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Abstract

Sobolev spaces play a key role in the proof of existence of solutions to linear symmetric
hyperbolic systems and in the proof of local existence of solutions to non linear wave
equations. Here we prove the existence and uniqueness of solutions to linear symmet-
ric hyperbolic systems. We describe basic properties and prove important estimates of
Sobolev spaces. By using the exact form of the duality we prove existence of solutions
to linear symmetric hyperbolic systems. By the Sobolev embedding inequality we can
connect the regularity of Sobolev spaces with classical differentiability. Consequently, we
can obtain k times continuously differentiable or even smooth solutions.
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Zussamenfassung

Sobolev-Räume spielen eine Schlüsselrolle sowohl beim Beweis der Existenz von Lösun-
gen linearer symmetrischer hyperbolischer Systeme als auch beim Beweis der lokalen
Existenz von Lösungen nichtlinearer Wellengleichungen. Hier zeigen wir die Existenz
und Eindeutigkeit von Lösungen linearer symmetrischer hyperbolischer Systeme. Wir
beschreiben grundlegende Eigenschaften und beweisen wichtige Abschätzungen in Sobolev-
Räumen. Indem wir die exakte Form der Dualität benutzen zeigen wir die Existenz
von Lösungen linearer symmetrischer hyperbolischer Systeme. Mithilfe der Sobolev-
Einbettungsungleichung können wir die Regularität von Sobolev-Räumen mit der klas-
sischen Differenzierbarkeit verbinden. Infolgedessen können wir k-mal stetig differenzier-
bare oder sogar glatte Lösungen erhalten.
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1 Sobolev Spaces

1.1 Mollifiers

In this section we follow [Rin09, §5.1 ]. Mollifiers are a necessary tool to approximate
functions in Lp by smooth functions with compact support. We denote by
C∞0 (Rn) := {f ∈ C∞(Rn)| supp(f) is compact} the set of smooth functions with com-
pact support and by
D(Ω) = C∞0 (Ω) the set of test functions on Ω ⊂ Rn where Ω is open subset of Rn. Finally,
B̄1(0) denotes the unit ball with center 0.
When we write C∞0 (Rn) it means we have functions from Rn to R.

Definition 1.1. A function φ ∈ C∞0 (Rn) such that φ(x) ≥ 0 is called a mollifier if

i) supp(φ) ⊆ B̄1(0)

ii)
∫
Rn
φ(x)dx = 1.

Assume that u : Rn → Rn is measurable, so it is integrable on any compact subset of
Rn. Now we define (Jεu)(x), for any ε > 0, by

(Jεu)(x) =

∫
Rn

φε(x− y)u(y)dy,

where φε(x) = ε−nφ(xε ) is a scaled mollifier and u ∈ L1
loc(Rn). From the definition it is

clear that Jεu is a smooth function and since
∫
Rn
φε(y)dy = 1 we have

(Jεu)(x)− u(x) =

∫
Rn

φε(y)[u(x− y)− u(x)]dy.

Consequently,

|(Jεu)(x)− u(x)| ≤ sup
|y|<ε
|u(x− y)− u(x)|.

If u is continuous then Jεu− u uniformly converges to zero on compact subsets of Rn as
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1 Sobolev Spaces

ε→ 0. When 1 < p <∞, u ∈ Lp(Rn) and with q such that 1
p + 1

q = 1 we have

|(Jεu)(x)| ≤
∫
Rn

φ1/q
ε (x− y)φ1/p

ε (x− y)|u(y)|dy ≤

∫
Rn

φε(x− y)dy

1/q∫
Rn

φε(x− y)|u(y)|pdy

1/p

=

∫
Rn

φε(x− y)|u(y)|pdy

1/p

.

(1.1)

In the second step we used Hölder’s inequality. So

|(Jεu)(x)|p ≤
∫
Rn

φε(x− y)|u(y)|pdy.

Next we integrate both sides of this inequality and then use Fubini’s theorem∫
Rn

|(Jεu)(x)|pdx ≤
∫
Rn

∫
Rn

φε(x− y)|u(y)|pdydx =

∫
Rn

|u(y)|p
∫
Rn

φε(x− y)dxdy =

∫
Rn

|u(y)|pdy.
(1.2)

Raising both sides of the inequality to the power 1/p,∫
Rn

|(Jεu)(x)|pdx

1/p

6

∫
Rn

|u(y)|pdy

1/p

.

We finally get
‖(Jεu)‖p ≤ ‖u‖p. (1.3)

(1.3) is also true for p = 1 and p =∞. Similarly,

‖Jεu− u‖p 6

∫
Rn

∫
Rn

φε(y)|u(x− y)− u(x)|pdydx

1/p

. (1.4)

From the above inequality it is clear that if u(.− y) converges to u in Lp(Rn) as y → 0,
then Jεu→ u in Lp(Rn). By Theorem 3.14 of [Rud87] continuous functions with compact
support are dense in Lp(Rn) for 1 ≤ p < ∞. It follows that ‖un − u‖p → 0 for certain
un ∈ C0(Rn), given u ∈ Lp(Rn) 1 ≤ p < ∞. Applying (1.3) to u − un we obtain
‖Jεu − Jεun‖p ≤ ‖u − un‖p. Hence ‖Jεu − Jεun‖p → 0 when n → ∞. Since un is a
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1.1 Mollifiers

continuous function with compact support then by (1.4) we have ‖Jεun − un‖p → 0. By
using the Minkowski inequality we obtain

‖Jεu− u‖p ≤ ‖Jεu− Jεun‖p + ‖Jεun − un‖p + ‖un − u‖p.

Since the right hand side of this inequality converges to 0 when ε→ 0 and n→∞, then
Jεu→ u in Lp(Rn). For proving the next lemma we will need this intermediate lemma:

Lemma 1.2. If Ω ⊆ Rn is an open set then there exists an increasing sequence of sets
{Kn}n≥1 such that

1. Kn is compact

2. Kn are increasing: Kn ⊂ intKn+1

3.
∞⋃
n=1

Kn = Ω

Proof. Let us defineKn = {x ∈ Ω : |x| ≤ n and d(x, ∂Ω) ≥ 1
n}, where ∂Ω is the boundary

of Ω. From this definition it follows thatKn is bounded and closed, soKn is compact. Let
us prove that Kn ⊂ intKn+1. Suppose that x ∈ Kn but x /∈ intKn+1 ⇒ |x| ≥ n+ 1 > n
or d(x, ∂Ω) ≤ 1

n+1 < 1
n so x /∈ Kn which is a contradiction to the assumption. Take

x ∈ Ω. As Ω is open, ∃r > 0 such that Br(x) ⊂ Ω. Choose n such that r ≥ 1
n and |x| ≤ n

so Br(x) ⊇ B 1
n

(x) =⇒ d(x, ∂Ω) ≥ 1
n so x ∈ Kn.

Lemma 1.3. Let u ∈ L1
loc(Ω), where Ω ⊆ Rn is open. If∫

Ω

uφ dx = 0

for every φ ∈ C∞0 (Ω), then u = 0 a.e..

Proof. By assumption u : Ω → R is measurable so uχK is integrable for every compact
subset K ⊆ Ω. Here χK is the characteristic function of K.We define Bj to be the subset
of Ω on which |u(x)| ≥ 1/j, and from Lemma 1.2 there exist the increasing compact sets
{Kl}l>1 such that Ω =

⋃
l≥1

Kl and let Bj,l = Bj ∩Kl. We denote by

νj,l(x) =
u(x)

|u(x)|
χBj,l(x),

then Jενj,l ∈ C∞0 (Ω) for ε small enough. In fact there is an ε0 > 0 and a corresponding
compact subset Kl,0 of Ω such that |Jενj,l| ≤ χKl,0 for all ε ≤ ε0. Therefore |(Jενj,l)u| ≤
|u|χKl,0 , and |u|χKl,0 is integrable. Choose any sequence 0 ≤ εi ≤ ε0 converging to zero.
From the discussion preceding this lemma and the fact that νj,l ∈ Lp for any 1 ≤ p <∞,
we conclude that Jεiνj,l converges to νj,l with respect to any Lp norm, for 1 ≤ p < ∞.
According to Theorem 3.12 of [Rud87] there is a subsequence εik such that Jεik νj,l(x)
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1 Sobolev Spaces

converges to νj,l(x) a.e.. Now we have that Jεik νj,lu is bounded by an integrable function
and converges to |u|χBj,l a.e., so by Lebesgue’s dominated convergence theorem

lim
k→∞

∫
Ω

(Jεik νj,l)(x)u(x)dx =

∫
Bj,l

|u(x)|dx ≥ 1

j
µ(Bj,l).

By assumption of the lemma the left-hand side is zero, so we can conclude that the
measure of the union of all the Bj,l is zero. This union coincides with the set on which
u is non-zero, so u = 0 a.e..

1.2 Weak differentiability, examples

In this section we follow [Rin09, §5.2]. We begin with some notations. A typical point
x ∈ Rn is denoted by x = (x1, . . . , xn). A multiindex α = (α1, α2, . . . , αn) is an n-tuple
of non-negative integeres αi. We denote by xα the monomial xα = xα1

1 xα2
2 . . . xαnn and

call it a monomial of order |α| = α1 + α2 + . . . + αn. By ∂α is denoted the differential
operator of order |α|. If u is differentible and α is a multiindex then the differential of u
with respect to α is

∂αu = ∂α1
1 ∂α2

2 . . . ∂αnn u,

where

∂i =
∂

∂xi
i = 1, . . . , n.

If we write ∂αu we understand that α is an n-dimensional multiindex and that we differ-
entiate with respect to n variables and if we write ∂i we assume i is an integer between
0 and n. Here we recall Leibniz rule

∂α(uv)(x) =

(
α

β

)
∂βu(x)∂α−βv(x),

for functions u and v that are |α| times continuously differentiable near x, where(
α

β

)
=

α!

β!(α− β)!
=

(
α1

β1

)
· · ·
(
αn
βn

)
.

When we write Hs(Rn) and S(Rn) it means we have functions from Rn to C. But in
general, when we do not write the function spaces range it means that functions are real
valued.

Definition 1.4. A function u ∈ L1
loc(Rn) is called k times weakly differentiable if for

every multiindex α with |α| ≤ k there is a function uα ∈ L1
loc(Rn) such that

(−1)|α|
∫
Rn

∂αuφdx = (−1)|α|
∫
Rn

uαφ dx =

∫
Rn

u∂αφ dx (1.5)

for all φ ∈ C∞0 (Rn). The functions uα are called the weak derivatives of u .
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1.2 Weak differentiability, examples

Remark 1.5. If eq. (1.5) holds for both vα and uα, then by Lemma 1.3 uα = vα a.e..
Usually we shall write ∂αu instead of uα. Also we can replace Rn with any open subset
Ω of Rn .

Definition 1.6. The set of all k times weakly differentiable, complex valued functions
defined on Rn such that all the weak derivatives are in Lp(Rn) 1 ≤ p < ∞ , is denoted
by Wk,p(Rn,Cm). The set of equivalence classes of elements in Wk,p(Rn,Cm) we simply
denote by W k,p(Rn,Cm), where two elements are equivalent if the set on which they are
different has measure zero. We define

‖u‖Wk,p =

∑
|α|≤k

∫
Rn

|∂αu|p dx

1/p

(1.6)

for an element u of Wk,p(Rn,Cm).

Later we will prove that ‖ · ‖Wk,p is a norm on W k,p(Rn,Cm) spaces.

Remark 1.7. Analogously, we define W k,p(Rn,Rm) and W k,p(Ω,Cm) for any open sub-
set Ω of Rn.

Definition 1.8. Let the sequence {um}m≥1 and u ∈ W k,p(Rn). We say that {um}m≥1

converges to u in W k,p(Rn) and write um → u in W k,p(Rn) if

lim
m→∞

‖um − u‖Wk,p(Rn) = 0.

Lemma 1.9. Assume 1 ≤ p < ∞ and let k be a non negative integer. Then ‖ · ‖Wk,p

defined in (1.6) is a norm on W k,p(Rn,Cm) with respect to which W k,p(Rn,Cm) is a
Banach space.

Proof. First we prove that ‖ · ‖Wk,p is a norm. From (1.6)

‖λu‖Wk,p = |λ|‖u‖Wk,p ∀λ ∈ R,

and
‖u‖Wk,p = 0 if and only if u = 0 a.e..

We need to check that
‖u+ v‖Wk,p ≤ ‖u‖Wk,p + ‖v‖Wk,p

for u, v ∈W k,p(Rn,Cm). If p = 1 then by (1.6) and by triangle inequality we obtain

‖u+ v‖Wk,1 =
∑
|α|≤k

∫
Rn

|∂α(u+ v)| dx ≤
∑
|α|≤k

∫
Rn

|∂αu| dx+
∑
|α|≤k

∫
Rn

|∂αv| dx =

‖u‖Wk,1 + ‖v‖Wk,1 .

5



1 Sobolev Spaces

Let us assume 1 < p <∞, then

‖u+ v‖p
Wk,p =

∑
|α|≤k

∫
Rn

|∂α(u+ v)|p dx ≤

∑
|α|≤k

∫
Rn

|∂αu||∂α(u+ v)|p−1 dx+
∑
|α|≤k

∫
Rn

|∂αv||∂α(u+ v)|p−1 dx.

Note that if we let q = p/(p−1) then we can use Hölder’s inequality for counter measure:

∑
|α|≤k

|∂αu||∂α(u+ v)|p−1 ≤

∑
|α|≤k

|∂αu|p
1/p∑

|α|≤k

|∂α(u+ v)|(p−1)·q

1/q

.

In particular∑
|α|≤k

∫
Rn

|∂αu||∂α(u+ v)|p−1 dx =

∫
Rn

∑
|α|≤k

|∂αu||∂α(u+ v)|p−1 dx ≤

∫
Rn

∑
|α|≤k

|∂αu|p
1/p∑

|α|≤k

|∂α(u+ v)|(p−1)· p
p−1

1/q

dx.

Now let us apply Hölder’s inequality for the Lebesgue measure:

∫
Rn

∑
|α|≤k

|∂αu|p
1/p∑

|α|≤k

|∂α(u+ v)|p
1/q

dx ≤

∫
Rn

∑
|α|≤k

|∂αu|pdx

1/p∫
Rn

∑
|α|≤k

|∂α(u+ v)|pdx


p−1
p

= ‖u‖Wk,p‖u+ v‖p−1
Wk,p .

We have a similar inequality for v:∑
|α|≤k

∫
Rn

|∂αv||∂α(u+ v)|p−1 dx ≤ ‖v‖Wk,p‖u+ v‖p−1
Wk,p .

Together these inequalities yield

‖u+ v‖p
Wk,p ≤ ‖u‖Wk,p‖u+ v‖p−1

Wk,p + ‖v‖Wk,p‖u+ v‖p−1
Wk,p =

(‖u‖Wk,p + ‖v‖Wk,p) ‖u+ v‖p−1
Wk,p .

Finally we get ‖u+v‖Wk,p ≤ ‖u‖Wk,p+‖v‖Wk,p . Next we need to prove thatW k,p(Rn,Cm)
is a Banach space. Assume that uj is a Cauchy sequence in W k,p(Rn,Cm) then ∂αuj
is a Cauchy sequence in Lp(Rn,Cm). Since Lp(Rn,Cm) is a Banach space then for

6



1.2 Weak differentiability, examples

every multiindex α with |α| ≤ k there is a uα ∈ Lp(Rn,Cm) such that ∂αuj → uα in
Lp(Rn,Cm). Define u := uα for α = 0 then lim

j→∞
uj = u(0,...,0) in Lp(Rn,Cm). We need

to prove that
u ∈W k,p(Rn,Cm) and ∂αu = uα (|α| ≤ k).

Fix φ ∈ C∞0 (Rn) then ∫
Rn

u∂αφdx = lim
j→∞

∫
Rn

uj∂
αφdx =

lim
j→∞

(−1)|α|
∫
Rn

∂αujφdx = (−1)|α|
∫
Rn

uαφdx.

We conclude that u ∈W k,p(Rn,Cm) and ∂αu = uα for every |α| ≤ k. Finally

‖u− uj‖pWk,p =
∑
|α|≤k

∫
Rn

|∂αu− ∂αuj |pdx→ 0 when j →∞.

So uj converges to u in W k,p and u is weakly differentiable with weak derivatives ∂αu =
uα.

In case p = 2, W k,2 is a Hilbert space.

Definition 1.10. Let Hk(Rn,Cm) = W k,2(Rn,Cm), so

Hk(Rn,Cm) = {u : u ∈ L2(Rn,Cm), ∂αu ∈ L2(Rn,Cm) ∀|α| ≤ k},

where ∂αu are the weak derivatives defined by (1.5).

Remark 1.11. Note that Hk(Rn,Cm) is a complex Hilbert space with the inner product
given by

(u, v) =
∑
|α|≤k

∫
Rn

∂αu(x) · ∂αv(x)dx for u, v ∈ Hk(Rn,Cm), (1.7)

and corresponding norm for this inner product is defined by

‖u‖Hk =

∑
|α|≤k

∫
Rn

|∂αu|2 dx

1/2

. (1.8)

Let us give some examples of functions belonging to or not belonging to Hk(Ω) from
[Bha12, page 182] .

Example 1.12. For Ω = (−1, 1) and u(x) = |x| ∀x ∈ (−1, 1). We show that u ∈
H1(−1, 1), but u /∈ H2(−1, 1).

7



1 Sobolev Spaces

Proof. Let us compute
∫ 1
−1 |u(x)|2dx :

∫ 1

−1
|u(x)|2dx =

∫ 1

−1
x2dx =

x3

3

∣∣∣1
−1

=
1

3
+

1

3
=

2

3
<∞⇒ u(x) ∈ L2(−1, 1).

The first order weak derivative is

du

dx
= g(x) =

{
1 for 0 < x < 1
−1 for −1 < x < 0.

Consequently, ∫ 1

−1
|g(x)|2dx =

∫ 0

−1
1dx+

∫ 1

0
1dx = 2 <∞

=⇒ du

dx
∈ L2(−1, 1). Thus u,

du

dx
∈ L2(−1, 1) from Definition 1.10 it follows that u ∈

H1(−1, 1).
Now we need to compute the second order of weak derivative . For ∀φ ∈ D(R)〈

d2u

dx2
, φ

〉
=

〈
d

dx

(
du

dx

)
, φ

〉
=

〈
dg

dx
, φ

〉
= −

〈
g,
dφ

dx

〉
= −

∫ ∞
−∞

g(x)
dφ

dx
(x)dx

=

∫ 0

−∞

dφ

dx
dx−

∫ ∞
0

dφ

dx
dx = φ

∣∣∣0
−∞
− φ

∣∣∣∞
0

= 2φ(0) = 〈2δ, φ〉 =⇒

d2u

dx2
= 2δ ∈ D′(R).

Let us prove that the Dirac distribution is not integrable, δ /∈ L1
loc(−1, 1).

Suppose to the contrary that is ∃f ∈ L1
loc(−1, 1) with δx0 = f .

Choose ρ ∈ D(R) such that supp(ρ) ⊆ (−1, 1), ρ(0) = 1 and we define
ρl(x) := ρ(l(x− x0)) l ∈ N. Then supp(ρl) ⊆ (−1/l, 1/l), ρl(x0) = 1. Now we have

1 = ρl(x0) = |〈δx0 , ρl〉| =
∣∣∣ 1/l∫
−1/l

f(x)ρ(l(x− x0))dx
∣∣∣ ≤ 1/l∫
−1/l

|f(x)||ρ(l(x− x0))|dx

≤ ||ρ||L∞
1/l∫
−1/l

|f(x)|dx→ 0 l→∞.

This is a contradiction, so δ /∈ L1
loc(−1, 1).

Since L2(−1, 1) ⊂ L1
loc(−1, 1) and 2δ /∈ L1

loc(−1, 1) =⇒ u /∈ H2(−1, 1).

Example 1.13. Let Ω = {(x, y) : 0 < x < 1, 0 < y < xr, r > 0} ⊂ R2 and u(x, y) =
xα, α ∈ R ∀(x, y) ∈ Ω. If 2α+ r > 1 then u ∈ H1(Ω) .

8



1.2 Weak differentiability, examples

x

y

0

Ω

y = xr

1

1

Proof. Let us compute
∫

Ω |u(x, y)|2dxdy :∫
Ω
|u(x, y)|2dxdy =

∫ 1

0

(∫ y=xr

y=0
x2αdy

)
dx =

∫ 1

0
x2α

∫ y=xr

y=0
dydx

=

∫ 1

0
x2α+rdx <∞ if 2α+ r + 1 > 0.

Consequently, u(x, y) ∈ L2(Ω) for 2α+ r > −1.
Notice that u is a C∞-function in Ω. Since the usual partial derivatives and weak
derivatives of u will coincide in Ω then ∂xu = αxα−1 , ∂yu = 0 in Ω. It is clear that
∂yu ∈ L2(Ω) ∀α, r and∫

Ω
|∂xu|2dxdy =

∫ 1

0

(∫ y=xr

y=0
α2x2α−2dy

)
dx

= α2

∫ 1

0
x2α−2+rdx <∞ if 2α− 2 + r + 1 > 0.

Hence ∂xu ∈ L2(Ω) for 2α + r > 1. We have proved that u, ∂xu, ∂yu ∈ L2(Ω) for
2α+ r > 1. By Definition 1.10 u ∈ H1(Ω) for 2α+ r > 1.

Example 1.14. If Ω = R2 and u(x1, x2) is given by

u(x1, x2) =


ln | ln r| for 0 < r = (x2

1 + x2
2)

1
2 <

1

e

0 for
1

e
≤ r <∞,

then u(x1, x2) ∈ H1(R2).

Proof. Since |u(x1, x2)| → ∞ when r → 0, it follows that u is unbounded and discontin-
uous in R2.

9



1 Sobolev Spaces

First let us prove that u ∈ L2(R2) :∫
R2

u(x1, x2)2dx1dx2 =

∫
0<r< 1

e

(ln | ln r|)2dx1dx2 =

∫ 1
e

0

∫ 2π

0
(ln | ln r|)2rdrdθ = 2π

∫ 1
e

0
(ln | ln r|)2rdr.

Let us estimate
∫ 1
e

0 (ln | ln r|)2rdr. For 0 < r <
1

e
, we get | ln(r)| = − ln r = ln

1

r
and

for r =
1

e
, ln

1

e
= − ln e = −1. So ln r monotonically increases from −∞ to −1 when

r increases from 0 to
1

e
. Hence, 0 < r <

1

e
=⇒ e <

1

r
< ∞ =⇒ 1 < ln

1

r
<

1

r
=⇒

ln | ln r| = ln ln 1
r < ln 1

r = − ln r =⇒ (ln | ln r|)2 < (ln r)2 for 0 < r <
1

e
. Consequently,

∫ 1
e

0
(ln | ln r|)2rdr ≤

∫ 1
e

0
(ln r)2rdr. (1.9)

Let us compute
∫ 1
e

0 (ln r)2rdr using partial integration

I =

∫ 1
e

0
(ln r)2d

r2

2
=

(ln r)2r2

2

∣∣∣r= 1
e

r→0+
−
∫ 1

e

0

r2

2
· 2 ln r

r
dr =

1

2e2
− lim
r→0+

(ln r)2r2

2︸ ︷︷ ︸
I1

−
∫ 1

e

0
r ln rdr︸ ︷︷ ︸
I2

=

1

2e2
− I1 − I2.

(1.10)

Now let us compute I1 and I2 :

I1 = lim
r→0+

(ln r)2

2r−2
= lim

r→0+

2 ln r

2r(−2r−3)
= lim

r→0+

ln r

−2r−2
=

lim
r→0+

1

−2r(−2r−3)
= lim

r→0+

r2

4
= 0,

and

I2 =

∫ 1
e

0
ln rd

r2

2
=
r2 ln r

2

∣∣∣r= 1
e

r→0+
−
∫ 1

e

0

r2

2

1

r
dr =

− 1

2e2
− lim
r→0+

r2 ln r

2︸ ︷︷ ︸
I3

− 1

4e2
,

I3 = lim
r→0+

r2 ln r

2
= lim

r→0+

ln r

2r−2
= lim

r→0+

1

−4r · r−3
= lim

r→0+
−r

2

4
= 0.

10



1.2 Weak differentiability, examples

Hence I2 = − 1

2e2
− 0− 1

4e2
= − 3

4e2
.

Insert I1 and I2 in (1.10), then we obtain I =
1

2e2
− 0 +

3

4e2
=

5

4e2
.

Finally by (1.9) we have that

∫
R2

u(x1, x2)2dx1dx2 = 2π

∫ 1
e

0
(ln | ln r|)2rdr 6

2π · 5
4e2

<∞ =⇒ u ∈ L2(R2).

Now we need to show that
∂u

∂xi
∈ L2(R2), i = 1, 2, where

∂u

∂xi
is the weak derivatives. Let

us denote by
[
∂u

∂xi
(x)

]
the usual partial derivative of u with respect to xi (i = 1, 2).

For 0 < r <
1

e [
∂u

∂xi
(x)

]
=

[
d

dr
ln | ln r|

] [
∂r

∂xi

]
=

− 1

ln r

[
d

dr
(− ln r)

]
· xi
r

=
xi

r2 ln r
, i = 1, 2.

Since r = (x2
1 + x2

2)
1
2 then

[
∂r

∂xi

]
=
xi
r
. From the definition of the function u(x1, x2) it

follows that
[
∂u

∂xi
(x)

]
= 0 for 1

e ≤ r <∞. Thus

[
∂u

∂xi
(x)

]
=


xi

r2 ln r
, 0 < r <

1

e

0,
1

e
≤ r <∞.

(1.11)

Let us prove that
[
∂u

∂xi
(x)

]
∈ L2(R2), i = 1, 2 :

∫
R2

[
∂u

∂xi
(x)

]2

dx1dx2 =

∫
0<r< 1

e

x2
i

r4(ln r)2
dx1dx2 ≤∫ 1

e

0

∫ 2π

0

r2

r4(ln r)2
rdrdθ = 2π

∫ 1
e

0

dr

r(ln r)2
=

2π

∫ 1
e

0

d(ln r)

(ln r)2
= 2π

[
−1

ln r

] ∣∣∣∣ 1e
0

= 2π · −1

ln(
1

e
)

= 2π <∞.

Let
∂u

∂xi
i = 1, 2 be the weak derivatives of u with respect to xi. We will prove that

11



1 Sobolev Spaces

the usual derivative and the weak derivative of u coincide. Then, ∀φ ∈ D(R2),〈
∂u

∂xi
, φ

〉
= −

〈
u,
∂φ

∂xi

〉
= −

∫
R2

u(x)
∂φ

∂xi
(x)dx = −

∫
0<r< 1

e

u(x)
∂φ

∂xi
(x)dx =

−
∫

0<r< 1
e

[
∂(uφ)

∂xi

]
dx+

∫
0<r< 1

e

[
∂u

∂xi
(x)

]
φ(x)dx =

− lim
ε→0

∫
Ωε

[
∂(uφ)

∂xi

]
dx︸ ︷︷ ︸

J1

+

∫
R2

[
∂u

∂xi
(x)

]
φ(x)dx︸ ︷︷ ︸

J2

= −J1 + J2,

(1.12)

since
[
∂u

∂xi
(x)

]
= 0 for r ≥ 1

e . Hence, Ωε = {x : x = (x1, x2), ε ≤ r = (x2
1 + x2

2)
1
2 ≤ 1

e}

is the closed annular circular domain enclosed by inner circle Bε with radius ε and outer
circle B 1

e
with radius 1

e . The figure is given below.

x1

x2

n 1
e
: the unit normal to B 1

e

nε

ε

1
e

Ωε

Bε

B 1
e

0

Applying Green’s theorem on the closed annular circular domain Ωε we get

J1 = lim
ε→0

∫
Bε

u(x)φ(x)ni(Bε)ds+

∫
B 1
e

u(x)φ(x)ni(B 1
e
)ds =

lim
ε→0

∫
Bε

u(x)φ(x)ni(Bε)ds,

(1.13)

12



1.2 Weak differentiability, examples

where ni(Bε) (resp.ni(B 1
e
)) is the i th component of the unit vector normal n̂ to Bε

(resp. B 1
e
). From the definition of the function u(x1, x2) it follows that u = 0 on B 1

e
so

the second term in (1.13) vanishes.

|J1| =
∣∣∣∣ ∫

Bε

u(x)φ(x)ni(Bε)ds

∣∣∣∣ =

∣∣∣∣ ∫
Bε

ln | ln ε|φ(x)ni(Bε)ds

∣∣∣∣
≤ max |φ(x)|

∣∣∣ ln | ln ε|∣∣∣2πε→ 0,

when ε→ 0. Since ∀ε > 0, ln | ln ε| < | ln ε| and

lim
ε→0

ε| ln ε| = lim
ε→0

− ln ε
1
ε

= lim
ε→0

−1
ε

− 1
ε2

= 0

then ε ln | ln ε| < ε| ln ε| → 0 when ε → 0. From the above discussion and from (1.13) it
follows that J1 = 0. Finally from (1.12) we have that ∀φ ∈ D(R2),〈

∂u

∂xi
, φ

〉
=

∫
R2

[
∂u

∂xi
(x)

]
φ(x)dx =⇒ ∂u

∂xi
=

[
∂u

∂xi
(x)

]

with
[
∂u

∂xi
(x)

]
defined by (1.11) for i = 1, 2. We have already proved that

[
∂u

∂xi
(x)

]
∈

L2(R2) =⇒ ∂u

∂xi
(x) ∈ L2(R2) for i = 1, 2, so u(x1, x2) ∈ H1(R2).

Lemma 1.15. Let 1 ≤ p < ∞ and let k be a non negative integer. Then the space
C∞0 (Rn,Cm) is dense in W k,p(Rn,Cm).

Proof. Assume that u ∈ W k,p(Rn,Cm) and φ ∈ C∞0 (Rn) be such that φ(x) = 1 for
|x| ≤ 1. The existence such a φ is given in Proposition A.12 of [Rin09]. Let us show
that φlu ∈W k,p(Rn,Cm), where φl(x) = φ(x/l). Since u ∈W k,p(Rn,Cm) it follows that
∂αu ∈ Lp(Rn,Cm) for all |α| ≤ k. By the Leibniz formula

∂α(φlu) =
∑
β≤α

(
α

β

)
∂α−βφl∂

βu.

Since ∂α−βφl ∈ C∞0 (Rn) and ∂βu ∈ Lp(Rn,Cm) then

∂α−βφl∂
βu ∈ Lp(Rn,Cm) :∫

Rn

|∂α−βφl∂βu|pdx ≤ ‖∂α−βφl‖p∞‖∂βu|‖pp <∞.

Consequently,
∂α(φlu) ∈ Lp(Rn,Cm) for all |α| ≤ k.

13



1 Sobolev Spaces

We conclude that φlu ∈W k,p(Rn,Cm). To begin with we need to show that φlu converges
to u in W k,p(Rn,Cm):

‖φlu− u‖pWk,p =
∑
|α|≤k

∫
Rn

|∂α(φlu− u)|pdx =

∑
|α|≤k

∫
Rn

∣∣∣∣∣∣
∑
β<α

(
α

β

)
∂α−βφl∂

βu+ φl∂
αu− ∂αu

∣∣∣∣∣∣
p

dx.

In the above expression if β < α, then ∂α−βφl∂βu converges to zero pointwise everywhere
when l→∞ and it is bounded by a function in Lp. By Lebesgue’s dominated convergence
theorem ∂α−βφl∂

βu convergence to zero in Lp. By definition φl(x) = 1 for |x| 6 l, so φlu
converges to u. Since φlu has compact support and φlu converges to u in W k,p(Rn,Cm)
then we can assume that u also has compact support. Consequently Jεu is a smooth
function with compact support. Let us show that

∂αJεu(x) =

∫
Rn

φε(x− y)∂αu(y)dy.

Since φε(x− y) ∈ C∞0 (Rn) and ∂αxφε(x− y) = (−1)|α|∂αy φε(x− y) we have that

∂αxJεu(x) =

∫
Rn

∂αxφε(x− y)u(y)dy = (−1)|α|
∫
Rn

∂αy φε(x− y)u(y)dy. (1.14)

By the definition of the weak derivative and since φε(x− y) ∈ C∞0 (Rn) we get

(−1)|α|
∫
Rn

∂αy φε(x− y)u(y)dy =

∫
Rn

φε(x− y)∂αy u(y)dy. (1.15)

So
∂αJεu(x) =

∫
Rn

φε(x− y)∂αu(y)dy.

Before the statement of Lemma 1.2 we proved that Jεu converges to u in Lp. Finally we
conclude that all u ∈W k,p(Rn,Cm) can be approximated by Jεu ∈ C∞0 (Rn,Cm). So the
space C∞0 (Rn,Cm) is dense in W k,p(Rn,Cm) for 1 ≤ p <∞.

1.3 Schwartz space

In this section we follow lecture notes [HS09, §5.2].

Definition 1.16. We say that φ ∈ C∞(Rn) is rapidly decreasing, if for all multiindices
α, β :

qα,β(φ) := sup
x∈Rn

|xαDβφ(x)| <∞.

The vector space of all rapidly decreasing functions on Rn we call Schwartz space and
denote by S(Rn) .
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1.3 Schwartz space

Definition 1.17. We say that the sequence (φn)n>1 ∈ S(Rn) converges to φ in S(Rn) if
for all multiindices α, β :

qα,β(φn − φ)→ 0 when n→∞.

Also, we can define convergence in S(Rn) by increasing sequence of semi-norms

Qk(φ) :=
∑

|α|,|β|≤k

qα,β(φ), k ∈ N0.

Theorem 1.18. The space S(Rn) has a metric d : S(Rn)× S(Rn)→ R defined by

d(φ, ψ) :=

∞∑
k=0

2−k
Qk(φ− ψ)

1 +Qk(φ− ψ)
φ, ψ ∈ S(Rn).

Proof. Let us prove that d(φ, ψ) is a metric. From the definition of d(φ, ψ) it is clear that
d(φ, ψ) = 0⇔ φ = ψ and d(φ, ψ) = d(ψ, φ). It remains to show that for every ρ ∈ S(Rn)

d(φ, ψ) ≤ d(φ, ρ) + d(ρ, ψ). We will use that f(x) =
x

1 + x
: [0,∞) −→ [0,∞) is an

increasing function and Qk(φ− ψ) ≤ Qk(φ− ρ) +Qk(ρ− φ) (as Qk(φ) is a semi-norm).
So

Qk(φ− ψ)

1 +Qk(φ− ψ)
≤ Qk(φ− ρ) +Qk(ρ− ψ)

1 +Qk(φ− ρ) +Qk(ρ− ψ)
.

Now we use the following simple fact that for every a, b ≥ 0 : a+b
1+a+b = a

1+a+b + b
1+a+b ≤

a
1+a + b

1+b and finally we get

Qk(φ− ρ) +Qk(ρ− ψ)

1 +Qk(φ− ρ) +Qk(ρ− ψ)
≤ Qk(φ− ρ)

1 +Qk(φ− ρ)
+

Qk(ρ− ψ)

1 +Qk(ρ− ψ)
.

Multiplying both sides of the above inequality by 2−k and summing for all k we get

∞∑
k=0

2−k
Qk(φ− ψ)

1 +Qk(φ− ψ)
≤
∞∑
k=0

2−k
Qk(φ− ρ)

1 +Qk(φ− ρ)
+
∞∑
k=0

2−k
Qk(ρ− ψ)

1 +Qk(ρ− ψ)
.

Now we have the desired result d(φ, ψ) ≤ d(φ, ρ)+d(ρ, ψ) and that d(φ, ψ) is a metric.

Theorem 1.19. Convergence with respect to the metric d is equivalent to S-convergence.

Proof. Assume that the sequence (φn)n≥1 is converging to φ in S. We need to show that
d(φn, φ) −→ 0 as n −→∞.
Let ε > 0. Choose N ∈ N such that ε >

4

2N+1
. Since the sequence (φn)n≥1 converges

to φ in S there exists some m0 ∈ N such that for all n ≥ m0 we have QN (φn − φ) < ε
4 .
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Thus we obtain for any n ≥ m0 :

d(φn, φ) =

N∑
k=0

2−k

≤QN (φn−φ)︷ ︸︸ ︷
Qk(φn − φ)

1 +Qk(φn − φ)
+

∞∑
k=N+1

2−k

≤1︷ ︸︸ ︷
Qk(φn − φ)

1 +Qk(φn − φ)

≤ QN (φn − φ)

N∑
k=0

2−k +

∞∑
k=N+1

2−k = QN (φn − φ) · 2(1− 2−N−1) +
1

2N+1
· 2

≤ ε

4
· 2(1− 0) +

ε

4
· 2 = ε.

So d(φn, φ) −→ 0 as n −→∞. And conversely, metric convergence implies S-convergence
since qα,β(φn − φ) −→ 0 when n −→∞.

Theorem 1.20. S(Rn) is a complete metric space.

Proof. Let us prove that any Cauchy sequence (φn)n>1 ∈ S(Rn) converges to some
φ ∈ S(Rn). The space L∞(Rn) is a Banach space with the norm ‖ · ‖∞. Let us denote
by Cb(Rn) = L∞(Rn) ∩ C(Rn). This space is also a Banach space with the norm ‖ · ‖∞.
Suppose that (φj)j>1 is a Cauchy sequence in S(Rn) then we obtain for every multiindices
α, β, xαDβφj is a Cauchy sequence in Cb(Rn). Thus xαDβφj converges to some φα,β ∈
Cb. Let us put φ = φ0,0. On the one hand xαDβφj converges to φα,β in Cb and on the
other hand xαDβφj converges point wise to xαφ0,β so φα,β = xαDβφ = xαφ0,β.
Now we need to prove that φα,β ∈ S(Rn). For arbitrary fixed N ∈ N0 and for any
multiindices α, β :

‖xαDβφ‖∞ ≤ ‖xαDβφ− xαDβφN‖∞ + ‖xαDβφN‖∞ <∞.

So qα,β(φ) < ∞. It remains to prove that φj converges to φ in S(Rn). Since xαDβφj is
a Cauchy sequence then for any ε > 0 there exist N0 such that

‖xαDβφ− xαDβφj‖∞ = lim
n→∞

‖xαDβφn − xαDβφj‖∞ < ε (j > N0).

Therefore φj → φ in S(Rn).

Example 1.21. φ = e−a|x|
2
, Re(a) > 0 is a smooth function but has not compact support

so e−a|x|2 /∈ D(Rn). This function is rapidly decreasing =⇒ e−a|x|
2 ∈ S(Rn). Finally we

have e−a|x|2 ∈ S(Rn) \ D(Rn).

1.4 Temperate distributions and Fourier transforms

In this section we follow lecture notes [HS09, §5.3 and §5.4].

Definition 1.22. A continuous linear functional u : S(Rn) → C is called a temperate
distribution:

u(φn)→ 0 in C when φn → 0 (n→∞) in S(Rn).

The set of all temperate distributions is denoted by S ′(Rn).
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Theorem 1.23. Assume u : S(Rn)→ C be a linear functional. Then u ∈ S ′(Rn) if and
only if ∃C > 0 ∃N ∈ N0 such that ∀φ ∈ S(Rn)

|u(φ)| ≤ CQN (φ) = C
∑

|α|,|β|≤N

‖xαDβφ‖∞. (1.16)

Proof. If φn → 0 in S(Rn) then by (1.16) u(φn) → 0. Hence u ∈ S ′(Rn). Now assume
that u is continuous but (1.16) does not hold: ∀N ∈ N ∃φN ∈ S(Rn) such that

|u(φN )| > NQN (φN ).

In particular, φN 6= 0. Let us denote by ψN = φN/(NQN (φN )). This is a sequence in
S(Rn) with

qα,β(ψN ) =
qα,β(φN )

NQN (φN )
=

qα,β(φN )

N ·
∑

|α|,|β|≤N
qα,β(φN )

<
1

N

when N ≥ max(|α|, |β|). On the other hand |u(ψN )| =
|u(φN )|

NQN (φN )
> 1. We obtain

qα,β(ψN )→ 0 but |u(ψN )| > 1. This is a contradiction to our assumption.

A temperate distribution is a special case of a distribution, which is a continuous linear
form on Schwartz space. We need the concept of a temperate distribution to take the
Fourier transform.

Remark 1.24. For 1 ≤ p ≤ ∞ Lp(Rn) ⊆ S ′(Rn).

Proof. The cases p = 1 and p =∞ are obvious. Let us prove theorem when 1 < p <∞.
From Hölder’s inequality we have, if f ∈ Lp(Rn), φ ∈ S(Rn) and with q such that
1

p
+

1

q
= 1 then

|〈f, φ〉| ≤
∫
|fφ| ≤ ‖f‖Lp‖φ‖Lq .

Since φ ∈ S(Rn)⇒ ∀l ∈ N, |φ(x)| ≤ Ql(φ)

(1 + |x|)l
. From this inequality we have

‖φ‖qLq =

∫
Rn
|φ(x)|qdx ≤ Qql (φ)

∫
Rn

dx

(1 + |x|)lq
.

Choose sufficiently large l such that lq > n, hence
∫
Rn

dx

(1 + |x|)lq
is finite. Then

|〈f, φ〉| ≤ CQl(φ).

From Theorem 1.23 it follows that f ∈ S ′(Rn).

Remark 1.25. If f ∈ C(Rn) is of polynomial growth : ∃C,M ≥ 0 such that

|f(x)| ≤ C(1 + |x|)M ∀x ∈ Rn,

then f ∈ S ′(Rn).
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Proof. Let us estimate |〈f, φ〉| for all φ ∈ S(Rn) :

|〈f, φ〉| ≤
∫
Rn
|f(x)||φ(x)|dx ≤

∫
Rn
C(1 + |x|)M Ql(φ)

(1 + |x|)l
dx = CQl(φ)

∫
Rn

dx

(1 + |x|)l−M
.

If we choose l > M + n then
∫
Rn

dx

(1 + |x|)l−M
< ∞ and that |〈f, φ〉| ≤ ClQl(φ). From

Theorem 1.23 it follows that f ∈ S ′(Rn).

There is a theorem connected with this remark [Fri82, Theorem 8.3.1], which states
that every temperate distribution is a finite order derivative of a continuous function of
polynomial growth on Rn.

Definition 1.26. Let u ∈ S ′(Rn) be a temperate distribution, then its Fourier transform
û = Fu ∈ S ′(Rn) is the temperate distribution defined by:

〈û, φ〉 = 〈u, φ̂〉 ∀φ ∈ S(Rn) (1.17)

with
φ̂(ξ) = (Fφ)(ξ) =

∫
Rn

φ(x)e−iξ·xdx, φ(x) =
1

(2π)n

∫
Rn

φ̂(ξ)eiξ·xdξ.

Theorem 1.27. The Fourier transform F : S ′(Rn) → S ′(Rn) is linear and bijective ,
and F and F−1 are sequentially continuous maps S ′(Rn)→ S ′(Rn).

Proof. From the above definition of Fourier transform it follows that F is linear and
sequentially continuous. Let us prove injectivity. Assume that û = Fu = 0, then
∀φ ∈ S(Rn) 〈Fu,F−1φ〉 = 〈u, φ〉 = 0 =⇒ u = 0.
Now we need to show surjectivity. First let us prove that ∀φ ∈ S(Rn)

ˆ̂
φ = (2π)nφ̌.

From the Fourier inverson formula we get

φ(x) =
1

(2π)n

∫
Rn
φ̂(ξ)eiξ·xdξ =

∫
Rn

((2π)−nφ̂(−ξ))e−iξ·xdξ = F((2π)−n
ˇ̂
φ).

Using the fact that ∀φ ∈ S(Rn) F(φ̌) = (Fφ)̌ we obtain that

φ̌ = F((2π)−n
ˇ̂̌
φ) = (2π)−nF(φ̂) = (2π)−n

ˆ̂
φ.

Finally we have

〈ˆ̂u, φ〉 = 〈û, φ̂〉 = 〈u, ˆ̂
φ〉 = (2π)n〈u, φ̌〉 = (2π)n〈ǔ, φ〉 where φ̌(x) = φ(−x).

Hence
〈ˆ̂u, φ〉 = (2π)n〈ǔ, φ〉 where ǔ(φ) = u(−φ). (1.18)

From (1.18) it follows that u = F(2π−n ˆ̌u) =⇒ F is surjective. Hence F : S ′(Rn) →
S ′(Rn) is bijective. Since F is sequentially continuous and bijective ⇒ F−1 : S ′(Rn) →
S ′(Rn) is also sequentially continuous.
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Definition 1.28. The derivative of a temperate distribution u is defined by

〈∂αu, φ〉 := (−1)|α|〈u, ∂αφ〉 ∀φ ∈ S(Rn). (1.19)

Since φ ∈ S(Rn) then ∂αφ ∈ S(Rn). So 〈u, ∂αφ〉 is well defined. From (1.19) follows
that 〈∂αu, φ〉 is also well defined for ∀φ ∈ S(Rn) and ∂αu is continuous on S(Rn) =⇒
∂αu ∈ S ′(Rn). Every temperate distribution is infinitely differentiable.

Theorem 1.29. The map ∂α : S ′(Rn) → S ′(Rn), for all multiindices α is linear and
continuous.

Proof. Let us prove linearity. We need to prove that ∀u, v ∈ S ′(Rn) and ∀a, b ∈
C ∂α(au+ bv) = a∂αu+ b∂αv :

〈∂α(au+ bv), φ〉 = (−1)|α|〈au+ bv, ∂αφ〉 = (−1)|α|〈au, ∂αφ〉+ (−1)|α|〈bv, ∂αφ〉
= (−1)|α|a〈u, ∂αφ〉+ (−1)|α|b〈v, ∂αφ〉 = a〈∂αu, φ〉+ b〈∂αv, φ〉 = 〈a∂αu+ b∂αv, φ〉.

Let us assume that uk → u in S ′(Rn) when k → ∞. We need to show that for all
multiindices α, ∂αuk → ∂αu in S ′(Rn). By (1.19) it follows

〈∂αuk − ∂αu, φ〉 = (−1)|α|〈uk − u, ∂αφ〉.

Hence |〈∂αuk−∂αu, φ〉| = |〈uk−u, ∂αφ〉| ∀φ ∈ S(Rn). Since uk → u in S ′(Rn), k →∞
it follows that ∂αuk → ∂αu in S ′(Rn). So ∂α : S ′(Rn) → S ′(Rn) is continuous on
S(Rn).

Theorem 1.30. If f ∈ L2(Rn) then f̂ ∈ L2(Rn).

Proof. Recalling the Frechet-Riesz theorem [Wer05, Theorem V.3.6]:
There exists a unique ν ∈ L2(Rn) such that ∀φ ∈ L2(Rn) :

〈f̂ , φ〉 =

∫
Rn
φ(x)ν(x)dx.

If φ ∈ S(Rn) we obtain 〈f̂ , φ〉 = 〈ν, φ〉 ⇒ f̂ = ν in S ′(Rn). Since ν ∈ L2(Rn) ⇒ f̂ ∈
L2(Rn).

Now we have collected enough knowledge and information to define Sobolev spaces.
In the following section we introduce Sobolev spaces and their properties. These spaces
are very useful in partial differential equations.

1.5 Sobolev Spaces

In this section we follow [Rin09, §5.2].
Let s ∈ R and ξ ∈ Rn. We denote by λ = λ(ξ) := (1+|ξ|2)

1
2 , where |ξ|2 = ξ2

1 +ξ2
2 +· · ·+ξ2

n

and hence λs = λs(ξ) = (1 + |ξ|2)
s
2 .
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1 Sobolev Spaces

Definition 1.31. Let s ∈ R . The Sobolev space Hs(Rn) is defined by

Hs(Rn) := {u ∈ S ′(Rn), λsû ∈ L2(Rn)} where û = (Fu)(ξ).

The space Hs(Rn) is called Sobolev space of order s ∈ R on Rn.

Definition 1.32. For all u, v ∈ Hs(Rn) , the inner product (u, v)Hs(Rn) is defined by

(u, v)Hs(Rn) = (u, v)s :=
1

(2π)n

∫
Rn

λ2s(ξ)û(ξ)¯̂v(ξ)dξ, (1.20)

where û = Fu, v̂ = Fv and ¯̂v(ξ) is the complex conjugate of v̂(ξ).
The corresponding norm is

‖u‖Hs(Rn) = ‖u‖s = (u, u)
1
2
s =

 1

(2π)n

∫
Rn

λ2s(ξ)|û(ξ)|2dξ

 1
2

. (1.21)

Note also that ‖u‖Hs(Rn) = (2π)
−n
2 ‖λsû‖L2(Rn).

Theorem 1.33. ∀s ∈ R, the space Hs(Rn), equipped with the inner product (., .)s defined
in (1.20) is a Hilbert space.

Proof. For the proof we need to show that every Cauchy sequence in Hs(Rn) is conver-
gent. Let (uk) be any Cauchy sequence in Hs(Rn):

‖uk − um‖2s =
1

(2π)n

∫
Rn

λ2s|ûk − ûm|2dξ → 0 when k,m→∞.

On the other hand, ∫
Rn

λ2s|ûk − ûm|2dξ = ‖λs(ûk − ûm)‖2L2(Rn) → 0,

so (λsûk) is a Cauchy sequence in L2(Rn), which is a complete space⇒ ∃w ∈ L2(Rn) such
that λsûk → w in L2(Rn) when k → ∞. From Remark 1.24 it follows that w ∈ S ′(Rn)
⇒ λ−sw ∈ S ′(Rn). By Theorem 1.27 F : S ′(Rn) → S ′(Rn) is an isomorphism hence
∃u ∈ S ′(Rn) such that F(u) = û = λ−sw ∈ S ′(Rn). Since u ∈ S ′(Rn)⇒ λsû ∈ S ′(Rn).
But λsû = w ∈ L2(Rn) which means that u ∈ Hs(Rn) and λsûk → λsû in L2(Rn) when
k −→∞. Finally we have

‖u− uk‖2s =
1

(2π)n

∫
Rn

λ2s|û− ûk|2dξ → 0 when k →∞.

This shows that the Cauchy sequence (uk) converges to u ∈ Hs(Rn), hence Hs(Rn) is
complete space.
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1.5 Sobolev Spaces

Proposition 1.34. For s1 ≥ s2 , Hs1(Rn) ↪→ Hs2(Rn) with

‖u‖s2 ≤ ‖u‖s1 ∀u ∈ Hs1(Rn).

Proof. Let u ∈ Hs1(Rn) ⇒
∫
Rn
λ2s1(ξ)|û(ξ)|2dξ <∞.

Since λ(ξ) = (1 + |ξ|2)
1
2 ≥ 1 and s2 − s1 ≤ 0 then λ2(s2−s1)(ξ) ≤ 1. Let us estimate

‖u‖s2 :

‖u‖s2 = (2π)
−n
2

∫
Rn

λ2s2(ξ)|û(ξ)|2dξ

 1
2

= (2π)
−n
2

∫
Rn

λ2(s2−s1)(ξ)λ2s1(ξ)|û(ξ)|2dξ

 1
2

≤ (2π)
−n
2

∫
Rn

λ2s1(ξ)|û(ξ)|2dξ

 1
2

= ‖u‖s1 <∞.

Hence u ∈ Hs2(Rn). We obtain Hs1(Rn) ⊂ Hs2(Rn) with ‖u‖s2 ≤ ‖u‖s1 ⇒ Hs1(Rn) ↪→
Hs2(Rn).

Remark 1.35. For s ≥ 0 , Hs(Rn) ↪→ H0(Rn) = L2(Rn) and ‖u‖H0 = ‖u‖L2 .

For s ≥ 0 we conclude that:

Hs(Rn) = {u : u ∈ L2(Rn), λsû ∈ L2(Rn)}

with (u, v)s and ‖.‖s defined by eq. (1.20) and eq. (1.21) respectively.

Example 1.36. Let us show that the partial differential operator −∆+k2 : Hs+2(Rn)→
Hs(Rn) is an isomorphism for all real k 6= 0, ∀s ∈ R, where ∆ = ∂2

∂x21
+ · · · + ∂2

∂x2n
is the

n-dimensional Laplace operator.
Set A = −∆+k2 . First we prove that for all u ∈ Hs+2(Rn), Au = −∆u+k2u ∈ Hs(Rn),
where k ∈ R \ {0}, s ∈ R and the map A : Hs+2(Rn) → Hs(Rn) is continuous. Let
u ∈ Hs+2(Rn) ⊂ S ′(Rn). Since F [−∆u+ k2u] = (|ξ|2 + k2)û ∈ S ′(Rn) where û = F(u),
it follows that

λs · F [−∆u+ k2u] = λs(|ξ|2 + k2) · û.

But
λs · (|ξ|2 + k2) ≤ max{1, k2}(1 + |ξ|2) · λs = C · λs+2

with C = max{1, k2} > 0. Hence,

λs · |F [−∆u+ k2u]| ≤ C · λs+2|û|.

Since u ∈ Hs+2(Rn) then λs+2 · û ∈ L2(Rn) ⇒ λs · F [−∆u + k2u] ∈ L2(Rn) ⇒
−∆u+ k2u ∈ Hs(Rn). Moreover,

‖ −∆u+ k2u‖2s = (2π)−n‖λs · F [−∆u+ k2u]‖2L2 ≤ (2π)−nC2‖λs+2û‖2L2 .
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We obtain ‖ − ∆u + k2u‖s ≤ C‖u‖s+2 with C > 0. Hence A : Hs+2(Rn) → Hs(Rn) is
continuous.
Let us prove that A : Hs+2(Rn) → Hs(Rn) is injective. For u ∈ Hs+2(Rn), Au =
−∆u+ k2u = 0 in Hs(Rn) ⇒ (|ξ|2 + k2)û = 0 in S ′(Rn). Since |ξ|2 + k2 6= 0⇒ û = 0 in
S ′(Rn) ⇒ u = F−1û = 0 in S ′(Rn)⇒ u = 0 in Hs+2(Rn).
Now we need to prove that A : Hs+2(Rn) → Hs(Rn) is surjective. Let us take any
f ∈ Hs(Rn) ⊂ S ′(Rn)⇒ f̂ ∈ S ′(Rn)⇒ (|ξ|2 + k2)−1f̂ ∈ S ′(Rn).
Set v = (|ξ|2 + k2)−1f̂ ∈ S ′(Rn), then

f = F−1f̂ = F−1(|ξ|2 + k2)v = (−∆ + k2)F−1v.

Define u = F−1v ∈ S ′(Rn). Then (−∆ + k2)u = f ∈ Hs(Rn) and (|ξ|2 + k2)û = f̂ . Let
us estimate λs+2û :

λs+2û =
λs+2

|ξ|2 + k2
|f̂ | = λ2

|ξ|2 + k2
λs|f̂ | ≤ C1λ

s|f̂ |.

Since |ξ|2 + k2 ≥ min{1, k2}(1 + |ξ|2) it follows that
1

|ξ|2 + k2
≤ C1

1

1 + |ξ|2
where C1 =

1

min{1, k2}
> 0.

Hence
1

(2π)n

∫
Rn

λ2(s+2)|û|2dξ ≤ 1

(2π)n
C2

1

∫
Rn

λ2s|f̂ |2dξ <∞

then u ∈ Hs+2(Rn). Thus , ∀f ∈ Hs(Rn) ∃u ∈ Hs+2(Rn) such that Au = −∆u+k2u = f
in Hs(Rn) it follows that −∆ + k2 is surjective from Hs+2(Rn) onto Hs(Rn). Hence
−∆ + k2 : Hs+2(Rn) −→ Hs(Rn) is a continuous, linear bijective map. Since Hs+2(Rn)
and Hs(Rn) are Banach spaces it follows that the inverse map is also continuous.
So −∆ + k2 : Hs+2(Rn)→ Hs(Rn) is an isomorphism.

Definition 1.37. Let u ∈ Hs(Rn) and let t be a real number. We define a temperate
distribution (1−∆)tu whose Fourier transform is given by (1 + |ξ|2)tû(ξ).

Let us show that (1−∆)tu is in Hs−2t(Rn) for s, t ∈ R:

(1 + |ξ|2)
s−2t

2 F
[
(1−∆)tu

]
= (1 + |ξ|2)

s−2t
2 (1 + |ξ|2)tû = (1 + |ξ|2)

s
2 û = λsû,

since u ∈ Hs(Rn) it follows that (1 + |ξ|2)
s−2t

2 F
[
(1−∆)tu

]
= λsû ∈ L2(Rn). Hence

(1−∆)tu ∈ Hs−2t(Rn). Let us prove that, for t ∈ R

‖(1−∆)t/2u‖s−t = ‖u‖s. (1.22)

By the definition of the norm on Hs(Rn) :

‖(1−∆)t/2u‖2s−t =
1

(2π)n

∫
Rn

λ2(s−t)(ξ)|F((1−∆)t/2u)|2dξ =

1

(2π)n

∫
Rn

(1 + |ξ|2)s−t(1 + |ξ|2)t|û|2dξ =
1

(2π)n

∫
Rn

λ2s|û|2dξ = ‖u‖2s.
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1.5 Sobolev Spaces

From the above equation it follows that (1 −∆)t/2 is an homeomorphism from Hs(Rn)
to Hs−t(Rn).

Remark 1.38. S(Rn) is dense in Hs(Rn) for any real s.

Proof. Assume that u ∈ S(Rn). First let us show that (1 − ∆)t : S(Rn) → S(Rn) is a
homeomorphism:

(1−∆)tu = F−1
[
(1 + |ξ|2)tû(ξ)

]
.

Since F : S → S is a homeomorphism then û(ξ) ∈ S(Rn) and that (1+|ξ|2)tû(ξ) ∈ S(Rn).
So F−1

[
(1 + |ξ|2)tû(ξ)

]
∈ S(Rn). Consequently (1−∆)t : S → S is a homeomorphism.

By (1.22) we obtain that (1−∆)−s/2 is an isometric map from H0(Rn) = L2(Rn,C) to
H0−(−s)(Rn) = Hs(Rn). From Lemma 1.15 it follows that S(Rn) is dense in L2(Rn,C).
Since (1−∆)−s/2 maps homeomorphically S(Rn) into itself and L2(Rn,C) into Hs(Rn)
then S(Rn) is dense in Hs(Rn) for any real s.

Let us mention that if u ∈ S(Rn) and k is a positive integer, then (1 − ∆)ku can
be interpreted in two ways. In one way, we interpret it as above and another way we
interpret it as a differential operator acting on u, where ∆ is the standard Laplacian.
Let us prove the following lemma whose result is a very useful tool.

Lemma 1.39. For f, g ∈ S(Rn) we have

(2π)−n
∫
Rn
f̂ ¯̂gdξ =

∫
Rn
fḡdx. (1.23)

Proof. First let us show that∫
Rn
f̂hdx =

∫
Rn
fĥdx for f, h ∈ S(Rn). (1.24)

From the definition of the Fourier transform on S(Rn),

f̂(x) =

∫
Rn
f(ξ)e−iξ·xdξ.

Since f, h ∈ S(Rn) ⊂ L1(Rn) we can apply Fubini’s theorem:∫
Rn
f̂(x)h(x)dx =

∫
Rn

(∫
Rn
f(ξ)e−iξ·xdξ

)
h(x)dx =

∫
Rn

∫
Rn
f(ξ)h(x)e−iξ·xdξdx =∫

Rn

∫
Rn
f(ξ)h(x)e−iξ·xdxdξ =

∫
Rn
f(ξ)

∫
Rn
h(x)e−iξ·xdxdξ =

∫
Rn
f(ξ)ĥ(ξ)dξ.

So ∫
Rn
f̂hdx =

∫
Rn
fĥdx.

Take
h(x) = (2π)−n ¯̂g(x) = (2π)−n

∫
Rn
ḡ(ξ)eiξ·xdξ,
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then from the Fourier inversion formula we have ĥ = ḡ. By applying (1.24) we obtain

(2π)−n
∫
Rn
f̂(ξ)¯̂g(ξ)dξ =

∫
Rn
f(x)ḡ(x)dx. (1.25)

As a consequence of this Lemma we have the following Remark.

Remark 1.40. Let u ∈ S(Rn) and f = g = ∂αu in (1.23). Since

∂̂αu = i|α|ξαû

according to (1.23) we have

(2π)−n
∫
Rn
ξ2α|û(ξ)|2dξ =

∫
Rn
|∂αu(x)|2dx. (1.26)

Remark 1.41. Any element g of the dual of L2(Rn,C) is given by

g(ρ) = f [(1−∆)−s/2ρ] where ρ ∈ L2(Rn,C), (1.27)

and f is in the dual of Hs(Rn).

Proof. Due to Theorem 6.16 of [Rud87] and identity (1.23), for any g ∈ (L2(Rn,C))′

there is a χ ∈ L2(Rn,C) such that

g(ρ) =

∫
Rn

ρ̂ ¯̂χdξ for all ρ ∈ L2(Rn,C).

Let us define φ := (1 − ∆)s/2χ then φ̂ = (1 + |ξ|2)s/2χ̂. Since χ ∈ L2(Rn,C) then
φ ∈ H−s(Rn). Now define f ∈ (Hs(Rn))′ by

f(ψ) =

∫
Rn

ψ̂
¯̂
φdξ =

∫
Rn

ψ̂(1 + |ξ|2)s/2 ¯̂χdξ for all ψ ∈ Hs(Rn). (1.28)

Taking ρ = (1−∆)s/2ψ ∈ L2(Rn,C) we get ρ̂ = (1 + |ξ|2)s/2ψ̂. From (1.28) we obtain

g(ρ) =

∫
Rn

(1 + |ξ|2)s/2ψ̂ ¯̂χdξ = f(ψ) where ψ ∈ Hs(Rn).

So g(ρ) = f [(1−∆)−s/2ρ] where ρ ∈ L2(Rn,C).

Let us analyze the relation between the spaces Hk(Rn) and Hk(Rn,C) for k ∈ N.
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Theorem 1.42. For k non-negative integer the spaces Hk(Rn) and Hk(Rn,C) coincide:

Hk(Rn) ≡ Hk(Rn,C)

and their norms are equivalent :
There are constants Ci,k > 0, i = 1, 2, such that for all u ∈ Hk(Rn),

C1,k‖u‖k ≤ ‖u‖Hk ≤ C2,k‖u‖k

Proof. Recall the definitions of spaces Hk(Rn) and Hk(Rn,C)

Hk(Rn) = {u : u ∈ L2(Rn), λkû ∈ L2(Rn)},
Hk(Rn,C) = {u : u ∈ L2(Rn), ∂αu ∈ L2(Rn,C) ∀|α| ≤ k}.

According to (1.26)∫
Rn

|∂αu|2dx =
1

(2π)n

∫
Rn

ξ2α|û(ξ)|2dξ for u ∈ S(Rn).

Summing this equality for |α| ≤ k we get∑
|α|≤k

∫
Rn

|∂αu|2dx =
1

(2π)n

∑
|α|≤k

∫
Rn

ξ2α|û(ξ)|2dξ for u ∈ S(Rn). (1.29)

By Remark 1.38 S(Rn) is dense in Hk(Rn). Let us take u ∈ Hk(Rn) then

‖u‖2k =
1

(2π)n

∫
Rn

(1 + |ξ|2)k|û(ξ)|2dξ <∞.

Let us mention that there are constant ci,k > 0, i = 1, 2 such that

c1,k(1 + |ξ|2)k ≤
∑
|α|≤k

ξ2α ≤ c2,k(1 + |ξ|2)k. (1.30)

Using this inequality and (1.29) we can estimate ‖u‖Hk :

‖u‖2Hk =
∑
|α|≤k

∫
Rn

|∂αu|2dx =
1

(2π)n

∑
|α|≤k

∫
Rn

ξ2α|û(ξ)|2dξ ≤

1

(2π)n

∫
Rn

c2,k(1 + |ξ|2)k|û(ξ)|2dξ = c2,k‖u‖2k <∞,

hence u ∈ Hk(Rn,C) and ‖u‖Hk ≤ √c2,k‖u‖k. So we conclude thatHk(Rn) ⊆ Hk(Rn,C).

Let us prove the converse Hk(Rn,C) ⊆ Hk(Rn). By Lemma 1.15 S(Rn) is dense in
Hk(Rn,C). Assume that u ∈ Hk(Rn,C) then

‖u‖2Hk =
∑
|α|≤k

∫
Rn

|∂αu|2dx <∞. (1.31)
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Now we need to estimate ‖u‖k. Again we apply the left hand side of (1.30) and use (1.29)

‖u‖2k =
1

(2π)n

∫
Rn

(1 + |ξ|2)k|û(ξ)|2dξ ≤ 1

(2π)n

∫
Rn

∑
|α|≤k

c−1
1,kξ

2α|û(ξ)|2dξ =

c−1
1,k

1

(2π)n

∑
|α|≤k

∫
Rn

ξ2α|û(ξ)|2dξ = c−1
1,k

∑
|α|≤k

∫
Rn

|∂αu|2dx = c−1
1,k‖u‖

2
Hk <∞,

(1.32)

hence u ∈ Hk(Rn) and √c1,k‖u‖k ≤ ‖u‖Hk . So we conclude that Hk(Rn,C) ⊆ Hk(Rn).

Finally we get that Hk(Rn,C) ≡ Hk(Rn) and their norms are equivalent.
There are positive constants Ci,k i = 1, 2 such that for all u ∈ Hk(Rn)

C1,k‖u‖k ≤ ‖u‖Hk ≤ C2,k‖u‖k.

Lemma 1.43. If α is a multiindex and s ∈ R then

‖∂αf‖s−|α| ≤ C‖f‖s for all f ∈ S(Rn), (1.33)

where C is a constant, which depends on α and s. Hence ∂α is a bounded linear operator
from Hs(Rn) to Hs−|α|(Rn).

Proof. Due to Remark 1.38 S(Rn) is dense in Hs(Rn). Let us compute ‖∂αf‖s−|α| :

‖∂αf‖2s−|α| =
1

(2π)n

∫
Rn

(1 + |ξ|2)s−|α||i|α|ξαf̂(ξ)|2 ≤ C‖f‖2s.

Here we have used the inequality

|ξα|2(1 + |ξ|2)s−|α| ≤ C(1 + |ξ|2)s,

where C is a constant. Hence ∂αf ∈ Hs−|α|(Rn). The operator ∂α : S(Rn) −→ S(Rn) is
bounded and linear. We can conclude that ∂α can be extended to be a linear bounded
operator from Hs(Rn) to Hs−|α|(Rn).

Lemma 1.44. Let u, v ∈ Hs(Rn) and let α be a multiindex with |α| ≤ s. Then u and v
are in W s,2(Rn) and

(u, ∂αv)L2 = (−1)|α|(∂αu, v)L2 , (1.34)

where
(u, v)L2 =

∫
Rn

uv̄dx.

Moreover, if u, v ∈ Hs(Rn), s ≥ 0 and t ≤ s then (1 − ∆)t/2u, (1 − ∆)t/2v ∈ L2(Rn,C)
and

((1−∆)t/2u, v)L2 = (u, (1−∆)t/2v)L2 . (1.35)
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Proof. By Theorem 1.42 for any non negative integer s the spaces Hs(Rn) and Hs(Rn) =
W s,2(Rn) coincide. Since u, v ∈ Hs(Rn) it follows that ∂αv, ∂αu ∈ L2(Rn,C). Let us take
u, v ∈ S(Rn) and estimate (u, ∂αv)L2 . From (1.23) we get:

(u, ∂αv)L2 =

∫
Rn

u∂αvdx = (2π)−n
∫
Rn

û∂̂αvdξ. (1.36)

We need to compute ∂̂αv :

∂̂αv = (iξ)α · v̂ = (iξ)α · v̂ = (−iξ)α · v̂ = (−1)|α|(iξ)αv̂.

Inserting the above result in (1.36),we obtain

(u, ∂αv)L2 = (2π)−n
∫
Rn
û(−1)|α|(iξ)αv̂dξ = (−1)|α|(2π)−n

∫
Rn
∂̂αuv̂dξ

= (−1)|α|
∫
Rn
∂αu(x)v(x)dx = (−1)|α|(∂αu, v)L2 .

Let us prove that (1−∆)t/2u ∈ L2(Rn,C). Since u ∈ Hs(Rn) then (1−∆)t/2 mapsHs(Rn)
into Hs−t(Rn). By assumption s− t ≥ 0 so Hs−t(Rn) ⊆ H0(Rn) = L2(Rn), which means
that (1−∆)t/2u ∈ L2(Rn). Now let us check that ((1−∆)t/2u, v)L2 = (u, (1−∆)t/2v)L2 .
From (1.23) we get for u, v ∈ S(Rn) :

((1−∆)t/2u, v)L2 =

∫
Rn

((1−∆)t/2uvdx = (2π)−n
∫
Rn

(1 + |ξ|2)
t
2 ûv̂dξ =∫

Rn
u(1−∆)t/2vdx = (u, (1−∆)t/2v)L2 .

Since S(Rn) is dense in Hs(Rn), then all results follow in general.

Lemma 1.45. Assume u ∈ S(Rn) and assume φ ∈ C∞(Rn,C) with all derivatives
bounded. Then

‖φu‖k ≤ C‖u‖k, (1.37)

where C is a constant , which depends on k and the sup norm of up to |k| derivatives of
φ.

Proof. Due to Theorem 1.42 for any k ≥ 0 integer, the norms ‖ · ‖Hk and ‖ · ‖k are
equivalent. By assumption |∂kφ| ≤M . We obtain

‖φu‖k ≤ C1‖φu‖Hk = C1

∑
|α|≤k

∫
Rn
|∂α(φu)|2dx

 1
2

=

C1

∑
|α|≤k

∫
Rn
|
∑
β≤α

(
α

β

)
∂α−βφ∂βu|2dx

 1
2

≤ C1 ·M

∑
|α|≤k

∫
Rn
|
∑
β≤α

(
α

β

)
∂βu|2dx

 1
2

≤

C̃1 ·M

∑
|α|≤k

∫
Rn
|∂αu|2dx

 1
2

= C̃1 ·M‖u‖Hk ≤ C2 · C̃1 ·M‖u‖k = C‖u‖k.
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Let us prove (1.37) for negative k. First we need to show that for u, v ∈ S(Rn)

‖u‖k = sup
v∈Ak

∣∣∣∣∣∣
∫
Rn

uv̄dx

∣∣∣∣∣∣ , where Ak = {v ∈ S(Rn) : ‖v‖−k ≤ 1}.

By (1.23) for u, v ∈ S(Rn) we obtain∫
Rn

uv̄dx =
1

(2π)n

∫
Rn

û¯̂vdξ =
1

(2π)n

∫
Rn

(1 + |ξ|2)k/2û(1 + |ξ|2)−k/2 ¯̂vdξ. (1.38)

Let us apply the Cauchy-Schwarz inequality to the above equality:∣∣∣∣∣∣
∫
Rn

uv̄dx

∣∣∣∣∣∣ ≤ 1

(2π)n

∫
Rn

|û|(1 + |ξ|2)k/2|¯̂v|(1 + |ξ|2)−k/2dξ ≤

 1

(2π)n

∫
Rn

|û|2(1 + |ξ|2)kdξ

 1
2
 1

(2π)n

∫
Rn

|¯̂v|2(1 + |ξ|2)−kdξ

 1
2

= ‖u‖k‖v̄‖−k.

Taking the supremum over v ∈ Ak, in the above inequality we get:

sup
v∈Ak

∣∣∣∣∣∣
∫
Rn

uv̄dx

∣∣∣∣∣∣ ≤ ‖u‖k.
Now we can choose v ∈ S(Rn) such that

v̂(ξ) = (1 + |ξ|2)kû(ξ)‖u‖−1
k ,

where ‖u‖k 6= 0. Then,

‖v‖−k =

 1

(2π)n

∫
Rn

(1 + |ξ|2)−k(1 + |ξ|2)2k|û(ξ)|2‖u‖−2
k dξ

 1
2

=
(
‖u‖−2

k · ‖u‖
2
k

) 1
2 = 1.

Inserting this v in (1.38), we obtain∫
Rn

uv̄dx =
1

(2π)n

∫
Rn

û(ξ)(1 + |ξ|2)k ¯̂u(ξ)‖u‖−1
k dξ =

1

(2π)n

∫
Rn

(1 + |ξ|2)k|û(ξ)|2‖u‖−1
k dξ =

‖u‖−1
k · ‖u‖

2
k = ‖u‖k.

Consequently, for u 6= 0 we obtain

sup
v∈Ak

∣∣∣∣∣∣
∫
Rn

uv̄dx

∣∣∣∣∣∣ = ‖u‖k.
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It is clear that this equality holds for u = 0. Let us compute the following:∣∣∣∣∣∣
∫
Rn

φuv̄dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Rn

uφ̄vdx

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

(2π)n

∫
Rn

û(1 + |ξ|2)k/2̂̄φv(1 + |ξ|2)−k/2dξ

∣∣∣∣∣∣ ≤ 1

(2π)n

∫
Rn

|û|2(1 + |ξ|2)kdξ

 1
2
 1

(2π)n

∫
Rn

| ̂̄φ v|2(1 + |ξ|2)−kdξ

 1
2

=

‖u‖k‖φ̄v‖−k ≤ C‖u‖k‖v‖−k.

In the third step we have used the Cauchy-Schwarz inequality and inequality (1.37) for
k non-negative in the last step. Let us take the supremum over v ∈ Ak, then

‖φu‖k = sup
v∈Ak

∣∣∣∣∣∣
∫
Rn

φuv̄dx

∣∣∣∣∣∣ ≤ C‖u‖k. (1.39)

Corollary 1.46. Let u ∈ S(Rn) and let f ∈ C∞(Rn, C) with all derivatives bounded.
Assume m and l be non-negative integers, α be a multiindex with |α| ≤ l +m then

‖f∂αu‖−m ≤ C‖u‖l,

where C depends on m, l and a bound of ∂αf for |α| ≤ m.

Proof. According to Lemma 1.45 and Lemma 1.43

‖f∂αu‖−m ≤ C1‖∂αu‖−m = C1‖∂αu‖−m+|α|−|α| ≤ C1 · C2‖u‖−m+|α|.

Since |α| −m ≤ l then by Proposition 1.34

‖u‖−m+|α| ≤ ‖u‖l.

Finally we get
‖f∂αu‖−m ≤ C‖u‖l, where C = C1 · C2.

Lemma 1.47. Let s1, s2, s3 ∈ R with s1 < s2 < s3 and let u ∈ Hs3(Rn). If a, b ∈ (0, 1)
are such that a+ b = 1 and a is small enough then

‖u‖s2 ≤ ‖u‖as1 · ‖u‖
b
s3 . (1.40)

Actually,

‖u‖s2 ≤ ‖u‖
s3−s2
s3−s1
s1 · ‖u‖

s2−s1
s3−s1
s3 .
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Proof. By our assumption a, b ∈ (0, 1) are such that a+b = 1. Let us set s2 = ts1+(1−t)s3

then by Hölder’s inequality we obtain

‖u‖2s2 =

∫
Rn

(1 + |ξ|2)s2 |û(ξ)|2dξ =

∫
Rn

[(1 + |ξ|2)s1 |û(ξ)|2]t[(1 + |ξ|2)s3 |û(ξ)|2]1−tdξ ≤

∫
Rn

[(1 + |ξ|2)s1 |û(ξ)|2]t·
1
adξ

a

·

∫
Rn

[(1 + |ξ|2)s3 |û(ξ)|2](1−t)·
1
b dξ

b

=

∫
Rn

(1 + |ξ|2)s1 |û(ξ)|2dξ

a

·

∫
Rn

(1 + |ξ|2)s3 |û(ξ)|2dξ

b

= ‖u‖2as1 · ‖u‖
2b
s3 .

Here we take a = t and b = 1− t and the result follows

‖u‖s2 ≤ ‖u‖as1 · ‖u‖
b
s3 .

Since t =
s3 − s2

s3 − s1
and 1− t =

s2 − s1

s3 − s1
then we have

‖u‖s2 ≤ ‖u‖
s3−s2
s3−s1
s1 · ‖u‖

s2−s1
s3−s1
s3 .

Let us consider situations where we can apply this lemma. Let {ul}l≥1 be a bounded
sequence in Hs3(Rn) and let {ul}l≥1 is a Cauchy sequence in Hs1(Rn) with s1 < s3. By
(1.40) we can prove that {ul}l≥1 is a Cauchy sequence with respect to any norm ‖ · ‖s2
such that s1 < s2 < s3.

‖ul − um‖s2 ≤ ‖ul − um‖as1 · ‖ul − um‖
b
s3 . (1.41)

The sequence {ul}l≥1 is bounded in Hs3(Rn) so that ‖ul − um‖bs3 ≤M . Since {ul}l≥1 is
a Cauchy sequence in Hs1(Rn) then ∀ε > 0 ∃ N such that for l,m > N ‖ul − um‖s1 <( ε

M

) 1
a
. So

‖ul − um‖s2 < ε.

Due to Fatou’s lemma the limit u is in Hs3(Rn) :

‖u‖2s3 =

∫
Rn

(1 + |ξ|2)s3 |û|2dξ ≤ lim inf
l→∞

∫
Rn

(1 + |ξ|2)s3 |ûl|2dξ <∞.

Let us mention that the sequence {ul}l≥1 converges to u with respect to the weak topology
on Hs3(Rn). If f is an element of the dual of Hs3(Rn) then there is a φ ∈ H−s3(Rn) such
that

f(v) =

∫
Rn

v̂
¯̂
φdξ
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for all v ∈ Hs3(Rn). Let the sequence {φm}m≥1 ∈ S(Rn) converges to φ with respect to
the norm ‖ · ‖−s3 . Then

f(ul)− f(u) =

∫
Rn
ûl(

¯̂
φ− ¯̂

φm)dξ +

∫
Rn

(ûl − û)
¯̂
φmdξ +

∫
Rn
û(

¯̂
φm − ¯̂

φ)dξ.

Due to (1.23) we have

f(ul)− f(u) = (2π)n

∫
Rn

ul(φ̄− φ̄m)dx+

∫
Rn

(ul − u)φ̄mdx+

∫
Rn

u(φ̄m − φ̄)dx

 .
For given ε > 0, we fix m, independently of l, so that

∫
Rn
|φ̄ − φ̄m|dx <

ε

3C · (2π)n

where C = max{|ul|, |u|, |φ̄m|}. For this fixed m, we can choose l large enough such that∫
Rn
|ul − u|dx <

ε

3C · (2π)n
. Then

|f(ul)− f(u)| ≤ (2π)n

∫
Rn

|ul||φ̄− φ̄m|dx+

∫
Rn

|ul − u||φ̄m|dx+

∫
Rn

|u||φ̄m − φ̄|dx

 <
(2π)n

[
ε · C

3C · (2π)n
+

ε · C
3C · (2π)n

+
ε · C

3C · (2π)n

]
= ε

Consequently the sequence {ul}l≥1 converges to u with respect to the weak topology on
Hs3(Rn).

1.6 Dualities

In this section we introduce the duality of Sobolev spaces and follow [Rin09, §5.4] and
lecture note [HS09]. We start with the definition of bilinear form 〈·, ·〉H−s,Hs .

Remark 1.48. Assume ϕ,ψ ∈ S(Rn) and refer to ϕ as a regular temperate distribution.
Then we obtain

〈ϕ,ψ〉 =

∫
Rn
ϕ(x)ψ(x)dx = (ψ, ϕ̄)L2 = (2π)−n(ψ̂, ˆ̄ϕ)L2 = (2π)−n

∫
Rn
ψ̂(ξ) ¯̄̂ϕ(ξ)dξ =

(2π)−n
∫
Rn
ψ̂(ξ)ϕ̂(−ξ)dξ = (2π)−n

∫
Rn

(1 + |ξ|2)−s/2ψ̂(ξ)(1 + |ξ|2)s/2ϕ̂(−ξ)dξ,

using the identity (1.23) and the fact that ¯̄̂ϕ(ξ) = ϕ̂(−ξ). Let us prove the last identity:

ˆ̄ϕ(ξ) =

∫
Rn
ϕ̄(x)e−iξ·xdx.

Consequently,
¯̄̂ϕ(ξ) =

∫
Rn
ϕ(x)e−i(−ξ)·xdx = ϕ̂(−ξ).
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1 Sobolev Spaces

According to the Cauchy-Schwarz inequality:

|〈ϕ,ψ〉| ≤ (2π)−n
∫
Rn
|(1 + |ξ|2)−s/2ψ̂(ξ)(1 + |ξ|2)s/2ϕ̂(−ξ)|dξ ≤

(2π)−n
(∫

Rn
(1 + |ξ|2)−s|ψ̂(ξ)|2dξ

)1/2(∫
Rn

(1 + |ξ|2)s|ϕ̂(ξ)|2dξ
)1/2

= ‖ψ‖−s‖ϕ‖s.

(1.42)

Due to Remark 1.38 the Schwarz space S(Rn) is dense in Hs(Rn) for all s. Consequently
we can extend the map

(ϕ,ψ) 7−→ 〈ϕ,ψ〉

uniquely to a bilinear map H−s(Rn)×Hs(Rn) −→ C, which we write as

(u, v) 7−→ 〈u, v〉 := (2π)−n
∫
Rn
û(ξ)v̂(−ξ)dξ for u ∈ H−s(Rn), v ∈ Hs(Rn). (1.43)

By (1.42) we obtain
|〈u, v〉H−s,Hs | ≤ ‖u‖−s‖v‖s. (1.44)

So 〈u, v〉H−s,Hs : H−s(Rn)×Hs(Rn) −→ C is a continuous bilinear map.

Theorem 1.49. The bilinear form 〈·, ·〉H−s,Hs of (1.43) produces an isometric isomor-
phism

H−s(Rn)→ (Hs(Rn))∗ ,

where (Hs(Rn))∗ is the topological dual of Hs(Rn). So H−s(Rn) consists precisely of the
linear and continuous forms on Hs(Rn).

Proof. Let us fix u ∈ H−s(Rn) and define ϕu : v → ϕu(v) = 〈u, v〉H−s,Hs . Then v 7→ ϕu(v)
is a continuous and linear map on Hs(Rn) with |ϕu(v)| ≤ ‖u‖−s‖v‖s.
We will show that the map u → ϕu is an isometric isomorphism H−s → (Hs)

∗. First
let us prove isometry . For this we need to show that there exists some v ∈ Hs(Rn),
‖v‖s = 1 with |ϕu(v)| = ‖u‖−s.
Let us set v0 = F−1((1 + |ξ|2)−s ¯̂u(−ξ)) and v :=

v0

‖v0‖s
. From the definition of v0 it

follows that v0 ∈ S ′(Rn) and

(1 + |ξ|2)s/2v̂0 = (1 + |ξ|2)−s/2 ¯̂u(−ξ) ∈ L2(Rn,C).

Consequently v0 ∈ Hs(Rn) and

‖v0‖s =

(
(2π)−n

∫
Rn

(1 + |ξ|2)s(1 + |ξ|2)−2s|û(ξ)|2dξ
)1/2

=(
(2π)−n

∫
Rn

(1 + |ξ|2)−s|û(ξ)|2dξ
)1/2

= ‖u‖−s.
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Let us compute 〈u, v0〉H−s,Hs :

〈u, v0〉H−s,Hs = (2π)−n
∫
Rn
û(ξ)v̂0(−ξ)dξ = (2π)−n

∫
Rn
û(ξ)(1 + |ξ|2)−s ¯̂u(ξ)dξ =

(2π)−n
∫
Rn
|û(ξ)|2(1 + |ξ|2)−sdξ = ‖u‖2−s.

Since ‖v‖s =
∥∥∥ v0

‖v0‖s

∥∥∥
s

= 1 and 〈u, v0〉H−s,Hs = ‖u‖2−s then

|ϕu(v)| = |〈u, v〉H−s,Hs | = |〈u,
v0

‖v0‖s
〉H−s,Hs | =

|〈u, v0〉H−s,Hs |
‖v0‖s

=
‖u‖2−s
‖u‖−s

= ‖u‖−s.

It follows that |ϕu(v)| = ‖u‖−s. From this isometry, injectivity follows. It remains to show
surjectivity. Let u′ ∈ (Hs)

∗, then by Riesz-Fréchet representation theorem ∃ω ∈ Hs(Rn)
with

u′(v) = (v, ω)s = (2π)−n
∫
Rn

(1 + |ξ|2)sv̂(ξ)¯̂ω(ξ)dξ.

Now set u := F−1((1 + |ξ|2)s ¯̂ω(−ξ)). Let us prove that u ∈ H−s(Rn) and u′(v) =
〈u, v〉H−s,Hs = ϕu(v) for all v ∈ Hs(Rn). Since ω ∈ Hs(Rn) and

(1 + |ξ|2)−s/2û = (1 + |ξ|2)−s/2(1 + |ξ|2)s ¯̂ω(−ξ) = (1 + |ξ|2)s/2 ¯̂ω(−ξ) ∈ L2(Rn,C)

then u ∈ H−s(Rn). For all v ∈ Hs(Rn) we have

u′(v) = (2π)−n
∫
Rn

(1 + |ξ|2)sv̂(ξ)¯̂ω(ξ)dξ = (2π)−n
∫
Rn

(1 + |ξ|2)sv̂(−ξ)¯̂ω(−ξ)dξ =

(2π)−n
∫
Rn
û(ξ)v̂(−ξ)dξ = 〈u, v〉H−s,Hs .

Consequently the map 〈u, v〉H−s,Hs : H−s(Rn) × Hs(Rn) −→ C is an isometric isomor-
phism.

Since L2(Rn,C) and Hs(Rn) are isomorphic and L2(Rn,C) is separable, also Hs(Rn)
is separable. Assume

u ∈ Lp{[0, T ], Hs(Rn,Cm)}, v ∈ Lq{[0, T ], H−s(Rn,Cm)},

where 1
p + 1

q = 1.

Since (1−∆)
s
2 : Hs(Rn,Cm)→ L2(Rn,Cm) and (1−∆)

−s
2 : H−s(Rn,Cm)→ L2(Rn,Cm)

then

(1−∆)
s
2u ∈ Lp{[0, T ], L2(Rn,Cm)}, (1−∆)

−s
2 v ∈ Lq{[0, T ], L2(Rn,Cm)}.

We define

〈u, v〉 =

T∫
0

((1−∆)
s
2u, (1−∆)

−s
2 v)L2dt, (1.45)
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since the integrand is measurable and bounded by an integrable function. Let us show
that (1.45) does not depend on s. Let r > s and

u ∈ Lp{[0, T ], Hr(Rn,Cm)}

v ∈ Lq{[0, T ], H−r(Rn,Cm)}.

Then by (1.35) we obtain

T∫
0

((1−∆)
r
2u, (1−∆)

−r
2 v)L2dt =

T∫
0

((1−∆)
r−s
2 (1−∆)

s
2u, (1−∆)

−r
2 v)L2dt =

T∫
0

((1−∆)
s
2u, (1−∆)

−s
2 v)L2dt.

We conclude that (1.45) does not depend on s, until the right hand side is defined. Let
us mention that for non-negative integer k and multiindex |α| ≤ k, if

u ∈ Lp{[0, T ], Hk(Rn,Cm)}, v ∈ Lq{[0, T ], Hk(Rn,Cm)},

then by Lemma 1.43

∂αu ∈ Lp{[0, T ], H0(Rn,Cm)}, ∂αv ∈ Lq{[0, T ], H0(Rn,Cm)}.

Due to (1.34)

〈∂αu, v〉 =

T∫
0

((1−∆)
s
2∂αu, (1−∆)

−s
2 v)L2dt =

T∫
0

(∂αu, v)L2dt =

T∫
0

(−1)|α|(u, ∂αv)L2dt = (−1)|α|
T∫

0

((1−∆)
s
2u, (1−∆)

−s
2 ∂αv)L2dt =

(−1)|α|〈u, ∂αv〉.

Proposition 1.50. Assume

Xs = L1{[0, T ], Hs(Rn,Cm)}
Y−s = L∞{[0, T ], H−s(Rn,Cm)}.

Then for any F ∈ X∗s there exists y ∈ Y−s such that

F (x) = 〈x, y〉

for all x ∈ Xs and ‖y‖Y−s = ‖F‖X∗s .
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Proof. For a given F ∈ X∗s , define G ∈ X∗0 by

G(x0) = F [(1−∆)
−s
2 x0]. (1.46)

From this definition it follows that ‖G‖X∗0 = ‖F‖X∗s . Since X0 = L1{[0, T ], L2(Rn,Cm)},
according to Proposition 3.6 of [Rin09] we obtain a y0 ∈ Y0 = L∞{[0, T ], L2(Rn,Cm)},
such that

G(x0) = 〈x0, y0〉 and ‖y0‖Y0 = ‖F‖X∗s
for all x0 ∈ X0. Now set y = (1−∆)

s
2 y0. Then from (1.46) and from (1.35), we obtain:

F (x) = G[(1−∆)
s
2x] = 〈(1−∆)

s
2x, (1−∆)

−s
2 y〉 = 〈x, y〉 for x ∈ Xs.

Since y = (1−∆)
s
2 y0 ∈ Y−s, then from (1.22) we obtain

‖y‖Y−s = ‖y0‖Y0 . (1.47)

So ‖F‖X∗s = ‖y0‖Y0 = ‖y‖Y−s , as claimed.
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2 Sobolev Embedding

2.1 Young’s inequality, Sobolev embedding

In this section we follow [Rin09, §6.1 and §6.2].

Theorem 2.1. Assume p, q be positive real numbers such that

1

p
+

1

q
= 1

then

ab ≤ ap

p
+
bq

q
(2.1)

for all non-negative a, b. This inequality is called Young’s inequality.

Proof. Let us note that if either a or b are zero, then the inequality holds. So let a, b > 0.
Dividing both sides of (2.1) by bq we get:

a

bq−1
≤ 1

p
· a

p

bq
+

1

q
.

Let us set t = a/bq−1. Since
ap

bq
=

ap

bp(q−1)
= tp then the above inequality will be

equivalent to

t ≤ 1

q
+
tp

p
. (2.2)

So inequalities (2.1) and (2.2) are equivalent. Hence we need to show that (2.2) holds.
Let us note that the function

t−1

q
+
tp−1

p

tends to infinity when t → ∞ and also when t → 0. Let us show that it has a unique

minimum at t = 1. We need to differentiate
t−1

q
+
tp−1

p
and solve the following equation:

− 1

q
t−2 +

p− 1

p
tp−2 = 0

t−2

(
−1

q
+
p− 1

p
tp
)

= 0.
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2 Sobolev Embedding

Since t 6= 0 then

− 1

q
+
p− 1

p
tp = 0

tp =
p

q(p− 1)
= 1

t = 1.

So the function
t−1

q
+
tp−1

p
has a unique minimum at t = 1 :

t−1

q
+
tp−1

p
≥ 1

q
+

1

p
= 1.

Consequently,
1

q
+
tp

p
≥ t.

So we obtain (2.1).

We can generalize the Young’s inequality in this way.

Theorem 2.2. Let p1, . . . , pk be positive numbers such that

1

p1
+ · · ·+ 1

pk
= 1. (2.3)

If a1, . . . , ak are non-negative numbers then

a1 · · · ak ≤
ap11

p1
+ · · ·+

apkk
pk
. (2.4)

Proof. Let us prove (2.4) by induction. It holds for k = 2. Assume that it holds for some
k ≥ 2. We need to prove that it holds for k + 1. Let p1, . . . , pk+1 satisfy

1

p1
+ · · ·+ 1

pk
+

1

pk+1
= 1. (2.5)

Let us set ri = pi for i = 1, . . . , k − 1 and

rk =
pkpk+1

pk + pk+1
.

Then r1, . . . , rk are positive numbers which satisfy (2.3). Consequently,

a1 . . . ak+1 ≤
ap11

p1
+ · · ·+

a
pk−1

k−1

pk−1
+

(akak+1)rk

rk
.

Let us set p = pk/rk and q = pk+1/rk, then apply (2.1). We obtain that

(akak+1)rk ≤
arkpk

p
+
arkqk+1

q
= rk

(
apkk
pk

+
a
pk+1

k+1

pk+1

)
.

So we obtain (2.4) for k + 1 .
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2.1 Young’s inequality, Sobolev embedding

Lemma 2.3. Assume p1, . . . , pk be positive numbers with

1

p1
+ · · ·+ 1

pk
= 1.

If ui ∈ Lpi(Rn) for i = 1, . . . , k then u1 . . . uk ∈ L1(Rn) and∫
Rn
|u1 . . . uk|dx ≤ ‖u1‖p1 . . . ‖uk‖pk . (2.6)

Proof. Let us note that if ‖ui‖pi = 0 for some i then both sides of (2.6) are equal to zero.
So we can assume that ‖ui‖pi > 0. Let us set vi = ui/‖ui‖pi then ‖vi‖pi = 1. According
to (2.4) we have∫

Rn
|v1 . . . vk|dx ≤

∫
Rn

(
|v1|p1
p1

+ · · ·+ |vk|
pk

pk

)
dx =

1

p1

∫
Rn
|v1|p1dx+ · · ·+ 1

pk

∫
Rn
|vk|pkdx =

1

p1
‖v1‖p1p1 + · · ·+ 1

pk
‖vk‖pkpk =

1

p1
+ · · ·+ 1

pk
= 1.

Consequently ∫
Rn

∣∣∣ u1

‖u1‖p1
· · · uk
‖uk‖pk

∣∣∣dx ≤ 1.

Multiplying both sides of this inequality by ‖u1‖p1 . . . ‖uk‖pk we get (2.6).

Corollary 2.4. Assume p1, . . . , pk be positive numbers such that the equality (2.3) holds.
If ui ∈ L2pi(Rn) for i = 1, . . . , k then u1 . . . uk ∈ L2(Rn) and

‖u1 . . . uk‖2 ≤ ‖u1‖2p1 . . . ‖uk‖2pk . (2.7)

Proof. Let us apply the above Lemma to u2
1, . . . , u

2
k then∫

Rn
|u2

1 . . . u
2
k|dx ≤ ‖u2

1‖p1 · · · ‖u2
k‖pk .

Taking the square root, we obtain:(∫
Rn
|u1 . . . uk|2dx

)1/2

≤
(∫

Rn
|u1|2p1dx

)1/2p1

· · ·
(∫

Rn
|uk|2pkdx

)1/2pk

.

So
‖u1 . . . uk‖2 ≤ ‖u1‖2p1 . . . ‖uk‖2pk .
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2 Sobolev Embedding

Definition 2.5. We denote by Ckb (Rn,C) the space which consists of all the Ck functions
whose derivatives up to order k are bounded. We define the norm

‖f‖Ckb (Rn,C) =

k∑
|α|=0

‖∂αf(x)‖Cb(Rn,C) =

k∑
|α|=0

sup |∂αf(x)|.

Theorem 2.6 (Sobolev embedding). Assume k be a non negative integer and let
s > k +

n

2
. Then for all f ∈ S(Rn)

‖f‖Ckb (Rn,C) ≤ C‖f‖s, (2.8)

where C is a constant depending on k, n and s.

Proof. First let us prove the case k = 0. Due to the Fourier inversion formula for S(Rn)
and the Cauchy-Schwarz inequality we have

|f(x)| = |(2π)−n
∫
Rn
f̂(ξ)eiξ·xdξ| ≤ (2π)−n

∫
Rn
|f̂(ξ)|dξ =

(2π)−n
∫
Rn

(1 + |ξ|2)−s/2(1 + |ξ|2)s/2|f̂(ξ)|dξ ≤

(2π)−n
(∫

Rn
(1 + |ξ|2)−sdξ

)1/2(∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
)1/2

=

(2π)−n/2
(∫

Rn
(1 + |ξ|2)−sdξ

)1/2

‖f‖s.

If s > n/2 then (1 + |ξ|2)−s is integrable and we obtain (2.8). If s − |α| > n/2 then
(1 + |ξ|2)−s+|α| is integrable for any multiindex α. With similar assumptions for ∂αf we
get

‖∂αf‖Cb(Rn,C) ≤ C‖∂αf‖s−|α|.

By Lemma 1.43 we have

‖∂αf‖Cb(Rn,C) ≤ C‖∂αf‖s−|α| ≤ C‖f‖s.

Summing these inequalities for all α such that |α| ≤ k we get

‖f‖Ckb (Rn,C) ≤ C‖f‖s.

Due to (2.8) we can associate the elements of Hs(Rn) with elements of Ckb (Rn,C) for
s > k + n/2. Let us prove this. If φl → u in Hs(Rn), φl ∈ S(Rn), then by (2.8)

‖φn − φm‖Ckb (Rn,C) ≤ C‖φn − φm‖s.
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2.2 Gagliardo-Nirenberg inequalities

So φl is a Cauchy sequence in Ckb (Rn,C). By Theorem 3.12 of [Rud87] there is a subse-
quence of φl which converges to u a.e.. So we conclude that u is a function in Ckb (Rn,C).
Due to Theorem 1.42 for any non negative integer k the space Hk(Rn) coincides with
Hk(Rn,C) and the norms are equivalent. So we conclude that for l > n/2 + k

‖f‖Ckb (Rn,C) ≤ C‖f‖Hl .

Lemma 2.7. Assume Ω ⊂ Rn be open and let u ∈ L2
loc(Ω) is l times weakly differentiable.

Then u ∈ Ck(Ω) for l > k + n/2.

Proof. Since u ∈ L2
loc(Ω) and it is l times weakly differentiable then the weak derivatives

are in L2
loc(Ω). In the proof of Lemma 1.15 we show that if u ∈ W l,2(Ω) = H l(Ω) and

φ ∈ C∞0 (Ω) then φu ∈W l,2(Ω) = H l(Ω). From the above observations it follows that φu
is a Ck function. By Proposition A.12 of [Rin09], for any compact subset K ⊆ Ω, there
is a φ ∈ C∞0 (Ω) such that φ(x) = 1 for x ∈ K . Consequently u ∈ Ck(Ω).

2.2 Gagliardo-Nirenberg inequalities

In this section we will follow [Rin09, §6.3]. We will prove some inequalities of Gagliardo,
Nirenberg and Moser. Let Y be a real vector space with inner product 〈·, ·〉, where the
norm is induced by an inner product |y|2Y = 〈y, y〉 for all y ∈ Y. In the following lemmas
we will always use such a vector space Y . Let us denote by B(Rn, Y ) the bounded linear
transformations from Rn to Y . Note that B(Rn, Y ) is a real vector space with a norm.

Definition 2.8. We say that f : Rn −→ Y is differentiable at x ∈ Rn if there exists
T ∈ B(Rn, Y ) such that

lim
h→0

|f(x+ h)− f(x)− Th|Y
‖h‖2

= 0. (2.9)

We call T the derivative of f at x and denote it by (Df)(x). If f is differentiable at every
x ∈ Rn then we get a map Df : Rn −→ B(Rn, Y ). If the map Df : Rn −→ B(Rn, Y ) is
continuous we say that f is continuously differentiable. We denote the kth derivative by
Dkf .

In this section we are interested in C∞0 (Rn, Y ). Let f ∈ C∞0 (Rn, Y ), and define

‖f‖p =

(∫
Rn
|f(x)|pY dx

)1/p

, ‖f‖∞ = sup
x∈Rn

|f(x)|Y

for 1 ≤ p <∞. Also,

‖Dlf‖p =

∑
|α|=l

∫
Rn
|(∂αf)(x)|pY dx

1/p

, ‖Dlf‖∞ = sup
x∈Rn

∑
|α|=l

|(∂αf)(x)|Y . (2.10)
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2 Sobolev Embedding

Assume f, g : Rn −→ Y are differentiable at x ∈ Rn and let φ(x) = 〈f(x), g(x)〉. Then φ
is differentiable at x and

[(Dφ)(x)]h = 〈[(Df)(x)]h, g(x)〉+ 〈f(x), [(Dg)(x)]h〉. (2.11)

Let ej be the vector in Rn whose jth component is 1 and all other components are zero.
Then the partial derivative ∂jf is the function whose value at x is given by (Df)(x)ej .
So

(∂jf)(x) = [(Df)(x)]ej . (2.12)

Consequently,
∂jφ(x) = 〈∂jf(x), g(x)〉+ 〈f(x), ∂jg(x)〉. (2.13)

Let us note that if f : Rn −→ Y is smooth, then all the partial derivatives exist and are
also smooth.

Lemma 2.9. Assume 1 ≤ j ≤ n and assume that k, r ∈ R with 1 ≤ r ≤ k. Then for all
f ∈ C∞0 (Rn, Y ),

‖∂jf‖22k/r ≤ C‖f‖2k/(r−1)‖∂2
j f‖2k/(r+1), (2.14)

where a constant C depends on an upper bound on k.

Proof. Let 2 ≤ q ∈ R and let us define φj by

φj(x) = 〈f(x), ∂jf(x)〉〈∂jf(x), ∂jf(x)〉
q−2
2 ,

where the last factor is 1 if q = 2. From our assumption on f(x) it follows that this
function has compact support. We need to show that φj(x) is continuously differentiable.
According to observations which we made in the beginning of this section, the expressions
〈f(x), ∂jf(x)〉 and 〈∂jf(x), ∂jf(x)〉 are smooth functions with compact support. If q = 2
then φj is smooth, so assume that q > 2. If (∂jf)(ξ) 6= 0, then we conclude that φj is
smooth in a neighborhood of ξ. Let us assume that ξ is such that (∂jf)(ξ) = 0. Denote
by ψj(x) = 〈∂jf(x), ∂jf(x)〉, then ψj is smooth and for all 1 ≤ k ≤ n :

∂kψj(x) = 〈∂k∂jf(x), ∂jf(x)〉+ 〈∂jf(x), ∂k∂jf(x)〉.

So ψj(ξ) = ∂kψj(ξ) = 0 and we conclude that

ψj(x) = O(|x− ξ|2).

Applying the Cauchy-Schwarz inequality to φj(x) we get:

|φj(x)| =|〈f(x), ∂jf(x)〉〈∂jf(x), ∂jf(x)〉
q−2
2 | ≤ |f(x)|Y [ψj(x)]1/2 [ψj(x)]

q−2
2 =

|f(x)|Y [ψj(x)]
q−1
2 = O(|x− ξ|q−1).

So we conclude that φj is differentiable in a neighborhood of ξ and that the derivative is
zero. If (∂jf)(x) 6= 0 we can differentiate φj with respect to the kth variable:

(∂kφj)(x) = 〈∂kf(x), ∂jf(x)〉 [ψj(x)]
q−2
2 + 〈f(x), (∂k∂jf)(x)〉 [ψj(x)]

q−2
2 +

(q − 2)〈f(x), ∂jf(x)〉〈∂jf(x), (∂k∂jf)(x)〉 [ψj(x)]
q−4
2 .

(2.15)
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2.2 Gagliardo-Nirenberg inequalities

From the above observations we conclude that if ξ is such that ∂jf(ξ) 6= 0, then φj(x)
is continuously differentiable at ξ. If ξ is such that ∂jf(ξ) = 0, then Dφj(ξ) = 0. Let us
show that Dφj(x) is continuous at ξ. Let ∂jf(xl) 6= 0 and xl → ξ with ∂jf(ξ) = 0, then
from (2.15) we get ∂kφj(xl)→ ∂kφj(ξ) = 0. Hence φj is continuously differentiable. Let
us compute (∂jφj)(x) :

(∂jφj)(x) = 〈∂jf(x), ∂jf(x)〉 [ψj(x)]
q−2
2 + 〈f(x), ∂2

j f(x)〉 [ψj(x)]
q−2
2 +

(q − 2)〈f(x), ∂jf(x)〉〈∂jf(x), ∂2
j f(x)〉 [ψj(x)]

q−4
2 .

(2.16)

Integrating (2.16) over Rn and using the triangle inequality we get:∣∣∣ ∫
Rn
〈∂jf(x), ∂jf(x)〉 [ψj(x)]

q−2
2 dx

∣∣∣ ≤ ∣∣∣ ∫
Rn

(∂jφj)(x)dx
∣∣∣+∣∣∣ ∫

Rn
〈f(x), ∂2

j f(x)〉 [ψj(x)]
q−2
2 + (q − 2)〈f(x), ∂jf(x)〉〈∂jf(x), ∂2

j f(x)〉 [ψj(x)]
q−4
2 dx

∣∣∣.
(2.17)

Since
∫
Rn(∂jφj)(x)dx = 0 then∫

Rn
|∂jf(x)|qY dx ≤

∫
Rn
|〈f(x), ∂2

j f(x)〉 [ψj(x)]
q−2
2 +

(q − 2)〈f(x), ∂jf(x)〉〈∂jf(x), ∂2
j f(x)〉 [ψj(x)]

q−4
2 |dx.

(2.18)

Let us denote

I = 〈f(x), ∂2
j f(x)〉 [ψj(x)]

q−2
2 + (q − 2)〈f(x), ∂jf(x)〉〈∂jf(x), ∂2

j f(x)〉 [ψj(x)]
q−4
2 .

We need to estimate |I|. Applying the Cauchy-Schwarz inequality we get:

|I| ≤ |f(x)|Y |∂2
j f(x)|Y |∂jf(x)|q−2

Y +

(q − 2)|f(x)|Y |∂jf(x)|Y |∂jf(x)|Y |∂2
j f(x)|Y |∂jf(x)|q−4

Y =

(q − 1)|f(x)|Y |∂2
j f(x)|Y |∂jf(x)|q−2

Y .

Inserting this result into (2.18)∫
Rn
|∂jf(x)|qY dx ≤ (q − 1)

∫
Rn
|f(x)|Y |∂2

j f(x)|Y |∂jf(x)|q−2
Y dx. (2.19)

For q = 2, if we interpret |∂jf(x)|q−2
Y as 1, then∫

Rn
|∂jf(x)|qY dx ≤

∫
Rn
|f(x)|Y |∂2

j f(x)|Y dx ≤ ‖f‖2k/(r−1)‖∂2
j f‖2k/(r+1).

In the last step we have used Hölder’s inequality, where k = r ≥ 1. By assumption,
1 ≤ r < k, so we set

q =
2k

r
, q1 =

2k

r − 1
, q2 =

2k

r + 1
, q3 =

q

q − 2
.
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2 Sobolev Embedding

Hence q > 2. Since 1/q1 + 1/q2 + 1/q3 = 1 then we can apply Hölder’s inequality to
(2.19). So we obtain∫

Rn
|∂jf(x)|qY dx ≤ (q − 1)‖f‖2k/(r−1)‖∂2

j f‖2k/(r+1)‖∂jf‖q−2
q .

Consequently,
‖∂jf‖22k/r ≤ C‖f‖2k/(r−1)‖∂2

j f‖2k/r+1.

Let us also mention that if r = 1 then 2k/(r − 1) is interpreted as ∞, and the constant
only depends on an upper bound on k.

Lemma 2.10. Assume 1 ≤ j, l, i ∈ Z and assume that k, r ∈ R with j ≤ r ≤ k + 1 − i
and l ≥ j. Then for all φ ∈ C∞0 (Rn, Y ),

‖Dlφ‖2k/r ≤ C
[
‖Dl−jφ‖2k/(r−j) + ‖Dl+iφ‖2k/(r+i)

]
, (2.20)

where a constant C depends on n and an upper bound on k and l + i.

We interpret 2k/(r − j) as ∞ when r = j.

Proof. Let us apply (2.14), then we have

‖Dlφ‖22k/r ≤ C‖D
l−1φ‖2k/(r−1)‖Dl+1φ‖2k/(r+1), (2.21)

for l ≥ 1 and 1 ≤ r ≤ k. Recall that

ab ≤ 1

2
(εa+ ε−1b)2

for all non-negative a, b and ε > 0. Apply this inequality to (2.21):

‖Dlφ‖2k/r ≤ C
[
ε‖Dl−1φ‖2k/(r−1) + ε−1‖Dl+1φ‖2k/(r+1)

]
.

This is inequality (2.20) in the case i = j = 1. Let us prove that

‖Dlφ‖2k/r ≤ C
[
ε‖Dl−jφ‖2k/(r−j) + C(ε)‖Dl+iφ‖2k/(r+i)

]
, (2.22)

where r, k, j, l, i satisfy the conditions of the lemma, also the condition that j, i ≤ γ. We
prove this inequality by induction. From the observation above we know that it is true
for γ = 1. Assume that inequality (2.22) works for γ and let us prove it for γ + 1. We
need to show that we can increase j to j + 1. Assume that we have conditions of the
lemma with j replaced by j + 1 and 1 ≤ i, j ≤ γ. Let us apply the induction hypothesis
to r′ = r − j, k′ = k, l′ = l − j, i′ = j and j′ = 1, then we obtain

‖Dl−jφ‖2k/(r−j) ≤ C
[
ε1‖Dl−j−1φ‖2k/(r−j−1) + C(ε1)‖Dlφ‖2k/r

]
.

44



2.2 Gagliardo-Nirenberg inequalities

Inserting this inequality into (2.22) we obtain:

‖Dlφ‖2k/r ≤ C
[
εC
[
ε1‖Dl−j−1φ‖2k/(r−j−1) + C(ε1)‖Dlφ‖2k/r

]
+ C(ε)‖Dl+iφ‖2k/(r+i)

]
.

(2.23)

So ‖Dlφ‖2k/r appears also on the right hand side. Let us fix ε1 and assume that ε is
small enough, so that the coefficient of ‖Dlφ‖2k/r can be smaller than 1/2. Then, we can
move it over to the left hand side and obtain (2.22) for j + 1

‖Dlφ‖2k/r ≤ C
[
ε‖Dl−j−1φ‖2k/(r−j−1) + C(ε)‖Dl+iφ‖2k/(r+i)

]
(2.24)

Hence (2.22) holds for all r, k, j, l, i, which satisfy the conditions of the lemma and i ≤
γ, j ≤ γ+1. Now let us assume that conditions of the lemma are satisfied with i replaced
by i + 1 and that 1 ≤ i ≤ γ and j ≤ γ + 1. Let us apply the induction hypothesis with
r′ = r + i, k′ = k, j′ = i, l′ = l + i and i′ = 1 :

‖Dl+iφ‖2k/(r+i) ≤ C
[
ε2‖Dlφ‖2k/r + C(ε2)‖Dl+i+1φ‖2k/(r+i+1)

]
. (2.25)

Inserting this result into (2.22) and using a similar argument as above, we obtain the
induction hypothesis for i + 1. Consequently we have the induction hypothesis with γ
replaced by γ + 1.

For j = l and r + i = k, as a consequence of this lemma we have

‖Dlφ‖2k/r ≤ C
[
‖φ‖2k/(r−l) + ‖Dl+k−rφ‖2

]
(2.26)

for all φ ∈ C∞0 (Rn, Y ), l ∈ N, k, r ∈ R such that l ≤ r and k − r ∈ N .

Lemma 2.11. Assume l, µ and i be non-negative integers with l ≤ max{µ, i} and assume
q, %, ρ ∈ [1,∞]. Let us set

α =
n

q
− n

%
+ µ− l, β = −n

q
+
n

p
− i+ l (2.27)

and assume that α and β are non zero. If 0 < C1, C2 ∈ R are constants such that the
inequality

‖Dlφ‖q ≤ C1‖Dµφ‖% + C2‖Diφ‖ρ

holds for all φ ∈ C∞0 (Rn, Y ), then α and β have the same sign and

‖Dlφ‖q ≤ (C1 + C2)‖Dµφ‖β/(α+β)
% ‖Diφ‖α/(α+β)

ρ for all φ ∈ C∞0 (Rn, Y ).

If q =∞, then we interpret n/q as 0 and similarly for n/% and n/ρ.
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2 Sobolev Embedding

Proof. If we set Q = ‖Dlφ‖q, R = ‖Dµφ‖% and P = ‖Diφ‖ρ then the assumed inequality
is transformed to

Q ≤ C1R+ C2P.

Let us replace φ(x) by φ(sx), where 0 < s ∈ R. Then from (2.10) we get:

‖Dlφ(sx)‖q = s
l−n

q ‖Dlφ(x)‖q, ‖Dµφ(sx)‖% = s
µ−n

% ‖Dµφ(x)‖%

and
‖Diφ(sx)‖ρ = s

i−n
ρ ‖Diφ(x)‖ρ.

Consequently
sl−n/qQ ≤ C1s

µ−n/%R+ C2s
i−n/ρP.

Multiplying both sides of the above inequality by sn/q−l we get:

Q ≤ C1s
µ−n/%−l+n/qR+ C2s

i−n/ρ−l+n/qP.

So
Q ≤ C1s

αR+ C2s
−βP. (2.28)

Assume that α and β have different sign. If s tends to zero or ∞ then we can conclude
that Q = 0. Hence ‖Dlφ‖q = 0 for all φ ∈ C∞0 (Rn, Y ). Since this is false, we conclude
that α and β have the same sign. If P or R is zero then φ is zero. Hence the inequality
holds. Let us set s = (P/R)1/(α+β), where P and R are non zero. Inserting s in (2.28)
we have:

Q ≤C1

(
P

R

) α
α+β

R+ C2

(
P

R

) −β
α+β

P =

C1P
α

α+βR
β

α+β + C2P
α

α+βR
β

α+β =

(C1 + C2)P
α

α+βR
β

α+β .

Consequently,
‖Dlφ‖q ≤ (C1 + C2)‖Diφ‖α/(α+β)

ρ ‖Dµφ‖β/(α+β)
% .

Corollary 2.12. Assume 1 ≤ l ∈ Z and let k, r ∈ R be such that l ≤ r and k − r ∈ N.
Then for all φ ∈ C∞0 (Rn, Y )

‖Dlφ‖2k/r ≤ C‖φ‖
(k−r)/(k+l−r)
2k/(r−l) ‖Dk+l−rφ‖l/(k+l−r)

2 , (2.29)

where C is a constant.
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Proof. Since the corollary conditions satisfy Lemma 2.11 then we can apply it to (2.26).
And that the result of this corollary follows. Note that from the assumptions of Lemma
2.11 and (2.26) we conclude that:

q =
2k

r
, % =

2k

r − l
, µ = 0, i = k + l − r, ρ = 2. (2.30)

Inserting this in (2.27) we obtain

α = n · r
2k
− n · (r − l)

2k
+ 0− l =

nr − nr + nl − 2kl

2k
=
l(n− 2k)

2k

β = −n · r
2k

+
n

2
− (k + l − r) + l =

−n(r − k)

2k
+ (r − k) = (r − k)

(2k − n)

2k

α+ β =
(l + k − r)(n− 2k)

2k
.

(2.31)

So
α

α+ β
=

l

k + l − r
β

α+ β
=

k − r
k + l − r

.

Applying Lemma 2.11 and using the above results we obtain

‖Dlφ‖2k/r ≤ C‖φ‖
(k−r)/(k+l−r)
2k/(r−l) ‖Dk+l−rφ‖l/(k+l−r)

2 .

Let us prove the case when α = β = 0, where α and β are given in (2.27). Since l ≥ 1
and k− r is positive then α = β = 0 if and only if n = 2k. The constant C in (2.26) only
depends on an upper bound on n, on k and on l + k − r. Assume that n = 2k, and set
kε = k + ε and rε = r + ε for ε ∈ (0, 1). We can apply the Corrolary for l, kε, rε, and we
can choose constant which is independent of ε. Since kε − rε = k − r, so it remains to
prove that

lim
t→t0
‖φ‖t = ‖φ‖t0 ,

for smooth function φ with compact support and 1 < t0 ≤ ∞.
Since ‖φ‖t = (

∫
Rn

(|φ(x)|tY dx)1/t and the norm |φ(x)|Y defines a non negative real-valued

continuous function with compact support. Then we only need to prove that lim
t→t0
‖ψ‖t =

‖ψ‖t0 , where ψ is a continuous real-valued function with compact support. First consider
the case 1 < t0 < ∞. Since ψ(x) is a continuous real-valued function with compact
support then |ψ|t converges to |ψ|t0 everywhere and is bounded by an integrable function.
By Lebesgue’s dominated convergence theorem, ‖ψ‖tt → ‖ψ‖t0t0 . So we conclude that
‖ψ‖t → ‖ψ‖t0 . Now let us prove the case t0 =∞. Let ψ = 0 outside of a compact set K.
Consequently, for 1 < t <∞,

‖ψ‖t =

∫
K

|ψ(x)|tdx

1/t

≤ ‖ψ‖∞ [µ(K)]1/t .
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So,
lim sup
t→∞

‖ψ‖t ≤ ‖ψ‖∞.

Let us denote by Aα = {x ∈ Rn : |ψ(x)| ≥ α}, for any real number α > 0. Then

α [µ(Aα)]1/t ≤

∫
Aα

|ψ(x)|tdx

1/t

= ‖ψ‖t.

If µ(Aα) > 0, we conclude that
α ≤ lim inf

t→∞
‖ψ‖t.

Let ‖ψ‖∞ = α0 then
‖ψ‖∞ ≤ lim inf

t→∞
‖ψ‖t on Aα0 .

By combining the above results we have:

‖ψ‖∞ ≤ lim inf
t→∞

‖ψ‖t ≤ lim sup
t→∞

‖ψ‖t ≤ ‖ψ‖∞.

Hence, lim
t→∞
‖ψ‖t = ‖ψ‖∞.

Corollary 2.13. Let k, l be positive integers such that k ≥ l+1. We interpret 2k/(r− l)
as ∞ when r = l. According to the above corollary there is a constant C such that

‖Dlφ‖2k/l ≤ C‖φ‖1−l/k∞ ‖Dkφ‖l/k2 for all φ ∈ C∞0 (Rn, Y ). (2.32)

Lemma 2.14. Let φ1, . . . , φl ∈ C∞0 (Rn, Y ) and let α1, . . . , αl be multiindices with
l∑

i=1
|αi| = k. Then

‖∂α1φ1 . . . ∂
αlφl‖2 ≤ C

l∑
i=1

‖Dkφi‖2
∏
j 6=i
‖φj‖∞. (2.33)

Proof. Let us set ki = |αi| and pi = k/ki then 1/p1 + · · · + 1/pl = 1. By applying (2.7)
we obtain

‖∂α1φ1 . . . ∂
αlφl‖2 ≤ ‖∂α1φ1‖2k/k1 · · · ‖∂

αlφl‖2k/kl . (2.34)

If only one ki 6= 0, then (2.33) is true. So let us assume that ki ≤ k− 1. By applying the
inequality (2.32) with Y = R we obtain that

‖∂α1φ1 . . . ∂
αlφl‖2 ≤ C‖φ1‖1−k1/k∞ ‖Dkφ1‖k1/k2 · · · ‖φl‖1−kl/k∞ ‖Dkφl‖

kl/k
2 . (2.35)

Since 1− ki/k =
∑
j 6=i

kj/k then we can write the factors in l groups of the form

‖Dkφi‖2
∏
j 6=i
‖φj‖∞

ki/k

. (2.36)
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Let us apply the inequality (2.4):‖Dkφ1‖2
∏
j 6=1

‖φj‖∞

k1/k

· · ·

‖Dkφl‖2
∏
j 6=l
‖φj‖∞

kl/k

≤

‖Dkφ1‖2
∏
j 6=1

‖φj‖∞


k1
k
· k
k1

· k1

k
+ · · ·+

‖Dkφl‖2
∏
j 6=l
‖φj‖∞


kl
k
· k
kl

· kl
k

=

‖Dkφ1‖2
∏
j 6=1

‖φj‖∞ ·
k1

k
+ · · ·+ ‖Dkφl‖2

∏
j 6=l
‖φj‖∞ ·

kl
k
≤

l∑
i=1

‖Dkφi‖2
∏
j 6=i
‖φj‖∞.

Inserting this in (2.35) we get

‖∂α1φ1 . . . ∂
αlφl‖2 ≤ C

l∑
i=1

‖Dkφi‖2
∏
j 6=i
‖φj‖∞.

Let us show that (2.33) also holds when φ1, . . . , φl ∈ Hk(Rn), are such that ‖φi‖∞ <∞
for i = 1, . . . , l. By Lemma 1.15 there is a sequence φi,m ∈ C∞0 (Rn) converging to φi for
i = 1, . . . , l. From the proof of Lemma 1.15 and inequality (1.3) for p =∞ it follows that
‖φi,m‖∞ ≤ ‖φi‖∞. According to Theorem 3.12 of [Rud87] we can choose subsequences
of φi,m such that ∂αiφi,m converges to ∂αiφi almost everywhere. By applying Fatou’s
lemma 1.28 of [Rud87] we get the inequality (2.33) for φ1, . . . , φl ∈ Hk(Rn).
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In this chapter we follow [Rin09, Chapter 7]. Let us recall the definition of absolutely
continuous functions.

Definition 3.1. A complex function f, defined on an interval I is called absolutely
continuous (AC) if ∀ε > 0 there exists δ > 0 such that

n∑
i=1

|f(βi)− f(αi)| < ε

for any n and any disjoint intervals (α1, β1), . . . , (αn, βn) in I whose lengths satisfy

n∑
i=1

(βi − αi) < δ.

Lemma 3.2. (Grönwall’s lemma) Let f ∈ L∞([T0, T ]), k ∈ L1([T0, T ]) be non-negative
functions and let G be an increasing, non-negative function on [T0, T ] , where T0 ∈ R, T >
T0. If

f(t) ≤ G(t) +

t∫
T0

k(s)f(s)ds for all t ∈ [T0, T ] (3.1)

then

f(t) ≤ G(t) exp

 t∫
T0

k(s)ds

 for all t ∈ [T0, T ] .

Proof. Since G is an increasing function it will suffice to prove the statement for t = T .
Therefore, we may suppose that G = G(T ) is constant. Let us extend k and f to the
entire real line by setting them zero outside the interval [T0, T ] . Let us denote

F (t) = G+

t∫
T0

k(s)f(s)ds.

F is differentiable almost everywhere and F ′ = kf by Theorem 7.11 of [Rud87]. Also F
is a real-valued continuous and increasing function defined on [T0, T ] . Due to Theorem

7.18(c) of [Rud87] F is absolutely continuous (AC) on [T0, T ] . Similarly,
t∫
T0

k(s)ds is
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absolutely continuous (AC) on [T0, T ] . Hence

g(t) = F (t) exp

− t∫
T0

k(s)ds


is absolutely continuous. By Theorem 7.18 (a) of [Rud87] g(t) is differentiable a.e. and
the derivative is

g′ = kf exp

− t∫
T0

k(s)ds

− kF exp

− t∫
T0

k(s)ds

 =

k(f − F ) exp

− t∫
T0

k(s)ds

 .

From (3.1) it follows that g′ ≤ 0. Since g is a real-valued and absolutely continuous
function on [T0, T ] then by Theorem 7.20 of [Rud87]

g(t)− g(T0) =

t∫
T0

g′(x)dx T0 ≤ t ≤ T.

Consequently,

g(t)− g(T0) ≤ 0

g(t) ≤ g(T0) = G.

Hence,

F (t) exp

− t∫
T0

k(s)ds

 ≤ G,
F (t) ≤ G exp

 t∫
T0

k(s)ds

 .

From (3.1) it follows that f(t) ≤ F (t). So

f(t) ≤ G(t) exp

 t∫
T0

k(s)ds

 .
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3.1 Energy inequalities

3.1 Energy inequalities

To define symmetric hyperbolic systems we need to recall some definitions.

Definition 3.3. An N × N square matrix A is called symmetric if it is equal to its
transpose A = AT :

ai,j = aj,i for every 1 ≤ i, j ≤ N.

Definition 3.4. An N ×N symmetric real matrix A is called positive definite if

xTAx > 0 for all x ∈ RN \ {0}.

Let us define linear symmetric hyperbolic systems. These are equations of the following
form :

n∑
µ=0

Aµ∂µu+Bu = f (3.2)

u(0, ·) = u0,

where Aµ, µ = 0, 1, · · · , n and B are N × N real matrix-valued smooth functions on
Ω ⊆ Rn+1. The derivatives of Aµ, µ = 0, 1, · · · , n and B are supposed to be bounded.
Here f and u are RN -valued functions defined on Ω, and u0 is a smooth function on Rn.
By using Einstein summation convention we can rewrite (3.2) as

Aµ∂µu+Bu = f

u(0, ·) = u0.
(3.3)

We say that (3.3) is a symmetric hyperbolic system if Aµ, µ = 0, 1, · · · , n are sym-
metric. We suppose that A0 is positive definite with a uniform positive lower bound.
Hence there is a real constant c0 > 0 such that A0 ≥ c0. This means that for every
x ∈ Rn xTA0x ≥ c0x

T Ix = c0|x|2 where I is the identity matrix. Let us denote by
L = Aµ∂µ +B. So (3.3) can be rewritten as

Lu = f

u(0, ·) = u0.

(3.4)

Let u be a smooth solution to (3.3) on ST = [0, T ]× Rn and suppose that u, ∂tu satisfy
uniform Schwartz bounds. This means that for every α and β multiindices there is a
constant Cα,β such that

|xα|[|∂βu|+ |∂β∂tu|](t, x) ≤ Cα,β (3.5)

on ST . Then by (3.3), f also satisfies uniform Schwartz bounds. Let us analyze the basic
energy inequality. Let

E = E(t) =
1

2

∫
Rn

uTA0u dx,
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where uT is a transpose of u. Let us differentiate E with respect of t :

∂tE = ∂t

1

2

∫
Rn

uTA0u dx

 =
1

2

∫
Rn

∂t(u
TA0u)dx =

1

2

∫
Rn

[∂tu
TA0u+ uT ((∂tA

0)u+A0∂tu)]dx =

1

2

∫
Rn

[∂tu
TA0u+ uT (∂tA

0)u+ uTA0∂tu]dx.

Since A0 is a symmetric matrix, aij = aji for i, j = 1, · · · , N, then

∂tu
TA0u = uTA0∂tu.

So

∂tE =

∫
Rn

[
1

2
uT (∂tA

0)u+ uTA0∂tu

]
dx.

By equation (3.3) we have that

A0∂tu+Ai∂iu+Bu = f.

Consequently we can rewrite the second term on the right hand side as∫
Rn

uTA0∂tu dx =

∫
Rn

[
uT f − uTAi∂iu− uTBu

]
dx.

We need to compute uTAi∂iu. Let us begin with

∂i(u
TAiu) = ∂iu

TAiu+ uT [(∂iA
i)u+Ai∂iu].

Since Ai is a symmetric matrix then

∂iu
TAiu = uTAi∂iu.

Consequently,
∂i(u

TAiu) = 2uTAi∂iu+ uT (∂iA
i)u

uTAi∂iu =
1

2

[
∂i(u

TAiu)− uT (∂iA
i)u
]
.

Integrating both sides of the above equation we obtain∫
Rn

uTAi∂iu dx =
1

2

∫
Rn

[
∂i(u

TAiu)− uT (∂iA
i)u
]
dx = −1

2

∫
Rn

uT (∂iA
i)u dx,
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where we have used the fact that
∫
Rn
∂i(u

TAiu)dx = 0.

Summing the above equations we have that

∂tE =

∫
Rn

[
1

2
uT (∂tA

0)u+ uT f +
1

2
uT (∂iA

i)u− uTBu
]
dx =

∫
Rn

uT
(

1

2
∂tA

0 +
1

2
∂iA

i −B
)
u dx+

∫
Rn

uT f dx.

(3.6)

By our assumption, B and the derivatives of A, have an upper bound hence

|uT
(

1

2
∂tA

0 +
1

2
∂iA

i −B
)
u| ≤M |u|2. (3.7)

By our assumption A0 has a uniform positive lower bound so

uTA0u ≥ C0|u|2. (3.8)

The first term on the right hand side of (3.6) is bounded by CE:∫
Rn

|uT
(

1

2
∂tA

0 +
1

2
∂iA

i −B
)
u| dx ≤

∫
Rn

M |u|2 dx ≤ M

C0

∫
Rn

uTA0u dx ≤ CE.

Let us estimate
∫
Rn
|uT f | dx by using the Cauchy-Schwarz inequality:

∫
Rn

|uT f | dx ≤

∫
Rn

|u|2 dx

1/2∫
Rn

|f(t, ·)|2dx

1/2

≤

 1

C0

∫
Rn

uTA0u dx

1/2

· ‖f(t, ·)‖2 = CE1/2‖f(t, ·)‖2.

So we have
∂tE ≤ CE + CE1/2‖f(t, ·)‖2, (3.9)

where C is a constant whose value may change from line to line. Let us take Eε = E + ε
for ε > 0. Since (3.9) holds for Eε > 0 then we can divide by

√
Eε :

∂tEε

E
1/2
ε

≤ CE1/2
ε + C‖f(t, ·)‖2.

Integrating the above inequality over [0, t] we get:

t∫
0

∂tEε

E
1/2
ε

ds ≤
t∫

0

CE1/2
ε (s)ds+

t∫
0

C‖f(s, ·)‖2ds
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E1/2
ε (t) ≤ E1/2

ε (0) + C

t∫
0

E1/2
ε (s)ds+ C

t∫
0

‖f(s, ·)‖2ds. (3.10)

Now we apply Grönwall’s lemma, Lemma 3.2, where

G(t) = E1/2
ε (0) + C

t∫
0

‖f(s, ·)‖2ds

and
k(t) = C.

So

E1/2
ε (t) ≤

E1/2
ε (0) + C

t∫
0

‖f(s, ·)‖2ds

 eCt.

If ε→ 0 then

E1/2(t) ≤

E1/2(0) + C

t∫
0

‖f(s, ·)‖2ds

 eCt.

From this inequality follows the uniqueness of solutions to (3.3). Let u1 and u2 be two
different solutions for (3.3). Let us consider the energy of u1 − u2. Since u1(0, ·) =
u2(0, ·) = u0 then E1/2(0) = 0. The second term of the right hand side of the inequality
is also 0. Since E1/2(t) ≤ 0 it follows that u1(t, ·) = u2(t, ·) on ST .

Lemma 3.5. Let (3.3) have a solution and satisfy the conditions mentioned at the
beginning of this section. Let us define

Ek[u] =
1

2

∑
|α|≤k

∫
Rn

(∂αu)TA0∂αu dx. (3.11)

Then
∂tEk ≤ CEk + CE

1/2
k ‖f‖Hk , (3.12)

where the constants depend on the bounds on Aµ and B.

Proof. We need to estimate Ek. Since

E[u] =
1

2

∫
Rn

uTA0u dx

then
Ek[u] =

∑
|α|≤k

E[∂αu].
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Hence for k = 0 we obtain E = E0[u]. Let us differentiate the above equation with
respect of t :

∂tEk[u] =
∑
|α|≤k

∂tE[∂αu]. (3.13)

We recall that
L∂αu = ∂αLu+ [L, ∂α]u = ∂αf + [L, ∂α]u.

From (3.9) it follows that (3.12) holds for k = 0. Consequently,

∂tE[∂αu] ≤ CE[∂αu] + CE1/2[∂αu]‖L∂αu‖2 =

CE[∂αu] + CE1/2[∂αu]‖∂αf + [L, ∂α]u‖2.
(3.14)

Let us compute [L, ∂α]u :

[L, ∂α]u = Aµ∂µ∂
αu+B∂αu− ∂α(Aµ∂µu+Bu) =

Aµ∂µ∂
αu+B∂αu− [Aµ∂α∂µu+ (∂αAµ)∂µu+ (∂αB)u+B∂αu] =

− (∂αAµ)∂µu− (∂αB)u.

(3.15)

Since all derivatives of Aµ and B are bounded then from the above expression we obtain

|[L, ∂α]u| ≤ C

∑
|µ|=1

|∂µu|+ |u|

 . (3.16)

From (3.8) it follows that
|u|2 ≤ CuTA0u

and
|∂µu|2 ≤ C(∂µu)TA0∂µu.

Consequently,

|[L, ∂α]u|2 ≤ C

∑
|µ|≤1

|∂µu|2 + |u|2
 ≤

C

∑
|µ|≤1

(∂µu)TA0∂µu+ uTA0u

 .

Integrating both sides of this inequality over Rn we obtain

∫
Rn

|[L, ∂α]u|2dx ≤ C
∫
Rn

∑
|µ|≤1

(∂µu)TA0∂µu+ uTA0u

 dx.

So,
‖[L, ∂α]u‖2 ≤ C E

1/2
1 [u] ≤ C E

1/2
k [u],
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where k ≥ 1. Let us insert this result in (3.14). To not burden our inequalities with many
constants we will use the same notation C for all of them.

∂tE[∂αu] ≤ CE[∂αu] + CE1/2[∂αu] (‖∂αf + [L, ∂α]u‖2) ≤
CE[∂αu] + CE1/2[∂αu]‖∂αf‖2 + CE1/2[∂αu]‖[L, ∂α]u‖2 ≤

CE[∂αu] + CE1/2[∂αu]‖f‖Hk + CE1/2[∂αu]E
1/2
k [u] ≤

CE[∂αu] + CE1/2[∂αu]‖f‖Hk + CE1/2[∂αu]E
1/2
k [u].

In the second step we have used the Minkowski inequality. In the third step we have
used the fact ‖∂αf‖2 ≤ ‖f‖Hk , when |α| ≤ k. This follows from the definition of the ‖·‖2
norm and (1.8)

‖∂αf‖2 ≤ ‖f‖H|α| ≤ ‖f‖Hk .

Hence we obtain

∂tE[∂αu] ≤ CE[∂αu] + CE1/2[∂αu]‖f‖Hk + CE1/2[∂αu]E
1/2
k [u].

Inserting this result in (3.13) we get

∂tEk[u] =
∑
|α|≤k

∂tE[∂αu] ≤
∑
|α|≤k

(
CE[∂αu] + CE1/2[∂αu]‖f‖Hk + CE1/2[∂αu]E

1/2
k [u]

)
≤ CEk[u] + CE

1/2
k [u]‖f‖Hk + CEk[u] ≤ CEk[u] + CE

1/2
k [u]‖f‖Hk .

Corollary 3.6. Let (3.3) have a solution and satisfy the conditions mentioned at the
beginning of this section then

E
1/2
k (t) ≤ C

E1/2
k (0) +

t∫
0

‖f(s, ·)‖Hkds

 for t ∈ [0, T ], (3.17)

where the constant C depends on k, the bounds on Aµ and B and on T .

Proof. Let us define Λk = e−CtE
k

+ ε for ε > 0, here C is the first constant from (3.12).
We need to estimate ∂tΛk :

∂tΛk = ∂t
[
e−CtEk + ε

]
= −Ce−CtEk + e−Ct∂tEk ≤

− Ce−CtEk + e−Ct
[
CEk + CE

1/2
k ‖f‖Hk

]
= Ce−CtE

1/2
k ‖f‖Hk ≤

Ce−Ct/2
[
e−CtEk + ε

]1/2 ‖f‖Hk = Ce−Ct/2Λ
1/2
k ‖f‖Hk .

(3.18)

Above in the first inequality, we have used (3.12). Since we assumed that C depends on
T it follows that e−Ct/2 can be estimated by a constant. Let us rewrite the inequality

∂tΛk ≤ CΛ
1/2
k ‖f‖Hk .
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Since Λk ≥ ε > 0, we can divide both sides of the above inequality by Λ
1/2
k :

∂tΛk

Λ
1/2
k

≤ C‖f‖Hk . (3.19)

Let us integrate this inequality over [0, t] :∫ t

0

∂tΛk

Λ
1/2
k

ds ≤
∫ t

0
C‖f‖Hkds.

Consequently

Λ
1/2
k (t) ≤ Λ

1/2
k (0) + C

∫ t

0
‖f(s, ·)‖Hkds.

When ε → 0 the difference between Λk and Ek tends to a constant factor. Inserting in
the above inequality Λk = CE

k
we get the final result

E
1/2
k (t) ≤ C

E1/2
k (0) +

t∫
0

‖f(s, ·)‖Hkds

 .

Let us mention that the above estimates also hold for CN -valued solutions to (3.3).
The real and imaginary parts of CN -valued solutions can be considered as two RN -valued
solutions with suitable right hand sides. Let us define

Ek[u] = Ek[Reu] + Ek[Imu]

then we obtain (3.12) and (3.17) for CN -valued solutions.
The following Lemma will help us to prove existence of solutions to symmetric hyperbolic
systems.

Lemma 3.7. Let u be a solution of (3.3), under the assumptions made at the beginning
of this section. Then for t ∈ [0, T ] and for any k ∈ Z we obtain

‖u(t, ·)‖k ≤ C
[
‖u(0, ·)‖k +

∫ t

0
‖f(s, ·)‖kds

]
(3.20)

where the constant C depends on k, the bounds on Aµ, B and on T.

Proof. First we prove (3.20) for k a non-negative integer. Let us apply (3.17). By
Theorem 1.42 the norms ‖ · ‖Hk and ‖ · ‖k are equivalent for k non-negative integer.
Hence

E
1/2
k (t) ≤ C1

E1/2
k (0) +

t∫
0

‖f(s, ·)‖kds

 .
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Let us estimate E1/2
k . From the equation (3.11) it follows that

Ek =
1

2

∑
|α|≤k

∫
Rn

(∂αu)TA0∂αu dx ≥ 1

2

∑
|α|≤k

∫
Rn

c0|∂αu|2dx

≥ C2
0‖u‖2Hk .

In the first step we use the fact that A0 has a uniform positive lower bound c0. So

E
1
2
k ≥ C0‖u‖Hk ≥ C2‖u‖k. (3.21)

Above in the second step we use the equivalency of the norms ‖·‖Hk and ‖·‖k. Choosing
the constant C3 big enough we can assume that E1/2

k (0) ≤ C3‖u(0, ·)‖k. Combining these
results we get

‖u(t, ·)‖k ≤
Ek(t)

1/2

C2
≤ C1

C2

[
E

1/2
k (0) +

∫ t

0
‖f(s, ·)‖kds

]
≤

C1

C2

[
C3‖u(0, ·)‖k +

∫ t

0
‖f(s, ·)‖kds

]
≤ C

[
‖u(0, ·)‖k +

∫ t

0
‖f(s, ·)‖kds

]
.

We need to prove (3.20) for k a negative integer. For t ∈ [0, T ] we define

g(t, ·) = (1−∆)ku(t, ·). (3.22)

From the conditions of the lemma it follows that g(t, ·) also satisfies uniform Schwartz
bounds. Let us compute ‖g(t, ·)‖−k :

‖g(t, ·)‖−k =

[
1

(2π)n

∫
Rn
|F [(1−∆)ku]|2(1 + |ξ|2)−kdξ

]1/2

=[
1

(2π)n

∫
Rn

(1 + |ξ|2)2k|û|2(1 + |ξ|2)−kdξ

]1/2

=[
1

(2π)n

∫
Rn

(1 + |ξ|2)k|û|2dξ
]1/2

= ‖u(t, ·)‖k.

Here we have used the Fourier transform definition of (1−∆)ku, that is F [(1−∆)ku] =
(1 + |ξ|2)kû. Let us estimate ‖u(t, ·)‖k :

‖u(t, ·)‖k = ‖g(t, ·)‖−k ≤ CE
1/2
−k [g](t) ≤

C

[
E

1/2
−k [g](0) +

∫ t

0
‖Lg(s, ·)‖−k ds

]
≤

C

[
‖g(0, ·)‖−k +

∫ t

0
‖Lg(s, ·)‖−k ds

]
=

C

[
‖u(0, ·)‖k +

∫ t

0
‖Lg(s, ·)‖−k ds

]
.

(3.23)
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In the second step we have used (3.21) and in the third step we have used (3.17). We
need to estimate the last term. Recall that

[L, (1−∆)−k]g = L(1−∆)−kg − (1−∆)−kLg =

Lu− (1−∆)−kLg = f − (1−∆)−kLg.

Consequently,
(1−∆)−kLg = f − [L, (1−∆)−k]g.

We have that ‖λk(ξ)û‖2 = (2π)n/2‖u‖k. Applying the Minkowski inequality to the above
expression for the norm ‖ · ‖2 we obtain

‖(1−∆)−kLg(t, ·)‖k ≤ ‖f(t, ·)‖k + ‖[L, (1−∆)−k]g(t, ·)‖k. (3.24)

By (1.22) we have that ‖(1 − ∆)−kLg(t, ·)‖k = ‖Lg(t, ·)‖−k. Let us rewrite the above
inequality

‖Lg(t, ·)‖−k ≤ ‖f(t, ·)‖k + ‖[L, (1−∆)−k]g(t, ·)‖k.

We need to estimate ‖[L, (1−∆)−k]g(t, ·)‖k :

‖[L, (1−∆)−k]g(t, ·)‖k = ‖[Aµ∂µ +A0∂t +B, (1−∆)−k]g(t, ·)‖k ≤
‖[Aµ∂µ, (1−∆)−k]g(t, ·)‖k + ‖[A0∂t, (1−∆)−k]g(t, ·)‖k + ‖[B, (1−∆)−k]g(t, ·)‖k.

Let us estimate each term of the right hand side of the above inequality. For 1 ≤ µ ≤ n
we obtain

‖[Aµ∂µ, (1−∆)−k]g‖k = ‖(1−∆)k([Aµ∂µ, (1−∆)−k]g)‖−k =

‖(1−∆)k(Aµ∂µ(1−∆)−kg)− (1−∆)k(1−∆)−kAµ∂µg‖−k =

‖(1−∆)k(Aµ∂µ(1−∆)−kg)−Aµ∂µg‖−k =

‖Aµ∂µg −Aµ∂µg + P (∂)(∂µ(1−∆)−kg)‖−k =

‖P (∂)(∂µ(1−∆)−kg)‖−k ≤ C‖(1−∆)−kg‖k = C‖g‖−k.

(3.25)

The first equality follows from (1.22). Since the linear partial derivative operator P (∂)
has the order less than or equal to 2k− 1 then P (∂)∂µ will have order less than or equal
to 2k. From Lemma 1.43 the last inequality follows.
With similar steps we obtain an estimate for ‖[A0∂t, (1−∆)−k]g‖k :

‖[A0∂t, (1−∆)−k]g‖k = ‖P (∂)(∂t(1−∆)−kg)‖−k ≤
C‖∂t(1−∆)−kg‖k−1 = C‖∂tg‖−k−1.

(3.26)

Since the linear partial derivative operator P (∂) has order less than or equal to 2k − 1
then by Lemma 1.43 we obtain the first inequality. It remains to estimate the last term

‖[B, (1−∆)−k]g‖k ≤ C‖(1−∆)−kg‖k = C‖g‖−k. (3.27)
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Combining the above results we obtain

‖[L, (1−∆)−k]g(t, ·)‖k ≤ C‖g(t, ·)‖−k + C‖∂tg(t, ·)‖−k−1.

It remains to estimate ‖∂tg(t, ·)‖−k−1. From (1.22) it follows that

‖∂tg(t, ·)‖−k−1 = ‖(1−∆)−k∂tg‖k−1. (3.28)

To compute ‖(1−∆)−k∂tg‖k−1 we need to define the operator L0 :

L0u = (A0)−1Lu.

With this notation we have

[L0, (1−∆)−k]g = L0(1−∆)−kg − (1−∆)−kL0g =

L0u− (1−∆)−kL0g = (A0)−1f − (1−∆)−kL0g.
(3.29)

We can rewrite the last term as

(1−∆)−kL0g = (1−∆)−k(L0 − ∂t)g + (1−∆)−k∂tg.

Inserting this expression to (3.29) we get

[L0, (1−∆)−k]g = (A0)−1f −
[
(1−∆)−k(L0 − ∂t)g + (1−∆)−k∂tg

]
.

So
(1−∆)−k∂tg = (A0)−1f − (1−∆)−k(L0 − ∂t)g − [L0, (1−∆)−k]g.

Let us estimate (1−∆)−k∂tg in Hk−1.

‖(1−∆)−k∂tg‖k−1 ≤ ‖(A0)−1f‖k−1 + ‖(1−∆)−k(L0 − ∂t)g‖k−1

+ ‖[L0, (1−∆)−k]g‖k−1.
(3.30)

We need to estimate each term of this sum. Due to Lemma 1.45

‖(A0)−1f‖k−1 ≤ C‖f‖k−1. (3.31)

Let us estimate the second and the third terms on the right hand side of (3.30).

L0 = (A0)−1A0∂t + (A0)−1Ai∂i + (A0)−1B = ∂t +Bi∂i +B0

L0 − ∂t = Bi∂i +B0,

where we denote (A0)−1Ai = Bi and (A0)−1B = B0.

‖(1−∆)−k(L0 − ∂t)g‖k−1 = ‖(L0 − ∂t)g‖−k−1 = ‖Bi∂ig +B0g‖−k−1 ≤
‖Bi∂ig‖−k−1 + ‖B0g‖−k−1 ≤ C‖g‖−k + C‖g‖−k−1 ≤ C‖g‖−k.

(3.32)
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In the second inequality we have used Lemma 1.43 and Lemma 1.46.
We need to compute the last term of (3.30)

‖[L0, (1−∆)−k]g‖k−1 = ‖[∂t +Bi∂i +B0, (1−∆)−k]g‖k−1 ≤
‖[∂t, (1−∆)−k]g‖k−1 + ‖[Bi∂i, (1−∆)−k]g‖k−1 + ‖[B0, (1−∆)−k]g‖k−1.

Let us note that ‖[∂t, (1−∆)−k]g‖k−1 = 0. With similar steps like in (3.25) we obtain:

‖[Bi∂i, (1−∆)−k]g‖k−1 ≤ C‖g‖−k−1.

‖[B0, (1−∆)−k]g‖k−1 ≤ C‖(1−∆)−kg‖k−1 = C‖g‖−k−1 ≤ C‖g‖−k.

We conclude that
‖[L0, (1−∆)−k]g‖k−1 ≤ C‖g‖−k. (3.33)

Inserting (3.31), (3.32) and (3.33) in (3.30) we obtain

‖∂tg(t, ·)‖−k−1 ≤ C [‖f(t, ·)‖k−1 + ‖g(t, ·)‖−k + ‖g(t, ·)‖−k] ≤
C [‖u(t, ·)‖k + ‖f(t, ·)‖k] .

Finally we can estimate ‖u(t, ·)‖k :

‖u(t, ·)‖k ≤ C
[
‖u(0, ·)‖k +

∫ t

0
[‖u(s, ·)‖k + ‖f(s, ·)‖k] ds

]
.

Since the conditions of Grönwall’s lemma are satisfied we can apply Lemma 3.2:

‖u(t, ·)‖k ≤ C
[
‖u(0, ·)‖k +

∫ t

0
‖f(s, ·)‖kds

]
eCt ≤

C

[
‖u(0, ·)‖k +

∫ t

0
‖f(s, ·)‖kds

]
.

Corollary 3.8. Let u be a solution of (3.3)under the assumptions made at the beginning
of this section. Then for t ∈ [0, T ] and for k ∈ Z we obtain

‖u(t, ·)‖k ≤ C
[
‖u(T, ·)‖k +

∫ T

t
‖f(s, ·)‖kds

]
, (3.34)

where the constant C depends on k, the bounds on Aµ, B and on T.

Proof. Let us define the operator L1 :

L1 = −A0(T − t, x)(∂tu)(t, x) +Ai(T − t, x)(∂iu)(t, x) +B(T − t, x)u(t, x).

and denote
v(t, x) = u(T − t, x).
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The operators −L1 and L are of the same type. Hence we can apply Lemma 3.7 and
obtain

‖v(t, ·)‖k ≤ C
[
‖v(0, ·)‖k +

∫ t

0
‖L1v(s, ·)‖kds

]
,

for all k ∈ Z and all t ∈ [0, T ]. Since (L1v)(t, x) = (Lu)(T − t, x) we can rewrite the
above inequality as

‖u(t, ·)‖k ≤ C
[
‖u(T, ·)‖k +

∫ T

t
‖Lu(s, ·)‖kds

]
.

Now we are ready to prove uniqueness and existence of solutions to (3.3).

3.2 Uniqueness and Existence

In this last section we follow [Rin09, §7.3 and §7.4].

Theorem 3.9 (Uniqueness). Let Aµ and B be maps from Rn+1 into the space of real-
valued N ×N matrices with Aµ, µ = 0, 1, . . . , n symmetric in C1 and B in C0. Suppose
that for any compact interval [T1, T2], A0 is positive definite on [T1, T2] × Rn with a
constant positive lower bound and that all the matrices Aµ are bounded on [T1, T2]×Rn.
We assume that f : Rn+1 −→ RN is continuous. Let u1 and u2 be two C1-solutions to
(3.3) defined on (a, b) × Rn where a < 0 and b > 0, with corresponding initial data u01

and u02. Assume that T1 ≤ 0, T2 ≥ 0 and let [T1, T2] be a compact subinterval of (a, b). If
u01(x) = u02(x) for x ∈ Br(x0) then there is an s0 > 0 depending on the lower bound on
A0 and the upper bound on Ai in [T1, T2] such that

u1(t, x) = u2(t, x) for (t, x) ∈ Cx0,r,s0,T1,T2 , (3.35)

where

Cx0,r,s0,T1,T2 = C = {(t, x) ∈ [T1, T2]× Rn : |t| < r/s0, x ∈ Br−s0t(x0)}. (3.36)

Moreover, if u is a C1 solution to (3.3) on [T1, T2] × Rn, u0(x) = 0 for x ∈ Br(x0) and
f(t, x) = 0 for (t, x) ∈ C, then u(t, x) = 0 for (t, x) ∈ C.

Proof. First we prove the second statement of the theorem, then by setting u = u1 − u2

the first statement follows. Let us denote

D = Cx0,r,s0,0,T2 .

Let us compute the following expression

∂α

[
e−ktuTAαu

]
,
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where k is a constant and uT is the transpose of u. Here we use notation ∂0 = ∂t :

∂α

[
e−ktuTAαu

]
= −ke−ktuTA0u+ e−kt∂α

[
uTAαu

]
=

− ke−ktuTA0u+ e−kt
[
∂α(uT )Aαu+ uT (∂α(Aα)u+Aα∂αu)

]
=

− ke−ktuTA0u+ e−kt
[
2uTAα∂αu+ uT∂α(Aα)u

]
=

− ke−ktuTA0u+ e−kt
[
2uT f − 2uTBu+ uT∂α(Aα)u

]
=

e−ktuT
[
−kA0 − 2B + ∂αA

α
]
u+ 2e−ktuT f.

In the third equality we used that ∂α(uT )Aαu = uTAα∂αu, since the Aα are symmetric
matrices. In the forth equality we used the equality (3.3), that is Aα∂αu = f −Bu. Let
us integrate both sides of the above equality over D :∫

D

∂α

[
e−ktuTAαu

]
dx =

∫
D

e−ktuT
[
−kA0 − 2B + ∂αA

α
]
u+ 2e−ktuT fdx. (3.37)

Let us apply Stokes’ theorem for the ordinary Euclidean metric on Rn+1 [Rin09, eq.(10.3)]
to the left hand side of the above equality∫

D

∂α

[
e−ktuTAαu

]
dx =

∫
∂D

(e−ktuTAαu)Nαdσ, (3.38)

where Nα, α = 0, 1, . . . , n is the unit outward normal to ∂D, and dσ is its surface
element. Let us denote by B the bottom of the cone D and by H the hull of D, then
∂D = B ∪H. Let us rewrite the right hand side of (3.38)∫

∂D

(e−ktuTAαu)Nαdσ =

∫
B

(e−ktuTAαu)Nαdσ +

∫
H

(e−ktuTAαu)Nαdσ.

The integral over B in the above equality is 0 since u(0, x) = 0 . For s0 big enough N0 is

much bigger than Ni, i = 1, 2 . . . , n. Since N0 ·A0 dominates
n∑
i=1

Ni ·Ai and is positive

definite then (e−ktuTAαu)Nα is positive definite on H. Let us fix such an s0, then the
right hand side of (3.38) is non negative. By the conditions of the theorem f is zero in
D. By assumption A0 has a positive uniform lower bound and B, and the ∂αAα have
a uniform upper bound on D. Hence for some positive constant M and by choosing k
large enough we obtain∫

D

e−ktuT
[
−kA0 − 2B + ∂α(Aα)

]
udx ≤ −M

∫
D

e−ktuTudx. (3.39)

Since in (3.37) the left-hand side is non-negative and the right hand side is non-positive
then both sides of the equality have to be zero. So u is zero in D. The claim in the
negative times follows by reversing time.
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From the theorem we conclude the following Remark.

Remark 3.10. If the initial data coincide then u1(t, x) = u2(t, x) in their domain. Let
us suppose that u0 has compact support and for any compact interval [T1, T2], there is a
compact set K such that f(t, x) = 0 for t ∈ [T1, T2] and x /∈ K, then there is a compact
set K1 such that u(t, x) = 0 for t ∈ [T1, T2] and x /∈ K1.

Theorem 3.11 (Existence). In the initial value problem (3.3), suppose that u0 ∈
C∞0 (Rn,RN ), f ∈ C∞0 (Rn+1,RN ). Let the real-valued N×N matrices Aµ, µ = 0, 1, . . . , n
and B be smooth functions on Rn+1, with all derivatives bounded. Let Aµ be symmet-
ric and A0 positive definite with a uniform positive lower bound. Then there exists a
unique solution u ∈ C∞([0, T ) × Rn,RN ) to (3.3) and a compact set K ⊂ Rn such that
u(t, x) = 0 for t ∈ [0, T ], T > 0 and x /∈ K.

Proof. Recall that
L = Aµ∂µ +B.

Let us denote

L∗ = −A0∂tu−Ai∂iu+ (−∂tA0 − ∂iAi +BT )u =

− ∂t(A0u)− ∂i(Aiu) +BTu.
(3.40)

Then −L∗ and L are operators of the same type. Hence we can apply Corollary 3.8 to
the operator L∗

‖φ(t, ·)‖−k ≤ C
T∫
t

‖(L∗φ)(s, ·)‖−kds (3.41)

for every φ ∈ C∞0 (Rn+1,CN ) such that φ(t, x) = 0 for all t ≥ T. Let us note that if
ψ, φ ∈ C∞0 (Rn+1,CN ), ψ(t, x) = φ(t, x) = 0 for t ≥ T and L∗φ = L∗ψ then from (3.41)

φ(t, ·) = ψ(t, ·) for all t ∈ [0, T ].

Let us define for such a φ and for f ∈ L1{[0, T ], Hk(Rn,CN )}

F (L∗φ) = 〈f, φ〉 =

T∫
0

(φ(t), f(t))L2dt. (3.42)

From the above observations and since φ is a smooth function it follows that F is a well
defined functional. Assume that k ≥ 0. From (1.44) it follows that

|F (L∗φ)| = |〈f, φ〉| ≤ ‖f‖k‖φ‖−k.

Inserting in the above inequality (3.41) we obtain

|F (L∗φ)| ≤ C
T∫

0

‖(L∗φ)(s, ·)‖−kds. (3.43)
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Consequently we can consider L∗φ as an element of

X = L1{[0, T ], H−k(Rn,CN )}.

Let us denote by M the following subspace of X:

M = span{L∗φ : φ ∈ C∞0 (Rn+1,CN ) such that φ(t, x) = 0 for t ≥ T} ⊆ X.

So F is a bounded linear functional onM . Applying the Hahn-Banach theorem (Theorem
5.16 [Rud87]), we can extend F to a bounded linear functional on X. The norm of
the extension and the norm of the functional restricted to M coincide. According to
Proposition 1.50 there is a u ∈ L∞{[0, T ], Hk(Rn,CN )} such that

F (L∗φ) =

T∫
0

(φ(t), f(t))L2dt =

T∫
0

(L∗φ(t), u(t))L2dt.

First we prove the theorem for f ∈ C∞0 (Rn+1,RN ) such that f(t, ·) = 0 for all t ≤ 0.
Hence we can extend u to L∞{[−∞, T ], Hk(Rn,CN )} by setting it 0 for t < 0. So

T∫
−∞

(φ(t), f(t))L2dt =

T∫
−∞

(L∗φ(t), u(t))L2dt (3.44)

∀φ ∈ C∞0 (Rn+1,CN ) such that φ(t, ·) = 0 for all t ≥ T . According to Lemma A.5 of
[Rin09] there exists a U ∈ L2

loc[(−∞, T )×Rn,CN ] which is k times weakly differentiable
with respect to x such that

T∫
−∞

∫
Rn

φ · f̄dxdt =

T∫
−∞

∫
Rn

L∗φ · Ūdxdt. (3.45)

Assume inductively that for j + |α| ≤ k and j ≤ l ≤ k − 1 there is a function Uj,α ∈
L2

loc[(−∞, T )× Rn,CN ] such that

T∫
−∞

∫
Rn

φ · Ūj,αdxdt = (−1)j+|α|
T∫

−∞

∫
Rn

∂jt ∂
αφ · Ūdxdt ∀ φ ∈ C∞0 ((−∞, T )× Rn,CN ).

For brevity we write ∂jt ∂αU = Uj,α. The case l = 0 follows from (3.45). Let us mention
that any ψ ∈ C∞0 ((−∞, T )× Rn,CN ) we can write as ψ = A0φ. Let us set

g = (A0)−1[f −Ai∂iU −BU ] (3.46)

and rewrite (3.45) as

T∫
−∞

∫
Rn

ψ · ḡdxdt = −
T∫

−∞

∫
Rn

∂tψ · Ūdxdt. (3.47)
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From the induction assumption the weak derivatives ∂α∂jt g exists and is in L2
loc[(−∞, T )×

Rn,CN ] for |α| + j ≤ k − 1 and any non-negative integer j with j ≤ l. Let us insert
∂α∂ltψ in (3.47) instead of ψ. Hence we get that the induction holds for l + 1. So U is
k times weakly differentiable with respect to (t, x) in (−∞, T ) × Rn. From Lemma 2.7
it follows that for k large enough U is continuously differentiable. From the definition
of L∗ in (3.40), it follows that L∗ is the adjoint operator of L. Due to (3.45) and the
standard properties of adjoint operators we have

〈φ, f〉 = 〈L∗φ,U〉 = 〈φ, (L∗)∗U〉 = 〈φ,LU〉 ∀φ ∈ C∞0 (Rn+1,CN ). (3.48)

Hence LU = f and U = 0 for t ≤ 0. It remains to show that U is smooth. Here for each
k we obtain its corresponding U . Due to uniqueness we can assume that the solutions
coincide when they are in C1. Since the solutions U coincide for k large enough then the
smoothness of the solution U follows.
Let us now prove the existence theorem in the general case f ∈ C∞0 (Rn+1,RN ). Let us
define

fε(t, x) = η(t/ε)f(t, x). (3.49)

Here η ∈ C∞0 (R,R) such that

η(t) =


0, for t ≤ 0
1, for t ≥ 1
[0, 1] , otherwise.

We have already proved that there is a smooth solution uε to the equation Luε = fε such
that uε(t, x) = 0 for all t ≤ 0. Due to Theorem 3.9 there is a compact set K such that

uε(t, x) = 0 for x /∈ K, t ≤ T and ∀ε > 0. (3.50)

Applying to (3.20) we obtain

‖(uε1 − uε2)(t, ·)‖k ≤ C
t∫

0

|η(s/ε1)− η(s/ε2)|‖f(s, ·)‖kds.

Consequently the Cauchy sequence uε(t, ·) converges in any Hk, which is a Banach space.
So uε(t, ·) converges to u in Hk. By (2.8) uε(t, ·) converges to u in any Ck-norm when
ε −→ 0. Applying this to (3.3) we get convergence of any number of time derivatives.
Hence we obtain a smooth solution u on (0, T )×Rn. We need to extend the solution to
t = 0. Let us define u(0, ·) = 0. The higher time derivatives at 0 we get recursively from
(3.3). We need to prove that ∂tu and its higher time derivatives are continuous when
t→ 0 + . Applying (3.20) for uε(t, x) we obtain

‖uε(t, ·)‖k ≤ C
t∫

0

‖fε(s, ·)‖kds ≤ C
t∫

0

‖f(s, ·)‖kds.
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The right hand side of the above inequality is independent of ε, hence this inequality
holds for u. Applying Lemma 2.7 for k large enough we get the above inequality for any
Ck-norm in particular for C0-norm. We conclude that u(t, ·) converges to 0 when t→ 0+
, hence u(t, ·) is continuous at 0. From (3.3) we get

∂tu(0, ·) = (A0)−1[f −Ai∂iu(0, ·)].

We conclude that ∂tu(t, ·) converges to its limit in any Ck-norm. With similar steps,
using the above equality, we obtain the continuity at 0 for all higher time derivatives of
u. So the equation (3.3) for u0 = 0 and for f ∈ C∞0 (Rn+1,RN ) has a smooth solution
on [0, T )× Rn. For u0 6= 0 we replace u with u− u0ψ, where ψ ∈ C∞0 (R) and ψ(t) = 1
for t ∈ [−1, T + 1]. Consequently for f ∈ C∞0 (Rn+1,RN ) and by assumption that
u0 ∈ C∞0 (Rn,RN ) we obtain a smooth solution.

Corollary 3.12. In the initial value problem (3.3), suppose that u0 ∈ C∞(Rn,RN ),
f ∈ C∞(Rn+1,RN ). The real-valued N ×N matrices Aµ, B are supposed to be smooth
functions on Rn+1. Let Aµ be symmetric and for any compact interval [T1, T2] there are
constants a0, b0 > 0 such that A0 ≥ a0 and ‖Aµ‖ ≤ b0, µ = 0, 1, . . . , n on [T1, T2] × Rn.
Then there is a unique solution u ∈ C∞(Rn+1,RN ) to (3.3).

Proof. First we construct the solution on [T1, T2] × Rn where T ∈ (0,∞). Then we
extend the solution to R. Let us assume that s0 be the same as in Theorem 3.9. For
[T1, T2] = [0, T ] and r ≥ Ts0 + 1, we define

Cr = {(t, x) ∈ [0, T ]× Rn : x ∈ Br−s0t(0)} . (3.51)

Assume that ψr ∈ C∞0 (Rn+1) such that

ψr(t, x) =

{
1, (t, x) ∈ C2r+2s0T

[0, 1] , otherwise.

Let φr ∈ C∞0 (Rn) be such that

φr(x) =

{
1, x ∈ Br(0)
0, x /∈ B2r(0).

Denoting by

A0
r = ψrA

0 + (1− ψr)A0(0, 0), Air = ψrA
i, Br = ψrB, u0r = φru0,

and fr(t, x) = ψr(t, x)φr(x)f(t, x). The equation

Aµr ∂µu+Bru = fr,

u(0, ·) = u0r

(3.52)

has a smooth solution ur by Theorem 3.11. Since s0 depends on a lower bound on A0

and an upper bound on Ai then s0 depends on a lower bound on A0
r and an upper bound
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on Air. Applying Theorem 3.9 with this s0 to (3.52) we obtain that ur(t, x) = 0 when
t ∈ [0, T ] and x /∈ B2r+s0t(0). Hence we conclude when ur(t, x) 6= 0 and t ∈ [0, T ] then

Aµr (t, x) = Aµ(t, x) and Br(t, x) = B(t, x). (3.53)

So ur is a solution to the equation

Aµ∂µu+Bu = fr,

u(0, ·) = u0r

(3.54)

on [0, T )×Rn. Then ur is a solution to (3.3) in region Cr. Let us prove uniqueness of the
solution. Consider two different solutions ur1 and ur2 where r1 < r2. From uniqueness
it follows that ur1 = ur2 on Cr1 . Assume that (t, x) ∈ [0, T )× Rn. Let us choose r such
that (t, x) ∈ Cr and define u(t, x) = ur(t, x). We have shown that the solution does not
depend on r. So we obtain a smooth solution to the (3.3) on [0, T ) × Rn. It remains to
extend the solution on [0, T )×Rn to Rn+1. By using the uniqueness argument we define
the solution for arbitrary T. The claim in the opposite time direction follows by reversing
time.
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