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Abstract

In recent decades, general circulation models are extensively used to simulate ex-
trasolar planets providing information about their climate, climate variability, and
habitability. Together with the finding of planets orbiting binary stars, completely
new prospects in searching habitable life are opened up. In this thesis, I present
a modified version of the Planet Simulator climate model from the University of
Hamburg allowing to simulate the climate of circumbinary planets. For that, an
additional module is implemented which numerically integrates the motion of a bi-
nary using a semi-implicit Euler scheme. The total solar insolation at the top of
the atmosphere is then calculated using simple geometrical considerations. More-
over, I present simulations of an fictitious Earth-like circumbinary aqua-planet in
the Kepler-35, Kepler-1647, and Kepler-47 system, and examine its climate and
climate variability. I also present new estimates for the habitable zone limits of
these systems and provide an extensive comparison with results from the literature.
Furthermore, simulations of a circumbinary desert planet are performed and results
are compared with those for the aqua-planet. Limitations of the modified Planet
Simulator are discussed as well.
I find that the inferred habitable zone limits of the three systems agree reasonably
well with those derived from more complex climate models as well as from analytic
calculations. While the temporal variability of the climate heavily depends on the
variability of the total solar insolation and planetary semi-major axis, mean climatic
states of the examined planets are Earth-like and very similar among the three
systems. Furthermore, the simulations have shown that the habitable zone of a
desert planet is substantially wider than that from an analogous aqua-planet, which
is in good agreement with results from the literature.
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Zusammenfassung

In den letzten Jahrzehnten werden vermehrt Klimamodelle verwendet, um extra-
solare Planeten zu simulieren, welche Informationen zu Klima, Klimavariabilität
und Habitabilität liefern. Zusammen mit der Entdeckung von Planeten in Doppel-
sternsystemen ergeben sich völlig neue Möglichkeiten für die Suche nach extrater-
restrischen Leben. In dieser Arbeit wird eine modifizierte Version des Planet Sim-
ulator, ein Klimamodell der Universität Hamburg, präsentiert, mit der es möglich
ist, das Klima zirkumbinärer Planeten zu simulieren. Hierfür wird ein zusätzliches
Modul implementiert, welches die Bewegung des Doppelsterns mittels
semi-impliziten Euler-Verfahren integriert und anschließend die Gesamteinstrahlung
der beiden Sterne unter Verwendung einfacher geometrischer Überlegungen berech-
net. Mit dem modifizierten Klimamodell wird ein fiktiver erdähnlicher Aqua-Planet
in den zirkumbinären Systemen Kepler-35, Kepler-1647 und Kepler-47 simuliert
und dessen Klima und Klimavariabilität untersucht. Des Weiteren werden neue
Schätzungen für die Grenzen der habitablen Zone der drei Systeme präsentiert und
ein umfassender Vergleich mit der Literatur durchgeführt. Außerdem werden Ergeb-
nisse von Simulationen mit einem Wüstenplanet präsentiert und mit denen des
Aqua-Planeten verglichen. Limitierungen des modifizierten Klimamodells werden
ebenfalls diskutiert.
Die Resultate zeigen, dass die neuen Grenzen der habitablen Zone der drei Sys-
teme relativ gut mit denen übereinstimmen, die aus komplexeren Klimamodellen
sowie aus analytischen Berechnungen abgeleitet wurden. Des Weiteren wird gezeigt,
dass die zeitliche Variabilität des Klimas stark von der Variabilität der Gesamte-
instrahlung und der großen Halbachse des Planeten abhängt. Die mittleren Kli-
mazustände der untersuchten Planeten sind hingegen erdähnlich und in allen drei
Systemen sehr ähnlich. Darüber hinaus haben die Simulationen des Wüstenplan-
ets gezeigt, dass dessen habitable Zone wesentlich breiter ist als die eines analogen
Aqua-Planeten.
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1 Introduction

1 Introduction

1.1 Historical Review

The existence of extrasolar worlds was already brought into question by many
ancient philosophers more than 2000 years ago. While Aristotle (384-322 B.C.)
claimed that no other world than ours exist, Democritus (460-370 B.C.) and Epi-
curus (341-270 B.C) believed in an infinite number of worlds (Perryman 2011).
During this time, only the five innermost planets of our solar system were known as
’wanderers ’, from which the word planet was derived. First documented attempts
to observe extrasolar planets, or exoplanets, were made by the dutch mathematician
and astronomer Christiaan Huygens (1629-1695) in the 17th century (Cosmotheo-
ros, 1698). However, observations of exoplanets succeeded for the first time just
towards the end of the 20th century, when observational techniques such as radial
velocity measurements were accurate enough to detect planet-sized bodies beyond
the solar system (Perryman 2011).

Figure 1: Cumulative exoplanet detections by the discovery year, from the NASA
Exoplanet Archive1. The colors indicate the number of detected exoplanets by a
specific detection method. An explanation of different detection methods can be
found elsewhere.

The discovery of the first extrasolar planet in 1992, a planetary system orbiting
the pulsar PSR 1257+12 (Wolszczan and Frail 1992), has opened a completely new
field of research. Since then, the number of observed exoplanets increases steadily, as
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1 Introduction

shown in Fig. 1. As of 15 December 2019, a total number of 4104 exoplanets in 3047
planetary systems are confirmed by the National Aeronautics and Space Adminis-
tration’s exoplanet archive1. In 1995, the first exoplanet orbiting a main-sequence
star, 51 Pegasi b, was detected by Mayor and Queloz (1995) using high-accurate ra-
dial velocity measurements. The two Swiss astronomers have recently been awarded
with a Noble prize in physics for this discovery underlining the importance of this
observation. In 2005, the first planet orbiting a binary system of main-sequence
stars (HD 202206 c; Correia et al. 2005) was found – a type of system attractive to
search for habitable planets. Seven years later the first multi-planet system orbiting
a binary star, Kepler-47, was discovered (Orosz et al. 2012). Since then, several
other diverse planetary systems around binary stars have been observed raising the
question whether these systems are unique and habitable.

1.2 Astrophysical Background

1.2.1 Abundances

Observations have revealed that about 50 % of all Sun-like stars in the solar neighbor-
hood reside in binary or multi-star systems (Duquennoy and Mayor 1991; Raghavan
et al. 2010). Moreover, the binary fraction increases with increasing effective tem-
perature and stellar metallicity (Tian et al. 2018) and more massive stars are more
likely to have a companion than less massive stars (Raghavan et al. 2010). These re-
sults, and the finding of exoplanets in binary systems, indicate that the co-existence
of binary stars and extrasolar planets are the rule and not the exception. Thus,
planet-hosting binary stars should be considered for diverse exoplanet studies. Nev-
ertheless, catalogues of exoplanets in binary and multi-star systems, such as the
Schwarz catalog (Schwarz et al. 2016), list only ∼150 observed planets in such sys-
tems suggesting the effect of observational biases.

Indeed, Eggenberger and Udry (2007) and Wright et al. (2012) have shown that
there have been historical biases and selection effects bearing down the abundance
of observed planets in binary and multi-star systems. Furthermore, discs of mat-
ter around binary stars have been observed indirectly (Mathieu et al. 2000) where
terrestrial planets may be formed by the accretion of dust and gas (Lissauer 1993;
Safronov 1972) and thus are assumed to be common around binary star systems
(Quintana et al. 2007). Hence, these systems must be considered when searching
for extrasolar planets. While observations clearly reveal the existence of planets in
binary and multi-star systems, computer models still struggle to form planets in
such an environment due to gravitational perturbations within the protoplanetary
disk caused by the companion star (Gyergyovits et al. 2014; Pilat-Lohinger et al.
2019).

1 https://exoplanetarchive.ipac.caltech.edu
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1 Introduction

1.2.2 Types of Planetary Motion

Planets in binary star systems have been observed in two configurations. First, the
planet can orbit only one star such that its semi-major axis ap is smaller than that
of the binary ab. These types of planets are called circumstellar planets, or satellite-
type (s-type; Dvorak 1986) and are depicted on the left side of Fig. 2. The planet
can either orbit the more massive primary star, known as circumprimary planet,
or the less massive secondary star (circumsecondary planet). The second type is
known as circumbinary planet, or p-type (planet-type; Dvorak 1986), and is shown
on the right side of Fig. 2. In this case, the planet orbits the barycenter of the
binary on a much larger separation, such that ap > ab. Circumstellar discoveries
are more frequent at a rate ∼5:1, but observations of circumbinary planets are still
in their early stages such that this rate is not meaningful (Martin 2018). Instead,
Armstrong et al. (2014) showed that the occurrence rate of coplanar circumbinary
planets is similar to that of planets orbiting single stars.

Figure 2: Planetary motion types, from Martin (2018). The figure on the left side
illustrates s-type planets with circumprimary planets orbiting the heavier primary
star (yellow), and circumsecondary planets orbiting the lighter secondary star (red).
The right side illustrates the orbit of p-types, where the planet orbits both stars.

1.2.3 Habitability

From a general point of view, a planet is said to be habitable if reasonable amount
of liquid water is available on its surface. However, this is a necessary but not suf-
ficient condition for an eviroment to support life, as various other factors play an
important role as well (Hays et al. 2017). In the past, Huang (1959) linked habitabil-
ity of a planet to its received stellar insolation and introduced the term ”habitable
zone” (HZ) of a main-sequence star. A planet would be in the HZ if the received
insolation is similar to Earth’s insolation. Thus, the position of the HZ in a single
star system strongly depends on the spectral type of the host star (Huang 1959).
Later on, Hart (1979) also considered the stellar evolution in the calculation of the
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1 Introduction

HZ and denoted the corresponding region as continuously habitable zone. Based
on this work, Kasting et al. (1993) published new estimates for the HZ limits of
main-sequence stars by considering the greenhouse effect of atmospheric CO2 and
water vapor. In more recent studies, one-dimensional cloud-free climate models are
considered to determine the habitable zone around main-sequence stars (see, e.g.,
Kopparapu et al. (2014) and references therein).

Under certain conditions, habitability is also possible in binary and multiple star
systems. However, the HZ of a binary system can differ from that of a single star,
and traditional definitions can only be applied to some extent. In general, the largest
differences can be found along the connecting line of the two stars (Pilat-Lohinger
et al. 2019). In s-type systems, the planet’s insolation is strongly affected by the
secondary (and so is the HZ) if it is a close binary, whereas in a wide binary the
impact of the secondary is negligible and the HZ is comparable to that of a single
star. In p-type systems, the opposite is true. The insolation can be approximated by
a single star if it is a close binary (relative to the planet’s orbit) and the secondary
star is faint. In wide binaries, the insolation differs from that of a single star and
the HZ limits must be inferred elsewhere.

There are several numerical and analytic methods to calculate the HZ limits of a
binary system. Similar to the HZ in a single star system, Huang (1960) investigated
the HZ limits in binaries with the same spectral type. In more recent studies (see,
e.g., Eggl et al. (2012), Kaltenegger and Haghighipour (2013), and Haghighipour
and Kaltenegger (2013)), this approach has been improved by introducing spectral
weights for each binary component so that stars with different spectral types can
be considered. The inferred HZ limits are then for a certain amount of total binary
insolation such that the climate of the planet remains in a stable condition (see
further below). This region is referred to as the isophote-based habitable zone (Pilat-
Lohinger et al. 2019). However, the climate system has the ability to buffer rapid
changes of incoming energy effecting the habitability of a planet drastically, and
thus also the HZ limits. For that, Eggl et al. (2012) introduced three new types of
habitable zones that are applicable to both s-type and p-type systems (see also Pilat-
Lohinger et al. (2019)). First, in the permanently habitable zone (PHZ) the varying
binary insolation never exceeds the insolation limits for a planet to be habitable.
This type of habitable zone is suitable for planets with a climate very sensitive to
changes in insolation. Second, the extended habitable zone (EHZ) is wider than
the PHZ and defines a region where the insolation is most of the time within the
PHZ limits, but occasionally exceeds them for a short period of time due to the
planetary eccentricity. Third, the averaged habitable zone (AHZ) can be used for
planets able to buffer large changes in insolation such that only the time-averaged
insolation must stay within the limits of the PHZ. Consequently, it is necessary to
investigate the climate and interior structure of such planets in order to infer their
habitability.

4



1 Introduction

1.2.4 Stability

The dynamical stability is a fundamental property for planets to be habitable. Per-
turbations and orbital resonances can influence the motion of planets and thus
can effect their habitability or even make them unhabitable. First evaluations of
the dynamical stability were already performed in the 1970s and 1980s (see e.g.,
Dvorak 1986; Harrington 1975; Harrington 1977; Szebehely 1980), many years be-
fore the first exoplanets were discovered and simulations were severely limited by
the sparse computing power. The general approach to detect unstable regions in
the parameter space is to run N-body simulations of several massless bodies with
different initial conditions determining an inner stability limit for p-types and an
outer limit for s-types. That is, planetary orbits in a p-type configuration are sta-
ble beyond their stability limit, while s-types are stable within their stability limit.
Empirical stability limits were derived by Holman and Wiegert (1999) and Rabl and
Dvorak (1988) in this way, which solely depend on the mass ratio and eccentricity
of the binary. They showed that the stability region for p-types (s-types) increases
(decreases) if the eccentricity and mass-ratio of the binary increases, and that the
effect of the eccentricity is stronger than that of the mass-ratio. More recent studies
have also considered the eccentricity and inclination of the planet showing that the
stable zones are reduced if the eccentricity of the planet is increased, and that the
inclination of the planet has no significant effect on the stability (Pilat-Lohinger
et al. 2003; Pilat-Lohinger and Dvorak 2002).

1.2.5 Climate Modelling

We have seen that the climate and water content of a planet play a major role in
determining the HZ limits of a planet (e.g., see Wolf et al. 2017, and references in-
corporated therein). Most recently, general circulation models (GCMs) are used to
investigate the climate and HZ limits of extrasolar planets (e.g., Way et al. 2018,
Cukier et al. 2019, Moorman et al. 2019, and references therein). GCMs are climate
models based on hydrodynamical equations originally used to model the Earth’s
climate. Climate models exist in very different forms and complexity, from primi-
tive 0-dimensional energy balance models (EBMs) to highly complex 3-dimensional
ocean-atmosphere coupled GCMs. In general, GCMs consist of multiple modules
(e.g., ocean, atmosphere, sea-ice, radiative transfer and vegetation modules) sim-
ulating individual parts of the climate system. Climate models of intermediate
complexity are usually applied to simulate the climate of exoplanets, where simpli-
fied ocean models with a reduced grid resolution or dimensionality are incorporated.

The hydrodynamical equations, or primitive equations, of these climate models con-
sist of the conservation of mass and momentum, the thermodynamical equation, and
the equation of state, and are solved on a regular grid to simulate physical processes
such as advection and mass and momentum exchange. Other, sub-grid processes
(or physically complex processes) such as convection, cloud formation, precipita-
tion, radiation, and turbulence are usually parameterized with empirical equations.
These parameterizations vary among different climate models and thus might have
an effect on their output.
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Important physical processes such as the ice-albedo and water-vapor feedback can al-
ready be simulated with simple EBMs, and are crucial mechanisms that can rapidly
change the climate and habitability of a planet. The positive ice-albedo feedback
process describes the interaction between the reflected radiation of sea ice (or snow)
due to its high albedo and the sea ice extent. The process is positive because it
amplifies the change, i.e., an increase in the sea ice extent increases the reflected
radiation and thus more sea ice can be formed. On the other hand, decreasing
the sea ice extent leads to a decrease in reflected radiation, and thus more radia-
tion is absorbed further decreasing the sea ice extent on a planet. Shields et al.
(2013) have shown that the ice-albedo effect is stronger for planets orbiting stars
with higher near-UV radiation, that is, the sea ice extent is much greater on planets
orbiting hotter F-stars than on planets orbiting cooler G-stars at an equivalent flux
distance. The water-vapor feedback is also positive and works in a similar way.
Saturation vapor pressure increases in a warming atmosphere and thus more water
vapor can be hold by the atmosphere. This further warms the atmosphere due to
the larger greenhouse effect of water vapor. Another important feedback mechanism
comes from the Stefan-Boltzmann law. It acts as a negative feedback process that
can stabilize the climate of a planet. According to the Stefan-Boltzmann law, more
energy is radiated into space as the temperature of a planet increases, which, as a
consequence, cools the planet.

These processes are important and can rapidly change the climate of a planet. A
strong ice-albedo effect can lead to the so-called Snowball state where the planet’s
surface is fully covered by sea ice. On the other hand, a planet will fall into the
moist Greenhouse state if its stratospheric water vapor exceeds a mixing ratio of
0.1 % (Kasting 1988; Kasting et al. 1984), which is equivalent to 1 g kg-1 specific
humidity. In this state the stratospheric water is dissociated by the UV radiation
so that the hydrogen and, consequently, the water inventory of the planet is lost to
space. Both the moist Greenhouse and the Snowball state depend on the CO2 con-
centration of the atmosphere (Wordsworth and Pierrehumbert 2013) and are related
to the transition into an uninhabitable planet. Such processes are thus important
for the definition of the habitable zone.

While habitability is usually associated with planets possessing abundant liquid wa-
ter resources (so-called aqua-planets), Abe et al. (2011) used a climate model to
show that dry planets (or desert planets) with no oceans and limited amount of
liquid water can be habitable as well. They also showed that desert planets have
wider habitable zones than conventional aqua-planets. An Earth-sized desert planet
with low obliquity could be habitable up to a globally averaged net insolation2 of
415 W m-2 (compared to 330 W m-2 for an analogous aqua-planet) due to the weaker
Greenhouse effect of the dry atmosphere. In addition, the outer HZ limit is shifted
outwards as the lack of large water reservoirs prevents the planet from global freez-
ing (Abe et al. 2011).

2The global net insolation is defined as I = S/4(1− α) where S is the total solar insolation (or
solar constant) and α is the effective albedo of the planet.
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One climate model that is sometimes used to simulate the climate of exoplanets (see
e.g., Lucarini et al. 2013, Menou 2013, Abbot et al. 2018, Paradise et al. 2019) is
the Planet Simulator (PlaSim) developed by the Meteorological Institute at the Uni-
versity of Hamburg (Lunkeit et al. 2004). PlaSim is an open source climate model
of intermediate complexity comprising a fully three-dimensional atmospheric model
with T21, T31 or T42 horizontal spectral resolution and vertical sigma-coordinates.
It is combined with a 0-dimensional ocean model (one level) for the mixed ocean
layer, a dynamic vegetation model for non-glaciated land surface grid cells called
SimBA, and a sea ice model with a linear temperature gradient in the ice layer as
well as no heat storage capacity. The sea ice model is very simplified, e.g., sea ice
is formed if the ocean temperature drops below the freezing point, and consists of
prognostic variables for the sea ice temperature and thickness. Moreover, sea ice can
accumulate snow that change the albedo. Further sea ice processes are described in
PlaSim’s reference manual (Lunkeit et al. 2004). Other processes, such as surface
fluxes, radiation, cloud formation, and convection are parameterized (as mentioned
above) and also described in PlaSim’s reference manual. PlaSim also provides a
graphical interface for convenient handling, post-processing routines to convert the
output to widely-used grib and netCDF file formats, and MPI support for parallel
execution.

1.2.6 Example: Climate of Kepler-35b

Popp and Eggl (2017) gave a comprehensive example on how the climate of a hypo-
thetical Earth-like aqua-planet in the circumbinary system Kepler-35 can be simu-
lated using the atmospheric GCM ECHAM6 (Stevens et al. 2013). They examined
the HZ limits for the aqua-planet and showed that the planet can indeed be habit-
able. They found an inner limit of 1.165 au (transition to moist Greenhouse state)
and an outer limit of 1.195 au (full glaciation) with Earth-like CO2 concentration.

Figure 3 illustrates the zonal mean of the planet’s surface temperature, total cloud
cover, effective albedo, and total precipitation in steady state for different planetary
semi-major axes. The climate is also simulated for a similar planet in the solar
system indicating that the mean climatic state and habitability of the circumbinary
planet in the Kepler-35 system is barely affected by the rapid variation of the binary
insolation. Popp and Eggl (2017) concluded that such binary star systems are excel-
lent candidates to look for habitable planets, and that climate models are necessary
to estimate the climate variation of observed planets.

1.3 Motivation and Research Question

We have seen that planets in binary star systems are not uncommon and can exist in
the habitable zone of a binary (e.g., Kepler-47c; Welsh et al. 2014). Unfortunately,
none of the observed circumbinary planets are terrestrial leading to the fascinating
idea of habitable moons orbiting planets in the habitable zone (Welsh et al. 2014).
However, it is only a matter of time until the first terrestrial circumbinary planet
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Figure 3: from Popp and Eggl (2017). It shows the zonal-means of the surface
temperature (panel a), the total cloud cover (b), the effective albedo (c), and the
total precipitation (d). The snowball states are illustrated in red, the moist Green-
house states in black, and the habitable states in yellow and blue. The fictitious
aqua-planet in the Kepler-35 system is illustrated by dotted lines. For comparison,
the aqua-planet is also simulated for a Sun-like system (dashed lines). Temporal
averages are taken over a period of 10800 Earth-days in steady state.

will be observed. Promising satellite missions for that are the upcoming Plato space
telescope3, the European Extremely Large Telescope4, and the James Webb Tele-
scope5. The fact that we can not directly resolve the atmospheres of exoplanets
with current astronomical instruments (both ground-based and space telescopes)
yet, suggests the use of climate models to gain an insight into the atmosphere, cli-
mate, and habitability of extrasolar planets. These models have demonstrated that
circumbinary planets can indeed be habitable. Yet, there are only a few publica-
tions investigating the climate of circumbinary planets and additional work has to
be done. Thus, it is important to make a further step in that direction with this
master thesis.

3sci.esa.int/documents/33240/36096/1567260308850-PLATO Definition Study Report 1 2.pdf
4www.eso.org/public/archives/brochures/pdf/brochure 0022.pdf
5www.jwst.nasa.gov/content/science/origins.html
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1 Introduction

How does a binary star affect the climate of a planet? For a given circumbinary
planet, what are the climatic conditions for habitability? How are the HZ limits in-
fluenced by the choice of the climate model? Do we get the same climate states and
HZ limits when using different climate models, or do the results differ significantly?
In order to answer these questions, I present a modification of the PlaSim climate
model allowing to simulate the climate of circumbinary planets. In the first step, a
hypothetical water-rich planet in the Kepler-35 system is simulated and results are
compared with those from Popp and Eggl (2017). They used a more complex model,
which may lead to different habitable zone limits. Additionally, the binary systems
Kepler-1647 and Kepler-47 are used to examine the climate and habitability of both
desert and water-rich planets. The goal of this thesis is to investigate circumbinary
planets with PlaSim and get further insights into their climate and habitability.

This thesis is structured as follows. Section 2 introduces the basic equations that
have to be changed in order to consider the binary insolation on a circumbinary
planet. Section 3 summarizes the model setup and methodology to infer HZ limits.
Results for Kepler-35, Kepler-1647, and Kepler-47 are presented in section 4 and
discussed in section 5. The new binary routines and necessary modifications of the
PlaSim code are summarized in Appendix A.
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2 Implementation of the Binary Star Insolation

2 Implementation of the Binary Star Insolation

This section introduces numerical approaches to compute the binary star insolation
in PlaSim. First, section 2.1 summarizes the calculation of the single star insolation
as done by PlaSim. The subsequent sections then portray how this approach is
modified in order to compute the binary star insolation on a circumbinary planet.
Limitations of the modified PlaSim code are summarized in section 2.4.

2.1 How PlaSim works

This section describes how the single star insolation at the top of the atmosphere
(TOA) of a planet is calculated in PlaSim. The electromagnetic spectrum is di-
vided into two spectral bands for which particular processes take place (see PlaSim
reference manual for further details; Lunkeit et al. 2004). The first band covers
ultraviolet and visible wavelengths with λ < 0.75 µm, the second covers long-wave
radiation with λ > 0.75 µm. The TOA insolation is calculated in the radmod mod-
ule and needs four quantities in total. First, the spectral partitioning values E are
needed describing the percentage of electromagnetic energy in each of the afore-
mentioned spectral bands. For a G-type main-sequence star, the default values are
Esw = 0.517 and Elw = 0.483. These values are defined in PlaSim’s radmod module.
Furthermore, the computation of the TOA insolation in PlaSim is not based on the
distance between planet and host star. Instead, it uses a solar constant S0 (which
implicitly includes the distance) and a normalized planet-star distance (Berger 1978)
following

ρ =
r

a
=

1− e2

1 + e · cos(ν)
, (1)

where r is the Euclidean planet-star distance and a is the planetary semi-major axis.
Both are not used in PlaSim. Instead, the right side is used, with the planet’s orbital
eccentricity e (restricted to e < 0.1) and the true anomaly ν. ρ is dimensionless and
describes the variation of S0 during one revolution of the planet. It usually varies
between -1.5 and 1.5. The fourth quantitiy is the zenith angle, which is calculated
using the declination and hour angle. Based on Berger (1978) the star’s declination
angle is given by

δ(λl) = asin(sin(ϵ) · sin(λl)), (2)

where ϵ is the planet’s obliquity, and λl is the true longitude of the planet measured
from a reference direction. λl is related to the true anomaly ν and the longitude of
the periapsis ω̄ through λl = ν + ω̄. The hour angle is given by
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2 Implementation of the Binary Star Insolation

h(λ, t) = tmins · crad + λ− π, (3)

where tmins is the current time of a day (converted from minutes to radians by mul-
tiplying crad = 2π/1440), and λ is the geographical longitude in radians. Thus, the
solar zenith angle θ is calculated for each grid point with

θ(ϕ, λ, λl, t) = sin(δ) · sin(ϕ) + cos(ϕ) · cos(δ) · cos(h). (4)

Here, ϕ is the geographical latitude. The zenith angle is set to zero if it is smaller
than a predefined dawn angle simulating the planet’s night side. The TOA insolation
is then calculated for each spectral band separately using the spectral partitioning
values E, solar constant S0, normalized planet-star distance ρ (Eq. 1), and the solar
zenith angle θ (Eq. 4) such that

FTOA,sw = Esw · S0 · ρ−2 · θ(ϕ, λ) (5)

FTOA,lw = Elw · S0 · ρ−2 · θ(ϕ, λ) (6)

where ρ−2 is the inverse of the quadratic normalized planet-star distance ρ, which
is called the eccentricity factor. FTOA is further used to compute fluxes at layer
interfaces. Some variables are read from an input file such that the program does
not have to be compiled again. That is, the input for PlaSim to compute the TOA
insolation is the eccentricity e, solar constant S0, obliquity ϵ and the longitude of
the periapsis ω̄, which are all read from the file ’planet namelist ’. Specific values
and other variables in this input file are introduced in section 3.

2.2 Computation of the Binary Motion

In order to simulate the binary insolation at the TOA of the planet properly, the
motion of the binary has to be simulated. Instead of solving a three-body problem,
including the planet and the two stars, only the latter is numerically integrated.
That is, the two-body problem is solved, which simplifies the equations of motion
and integration of the binary. This is done in additional routines that are imple-
mented (see appendix). The orbital position of the planet is still controlled by
PlaSim. We start with Newton’s law of gravitation to derive the equations of mo-
tion for the primary star. We write

12



2 Implementation of the Binary Star Insolation

FG =
G ·m1 ·m2 · r

|r|3
, (7)

where G is the gravitational constant, m1 and m2 are the masses of star 1 and 2,
and r is the Euclidean distance between them. From Newton’s second law of motion
we can formulate an equation of motion for the x and y component separately, that is,

dx2

dt
=

FG,x

m1

(8)

dy2

dt
=

FG,y

m1

(9)

where FG,x and FG,y indicate the x- and y-component of the gravitational force FG.
Substituting Eq. (7) into these equations leads to

dvx
dt

= −G ·m2 · x
|r|3

with vx =
dx

dt
(10)

dvy
dt

= −G ·m2 · y
|r|3

with vy =
dy

dt
. (11)

where vx and vy are the x- and y-velocities, and r is replaced by their distances x
and y, respectively. These differential equations have to be converted into difference
equations. Using forward differences and reformulate the equations leads to

vx,i+1 = vx,i −∆t · G ·m2 · xi

|r|3
(12)

xi+1 = xi +∆t · vx,i+1 (13)

vy,i+1 = vy,i −∆t · G ·m2 · yi
|r|3

(14)

yi+1 = yi +∆t · vy,i+1 (15)

where ∆t indicates the time step of the binaries’ integration scheme, and the indices
i and i+1 denote the previous and current time step, respectively. The equations of
motion for the secondary are derived in the same way (with m1 instead of m2). Note
that in Eq. (13) and (15) the velocities vx,i and vy,i has been replaced by vx,i+1 and
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2 Implementation of the Binary Star Insolation

vy,i+1 leading to the so called semi-implicit Euler (or Symplectic Euler) scheme. This
is an one-step method with first-order accuracy and sufficient for the integration of
the binary. The integration is performed at the beginning of the climate simulation,
with sufficient small time step ∆t (e.g., ∼225 s) to avoid numerical instabilities such
as barycenter drift or numerical precession of the perihelion. Please note that the
integration of the binary takes less then a minute to simulate 50 years, while the
full climate simulation requires ∼2 hours.

In the following, initial positions and velocities for Eqs. (12)–(15) are derived. Note
that all three bodies, the two stars and the planet, are initially on the x-axis of
the coordinate system (i.e., y = 0). Thus, subsequent velocity terms describe the
y-component of the velocity vector and indices with respect the coordinate system
are neglected. The initial position of the primary star (index ’1’) is derived from
the center of mass condition

m1 · a1 = m2 · a2, (16)

where a1 and a2 are the semi-major axes of the two stars. This equation is substi-
tuted into a2 of the binary semi-major axis aB = a1 + a2 providing an expression
for a1. This is combined with the definition of the periapsis distance of an ellipse

r1 = a1 · (1− eB), (17)

where eB is the eccentricity of the binary, to obtain the initial x-position of the
primary star. Its position vector is thus given by

r1,x = aB · (1− eB) ·
m2

m1 +m2

, (18)

r1,y = 0. (19)

where r1,x and r1,y are the x- and y-distance to the center of mass. The initial posi-
tion of the secondary (indix ’2’) is motivated by the barycenter equation

r2 = r2,x = rbc ·
m1 +m2

m2

− m1

m2

· r1 = −m1

m2

· r1, (20)
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where rbc is the position of the barycenter, or center of mass, which is defined to
be at the origin (0,0) of the coordinate system such that r2 only depends on the
mass ratio of the two stars and the initial position of the primary. This is the initial
x-position of the secondary, and r2,y = 0. Thus, Eqs. (18) and (20) depict the initial
positions of the two stars in the periapsis. To infer the initial velocities v1 and v2 in
the periapsis, the vis-viva equation is used in the form

v2 = GM

(︃
2

r
− 1

aB

)︃
, (21)

where v is the relative velocity of the two stars such that v = v1 - v2, M = m1 + m2

is the total mass of the binary system, and r = r1 + r2 is the distance between the
two bodies. We can rewrite this equation with the formula of the periapsis distance
r = aB·(1 - eB) such that

v =

√︄
GM

aB

(2aB − r)

r
=

√︄
GM

aB

2aB − aB · (1− eB)

aB · (1− eB)
=

√︄
GM

aB

(︃
1 + eB
1− eB

)︃
. (22)

This equation describes the relative velocity of the two stars in the periapsis de-
pending on the total mass and the semi-major axis and eccentricity of the binary.
The velocities of the individual stars are derived from the momentum conservation
of the barycenter given by

m1 · v1 +m2 · v2 = Pbc, (23)

where we demand the momentum of barycenter Pbc to be zero. That is, the center
of mass must be in rest. Reformulating this equation leads to the velocity of the
primary star

v1 = −m2

m1

· v2 =
m2

m1

· (v − v1) =
m2

m1 +m2

· v, (24)

which depends on the masses of the binary and the relative velocity formulated in
Eq. (22). The velocity of the secondary in the periapsis is then

v2 = −m1

m2

· v1 (25)
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and depends on the mass ratio of the two stars and the velocity of the primary, but
with negative sign as this star moves in the opposite direction. Please note that these
equations specify only the y-components of the velocity vector, the x-components
are zero. The full initial velocity vector of the binary can thus be written as

v1,x = 0 (26)

v1,y =

(︃
m2

m1 +m2

)︃
·

√︄
G · (m1 +m2)

aB
·
(︃
1 + eB
1− eB

)︃
(27)

v2,x = 0 (28)

v2,y = −m1

m2

· v1,y. (29)

Using the initial periapsis velocities (Eqs. (26)–(29)) and positions (Eqs. (18)–(20))
in combination with a sufficient small step size ∆t leads to stable binary orbits
around its center of mass, which remains in the origin of the coordinate system.
Please note that PlaSim’s integration step size of 2700 seconds must be a multiple
of the binary step size ∆t. That is, if ∆t = 225 seconds, exactly 12 binary integra-
tion steps are needed to simulate the motion of the binary for one PlaSim time step.
This is important for the correct calculation the binary insolation. An example is
given in Fig. 4 showing binary orbits integrated over 160 years. To simulate the
binary motion, the eccentricity eB and semi-major axis aB of the binary as well as
individual stellar masses m1 and m2 are needed, which are all read from the newly
defined input file ’binary namelist ’6. Other input variables in this file are introduced
in section 3.

The conservation of the total orbital energy of the binary star is an important
requirement that has to be satisfied by the integration scheme. It is the sum of the
kinetic and potential energy such that

E = Ekin + Epot =

(︃
m1 · v21

2
+

m2 · v22
2

)︃
− G ·m1 ·m2

r
(30)

where Ekin is the kinetic energy of both stars. This is an important constraint for
the integration scheme to provide stable orbits. As an example, Fig. 5 shows the
orbital energy of the Kepler-35 system integrated over a period of 80 years using
the aforementioned semi-implicit Euler scheme. The total energy (black line) does
not show any drift over the full period of time, but oscillates with an amplitude five
orders of magnitude smaller than the mean total energy. Thus, integration with the
semi-implicit Euler leads to sufficiently stable orbits.

6An example for the input file binary namelist can be found in the appendix or at
http://www.mayer.tv/programs/binary namelist.
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Figure 4: Binary orbits with a small eccentricity integrated over 160 Earth-years,
and an integration time step of 225 seconds. The green line indicates the primary
and the blue line the secondary. The ’+’ illustrates the barycenter of the system.

2.3 Computation of the Insolation

In this section, the computation of the binary insolation at the TOA of the circumbi-
nary planet is motivated. For that, Eqs. (2), (3), and (4) are modified and computed
for each star separately. In binary simulations, the unmodified equations describe
quantities with respect to the barycenter of the binary. That is, the position of the
barycenter coincides with position of the central body of single star simulations. To
compute δ, h and θ for each star of the binary system, a displacement angle (appar-
ent angle between star and barycenter as seen from the planet) must be added to
the barycenter quantities. Thus, the equations for the primary star can be written
as

δ1(λbc, αS1P ) = asin(sin(ϵ) · sin(λbc − αS1P )), (31)

h1(λ, αS1P , t) = tmins · crad + λ− π − αS1P , (32)

θ1(ϕ, λ, λbc, αS1P , t) = sin(δ1) · sin(ϕ) + cos(ϕ) · cos(δ1) · cos(h1), (33)

where αS1P is the displacement angle between primary and barycenter as seen from
the planet. The same is valid for the secondary using the displacement angle αS2P.
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Figure 5: Time series of the orbital energy of Kepler-35 showing the potential energy
in red, the kinetic energy of the primary (with subscript 1) and secondary in green
and blue, and the total orbital energy in black. The x-axis shows the number of time
steps, where one step is equivalent to 2700 seconds. The inset graph emphasizes the
total energy, but zero averaged to show its periodic oscillations. However, it does
not show any drift and the resulting orbits are stable over the full period of time.
Note that the y-axis scaling is five orders of magnitude larger than that of the inset
graph.

Figure 6 illustrates the declination, hour angle, and zenith angle of a binary system
(according to Eqs. (31)–(33)) as well as of its barycenter (or single star; according
to Eqs. (2)–(4)) as seen from a single grid point.

The computation of the TOA insolation is then slightly changed, as described in the
following. Instead of reading the solar constant from an input file, an explicit value
for the barycenter-planet distance (equivalent to r in Eq. (1)) is allocated and allows
to calculate the solar constant as a function of the star’s temperature or mass. The
former can be used in combination with the Stefan-Boltzmann law, which is given by

L1,2 = 4πR2
1,2 · σT 4

1,2, (34)

to compute the luminosity of each star separately, where R is the radius and T is
the temperature of the respective star. If the individual masses of the binary are
known, the mass-luminosity relation
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Figure 6: Declination δ, hour angle h, and zenith angle θ of a binary star with masses
M = 1.0 and 0.8 M⊙. The quantities are calculated for a single grid point on a planet
with obliquity Ω = 23.5◦. Green and blue lines are with respect to individual stars
of the binary system, and the red line is with respect to the barycenter (or single
star). The binary has an eccentricity eB = 0.5 and semi-major axis aB = 0.2 au.
The planet has no eccentricity and a semi-major axis aP = 1.0 au. Note that δ is
shown for 400 days, while h and θ is shown for only two days.
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L1,2 = L⊙

(︃
M1,2

M⊙

)︃β1,2

(35)

can be used to calculate the star’s luminosity, where β1,2 = 4 for main sequence stars
with 0.43 M⊙ <M < 2.00 M⊙, and M⊙ and L⊙ are the sun’s mass and luminosity, re-
spectively. In both cases, the solar constant of each individual star is computed with

S1,2 =
L1,2

4πr20
, (36)

where r0 is the initial distance between planet and barycenter of the binary, and
thus remains constant over the whole integration. Instead, PlaSim’s approach is
used, where the eccentricity factor describes the temporal variation of the insola-
tion. Thus, we define the eccentricity factor (according to Eq. (1)) of each star to be

ρ−2
1,2 =

(︃
aP
r1,2

)︃2

, (37)

where r1,2 is the distance between planet and star, and aP is the planet’s semi-major
axis. Furthermore, the mutual occultation of each star is considered as a rate by
which the background star’s light is blocked relative to its total radiation. That is,

τ1,2 =
A1,2 − A2,1

A1,2

, (38)

where the numerator on the right side describes the projected area of the background
star which is not obscured, and the denominator is the total (cross-sectional) area
of the background star. If the foreground star has at least the same diameter as the
background star, τ of the background star drops to zero. The background star is
determined by comparing the planet-star distances r1 and r2.

Finally, Eqs. (31), (32), (33), (36), and (37) are combined accordingly to get an
equation for the short- and long-wavelength TOA insolation of the binary star

FTOA,sw(ϕ, λ) = Esw ·
[︁
S1 · ρ−2

1 · τ1 · θ1(ϕ, λ) + S2 · ρ−2
2 · τ2 · θ2(ϕ, λ)

]︁
, (39)

FTOA,lw(ϕ, λ) = Elw ·
[︁
S1 · ρ−2

1 · τ1 · θ1(ϕ, λ) + S2 · ρ−2
2 · τ2 · θ2(ϕ, λ)

]︁
, (40)
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which are in accordance with Eqs. (5) and (6) for a single star. An example for the
binary insolation is illustrated in Fig. 7 showing the total binary insolation and the
individual contribution of the primary and secondary star. The rapid drops over a
few time steps are caused by the mutual occultation of the stars. The secondary is
smaller than the primary and thus causes only a partial occultation of the primary,
while the secondary is fully eclipsed by the primary.
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Figure 7: TOA insolation of the same test system as in Fig. 6. Insolation of the
secondary is shown in blue, that of the primary in green. The total solar insolation
of the binary is the sum of both and is shown in black. The brief drops in insolation
are caused by the mutual occultation of the stars. The short-periodic variation
(∼25 days) is caused by the binary motion, the long-periodic variation of ∼270 days
is caused by the eccentric orbits of the binary and the resulting variation of the
planet-star distance. Note that the planetary eccentricity is zero.

2.4 Limitations of the modified PlaSim Code

The modified PlaSim code presented above has some important limitations that
should be mentioned. First and foremost, this code is developed only for circumbi-
nary planets and can not be applied to circumstellar systems, because the planetary
orbit is in barycentric coordinates and thus with respect to the center of mass of the
binary. The orbit of the secondary star would have to be transformed to heliocentric
coordinates in order to simulate circumstellar systems. Moreover, there is no chem-
ical model implemented in PlaSim so that the atmospheric composition can not be
changed and is thus assumed to be Earth-like. Only the CO2 concentration can
be changed. The spectral partitioning is not only used for the computation of the
TOA radiation, but also for cloud-radiation interactions making the implementation
of different partitioning factors for each star challenging. Additional modifications
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of the radiation transfer code would be required and thus limits the application
to binary stars of the same spectral type. It should also be mentioned that the
calculation of the binary isolation is not working properly when using the restart
mode (where the final state of a previous simulation is used as an initial state), as
the initial position of the planet is assumed to be in the perihelion, which is not
guaranteed with the restart mode. Further restrictions and their implications are
discussed in section 5.

22



3 Model Setup and Methodology

3 Model Setup and Methodology

The modified PlaSim code introduced in section 2 is used to simulate the climate of
circumbinary planets. In the first study (section 4.1) the Kepler-35 system is inves-
tigated and results are compared with those from Popp and Eggl (2017) (hereafter
PE17). Kepler-35 is a G/G-binary system harboring one planet at ∼0.6 au with a
mass of ∼0.13 MJ. Haghighipour and Kaltenegger (2013) find the habitable zone
of Kepler-35 to be between 0.83 and 2.18 au. I follow the approach of PE17 and
assume that the planet in Kepler-35 is a hypothetical Earth-like aqua-planet. At
first, the climate state of the fictitious planet is examined for the same semi-major
axes as examined by PE17, and globally as well as zonally averaged quantities are
compared. The Kepler-35 HZ limits that are obtained with the modified PlaSim
are then examined and also compared with the PE17 results. To infer the inner
HZ limit, a specific humidity (as a good substitute for the mixing ratio) of 1 g kg-1

within the stratosphere (at 100 hPa height) is considered as threshold to the moist
Greenhouse state. The sea ice extent and effective albedo is used to infer the outer
HZ limit (transition to Snowball state). In a last step, the temporal variability
of different climate indicators, such as surface temperature and total precipitation,
are investigated and summarized. Orbital and stellar parameters are adopted from
PE17 and are listed in table 1 and 2.

System aB [au] eB aP [au] eP

Kepler-35 0.1760 0.0000 0.90–1.30 0.0100

Kepler-1647 0.1276 0.1602 2.13–3.73 0.0581

Kepler-47 0.0836 0.0234 0.70–1.00 0.1000

Table 1: List of orbital parameters for the systems investigated in this work. Param-
eters for the Kepler-35 system are adopted from Popp and Eggl (2017). Kepler-1647
and Kepler-47 parameters are taken from Kostov et al. (2016) and Orosz et al.
(2012). The semi-major axis is denoted as a and the eccentricity as e. Indices B
and P refer to binary and planetary parameters, respectively.

The second study (section 4.2) investigates the climate and habitability of a planet
in the Kepler-1647 binary system. Kepler-1647 harbors a F- and G-type star with
masses M = 1.22 M⊙ and M = 0.97 M⊙, respectively. The circumbinary planet
Kepler-1647b is a Jupiter-like gas giant with M = 1.52 MJ orbiting the system
at 2.72 au, well within the HZ limits (Kostov et al. 2016). Even though Kepler-
1647b can not be habitable, there is the possibility of habitable moons orbiting
the planet. It is thus assumed that the planet under investigation is Earth-like
and a natural satellite of Kepler-1647b. Effects such as tidal heating, planetary
insolation and eclipses caused by Kepler-1647b are neglected. The HZ limits are,
again, inferred from the atmospheric water vapor content and sea ice cover. Fur-
thermore, the climate and habitability of a desert planet (no oceans or other larger
water reservoirs) is investigated by performing additional simulations without the
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aqua-planet mode. The inner HZ limit for the desert planet is determined using
a threshold of 415 W m-2 net solar insolation, as found by Abe et al. (2011) for a
planet orbiting a single star. The outer HZ limit is located where the zonally av-
eraged surface temperature at the equator is below the freezing point. Orbital and
stellar parameters are taken from Kostov et al. (2016) and summarized table 1 and 2.

In the last study the Kepler-47 circumbinary system is investigated. Kepler-47 is
the first multi-planet system that has been discovered by the Kepler mission har-
boring three Neptune-like planets with masses between 8 and 23 M⊕. The three
planets are orbiting the G6V/M4V binary star at ∼0.3, 0.7 and 1.0 au, with the
outer planet being well within the habitable zone limits (0.99 and 1.75 au) found
by Pilat-Lohinger et al. (2019). Here again, it is assumed that the planet under
investigation is an Earth-like moon, and the climate and HZ limits are investigated
using zonal averages and vertical profiles. Parameters are taken from Orosz et al.
(2012) and listed in table 1 and 2.

System M1 [M⊙] R1 [R⊙] T1 [K] M2 [M⊙] R2 [R⊙] T2 [K]

Kepler-35 0.8870 1.0284 5606 0.8094 0.7861 5202

Kepler-1647 1.2200 1.7900 6210 0.9700 0.9660 5770

Kepler-47 1.0430 0.9640 5636 0.3620 0.3506 3357

Table 2: List of stellar parameters. For references see table 1. Here, M is the mass,
R is the radius, and T is the surface temperature of the star. Index 1 and 2 refer to
the host and companion star, respectively.

Table 3 lists all PlaSim parameters that are relevant for this thesis. These parame-
ter values are used in all subsequent studies, unless otherwise specified. The surface
albedo for open water is hard-coded in PlaSim and is by default set to 0.069. The
sea-ice albedo is a function of the ice surface temperature and has a maximum value
of 0.7. The cloud albedo depends on the cloud level and is defined for the visible and
IR band (see table 3.1 in PlaSim’s reference manual). Predefined albedo values are
not changed, but important for interpreting results. Furthermore, the aqua-planet
mode and the calender day of vernal equinox are by default 0 and 80.5, respectively,
and are set to 1 and 0 for these studies. The default spectral partitioning values are
valid for a G-type main-sequence star and are also not changed. Thus, it is assumed
that the three systems under investigation are G/G-binaries.

Other parameters are read from namelist files and are mostly self-explaining. How-
ever, at this point it is important to mention that the number of days per year is
computed with the third law of Kepler. If the computed length of a year is longer
than the default length of 365 days, the number of days per month has to be ex-
tended such that 12 months cover the number of days per year. The parameter
N DAYS PER MONTH is not defined in the namelist, if the length of a year is
≤365 days. The solar constant, which is read from the file planet namelist, is used
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only for single star simulations. All simulations are performed with 10 vertical levels
and T21 spectral resolution, which is equivalent to 32 × 64 grid points, or 5.6 degree
horizontal resolution.

Parameter Value Comment

NLEV 10 Number of atmospheric levels, in plasimmod.f90

h
ar
d
-c
o
d
ed

zsolar1 0.517 Spectral partitioning visible fraction, in radmod.f90

zsolar2 0.483 Spectral partitioning IR fraction, in radmod.f90

ve 0. Calender day of vernal equinox, in radmod.f90

albsea 0.069 Albedo for open water, in seamod.f90

albice ≤0.7 Max. albedo for sea ice, seamod.f90

naqua 1 Switch to aqua planet mode

p
la
si
m

n
lNOUTPUT 1 Enables output file

MPSTEP 45 Length of a time step in minutes

N RUN YEARS 80 Number of years to run

N DAYS PER YEAR * Number of days per year

N DAYS PER MONTH * Number of days per month

NFIXORB 1 Use predefined planetary orbits

p
la
n
et

n
l

OBLIQ 0. Obliquity for fixed orbits in degree

MVELP 0. Longitude of vernal equinox for fixed orbits in degree

GSOL0 * Solar constant in W m-2, only used in single star
simulations

sel bin 1 Enables binary star mode

b
in
a
ry

n
l

sel StefanBoltzmann 1 Use Stefan Boltzmann law to compute stellar
luminosities

dt 225. Time step of one binary integration step in seconds

NOCEAN 1 Enables ocean model, defined in oceanmod nl

NICE 1 Enables sea ice model, defined in icemod nl

Table 3: List of parameters that are relevant for this thesis. Parameters in the upper
section are hard-coded within the PlaSim code, while all the other parameters are
read from different input files. Note that the number of atmospheric levels can
be changed in the graphical user interface (called model starter) of PlaSim. The
asterisk refers to variable parameter values. See text for further explanation.
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4 Results

4.1 Kepler-35

This section presents results of an aqua-planet in the Kepler-35 system. Figure 8
shows the zonally averaged surface temperature TS, total precipitation, total cloud
cover, and effective albedo of four models using the same semi-major axes (1.14,
1.165, 1.195, and 1.225 au) as in PE17. All lines are temporal averages over 10
Earth-years in steady state. The effective albedo is computed as the ratio of re-
flected and incoming irradiation at the TOA. The dotted black line in the TS panel
illustrates the freezing point of water at 273.15 K. A comparison with the PE17
results (see Fig. 3) reveals that the differences among individual models are smaller
when using PlaSim, especially for semi-major axes between 1.14 and 1.195 au, where
the zonal structure of the shown quantities is very similar. The surface temperature
and effective albedo indicate glaciation up to 30◦–60◦ latitude (with clearly positive
temperatures near the equator) for the models between 1.14 au and 1.195 au im-
plying that the planet is not in the Snowball state at any of these distances. As
in the PE17 finding, planets beyond 1.225 au transition into a Snowball state in
which the temperature is clearly negative at all latitudes, with no significant pre-
cipitation. Furthermore, in none of these four models does the specific humidity in
the stratosphere (not shown) exceed the threshold of 0.1 % (or 1 g/kg; transition
to the moist Greenhouse state). Thus, a planet with a semi-major axis of between
1.14 and 1.195 au is habitable when PlaSim is used, and only the aforementioned
models are considered. Globally averaged quantities in steady state are summarized
in table 6.

Model TSI
[W m-2]

TS [K] Precip.
[mm day-1]

Sea ice
cover

Albedo

1.140 au 1390.54 290.92 4.17 0.18 0.33

1.165 au 1330.94 277.76 2.99 0.30 0.37

1.195 au 1265.43 261.09 1.89 0.45 0.44

1.225 au 1204.66 206.23 0.00 1.00 0.67

Table 4: Global averages over 10 Earth-years of the total solar insolation TSI, surface
temperature TS, precipitation P, sea ice cover, and effective albedo for semi-major
axes used in PE17.

Figure 9 shows the same as Fig. 8, but for planetary semi-major axes where glob-
ally averaged surface temperatures (temporal mean over 10 Earth-years) coincide
with those of PE17, which is at 0.95, 1.14, 1.18, and 1.32 au. Despite different
semi-major axes, the resulting climate states are similar to those from PE17. In
the hottest model, at 0.95 au, the planet is clearly in the moist Greenhouse state,
with a specific humidity of >20 g kg-1 in all atmospheric levels (not shown). The
zonal mean of the effective albedo and sea-ice extent (also not shown) indicate that
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Figure 8: Zonal averages of the surface temperature, precipitation, total cloud cover,
and effective albedo for a planet with a semi-major axis of 1.14 au in black, 1.165
au in blue, 1.195 au in green, and 1.225 au in red. Each line represents an temporal
average over 10 Earth-years in steady state. Note that these are the same semi-
major axes as used by PE17, and thus comparable with Fig. 3. The black dotted
line in the upper panel denotes the freezing point at 273.15 K.
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Figure 9: As in Fig. 8, but for semi-major axes where the globally averaged surface
temperature matches that of PE17. Here, planetary semi-major axes ranges from
0.95 to 1.32 au. Note that a planet with a semi-major axis of 0.95 au is in the
moist Greenhouse state, whereas at 1.32 au the planet is in Snowball state. For a
semi-major axis of between 1.14 and 1.18 au, the planet is in habitable state, with
glaciation only near the poles.
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there is no sea-ice in this model. The large effective albedo at high latitudes stems
from the large amount of clouds in this region. This model is qualitatively similar
to the PE17 result for a planet with a semi-major axis of 1.14 au. Moreover, the
intermediate models at 1.14 and 1.18 au in Fig. 9 are qualitatively similar to the
PE17 results at 1.165 and 1.195 au. Both models exhibit positive temperatures near
the equator and glaciation of the poles. Furthermore, in both models is the specific
humidity (not shown) in the stratosphere well below the threshold for the transi-
tion into moist Greenhouse state, which indicates that a planet with a semi-major
axis of between 1.14 and 1.18 au is in habitable state. The total precipitation and
cloud cover peak at the equator, slightly decrease between 10◦–30◦ latitude, and
peak again at high latitudes. Note that this meridional structure is similar to the
mean climate state of the Earth, as it is expected from an Earth-like model. The
coldest model in Fig. 9 (1.32 au) is in Snowball state (full glaciation) and exhibits
no precipitation, which agrees well with the PE17 result for a semi-major axis of
1.225 au. While zonal averages of TS, P, and effective albedo are similar to those
from PE17, the total cloud cover is remarkably different at all latitudes. It has a peak
near the equator, with values up to 0.9, and decreases towards the poles, whereas
PE17 has no clouds at all in the Snowball state. I presume that the different cloud
parameterization schemes of the two models could be a possible explanation for this.

To infer the inner HZ limit of Kepler-35 using the modified PlaSim code, vertical
profiles of the specific humidity (SH) are examined, which are presented in Figure 10.
It shows globally averaged SH profiles for a planet with a semi-major axis of 1.12
and 1.14 au. It also shows profiles for 1.12 au that are zonally averaged over the
equator and polar region, respectively. At 1.14 au, the specific humidity has a max-
imum of ∼15 g kg-1 at the surface, which slowly decreases with height. It drops to
the threshold value of 1 g kg-1 at 200 hPa and further decreases to ∼0.2 g kg-1 at
100 hPa height (lower stratosphere). Consequently, a planet with a semi-major axis
of 1.14 au is in habitable state (no global glaciation as shown in Fig. 9). At 1.12 au,
SH has a globally averaged maximum of 30 g kg-1 near the surface and decreases
to ∼3 g kg-1 at 100 hPa height. The zonally averaged profiles reveal that the SH is
even higher at the equator, with a maximum of ∼55 g kg-1 near the surface and a
minimum of 8 g kg-1 in the stratosphere. In the polar regions, it already drops to 1
g kg-1 at 400 hPa height. Thus, hydrogen escape mainly takes place in low latitudes,
and the transition to the moist Greenhouse state occurs between 1.12 and 1.14 au.

Figure 10 also shows vertical profiles of the relative humidity RH and air tempera-
ture T, which are arranged in the same way as profiles of SH. Almost all RH profiles
decrease rapidly within the boundary layer (1000–800 hPa) and remain relatively
constant between 800 and 200 hPa height. Above 200 hPa, the differences between
habitable state and moist Greenhouse state are visible. In the former case, RH de-
creases in the stratosphere, while it shows a weak increase in the moist Greenhouse
state. Note that these profiles are spatial and temporal averages so that cloud
formation is also possible for RH < 100 %. The shape of the globally averaged
temperature profile is very similar in both states. In the moist Greenhouse state,
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globally averaged air temperature has a maximum of ∼305 K near the surface and
reaches the freezing point at 350 hPa height. In habitable state, temperatures are
in general ∼15 K lower and the freezing point is reached at 600 hPa height. The
temperature profiles of the equator and polar region need no further explanation.
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Figure 10: Vertical profiles of the specific humidity SH, relative humidity RH, and air
temperature T between 1000 and 100 hPa. Black lines illustrate globally averaged
profiles, and the blue and red lines indicate zonal averages over one latitude at
the north pole and equator, respectively. Solid lines refer to a planet in the moist
Greenhouse state (1.12 au), dashed lines to a planet in habitable state (1.14 au).
The green dotted line in the SH panel illustrates the threshold of 1 g kg-1 and that in
the temperature panel denotes the freezing point at 273.15 K. All lines are temporal
averages over 10 Earth-years in steady state.

The outer HZ limit is determined based on the zonally averaged albedo and sea-ice
cover (not shown). Figure 11 shows the same as Fig. 8, but for planetary semi-major
axes of 1.12, 1.14, 1.21, and 1.22 au. The effective albedo reveals that the transition
to the Snowball state occurs between 1.21 and 1.22 au. At a semi-major axis of
1.21 au, the planet has relatively large areas (±30 degree) of open water around the
equator where no sea ice is formed. At 1.22 au, the planet goes into a Snowball
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state, with negative temperatures and nearly constant albedo at all latitudes. Note
that the effective albedo of ∼0.7 is equivalent to the prescribed sea-ice albedo (see
section 3). The zonally averaged cloud cover has, again, a very prominent structure,
as seen for a semi-major axis of 1.30 au (see Fig. 9). It exhibits the highest value
of ∼0.9 among the four models near the equator, which drops to the smallest value
of ∼0.1 at higher latitudes. Again, this is in contradiction to the PE17 results for
a planet in Snowball state, and shows that the results can strongly vary between
different climate models.

Figure 12 illustrates various time series for the four models presented in Fig. 11. It
shows the globally-averaged total solar irradiation TSI, surface temperature TS, to-
tal precipitation, sea-ice cover, and effective albedo over a period of five Earth-years
in steady state. The changes in the TSI consist of two periods, a short-periodic
signal of ∼22 days, which is caused by the motion of the binary star around its
barycenter, and a long-periodic signal caused by the eccentric orbit of the planet,
which has a period of 332, 341, 365, and 387 days for the given semi-major axes.
The temporal variability of the sea-ice cover and effective albedo is in all four mod-
els very small indicating they are barely affected by the strong TSI fluctuations.
Moreover, we can see that the variability of the surface temperature increases with
increasing semi-major axis, while that of precipitation and effective albedo is largest
in the innermost model at 1.12 au.

Model
Single Star Binary Star

Amplitude [K] Variance [K] Amplitude [K] Variance [K]

1.12 au 0.13 0.004 0.13 0.004

1.14 au 1.10 0.123 1.11 0.132

1.21 au 1.75 0.313 1.83 0.457

1.22 au 1.07 0.401 2.00 0.844

Table 5: Amplitude and variance of surface temperature anomaly in the models
presented in Fig. 11 for both single star and binary star simulations. The binary
insolation clearly increases the variability of the surface temperature.

The temperature time series from Fig. 12 are again highlighted in Fig. 13, but are
averaged to zero (i.e., subtracting the 10 Earth-year average). The figure shows that
the variation is indeed largest (amplitude A = ∼2.0 K) for the outermost orbit at
1.22 au. It clearly exhibits the short- and long-periodic signal of the binary inso-
lation, and has a fairly large correlation ρ = 0.8 with it. In the moist Greenhouse
state, only the long-periodic signal of the insolation is present, with A = ∼0.1 K and
ρ = 0.0. In the habitable state, at 1.14 and 1.21 au, the temperature variation has
a rather chaotic behavior and shows no clear dependency on the TSI. At 1.14 au,
the temperature varies with an amplitude A = ∼1.1 K and has a relatively small
correlation ρ = 0.1 with the TSI. At 1.21 au, the temperature variation has a larger
amplitude A = 1.8 K and correlation ρ = 0.5, but is in general smaller than that
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Figure 11: As in Fig. 8, but for a planet with a semi-major axis of 1.12 au (black
lines), 1.14 au (blue), 1.21 au (green), and 1.22 au (red). At 1.12 au, the planet
is in the moist Greenhouse state as shown in Fig. 10. At 1.22 au, the planet is in
Snowball state. Note that there is no precipitation in this state. A planet with a
semi-major axis of between 1.14 au and 1.21 au is in habitable state.
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Figure 12: Time series plot over five Earth-years in steady state. It shows global
averages of the total solar insolation TSI, surface temperature TS, precipitation, sea
ice cover, and effective albedo of the four models presented in Fig. 11 (with the
same color coding).
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of a planet in Snowball state. Corresponding variances are listed in table 5. This
may be interpreted as follows. Processes that can affect the surface temperature
are somewhat suppressed in the Snowball state leading to a temperature variation
merely caused by the variation of the binary insolation. That is, there is no precip-
itation that can cool the planet’s surface, and there is little or even no variation in
the effective albedo that may effect the amount of absorbed irradiation. In the hab-
itable state, precipitation and effective albedo exhibit moderate variability so that
the temperature is not only affected by the variation of the TSI. In the Greenhouse
state, the surface temperature seems relatively insensitive to rapid changes in both
insolation and total precipitation. Therefore, only the long-periodic signal of the
TSI can be seen in the surface temperature.

Figure 13: Time series of the globally averaged surface temperature as presented in
Fig. 11, but averaged to zero by subtracting its 5-years mean.

To emphasize the interpretation above, additional reference simulations of a single
star system are performed. The single star insolation is set to the arithmetic mean of
the total binary insolation during the first few time steps. The corresponding tem-
perature time series over five Earth-years in steady state are illustrated in Fig. 14.
It shows a similar behavior as seen in the binary setup. In Snowball state, the vari-

Figure 14: As in Fig. 13, but for single star insolation.
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ation of the planet’s surface temperature merely follows the signal of the single star
insolation (not shown), i.e. without a short-periodic signal and thus with a smaller
amplitude A = 1.1 K and variance σ2 = 0.4 K. For a planet with a semi-major
axis of 1.12 au, the variation is very similar to that of its binary analogue, with
A = 0.1 K and σ2 = 0.004 K. In the habitable state, the temperature variation is
also reduced compared to that of its binary analogue (A = 1.10 K and σ2 = 0.12 K
for 1.14 au, and A = 1.75 K and σ2 = ∼0.31 K for 1.21 au), but not as strong as
in the Snowball state. This finding shows that the temperature variability in non-
habitable states is solely driven by the variation of the TSI, and is more chaotic in the
habitable state, which underlines the interpretation above. Furthermore, we have
seen that the binary insolation increases the variability of the surface temperature,
especially in states where the surface temperature is solely affected by the signal of
the insolation. That is, the stronger the TSI signal is present in the surface temper-
ature, the stronger is the increase in its variation. Amplitude and variance values of
the surface temperature of the single star simulations are also summarized in table 5.

To finalize this study, vertical profiles of SH, RH, and air temperature of the out-
ermost model (1.22 au) are illustrated in Fig. 15. The specific humidity is below
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Figure 15: As in Fig. 10, but for an aqua-planet in Snowball state at 1.22 au (solid
lines). The dashed lines denote a planet within the habitable zone, with a semi-
major axis of 1.21 au. Note that all T-profiles are below the freezing point, and SH
of the planet in Snowball state is well below 0.1 g kg-1 at all latitudes and heights.
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0.1 g kg-1 at all latitudes and heights. The air temperature is at all heights well
below the freezing point such that only cold clouds can be formed. The relative
humidity emphasizes the zonal profile of the total cloud cover (see Fig. 11). The
middle troposphere in the equator region exhibits a RH of up to ∼95 % reflecting
the large cloud cover in that region, while it steadily decreases towards the poles.
Table 6 summarizes the four models presented in Fig. 11.

Model Period
[days]

TSI
[W m-2]

TS [K] Precip.
[mm/day]

Sea ice
cover

Albedo

1.12 au 332 1442.66 307.30 5.52 0.00 0.28

1.14 au 341 1390.54 290.92 4.17 0.18 0.33

1.21 au 373 1235.26 251.11 1.37 0.54 0.47

1.22 au 378 1215.33 206.77 0.00 1.00 0.67

Table 6: List of orbital periods, total solar insolation as well as globally averaged
precipitation, sea ice cover, and effective albedo of the Kepler-35 models presented
in Fig. 11.

In summary, using PlaSim to simulate the climate of Kepler-35 leads to a slightly
broader habitable zone compared to that found by Popp and Eggl (2017). A planet
with a semi-major axis of between 1.14 and 1.21 au is still habitable when PlaSim
is used. Furthermore, we have seen that the insolation of the binary increases the
temporal variability of the planet’s surface temperature.

4.2 Kepler-1647

In this section, results of the Kepler-1647 study are presented. As for the planet in
the Kepler-35 system, climate states are derived from zonal averages and vertical
profiles, which are presented in Fig. 16 and 17. For that, an aqua-planet with a
semi-major axis of 2.12, 2.14, 2.24, and 2.25 au is investigated. The planet is habit-
able with a semi-major axis of between 2.14 and 2.24 au and goes into the Snowball
state at 2.25 au, whereas a semi-major axis of 2.12 au leads to a moist Greenhouse
state (see Fig. 17). Table 7 gives an overview of the four aqua-planet models in the
Kepler-1647 system.

Figure 16 shows that the maximum in total precipitation is again at the equator,
whereas there is no precipitation in the Snowball state at all. As in the Kepler-35
study, there are two peaks in the cloud cover of each model, except for the planet
in Snowball state. One peak is at the equator, with values between 0.7 and 0.9,
and another maximum is at higher latitudes, also with values up to 0.9, while it
drops to ∼0.3 between the two maxima. The cloud cover in Snowball state is very
similar to that in the Kepler-35 study, and thus not an individual case. The effective
albedo (Fig. 16) and the vertical profiles of SH, RH, and air temperature (Fig. 17)
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are also remarkably similar to what we have seen in the Kepler-35 study, and thus
need no further discussion. Overall, it can be said that mean climate states in the
Kepler-1647 system are very similar to those of a planet in Kepler-35, but for dif-
ferent semi-major axes.

Model Period
[days]

TSI
[W m-2]

TS [K] Precip.
[mm/day]

Sea ice
cover

Albedo

2.12 au 762 1408.80 303.77 5.23 0.02 0.29

2.14 au 773 1380.69 291.60 4.26 0.18 0.33

2.24 au 827 1257.97 261.57 1.94 0.45 0.43

2.25 au 833 1247.15 208.51 0.01 1.00 0.67

Table 7: As in table 6, but for the aqua-planet models in the Kepler-1647 system.

What is significantly different to Kepler-35 is the temporal variability of the quan-
tities shown in Fig. 18. The long-periodic signal of the insolation exists in almost
all quantities (except for the sea ice cover) of the four models. At this point, the
temporal variability of precipitation and effective albedo in the habitable state (2.14
and 2.24 au) should be emphasized. Both quantities exhibit the long-periodic signal
of the TSI, which is not the case in Kepler-35. Furthermore, it is evident that the
surface temperature of all four models exhibits the long-periodic signal of the TSI,
but not the short-periodic signal, as we have seen it in the outermost model of the
Kepler-35 study. For comparison, the amplitude of the globally averaged surface
temperature is 1.40 K, 2.27 K, 4.65 K, and 7.54 K for 2.12 to 2.25 au. Hence, the
temporal variability of the surface temperature, precipitation, and effective albedo is
considerably larger on a planet in the Kepler-1647 system, which can be attributed to
the large TSI variation of ∼100 W m-2. This is roughly twice as large as in Kepler-35.

Figures 16 and 18 also show results for a desert planet simulation with a planetary
semi-major axis of 2.14 au, which is identical to the inner HZ limit of the aqua-
planet. It becomes apparent that the desert planet has a significantly lower surface
temperature compared to the aqua-planet, with largest differences (∼90 K) on the
poles. The globally averaged surface temperature exhibits the long-periodic signal
of the TSI (amplitude ∼8 K) and is, on average, 25 K smaller than that of an aqua-
planet with identical semi-major axis, because heat is barely stored in the dry soil
masses. Furthermore, clouds and precipitation can exist only in the polar regions
of the desert planet. Precipitation is on the order of ∼1.0 mm month-1 leading to
an accumulated snow cover of roughly one meter after 80 years, which explains the
increased albedo at high latitudes. The temporal evolution of the effective albedo
of the desert planet shows no variation due to the lack of varying sea ice and cloud
cover.

38



4 Results

150

200

250

300

350

Ts
 [

K]

2.12 au 2.14 au 2.14 au (D) 2.24 au 2.25 au

0

5

10

15

20

Pr
ec

ip
ita

tio
n 

[m
m

/d
ay

]
0.0

0.2

0.4

0.6

0.8

1.0

C
lo

ud
 c

ov
er

 

-9
0

-6
0

-3
0 0 30 60 90

latitude

0.0

0.2

0.4

0.6

0.8

1.0

Al
be

do
 

Figure 16: As in Fig. 11, but for an aqua-planet in Kepler-1647 with a semi-major
axis of 2.12 au in black, 2.14 au in blue, 2.24 au in green, and 2.25 au in red. The
solid lines refer to the aqua-planet models and the dash-dotted line to the desert
planet model. Each line represents an average over 10 Earth-years in steady state.
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Figure 17: As in Fig. 10, but for an aqua-planet in the Kepler-1647 system with a
semi-major axis of 2.12 au (solid lines; moist Greenhouse state). The dashed lines
indicate global averages of a planet with a semi-major axis of 2.14 au, which is
within the habitable zone of Kepler-1647.

In the following, HZ limits for a desert planet in the Kepler-1647 system are derived
using Fig. 19, 20 and 21. It shows that the desert planet is habitable for a semi-
major axis of between 1.90 and 2.30 au. At 1.80 au, the net solar insolation exceeds
the threshold of 415 W m-2 during perihelion passages, with the possible conse-
quence that surface water reservoirs start to evaporate. This is the transition to an
uninhabitable state equivalent to the moist Greenhouse state of an aqua planet. At
1.70 au, the 10-years average of the net solar insolation exceeds the aforementioned
threshold (not shown). If we go even closer to the star, numerical instabilities arise
and the simulation terminates. On a planet with a semi-major axis of 2.35 au,
the surface temperature is at all latitudes below the freezing point such that small
reservoirs of surface water as well as soil moisture would freeze, which indicates the
transition to a Snowball state. These figures also show that the climate states of the
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Figure 18: As in Fig. 12, but for an aqua-planet in the Kepler-1647 system with a
semi-major axis of 2.12 au (black solid lines), 2.14 au (blue), 2.24 au (green), and
2.25 au (red). In addition, a desert planet model with a semi-major axis of 2.14 au
is shown (blue dash-dotted lines).
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Figure 19: As in Fig. 16, but for the Kepler-1647 desert planet models with a semi-
major axis of 1.95 au (black lines), 2.00 au (blue lines), 2.30 au (green lines), and
2.35 au (red lines). Note that there is no significant precipitation in any of these
models.
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Figure 20: As in Fig. 18, but for the desert planet models presented in Fig. 19.
There is no precipitation and sea ice cover in any of these models. Note that the
time series of the effective albedo are overlapped.
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desert planet are very similar among different semi-major axes. That is, there is no
significant amount of precipitation in any of these models, and the cloud cover and
effective albedo have in all four models their peak in the polar regions, where snow is
slowly accumulated over time. Furthermore, Fig. 20 demonstrates that the precipi-
tation and effective albedo does not vary in any of the four models, while the surface
temperature exhibits in each model the long-periodic signal of the TSI. Please note
that this is very similar to the temperature variation of the aqua-planet in Snowball
state (see Fig. 18). All desert planet models of this study are summarized in table 8.

Figure 21 shows the same as Fig. 17, but for a desert planet with a semi-major
axis of 1.80 au (moist Greenhouse state) as well as 1.90 au (habitable state). In the
moist Greenhouse state, the specific humidity is well below 0.1 g kg-1 at all latitudes
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Figure 21: As in Fig. 17, but for a desert planet in the moist Greenhouse state at
1.80 au (solid lines). The dashed lines refer to a desert planet in the habitable zone
at 1.90 au. In both cases the specific humidity is below 0.1 g kg-1 and the globally
averaged relative humidity is close to zero.
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Model Period
[days]

TSI
[W m-2]

TS [K] Precip.
[mm/day]

Sea ice
cover

Albedo

1.80 au 596 1961.00 300.73 0.00 0.00 0.24

1.90 au 646 1774.55 284.48 0.00 0.00 0.24

2.14 au 773 1380.69 263.90 0.00 0.00 0.26

2.30 au 861 1196.04 252.87 0.00 0.00 0.28

2.35 au 889 1149.24 249.65 0.00 0.00 0.29

Table 8: As in table 7, but for all desert planet models in the Kepler-1647 system.

and heights emphasizing the very dry atmosphere of the planet. The relative hu-
midity shows that the poles are indeed the most humid regions where water is also
stored in the form of vapor and clouds. The vertical temperature profile of the polar
region shows a relatively strong inversion below 900 hPa, which indicates that the
increased cloud cover in this region comes from ground-near fog below the inversion
cap. Global maps of cloud cover and relative humidity at 1000 hPa (Fig. 22) reveal
that this is indeed the case. At 1.90 au, SH is also below 0.1 g kg-1 and RH is almost
zero at all heights. That is, there is almost no water vapor in the atmosphere of
a habitable desert planet. The temperature profile is similar to that in the moist
Greenhouse state, but approximately 10 K lower.
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Figure 22: Global maps of the cloud cover and relative humidity at 1000 hPa for a
desert planet with a semi-major axis of 1.80 au (moist Greenhouse state). It shows
one specific time step during the end of the simulation.

To summarize these studies, the climate states of a planet in the Kepler-1647 system
are very similar to those of a planet in Kepler-35, but for different semi-major axes.
However, the habitable zone of Kepler-1647 is much wider, and even wider for a
desert planet, as already noted by Abe et al. (2011). Furthermore, the temporal
variability of the shown quantities are amplified due to the stronger variability of
the binary insolation.

45



4 Results

4.3 Kepler-47

In this section, an aqua-planet in the Kepler-47 system with a semi-major axis of
between 0.83 and 0.885 au is investigated. Results are shown in Figs. 23, 24, and
25 and are presented in the same way as in the previous studies. A planet with a
semi-major axis of 0.83 au is in the moist Greenhouse state, with a specific humidity
of ∼2 g kg-1 in the stratosphere (Fig. 23), whereas it is habitable between around
0.835 and 0.88 au. At 0.885 au, the planet then goes into a Snowball state where
full glaciation takes place (Fig. 24).
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Figure 23: As in Fig. 10, but for a planet in Kepler-47 with a semi-major axis of
0.83 au (solid lines; moist Greenhouse state) and 0.835 au (dashed lines; habitable
state).
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Figure 24: As in Fig. 11, but for an aqua-planet in the Kepler-47 binary system
with a semi-major axis of 0.83 au (black solid line), 0.835 au (blue line), 0.88 au
(green line), and 0.885 au (red line).
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Figure 25: As in Fig. 18, but for the Kepler-47 models presented in Fig. 24.
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Again, there is no precipitation but a very high cloud cover in the Snowball state.
Apart from different semi-major axes, these results are similar to those of the afore-
mentioned studies (e.g., see Fig. 11 and 16), and thus need no further discussion. For
the sake of completeness, corresponding time series are plotted in Fig. 25. Table 9
summarizes globally averaged quantities of the four models presented in this study.

Model Period
[days]

TSI
[W m-2]

TS [K] Precip.
[mm/day]

Sea ice
cover

Albedo

0.830 au 233 1414.65 302.38 5.12 0.05 0.30

0.835 au 235 1398.64 294.61 4.49 0.13 0.32

0.880 au 254 1249.27 260.18 1.84 0.45 0.44

0.885 au 257 1236.99 207.94 0.01 1.00 0.67

Table 9: List of orbital periods, total solar insolation TSI as well as globally averaged
precipitation, sea ice cover and effective albedo of all Kepler-47 models presented in
Fig. 24.
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5 Final Remarks

5.1 Discussion

In this thesis, I modified the radiative transfer module of the PlaSim climate model
allowing to simulate the climate of circumbinary planets. For that purpose, an ad-
ditional binary star module is implemented in the existing code, which numerically
integrates the 2-body problem with a semi-implicit Euler scheme and calculates the
stellar brightness of each individual star based on their mass and temperature. The
radiation at the top of the atmosphere, or total solar insolation, is then calculated
using simple geometrical considerations. The code can still be executed in a parallel
environment, and stellar and orbital parameters are read from an external text file
as it is done with other input parameters. In addition to PlaSim’s standard output,
the total solar insolation as well as orbital parameters of the binary are saved as
output.

To investigate the outcome of the modified PlaSim code, I simulated exoplanets
in various circumbinary systems. The Kepler-35 system is used to investigate the
impact of the binary on the climate, and for a model evaluation where results are
compared with those from PE17. A comparison between aqua- and desert-planet
HZ limits are performed using the Kepler-1647 system. Furthermore, a planet in
the Kepler-47 system is simulated to compare its climate states with those of the
planets in the two other systems. The main results of this thesis are the following:

• The Kepler-35 habitable zone limits derived from PlaSim simulations agree
relatively well with those found by Popp and Eggl (2017), although they used
a different model.

• The binary star can amplify the temporal variability of various climate indi-
cators, such as the globally averaged surface temperature. If this is the case,
the amplitude changes with the planetary semi-major axis.

• The habitable zone of a desert planet is much wider than that of an aqua-
planet, whereas the temporal variability of the desert planet’s surface temper-
ature is very similar to that of an aqua-planet in uninhabitable state.

• While the temporal variability of various climatic indicators heavily depends
on the variation of the TSI and the planetary semi-major axis, mean climatic
states of the examined planets are very similar among the three systems, even
though the semi-major axes are different.

The ECHAM6 model that has been used by Popp and Eggl (2017) has a different
complexity and uses other parametrization schemes than PlaSim. I will not discuss
these differences due to the complexity of this topic, but I will do a brief comparison
between my model setup and that of PE17. First, PE17 carried out simulations
with a spatial resolution of 3.75◦ (compared to 5.6◦) using 47 vertical levels up to a
pressure of 0.01 hPa (compared to 10 vertical levels up to 100 hPa), which makes
the assessment of the stratospheric water vapor easier and more reliable. Moreover,
their radiative transfer scheme consists of 14 shortwave bands, instead of one. This
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could also has an effect on the outcome. While PE17 used a threshold of 3 g kg-1

specific humidity for the transition to the moist Greenhouse state, I used 1 g kg-1 as
proposed by Kasting (1988). Nonetheless, the resulting HZ limits for Kepler-35 does
not change when using the threshold from PE17 (see the solid black line in Fig. 10).
In the other two systems (see Figs. 17 and 23), the HZ limits would indeed change
marginally. What could actually be a problem is the number of vertical levels that
has been used to infer the water vapor content in the stratosphere. As mentioned
above, only 10 vertical levels are used, with the uppermost being at 100 hPa. This
corresponds to an altitude of roughly 15 km, whereas the stratosphere of an Earth-
like atmosphere normally ranges from roughly 12 km to 50–60 km height. That is,
the 100 hPa layer is at the bottom of the stratosphere, which might be too low to
determine hydrogen escape from the atmosphere. Thus, considering the water vapor
content from the upper stratosphere (10 hPa and above) as well would require at
least ten times as many vertical levels, given that the height of the uppermost layer
of PlaSim is defined by the ratio between surface pressure (usually 1000 hPa) and
the number of vertical levels. Furthermore, it should also kept in mind that spatio-
temporal averages of the specific humidity are used as threshold for the transition
to the moist Greenhouse state. The actual amount of water vapor content in the
stratosphere can thus vary in space and time and, consequently, the inferred HZ
limits should also be considered as temporal averages. Nonetheless, the modified
PlaSim code provides HZ limits for Kepler-35 that agree well with those found by
PE17 (see table 10). The PlaSim climate model gives slightly wider HZ limits. I also
find that the binary stars clearly introduce an additional variability in the globally
averaged surface temperature, which is larger at lower surface temperatures, as also
stated by PE17.

System
PlaSim HZ Limits Literature Observed

Inner Outer Inner Outer -

Kepler-35 1.140 1.210 1.165 1.950 0.603

Kepler-1647 2.140 2.240 1.420 2.490 2.721

Kepler-1647 Desert 1.900 2.300 - - -

Kepler-47 0.835 0.880 0.990 1.750 0.296
0.989
0.699

Table 10: Summary of various habitable zone limits for Kepler-35, Kepler-1647, and
Kepler-47. PlaSim HZ limits are derived in this study. Literature values are taken
from PE17 for Kepler-35, and from Pilat-Lohinger et al. (2019) for Kepler-1647 and
Kepler-47 (based on the formulas from Kopparapu et al. (2014) and Haghighipour
and Kaltenegger (2013)). Estimated planetary semi-majors axes of observed exo-
planets are taken from Welsh et al. (2012), Kostov et al. (2016), Orosz et al. (2012),
and Orosz et al. (2019).
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For Kepler-1647 and Kepler-47, no HZ limits derived from fully three-dimensional
climate model simulations are available in the literature. Instead, table 10 summa-
rizes the analytically calculated HZ limits using the formulas from Kopparapu et al.
(2014) and Haghighipour and Kaltenegger (2013). I find that the Kepler-1647 habit-
able zone derived from PlaSim simulations is substantially smaller but lie well within
the limits from the literature, even for a desert planet. In the case of Kepler-47,
however, the HZ limits are much closer to the binary than those from the literature.
Please note that these HZ limits are well beyond the inner stability limit of their
binaries. The stability limit of the Kepler-35 system is at 0.52 au (Chavez et al.
2014), that of Kepler-1647 is at 0.37 au (Kostov et al. 2016), and that of Kepler-47
is at 0.18 au (Quarles et al. 2018). The inferred habitable zones are therefore in
all three systems well within the stable region. Moreover, there are no concrete
reference values for the HZ limits of a circumbinary desert planet, but the desert
planet simulations in this thesis underline the findings by Abe et al. (2011). The HZ
limits for dry planets are significantly wider than those of an aqua-planet analogue.
The habitable zone for an aqua-planet in the Kepler-1647 system ranges from 2.14
to 2.24 au, while that for a desert planet ranges from 1.90 to 2.30 au. This is a
400 % wider habitable zone for the desert planet. Again, one problem might be
that the net solar insolation is highly variable, whereas spatio-temporal averages
are used to define the transition to the uninhabitable state. That is, the HZ limits
are also considered as temporal averages. As mentioned in the introduction, no
terrestrial planet has been observed so far. Even if we assume that the planet under
investigation is a natural satellite of one of the observed exoplanets, none of them
would actually be habitable (see table 10). Nonetheless, considering the relatively
well agreement of the inferred HZ limits with those from the literature, this work
suggests that also simplified climate models can provide useful results comparable
with those from more complex climate models.

The mean climate states are in all three systems very similar, e.g., surface temper-
ature and precipitation has their maximum at the equator and are relatively small
at high latitudes. The total cloud cover peaks in the equator region as well as at
high latitudes and has its minimum in subtropical latitudes, and the effective albedo
has its maximum at the poles due to glaciation and is relatively low at lower lati-
tudes. These are patterns that are expected from an Earth-like climate model and
do not require any further discussion. Nonetheless, the reason for the remarkably
large cloud cover in the Snowball state is unclear and needs further investigation of
model parameterizations. What is, however, significantly different in each system is
the temporal evolution and variability of the aforementioned climate indicators (i.e.,
climate variability), which is caused by the different strength and amplitude of the
TSI. In cold climate states, an additional variability (mainly of the surface tempera-
ture), with a period of several days to weeks, is induced by the short-periodic signal
of the TSI (caused by the motion of the binary around its center of mass). Other
quantities, like precipitation and sea-ice cover, seem to be more insensitive against
these short-periodic changes. In warmer states, this effect is minimal and only the
long-periodic signal (caused by the eccentric motion of the planet) is present, if at
all. Furthermore, it should also be mentioned that only 80 years are simulated,
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which is more like a snapshot of the planet’s current climatic conditions. On larger
timescales, several other mechanisms effecting the climate of a planet become im-
portant , e.g. the Milankovitch cycles, resonances with other planets, or even the
stellar evolution. In summary it can only be said, therefore, that the binary star
induces additional short-term changes (i.e., with periods of several days or weeks)
while long-term climate conditions of a planet are relatively unaffected by it.

The most important limitations of the modified PlaSim code are already summa-
rized in section 2. At this point, I want to discuss further consequences of these
limitations and other numerical issues. First and foremost, focusing only on cir-
cumbinary planets severely limits the number of planets that can be investigated.
So far, about hundred planet-hosting binary systems are observed and only 21 of
them are circumbinary systems (Schwarz et al. 2016). Another severe restriction
is that the atmospheric composition in PlaSim is assumed to be Earth-like, which
can not be changed except for the CO2 concentration. Again, none of the observed
circumbinary planets are terrestrial, and no exomoons are observed so far, as it is
assumed in this thesis. This really limits the use of the modified PlaSim code I
have presented here to theoretical investigations. Furthermore, only binary pairs of
the same spectral type can be simulated with that code (even though the investi-
gated binary systems have different spectral types, which may also affect the results)
further limiting the number of systems that can be investigated. Nonetheless, Pilat-
Lohinger et al. (2019) have shown that the majority of observed binaries are indeed
of the same spectral type, if the spectral types interesting for habitability (F, G, K
and M) are considered. A technical limitation is constituted by numerical instabil-
ities in the upper atmosphere that occur when the total solar insolation becomes
too large, which is the case for a desert planet in the Kepler-1647 system with a
semi-major axis of 1.65 au. In order to solve this problem some major revisions of
the parameterization schemes might be necessary.

The model I have presented in this thesis is very simplified and thus I want to final-
ize this work with a future outlook. Subsequent work could, in the first place, imply
the integration of the binary routines in a more complex climate model due to the
aforementioned limitations of the PlaSim climate model. The problem is that the
binary routines I have presented here are customized for the PlaSim climate model.
That is, I have not implemented a general interface or wrapper which handles the
communication between PlaSim’s radiative transfer code and the binary routines.
So far, only the true longitude λ and the eccentricity factor are passed from PlaSim
to the binary routines and transformed to parameters that are required to calculate
the binary insolation. A wrapper would transform all kinds of orbital parameters
depending on what is used by the climate model. Also, a module-based code could
make the implementation easier and would require only a few minor changes in the
climate model code. Furthermore, the presented code is restricted to binaries of the
same spectral type. Thus, future work could also imply the revision of PlaSim’s ra-
diative transfer code, especially the cloud-radiation interactions, such that binaries
with different spectral types can be considered as well.
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A.1 Source Code

This section provides the full binary code and describes how it is implemented in the
PlaSim (v3.18.0) climate model. The implementation requires some minor changes
of the original PlaSim code (listings 1, 2, 3, and 4), which are important to run
the code properly. The binary code itself consists of a module (listing 5), which
defines all necessary variables, and multiple subroutines (listings 6, 7, 8, 9, and 10)
to initialize the binary code, perform the integration, calculate various angles and
distances between binary and planet, and to compute the insolation of each individ-
ual star.

In general, the PlaSim code consists of three major parts, which are executed sub-
sequently. The first part is called prolog and initializes all important modules at
the beginning of a simulation. The second part is called Master and contains the
main loop performing the integration in time. The third part is called epilog and
finalizes the simulation. Consequently, the binary code is implemented as follows.
First, binary routines are initialized during the initialization of the radiative trans-
fer module (listing 1) at the beginning of a simulation. Here, input variables are
read from binary namelist (see listing 11) and initial positions and velocities of
the binary are calculated (listing 6). During the main loop, PlaSim’s radstep rou-
tine is executed, which calls the routine solang (listing 2) and then swr (listing 3).
The former computes the declination and zenith angle, and calls the routines BI-
NARY Integrate (listing 7) and BINARY Angles (listing 8) to compute the binary
orbits and various angles (declination, zenith and hour angle), respectively. The bi-
nary and planet coordinate vectors are calculated in the BINARY Distances routine
(listing 9), which is called after the computation of the declination (listing 4). The
routine swr then calls BINARY Insolation (listing 10) to calculate the insolation of
the binary, which is passed back to swr replacing PlaSim’s insolation variable. The
module BINARY module (listing 5) has to be used by all binary routines. Some of
the existing comments in the code are removed for the sake of convenience. Modifi-
cations of the existing PlaSim code are indicated with ’MODIFICATION’.

1 subroutine radini

2 use radmod

3 namelist/radmod_nl/ndcycle,ncstsol,solclat,solcdec,no3,co2 &

4 & ,iyrbp,nswr,nlwr &

5 & ,a0o3,a1o3,aco3,bo3,co3,toffo3,o3scale &

6 & ,nsol,nswrcl,nrscat,rcl1,rcl2,acl2,clgray,tpofmt &

7 & ,acllwr,tswr1,tswr2,tswr3,th2oc,dawn

8
9 ! MODIFICATION: Initialize binary module

10 call BINARY_init()

11
12 jtune=0

13 if(ndheat > 0) then
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14 if(NTRU==21 .or. NTRU==1) then

15 ...

16 return

17 end subroutine radini

Listing 1: Modifications in PlaSim’s radini routine.

1 subroutine solang

2 ...

3 call ntomin(nstep,imin,ihou,iday,imon,iyea)

4 !

5 !** 2) compute declination [radians]

6
7 call orb_decl(zcday, eccen, mvelpp, lambm0, obliqr, zdecl, eccf)

8 !

9 ! MODIFICATION: Binary Integration

10 ! InitAzimuth sets gmu0_S1 and gmu0_S2 to zero

11 call BINARY_Integrate()

12 call BINARY_InitAzimuth()

13
14 !** 3) compute zenith angle

15 gmu0(:) = 0.0

16 zmuz = 0.0

17 zdawn = sin(dawn * PI / 180.0)

18 zrlon = TWOPI / NLON

19 zrtim = TWOPI / 1440.0

20 zmins = ihou * 60 + imin

21 jhor = 0

22 if (ncstsol==0) then

23 do jlat = 1 , NLPP

24 do jlon = 0 , NLON-1

25 jhor = jhor + 1

26 zhangle = zmins * zrtim + jlon * zrlon - PI

27 zmuz=sin(zdecl)*sid(jlat)+cola(jlat)*cos(zdecl)*cos(zhangle)

28 if (zmuz > zdawn) gmu0(jhor) = zmuz

29
30 ! MODIFICATION: Computes angles for binary

31 call BINARY_Angles(obliqr,zmins,zrtim,jlon,jlat,zrlon,jhor,zdawn,

zdecl,zhangle,gmu0(jhor))

32 enddo

33 enddo

34 else

35 solclatcdec=solclat*solcdec

36 solslat=sqrt(1-solclat*solclat)

37 solsdec=sqrt(1-solcdec*solcdec)

38 ...

39 end subroutine solang

Listing 2: Modifications of PlaSim’s solang subroutine.

64



A Appendix

1 subroutine swr

2 ...

3 real zb2(NHOR),zom0(NHOR),zuz(NHOR),zun(NHOR),zr(NHOR)

4 real zexp(NHOR),zu(NHOR),zb1(NHOR)

5 !

6 logical losun(NHOR)

7 !

8 ! MODIFICATION: define new variables

9 integer :: sel_bin

10 logical :: tmp_losun(NHOR), bool_zmu1(NHOR)

11
12 if (ndcycle == 0) then

13 js = 1

14 je = NLON

15 do jlat = 1 , NLPP

16 icnt = count(gmu0(js:je) > 0.0)

17 if (icnt > 0) then

18 zsum = sum(gmu0(js:je))

19 zmu0(js:je) = zsum / icnt

20 zmu1(js:je) = zsum / NLON

21 else

22 zmu0(js:je) = 0.0

23 zmu1(js:je) = 0.0

24 endif

25 js = js + NLON

26 je = je + NLON

27 enddo

28 else

29 zmu0(:) = gmu0(:)

30 zmu1(:) = gmu0(:)

31 endif

32
33 ! MODIFICATION: Computation of the binary insolation

34 call BINARY_sel_bin(sel_bin)

35 if (sel_bin.eq.1) then

36 ! binary insolation

37 call BINARY_Insolation(zftop1,zftop2,zsolar1,zsolar2,gsol0)

38 else

39 ! single star insolation

40 zftop1(:) = zsolar1 * gsol0 * gdist2 * zmu1(:)

41 zftop2(:) = zsolar2 * gsol0 * gdist2 * zmu1(:)

42 end if

43
44 ! MODIFICATION: Define grid points where insolation > 0

45 if (sel_bin.eq.1) then

46 tmp_losun(:) = (zftop1(:) + zftop2(:) > zero)

47 bool_zmu1(:) = (zmu1(:).gt.zero)

48 losun(:) = (tmp_losun(:).and.bool_zmu1(:))

49 else
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50 losun(:) = (zftop1(:) + zftop2(:) > zero)

51 end if

52
53 ! cloud properites

54 !

55 zcs(:) = 1.0 ! Clear sky fraction (1.0 = clear sky)

56 zmu00 = 0.5

57 zb3 = tswr1 * SQRT(zmu00) / zmu00

58 zb4 = tswr2 * SQRT(zmu00)

59 zb5 = tswr3 * zmu00 * zmu00

60 ...

61 end subroutine swr

Listing 3: Modifications in PlaSim’s swr routine.

1 subroutine orb_decl(calday,eccen,mvelpp,lambm0,obliqr,delta,eccf)

2 ...

3 delta = asin(sin(obliqr)*sin(lamb))

4 eccf = invrho*invrho

5
6 ! MODIFICATION: calculate Planet-Binary distances

7 call BINARY_Distances(eccf,lamb)

8 return

9 end subroutine orb_decl

Listing 4: Modifications in PlaSim’s orb decl routine.

1 module BINARY_module

2 use pumamod, only : NHOR

3 implicit none

4
5 ! Constants

6 real*8, parameter :: pi = 3.141592

7 real*8, parameter :: G = 6.67408*10**(-11.0)

8 real*8, parameter :: Msolar = 1.989*1E30

9 real, parameter :: Lsolar = 3.828*1E26

10 real, parameter :: Rsolar = 6.955*1E8

11 real, parameter :: au1 = 1.4959787E11

12 real, parameter :: SBCONST = 5.670373*1E-8

13 real, parameter :: beta_S1 = 4.0

14 real, parameter :: beta_S2 = 4.0

15 real, parameter :: incl1 = 0.0 ! in degree

16 real, parameter :: incl_thresh_occul = 1.0 ! in degree

17
18 ! Variables from namelist

19 integer :: sel_bin

20 integer :: sel_StefanBoltzmann = 0

21 real :: dt

22 real :: Star1_SolarMass

23 real :: Star2_SolarMass
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24 real :: Star1_SemiMajorAxis

25 real :: Binary_SemiMajorAxis

26 real :: Binary_Eccentricity

27 real :: Planet_SemiMajorAxis

28 real :: R_S1

29 real :: R_S2

30 real :: Temp_S1

31 real :: Temp_S2

32
33 ! Variables to be computed

34 integer :: sign_S1, sign_S2

35 real :: sma

36 real :: com_lamb

37 real :: gsol0_S1, gsol0_S2

38 real :: L_S1, L_S2

39 real :: alpha_S1, alpha_S2

40 real :: dist_S1, dist_S2

41 real :: eccf_S1, eccf_S2

42 real :: occul_S1, occul_S2

43 real :: angle_S1, angle_S2, angle_P

44 real :: A_S1, A_S2

45 real :: apS1C, apS2C

46 real, dimension(2) :: com, coor_P

47 real, dimension(NHOR) :: gmu0_S1, gmu0_S2

48 real*8 :: mass_S1, mass_S2

49 real*8, dimension(2) :: coor_S1, coor_S2

50 real*8, dimension(2) :: velo_S1, velo_S2

51 real*8, allocatable, dimension(:,:) :: CoorArrayS1, CoorArrayS2

52
53 ! Switchers and counters

54 integer :: cnt_bi

55 real :: cnt_time = 0.

56 real :: cnt_time_single = 0.

57 logical :: switch_insol = .True.

58 logical :: switcher_2b = .True.

59 end module BINARY_module

Listing 5: Module for binary routines.

1 subroutine BINARY_init()

2 use BINARY_module

3 use pumamod, only : mypid

4 implicit none

5
6 real :: mratio, mu

7
8 ! Output files

9 character(len=200) :: out_2b = ’Binary-Coordinates.out’

10 character(len=200) :: out_log = ’Binary-OrbitalParam.out’

11 character(len=200) :: out_log3 = ’Binary-Angles.out’
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12 character(len=200) :: out_log2 = ’Binary-HourAngle.out’

13 character(len=200) :: out_insol = ’Binary-Insolation.out’

14 character(len=200) :: out_insol_s = ’SingleStarInsolation.out’

15
16 ! Read namelist

17 character(len=200) :: binary_namelist = ’binary_namelist’

18 namelist /binary_nl/ Star1_SolarMass, Star2_SolarMass, &

19 Planet_SemiMajorAxis, Binary_SemiMajorAxis, &

20 Binary_Eccentricity, sel_bin, sel_StefanBoltzmann, &

21 Temp_S1, Temp_S2, R_S1, R_S2, dt

22 open(101,file=binary_namelist)

23 read(101,binary_nl)

24 close(101)

25
26 ! Compute star masses in [kg]

27 mass_S1 = Star1_SolarMass * Msolar

28 mass_S2 = Star2_SolarMass * Msolar

29
30 ! Compute planetary semi major axis in [m]

31 sma = Planet_SemiMajorAxis * au1

32
33 ! Compute semi major axis of primary star

34 Star1_SemiMajorAxis = Binary_SemiMajorAxis/(1 + mass_S1/mass_S2)

35
36 ! Compute initial coordinate of primary star in [m]

37 coor_S1(1)= Star1_SemiMajorAxis * au1 * (1 - Binary_Eccentricity)

38
39 ! Create output files

40 open(unit=96,file=trim(out_insol_s),status=’unknown’,action=’write’)

41 open(unit=97,file=trim(out_insol),status=’unknown’,action=’write’)

42 open(unit=98,file=trim(out_2b),status=’unknown’,action=’write’)

43 open(unit=99,file=trim(out_log),status=’unknown’,action=’write’)

44 open(unit=102,file=trim(out_log2),status=’unknown’,action=’write’)

45 open(unit=103,file=trim(out_log3),status=’unknown’,action=’write’)

46
47 ! Define y position of 1. star and center of mass COM, DO NOT CHANGE

48 coor_S1(2) = 0.0

49 com(1) = 0.0

50 com(2) = 0.0

51
52 ! Compute initial coordinates of 2nd star according to reformulation

of Center of mass equation

53 coor_s2(1) = com(1)*(mass_S1 + mass_S2)/mass_S2 - (mass_S1/mass_S2)*

coor_S1(1)

54 coor_s2(2) = com(2)*(mass_S1 + mass_S2)/mass_S2 - (mass_S1/mass_S2)*

coor_S1(2)

55
56 ! Compute star distances relative to COM in [m]

57 dist_S1 = sqrt((coor_s1(1)-com(1))**2. + (coor_s1(2)-com(2))**2.)
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58 dist_S2 = sqrt((coor_s2(1)-com(1))**2. + (coor_s2(2)-com(2))**2.)

59
60 ! Compute initial velocities

61 mu = G*(mass_S1 + mass_S2)

62 mratio = mass_s2/(mass_s2+mass_s1)

63 velo_s1(1) = 0.

64 velo_s2(1) = 0.

65 velo_s1(2) = sqrt(mu/(Binary_SemiMajorAxis*au1) * (1. +

Binary_Eccentricity)/(1. - Binary_Eccentricity))* mratio

66 velo_s2(2) = -velo_s1(2)*mass_s1/mass_s2

67
68 ! Compute alpha coefficients

69 if (mass_S1/Msolar.gt.2.0) then

70 alpha_S1 = 3.5

71 else

72 alpha_S1 = 4.0

73 end if

74 if (mass_S2/Msolar.gt.2.0) then

75 alpha_S2 = 3.5

76 else

77 alpha_S2 = 4.0

78 end if

79
80 ! Compute luminosities L/L_sun

81 if (sel_StefanBoltzmann.eq.1) then

82 ! from Stefan-Boltzmann law

83 if (R_S1.eq.0.or.R_S2.eq.0) then

84 print *, "ERROR! RADII NOT DEFINED!"

85 stop

86 end if

87 L_S1 = (4.*pi*SBCONST * (Rsolar*R_S1)**2. * Temp_S1**4.)/Lsolar

88 L_S2 = (4.*pi*SBCONST * (Rsolar*R_S2)**2. * Temp_S2**4.)/Lsolar

89 else

90 ! from mass-luminosity relation

91 L_S1 = (mass_S1/Msolar)**alpha_S1

92 L_S2 = (mass_S2/Msolar)**alpha_S2

93 end if

94
95 ! Compute radius and area for occultation

96 if (R_S1.eq.0.or.R_S2.eq.0) then

97 R_S1 = Rsolar*(mass_S1/Msolar)**((beta_S1-1)/(beta_S1+3))

98 R_S2 = Rsolar*(mass_S2/Msolar)**((beta_S2-1)/(beta_S2+3))

99 else

100 R_S1 = R_S1*Rsolar

101 R_S2 = R_S2*Rsolar

102 end if

103
104 A_S1 = R_S1**2.0 * pi

105 A_S2 = R_S2**2.0 * pi
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106 end subroutine BINARY_init

Listing 6: Initialization of binary routines.

1 subroutine BINARY_Integrate()

2 use BINARY_module

3 use pumamod, only : n_days_per_year, n_run_years, mypid

4 implicit none

5
6 integer :: i, cnt_store

7 integer :: TotalSteps, ts1, ts2

8 real*8 :: r_12

9
10 if (sel_bin.eq.1) then

11 ! Compute binary orbits at the beginning

12 if (switcher_2b) then

13 ! Check whether dt is valid

14 if (mod(2700,int(dt)).ne.0) then

15 print *, "ERROR! INVALID TIME STEP!"

16 stop

17 end if

18
19 ! Define number of steps

20 ts1 = (24*3600)/dt

21 ts2 = (n_run_years+2)*n_days_per_year

22 TotalSteps = ts1*ts2

23
24 if (TotalSteps.lt.0) then

25 print *, "ERROR! POTENTIAL OVERFLOW ERROR!"

26 stop

27 end if

28
29 allocate(CoorArrayS1(TotalSteps,2))

30 allocate(CoorArrayS2(TotalSteps,2))

31 CoorArrayS1(:,:) = 0.

32 CoorArrayS2(:,:) = 0.

33 cnt_store = 1

34
35 ! SYMPLECTIC EULER (Binary orbit integration)

36 do i = 0,TotalSteps-1

37 r_12 = sqrt((coor_S1(1) - coor_S2(1))**2.0 + (coor_S1(2) -

coor_S2(2))**2.0)

38
39 velo_S1(:) = velo_S1(:) - (G*mass_s2*(coor_S1(:) - coor_S2

(:)))/(r_12**3.0)*dt

40 velo_S2(:) = velo_S2(:) - (G*mass_S1*(coor_S2(:) - coor_S1

(:)))/(r_12**3.0)*dt

41
42 coor_S1(:) = coor_S1(:) + velo_S1(:)*dt

43 coor_S2(:) = coor_S2(:) + velo_S2(:)*dt
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44
45 if (mod(i,2700/int(dt)).eq.0) then

46 CoorArrayS1(cnt_store,:) = coor_S1(:)

47 CoorArrayS2(cnt_store,:) = coor_S2(:)

48 cnt_store = cnt_store + 1

49 end if

50 end do

51
52 ! Coordinates after first integration step

53 cnt_bi = 1

54 coor_S1(1) = CoorArrayS1(cnt_bi,1)

55 coor_S1(2) = CoorArrayS1(cnt_bi,2)

56 coor_S2(1) = CoorArrayS2(cnt_bi,1)

57 coor_S2(2) = CoorArrayS2(cnt_bi,2)

58 cnt_bi = cnt_bi + 1

59 switcher_2b = .False.

60 else

61 ! For subsequent steps, binary orbits are passed to coor_S1/2

62 coor_S1(1) = CoorArrayS1(cnt_bi,1)

63 coor_S1(2) = CoorArrayS1(cnt_bi,2)

64 coor_S2(1) = CoorArrayS2(cnt_bi,1)

65 coor_S2(2) = CoorArrayS2(cnt_bi,2)

66 cnt_bi = cnt_bi + 1

67 end if

68 end if

69 end subroutine BINARY_Integrate

Listing 7: Full integration of the binary orbits at the beginning of a simulation.

1 subroutine BINARY_Angles(obliq,zmins,zrtim,jlon,jlat,zrlon,jhor,zdawn,

decl_com,h_com,za_com)

2 use BINARY_module

3 use pumamod, only: sid, cola, mypid, NROOT

4 implicit none

5
6 integer :: jhor, jlon, jlat

7 real :: zmins, zrtim, zrlon, zdawn

8 real :: za_com, decl_com, h_com

9 real :: obliq

10 real :: decl_S1, decl_S2

11 real :: HANGLE_S1, HANGLE_S2

12 real :: angle_zenith_S1, angle_zenith_S2

13 real, parameter :: pi0 = 3.141592

14
15 if (sel_bin.eq.1) then

16 ! Star 1: compute declination, hour angle, zenith angle

17 decl_S1 = asin(sin(obliq)*sin(com_lamb - sign_S1*apS1C))

18 HANGLE_S1 = zmins * zrtim + jlon * zrlon - pi0 - sign_S1*apS1C

19 angle_zenith_S1 = sin(decl_S1)*sid(jlat)+cola(jlat)*cos(decl_S1)*

cos(HANGLE_S1)
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20
21 ! Define zenith angle only if star 1 is visible

22 if (angle_zenith_S1 > zdawn) gmu0_S1(jhor) = angle_zenith_S1

23
24 ! Star 2: compute declination, hour angle, zenith angle2

25 decl_S2 = asin(sin(obliq)*sin(com_lamb - sign_S2*apS2C))

26 HANGLE_S2 = zmins * zrtim + jlon * zrlon - pi0 - sign_S2*apS2C

27 angle_zenith_S2 = sin(decl_S2)*sid(jlat)+cola(jlat)*cos(decl_S2)*

cos(HANGLE_S2)

28
29 ! Define zenith angle only if star 2 is visible

30 if (angle_zenith_S2 > zdawn) gmu0_S2(jhor) = angle_zenith_S2

31
32 ! Write output

33 if (mypid.eq.NROOT) then

34 if (jlon.eq.0.and.jlat.eq.4) then

35 write(103,*) cnt_time, sign_S1, sign_S2, apS1C, apS2C,

decl_S1, decl_S2, decl_com

36 write(102,*) cnt_time, HANGLE_S1, HANGLE_S2, h_com, gmu0_S1(

jhor), gmu0_S2(jhor), za_com

37 end if

38 end if

39 end if

40 end subroutine BINARY_Angles

Listing 8: Calculation of declination hour angle and zenith angle for each individual
star.

1 subroutine BINARY_Distances(eccf,lamb)

2 use pumamod, only : N_DAYS_PER_YEAR, eccen, NROOT, mypid

3 use radmod, only : mvelpp

4 use BINARY_module

5
6 real :: eccf, lamb

7 real :: r

8 ! Distance Star-Planet

9 real :: S1P, S2P

10 ! Distance Star-Barycenter

11 real :: S1C, S2C

12
13 real :: occang = 0.02 ! Occultation angle in radians

14 real :: ve_rad

15 real :: tmp1, tmp2, tmp3

16 integer :: occul_cnt = 0

17 integer :: occul_thr = 100 ! Occultation can appear every 100. step

18
19 if (sel_bin.eq.1) then

20 ! Pass lambda to binary module

21 com_lamb = lamb

22

72



A Appendix

23 ! Set vernal equinox to 0, for sake of convenience

24 ve_rad = 0.

25
26 ! Compute planetary coordinates

27 r = sma*1./sqrt(eccf)

28 coor_P(1) = r*cos(lamb + ve_rad)

29 coor_P(2) = r*sin(lamb + ve_rad)

30
31 ! Compute Star-planet distances and eccentricity factors

32 S1P = sqrt((coor_P(1) - coor_S1(1))**2. + (coor_P(2) - coor_S1(2))

**2.)

33 S2P = sqrt((coor_P(1) - coor_S2(1))**2. + (coor_P(2) - coor_S2(2))

**2.)

34 eccf_S1 = (sma/S1P)**2.

35 eccf_S2 = (sma/S2P)**2.

36
37 ! Write output

38 cnt_time = cnt_time + 45./(60.*24.)

39 if (mypid.eq.NROOT) then

40 write(98,*) cnt_time, coor_S1(:), coor_S2(:), coor_P(:)

41 write(99,*) cnt_time, mvelpp, eccen, r, r2, com_lamb, S1P, S2P,

eccf, eccf_S1, eccf_S2

42 end if

43
44 ! Compute solar constant based on stars luminosity

45 if (switch_insol) then

46 gsol0_S1 = (L_S1*Lsolar)/(4.*pi*r**2.)

47 gsol0_S2 = (L_S2*Lsolar)/(4.*pi*r**2.)

48 switch_insol = .False.

49 end if

50
51 ! Compute angles relative to reference (x-axis)

52 angle_S1 = acos(coor_S1(1)/(sqrt(sum(coor_S1(:)**2.))))

53 angle_S2 = acos(coor_S2(1)/(sqrt(sum(coor_S2(:)**2.))))

54 angle_P = acos(coor_P(1) /(sqrt(sum(coor_P(:)**2.))))

55 if (coor_S1(2).lt.0.) angle_S1 = 2.*pi - angle_S1

56 if (coor_S2(2).lt.0.) angle_S2 = 2.*pi - angle_S2

57 if (coor_P(2) .lt.0.) angle_P = 2.*pi - angle_P

58
59 ! Compute star distances relative to COM

60 S1C = sqrt((coor_S1(1)-com(1))**2. + (coor_S1(2)-com(2))**2.)

61 S2C = sqrt((coor_S2(1)-com(1))**2. + (coor_S2(2)-com(2))**2.)

62
63 ! Compute apparent angle between star and COM

64 tmp1 = (r**2. + S1P**2. - S1C**2.)/(2.*r*S1P)

65 tmp2 = (r**2. + S2P**2. - S2C**2.)/(2.*r*S2P)

66 if (tmp1.gt.1.0) tmp1 = 1.0

67 if (tmp2.gt.1.0) tmp2 = 1.0

68 apS1C = acos(tmp1)
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69 apS2C = acos(tmp2)

70
71 ! Compute occultation

72 occul_cnt = occul_cnt + 1

73 if (angle_P.gt.angle_S1-occang.and.angle_P.lt.angle_S1+occang.and.

incl1.lt.incl_thresh_occul.and.occul_cnt.gt.occul_thr) then

74 occul_S2 = (A_S2 - A_S1)/A_S2

75 if (occul_S2.lt.0) occul_S2 = 0.

76 occul_cnt = 0

77 else if (angle_P.gt.angle_S2-occang.and.angle_P.lt.angle_S2+occang

.and.incl1.lt.incl_thresh_occul.and.occul_cnt.gt.occul_thr)

then

78 occul_S1 = (A_S1 - A_S2)/A_S1

79 if (occul_S1.lt.0) occul_S1 = 0.

80 occul_cnt = 0

81 else

82 occul_S2 = 1.

83 occul_S1 = 1.

84 end if

85
86 ! Compute signs for apparent angle

87 if (angle_S1.gt.angle_P-pi.and.angle_S1.lt.angle_P.or.angle_S1.gt.

angle_P+pi) then

88 sign_S1 = -1

89 sign_S2 = +1

90 else

91 sign_S1 = +1

92 sign_S2 = -1

93 end if

94 end if

95 end subroutine BINARY_Distances

Listing 9: Computation of binary and planet coordinates as well as distances.

1 subroutine BINARY_Insolation(zftop1,zftop2,zsolar1,zsolar2,gsol0)

2 use BINARY_module

3 use pumamod, only : NROOT, mypid

4
5 real :: zsolar1, zsolar2, gol0

6 real :: insolation1, insolation2

7 real, dimension(NHOR) :: zftop1, zftop2

8 real, dimension(NHOR) :: zftop1_bin, zftop2_bin

9
10 ! Write output: insolation of each star

11 insolation1 = (zsolar1 + zsolar2) * gsol0_S1 * eccf_S1 * occul_S1

12 insolation2 = (zsolar1 + zsolar2) * gsol0_S2 * eccf_S2 * occul_S2

13 if (mypid.eq.NROOT) then

14 write(97,*) cnt_time, insolation1, insolation2, insolation1 +

insolation2

15 end if
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16
17 ! Total insolation per spectral partitioning

18 zftop1_bin = zsolar1 * (gsol0_S1 * eccf_S1 * occul_S1 * gmu0_S1 +

gsol0_S2 * eccf_S2 * occul_S2 * gmu0_S2)

19 zftop2_bin = zsolar2 * (gsol0_S1 * eccf_S1 * occul_S1 * gmu0_S1 +

gsol0_S2 * eccf_S2 * occul_S2 * gmu0_S2)

20
21 zftop1 = zftop1_bin

22 zftop2 = zftop2_bin

23 end subroutine BINARY_Insolation

Listing 10: Computation of the binary insolation.

1 &binary_nl

2 sel_bin = 1

3 Planet_SemiMajorAxis = 1.24

4 Binary_SemiMajorAxis = 0.176

5 Binary_Eccentricity = 0.0

6 Star1_SolarMass = 0.8094

7 Star2_SolarMass = 0.8877

8 sel_StefanBoltzmann = 1

9 R_S1 = 0.7861

10 R_S2 = 1.0284

11 Temp_S1 = 5202.

12 Temp_S2 = 5606.

13 dt = 225.0

14 /END

Listing 11: binary namelist example
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