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1 Thermodynamics Out Of Equilibrium

What are the thermodynamic conditions for life to sustain itself? What can
we learn about the atmosphere of our planet as a dynamically evolving system?
How will the stock market look like the day after tomorrow? How did a galactic
gaseous nebula structure itself? Are there general methods or laws that allow
us to classify and predict dynamical systems?
The challenges of nonequilibrium systems have stimulated a broad spectrum of
experimental and theoretical work. For a thermodynamic system near a local
equilibrium that is driven by small forces Ilya Prigogine [1], based on works of
Lars Onsager [2], predicted a balance of fluxes, which he identifies as the steady
state of the system, given that the entropy production Ṡ is minimal,

Jm,in = Jm,out
∂Ṡ

∂Xm
= 0 . (1.1)

E. T. Jaynes commented on Prigogine’s computations in 1980 [3]. He criticized
that the final Euler-Lagrange equations expressing minimum entropy production
reduce simply to the conservation laws. In fact Eq. (1.1) can be seen as a
statement about the conservation of fluxes.
Central to Prigogine’s theory is the use of fluxes as major entities in such driven
systems. But the fluxes he defined are small. In this thesis we will be exploring a
system that gives rise to large fluxes. In order to account for those, an extended
tool set will be required.

Jaynes

Nevertheless Prigogine’s theory proofed to be useful in certain applications, in
which the strong assumption of small perturbations around a local equilibrium,
is valid. In other cases, different extremal principles may give better results
(see review [4]). In the end however, none of these theories were able to proof
themselves as universally applicable.
Jaynes proposed to use concepts of information theory and statistical inference
[5] in order to advance. Out of all possible trajectories a dynamical system could
undergo, we shall find the one which is most probable given the information we
have. Adopting the Bayesian standpoint, Jaynes sees probabilities just as an
expression of our expectation about an outcome. At first sight there may be
many different probability distributions that match our finite set of expectations
(constraints) about the system. The mathematical task at hand however is one
in which we wish to find the probability distribution of paths xi that leaves
us in a state of least knowledge about which path was actually chosen given
our constraints. The thought for distribution only contains information we
have about the system. A measure for the information content of a probability
distribution was found by Shannon and also called ”entropy” −SI due to its
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close resemblance of thermodynamic entropy,

SI = −
W∑
i

p(xi) log p(xi) . (1.2)

Jaynes called this approach ”maximum caliber” in contrast to the similar ”maxi-
mum configuration” approach in the case of scalar entities xi. [6] and [7] recently
showed that Prigogine’s theorem, Eq. (1.1), can be derived from a maximum
caliber approach. The authors note that maximum caliber does not require any
notion of local equilibrium, or any notion of entropy dissipation, or tempera-
ture, or even any restriction to material physics, it is more general than many
traditional approaches.

The thermodynamics of self-organized systems

It is promising to study self-organized dissipative systems in such a framework
of paths or calibers. Like in classical statistical mechanics, which is mainly con-
cerned with equilibrium thermodynamics that links microscopic quantities with
a macroscopic description one could also hope to describe dissipative systems
statistically by connecting microstates with macro variables, which in the case
of a self-organizing system will typically be more complicated than states of an
isolated equilibrium system. In particular the dynamics of microstates in such
self-organising systems can be expected to violate basic principles of equilibrium
thermodynamics like ergodicity or detailed balance.
Prigogine’s analysis was limited to a single attractive point in phase space, that
is defined by the equality of inflow and outflow, Eq. (1.1). A real dissipative
system however is able to reallocate and store energy, transform the accessible
phase space and allow for dynamic behaviour of the macro variables. At a suf-
ficiently fine resolution systems driven by a flux through may reveal ”stochastic
limit cycles”, that are even more complex stochastic attractors. The ”steady
state” then is nothing but a long time average of system observables.
In the following thesis I will present some of the mentioned aspects of non-
equilibrium phenomenology with the concrete example of sandpile dynamics
and in particular the Oslo sandpile model. These systems, as proponents of a
larger class of self-organized systems, will be extensively examined in this thesis.

Sandpile models

A well studied example for a non-equilibrium system with a steady state are piles
of granular matter. See figure 1 for a visual representation. If I continuously
drop grains at a given position, a cone of sand will form. After a while the basis
angle of the cone will reach a limiting value. If the slope is too steep, avalanches
will emerge. If it is too shallow, the pile will build up further. In the steady state
the inflow of sand on average equals the outflow. The fluctuation size of certain
macro variables shows power law distributions, which attracted considerable
interest within the scientific community ([8], [9]). These distributions pose a
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need for novel thermodynamic descriptions that can account for non-Gaussian
statistics and the present work will explore one possible approach.
The traditional way to treat this situation physically is by invoking the concept
of self-organized criticality [8]. In this thesis however I investigate an alternative
route to non-equilibrium dynamics using concepts of Sample Space Reducing
Processes (SSR) [1]. Those focus on constraints in dissipative systems, that
limit the structure and dynamics of sampling spaces underlying those systems.
To summarize, it is the main aim of my work to measure and derive SSR-
characteristics of the Oslo model.

Figure 1: A sandpile building up by continuous inflow of sand. Picture taken
on a beach near Grado (Italy).

Content of the present work

The present thesis will be structured as follows: In the second and third section I
will give an introduction to a particular numeric model for sandpiles, namely the
Oslo sandpile model. We will review the classical treatment using the concept
of self-organized criticality and study its basic structure on a macroscopic and
microscopic level. This will illustrate the non-equilibrium nature of sandpiles.
The fourth section will present sample space reducing processes in a formal way.
I will discuss different forms of such processes. The connection of this approach
to Jaynes’ ”maximum entropy configuration” will be addressed. Finally by the
end of that section I will construct a connection between SSR processes and
sandpiles by identifying the abstract notion of state in the SSR framework with
concrete variables taken from the Oslo model.
In the fourth section I summarize the main results of my analysis of sandpile
dynamics, in which I describe in detail how the Oslo model in particular can be
understood through SSR processes.
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2 Sandpiles As Self-organized Critical Systems

This thesis is dealing with a physical model for the surface of a pile of granular
matter. P. Bak, C. Tang and K. Wiesenfeld (BTW) proposed a simple com-
putational toy model (BTW model) for the dynamics of such a pile of sand in
1987 [8]. The model consists of a rectangular table onto which grains of sand
are dropped at random positions. The table features a Cartesian grid, such that
each position xij in the grid has the size of a grain. Over time the grains would
start to tower up. By reaching a certain threshold in height the tower collapses
and the grains are transported from grid position xij to its nearest neighbours
{xi+1,j , xi−1,j , xi,j+1, xi,j−1}. There it may trigger another collapse or a whole
chain of collapses. Once the system has reached a stable configuration again, a
new grain is dropped onto the table. If a grain reaches the boundaries of the
table, it falls off the edge and disappears.
Over time the system reaches a dynamic equilibrium where the amount of grains
entering the system, averaged over long times, equals the amount of grains de-
parting the system. The total mass M is on average conserved,

〈∆Min〉 ≈ 〈∆Mout〉 . (2.1)

While this is the sort of dynamical equilibrium that Prigogine’s theorem recovers
from the minimization of ”Entropy Production”, the theorem does in fact not
apply to the dynamics emerging from this model. The fluctuations of most
quantities in the model span many orders of magnitude and it would be incorrect
to project them into a linear regime governed by detailed balance. This we will
in further depth see by the end of section 3.
The fluctuations are in fact the quantity most studied in the BTW model,
particularly the length of chain reactions occurring. Here the avalanche size s
is defined as the amount of consecutive unstable states until the system reaches
a stable configuration. If we call X(t) the stable configuration at time t and
X?(t+ 1) an unstable configuration at time t+ 1 (reached via a grain dropping
onto the pile) then we can write schematically for one relaxation event

X(t)→ X?(t+ 1)→ X?(t+ 2)→ · · · → X?(t+ s− 1)→ X(t+ s) .

BTW [8] found that the probability p(s) has the statistics of a power law with
roughly an exponent α = −1 in their model. α = −1 actually was later shown
to be the incorrect value by Christensen et. al. [10] - and rather an exponent
α = −2 should apply. The general claim, of the power spectrum to have a power
law distribution, Eq. (2.2), remains,

p(s) ∝ 1

sα
. (2.2)

This so called 1/f -noise, sometimes also referred to as pink noise, appears to be
very widespread in nature. BTW name transport times in the hour glass, flows
of the river Nile & the luminosity of stars [11]. If s is not measured in time,
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but in space, also fractal spatial patterns will obey such power law statistics
in the distribution of structure sizes (eg. river basins, snow flakes, broccoli,
etc.). One could add many more examples from almost all scientific disciplines.
It however remains a taunting question whether or not have we identified all
mechanisms that can trigger the emergence of 1/f -noise. BTW introduced, sup-
ported by their computational results, the concept of self-organized criticality
(SOC). To which extend other 1/f -noise producing mechanisms such as prefer-
ential attachment [12], multiplicative processes [13] and recently SSR processes
are equivalent/different to this traditional approach is still a matter of research.
In section 4 I will explore the theory of SSR processes. SOC, as the traditional
approach, shall be briefly revisited now.

2.1 Self-organized criticality

While most standard equilibrium statistical physics problems are related to dis-
tributions with finite second moment (such as the exponential Gibbs-Measure,
Gaussians, Maxwellians, . . . ), systems with a correlated Hamiltonian, can also
provide power law distributions. They can often be observed for thermody-
namics near a phase transition. A prominent example is the Ising model for
the magnetic properties of a metal [14]. Below a certain temperature Tc the
metal appears non-magnetic, above it is. The transition occurs as the result
of interacting little magnets of atomic scale. At low temperatures (low noise)
the atomic magnets form one large block with all magnets pointing in the same
direction (magnetic), while at high temperatures long range correlations vanish
and the chaotic orientations do not create an overall magnetic field. Systems
with Tc however form correlated domains of all sizes. The system becomes self-
similar and the distribution of correlation-lengths (the sizes of domains with the
same orientation) becomes a power law [15].
While in equilibrium statistical physics, one has to fine-tune the system temper-
ature to become T = Tc, the idea of SOC is that some non-equilibrium systems
might be inherently attracted towards criticality.
The ideas of SOC found plenty of applications [16], but also raised consid-
erable controversy [17]. While the inventors speculated about SOC to be a
universal mechanism to create fractal patterns [18], the core claim (”self-tuned
phase transitions can (and do) exist in nature” [17]) was even extended by some
proponents to explanations of power laws and dissipative systems in general.
There are on the other hand many alternative routes explaining the emergence
of power laws of various kinds, including multiplicative processes (as in [13]),
preferential mechanisms (as in [12]) or sample space reducing processes (which
will be discussed in the next chapter). To which extent these other 1/f -noise
producing mechanisms can be unified or used as alternative descriptions of the
same phenomena is still under investigation.
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In a critical review, conducted 25 years after BTW’s observations were made,
the authors write [17]:

Unless one accepts the claim that SOC is the basis of scaling in na-
ture, SOC itself (not just scaling) [...] is difficult to identify in a
natural phenomenon or experiment directly. If anything, SOC has
been offered as an explanation for certain scaling to appear sponta-
neously. At the theoretical end, none of even the computer models
which are widely accepted as displaying all the hallmarks of SOC has
been solved or even only systematically approximated. [...]. To this
day, there is no complete theory of SOC and it remains unclear why
a phenomenon, that should be observable under generic conditions
is so rarely seen.

A particularly well studied SOC computer model is the Oslo sandpile model,
which will be discussed in the following.

2.2 Experimental evidence

The Oslo sandpile model (OSM) was motivated by rice pile experiments, which
were first conducted in Oslo [9]. Rice was chosen in the experiment as granular
matter. Real spherical sand turned out not to be viscose enough to reproduce
critical distributions. The experimental setup is sketched in figure 2.

Figure 2: Illustration of the experiment in Oslo. Rice enters the system on one
the peak of the pile and can leave the system at the other end of the table.

The 1+1 Dimensional system receives a grain of rice with average size l dropped
onto it on one end of a table with length L. After a while grains of rice can leave
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the system by toppling from the table on the other end. The system will evolve
into a semi-steady state characterized by a flow balance of incoming and out-
going grains: The critical state. The sizes of avalanches s are measured as the
amount of internally toppled grains of rice, which dissipate an average energy
of ∆E ≈ mgl. Power law distributions of s are found in the experiment. The
correlations of different sites in the pile diverge as the pile reaches the steady
state. Instabilities in the origin of the pile can be carried towards the end within
one relaxation event. Figure 3 shows the resulting distribution of s as presented
in [19]. A power of τ ≈ −2 is found.
The experimental findings then inspired numeric simulations, that I will discuss
next.

Figure 3: The typical power law found in the experiments conducted in Oslo.
The horizontal axis shows the size s of an avalanche, the vertical axis is propor-
tional to the frequency. τ , here the exponent of the power law fit, is found to be
around −2. [Complexity and Criticality, Christensen and Moloney, Copyright
@ 2005 Imperial College Press]

2.3 Description of the Oslo sandpile model

The OSM is a simplified discrete model for the dynamics based on the steepness
(slope) k of a certain position x in 1D. During each driving process the steepness
of x = 1 (leftmost site) is increased by one:

k(1)→ k(1) + 1 .

A random number η(x), either one or two, is chosen for all sites with probability
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p or (1 − p) = q. If a local slope at x is larger than the random number η(x),
an avalanche occurs. The random process η(x) therefore characterizes the local
stability of the pile. During an avalanche event the slope of x+ 1 and x− 1 is
increased by one, while the slope of x is reduced by two:

k(x)→ k(x)− 2 ,

k(x+ 1)→ k(x+ 1) + 1 ,

k(x− 1)→ k(x− 1) + 1 .

One says, site x has toppled. The toppled site also updates its local stability to
1 or 2 with probability p:

η(x)→
{

1 with prob. p
2 with prob. 1− p .

At a boundary x = L the grains fall off the table. Therefore we have

k(L)→ k(L)− 1 ,

k(L− 1)→ k(L− 1) + 1 .

Afterwards, new stability values are assigned to those states that just engaged in
toppling. The process continues until all local stability criteria are met. At this
point the process has to be driven again by dropping a grain for more relaxation
steps to follow. The dynamics are visualized and summarized in figure 4.
This is equivalent to other formulations using the height H(x) or the active
height h(x) of a site. h(x) is the height above the absolutely stable height:
h(x) = 0 translates to a real height of H(x) = x. It holds that k(x) = h(x) −
h(x+ 1).

Details about the algorithm

Regarding the computational realization one can make use of the Abelian prop-
erty of the relaxation process. Having the Abelian property means that it does
not matter in which order the updating rules are applied to the positions x. A
proof of this can be found in [20].
In this work I implemented the OSM dynamics by performing the following
steps:

1. Initialize a table with length L such that H(x) = 2(L− x+ 1).

2. Initialize η(x) for each x

3. DO in time T:

(a) Drive(pile)

(b) As long as stability is not reached: Relax(pile), Update(stability)

(c) After some time Tbuff < T : Perform measurements on the system

Tbuff serves as a buffering time which the simulation requires in order to reach
its attractor (critical point) in phase space.
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Figure 4: Dynamical rules for updating the OSM. Shown is the profile of various
L = 3 sandpiles. On the ground level η(x), the local stability, is shown. The
highest grain at position x carries a colour indicating its stability: (green) stable,
(violet) unstable with probability p and (red) unstable. 4 distinct situations are
presented: (A) a grain is added, (B) a grain drops and becomes stable, (C) a
grain drops two steps, the value of η(x = 2) changed by chance while x = 2
toppled and (D) a grain leaves the system.

2.4 Behaviour at the critical point

The main result of the Oslo model is the fact that the distribution p(s) of the
size of toppling events features a power law with exponential cut-off. Unlike the
experiment in [9] however, the exponent τ ≈ −1.53, not −2. Also the cut-off
is not observed. In order to connect the findings to equilibrium criticality, the
scaling function G is introduced:

p(s, L) ∝ s−τG
(
s

sc

)
, (2.3)

sc(L) ∝ LD . (2.4)
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Figure 5: 6 frames taken from the simulation while building up and reaching
the attractor configuration. L = 21.

In the steady state it is assumed that the inflow Min = 1, balances approxi-
mately the outflow Mout = 〈s〉/L. By simply requiring 〈s〉 ∝ L a scaling relation
can be found [19]:

D(2− τ) = 1 . (2.5)

As criticality can only lead to fractional critical exponents, the exact form of τ
and D is often conjectured to be τ = 14/9 and D = 9/4.
Interestingly this observation is quite stable for any choice of the stability pa-
rameter p. Quantities like the height or total potential energy of the sandpile,
which will be discussed in further depth below, however change. A high value
of p for instance leads to sandpiles of lower height. We observe the interesting
phenomenon that, while their average changes significantly, dynamics in vicinity
of the steady state remain the same.
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3 Sandpiles As Thermodynamic Systems

Similar to the Ising model for equilibrium critical systems, the OSM could be
considered a benchmark model to study SOC. But unlike the Ising model the
critical behaviour of the Oslo model is mainly understood by computational
methods. Only for systems of very small size L ([20], [21]) or in the continuum
limit [22] exact analytic results are known. In the following I will collect some
observations which will help to establish a statistical understanding of the Oslo
model using the route of SSR processes.

3.1 Macrostates of the OSM

Energy and mass

Knowing H(x), the potential energy and mass can be easily derived: Mass is
equal to the sum over heights,

M =

L∑
x=1

H(x) , (3.1)

and energy is the sum of local potential energies,

E =

L∑
x=1

H(x)H(x+ 1)

2
. (3.2)

The minimally stable configuration, e.g. a pile with surface k(x) = 1 for all x,
has energy Emin and mass Mmin:

Emin =
L(L+ 1)(2L+ 4)

12
, (3.3)

Mmin =
L(L+ 1)

2
. (3.4)

The maximally stable surface (k(x) = 2 for all x) features an energy Emax and
a mass Mmax:

Emax =
L(2L+ 1)(4L+ 4)

12
+
L(L+ 1)

2
, (3.5)

Mmax = L(L+ 1) . (3.6)

It holds that
Emin(2L) + L(L+ 1)

2
= Emax .
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Other measures

Throughout the thesis I will also analyse further measures that capture infor-
mation about the structure of a surface.

1. Slope frequencies n0,n1 & n2: Local slopes with k(x) = i will be observed
ni times in a certain sandpile. For any stable configuration one finds
nr = 0 with r > 2. The slope frequency n2 therefore is the number of
times a site x has H(x− 1)−H(x) = 2 in a given surface.

2. Surface length ϕ: If we conceive the surface of the sandpile as a curve in
N 2, the tuple (k(x), 1) = (∆H,∆x) is describing a local discrete deriva-
tive. Forming the norm gives an estimate for the local length of the surface
at these positions x,

ϕ =

L∑
x=1

√
k(x)2 + 1 . (3.7)

3. Load κ: If a grain is moved n steps to the right, this measure of the pile
exactly reduces by its distance travelled. If we start with an empty table
and add grains reversely from the boundary and push them to the origin,
then κ = 1 refers to a single grain laying at x = L. Pushing it to the left
increases κ. Generally κ counts the number of pushes we had to apply in
total in order to arrive with the given configuration. Mathematically this
can be derived by a simple sum,

κ =

L∑
x=1

H(x)(L− x+ 1) . (3.8)

4. Average slope α: It can be calculated by a linear fit through the height
profile. For this purpose the least square displacement was used. Given
some data x and y(x) the linear fit, that minimizes the squared error, has
a slope of αLS ,

αLS =
L
∑

(xy)−
∑

(x)
∑

(y)

L
∑

(x2)− (
∑
x)2

.

Applied to our problem this gives

α = 6 · 2κ− (L+ 1)M

L(L2 − 1)
. (3.9)

The formula is applicable as L > 1. One can test that plugging in the
minimally possible mass and load, gives α = 1.
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Without much of an influence on the result we may also wish to perform
the least squares fit with the additional condition of H(L+ 1) = 0. Then
αLS reduces to (see eg. [23])

α̃LS =

∑
(xy)∑
(x2)

≈ 3κ

L3
,

which yields a direct proportionality to the defined load κ,

α̃ = 6 · κ

L(L+ 1)(2L+ 1)
. (3.10)

In this way a physical interpretation to the abstractly defined load is found.

5. Approximated height H ′(1): Extrapolating the line with mean slope to
x = 1 gives a measure for the height of the pile,

H ′(1) = αL . (3.11)

It is to expect that H(1) ≈ H ′(1). If ∆H = H(1) − H ′(1) is negative,
then the surface is rather curved outwards.

6. Approximated quantities E′, M ′, κ′ & ϕ′: Assuming such a linearised
pile, we can go further and ask, how much energy or mass a sandpile with
mean slope α contains. These quantities are derived to

M ′(L) =

∫ L

0

(
H ′(1)− H ′(1)

L
x

)
dx =

H ′(1) · L
2

, (3.12)

E′(L) =

∫ L

0

H ′(x)2

2
dx =

H ′(1)2 · L
6

=
H ′(1) ·M ′

3
, (3.13)

κ′(L) =

∫ L

0

α · x2 dx =
α · L3

3
=
H ′(1) · L2

3
, (3.14)

ϕ′(L) = L
√
α2 + 1 . (3.15)
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3.2 Microstates of the OSM

During the course of a simulation different macrostates Xi will be reached. For
the purpose of further discussions I would like to introduce a nomenclature in
order to distinguish the sets of driven D, unstable I, stable S and meta-stable
M states. The union of stable and meta-stable states is referred to as the set
of recurrent configurations: R =M∪S. A driven state gets defined as a state
that was reached directly after a driving event (the grain gain at x = 1). A
meta-stable state is a state which is only stable with a probability, due to η(x).
Figure 6 shows a sketch of those sets.

Figure 6: A sketch of the defined sets of micro configurations: driven D, unstable
I, stable S and meta-stable M. Stable states are never unstable. Driven
and meta-stable states can however be stable or unstable depending on the
underlying structure of η(x)

It is important to note that, depending on the choice of set and analysed macro
variable, we will also find different distributions and dynamics. For small pile
sizes the exact dynamics can be still computed analytically. Given for instance
the energy E, a sandpile of size L = 2 and the set of all reachable states, each
energy can be conceived as a state in a Markov chain. A colour-coded form of
the corresponding transition matrix is shown in figure 7.

Enumeration of the recurrent states in R

To find the number N of recurrent states one can proceed as described in [24].
Lets adopt the slope-formulation of the sandpile. States can have slope 0, 1 or
2. The foot of the sandpile can either have slope 1 or 2. In the neighbouring
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Figure 7: The color-coded adjacency matrix of a Markov chain model of the
Oslo sandpile. Matrix elements correspond to energies measured on the set of
all reached states in the sandpile of size L = 2. Green: Stable or meta-stable,
Yellow: Instable, Red: Driven. There are 5 stable energy levels, but 9 reachable
energy levels in total.

position the possible slopes depend on the slope in the position to the right. By
looking at the dynamics one realizes that in a recurrent configuration the slope
2 can be followed by all slopes, but 1 only by 1 or 2. A slope 1, lets call it 12

that was proceeded by an arbitrary amount of slopes 1 and one slope 2, can
however be followed by slope 0. We have to distinguish two forms of slope 1: 10

and 12. The one that was proceeded by ones and a zero, and the one that was
proceeded by ones and a two. 0 can always be followed by 10 and 2. ”Followed”
in the sense that the position to the left is in that state. Figure 8 visualizes
these rules as a directed graph.
To formalize, lets call N(k(1), L, h(1)) the amount of states N of a pile with
slope state k(1) and active height h(L) at the top. We can then write recursively:

N(2, L, h) = N(2, L− 1, h− 1) +N(10, L− 1, h− 1)

+N(12, L− 1, h− 1) +N(0, L− 1, h− 1) ,

N(10, L, h) = N(10, L− 1, h) +N(0, L− 1, h) ,

N(12, L, h) = N(12, L− 1, h) +N(2, L− 1, h) ,

N(0, L, h) = N(2, L− 1, h+ 1) +N(11, L− 1, h+ 1) .
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Figure 8: A generating graph for stable configurations of the system. The nodes
symbolize slope values k(x). Moving along a link gives all possible preceding
slope values k(x − 1). By moving over all possible paths, given the initial
condition k(L) ∈ {10, 2}, the number of configurations can be enumerated.

From this, one can obtain a recursive relation, by integrating with respect to h
and the slopes,

N(L) = 3N(L− 1)−N(L− 2) .

This recursive relation is a relative to the generator of the Fibonacci series and
can be solved by setting N(x) = λx,

λ1,2 =
3±
√

5

2
.

We have initial conditions N(1) = 2 and N(2) = 5. Therefore the number of
recurrent states of a pile of size L is equal to

N(L) =
2 +
√

5√
5

λL−1
1 +

√
5− 2√

5
λL−1

2 . (3.16)

The number of recurrent configurations is growing exponentially. This large
increase in state space and complexity explains why there is up to date no
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analytical understanding of sandpiles with large system size. [20] offered a
recursive relation for the transition matrix. Its form however quickly becomes
untraceable for large systems. The aim of this thesis therefore will not be an
analytical understanding but a statistical one.

Multiplicity of energy and mass states

With reference to figure 8 we can’t only enumerate all recurrent configurations
Xi, but also compute the energies Ei, masses Mi & heights Hi(1) of specific
surfaces. This I did for some selected macro variables with the help of a com-
puter. By moving over all possible paths in the figure from k(L) to k(1) given
the initial condition k(L) ∈ {10, 2} the exact shape of all Xi can be obtained.
Using Eq. (3.2) & Eq. (3.1) the energies and masses are then computed. As the
Emax(L)−Emin(L) grows way slower than N(L), it is clear that the majority of
energy states Ei will be degenerate. Same holds for mass and height. Counting
all states can only be performed for small sandpiles. We can however extend
sampling to systems of larger size, by Monte Carlo simulation. We initiate a
set of random walkers on the graph in figure 8 and let them diffuse randomly.
For this purpose it was assumed that given a node in the network, any available
link from that node to another one is chosen with equal probability. The set of
resulting trajectories can be used to find estimates for the multiplicities, q, of
H(1), E and M .

Figure 9: For a small sandpile the multiplicities of height H can be computed
explicitly. Shown is the level of degeneracy of different height levels H(1) given
a pile of size L = 12. Dotted lines indicate the theoretical boundaries to the
measure as calculated with Eq. (3.17).
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Figure 10: Same pile-size as in 9, but for mass and energy. It is interesting to
observe that the distribution shows a polymodal structure.

Figure 11: Results of Monte Carlo simulations performed on the generating
network shown in figure 8. Shown are 4 chosen macro variables: height, mass,
energy and surface length. The dotted lines indicate the theoretical boundaries.

.
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Simulations suggest, that the limiting distribution of random walkers and thus
our expected relative multiplicity for H(1) can be approximated by a Poisson
distribution, which takes a Gaussian shape for large L as a result of the central
limit theorem,

q(H(1)) ∼ 1√
2πµH

e−(H(1)−µH)2/2µH = N (µH , µH) . (3.17)

Expected multiplicities, q, of mass and energy can be approximated from p(H(1))
by assuming that the pile has a linear slope,

q(M) ∼ N (
LµH

2
,
L2µH

4
) , (3.18)

q(E) ∼
√

3

4πL3µHE
e
−3

(√
E−
√
µ2
HL/6

)2
/LµH . (3.19)

It is important to note that the value of the average height, µH , and all other
constants will change significantly if the transitions probabilities to jump from
one node to another in the graph are altered. This will be exactly the situation
once we introduce the toppling probability, p, entering in η(x).

3.3 The attractor configuration

We will first study the attractor dynamics by studying its compositions n1,n2

and n0. By understanding these compositions it will be further on possible to
derive expectation values of other macro variables. Given a certain pile of length
L and local toppling probability p, can we compute the expected value of n2 of
the attractor configuration?
We define the mean probability to find a slope of k = i as pi. In order to
estimate pi, simulations were performed of a sandpile of length L = 100 and
varying p. Figure 12 shows the results for the average of pi = ni/L. Note that
pi are not fixed and can change over the course of a simulation.
Let us highlight 3 observations: (1) While n2 decreases with p, n1 increases at
almost the same rate. (2) The number of flat slopes n0 is relatively low for
most values of the parameter p. (3) The global toppling probability pg, which
we define to give an estimate for the chance that a randomly chosen position
x is going to topple if a grain drops on it, does not change drastically and is
around 0.9. pg consists of the probability to find a slope 2 at any position x, p2

(which would topple with certainty in case of an avalanche hitting it) and the
probability of a newly formed slope of 2 to become unstable once loaded, p · p1.
We set the global toppling probability as

pg = p2 + p · p1 . (3.20)

pg is relatively robust under variations of p (see figure 12). This is a prerequisite
for the avalanche probability to be universal for many different choices of p.
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Figure 12: The butterfly like shape shows the mean chance of finding ni slopes
k = i. With decreasing toppling probability the chance of finding a slope of
2 increases. Rather in a similar manner p1 decreases. The average chances
of finding a flat slope are rather low. Also shown is the value of the global
toppling probability pg as a function of the local toppling probability defined in
Eq. (3.20).

3.4 Correlations of macrostates

An ideal gas can be described by measures, such as pressure and temperature.
By performing multiple experiments, it is observed that the gas suffices Gay-
Lussac’s Law P ∝ T . In a similar way we can ask, which are the correlations
among macrostates of the Oslo model?

Correlations of macrostate positions in phase space

An idea for the mean correlations can be already deduced from the linearised
pile. For instance it is to expect that E ∝ H(1) ·M/3. The whole accessed
phase space is however a lot richer and trajectories of M and E move in it. We
study this situation with the help of 2D-histograms (figure 13]).
Let us collect a few observations:

• Energy and load are strongly correlated.

• Mass and energy are correlated, but allow for a larger variance.
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• The surface length is only loosely correlated with M , E and κ in a non-
linear way.

• The theoretical boundaries (eg. Emin, Emax) are not reached. We expect
this from the study of multiplicities.

In the following we want to focus on the dynamics of M and E. First we will
survey the boundaries of the M -E phase space by invoking some theoretical
considerations (figure 14), then take a closer look at the internal dynamics.

Figure 13: Phase spaces spanned by load κ, surface length ϕ, mass M and
energy E. Energy, mass and load are linearly dependent. Configurations of a
given surface length can have however multiple energies and E increases with ϕ
in a nonlinear way.
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In figure 14 it is observed that the linear sandpile of minimum height (violet
line) is in fact almost never realized. However, the mimimum value of H(1)
is realized with ”superlinear” values of E > E′, such that we can deduce from
those observations that the surface of the sandpile of lowest height is curved out-
wards. Linear surfaces with the average height are only realized for the smallest
observed energies. Conversely sandpiles with linearly shaped slope of maximum
height are only populated by the highest energies. In other words, sandpiles of
maximum height have at most a curvature of 0, but may be negatively curved.
The dynamics happen between the red and green line, linear sandpile surfaces
respectively. More can not be said at this point, but we keep in mind that
high sandpiles are rather curved negatively, while low heights indicate outward
curved surfaces.

Figure 14: Phase space spanned by mass and energy. Further shown are linear
approximations E′ = MH(1)/3 at different fixed heights: The highest, lowest
and mean observed height H(1). The lines ”0 relaxation” indicate the curves
with slope dE/dM = H(1), which correspond to the idealized extreme dynamics
where the sandpile would not loose any grains but is continuously driven.
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Correlations of phase space dynamics

In the introduction I mentioned that driven dissipative thermodynamic systems
can potentially be described on the macrolevel by partial differential equations.
In order to study the dynamics we will look at the mean movement of a phase-
space increment on the set of all states, including transient states I. I has to
be included as relaxation steps are too large otherwise, such that they can not
be visualized properly. In the space of M and E the mean increase or decrease
of energy 〈∆E〉(M,E) was computed,

〈∆E〉(M,E) =
∑
∆E

∆E p(∆E |M,E) =
∑
∆E

∆E
p(∆E,M,E)

p(M,E)
. (3.21)

Using this and similarly 〈∆M〉(M,E), a dynamical vector of the average dynam-
ics at a given point in phase space is known. Then simulations were performed.
Some particular results can be seen in figures 15-18. Arrows are normalized.
The directionality of such average vectors can only indicate normalized aver-
ages over many realizations of the dynamics.
Note that the depicted flow-patterns connect to the general expectations about
the driven non-equilibrium steady state mentioned in the introduction. The
dynamics are not confined to a point or a cloud in phase space. Macro variables
perform cyclic stochastic movements. As these emerge in the long term limit of
the sandpile dynamics we can refer to them as stochastic limit cycles. Sandpile
dynamics, and probably driven non-equilibrium systems in general, have non
vanishing average net flows through their phase space. In particular the system
is never in detailed balance.
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Figure 15: Dynamics in the phase space spanned by H(1) and M . The red
line indicates the linear pile M = HL/3. Mass is therefore mostly acting in a
superlinear regime. This means that observed sandpiles with a height H have
higher mass than a theoretical sandpile which features a linearly increasing
profile from 0 to H. High sandpiles of linear shape quickly loose the peak
around x = 0 and the height decreases away from the red line. If avalanches
are large enough, the channel in the center of the structure is hit and grains
can drop out of the system, allowing for further reductions in the height. If the
mass is relatively large compared to the height, this indicates a outwards curved
surface, which offers a shallow plateau onto which new grains can be dropped,
such that the height an mass grows.

.
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Figure 16: Phase space spanned by height H(1) and the height as estimated
with the help of the slope αL. Further shown is the line of reflection. H(1)
was rescaled by 1/L to match average transition sizes of both measures. The
plot appears to feature a stochastic cycle in the curvature. Note that any state
above the red line is associated with a inwards curved surface, while staes below
the red line are rather curved outwards. High sandpiles will collapse and reduce
the height above the red line. A relaxed surface offers more capacity to carry
grains, such that any addition of grains is quickly redistributed from the peak
to the remaining surface (the red line is crossed to the left for small heights).
At some point grains can not be redistributed any more and the peak builds up
again below the red line.

.
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Figure 17: Phase space spanned by surface length ϕ and the height H(1). The
plot is related to figure 16. Outward curved surfaces can be reduced without
changing the top height of the pile considerably by ejecting mass. Then the pile
builds up again, gaining surface and height reaching a inwards curved regime.
Then the height is reduces, while the surface length remains more or less con-
stant, as mass does not leave the system and is mainly redistributed (see. section
4.9). We have again arrived at the initial outwards curved regime

.
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Figure 18: Phase space spanned by surface length n2 and n1. The red dot
indicates the mean (〈n1〉, 〈n2〉). Perhaps the most convincing limit cycle is
found in this space revolving around the mean. Sandpiles with high n1 will
grow and increase the height by adding slopes of 2 (right side). As n1 remains
rather constant in this process, the increase in n2 mostly comes from saturating
slopes of 0. As n0 is associated with being outward-curved, we can again identify
this growth face with a transition towards an instable high peak. Next the peak
collapses, and some grains will halt at a slope 1, effectively decreasing n1, while
increasing or conserving n2. A outward-curved belly forms. Eventually the
whole belly breaks away in a large avalanche leaving the system in stable, low
energy, state.
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4 Sample Space Reducing Processes

Most of equilibrium thermodynamics is concerned with systems, whose phase
space Ω is fixed for a given set of extensive parameters (eg. volume V or particle
number N). Take for example a piston filled with gas, on which we exert a force.
Such a process will change the chances according to which a particle inside will
be found having a certain energy state s. If we see the particle as a system
connected to a heat bath constituted by the multitude of interactions with its
neighbours, we can quantify the situation within the framework of the canonical
ensemble. Then we expect the probability to be of exponential form,

p(s) =
e−βs

Z
. (4.1)

Z being the partition function and β being an equilibrium quantity, typically
β = 1/kBT .
Within the conception of statistical inference this exact functional form of Eq.
(4.1) can be obtained by minimizing the Shannon entropy functional S in Eq.
(1.2) with the constraint of having a fixed expectation E(s).
In the described situation the overall sample space of reachable particle energy
levels did not change. Generally the particle will have the freedom to change to
higher and lower levels of excitement. However what can we say about a process
in which this freedom is constrained?
Corominas et al. [25] proposed a simple framework, which they named Sample
Space Reducing processes (or short SSRP). It was successfully used to explain
the statistics of undirected network graphs ([26]), cosmic particles ([27]) and
statistical patterns in language ([28]).
This chapter will begin with the description of the simplest such SSRP, namely
the ”slowly driven” SSRP. Then this concept will be extended by tweaking
the prior probabilities, the driving rate, the type of driving and the transition
probabilities. With each extension of the SSR framework further observations
that emerge from the dynamics of the Oslo model can be modelled. By the end
of this chapter I will make the connection to the Oslo model quantitative, by
characterizing the underlying SSRP in terms of the macro variables defined in
chapter 3.

4.1 Slowly driven SSR processes

Consider a process acting on the states of a system in such a way, that the
energy can only be reduced (i.e. a hot system in contact with a cold heat bath).
Once the ground state of the system is reached the process restarts again at a
random state (i.e. by coupling to a hot heat bath).
The situation can also be illustrated using dice ([25]). Let our system span the
space of natural numbers and we set the current state to i = 11 for example. As
all states below 11 will be reachable in the next step of the process, the current
sample space size Ω1 = 10. Then we throw a 10-sided dice to recover the state
following the first jump j. Similarly a dice with Ω2 = j − 1 sides will decide
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the state following the second jump and so forth until the state i = 1 is reached
and the process is restarted by driving it to a random higher state. The highest
state is dictated by the system size W .
An alternative narrative would be one of a ball jumping down a staircase. Due
to gravity and its momentum the ball will not jump back upwards. This is
illustrated in figure 19.
In all these situations the sample space, Ω = Ωt, is a function of time t and is

Figure 19: A ball falls down a staircase and can never jump back upwards but
will reach all steps below with equal probability. Once the ball has reached the
lowest level, we iterate the process with a new ball. Figure taken from [25].

strictly reduced,

W ⊃ Ω1 ⊃ Ω2 ⊃ · · · ⊃ {1} .

Mathematically the situation can be realized by a Markov chain with the fol-
lowing transition matrix:

p(j | i) =


1
i−1 i > j
1
W i = 1 .
0 else

(4.2)

This matrix is further visualized in figure 20. The transition probability of
1/(i− 1), given initial state i and terminal state j < i, is not the only possible
realization of a SSRP. Due to its uniform character we may refer to it as ”micro-
canonical”.
From the theory of Markov chains we can then try to solve the master Eq. (4.3)
in order to characterize the attractor configuration of the system and henceforth
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Figure 20: A color coded transition matrix to visualize the structure of Eq.
(4.2).

the marginal probabilities p(i) of finding the system in a certain state i at any
moment,

p(i) =

W∑
j=1

p(i | j) · p(j) . (4.3)

As [25] have shown, the probabilities follow a power law of exponent −1, also
often referred to as Zipf’s law,

p(i) = p(1) · 1

i
. (4.4)

p(1) is given by the normalization condition,

p(1)−1 =

W∑
j

1

j
. (4.5)
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I will quickly sketch the logic of the proof. We start with Eq. (4.3). Since we
are dealing with a SSRP, it is legitimate to start the sum at j = i + 1 instead
of j = 1. Then we form the difference p(i+ 1)− p(i);

p(i+ 1)− p(i) =

W∑
j=i+2

p(j)p(i+ 1 | j)−
W∑

j=i+1

p(j)p(i | j) .

Applying the specific form of the transition probabilities in Eq. (4.2), we find

p(i+ 1)(i+ 1) = p(i)i .

Equation (4.4) is the general solution to this relation.

The result is in agreement with simulations (see figure 21). Computationally I
used three methods to arrive at the attractor configuration: (1) by consecutive
multiplication of the transition matrix onto a random normalized initial config-
uration, (2) by performing a Monte Carlo simulation of a ball walking stochastic
on such a landscape, depicted in figure 19, and (3) by computing the largest
eigenvalue of the transition matrix and its corresponding eigenvector (Perron-
Frobenius eigenvector). The results of all three methods are consistent.
This form of SSR process is called slowly driven, as the process only restarts
once it has completely relaxed to the ground state. So far the analysis has been
rather ignorant towards the small timescale of individual relaxation processes
and focused on the distributions recovered on a large timescale, spanning many
cycles.

Figure 21: Comparison between the distribution of state visits recovered in
simulations (red) and the theoretically expected Zipf distribution (blue).
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Qualitatively one can see the Oslo model as a slowly driven SSR process. Also
there the system is only driven once a stable state is reached by the process.
By adding more complexity to the SSR dynamics later on, we will see that also
further characteristics of the Oslo model can be captured.

4.2 Different faces of SSR processes

I would like to point out some properties of SSRPs that are related to the
discussion in [25] & [29]. First it is interesting to note that the mean state 〈i〉
declines exponentially, as on average the state level is halved in each relaxation
step. Therefore during relaxation the mean field model predicts

〈i〉(t) ∝ 2−t . (4.6)

Secondly, while the process starts at state k, what is the probability to find a
state i along the relaxation trajectory parametrized with time t? As shown in
a preceding study ([30]) the distribution of such states takes approximately an
exponential form,

p(i | t) ∝ e−γ(t)·i .

One can illustrate this observation with an example of moving particles pen-
etrating a wall. Each time the particle collides with target particles along its
trajectory in the wall, the particle looses kinetic energy. The sample space of
accessible kinetic energies along the trajectory is therefore reducing. For such
experiments it is a well known observation that the depth of penetration into
the wall has an exponential form (compare for instance the law of Lambert-Beer
for radiation). If a whole ensemble of particles hits the wall, and we wish to
look instead at the distribution of kinetic particle energies regardless of their
position, Zipf’s law, Eq. (4.4), will be discovered again.
Figure 22 shows my investigations into the distributions of p(i | t). I compared
the observed distribution of states i - given a certain time t after restart - with
a geometric distribution featuring a mean µ = 2−t. This µ was chosen following
the logic of the mean field model, Eq. (4.6).

Thirdly the time it takes for a sequence of relaxation events to terminate, or the
time it takes for the above discussed projectiles to dissipate their momentum,
is Poisson distributed with mean 〈τ〉 = log(W ). To see this let us first look
at relaxation events with τ = 0. This happens after the driving process if we
pick a projectile from the random ensemble which already has zero energy. The
chances for this to happen equal 1/W with W being the number of energies or
states to choose from in the first place,

p(τ = 0) =
1

W
.

Then we look at events with τ = 1. This is the case where a projectile of
regardless energy ε looses all its momentum during the first collision. As the
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Figure 22: Comparison of the assumed geometric null model (with mean µ =
2−t, see Eq. (4.6)) for t = 2, 3, 4 steps, with the results obtained in simulations.
The geometric distribution fits well for small t. SSRPs deviate from the model
after a few relaxation steps. Nevertheless the decay remains exponential.

whole initial ensemble can perform such a relaxation we effectively need to
integrate over all possible initial energies,

p(τ = 1) ≈ 1

W

∫ W

1

1

ε
dε =

log(W )

W
.

If we then turn towards relaxations of length 2 we can start to construct a
recursive scheme by integrating (A) all probabilities for particles having a certain
residual energy ε after the first collision and (B) the chance that this energy ε
is directly absorbed in the second collision,

p(τ = 2) ≈ 1

W

∫ W

1

log(ε) · 1

ε
=

log(W )2

2W
.

Following this scheme of successive integration recursively we arrive with the
general form for p(τ):

p(τ) = e− logW · (logW )τ

τ !
. (4.7)

This result is tested in simulations presented in figure 23.
Considering the wide range of distribution resulting from SSRPs, it is therefore
of importance to be explicit about the quantity of interest when analysing such
processes.
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Figure 23: Simulations were run and the relaxation times, that is the number
of steps starting from a random state until reaching the ground state, was
recorded. The distribution is compared with a Poisson distribution with mean
logW presented in Eq. (4.7). Both curves coincide well.

4.3 SSR processes with non-uniform prior probabilities

So far I repeated only the simplest possible case, namely a SSR process, with
uniform prior probabilities, that is only restarted in the ground state. Lets first
relax the first constraint and assume transition probabilities of the following
form,

p(j | i) =


q(i)

Q(i−1) i > j .
q(i)
Q(W ) i = 1

0 else

(4.8)

Here q(i) denotes the prior probability of state i and Q(i) its cumulative distri-
bution, Q(i− 1) =

∑
j<i q(j).

In order to visualize this process, one could think of SSR sequences of multi-
sided dice, as illustrated before, but allowing the dice to have sides of different
area. Also the staircase analogy might be helpful: It is a stair case process with
non-uniform step size. The prior probabilities q(i) are then proportional to the
area of one step (figure 24).
By performing a similar ansatz as before, namely forming the master equation
of the system and solving for its attractor distribution one arrives with the
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following result for p(i):

p(i) =
q(i)

Q(i)
· p(1) . (4.9)

This was shown in [26]. p(1) follows from the normalization condition on p,

p(1)−1 =

W∑
i=1

q(i)

Q(i)
. (4.10)

One can now study different forms of prior distributions.

• For the case of q(i) = 1/W we arrive with Eq. (4.4) as a result.

• For priors of polynomial form q(i) = iα with α > −1 Zipf’s law remains
the attractor for large systems. If the sample space is sufficiently large, it
is safe to replace the sum occurring in Q with an integral. Therefore we
have Q(i) ∝ i ·q(i) and p(i) ∝ i−1. This hints towards a certain robustness
of the power law of power −1.

• Exponential prior probabilities q(i) = eβi with β > 0 however break the
convergence to Zipf’s law. Replacing the sum in Q with an integral pre-
dicts Q(i) ∝ q(i) and p(i) being uniform. The exact form of p(i) can be
computed using limits of geometric series,

p(i) = p(1) · 1− e−β

1− e−βi
. (4.11)

• Looking at Eq. (4.11) and letting β < 0, we have a situation we may
refer to as the SSR process in the canonical ensemble. If we expand
(eu − 1)−1 into a Laurent series around u = 0 we actually find Zipf’s law
in first approximation. Therefore, as long as βi is sufficiently small, we
still recover a power law. For β > 1 we however find an exponential decay
in p(i). Given some 1/W < β < 1 these priors can produce power laws
with an exponential cut-off at βi ≈ 1 (see figure 25).

Note that the prior probabilities constitute an absolute point of reference re-
garding which state is visited. We have not yet touched upon the question of
relative transition probabilities. Those were kept fixed to be of the form in Eq.
(4.2) such that there are equal probabilities to reach any point below the current
state.
In the Oslo model, it turns out, we are dealing with a prior distribution that
has regions of exponential increase and decrease.
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Figure 24: A ball falls down a staircase and can never jump back upwards, but
will reach all steps below with a probability proportional to the area. Figure
taken from [25].

Figure 25: Results of a slowly driven SSR simulation using exponential priors
q(i) = exp−0.01 · i. For large values of i, the found distribution decays ex-
ponentially (blue dots). This essentially happens as the states with i > 100
are dominated by the driver. For i < 100 we find Zipf’s law as approximation
(green). Equation (4.11) was compared with the simulation (red).
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4.4 SSR processes with arbitrary driving probabilities

Corominas et al. have also studied the influence of the driving mechanism in [30]
& [25]. By adding random noise to the system, that is a non-zero probability
λn for every state i to jump to any other random state j. In this way two
processes are mixed: the slowly driven SSRP and a form of undirected random
walk. There is a probability that the process restarts at any point. [25] have
shown that adding such a mechanism to the system, alters the exponent in the
resulting power law attractor pλ=1 ,

pλ=1(i) = p(1) · i1−λ . (4.12)

Consistently a uniform distribution is recovered for λ = 1, which is produced
by the mere random walk.
In [30] the authors allowed λ to be state dependent. Interestingly λ(i) can create
a whole range of different attractor configurations for the distribution of state
visits. Given a certain λ(i) the resulting p(i) can be even computed analytically,
using an implicit relation, Eq. (4.13), which holds for large sample spaces where
a continuous approximation i→ x is applicable,

λ(x) = −x · d
dx

log pλ=λ(x)(x) . (4.13)

Linearly increasing restart probabilities λ ∝ i will for instance produce expo-
nential distributions.
We will later on measure λ(i) for the Oslo model.

4.5 SSR processes with fixed driving intervals

Driving in the present form initially places the ball on the staircase at a random
step. In case of a sandpile the driver is essentially the addition of a grain at
position x = 1. This is a constant addition in terms of i representing energy,
rather than a reset to a random configuration. Therefore I will discuss a SSRP
where the ball is lifted a total of k steps whenever it is driven with probability
λ. The priors, q(i), are kept uniform. The transition probabilities in question
are also visualized in figure 26 and can be expressed as

p(j | i) =

{
1−λ
i−1 i > j

λ j = i+ k .
(4.14)

If k is large and λ chosen to be small, then the process actually splits into
N/k regions. As λ is small the process mostly collapses to the ground state.
From there it may be driven to higher domains with an exponentially decaying
probability, as each individual jump k has a probability λ. Within j steps a
total jump of j · k can occur,

p(j · k | 1) ≈ λj .
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Figure 26: A color coded transition matrix to visualize the structure of Eq.
(4.14). k = 2 and λ = 0.5 in this picture.

From that excited position the process is likely to then reach to a position with
i being relatively small and it will be driven again. By that process the power
law of the lowest region is replicated with exponential decay. Figure 27 shows
the discussed behaviour.
If we tune λ to be large, we eventually encounter a regime in which the driving
process and the relaxation process are balancing each other. Neither is the
process saturated in the ground state, nor in the highest possible state. Such
curves can be seen in figure 28 & 29.
States in the Oslo model are also subject to such a balance between driving and
relaxation process. As it will be shown later, this leads to a somewhat Gaussian
peak for the visiting distribution of many discussed macro variables in the Oslo
model.
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Figure 27: Attractor of a SSR process with a fixed driving interval of k = 100.
λ = 0.2 is relatively small. The red line is globally exponentially decreasing, but
features 20 distinct local domains, that feature a decrease on their own and form
a sort of smooth saw-tooth like structure. Each local decay (each saw-tooth)
decreases as a power law. This happens because any of those is essentially a
copy of the lowest domain, which relaxes just as a slowly driven SSRP. The
overall structure is decreasing as an exponential function ≈ λi/k, as expected
from the fact that p(j · k | 1) ≈ λj .

4.6 SSR processes with altered transition probabilities

Finally lets look at the transition probabilities. So far only the micro-canonical
realization, Eq. (4.2), was discussed. A given dynamical system might however
feature transition probabilities that depend on the relation of initial state i and
final state j of a transition.

Given a initial state we could for instance consider a canonical or exponentially
distributed choice of final states. This can be done in different ways. Either we
fix an external heat bath with temperature T0 and connect it to our system,
or we let the temperature of the bath depend on the current sample space size
(TΩ = T (Ω)). The first option was already realized by implementing exponential
prior probabilities with fixed β. To realize the other we allow β = β(Ω).
In general there can be many different realizations. I would like to constrain
the analysis to such processes that feature scale free relaxation dynamics. That
is, independent of the current size of the sample space, the structure of the
transitions will remain the same. Mathematically we write

p (ξ · j | ξ · i) = ξ−1 · p (j | i) . (4.15)
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Figure 28: Same as figure 27 but with a different choice of parameters. Now λ
is relatively large. Low states are less likely to be visited, as the driver pushes
them up again. Thereby a peaked structure emerges at an intermediate state
i as a result of the balance between driving and relaxation. Note that the plot
features double logarithmic axes. The decrease of the first domain (lower left
corner) is a power law with slope −1.

Figure 29: For small values of k the domain structure vanishes as domains
contain only one or two states. The overall single moded behaviour remains.

43



If the sample space is expanded by a factor ξ, then the transition probability
shall remain the same as in the unexpanded case, but be stretched and normal-
ized.
The power law transition p(j | i) ∝ i−1 for instance suffices this constraint,

p (ξ · j | ξ · i) =
1

ξi
= ξ−1 · p (j | i) .

So does an exponentially decaying transition probability, where we set (as dis-
cussed above) β−1(i) ∝ i or T (i) ∝ i,

p(j | i) =


exp
(
−b·(i−j)

i

)
·Q−1(i) i > j

exp
(
−b·(W−j)

W

)
·Q−1(W ) i = 1 .

0 else

(4.16)

Simulations show that, despite the exponential character of the transition prob-
ability, Zipf’s law can be recovered also in this case. While β = const. breaks
the power law, as we have seen for the case of exponential priors, a scale free
formulation of transition probabilities was enough to restore its emergence. Fig-
ure 30 shows the convergence to a power law of power −1 for three different
orders of our parameter b.

Figure 30: A slowly driven SSR with transitions of the form in Eq.(4.16) was
studied. Shown are three different runs with values of b ∈ {0.2, 2, 20} and
β(i) = b/i. Despite some initial deviations, all runs converged to Zipf’s law.

While we can speculate on the universality of Zipf’s law for transition probabil-
ities of the form in Eq. (4.2) or Eq. (4.16), Markov chains, that do not satisfy
the scale free structure given in Eq. (4.15), do not necessarily give rise to a
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power law. A quick counterexample would be a process where at each step the
sample space size is only reduced by 1. Such a process would reach any state
with equal probability on the course of a relaxation.
The Oslo model has a special relaxation probability that, as I will argue in the
next chapter, stems from a branching process. A single avalanche can initiate
further avalanches on the way.

4.7 Avalanches in SSR processes

Next, I want to make a short comment on the avalanche statistics of SSRPs. Let
us define an avalanche as a downward transition between i and j, with i > j.
The corresponding size of an avalanche equals s = i− j. What are the statistics
of this quantity? Given that we already know p(i), the visiting distribution
of state i, p̂(s), the probability of an avalanche with size s to occur, can be
computed by summation,

p̂(s) =

W∑
i=s

p(i− s | i) · p(i) . (4.17)

For the slowly driven SSR process with transition probabilities given in Eq.
(4.2) for instance, we readily conclude that also the distribution of s follows
Zipf’s law,

p̂(s) =

W∑
i=s

p(1)

i2
≈
∫ W

s

p(1)

i2
di = p(1) ·

(
1

s
− 1

W

)
∝ 1

s
.

An interesting quantity in the Oslo model is the avalanche size: What is the
size of a transition from one state of load κi to reach another load κj . The
corresponding avalanche size is then nothing else than s = κj − κi. With the
statistics of κ it will be possible to derive the avalanche statistics using Eq.
(4.17).

4.8 Universality of the result

At the beginning of this section we have commented on the derivation of Eq.
(4.1) - the canonical ensemble - and seen that it can be deduced by maximizing
Shannon’s entropy. Hanel et al. [31] have shown that it is in fact possible to
perform a similar analysis for the case of a SSR process (acting very much in
the spirit of E.T. Janes). However, as we are dealing with a system, which is per
se non-ergodic and has a broken detailed balance, the simple form of Shannon’s
entropy does not apply anymore. Rather a new entropy functional had to be
found first (see also [32]). For the case of the slowly driven SSRP one finds

SSSR = −
W∑
i=2

[
p(i) log

(
p(i)

p(1)

)
+ (p(1)− p(i)) log

(
1− p(i)

p(1)

)]
(4.18)
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In [31] this entropy, which entangles the different states of the system in an
interesting way, is deduced and one finds Zipf’s law as the distribution which
maximizes SSSR.

Remark on maximum caliber and SSR processes

I also tried to identify variables in the slowly driven SSR process which live in
an ergodic space, that is not contracting or expanding. For instance, the states
i are following SSR dynamics, but the phase space corresponding to the lengths
of a relaxations process, τ , remains unconstrained as after each full collapse the
sample space is reset. A more general way to put that idea is by considering
a directed network on the space of states, which is decomposed into a fully
connected undirected network on the space of circular paths as entities (see
figure 31). Such an approach would allow an analysis using simple Shannon
entropy for the computation of the maximum entropy configuration.

Figure 31: Left: A directed graph. Right: Its decomposition into full cycles.
While the left graph has a diameter greater than 1, the right graph provides
a representation of the same network, where all nodes are directly linked with
each other.

But it is unclear which measure on the cycles should be statistically constrained
in order to reproduce the observed power law. I tried the length τ or the sum
of states visited during a relaxation process, but none of these seemed to be
a good choice. I realized that the power law is a property independent of the
cycle length τ . It appears even if we only look at those relaxations for which
the relaxation times matched (τ = const.) (figure 32),

p(i | τ) ∝ i−1 . (4.19)
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Figure 32: The statistics of state visits conditioned on different relaxation times
,τ , (points in different colors) still produce Zipf’s law (red). Note that the
variance of the green points (τ = 10) has least variance. This is because runs
with a relaxation time of τ = 10 are more likely, as it can be seen in figure 23
for a slowly driven SSRP of same maximum sample space size W .

4.9 The choice of SSR variable

The variable of most interest in the OSM is undoubtedly the avalanche size s.
It is measured as the amount of topplings happening throughout a relaxation
and shows a distinct power law featuring a power of roughly −1.53 and a bump
with exponential cut-off in the tail. It is hypothesized in [19] that this bump is
triggered by relaxation events that drop sand out of the system.
The avalanches themselves are however not strictly reducing. We might observe
a small avalanche, then drive the system, and measure a very large avalanche in
the next relaxation event. Thus s directly is not sample space reducing. As we
have however seen in chapter 4.7, scale-free avalanche statistics can still directly
result from the sample space reducing property of an underlying variable i, such
that st = it−it+1. In order to find appropriate candidates for the state variables
i, we will have to consult some physical arguments.

Energy, mass and load

A natural choice of SSR variable clearly is the energy E. During a relaxation
event, the potential energy can only be reduced. The resulting energy-difference
∆E will be dissipated in form of heat. Energy conservation thus sufficiently
restricts the dynamics of E to reduce the sample space of reachable energy
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states,

E(t) = E(t+ 1) + ∆E . (4.20)

The mass too, could be a reasonable choice of SSR variable. During a relaxation
step the mass however does not necessarily have to decrease. If there is no
outflow of mass observed, the total mass will remain equal. The mass as SSR
variable is blind regarding internal reconfigurations of the rice pile.
Finally, the load κ was defined in such way that n toppling events directly
correspond to a ∆κ = n. In order to compare the observed power law statistics
with the data in the literature regarding s, the load will be our best choice of
SSR variable.
In order to capture the avalanche statistics of any of those variables, it will be
necessary to perform our measurements on the set of stable or driven states
(S ∪ D).

Slope

Lets recall Eq. (3.9) for the mean slope acquired by a linear fit,

α = 6 · 2κ− (L+ 1)M

L(L2 − 1)
.

First we notice that the slope is proportional to the load subtracted by mass,
which we identified both to be sample space reducing. A relaxation event, that
does not change the mass of the sandpile, is therefore SSR. On the other hand
a relaxation event that ultimately triggers a grain at the boundary to leave the
system, can rarely increase the slope defined in this way.
The pinned slope α̃ defined in Eq. (3.10) is only tied to the dynamics of κ and
therefore SSR. By studying κ we implicitly study the mean slope of the system.

Connection to the study of interfaces

One can also try to conjecture SSR variables by connecting the Oslo model with
growing surfaces (as studied in [22], [33],[34]). [33] introduce the amount of
topplings T (x, t) a site has experienced throughout the existence of the pile and
the amount of grains G(x, t) that have been loaded onto the site x throughout
the existence of the pile. Identifying H(x) = T (x−1)−T (x) & the local stability
η(x, T ) as a random noise, being either 1 or 2 in the space of (x, T ), the authors
make the following assignment:

F (x, t) = k(x, t)− η(x, T ) . (4.21)

F gives a type of ”toppling force” acting on x. If F > 0 the site is going to
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topple, else remains stable. Further,

F (x, t) = H(x, t)−H(x+ 1, t)− η(x, T ) ,

F (x, t) = (T (x− 1, t)− T (x, t))− (T (x, t)− T (x+ 1, t))− η(x, T ) ,

F (x, t) ≈ ∆x2∇2T (x, t)− η(x, T ) .

The ∇2-operator was deduced from the discrete Laplacian as a continuum ap-
proximation,

∇2
xT (x, t) ≈ 1

∆x2
(T (x− 1)− 2T (x) + T (x+ 1)) .

F = 1 means that the site x is going to topple once. Therefore, T (t + 1, x) −
T (t, x) = F (t, x). However, if F ≤ 0, nothing is going to happen,

∂tT (x, t) ≈ Θ[0,∞]

(
∆x2

∆t
∂2
xT (x, t)− η(x, T )

)
.

Despite the highly nonlinear Heaviside function, this equation has similarity
with the so called Quenched Edward Wilkinson equation (qEW). [22] report
that they even find the exact qEW equation for the dynamic variable G(x, t),

∂tG(x, t) = ν∂2
xG(x, t) + η̂(x,G) . (4.22)

Where G(x) was identified to suffice

T (x, t+ 1) =
1

2
(G(x, t) + η̂(x,G)) . (4.23)

Here η̂ is 0, if G is even, & either 1 or -1 (with probability p and q), if G is
odd. This equation describes the growth of a surface with height profile G,
which is subject to a random addition of particles at different positions due to
η̂. However irregularities on the surface tend to diffuse as well. The ”surface”
growing here is the abstract height of G(x, t). The boundary conditions in the
continuum description are ∂tG(L, t) = 0 and a constant velocity field pulling
the origin ∂tG(0, t) = v through external driving.
We can try to reinterpret the term ∂2

xG(x, t) as resulting from a gradient flow
acting on the potential W (t)[G],

∂tG(x, t) = −ν δW [G]

δG
+ η̂(x,G) . (4.24)

W (t)[G] of the following form,

W (t)[G] =
1

2

∫ L

0

K(∂xG)dx =
1

2

∫ L

0

(∂xG(x, t))2dx , (4.25)

will suffice. We can proof this claim by invoking some variational analysis.

δW [G]

δG
=
∂K

∂G
− ∂x

(
∂K

∂(∂xG)

)
= −∂2

xG (4.26)
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The process therefore describes G as evolving towards minimizing W . W re-
ceives an abstract interpretation, since it can be identified with φ(G), the total
arc length of the curve, spanned by G, since

φ(G) =

∫ L

0

√
1 + (∂xG)2dx ≈W0 +W . (4.27)

A minimization of W therefore equals a minimization of φ(G). In other words:
During a relaxation process, the surface length, as spanned by G will decrease.
But also a more physical interpretation can be found: G(L + 1) is the amount
of grains that dropped out of the system. G(L) is equal to that amount, plus
all grains that reside on site x = L: G(L) = H(L) +G(L+ 1). A continuation
of this scheme allows the identification of G(x) with the mass of a sandpile with
size L = x, since

G(x) =

L∑
y=x

H(y) +G(L+ 1) ∝ML=x . (4.28)

Therefore the surface spanned by G(x) is actually proportional to the potential
energy of the system,

W =
1

2

∫ L

0

(∂xG(x, t))2dx =

∫ L

0

H(x)2

2
dx = E .

Also in the continuous case we very naturally find the result that the energy E
of the system is a SSR variable that controls the dynamics of the system.

Surface length

The preceding analysis motivates us to look at surface lengths as potential SSR
variables. We will do this by tracing the surface length ϕ. To see that the
surface length is almost SSR, but not quite, we first note that if the quantity∑

x

k(x)2 = ϕ2

is strictly reduced during a relaxation, then also ϕ. This is easily justified using
the triangle inequality,(∑

x

√
k(x)2 + 1

)2

≤
∑
x

k(x)2 + L .

A toppling event at a position y that is not at the boundary will take place only
if k(y) ≥ 2. The toppling site looses two slope elements k(y) → k(y) − 2 while
its neighbours gain one each. While the rest of the sum remains unchanged, we
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therefore have after a toppling,

ϕ2(t+ 1) =

y−2∑
x=1

k(x, t)2 + (k(y − 1, t) + 1)2 +

(k(y, t)− 2)2 + (k(y + 1, t) + 1)2 +

L∑
x=y+2

k(x, t)2 .

At the boundary the expression has to be changed accordingly. For the dif-
ferences ∆ϕ2(t) = ϕ2(t + 1) − ϕ2(t) we find depending on the toppling site y,

∆ϕ2(y(t), t) =

 5 + 2k(y + 1, t)− 4k(y, t) , y = 1
6 + 2k(y + 1, t) + 2k(y − 1, t)− 4k(y, t) , L > y > 1 .
2 + 2k(y − 1, t)− 2k(y, t) , y = L

(4.29)
ϕ2 is SSR, only if

ϕ2(ts) ≥ ϕ2(te) , (4.30)

0 ≥
te∑
t=ts

∆ϕ2(t) .

Here ts is the start of a toppling cascade, te the time of its end. As any cascade
has to start at site yts = 1, the boundary, we have

∆ϕ2(1, ts) = 5 + 2k(2, ts)− 4k(1, ts) .

The cascade can halt immediately at ts+1 if k(2, ts) ≤ 1. Then, as k(1, ts) ≥ 2,
the condition, given by Eq. (4.30), is met. If k(2, ts) = 2, the cascade will go
on with certainty and the surface is increasing intermediately:

max(∆ϕ2(ts)) = +1

A cascade at position yts+1 = 2 will be induced. Let us first assume that the
cascade only travels downwards and passes position yt. First k(yt) will increase
by 1 at t− 1 , then decrease by 2 at t, then increase again by 1 at t+ 1. After
the passage of the cascade k(yt) remains unchanged. This is similar to a mouse
moving under a blanket: The mouse will always create a little mount in the
surface of the blanket. But the mount will move with the mouse, such that the
surface of the blanket remains unchanged. If the cascade halts at position yte
the total change in ϕ2 only depends on the slope values at the start and the end
of the cascade.

ϕ2(te)− ϕ2(ts) = 3− 2k(1, ts)− 2k(yte − 1, ts) + 2k(yte , ts) (4.31)

As we require that site 1 is ≥ 2 and yte − 1 is ≥ 1 in order to be able to topple
and yte ≤ 1 for it to become stable, the total change is negative,
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max(ϕ2(te)− ϕ2(ts)) = −1 .

If the avalanche hits the boundary at te − ts = L and stops, we find

ϕ2(te)− ϕ2(ts) = 3− 2k(1, ts)− 2k(L, ts) . (4.32)

In this case max(ϕ2(te) − ϕ2(ts)) = −3. The loss of surface is even stronger.
The mouse has left the blanket.

Due to the Abelian property we can first follow a single cascade downwards and
afterwards discuss any further cascades it may induced at time ti. In a similar
logic as before, any relaxation event induced at yti = y and ending at yte = y′

will create a change in slope proportional to

ϕ2(te)− ϕ2(ti) = 4− 2k(y, ti)− 2k(y′, ti) + 2k(y − 1, ti) + 2k(y′ + 1, ti) .
(4.33)

If we want that the pile becomes stable at te, the maximum of this difference
max(ϕ2(te)− ϕ2(ti)) = 2. This maximum is only reached in the rare case that
k(y − 1, ti), k(y′ + 1, ti) and k(y′, ti) are equal to 1.
Adding up the changes in slope we find that the surface can indeed grow for
a relaxation event. However it is quite unlikely, as this only occurs for very
peculiar circumstances. Most transitions will either reduce the surface length
or keep it approximately equal. Further, this analysis shows that the largest
reductions in surface length occur if sites at the boundary are involved.

Height H(1) and n2

We can rewrite ϕ2 as ϕ2 = 2n1 + 4n2 + 9n3. nj is the number of times a slope
of size j is observed in the configuration of the pile. We then compare this
expression with the height H(1),

H(1) = n1 + 2n2 + 3n3 . (4.34)

H(1) is proportional to the mean of k(x), while the surface length is proportional
to its second moment. For any stable configuration we can remove the slopes of
3 from the equations and rewrite

H(1) = L+ n2 − n0 , (4.35)

ϕ2 = L+ 3n2 − n0 . (4.36)

If we also take into account the fact, that any k = 0 is generally counterbalanced
by a k = 2, we can conclude that both quantities are quite sensitive to n2. n2

itself is not a SSR variable, for similar reasons why the surface length is not.
H(1) is SSR.
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5 The Oslo Model As SSR Process

Now, after having discussed the necessary basics, we wish to continue to present
the main results of my work. In chapter 4 we have presented the necessary
toolset to analyse SSRPs and discussed which variables can be expected to have
SSR dynamics. We will try to capture the statistics of avalanches in the Oslo
model by studying the SSR behaviour of the discussed state variables of interest.

5.1 Observed distributions

Visiting distributions

Here I present the observed visiting distributions in S ∪ D for the set of (al-
most) SSR variables discussed above (figure 33) and the non SSR variables
n0 & n1 (figure 34). All plots in figure 33 and 34 show Gaussian shapes,
∝ exp (−k1(x− x0)2), at first glance. Logarithmic vertical axis however show
that the tail towards the higher values decays significantly slower, more like
∝ exp (−k2x). The effect is especially strong for M , κ and E. In order to quan-
tify differences among visiting distributions we calculated average, µ, standard
deviation, σ, skewness, γ, and Person kurtosis, ω, of the histograms of different
measures (here exemplarily for L = 100) in table 1.
Measures with relatively larger kurtosis, like mass, energy and load, are associ-
ated with a larger fraction of events in the tails. The surface length and height,
on the other hand, obey shapes that resemble skewed Gaussians, as their kurto-
sis is relatively low. This difference will become even more evident as we start
looking at avalanche distributions. All measures, despite n1, are asymmetric,
with the majority of events to the left of the maximum. n0, in particular, is
almost resembling an exponentially decaying distribution.

µ σ γ ω
M 8766 83 0.438 0.298
E 511018 9194 0.473 0.352
κ 585468 5275 0.444 0.303
ϕ 199 1.50 0.231 0.071

H(1) 171 1.82 0.236 0.094
n2 72.6 1.91 0.194 0.020
n1 25.7 2.59 -0.281 -0.001
n0 1.55 1.14 0.590 0.173

Table 1: Mean µ, standard deviation σ, skewness γ and kurtosis ω of visiting
distributions computed with Numpy [35].
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Figure 33: A selection of visiting distributions observed in the simulations. In
order of reading: Mass M , energy E, load κ, slopes of 2 n2, surface length ϕ
and height H(1).
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Figure 34: Visiting distributions of n0 and n1.

Avalanche distributions

The avalanche dynamics show diverse behaviour. We will order the macro mea-
sures according to the patterns emerging in their avalanche distribution.

• Powers of −1.53 with exponential cut-off (bump): Load κ, energy E, av-
erage slope α
See figure 35. Load, energy and average slope have avalanche distributions
that are decaying like a power law with an exponential cut-off. The cut-off
is associated with a ”bump”: A local maximum, before the exponential
decay sets on.

• Poisson like dacay or bump: Mass M
See figure 36. The size of mass loss events has exponentially decaying
probability for larger avalanches. For small avalanches the loss is increas-
ing until it reaches a local maximum.

• Exponential decay : Height H(1), slope two number n2, surface length ϕ
See figure 37. Height-, n2- and surface length- changes are distributed
according to an exponential decay.

Let us discuss why it is very natural that there exist these 3 distinct modes
of avalanche size distributions. We may see an avalanche as a stochastic prop-
agation of instabilities. The instability can travel in both directions, up-hill
and down-hill, and even trigger further instabilities, topplings, on the way. The
size of the full tree of stochastic trajectories performed by the instabilities is
associated with changes in E or κ. Any trajectory that hits the boundary at
x = 1 will reduce H(1) by one, while any trajectory hitting the other boundary
at x = L, will reduce M by one.
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Figure 35: Energy E and load κ follow very similar dynamics. Deviations are
mainly concerned with small transitions. The avalanche distribution decays like
a power law with cut-off. The cut-off features a local maximum, the bump.
My measurements of κ-avalanches are compared with the function found in the
literature for the size of toppling events [19]. Curves match closely.
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Figure 36: The mass M features a maximum in avalanche size, which quickly
decays towards larger avalanche sizes. Plotting in a double-logarithmic way,one
finds the same shape as the exponential bump observed in figure 35 for the
energies. One concludes that the bump is associated with avalanches that reach
the boundary at x = L.
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Figure 37: The peak height H(1) and the surface length ϕ are decaying expo-
nentially. The black lines quantify the strength of decay. The probability of a
drop in height or surface length is cut to a third with each additional reduction
of ∆H(1) = −1, or ∆ϕ = −1.
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5.2 Driving events

A main ingredient to any SSR model are driving events. Most macro variables
behave in a way such that a driving event increases them by a certain quantity
d (see section 4.5). In the case of energy, dE equals the current height of the
pile H(1) + 1, as a new grain dropped onto the peak will carry that potential
energy. dM and dκ on the other hand are constant 1 or L respectively.
A driving event may be initiated with a rate λ(i) that depends on the state i.
Note that on the set of stable and driven states, which is of main interest in
order to reproduce the avalanche dynamics with a SSR methodology, relaxation
events and driving events take turns (”tick-tock”). Each driving event i→ j is
immediately followed by a relaxation j → j − ∆, where ∆ ≥ 0. The average
driving rate 〈λ〉 therefore has to approximately equal 0.5. One might note that
any state with a flat top (meaning k(1) = 0) is driven twice in a row. By
counting ∆ = 0 as a relaxation we can however formally restore the tick-tock
behaviour. We performed the analysis with both methods, using ∆ ≥ 0 and
∆ > 0. We can write

〈λ〉 =
∑
i

λ(i)/W =
1

2
, (5.1)

where W is the total number of accessible states. If the relation does not hold,
this can only indicate that the chosen macro variable is in fact not SSR. This is
because any SSR variable has to be increased during a driving event. If it were
decreased during a driving event, as it for instance rarely occurs for the surface
length, the tick-tock character is lost.
The tick-tock behaviour can still establish longer periods of growth, as long as
relaxation processes remain minor. Typically a longer growth phase is stopped
by a larger avalanche. This can be seen in figure 38, where not only the dynamics
of single macro measures are shown, but also the average λ was calculated for
various measures.
In order to arrive with the state dependent rate λ(i), I proceeded in the following
way: For any load state κi for instance, the number of visits n are counted on
two different sets: The set of stable states S and the set of driven and stable
states D ∪ S. If a state is rather stable ni,s > ni,d, this indicates that the state
has a higher than 1/2 rate of driving. This is because any stable state has to be
driven in the next step. If, on the other hand, a state i is driven more frequently,
its λ(i) < 1/2, as any driven state will be relaxed in the next step. In this way
we identify λ(i), given the stable visits ni,s and stable & driven visits ni,d+s for
sufficient amounts of data,

λ(i) =
p(i, i ∈ S)

p(i, i ∈ S ∪ D)
≈ ni,s
ni,d+s

. (5.2)

Measurements of this quantity can be seen in figure 39.
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Figure 38: Dynamical variations of macro measures in the long term limit (non-
equilibrium steady state): For load, energy and mass, growth phases can last for
long periods and are abruptly stopped by an avalanche. Surface length, height
and n2 on the other hand rise and fall on a smaller timescale. Also average
values of λ were calculated. While most measures, including the surface length,
have an average driving rate of 0.500 (up to 3 digits), a considerable fraction of
relaxation processes drive n2.
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For the sake of completeness I show how one would proceed in order to study
the situation for non-zero relaxation events with ∆ > 0. All states that became
unstable and which induced a non-zero relaxation, can be counted as ni,r. Then,

if we call this altered definition for the driving rate λ̃(i), one finds

λ̃(i) ≈ 1− ni,r
ni,d+s

. (5.3)

Using this definition Eq. (5.1) does not hold any more. In fact, take for instance
the situation of mass: A relaxation only occurs in the relatively rare case of a
mass excess. The measure will be driven more frequently than relaxed,

〈λ̃〉 ≥ 1

2
. (5.4)

Two qualitatively different behaviours are observed:

• Load, energy and mass roughly have constant λ(i) = 0.5, with a very
slight decrease towards higher states. Only for the highest states the
driving rate quickly decays, and the lowest states conversely are driven
with great certainty. With imin and imax being thresholds, we can write
by means of simplification

λ(i) =

 1 i < imin
0 i > imax .
0.5 else

(5.5)

• Height and Surface Length appear to roughly follow a linearly decreasing
λ(i). Say,

λ(i) =
W − i
W

. (5.6)

Note that the driving rate will very well depend on the history of a given trajec-
tory that reached that state. A trajectory that just reached state i by a relax-
ation from above will actually be driven with certainty, due to the ”tick-tock”
dynamics. We will later show that breaking this conditionality, and setting a
simplified driving rate to be state-dependent only, does not alter the observed
distributions. A state that just relaxed, will be allowed to relax again in this
picture.
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Figure 39: Red points: Driving rates as calculated with Eq. (5.3). As data
points become scarce for extreme loads and masses, the variance increases on
the sides. Black line: Rescaled visiting distribution in the set of stable and
driven states. These are shown in order to put the relation of driving rate and
visiting distribution into perspective.
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5.3 Relaxation events and prior distributions

After having discussed the driving process, we will resolve to the relaxation
dynamics. Given a certain state i, what are the chances to reach a lower state
j in one jump. Generally one can decompose this transition probability into
a relative transition probability p(j | i) and a prior distribution q(j). A good
candidate for the prior distribution is the multiplicity of states, discussed in
section 3. However as it is difficult to disentangle both distributions we will
see if we can understand their combined outcome using some simple modelling
assumptions.
In section 4, we mentioned that transition probabilities, which obey the scaling
relation in Eq. 4.15, are good candidates for dynamics that give rise to a
power law. We see in figure 40 exemplarily for 4 different measures that this
assumption is already true on average. Namely, it is observed that for downward
transitions of size ∆i in a SSR state variable i

〈∆i〉 ∝ i (5.7)

holds.

Figure 40: Shown are mean and standard deviation for the relaxation sizes of
various measures. While the mean is linearly dependent on the height of the
relaxing state i, the standard deviation has a less trivial dependence on i. σ of
E and κ is linearly dependent, while σ of H(1) and M are only in restricted
regions.
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If this were our only observation, we may be inclined to assume an exponential
distribution for p(j | i), as in Eq. (4.16), for a maximum entropy estimate in
an analogy to the canonical ensemble. Especially for load and energy, however,
the standard deviation of transition sizes from i to j is quite different than the
mean, that is proportional to i, suggesting a considerable deviation from the
exponential distribution. We will see that the actual dynamics are in fact more
complicated.

In order to investigate this further, we study the transition probabilities vi-
sually.

• by plotting its matrix directly (see figure 41).

• by performing a data-collapse of transition probabilities on the interval
[0, 1]. This is achieved by plotting p( i−ji ) (see figure 42).

• by representing the transition probabilities in the original interval (eg.
[Emin, Emax]) right away (see figure 43).

Figure 41: Shown are transition matrices for various measures. All matrices
show a pronounced triangular shape. One can also see the driving process,
which resides right above the diagonal. Note that states are binned in this plot.
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Figure 42: Normalized transition probabilities on the rescaled range [0, 1].
Mathematically the horizontal axis shows the relative quantity (here exemplar-
ily for the mass): ∆M/(M −Mmin), where M is the mass at which a relaxation
of size ∆M is initiated. Only non zero relaxations with ∆ > 0 are considered in
this plot. The vertical axis gives the probability of this quantity for various ini-
tial masses (colours), which are indicated in the legend as M/(Mmax −Mmin).
Further the opacity of a set of points, which correspond to an initial mass M ,
indicates the visiting probability of that mass. In case of the mass for instance
the most frequent transitions therefore are seen as the blue and orange line.
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Figure 43: Transition probabilities on the original range e.g. [κmin, κmax]. Only
non zero relaxations with ∆ > 0 are considered in this plot. The vertical axis
gives the probability p(i | j) of this quantity for various initial states i (colours).
The opacity of a set of points, which correspond to an initial state i, indicates
the visiting probability of that transition. The black thick lines are Gaussian
probability distributions with the mean and variance chosen from the visiting
distribution of the corresponding quantity.
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We can distinguish 3 emerging classes of relaxations.

• Height and surface length: The size of transitions is limited in these mea-
sures to a relatively small phase space. The transition probability is more
or less exponentially decaying for larger changes. A second mode is emerg-
ing for larger initial heights.

• Mass: Most of the time, mass remains constant in the system. However
rarely larger avalanches occur. The transition probability takes a single
moded shape. The lines do not collapse on the interval [0, 1]. They collapse
however onto a Gaussian shape for larger initial masses on the unscaled
range,

p(j | i) ∝ e−(µ−j)2/2σ2

, where j < i .

• Energy and load: Most transitions are small, but sometimes larger avalanches
occur. The single moded shape already seen for the mass, reoccurs in the
tail of these transition probabilities. It is especially pronounced for higher
states of energy and load. Transition probabilities corresponding to dif-
ferent initial energies, collapse for small avalanches onto each other in the
interval [0, 1]. On the other hand, large avalanches condense onto a Gaus-
sian shape in space of unscaled energies. The use of a power law multiplied
by a Gaussian as transition probability is suggested as approximation,

p(j | i) ∝ 1

(i− j + g)γ
e−(µ−j)2/2σ2

, where j < i .

γ is around −1.5. g is a free parameter that can be tuned such that the
distribution fits best.
The observation of lines lying on top of each other in the unscaled range of
variables (see figure 43), hints towards the underlying prior distribution
of Gaussian nature. We may choose the Gaussian to have mean and
variance of the corresponding visiting distribution. This choice is made
(1) due to its simplicity, (2) inspired by the shape of multiplicities M(i)
found in figure 3.17 and finally (3) as the assumption fits the transition
probabilities reasonably well.
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The emergence of the power law

Looking at the found form for the transition probabilities,

p(j | i) ∝ 1

(i− j + g)γ
e−(µ−j)2/2σ2

,

it still remains unclear how the power law (i− j + g)γ comes about. As of now
we only observe that the power law with roughly an exponent of −1.5, which
is featured in the avalanche distribution, is already present in the constituting
transition probabilities. Christensen and Moloney [19] present the derivation
of the avalanche size probability in a special form of the BTW model, namely
the BTW model with random neighbours. The result is a scaling form of the
avalanche size probability. I will present a sketch of the proof here and argue by
analogical reasoning that a similar situation can be found for the Oslo model.
For details please refer to [19] or this review by Corral and Font-Clos [36].
In the 2D BTW model with random neighbours, if a site xi reaches the fixed
threshold z, its grains are distributed to z randomly chosen neighbours x1, x2,
. . . , xz, which subsequently may be toppling themselves. The probability to
induce a further toppling event will be called p. This situation can be seen as
a branching process, where at each node a maximum of z branches are induced
with probability p. Any branch terminates in another node. Over the course of
a longer avalanche a tree is spanned by these branches. We will be interested
in the case of z = 2. Then the probability to find an avalanche of size s ≥ 1 can
be derived.

P (s, p) =
1

s+ 1

(
2s

s

)
1− p
p

(p(1− p))s (5.8)

Here M(s) = 1
s+1

(
2s
s

)
is the multiplicity of such trees, which was already derived

in [37], while the remainder gives the probability. Using Stirling formula M(s)
can be approximated for large s,

M(s) ≈ 1√
π
s−3/24s .

In case p = 1/2 the avalanche size probability becomes a pure power law for
large s,

P (s, p) ≈ s−3/2 . (5.9)

If p is sufficiently close to 1/2 a power law with exponential cut-off is found.
In case of the Oslo model, the situation is different in three ways. Firstly, the
system is 1D, not 2D, secondly, the neighbours are not chosen randomly and
thirdly, the probability to induce topplings in neighbours downstream is larger
than inducing them upstream. Nevertheless the general form for the multiplici-
ties remains the same. This may inspire us to argue that the power law results
from a cascade of avalanches.
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5.4 The Oslo model as a SSR process

Now let us put together these findings. After we have gathered analytical models
and estimates for the driving and relaxation process it is now possible to compare
these results. We will present the results for the load as dynamical variable.
As a first step the large number of observed load states are course grained into
N equidistant discrete bins of size b,

b =
κmax − κmin

N
.

Here κmax and κmin are the largest and smallest loads observed in simulation.
To arrive with the expected visiting distribution of loads we assumed a transition
matrix of the form

p(j | i) =

{
1

2Zi

1
(i−j+g)1.55 e

−(µ−j)2/2σ2

i > j

1/2 j = i+ k .
(5.10)

Here µ and σ are the mean and standard deviation of the observed visiting
distribution. g > 0 is a free parameter. In this case the parameters Zi and k
are defined in the following way

k =

⌊
L

N

⌋
+ 1 , (5.11)

Zi =

i∑
j=1

1

(i− j + g)1.55
e−(µ−j)2/2σ2

. (5.12)

L is the gain in κ at each driving event. It is divided by the number of bins
N in order to arrive with the gain in κ on the rescaled range. It is rounded up
in order to make sure that large bin sizes can not lead to k = 0, because this
would result in an attractor configuration saturated in the bin of lowest load
κmin only.
In figure 44 the final result is shown for the avalanche distribution. The an-
alytic curve (blue) can reproduce the general form of the observed avalanche
distribution (red). We can now conclude that a complex enough SSR picture
can reproduce the statistics of the Oslo model. With the current model, this is
however only possible to a certain level of accuracy. In the next section I would
like to point to some problems with the model and how they could be resolved.
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Figure 44: Red points: Avalanche Distribution as measured in a simulation of
the Oslo model with p = 0.5 and L = 100. Blue points: Analytically derived
avalanche size distribution. A binned space with N = 500 bins is created, on
which a transition matrix, Eq. (5.10), acts. Here µ and σ are taken from the
measured visiting distribution. g = 0.1 was chosen as a fitting parameter. k was
measured according to Eq. (5.11). λ = 0.5 was used as previous investigation
into the driving rate suggest. An analytic visiting distribution is derived as the
eigenvector corresponding to the largest eigenvalue of the transition probability.
From this analytic visiting distribution the avalanche distribution can be derived
using Eq. (4.17). For details on the plotting method used, see the appendix in
chapter A below.
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5.5 Discussion and outlook

The final result is given by the avalanche distribution in figure 44. We can also
compare the resulting visiting distributions (see figure 45). While the observed
distribution and the calculated visiting distribution obey a similar shape, their
relative position is different. By the end of my project, I was not able to clearly
identify the reason for that offset. It could be that the parameter g in the final
model induces this deviation.

Figure 45: The visiting distribution of the load κ for the same parameters as in
figure 44. The orange line is the observed visiting distribution in the Oslo model,
while the blue line gives the load distribution derived with the described SSR
model. The two distributions show a similar qualitative shape. The maximum of
the computed distribution is however shifted to the higher values of κ compared
to the observed distribution.

At the end of this thesis I have arrived with a simplified model that can roughly
reproduce the dynamics of the Oslo sandpile. Note however that, despite the
success of applying SSR mechanisms to this problem, the actual nature of the
power law in the avalanche distributions was not explained. We successfully
identified the exponential cut-off as a result of an underlying prior distribution.
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The transition probability was however forced to be a power law and did not
result from a microscopic description. A possible bottom-up explanation could
be achieved via understanding the dynamics of an avalanche as a branching
process and we showed that this line of thinking may be fruitful by compar-
ing the dynamics with the BTW model with random neighbours as presented
in [19]. The literature on SSR processes provides two explanations for power
laws of exponent smaller than −1. First, the prior distribution could have an
exponent < −1 [26] or secondly, the underlying dynamics are describable by a
cascading event [27]. It will be interesting for future research to investigate the
relationship between cascading and branching processes. The avalanches of the
Oslo model provide a system which could potentially be described as both.

We have made the observation that the visiting distributions of macrostates
in the Oslo model show roughly Gaussian shapes (see figure 33), with a slightly
higher kurtosis. Further, their position and variance appear to be a good esti-
mate for the Gaussian prior distributions. The SSR relaxation transition prob-
abilities contain an absolute Gaussian term that was modelled using mean and
variance of the visiting distributions. This suggests that the visiting distribution
collapses in fact onto the prior distributions. Otherwise it would not be so ev-
idently visible in the transition probabilities (figure 43). The form of the prior
distribution could be associated with the multiplicity of states in the system
(figure 3.17). This will in general depend of the value of the toppling probabil-
ity p. p can be believed to shift the center of the Gaussian prior distribution to
the left or right. By the end of this work we still lack an analytical result for
the dependence of the multiplicity on the value of p. I encourage later research
to investigate this matter further.
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6 Conclusion

In my work I was investigating some SSR characteristics of the Oslo sandpile
model, thereby indicating that the SSR framework is applicable to driven non-
equilibrium systems such as sandpiles, as a descriptive tool.

This was shown in particular for the case of the Oslo sandpile model. The
OSM is subject to simple rules that lead to non-Gaussian statistics. The dis-
tribution of avalanche sizes is following a power law distribution with power
−1.55. We have defined a set of macro variables that allows us to study the
Oslo model in the mathematical framework of SSR processes. Avalanches can
then be associated to movements in a phase space spanned by those macro
variables and we observed the existence of ”stochastic limit cycles” within it,
illustrating that the Oslo model is a non-equilibrium system balanced by driving
and relaxation. Utilizing the existing theory of SSR processes and extending it,
we were able to remodel the driving and relaxation events of the Oslo sandpile.
We calculated and measured the rate of driving, the type of driving and the re-
laxation transition probability by performing simulations. A prior distribution
was observed in the statistics of the relaxation transition probability and was
associated with the multiplicity of macrostates in the Oslo model. Finally, the
form of the avalanche size distribution was successfully remodelled using SSR
processes. The maximum of the modelled visiting distribution, however, does
not fit the observed distribution in the present model. To that end the model
still requires improvement.

We found a simplified and analytical SSR model for the dynamics of state and
avalanche probabilities in the OSM. This model however is as such descriptive.
It does not explain the origin of scale-free avalanche sizes in sandpiles. While
the Gaussian cut-off, observed as part of the avalanche distribution, could origin
from the multiplicities of energy states in the OSM, the power law itself was
assumed as a modelling input. Simple non-cascading SSR processes can produce
power laws of power α in their visiting distribution, where α ∈ (0,−1], and can
therefore not predict the observed power law of the avalanche distribution. This
does however not exclude the possibility that the power law could in principle be
explained by SSR dynamics in a non-trivial way. It is to argue that a branching
process, expressed by the cascading character of the avalanches, could by itself
be modelled as a SSRP. Further research on this topic will therefore focus on
the cascading character of avalanches in the Oslo model.
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A Data Representation

We are given some observations of N events Xi in an interval [xmin, xmax]. As
the available data is limited, we choose to define bins i with length bi = xu,i−xl,i
and data points falling onto them n(bi). Theoretically for N → ∞ and bi → 0
we expect:

n(i)

biN
→ p(x)

For sufficient amounts of data, we therefore assume:

n(i)

biN
≈ p(x) (A.1)

In this thesis, bins of constant size (bi = const.) and exponentially growing bins
(bi ∝ ai) were used. In order to indicate data points corresponding to different
bins i in a graph we will either choose the lower bin edge xl,i = xi on a linear
axis, or the geometric mean of both bin edges xi =

√
xu,i · xl,i on a logarithmic

axis.
In figure 44 the avalanche sizes, measured throughout a simulation of the Oslo
model are clustered in exponentially growing bins (red points). In this way, the
noise in the tail of the avalanche distribution is visually reduced. In the same
plot we also present data points generated by a corresponding SSR process (blue
crosses). The avalanche distribution given by the SSR method is a histogram
with bins of constant size. For means of comparison this histogram on constant
bin sizes is transformed into a histogram that lives on the same exponentially
growing bins, as the red points (simulation data) do. In order to achieve this,
we ask how many Ni constant bin positions xj fall into a larger exponentially
growing bin with index i. For all those constant bins at positions xj the average

frequency f̃i =
∑
fj/Ni (height of a rectangle in the histogram) is computed.

Those average frequencies are presented as blue crosses.
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B Abstract

Critical phenomena within equilibrium thermodynamics are quite well under-
stood and their theory makes precise predictions on scaling behaviours near the
critical point. Self-organized criticality, a term coined by Per Bak, was intro-
duced as an extension of this concept to explain the emergence of power laws in
driven systems. The Oslo sandpile model (Oslo model), a model for a 1+1 di-
mensional sandpile, for instance shows power law distributions in the frequency
of avalanche sizes and was extensively studied. While there has been some suc-
cess, the approach still lacks generality and the power to produce exact results.
Recently another route to out-of-equilibrium systems, namely the Driven Sam-
ple Space Reducing Process (SSR), was proposed. The aim of my thesis is to
show that SSR processes are at the heart of sandpile dynamics as demonstrated
with the Oslo model.
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C Zusammenfassung

Die Theorie der Thermodynamik macht genaue Vorhersagen über das Verhalten
von Systemen nahe eines kritischen Punkts, solange sich diese Systeme im ther-
modynamischen Gleichgewicht befinden. Das Prinzip der Selbstorganisierten
Kritikalität wurde von Per Bak zur Erklärung kritischen Verhaltes und des
Auftretens von endlastigen Verteilungen in getriebenen Systemen vorgeschla-
gen. Als Beispiel kann das viel studierte Oslo Sandhaufen Modell (Oslo Mod-
ell) angeführt werden, welches das dynamische Verhalten eines 1+1 dimension-
alen getriebenen Sandhaufens beschreibt. Die statistische Verteilung der Law-
inengrößen, welche sich von dem Sandhaufen im Oslo Modell lösen, folgt einem
Potenzgesetz. Die Anwendung des Prinzips der selbstorganisierten Kritikalität
auf das Oslo Modell war bisher nur teilweise erfolgreich. In dieser Master-
arbeit wähle ich eine neue Herangehensweise an das kritische Verhalten von
Sandhaufen. Ich beschreibe ihre Dynamik und im Speziellen das Oslo Mod-
ell mithilfe eines Phasenraum Reduzierenden Prozesses und zeige, dass solche
Prozesse die grundsätzliche Natur von Lawinen auf getriebenen Sandhaufen
wiedergeben können.
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