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Abstract

Despite intense effort in the experimental frontier, determining the nature of dark
matter remains to be one of the unsolved problems in the 21st century. Among the
ways to search for dark matter, an important avenue is given by direct detection
experiments, where dark matter particles scatter off Standard Model particles in
the targets of earth-bound detectors. The absence of a dark matter signal at cur-
rent direct detection experiments, together with constraints from indirect detection
and collider searches, has already excluded a non-trivial portion of the dark matter
particle parameter space. Amongst other things, this calls for a reconsideration of
the currently assumed dark matter-Standard Model particle interaction processes.
In the context of direct detection, we explore scenarios where a dark matter particle
interacts with Standard Model particles via two mediators. Both vector and scalar
mediators, as well as mixtures thereof, are considered with one mediator being heav-
ier than the other one in all cases. Adding a second mediator to the dark matter
- Standard Model interaction leads to interference terms in the squared scattering
amplitude. We show that this interference term leads to a rich phenomenology of
the bi-portal model with mediator mass hierarchy and novel signatures in differential
recoil spectra. Taking detector specific parameters like the energy resolution into
the calculations, we argue, that detecting these signatures is at reach for current and
proposed direct detection experiments. Using a profile likelihood ratio approach, we
show a possible range of dark matter and mediator masses, as well as mediator cou-
plings, where exclusion limits from bi-portal models differ significantly from single
mediator models.



Zusammenfassung

Trotz intensivem experimentellem Aufwand bleibt die Identifizierung der Natur von
Dunkler Materie eines der großen ungelösten Probleme des 21. Jahrhunderts. Eine
der vielen Methoden zur Suche nach dunkler Materie stellen direkte Detektion-
sexperimente dar, in denen dunklen Materie Teilchen direkt mit Standardmodell-
teilchen im Detektormaterial interagieren. Das bisherige Ausbleiben eines Nach-
weises dunkler Materie in direkten Detektionsexperimenten, zusammen mit Ein-
schränkungen aus indirekter Detektion und Teilchenbeschleunigern, schränkt den
verfügbaren Parameterraum der dunklen Materie um einen nicht trivialen Teil ein.
Diese Tatsache erfordert, unter anderem, ein Überdenken derzeit angenommener
Wechselwirkungsprozesse zwischen Dunkler Materie und Teilchen des Standardmod-
ells. In dieser Arbeit werden im Vordergrund der direkten Detektion Szenarien un-
tersucht, in denen ein Dunklen Materie Teilchen über zwei Mediatoren mit Teilchen
des Standardmodells interagiert. Die Interaktion via Vektor- und Skalar-teilchen,
sowie Kombinationen dieser, werden analysiert, wobei in allen Modellen einem Me-
diator eine größere Masse zugewiesen wird als dem anderen. Wird der Wechsel-
wirkung zwischen Dunkler Materie und ein zweiter Mediator hinzugefügt, so en-
thält die quadratischen Streuamplitude einen Interferenzterm. Es wird gezeigt, dass
dieser Interferenzterm zu einer reichen Phänomenologie des „bi-portal“ Modells und
neuartigen Signaturen in den Verteilungsspektren der Rückstoßenergie führt. Detek-
torspezifischer Parameter, wie die Energieauflösung, werden in den Berechnungen
berücksichtigt und es wird so gezeigt, dass diese Signaturen für aktuelle und zukün-
ftige direkte Detektionsexperimente nachweisbar sein sollten. Unter Verwendung
eines Likelihood-Quotienten-Tests zeigen wir einen möglichen Bereich von Massen
für Dunkle Materie und Mediatoren, sowie Kopplungskonstanten, für welche sich die
Ausschlussgrenzen von „bi-portal“-Modellen erheblich von Modellen mit Interaktion
über einen einzelnen Mediator unterscheiden.
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Introduction

The idea of dark matter (DM) has been around for almost a hundred years, and yet
it represents one of the greatest unsolved puzzles in modern physics [1, 2]. Although
various evidence for an additional matter component has been found in cosmology
and astrophysics over the past few decades, there is still no direct proof of a possible
particle nature [3–6]. In fact, the physical community does not even agree on what
the missing mass consists of and there are numerous suggestion ranging from black
holes to beyond Standard Model particles of mass as low as 1 × 10−5 eV [7, 8]. A
widespread assumption is that a new particle constitutes the bulk of the missing
matter, the so called WIMP (Weakly Interacting Massive Particle), and there is
thus a large number of experiments having dedicated themselves to proving the
existence of such a particle [9]. In the first chapter of this thesis an overview of
evidence, candidates and searches for DM is given.

When considering a DM particle candidate, it is important to investigate the
possible interactions between this new particle and the components of the well-
established Standard Model (SM) of particle physics. The comprehension of such
an interaction mechanism is especially important in the foreground of DM direct
detection experiments, which aim at detecting the interaction of DM particles with
target nuclei and electrons [9, 10]. The second chapter of this work is thus dedicated
to the investigation of the DM-nucleus interaction. This is done by means of eval-
uating the relevant cross sections, as well as an expression for the differential recoil
spectrum which is an important tool to relate interaction models to results from
direct detection experiments. While in the first half of chapter 2 already established
interactions via a single mediating particle are revisited, in the second half a new
model is investigated where DM interacts with quarks in a nucleus via two medi-
ators. DM models with two mediators have been previously considered, refer for
example to [11–13], however, the novel feature of the model in this work is the hier-
archy in the involved mediator masses. In chapter three the bi-portal model is then
thoroughly analysed and compared to single mediator models, especially by means
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of comparison between recoil spectra. Moreover, the impact of a detector’s resolu-
tion is investigated, in order to determine if differences between single and bi-portal
model are detectable in current and proposed DM direct detection experiments.

So far DM direct detection experiments have not yet published uncontroversial
signal claims. Instead, exclusion limits on DM particle specific quantities are pub-
lished in order to compare the results of different experiments [14, 15]. There are
various approaches to generating such exclusion limits from measured and simulated
data. Recently the method of profile likelihood ratios has gained in popularity and
is now an integral part in the analysis procedure of various DM direct detection
experiments, see for example [16–18]. The necessary statistical concepts needed in
order to calculate limits with the profile likelihood approach are reviewed in the
fourth chapter of this thesis. In chapter five exclusion limits in the bi-portal model
generated with the profile likelihood ratio method from mock background samples
are shown and discussed. The mock samples used in the analysis are based on the
specifications of two different high resolution and low threshold experiments: the
established CRESST-III experiment [16] and the COSINUS experiment [19], which
is currently under construction.

To conclude we review the consequences that the introduction of an additional
mediator may have on differential recoil spectra and exclusion limits from direct
detection. Moreover, we give an outlook of possible continuation and extension of
this work to related fields.
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Chapter 1

A short introduction to dark
matter

The notion dark matter (“dunkle Materie”) first gained attention in the 1930s,
primarily through the work of Swiss astronomer Fritz Zwicky1 on the redshift and
rotational velocity of the Coma cluster [2]. At first his idea of non-visible matter
was met with a lot of scepticism, but the multitude of supporting works published
in the following decades led to general acceptance of his theory in the scientific
community. To this day, there is evidence for dark matter stemming from small
astrophysical scales, like the rotational velocities of stars in galaxies, up to evidence
on much larger cosmic scales like the cosmic microwave background. Non-baryonic
dark matter, together with dark energy, is now also an integral part of the standard
cosmological model and its contribution to the total matter density of the Universe
is known to be about 83.9% [20]. There is thus five times more dark matter than
baryonic matter, which makes up for the rest of the matter density in the Universe.

The following chapter gives a brief overview of the evidence and proposed candi-
dates for DM, which are both as numerous as they are versatile. In the last section
the three main approaches used in the search for a direct proof of the dominant
mass component in the Universe are reviewed, with a focus on DM direct detection.

1Contrary to popular belief, Zwicky was not the first to explicitly use the term dark matter,
but Henri Poincaré as early as 1906 [1].
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1.1 Evidence for dark matter

As mentioned above, evidence for DM has been found both on astrophysical and cos-
mological scales [3]. This overview starts with the smallest scale evidence, namely
the rotation curves of galaxies. An important advance to the field brought Vera
Rubin and Kent Ford’s work on the rotation of spiral galaxies, especially the An-
dromeda galaxy [4]. If a galaxy consists only of the visible dark matter which is
concentrated in its center, one would assume that, with increasing distance to the
center R, the circular velocities of stars in the galaxy fall off proportional to∼ 1/

√
R.

However, the measurements of Rubin and her successors showed, that the rotational
velocities stay almost constant at large distances. The measured circular velocities
as a function of the distance to the galactic center for the spiral galaxy Messier 33
(M33) are displayed in Figure 1.1 [21]. The behaviour of the rotational curve can be
explained by embedding the spiral galaxy in a DM halo of approximately spherical
shape, which extends several orders beyond the radius of the visible galaxy [21].
Various models for the density profile of this halo have been established in order to
explain the measured rotational curves. In particular, the density of DM at Earth’s
position in the Milky Way has been approximated, and

ρχ = 0.3
GeV
cm3

(1.1)

is a well-established value in DM searches [22, 23].
On a slightly larger scale, evidence for DM can also be found in the behaviour

of galaxy clusters as observed by Zwicky for the Coma cluster [2]. There are two
main methods to estimate the total gravitational mass in a cluster. The first is
the Virial theorem, which allows to relate the kinetic energy of the cluster to the
total potential energy of the gravitational field and thus the total mass. The kinetic
energy can be determined from the velocities of the individual galaxies in the cluster.
Another approach is to determine the mass of a cluster with gravitational lensing of
background objects [24]. The achieved bound on the total mass of a cluster can then
be compared to the estimated luminous mass from the total measured luminosity
of the cluster. In general one finds a large discrepancy between luminous and total
mass estimates which cannot be explained without a DM contribution.

Especially persuasive evidence for the existence of DM was found in the two
galaxy clusters which together form the so-called Bullet Cluster [5]. The two clus-
ters are known to have traversed each other at some point in the past. At the point
of encounter the hot gas in the two cluster was caused to be left behind due to it
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Figure 1.1: M33 rotation curve (blue points) together with the best fit model (continuous
red line). The contribution from visible matter (stellar disk), which follows approximately
1/
√
r, is shown as a short dashed line. The contribution from a possible DM halo is shown

as a dashed dotted line. Plot taken from [21].

being affected by friction. The distribution of this hot gas, which is more massive
than the visible matter, as seen through the emission of X-rays is displayed in the
right image in Figure 1.2. However, an analysis of gravitational lensing effects in
the optical picture showed, that the gravitational centers of the total mass of the
clusters are displaced compared to the hot gas (green contour lines in Figure 1.2).
This observation implies that there must be another dominant but invisible mass
component present in the galaxy clusters. Moreover, once can infer that this addi-
tional mass component interacts only weakly with itself and the visible matter and
was thus not as affected by the friction in the traversing process of the two clusters.

On a cosmological scale the Cosmic Microwave Background (CMB) offers evi-
dence for DM and, as mentioned above, also a way to estimate the DM contribution
to the total energy in the Universe. In the early Universe hydrogen was in thermal
equilibrium and thus constantly produced and disintegrated:

p+ + e− ←→ H + γ (1.2)

In the relatively young universe (≈ 380,000 years after the Big Bang), the expan-
sion and cooling of the Universe caused the photons to decouple, as the horizon size
became larger than the mean free path of the photons. From that point on, pho-
tons started to traverse the Universe freely - the Universe became transparent. The
CMB, as observed today, is composed of photons produced in the last recombina-
tions taking place at the time of decoupling, redshifted to microwave lengths. This
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Figure 1.2: Two images of the Bullet Cluster 1E 0657−558. Left: an optical color image
from the Magellan telescope, right: an image taken by the Chandra X-ray Observatory
showing the distribution of the hot gas in the two traversing clusters. In both panels
the green contour lines show the gravitational potential of the system as inferred from
gravitational lensing of background objects. Plots taken from [5].

“echo” of the early Universe was first observed by A. Penzias and R.Wilson in 1964
[25]. The CMB represents one of the most perfect black body spectra with a tem-
perature of T = (2.7260± 0.0013)K [26]. However, the COBE satellite mission and
its successors, WMAP and Planck, detected small fluctuations of order 10−5 in the
temperature. The anisotropies in the CMB as seen in Figure 1.3, are a measure of
the distribution of baryonic matter in the Universe at the time of photon decoupling.
Baryonic matter was thus not perfectly homogeneous in the early Universe, although
it was in equilibrium with radiation at that time. The random fluctuations in the
baryonic matter density, despite equilibrium, suggest an additional non-baryonic
matter component which was less affected by radiation, while still having a gravi-
tational effect on baryonic matter. As mentioned above, the Planck results showed
that non-baryonic matter is about five times as abundant as baryonic matter.

Independent of the CMB measurements, another estimate of the baryon density
in the Universe can be obtained from the abundance of light elements in the Universe
today. The bulk of light elements up to 7Li were produced in the very early Universe
in a process called Big Bang nucleosynthesis, while other heavier elements were later
produced in stars. The production process begins with deuterium

p+ n −→ d+ γ (1.3)

and trough addition of protons other light elements and their isotopes are created.
This production only started to take place at a sufficient rate when the expansion
of the Universe led to a suppression of the disruption of deuterium by high-energy
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Figure 1.3: A map of the CMB, showing temperature fluctuations as measured by the
Planck experiment and published in 2018 [27].

photons. The exact time when the deuterium production started, thus depends on
the baryon to photon ratio. Due to the instability of neutrons, one can also determine
the time at which deuterium production stopped, and the final abundances of light
materials were almost fixed. The abundances of helium, deuterium and lithium
nowadays can thus be calculated from the process of Big Bang nucleosynthesis.
Comparison between the calculated abundances and measurements thereof, imply
that the baryonic mass content in the Universe is indeed of the order predicted by
the CMB [28].

To name a last example, evidence for the existence of DM can also be inferred
from the large-scale structure of visible matter observed in the Universe today.
Large-scale structures, such as superclusters and filaments, evolved out of very small
density fluctuations in the Universe. The procedure of this structure evolution has
been analysed with extensive computer simulations like the Millennium Simulation
[29]. Comparison between the results of such simulations and observational data
showed that large-scale structures of the Universe can only be achieved by intro-
ducing an additional mass component. This additional mass component was not
as affected by radiation pressure in the early Universe and thus contributed to the
clustering of ordinary matter. Moreover, a property of DM can be deduced from
the outcome of such simulations. Only if the majority of matter was non-relativistic
at the time of structure formation, smaller scale structures of the Universe could
have been formed in the way they are observed today [6]. Due to the assumed low
velocities and thus low energy, this paradigm is called cold dark matter (CDM).

7



1.2 Dark matter candidates

The proposed models to explain the missing mass in the Universe are just as nu-
merous and versatile as the evidence for DM. The masses of candidates proposed
range from 10−5 eV ≈ 9 × 10−72M⊙ for axions up to 104M⊙ for black holes. The
heaviest candidates are summarized in the class Massive Compact Halo Objects
(MACHOs) including brown dwarfs, rogue planets, neutron stars and black holes.
These objects are, however, composed of baryonic Standard Model (SM) particles
and can thus not explain the abundance of non-baryonic matter arising for example
from CMB measurements. Moreover, there is evidence that the Universe does not
contain enough MACHOs to account for the missing matter [30].

This section will thus focus on the various proposed ideas for particle DM. From
the astrophysical and cosmological evidence described in the section above, some
properties a potential particle DM candidate can be derived. First of all, the CMB
shows that DM must have been present at the very early Universe and there is evi-
dence that it is still abundant today, implying that the DM particle is rather stable.
In addition, CMB measurements suggest that the DM is non-baryonic. While the
DM has to interact gravitationally, other interaction with ordinary matter and itself
must be very weak in order to explain the behaviour of the Bullet Cluster or why it
has not yet been detected directly. The DM particle should thus be neutral under
electric charge, as to not emit and/or absorb electromagnetic radiation. Moreover, it
should also be neutrally charged under color in order to be unaffected by the strong
interaction. As already mentioned above, the structure of the Universe suggests that
the DM particle is non-relativistic.

We start the discussion of particle candidates, with the only SM particle which
has been considered as DM - the neutrino. It seems rather suitable, as it is both
neutral under electric and color charge, as well as non-baryonic. However, the
neutrino is a relativistic particle (hot dark matter) and thus not compatible with
the CDM thesis. Moreover, it has been shown that neutrinos only account for a
small part of the the total energy density in the Universe (order of 1%) [31]. Beyond
the SM, right-handed (sterile) neutrinos are being investigated as a viable CDM
candidate. A comprehensive overview of keV-scale sterile neutrino DM is given in
[32].

Another beyond SM candidate is given by the WIMP, an acronym for Weakly
Interacting Massive Particle. As the name suggests, this proposed particle does only
interact weakly (small couplings) with other particles. The WIMP is per definition

8



non-baryonic and non-relativistic. Many extensions of the SM, like the supersym-
metry (SUSY), predict particles with properties of the WIMP [33]. One of the main
reasons that make the WIMP so popular amidst the other DM particle candidates
is the so called WIMP miracle, which goes as follows. Assuming that DM was cre-
ated thermally, in the early Universe thermal equilibrium prevailed and the number
density of DM particles was approximately equal to the number density of photons
[10]. In equilibrium there is constant creation and annihilation of DM pairs χχ from
SM fermion pairs ff and vice versa, in an inelastic process:

χχ ←→ ff (1.4)

As the Universe expands, less DM particles find a partner to annihilate and the DM
freeze-out occurs (CDM is already non-relativistic at this point). After the freeze-
out, the abundance of DM particles stays almost constant to this day. This relic
abundance can be calculated by following the evolution of the inelastic process (1.4)
with time, using the Boltzmann equation (for a thorough and illustrative description
of the required calculation the reader is referred to [10]). The final expression for the
DM relic density is related to the cross section of the DM annihilation process. The
remarkable “miracle” is, that a weakly interacting DM particle gives a value for the
relic density which is compatible with the results from cosmology. In the context
of the DM relic density, one often refers to the Lee-Weinberg bound. Benjamin Lee
and Steven Weinberg showed in 1977, that in order for a heavy neutral lepton (at
that time heavy neutrinos were a popular DM candidate) to explain the measured
DM relic density, its mass would have to be greater than 2 GeV [34]. The mass of
the classical WIMP is thus usually of order GeV to TeV. However, in more recent
studies it was argued, that sub-GeV WIMPs can still produce the respective relic
density, if new light bosons are introduced [35, 36]. In this thesis, the DM particle
is assumed to be a WIMP (i.e. obeys the WIMP miracle), with mass in the order
of a few GeV.

There is also the possibility of non-thermal production of DM, a good example
for this is the axion. The idea for the axion arose in order to resolve the strong CP
problem, which lies within the fact that Quantum Chromodynamics (QCD) seems
to conserve CP-symmetry. The QCD Lagrangian contains the term

LQCD =
θ

32π
εµνρσGa

µνG
a
ρσ (1.5)

where Ga
ρσ is the gluon tensor and θ a static coupling. Non-perturbative effects

give rise to a neutron-electric dipole moment |dn| ≈ 5 × 10−16θ e cm [8]. However,
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experimental results place a very low upper bound of dn ≲ 10−26 e cm [37] on this
quantity, forcing θ to be less than 10−10 [38]. Peccei and Quinn proposed a new global
symmetry U(1)PQ which is spontaneously broken, to explain the smallness of θ [39].
This symmetry replaces the static CP-violating θ with a dynamical CP-conserving
field. The axion is then the Nambu-Goldstone boson of the broken U(1)PQ symmetry
[40]. At the minimum of the effective potential of the axion field, θ vanishes and
the strong CP problem is thus solved. For a mass of order ma ≈ 1 × 10−5 eV non-
thermal produced axions could account for the whole CDM content in the Universe
[38]. There are experiments which are aiming for direct detection of cosmological
axions, like the Axion Dark Matter Experiment (ADMX) [41], while the CERN
Axion Solar Telescope (CAST) is searching for axions originating from the sun [42].
It is important to note, that while the production mechanism could also be thermal,
the axion would then be too short lived on the time scale of the Universe to explain
DM [8].

1.3 Detection of dark matter

There are three main approaches to the search of particle DM: production at collid-
ers, indirect detection via DM annihilation products and direct detection through
DM scattering off target nuclei and electrons. The DM-SM interaction is schemati-
cally displayed in Figure 1.4 with arrows illustrating possible dark matter detection
channels. It is important to note, that if an experiment of one type is successful in
its search, the result has to be compatible with limits from experiments of the other
types. As the title presumes, this thesis’ focus lies within direct detection of DM.
In the following, the other two detection types will be briefly commented on, before
turning to the search for WIMP-nucleus scattering.

The goal of collider experiments in accelerators is the production of DM particles
in high-energy collision of SM particles. The Large Hadron Collider (LHC) at CERN
with its unmatched collision energy of 13 TeV, is the leading apparatus for such
searches. The production of a DM particle-antiparticle pair in a collision process
at the LHC could be detected as missing transverse momentum. If the DM pair
is produced via an s-channel exchange of a new particle2, this can be studied by a
resonance search [43]. General purpose detectors such as ATLAS, BELLE or CMS,
which are searching for beyond SM events, have so far not found any evidence for

2This new particle would then, as the DM itself, be part of the so called dark sector (hidden
sector) which consists of yet-unknown particles beyond the SM.
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Figure 1.4: Schematic display of how possible channels of the DM-SM interaction are used
in different search approaches. As in a Feynman diagram incoming particles are marked by
arrows in direction of momentum, while for antiparticles the arrow points in the opposite
direction.

DM-pair production, but have published limits on DM specific quantities like mass
and couplings [43–45]. Limits from high energy collision are sensitive to the precise
model of DM-SM interaction which was assumed. One thus has to be careful when
comparing limits from direct detection and collider experiments.

Even after the freeze out, DM pair annihilation might still be present in denser
regions of the Universe. Indirect detection experiments aim at detecting the SM
particles which could be produced in these annihilation processes of DM pairs. There
is a broad range of possible annihilation signatures ranging from charged particles
and antiparticles, over photons in the form of gamma or X-rays, to neutrinos. The
range of experiments is just as broad, with ground-based telescopes (MAGIC, HESS,
etc.) and the Fermi-LAT telescope in orbit, as well as other earthbound detectors
like Super-Kamiokande and IceCube.

The third possibility is given by direct detection experiments, which aim to de-
tect interactions of DM particles in the targets of detectors. Although Earth is
located rather far away from the Milky Way’s center, it is still situated well within
the supposed DM halo. Estimates of the local DM density (1.1) thus suggest that
a sufficient number of DM particles should pass through an earthbound detector.
Nevertheless, the fact that DM particles only couple very weakly to ordinary matter
still leads to very low expected scattering rates which poses a challenge for direct
detection experiments. In addition, the relatively low mass of a particle DM can-
didate results in typical recoil energies of only a few keV being deposited in the
detector. These two challenges require highly sensitive devices for DM direct de-
tection which are ideally operated in a low-background environment. The quantity
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of interest for direct DM searches is the differential event rate (differential recoil
spectrum), which gives the spectral shape of the event distribution depending on
target material and exposure. The according formula has contributions from astro-,
particle and detector physics and goes as follows [10]:

dR

dER

(ER) =
ρχ

mNmχ

∫︂ vesc

vmin(ER)

f(v⃗)v
dσ(v⃗, ER)

dER

(1.6)

The first fraction includes the DM density ρχ (1.1), the mass of the DM particle mχ

and the molecular mass of the target material mN
3. The next part gives the integral

over the WIMP velocity distribution f(v⃗), where the available velocities are bound
from below by vmin, which gives the minimum speed a WIMP has to have in order
to induce a nuclear recoil of energy ER. Due to the fact, that the detectors are earth
bound, the DM particle is bound by the galactic escape velocity, which gives the
upper limit of the integral. The last term is a contribution from particle physics,
namely the differential DM-nucleus scattering cross section dσ

dER
. The procedures on

how to calculate the velocity integral, as well as the differential cross section for the
interaction models used in this thesis are described in the next chapter.

Direct detection experiments have not yet announced any non-controversial ex-
cess which could be interpreted as a DM signal [9]. Experiments thus publish exclu-
sion limits on DM specific parameters, which can be used for comparison between
experiments and as a measure to track the progress made in the field. The most pop-
ular choice of parameters for these limits is the DM-nucleon reference cross section,
which is defined in the next chapter, as a function of the DM mass.

The method used in order to detect DM events and measure the recoil energy
deposited in the detector depends strongly on the target material. In solid state
materials like silicon, germanium, calcium tungstate or sodium iodide which are
operated as cryogenic detectors, a DM recoil induces a phonon signal (i.e. rise in
temperature) which can be measured with a calorimeter. In addition to the phonon
signal, a particle interaction might also result in either an ionization signal (Ge,
Si) or a scintillation signal (CaWO4, NaI). There are also experiments which use
liquid noble gases, like Xenon, as a target material which can also emit scintilla-
tion light. The first generation of direct DM searches usually used only one of the
above methods to detect a signal, for example the CRESST-I [46] or DAMA [47]

3For composite targets the rate is given by adding up the spectra for each element in the target
molecule scaled to its respective fraction within the whole molecule. For example for sodium iodide:(︂

dR
dER

)︂
NaI

= mNa
mI+mNa

(︂
dR
dER

)︂
Na

+ mI
mI+mNa

(︂
dR
dER

)︂
I
.

12



experiments. Up to date experiments combine two signal-channels in order to better
discriminate background events from a possible signal. The CDMS [17] experiment
uses a combination of phonon and ionization signal, while the newer generations of
the CRESST [16] experiment measure both phonon signal and scintillation light.
The COSINUS experiment [19], which is currently under construction, aims to con-
firm (or falsify) the annual modulation in the DM signal which was observed by the
DAMA experiment [47]. The COSINUS experiment combines the target material
of its competitor, sodium iodide, with a dual-channel readout (phonon signal and
scintillation light)[19].

In the above we have seen, that there is plenty of evidence for the existence of a DM
particle and a multitude of different candidates, with the WIMP being one of the
most promising. The connection between the theoretical properties of the WIMP
and the possible detection in a direct detection experiment is given by the differential
recoil spectrum (1.6). The following chapter will focus on determining the particle
physics expressions which are necessary in calculating the expected differential recoil
spectrum for a given experiment. Different types of interaction between DM and
SM will be considered in order to find the respective cross sections. Among them
the centerpiece of this thesis: the interaction via two mediator particles.
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Chapter 2

DM-SM interaction

In the previous chapter the differential recoil spectrum (1.6) was introduced as an
important tool to predict measurable events in direct DM detection experiments.
Since the differential recoil rate describes the interaction between a DM particle and
a nucleus, it will also be referred to as nuclear recoil rate or nuclear recoil spectrum
(NRS). Recoil spectra are described by a complex formula with contributions from
many physical disciplines, some of which have already been discussed above. This
chapter will focus mainly on the particle physics aspect needed in the calculation of
the NRS, namely the DM-nucleus scattering cross section.

In the following the DM particle is assumed to be a WIMP, more precisely
a Dirac fermion which has some small coupling to ordinary matter. Moreover,
since the structure evolution of the universe implies cold DM, all calculations are
performed in the non-relativistic limit. As a further simplification it is assumed,
that the scattering between WIMP and the nucleus is an elastic process

χ+N −→ χ+N. (2.1)

The WIMP-nucleus cross section depends strongly on the interaction strength
between the WIMP and SM quarks 1, and these quantities thus need to be found in
a first step of the calculation. Then the arrangement of quarks in the nucleons and
at last the distribution of the nucleons in the nucleus have to be taken into account.
Calculating the cross section thus consists of three steps which will be described
over the next sections.

1In the most general case the DM interaction with gluons in the nulceons also has to be con-
sidered. However, since we assume that the WIMP is neutral under both electromagnetism and
color, there is no scattering of gluons at tree level [48].

15



The fact that DM interacts with the SM implies that, besides specifying the
new DM particle, one also has to specify the portal (mediator) over which the com-
munication between dark and ordinary matter takes place. This mediator particle
might now either be a SM particle, the Higgs boson is frequently discussed in this
matter (for a timely summary see [49]), which through some additional symmetry
also couples to the dark sector [50]. However, the portal itself might be part of the
dark sector (dark portal) and couple to both DM and the SM. In the first part of
this chapter the WIMP quark interaction is assumed to take place via a single dark
portal. Within the second part of this chapter the main concept of this thesis will
be introduced, namely the SM-DM interaction via two mediator particles.

2.1 Single portal models

The DM-nucleus scattering cross section depends on properties of the DM particle
χ as well as on the type of mediator particle φ′ [51]. The Lagrangian of the theory
contains the interaction terms

L ⊃ χgχφ′Γχχφ
′ +QgQφ′ΓQQφ′ (2.2)

where the last term describes the mediator’s interaction with quarks (quarks are
denoted with a capital Q to avoid confusion with the momentum transfer q). The
choice of Γχ,Q = {1, γ5, γµ, γ5γµ, σµν} is given by type of mediator interaction (scalar,
pseudo-scalar, vector,pseudo-vector, tensor) and gχφ′ and gQφ′ are couplings. Exem-
plary Feynman diagrams at tree level for DM-quark scattering are shown in Fig-
ure 2.1. The mass terms in the Lagrangian amount to 1

2
m2

h′h′2 and 1
2
m2

Z′Z ′µZ ′
µ, in

the case of scalar and vector mediator, respectively [48].
In the context of direct detection of relatively heavy DM particles, an effective

field theory (EFT) description applies. The low velocities of the DM particles hitting
the detector v ≤ vesc, imply energies involved in the scattering process with ordinary
matter of order 10 keV for a GeV mass DM particle. The DM–quark scattering can
thus essentially be described by an NR effective potential with two small expansion
parameters: the DM velocity v/c ≈ 103 and |q⃗|/Λ [52]. Here q ≈ O(10 − 100MeV)

describes the momentum transfer, which is related to the recoil energy ER by q2 =

2mNER ∝ v2. Λ is some large scale parameter such as the DM mass mχ, the
nucleus mass mN or possibly the mass of a heavy mediator particle mφ′ [51]. The
appropriate EFT for DM direct detection experiments then consists of a set of four-
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χ χ
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Z ′

χ χ
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(b)

Figure 2.1: Two possible scenarios for DM-quark scattering at tree level. In a) a scalar
mediator exchange is displayed and in b) a vector mediator exchange.

fermion operators for the interactions of DM with the quarks in the nucleons in the
NR limit. Many DM interaction models which are different on a microscopic scale
lead to the same NR EFT - it is thus a good approach for a model-independent
description of DM scattering in direct detection experiments. An extensive analysis
and an overview of NR EFT operators, together with the respective matched field
theory operators, are given in [51] and [52]. For the purpose of the present study,
which also involves lighter mediators, we have to consider the less general approach
of simplified interaction models.

For this thesis only the subset of operators which are responsible for spin-
independent interaction are considered. This is well reasoned by the fact, that
spin-dependent interactions are suppressed for the low velocities and energies present
at DM direct detection. The subset of nucleus spin-independent NR operators in
the centre of mass frame, as classified in [51], are listed in Table 2.1. The reduced
DM-nucleus mass is denoted by µN = mNmχ

mN+mχ
and the relative DM incoming velocity

by v⃗ = v⃗χ,in − v⃗N,in. One can see in Table 2.1, that the operators which contain a
γ5 matrix (axial scalar, axial vector and axial tensor) depend on the spin of the
DM particle s⃗χ. We will thus further restrict our analysis to interaction via a scalar
and a vector mediator, as the other operators are again suppressed in q⃗ and v⃗. The
effective four-fermion interaction for a heavy mediator φ′ of mass m2

φ′ ≫ q2 is then
of the form

L4f =
1

m2
φ′
gQφ′gχφ′χΓχχQΓQQ. (2.3)

This expression corresponds to integrating out the heavy mediator in the relevant
terms of the full Lagrangian (2.2). In the heavy mediator limit the interaction can
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Q Q

χ χ

Figure 2.2: Schematic Feynman diagram of χ-Q scattering representing contact interaction
in the case of a heavy mediator.

be described as contact-like and is schematically displayed as a Feynman diagram
in Figure 2.2. Since only scalar and vector interactions are considered Γ = {1, γµ}.

In the following analysis also the case of mediator with a mass mφ′ ≤ q2 will
be considered. For such a light mediator, one can not assume anymore that the
mediator propagator is shrunk to a point (as in Figure 2.2). Instead the momentum
transfer has to be considered to first order in the NR expansion in the calculation
of scattering amplitudes in a so called simplified model [53, 54], i.e.

1

m2
φ′

→ 1

m2
φ′ + q2

(2.4)

In the following calculation of scattering amplitudes, the factor corresponding to the
dark mediator propagator will be denoted by G(mφ′ , q2), with

G(mφ′ , q) = 1/m2
φ′ and G(mφ′ , q) = 1/(m2

φ′ + q2) (2.5)

for a heavy and a light φ′ respectively. One should note, that this notion is consistent,
as in the case of mφ′ ≫ q2 the light particle propagator reduces to the heavy particle
propagator.

For the low energy regions probed by direct detection experiment, we can now
use the above stated interactions in order to calculate the scattering amplitudes at
tree level. The calculations in the following chapter are on the same lines as those
in the appendix of [48] using methods and notations as in the classic text book by
Peskin and Schroeder [55].
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Table 2.1: Leading NR operators for spin-independent DM-quark interaction together
with their matched field theory operators. Excerpt of the set of operators in [51].

EFT operator NR operator in
momentum space

NR operator in
position space

scalar × scalar χχQQ 1 δ3(r⃗)

axial scalar × scalar χγ5χQQ is⃗χ · q⃗ −s⃗χ · ∇⃗δ3(r⃗)

vector × vector χγµχQγµQ 1 δ3(r⃗)

axial vector × vector χγ5γµχQγµQ s⃗⊥χ · v⃗ (s⃗χ · v⃗+ i
2µN

s⃗χ · ∇⃗)δ3(r⃗)

2.1.1 From quarks to nucleons

To begin with, the matrix element of the interaction of a nucleus N with a DM
Dirac fermion via a scalar mediator h′ is examined. It is important to note, that the
scalar interactions considered are different from the widely used Yukawa type. The
incoming momenta for DM and the nucleus are denoted by p and k respectively,
the outgoing by p′ and k′. The momentum transfer of the interaction is thus q =

p− p′ = k′ − k. The S-matrix element at tree level is then of the form

Mδ(4)(p+ k − p′ − k′) = (2.6)

G(mh′ , q)
∑︂
Q

gQh′gχh′ ⟨χf (p
′), Nf (k

′)|T
(︃∫︂

d4xχ(x)χ(x)Q(x)Q(x)

)︃
|χi(p), Ni(k)⟩ ,

where T () denotes the time-ordered product and the sum is over all quark flavours.
With the appropriate contractions according to Wick’s theorem this reduces to

Mδ(4)(p+ k − p′ − k′) =G(mh′ , q)
∑︂
Q

(︃
gQh′gχh′ (2.7)

∫︂
d4x⟨χf (p

′)|χ(x)χ(x)|χi(p⟩⟨N f (k
′)|Q(x)Q(x)|N i(k)⟩

)︃
.

We start by calculating the first contraction which consists only of DM Dirac
fermions and thus gives

⟨χf (p
′)|χ(x)χ(x)|χi(p⟩ = us′(p

′)eip
′·xus(p)e

−ip·x, (2.8)

where the u(p) are Dirac spinors and s/s′ denote the spin of the initial/final DM
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particle. Using the NR spinor identities from section A.2 the above simply reads

⟨χf (p
′)|χ(x)χ(x)|χi(p⟩ = 2mχξ

†
s′ξse

i(p′−p)·x. (2.9)

Summing (averaging) over final (initial) spin states for the fermionic DM, the two-
spinors will just contribute as 1

2sχ+1

∑︁
s,s′ |ξ

†
s′ξs|2 = 1 for Dirac fermionic DM of spin

sχ = 1
2
.

Secondly the quarks in the nucleus state are analysed. To start with, the trans-
lation operator is used in order to separate the coordinate dependence (for the sake
of readability contraction brackets are not shown)

⟨Nf (k
′)|Q(x)Q(x)|Ni(k)⟩ = ⟨Nf (k

′)|eiPxQ(0)e−iPxeiPxQ(0)e−iPx|Ni(k)⟩

= ⟨Nf (k
′)|Q(0)Q(0)|Ni(k)⟩ei(k−k′)·x. (2.10)

In the limit of small momentum transfer one can thus work with quarks in nuclear
states at rest, which will be denoted simply by ⟨N |QQ|N⟩. Equation (2.6) can thus
be rewritten as

Mδ(4)(p+ k − p′ − k′) =G(mh′ , q)
∑︂
Q

[︃
gQh′gχh′ (2.11)∫︂

d4x

(︃
2mχe

i(p′−p)·x⟨N |QQ|N⟩ei(k′−k)·x
)︃]︃

and performing the integral over x:

M = 2mχG(mh′ , q)
∑︂
Q

gQh′gχh′⟨N |QQ|N⟩ (2.12)

The calculation of the quark-nucleus term is performed in two steps: first the matrix
elements of the quarks in the nucleon states n (proton or neutron) is evaluated and in
the next section the substructure of the nucleus is accounted for. For the three light
quarks (Q = u, d, s) the matrix element at vanishing momentum transfer ⟨n|QQ|n⟩
is related to the mass of the nucleons and can be obtained from determinations of
the pion-nucleon sigma term [56–59]

⟨n|mQ=u,d,sQQ|n⟩ = mnf
(n)
TQ=u,d,s

. (2.13)

The superscript (n) denotes either a proton or a neutron state. The precise determi-
nation of the pion-nucleon sigma term is still an open issue, see for example [60]. The
parameters fTQ=u,d

are of order 10−2 [59] and are set equal to zero in several analysis.
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This is based on the fact that choosing fTQ=u,d
= 0 is usually less significant, than

the uncertainty in fTQ=s
[33]. The heavy quarks (Q = t, b, c) contribute to the mass

of the nucleon through the triangular [61]. Under the heavy quark expansion the
nucleon mass is given by

mn = ⟨n|muuu|n⟩+ ⟨n|mddd|n⟩+ ⟨n|msss|n⟩+ ⟨n|
−9αs

8π
Ga

µ,νG
a,µν |n⟩, (2.14)

where Ga
µ,ν is the gluon field strength tensor and αs is the quark-gluon coupling

constant. The last term in (2.14) is due to the QCD trace anomaly. Thus each
heavy quark contributes to the matrix element in the following way [33]

⟨n|mQ=b,t,cQQ|n⟩ = 2

27
mn

[︃
1−

∑︂
Q=u,d,s

f
(n)
TQ

]︃
. (2.15)

The quarks in the nucleon state thus contribute to the full matrix element as

fn,p ≡
∑︂
Q

gQh′gχh′⟨n|QQ|n⟩ = (2.16)

∑︂
Q=u,d,s

gQh′gχh′
mn,p

mQ

f
(n,p)
TQ

+
∑︂

Q=b,t,c

gQh′gχh′
mn,p

mQ

2

27
mn,p

[︃
1−

∑︂
Q=u,d,s

f
(n,p)
TQ

]︃

for each neutron with terms f (n)
TQ

and for each proton with the according f
(p)
TQ

s. Note
that the couplings gQh′gχh′ are absorbed in the definitions of fn and fp.
Before evaluating how the full quark-nucleus matrix element arises from the nucleon
matrix elements we will analyze another type of interaction between DM and quarks,
namely that via a vector mediator Z ′. The appropriate EFT Lagrangian is then

L = gQZ′gχZ′G(mZ′ , q)χγµχQγµQ. (2.17)

Overall the calculation is similar to the scalar case. For the DM correlator the
calculation from section A.2 and averaging over initial/summing over final spin
states sχ gives

⟨χf (p
′)|χ(x)γµχ(x)|χi(p⟩ = 2mχδ

0µei(p
′−p)·x, (2.18)

thus only the temporal component of the vector current survives. For the quark-
nucleon matrix element the vector current at zero momentum transfer counts the
valence quarks, so sea quarks and gluons do not need to be considered [33, 62]. Thus
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for a proton ∑︂
Q

gQZ′gχZ′⟨p|QγmuQ|p⟩ = (2guZ′gχZ′ + gdZ′gχZ′)δ0,µ (2.19)

and for a neutron∑︂
Q

gQZ′gχZ′⟨n|QγµQ|n⟩ = (2gdZ′gχZ′ + guZ′gχZ′)δ0,µ. (2.20)

As mentioned earlier, the three interaction types left in Table 2.1 - axial scalar, axial
vector and axial tensor - contain a γ5 matrix which needs to be considered when
calculating the NR-limit of Dirac spinor products similar to (2.8) and (2.18). In all
three cases this calculation leads to an additional dependence of the matrix element
on the momentum transfer q⃗ (for axial scalar and tensor) or the incoming DM
velocity v⃗ (axial vector) [51], as well as the spin of the DM fermion. As an example
the NR limit calculation of us′(p

′)γ5us(p) is performed in appendix section A.2. The
additional q⃗, v⃗ and DM spin dependencies may lead to alternatively shaped recoil
spectra, however, as pointed out before, these interactions are suppressed at direct
detection.

2.1.2 From nucleons to nuclei

In the last step of calculating the nucleus - DM matrix element, one has to evaluate
the matrix elements of the nucleon operators pp and nn in a nuclear state N . For
the spin-independent cases of scalar or vector mediators, no spin structure occurs
in the nucleon operators at zero momentum transfer and thus the operators simply
count the nucleons:

⟨N |QΓQQ|N⟩ = Z⟨p|QΓQQ|p⟩+ (A− Z)⟨n|QΓQQ|n⟩ (2.21)

However, at non-zero momentum transfer q the interaction becomes sensitive to
structure and size of the nucleus which can be described with nuclear form factors
[33]. Generally the form factor associated with the nucleon-number operator can be
described by the Fourier transform of the according nuclei’s density. In DM searches
the Helm form factor [63]

F (q) = 3
j1(qR0)

qR0

exp

(︃
−1

2
q2s2

)︃
(2.22)
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Figure 2.3: The dimensionless squared Helm form factor (2.22) as a function of the recoil
energy ER in keV for various target materials. For lighter elements like oxygen or calcium
the form factor stays almost constant while for heavy nuclei it decreases at higher energies.

is commonly used2, where j1 is the first spherical Bessel function and R0 the nuclear
radius. It was shown by Lewin and Smith [64], that a suitable way to calculate the
nuclear radius is given by

R0 =

√︃
c2 +

7

3
π2a2 − 5s2 (2.23)

with parameters

a := 0.52 fm, s := 0.9 fm, c := 1.23× A1/3 − 0.6 fm. (2.24)

In Figure 2.3 the quadratic Helm form factor is shown as a direct function of the
recoil energy ER for various targets. While the form factor stays close to its value at
zero momentum transfer for light target nuclei, for heavy elements such as tungsten
it falls significantly for higher energies. Note also that the form factor is normalized
to 1 at zero momentum transfer.

So far the calculation of nucleus-quark matrix element was performed in the
relativistic regime, for the application to DM direct detection, however, the NR
limit has to be considered. The relativistic matrix element is related to the NR one
via [51]:

⟨N |QΓQQ|N⟩NR =
⟨N |QΓQQ|N⟩R

2mN

(2.25)

2For heavy nuclei, such as tungsten, which are heavily deformed and not spherical, the Helm
form factor might not be a suitable and other nuclear models might yield better results.
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In the case of a scalar mediator the matrix element thus amounts to

Mh′ = 4mχmNG(mh′ , q)[Zfp + (A− Z)fn]F (q). (2.26)

Introducing the new variables ϑ := arctan(fn/fp), as well as gh′ :=
√︁

f 2
n + f 2

p the
squared matrix element can be rewritten as

|Mh′|2 = 16m2
χm

2
Ng

2
h′G2(mh′ , q)[Z cosϑ+ (A− Z) sinϑ]2F 2(q). (2.27)

Similarly for the interaction via a vector mediator the matrix element is given by

MZ′ = 4mχmNG(mZ′ , q)gχZ′ [Z(2guZ′ + gdZ′) + (A− Z)(2gdZ′ + guZ′)]F (q)

= 4mχmNG(mZ′ , q)gχZ′ [Z(guZ′ − gdZ′) + A(2gdZ′ + guZ′)]F (q). (2.28)

Under the assumption that Z ′ couples universally to all quarks we define gχZ′gdZ′ =

gχZ′guZ′ =: g and the squared matrix element simplifies to

|MZ′|2 = 16m2
χm

2
Ng

2G2(mZ′ , q)(3A)2F 2(q). (2.29)

It is important to note, that under the common assumption fn = fp, implying
ϑ = π/4, the charge number dependence vanishes in (2.26) (cos(π/4) = sin(π/4))
and the matrix elements for the scalar and vector interaction are identical up to
some constant factor which can be absorbed in the definition of g.

2.1.3 Non-relativistic kinematics and cross sections

To obtain the NR cross section we start with the expression for the 2-to-2 spin-
independent differential scattering cross section in the center of mass (COM) frame
from [65]

dσ(χi +Ni → χf +Nf )

d cos θ
=

|p⃗f |
32πs|p⃗i|

|M(χi +Ni → χf +Nf )|2. (2.30)

In this formula θ is the scattering angle, s = E2
COM = (p+k)2 the COM energy, |p⃗i| =

1
2
√
s
λ1/2(s,mNi

,mχi
) and |p⃗f | = 1

2
√
s
λ1/2(s,mNf

,mχf
) are the initial and final three

momenta defined via the Källén function λ(x, y, z) = x2+y2+z2−2(xy+yz+zx). For
the elastic scattering process mNi

= mNf
as well as mχi

= mχf
, and thus |p⃗i| = |p⃗f |.

Moreover, in the NR limit the COM energy is simply given by ECOM ≈ mχ + mN
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and thus (2.30) amounts to

dσ

d cos θ
=

|M|2

32π(mχ +mN)2
. (2.31)

However, for the differential recoil rate the cross section is needed as a function of
the recoil energy and not of the scattering angle. This can be achieved by using
dσ
dER

= dσ
d cos θ

d cos θ
dER

and the scattering angle dependent expression (A.7) derived for
the recoil energy in appendix A.1. The final expression is thus

dσ

dER

=
mN

32πµ2
Nv

2(mχ +mN)2
|M|2 = 1

32πmNv2
|M|2, (2.32)

with the incoming DM velocity v and the reduced DM-nucleus mass µN . In lit-
erature and results published by DM direct detection experiments the differential
cross section is often expressed in terms of a so called zero-momentum transfer nu-
cleon reference cross section σn (sometimes also denoted by σp). This reference cross
section is especially useful if one wants to analyse the DM-SM interaction in an in-
teraction model independent way. Moreover, since it is a nucleon-DM cross section,
it is independent of the target material and thus a quantity comparable over various
experiment. In order to define σn, one starts by defining the quantity

σ0 =

∫︂ Emax=
2µ2Nv2

mN

0

dE ′
R

dσ(E ′
R = 0)

dER

(2.33)

=
2µ2

Nv
2

mN

dσ(E ′
R = 0)

dER

, (2.34)

where dσ(E′
R=0)

dER
is differential nucleus-DM cross section at zero momentum transfer.

Since the cross section at zero momentum transfer is related to the cross section at
non-zero momentum transfer by the form factor F 2(q =

√
2mNER) with F 2(0) = 1

one can write

dσ

dER

= F 2(ER)
dσ(0)

dER

(2.35)

=
mN

2µ2
Nv

2
F 2(ER)σ0

=
mN

2µ2
Nv

2
F 2(ER)

µ2
N

µ2
p

A2σp

=
mN

2µ2
pv

2
F 2(ER)A

2σp,
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where one introduces the nucleon reference cross section via σ0 =
µ2
N

µ2
p
A2σp [10,

48]. In the case of a light mediator particle φ′, the additional momentum transfer
dependence from the propagator has to be included, resulting in [54]

dσ

dER

=
mN

2µ2
nv

2

m4
φ′

(m2
φ′ + q2)2

A2σnF
2(q). (2.36)

For a heavy mediator particle the additional factor
m4

φ′

(m2
φ′+q2)2

reduces to 1.

2.1.4 Recoil spectra

In this section recoil spectra resulting from the cross sections above are calculated
and analysed for different target materials, DM and mediator masses. The analysis
is constricted to the vector mediator case, which is compliant as the cross section for
the scalar mediator case at θ = π/4 only differs from the vector case by some constant
factor in the definition of the dimensionless coupling g. Using (2.29) together with
(2.32) yields the following expression for the differential recoil rate:

dR

dER

=
ρχ

mχmN

∫︂ ∞

vmin

d3vf(v⃗)v
dσ

dER

=
g2Z′ρχ
2πmχ

G2(mZ′ , ER)(3A)
2F 2(ER)

∫︂ ∞

vmin

d3v
f(v⃗)

v⏞ ⏟⏟ ⏞
=:I(vmin)

(2.37)

The only expression left to evaluate is the integral I(vmin) over the DM velocity
distribution. In a first step, one assumes that the DM velocity is truncated at the
finite escape velocity vesc of the Milky Way. The WIMP velocities vgal in the rest
frame of the galaxy then follow a Maxwell-Boltzmann distribution of shape [66]

fgal(vgal) = N
(︃

3

2πw2

)︃3/2

exp

(︃
−
3v2gal

2w2

)︃
(2.38)

with the normalisation

N =

[︃
erf(z)− 2√

π
z exp

(︁
−z2

)︁]︃−1

. (2.39)

In the previous equations z2 = 3v2esc/(2w
2) and w denotes the root mean square

velocity. Assuming that the DM halo of the Milky Way is an isothermal sphere,
w is related to the asymptotic value of the rotational velocity v∞ via w =

√︂
3
2
v∞.
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For an earthbound detector Earth’s velocity v⊕ with respect to the galactic rest
frame has to be taken into account. Adding up Earth’s velocity around the Sun
(not taking into account annual modulation and using the average velocity) and the
Sun’s velocity on its way through the galaxy yields [33]

v⊕ = v∞ × 1.05. (2.40)

Applying a Galilean transformation, the WIMP velocity in the Earth’s rest frame is
thus vgal+v⊕. It is shown in [66], that in the case of a non rotating halo the velocity
integral is described by

I(vmin, vesc, v∞) =
N
η

(︃
3

2πw2

)︃1/2

×⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ(xmin − η, xmin + η)− 2η exp(−z2) xmin < z − η

τ(xmin − η, z)− exp(−z2)(z + η − xmin) z − η ≤ xmin < z + η

0 xmin ≥ z + η,

(2.41)

with the normalizationN from (2.39), z as given above and the following definitions:

τ(x, y) =

√
π

2
(erf(y)− erf(x)) (2.42)

η2 =
3v2⊕
2w2

(2.43)

xmin =
3v2min
2w2

(2.44)

An expression for the minimum WIMP velocity vmin as a function of the recoil energy
is deduced in section A.1. In this work the standard International Astronomical
Union value is used for v∞ = 220 km s−1 [67]. The value of the galactic escape
velocity is subject to large uncertainties and various values are being used in DM
direct detection related work. For this thesis vesc = 544 km s−1 is used, which lies
within the 90% confidence level range of 450−650km s−1 deduced in [68] but is also
a value agreeable with newer results such as [69]. This explicit value of the escape
velocity is nowadays also the most commonly used in the analysis of data from DM
direct detection experiments.

The differential recoil rate is usually given in the so called “differential rate unit
(drn)”, where 1 drn = 1 event/(kg day keV). An alternative description, generally

27



used by experiments with large detector masses, is events per (tonne detector ma-
terial × keV recoil energy × years exposure). Since the cross section was calculated
in natural units (c = ℏ = G = kB = 1) a precise dimensional analysis of the com-
ponents in (2.37) is needed in order to find the appropriate conversion factor. This
analysis was done in detail in the appendix section A.3.

In order to fix G2(mZ′ , ER) in (2.37) one must differentiate between a heavy
mediator (m2

φ′ ≫ q2) with G2(mZ′ , ER) = (m4
Z′)−1 and a light mediator (m2

φ′ ≤ q2)
with G2(mZ′ , ER) = (m2

Z′ + 2mNER)
−2. In the following the coupling g will be

denoted by gh for heavy mediators and by gl for light mediators. The importance of
this differentiation becomes apparent when plotting and comparing recoil spectra for
heavy and light mediator cases. In Figure 2.4 the nuclear recoil rates on a sodium
iodide (NaI) target are shown for both interaction via a heavy vector mediator
mZ′ = 100MeV (left panel) and interaction via a light vector mediator mZ′ =

10MeV (right panel). In both cases the mass of the DM particle is 10 GeV and a
coupling gh = gl = 1 × 10−12 is used. The values for the couplings are not chosen
arbitrarily, but rather estimated from current DM direct detection limits for the
reference nucleon cross section (2.36). Full particulars of this estimation process
are given in section A.4. Together with the spectrum for NaI the rates for sodium
(ANa ≈ 23) and iodine (AI ≈ 127) only targets are shown as dashed lines scaled
by their respective mass fraction in the composite target. The most pronounced
difference between the two spectra is the fact, that the rate for the heavy mediator
is four orders lower than the rate for the light mediator. This behaviour is explained
by the inverse proportionality of the differential cross section to the mediator mass
to the fourth for both light and heavy mediator case. Moreover, for both heavy
and light mediator case the differential rate for iodine is falling off faster than the
rate for sodium. This is due to the form factor which is suppressing the rate for
heavy target nuclei at higher recoil energies (compare also with Figure 2.3). In both
cases the composite NaI target spectrum is thus dominated by the heavier iodine
component within the first 10 keV of recoil energy, while for higher recoil energies
the spectrum is governed by the light sodium component.

In addition to the features described above and the overall exponentially falling
behaviour, there are a few more differences between the heavy and light mediator
case. To start with, the spectrum for interaction via a light mediator is overall more
steeply falling than the heavy mediator case. There is a notable difference in the
slope of the spectra from interactions via a light and a heavy mediator, especially
within the first few keV of recoil energy. The impact of the mediator mass on the

28



Figure 2.4: The nuclear recoil rate for interaction via a heavy (left panel) and light (right
panel) vector mediator on a sodium iodide target. The spectra for sodium and iodine
scaled to their respective fraction in NaI are shown as dashed lines. The heavy mediator
mass is set to 100 MeV, the light mediator mass to 10 MeV and the DM particle has a
mass of 10 GeV. No detector threshold or resolution was set.

spectrum is thus stronger for the part dominated by iodine. This is expected due
to the additional dependence on the momentum transfer q =

√
2mNER in the light

mediator case. However, also at higher energies in the sodium dominated part, the
spectrum for the heavy mediator is relatively flat (in the log-log scale) up to almost
30 keV, while for the light mediator the slope is much steeper. Another characteristic
by which the two spectra can be distinguished is that in the heavy mediator case the
transition from iodine to sodium is clearly marked by a kink in the spectrum. For
the light mediator case this characteristic is not as pronounced. The above described
features also occur in the spectra of other composite and pure targets. However, for
some composite targets the transition from one material to the other might not be
marked by such a distinctive feature in the spectrum as just seen for sodium iodide.
For example for sapphire (Al3O2) targets as used as one out of many targets by
the CRESST [70] group, there will not be a pronounce transition feature due to the
similar molecular masses of aluminium (AAl ≈ 27) and oxygen (AO ≈ 16).

Besides the dependence on the mediator mass, the shape of the recoil spectra is
also governed by the mass of the DM particle. In Figure 2.5 the nuclear recoil rate
on a NaI target is shown for various DM masses for both interaction via a heavy
(magenta line) and light mediator (green line). The coupling for the heavy mediator
is set to 100 times the coupling of the light mediator to achieve comparable rates
at low recoil energies. The most apparent feature is that for smaller DM particle
masses the differential recoil spectrum goes to zero at lower recoil energies. This
behaviour arises from the DM mass dependence in the DM velocity distribution
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Figure 2.5: The NRS for interaction via a heavy (magenta line) and light (green line)
vector mediator on a sodium iodide target for various DM masses. The light mediator
mass is set to 10 MeV, the mass of the heavy mediator to 100 MeV. No detector threshold
or resolution was set.

which goes to zero faster for smaller masses. In the bottom right panel, the kink
in the spectrum for the heavy mediator case is not only affected by the change in
target, but also by the dip appearing in the form factor for iodine at around 110 keV
(compare with Figure 2.3). For DM masses even higher than 50 GeV, the impact of
the shape of the form factor at higher recoil energies has to be taken more and more
into account. Since the recoil rate is proportional to the inverse of the DM mass,
the overall rate is higher for lower values of mχ. Another important thing to note is,
that for light DM particles (upper left panel) a mediator of mass 10 MeV behaves
like a heavy mediator. It is thus important to also take the ratio of DM mass and
mediator mass into account when speaking of a light or heavy mediator case. On
the contrary, for a heavy DM mass, as in the lower right panel of Figure 2.5, the
light mediator case deviates greatly from the heavy mediator case.

In the above we have seen that the type and mass of the mediator do have
significant impact on the shape and magnitude of the differential recoil spectrum.
For low recoil energies models with light mediator particles can lead to a much higher
rate than the according heavy mediator model for the same coupling. Especially for
experiments which are sensitive to low recoil energies, it is thus important to also
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consider DM-SM scattering models with contact interaction. In the next section we
will now discuss models where both light and heavy particles mediate the DM-quark
interaction.

2.2 Bi-portal models

In this section a new simplified model for DM-SM scattering is introduced in which
the interaction takes place via two t-channel mediators. Two mediator (bi-portal)
models have been previously studied, for example for two Higgs-like scalar mediators
in [13] and for a scalar together with a vector mediator in [11]. This work treats
the combination of scalar and a vector mediator as well as interactions mediated by
two vector mediators. It will be shown, however, that for the full analysis it suffices
to restrict oneself to the two vector mediator DM model. A model with two spin-1
mediators has also previously been analysed in the recent work by Liu et al. [12],
though only in the context of DM annihilation through the s-channel. Investigating
a bi-portal model with at least one spin-1 mediator in the context of DM direct
detection is thus a somewhat new approach. Since all following calculations are
done in the foreground of direct detection experiments, it is again valid to use an
EFT approach for heavy mediators and a simplified model for a light mediator
with the appropriate low-energy degrees of freedom. In fact many of the concepts
established above for the single portal can be reused.

Another feature of the bi-portal model in this work is that one mediator mass is
chosen to lie in the contact interaction regime m2

φ′ ≫ q2, while the other mediator
has a significantly lower mass m2

φ′ ≤ q2 resulting in long range interaction. Different
masses for the two mediators have also been assumed in [11–13], however, never
considering such a pronounced mass hierarchy.

2.2.1 Vector-Vector

We start with analyzing a model where the DM particle couples to the SM quarks
via two dark sector vector mediators (vv-model): Z ′

h with mass mZ′
h

and a lighter
Z ′

l with mass mZ′
l
. With the interaction taking place via a t-channel exchange

the according Feynman diagram is displayed in Figure 2.6. Under the assumption
that these two mediators do not couple to each other, the relevant terms in the
Lagrangian are:

L ⊃ gQl Z
′
lQ̄γµQ+ gχl Z

′
l χ̄γ

µχ+ gQh Z
′
hQ̄γµQ+ gχh Z

′
hχ̄γ

µχ (2.45)
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Figure 2.6: Feynman diagram at tree level for the DM-quark scattering in the t-channel
via two vector mediators.

Considering this Lagrangian, also the matrix element for the interaction is
simply given by the sum of the matrix element for the heavy mediator MZ′

h
and

the matrix element for the light mediatorMZ′
l
. Those matrix elements at tree level

are given by (2.28) with the respective choice of the mediator propagator G(mZ′ , q).
Making the assumption that quarks couple universally to both the light and the
heavy Z ′, one can redefine overall coupling constants g̃h := guh = gdh and gl :=

gul = gdl respectively. The cross section for the vv-model is then

Mvv = 4mχmN

[︃
g̃h
m2

Z′
h

3A+
gl

m2
Z′
l
+ q2

3A

]︃
F (q). (2.46)

An interesting feature of the bi-portal model becomes apparent when squaring the
matrix element, since this leads to an interference between the contributions from
the heavy and from the light mediator:

|Mvv|2 = 16m2
χm

2
N(3A)

2

[︃
g̃h

2

m4
Z′
h

+ 2
g̃hgl

m2
Z′
h
(m2

Z′
l
+ q2)

+
g2l

(m2
Z′
l
+ q2)2

]︃
F 2(q) (2.47)

In the above squared matrix elements one can see, that the mass of the heavy
mediator and g̃h only every appear together. It is thus sensible to define an effective
coupling gh := g̃h

m2
Z′
h

, as we are only sensitive to the ratio of coupling and mass.

This effective coupling is then of inverse mass dimension squared (usually given
in MeV−2). Depending on the signs of the overall coupling constants gh and gl,
one has to differentiate between a constructive interference case for ghgl > 0 and a
destructive interference case for ghgl < 0.

Having calculated the squared matrix element for the bi-portal model with two
vector mediators, the framework established in sections 2.1.3 and 2.1.4 can now
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Figure 2.7: The nuclear recoil rate for interaction via a heavy (blue line) and light (green
line) vector mediator, as well as for the bi-portal model (magenta line) on a sodium iodide
target. The constructive case is shown as a solid magenta line, the destructive case a
dashed magenta line. The light mediator mass is set to 10 MeV and the DM particle has
a mass of 10 GeV. No detector threshold or resolution was set.

be applied to calculate the cross section and subsequently NRS for this model.
In Figure 2.7 the nuclear spectra of a bi-portal mediator model, both in the case
of destructive and constructive interference, are shown together with the spectra
for a single heavy and a single light mediator. The effective coupling gh is set to
1 × 10−14MeV−2 and gl = ±4 × 10−12 (this specific choice of coupling will become
clearer later on). The mass of the DM particle is mχ = 10GeV and the mass of
the light mediator is again mZ′

l
= 10MeV. This composition of masses for the DM

particle and Z ′
l , as well as the specific value for the effective coupling of the heavy

mediator will be used many times throughout this work and will thus also be referred
to as the benchmark model. Already on first glance it is clear that the bi-portal
model (in magenta) is distinguishable from the single mediator models, both for the
constructive and the destructive interference case. As expected, for the constructive
case, the bi-portal model predicts a higher rate than both single portal models. The
overall shape of the spectrum is a mixture of the shape of the two single mediator
cases, but not in a strictly additive way due to the interference term. The kink
characteristic for sodium iodide, where the target dependence shifts from Na to I is
visible in the spectrum of the constructive bi-portal model, but not as pronounced
as for the single heavy mediator.

Even more distinguishable spectra are achieved for the destructive interference
case. Here, close approaches or crossings of the two single portal spectra result in
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Figure 2.8: The nuclear recoil rate for the bi-portal model on calcium tungstate (magenta
lines), sapphire (green lines) and germanium (blue lines) targets. Constructive cases are
shown as solid, destructive as dashed lines. The light mediator mass to 10 MeV and the
DM particle has a mass of 10 GeV. No detector threshold or resolution was set.

prominent features like dips and kinks. For the chosen combination of gl and gh these
interference characteristics are clearly visible (in the dashed magenta spectrum) at
around 2 and 10 keV. There is thus one destructive characteristic in the iodine
dominated and one in the sodium dominate part of the spectrum. As said above,
for these destructive interference effects to appear, the rate for single heavy and
single light mediator need to be close together and/or overlap. Therefore, striking
destructive features will only appear for a narrow range of combinations of gl and
gh.

The interference effects seen for NaI are also present for other composite and
pure target materials. In Figure 2.8 nuclear recoil spectra for the bi-portal model
are shown for calcium tungstate (magenta lines), sapphire (green lines) and germa-
nium (blue lines) targets. For all three targets the constructive case (solid lines)
shows spectra which resemble the expected mixture between single heavy and light
mediator case. For calcium tungstate there is a slight kink in the constructive spec-
trum, when the target dependence changes from tungsten (AW ≈ 184) to calcium
(ACa ≈ 40). The transition from calcium to oxygen which takes place around 23 keV
is not visible due to the similar respective atomic masses of Ca and O4 in calcium
tungstate. This is also the reason why there is not visible kink in the constructive
spectrum of Al2O3. In the destructive case interference effects are visible for all
three targets. For CaWO4 there is one interference dip in the tungsten dominated
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Figure 2.9: Feynman diagram at tree level for the DM-quark scattering in the t-channel
via one heavy scalar and one light vector mediator.

regime, one in the calcium dominated one and a very indistinct feature at around
24 keV (oxygen dominated regime). For sapphire the spectrum shows one clear kink
around 6 keV and another faint feature at around 27 keV. Interestingly there is also
a prominent interference dip visible for the pure germanium target. A composite
target and a change in target dependence is thus not required to achieve destructive
interference effects in the spectrum. Notwithstanding that interference effects are
visible for all shown target materials, the spectra still differ between the individual
materials. Especially in the destructive case, the differences in shape and position
of the interference characteristics can lead to discrepancies in the measured rates of
experiments with different materials. These differences are more pronounced for the
bi-portal model, than if a single mediator interaction is assumed. Since inconsisten-
cies between the results of different experiments with varying targets are observed
[9], this is a promising quality of the bi-portal model.

2.2.2 Scalar-Vector

Another possibility for a bi-portal model is that the DM particle couples to the SM
quarks via one light vector mediator Z ′

l with mass mZ′
l
and one heavy scalar mediator

h′
h with mass mh′

h
(sv-model). With the interaction taking place via a t-channel

exchange the according Feynman diagram is displayed in Figure 2.9. Assuming that
the dark scalar does not give mass to Z ′ 3 the respective interaction terms in the
Lagrangian are:

L ⊃ gQl Z
′
lQ̄γµQ+ gχl Z

′
l χ̄γ

µχ+ gQh h
′
hQ̄γµQ+ gχh h

′
hχ̄γ

µχ (2.48)
3In [11] the dark Higgs breaks the additional U(1)′ symmetry giving mass to the Z ′ gauge

boson.
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As in the two vector mediator case the matrix element is given by the sum of
(2.26) and (2.28) with the appropriate mediator propagators:

Msv = 4mχmNF (q)×
{︃

1

m2
h′
h

[Zfph′
h
+ (A− Z)fnh′

h
]

+
1

m2
Z′
l
+ q2

[Z(gul − gdl) + A(2gdl + gul)]

}︃
(2.49)

It is important to note, that the couplings gχh and gQh are absorbed in the definition
of fph′

h
, fnh′

h
. Assuming again, that Z ′

l couples universally to all quarks, one defines
again a dimensionless coupling constant gl := gul = gdl. For the scalar mediator a
new variable ϑ := arctan fnh′

h
/fph′

h
is introduced, as in the single scalar case, and

g2h := f 2
nh′

h
+ f 2

ph′
h
. The overall squared matrix element thus reads

|Msv|2 = 16m2
χm

2
NF

2(q)×

{︄
g2h
m4

h′
h

[Z cosϑ+ (A− Z) sinϑ]2

+ 2
ghgl

m2
h′
h
(q2 +m2

Z′)
3A[Z cosϑ+ (A− Z) sinϑ]

+
g2l

(q2 +m2
Z′
l
)2
(3A)2

}︄
, (2.50)

containing again an interference term which can result in either constructive or
destructive behaviour depending on the signs of the couplings gh and gl. In order
to derive the differential recoil rate from the above matrix element one can again
follow the steps in sections 2.1.3 and 2.1.4 In the sv-model one has the additional
free parameter ϑ, the value of which has an impact on whether the differential rate
depends on the atomic number Z. In Figure 2.10 the nuclear recoil rate is shown for
the benchmark model masses (mχ = 10GeV, mZ′

l
= 10MeV) and a fixed positive

light vector mediator coupling gl = 4 × 10−12 for three different values of ϑ. For
each ϑ both constructive and destructive spectra are shown for two different values
of |gh|, one leading to visible interference effects in all panels and one representing
a single light mediator limiting case. In the top left panel the rate for ϑ = 0 is
shown, corresponding to fnh′

h
= 0 or fph′

h
≫ fnh′

h
. In this case the matrix element

only depends on Z but not on the mass number A. The rates for both values of
gh are comparable to the bottom left panel in which ϑ = 1/2 π, i.e. fph′

h
= 0 or

fnh′
h
≫ fph′

h
. For ϑ = 1/2 π the matrix element depends on a factor of (A− Z) and

for the same value of gl the difference between top left and bottom right panel is
thus only governed by a factor of Z/(A− Z).
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Figure 2.10: Nuclear recoil rate for interaction via a heavy scalar mediator and a light
vector mediator. Different panels show the rates for different values of ϑ = fn/fp as
defined via equation (2.50). The DM mass is set to 10 GeV, the light mediator mass to
10 MeV and for the heavy mediator an effective coupling is used. No detector threshold
or resolution was set.

In the widely-used case where fnh′
h
= fph′

h
, and thus θ = π/4, the Z dependence

vanishes (cos(π/4) = sin(π/4)) and the matrix elements for the scalar-vector and
vector-vector case are identical up to some factors which can be absorbed in the
definition of gh. Indeed, the nuclear recoil rate for a heavy coupling of gh = ±4 ×
10−14 MeV−2 in the top right panel of Figure 2.10 is comparable to a rate for gh =

±1 × 10−14 MeV−2 in the vv-model with all other parameters equal (compare with
Figure 2.7). One can thus deduce that the conversion factor between vv- and sv-
model (ϑ = 1/4π) is around 4, more precisely

gh,sv = 3
√
2× gh,vv, (2.51)

if all other free parameters of the model are set to equal values. This relation is also
illustrated in Figure 2.11.

-
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Figure 2.11: The nuclear recoil rate for vector-vector (magenta) and scalar-vector (green)
destructive bi-portal models on sodium iodide. The light mediator mass is set to 10 MeV
and the DM particle has a mass of 10 GeV. Only a part of the full available recoil energy
range is shown and no detector threshold or resolution was set.

In this chapter the particle physics foundation for the bi-portal model has been
laid and a first insight on its effect on the differential event rate has been given.
Having shown that up to scaling factors in gh the vector-vector and scalar-vector
model (ϑ = 1/4π) yield identical spectra, we can limit ourselves to the vector-
vector interaction in the further analysis of the model. In the next chapter both the
constructive as well as the destructive interference case are analysed in more detail
with respect to the four free parameters of the model: the DM mass mχ, the light
mediator mass mZ′

l
, the coupling of the light mediator gl and the effective coupling

for the heavy mediator gh.
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Chapter 3

Analysis of the bi-portal model

In the following the the bi-portal model, as derived in the previous chapter, and
especially the according (differential) recoil rates are further analysed. Abstracting
away from uncertainties in cosmological input parameters (i.e. DM density, Earth’s
velocity, etc.), the bi-portal model has four free parameters: the DM mass mχ,
the light mediator mass mZ′

l
, the overall dimensionless coupling constant for the

light vector mediator gl and the effective coupling gh for the heavy vector mediator.
The following analysis will first focus on the constructive interference case of the
bi-portal model and then on the destructive interference case. In the subsequent
sections the number of total events which the bi-portal model predicts is analysed,
also with regard to the energy threshold of an experiment. Finally another detector
specific quantity, the energy resolution, is introduced and its impact on the predicted
differential rate is analysed. Within this whole chapter a sodium iodide target is
used in the calculation of differential recoil spectra and total event rates. NaI is a
most suitable target to analyse the bi-portal model, due to the large difference in the
mass numbers of sodium and iodine. This difference can lead to strong interference
characteristics at recoil energies where a change in target dependence takes place.

3.1 Constructive interference case

To begin with, the constructive interference case, hence the case where gl × gh is
positive, is analysed. As seen in Figure 2.7 the effects of the interference term
are more subtle for the constructive compared to the destructive case, but still
considerable. To analyse the constructive bi-portal model, the behaviour of the
nuclear recoil spectra under variation of the four free parameters is studied.
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Figure 3.1: The nuclear recoil rate for a bi-portal constructive model on sodium iodide.
The DM mass mχ = 10GeV, the light mediator mass mZ′

l
= 10MeV and the effective

coupling of the heavy mediator are fixed and spectra are shown for various values of gl.
No detector threshold or resolution was set.

In a first step three out of the four free parameters are fixed according to the
previously mentioned benchmark model: the mass of the Dirac DM particle to 10
GeV, the mass of the light mediator to 10 MeV and the effective coupling of the
heavy mediator to gh = 1 × 10−14 MeV−2 (this corresponds e.q. to a dimensionless
coupling of 1× 10−10 and a mediator mass of 100 MeV). In Figure 3.1 the spectrum
is then shown for various values of gl ranging from 1× 10−12 to 2× 10−11. For the
lowest value of gl in this range (magenta line in Figure 3.1) the interaction via the
heavy mediator is dominating the recoil process. The spectrum thus resembles one
resulting from a single heavy vector mediator exchange. The preciously mentioned
characteristics for this kind of interaction include the overall flatter slope and the
more pronounced kink where the target dependence changes from iodine to sodium
at around 10 keV recoil energy. On the contrary, for higher values of gl the light
mediator dominates the interaction and the spectrum thus mirrors the one for a
single light mediator exchange (neon green line). Thus, only within a limited span
of values for gl, the bi-portal mediator model gives differential event rates with
distinct shapes from the single portal cases. Using values for the light mediator
coupling lower or higher than the ones shown in Figure 3.1 will result in spectra
representing one of these two single mediator limiting cases of the bi-portal model.
Alternatively, one could also fix the light mediator coupling and study spectra for
various values of gh. Choosing the couplings accordingly will result in plots similar
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Figure 3.2: The nuclear recoil rate for a bi-portal constructive model on a sodium iodide
target. The light mediator mass mZ′

l
= 10MeV and the effective coupling of the heavy

mediator are fixed. In the four panels spectra are shown for four different DM masses and
various values of gl. No detector threshold or resolution was set.

to Figure 3.1 and the variation of the couplings is thus not discussed further. One
should however make a note of the specific set of light mediator couplings used in
Figure 3.1 and the according shapes of the differential recoil spectra, as this set will
be reused often within the rest of this chapter.

In a next step, the spectra for four different DM masses mχ = 1, 5, 10, 50GeV are
studied. All other free parameters are chosen according to the benchmark model
and the set of values for gl given above is used. As seen in Figure 2.5 for the
single mediator interaction, Figure 3.2 shows that lower DM masses lead to a lower
maximum recoil energy at which the nuclear recoil spectra break off. The upper left
panel of Figure 3.2 shows spectra for the lightest choice of DM. As seen before in the
single mediator case, for a DM particle of mass mχ = 1GeV a light mediator of mass
10 MeV behaves like a heavy mediator. This is apparent from the pronounced kink
in the spectrum at around 0.1 keV. Independent of the value of gl within the given
range all spectra thus represent the limiting case of a single heavy mediator scaled
accordingly to the value of the coupling. Increasing the mass of the DM particle
compared to the lightest case results in spectra of varied shape for each coupling
(upper right and lower left panel). Limiting cases are visible for higher and lower
values in the set of gl values, as already discussed for Figure 3.1 above. In the lower
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right panel the DM mass is set to 50 GeV. For the heavy DM particle the individual
spectra lie closer together, due to inverse DM mass dependence somewhat weakening
the impact of gl on the scaling of the spectra. However, zooming in, one can see
that there is still a variation in the shape of the spectra consistent with the limit
cases discussed above.

There is one free parameter whose impact on the nuclear recoil rate is left to
analyse, the mass of the light mediator. Analysis of various light mediator masses
showed, that values for mZ′

l
lower than 10 MeV have only very little to no impact

on the shape of the recoil spectrum. Especially for mediator masses in the order of
0.1 MeV or lighter, the momentum transfer in the denominator of the cross section
becomes the governing quantity in the spectrum and the mediator mass dependence
thus vanishes. However, if the mass of the light mediator is chosen too high in
comparison to the DM mass, the interaction will behave like one via two heavy
mediators and interference effects become evanescent.

3.2 Destructive interference case

While the constructive interference case already leads to novel features in the spec-
tra, the destructive case is even more interesting to analyse. The interference effects
(dips and kinks) seen in Figure 2.7 and Figure 2.8 cannot be achieved by a single
mediator model and are thus unique to the bi-portal model. To achieve a thorough
examination of the model, the impact of variation of the four free parameters on
the nuclear recoil spectrum is examined, as it was done in the previous section for
the constructive case. The previously established benchmark model for masses and
effective coupling is also used for the destructive case, as well as the set of values
for the light mediator coupling, however, now with a preceding minus sign.

For various values of the light coupling, ranging from −1× 10−12 to −2× 10−11,
spectra are shown in Figure 3.3. For the lowest absolute value of |gl| shown (magenta
line) the interaction via the heavy mediator is dominating the recoil process. As
in the constructive case, the spectrum thus resembles one of an interaction taking
place via single heavy mediator. However, at very low recoil energies, the spec-
trum behaves differently from the single mediator case: a dip is created, due to
the intersection of the single heavy and single light mediator rate at a recoil energy
close to zero. This assumption is reinforced by the behaviour of the spectrum for
gl = −2 × 10−12 where one sees an interference dip close to ER = 0. Increasing
the absolute value of |gl|, and thus the influence of the light mediator within the
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Figure 3.3: The nuclear recoil rate for a bi-portal destructive model on sodium iodide.
The DM mass mχ = 10GeV, the light mediator mass mZ′

l
= 10MeV and the effective

coupling of the heavy mediator are fixed and spectra are shown for various values of gl.
No detector threshold or resolution was set.

interaction, leads to a displacement of this dip towards higher recoil energies. Ad-
ditionally, for higher |gl| the dip becomes shallower until it disappears in the light
mediator limit at gl = −2 × 10−11. It is important to note that this first dip, as
far as it exists, is always positioned in the iodine dominated region of the spec-
trum. For |gl| > 3 × 10−12 a second destructive features starts to appear close to
the recoil energy where the target dependence changes from iodine to sodium. In-
creasing |gl| further, leads again to a shift in the position of the dip towards higher
recoil energies. In opposition to the dip in the iodine dominated area, the dip in
the sodium dominated area gains in depth with decreasing gl. For gl = −2× 10−11

the dip has merged with the vertical falling behavior of the spectrum at ER ≈ 30

keV. The disappearance of the dip is consistent with the expected behaviour of the
single light mediator limiting case (neon green line). Hence, as in the constructive
case, the bi-portal mediator model gives differential event rates with distinct inter-
ference effects only for a narrow range of values for gl for a fixed heavy mediator
coupling. Summing up, nuclear recoil spectra for the destructive bi-portal model
on a NaI target can show up to two strong interference features for an appropriate
choice of couplings. One should note here, that the appearance of one or several
interference features is not specific to the sodium iodide target. In Figure 2.8 a
single destructive dip was visible for the single element target Germanium and the
destructive bi-portal spectrum for the other composite target, CaWO4, also shows
multiple interference features.
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Figure 3.4: The nuclear recoil rate for a bi-portal destructive model on a sodium iodide
target. The light mediator mass mZ′

l
= 10MeV and the effective coupling of the heavy

mediator are fixed. In the four panels spectra are shown for four different DM masses and
various values of gl. No detector threshold or resolution was set.

In a next step the impact of the DM mass on the shape of the spectrum is
investigated. The four panels of Figure 3.4 show spectra on sodium iodide in the
destructive bi-portal model for the standard set of gl values and DM masses mχ =

1, 5, 10, 50 GeV. The mass of the light mediator and the coupling of the heavy
mediator are fixed according to the benchmark model. The most apparent difference
between the four panels is the recoil energy at which the spectrum goes to zero,
which is decreasing with lighter DM particles. This behaviour was already observed
in the single mediator and the constructive bi-portal case and is caused by the mχ-
dependence of the DM velocity distribution. In addition, the differential event rate
is inversely proportional to the DM mass and the rate is thus overall lower for higher
DM masses. In the upper left panel of Figure 3.4 the spectra are shown for a light
DM particle of mass mχ = 1 GeV. For a broad range of couplings gl = −2×10−11 to
gl = −2× 10−12 the spectra all resemble the nuclear recoil spectra of an interaction
governed by a single heavy mediator. This behaviour has been previously discussed
for the constructive interference case and can be reasoned by the ratio of DM to
light mediator mass. However, in the case of gl = −1× 10−12 and mχ = 1 GeV the
differential event rate is overall lower and differs in shape from the other rates in the
upper left panel of Figure 3.4. In order to understand this, one has to go back to
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the upper left panel of Figure 2.5 in chapter 2. In this plot the spectra for a single
light mediator with mZ′

l
= 10 MeV, gl = 1×10−12 and a single heavy mediator with

mZ′
h
= 100 MeV, gh = 1×10−10 - hence an effective coupling of gh = 1×10−14 MeV−2

- are shown for 1 GeV DM. The two spectra lie very close together, in fact at very
low recoil energies where q2 ≈ 0 they are almost identical. Due to this similarity
in the two rates, the negative interference term in the cross section formula has
a strong impact on the whole spectrum, in particular it reduces the overall rate
significantly. In addition, local effects appear where the impact of the interference
term is strongest, namely close to q2 = 0 and at the recoil energy where the target
dependence changes from iodine to sodium. These arguments can fully explain the
behaviour of the magenta line in the top left panel, as the change for iodine to sodium
takes place at around 0.1 keV for a 1 GeV DM particle. For a slightly higher DM
mass of 5 GeV in the upper right panel of Figure 3.4, one can again turn to Figure 2.5
in order to understand the behaviour of the rate for gl = −1× 10−12. In the upper
right panel of Figure 2.5 the rates for single light and heavy mediator interaction
are again quite similar. Nonetheless, strong interference effects only appear at recoil
energies close to zero, where the rates lie closely together. The magenta line in the
top right panel of Figure 3.4 thus only shows peculiar behaviour close to ER = 0.
Increasing the absolute value of gl is identical to shifting the light mediator rate
in Figure 2.5 upwards along the y-axis. For the couplings gl = −2 × 10−12 and
gl = −4 × 10−12 this shift results in overlaps of the two single mediator spectra
and thus striking interference effects in the destructive bi-portal spectrum. For even
higher values of |gl|, however, the light mediator rate outgrows the heavy mediator
rate and thus no destructive features are generated. Consistent with the behaviour
in the constructive interference case, for |gl| > 2 × 10−11 the spectrum starts to
adopt the shape of the single light mediator limiting case. The bottom left panel
of Figure 3.4 shows again the benchmark model, whose features have already been
discussed at length above. For a DM particle of mass 50 GeV the rates for various
values of gl are show in the bottom right panel. For the heavier DM the rates lie
closer together for the same range of couplings as in the other panels, a feature which
was also observed in the constructive case. Interestingly the order of the spectra
is inverted, i.e. for the highest absolute value of gl the rate is the lowest (green
line). To understand this, it is again helpful to take a look at the according panel
in Figure 2.5. Even tough the two single mediator rates have the same value at
recoil energies close to zero, they soon start to diverge widely and the impact of the
destructive interference term is thus very low. Increasing the absolute value of |gl|
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Figure 3.5: The nuclear recoil rate for a bi-portal destructive model on a sodium iodide
target. The DM mass mχ and gh are fixed. In the four panels spectra are shown for four
different light mediator masses mZ′

l
= 20, 10, 1, 0.1 MeV and a range of values for the

light mediator coupling gl. No detector threshold or resolution was set.

corresponds to moving the light mediator rate up along the y-axis and closer towards
the heavy mediator rate. This leads to an increasing destructive interference term
and hence an overall lower nuclear recoil rate in the bi-portal model. For high DM
masses distinct destructive features as in the benchmark model start to appear for
values of |gl| > 1× 10−11 for the shown choice of gh. The single light mediator limit
case only comes into effect for couplings |gl| > 1× 10−10.

In a last step of the analysis the impact of the mediator mass on the destructive
two mediator model is being investigated. Nuclear recoil spectra are shown for four
different light mediator masses in Figure 3.5. The, by now familiar, set of light
mediator couplings is used and all other free parameters are fixed according to the
benchmark model. Before analysing each panel individually one should remember,
that the mass of the light mediator enters the bi-portal squared matrix element (2.47)
proportional to 1/(m2

Z′
l
+ q2)2 in the light mediator contribution and proportional

to 1/(m2
Z′
l
+ q2) in the interference term. This inverse proportionality leads to

overall higher recoil rates for smaller mediator masses. In the upper left panel
of Figure 3.5 the mediator mass is set to 20 MeV, which is double the mass of the
light mediator in the benchmark model. One should note that, with a mass of 20
MeV the mediator is placed in a regime in which the transition from light to heavy
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mediator classification takes place. However, (20MeV)2 ≤ 2mNER holds true for
recoil energies over approximately 2 keV in the iodine dominated part and 10 keV in
the sodium dominated part. Including the momentum transfer dependence is thus
valid also in the case of a 20 MeV mediator. Nevertheless, the higher mediator mass
compared to the benchmark model, reduces the light mediator contribution to the bi-
portal matrix element. In other words 1/((20MeV)2 + 2mNER) < 1/((10MeV)2 +

2mNER). Thus for higher mass of the light mediator, the Z ′
l-contribution to the

bi-portal model is reduced. Especially in combination with low values of |gl| this
can lead to interactions dominated by the heavy mediator. This behaviour can be
observed in upper left panel of Figure 3.5 for couplings up to gl = −4 × 10−12.
For higher |gl| the light mediator gains influence and destructive features begin to
appear. With a light mediator of mass 20 MeV, the limiting light mediator case
is reached for |gl| ≥ 8 × 10−11. For even larger values of mZ′

l
the bi-portal model

just consists of two heavy mediators, resulting in no interference effects for both
constructive and destructive case. Comparing the benchmark model in the top right
panel with the two bottom panels does not lead to significant differences. For very
small light mediator masses mZ′

l
≤ 1 MeV one reaches the limit 1/(m2

Z′
l
+q2) → 1/q2

and the momentum transfer becomes the governing quantity in the denominator of
light mediator contribution to the matrix element. There is thus no mZ′

l
dependence

left in the definition of the recoil spectrum and the rates for mZ′
l
= 1 MeV and

mZ′
l
= 0.1 MeV are (almost) identical. Subtle differences between the spectra in the

top right and the bottom panels can be seen for recoil energies close to zero. In this
region the momentum transfer is very low and the a mediator mass of 10 MeV has
significant influence on the expression 1/(m2

Z′
l
+ q2). With increasing recoil energy

the impact of mZ′
l

decreases. However, the slight differences in position and depth
of the destructive features in the top right compared to the bottom panels shows
that the light mediator mass dependence cannot be neglected.

3.3 Total number of events

Besides the differential recoil spectrum the total number of expected events is an
important model specific quantity in direct detection. Given a certain exposure ε

([ε] = kg day or tonne year), the expected number of events Ntot gives a good first
estimate of the ability of an experiment to observe any DM signal in the first place.
The number of events is simply given by integrating the differential event rate over
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Figure 3.6: Rate of total events expected on a NaI target as a function of the light mediator
coupling gl. The dark matter mass is fixed at 10 GeV, the light mediator mass at 10 MeV
and the effective coupling for the heavy mediator at gh = 1×10−14. The rate of total events
R(gl) is shown for the constructive (magenta solid) and destructive (magenta dashed) bi-
portal model, for a single light mediator (green) and a single heavy mediator (blue). No
detector threshold, resolution or exposure have been set.

the available space of recoil energies and multiplying by the exposure:

Ntot = εR = ε

∫︂ Emax

Ethr

dER
dR

dER

(3.1)

The limits of the integral are given by the detector specific threshold energy Ethr

and the maximum recoil energy, i.e. the energy where the spectrum breaks of,
which depends on the DM and the target mass. One should note that, although
the integration is in principle carried out over the whole space of available energies,
due to the overall exponentially falling recoil spectrum the number of total events
is dominated by the shape of the spectrum within the first few keVs of recoil energy.
For a sodium iodide target this implies that the total number of predicted events is
mostly controlled by the recoils induced in the iodine component.

In Figure 3.6 the rate of total events expected from a bi-portal model for a sodium
iodide target is shown as a function of the light mediator coupling gl. No exposure
was set and, for now, a zero threshold is assumed. All other free parameters, i.e. the
DM mass, the light mediator mass and the heavy mediator effective coupling, are
fixed to their respective values in the benchmark model. Besides for the constructive
and destructive bi-portal case (magenta line) the function R(gl) is also shown for a
single light mediator model with mediator mass mZ′

l
and coupling gl and a single
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Figure 3.7: Rate of total events expected on a NaI target as a function of the light mediator
coupling gl. The dark matter mass is fixed at 10 GeV, the light mediator mass at 10 MeV
and the effective coupling for the heavy mediator at gh = 1 × 10−14. The rate of total
events R(gl) is shown for the constructive (solid lines) and destructive (dashed lines) bi-
portal model for various detector thresholds. No detector resolution or exposure have been
set.

heavy mediator with effective coupling gh. As the differential recoil rate for the
heavy mediator does not depend on the gl the respective graph is a horizontal line
(in blue). In the case of the single light mediator the function R(gl) scales with
g2l , resulting in a graph represented by a line of constant slope in the log-log scale.
The constructive bi-portal model predicts, as expected, overall more events than the
single mediator rates by themselves. For very low (high) values of gl the function
R(gl) approaches the single heavy (light) mediator limit. This is consistent with the
behavior observed in the differential recoil rate. Also in the destructive interference
case these limiting cases are present. As expected, the destructive bi-portal model
predicts overall less events then both single mediator cases. For certain values of
−gl between 1 × 10−12 and 1 × 10−11 the rate of total expected events is further
reduced due to the destructive interference effects appearing in the differential event
rate. As reasoned above, however only dips appearing within the iodine dominated
recoil energy region have significant impact on the number of total events. Another
important thing to note is that in the destructive bi-portal case R(gl) is not injective
and thus a certain number of total events can be observed for more than one value
of gl for fixed gh.

In Figure 3.7 the total event rate as a function of the light mediator coupling
is again displayed for the constructive and destructive bi-portal model. However,
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now the case of zero assumed threshold is compared to the case of a 0.5 keV and
a 1 keV threshold. Introducing a threshold reduces the number of expected events
significantly. This effect is even stronger for models in which the light mediator
dominates the DM-SM interaction, as seen for higher values of gl in Figure 3.7. This
is due to the high but steeply falling recoil rates a light mediator model predicts for
low recoil energies - for a high threshold this part of the spectrum may be cut off.
The insensitivity to low recoil energies induced by a higher threshold may also result
in the non-observance of destructive interference effects. In other words, interference
dips appearing at energies lower than the threshold are not being considered. As
seen in Figure 3.3, for fixed values of gh the recoil energy at which an interference
effect appears is related to the value of the light mediator coupling - for higher |gl|
the dips move towards higher recoil energies. This effect can also be observed in
Figure 3.7, where the minimum of the function R(gl) for the destructive case moves
towards higher values of |gl| for higher thresholds. This shows, that low-threshold
experiments are needed in order to be sensitive to the characteristics of the bi-portal
model.

3.4 Impact of detector resolution

The aim of this work is not only to analyse the bi-portal model on a theoretical
level, but especially to investigate it in the context of direct detection experiments.
The nuclear recoil spectrum is a strong tool to do this, as it returns the predicted
number of events as a function of the recoil energy - a measure which can be com-
pared to experimental results. However, the situation in a real experiment is more
complex and besides the target material many more detector-specific parameters
need to be taken into account to achieve realistic results. Independent of the type
of detector being used in a experiment to measure the recoil energies (photon, ion-
ization, phonon detectors etc.), such a measurement is always subject to the energy
resolution of the detector. For phonon signals the energy resolution can be described
with a normal distribution of width σ in the large sample limit. The detector spe-
cific parameter σ is in general a function of the recoil energy [17, 71], but as a first
estimate it is appropriate to assume constant σ. The detector specific energy reso-
lution is then incorporated in the nuclear recoil spectrum via a convolution with a
normal/Gaussian distribution [72]:

dR

dER res

(ER) =
1√
2πσ2

∫︂ ∞

0

dR

dER

(E ′
R) exp

(︃
−(ER − E ′

R)
2

2σ2

)︃
dE ′

R (3.2)
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Figure 3.8: The nuclear recoil rate for a bi-portal destructive model on a sodium iodide
target. The DM mass is mχ = 10GeV, the light mediator mass mZ′

l
= 10 MeV and the

effective coupling of the heavy mediator is fixed to gh = 1 × 10−14 MeV−2. The recoil
spectrum is shown for various values of σ as a measure of detector resolution for a light
mediator coupling of −8×10−12 in the left and −4×10−12 in the right panel. The magenta
dashed line displays the rate without any assumed detector resolution.

Since the nuclear recoil rate goes to zero for a certain recoil energy Emax (e.g. around
31 keV for a 10 GeV DM particle on NaI), the positive infinity in the upper inte-
gration limit can be replaced by this maximum recoil energy Emax if the integration
is done numerically. The convolution with the Gaussian distribution of finite width
leads to a smoothing of the spectrum, including a flattening of the sharp fall-off at
the end of the spectrum. One thus has to check if the interference effects seen in
the spectra above do not disappear due to the detector resolution.

In Figure 3.8 the nuclear recoil spectra for the above discussed benchmark model
on a sodium iodide target are shown both without assumed resolution (magenta
dashed) and convoluted with a normal distribution of various σ (solid lines). The
couplings of the light mediator are chosen in such a way, that for one the destructive
dip in the sodium dominated area is pronounced and can be easily studied (left panel)
and for the other the dip in the iodine dominated area is more pronounced (right
panel). In both cases the energy resolution changes the depth of the interference
dips - for low resolutions (high σ) the features get smoothed out. However, for
resolution up to 200 eV the dips are still visible. This shows the importance of
choosing high resolution experiments if one wants to probe the bi-portal model. It
is also important to note, that in the case of σ = 0.5 keV, the convolution has a
strong impact on the spectrum at low recoil energies. This resolution based effect
should not be confused with the behaviour of the spectrum in the top left panel of
Figure 3.4 (magenta line).
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In the previous chapter it was shown that the recoil spectra for the bi-portal
model differ from the spectra from single mediator interaction and that there are
deviations depending on the target materials. As a continuation, in this chapter it
was demonstrated that recoil spectra for one and the same material can also differ
significantly within the bi-portal model. Small changes in the free parameters of
the model, i.e. masses and couplings, can lead to spectra of substantially different
shape. Moreover, for a constant value of gh, the two mediator model assumes a
single light (heavy) mediator limit for high (low) values of the coupling of the light
mediator. This limiting behaviour also occurs, when the total number of expected
events is studied. In the last part of this chapter, the impact of a detector’s resolu-
tion was investigated, coming to the conclusion that for a high-resolution experiment
the destructive interference effects are observable. Unfortunately, so far direct de-
tection experiments have not published results with unchallenged DM excess events
[9], which would allow to compare predicted nuclear recoil spectra with measured
data. However, one can instead investigate the effects the bi-portal model might
have on exclusion limits for the free parameters. The statistical methods to calcu-
late exclusion limits with a profile likelihood ratio are explained in the subsequent
chapter.
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Chapter 4

Statistics theory

The following chapter contains various statistical concepts which are needed in order
to calculate exclusion limits with a profile likelihood ratio approach. The long list of
required notions for the profile likelihood method is out-weighted by its advantages.
Especially beneficial is the incorporation of the specific shape of the recoil spectrum
in the analysis, as this shape distinguishes the bi-portal from a single mediator
model. The concepts below are discussed in more detail in a Jupyter notebook1

which can be found on GitHub. The notebook also includes some simple exam-
ples and applications as well as a discussion of the variance of maximum likelihood
estimators.

The Bayesian notation f(x|θ) for a conditional probability density function
(PDF) of an observed random variable x conditional on a particular value of θ

is used in the style of Cowan [73] and Cousins [74].

4.1 Statistical tests

Statistical test are used in the analysis of experiments to give a measure of how well
some observed data agrees with a theoretic model. The model, or in other words the
hypothesis, is characterised by certain probabilities it predicts (e.g. probability to
observe a certain number of events, measure a certain energy, etc.). In general the
hypothesis in question is called the null hypothesis H0, however in particle and high
energy physics (HEP) the H0 terminology is often used to describe the background-
only process [75].

1A Jupyter notebook is a web-based interactive JSON documents, which contains both code in
Pyhton, mathematics, plots and explanatory text in Markdown.
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4.1.1 Hypothesis testing

Making a statement about the validity of H0 is often done by comparing it with
some alternative hypotheses H1, H2, . . . which are themselves again characterized
by the probabilities they predict. For a data set consisting of n measurements
x = (x1, . . . , xn), each hypothesis in the set H0, H1, . . . is thus characterised by
the respective PDF f(x|H0), f(x|H1), . . . [73]. To give a measure of the agreement
between the observed data and a hypothesis, a so called test statistic is constructed.
The test statistic t(x) is a function of the measured variables and each hypothesis
will presuppose a PDF for t denoted by g(t|H0), g(t|H1) and so on. Assuming that
one has defined a test statistic and knows its PDF for a certain hypothesis H0,
then the compatibility between model and data can be expressed in terms of a so
called critical region for t. If the observed value of t is in the critical region, the
hypothesis H0 is rejected. The critical region is defined by the significance level
α, which gives the probability that under the assumption of H0 the observed t lies
within the critical region.

To understand these concepts better, it is helpful to investigate an example.
Consider an experiment where one counts the number of recoil events measured in
some detector. The easiest way to define a test statistic in this case is to use the
original vector of observed data values x, which in this case is only one dimensional
x = (x) [73]. Assume that for two hypotheses H0, H1 the outcome of the counting
experiment is described by a Poisson distribution

f(x|H0,1) = Po(x|λ0,1) =
λxe−λ

x!
, (4.1)

where λ0 = b the number of background events for the null-hypothesis H0 and
λ1 = b+s the number of background plus signal events for the alternative hypothesis
H1. Since the test statistic is just the observed number of counts x, one can write
g(t|H0,1) = f(x|H0,1).

In Figure 4.1 the two distributions of the test statistic are shown for a background
of b = 50 events and a signal of s = 25 predicted by H1. The critical region for H0

is marked by tcut (in this example arbitrarily fixed at 63), leading to a significance
level

α =

∫︂ ∞

tcut

g(t|H0)dt. (4.2)

The hypothesis H0 would thus be accepted if one observes a value for t less than tcut

(i.e. counts less than 63 events). However, the null-hypothesis might be rejected
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Figure 4.1: PDFs for the test statistic t under assumption of two different hypotheses
H0 and H1. The underlying concept is a counting experiment, which can be described a
Poisson distribution (4.1). The critical region for H0 is marked by tcut, i.e. H0 is rejected
if t > tcut is observed.

with a probability of α, although H0 is true. This is called a type I error or false
positive. There is a second misinterpretation of the data one could make, namely if
H0 is accepted while the true hypothesis was the alternative hypothesis H1. This is
a so called error of type II or false negative [76]. The probability for a false negative
is marked in green in Figure 4.1 and given by

β =

∫︂ tcut

−∞
g(t|H1)dt. (4.3)

The complement 1− β is called power of the statistical test as it gives a measure of
the ability to discriminate against an alternative hypothesis.

4.1.2 Test of significance

In many cases the compatibility between a given hypothesis H and the observed
data should be tested without comparison to an alternative hypothesis. This test
of significance (or goodness-of-fit test) can be done via a test statistic which is
constructed in such a way, that it gives measure of the compatibility of observation
and the predictions of H. From the distribution of the test statistic one can then
deduce the so called p-value. The p-values is the probability, under assumption of
H, of finding data being as or more incompatible with the predictions of H than
the observed data.
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Figure 4.2: PDFs for the test statistic t under assumption of two the null hypothesis
H0. The underlying concept is a counting experiment, which can be described a Poisson
distribution (4.1) with λ = b = 50 background-only events. The right-tailed p − value is
shown for an observed t of 60.

The counting experiment example from above is again useful to better under-
stand this concept. Suppose one wants to test the compatibility of the null hypoth-
esis H0 with b = 50 and an observed number of counts of xobs = 60. Remember that
the test statistic t was just the observed number of counts and its PDF is given by a
Poisson distribution with λ = b = 50. In this example equal or more incompatibility
means observing as many or more than xobs = tobs events and thus in Figure 4.2
the so called right-tailed p-value is shown. One should note that depending on the
model and experiment under examination a left-tailed (as many or less than) or
two-sided p-value might be the appropriate choice [77]. The right-tailed p-value is
given by (for discrete g(t|H) the integral may be replaced by a sum):

p-value =

∫︂ ∞

tobs

g(t|H0)dt (4.4)

The p-value should not be confused with the significance level α which is a
constant specified beforehand. The p-value, on the contrary, is a function of the
data and therefore itself a random variable [78]. In an experiment one would then
reject the hypothesis if the p-value is lower than a certain threshold, e.g p < 0.05

which corresponds to a so called confidence level (CL) of 95%. In the particle physics
community the p-value is often converted into a significance Z, defined such that the
right-tailed probability of a Gaussian distributed variable which is found Z standard
deviations above its mean is equal to the p-value (again, not to be confused with
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Figure 4.3: Illustration of the relation between the p − value and the significance Z of a
test statistic. The PDF displayed is a standard Gaussian (µ = 0, σ = 1).

the significance level α). With the inverse cumulative distribution (quantile) ϕ−1 of
the standard Gaussian this can be written as

Z = ϕ−1(1− p). (4.5)

The relation between p-value and Z is illustrated in Figure 4.3 for a 2σ significance.
For discoveries in particle physics, the general practice is to consider rejecting the
background hypothesis with a significance of at least 5σ corresponding to a p-value
of 2.87 × 10−7. This significance was used, for example, when the discovery of the
Higgs boson was claimed. For the exclusion of a signal hypothesis a confidence level
of 95% is usually seen as sufficient. This corresponds to Z = 1.64 [75].

4.2 The method of maximum likelihood

Consider an experiment where a random variable x was measured n times resulting
in the values x1, . . . ,xn. The variable x can also be a multidimensional random vec-
tor, so that the outcome of each measurement is characterized by several quantities
(e.q. recoil energy and light yield for a nuclear recoil event). Assume that the func-
tional form of the PDF f(x|θ), according to which x is distributed, is known, but
the value of at least one of the parameters in θ = (θ1, . . . , θm) is not. The method of
maximum likelihood gives a procedure to estimate these unknown parameters from
a set of measured data.
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For a certain value of θ, under the assumption that the data is described by
f(x|θ), the probability to find the first measurement equal to x1 is f(x1|θ). As-
suming that all n measurements are independent the probability for the first mea-
surement to yield x1, the second to yield x2 and so on is given by the likelihood
function

L(θ) =
n∏︂

i=1

f(xi|θ). (4.6)

The difference to the joint PDF for the xi is that the above likelihood is treated as
a function of the parameters θ while the xi are fixed. For a correctly hypothesized
PDF and suitable θ the expected probability for the actually measured data should
be high and thus also the value of the likelihood. On the contrary, choosing θ far
away from the true value would yield a low value for the likelihood for the same PDF.
Employing the argumentation above, the maximum likelihood (ML) estimates(s) for
θ can thus be defined as those which maximize the likelihood function - i.e. the
solutions of dL

dθ
= 0 for differentiable L(θ). The ML estimates are usually denoted

with hats θ̂ = (θ̂1, . . . , θ̂m) to differentiate them from the true values of θ which are
unknown [73].

Especially when the ML estimators are determined via numerical methods, where
one is restricted by the finite precision of the representation of real numbers, it is ad-
vantageous to use the negative logarithm of L(θ). The logarithm is a monotonically
increasing function, so the parameter values which maximize L will also minimize
− logL. The build-up of error due to the numerical multiplication of a multitude of
values varying in size is reduced by the conversion of the product in L into a sum by
the logarithm [79]. Moreover, the negative is used in order to be able to use numeric
minimizers. The negative log-likelihood function is then given by

− logL(θ) = −
n∑︂

i=1

log f(xi|θ). (4.7)

4.2.1 Extended likelihood function

In the description above, the experiment consisted of performing a predetermined
number of n measurements x1, . . . ,xn. However in particle and nuclear physics the
expected number n of events to be observed is itself often a Poisson random variable
and subject to fluctuations around a mean value ν [80]. In particular the Poisson
parameter ν might be given as a function of θ. The extended likelihood function is
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then given by [73]

L(θ) =
ν(θ)n

n!
e−ν(θ)

n∏︂
i=1

f(xi|θ) =
e−ν(θ)

n!

n∏︂
i=1

ν(θ)f(xi|θ) (4.8)

and the extended log-likelihood by

logL(θ) = n log ν(θ)− ν(θ) +
n∑︂

i=1

log f(xi|θ) (4.9)

= ν(θ) +
n∑︂

i=1

log(ν(θ)f(xi|θ)), (4.10)

where the term − log n! is dropped as it does not depend on the parameters θ.

4.2.2 Binned likelihood

In the case of very large data samples the computational effort for the log-likelihood
function can grow immensely, especially if the PDFs involve some kind of compu-
tationally expensive calculation. The data is then usually turned into a histogram
with entries n = (n1, . . . , nN) in N bins. As in the section above we assume that the
total number of events observed ntot =

∑︁N
i=1 ni is itself a Poisson random variable

with mean value νtot(θ). For a hypothesized PDF f(x|θ) the expected number of
entries ν = (ν1, . . . , νN) in each bin is then given by

νi(θ) = νtot(θ)

∫︂ xmax
i

xmin
i

f(x|θ)dx (4.11)

where xmin
i and xmax

i are the bin limits and νtot =
∑︁N

i=1 νi.
The extended binned likelihood function is then just the product of the Poisson

probabilities of all bins

L(θ) =
N∏︂
i=1

νi(θ)
ni

ni!
e−νi(θ), (4.12)

and the extended log-likelihood is

logL(θ) = −
N∑︂
i=1

νi(θ) +
N∑︂
i=1

ni log νi(θ) (4.13)

= −νtot(θ) +
N∑︂
i=1

ni log νi(θ), (4.14)

with simplifications as for (4.9) [73, 75].
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4.3 Likelihood ratio as test statistics

Before the relation between likelihood functions and goodness-of-fit tests can be
discussed, the concept of nuisance parameters needs to be introduced. Take an
observable x which is assumed to follow a probability density f(x|θ) where θ =

(θ1, . . . , θm) is a vector of unknown parameters. Suppose a hypothesis H0 should be
tested, which predicts specific values for one or several (k) of the entries of θ, i.e.

H0 : θi1 = θ0i1 , θi2 = θ0i2 , . . . , θik = θ0ik for {i1, . . . ik} ⊂ {1, . . . ,m}. (4.15)

The extant entries θj with j ∈ {1, . . . ,m} \ {i1, . . . ik} are then called nuisance
parameters of the model [81]. In the following the variable θ will only be used for
the subset of nuisance parameters while the vector of parameters which is subject to
the test will be denoted by µ. One thus writes f(x|µ,θ) for the PDF and L(µ,θ)

for the likelihood function given a measured set of data.
In a first step towards testing a hypothesized value of µ the so called profile

likelihood ratio is considered

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (4.16)

The denominator is given by the so called unconditional likelihood function, where
both µ̂ and θ̂ are their ML estimators. In the nominator the nuisance parameters
are chosen in such a way, that L is maximized for specific values of µ. This so called
conditional ML estimator of θ is denoted by ˆ̂θ. The likelihood in the nominator is
thus a function of µ [75]. For good agreement between the best fit to the data and
the hypothesized value of µ the likelihood ratio yields values close to one. Conversely
in the case of bad agreement the likelihood in the denominator is much higher than
the one in the nominator and λ is close to zero.

From the likelihood ratio a test statistic

tµ :=− 2 log λ(µ)

=2 logL(µ̂, θ̂)− 2 logL(µ, ˆ̂θ) (4.17)

can be constructed, where high compatibility between data and hypothesis is indi-
cated by an increasing value of tµ. In subsection 4.1.2 the p-value was defined as
a measure of equal or greater discrepancy between data and hypothesis. For the
profile likelihood ratio as a test statistic this thus means that the p-value can be
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calculated with
pµ =

∫︂ ∞

tµ,obs

g(tµ|µ)dtµ. (4.18)

The function g(tµ|µ) is the PDF of the test statistic under the assumption of µ.
Wilks’ theorem [82] offers an asymptotic description of the distribution of tµ in the
large sample limit. For µ being a vector of size k, g(tµ|µ) can be approximated by
a χ2 distribution with k degrees of freedom. In the work by Cowan et al. [75] this
concept has been extended to modified versions of the test statistic (4.17).

Before applying the above formalism in the context of discovery and exclusion
in an experiment, there is one more thing to take care of. Especially in physics
applications the parameter(s) µ might resemble some physical quantity, like a cross
section or the mass of some particle. In this case negative values would be unphysical,
which can lead to a problem if the ML estimator of µ is negative. In these cases one
defines an alternative test statistic

t̃µ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 2 log

(︂
L(µ, ˆ̂θ(µ))/L(µ̂, θ̂)

)︂
, µ̂ ≥ 0,

−2 log
(︂
L(µ, ˆ̂θ(µ))/L(0, ˆ̂θ(0))

)︂
, µ̂ < 0,

(4.19)

where ˆ̂θ(0) and ˆ̂θ(µ) represent the conditional ML estimators given a parameter of
0 and µ respectively.

4.3.1 Discovery

One application of the above formalism is to judge if the result of an experiment is
significant enough to claim a discovery. In order to do this a test of significance is
performed where the null hypothesis (µ = 0) is compared to the best-fit value, i.e.
the profile likelihood ratio

λ(0) =
L(0, ˆ̂θ)

L(µ̂, θ̂)
(4.20)

is examined. From this ratio one can construct the statistic t0 as in (4.17) and the
p-value for a certain observed t0,obs is

p0 =

∫︂ ∞

t0,obs

g(t0|0)dt0. (4.21)
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In the special case of µ being a one-dimensional vector (i.e. χ2 with one degree
of freedom), applying Wilks’ theorem [82] together with the approximation of the
cumulative distribution function for χ2 by the cube of a Gaussian leads to a simple
expression for the significance [73]:

Z =
√
t0 (4.22)

The statistic t0 is the most general to test a null-hypothesis which may be re-
jected for both upward or downward fluctuation of the data. However, in the case
of an experiment where lack of agreement with the null-hypothesis only occurs for
an increased signal strength the test statistic has to be modified [75]. For a mea-
sured signal strength below the one predicted by the null-hypothesis, H0 does not
necessarily need to be dismissed. The signal strength can usually be expressed as
function of the model-dependent parameters and will here be denoted by s(µ). The
appropriate test statistic is then given by

q0 :=

⎧⎨⎩−2 log λ(0), s(µ̂) ≥ s(0),

0 , s(µ̂) < s(0).
(4.23)

Whenever s(µ) = µ, i.e. the parameter is a direct measure of the signal strength
like the cross section, the test statistic q0 is equivalent to t̃0 from (4.19) and thus
consistent with the notation in [75].

4.3.2 Exclusion

The profile likelihood ratio can also be used to find so called exclusion limits on the
parameters µ for an a-priori fixed confidence level. In other words, exclusion limits
give a measure of how much signal can be hidden in the background. For µ being
a 1 × k dimensional vector the 1 − p CL limits are given by the boundaries of the
k-cell [µ1,min, µ1,max]× · · · × [µk,min, µk,max] being the union of all µ for which [74]∫︂ ∞

tµ

g(tµ′ |µ′)dtµ′ ≤ p. (4.24)

Using Wilks’ theorem [82] this condition is equivalent to

1− CDFχ2(k, tµ) ≤ p, (4.25)

where CDFχ2(m,x) denotes the cumulative distribution function of a χ2 distribution
with k degrees of freedom [83, 84].
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As in the section about discovery the case where only increased signal strength
is regarded as incompatible with the null-hypothesis has to be treated with certain
care. Another test statistic is thus defined by

qµ :=

⎧⎨⎩−2 log λ(µ), s(µ̂) ≤ s(µ),

0 , s(µ̂) > s(µ).
(4.26)

The reasoning for setting qµ = 0 for s(µ̂) > s(µ) goes as follows: If for a certain
set of parameters µ the signal strength is lower than the signal strength for the
best fit to the data, this does not imply less compatibility with the null-hypothesis,
but rather some other systematic error (wrongly estimated efficiency of the detector
etc.). The possible higher value of qµ is thus ignored and the parameters µ are not
rejected. The special case where the parameter is a direct measure of the signal
strength (µ = s(µ)) is described in detail in the work by Cowan et al. [75].
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Chapter 5

Exclusion limits in the bi-portal
model

If DM direct detection experiments do not see an excess signal from which a dis-
covery can be claimed, the data taken is used to find exclusion limits1 on DM-SM
interaction specific quantities like the masses and cross sections/couplings. While
Yellin’s optimum interval method [85, 86] was widely-used in the previous decade
to generate exclusion limits, many experiments now tend to the likelihood approach
described in chapter 4. To name some examples: profile likelihood ratio methods
have been used for a positive (discovery) analysis in the CRESST-II experiment [87],
as well as by the XENON cooperation starting with XENON100 [18]. In this work
the profile likelihood approach was used to deduce exclusion limits on (subsets of)
the four free parameters mZ′

l
,mχ, gl, gh of the bi-portal models. Rather than real re-

coil data from experiments, mock background data was used in the calculation. The
mock recoil energies were generated using the inverse transform sampling method
from experiment-specific probability distributions - for the precise procedure see
appendix B.1.

To simplify the limit calculation, quantities which are usually regarded as nui-
sance parameters, e.g. exact value of the Earth’s velocity, the local dark matter
density, are assumed to be known precisely. Therefore, the only nuisance parameter
incorporated in the calculations is the background level lb and the profile likelihood
ratio (4.16) simplifies to

λ(µ, ˆ̂lb) =
L(µ)

L(µ̂, l̂b)
. (5.1)

1At experiments standard DM-limits are computed for a 90% CL.
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5.1 Likelihood function

In the first step of setting exclusion limits, the appropriate likelihood function has
to be found. There are two different types of events for which a PDF-like function
needs to be constructed: DM events and background events. The distribution of dark
matter events is given by the differential recoil spectrum dRχ

dER
. For the background

rate simplified models are used, either a flat background

dRb

dER

= c (5.2)

with [c] = 1/(keV kg d), or a background with a slightly falling slope

dRb

dER

= c− a · ER, (5.3)

where [a] = 1/(keV2 kg d). If the resolution of the detector should also be included,
the full the rate of signal events has to be convolved with a Gaussian energy distri-
bution according to (3.2). For the simple background models used in this analysis
it is not necessary to included the resolution, as these are empiric models of the
background observed in the detector after energy reconstruction.

The total recoil spectrum needs to be normalized to achieve a probability density
function. In the calculation of DM plus background events experiment specific
quantities like the exposure ε and the threshold energy Ethr are included:

Ntot(µ, lb) = Nχ(µ) +Nb(lb) = ε

∫︂ Emax

Ethr

(︃
dRχ

dER

(µ) + lb
dRb

dER

)︃
dER (5.4)

The upper limit of the integral Emax is fixed depending on the background model.
For a falling background Emax = c

a
, i.e. the point where the expected background

spectrum (lb = 0) goes to zero. In the case of a constant background a region of
interest (ROI) for the recoil energies is set, in which the bulk of energies of possible
DM events is assumed to lie. The upper bound of the ROI can then be used as
Emax. When choosing the ROI one has to take the mass of the dark matter particle
for which the search is aimed at, into account.

In the following, the four free parameters of the model will be denoted by the
vector µ = (mZ′

l
,mχ, gl, gh). For Nobs recoil energies (ER1 , . . . , ERNobs

) in a (mock)
sample the extended likelihood function is thus given by

L(µ, lb) =
Ntot(µ)

NobseNtot(µ,lb)

Nobs!

Nobs∏︂
i=1

dRχ

dER
(µ, ERi

) + dRb

dER
(lb, ERi

)

Ntot(µ)
(5.5)
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=
eNtot(µ,lb)

Nobs!

Nobs∏︂
i=1

(︃
dRχ

dER

(µ, ERi
) +

dRb

dER

(lb, ERi
)

)︃
(5.6)

Interestingly the extended likelihood formalism makes the normalization of the spec-
trum redundant, a feature also described in [80]. For experiments with a very high
exposure ε the recoil energy sample can be quite large and a binned likelihood
approach might be advantageous. Thus the data has to be arrange in Nbins bins
with (ni, . . . , nNbins) entries, where the bin width wbin has to be carefully attuned to
threshold and resolution of the experiment. Following subsection 4.2.2 the likelihood
function is then given by

L(µ, lb) =

Nbins∏︂
i=1

νi(µ, lb)
ni

ni!
e−νi(µ,lb) (5.7)

where
νi(µ) = ε

∫︂ Ethr+iwbin

Ethr+(i−1)wbin

(︃
dRχ

dER

(µ, E ′
R) +

dRb

dER

(lb, E
′
R

)︃
dE ′

R. (5.8)

5.2 Test statistic

In DM direct detection, only a signal strength higher than the assumed background
signal gives reason to reject the null-hypothesis. A lower signal rather indicates
some kind of systematic error, e.g a wrong approximation of the background. Most
experiments publish mass-dependent limits on some DM-nucleon reference cross
section σn, where there is a direct correspondence between µ = σn and the signal
strength. In the case of the bi-portal model we want to give mass-dependent limits
on the couplings. However, in section 3.3 it was shown that increasing the absolute
value of the coupling does not necessarily increase the signal. Therefore an additional
parameter for the signal strength s(µ) needs to be introduced to define a test statistic
as in (4.26). The best choice is to use the total number of events Ntot(µ) as a
measure of the signal strength, since it already needs to be computed for each µ in
the likelihood function (5.5). In the case of a binned likelihood it is simply given by∑︁Nbins

i=1 ni. On the lines of (4.26) the most general form of the test statistic for the
bi-portal model is thus

qµ :=

⎧⎨⎩−2 log λ(µ), Ntot(µ̂, l̂b) ≤ Ntot(µ,
ˆ̂lb),

0 , Ntot(µ̂, l̂b) > Ntot(µ,
ˆ̂lb).

(5.9)
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5.3 Exclusion limit planes

To draw exclusion limits in a two dimensional plane, two out of the four free param-
eters of the bi-portal model need to be fixed. The other two parameters then give
the axes of the exclusion plot. In the following the procedure to calculate exclusion
limits in two different such planes is explained with the help of short pseudocodes.

5.3.1 mχ-gl exclusion limits

The first possibility is to generate limits on the light mediator coupling gl as a func-
tion of the dark matter mass mχ. The mass of the light mediator and the effective
coupling for the heavy mediator are thus fixed. Two different hypothesis, the con-
structive case where gl and gh have the same sign and the destructive case where gl

and gh have opposite signs, have to be considered. Note that, for a fixed value of gh
this gives a constraint on the allowed sign of gl if each of the two hypothesis should
be tested separately. This additional condition can be achieved by passing a high
value in the negative-log-likelihood calculation whenever gl has the wrong sign. In
this way the signature of ĝl can be controlled. For a certain p-value and a fixed DM
mass the interval of non-excluded couplings [gl,min, gl,max] is thus given by the union
of all gl for which

1− CDFχ2(1, qgl,mχ=fixed) ≤ p. (5.10)

Using the quantile of the χ2 function with 1 degree of freedom (as the number of
free parameters gets reduced to one, namely the coupling gl in the likelihood ratio,
independent of the number of nuisance parameters), for a confidence level of 95%
the above condition reads:

qgl,mχ=fixed ≤ 3.841 (5.11)

In the constructive interference case, lowering gl for a fixed gh always leads to
a decrease in the number of predicted events Ntot(gl). For couplings lower than a
certain value ḡl with Ntot(ḡl,mχ = fixed) ≤ Ntot(ĝl,mχ = fixed) the couplings always
lie within the non-excluded region, due to the definition of the test statistic (5.9).
The likelihood interval of light mediator couplings for the constructive hypothesis
is thus not bound from below and only an upper limit needs to be found in the
computation. In this work the limit is found using a bisection like procedure specified
in section B.4. As mentioned above, in the destructive case there is such no linear
relation between gl and Ntot. For certain combinations of gh, mZ′

l
and mχ, there

might thus an upper and lower limit on the light mediator coupling.
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Whenever the threshold and energy resolution of the detector are taken into
account, there is another issue which has to be taken care off. A detector is only
sensitive to DM masses for which the maximum deposited recoil energy is higher
than the threshold. However, performing a convolution of the differential recoil rate
for very light DM masses with the energy resolution, results in a shuffling of events
over the threshold. This may result in limits on the coupling for very low DM masses,
which are not accessible for the detector considering their very low true deposited
recoil energy. To solve this problem in a conservative way, the similar approach to
the CRESST experiment’s [14] was taken. Simulated events are rejected when their
true energy is more than two σ (mean of Gaussian resolution distribution) under
the threshold. This concept is explained in more detail in section B.2.

Taking into account all statements made above, the pseudocode for the calcula-
tion of limits in the mχ-gl plane is of the following structure:

Pseudocode 1: calculate mχ-gl exclusion limits
Input: mock background data
Output: limits on gl

1 fix gh > 0, mZ′
l

2 create mχ-array
3 case constructive do
4 for mχ in mχ-array do
5 minimize denominator of likelihood ratio in gl for fixed mχ

6 define test statistic qgl,mχ=fixed
7 find upper limit on gl under condition (5.11)

8 case destructive do
9 for mχ in mχ-array do

10 minimize denominator of likelihood ratio in −gl for fixed mχ

11 define test statistic q−gl,mχ=fixed
12 find lower limit on | − gl| under condition (5.11)
13 find upper limit on | − gl| under condition (5.11)
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5.3.2 mZ ′
l
-gl exclusion limits

Exclusion limits on the coupling as a function of the dark matter mass are compa-
rable to the cross section - DM mass limits known from the publication of direct
detection experiments. In the two-mediator model, however, a second possibility for
limits arises. Fixing the mass of the DM particle as well as one of the couplings
leads to limits on the other coupling as a function of the light mediator mass. One
can thus achieve limits in the mZ′

l
-gl plane as seen for collider searches [88]. The

condition for the likelihood intervall at 95% CL reads

qgl,mZ′
l
=fixed ≤ 3.841 (5.12)

and the according pseudocode for the limit calculation is given by:

Pseudocode 2: calculate mZ′
l
-gl exclusion limits

Input: mock background data
Output: limits on gl

1 fix gh > 0, mZ′
l

2 create mχ-array
3 case constructive do
4 for mχ in mχ-array do
5 minimize denominator of likelihood ratio in gh for fixed mχ

6 define test statistic qgl,mZ′
l
=fixed

7 find upper limit on gl under condition (5.12)

8 case destructive do
9 for mχ in mχ-array do

10 minimize denominator of likelihood ratio in −gh for fixed mχ

11 define test statistic q−gl,mZ′
l
=fixed

12 find lower limit on | − gl| under condition (5.12)
13 find upper limit on | − gl| under condition (5.12)
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5.4 Results

In the following, exclusion limits in the mχ − gl and the mZ′
l
− gl plane are shown

for mock data samples generated on the basis of two different experiments: the
CRESST-III experiment and the proposed COSINUS experiment. The detector
specific quantities used in the limit calculation are shown in Table 5.1 together
with the respective references. The CRESST experiment experiment was chosen
due to its very low threshold/high resolution, which make it sensitive to possible
interference effects arising at low recoil energies. The COSINUS experiment was
chosen as sodium iodide proved to be advantageous to test bi-portal models in the
analysis of the recoil spectrum. In chapter 2 and chapter 3 this was advantage was
explained by the high difference in the nuclear masses of iodine and sodium.

Table 5.1: Overview of experiment/detector specific parameters used in the calculation of
exclusion limits from mock data.

CRESST-III (Detector A) [14, 16] COSINUS [19]

target material CaWO4 NaI

net exposure ε 3.46 kg day 50 kg day2

threshold Ethr 0.0301 keV 1 keV

phonon resolution σ 0.0046 keV 0.2 keV

background dRb
dER

= 3.518− 0.025ER
1

(keV kg d)
3 dRb

dER
= 1 1

(keV kg d)

The calculation of exclusion limits is computationally a very time consuming
process, especially if the detector resolution is included as the convolution integral
has to be evaluated in every minimization step. Since the σ-value purports the
fineness of the numerical integration for the convolution, higher resolutions (low σ)
lead to higher computation times. Therefore, only for the experiment with the lowest
resolution, COSINUS, the whole analysis is performed taking the resolution into
account. For the other experiment the possible impact of the detectors’ resolution
is demonstrated by means of an example and the bulk of the limits are calculated
without the convolution. Another difference in the limit calculation for these two
experiments, is that for the CRESST-like sample an unbinned approach is used,
while for the COSINUS sample the likelihood function is binned. The decisive

2According to a gross exposure of 100 kg day and an assumed overall efficiency of 50%.
3This model for a falling background was set under the assumption, that the CRESST-group is

able to dispose of the exponential falling background at low recoil energies. were kindly provided
by Florian Reindl, who is part of the CRESST group at HEPHY Vienna.
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factor here is the overall number of background events in the mock sample, which is
significantly lower for CRESST due to the lower exposure. When binning the mock
background data for COSINUS one has to take care that the width of the bins is
compatible with the experiment’s resolution.

The first limits displayed are for the COSINUS-like background sample, where the
experiment’s resolution is considered in the whole limit calculation process. In
Figure 5.1 exclusion limits at 95% CL are shown in the mχ − gl plane with the
light mediator mass fixed to 10 MeV. In each of the four panels the limits were
calculated under assumption of different values for the effective heavy mediator
coupling ranging from 5 × 10−13 MeV−2 down to 1 × 10−14 MeV−2. In each panel
exclusion limits are shown for the constructive (solid line) and destructive case
(dashed line) of the bi-portal model in blue, together with an upper exclusion limit
calculated for a single light mediator interaction (i.e. gh = 0) in black. In order
to improve perceivability, for the bi-portal model the allowed region is shaded. A
threshold of 1 keV together with a resolution of σ = 0.2 keV corresponds to a
sensitivity down to DM masses of about 1 GeV according to equation (B.3). We
begin with the analysis of the bottom right window, where all three limits lie very
close together. This can be explained by the low value of gh, due to which the heavy
mediator plays an inferior role in the bi-portal model. This leads to a limiting case as
described in chapter 3 and results in the bi-portal exclusion limits resembling those
of an interaction via a single-light mediator. In the bottom left panel, increasing the
coupling of the heavy mediator leads to a divergence between the different limits.
The interference term in the matrix element starts to come into play, which leads to
an increased overall rate in the constructive bi-portal model and thus a lower limit
compared to the single light mediator case. The opposite is true for the destructive
case, where more values of gl are allowed compared to the single mediator case.
The effects of the interference terms are more noticeable for higher DM masses
and at masses under 2-3 GeV the limits merge again. For lower DM masses the
respective recoil energies at which the differential recoil rate is the highest and
the interference terms have their strongest effect, tend to lie under the threshold
and are thus not accessible (compare with Figure 3.2 and Figure 3.4). This is
also consistent with the statement made earlier, that for sodium iodide the highest
impact on the number of total events comes from the iodide contribution. Indeed
for iodide Emax ≈ 0.6 = Ethr − 2σ for mχ = 2.5 GeV. In the upper right panel the
bi-portal limits differ even more from the single mediator limit in black. In this
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Figure 5.1: Exclusion limits (at 95% CL) on the light mediator coupling as a function
of the DM mass for a COSINUS-like mock background sample. The light mediator mass
is fixed and each panel shows limits for a different value of the effective heavy mediator
coupling. Limits in blue are for the bi-portal model in the constructive case (solid) and in
the destructive case (dashed), in comparison to limits in black for a single light mediator
case. For the bi-portal model the non-excluded parameter space is shaded. Resolution
and threshold of the experiment are considered in the calculation.

panel gh is one order higher than in the bottom right one, and the overall rates for a
certain value of gl is thus significantly higher. This higher rate leads to lower upper
exclusion limits in the constructive case. Furthermore, one of the most interesting
aspects of the bi-portal model limits starts to show: the lower limit on gl in the
destructive case. In this case, values of gl might still be allowed if, in combination
with gh = 1 × 10−13MeV−2, they generate a large destructive interference term,
which lowers the overall number of predicted events. However, if gl is too low,
the interference term might not be large enough to reduce the predicted number of
events sufficiently. This results in an allowed region of gl in the exclusion plot which
is restricted both from above and below. Again, this effect is only visible for higher
DM masses, as for lower mχ higher rates might be hidden by the threshold. In the
top left panel with gh = 5× 10−13MeV−2, gl is even more restricted and for mχ ≥ 6

only a narrow band of values is allowed in the destructive case. For the very high
value of gh in this panel, the heavy mediator interaction component of the bi-portal
model by itself already leads to a high number of predicted events. Therefore, in the
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constructive case only very low values for gl are compatible with a possible DM signal
hiding in the background sample. In the destructive case the number of predicted
events can be reduced, by those gl which lead to destructive interference effects (i.e.
in general high impact of the interference term, not necessarily in the form of dips).
If the coupling of the heavy mediator is further increased, the allowed region for
gl would be further restricted, up to the point where only gl = is allowed at 95%
CL. This would then correspond to the bi-portal model assuming its single heavy
mediator limit, where interaction via the light mediator is completely suppressed.
To conclude, adding a heavy mediator of some fixed coupling to the DM-nucleus
interaction via a light mediator, leads to different limits on the light mediators
coupling in the mχ − gl plane. Moreover, there is a significant difference between
the constructive and the destructive case.

In Figure 5.2 exclusion limits (at 95% CL) for a COSINUS-like mock background
sample are again shown in the mχ−gl plane. Here the effective coupling of the heavy
mediator is fixed, while each panel shows limits for a different value of mZ′

l
. Only

limits in the bi-portal model are shown in this figure and non-excluded regions are
again shaded. Overall, higher mediator masses lead to higher allowed values for
gl. This can be reasoned by the inverse proportionality of the differential recoil
rate (and also the total events rate) to the mediator mass. For lower mZ′

l
a light

mediator interaction model predicts a higher number of events and the limit on the
coupling thus has to be lower (see also the exclusion plots in [83]). This also has
a strong effect on the bi-portal model. Especially for mZ′

l
= 0.1MeV in the upper

left panel, the model is dominated by the light mediator and there are no noticeable
differences visible between constructive and destructive case. Moreover, since the
impact of the interference term is very low compared to the contribution from the
light mediator, there is no lower limit on gl in the destructive case. In the next panel
with mZ′

l
= 1MeV interference effects start to show again. For higher DM masses

the limits are very similar to those in the next panel for mZ′
l
= 10 which is identical

to the already discussed top right panel of Figure 5.1. For lower DM masses the
limits are however flatter, which is due to the lower mediator mass. In the lower
right panel the exclusion limits are shown for a mediator of mass 100 MeV. With
this mass the mediator falls into the regime where m2

Z > q2 and the interaction thus
takes place via two heavy mediators. Even though the limit of two heavy mediators
does not lead to destructive interference effects in the form of dips in the differential
recoil spectrum, the second heavy mediator still has an effect on the exclusion limits.
This is due to the fact, that the interference term in the cross section still has the
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Figure 5.2: Exclusion limits (at 95% CL) on the light mediator coupling as a function of
the DM mass for a COSINUS-like mock background sample. The effective heavy mediator
coupling gh is fixed at 1×10−13 MeV−2 and each panel shows the limits for a different value
of the light mediator mass. Limits are shown for the bi-portal model in the constructive
case (blue solid) and in the destructive case (blue dashed). The non-excluded parameters
space is shaded respectively. Resolution and threshold of the experiment are considered
in the calculation.

ability to lower/raise the total number of effects in the constructive/destructive bi-
portal model. The limits for the 2 heavy mediator case are thus similar in shape to
the ones displayed in the bottom left label, just two order higher in gl according to
the scaling in the mZ′

l
.

Having analysed limits on gl as a function of the DM mass, we now turn to limits
in the mZ′

l
− gl plane. In Figure 5.3 these limits are shown for a DM particle of

mass 10 GeV and various values for the effective coupling of the heavy mediator
gh. The limits for the constructive (blue solid) and destructive cases (blue dashed)
of the bi-portal model are displayed together with the limit resulting from DM-
nucleus interaction via a single light mediator. In all four panel higher values for
the light mediator coupling are allowed for higher mediator masses. This behaviour
can be explained by the inverse mass proportionality in all light mediator terms
contributing to the matrix element which describes the DM-nucleus interaction.
When going from higher to lower mediator masses, the limits get stronger as the
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Figure 5.3: Exclusion limits (at 95% CL) on the light mediator coupling as a function of
the light mediator mass for a COSINUS-like mock background sample. The DM mass is
fixed at 10 GeV and each panel shows the limits for a different value of the heavy mediator
coupling. Limits are shown for the bi-portal model in the constructive (blue solid) and
the destructive case (blue dashed), in comparison to limits for a single light mediator case
(black). For the bi-portal model the non-excluded parameter space is shaded. Resolution
and threshold of the experiment are considered in the calculation.

predicted number of events increases. For mediator masses under 10 MeV the limits
start to flatten. This is the mediator mass regime for which mZ′

l
< q2 = 2mNER

and the DM-nucleus scattering can be described by a long-range interaction. The
momentum transfer is then the governing quantity in denominator of the mediator
propagator and the mediator mass is expected to only have an impact at very low
recoil energies for which mZ′

l
≥ 2mNER. These low recoil energy events, however,

are surmised to lie under the 1 keV threshold of COSINUS and thus should not
affect the limits - this explains the flattening. Unexpectedly, the limits start to get
stronger again for very low mediator masses. This behaviour can also be related to
Figure 5.2, where we saw that the limits were stronger for lower values of mZ′

l
. By the

above-mentioned reasoning, the limits in the two top panels in Figure 5.2 should be
approximately on the same level of magnitude. The fact that low mediator masses
have an impact on the limit is actually a consequence of the detector resolution
included in the calculation. The light mediator mass dependence gets reintroduced
by the convolution with the energy resolution. The precise mechanics of this are
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Figure 5.4: The nuclear recoil rate for constructive bi-portal models with light mediators
of masses 0.1 MeV (solid) and 1 MeV (dashed) on a sodium iodide target. The DM particle
has a mass of 2 GeV and the couplings are chosen in such a way, that they are compatible
with the limits in the other plots shown in this chapter for COSINUS. This plot illustrates
the resolution induced enhancement of the expected event rate for light mediators.

best explained by means of Figure 5.4, where recoil spectra on NaI are shown for
0.1 MeV and 1 MeV mediators in the bi-portal model, with and without resolution.
In this plot one can see that the resolution shuffles events which are present close to
zero recoil energy far over the threshold. Thus, the 0.1 MeV mediator spectrum is a
significantly enhanced compared to the 1 MeV light mediator case if the resolution is
considered. If the resolution is not considered, than the two spectra are very similar.
In the top left panel limits are shown for the highest value of gh analysed and the
limits in the bi-portal model differ significantly from the single-light mediator limit.
For the constructive case the limits are stronger than the single light mediator line
line and the allowed region for gl is only bounded from above, as in Figure 5.1.
Independent of the mediator mass, only a very narrow band of values for gl is
allowed for the combination of DM mass and gh displayed in this panel. This is
can be explained with the same reasoning as for the upper panels of Figure 5.1:
Due to the high coupling of the heavy mediator, a certain combination of mχ and
gl can not be excluded unless the negative interference term in the matrix element
reduces the overall rate significantly enough. The slim bad of allowed gl in the
destructive case is also compatible with the limit at mχ = 10GeV in the upper left
panel of Figure 5.1. In the upper right panel the limit for the bi-portal model in
the constructive case is similar to the one in the previous panel, scaled accordingly
to the increase in gh. For the destructive case the band-like structure can again be
observed, with the band widening for lower and higher values of the mediator mass.
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At very low mZ′
l

around 0.1 MeV there is no lower limit on gl in the destructive case,
which is compatible with the limit in the upper left panel of Figure 5.2. At around
10 MeV mediator mass the band of allowed gl values widens again, quite abruptly.
This is also compatible with the limits in Figure 5.2, since the allowed span for gl

is smaller for the 1 MeV mediator than those for the 10 and 100 MeV mediators
(i.e. compare top right with bottom panels). Since this abrupt change in the limit
is consistent with the behaviour of limits calculated for the same sample with two
separate, independent routines it is very unlikely to be a computational artefact.
The next panel to analyse in Figure 5.3 is the bottom left with a heavy mediator
coupling gh = 5 × 10−14 MeV−2. This lower value of gh results in a less dominant
heavy mediator in the bi-portal model and the light mediator coupling is thus only
restricted from above in both the constructive and destructive case. Compared to
the previous panel, both limits also start to draw near the single light mediator
limit. In the bottom right panel the bi-portal limits then merge completely with
the single mediator limit, as seen in the bottom right panel of Figure 5.1. Due to
the low value of the heavy mediator coupling, the bi-portal model assumes its single
light mediator limit.

In the next step the limits for the CRESST-III like background mock data are
investigated. As mentioned above, the following limits were calculated without
taking the detector’s resolution into account, in the interest of reduced computation
time. The overall behaviour of the limits is similar to the ones obtained for the
COSINUS mock sample. In the following the analysis will thus not focus as much on
the general behavior and the reasoning of such, but more on the differences between
the CRESST-III and the COSINUS limits. Those differences stem from both the
difference in target material, but also from other detector specific parameters like
the threshold and resolution. In general, neglecting the resolution of the detector
can lead to subtle changes in the behaviour of the limits which are demonstrated
using an example at the end of this section.

In Figure 5.5 exclusion limits (95% CL) are shown in the mχ − gl plane with
the light mediator mass fixed to 10 MeV. In each of the four panels the limits were
calculated under assumption of different values for the effective heavy mediator
coupling ranging from 5 × 10−13 MeV−2 down to 1 × 10−14 MeV−2. In each panel
exclusion limits are shown for the constructive (solid line) and destructive case
(dashed line) of the bi-portal model in magenta, together with an upper exclusion
limit calculated for a single light mediator interaction (i.e. gh = 0) in black. One
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Figure 5.5: Exclusion limits (at 95% CL) on the light mediator coupling as a function of
the DM mass for a CRESST-III like mock background sample. The light mediator mass
is fixed and each panel shows limits for a different value of the effective heavy mediator
coupling. Limits in magenta are for the bi-portal model in the constructive case (solid)
and in the destructive case (dashed), in comparison to limits in black for a single light
mediator case. For the bi-portal model the non-excluded parameter space is shaded. The
threshold of the experiment is considered in the calculation but not the resolution.

can see that the general shape of the limits is similar to those for the COSINUS
sample: For the higher values of gh the bi-portal model limits differ largely from the
single mediator limit and in the destructive case gl is restricted both from above and
below. For the lower values of gh one can again observe that the bi-portal model
limits start to merge with the single light mediator limit. However, the significantly
lower threshold of the CRESST-III experiment enables probing DM masses down
to less than 0.2 GeV. Furthermore, one can observe that the band-like behaviour of
the destructive limits start to show for lower DM masses than in Figure 5.1. This
can also be explained by the lower threshold, since interference effects appearing at
low recoil energies can be taken into account. In each of the panels in Figure 5.5
there is a pronounced kink in the limit at around mχ = 0.65GeV. This corresponds
to the DM mass for which the tungsten dependent part of the recoil spectrum starts
to lie above the threshold, i.e.

ER,max(mχ = 0.65GeV) =
2µ2

Nv
2

mN

⃓⃓
N=W

> 0.031 keV. (5.13)
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Figure 5.6: Exclusion limits (at 95% CL) on the light mediator coupling as a function
of the DM mass for a CRESST-III like mock background sample. The effective heavy
mediator coupling gh is fixed at 1 × 10−13 MeV−2 and each panel shows the limits for a
different value of the light mediator mass. Limits are shown for the bi-portal model in
the constructive case (magenta solid) and in the destructive case (magenta dashed). The
non-excluded parameters space is shaded respectively. The threshold of the experiment is
considered in the calculation but not the resolution.

The limits for the CRESST-like mock sample in Figure 5.6 do largely resemble
those for the COSINUS like sample in Figure 5.2. In Figure 5.6 exclusion limits (at
95% CL) for the CRESST-III mock background sample are shown in the mχ − gl

plane, but this time the effective coupling of the heavy mediator is fixed, while
in each panel mZ′

l
varies. Only limits in the bi-portal model are shown and non-

excluded regions are again shaded. As in the case of COSINUS, the limits on gl

increase with increasing mediator mass due to the inverse probability to mZ′
l

in the
matrix element calculation. However, the limits for the 0.1 MeV and 1 MeV mediator
(top panels) are of almost equal strength. This is the first fundamental difference
between the two experiments, as for COSINUS the limits for the 0.1 MeV mediator
are almost two orders stronger, than the 1 MeV mediator limits (compare with
Figure 5.2). As argued in the description of Figure 5.3, the behaviour of the CRESST
limits, where the resolution is not considered, is actually what one would expect for
light mediators were the momentum transfer becomes the governing quantity in the
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interaction. The other fundamental difference between the two experiments is, that
for the CRESST-III sample gl is also restricted from below for the lightest mediator
mass shown mZ′

l
= 0.1 MeV. As frequently stated in the above, very low mediator

masses lead to high rates at low recoil energies. While the COSINUS experiment
would not be sensitive to those events, the CRESST-III experiment is, due to its
lower threshold. These additional events taken into account lead to the lower limit
on gl in the destructive case (i.e. with gl too low the destructive interference term
is not large enough to sufficiently suppress the rate).

Also for the CRESST-III mock background sample, the mZ′
l
− gl-plane is being

analysed. Limits in this plane for fixed DM mass and varying heavy mediator
coupling are shown in Figure 5.7. The limits for the bi-portal constructive case
(solid) and destructive case are displayed in magenta, together with a single light
mediator limit in black. For the bi-portal model the non-excluded parameter space
is shaded accordingly. The overall behaviour is again very similar to the limits
for the COSINUS background sample: For higher values of gh the limits on gl in
the constructive bi-portal model are significantly stronger than the single mediator
model. On the contrary the destructive case limits are weaker and form band-like
structures. For lower values of gh the bi-portal limits merge with the single light
mediator limit and also in the destructive case gl is only restricted from above.
Moreover, similar to Figure 5.3, in the upper right panel of Figure 5.7 the band of
allowed values for gl starts to widen for mediator masses larger than about 10 MeV.
This is also consistent with the width of the bands in Figure 5.6. At mχ = 10GeV
the band in the 100 MeV mediator panel is wider than the band at the same DM
mass in the other panels. The most striking difference between the limits in the
mZ′

l
− gl plane for the COSINUS-like and the CRESST-like samples is the general

behaviour of the limits, in both the two mediator and single mediator case, at low
mediator masses. While the limits on gl tend to fall towards lower mZ′

l
in Figure 5.3,

in Figure 5.7 the limits start to flatten out for mediator masses lower than 1 MeV.
As mentioned above, this flattening behavior is expected as the resolution of the
detector was not taken into account and light mediator masses thus have next to no
impact on the recoil spectra and the behaviour of the limits.

Some of the above-mentioned differences between the limits for COSINUS and
CRESST-III could already be traced back to the fact that the resolution was not
taken into account in the calculation for the CRESST-like limits. To further analyse
the possible differences disregarding the resolution might cause, limits which were
calculated with and without resolution for a CRESST-like mock background sample
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Figure 5.7: Exclusion limits (at 95% CL) on the light mediator coupling as a function of
the light mediator mass for a COSINUS-like mock background sample. The DM mass is
fixed at 10 GeV and each panel shows the limits for a different value of the heavy mediator
coupling. Limits are shown for the bi-portal model in the constructive (magenta solid) and
the destructive case (magenta dashed), in comparison to limits for a single light mediator
case (black). For the bi-portal model the non-excluded parameter space is shaded. The
threshold of the experiment is considered in the calculation, but not the resolution.

are shown in Figure 5.8. In the left panel the limits are for the constructive case
of the bi-portal model, while in the right panel limits for the destructive case are
shown. Limits calculated without resolution are displayed in magenta, those cal-
culated with the resolution of σ = 0.0046 keV are displayed in green. The general
impression is that when taking into account the resolution, the limits are smoothed
out and irregularities, such as the kink around mχ = 6.5 GeV, are weakened in
their shape. Moreover, the impact of the resolution is higher for lower DM masses
(at least for upper exclusion limits), which is consistent with the statements made
in the appendix, section B.2. The limits calculated with the resolution reach lower
DM masses than those calculated without. This is due to the fact, that while in
the calculation without resolution simulated events with a recoil energy lower than
the threshold are rejected, in the calculation with resolution simulated events are
rejected if their true deposited energy is lower than Ethr − 2σ. The most significant
difference can be seen in the right panel for the destructive case. For higher DM
masses the lower limit on gl is significantly stricter, when being calculated without
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Figure 5.8: Exclusion limits (at 95% CL) in the bi-portal model on the light mediator
coupling as a function of the DM mass for a CRESST-III like mock background sample.
The DM mass is fixed at 10 GeV and the effective coupling of the heavy mediator at 1×
10−13 MeV−2. The limits in green were calculated taking the resolution of the experiment
into account, while in the calculation of the pink limits the resolution was neglected. In
the left panel limits for the constructive case of the bi-portal model are shown, while in the
right panel limits for the destructive case are displayed. The threshold of the experiments
was also taken into account.

the resolution, i.e. the band between pink lines is narrower than the green band.
When probing the destructive case one thus has to take care of the resolution, in
order to not put too restrictive limits on the coupling of the light mediator.

To summarize, the preliminary calculation of limits described in the last section,
showed that the bi-portal model does indeed yield novel shaped limits for various
DM specific parameters. Due to the four free parameters of the model, limits could
only be calculated in two parameters at the same time while fixing the other two.
Nevertheless, the limits for a specific target in different planes are compatible with
each other. As in the calculation of recoil spectra in chapter 3, also in the calculation
of exclusion limits one can observe that for very high (low) values of gh the bi-
portal model assumes its marginal cases of single heavy (light) mediator interaction
respectively.
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Conclusion and outlook

The aim of this thesis was to investigate the implications of adding a second medi-
ator particle to the DM-SM interaction, in particular in the context of DM direct
detection. In the first chapter an overview of the evidence for DM and possible
DM candidates was given. In addition, the three main approaches to DM detection
were described. Moreover, the differential recoil spectrum was introduced as one of
the most important tools to relate results from direct detection to theoretical DM
interaction models.

The second chapter was dedicated to the precise analysis of the interaction pro-
cess between SM nucleus and DM particle in a direct detection experiment. In the
first half of this chapter the DM scattering of nuclei via different types of media-
tors was investigated, restricting ourselves to spin-independent interaction models.
Throughout this section it became apparent, that one has to distinguish between a
heavy (q2 ≪ m2

φ′) and a light mediator case (q2 ≥ m2
φ′) in the calculation of cross sec-

tions. This necessary distinction was then illustrated by comparison of recoil spectra
for the two different cases. The concepts established in the first half of chapter two
were then extended in the second half by adding a second mediator to the interac-
tion. In the bi-portal model the interaction is then mediated by one heavy and one
light particle and the simplified Lagrangian of the theory is given by the sum of the
two single mediator Lagrangians. The cross sections were then calculated for two
combinations of mediators: first for two vector mediators of different mass and then
for a combination of a heavy scalar and a lighter vector mediator. In the calculation
of the squared matrix element an interference term arises, which suggests a subdi-
vision of the bi-portal model in two cases. For a combination of couplings which
brings forth a positive interference term we speak of the constructive interference
case, otherwise of a destructive interference case. A fist analysis of recoil spectra gen-
erated from the two mediator model showed, that both constructive and destructive
case lead to spectra which are distinguishable from single-mediator cases. While the
differences for the constructive case are rather subtle, a negative interference term
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can lead to prominent dips and kinks in the recoil spectra. Moreover it was shown
that, while interference effects appear for various target materials, their shapes and
positions vary strongly between different targets. In the last part of chapter 2 it was
argued both through calculation and graphically, that we can restrict ourselves to
the combination of two spin-1 mediators in the rest of the analysis.

With the bi-portal model being the centerpiece of this work, the third chapter
was devoted entirely to a detailed analysis of the recoil spectra it predicts for a
sodium iodide target. For both the constructive and destructive case, the differential
recoil rates were scrutinized regarding their behaviour under change of various model
parameters, like masses and couplings. It was shown, that interference effects are
present throughout various DM and mediator masses. However, they disappear if
the mass of the light vector mediator becomes too large. Moreover, the position
and depth of the destructive interference effects are sensitive to small variations of
the couplings. The analysis also demonstrated, that if the coupling of one mediator
significantly exceeds the other mediator’s coupling the interaction is only mediated
by the stronger coupled particle. In this way the bi-portal model can assume a single
light or a single heavy mediator limit. Most importantly, it was shown at the end
of chapter three, that probing the signatures of the bi-portal model with mediator
mass hierarchy is at reach for current experiments with a high enough resolution.

So far direct detection experiments have not published any unchallenged excess,
which the bi-portal model could be compared against. Thus, the impact of low
threshold experiments on the exclusions obtained for bi-portal models was also in-
vestigated. The necessary concepts and methods used in order to find exclusion
limits from a maximum likelihood approach are described in chapter 4 and the first
half of chapter 5. Indeed, the exclusion limits from COSINUS- and CRESST-III like
mock samples for the bi-portal model differ significantly from the compared single
light mediator limit. One of the most interesting behaviours is observed for the
destructive bi-portal case, where, for a fixed heavy mediator coupling, the coupling
of the light mediator can be restricted both from above and below for certain DM
masses. Moreover, the investigated limits in the light mediator mass - light mediator
coupling plane, also showed behaviour different from the single light mediator case.

A next possible step in the analysis of the bi-portal model could be to improve
this limit calculation. An upgrade could focus both on the computational aspects
of the minimization, as well as on the inclusion of nuisance parameters. Possible
variables which could be included as nuisance parameters are the DM density, the
galactic escape velocity and other astrophysical as well as detector specific quantities.
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The next logical step is also to do the analysis with real experimental data instead of
mock background samples. Moreover, another refinement could be a parallel study
of different materials and experiments, i.e. calculating limits based not only on data
from one, but a combination of several experiments.

The found exclusion limits in mZ′
l
−gl plane suggest another possible extension of

this work, namely the comparison with limits in this plane from collider experiments.
However, one has to be very careful when attempting this comparison due to several
reasons. First of all, the majority of the particle physics calculation used in the
generation of this work’s exclusion limits was done in a low-energy limit. Many
simplifications used, like integrating out the heavy mediator, are thus not applicable
for collider searches. Moreover, the axial-vector contribution to the Lagrangian
which was neglected in this work, might be of significant impact on the cross sections
relevant for DM production in the collider.

Finally, there is another concept which should be looked into, in order to attest
the bi-portal model as a viable DM-SM interaction mechanism. In the first chapter
of this thesis it was stressed, that a viable DM candidate has to be able to explain
the DM relic density measured in the Universe today. Since the relic density depends
on the DM annihilation cross-section, the precise DM-SM interaction process plays
into the calculation. One thus has to check, if an interaction model with two spin-1
mediators leads to a compatible DM relic density and for which span of DM and
mediator masses. If the bi-portal model does indeed predict the right relic density,
nothing stands in the way of further testing of the model, also with real data from
direct detection experiments.

Within this thesis, we have thus shown that bi-portal models with hierarchy in
mediator masses offer a rich phenomenology. To this end, we constructed simplified
Lagrangians and studied their effect in the context of direct detection experiments.
We showed a possible range of mediator masses and couplings where the limits from
bi-portal models significantly differ from single mediator models. We furthermore
identified several other unexplored aspects of phenomenology, which will be the
subject of future work.
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Appendix A

Particle Physics

A.1 Recoil energy and minimum velocity

In order to calculate the velocity integral in the differential recoil spectrum the
minimum velocity vmin of a WIMP, that can induce a nuclear recoil of energy ER,
is needed. For this calculation it is advantageous to first find an expression for
the recoil energy ER = q2

2mN
produced in the scattering process in terms of the

scattering angle and the WIMP velocity. The calculation is done in the center of
mass (COM) frame sketched in Figure A.1 and the NR limit is considered. With
the nucleus at rest and the incoming DM particle velocity v⃗ in the lab frame, the
initial three-momenta in the COM frame are

k⃗COM = −mN v⃗COM (A.1)

p⃗COM = mχv⃗ − v⃗COM = mN v⃗COM. (A.2)

In the above vCOM denotes the COM velocity which is given by

v⃗COM =
mχv⃗ +mN · 0
mχ +mN

=
µN v⃗

mN

. (A.3)

with µN denoting the reduced DM-nucleus mass.

The definition of the momentum transfer q⃗ = p⃗− p⃗′ = k⃗′− k⃗ can be used in order
to find the final momenta in the COM frame:

k⃗′
COM = q⃗ + k⃗ = q − µN v⃗ (A.4)

p⃗′COM = p⃗− q⃗ = µN v⃗ − q = −k⃗′
COM (A.5)
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Figure A.1: Sketch of the DM-nucleus scattering in the COM frame.

From the above definitions of the momenta, together with momentum conservation
|p⃗|+ |⃗k| = |p⃗′|+ |k⃗′|, one can deduce that |p⃗| = |p⃗′|. The squared momentum transfer
as a function of the scattering angle θ in the COM frame is thus given by

|q|2 = |p⃗− p⃗′|2

= 2(|p⃗|2 − p⃗ · p⃗′)

= 2|p⃗|2(1− cos θ)

= 2µ2
Nv

2(1− cos θ) (A.6)

Equation (A.6) can be used to find an expression for the recoil energy and maxi-
mization in θ gives an upper bound on ER:

ER =
q2

2mN

=
µ2
Nv

2

mN

(1− cos θ) ≤ 2µ2
Nv

2

mN

(A.7)

The minimum velocity with which a WIMP has to enter the detector in order to
produce a nuclear recoil of energy ER is thus given by

vmin =

√︄
mNER

2µ2
N

, (A.8)

and depends both on the target nucleus and the DM particle mass.

90



A.2 NR Dirac spinors
In this section useful spinor identities in the non-relativistic limit are calculated. The
Weyl basis is chosen for the gamma matrices γµ, γ5 following the book by Peskin
and Schroeder [55]. In the NR limit the time-component of a four momentum p is
approximately the mass of the particle p0 ≈ m. Thus

√
p · σ ≈

√︁
m− p⃗ · σ⃗ ≈

√
m

(︃
1− p⃗ · σ⃗

2m

)︃
(A.9)√︁

p · σ ≈
√︁

m+ p⃗ · σ⃗ ≈
√
m

(︃
1 +

p⃗ · σ⃗
2m

)︃
, (A.10)

using a Taylor expansion in the last step. The independent spinor solutions u, v to
the Dirac equation then reduce to

us(p) =

(︄√
p · σξs√
p · σξs

)︄
NR−−→
√
m

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠ (A.11)

vs(p) =

(︄ √
p · σξs

−
√
p · σξs

)︄
NR−−→
√
m

⎛⎝ (︂
1− p⃗·σ⃗

2m

)︂
ξs

−
(︂
1 + p⃗·σ⃗

2m

)︂
ξs

⎞⎠ . (A.12)

In the calculation of the matrix element for DM-nucleus scattering mediated by a
scalar particle, terms of the form us′(p

′)us(p) are needed:

us′(p
′)us(p) = u†

s′(p
′)γ0us(p)

=
√
m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
0 12

12 0

)︄
√
m

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︂(︂
1 + p⃗′·σ⃗

2m

)︂
ξ†s′

(︂
1− p⃗′·σ⃗

2m

)︂
ξ†s′
)︂
·

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︄
1− p⃗ · σ⃗

2m
+

p⃗′ · σ⃗
2m

− p⃗′ · p⃗ · σ⃗2

4m2
+ 1 +

p⃗ · σ⃗
2m
− p⃗′ · σ⃗

2m
− p⃗′ · p⃗ · σ⃗2

4m2

)︄
ξ†s′ξs

≈ 2mξ†s′ξs (A.13)
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The calculation for a vector mediator is quite similar, but one has to perform a
distinction of cases for temporal and spatial components of the γµ matrix involved:

us′(p
′)γµus(p) = u†

s′(p
′)γ0γµus(p)

=
√
m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
0 12

12 0

)︄(︄
0 σµ

σµ 0

)︄
√
m

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
µ = 0 : = m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
0 12

12 0

)︄(︄
0 12

12 0

)︄⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︂(︂
1− p⃗′·σ⃗

2m

)︂
ξ†s′

(︂
1 + p⃗′·σ⃗

2m

)︂
ξ†s′
)︂(︄12 0

0 12

)︄⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
≈ 2mξ†s′ξs

µ = k : =
√
m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
0 12

12 0

)︄(︄
0 σk

−σk 0

)︄⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
−σk 0

0 σk

)︄⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︂
−
(︂
1− p⃗′·σ⃗

2m

)︂
σkξ†s′

(︂
1 + p⃗′·σ⃗

2m

)︂
σkξ†s′

)︂⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= 0

us′(p
′)γµus(p) = 2mξ†s′ξsδ

0µ (A.14)

For completeness we also have a look at the axial scalar case:

us′γ
5(p′)us(p) = u†

s′(p
′)γ0γ5us(p)

=
√
m

⎛⎝(︂1− p⃗′·σ⃗
2m

)︂
ξs′(︂

1 + p⃗′·σ⃗
2m

)︂
ξs′

⎞⎠†(︄
0 12

12 0

)︄(︄
−12 0

0 12

)︄
√
m

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︂
−
(︂
1 + p⃗′·σ⃗

2m

)︂
ξ†s′

(︂
1− p⃗′·σ⃗

2m

)︂
ξ†s′
)︂
·

⎛⎝(︂1− p⃗·σ⃗
2m

)︂
ξs(︂

1 + p⃗·σ⃗
2m

)︂
ξs

⎞⎠
= m

(︄
−1 + p⃗ · σ⃗

2m
− p⃗′ · σ⃗

2m
+

p⃗′ · p⃗ · σ⃗2

4m2
+ 1 +

p⃗ · σ⃗
2m
− p⃗′ · σ⃗

2m
− p⃗′ · p⃗ · σ⃗2

4m2

)︄
ξ†s′ξs

= (p⃗′ − p⃗) · σ⃗ξ†s′ξs (A.15)
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If us, us′ are spinors for the DM Dirac fermion the above expression amounts to
us′γ

5(p′)us(p) = −q⃗ · s⃗χ and the NR scattering amplitude is thus proportional to the
momentum transfer. Also for the axial-vector and axial-scalar case dependencies
on the momentum transfer or the incoming DM velocity appear in the NR scatter-
ing amplitude. This behaviour is consistent with the NR operators in Table 2.1.
Interactions with axial type mediators are not further investigated in this work.

A.3 Conversion factor for the nuclear recoil rate

For DM direct detection experiments the nuclear recoil rate is usually given events
per kg target material per keV recoil energy per days exposure. Since many of the
parts used within the calculation of the recoil spectra are deduced in natural units,
one has to find an appropriate conversion factor. The nuclear recoil rate is of the
form

dR

dER

=
ρχ

2πmχ

g2tot(ER)F
2(ER)

∫︂ vmax

vmin

dv
¯f(v)

v⏞ ⏟⏟ ⏞
Ivmin

(A.16)

with g2tot depending on the DM-nucleus interaction model according to Table A.1.
All couplings gh′ , gZ′ , gh, gl in Table A.1 dimensionless (here gh is not an effective
coupling), mediator masses are usually given in MeV and the DM particle mass in
GeV. The various quantities are thus inserted in the recoil spectrum calculation with
the following units:[︂

ρχ

]︂
=

GeV
c2cm3

,
[︂
mχ

]︂
=

GeV
c2

,
[︂
F 2(ER)

]︂
= 1[︂

Ivmin

]︂
=

s

km
,

[︂
g2tot

]︂
=

c8

MeV4

The calculation of the conversion factor is performed in natural units (c =

ℏ = G = kB = 1)). Let us define the following constants ccc := 299 792 458,
ℏℏℏ := 6.582 119 569× 10−16 and eee := 1.602 176 634× 10−19 representing the numerical
values of the speed of light in m s−1, the reduced Planck constant in eV s and the
electron charge magnitude in C [31].
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Table A.1: gtot for various DM-nucleus interaction models as described in chapter 2.

interaction model gtot

single scalar mediator h′ G(mh′ , ER)gh′ [Z cosϑ+ (A− Z) sinϑ]

single vector mediator Z ′ 3A,G(mZ′ , ER)gZ′

bi-portal model Z ′
h, Z ′

l 3A

[︃
gh

m2
Z′
h

+ gl
m2

Z′
l
+q2

]︃

In a first step the unit of the differential recoil rate is rewritten in terms of eV[︄
dR

dER

]︄
=

GeV
cm3

GeV
1

MeV4

s
km

= 10−21 s

m4 eV4 (A.17)

using 1 s = ℏℏℏ−1 eV−1 and 1m−1 = ℏℏℏccc eV:

= ℏℏℏ3ccc4 × 10−21 1

eV
(A.18)

In the next step another conversion is needed in order to regain the units of seconds
and kg:

1 = 1 eV× 1

1 eV
= ℏℏℏ s× eee

ccc2
kg (A.19)

This leads to [︄
dR

dER

]︄
=

ℏℏℏ2ccc6

eee
× 10−21 1

kg s eV
(A.20)

and in a final step one converts seconds to days and eV to keV:

= 86400× ℏℏℏ2ccc6

eee
× 10−18 1

kg d keV

≈ 1.696× 1026
1

kg d keV
(A.21)
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A.4 Estimates for the couplings g from DM direct
detection limits

In order to estimate the size of the couplings gl, gh defined in chapter 2 for light
and heavy mediators, differential recoil rates computed from cross section (2.32) are
compared to recoil rates originating from the spin-independent nucleon-DM refer-
ence cross section (2.36). For the calculation a value of the nucleon cross section of
σn = 1 × 10−8 pb = 1 × 10−44 cm2 is used, which is comparable to the limits pub-
lished in 2016 by the XENON100 [89] and LUX [90] experiments for a 10 GeV DM
particle. More recently published results give more stringent upper limits on the
cross section in this DM mass scale, for example from the XENON1T experiment
[15]. The chosen value for σn and the resulting approximation of the couplings thus
might result in an over-prediction of expected events, but it is still gives a good first
estimate.

In Figure A.2 (a) the comparison for a light vector mediator exchange shows that
gl = 1× 10−12 is an appropriate choice for this coupling for a 10 GeV DM particle.
For the heavy mediator case displayed in Figure A.2 (b) a coupling of gh = 1×10−10

gives a comparable rate to the one resulting from the reference cross section. The
heavy coupling thus has to be 2 orders higher than the equivalent light coupling for
fixed DM mass and σn. This is due to the mediator mass dependence in the matrix
element in (2.32), which for a 10 MeV and 100 MeV mediator results in a scaling
factor of precisely 102 = (mZ′

l
/mZ′

h
)2.

(a) (b)

Figure A.2: Differential recoil rate for interaction via a 10 MeV light vector mediator (a)
and a 100 MeV heavy vector mediator (b) on a sodium iodide target. The spectra in green
and blue were calculated using equation (2.32) and the spectra in magenta were calculated
from equation (2.36).
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Appendix B

Computational remarks

B.1 Generating mock data

Exclusion limits on certain parameters of DM-SM interaction models can be either
calculated from real experimental data or in case of this work from a mock sample.
For exclusion limits one assumes that no DM signal was observed and the measure-
ments made were strictly from background events. Therefore, the mock data sample
has to be drawn only from the distribution of the background and the signal is not
considered. For a flat background, as assumed for some DM direct detection exper-
iments, the background can thus be generated using the uniform random number
generator provided by the numpy [91] package. For a linear falling background the
triangular random number generator can be used.

However, the procedure is more complicated if the resolution of the detector is
taken into account. The background sample can then not be generated with a ran-
dom number generator available in some python package but the so called inverse
transform method has to be used. This is a method which can be applied when the
background distribution is one-dimensional. The method uses the cumulative dis-
tribution function (CDF), which can be expressed as the integral of the probability
density function f(x):

F (x) =

∫︂ x

−∞
f(t)dt (B.1)

The inverse of the CDF F (x) is then defined by [92]

F−1(u) = inf{x ∈ R|F (x) ≥ u} (B.2)

for all u ∈ (0, 1). If F is a bijective function, F−1 is just the usual inverse and the
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inverse transform method can be applied directly.
In the case of drawing from a background sample convoluted with a Gaussian

resolution, evaluation the CDF and its inverse can not be directly done. Instead the
generation of background events follows the subsequent procedure:

1. For a certain background model the expected total number of events Nb is
calculated taking threshold, resolution and exposure ε of the experiment into
account. The probability density function is then f(ER) = (ε dRb

dER
)/Nb.

2. For an array of recoil energies E = [ERi
, . . . ERn ] the CDF F (ER) is calculated

using numerical integration. The energy values in the array are evenly spread
from the experimental threshold to the upper limit of the region of interest.
This array has to be large enough in order to get a correctly distributed sample
- in this work n ≈ 1× 105.

3. From a Poissonian distribution of mean Nb a number Nb,rand is drawn.

4. Nb,rand random numbers u are drawn from a uniform distribution .

5. To each u an element of the energy array is matched, such that

F 1(u) = inf{ER ∈ E|F (ER) ≥ u}.

The array of matched energies is then the random sample.

B.2 Detector resolution and low DM masses

In a direct detection experiment, the detector is only sensitive to DM masses for
which the maximum deposited recoil energy is higher than the threshold. The
maximum recoil energy a DM particle of mass mχ can deposit in a target material
of nuclear mass mN is given by the maximum of equation (A.7)

ER,max(mχ) =
2µ2

Nv
2

mN

. (B.3)

Due to inverse proportionality in mN , the maximum recoil energy for composite
targets is calculated using the nuclear mass of the lightest component.

Whenever the resolution of an experiment is considered, the convolution with
the Gaussian distribution of σ results in a falsification of the maximum recoil energy.
This effect is especially significant for very light DM particles with masses mχ ≤ 1

GeV. In Figure B.1 this effect is shown on a sodium iodide target for a 0.6 keV DM
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Figure B.1: NRS on sodium iodide for a 0.6 GeV DM particle interacting with the SM
via a single heavy vector mediator. The graphic illustrates how the energy resolution of a
detector can shuffle predicted events over the threshold.

particle which interacts with the SM via one heavy vector mediator. For the recoil
spectrum in magenta no detector resolution was considered, resulting in a maximum
recoil energy of 0.221 keV lower than the threshold of Ethr = 0.3 keV. The spectrum
in green was calculated assuming a Gaussian energy resolution of σ = 0.05. For the
same mass the spectrum in green predicts events above the threshold. Thus low
DM masses may be considered in the analysis to which the detector is actually not
sensitive. In order to avoid this, simulated events with a true (reconstructed) energy
smaller than Ethr − 2σ are rejected, similar to the procedure used in the analysis
of CRESST-III data [14]. For the example in Figure B.1 this implies that a DM
mass of 0.6 keV would still be included in the ML exclusion limit analysis. It should
be noted here, that the choice of two sigma made by the CRESST group is rather
conservative in comparison to the choice of three sigma used in other experiments.

B.3 Minimization process

In the calculation of exclusion limits with a maximum likelihood approach, as de-
scribed in chapter 4, the negative log-likelihood function has to be minimised in
several steps. Although no nuisance parameters are involved in the analysis and
the available parameter space for the analysis is thus rather small, the minimisation
procedure has to be handled with care. The biggest problem lies within the fact,
that due to the complexity of the problem the likelihood function might have more
than local one minimum. Especially when fitting one or both couplings, there may
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be multiple combinations for which a high likelihood is achieved. In order to achieve
a global minimization an algorithm similar to the Basin-Hopping algorithm was cre-
ated. The Basin-Hopping method was initially used to find minima in the energy
structure of Lennard-Jones potentials for cluster containing a high number of atoms
[93]. In the modified version no starting value is needed, instead various starting
points are randomly distributed over the parameter space. In the next step a local
minimization is performed and the initial position in the parameter space is either
rejected or accepted depending on the minimized function value. The hopping algo-
rithm is run with a rather low precision in order to safe computation time. Having
found a first estimate for the global minimum given by the smallest of the minima
resulting from the hopping algorithm, another minimization using the Nelder-Mead
method [94] is performed in order to increase the precision of the minimum.

The hopping algorithm is a ”self-made” simplified version of the Basin-Hopping
algorithm and is therefore probably not quite as effective as a published global op-
timization method. In the course of further improvements to the exclusion limit
calculation program, it is thus advisable to use some open-source global optimiza-
tion. A promising option is particle swarm optimization, a method which takes
inspiration from the flocking behaviour of birds. A respective Python package is
also available [95, 96].

B.4 Finding limits with bisection

In the last step of the calculation of exclusion limits for a 95% confidence level,
those µ (i.e. free parameters of the likelihood which are not nuisance parameters)
for which the condition

qµ ≤ 3.841 (B.4)

holds, where qµ is a test function. More precisely, for µ being one-dimensional, one
wants to find the upper and lower limits of the interval of µs which fulfill (B.4).
When investigating the constructive case of the biportal model, the test statistic
as a function of µ = gl is given by a positive, monotonically increasing function.
Thus only an upper limit for gl can be found. For the destructive case qµ(µ) follows
approximately the function displayed in Figure B.2, an upper and a lower limit can
be found.

A simple way to find these minima can be achieved with a bisection-like proce-
dure. For the constructive case, the space of available values for µ has to be scanned
for that value at which qµ(µ) > 3.841 for the first time. This can be achieved with
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Figure B.2: A sketch of the one-dimensional test statistic as a function µ = gl in the
destructive case of the bi-portal model. The function is shown together with a portrayal
of the bisection method established in order to find the lower limit on gl.

the Python function rbisection() printed at the end of this section. Since qµ̂ = 0

the ML estimate µ̂ can be used for the input parameter minx in this function. More-
over, if the range of possible µ spans multiple orders (like in the case of gl) it can
be advantageous to replace the calculation of the mean in line 48 by the geometric
mean x1*np.sqrt(x0*x1).

In the destructive case the bisection is just performed “to the other direction”,
thus maxx is now given by µ̂. The procedure is sketched in Figure B.2 and can be
realised in Python with the function lbisection printed below.
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1 def r b i s e c t i o n ( funct ion , func_args , val , minx , maxx , ∗∗ kwargs ) :
2 ”””
3 A t t r i b u t e s
4 −−−−−−−−−−
5 f unc t i on : c a l l a b l e
6 The o b j e c t i v e f unc t i on f o r which x0 shou ld be found .
7 func_args : t u p l e
8 Extra arguments passed to the o b j e c t i v e func t i on .
9 v a l : f l o a t

10 Value f o r which the argument shou ld be found .
11 minx : f l o a t
12 Minimum argument o f searched i n t e r v a l .
13 maxx : f l o a t
14 Maximum argument o f searched i n t e r v a l .
15 sep : f l o a t , o p t i o n a l
16 Maximum r e l a t i v e d i f f e r e n c e between the found argument
17 x0 and the next b i s e c t i o n va lue x1 , f o r the b i s e c t i o n
18 to e x i t s u c c e s s f u l l y ( prec i s i on , d e f a u l t : 1 .001)
19 maxiter : f l o a t , o p t i o n a l
20 The maximum number o f b i s e c t i o n s t e p s ( d e f a u l t : 50) .
21
22 Returns
23 −−−−−−−−−−
24 succe s s : boo l
25 I f the b i s e c t i o n was s u c c e s s f u l l or terminated b e f o r e
26 s u f f i c i e n t p r e c i s i o n was reached .
27 x0 : f l o a t
28 Found argument .
29 i t : i n t
30 Number o f performed i t e r a t i o n s
31 ”””
32
33 # read out kwargs
34 i f ’ sep ’ in kwargs :
35 sep = kwargs . get ( ’ sep ’ )
36 else :
37 sep = 1.001
38 i f ’ maxiter ’ in kwargs :
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39 maxiter = kwargs . get ( ’ maxiter ’ )
40 else :
41 maxiter = 50
42
43 count = 0
44 s u c c e s s = False
45 x0 = minx
46 x2 = maxx
47 while count < maxiter :
48 x1 = ( x2−x0 )/2+x0
49 f1 = func t i on ( x1 , ∗ func_args )
50 i f f 1 <= val :
51 i f x1 <= sep ∗x0 :
52 s u c c e s s = True
53 break
54 else :
55 x0 = x1
56 else :
57 x2 = x1
58 count += 1
59
60 r e s u l t = Bi s e c tResu l t ( s u c c e s s = succes s , x0 = x0 , i t =

count )
61 return r e s u l t
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1 def l b i s e c t i o n ( funct ion , func_args , val , minx , maxx , ∗∗ kwargs ) :
2 ”””
3 A t t r i b u t e s
4 −−−−−−−−−−
5 as f o r r b i s e c t i o n
6 ”””
7 # read out kwargs
8 i f ’ sep ’ in kwargs :
9 sep = kwargs . get ( ’ sep ’ )

10 else :
11 sep = 1.001
12 i f ’ maxiter ’ in kwargs :
13 maxiter = kwargs . get ( ’ maxiter ’ )
14 else :
15 maxiter = 50
16
17 count = 0
18 s u c c e s s = False
19 x0 = minx
20 x2 = maxx
21 while count < maxiter :
22 x1 = ( x2−x0 )/2+x0
23 f1 = func t i on ( x1 , ∗ func_args )
24 i f f 1 <= 0 :
25 i f x1 <= sep ∗x0 :
26 s u c c e s s = True
27 break
28 else :
29 x2 = x1
30 else :
31 x0 = x1
32 count += 1
33
34 r e s u l t = Bi s e c tResu l t ( s u c c e s s = succes s , x0 = x0 , i t =

count )
35 return r e s u l t
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