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A B S T R A C T

This master thesis is composed of two loosely related topics. In the first part, we discuss
properties of the effective geometry obtained in the semi-classical limit N → ∞ of
squashed CP 2

N . In particular, we obtain an expression for the effective metric in toric
coordinates. The second part deals with fluctuations of both, the squashed CP 2

N and S2
N

background. We show that, on the one hand, for the bosonic sector of the IKKT-model
with an additional mass term and quartic interaction, the fluctuation operator of the
squashed CP 2

N exhibits unphysical negative modes. On the other hand however, the
vector fluctuation operator for the bosonic sector of the IKKT-model augmented by a
radially symmetric potential can indeed be stabilized.

Z U S A M M E N FA S S U N G

Diese Masterarbeit behandelt zwei lose zusammenhängende Themenfelder. Im ersten
Teil widmen wir uns den Eigenschaften der effektiven Geometrie, die sich im semi-
klassischen Grenzwert N →∞ des „squashed CP 2

N“ ergeben. Speziell konstruieren wir
torische Koordinaten, in denen sich die effektive Metrik effizient explizit angeben lässt.
Im zweiten Teil behandelen wir Fluktuationen über sowohl „sqashed CP 2

N“ als auch
über S2

N . Es zeigt sich, dass – im Falle des bosonischen Sektors des IKKT-Modells mit
ergänztem Masseterm und quartischem Wechselwirkungsterm – der Fluktuationsoperator,
der sich für den „squashed CP 2

N“ ergibt, unphysikalische negative Eigenwerte besitzt.
Bemerkenswerterweise weißt der Fluktuationsoperator für Modelle mit allgemeinem Po-
tential und S2

N -Hintergrund im Gegensatz dazu ausschließlich nicht-negative Eigenwerte
auf.
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1
I N T R O D U C T I O N

In the twentieth century the physics community witnessed a couple of major breakthroughs
that shaped our understanding of nature on a fundamental level. The framework of
general relativity, developed by Albert Einstein, presented a powerful machinery for
predicting the motion of celestial objects and further the evolution of space-time itself,
in the language of differential geometry. In parallel to these advances in cosmological
mechanics, the prevailing conception of the laws of nature on a microscopic level was
challenged by quantum mechanics. This ultimately led to the development of quantum
field theory and what we now refer to as the standard model.
Despite the great success of both theories, it still remains an open problem how

these two frameworks can be consistently combined to an overarching theory containing
the interactions of all four fundamental forces. This is partly due to the conceptual
differences of quantum field theory and general relativity. Whereas the latter purely
relies on geometry, where each event can be localized at an arbitrarily small scale, the
former theory implements uncertainties that impose lower bounds on such a localization
process. In an oversimplified argument [1] one can argue that localizing an object at a
scale ∆x requires the wave-numbers to be of the order of magnitude k ∼ 1/∆x which
translates to an energy of the order E ∼ h̄/∆x. In general relativity, this energy
corresponds to a Schwarzschild radius of rs = h̄G/∆x and hence ∆x ≥ rs. Although
this argument has to be taken with a grain of salt, there exist more elaborate arguments
that suggest such uncertainty relations for space-time coordinates[2]. In any case, these
physically motivated arguments strongly suggest the need for an enhanced theory of
fundamental interactions. Unfortunately, the strategies that have shown great success in
the electro-weak and strong sector do not translate seamlessly to gravity. In particular,
general relativity is non-renormalizable [3]. This turns out to become problematic in
the treatment of IR- and UV-divergences in the computation of higher-order Feynman
diagrams. This alludes to the conjecture that we are still lacking the missing link between
gravity and QFT.

There has been a lot of effort put into finding suitable candidates which may accomplish
this task. Some have taken a radically different approach. Among the more popular
theories are string theory and quantum loop theory. In this thesis we discuss another
model, namely non-commutative geometry as implemented by matrix models. In fact
the idea of non-commutative geometry dates back to the very beginnings of quantum
mechanics. For an early discussion of a quantized space time, see for instance [4]. Alas,
the idea lay dormant for roughly half a century and it was not until the 80s and early
90s that this approach saw a newly increase in interest again with the works of Connes,
Woronowicz and others [5, 6, 7].

The most general formalism of non-commutative spaces is expressed in the language
of abstract C∗-algebras. In this text, we consider a more tangible subdomain, namely
Matrix models. In particular we study certain geometrical aspects of the squashed CP 2,
the squashed fuzzy projective plane [8]. On top of that, we study the bosonic sector of
the IKKT model [9] complemented by a radial potential. We show that the fuzzy sphere
constitutes a stable solution of this model.

7



8 introduction

This thesis is structured as follows: First we introduce the basic framework of non-
commutative geometry in terms of a quantization of symplectic manifolds. We recall
the fundamental definitions and give examples of simple matrix models that have been
discussed in the literature. As first results, we present some geometrical properties of the
semi-classical limit of the squashed fuzzy complex projective plane. In the subsequent
sections, we turn to modifications of the IKKT model and study fluctuations around
background solutions thereof.

1.1 preliminaries and notation

Throughout the thesis, the Einstein sum convention is adopted by default. Exceptions
to this rule are explicitly stated.

1.1.1 Lie algebras and representations

Since most of this thesis revolves around the theory of Lie-algebras and Lie-algebra
representations, we briefly want to skim through the relevant concepts of representation
theory. For an in-depth discussion of the mathematical aspects, see [10, 11].

Definition 1. A Lie algebra g is a vector space together with a skew-symmetric bilinear

map

[·, ·] : g× g→ g

satisfying the Jacobi identity.

Another important notion is that of a Lie-algebra representation.

Definition 2. A representation of a Lie algebra g on a vector space V is a linear map

ρ : g→ End(V ).

such that for any two x, y ∈ g,

ρ([x, y]) = [ρ(x), ρ(y)] = ρ(x)ρ(y)− ρ(y)ρ(x).

We will denote the elements of (abstract) Lie algebras x ∈ g by lower-case latin
characters. When we are given some representation ρ : g→ EndH on some Hilbert space
H and x ∈ g, v ∈ H we use the shorthand notation

Xv := ρ(x)v

to declutter expressions, unless there is room for confusion. For the canonical right action
of g on φ ∈ EndH we analogously write

φX = φρ†(x),

where ρ† denotes the dual representation.
Since both the fuzzy sphere and the fuzzy CPn can be constructed from irreducible

representations of Lie-algebras, let us recall the definition of irreducibility.

Definition 3. A representation ρ : g→ EndH of a Lie-algebra g, is called irreducible,
if the only invariant subspaces1 V ⊆ H are trivial.

1 ∀v ∈ V , x ∈ g : Xv ∈ V
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1.2 non-commutative spaces

Our starting point is the theory of smooth manifolds, since this mathematical framework
has turned out to set the stage for most of the modern fundamental theories of nature.
Building on the well established knowledge that in classical mechanics, symplectic
manifolds arise in a natural way[12], it is reasonable to impose more structure on
the geometries under consideration. It is however useful to loosen the definition of a
symplectic manifold slightly and to not require the symplectic form to be non-degenerate
everywhere. That is where we step into the realm of Poisson manifolds. These objects
can be formally defined as follows [13]:

Definition 4. A Poisson manifold M is a smooth manifold carrying a Poisson structure,

i.e. an R-bilinear map

{·, ·} : C∞(M)×C∞(M)→ C∞(M), (f , g) 7→ {f , g}

satisfying the three properties

(i) Antisymmetry: {f , g} = −{g, f}.

(ii) Jacobi-identity: {f , {g,h}}+ {g, {h, f}}+ {h, {f , g}} = 0.

(iii) Leibniz rule: {f , gh} = g{f ,h}+ h{f , g}.

for any choice of smooth functions f , g,h ∈ C∞(M).

While the first two properties define a Lie-algebra on the manifold, the third property
naturally assigns a vector field Xf ∈ Γ(TM) to any function f ∈ C∞(M), referred to as
Hamiltonian vector field of f . Clearly Xf = {f , ·} exhibits all the required properties of
a vector field on M . In local coordinates xµ we can expand any Poisson bracket in the
form

{f , g} = θµν
∂f

∂xµ
∂g

∂xµ
, θµν = {xµ,xν}. (1)

Under the assumption that these local coordinates correspond to a chart on U ⊂ M

where the tensor θµν is non-degenerate, we can furthermore introduce the symplectic
form

{f , g} = ω(Xg,Xf ) = θµνθρσ
∂g

∂xµ
∂f

∂xρ
ωνσ. (2)

By comparing this expression with eq. (1) it becomes clear that ωνσ = θ−1
νσ . Note that

this also highlights why we needed to presuppose the non-degeneracy of the tensor θµν .
As we are ultimately interested in studying the semi-classical limits, we introduce an
expansion parameter θ and rewrite the Poisson tensor as

θµν(x) = θθµν0 (x). (3)

This expansion parameter becomes essential for a suitable definition of a quantization
map.

All the concepts we have discussed so far, arise naturally in the abstract formulation of
classical mechanics. To advance beyond the classical domain and obtain a mathematical
model featuring “geometrical quantum effects”, we recall that the precision to which two
observables can be measured simultaneously is not arbitrary. This observation can be
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traced back to the non-commutativity of the operators representing these observables.
If we now were to interpret the coordinate functions of some symplectic manifold as
non-commutative operators, this uncertainty principle carries over to the underlying
geometry itself. Unfortunately there is no straightforward prescription to consistently
replace the algebra of smooth functions with a non-commutative counterpart and obtain
the commutative algebra in some limit, as dictated by the correspondence principle. In
order to proceed further we need a precise set of quantisation rules that consistently
implement such an identification. It turns out that one needs to tackle this task with a bit
of caution. By attempting to solve this problem naïvely, by postulating Dirac’s canonical
quantization rules, one ultimately is confronted with a contradiction2. To overcome this
inconvenience, we need to relax our axioms a bit. The result of this endeavor can be
summarized as follows [1]:

Definition 5. Let H be a Hilbert space. Given a Poisson manifold M , a quantization

map is a linear mapping

Q : C∞(M)→ End(H), f 7→ F (4)

such that

(i) Q(fg)−Q(f)Q(g)→ 0 as θ → 0

(ii) θ−1 (Q(i{f , g})− [Q(f),Q(g)])→ 0 as θ → 0

As a side note, it should be mentioned that the precise definition of those limits is
non-trivial and should not concern us in this thesis in their full generality. To make
things more tangible, we emphasize that the non-commutative algebras we are working
with are exclusively matrix algebras, where such limits can be handled and understood.

This definition motivates the following notion: For any f ∈ C∞(M), let F = Q(f), i.e.
we denote the classical (commutative) algebra elements with lower-case letters and their
corresponding non-commutative counterparts with upper-case letters. We my also use
the shorthand notation f ∼ F , or F ∼ f .

1.3 effective geometry of non-commutative spaces

The goal of extracting geometric meaning purely from an abstract algebra of functions is
by no means a trivial task. The generalized framework was primarily introduced and
expanded by Alain Connes, however the vast topic can be made more accessible if one
considers only finite-dimensional algebras, i.e. matrix algebras. Furthermore we assume
the emerging geometries to be embedded in some RD. This enables us to view certain
elements of the non-commutative algebra as quantized versions of embedding functions.
We will follow the terminology established in [1].

Additionally, the commutator of two operators serves as the quantization of the
Poisson structure in the dequantized manifold M , effectively defining a symplectic form
on M . In particular, for some finite-dimensional vector space we assume the existence of
endomorphisms Xa with

Xa ∼ xa ∈ C∞(U ; RD)

2 See theorem of Groenewold and van Hove [14, 15]
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where xa denote the embedding maps for some open subset U ⊂M . Then by the axioms
the following relation holds:

iΘab = [Xa,Xb] ∼ i{xa,xb} = iθµν∂µx
a∂νx

b. (5)

At this point, we introduce the operator � = gab[Xa, [Xb, ·]] where depending on
whether we choose an Euclidean or Lorentzian signature, g = δ or g = η. This operator
is commonly refered to as the matrix Laplace operator. It then can be shown [16] that
the matrix Laplacian � is in the semi-classical limit related to the Laplacian associated
with an effective metric G acting on vector fields on the ‘classical’ counterpart of the
manifold to be approximated by the non-commutative embedding functions. To be
precise, we have

�Q(f) = gab[Xa, [XbQ(f)]] ∼ −ηab{xa, {xb, f}} = −eσ∆Gf ,

with where we defined

gµν(x) := ∂µx
a∂nuxa (induced metric)

Gµν(x) := e−σθµµ
′
(x)θνν

′
gνν′(x) (effective metric)

e−(n−1)σ :=
1
θn
|gµν(x)|−

1
2 , θn = |θµν |

1
2 .

(6)

While the two metrics g and G in general do not have coincide, there is a criterion for
manifolds of dimension four. In this case, g = G if and only if the symplectic form
ω = 1

2θ
−1
µν dxµ dxν is (anti-)self-dual [16].



2
E X A M P L E S O F F U Z Z Y S PA C E S

2.1 fuzzy sphere

The fuzzy sphere is among the most accessible examples of non-commutative spaces
and also one of the most popular and well-studied ones. As a space with a high degree
of symmetry and low dimension, it serves as an excellent model for investigating basic
properties of fuzzy spaces. The circumstance that under a suitable interpretation, the
conventional sphere S2 can be approximated by a matrix algebra was first introduced
and discussed in [17, 18, 19].

In order to define the fuzzy sphere precisely, we consider the classical 2-sphere embedded
in R3 i.e.

S2 = {(xi)i=1,2,3 ∈ R3 | δijxixj = 1}. (7)

We obtain a fuzzy realization of that space by relating the coordinate embedding function
xi to the generators of an irreducible representation of su(2). To make this statement
more precise, we pick a basis {ti}i=1,2,3 ⊆ su(2). In the physics literature it is customary
to pass instead to the complexified Lie algebra sl(2; C) and choose these elements in
such a way that they obey the commutation relations

[ti, tj ] = iεijktk (8)

and are normalized with respect to the Killing-form, given by B(X,Y ) := Tr(adx ◦ ady).
The theory of finite dimensional representations of sl(2, C) tells us, that any irreducible
representation may be assigned a unique integer, the Dynkin label. However, more
commonly, we may also – up to equivalent representations – uniquely identify the
irreducible representations by their respective dimensions. We will denote the N -
dimensional irreducible representation simply by (N). As an example, consider the three
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It can be shown that these matrices span (2), also called the fundamental representation
of su(2).

For a particularN -dimensional irreducible matrix representation ρ : su(2)→ Mat(N , C),
the corresponding Casimir element is then given by

C2 =
3∑
i=1

ρ(ti)
2 =

3∑
i=1

T 2
i =

1
4 (N

2 − 1) IdN . (9)

To obtain a relation between the “ordinary” manifold S2 and its fuzzy counterpart, we
associate the coordinate functions xi ∈ C∞(S2) with the endomorphisms Ti = ρ(ti). The
quadratic Casimir element then implements the radial constraint δijxixj = 1. The fuzzy
sphere is constructed by defining the fuzzy embedding functions

xi ∼ Xi :=
2√

N2 − 1
Ti. (10)

12
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Note that the normalization factor is chosen such that X2 = XaXa = IdN , i.e. this
reflects the unity of the sphere’s radius.

One strength of non-commutative geometries is the ability to retain symmetries of the
classical manifold. As with the classical algebra of functions on S2 that decomposes under
the action of SO(3) into spherical harmonics, we can define an action of SO(3) on the
matrix algebra that is associated with our fuzzy space. To this end, let φ ∈ Mat(N , C)

and consider the N -dimensional representation of U : SU(2) → Mat(N , C) acting on
Mat(N , C) in the adjoint, i.e

φ 7→ U(g)−1φU(g). (11)

Since the algebra of endomorphisms on CN can be interpreted as the tensor product
(CN )⊗ (CN )∗, the algebra Mat(N , C) decomposes into invariant subspaces

Mat(N , C) ∼=
N⊕
k=1

(2k− 1), (12)

with SU(2) acting irreducibly on (2k− 1)-dimensional subspaces of Mat(N , C) in the
(2k− 1) irreducible representation. Of course, the respective Lie algebra su(2) acts on
Mat(N , C) in the adjoint as well, i.e. for the N dimensional irreducible representation ρ,
the action on Mat(N , C) is given by

[X, ·] : Mat(N , C)→ Mat(N , C)

φ 7→ [X,φ] = ρ(x)φ− φρ(x)

for X = ρ(x), x ∈ su(2).
As stated in the introduction, the matrix Laplacian is defined as

� :=
3∑
i=1

[Xi, [Xi, ·]]. (13)

Note that the matrix Laplacian is invariant under the adjoint action of SU(2).
To emphasize the relation to the conventional spherical harmonics, we pick a set of

basis vectors in End(H), denoted by Ŷ l
m. We will call these matrices fuzzy spherical

harmonics. For Ŷ l
m ∈ (2k− 1), the index l is set to l = k− 1 and m is restricted to the

range −l, . . . , l. Furthermore, the eigenvalue relations

[X3, Ŷ l
m] = mŶ l

m and �Ŷ l
m = l(l+ 1)Ŷ l

m,

are fulfilled. In other words, each of the irreducible subspaces is spanned these fuzzy
spherical harmonics,

(2k− 1) =
〈{
Ŷ k−1
m |m = −k+ 1, . . . , k− 1

}〉
.

This basis is already by construction orthogonal under the Hilbert-Schmidt norm
End(H) 3 φ 7→ Tr(φ†φ). We can further assume that these fuzzy spherical harmonics
are even normalized under this norm, i.e.

Tr(Ŷ l1
m1 Ŷ

l2
m2) = δl1l2δm1m2 .

and thus we obtain an orthonormal basis for the full space of endomorphisms End(H).
We have now collected all the necessary ingredients to construct a quantization map

and relate the fuzzy spherical harmonics to the conventional spherical harmonics. Recall



14 examples of fuzzy spaces

that any square integrable function on the ordinary 2-sphere, f ∈ L2(S2), can be
decomposed into a (countable) sum of spherical harmonics,

f(ϑ,ϕ) =
∞∑
l=0

+l∑
m=−l

clmYlm(ϑ,ϕ). (14)

Similarly to the fuzzy sphere, the spherical harmonics are eigenfunctions of the Laplace-
Beltrami operator. This allows us to define the quantization map by identifying Ŷ l

m with
the corresponding spherical harmonic Y l

m by setting

Q : L2(S2)→ Mat(N , C) (15)

Ylm 7→

Ŷlm l ≤ N
0 otherwise

In other words, we can understand the algebra of functions on the fuzzy space as a
truncation of the algebra of functions on S2, where we regain all the properties of the
classical manifold as we let N →∞.

2.2 fuzzy CPn

In the discussion on the fuzzy sphere in the previous chapter, we took inspiration from
SO(3) acting on the algebra of functions that comes with S2. A similar approach can be
applied to other related spaces that feature a high degree of symmetry. A very broad class
of such candidates are homogeneous spaces. In particular, (co-)adjoint orbits provide
a rich source of interesting examples that allow a similar construction as we have seen
for the fuzzy sphere. In this section we want to restrict ourselves to complex projective
spaces.

To start things of, let us repeat the most commonly encountered definition of projective
spaces. Consider some vector space V over the field1 K. We consider the equivalence
relation

∀x, y ∈ V \ {0} : x ∝ y ⇔ ∃λ ∈ K \ {0} : x = λy. (16)

In other words, two points points in V \ {0} are equivalent, iff they are contained in
the same one-dimensional subspace. The space P (V ) = (V \ {0})/∝ is then called the
projective space of V . The equivalency classes, corresponding to some representative
x = (x0, . . . ,xn+1) ∈ V \ {0}, are commonly denoted by [x0 : · · · : xn] ∈ P (V ).
For V = Cn+1, we adopt the standard notation CPn := P (Cn+1). Taking these

definitions and notations as our jumping-off point, we want to briefly sketch the idea
for how these spaces can be understood as quotients of Lie groups. Based on this
construction we then introduce a suitable non-commutative counterpart.

We start by studying orbits under the adjoint2 representation of SU(n+ 1) for some
fixed group element t ∈ su(n+ 1),

O(t) = {Adg t | g ∈ SU(n+ 1)}. (17)

1 Four our purposes, we only consider complex numbers, but this definition makes sense for any field.
2 Equivalently co-adjoint orbits.
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To show that for a suitably chosen t, this orbit is diffeomorphic to CPn we note that in
any (n+ 1)-dimensional matrix representation of su(n+ 1), it is possible to construct
an element of the form

t0 =


1

. . .

1
−n

 (18)

Clearly this matrix is invariant under a subgroup of SU(n+ 1) that is isomorphic to
SU(n)× U(1). Thus we can identify O(τ0) with the quotient SU(n+ 1)/(SU(n)×
U(1)).

Now consider SU(n+ 1) acting on Cn+1 by matrix multiplication. Since the action is
transitive, we clearly obtain the (2n+ 1)-sphere by taking the SU(n+ 1)-orbit of en+1.
On the other hand en+1 is stabilized by

G =

{(
U

1

)
| U ∈ SU(n)

}
⊆ SU(n+ 1), (19)

and thus the group action is not faithful. However, we obtain a one-to-one correspondence
only between S2n+1 and the coset space SU(n+ 1)/G ∼= SU(n+ 1)/SU(n). Let us
proceed by considering the canonical map taking points on S2n+1 to points in the
projective space CPn,

ι : S2n+1 → CPn, (zi)i=1,...,n+1 7→ [z1 : · · · : zn+1]. (20)

This map clearly is onto and for any two points p, q ∈ S2n+1 ⊆ Cn+1, the images under
ι coincide if and only if p and q differ by a phase, i.e. there exists some ζ ∈ C, |ζ| = 1
such that p = ζq. Factoring out this residual U(1) freedom, we have constructed a
diffeomorphism between the adjoint orbit of τ0 and the complex projective space,

O(τ0) ∼= SU(n+ 1)/(SU(n)×U(1)) ∼= CPn. (21)

As with the sphere, we want to define the quantization map by relating a basis compatible
with the decomposition of the group action to the “harmonics” operating on CPn. It
can be shown[20] that the space of square integrable functions decomposes as

L2(CPn) =
∞⊕
k=0

HΛk
(22)

where HΛk
denotes the irreducible representation with Dynkin label Λk = (k, 0, . . . , 0, k).

To obtain the fuzzy CPn, we proceed analogously to the case of the fuzzy sphere S2
N and

consider ρ acting on the Hilbert space H in the irreducible representation D(N , 0, . . . , 0)
of su(n+ 1). The generators Ti = ρ(ti), ti ∈ su(n+ 1) can once more be chosen such
that they are orthonormal with respect to the Killing form and satisfy the commutation
relations

[ti, tj ] = ifijktk,

where fijk are the structure constants of su(n+ 1). We can again pick a orthonormal3
basis {Y Λk

m,l} ⊆ HΛk
of weight vectors, where m = (m1, . . . ,mn−1) is a weight and l

iterates through multiplicities of the respective weight.
3 orthonormal under the Hilbert-Schmidt inner product.
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Since su(n+ 1) is isomorphic to Rn(n+2), we can interpret O(τ0) as a sub-manifold
embedded in Rn(n+2). In the spirit of the quantization map of C∞(S2) discussed in the
previous section, we identify the coordinate functions xa with the matrices

xa ∼ Xa :=
1√
C2
Ta,

where C2 is given by the Casimir operator. Once again, g ∈ SU(n+ 1) acts on φ ∈
End(H) by

φ 7→ U(g)−1φU(g).

It is easy to show that this action on End(H) ∼= H ⊗H∗ decomposes into the direct sum
of irreducible representations

End(H) ∼=
N⊕
k=1

D(Λk). (23)

Note that as representations D(Λk) and HΛk
are equivalent. This enables us yet again

to choose a basis of weight vectors in End(H) denoted by Ŷ Λk
m,l. Similarly, those are

eigenvectors of the Laplacian

� =
n2−1∑
a=1

[Xa, [Xa, ·]]. (24)

In analogy to the fuzzy sphere, we define the quantization map of CPn by

Q : L2(CPn)→ End(H) (25)

Y Λk
m,l 7→

Ŷ
Λk
m,l k < N

0 otherwise

Since we identify the embedding functions of CPn ⊆ Rn(n+2) with the generators of
su(n+ 1), it is convenient to derive a polynomial expression in the matrices Xa that
precisely produces the orbit O(τ0). To cover different normalizations, we consider the
slightly more general case O(ητ0) for some non-zero real number η.

Lemma 1. Let t ∈ su(n+ 1) and η ∈ R \ {0}. Then t ∈ O(ητ0) iff (t− η)(t+ ηn) = 0.

Proof. Let T ⊆ End(H) be the set of solutions of (t− η)(t+ ηn) = 0.
To show O(τ0) ⊆ T , we note that for any g−1τ0g ∈ O(τ0), we obtain

(g−1ητ0g− η)(g−1ητ0g+ ηn) = ηg−1(τ0 − η)(τ0 + ηn)g = 0

directly from eq. (18). Conversely, let t ∈ T . In order for the equation to hold, t
must have exactly two eigenvalues4, namely η and −ηn. Hence, the only possibility of
obtaining a traceless matrix, is when t = g−1ητ0g. �

4 We can identify the elements of su(n) by their matrix representations. Since those matrices are hermitian,
a (real) eigenvalue decomposition is always possible.
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2.3 the complex projective plane

Building upon what we have established in the previous section, we now want to restrict
ourselves to n = 2. This projective space is also commonly referred to as the complex
projective plane. The orbit O(τ ) is then generated by SU(3). The corresponding Lie-
algebra su(3) is eight-dimensional. Similarly to the situation for su(3), it is customary
to consider its complexification sl(3, C) and pick a basis {ti}, such that

[ti, tj ] = ifijktk,

where fijk denote the completely anti-symmetric structure constants, given by

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1
2,

f458 = f678 =

√
3

2 .

In this basis, the root generators are given by

t±A := t1 ± it2, t±B := t4 ± it5, t±A := t6 ± it7.

To enumerate the irreducible representations, we denote the respective Dynkin labels by
D(p, q) for p, q ∈N. As an example, consider the fundamental representation D(1, 0).
We may choose the set of Gell-Mann matrices as matrix representations of {ti} on C3:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0


λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0



λ3 =

1 0 0
0 −1 0
0 0 0


λ8 =

1√
3

1 0 0
0 1 0
0 0 −2

.

To construct the complex projective plane, choose τ0 to be the eighth Gell-Mann matrix.
Lemma 1 allows us to obtain a set of polynomials in R[x1, . . . ,x8] with CP 2 ⊆ R8 being
its zero-locus. In order to accomplish this, we let t = xaλa ∈ su(3), where xa ∈ R

and plug this into (t− 1/
√

3)(t+ 2/
√

3) = 0. In the computation we make use of the
symmetric structure constants dijk = 2 Tr(λi{λj ,λk}). Explicitly, dijk takes the values

d118 = d228 = d338 = −d888 =
1√
3

,

d448 = d558 = d668 = d778 = − 1
2
√

3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1
2.

Note that the product of two Gell-Mann matrices can then be expressed as a linear
combination of the identity matrix and the Gell-Mann matrices5 themselves by

λaλb =
1
2 ({λa,λb}+ [λa,λb]) =

2
3δab + (dabc + ifabc)λc. (26)

5 The space of three-by-three matrices is nine-dimensional and the eight Gell-Mann matrices together with
the identity matrix form a linearly independent set.
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With this identity in mind, we can expand the polynomial from lemma 1 and collect the
coefficients for each λc and the coefficient of the identity matrix,(

t− 1√
3

)(
t+

2√
3

)
=xaxbλaλb +

1√
3
xaλa −

2
3 =

=

(2
3xaxb −

2
3

)
+

( 1√
3
xc + (dabc + ifabc)xaxb

)
λc =

=

(2
3xaxa −

2
3

)
+

( 1√
3
xc + dabcxaxb

)
λc = 0

where we used the anti-symmetry of the structure constants fabc to arrive at the last
line. By equating coefficients, we obtain

xax
a − 1 = 0

1√
3
xc + dabcx

axb = 0,
(27)

in other words, the complex projective plane can be embedded in R8 as the zero-locus of
the polynomials on the left-hand-side of the equations in (27).

We now aim to find a more convenient identification and rearrange the variables such
that we obtain a mapping from C2 into patches on the complex projective plane. The
computation is done by explicitly plugging in the symmetric structure constants. The
final result then reads

x4x6 + x5x7 = − 1√
3
x1(2x8 + 1)

x5x6 − x4x7 = − 1√
3
x2(2x8 + 1)

x2
4 + x2

5 − x2
6 − x2

7 = − 2√
3
x3(2x8 + 1)

x2x7 − x1x6 = x4

(
x3 −

1√
3
(x8 − 1)

)
x2x6 + x1x7 = x5

(
−x3 +

1√
3
(x8 − 1)

)
x1x4 + x2x5 = x6

(
x3 +

1√
3
(x8 − 1)

)
x2x4 − x1x5 = x7

(
−x3 −

1√
3
(x8 − 1)

)
x2

4 + x2
5 + x2

6 + x2
7 = −2

3 (x8 − 1)(2x8 + 1).

By interpreting the individual embedding functions xi as real and imaginary parts of the
complex parameters

z1 = x4 + ix5, z2 = x6 + ix7, z3 = x1 + ix2 (28)

the equations above can be cast into the more symmetric and easy-to-work-with form

z1z2 =
1√
3
z3(2x8 + 1)

z2z3 = − 1√
3
z1

(
x3 −

1√
3
(x8 − 1)

)
z1z3 =

1√
3
z2

(
x3 +

1√
3
(x8 − 1)

)
|z1|2 − |z2|2 = − 2√

3
x3(2x8 + 1)

|z1|2 + |z2|2 = −2
3 (x8 − 1)(2x8 + 1).

(29)
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Notice that the last of the five equations is independent of x3 as well as z3. This allows
us to rearrange the equation to find an expression for x8

x8 =
1
4

(
1± 3

√
1− 4

3 (|z1|2 + |z2|2)
)

.

Calling w = x3 + ix8 and solving the above equations for x3 and z3 we obtain a
parametrization of two patches on the complex projective plane in terms of z1 and z2

w = x3 + ix8 =
1√
3

|z1|2 − |z2|2

1±
√

1− 4
3 (|z1|2 + |z2|2)

− i

4

(
1± 3

√
1− 4

3 (|z1|2 + |z2|2)
)

z3 = x1 + ix2 =
2√
3

z2z1

1±
√

1− 4
3 (|z1|2 + |z2|2)

. (30)

The domain where these identities can be evaluated, is only restricted by the square
root and the fraction. Assuming the plus sign is chosen, note that the denominator is
always positive as long as the discriminant is greater or equal to zero. Thus we only
need to guarantee the existence of the square roots. On the other hand, if we pick the
minus sign, the denominator vanishes if and only if |z1| = |z2| = 0. In conclusion, the
identities, corresponding to the case were the positive sign is chosen, are well-defined as
long as z1 and z2 are contained in the closed ball

B√3/2 = {(z1, z2) ∈ C2 ; |z1|2 + |z2|2 ≤ 3/4}.

Conversely, for the negative sign, we need to exclude the origin and obtain the punctured
closed ball B√3/2 \ {(0, 0)}. The maps

χ+4567 : B√3/2 → R8,
(
x4 + ix5
x6 + ix7

)
7→ (xa)a=1,...,8

χ−4567 : B√3/2 \ {(0, 0)} → R8,
(
x4 + ix5
x6 + ix7

)
7→ (xa)a=1,...,8,

where x1,x2,x3 and x8 are the functions of x4, . . . ,x7 determined implicitly by eq. (30),
denote diffeomorphisms between open patches on CP 2 ⊆ R8 and open 4-balls of radius√

3/2 in R4 around the origin. Note that due to symmetry, we can find two more such
parametrizations, namely one with respect to z1 and z3 and another one with respect to
z2 and z3. We may think of these maps as charts covering “hemi-subspaces” in analogy
to the hemispheres of S2.

The polynomial equations eq. (29) also pave the way to as set of toric coordinates for
this manifold. We merely need to express zi in polar form. We first define the two angles

φ3 = arg z1 − arg z2, φ8 = arg z1 + arg z2. (31)

Utilizing eq. (29) once more, we can express the modulus of each of the zi purely in
terms of x3 and x8. In particular, we compute

|z1|2 =
1
2 (|z1|2 − |z2|2 + |z1|2 + |z2|2) = −

1√
3

( 1√
3
(x8 − 1) + x3

)
(2x8 + 1),

|z2|2 =
1
2 (|z1|2 + |z2|2 − |z1|2 + |z2|2) = −

1√
3

( 1√
3
(x8 − 1)− x3

)
(2x8 + 1),

|z3|2 =
3

(2x8 + 1)2 |z1|2|z2|2 =
1
3 (x8 − 1)2 − x2

3.
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Putting everything together, the map

ψ : ∆× T 2 → C4, (x3,x8,φ3,φ8) 7→


z1(x3,x8,φ3,φ8)

z2(x3,x8,φ3,φ8)

z3(x3,x8,φ3,φ8)

x3 + ix8

 (32)

then parametrizes CP 2 embedded in C4 ∼= R8 where T 2 = S1 × S1 denotes the Clifford
torus, ∆ ⊆ R2 is the (closed) equilateral triangle centered at the origin

∆ =

{
α1

(
0
1

)
+
α2
2

(√
3
−1

)
− α3

2

(√
3

1

) ∣∣∣∣ 3∑
i=1

αi = 1, αi ≥ 0
}

and

z1(x3,x8,φ3,φ8) =

√
− 1√

3

( 1√
3
(x8 − 1) + x3

)
(2x8 + 1) exp

(
i
φ8 + φ3

2

)
,

z2(x3,x8,φ3,φ8) =

√
− 1√

3

( 1√
3
(x8 − 1)− x3

)
(2x8 + 1) exp

(
i
φ8 − φ3

2

)
,

z3(x3,x8,φ3,φ8) = −
√

1
3 (x8 − 1)2 − x2

3 exp (iφ3) .

We can make a few noteworthy observations. The restriction ψ = ψ|∆ to the open

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

∆

2x8 + 1 > 0

1√
3 (x8 − 1) < x3

1√
3 (x8 − 1) < −x3

x3

x
8

Figure 1: Domain of arguments x3 and x8 of the parametrization ψ. The lines separate areas
where the respective inequality flip its validity. Within ∆, each discriminant is positive.

triangle ∆ ⊆ ∆ is a diffeomorphism. Furthermore, the shape of ∆ is no coincidence.
In fact, the convexity of the pre-image of ψ−1 is a direct consequence of the theorems
discovered by Schur, Horn and Konstant [21, 22, 23]. The idea has even be generalized
further by Guillemin, Sternberg and Atiyah [24, 25].
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2.3.1 Poisson structure

Locally, the Poisson structure can be obtained from (local) embedding functions. This
can be most easily seen by recalling the local representation of the Poisson bracket
introduced in eq. (1) and evaluating it on the embedding functions xa(x4,x5,x6,x7) for
a = 1, 2, 3, 8,

{xa,xb} =
∑

c,d∈{4,5,6,7}
θcd

∂xa
∂xc

∂xb
xd

= θab.

A convenient way to obtain θab is via the quantization map, since the coordinate functions
are related to generators of su(3). From eq. (5), we can immediately see that

{f , g} = fabcxc
∂f

∂xa

∂g

∂xb

where fabc are the anti-symmetric structure coordinates of su(3).
We claim that the toric coordinates obtained in the previous section are almost in

Darboux form. Of course we need to prove this claim. Let us first express the vector fields
{x3, ·} and {x8, ·} in local coordinates. We once more turn to the commutators of the
quantized embedding functions {xa,xb} ∼ −i[Xa,Xb] and then take the semi-classical
limit. We obtain

−i[X3,X4] =
1
2X5,

−i[X3,X5] = −
1
2X4,

−i[X3,X6] = −
1
2X7,

−i[X3,X7] =
1
2X6,

−i[X8,X5] = −
√

3
2 X4,

−i[X8,X4] =

√
3

2 X5,

−i[X8,X6] =

√
3

2 X7,

−i[X8,X7] = −
√

3
2 X6.

In other words, the two vector fields

{x3, ·} = 1
2 (x5∂4 − x4∂5 − (x7∂6 − x6∂7)) =

1
2 (L45 −L67),

{x8, ·} =
√

3
2 (x5∂4 − x4∂5 + x7∂6 − x6∂7) =

√
3

2 (L45 + L67)

can be interpreted as the linear combination of the two “angular momentum” operators
L45 and L67 generating a torus action on CP 2. Clearly, the two vector fields are linearly
independent and the two functions x3 and x8 are in involution, i.e. {x3,x8} = 0. For
given values ξ = (ξ3, ξ8) ∈ R2, the level sets

Mξ = {(xi)i=1,...,8 ∈ CP 2 ⊆ R8 | x3 = ξ3, x8 = ξ8}

are diffeomorphic to the torus T 2 = S1 × S1. This is an explicit example of Liouville’s
theorem[12]. If we further introduce the affine transformation

x8 =
√

3h8 + 1, x3 = h3
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of the coordinate functions x8 and x3, we obtain the parametrization

ψD(h3,h8,φ3,φ8) =



√
−(h8 + h3)(2h8 +

√
3) exp

(
iφ8+φ3

2

)√
−(h8 − h3)(2h8 +

√
3) exp

(
iφ8−φ3

2

)
−
√
h2

8 − h2
3 exp (iφ3)

h3 + i(
√

3h8 + 1)

 .

The Poisson bracket of the coordinate functions h3,h8,φ3 and φ8 are then given by
{h3,φ3} = 1 = {h8,φ8} and vanishes for the other entries, i.e. the symplectic form is in
standard form

θ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



and the coordinate system h3,h8,φ3 and φ8 constitutes a Darboux coordinate system.

2.3.2 Induced and effective metric

Recall that the induced metric is given by the pull-back of the metric of the embedding
space. Since we work in an euclidean setting, the induced metric for some embedded
manifold is given by

gij =
m∑

a,b=1

∂ϕa
∂ξi

∂ϕb
∂ξj

δab, 1 ≤ i, j ≤ n

for some immersion ϕ : U → Rm, were U ⊆ Rn is open and n < m. We want to compute
the induced metric of CP 2 as a real four-dimensional manifold. Given the identification
eq. (28) together with z4 = x3 + ix8 = h3 + i(

√
3h8 + 1), we note that the euclidean

scalar product on R8 is related to the standard inner product 〈·, ·〉 on C4 through

8∑
k=1

xkx
′
k =

4∑
k=1

(
Re(zk)Re(z′k) + Im(zk) Im(z′k)

)
=

4∑
k=1

Re(zkz′k) = Re〈z, z′〉
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for any x,x′ ∈ R8. In toric coordinates, we can therefore compute the components of
the metric tensor simply by computing the respective gradients of ψ and then taking the
real part of the scalar product:

g

(
∂

∂h3
, ∂

∂h3

)
=Re

〈
∂ψD
∂h3

, ∂ψD
∂h3

〉
= 1 +

3∑
k=1

(
∂|zk|
∂h3

)2
=

=1 + 1
4

( 1
|z1|2

+
1
|z2|2

)
(2h8 +

√
3)2 +

h2
3

|z3|2
=

=1 + 1
4
(
|z1|2 + |z2|2

) 1
|z3|2

+
h2

3
|z3|2

= −
√

3
2

h8
|z3|2

g

(
∂

∂x3
, ∂

∂x8

)
=Re

〈
∂ψD
∂x3

, ∂ψD
∂x8

〉
=

3∑
k=1

∂|zk|
∂x3

∂|zk|
∂x8

=

√
3

2
h3
|z3|2

g

(
∂

∂x8
, ∂

∂x8

)
=Re

〈
∂ψD
∂x8

, ∂ψD
∂x8

〉
= 3 +

3∑
k=1

(
∂|zk|
∂x8

)2
= −
√

3
2

2h2
3 +
√

3h8

|z3|2(2h8 +
√

3)

g

(
∂

∂φ3
, ∂

∂φ3

)
=

1
4 (|z1|2 + |z2|2) + |z3|2 = −h2

3 −
√

3
2 h8

g

(
∂

∂φ3
, ∂

∂φ8

)
=

1
4 (|z1|2 − |z2|2) = −

1
2h3(2h8 +

√
3)

g

(
∂

∂φ8
, ∂

∂φ8

)
=

1
4 (|z1|2 + |z2|2) = −

1
2h8(2h8 +

√
3)

All other components vanish since their respective inner product of the gradients are
purely imaginary. To summarize, the induced metric tensor in Darboux coordinates
takes the form

[g] = −
√

3
2


h8
|z3|2 − h3

|z3|2 0 0
− h3
|z3|2

2h2
3+
√

3h8
|z3|2(2h8+

√
3) 0 0

0 0 1√
3 (2h

2
3 +
√

3h8)
h3√

3 (2h8 +
√

3)
0 0 h3√

3 (2h8 +
√

3) h8√
3 (2h8 +

√
3)

 . (33)

To compute the effective metric, we additionally need to compute the pre-factor e−σ,
defined in eq. (6). The block-matrix structure of the metric in the chosen coordinates
allows us to compute the determinants of the two diagonal blocks separately and multiply
them together in order to obtain |gµν |. We can make the important observation that the
upper block and the lower block are in fact the inverse of each other, since

det
( 1√

3 (2h
2
3 +
√

3h8)
h3√

3 (2h8 +
√

3)
h3√

3 (2h8 +
√

3) h8√
3 (2h8 +

√
3)

)
︸ ︷︷ ︸

:=h

=
1√
3
|z3|2(2h8 +

√
3)

and thus we can immediately see that h8
|z3|2 − h3

|z3|2

− h3
|z3|2

2h2
3+
√

3h8
|z3|2(2h8+

√
3)

 =

√
3

|z3|2(2h8 +
√

3)
adjh = h−1

Therefore, the metric tensor in these particular coordinates simplifies to the convenient
block matrix expression

[g] = −
√

3
2

(
h−1

h

)
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where the off-diagonal blocks vanish in all entries. Hence the computation of the
determinant is straightforward and we obtain

|g| = 9
16 |h

−1| · |h| = 9
16.

Since in these coordinates, it is obvious that |θ|2 = 1, and therefore the pre-factor in the
definition of the effective metric reduces to

e−σ =
1
θ2 |g|

− 1
2 =

4
3.

Last but not least the effective metric is given By

Gµν = e−σθµµ
′
θνν

′
gµ′ν′ ⇔ [G]−1 =

4
3 (θ

T [g]θ) = − 2√
3

(
h

h−1

)
= [g]−1.

In other words Gµν = gµν . In fact this identity holds on any four-dimensional Kähler
manifold and since the complex projective plane belongs to this class of manifolds this is
to be expected.

2.4 squashed spaces

Squashing (fuzzy) spaces[8] enable us to obtain new solutions for matrix models. In
this section we review, based on the sections on the fuzzy sphere and fuzzy CP 2, basic
geometric properties of these squashed spaces. To get an intuitive understanding, we
briefly want to mention how the squashed fuzzy sphere is constructed. It is implemented
as a projection of the sphere along one coordinate axis. Here we choose a projection
along x3. This gives us a two-sided disc. With regards to the fuzzy sphere, squashing
amounts to dropping the generator X3. This manifests itself for instance in the Laplacian
operator, where the sum is restricted to

� = [X1, [X1, ·]] + [X2, [X2, ·]].

Clearly this alters the spectrum of the operators governing fluctuations and the equations
of motion and thus the physical implications of these background solutions.

2.4.1 Geometry of squashed CP 2

The idea of projecting the fuzzy space along the Cartan generator can be generalized
to the fuzzy complex projective plane by squashing the fuzzy space along the Cartan
generators. This carries over to the classical counterpart as a projection along the x3
and x8 axis6.
As a first result, we note that squashed CP 2 is related to Steiners surface S. In fact,
S emerges as the real subset

Re CP 2
S = {z ∈ CP 2

S | Im z = 0} (34)

of the squashed complex projective plane.7 To confirm this claim we first recall the

6 For the embedding under consideration.
7 Up to a possible scaling.
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Figure 2: Steiners surface from different viewing angles. The self-intersections are highlighted
by red lines. The pinching points are located at the outer ends of the self-intersection,
while there is a triple intersection at the origin.

construction of S. Consider again the unit sphere S2 ⊆ R3 centered at the origin. S is
given by the image of the map

F : S2 → R3, (x1,x2,x3) 7→ (x2x3,x1x3,x1x2).

For any (x1,x2,x3) ∈ S, we ma also obtain the implicit definition

(x1x2)
2 + (x2x3)

2 + (x1x3)
2 − x1x2x3 = 0. (35)

Applying the transformation F to the parametrization in terms of spherical coordinates,
we obtain

x1 = cos θ sin θ sinϕ
x2 = cos θ sin θ cosϕ
x3 = cos2 θ cosϕ sinϕ

(36)

as possible parametrization of Steiners surface. Next we want to briefly review the
observation that S is an immersion up to six pinching points. To this end, let F̂ be the
extension of F to R3. The differential map of F̂ is given by

dF̂ =

 0 x3 x2
x3 0 x1
x2 x1 0

 . (37)

Since det dF̂ = 2x1x2x3, the differential map is an isomorphism if and only if (x1,x2,x3)

does not reside on any of the three coordinate planes. To locate the points where the
restriction dF = dF̂ |S2 is not an isomorphism, we seek out those points where the kernel
of dF̂ intersects with the tangent plane to S2 non-trivially. W.l.o.g, let x1 = 0 and
observe that

ker dF̂ |x1=0 =
〈
{(0,−x2,x3)

T }
〉

.

This is a sub-space of the spheres tangential plane exactly at the points where it is
normal to the spheres surface normal, i.e.

(x1,x2,x3)
T

 0
−x2
x3

 = x2
3 − x2

2 = 0⇔ x2
2 = x2

3.
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Plugging everything into x2
1 + x2

2 + x2
3 = 1, we obtain the critical points. Repeating

this procedure for x2 = 0 and x3 = 0, we obtain similar conditions and in total, after
mapping these twelve points with the aforementioned map F , we find the six singular
points of S also denoted pinch points. They are highlighted in fig. 2.
We now want to present a proof for the claim that the real subset of squashed CP 2

coincides with Steiners surface.

Theorem 1. Steiners surface S and the real subset Re CP 2
S of the squashed complex

projective plane coincide up to a uniform scaling factor.

Proof. In order to align the scaling of the two surfaces, consider the affine transformation

α =
1√
3
(x8 − 1) + x3, β =

1√
3
(x8 − 1)− x3. (38)

In terms of α and β, the action angle coordinates can be written as

x1 =

√
αβ

3 , x4 =

√
−
(
α+ β

3 +
1√
3

)
α, x6 =

√
−
(
α+ β

3 +
1√
3

)
β.

One can verify by direct computation that x1, x4 and x6 are a solution to eq. (35).
Indeed we have

x2
4x

2
6 + x2

1x
2
6 + x2

1x
2
4 =

(
α+ β

3 +
1√
3

)
αβ√

3
= x1x4x6,

thus confirming that Re CP 2
S ⊆ S.

In order to see the equality of the two sets, we consider the immersion

ψ : R4 → C3

(x3,x8,φ3,φ8)→ (z1, z2, z3),
(39)

constructed from the relations eq. (32). Without loss of generality, let L be the lobe8 of
S for which ψ(x3,x8, 0, 0) ∈ L. The proof for the other three lobes is analogous. Clearly
the lobes of Steiners surface are homeomorphic so S2. Recall that the domain ∆ of the
two parameters x3 and x8 is an equilateral triangle centered in R2. Restricted to the
interior of the triangle, the map ψ0(x3,x8) = ψ(x3,x8, 0, 0) is a homeomorphism. On
the boundary we find the three different cases:

• The three vertices are all mapped to the origin

• Each edge center is mapped to a unique point in the image of ψ0.

• Apart from the vertices and the edge centers, ψ0 is two-to-one.

The quotient space ∆/ ∼, where the ∼ denotes the equivalence relation induced by ψ0,

x ∼ y ⇔ ψ0(x) = ψ0(y),

is then homeomorphic to the image of ψ0. Note that this equivalence relation is most
transparently interpreted as folding an equilateral triangle along the dotted lines illus-
trated in fig. 3 and gluing the edges together. The resulting tetrahedron is homeomorphic
to a 2-sphere, and thus so is ψ0(∆).

8 This set includes the self-intersection at the coordinate axes and the origin
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Figure 3: Illustration of the equivalence relation ∼

Figure 4: Visualization of the real subset of the graphs generated by Bi.

This however means that ψ0(∆) ⊆ L cannot be a proper subset, as S2 does not contain
proper subsets that are homeomorphic to itself9 and therefore the two sets must indeed
be the same. �

The squashed CP 2 can be recovered from ψ0(∆) by “dragging” the points contained
in the lobe through C3 by means of the torus action that we obtained from the action
angle parametrization:

ψ0(∆) 7→ exp

i ϕ8

2
√

3

1
1

0


 exp

iϕ3


√

3
−
√

3
1


ψ0(∆) (40)

While we can immediately conclude that the pinching points will remain singularities
under this map, resulting in three independent tori10. This is analogous to the circle
connecting the two disks of the squashed sphere. It remains to be shown that these
tori contain all points that exhibit a singularity. While for any point away from the
coordinate axes, the action angle coordinates provide four linearly independent vectors
spanning tangent spaces, the computation for points located on the tori intersecting
the coordinate axes requires a different chart. Conveniently we already constructed a
suitable parametrization. Recall eq. (30) and consider the maps

Bi : C2 ⊃ D√3/2(0)→ C4, (zi)i=1,2 =

(
x4 + ix5
x6 + ix7

)
7→


(z1, z2, z+3 ) . . . i = 1
(z1, z+3 , z2) . . . i = 2
(z+3 , z1, z2) . . . i = 3

. (41)

9 This is in fact a corollary of a more general result: Any n-sphere cannot have a n-sphere as a proper
subset: assume A ⊂ Sn ⊂ Rn+1 were homeomorphic to Sn. W.l.o.g assume the north-pole to be in
Sn \A and let p the stereographic projection of Sn ⊃ A to Rn, then P |A would be a bijective and
continuous map from A ∼= Sn to Rn, in contradiction to the Borsuk-Ulam theorem.

10 Note that there are always two pinching points belonging to the same pinching torus.
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They are clearly differentiable with respect to the real and imaginary components of z1
and z2 with a differentiable inverse11. The tangent spaces are also of rank four. Most
importantly, any coordinate axis is within the domain of any two of those functions.

2.4.2 Effective metric of squashed CP 2
S

To compute the effective metric we build upon the results from the previous chapter.
The projection

(zi)i=1,...,4 → (zi)i=1,...,3

affects the induced metric in precisely two entries of the metric tensor, namely

gS

(
∂

∂h3
, ∂

∂h3

)
=

3∑
i=1

(
∂|zi|
∂h3

)2
= g

(
∂

∂h3
, ∂

∂h3

)
− 1,

gS

(
∂

∂h8
, ∂

∂h8

)
=

3∑
i=1

(
∂|zi|
∂h8

)2
= g

(
∂

∂h8
, ∂

∂h8

)
− 3

All the other entries are untouched by the squashing procedure. In other words, we can
express the induced metric of the squashed complex projective plane as follows

[gS ] =[g]−


1 0
0 3

0 0
0 0

 =

=−
√

3
2

 h−1 + 2√
3

(
1 0
0 3

)
h

 =: −
√

3
2

(
h̃

h

)

Lemma 2. Let A,B ∈ Mat(2, C) two invertible matrices, such that the sum A+B is

invertible as well. Then

(A+B)−1 =
|A|

|A+B|
A−1 +

|B|
|A+B|

B−1.

Proof. Clearly the adjoint of a 2× 2-matrix is linear and thus

|A+B|(A+B)−1 = adj(A+B) = adjA+ adjB = |A|A−1 + |B|B−1. �

By analogous arguments as in the previous chapter we obtain the effective metric by
evaluating the expression

GS =eσ(θT gSθ)
−1 = − 2√

3

√
|gS |

(
h−1

h̃−1

)
=

=−
√

3
2

√
|hh̃|

 h−1

|h−1|
|h̃| h

− √|gS |
|h̃|


0 0
0 0

3 0
0 1

 =

=−
√

3
2

(
η−1

η

)
−
√
|h|
|h̃|


0 0
0 0

3 0
0 1


11 The inverse is given by the respective projections to z1 and z2.
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where we used lemma 2 to expand the inverse of h̃ and introduced the rescaling of the
matrix h

η :=
h√
|hh̃|

.

Finally we can obtain an expression for the determinant |h̃|. To this end, let us derive
the following useful formula.

Lemma 3. Let A,B ∈ Mat(2, C) and assume further that A is invertible. Then the

formula for the determinant of the sum of A and B

|A+B| = |A|+ |B|+ |A| ·Tr(A−1B)

holds.

Proof. Consider any B ∈ Mat(2, C) and λ1,λ2 ∈ C the two diagonal entries in its Jordan
normal form. Then

|I2 +B| = (1 + λ1)(1 + λ2) = 1 + |B|+ Tr(B).

Now, for any invertible matrix A, we find

|A+B| =|A(I2 +A−1B)| = |A| · |I2 +A−1B| =
=|A| · (1 + |A−1B|+ Tr(A−1B)) =

=|A|+ |B|+ |A| ·Tr(A−1B). �

Therefore, we find

|h̃| =
∣∣∣∣∣h−1 +

2√
3

(
1 0
0 3

)∣∣∣∣∣ = 4 + |h−1|+ 2
√

3 Tr

(−1 0
0 −3

)−1

h−1

 =

=4 + |h|−1 + 2
√

3 h8
|z3|2

+
2√
3

2h2
3 +
√

3h8

|z3|2(2h8 +
√

3)
.

This concludes the computation the effective metric of squashed CP 2. At this point,
we want to stress that for the squashed CP 2, the effective and induced metric do not
coincide anymore. This reflects the fact that squashing breaks the Kähler nature of the
space.



3
S Q U A S H E D CP 2

N S O L U T I O N S O F M AT R I X M O D E L S

3.1 sym with cubic potential

The fuzzy squashed complex projective plane was introduced in [8] in an effort to include
chiral modes into matrix models. These modes can appear at the intersections of fuzzy
branes, which marks a significant step forward towards more realistic matrix models. To
start with, we briefly summarize the scenario presented in [8].

The initial model is best described in terms of a 10-dimensional SYM, reduced to four
dimensions. Additionally a cubic potential is added to the Lagrangian. Given those
preliminaries, the action takes the form

SYM =
∫

d4x trN
(
− 1

4g2FµνF
µν − 1

2D
µΦaDµΦa+

+
1
4g

2[Φa, Φb][Φa, Φb] +
i

2gabcΦ
aΦbΦc

+ Ψγµ(i∂µ + [Aµ, .])Ψ + gΨΓa[Φa, Ψ]
)

.

(42)

The notation is in accordance to standard quantum field theory. F denotes the field
strength tensor explicitly given by

Fµν = ∂Aµ − ∂Aν + g[Aµ,Aν ]

The field Φ corresponds to the scalar fields of the theory with indices a ∈ I = {1, . . . , 6}
and Ψ corresponds to a (matrix-valued) Majorana-Weyl spinor. The gamma matrices γµ
and Γa generate two different Clifford algebras, the former being simply the four Dirac
matrices, and the latter Cl(6, 0).
While the theory contains a U(N) gauge symmetry, which acts in the adjoint on all

involved fields, the SO(6) symmetry acting on Φ by SO(6) 3 R, (R . Φ)a = RabΦb

is – apart from a finite subgroup – broken by the cubic term. In addition, due to
the total anti-symmetry of the coupling coefficients f , the translational symmetry
Φa → Φa + ca, ca ∈ C is preserved1.
We are only interested in static solutions, and therefore we omit the kinetic terms.

Also, to further emphasize the geometric content of the scalar fields, we denote them X

instead of Φ. The matrix model action derived from eq. (42) is then given by

S6[X, Ψ] =
1
4 Tr

(
[Xa,Xb][X

a,Xb] + 2igabcXaXbXc + 4ΨΓa[Xa, Ψ]
)

, (43)

where Xa denote elements of Mat(N , C) ∼= End(CN ). As a consequence of the cyclic
invariance of the trace, the action is invariant under transformations Xa → UXaU−1 for
U ∈ GL(N , C) and in particular invariant under U(N).
On top of only regarding the static solutions, we will dismiss the fermion term in

this thesis and focus for all purposes on the solutions of the model S6[X ] := S6[X, 0].
We briefly recapitulate that squashed CP 2 is in fact a solution to the corresponding
equations of motion. As usual, we find the e.o.m. in analogy to calculus of variations.

1 To see this, observe that Tr(gabc(X
aXbcc + XaXbcc + XaXbcc)) = gabc Tr(XaXb)cc = 0. The last

identity follows from the anti-symmetry of f in a and b, while Tr(XaXb) is symmetric in those indices.

30
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Consider small fluctuations2 Xa → Xa + φa, for φa ∈ Mat(N , C), around some given
matrix configuration Xa. According to protocol, we assume stationarity of the action
around Xa and deduce

0 = δS6[X + φ] = S6[X + φ]− S6[X ] =

=
1
4 Tr

(
4[Xa,Xb][X

a,φb] + 6igabcXaXbφc
)
+O(φ2). (44)

Using the cyclic property of the trace and the identity

Tr([A,B][C,D]) = Tr(−D[C, [A,B]]), (45)

eq. (44) easily can be further simplified to

0 = Tr
((
−[Xa, [Xa,Xc]] +

3
2 igabcX

aXb
)
φc
)
+O(φ2). (46)

By employing the standard argument that this identity is invariant under any small
perturbation φ and therefore the first factor in the trace ought to vanish, the equations
of motions are found to be

�Xc =
3
2 igabcX

aXb, (47)

where we once again make use of the definition of the matrix Laplacian.
With regard to the fuzzy sphere, consider the N -dimensional representations X̄a of

generators of xa ∈ su(2) as introduced in chapter two, such that X̄aX̄
a = 1

4 (N
2− 1). We

may allow for an additional radial freedom by setting Xa = rX̄a. Plugging everything
into eq. (47) a direct computation leads us to

�S2Xc = r3[X̄a, [X̄a, X̄c]] =

r3[X̄2, [X̄2, X̄1]] = −ir2X1 . . . c = 1
r3[X̄1, [X̄1, X̄2]] = −ir2X2 . . . c = 2

.

for the left-hand side.
Correspondingly, we find for the equation’s right-hand side the expressions

3
2 ir

2gabcX̄
aX̄b =

3
2 i(r

2g231X̄2X̄3 + r2g321X̄3X̄2) =
3
2 irg231X1 . . . c = 1

3
2 i(r

2g132X̄1X̄3 + r2g312X̄3X̄1) = −3
2 irg132X2 . . . c = 2

.

The two sides equal each other, if we set gabc = −2
3rεabc.

In the same fashion, the squashed CP 2
N constitutes a solution to the matrix model.

To prove that the matrices Xa for a ∈ I := {1, 2, 4, 5, 6, 7} are a solution of the e.o.m.,
we can in a first step compute the matrix Laplacian. Consider the root generators

X±1 =
1
2 (X4 ± iX5),

X±2 =
1
2 (X6 ∓ iX7),

X±3 =
1
2 (X1 ± iX2) = ±[X±1 ,X±2 ].

(48)

2 Small in the sense of a small Hilbert-Schmidt norm.
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Making use of the bilinearity of the commutator we derive, by direct computation, the
three identities

[X+
1 , [X−1 , ·]] + [X−1 , [X+

1 , ·]] = 1
2 ([X4, [X4, ·]] + [X5, [X5, ·]]) ,

[X+
2 , [X−2 , ·]] + [X−2 , [X+

2 , ·]] = 1
2 ([X6, [X6, ·]] + [X7, [X7, ·]]) ,

[X+
3 , [X−3 , ·]] + [X−3 , [X+

3 , ·]] = 1
2 ([X1, [X1, ·]] + [X2, [X2, ·]]) .

Using these, we can express the matrix Laplacian in terms of these root generators,

�S = 2
3∑
c=1

([X+
c , [X−c , ·]] + [X−c , [X+

c , ·]]). (49)

It is now fairly straightforward to compute �SX
±
a , by making use of the root generator’s

commutation relations. In any case one finds

�SX
±
a =

2
C2
X±a ∀a = 1, . . . , 3. (50)

From the linear independence of the generators Xa, a ∈ I, it thus follows that �SXa =
2
C2
Xa for all a ∈ I.
As for the right-hand side, we first provide the useful identity∑

a,b∈I
fabcfabd = δcd. (51)

Let us briefly verify that this equation is indeed satisfied. Given the structure constants
of su(3), we can explicitly state the two matrices (F3)ab := −if3ab and (F8)ab := −if8ab,

F3 =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 −1

2 0 0 0 0
0 0 0 0 0 0 −1

2 0
0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 0


, F8 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

√
3

2 0 0 0
0 0 0 −

√
3

2 0 0 0 0
0 0 0 0 0 0

√
3

2 0
0 0 0 0 0 −

√
3

2 0 0
0 0 0 0 0 0 0 0


.

Since (Fa)bc = −ifabc can be considered as matrices acting in the adjoint representation
on C8, we know from the quadratic Casimir operator that

3δcd =
8∑

a=1

8∑
b=1

(Fa)cb(Fa)bd =
8∑

a,b=1
fabcfabd

and splitting up this sum we obtain the equation

3δcd =
∑
a,b∈I

fabcfabd + 2
∑

a∈{3,8}

8∑
b=1

fabcfabd − 2f38cf38d

From the matrices F3 or F8, it becomes immediately clear that the third term vanishes
for any choice of c and d. The second term can be further condensed into the expression

∑
a∈{3,8}

8∑
b=1

fabcfabd =
8∑
b=1

f3bcf3bd +
8∑
b=1

f8bcf8bd = −(F 2
3 + F 2

8 )cd.
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Restricting the indices c, d to the set J , the right-hand side of the equation then simplifies
to

−(F 2
3 + F 2

8 )cd = δcd.

Plugging everything back into eq. (52), we obtain

3δcd =
∑
a,b∈I

fabcfabd + 2
∑

a∈{3,8}

8∑
b=1

fabcfabd =
∑
a,b∈I

fabcfabd + 2δcd

This proves eq. (51).
To proceed with the proof that squashed CP 2 is a solution to the equation of motion

eq. (47), it is straightforward to evaluate 3
2 igabcX

aXb. Making use of the anti-symmetry
property of gabc and defining fabc = − 8

3
√
C2
fabc

gabcX
aXb =

1
2gabc[X

a,Xb] =
i

2
√
C2
gabcfabdXd = −

i

3gabcgabdXd = −
i

3Xc. (52)

By comparing this with eq. (50), we finally obtain an equation of the same form as
eq. (47),

�SXc =
3
2 ifabcX

aXb. (53)

Allowing for an additional radial freedom with parameter r alters the definition of the
antisymmetric coefficients by an additional factor r.

3.2 sym with mass term and quartic potential

Inspired by the previous chapter, we drop the cubic term and consider an action with
mass and quartic interaction term

S[X ] =
1
4 Tr

(
[Xa,Xb][X

a,Xb]− 2m2XaX
a − 2λ(XaX

a)2
)
=

= Skin[X ] + Smass[X ] + Squart[X ] (54)

The equations of motion are derived in the same way as eq. (47) by varying the background
Xa → Xa + φa and collecting terms of first order in φa. The result is then given by

�Xa +m2Xa + λ{XcX
c,Xa} = 0. (55)

Note that in the sum X2 = XcX
c, the indices run only over I. In order for squashed

CP 2
N to be a solution, either of the following two conditions must be fulfilled:

(i) λ = 0 and m2 = −2.

(ii) N = 1 and m2 + 2λ = −2.

In contrast to the fuzzy sphere, were we can retain a non-vanishing quartic interaction
term for any irreducible representation, the situation for squashed fuzzy CP 2 is a lot
more restrictive.
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To see this, once more it is convenient to work with the matrix Laplacian in the
form introduced in eq. (49). Working out the commutators, all but three terms are
non-vanishing, namely

[X+
1 , [X−1 ,X+

1 ]] =
1
2X

+
1 ,

[X+
3 , [X−3 ,X+

1 ]] =
1
4X

+
1 ,

[X−2 , [X+
2 ,X+

1 ]] =
1
4X

+
1 .

This computation can be repeated for any X±k , k = 1, . . . , 3 with similar results. Plugging
everything back into eq. (49), the action of the matrix Laplacian on the root generators
can be summarized by

�X±k = 2X±k , k = 1, . . . , 3. (56)

To work out the anti-commutator term in the equation of motion, note that we are
able to rewrite the X2 term using the quadratic casimir operator,

X2 = C2 −X2
3 −X2

8 . (57)

If we require that the squashed fuzzy CP 2 is a solution to eq. (55), it is clear that
{X2,X±k } ∝ X

±
k . This is only possible however, if and only if X2 ∝ IdH. One can choose

a basis such that the X3 and X8 are diagonal and properly normalized w.r.t. the Killing
form. For N = 1, we can see, by considering the Gell-Mann matrices, that

X2 = Id3.

This of course implies that

�X±k +m2X±k + λ{XcX
c,X±k } = (2 +m2 + 2λ)X±k = 0 (58)

and thus we obtain the condition m2 + 2λ = −2 as advertised.
Conversely, for N > 1, the main issue is that X2 fails to be proportional to the identity

operator and thus the squashed fuzzy CP 2 cannot be a solution to this model anymore,
unless we drop the interaction term, i.e. we set λ = 0. In the next section, we study
fluctuations around this background for these two cases.

3.3 background fluctuations for N > 1

In this section we study fluctuations of the background and aim to understand the
spectrum of the operator that determines the behavior of these fluctuations. This
operator can be derived from S[X ] by once again plugging in small variations

Xa → Xa +Aa

of the background, but in contrast to selecting the terms of linear order in Aa, we consider
the second-order perturbations. To simplify the formulas, we introduce the shorthand
notation δA2S[X ] referring to the terms quadratic in Aa ∈ C6 ⊗ EndH. Let us first
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consider the more difficult case N > 1 and λ = 0 and come back to N = 1 later. For the
second-order perturbations we find

δA2S[X ] = Tr(1
4 ([Aa,Ab][Xa,Xb] + [Xa,Xb][Aa,Ab]+

[Aa,Xb][Aa,Xb] + [Xa,Ab][Xa,Ab]+

[Aa,Xb][Xa,Ab] + [Xa,Ab][Aa,Xb])−
1
2m

2AaA
a) =

= Tr(1
2 ([Aa,Ab][Xa,Xb]+

[Aa,Xb][Aa,Xb]+

[Aa,Xb][Xa,Ab])−
1
2m

2AaA
a) =

=
1
2 Tr

(
−Aa�Aa − 2Aa[[Xa,Xb],Ab]−m2AaA

a + f2
)

,

(59)

where we defined f = i[Xa,Aa]. Fixing this last term3 implements a gauge fixing
condition. We can conveniently choose f2 = 0 and by further reordering the terms, the
second order term can be written as

δA2S[X ] = −1
2 Tr(Aa(δab(�+m2) + 2[[Xa,Xb], ·])Ab) =

= −1
2 Tr(Aa(D2)abAb) (60)

As a first result in this chapter, we will show that the spectrum of the operator D2

is non-negative if and only if m2 ≥ 0. For the squashed fuzzy CP 2, we have already
established that m2 = −2. Consequently, this model is unfortunately not stable for this
background. Nevertheless, we can understand this operator even better, by providing a
method to find the eigenvalues of this operator by restricting the domain to carefully
chosen subspaces in the next section of this chapter.
Let us reiterate that the tensor product End(H) ∼= D(N , 0)⊗D(N , 0)∗ decomposes

as

End(H) ∼=
N⊕
p=1

D(p, p).

This means that there is a similarity transformation

U :
N⊕
p=0

C6 → C6 ⊗EndH

such that U−1D2U is block-diagonal with the blocks similar to the maps

D2
p : C6 ⊗D(p, p)→ C6 ⊗D(p, p)

(va)a∈J 7→

∑
c∈J

ρp(tc)
2va +m2va + 2

∑
b∈J

8∑
c=1

ifabcρp(tc)vb


a∈J

(61)

3 This can always be achieved [26].
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where p ranges from 0 tot N . We can rewrite this expression in terms of tensor products,
namely

(D2
p)ab =δab

(∑
c∈J

ρp(tc)
2 +m2 IdD(p,p)

)
+ 2

8∑
c=1

ifabcρp(tc) =

=(Id6)ab ⊗
∑
c∈J

ρp(tc)
2 − 2

8∑
c=1

(Fc)ab ⊗ ρp(tc) +m2(Id6)ab ⊗ IdD(p,p) (62)

where (Fc)ab = −ifabc. To understand the full vector fluctuation operator D2 better, we
may therefore study the spectrum of the sub-operators D2

p.

3.3.1 Spectrum of the vector fluctuation operator

In this section we provide a proof for the positivity of the vector fluctuation operator D2.
We will utilize the well know Weyl’s inequality, which we recall here for convenience.

Theorem 2. (Weyl’s inequality [27]) Let M ,N and P be three hermitian matrices,

s.t. M = N + P and

µ1 ≤ µ2 . . . µn−1 ≤ µn the eigenvalues of M
ν1 ≤ ν2 . . . νn−1 ≤ νn the eigenvalues of N
ρ1 ≤ ρ2 . . . ρn−1 ≤ ρn the eigenvalues of P

then for i = 1, . . . ,n we find νi + ρ1 ≤ µi ≤ νi + ρn. �

We can now show the main result of this section. Since the gauge term does not
introduce negative modes, we want to only consider the gauge-fixed vector fluctuation
operator here. This differs from [8] insofar as here we did not include a cubic flux term
in the action.

Theorem 3. The vector fluctuation operator

D2 : C6 ⊗End(H)→ C6 ⊗End(H),

(Aa)a∈J 7→

�Aa + 2
∑
b∈J

[[Xa,Xb],Ab] +m2Aa


a∈J

governing fluctuations around a squashed CP 2 background for the Yang-Mills matrix

model

S[X ] =
1
4 Tr

(
[Xa,Xb][Xa,Xb]− 2m2XaX

a
)

,

where Xa denote the six fuzzy embedding functions of squashed CP 2
N , is

(i) positive definite if and only if m2 > 0.

(ii) negative definite if and only if m2 < 0.

(iii) positive semi-definite otherwise.
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Proof. Since Aa 7→ m2Aa only shifts the spectrum by the constant value m2, we can
without loss of generality set m2 = 0.

Let us now consider the decomposition (D2
p)ab introduced in eq. (61). Recall that by

squashing, we restrict a and b to J = {1, 2, 4, 5, 6, 7}. This means that span{Fa}a∈J is
not closed under the Lie-bracket anymore. To get around this issue we introduce an
auxiliary operator D̄2

p where a, b = 1, . . . , 8, i.e.

D̄2
p : C8 ⊗D(p, p)→ C8 ⊗D(p, p), v 7→

(
Id8⊗

∑
c∈J

ρp(tc)
2 − 2

8∑
c=1

Fc ⊗ ρp(tc)
)
v

and make the squashing explicit by introducing the projection operator

P =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


⊗ IdD(p,p).

Thus we can recover the vector fluctuation operator in terms of D̄2
p as follows:

D2
p ∼ P T

(
Id8⊗

∑
i∈J

ρp(ti)
2 − 2

8∑
c=1

Fc ⊗ ρp(tc)
)
P =: P T D̄2

pP .

Since the auxiliary operator lives in D(1, 1)⊗D(p, p), we can utilize the full machinery
of representation theory.
First we are going to argue that D̄2

p is non-negative. To this end let

M1 = Id8⊗
∑
i∈J

ρp(ti)
2, M2 = −2

8∑
c=1

Fc ⊗ ρp(tc)

For M1 we can easily state an explicit formula for the eigenvalues. Indeed,

M1 = Id8⊗(p(p+ 2) IdD(p,p)−(ρp(t3)2 + ρp(t8)
2))

with the eigenvalues of ρp(t3)2 + ρp(t8)2 given by the weights of the representation. We
can also read of the smallest eigenvalue for M1. This is of course the one for the highest
weight of the representation and we find

λmin(M1) = p(p+ 2)−
(
p

2

)2
−
(
p
√

3
2

)2

= 2p

To find a lower bound for the eigenvalues of M2, we consider the tensor product W =

D(1, 1)⊗D(p, p). The tensor product decomposition can, for example, be easily evaluated
by means of Young tableaus and the result for p > 1 is

D(1, 1)⊗D(p, p) = D(p+ 1, p+ 1) +D(p+ 2, p− 1) +D(p− 1, p+ 2)+
+D(p, p) +D(p+ 1, p− 2) +D(p− 2, p+ 1) +D(p− 1, p− 1),
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while for p = 1, we find

D(1, 1)⊗D(1, 1) = D(0, 0)⊕D(1, 1)⊕D(3, 0)⊕D(0, 3)⊕D(2, 2).

The Casimir operator of the corresponding Lie-algebra representation

CW =
8∑
c=1

(Fc ⊗ IdD(p,p) + IdD(1,1)⊗ρp(tc))2 (63)

then decomposes by Schur’s lemma into the blocks proportional to the identity operator.
The full spectrum is given by

spec(CW ) = {(1 + p)(3 + p), (1 + p)(2 + p), (1 + p)(2 + p),
p(2 + p), p(1 + p), p(1 + p), (−1 + p)(1 + p)}

(64)

for the case p > 1. A similar result is obtained for p = 1. To proceed, we expand
the square in eq. (63) and compute the Casimir operator for the respective irreducible
representations D(1, 1) and D(p, p),

CW =
8∑
c=1

(F 2
c ⊗ IdD(p,p) +2Fc ⊗ ρp(tc) + IdD(1,1)⊗ρp(tc)2) =

= (3 + p(p+ 2)) IdD(1,1)⊗ IdD(p,p) +2
8∑
c=1

Fc ⊗ ρp(tc)

⇔ −2
8∑
c=1

Fc ⊗ ρp(tc) = (3 + p(p+ 2)) IdD(1,1)⊗ IdD(p,p)−CW ,

which is exactly the matrix M2. Thus the smallest eigenvalue of M2 can be computed by
taking the largest eigenvalue of CW . From eq. (64) it is clear that this value is given by
λmax(CW ) = (1 + p)(3 + p) and by plugging this into CW we obtain,

λmin(M2) = 3 + p(p+ 2)− (1 + p)(3 + p) = −2p.

By employing Weyl’s identity, it is now clear that D̄2
p is at least positive semi-definite,

since

0 = λmin(M1) + λmin(M2) ≤ λmin(M1 +M2) = λmin(D̄
2
p).

Finally, note that for any v ∈ C6 ⊗D(p, p)

vTD2
pv = vTP T D̄2

pPv = wT D̄2
pw ≥ 0,

where we set w = Pv for clarity. Since this applies to all p > 0, the fluctuation operator
D2 is at least positive semi-definite. Note that we have already seen that D2 possesses
zero modes and therefore, the operator is not positive for m2 = 0. �

As already mentioned, we would need to set m2 = −2 in order to obtain the squashed
CP 2

N as a solution to the equation of motion eq. (55). This however pulls the spectrum
down and negative modes appear. Alas, these instabilities invalidates the viability as a
proper physical model.
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Computation of the Spectrum

Having found that the spectrum of the vector fluctuation operator is positive definite, we
can refine our results by computing – at least partially – the exact eigenvalues of the vector
fluctuation operator. Given a particular (p+ 1)3 dimensional matrix representation,
i.e. with Dynkin labels D(p, p), this certainly can be carried out numerically. However,
performing the computation naively has the obvious drawback of cubically growing
matrix dimensions. Furthermore, if we want to understand the operator as p → ∞,
numerically computing the eigenvalues for the first couple N might not be illuminating.
Unfortunately deriving a closed formula for the eigenvalues turns out to be not such a
trivial task.

In this section we present a partial solution to this problem by rewriting D2
p, given in

eq. (61), in terms of root generators and then we develop a machinery for constructing
eigenvectors with the help of weight diagrams. The main idea resides in the afore-
mentioned decomposition of End(H) into a direct sum of irreducible representations,
namely

End(H) ∼= D(N , 0)⊗D(0,N) ∼=
N⊕
p=0

D(p, p)

To this end, we will break up the matrices4 (Fc)ab = −ifabc further into Kronecker
products of 2× 2 and 3× 3 matrices.

Consider the Pauli matrices enriched by the identity matrix, denoted by σ0,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

enriched by the identity matrix, denoted by σ0. Similarly, we let λk, k = 1, . . . , 8 be
the eight Gell-Mann matrices and set λ0 to be the 3× 3 identity matrix. In order to
demonstrate how the matrices Fa can be decomposed in terms of Pauli- and Gell-Mann
matrices, we present the case F1 explicitly. Observe that

F1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 − i

2
0 0 0 0 i

2 0
0 0 0 − i

2 0 0
0 0 i

2 0 0 0


=

1
2λ6 ⊗ σ2.

4 Note that here the indices a and b are restricted to J = {1, 2, 4, 5, 6, 7} as a consequence of the squashing
procedure.
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where ⊗ denotes the Kronecker product. Repeating this decomposition for the remaining
seven matrices Fc, we find the formulas

F1 =
1
2λ6 ⊗ σ2

F4 = −1
2λ5 ⊗ σ1

F6 = −1
2λ1 ⊗ σ2

F3 =
1
2

(2
3λ0 +

1
2λ3 +

5
2
√

3
λ8

)
⊗ σ2

F2 =
1
2λ7 ⊗ σ0

F5 = −1
2λ5 ⊗ σ3

F7 =
1
2λ2 ⊗ σ0

F8 =
1
2

(
2√
3
λ0 −

√
3

2 λ3 +
1
2λ8

)
⊗ σ2

(65)

and by plugging these into eq. (62), the vector fluctuation operator takes the form

D2
p = λ0 ⊗ σ0 ⊗

(∑
c∈J

ρp(tc)
2
)
+

−
(2

3λ0 +
1
2λ3 +

5
2
√

3
λ8

)
⊗ σ2 ⊗ ρp(t3)−

(
2√
3
λ0 −

√
3

2 λ3 +
1
2λ8

)
⊗ σ2 ⊗ ρp(t8)+

− λ6 ⊗ σ2 ⊗ ρp(t1)− λ7 ⊗ σ0 ⊗ ρp(t2) + λ5 ⊗ σ1 ⊗ ρp(t4)− λ5 ⊗ σ3 ⊗ ρp(t5)+
+ λ1 ⊗ σ2 ⊗ ρp(t6)− λ2 ⊗ σ0 ⊗ ρp(t7).

The six Gell-Mann matrices λk, k ∈ J can then be expressed as linear combinations of
the root generators by reversing the definitions

λ±A =
1
2 (λ1 ± iλ2), λ±B =

1
2 (λ4 ± iλ5), λ±C =

1
2 (λ6 ± iλ7)

and, denoting the quadratic Casimir operator by

C2 =
8∑
c=1

ρp(tc)
2,

we obtain, after rearranging terms, the expression we are going to use to study the
spectrum:

D2
p =λ0 ⊗ σ0 ⊗ (C2 − ρp(t3)2 − ρp(t8)2)− λ0 ⊗ σ2 ⊗

(2
3ρp(t3) +

2√
3
ρp(t8)

)
+

−λ3 ⊗ σ2 ⊗
(

1
2ρp(t3)−

√
3

2 ρp(t8)

)
− λ8 ⊗ σ2 ⊗

( 5
2
√

3
ρp(t3)−

1
2ρp(t8)

)
+

+λ−A ⊗ (σ2 ⊗ ρp(t6)− iσ0 ⊗ ρp(t7)) + λ+A ⊗ (σ2 ⊗ ρp(t6) + iσ0 ⊗ ρp(t7))+
+λ−B ⊗ (iσ1 ⊗ ρp(t4)− iσ3 ⊗ ρp(t5))− λ+B ⊗ (iσ1 ⊗ ρp(t4)− iσ3 ⊗ ρp(t5))+
−λ−C ⊗ (σ2 ⊗ ρp(t1) + iσ0 ⊗ ρp(t2))− λ+C ⊗ (σ2 ⊗ ρp(t1)− iσ0 ⊗ ρp(t2)).

(66)

At first glance, this might appear rather cumbersome. However, if we pick any vector of
the form

V ± = w⊗ s± ⊗ v, w ∈ C3, v ∈ D(p, p),

where we singled out the two eigenvalues of σ2,

s+ =

(
−i
1

)
and s− =

(
i

1

)
,
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with eigenvalues ±1 respectively, the terms D2
pV
± further simplify to

D2
pV

+ =v⊗ s+ ⊗
((

C2 − ρp(t3)2 − ρp(t8)2 − 2
3ρp(t3)−

2√
3
ρp(t8)

)
w

)
+


LdV

++(λ3v)⊗ s+ ⊗
((
−1

2ρp(t3) +
√

3
2 ρp(t8)

)
w

)
+

+(λ8v)⊗ s+ ⊗
((
− 5

2
√

3
ρp(t3) +

1
2ρp(t8)

)
w

)
+

+(λ−Av)⊗ s
+ ⊗ (T−C w) + (λ+Av)⊗ s

+ ⊗ (T+
C w)+

LsV ++(λ−Bv)⊗ s
− ⊗ (T+

Bw)− (λ+Bv)⊗ s
− ⊗ (T+

Bw)+

−(λ−Cv)⊗ s
+ ⊗ (T+

Aw)− (λ+Cv)⊗ s
+ ⊗ (T−Aw)

and

D2
pV
− =v⊗ s− ⊗

((
C2 − ρp(t3)2 − ρp(t8)2 +

2
3ρp(t3) +

2√
3
ρp(t8)

)
w

)
+


LdV

−−(λ3v)⊗ s− ⊗
((
−1

2ρp(t3) +
√

3
2 ρp(t8)

)
w

)
+

−(λ8v)⊗ s− ⊗
((
− 5

2
√

3
ρp(t3) +

1
2ρp(t8)

)
w

)
+

−(λ−Av)⊗ s
− ⊗ (T+

C w)− (λ+Av)⊗ s
− ⊗ (T−C w)+

LsV −−(λ−Bv)⊗ s
+ ⊗ (T−Bw) + (λ+Bv)⊗ s

+ ⊗ (T−Bw)+

+(λ−Cv)⊗ s
− ⊗ (T−Aw) + (λ+Cv)⊗ s

− ⊗ (T+
Aw),

where we introduced the shorthand notation T±A := ρp(t
±
A), T

±
B := ρp(t

±
B) and T±C :=

ρp(t
±
C) and made use of the identities

σ1s
± = ∓is∓, σ3s

± = −s∓.

We can separate the operator D2
p into the two parts Ld and Ls. These two parts behave

nicely if they act on vectors of the form

V ±i,k,l := ei ⊗ s± ⊗wk,l, (67)

where ei denotes the standard basis of the vector space C3 and wk,l corresponds to a
weight vector with weight given by ω = kα1 + lα2, where αi are the two simple roots, i.e.

ρp(t3)wk,l =

(
k− 1

2 l
)
wk,l, ρp(t8)wk,l =

√
3

2 lwk,l.

Now observe that by construction any such V ±i,k,l is an eigenvector of Ld. For this reason
we will refer to Ld as the diagonal action of D2

p. The second part of the fluctuation
operator, Ls will be denoted the shifting action, since it transports vectors of the form
V ±i,k,l into vectors with either k, l or both incremented respectively decremented. To
understand the shifting action a bit better, we will identify proper invariant subspaces
W ⊆ D(p, p), i.e. LsW ⊆ W . Having found these, we then can try to construct
eigenvectors of Ls within these invariant subspaces.
To this end, we fix some terminology. Letting Vω be the weight space corresponding

to the weight ω of the irreducible representation D(p, p), we define the vector spaces

Wk,l =

Vkα1+lα2 if kα1 + lα2 is a valid weight
{0} otherwise
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Figure 5: Any white grid point is associated with the trivial vector space {0}, while the filled dots
represent the different weight spaces of the – in this example p = 2 – representation
D(p, p)

where k, l ∈ Z. Schematically, these spaces can be arranged in a grid. For the case p = 2,
this is illustrated in fig. 5. We also introduce the notion of an extended weight space,
given by the subspaces,

W±i,k,l := {ei ⊗ s± ⊗w | w ∈Wk,l} ⊆ C3 ⊗C2 ⊗Wk,l

where i = 1, ..., 3 and k, l ∈ Z. Equipped with this terminology, we are now ready to
better understand the structure of the subspaces that are preserved by the shifting action.

Lemma 4. Given any pair of integers (k, l), the vector space

Vk,l =W
−
1,k+1,l ⊕W

−
2,k+1,l+1 ⊕W

−
3,k,l+1⊕

⊕W+
1,k−1,l ⊕W

+
2,k−1,l−1 ⊕W

+
3,k,l−1 ⊆ C3 ⊗C2 ⊗D(p, p)

(68)

is preserved by the shifting action Ls.

Proof. We pick any weight (k′, l′). Acting with Ls on e1 ⊗ s− ⊗w for any w ∈ Wk′,l′ ,
only the two terms

−e2 ⊗ s− ⊗ (T+
C w)− e3 ⊗ s+ ⊗ (T−Bw) ∈W

−
2,k′,l′+1 ⊕W

+
3,k′−1,l′−1

survive, or in other words,

LsW
−
1,k′,l′ ⊆W

−
2,k′,l′+1 ⊕W

+
3,k′−1,l′−1.
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Repeating this step recursively for each of the two vector spaces we can trace the action
of Ls across the extended weight spaces and take note of any newly encountered extended
weight space. This can be visualized diagrammatically for W−1,k′,l′ as follows5

W−1,k′,l′

W−2,k′,l′+1W−3,k′−1,l′+1

W+
1,k′−2,l′

W+
2,k′−2,l′−1 W+

3,k′−1,l′−1

Setting k = k′−1 and l = l′, we obtain the claimed assertion. Repeating this computation
for the remaining combinations of unit vectors ei and sign choices, yields the same
picture. �

Given a subspace of the form eq. (68), we can now ask whether we are able to construct
an eigenvalue of D2

p restricted to any available Vk,l.
As for the diagonal action we can show the following lemma:

Lemma 5. The sub-spaces

Vk,l =W
−

1,k+1,l ⊕W−2,k+1,l+1 ⊕W−3,k,l+1⊕
⊕W+

1,k−1,l ⊕W+
2,k−1,l−1 ⊕W+

3,k,l−1 ⊆ C3 ⊗C2 ⊗Wk,l

are eigensubspaces of Ld. In particular

LdV =
(
(1 + p)2 − kl− (k− l)2

)
V , ∀V ∈ Vk,l. (69)

Proof. Recall that

ρp(t3)|Wk,l =

(
k− l

2

)
IdWk,l , ρp(t8)|Wk,l =

√
3

2 l IdWk,l ,

we can plug these identities into the definition of Ld, we obtain for any w ∈Wk,l after
collecting terms

Ld(e1 ⊗ s± ⊗w) =
(
(p+ 2)p− k2 − l2 + k(l∓ 2)± l

)
e1 ⊗ s± ⊗w

Ld(e2 ⊗ s± ⊗w) =
(
(p+ 2)p− k2 − l2 + k(l∓ 1)∓ l

)
e2 ⊗ s± ⊗w

Ld(e3 ⊗ s± ⊗w) =
(
(p+ 2)p− k2 − l2 + k(l± 1)∓ 2l

)
e3 ⊗ s± ⊗w.

Evaluating these identities on any of the six terms in the direct sum yields the claimed
statement, e.g. for V ∈W−1,k+1,l,

LdV =
(
(p+ 2)p− (k+ 1)2 − l2 + (k+ 1)(l+ 2)− l

)
=

=
(
(1 + p)2 − kl− (k− l)2

)
V .

�

5 Note that this diagram is not commutative.
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This previous result tells us that to find the eigenvectors of D2
p restricted to Vk,l it

suffices to compute the eigenvectors of the shifting operator, restricted to Vk,l. The
eigenvalues of D2 are then obtained by adding the eigenvalue of Ld to each of the
eigenvalues of the shifting operator.

We will now demonstrate how the eigenvalues on the lower dimensional weight spaces
can be computed. To be precise, we restrict ourselves to the situations where the
dimension of any of the weight spaces in the construction

Vk,l =W
−

1,k+1,l ⊕W−2,k+1,l+1 ⊕W−3,k,l+1⊕
⊕W+

1,k−1,l ⊕W+
2,k−1,l−1 ⊕W+

3,k,l−1

is at most two. This leaves us with the following cases

(i) Only one of the spaces is non-trivial:

Vp+1,0 Vp+1,p+1 V0,p+1

V−p−1,0 V−p−1,−p−1 V0,−p−1

(ii) Two of the spaces are are one-dimensional while the other four are trivial:

Vp+1,k Vk,p+1 V−p−1+k,k

V−p−1,−p−1+k V−p−1+k,−p−1 Vk,−p−1+k

where k = 1, . . . , p.

(iii) Two spaces are one-dimensional and one is two-dimensional while the other three
are trivial:

Vp,0 Vp,p V0,p

V−p,0 V−p,−p V0,−p

(iv) Two spaces are two-dimensional, two are one-dimensional and the rest is trivial:

Vp,k Vk,p V−p+k,k

V−p,−p+k V−p+k,−p Vk,−p+k

where k = 1, . . . , p− 1.

(v) For p = 1, we can furthermore examine the vector space V0,0.

Schematically we can depicted these as in fig. 6. Also note that by symmetry, the
eigenspaces for any of the five give cases are all related through the Weyl group.
Let us begin with computing the eigenvalues for case (i). There is only one (one-

dimensional) extended weight space contributing to Vk,l. To exploit the underlying
symmetry, we only need to consider Vp+1,0 ∼= W+

1,p,0 and take each eigenvalue to have a
sixfold multiplicity. In fact in this case there is not much to be done. Since Ls maps any
w ∈ W+

1,p,0 to the null space, we can immediately see that these spaces correspond to
zero modes of Ls. In addition to that the diagonal action is vanishing as well, which can
be readily seen by evaluating eq. (69). Thus we have found six zero modes of D2

p for all
p ∈N.
For case (ii), first recall that each pair of root generators – i.e. either of the three

pairs T±A , T±B or T±C – induce an su(2) Lie-sub-algebra. Given such a pair of su(2) root
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(i) (ii) (iii)

(iv) (v)

Figure 6: Schematic representation of the five lowest-dimensional configurations of Vk,l. The
black dots represent the weight spaces in the definition of Vk,l.

generators T± and picking a vector v0 ∈ D(p, p) such that T+v0 = 0 we may define the
sequence of vectors vn := (T−)nv0 for n ∈N. In accordance to prevailing notation there
exists a j ∈N, s.t. vn = 0 for n > 2j + 1. Then the norm of vn under the action of T±
changes according to the two formulas

‖T±vn‖ =
√
j(j + 1)− (j − n)(j − n± 1)‖vn‖. (70)

Now note that the subspace Vp+1,l collapses to

Vp+1,l ∼= W+
1,p,l ⊕W

+
2,p,l−1.

We can pick any non-zero Va = e2 ⊗ s+ ⊗w ∈ W+
2,p,l−1 and let6 Vb = e1 ⊗ s+ ⊗ T+

C w.
Acting with the shifting operator on the two vectors Va and Vb we obtain

LsVa = (λ+Ae2)⊗ s+ ⊗ (T+
C w) = Vb,

LsVb = (λ−Ae1)⊗ s+ ⊗ (T−C T
+
C w).

Referring back to eq. (70), the two values j and n are determined by j = p/2 and
n = p− l and therefore the length of the vector T−C T+

C w with respect to w is given by

〈w|T−C T
+
C |w〉

‖w‖2
=
‖T+

C w‖2

‖w‖2
= (p− l)(l+ 1)

and therefore LsVb = (p− l)(l+ 1)Va. Together with eq. (69), we immediately arrive at

D2
p(ξaVa + ξbVb) =Ld(ξaVa + ξbVb) + Ls(ξaVa + ξbVb) =

=(p− l)(l+ 1)(ξaVa + ξbVb) + ξaVb + ξb(p− l)(l+ 1)Va =
=(p− l)(l+ 1)(ξa + ξb)Va + ((p− l)(l+ 1)ξb + ξa)Vb =

=(p− l)(l+ 1)ξa + ξb
ξa

(
ξaVa +

(p− l)(l+ 1)ξb + ξa
(p− l)(l+ 1)(ξa + ξb)

ξa
ξb
ξbVb

)
6 Note that Vb does not vanish, since l ranges from 1 to p.
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for any ξ1, ξ2 ∈ R. Our ansatz ξaVa + ξbVb is an eigenvector of D2
p if and only if

(p− l)(l+ 1)ξb + ξa
(p− l)(l+ 1)(ξa + ξb)

ξa
ξb

= 1

Since we do not care about the norm of the eigenvector, we can without loss of generality
set ξa = 1 and solve the equation

(p− l)(l+ 1)ξb + 1 = (p− l)(l+ 1)(1 + ξb)ξb.

This quadratic equation has the two solutions

ξb = ±
1√

(p− l)(l+ 1)
,

with the corresponding eigenvalues of D2
p

λ
(ii)±
p,l := (p− l)(l+ 1)±

√
(p− l)(l+ 1). (71)

For case (iii), we can, as we did for the previous two cases, exploit the Weyl symmetry
and restrict ourselves to working out the eigenvalues situated in Vp,p. A convenient basis
for this space can be introduced by picking any non-zero w ∈Wp,p and define

V1 =e1 ⊗ s+ ⊗ T−Aw U1 =e2 ⊗ s+ ⊗ T−Bw
V2 =e3 ⊗ s+ ⊗ T−C w U2 =e2 ⊗ s+ ⊗ T−A T

−
C w.

Clearly, the vectors V1 and V2 span the two extended weight spacesW+
1,p−1,p andW+

3,p,p−1
since these spaces are one-dimensional. It remains to be shown that U1 ∈ W+

2,p−1,p−1
and U2 ∈ W+

2,p−1,p−1 are indeed linearly independent. To that end, recall that T−Bw
and T−A T

−
C w are linearly dependent if and only if the two sides of the Cauchy-Schwarz

inequality,

|〈w|T+
B T
−
A T
−
C |w〉| ≤ ‖T

−
Bw‖‖T

−
A T
−
C w‖,

are equal to each other. To show linear independence, eq. (70) comes in handy again. It
follows that

‖T−Bw‖ =
√

2p,

since in this case, j = p and n = 0. We can now exploit the commutation relations
[T−A ,T−C ] = −T−B and [T+

B ,T−C ] = T+
A for simplifying the left hand side of the Cauchy-

Schwarz inequality, yielding

|〈w|T+
B T
−
A T
−
C |w〉| = |〈w|T

+
B T
−
C T
−
A |w〉 − 〈w|T

+
B T
−
B |w〉| =

= |‖T−Aw‖
2 − ‖T−Bw‖

2| = |p− 2p| = p.

Similarly, the right hand side reduces to

‖T+
Bw‖ =

√
2p, ‖T−A T

−
C w‖ =

√
p(p+ 1) ⇒ ‖T+

Bw‖‖T
−
A T
−
C w‖ = p

√
2(p+ 1),

confirming that the inequality is indeed strict since 1 <
√

2(p+ 1) and thus U1 and U2
must be linearly independent.
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Having found a basis for the four-dimensional vector space Vp,p, we are now ready
to seek out suitable linear combinations of Vi and Ui that make up eigenvectors of D2

p.
Recall that we split the problem into the diagonal action and the shifting action,

D2
p

∑
i=1,2

(ξViVi + ξUiUi) =(1 + 2p)
∑
i=1,2

(ξViVi + ξUiUi)+

+
∑
i=1,2

(ξViLsVi + ξUiLsUi),

for some real coefficients ξVi , ξUi ∈ R. Again we merely need to evaluate the action of Ls
restricted to Vp,p. Employing the rules derived above, we gather the four expressions

LsV1 = e2 ⊗ s+ ⊗ T−C T
−
Aw = e2 ⊗ s+ ⊗ T−Bw+ e2 ⊗ s+ ⊗ T−A T

−
C w = U1 + U2,

LsV2 = −e2 ⊗ s+ ⊗ T−A T
−
C w = −U2,

LsU1 = e1 ⊗ s+ ⊗ T+
C T
−
Bw− e3 ⊗ s+ ⊗ T+

A T
−
Bw =

= e1 ⊗ s+ ⊗ T−Aw+ e3 ⊗ s+ ⊗ T−C w = V1 + V2,
LsU2 = e2 ⊗ s+ ⊗ T+

C T
−
A T
−
C w− e3 ⊗ s+ ⊗ T+

A T
−
A T
−
C w =

= e2 ⊗ s+ ⊗ T−A T
+
C T
−
C w− e3 ⊗ s+ ⊗ T+

A T
−
A T
−
C w =

= pV1 − (p+ 1)V2.

where we used the commutation relations

[T+
C ,T−B ] = T−A , [T−B ,T+

A ] = T−C , [T+
C ,T−A ] = 0

and in the last step eq. (70). In total the vector fluctuation operator restricted to the
sub-space Vp,p maps the vector ∑i=1,2(ξViVi + ξUiUi) to

D2
p

∑
i=1,2

(ξViVi + ξUiUi) =(1 + 2p)
∑
i=1,2

(ξViVi + ξUiUi) + ξV1(U1 + U2)− ξV2U2+

+ ξU1(V1 + V2) + ξU2(pV1 − (p+ 1)V2) =

=(ξV1(1 + 2p) + ξU1 + pξU2)V1+

+ (ξV2(1 + 2p) + ξU1 − (p+ 1)ξU2)V2+

+ (ξU1(1 + 2p) + ξV1)U1+

+ (ξU2(1 + 2p) + ξV1 − ξV2)U2.

(72)

Without loss of generality we may once more assume that ξV1 = 1. Pulling out the
coefficient of V1 we obtain the non-linear system of equations

ξV2(1 + 2p) + ξU1 − (p+ 1)ξU2

1 + 2p+ ξU1 + pξU2
=ξV2

ξU1(1 + 2p) + 1
1 + 2p+ ξU1 + pξU2

=ξU1

ξU2(1 + 2p) + 1− ξV2

1 + 2p+ ξU1 + pξU2
=ξU2 ,

for which we find the following set of four different solutions:

ξV2 =1 ξU1 =1 ξU2 =0(iii.1)
ξV2 =1 ξU1 =− 1 ξU2 =0(iii.2)

ξV2 =− 1 ξU1 =− 1√
2p+ 1 ξU2 =− 2√

2p+ 1(iii.3)

ξV2 =− 1 ξU1 =
1√

2p+ 1 ξU2 =
2√

2p+ 1(iii.4)
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with their corresponding eigenvalues

λ(iii.1)
p = 2(p+ 1)
λ(iii.3)
p = 2p+

√
2p+ 1 + 1

λ(iii.2)
p = 2p
λ(iii.4)
p = 2p−

√
2p+ 1 + 1

(73)

For scenario (iv), we can proceed analogously to case (iii). We first pick any w ∈Wk,l
and define

V1 =e3 ⊗ s− ⊗ T+
C w U1 =e1 ⊗ s+ ⊗ T−Aw U3 =e2 ⊗ s+ ⊗ T−Bw

V2 =e3 ⊗ s+ ⊗ T−C w U2 =e1 ⊗ s+ ⊗ T−B T
+
C w U4 =e2 ⊗ s+ ⊗ T−A T

−
C w.

Both pairs, U1,U2 and U3,U4, are linearly independent. The proof runs as before: it is
straightforward to check that for the two pairs, the Cauchy-Schwarz inequality is strict
and thus the two vectors are necessarily linearly independent. The eigenequation of the
diagonal action reads

Ld

( 2∑
i=1

ξViVi +
4∑
i=1

ξUiUi

)
= (p+ (1 + l)(1 + p− l))

( 2∑
i=1

ξViVi +
4∑
i=1

ξUiUi

)

and the images of the basis elements under the operator Ls are given by

LsV1 = U2,
LsV2 = −U4,
LsU1 = −V1 + U3 + U4,
LsU2 = (p+ l+ 1)V1 + (l+ 1)(p− l)U3,
LsU3 = U1 + U2 + V2,
LsU4 = l(p− l+ 1)U1 − (2p− l+ 1)V2

Putting everything together and collecting coefficients, the vector fluctuation operator
on the sub-spaces Vp,l can be written as

D2
p

( 2∑
i=1

ξViVi +
4∑
i=1

ξUiUi

)
=(−ξU1 + (1 + l+ p)ξU2 + (p+ (1 + l)(1− l+ p))ξV1)V1

+(ξU3 + (−1 + l− 2p)ξU4 + (p+ (1 + l)(1− l+ p))ξV2)V2

+((p+ (1 + l)(1− l+ p))ξU1 + ξU3 + l(1− l+ p)ξU4)U1

+((p+ (1 + l)(1− l+ p))ξU2 + ξU3 + ξV1)U2

+(ξU1 + (1 + l)(−l+ p)ξU2 + (p+ (1 + l)(1− l+ p))ξU3)U3

+(ξU1 + (p+ (1 + l)(1− l+ p))ξU4 − ξV2)U4,

however here it is more convenient to write down the operator Ls restricted to Vp,l as a
matrix with respect to the chosen bases,

[Ls|Vp,l ] =



0 0 −1 l+ p+ 1 0 0
0 0 0 0 1 l− 2p− 1
0 0 0 0 1 l(−l+ p+ 1)
1 0 0 0 1 0
0 0 1 (l+ 1)(p− l) 0 0
0 −1 1 0 0 0


.
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The eigenvalues can be computed using a computer algebra system and since Ld acts as
a scalar on this subspace, the eigenvalues we are looking for can be obtained by adding
p+ (1 + l)(1 + p− l) to each of the eigenvalues of Ls. In summary, the final result for
case (iv) is given by7

λ
(iv.1)±
p,l =p± 1 + (1 + l)(1 + p− l)

λ
(iv.2)±
p,l =p+ (1 + l)(1 + p− l)±

√
p+ (1 + l)(1 + p− l).

Last but not least, case (v) can be worked out analogously. In fact, since the extended
weight spaces contributing to the subspace V0,0 are all one-dimensional, it even requires
less work than the previous two cases. We pick any non-zero w ∈W0,0, demanding the
additional constraint that w 6∈ kerT+

k for k = A,B,C. This is indeed possible. To see
this, recall that D(1, 1) is just the adjoint representation. Then Gell-Mann matrix λ3
fulfills this requirement, whereas λ8 does not, since [λ+A,λ8] vanishes.

Under these assumptions, neither of the six vectors

V1 = e1 ⊗ s− ⊗ T+
Aw V4 = e1 ⊗ s+ ⊗ T−Aw

V2 = e2 ⊗ s− ⊗ T+
Bw V5 = e2 ⊗ s+ ⊗ T−Bw

V3 = e3 ⊗ s− ⊗ T+
C w V6 = e3 ⊗ s+ ⊗ T−C w

vanishes and thus we can use them as a basis of V0,0. The diagonal and shifting actions
are then determined by

LsV1 = −V2 −
1
2V6 LsV3 = 2V2 − 2V4 LsV5 = −V4 +

1
2V6

LsV2 = −V1 +
1
2V3 LsV4 = −1

2V3 − V5 LsV6 = −2V1 + 2V5

LdVi = 4Vi.

The matrix representation of D2
1 is therefore given by

[D2
1|V0,0 ] =



4 −1 0 0 0 −2
−1 4 2 0 0 0
0 1

2 4 −1
2 0 0

0 0 −2 4 −1 0
0 0 0 −1 4 2
−1

2 0 0 0 1
2 4


.

The eigenvalues of this matrix are given by

λ(v.1) = 6 λ(v.2) = 5 λ(v.3) = 3 λ(v.4) = 2

where λ(v.2) and λ(v.3) have multiplicity two.

Computation using Gelfand-Tsetlin patterns

There is a well known relation between Young-Tableaus and irreducible representations
of the special unitary group [10]. Probably not so popular are so called Gelfand-Tsetlin
patterns. It has been established that any irreducible matrix representation of SU(n)
can be explicitly constructed in the space of these patterns[28, 29]. We will reiterate the
core concepts presented in [29] before we demonstrate how these patterns can be used to
aid us with finding the spectrum of Ls.

7 Note that the latter pair of eigenvalues has multiplicity two.
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Figure 7: Arrangement of Gelfand-Tsetlin patterns with top row (2, 1, 0) within the weight lattice.
su(3) acts in the irreducible representation D(1, 1).

Definition 6. A Gelfand-Tsetlin pattern is a triangular array of integers

a = (ai,j) =



a1,N a2,N · · · aN−1,N aN ,N

a1,N−1
. . . aN−1,N−1

. . .
. . . . .

.

a1,2 a2,2
a1,1


with the additional constraint that ak,l+1 ≥ ak,l ≥ ak+1,l+1. We will refer to this constraint

as the betweenness condition.
In order to limit the scope of this thesis, we will assume N = 3 from here on. However,

note that all these arguments can be straightforwardly generalized to any choice of N .
To make the connection of Gelfand-Tsetlin patterns to Dynkin labels, we set the first

row to

a1,3 = p+ q+ a3,3, a2,3 = q+ a3,3.

Given a set of integers (a1,3, a2,3, a3,3), the number of allowed patterns is clearly inde-
pendent of a3,3 and finite due to the betweenness-condition. In fact it turns out that we
can, without loss of generality, assume a3,3 = 0. Diagrams of this form will be referred
to as normalized diagrams. Let Pp,q be the set of all possible normalized Gelfand-Tsetlin
patterns with first row set to (p+ q, q, 0). We consider the vector space V (Pp,q) of all
formal linear combinations of elements of Pp,q equipped with the scalar product

〈a, b〉 =

1 if ai,j = bi,j ∀i, j
0 otherwise

, ∀a, b ∈ Pp,q

and define the following linearly extended operators acting on V (Pp,q)

T3 : V (Pp,q)→ V (Pp,q), a 7→
(
a1,1 −

1
2 (a1,2 + a2,2)

)
a

T8 : V (Pp,q)→ V (Pp,q), a 7→
(√

3
2 (a1,2 + a2,2)−

1√
3
(p+ 2q)

)
a
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Additionally, we may define raising and lowering operators. For convenience, we
introduce the following shorthand notation

a± 1k,l =

(ai,j ± δi,kδj,l) if (ai,j ± δi,kδj,l) is a valid pattern
0 otherwise

Then, the raising and lowering operators are defined by [29, 30]

〈a + lk,l, J+
l a〉 =


−

l+1∏
k′=1

(ak′,l+1 − ak,l + k− k′)
l−1∏
k′=1

(ak′,l−1 − ak,l + k− k′ − 1)

l∏
k′=1
k′ 6=k

(ak′,l − ak,l + k− k′)(ak′,l − ak,l + k− k′ − 1)



1/2

and

〈a− lk,l, J−l a〉 =


−

l+1∏
k′=1

(ak′,l+1 − ak,l + k− k′ + 1)
l−1∏
k′=1

(ak′,l−1 − ak,l + k− k′)

l∏
k′=1
k′ 6=k

(ak′,l − ak,l + k− k′ + 1)(ak′,l − ak,l + k− k′)



1/2

respectively, where 1 ≤ k ≤ l ≤ 2. It turns out, that T3 and T8, together with J±l act
on V (Pp,q) in the D(p, q) representation of su(3).

In order to stay consistent with our notation, we define the six root generators

T±A = J±1 , T±C = J±2 , T±B = ±[J±1 , J±2 ],

which together with T3 and T8 generate the D(p, q) irreducible representation of su(3)
on the vector space V (Pp,q).

Having introduced Gelfand-Tsetlin patterns and their relation to representation theory
of su(3), we can return to our initial goal of For a given weight index (k, l), the system
of equations

T3a =

(
a1,1 −

1
2 (a1,2 + a2,2)

)
a =

(
k− l

2

)
a

T8a =

(√
3

2 (a1,2 + a2,2)−
1√
3
(p+ 2q)

)
a =

√
3

2 la

determine the Gelfand-Tsetlin patterns with weight (k− l/2,
√

3l/2). Solving these for
a1,2, a1,1 and a2,2, we obtain

a1,2 + a2,2 = l+
2
3 (p+ 2q), a1,1 = k+

1
3 (p+ 2q).

Together with the betweenness-condition, we can construct all Gelfand-Tsetlin patterns
Pk,l spanning the weight space Wk,l ⊆ V (Pp,q). A basis for the Ls-invariant spaces Vk,l
can then be labeled by the Gelfand-Tsetlin patterns

B = Pk−1,l ∪Pk−1,l−1 ∪Pk,l−1 ∪Pk+1,l ∪Pk+1,l+1 ∪Pk,l+1
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For any a ∈ B, the shifting action is then computed from the formulas

Pk−1,l 3 a 7→ (T−C + T+
B)a, Pk−1,l−1 3 a 7→ (T+

C −T+
A)a

Pk,l−1 3 a 7→ (−T+
B −T−A)a, Pk+1,l 3 a 7→ (−T+

C −T−B)a
Pk+1,l+1 3 a 7→ (−T−C + T−A)a, Pk,l+1 3 a 7→ (T−B + T+

A)a.

and after dropping any Gelfand-Tsetlin patterns that are not within B, the resulting
linear combinations can be gathered to build the matrix representation [Ls|Vk,l ] whose
eigenvalues are, by construction, exactly those of Ls restricted to Vk,l. Contrary to
computing the eigenvalues for the full operator D2

p or even D2, the dimension of these
matrices scale linearly with p, i.e. for

[Ls|Vk,l ] ∈ Mat(nk,l × nk,l, C)

where nk,l = dimVk,l, we observe that nk,l ≤ 6p whereas dim C6 ⊗D(p, p) = 6(p+ 1)3.
In other words, instead of computing the eigenvalues of a 6(p+ 1)3-dimensional matrix,
we can compute the eigenvalues of multiple smaller matrices, with dimensions bounded
by 6p.

Validation

To make sure all the computations were carried out correctly, we computed the eigenvalues
for the lower dimensional representations numerically using Mathematica. The spectral
decomposition was on the one hand carried out numerically for the full operator D2 and
on the other hand symbolically by using the procedure based on the Gelfand-Tsetlin
patterns. The results are summarized in appendix A.

3.4 background fluctuations for N = 1

Let us conclude this chapter by discussing the remaining N = 1 case for the model
eq. (54). In this case, the quartic interaction term

Squart[X ] = −1
2 Tr(λ(X2)2)

is not forbidden by the equation of motion and therefore we can reintroduce the corre-
sponding terms to the vector fluctuation operator. Again we perform a perturbation
Xa → Xa +Aa and compute the second order terms analogously to eq. (59):

δA2Squart[X ] =− λ

2 Tr(XaXaAbAb +XaAaXbAb +AaXaXbAb+

XaAaAbXb +AaXaAbXb +AaAaXbXb) =

=− 1
2 Tr(λAa{X2,Aa}+ λAb{Xb, {Xa,Aa}}).

Thus the full vector fluctuation operator for the quartic action reads

D2
ab = δab(�+m2 + λ{X2, ·}) + 2[[Xa,Xb], ·]− [Xa, [Xb, ·]] + λ{Xa, {Xb, ·}}.

Assuming that squashed CP 2 is a solution to its equation of motion, we have seen in the
previous section that this forces m2 = −2(λ+ 1). Since N = 1 is fixed, we may compute
the spectrum using a computer algebra software like Mathematica[31]. The results are
summarized in table 1.
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Table 1: List of numerically computed eigenvalues and their explicitly computed counterparts

unfixed gauge gauge fixed: [Xa,Aa] = 0
Eigenvalue Multiplicity Eigenvalue Multiplicity

−2 12 −2 12
0 13 0 21
2 6 λ+ 1 2
3 2 4(λ+ 1) 1

λ+ 1 2 q1(λ)/4 6
4(λ+ 1) 1 q2(λ)/4 6
q1(λ)/4 6 q3(λ)/4 6
q2(λ)/4 6
q3(λ)/4 6

In table 1, the function qi(λ) denote the three roots of the polynomial

f(t) = t3 − 8λt2 − (96 + 32λ)t− 256.

Note that as with the case for N > 1, the model unfortunately cannot be stabilized, even
though we may adjust the coupling constant.
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Figure 8: Progression of vector fluction operator spectrum w.r.t. λ for the non-gauge-fixed model.

3.5 summary

In this chapter we have focused on squashed CP 2
N solutions of the IKKT-inspired matrix

model

S[X ] =
1
4 Tr

(
[Xa,Xb][Xa,Xb]− 2m2XaXa − 2λ(X2)2

)
.

We have shown that the quartic interaction term can only be retained if the fuzzy
embedding functions Xa are in the D(1, 0) representation of su(3). Otherwise, to satisfy
the equation of motion, the coupling term has to vanish. Furthermore the equations of
motion force the mass parameter to m2 = −2.
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In order to study the vector fluctuations around a squashed CP 2
N background, we

presented a method for reducing the computational complexity of the spectrum of D2.
To this end, we constructed the spaces

Vk,l ⊆ C3 ⊗C2 ⊗D(p, p).

Using these subspaces, we were able to partially find analytic expressions for a certain
class of subspaces Vk,l. These expressions, together with a wider range of accessible
numerical results, suggest that the eigenvalues of D2 are of a particular form. We
conjecture, that any eigenvalue of the shifting operator Ls constructed from the D(p, p)
irreducible representation of su(3) is either ±1 or

±
√
−(k− l)2 − kl+ (p+ 1)2,

where k, l are integers labeling the corresponding non-trivial Vk,l. This was tested
numerically up to N = 25. Therefore, the eigenvalues of the vector fluctuation operator
D2 are given by

− (k− l)2 − kl+ (p+ 1)2 ± 1

and − (k− l)2 − kl+ (p+ 1)2 ±
√
−(k− l)2 − kl+ (p+ 1)2.

Unfortunately, this can only produce the eigenvalues and not their multiplicities. To
complete the picture and provide a formal proof of these numerically observed patterns
more future work is required.



4
G E N E R A L P O T E N T I A L W I T H O U T M A S S T E R M

As demonstrated in the previous chapter, choosing the squashed fuzzy projective plane
as solution to the modified IKKT model (54) leads to unphysical negative modes of the
vector fluctuation operator. Furthermore, this solution is not compatible with a quartic
interaction term in the semi-classical limit. The main culprit is the fact that

X2 =
∑
c∈J

XcXc

is not proportional to the identity operator for the fuzzy embedding function Xc in the
D(N , 0) irreducible representation with N > 1. For the fuzzy sphere, this limitation does
not occur. Moreover, we can even generalize the potential in the action to any radially
symmetric real analytic function. In this chapter we will demonstrate that for such a
potential, the spectrum of the vector fluctuation operator does not contain negative
modes, given that N > 1 and the coupling constant η is sufficiently large.

To this end, consider the action

S[X ] =
1
4 Tr

(
[Xa,Xb][X

a,Xb]− ηV (XaX
a)
)
= Skin[X ] + ηSV [X ]. (74)

We pick an irreducible representation (N) of su(2) on some N -dimensional Hilbert space
H. The matrices X̄a ∈ End(H) denote the group-theoretically normalized generators1

and we define Xa = rX̄a for some arbitrary real scaling parameter r ∈ R. Then, the
following relations hold:

XaX
a = R2 = r2R2

N IdH, R2
N =

1
4 (N

2 − 1)

X̄aX̄
a = R2

N IdH.
(75)

As discussed in section 2.1, this set of matrices generates the fuzzy sphere of radius r.
Once more, we introduce a small variation Xa → Xa + φa, φa ∈ End(H) and compute
the terms up to second order:

S[X + φ] = S[X ]− 1
4 Tr

(
φb�XX

b + ηV ′(R2){Xa,φa}
)

︸ ︷︷ ︸
S(1)[X,φ]

+

− 1
2 Tr

(
φa
(
(D2

0)ab + ηV ′′(R2){Xa, {Xb, ·}}+ 2ηV ′(R2)δab
)
φb
)

︸ ︷︷ ︸
S(2)[X,φ]

+O(φ3),

where

(D2
0)ab = δab�+ 2[[Xa,Xb], ·]− [Xa, [Xb, ·]].

From the first-order terms, we once more obtain the equation of motion

�XX
b + 2ηV ′(R2)Xb = 0 (76)

1 We also assume them to be orthogonal under the Killing-form.

55
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and the second order term defines the vector fluctuation operator of this particular
model,

D2
ab = (D2

0)ab + ηV ′′(R2){Xa, {Xb, ·}}+ 2ηV ′(R2)δab. (77)

By plugging Xa into the equation of motion the first Taylor-coefficient V ′(R2) is fixed:

�XX
b + 2ηV ′(R2)Xb = r3�X̄X̄

b + 2ηV ′(R2)Xb =

= 2r3X̄b + 2rηV ′(R2)X̄b = 0⇔ V ′(R2) = −r
2

η
.

This can be plugged back into the vector fluctuation operator
3∑
c=1

[Xc, [Xc, ·]] + 2[[Xa,Xb], ·]− [Xa, [Xb, ·]] + µ{Xa, {Xb, ·}} − 2r2δab =

r2
( 3∑
c=1

[X̄c, [X̄c, ·]] + 2[[X̄a, X̄b], ·]− [X̄a, [X̄b, ·]] + µ{X̄a, {X̄b, ·}} − 2δab
)

,

where we set µ = ηV ′′(R2). Conveniently, the scaling factor r factors out.

4.0.1 Stabilization of the model

A stable model requires the spectrum of the vector fluctuation operator to be non-
negative. Numerical computations (fig. 9) suggest that for the fuzzy sphere this can in
fact be achieved as long as N > 1 and the coupling constant µ is sufficiently large.
To prove this claim, we loosely follow the approach presented in [32] for finding the

vector harmonics on the fuzzy 4-sphere. Consider the ansatz

A(1)
a := {Xa,φ}+,
A(2)
a := [Xa,φ],
A(3)
a := εabcXb[Xc,φ]

(78)

and the operator

D2
ab = δab�+ 2[[Xa,Xb], ·]− (1− g0)[Xa, [Xb, ·]] + µ{Xa, {Xb, ·}}+M2δab. (79)

Note that we have introduced the additional parameter g0 that lets us keep track of the
gauge fixing. Setting g0 = 1 fixed the gauge [Xb,Ab] = 0. Also, for the fuzzy sphere
case, we have seen that M2 = −2. To obtain the spectrum of D2

ab, we straightforwardly
compute the action of D2

ab on the ansatz eq. (78).
We merely state the final results here and refer the reader to the appendix for the

detailed computation:

D2
abA

(1)
b [φ] = A(1)

a [(1− µ)�φ+ (4µR2
N +M2 + 6)φ] +A(2)

a [4φ] +A(3)
a [8iφ]

D2
abA

(2)
b [φ] = A(2)

a [g0�φ+ (2 +M2)φ]

D2
abA

(3)
b [φ] = A(1)

a

[
i

(
µ

2 − 2
)
�φ
]
+A(2)

a

[
i
g0 − 1

2 �φ
]
+A(3)

a [(2 +M2)φ+�φ]

(80)

Now, from eq. (12), recall the decomposition into irreducible representations, i.e. given
some φ ∈ (p), we have

�φ = R2
2pφ =: λφ.
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Figure 9: Numerically determined eigenvalues for N = 1 (left) and N = 2 (right). While in the
left figure, there exists a constant negative mode, the vector fluctuation operator for
N = 2 becomes stable for sufficiently high values of µ.

Plugging this back into eq. (80) the right hand side can be written as a linear combination
of the ansatz eq. (78). This allows us to interpret the action of D2

ab on our ansatz as the
3× 3 matrix equationD

2
ab

D2
ab

D2
ab



A(1)
b [φ]

A(2)
b [φ]

A(3)
b [φ]

 =

=

(1− µ)λ+ (4µR2
N +M2 + 6) 4 8i

0 g0λ+ 2 +M2 0
iλ
(µ

2 − 2
)

iλg0−1
2 λ+ 2 +M2


︸ ︷︷ ︸

M


A(1)
a [φ]

A(2)
a [φ]

A(3)
a [φ]

 . (81)

The eigenvalues of the mixing matrix M are in fact candidates for eigenvalues of D2
ab. To

see this note that we may choose a a suitable unitary matrix U such that DM = U−1MU

becomes diagonal. Then eq. (81) is equivalent toD
2
ab

D2
ab

D2
ab

U

A(1)
b [φ]

A(2)
b [φ]

A(3)
b [φ]

 = DMU


A(1)
a [φ]

A(2)
a [φ]

A(3)
a [φ]

 . (82)

For our particular model, we may set M2 = −2 again. The eigenvalues can be computed
straightforwardly for instance using a computer algebra system. The three expressions
for the eigenvalues read

λM ,1[λ] = g0λ,

λM ,2[λ] = λ
2− µ

2 −

√
λ2µ2

4 − 2λ (3µ+ µ2R2
N − 8) + 4(µR2

N + 1)2 + 2µR2
N + 2,

λM ,3[λ] = λ
2− µ

2 +

√
λ2µ2

4 − 2λ (3µ+ µ2R2
N − 8) + 4(µR2

N + 1)2 + 2µR2
N + 2.

The model is stabilized once all eigenvalues are non-negative for any possible choice
of λ. Clearly, λM ,1 is by construction positive or vanishes, since g0 ∈ {0, 1} and λ ≥ 0.
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Figure 10: Comparison of numerically and analytically computed eigenvalues for N = 1 (top-left),
N = 2 (top-right), N = 3 (bottom-left) and N = 4 (bottom-right).

Thus we only need to turn our attention to the other two expressions, λM ,2 and λM ,3.
We can solve the inequalities λM ,i ≥ 0 for µ to obtain the critical values of µ, where all
eigenvalues become positive. This yields the single inequality

µcrit =
12− λ

4(R2
N + 1)− λ =

12− λ
N2 + 3− λ . (83)

Note that since 0 ≤ λ ≤ N(N − 1), µcrit is bounded from above by 12/(N2 + 3) and
thus, for a particular choice of the coupling constant ν = µ/V ′′(R2), the model remains
stable in the semi-classical limit N →∞.

What remains to be done is to confirm that these eigenvalues of the mixing matrix
are in fact true eigenvalues of D2 and that we do not miss any eigenvalues. To get an
idea of the situation, we compare the analytically obtained expressions with numerical
computations for the first few representations. The respective plots are given in figure
fig. 10. We clearly see that in each plot we find an eigenvalue of the mixing matrix
independent of µ that is fact not appearing in the numerical computation. Additionally,
there is also an eigenvalue missing, apart from the case N = 2, since there this missing
eigenvalue coincides with zero.
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4.0.2 Validity of the ansatz

In general, the ansatz eq. (78) only provides candidates for eigenvalues of the operator
D2. Two scenarios are conceivable:

(i) The expressions UijA(j)
a [φ] vanish, i.e. – assuming each A(j)

a [φ] is non-vanishing –
the ansatz is not linearly independent. The corresponding entry in DM can then
take any value, since both sides of eq. (82) vanish in that particular entry.

(ii) The ansatz might miss eigenvalues.

In fact both scenarios need to be taken care of for the present case. The ansatz in eq. (78)
is valid up to the highest spin components in the decomposition

Mat(N , C) ∼= (N)⊗ (N)∗ ∼=
N⊕
p=1

(2p− 1). (84)

First and foremost, we can shown that for any φ ∈ (2N − 1), the three expressions
A(i)
a [φ] are linearly dependent and

U2iA(i)
a [φ] = 0.

To see this, we consider A(3)
a [φ] and expand it

A(3)
a [φ] =εabcXb[Xc,φ] = εabcXbXcφ− εabcXbφXc =

=iXaφ− εabcXbφXc =
i

2A
(1)
a [φ] +

i

2A
(2)
a [φ]− εabcXbφXc.

Let φN−1
l ∈ Mat(N , C), such that

�φN−1
l = N(N − 1)φN−1

l ,
[X3,φN−1

l ] = lφN−1
l , l = −N + 1, . . . ,N − 1

Under these assumptions, we claim that the identity

iεabcXbφ
N−1
l Xc =

N − 1
2 {Xa,φN−1

l } (85)

holds. In order to show this, we collect a few observations about the left and right-hand
side of this equation. The right-hand side is of course a multiple of A(1)

a [φN−1
l ], while the

left-hand side motivates the map Ba[φ] := iεabcXbφXc. We can interpret A(1), as well
as B, as maps taking elements of the tensor product su(2)⊗Mat(N , C) to Mat(N , C).
More precisely, we introduce the linear maps

A± : su(2)⊗Mat(N , C)→ Mat(N , C)

x⊗ φ 7→ A±(x⊗ φ) =

{X,φ} for A+

[X,φ] for A−
(86)

and

B : su(2)⊗Mat(N , C)→ Mat(N , C), x⊗ φ 7→ [Xc,X ]φXc. (87)
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Using these definitions, we can recover our ansatz via the formulas

A+(xa ⊗ φ) = A(1)
a [φ],

A−(xa ⊗ φ) = A(2)
a [φ],

−iB(xa ⊗ φ) = −i[Xc,Xa]φXc = εabcXbφXc.

Conveniently, the maps A± and B preserve the Lie algebra structure of the tensor product
given by

(x, y⊗ φ) 7→ x . (y⊗ φ) = [x, y]⊗ φ+ y⊗ [X,φ]

and the adjoint action on the N -dimensional matrices.

Lemma 6. The maps A± and B, as defined above, intertwine the two actions

(x, y⊗ φ) 7→ x . (y⊗ φ), (x,φ) 7→ [X,φ],

i.e., for ψ = A± or ψ = B,

ψ(x . y⊗ φ) = [X,ψ(y⊗ φ)].

Proof. Linearity of the three maps is clear. Also, by construction, the claim is immediate
for A− from the Jacobi identity. The statement for A+ can be derived by direct
computation:

A+(x . (y⊗ φ)) =A+([x, y]⊗ φ+ y⊗ [X,φ]) =
={[X,Y ],φ}+ {Y , [X,φ]} = [X, {Y ,φ}] = [X,A+(y⊗ φ)].

To carry out the proof for B consider the identity

[Xc,Xa]φ[Xb,Xc] = [iεbcdXc,Xa]φXd = [Xa, [Xb,Xd]]φXd.

From linearity of the Lie brackets, this is equivalent to

[Xc,X ]φ[Y ,Xc] = [X, [Y ,Xc]]φXc. (88)

Then, on the one hand, we have

B(x . (y⊗ φ)) = B([x, y]⊗ φ+ y⊗ [X,φ]) =
= [Xc, [X,Y ]]φXc + [Xc,Y ][X,φ]Xc

and conversely

[X,B(y⊗ φ)] =[X, [Xc,Y ]φXc] =

=[X, [Xc,Y ]]φXc + [Xc,Y ][X,φ]Xc + [Xc,Y ]φ[X,Xc] =

=[X, [Xc,Y ]]φXc + [Xc,Y ][X,φ]Xc + [Y , [X,Xc]]φXc =

=[Xc,Y ][X,φ]Xc − [Xc, [Y ,X ]]φXc = B(x . (y⊗ φ)),

where we first made use of eq. (88) and then of the Jacobi identity. �
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This means in particular that we need to show eq. (85) only for the highest-weight
vector φN−1

N−1. This highest weight vector can readily be constructed from the weight
vectors of the N -dimensional representation of su(2). Recall that the highest weight of
the N -dimensional representation is ω = (N − 1)/2. Using the Dirac notation for the
respective eigenvectors, we claim that

φN−1
N−1 = |ω〉〈−ω|.

Indeed a straightforward computation shows

[X3, |ω〉〈−ω|] = (N − 1)|ω〉〈−ω|. (89)

From the decomposition of Mat(N , C) into irreducible representations, this already
suffices to conclude that |ω〉〈−ω| exclusively lives within (2N − 1). We can now verify
that identity eq. (85) holds for φ := φN−1

N−1. Note that

XbφXb =(X+ +X−)φ(X+ +X−)− (X+ −X−)φ(X+ −X−) +X3φX3 =

=X3φX3 = −
(
N − 1

2

)2
φ.

(90)

Instead of working with the basis {xa}, it is more convenient to work with raising and
lowering operators. Thus we compute the three cases for each of the basis elements
{x3,x±}, where x± = x1 ± ix2 as usually:

Case x3: A+(x3 ⊗ φ) = X3φ+ φX3 =
N − 1

2 φ− N − 1
2 φ = 0.

B(x3 ⊗ φ) = [Xc,X3]φXc = XcX3φXc −X3XcφXc =

=
N − 1

2 XcφXc +

(
N − 1

2

)2
X3φ = 0,

where we used eq. (90) in the last line.

Case x+: A+(x+ ⊗ φ) = X+φ+ φX+ = 0.
B(x+ ⊗ φ) = [Xc,X+]φXc = XcX

+φXc −X+XcφXc =

=

(
N − 1

2

)2
X+φ = 0.

The final case is a bit more involved. Let us first present the following intermediate
result before we tackle the computation of B(x− ⊗ φ):

XcX
−φXc =(X++X−)φ(X++X−)− (X−+X−)φ(X+−X−) +X3φX3 =

=(X+ +X−)X−φX− + (X+ −X−)X−φX− +X3X
−φX3 =

=2X+X−φX− − N − 1
2 X3X

−φ =

=[X+,X−]φX− − N − 1
2 ([X3,X−] +X−X3)φ =

=X3φX
− − N − 1

2 (−X− +
N − 1

2 X−)φ =

=
N − 1

2 {X−,φ} −
(
N − 1

2

)2
X−φ.
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Equipped with this identity and together with eq. (90) it follows immediately that for
the last remaining case eq. (85) holds as well.

Case x−: B(x− ⊗ φ) = [Xc,X−]φXc = XcX
−φXc −X−XcφXc =

=
N − 1

2 A+(x− ⊗ φ)

This shows that eq. (85) holds for the highest weight vector, and since A+ and B are
intertwiners, this identity can be extended to (2N − 1) ⊆ Mat(N , C).
We now turn our attention back to the mixing matrix and pick eigenvectors of the

Laplacian with eigenvalue λ = N(N − 1), i.e. we take φ ∈ (N − 1). After plugging
everything into eq. (81), we obtain

M =

 N(N + µ− 1) + 4− µ 4 8i
0 0 0

1
2 iN(N − 1)(µ− 4) −1

2 i(N − 1)n N (N − 1)

 .

The diagonalization of M = U−1DMU was carried out with Mathematica [31] and is
explicitly given by

DM =

 0 0 0
0 N(N + 3) 0
0 0 (N − 1)(N + µ− 4)

 ,

U = − i(µ− 4)(N − 1)
8(1− 2N)− 2µ(N + 1)


0 −N(µ−8)+µ−4

(N−1)(µ−4) 0
N 1 2i
−N − 4N

(N−1)(µ−4) − 8iN
(N−1)(µ−4)

 .

We claim that N(N + 3) is not a real eigenvalue of D2. Indeed for the first couple of
N , this is confirmed by numerically checking the eigenvalues of the vector fluctuation
operator. It can appear as an eigenvalue of the mixing matrix if and only if U2iA

(i)
a [φ]

vanishes. Indeed, using eq. (85), we

U2iA(i)
a [φ] ∝ NA(1)

a [φ] +A(2)
a [φ] + 2iA(3)

a [φ] (91)

vanishes. Indeed using the property derived above, we find that

0 =
i

2A
(1)
a [φ] +

i

2A
(2)
a [φ]− εabcXbφXc −A(3)

a [φ] =

=
i

2A
(1)
a [φ] +

i

2A
(2)
a [φ] + i

N − 1
2 A(1)

a [φ]−A(3)
a [φ] =

=
i

2NA
(1)
a [φ] +

i

2A
(2)
a [φ]−A(3)

a [φ].

Multiplying both sides with 2i confirms that eq. (91) indeed equals zero and thus, for
φ ∈ (N − 1), our ansatz produces redundances.
To find the eigenvalues that were not produced by the proposed ansatz, we set

φ := φN−1
N−1 and claim that

V :=

−iφφ
0


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is an eigenvector of D2 and its eigenvalue is precisely the missing eigenvalue in fig. 10.
To demonstrate this, we first note – by again using eq. (85) – that

{Xb,Vb} =− i{X1,φ}+ {X2,φ} = 2
N − 1 (ε1bcXbφXc + iε2bcXbφXc) =

=
2

N − 1 (X2φX3 −X3φX2 + iX3φX1 − iX1φX3) =

=
2i

N − 1 (X3 φX
+︸ ︷︷ ︸

=0

−X+φ︸ ︷︷ ︸
=0

X3) = 0.

Hence it follows immediately, that the interaction term {Xa, {Xb,Vb}} in D2 does not
contribute. For the remaining terms of the vector fluctuation operator, we then find for
each of the three coordinates:

D2
1bVb =− i�φ+ i[X1, [X1,φ]] + 2iφ+ 2[[X1,X2],φ]− [X1, [X2,φ]] =

=− iN(N − 1)φ+ i[X1, [X+,φ]] + 2iφ+ 2i[X3,φ] = N(N − 3)V1

D2
2bVb =�φ− 2i[[X2,X1],φ] + i[X2, [X1,φ]]− 2φ− [X2, [X2,φ]] =

=N(N − 1)φ+ i[X2, [X+,φ]]− 2φ− 2[X3,φ] = N(N − 3)V2

D2
3bVb =− 2i[[X3,X1],φ] + 2[[X3,X2],φ] + i[X3, [X1,φ]]− [X3, [X2,φ]] =

=− 2i[X+,φ] + i[X3, [X+,φ]] = 0,

where we used

δab�Vb = �Va = N(N − 1)Va.

To address the question of eigenvalue multiplicities and better understand the underlying
cause for the the wrong/missing eigenvalues discussed above, we take a look at the
decomposition

su(3)⊗Mat(N , C) ∼= (1)⊕ (3)⊕3 ⊕ · · · ⊕ (2N − 3)⊕3 ⊕ (2N − 1)⊕2 ⊕ (2N + 1)

Recall that the maps A± and B map this tensor product space to

Mat(N , C) ∼= (1)⊕ (3)⊕ · · · ⊕ (2N − 3)⊕ (2N − 1)

and thus, irreducibility dictates that (2N + 1) necessarily maps to (1). In other words, any
A(k)
a [φ] fails to produce the explicitly constructed eigenvalue V ∈ (2N + 1). Also note that

the linear dependency highlighted in eq. (91) is a consequence of the twofold multiplicity
of (2N − 1) appearing in the decomposition of su(3)⊗Mat(N , C). Furthermore, since
the unit matrix spans (1) ⊆ Mat(N , C), the two intertwiners A(2)

a [φ] and A(3)
a [φ] vanish

for φ ∈ (1) and therefore do not contribute to the set of eigenvectors. These results are
summarized in table 2.
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Table 2: Summary of eigenvalues in spectrum of vector fluctuation operator.

Representation Multiplicity Eigenvalue
Eigenvalue
multiplicity

N = 1 (3) 1 −2 3
N = 2 (1) 1 4 + 3µ 1

(3) 2 2g0 3
µ− 2 3

(5) 1 −2 5
N ≥ 3 (1) 1 4 + (N2 − 1)µ 1

(3) 3 λM ,1 [2] 3
λM ,2 [2] 3
λM ,3 [2] 3

...

(2p− 1) 3 λM ,1 [p(p− 1)] 2p− 1
λM ,2 [p(p− 1)] 2p− 1
λM ,3 [p(p− 1)] 2p− 1

...

(2N − 3) 3 λM ,1 [(N − 1)(N − 2)] 2N − 3
λM ,2 [(N − 1)(N − 2)] 2N − 3
λM ,3 [(N − 1)(N − 2)] 2N − 3

(2N − 1) 2 N(N − 1)g0 2N − 1
(N − 1)(N + µ− 4) 2N − 1

(2N + 1) 1 N(N − 3) 2N + 1

4.0.3 Summary

In this section, we have obtained explicit expressions for the computation of the full
spectrum of the vector fluctuation operator D2 and the respective multiplicities for an
IKKT-inspired matrix model with radial potential and a fuzzy sphere background. These
results are summarized in table 2. We have shown that all fluctuation modes can be
made positive, if the parameter µ is chosen large enough as long as µ ≥ µcrit.



5
C O N C L U S I O N

In this thesis, we have covered two loosely related topics. In the first part, we obtained
several parametrizations for the space emerging in the semi-classical limit of the squashed
CP 2

N . In particular, the action-angle coordinates prove to be convenient to compute
effective geometrical properties. In terms of these coordinates, we computed the effective
metric emerging on squashed CP 2

N , which is in turn essential to understanding the
dynamics of the fields living on the underlying space.
The second part focused on fluctuations of the background around a given solution

of the bosonic section of the IKKT model. The two solutions in consideration where
again the squashed CP 2

N and in addition to that the fuzzy S2. For the former solution,
we augmented the model by a mass term and a quartic interaction term. For the
latter solution we were able to consider the more general case of a generic potential
introduced to the action. We have presented a machinery to more effectively compute the
fluctuation modes for the squashed CP 2

N background. In principle, this approach should
be generalizable to other fuzzy spaces that are build from irreducible representations
of Lie algebras. Working out these issues is left for future research. While we have
shown that the fluctuations modes of the squashed CP 2

N background contain negative
modes and thus exhibit instabilities, the fuzzy S2 can be stabilized. This gives hope for
a larger class of possibly more physically meaningful models to be discovered in further
investigations.
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a.1 eigenvalues of vector fluctuation operator

In this section, we list the eigenvalues of the vector fluctuation operator (61) for p =

1, . . . , 3 and M2 = 0. This serves primarily as a validation for the analytical computation
proposed in section three.

Table 3: List of numerically computed eigenvalues and their explicitly computed counterparts

Numerical Reference Explicit calculation
Eigenvalue Multiplicity Eigenvalue

p = 0 0 6 λ(i) 0

p = 1 6. 1 λ(v.1) 6
5. 2 λ(v.2) 5

4.73205 6 λ(iii.3) 3 +
√

3
4. 6 λ(iii.1) 4
3. 2 λ(v.3) 3
2. 13 λ(v.4) 2

λ(iii.2) 2
λ(ii) + 2

1.26795 6 λ(iii.4) 3−
√

3
0. 12 λ(i) 0

λ(ii) - 0

p = 2 12. 3 12
10.8284 18 8 +

√
8

10. 3 10
9. 12 9

8.4495 12 λ(iv.2 +) 6 +
√

6
8. 3 8

7.2361 6 λ(iii.3) 5 +
√

5
7. 18 λ(iv.1) + 7
6. 9 λ(iii.1) 6

5.1716 18 8−
√

8
5. 6 λ(iv.1) - 5
4. 6 λ(iii.2) 4

3.5505 12 λ(iv.2 -) 6−
√

6
3.4142 12 λ(ii)+ 2 +

√
2

2.7639 6 λ(iii.4) 5−
√

5
0.5858 12 λ(i)− 2−

√
2

0. 6 λ(i) 0

p = 3 20. 5 20
18.873 30 15 +

√
15

17. 4 17
16.6056 24 13 +

√
13
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16. 18 16
15.4641 18 12 +

√
12

15. 4 15
14. 30 14
13. 12 13
12. 41 12

11.127 30 15−
√

15
11. 12 11
10. 12 10

9.6458 6 7 +
√

7
9.3944 24 13−

√
13

8.5359 18 12−
√

12
8. 18 8
6. 36 6

4.7321 12 3 +
√

3
4.3542 6 7−

√
7

2. 6 2
1.2679 12 3−

√
3

0. 6 0

a.2 detailed computation of D2
abA

(i)
b

In order to tidy up the computations, we first want to state a few useful formulas that
will come in handy in this section. We want to emphasize that we consider the set of
sl(2, C) generators {xa}a=1,...3 obeying the commutation relations

[xa,xb] = iεabcxc.

To reiterate, note that we denote elements of the (abstract) Lie-algebra sl(2, C) by
lower-case letters, i.e. x ∈ sl(2, C), while capital letters X are the images of x ∈ sl(2, C)

under a particular representation ρ, i.e. X = ρ(x). In this section we take ρ to be the
N -dimensional irreducible representation on some N -dimensional Hilbert space H. The
endomorphisms Xa are normed s.t. the quadratic Casimir operator is given by

δabXaXb = R2
N IdH, R2

N =
1
4 (N

2 − 1).

For the upcoming computation it turns out to be useful to expand double commutators
in terms of linear combinations of {xa}a=1,2,3. By virtue of the fundamental property

εijkεmnk = δimδjn − δinδjm

of the Levi-Civita symbol we can derive the relation

[xa, [xb,xc]] =iεbcd[xa,xd] = iεbcdiεadexe = εbcdεaedxe =

=(δbaδce − δbeδca)xe = δabxc − δacxb.
(92)

Lemma 7. Consider an irreducible representation on some N -dimensional Hilbert space

H such that

X2 = δabXaXb = R2
N IdH, where R2

N =
1
4 (N

2 − 1)
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Then, for any φ ∈ End(H), the fuzzy Laplacian takes the form

�φ = 2(R2
Nφ−XcφXc) = 2Xb[Xb,φ].

Proof. This is a simple matter of expanding the commutator and collecting terms

[Xc, [Xc,φ]] = Xc(Xcφ− φXc)− (Xcφ− φXc)Xc = 2(R2
Nφ−XcφXc).

On the other hand
2Xb[Xb,φ] = 2(R2

Nφ− 2XcφXc). �

Since, to derive the proposed result eq. (80), we turn to sl(2, C)⊗Mat(N , C), recall
that sl(2, C) acts on this tensor product as follows:

x . : sl(2, C)⊗Mat(N , C)→ sl(2, C)⊗Mat(N , C)

y⊗ φ 7→ x . (y⊗ φ) = [x, y]⊗ φ+ y⊗ [X,φ],

for any choice x ∈ sl(2, C). In this representation, the Casimir operator takes the form

Ω : sl(2, C)⊗End(H)→ sl(2, C)⊗End(H)

x⊗ φ 7→
3∑

a=1
xa . xa . (x⊗ φ)

and, by using the identity for the double commutator, Ω can be expanded as follows:

Ω(x⊗ φ) = [xa, [xa,x]]⊗ φ+ x⊗�φ+ 2[xa,x]⊗ [Xa,φ] =
= x⊗�φ+ 2(x⊗ φ+ [xa,x]⊗ [Xa,φ]). (93)

Here we used the identity [xa, [xa,x]] = 2x.
Also, recall the definition of the intertwiners

A± : sl(2, C)⊗Mat(N , C)→ Mat(N , C) B : sl(2, C)⊗Mat(N , C)→ Mat(N , C)

stated in eq. (86) and eq. (87). The Casimir operator of the representation given on the
tensor product then clearly makes the diagram

sl(2, C)⊗End(H) sl(2, C)⊗End(H)

End(H) End(H)

Ω

A±,B A±,B

�

commute.

Lemma 8. For any choice x ∈ sl(2, C), the three intertwiners A± and B defined above

fulfill the following three identifies:

(i)
3∑
c=1
A−([xc,x]⊗ [Xc,φ]) = −A−(x⊗ φ).

(ii)
3∑
c=1
A+([xc,x]⊗ [Xc,φ]) = −2B(x⊗ φ)−A+(x⊗ φ).
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(iii)
3∑
c=1
B([xc,x]⊗ [Xc,φ]) = −

1
2A

+(x⊗�φ).

Proof. To obtain the first formula, note that � commutes with the action [X, ·] by
construction and thus

�(A−(x⊗ φ)) = �[X,φ] = [X,�φ] = A−(x⊗�φ).

On the other hand, since A− intertwines � and Ω, we have

A−(x⊗�φ) =�A−(x⊗ φ) = A−(Ω(x⊗ φ)) =

=A−(x⊗�φ) + 2A−(x⊗ φ) + 2
3∑
c=1
A−([xc,x]⊗ [Xc,φ]).

Solving for ∑3
c=1A−([xa,x]⊗ [Xa,φ]) reveals the assertion of the lemma.

In order to derive the latter two identities we can without loss of generality – due to
linearity – let x = xa. Then, by virtue of eq. (92) and lemma 7, we find

A+([xc,xa]⊗ [Xc,φ]) =[Xc,Xa]Xcφ− [Xc,Xa]φXc+

+Xcφ[Xc,Xa]︸ ︷︷ ︸
=−[Xc,Xa]φXc

−φXc[Xc,Xa] =

=− 2B(xa ⊗ φ) + {(XcXaXc −XaX
2),φ}+ =

=− 2B(xa ⊗ φ)−A+(xa ⊗ φ)

and

B([xc,xa]⊗ [xc,φ]) =[Xc, [Xb,Xa]][Xb,φ]Xc = (δcbXa − δcaXb)[Xb,φ]Xc =

=Xa(XbφXb − φX2)− (X2φ−XbφXb)Xa =

=− 1
2 (Xa(�φ) + (�φ)Xa) = −

1
2A

+(xa ⊗�φ). �

This lemma enables us to determine how the terms of the fluctuation operator act on
the ansatz proposed in eq. (78).

laplacian term: As already mentioned in the proof of lemma 7, � commutes
with [X, ·] by construction and thus

�A−(x⊗ φ) = �[X,φ] = [X,�φ] = A−(x⊗�φ).

For the two remaining cases A+ and B, we take the expansion eq. (93) of Ω and by
making use of lemma 8, we obtain for � ◦A+ the result

�A+(x⊗ φ) =A+(Ω(x⊗ φ)) =
=A+(x⊗�φ) + 2A+(x⊗ φ) + 2A+([xa,x]⊗ [Xa,φ]) =
=A+(x⊗�φ) + 2A+(x⊗ φ)− 4B(x⊗ φ)− 2A+(x⊗ φ) =
=A+(x⊗�φ)− 4B(x⊗ φ).

Similarly, � ◦ B expands to

�B(x⊗ φ) =B(Ω(x⊗ φ)) =
=B(x⊗�φ) + 2B(x⊗ φ) + 2B([xa,x]⊗ [Xa,φ]) =
=B(x⊗�φ) + 2B(x⊗ φ)−A+(x⊗�φ).
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off-diagonal operator [[Xa,Xb], ·]: For any intertwiner ψ : sl(2, C)⊗End(H)→
End(H), note that

[[Xa,Xb],ψ(xb ⊗ φ)] =ψ([[xa,xb],xb]︸ ︷︷ ︸
=2xa

⊗φ+ xb ⊗ [[Xa,Xb],φ]) =

=ψ(2xa ⊗ φ+ (iεabcxb)⊗ [Xc,φ]) =
=2ψ(xa ⊗ φ) + ψ([xc,xa]⊗ [Xc,φ]).

In particular, for the three intertwiners A± and B, we can directly apply the formulas
derived in lemma 8.

gauge term: The expressions for A± and B can be obtained by turning to lemma 7.
As for the first two intertwiners, A±, the gauge term simplifies to

[Xb,A±(xb ⊗ φ)] =Xb(Xbφ± φXb)− (Xbφ± φXb)Xb =

=X2φ±XbφXb −XbφXb ∓ φX2 =

0 for A+

�φ for A−
.

The expression [Xb,B(xb ⊗ φ)] vanishes as well, since

[Xb,B(xb ⊗ φ)] =B(xb ⊗ [Xb,φ]) = XcXb[Xb,φ]Xc −XbXc[Xb,φ]Xc =

=Xc

(1
2�φ

)
Xc −XbX

2[Xb,φ]−
1
2�[Xb,φ] =

=X2
(1

2�φ
)
− 1

4�(�φ)−X2
(1

2�φ
)
+

1
2Xb[Xb,�φ] = 0.

Therefore, the gauge term only acts non-trivially on A−, namely

[Xa, [Xb,A−(xb ⊗ φ)]] = [Xa,�φ] = A−(xa ⊗�φ).

interaction term: Due to the structural similarity to the gauge term, we proceed
in the same fashion and first compute {Xb,A±(xb⊗ φ)}. Employing lemma 7 once more
leads us to

{Xb,A±(xb ⊗ φ)} =Xb(Xbφ± φXb) + (Xbφ± φXb)Xb =

=X2φ±XbφXb +XbφXb ± φX2 =

4R2
Nφ−�φ for A+

0 for A−
.

As for the remaining intertwiner B, first note that lemma 7 implies that the following
anti-commutator vanishes:

{Xb, [Xb,φ]} = Xb[Xb,φ] + [Xb,φ]Xb =
1
2�φ−

1
2�φ = 0.

Additionally, we can expand the anti-commutator of a product by means of the formula

{φ, {ψ1,ψ2}} = {φ,ψ1}ψ2 −ψ1[φ,ψ2].

Last but not least, we can evaluate the final ingredient that we need for working out
how the fluctuation operator D2 acts on the ansatz proposed in eq. (78),

{Xb, [Xc,Xb]φXc} = {Xb, [Xc,Xb]}︸ ︷︷ ︸
=0

φXc − [Xc,Xb][Xb,φXc] =

=− [Xc,Xb][Xb,φ]Xc − [Xc,Xb]φ[Xb,Xc] =

=−B(xb ⊗ [Xb,φ])︸ ︷︷ ︸
=[Xb,B(xb⊗φ)]=0

− [Xc,Xb]φ[Xb,Xc]︸ ︷︷ ︸
=2XcφXc

= �φ− 2R2
Nφ.
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In conclusion, we obtain the following results for the interaction term

{Xa, {Xb,A+(xb ⊗ φ)}} = 4R2
NA+(xa ⊗ φ)−A+(xa ⊗�φ),

{Xa, {Xb,A−(xb ⊗ φ)}} = 0
{Xa, {Xb,B(xb ⊗ φ)}} = −2R2

NA+(xa ⊗ φ) +A+(xa ⊗�φ)

summary: Let us briefly collect the individual pieces we computed in this section
and write down the image of the vector fluctuation operator of the three intertwiners
A± and B. Collecting all terms, we obtain

D2
abA−(xb ⊗ φ) = A−

(
xa ⊗ (g0�φ+ (M2 + 2)φ)

)
D2
abA+(xb ⊗ φ) = A+

(
xa ⊗ ((1− µ)�φ+ (M2 + 2 + 4µR2

N )φ)
)
− 8B(xa ⊗ φ)

D2
abB(xb ⊗ φ) = A+

(
xa ⊗ ((µ− 2)�φ− 2µR2

Nφ
)
+ B

(
xa ⊗ (�φ+ (M2 + 6)φ)

)
To retrieve the equivalent result expressed in terms of A(k)

a [φ] given in eq. (78), we need
to perform another straightforward computation by substituting the intertwiner B by
the expression

B(xa ⊗ φ) = −
1
2 (A

(1)
a [φ] +A(2)

a )− iA(3)
a [φ]. (94)

(i) D2
abA

(1)
b [φ] = A(1)

a [(1− µ)�φ+ (M2 + 4µR2
N + 6)φ] +A(2)

a [4φ] +A(3)
a [8iφ].

(ii) D2
abA

(2)
b [φ] = A(2)

a [g0�φ+ (M2 + 2)φ].

(iii) For the last expression, we obtain on the one hand

D2
abB(xb ⊗ φ) =−

1
2D

2
abA

(1)
b [φ]− 1

2D
2
abA

(2)
b [φ]− iD2

abA
(3)
b [φ] =

=− iD2
abA

(3)
b [φ] − 1

2A
(1)
a [(1− µ)�φ+ (M2 + 4µR2

N + 6)φ]+

− 1
2A

(2)
a [g0�φ+ (M2 + 6)φ]− 4iA(3)

a [φ]

and on the other hand,

D2
abB(xb ⊗ φ) =A+

(
xa ⊗ ((µ− 2)�φ− 2µR2

Nφ
)
+ B

(
xa ⊗ (�φ+ (M2 + 6)φ)

)
=

=
1
2A

(1)
a [(2µ− 5)�φ− (M2 + 4µR2

N + 6)φ]+

− 1
2A

(2)
a [�φ+ (M2 + 6)φ]+

− iA(3)
a [�φ+ (M2 + 6)φ]

Equating these two expressions and solving for the desired term D2
abA

(3)
b [φ] yields

the final result

D2
abA

(3)
b [φ] = A(1)

a

[
i

(
µ

2 − 2
)
�φ
]
+A(2)

a

[
i
g0 − 1

2 �φ
]
+A(3)

a [�φ+ (M2 + 2)φ]

in full aggrement with the proposed identities in eq. (80).
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