−(n− 1)

κ2(n− 2)2
q̂2 − κ−1κ−

κ2(n− 2)
q̂

)
= 0 .

The option n = 2q̂ leads to ᾱ = 0, implying p̂ = 0 and, thus, p̄ = 0, which contradicts (2.23).
Therefore the second paranthesis has to vanish, leading to a quadratic equation for q̂ with
the only positive solution

q̂ =
(n− 2)

(
−κ−1 − κ1 +

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

)
2κ−(n− 1)

.

Now (2.24) implies the formula for ᾱ stated in the theorem and we note that 0 < ᾱ < 1
implies 1 < q̂ < n/2. We compute p̂ from q̂ by (2.25) and note that p̂ > 0 since ᾱ > 0. We
then compute ŝ = s̄/r̄ = n− p̂− 2q̂ from the sum of (2.22) and (2.23):

ŝ = p̂
κ−1(n− 2) + κ−q̂(n− 1)

(n− 2)κ1
=
κ−q̂ (κ−1(n− 2) + κ−q̂(n− 1))

(n− 2)κ1κ2
ᾱ ,

which proves ŝ > 0. Finally we obtain the formula for p̄ from (2.23) as well as r̄ = p̄/p̂ and
q̄ = r̄q̂.

For convenience below, the conditions in the theorem are made more explicit in terms of
the parameters by

ᾱ < 1 ⇔ q̂ > 1 ⇔ κ1κ2 >
κ−
n− 2

(
κ1 +

n− 1

n− 2
κ− + κ−1

)
, (2.26)

ᾱ > 0 ⇔ q̂ <
n

2
⇔ κ1κ2 <

κ−n

2(n− 2)

(
κ1 +

n(n− 1)

2(n− 2)
κ− + κ−1

)
. (2.27)

The steady state approaches the origin p = q = r = 0 as ᾱ→ 1, whereas all its components
become unbounded as ᾱ→ 0. This motivates the following.

Conjecture 1. With the notation of Theorem 2,

1. if 0 < ᾱ < 1, then all solutions of (3.1) converge to (p̄, q̄, r̄) as t→∞,

2. if ᾱ ≥ 1, then all solutions of (3.1) converge to (0, 0, 0) as t→∞,

3. if ᾱ ≤ 0, then for all solutions of (3.1) we have p(t), q(t), r(t)→∞ as t→∞.
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Figure 2.3: Convergence to the non-trivial steady state of Theorem 2. Simulation of an
aggregate (p, q, r) of initial size (2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and
κ− = 0.6, implying 0 < ᾱ < 1.
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Figure 2.4: Instability of the aggregate. Simulation of an aggregate (p, q, r) of initial size
(2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.93, implying ᾱ > 1.

The conjecture has been supported by numerical simulations. Figures 2.3, 2.4, and 2.5
show typical simulation results corresponding to the three cases. The conjecture is open,
and its proof is not expected to be easy. Note for example that not even the local stability
of the origin in Case 2 can be investigated by standard methods, since the right hand side
of (3.1) lacks sufficient smoothness. Partial results will be published in separate work.

Closer inspection of the simulation results for growing aggregates (see Figure 2.5) shows
that the growth is polynomial in time. This is verified by the following formal result.

Theorem 3. With the notation of Theorem 2, if ᾱ < 0, then there exists a formal approxi-
mation of a solution of (3.1) of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) = r2t

2 + o(t2) , as t→∞ , (2.28)
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Figure 2.5: Growth of the aggregate. Simulation of an aggregate (p, q, r) of initial size
(2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.2, implying ᾱ < 0.

with

p1 = κ−n
κ3(2nκ2+κ−n+4κ−1)

(
κ1κ2 − κ−n

2(n−2)

(
κ1 + κ−1 + κ−n(n−1)

2(n−2)

))
> 0 ,

q2 = n
2 r2 = κ3(n−2)(2nκ2+κ−n+4κ−1)

κ−(4κ1(n−2)+κ−n2) p2
1 .

(2.29)

The approximation is (from a formal point of view) unique, including the choice of the
exponents of t, among solutions with polynomially or exponentially growing aggregate size r.

Proof. Since 2r ≤ 2q ≤ nr holds for admissible states, when r(t) tends to infinity, then also
q(t) tends to infinity at the same rate, which we write with the sharp order symbol Os as

q(t) = Os(r(t)) as t→∞ . (2.30)

With α = s+p
(n−2)r , we write the equations for r and for p+ q as

ṙ = κ2p− (s+ p)
κ−q

(n− 2)r
, ṗ+ q̇ = κ1s− p

(
κ−(n− 1)q

(n− 2)r
+ κ−1

)
. (2.31)

Since the right hand sides have to be asymptotically nonnegative by the growth of q and r,
taking (2.30) into account, the first equation implies s(t) = O(p(t)), and the second implies
p(t) = O(s(t)), i.e.

s(t) = Os(p(t)) as t→∞ . (2.32)

If the growth were exponential, i.e. r(t), q(t) = Os(e
λt), λ > 0, then (2.31) would imply

p(t), s(t) = Os(e
λt). Then the negative term −κ3p(t)s(t) = Os(e

2λt) in the first equation
in (3.1) could not be balanced by any of the positive terms, and would drive p to negative
values. This contradiction excludes exponential growth.

For polynomial growth, i.e. r(t), q(t) = Os(t
γ), (2.31) implies p(t), s(t) = Os(t

γ−1). In
the equation for q in (3.1), q̇ and p are small compared to q. Therefore it is necessary
that s(t)p(t) = Os(q(t)), implying 2γ − 2 = γ and, thus, γ = 2. This justifies the ansatz
(2.28) with the addition s(t) = s1t + o(t). Substitution into the differential equations and
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comparison of the leading-order terms gives equations for the coefficients:

2nd equ. in (3.1): 0 = κ3p1s1 − κ−q2 ,

(2.17): 0 = κ3p1s1 − κ−q2 (1− α(q2, r2)) ,

1st equ. in (2.31): 2r2 = κ2p1 − (s1 + p1)
κ−q2

(n− 2)r2
,

2nd equ. in (2.31): 2q2 = κ1s1 − p1

(
κ−(n− 1)q2

(n− 2)r2
+ κ−1

)
,

This system can be solved explicitly by first noting that the first two equations imply
α(q2, r2) = 0 and, thus, 2q2 = nr2. Using this in the third and fourth equation gives a
linear relation between p1 and s1. This again can be used in the fourth equation to write q2

as a linear function of s1. The division of the first equation by s1 then gives the formula for
p1 in (2.29). The positivity of p1 is a consequence of (2.27).

For all the results so far the positivity of the rate constant κ− for breaking cross-links has
been essential. Therefore it seems interesting to consider the special case κ− = 0 separately.
It turns out that the dynamics is much simpler. The aggregate size always grows linearly
with time.

Theorem 4. Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1 > 0, and κ− = 0. Let (p0, q0, r0) ∈ (0,∞)3

satisfy (2.14). Then the solution of (3.1) satisfies

lim
t→∞

p(t) = p∞ :=
(n− 2)κ1κ2

κ3(κ2(n− 2) + κ−1)
, lim

t→∞
s(t) = s∞ :=

(n− 2)κ2

2κ3
,

q(t) = p∞(κ2 + κ3s∞)t+ o(t) , r(t) = κ2p∞t+ o(t) , as t→∞ .

Proof. For κ− = 0 the right hand sides in (3.1) depend only on p and s = nr − 2q − p,
meaning that these two variables solve a closed system:

ṗ = κ1s− (κ2 + κ−1 + κ3s)p ,

ṡ = ((n− 1)κ2 + κ−1)p− (κ1 + κ3p)s .

The unique nontrivial steady state (p∞, s∞) can be computed explicitly. We prove that it
is globally attracting by constructing a Lyapunov functional. Let a ≥ 1 and

Ra :=
[p∞
a
, ap∞

]
×
[s∞
a
, as∞

]
.

For each point (p, s) ∈ (0,∞)2 there is a unique value of a ≥ 1 such that (p, s) ∈ ∂Ra.
Therefore the Lyapunov function

L(p, s) := a− 1 for (p, s) ∈ ∂Ra ,

is well defined and definite in the sense L(p, s) ≥ 0 with equality only for (p, s) = (p∞, s∞).
It remains to prove that the flow on ∂Ra is strictly inwards. For example, for the left
boundary part,

ṗ
∣∣
(p,s)∈{p∞/a}×[s∞/a,as∞]

>
(
κ1 − κ3

p∞
a

) s∞
a
− (κ2 + κ−1)

p∞
a

=
κ3p∞s∞(a− 1)

a2
> 0 ,

where for the first inequality it has been used that p∞ < κ1/κ3, and the equality follows
from the fact that ṗ vanishes at the steady state. Similarly it can be shown that ṗ < 0 on the
right boundary part, ṡ > 0 on the lower boundary part, and ṡ < 0 on the upper boundary
part.

The linear growth of q and r follows from

lim
t→∞

q̇(t) = κ2p∞ + κ3p∞s∞ , lim
t→∞

ṙ(t) = κ2p∞ .
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This result shows that the breakage of cross-links has somewhat contradictory effects,
depending on the parameter regime: It can speed-up the aggregation dynamics, producing
a quadratic rather than linear growth of the aggregate size (Case 3 of Conjecture 1). This is
linked to the fact that it allows the aggregates to rearrange in a more compact way. On the
other hand, it may slow down the dynamics, such that the aggregate only reaches a finite
size (Case 1) or even disintegrates completely (Case 2).

2.4 Comparison with experimental data — Discussion

Comparison with experimental data: There are only limited options for a serious
comparison of the theoretical results with experimental data. We shall use the data shown
in Figure 2.6, which have been published in [62]. It provides observed numbers of aggregates
in dependence of ubiquitin for a fixed concentration of p62. Our results do not permit a direct
comparison with this curve, which would require modelling of the process of nucleation of
aggregates. However, the data provide at least some information about concentration levels
of ubiquitin and p62, such that stable aggregates exist.

Figure 2.6: Number of aggregates in terms of [Ubi] (or more precisely (4 × Ubi − GST −
GFP )2) at fixed [p62]= 2µM [62]. Average and SD among three independent replicates
are shown. The dashed line represents a fitted sigmoidal (more precisely, logistic) function,
centered around [Ubi] = 1.6µM . Note that here p62 monomers are counted. Under the
assumption that p62 only occurs in oligomers of size n we have [p62]=n[p62n]. The regression
coefficient R2 measures the quality of the fit.

For meaningful quantitative comparisons with these scarce data we need to reduce the
number of parameters in our model. As a first step, we fix the value n = 5 of the size of
p62 oligomers, following [62] where values between 5 and 6 for GFP-p62 have been found
(although we note that in [59] an average of about n = 24 has been reported for mCherry-
p62 in vitro). This implies that the experiment corresponds to an oligomer concentration of
[p625] = [p62]/5 = 0.4µM .

Concerning the rate constants, we make the assumption that the binding and, respec-
tively, the unbinding rate constants are equal, i.e. κ′1 = κ′2 = κ′3 and κ−1 = κ−. This will
allow to express all our results in terms of one dissociation constant Kd := κ−1/κ

′
1.

From Figure 2.6 we conclude that for an oligomer concentration of [p625] = 0.4µM
the growth of stable aggregates requires a cross-linker concentration [Ubi] roughly between
0.6µM and 2.6µM ((1.6 ± 1)µM). According to the results of the preceding section, these
values should correspond to situations with either ᾱ = 0 or ᾱ = 1, depending on the question,
if the equilibrium aggregate sizes of Case 1 in Conjecture 1 are large enough to be detected
in the experiment, or if we need to be in Case 3 of growing aggregates. Therefore, with the
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above assumptions, with κ1 = κ′1[Ubi], κ2 = κ′2[p625], and with (2.26), (2.27), we obtain for
ᾱ = 1:

[p62n] [Ubi] =
Kd

n− 2

(
[Ubi] +

(2n− 3)Kd

n− 2

)
, (2.33)

and for ᾱ = 0:

[p62n] [Ubi] =
nKd

2(n− 2)

(
[Ubi] +

(n2 + n− 4)Kd

2(n− 2)

)
. (2.34)

Solving these equations for Kd with n = 5, [p62n] = 0.4µM , and with [Ubi] between 0.6µM
and 2.6µM , gives estimates for Kd between 0.44µM and 0.73µM for ᾱ = 1, and between
0.20µM and 0.31µM for ᾱ = 0. So we claim that at least the order of magnitude is
significant. It differs by three orders of magnitude from published data on the reaction
between ubiquitin and the UBA domain of p62 (Kd ≈ 540µM [39]). This should not be so
surprising, since in the context of growing aggregates the reactions can be strongly influenced
by avidity effects.

Discussion: We return to Conjecture 1, where the long-time behaviour is described in
terms of the value of the parameter ᾱ defined in (2.20). With the simplifying assumptions
on the reaction rate constants from above, the statements of the conjecture are depicted in
Figure 2.7 for the fixed values n = 5 and Kd = 0.5µM (motivated by the estimates above) in
a bifurcation diagram in terms of the concentrations [Ubi] and [p62n]. Note the unsymmetry
in the dependence on the two quantities: The critical values for [Ubi] tend to zero as [p62n]
tends to infinity, whereas the critical values for [p62n] tend to the positive values Kd

n−2 for
ᾱ = 1 and nKd

2(n−2) for ᾱ = 0, as [Ubi] tends to infinity.
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Figure 2.7: Bifurcation diagram corresponding to Conjecture 1 for n = 5, Kd = 0.5µM .

There is a significant uncertainty concerning the oligomer size n, which has so far been
assumed to be 5, according to observations in [62]. Actually, a distribution of oligomer sizes
should be expected in the experiments of Figure 2.6 with the occurrence of much larger
oligomers. For this reason the computation of Kd from (2.33) has been repeated for a range
of values of n between n = 3 and n = 100. The results are depicted in Figure 2.8, which
shows that the predicted values of Kd might be larger by up to an order of magnitude
compared to the case n = 5, but still small compared to [39], if larger oligomer sizes are
considered and ᾱ = 1 is relevant. The asymptotic behaviour for large oligomer sizes is easily
seen to be Kd = O(n1/2). On the other hand, if ᾱ = 0 is relevant, the value of Kd becomes

24



CHAPTER 2. A MATHEMATICAL MODEL OF P62-UBIQUITIN
AGGREGATES IN AUTOPHAGY

smaller by up to an order of magnitude for large oligomers with the asymptotic behaviour
Kd = O(n−1/2).
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Figure 2.8: The dissociation constant Kd determined from (2.33) (solid line) and (2.34)
(dashed line), depending on the p62 oligomer size n. Ubiquitin and p62 oligomer concen-
trations from Figure 2.6 at the onset of aggregation: [Ubi] = 1.6µM , [p62n] = 0.4µM .

2.5 Conclusion
In this chapter, we have proposed an ODE model for the growth and decay of aggregates
of p62 oligomers cross-linked by ubiquitin chains. Under the assumption of unlimited sup-
ply of free oligomers and cross-linkers we found three possible asymptotic regimes: complete
degradation of aggregates, convergence towards a finite aggregate size, and unlimited growth
(quadratic in time) of the aggregate size. In the latter case, growing aggregates are asymp-
totically tightly packed with the maximum number of cross-links. These statements are
supported by a mixture of explicit steady state computations, formal asymptotic analysis,
and numerical simulations. The three regimes, which can be separated explicitly in terms
of the reaction constants, have been illustrated by the simulation results. Rigorous proofs
of the long-time behaviour in the three regimes are the subject of ongoing investigations.

A comparison of the theoretical results with data from [62] has provided an estimate for
the dissociation constant of the elementary reaction between ubiquitin and the UBA domain
of p62 in the context of growing aggregates.

There are several possible extensions of this work. A limitation of the original discrete
model is that the description of aggregates by triplets (i, j, k) is very incomplete. Typically,
very different configurations are described by the same triplet. For example, we could
imagine very homogeneous or very heterogeneous aggregates, i.e. fully packed in certain
regions and very loose in others. Reaction rates will strongly depend on the configuration,
including information about the geometry of the aggregate. In principle one can imagine an
attempt to overcome these difficulties based on a random graph model [27], but the resulting
model describing probability distributions on the sets of all possible aggregate shapes would
be prohibitively complex. An intermediate solution would be a more serious approach to
finding formulas for quantities like the probability α of losing an oligomer, when a cross-link
breaks, based on typical probability distributions.

The model (3.1) describes an intermediate stage of the aggregation process. On the
one hand, the large aggregate assumption means that we are dealing with the growth of
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already developed aggregates, neglecting the nucleation process, which is important for the
number of established aggregates. A model of the nucleation process would be based on
the discrete representation and it would have to be stochastic. On the other hand, we
neglect two effects important for a later stage of the process. The first and obvious one is
the limited availability of free p62 oligomers and ubiquitin cross-linkers. It would be rather
straightforward to incorporate this into the model, however at the expense of increased
complexity. It would also eliminate the dichotomy between the Cases 1 and 3 of Conjecture
1 since unbounded growth would be impossible. For relatively large initial concentrations of
free particles, one could imagine a two-time-scale behaviour with an initial quadratic growth
and saturation on a longer time scale. The other effect, which is neglected here but definitely
present in experiments, is coagulation of aggregates. This is the subject of ongoing work,
based on the PDE model (A.3) derived in the appendix and enriched by an account of the
coagulation process.
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This chapter comes from an article that will be submitted soon to Journal of Theoretical
Biology and has been written in collaboration with C. Schmeiser and P. Szmolyan.

3.1 Introduction

We recall the ODE problem governing the evolution of the state variables:

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r), α(q, r) =
nr − 2q

(n− 2)r
, r(0) = r0 ,

(3.1)

with the inequalities
nr − p− 2q ≥ 0 , q ≥ r , (3.2)

implying
0 ≤ α(q, r) ≤ 1 .

We recall from [14, Theorem 1] that for initial data p0, q0, r0 > 0 satisfying (3.2), which
we assume in the following, the initial value problem (3.1) has a unique, global solution
propagating (3.2), the nonnegativity of the components, and in particular

r(t), q(t) > 0 , t ≥ 0 . (3.3)

The search for steady states [14] has suggested a splitting of the parameter space into
three regions. Besides the trivial steady state (p, q, r) = (0, 0, 0), only one other equilibrium
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may exist, which can be computed explicitly:

p̄ = κ−A
κ2

1−ᾱ
ᾱ , q̄ = A 1−ᾱ

ᾱ2 , r̄ = 2A
n−(n−2)ᾱ

1−ᾱ
ᾱ2 , (3.4)

with ᾱ = n
n−2 +

κ−1+κ1−
√

(κ1+κ−1)2+4κ1κ2(n−1)

κ−(n−1) , A =
2κ1κ

2
2(n−2)

κ3κ−(κ−(n−1)(n−(n−2)ᾱ)+2κ−1(n−2)) .

Since ᾱ = α(q̄, r̄) is the equilibrium value of α, the nontrivial steady state is relevant only
in the parameter region defined by 0 < ᾱ < 1. It has been conjectured in [14] that in this
parameter region (p̄, q̄, r̄) is globally attracting, which has been supported by numerical sim-
ulations (see also Chapter 2). Local stability could in principle be examined by linearization.
However, the complexity of the resulting formulas has been prohibitive.

Since (p̄, q̄, r̄)→ (0, 0, 0) as ᾱ→ 1−, it seems natural to expect a transcritical bifurcation
at ᾱ = 1 with stability of the trivial steady state for ᾱ > 1. Again the conjecture of global
asymptotic stability of (0, 0, 0) for ᾱ > 1 has been supported by simulations (see for example
Fig. 2.4). The right hand sides of (3.1) are continuous up to the origin (when considered as
an element of the set of admissible states), since 0 ≤ α(q, r) ≤ 1 and p/r ≤ n. However, their
nonsmoothness prohibits a standard local stability or bifurcation analysis. The expected
local stability behaviour (asymptotic stability for ᾱ > 1, instability for ᾱ < 1) is proven in
Section 3.2. The analysis is based on a regularizing transformation, which makes the steady
state very degenerate, combined with a blow-up analysis [20].

The fact that the components of the nontrivial equilibrium tend to infinity when ᾱ→ 0+
suggests that solutions might be unbounded for ᾱ < 0. In this parameter region approximate
solutions with polynomial growth of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) =

2q2

n
t2 + o(t2) , as t→∞ , (3.5)

have been constructed in [14] by formal asymptotic methods. It has also been shown that no
other growth behaviour (polynomial with other powers or exponential) should be expected,
and the conjecture that all solutions have the constructed asymptotic behaviour is again
verified by simulations (see Fig. for example 2.5). We justify the formal asymptotics in
Section 3.3. A variant of Poincaré compactification [47] produces a problem with bounded
solutions and with three different time scales, which is analyzed by singular perturbation
methods [24]. The final result is existence and semi-local stability of the polynomially
growing solutions, where ’semi-local’ means that initial data have to be large with relative
sizes as in (3.5).

The chapter is concluded by a discussion section about biological interpretation of our
results as well as perspectives.

3.2 Local stability of the zero steady state
In this section, we study under which conditions small aggregates tend to disaggregate.
This is equivalent to studying the stability of the zero-steady-state (p, q, r) = (0, 0, 0) of the
system (3.1). Because of the appearance of the ratios pr and q

r , the Jacobian of the right hand
side of (3.1) is not defined there. As a consequence of (3.3) the regularizing transformation
τ :=

∫ t
0
r(s)−1ds is well defined and leads to

dp

dτ
= r(κ1 − κ3p)(nr − p− 2q) + κ−q

(
r − (n− 1)p

n− 2

)
− (κ2 + κ−1)pr ,

dq

dτ
= κ2pr + κ3pr(nr − p− 2q)− κ−qr ,

dr

dτ
= κ2pr − κ−q

nr − 2q

n− 2
.

(3.6)

The regularization came at the expense that the zero steady state is degenerate in (3.6),
since the right hand side is of second order in terms of the densities. A classical approach
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to study such non-hyperbolic points is blow-up [20]. The standard blow-up transformation
would be the introduction of spherical coordinates, blowing up the origin to the part of S2

in the positive octant. It is also common to work with charts instead. In our case this
preserves the polynomial form of the right hand side. It has turned out to be convenient to
use the q-chart, whence the blow-up transformation (p, q, r)→ (p1, q1, r1) is given by

p = p1q1 , q = q1 , r = r1q1 , (3.7)

and we also introduce another change of time scale: T :=
∫ τ

0
q1(σ)dσ, again justified by

(3.3), leading to

dq1

dT
= q1r1 (κ2p1 − κ−) + κ3p1r1q

2
1(nr1 − p1 − 2) ,

dp1

dT
= r1(κ1 − κ3p1q1)(nr1 − p1 − 2) + κ−

(
r1 −

n− 1

n− 2
p1

)
− (κ2 + κ−1)p1r1 − p1r1(κ2p1 − κ−)

−κ3p
2
1r1q1(nr1 − p1 − 2) , (3.8)

dr1

dT
= (1− r1)

(
κ2p1r1 + κ−

(
2

n− 2
− r1

))
− κ3p1r

2
1q1(nr1 − p1 − 2) .

The invariant manifold q1 = 0 of this system corresponds to the zero steady state of (3.1).
The inequalities (3.2) become

r1 ≤ 1 , 0 ≤ p1 ≤ nr1 − 2 ,

in terms of the new variables, i.e. the dynamics of (p1, r1) remains in the triangle depicted in
Fig. 3.1. Since r1 ≥ 2/n, we conclude from the equation for q1 that the invariant manifold
is locally exponentially attracting in the region to the left of the line p1 = κ−/κ2. Since
p1 ≤ n − 2, the inequality κ− > (n − 2)κ2 already implies local asymptotic stability of the
invariant manifold q1 = 0 of (3.8) and therefore of the zero steady state of (3.1). Note that
κ− > (n− 2)κ2 also implies ᾱ > 1 for ᾱ defined by (3.4).

p1

r1

n− 2

1
2
n

κ−
κ2

Figure 3.1: The dynamics in the (p1, r1)-plane is limited to the shaded triangle because of
the inequalities (3.2).

In the following we therefore consider the case κ− ≤ (n− 2)κ2 (see Fig. 3.1) and ᾱ > 1,
where the latter is equivalent to

κ1κ2(n− 2)2 < κ−(κ1 + κ−1)(n− 2) + κ2
−(n− 1) , (3.9)

see also [14, Equ. (26)]. The flow on the invariant manifold q1 = 0 of (3.8) is governed by
the system

dp1

dT
= r1κ1(nr1 − p1 − 2) + κ−

(
r1 −

n− 1

n− 2
p1

)
− (κ2 + κ−1)p1r1 − p1r1(κ2p1 − κ−)

dr1

dT
= (1− r1)

(
κ2p1r1 + κ−

(
2

n− 2
− r1

))
. (3.10)
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In the right part of the triangle, i.e. for

r1 ≤ 1 ,
κ−
κ2
≤ p1 ≤ nr1 − 2 ,

we have

dp1

dT
≤ r1κ1

(
n− κ−

κ2
− 2

)
+ κ−

(
r1 −

n− 1

n− 2

κ−
κ2

)
− (κ2 + κ−1)

κ−
κ2
r1

=
r1

(
κ1κ2(n− 2)2 − κ−(κ1 + κ−1)(n− 2)

)
− κ2
−(n− 1)

κ2(n− 2)
<

(r1 − 1)κ2
−(n− 1)

κ2(n− 2)
≤ 0 ,

where the strict inequality is due to (3.9). This implies that all trajectories reach the left
part of the triangle, i.e. p1 < κ−/κ2 in finite time.

By standard regular perturbation theory the dynamics for the full system (3.8), when
started close to the invariant manifold q1 = 0, remains close to the dynamics on the invariant
manifold for finite time, until the region p1 < κ−/κ2 is reached, where the invariant manifold
is attracting. Thus q = q1 tends to zero and, by the inequalities (3.2), the same is true for
p and r.

Now we consider the case ᾱ < 1, i.e. the opposite of inequality (3.9), and look for a
steady state on the invariant manifold r1 = 1 of the system (3.10). Since

dp1

dT

∣∣∣
r1=1,p1=κ−/κ2

=
κ1κ2(n− 2)2 − κ−(κ1 + κ−1)(n− 2)− κ2

−(n− 1)

κ2(n− 2)
> 0 ,

dp1

dT

∣∣∣
r1=1,p1=n−2

= −(n− 2)(nκ2 + κ−1) < 0 ,

there exists a steady state (p1, r1) = (p∗1, 1) with κ−/κ2 < p∗1 < n− 2, which is stable under
the flow along r1 = 1. On the other hand

1

1− r1

dr1

dT

∣∣∣
r1=1,p1=p∗1

=

(
κ2p
∗
1 + κ−

(
2

n− 2
− 1

))
>

2κ−
n− 2

> 0 ,

which implies stability of the manifold r1 = 1 close to the steady state, and therefore stability
of the steady state. The existence of a stable steady state on the invariant manifold q1 = 0
of (3.8) in the region, where the manifold is repulsive, implies instability of the manifold
and therefore also of the zero steady state of (3.1). This completes the proof of the main
result of this section.

Theorem 5. Let ᾱ be defined by (3.4). Then the steady state (0, 0, 0) of the system (3.1)
is locally asymptotically stable for ᾱ > 1 and unstable for ᾱ < 1.

3.3 Polynomially growing regime
The goal of this section is a rigorous justification of the formal asymptotics (3.5) (see [14])
under the assumption ᾱ < 0 with ᾱ defined in (3.4), i.e.

4κ1κ2(n− 2)2 > nκ−
(
2(κ1 + κ−1)(n− 2) + κ−n(n− 1)

)
, (3.11)

see also [14, Equ. (27)].
Considering (3.5), it would be natural to write an equation for p(t)/t. It is easily seen

from (3.1) that its derivative contains terms of the order of t2. Similarly the derivative
of q(t)/t2 has contributions up to the order of t, whereas the derivative of r(t)/t2 is a
combination of terms bounded as t→∞. This shows that we are confronted with a problem
with different time scales, which will put us into the realm of singular perturbation theory
(see, e.g. [24, 56]). The leading order term in the fastest equation, i.e. the p-equation, is
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−κ3p(nr − 2q), from which it has been concluded in [14] that nr(t) ≈ 2q(t) as t → ∞.
In a standard singular perturbation setting, it should be possible to express p(t) from this
relation. Since this is not the case, our problem belongs to the family of singular singularly
perturbed problems (see e.g. [52]) which, however, can be transformed to the standard
regular form in many cases.

The introduction of p(t)/t, q(t)/t2, r(t)/t2, as new variables would lead to a study of
bounded solutions, but to a non-autonomous system. We shall use a variant of the Poincaré
compactification method [47] instead.

The previous observations led us to the introduction of the new variables

u =
p√
p+ q

, v =
2p+ 2q − nr√

p+ q
, w =

1√
p+ q

,

where we expect that w(t) tends to zero as t−1, and that u(t) and v(t) converge to nontrivial
limits. Since this coordinate change produces a singularity at w = 0, we also change the
time variable by τ =

∫ t
0
ds/w(s). In terms of the new variables system (3.1) becomes

du

dτ
= (κ1w − κ3u)(u− v) + κ−(1− uw)

(
1− n(n− 1)uw

(n− 2)(2− vw)

)
− (κ2 + κ−1)uw

−uw2A(u, v, w) ,

dv

dτ
= w

(
2κ1(u− v)− (2κ−1 + nκ2)u+ κ−(1− uw)n

2u− nv
(n− 2)(2− vw)

)
− vw2A(u, v, w) ,(3.12)

dw

dτ
= −w3A(u, v, w) , A(u, v, w) :=

1

2

(
κ1(u− v)− κ−1u− κ−(1− uw)

n(n− 1)u

(n− 2)(2− vw)

)
.

Our goal is to prove that solutions converge to a steady state (u∗, v∗, w∗) with w∗ = 0, which
obviously has to satisfy −κ3u

∗(u∗ − v∗) + κ− = 0, implying

u∗ = U(v∗) :=
1

2

(
v∗ +

√
(v∗)2 + 4κ−/κ3

)
, (3.13)

since we need u∗ > 0. We intend to show that v∗ is determined from the requirement that
the large parenthesis in the v-equation vanishes. The argument is essentially that for small
values of w, the variable v evolves much faster than w.

In order to make the slow-fast structure of this system more apparent and to allow the
application of basic results from singular perturbation theory, we assume that the initial
value for w is small and define ε := (p0 + q0)−1/2 � 1 and the rescaled variable W = w/ε,
leading to

du

dτ
= −κ3u(u− v) + κ− +O(ε) ,

dv

dτ
= εW

(
2κ1(u− v)− (2κ−1 + nκ2)u+ κ−n

2u− nv
2(n− 2)

)
+O(ε2) , (3.14)

dW

dτ
= −ε2W 3A(u, v, 0) +O(ε3) .

The initial data are denoted by

u(0) = u0 :=
p0√
p0 + q0

> 0 , v(0) = v0 :=
2p0 + 2q0 − nr0√

p0 + q0
, W (0) = 1 ,

where in the following we consider u0 and v0 as fixed when ε → 0. This is a singular
perturbation problem in standard form, where τ plays the role of an initial layer variable.
We pass to the limit ε→ 0 to obtain the initial layer problem

dû

dτ
= −κ3û(û− v̂) + κ− , (3.15)

dv̂

dτ
=

dŴ

dτ
= 0 ,

31



CHAPTER 3. STUDY OF A MATHEMATICAL MODEL OF P62-UBIQUITIN
AGGREGATES IN AUTOPHAGY

subject to the initial conditions. By the qualitative behaviour of the right hand side of the
first equation, the solution satisfies v̂(τ) = v0, Ŵ (τ) = 1, and

lim
τ→∞

û(τ) = U(v0) ,

with exponential convergence, where U has been defined in (3.13). The equation u = U(v)
defines the so called reduced manifold. Since it is exponentially attracting, the Tikhonov
theorem [58] (or rather its extension [24]) implies that, after the initial layer, i.e. when
written in terms of the slow variable σ = ετ , the solution trajectory remains exponentially
close to the slow manifold, which is approximated by the reduced manifold, and the flow on
the slow manifold satisfies

dv

dσ
= W

(
2κ1(U(v)− v)− (2κ−1 + nκ2)U(v) + κ−n

2U(v)− nv
2(n− 2)

)
+O(ε) ,

dW

dσ
= −εW 3A(U(v), v, 0) +O(ε2) , (3.16)

with v(0) = v0, W (0) = 1. This is again a singular perturbation problem in standard form,
where now σ is the initial layer variable. We repeat the above procedure and consider the
limiting layer problem

dṽ

dσ
= W̃

(
2κ1(U(yṽ)− ṽ)− (2κ−1 + nκ2)U(ṽ) + κ−n

2U(ṽ)− nṽ
2(n− 2)

)
, (3.17)

dW̃

dσ
= 0 .

The observations

U(−∞) = 0 , U(∞) =∞ , 0 < U ′(v) < 1 ,

suffice to show that the right hand side of the first equation is a strictly decreasing function
of v with a unique zero v∗, which can actually be computed explicitly:

v∗ = B

(
κ1 − κ−1 −

n

2
κ2 +

n

2(n− 2)
κ−

)

with B = 2

√
κ−
κ3

(
n3

4(n− 2)
κ2
− + 4κ1κ−1 + 2nκ1κ2 + nκ1κ− +

n2

n− 2
κ−1κ− +

n3

2(n− 2)κ2κ−

)−1/2

The solution of (3.17) with ṽ(0) = v0 satisfies limσ→∞ ṽ(σ) = v∗ with exponential conver-
gence. Another application of the Tikhonov theorem shows that the slowest part of the
dynamics with t = O(ε−1) can be approximated by

dW

dσ
= −εW 3A∗ , W (0) = 1 , (3.18)

with

A∗ := A(U(v∗), v∗, 0) =
nB

16(n− 2)2
(4(n−2)2κ1κ2−2n(n−2)κ−(κ1+κ−1)−n2(n−1)κ2

−) > 0 ,

(3.19)
by (3.11). This gives the approximation

W (σ) = (1 + 2A∗εσ)−1/2 .

The results of [24] imply that the approximations are accurate with errors of order ε uni-
formly with respect to time.
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Theorem 6. Let (3.11) hold. Then, for ε > 0 small enough, the solution of (3.12) with
initial conditions

u(0) = u0 > 0 , v(0) = v0 ∈ R , w(0) = ε ,

satisfies

u(τ) = û(τ)− U(v0) + U(ṽ(ετ)) +O(ε) ,

v(τ) = ṽ(ετ) +O(ε) ,

w(τ) = ε(1 + 2A∗ε2τ)−1/2 +O(ε2) ,

uniformly in τ ≥ 0, where U is given in (3.13), û solves (3.15), ṽ solves (3.17), and A∗ is
given in (3.19).

Actually more can be deduced. In terms of the original time variable t, the equation for
w in (3.12) becomes

ẇ = −w2A(u, v, w) . (3.20)

Under the assumptions of Theorem 6, A(u, v, w) is uniformly close to the positive constant
A∗ and therefore uniformly positive for large enough t. This implies that w tends to zero as
t→∞. The slow manifold of the system (3.16) reduces to the steady state (v,W ) = (v∗, 0)
for W = 0. Therefore v tends to v∗ as t → ∞. Analogously, the slow manifold of (3.14)
reduces to the steady state (u, v,W ) = (u∗ = U(v∗), v∗, 0) at W = 0, implying convergence
of u to u∗. This in turn implies convergence of A(u, v, w) to A∗, which can be used in (3.20).

Corollary 1. Let the assumptions of Theorem 6 hold. Then

lim
t→∞

u(t) = u∗ , lim
t→∞

v(t) = v∗ , w(t) =
1

A∗t
+O

(
1

t2

)
as t→∞ .

Finally, we reformulate these results in terms of the original variables, verifying the
formal asymptotics of [14] for initial data, which are in a sense already ’close enough’ to the
polynomially growing solutions.

Theorem 7. Let (3.11) hold, let c2 ≥ c1 > 0, and let δ > 0 be small enough. Let the initial
data satisfy

p0 =
c1
δ
, q0 =

1

δ2
, r0 =

2

nδ2
+
c2
nδ

Then the solution of (3.1) with (p(0), q(0), r(0)) = (p0, q0, r0) satisfies

p(t) = u∗A∗t+o(t) , q(t) = (A∗)2t2+o(t2) , r(t) =
2

n
(A∗)2t2+o(t2) , as t→∞ .

Proof. We just need to verify that the assumptions of this theorem imply the assumptions of
Theorem 6. The result is then a direct consequence of Corollary 1. Actually the assumptions
of Theorem 6 hold with ε ≈ δ, since

u0 =
c1√

1 + c1δ
, v0 =

2c1 − c2√
1 + c1δ

, w0 =
δ√

1 + c1δ
.

3.4 Discussion
In this work a mathematical model for aggregation via cross-linking has been analyzed.
Besides the basic assumption that aggregating particles (here p62 oligomers) need to have
at least n = 3 binding sites for cross-linkers (here ubiqutinated cargo), the rate constants
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for binding reactions need to be large enough compared to those for the unbinding reactions
(the opposite of inequality (3.9)) for stable aggregates to exist. Under a stronger condition
(inequality (3.11)) aggregates grow indefinitely in the presence of an unlimited supply of
free particles and cross-linkers. These conjectures from [14], where the model has been
formulated, have been partially proven in this work. It has been shown in Section 3.2 that
small aggregates get completely degraded under the condition (3.9) and that they grow under
the opposite condition. In the latter case, but when (3.11) does not hold, there exists an
equilibrium configuration with positive aggregate size. Finally, it has been shown in Section
3.3 that under the condition (3.11) aggregate size grows polynomially with time (actually
like t2) for appropriate initial states.

2 4 6 8 10
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κ
2
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ᾱ = 0

Figure 3.2: Bifurcation diagram obtained for κ−1 = κ− = 1

The constants κ1, κ2 in the model have to be interpreted as the products of rate con-
stants with the concentrations of free cross-linkers and, respectively, of free particles. This
means that the conditions (3.9) and (3.11) are actually conditions for these concentrations.
Fig. 3.2 shows a bifurcation diagram in terms of κ1 and κ2 with the curves ᾱ = 1, corre-
sponding to equality in (3.9), and ᾱ = 0, corresponding to equality in (3.11). The qualitative
behaviour is no surprise: Close to the origin, i.e. for small concentrations of free particles
and cross-linkers, aggregates are unstable. Moving to the right and/or up we pass through
two bifurcations to stable finite aggregate size and, subsequently, to polynomial growth of
aggregates. Less obvious is the fact that the picture is rather unsymmetric with respect
to the two parameters. The condition (n − 2)κ2 > κ− is necessary for the existence of
stable aggregates, regardless of the value of κ1, whereas arbitrarily small values of κ1 can be
compensated by large enough κ2. This means that, if the concentration of free particles is
below a threshold, even a large concentration of cross-linkers does not lead to aggregation,
whereas arbitrarily small numbers of cross-linkers are used for aggregation if the particle
concentration is high. For the application in cellular autophagy this means that aggregation
will only happen for large enough concentrations of p62 oligomers. However, arbitrarily
small amounts of ubiquitinated cargo can be aggregated in the presence of a large enough
supply of oligomers.

This work has been motivated by the experimental results of [63], where aggregates have
been detected by light microscopy. If the evolution of single aggregates can be followed, the
growth like t2 might be observed as a fluorescence signal of tagged oligomers, which goes like
t2, or cross section areas going like t4/3, if a roughly spherical shape of aggregates is assumed.
For quantitative predictions of such experiments, the model should be extended in various
ways. First, the limited supply of free p62 oligomers and of free cross-linkers should be taken
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into account. This is straightforward for the modeling of a single aggregate, but if many
aggregates develop simultaneously, they will compete for the free particles. Apart from that
the number of aggregates has to be predicted, which requires modeling of the nucleation
process. Finally, it is very likely that the coagulation of aggregates plays an important role.
A growth-coagulation model for distributions of aggregates, based on the growth model (3.1)
would be prohibitively complex. It is therefore the subject of ongoing work to formulate,
analyze, and simulate a growth-coagulation model based on the multiscale analysis of Section
3.3, where aggregates are only described by the size parameter r (number of p62 oligomers in
the aggregate), whose evolution is determined by the slow dynamics (3.18), which translates
to an equation of the form ṙ = C

√
r for r. This approach raises several challenging issues

such as the development of an efficient simulation algorithm or the existence and stability
of equilibrium aggregate distributions.
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4.1 Improved model

We take back the model introduced in Chapter 2 and take into account two new phenomena.
Firstly, we consider now that the concentrations of p62 and Ubiquitin (denoted respectively
by a and b) evolve with time, which is expressed by including the equations for the conser-
vation of mass (4.2) and (4.3), in contrast with the chapter 2, where these quantities were
considered constant over time. Secondly, based on biological observation from G. Zaffagnini,
(See e.g. in Figure 4.1 from [65]), we decide to consider that aggregates can interact together
by coagulating with each other. However, we do not to take into account fragmentation, as
according to [65], p62-Ubiquitin aggregates do not behave as liquid droplets, which means
that no rearrangement of aggregates are observed, what would be the consequence of frag-
mentation. This leads to the following nonlocal nonlinear transport-coagulation equation
:

∂tf + ∂p(Vpf) + ∂q(Vqf) + ∂r(Vrf) = Q(f, f) (4.1)
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with :

Vp = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

Vq = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

Vr = κ2p− κ−qα(q, r) , r(0) = r0 ,

where now, κ1 = κ̄1a and κ2 = κ̄2b, with :

a = a0 − ε
∫ ∞

0

(p′ + q′)f(p′, q′, r′)dp′dq′dr′, (4.2)

b = b0 − ε
∫ ∞

0

r′f(p′, q′, r′)dp′dq′dr′, (4.3)

(4.4)

and

C(f, f) = C1(f, f)− C2(f, f),

C1(f, f) =
1

2

∫ p

0

∫ q

0

∫ r

0

k(p− p′, q − q′, r − r′, p′, q′, r′)f(t, p− p′, q − q′, r − r′)f(t, p′, q′, r′)dp′dq′dr′,

C2(f, f) = f(t, p, q, r)

∫ ∞
0

∫ ∞
0

∫ ∞
0

k(p, q, r, p′, q′, r′)f(t, p′, q′, r′)dp′dq′dr′.

The equations (4.2) and (4.3) are derived from the conservation of the mass, p+ q (respec-
tively r) corresponding to the amount of Ubiquitin (respectively p62) in the aggregates.
The factor ε expresses the fact that in the beginning of the reaction, p62 and Ubiquitin are
in large amount, and so can be considered almost as constant. C(f, f) is the coagulation
term that has been introduced in the Chapter 1 and k is the associated coagulation kernel.
(p, q, r) have to satisfy the inequalities (1.2), which is taken into account in the support of
the kernel k. The choice of k can be done following the physical and chemical literature (A
review of different models can be found e.g. in [50]).

Figure 4.1: Representative electron micrographs of negatively stained p62 filaments incu-
bated in the presence or absence of GST-4xUb for the indicated times. Figure and caption
from [65].
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4.2 Formal derivation of a one-dimensional transport-
coagulation equation from the improved model

In all this section, we use the shorthand notation
∫

for denoting
∫∞

0
.

In this section, we start from (4.1) and derive a one-dimensionaltransport-coagulation equa-
tion, using geometric singular perturbation analysis as in Chapter 3. We make the change
of variable (p, q, r)→ (p, x = p+ q, y = 2p+ 2q − nr), which can be related to the variables
(u, v, w) used in the Chapter 3 in the following way :

u =
p

x
, v =

y

x
, and w =

1

x
,

hence (u, v, w) corresponds to the local coordinates of the Poincaré change of variable asso-
ciated with the variables (p, x, y) in the chart Kx. The new density function f̃ associated
with the new variables (p, x, y) is given by f(p, q, r) = f̃(p, x, y). Consequently, the points
along the characteristics of (4.1) satisfy the following nonlocal nonlinear ODE system :

Vp =(κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)− κ3p)(p− y) + κ−(x− p)

− (κ̄2(b̄0 − ε
∫

(2x′ − y′)
n

f̃dp′dx′dy′) + κ−1)p

Vx =κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)(p− y)− κ−1p− nκ−

(n− 1)(x− p)p
(n− 2)(2x− y)

Vy =2κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)(p− y)− 2κ−1p

− nκ2(b̄0 − ε
∫

(2x′ − y′)
n

f̃dp′dx′dy′)p+ nκ−
(2p− ny)(x− p)
(n− 2)(2x− y)

.

The coagulation term reads :

C(f̃ , f̃) = C1(f̃ , f̃)− C2(f̃ , f̃),

C1(f̃ , f̃) =
1

2

∫ p

0

∫ x

0

∫ y

0

k̃(p− p′, x− x′, y − y′, p′, x′, y′)f̃(t, p− p′, x− x′, y − y′)f̃(t, p′, x′, y′)dp′dx′dy′,

C2(f̃ , f̃) = f̃(t, p, x, y)

∫ ∞
0

∫ ∞
0

∫ ∞
0

k(p, x, y, p′, x′, y′)f(t, p′, x′, y′)dp′dx′dy′,

with :

k̃(p, x, y, p′, x′, y′) =
1

n
k(p, q, r, p′, q′, r′).

To make appear different timescales, we make the following change of variable (p, x, y) →
(P =

√
εp,X = εx, Y =

√
εy). This allows us to place ourselves artificially close to infinity,

as p, x, y →∞, when ε→ 0. The factor
√
ε in front of p and y expresses the assumption to

be in the polynomially growing regime, close to infinity, where p and y = p− (nr − p− 2q)
grow like t while x grows as q like t2 i.e. like the square of p, hence the factor ε in front of
x. The density function reads :

F (P,X, Y ) =
1

ε2
f̃(

P√
ε
,
X

ε
,
Y√
ε

).

We rescale the coagulation kernel in the following way for convenience :

K(P,X, Y, P ′, X ′, Y ′) = ε
√
εk(p, x, y, p′, x′, y′)
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and the term of coagulation reads

q(F, F ) =
√
ε

(
q1(F, F )− q2(F, F )

)
,

q1(F, F ) =
1

2

∫ P

0

∫ X

0

∫ Y

0

K(P − P ′, X −X ′, Y − Y ′, P ′, X ′, Y ′)F (t, P,X, Y )F (t, P ′, X ′, Y ′)dP ′dX ′dY ′,

q2(F, F ) = F (t, P,X, Y )

∫ ∞
0

∫ ∞
0

∫ ∞
0

K(P,X, Y, P ′, X ′, Y ′)F (t, P ′, X ′, Y ′)dP ′dX ′dY ′.

Finally, the system of equations transforms into the following equation :

VP =
√
εp =(κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)− κ3

P√
ε

)(P − Y ) + κ−(
X√
ε
− P )

− (κ̄2(b̄0 −
∫

(2X ′ −
√
εY )FdP ′dX ′dY ′) + κ−1)P

VX = εx =
√
ε

(
κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)(P − Y )− κ−1P − nκ−

(n− 1)(X −
√
εP )P

(n− 2)(2X −
√
εY )

)
VY =

√
εy =2κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)(P − Y )− 2κ−1P − κ̄2(nb̄0 −

∫
(2X ′ −

√
εY ′)FdP ′dX ′dY ′)P

+ nκ−
(2P − nY )(X +

√
εP ))

(n− 2)(2X +
√
εY )

.

We do a first time change of variable τ = t√
ε
, that leads to the following PDE :

∂τF +
√
ε∂P (VPF ) +

√
ε∂X(VXF ) +

√
ε∂Y (VY F ) =

√
εq(F, F ).

We let ε→ 0 and obtain that formally on the critical manifold, the following PDE is satisfied
:

∂τF + ∂P

(
(−κ3P (P − Y ) + κ−X)F

)
= 0. (4.5)

The points (P,X, Y ) that belong to the characteristics of (4.5) satisfy :

ṼP = −κ3P (P − Y ) + κ−X,

ṼX = 0,

ṼY = 0.

The steady-states (P,X, Y ) of the characteristics satisfy :

P (X,Y ) =
Y

2
+

√
Y 2

4
+
κ−X

κ3
. (4.6)

We can now integrate over P , using the formula (4.6) and the assumption that
limP→∞ F (τ, P,X, Y ) = 0, which leads to :∫

∂τFdP +
√
ε

∫
∂X(VXF )dP +

√
ε

∫
∂Y (VY F )dP

=
√
ε

∫
q(F, F )dP.

Let us introduce g =
∫
FdP , so that we obtain :

∂τg +
√
ε∂X(VXg) +

√
ε∂Y (VY g) =

√
εQ(g, g),
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with Q(g, g) =
∫
q(F, F )dP . We make the time change of variable τ → t. Let ε → 0, then

we obtain formally that on the critical manifold, the following PDE is satisfied :

∂tg + ∂Y (V̂Y h) = 0.

The characteristics of this PDE satisfy the following ODE :

V̂Y = 2κ̄1(ā0 −
∫
XFdPdXdY )(P − Y )− 2κ−1P − κ̄2n(̄b0 − 2

∫
XFdPdXdY )P +

nκ−
2(n− 2)

(2P − nY ),

V̂X = 0.

After a straightforward computation using the fact that P is given by (4.6), we obtain the
following formula for the steady-states of the previous characteristics :

Y = v∗
√
X. (4.7)

with v∗ has been defined previously in Chapter 3. We draw the attention of the reader
toward the fact that v∗ is not anymore a constant as in the Chapter 3 but a nonlocal term
(because of the term

∫
XFdPdXdY ). We integrate now over Y. In order to do so, we

introduce as previously G =
∫
gdY =

∫ ∫
FdPdY , and make a new change of variable

t→ σ =
√
εt , which leads to :

∂σG+ ∂X(V̄XG) = Q(G,G),

where

Q(G,G) = Q1(G,G)−Q2(G,G),

Q1(G,G) =
1

2

∫ X

0

K(X −X ′, X ′)G(t,X −X ′)G(t,X ′)dX ′,

Q2(G,G) = G(t,X)

∫ ∞
0

K(X,X ′)G(t,X ′)dX ′.

Replacing P and Y , by their expressions (4.6) and (4.7), we can compute straightforwardly
:

V̄X = A∗
√
X,

with A∗ defined in Chapter 3, which is now a nonlocal term similarly as v∗. Finally, we
derived formally the following one-dimensional nonlocal transport-coagulation equation :

∂tG+ ∂X(A∗
√
XG) = Q(G,G).

with A∗ whose sign depends on the value of the nonlocal term
∫
X ′FdP ′dX ′dY ′.

4.3 Study of a general one-dimensional transport-coagulation
equation

The one-dimensionaltransport-coagulation equation derived in the previous section can be
simplified as (4.9) (we don’t take into account the non-local term). Our first aim is to
explore the necessary and sufficient conditions of the existence of a non-trivial steady state
of (4.9). Having a non-trivial steady state implies both the conservation of the number of
particles in Equation (4.10) and the conservation of the mass in Equation (4.11). This leads
us to impose first v(0)f0 > 0, in order to compensate the loss of particles due to coagulation
in (4.10), and second the sign of v(x) must change so that

∫
v(x)f(x)dx = 0 is made possible

in Equation (4.11). Furthermore, it is necessary to have a negative speed for large x in order
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to compensate the coagulation term that gives rise to increasingly larger particles. As the
simplest way to satisfy all these assumptions, we choose a C1 decreasing function v(x) such
that

v(x) > 0, for x < x0

v(x0) = 0, for x0 > 0

v(x) < 0, for x > x0

(4.8)

Further assumptions on the decay rate of v(x) at +∞ may be required (see e.g. Section 4.5
for the case of the multiplicative kernel).

4.3.1 Model
Let f0 > 0, v(x) a C1 decreasing function and x0 > 0 such that v(x0) = 0, K(x, y) a
symetric coagulation kernel - we shall consider here only K(x, y) = 2, K(x, y) = x+ y and
K(x, y) = xy. We consider the following system:

∂
∂tf(x, t) + ∂

∂x

(
v(x)f(x, t)

)
= 1

2

x∫
0

K(x− y, y)f(x− y, t)f(y, t)dy

−
∞∫
0

K(x, y)f(y, t)f(x, t)dy,

f(0, t) = f0.

(4.9)

4.3.2 Balance equations
Integrating the equation, we find a balance equation for the number of particles

d

dt

∫ ∞
0

f(x, t)dx = v(0)f0 −
1

2

∫ ∞
0

∫ ∞
0

K(x, y)f(x, t)f(y, t)dxdy, (4.10)

and integrating the equation against the weight x, we have another balance equation for the
mass

d

dt

∫ ∞
0

xf(x, t)dx =

∫ ∞
0

v(x)f(x, t)dx. (4.11)

4.3.3 Examples of steady states
Before looking for necessary and sufficient conditions of the existence of steady states, let
us consider some cases where the explicit steady state f0e

−x is admissible:

1. for K(x, y) = 2 : if v(x) = f0(1− x),

2. for K(x, y) = x+ y : if v(x) = f0(1− x2

2 ),

3. for K(x, y) = xy : if v(x) = f0( 1+x
2 −

x2

4 −
x3

12 ).

4.4 Results with constant kernel
For the constant kernel K(x, y) = 2, we are able to compute all the moments associated
with the density function.

4.4.1 Equation for the zero order moment
The equation (4.10) leads us to the following equation for µ0(t) =

∫∞
0
f(x, t)dx :

d

dt
µ0 = v(0)f0 − µ2

0.
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Defining u = e

t∫
0

µ0(s)ds
, we have

u′′(t) = v(0)f0u(t), u(0) = 1, u′(0) = µ0(0),

hence we have, with α =
√
v(0)f0,

u(t) = cosh(αt) +
µ0(0)

α
sinh(αt),

so that
µ0(t) =

α sinh(αt) + µ0(0) cosh(αt)

cosh(αt) + µ0(0)
α sinh(αt)

→t→∞ α =
√
v(0)f0.

4.4.2 Equation for higher-order moments
The equation (4.10) leads to the following equation for µk(t) =

∫∞
0
xkf(x, t)dx with k ∈ N∗ :

d

dt
µk(t)+

∫ ∞
0

xk∂x(vf)dx =

∫ ∞
0

xk
∫ x

0

f(x−y, t)f(y, t)dydx−2

∫ ∞
0

xkf(x, t)dx

∫ ∞
0

f(y, t)dy,

hence
d

dt
µk(t)−k

∫ ∞
0

xk−1(b0−2x)f(x)dx =

∫ ∞
0

∫ x

0

(x−y+y)kf(x−y, t)f(y, t)dydx−2µk(t)µ0(t).

This equation can be rewritten using the binomial theorem :

d

dt
µk(t)−kb0µk−1(t)+2kµk(t) =

k∑
i=0

∫ ∞
0

∫ x

0

(
k

i

)
(x−y)iyk−if(x−y, t)f(y, t)dydx−2µk(t)µ0(t),

hence
d

dt
µk(t)− kb0µk−1(t) + 2kµk(t) =

k∑
i=0

(
k

i

)
µi(t)µk−i(t)− 2µk(t)µ0(t),

hence
d

dt
µk(t) + 2kµk(t) =

k−1∑
i=1

(
k

i

)
µi(t)µk−i(t) + kb0µk−1(t),

which is an ODE for the variable µk(t) in terms of all the moments (µi(t))i=1,...,k−1, with
µ0(t) that has been previously determined (See 4.4.1). Thus, all the moments for the con-
stant kernel can be computed by induction. Assuming by induction that all the moments
µi for i ≤ k − 1 remain bounded and converge to a constant at large times, we have

d

dt
(µke

2kt) = e2ktF (t),

with F a nonnegative bounded function, hence

µk(t) = e−2kt(µ1(0) +

t∫
0

F (s)e2ksds) ≤ µ1(0) +
1

2k
max(F ),

so that µk remains positive and bounded. We easily prove that any sequence µk(tn) with
tn →∞ is a Cauchy sequence, hence µk converges to a positive limit, defined by induction
by

µ̄k =
1

2k

k−1∑
i=1

(
k

i

)
µ̄iµ̄k−i +

b0
2
µ̄k−1. (4.12)

This constitutes a Stieltjes moment problem (See [53]), that we have not solved yet.
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4.5 Results for the multiplicative kernel
We now consider the equation (4.9) for the kernel K(x, y) = xy. We aim to prove the
existence and the uniqueness of a steady-state using a fix point argument provided some
assumptions on the transport-speed. In this case, the transport counters the coagulation,
similarly as it has been shown in other papers that fragmentation could counter coagulation
under specific conditions. In the case of the multiplicative kernel, the transport-coagulation
rewrites :

∂tf + ∂x(vf) =
1

2

∫ x

0

(x− y)f(x− y)yf(y)dy −
∫ ∞

0

xf(x)yf(y)dy , (4.13)

f(0, t) = f0.

We work in the following Banach space :

B =

{
f :

∫ ∞
0

xf(x)dx <∞
}
.

Theorem 8. Assuming that v(x) = (x0 − x)w(x) with w(x) > 0 smooth, v(x) decreases in
+∞ at least as x−2 with 2 > 2, f0 ∈ B, then, there exists a unique steady state of (4.13).

We consider the sequence
(
fn

)
n∈N

defined by :

∂x(vfn+1) + xfn+1M1(fn) = hn(x) =
1

2

∫ x

0

(x− y)fn(x− y)yfn(y)dy , fn+1(0) = f0 .

(4.14)
Let us assume that there exists an n ∈ N s.t. fn ∈ B. For 0 ≤ x < x0 we get (by writing
the equation for vfn+1 and by variation of constants) that :

fn+1(x) =
v(0)f0

v(x)
G(x) +

1

v(x)

∫ x

0

G(x)

G(y)
hn(y)dy ,

with
G(x) = exp

(
−M1(fn)

∫ x

0

y

v(y)
dy

)
M1(fn) =

∫ ∞
0

xfn(x)dx.

Using the assumption,
v(x) = (x0 − x)w(x) (4.15)

with w(x) > 0 smooth, it follows that :∫ x

0

y

v(y)
dy =

x0

w(x0)

∫ x

0

dy

x0 − y
+

∫ x

0

1

x0 − y

(
y

w(y)
− x0

w(x0)

)
dy

= − x0

w(x0)
log(x0 − x) + b(x) ,

where b(x) is a smooth function (up to x = x0). Hence

G(x)

v(x)
= (x0 − x)

M1(fn)x0
w(x0)

−1
c(x) ,

where c(x) > 0 is again a smooth function. It is always integrable, since the exponent is
always larger than −1. Finally, assuming fn ∈ B, we have that :∫ x0

0

xfn+1(x)dx <∞
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For x > x0, we get similarly as before that :

fn+1(x) = − 1

v(x)

∫ +∞

x

G(x)

G(y)
hn(y)dy ,

with

G(x) = exp

(
−M1(fn)

∫ +∞

x

y

v(y)
dy

)
.

The existence of G requires that v decreases at least like x−γ in +∞ with γ > 2. Under
this condition, G is then a decreasing function. To prove fn+1 ∈ B, we need to check
the integrability of xf(x) in x0 and in +∞. The integrability in x0 is guaranteed by the
former assumption (4.15). Let us now consider what is happening in +∞. The integral is
convergent, if it decreases in the following polynomial manner, namely if xfn+1(x) ≤ 1

1+xγ

with γ > 1. Hereafter, we show by induction that for x close enough to +∞, for all n ∈ N,
it holds that :

fn(x) ≤ A

(1 + x)α
, (4.16)

for α > 2. Assuming (4.16), it follows that,

hn(y) ≤A
2

2

∫ y

0

(y − z)z(1 + y − z)−α(1 + z)−αdz

hn(y) ≤A
2y3

3

∫ 1

0

(1− w)w(1 + y(1− w))−α(1 + yw)−αdw

hn(y) ≤A
2y3

3
(1 +

y

2
)−α(

∫ 1
2

0

w

(1 + yw)α
dw +

∫ 1

1
2

1− w
(1 + y(1− w))α

dw)

hn(y) ≤A
2y3

3
(1 +

y

2
)−α

1

y

∫ 1
2

0

((1 + yw)1−α − (1 + yw)−α)dw

hn(y) ≤A
2y

3
(1 +

y

2
)−α[(

(1 + yw)2−α

2− α
− (1 + yw)1−α)

1− α
]
1
2
0

hn(y) ≤A
2y

3
(1 +

y

2
)−α(

1

1− α
− 1

2− α
+O(1))

hn(y) ≤Ay(1 +
y

2
)−α(

1

(α− 1)(α− 2)
+O(1)).

Finally, assuming that |v(x)| < Bx−2,

fn+1(x) ≤ 1

Bx2

∫ +∞

x

A22α

(α− 1)(α− 2)
y1−αdy

fn+1(x) ≤ x2−α−2 A22α

B(α− 1)2(α− 2)
.

It is necessary that A2α

B(α−1)2(α−2) < 1, so that fn+1 satisfies the property (4.16). Then,
xf(x) is integrable in +∞ and thus, fn+1 ∈ B. By integrating (4.14), it is easily seen
that, if M1(f0) =

√
2v(0)f0 then ∀n ∈ N,M1(fn) =

√
2v(0)f0. This property implies weak

convergence in the space of measures, so that fn → f∞ 6= 0 will converge tightly for a
subsequence.
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Appendix A

Large aggregate limit

We denote by ci,j,k(t) the probability of the aggregate to be in the state (i, j, k) at time t.
Its evolution will be determined by a jump process model of the reactions with the rates
given in (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.9), and (2.10).

For this purpose the relation between pre-reaction state (i′, j′, k′) and post-reaction state
(i, j, k) needs to be inverted. This is easy except for Reaction 5, where we have j = j′ − 1,
k = k′ − 1, and, with (2.9),

i = i′ + 1− `i′,j′,k′ = i′ + 1−
⌊

(n− 1)i′

nk′ − 2j′

⌉
. (A.1)

The inversion is not possible in general. Occasionally, `i′,j′,k′ will increase by one, when i′
is increased by one, implying that i might take the same value for two consecutive values
of i′. Even worse: For the extreme case nk′ − 2j′ = n − 1, where after the loss of a p62
oligomer all binding sites are busy with two-hand bound Ubi except the one remaining after
breaking the connection, i.e. nk − 2j = 1 = i. This state is independent from the number
i′ ∈ {0, . . . , n − 1} of one-hand bound Ubi getting lost with the oligomer. Therefore we
introduce

Ii,j,k = {i′ : i = i′ + 1− `i′,j+1,k+1}

The equation for the probability distribution reads

dci,j,k
dt

= (r1c)i−1,j,k − (r1c)i,j,k + (r2c)i+1,j−1,k−1 − (r2c)i,j,k + (r3c)i+1,j−1,k − (r3c)i,j,k

+(r−1c)i+1,j,k − (r−1c)i,j,k +
∑

i′∈Ii,j,k

(r−2c)i′,j+1,k+1 − (r−2c)i,j,k

+(r−3c)i−1,j+1,k − (r−3c)i,j,k . (A.2)

We introduce a typical value k0 for the number k of oligomers in the aggregate and use it
also as a reference value for i and j, leading by the definition (2.11) to the scaled triplet
(p, q, r). The latter lives on a grid with spacing ∆p = ∆q = ∆r := 1/k0 and, thus, becomes
a continuous variable in the large aggregate limit k0 → ∞. Therefore we postulate the
existence of a probability density P (p, q, r, t) such that

ci,j,k(t) ≈ k3
0 P

(
i

k0
,
j

k0
,
k

k0
, t

)
.

Division of (A.2) by k3
0 and the limit k0 →∞ (∆p = ∆q = ∆r → 0) will lead to an equation

for P . We deal with the six differences on the right hand side of (A.2), corresponding to the
six reactions, separately.

49



APPENDIX A. LARGE AGGREGATE LIMIT

Reaction 1:

k−3
0 [(r1c)i−1,j,k − (r1c)i,j,k]

≈ 1

∆p
[κ1(nr − p+ ∆p− 2q)P (p−∆p, q, r, t)− κ1(nr − p− 2q)P (p, q, r, t)]

→ −∂p(κ1(nr − p− 2q)P ) .

Reaction 2:

k−3
0 [(r2c)i+1,j−1,k−1 − (r2c)i,j,k]

≈ 1

∆p
[κ2(p+ ∆p)P (p+ ∆p, q −∆q, r −∆r, t)− κ2pP (p, q −∆q, r −∆r, t)]

+
1

∆q
[κ2pP (p, q −∆q, r −∆r, t)− κ2pP (p, q, r −∆r, t)]

+
1

∆r
[κ2pP (p, q, r −∆r, t)− κ2pP (p, q, r, t)]

→ ∂p(κ2pP )− ∂q(κ2pP )− ∂r(κ2pP ) .

Reaction 3: Since this is a second-order reaction, it would dominate the dynamics for large
k0, if the reaction constant were of the same order of magnitude as the others. In order to
avoid this, we set κ′3 = κ3/k0 and keep κ3 fixed as k0 →∞.

k−3
0 [(r3c)i+1,j−1,k − (r3c)i,j,k]

≈ 1

∆p

[
κ3(p+ ∆p)(nr − p−∆p− 2q + 2∆q)P (p+ ∆p, q −∆q, r, t)

− κ3p(nr − p− 2q + 2∆q)P (p, q −∆q, r, t)
]

+
1

∆q
[κ3p(nr − p− 2q + 2∆q)P (p, q −∆q, r, t)− κ3p(nr − p− 2q)P (p, q, r, t)]

→ ∂p(κ3p(nr − p− 2q)P )− ∂q(κ3p(nr − p− 2q)P ) .

Reaction 4:

k−3
0 [(r−1c)i+1,j,k − (r−1c)i,j,k]

≈ 1

∆p
[κ−1(p+ ∆p)P (p+ ∆p, q, r, t)− κ−1pP (p, q, r, t)]

→ ∂p(κ−1pP ) .

Reaction 5: As preparatory steps, we compute

`i′,j+1,k+1 =

⌊
(n− 1)i′

nk − 2j + n− 2

⌉
=

⌊
(n− 1)p′

nr − 2q + (n− 2)∆p

⌉
.

As a function of p′, this is piecewise constant and equal to
⌊

(n−1)p′

nr−2q

⌉
with jumps (for small

∆p) close to the set nr−2q
n−1

(
1
2 + N0

)
. Away from these points the map (A.1) from pre- to

post-reaction states is invertible with

p′ = p+ ∆p (`(p, q, r)− 1) , `(p, q, r) :=

⌊
(n− 1)p

nr − 2q

⌉
.

Note that p′ has been replaced by p in the argument of ` since p− p′ = O(∆p). At all these
generic points the sum in (A.2) has only one term. We shall also need

αj,k →
nr − 2q

(n− 2)r
=: α(q, r) .
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Thus,

k−3
0

[
1i≥1(r−2c)Ii,j,k,j+1,k+1 − (r−2c)i,j,k

]
≈ 1

∆p

[
κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p+ ∆p(`− 1), q + ∆q, r + ∆, t)

− κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p, q + ∆q, r + ∆r, t)
]

≈ 1

∆q

[
κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p, q + ∆q, r + ∆, t)

− κ−α(q, r + ∆r)qP (p, q, r + ∆r, t)
]

≈ 1

∆r

[
κ−α(q, r + ∆r)qP (p, q, r + ∆, t)

− κ−α(q, r)qP (p, q, r, t)
]

→ ∂p(κ−α(`− 1)qP ) + ∂q(κ−αqP ) + ∂r(κ−αqP ) .

Note that the factor ` − 1 has been written inside the derivative since ` is constant away
from finitely many critical points. We replace a detailed analysis at these points by the
simple argument that the equation for P has to be in conservation form to preserve the
total probability. Finally we introduce a simplification by dropping the rounding operation
in `.
Reaction 6:

k−3
0 [(r−3c)i+1,j−1,k − (r−3c)i,j,k]

≈ 1

∆p

[
κ−(1− α(q + ∆q, r))(q + ∆q)P (p−∆p, q + ∆q, r, t)

− κ−(1− α(q + ∆q, r))(q + ∆q)P (p, q + ∆q, r, t)
]

+
1

∆q
[κ−(1− α(q + ∆q, r))(q + ∆q)P (p, q + ∆q, r, t)− κ−(1− α(q, r))qP (p, q, r, t)]

→ −∂p(κ−(1− α)qP ) + ∂q(κ−(1− α)qP ) .

Collecting our results, the limiting equation for the evolution of P reads

∂tP + ∂p

((
(κ1 − κ3p)(nr − p− 2q)− (κ2 + κ−1)p+ κ−q

(
1− (n− 1)p

(n− 2)r

))
P

)
+∂q ((κ2p+ κ3p(nr − p− 2q)− κ−q)P ) + ∂r ((κ2p− κ−αq)P ) = 0 . (A.3)

For deterministic initial conditions of the form P (p, q, r, 0) = δ(p − p0)δ(q − q0)δ(r − r0)
the state remains deterministic: P (p, q, r, t) = δ(p − p(t))δ(q − q(t))δ(r − r(t)), where
(p(t), q(t), r(t)) solves the initial value problem (3.1).
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Kurzfassung

Das Ziel dieser Dissertation ist die Modellierung der Aggregation von mit Ubiquitin dekoriertem
Zellabfall durch Oligomere des Proteins p62, einem wichtigen Schritt in der Vorbereitung

zellulärer Autophagie. Ein neues mathematisches Modell für die Dynamik dieser heterogenen
Aggregate in der Form eines Systems gewïhnlicher Differentialgleichungen wird hergeleitet und

analysiert. Der wesentliche Beitrag dieses neuen Modells liegt in der Tatsache, dass zwei
verschiedene Arten von Teilchen berücksichtigt werden, nämlich p62- und Ubiquitin-Moleküle, die

Verbindungen sehr spezifischer Art eingehen, was das Komplexitätsniveau des Modells im
Vergleich zu klassischen Aggregationsprozessen drastisch erhöht. Im ersten Teil der Arbeit werden
drei Parameterbereiche identifiziert, wo Aggregate entweder instabil sind, oder ihre Größe einem
endlichen Grenzwert zustrebt, oder ihre Größe ohne Schranken wächst, solange freie Teilchen

verfügbar sind. Die Grenzen dieser Parameterbereiche sowie der erwähnte Grenzwert im zweiten
Fall werden explizit berechnet. Das Wachstum im dritten Fall (quadratisch mit der Zeit) kann mit
Hilfe formaler asymptotischer Methoden ebenso explizit beschrieben werden. Diese qualitativen
Resultate werden durch numerische Simulationen illustriert. Ein Vergleich mit experimentellen

Resultaten erlaubt eine teilweise Parametrisierung des Modells. Im zweiten Teil der Arbeit werden
Methoden aus der Theorie der dynamischen Systeme verwendet, um einige der beobachteten

Stabilitätseigenschaften rigoros zu rechtfertigen. Die Instabilität kleiner Aggregate, äquivalent zur
Stabilität der Nulllösung, wird mit Hilfe von Blow-up-Methoden bewiesen. Im Beweis des

quadratischen Wachstums wird die geometrische Theorie singulärer Störungen verwendet. Der
dritte Teil der Arbeit widmet sich einer Erweiterung des Modells, in der Verteilungen von
Aggregaten beschrieben werden, deren Wachstum wieder durch das oben erwähnte Modell

beschrieben wird, die aber auch einem Koagulationsprozess unterliegen. Das Resultat ist eine
komplexe partielle Integro-Differentialgleichung, deren Dimension durch eine

Mehr-Skalen-Asymptotik reduziert wird. Die Arbeit wird durch erste Resultate zur Existenz
nichttrivialer stationärer Lösungen abgeschlossen.



Abstract

This thesis aims to model the aggregation of ubiquitinated cargo by oligomers of the protein p62,
which is an important preparatory step in cellular autophagy. A new mathematical model for the

dynamics of these heterogeneous aggregates in the form of a system of ordinary differential
equations is derived and analyzed. The main contribution of this new model lies on the fact that
we are considering two different particles, namely p62 and Ubiquitin, attaching to each other in a

very specific way, which increases drastically the complexity level of the model compared to
classical ones. In a first part, three different parameter regimes are identified, where either

aggregates are unstable, or their size saturates at a finite value, or their size grows indefinitely as
long as free particles are abundant. The boundaries of these regimes as well as the finite size in
the second case can be computed explicitly. The growth in the third case (quadratic in time) can
also be made explicit by formal asymptotic methods. The qualitative results are illustrated by

numerical simulations. A comparison with recent experimental results permits a partial
parametrization of the model. In a second part, a partial analysis of this model using dynamical
systems tools is also made. The local stability of the regime where the aggregates are unstable is

proved using blow-up. The locally quadratic growth in the third regime is also proved using
geometric singular perturbation analysis. The end of the thesis is dedicated to the improvement of
the former model. Based on biological observations, a coagulation term is added, which leads to a

prohibitively complex growth-coagulation model. This is why a simplified version based on a
multiscale analysis is formulated where aggregates are only described by one parameter. To

conclude, a first basic study of unidimensional growth-coagulation equations is made.
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