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Abstract

Sobolev spaces play a key role in the proof of existence of solutions to linear symmetric
hyperbolic systems and in the proof of local existence of solutions to non linear wave
equations. Here we prove the existence and uniqueness of solutions to linear symmet-
ric hyperbolic systems. We describe basic properties and prove important estimates of
Sobolev spaces. By using the exact form of the duality we prove existence of solutions
to linear symmetric hyperbolic systems. By the Sobolev embedding inequality we can
connect the regularity of Sobolev spaces with classical differentiability. Consequently, we
can obtain k times continuously differentiable or even smooth solutions.

iii






Zussamenfassung

Sobolev-Réaume spielen eine Schliisselrolle sowohl beim Beweis der Existenz von Losun-

gen linearer symmetrischer hyperbolischer Systeme als auch beim Beweis der lokalen

Existenz von Losungen nichtlinearer Wellengleichungen. Hier zeigen wir die Existenz

und Eindeutigkeit von Losungen linearer symmetrischer hyperbolischer Systeme. Wir

beschreiben grundlegende Eigenschaften und beweisen wichtige Abschitzungen in Sobolev-
Raumen. Indem wir die exakte Form der Dualitdt benutzen zeigen wir die Existenz

von Losungen linearer symmetrischer hyperbolischer Systeme. Mithilfe der Sobolev-

Einbettungsungleichung kénnen wir die Regularitdt von Sobolev-Raumen mit der klas-

sischen Differenzierbarkeit verbinden. Infolgedessen konnen wir k-mal stetig differenzier-

bare oder sogar glatte Losungen erhalten.






1 Sobolev Spaces

1.1 Mollifiers

In this section we follow [Rin09, §5.1 |. Mollifiers are a necessary tool to approximate
functions in LP by smooth functions with compact support. We denote by

CP(R™) := {f € C>°(R™)| supp(f) is compact} the set of smooth functions with com-
pact support and by

D(2) = C§°(R2) the set of test functions on  C R™ where €2 is open subset of R". Finally,
B1(0) denotes the unit ball with center 0.

When we write C§°(R™) it means we have functions from R" to R.

Definition 1.1. A function ¢ € C§°(R™) such that ¢(z) > 0 is called a mollifier if
i) supp(¢) C B1(0)

i) [ ¢(x)dz =1.
R

Assume that u : R™ — R” is measurable, so it is integrable on any compact subset of
R™. Now we define (Jzu)(z), for any € > 0, by

(Jou)(z) = / be(z — y)uly)dy,
J

loc
clear that J.u is a smooth function and since [ ¢.(y)dy = 1 we have
R

where ¢ (x) = e "¢(2) is a scaled mollifier and u € L}, (R™). From the definition it is

(Jow) () — u(z) = / oo () u(z — y) — u(a))dy.
J

Consequently,

|(Jeu)(2) — u(z)] < Sup u(e —y) — u(z)].

If w is continuous then J.u — u uniformly converges to zero on compact subsets of R™ as
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e — 0. When 1 < p < oco,u € LP(R™) and with ¢ such that 1% + % =1 we have

(Jew) ()] < / oY1z — )oY/ (z — ) |u(y)ldy <
]R'/L
1/p

1/q
/qbs(w —y)dy /cbs(w —Ylu@)lPdy | = (1.1)
1/p

[ oa— w)tuto)ay
In the second step we used Holder’s inequality. So

(Jeu) ()P < / bl — o) u(y)Pdy.

R?’L

Next we integrate both sides of this inequality and then use Fubini’s theorem

J1@rar < [ [ o - i)l =
J

Rn R"™

(1.2)
/\U(y)\”/%(fv —y)dady = / u(y)[Pdy.
R” R” R”
Raising both sides of the inequality to the power 1/p,
1/p 1/p
[1w@pas | < |{ [luwray
We finally get
1(Tew)llp < llullp. (1.3)
(1.3) is also true for p = 1 and p = co. Similarly,
1/p
| Jeu = ull, < / / o-(9)u(z — y) — u() Pdyda | . (1.4)

n Rn

From the above inequality it is clear that if u(. —y) converges to u in LP(R") as y — 0,
then Jou — win LP(R™). By Theorem 3.14 of [Rud87] continuous functions with compact
support are dense in LP(R") for 1 < p < oo. It follows that |lu, — ul|, — 0 for certain
un, € Co(R™), given u € LP(R") 1 < p < oco. Applying (1.3) to v — u, we obtain
| Jeu — Jeun|lp < |Ju — upl|p. Hence ||Jou — Jouyll, — 0 when n — oo. Since u, is a
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continuous function with compact support then by (1.4) we have ||J.u, — uy||, — 0. By
using the Minkowski inequality we obtain

| Jeu — UHP < || Jeu — Jeuan + || Jeun — “an + [|un — qu.

Since the right hand side of this inequality converges to 0 when € — 0 and n — oo, then
Jeu — w in LP(R™). For proving the next lemma we will need this intermediate lemma:

Lemma 1.2. If Q C R™ is an open set then there exists an increasing sequence of sets
{Ky},~ such that

1. K, is compact

2. K, are increasing: K, C intK,

[e.e]
3. U K,=0Q

n=1
Proof. Let us define K,, = {x € Q : |z| < n and d(z,09) > 1}, where 09 is the boundary
of . From this definition it follows that K, is bounded and closed, so K, is compact. Let
us prove that K, C intK, ;. Suppose that z € K, but z ¢ intK,+1 = |z| >n+1>n
or d(z,00) < n%_l < 150z ¢ K, which is a contradiction to the assumption. Take
z € Q. As Qis open, 3r > 0 such that B,(z) C Q. Choose n such that r > L and |z| < n
so By(x) 2 B%(m) = d(z,00) > 1 so z € K. O

Lemma 1.3. Let u € L} (Q), where Q C R" is open. If

loc
/uq& dr =0

Q

for every ¢ € C§°(12), then u =0 a.e..

Proof. By assumption u : 2 — R is measurable so uxx is integrable for every compact
subset K C €. Here xx is the characteristic function of K. We define B; to be the subset
of Q on which |u(z)| > 1/, and from Lemma 1.2 there exist the increasing compact sets

{Ki}i>1 such that Q = |J K; and let Bj; = B; N K;. We denote by
>1

Viala) = (s o),

then J.vj; € C3°(Q2) for € small enough. In fact there is an 9 > 0 and a corresponding
compact subset K¢ of {2 such that |J.vj,| < xk, , for all € < gg. Therefore |(J.v;)ul <
lu[XK, o, and |u|xk, , is integrable. Choose any sequence 0 < ¢; < g9 converging to zero.
From the discussion preceding this lemma and the fact that v;; € LP for any 1 < p < oo,
we conclude that J;,v;; converges to v;; with respect to any LP norm, for 1 < p < oo.
According to Theorem 3.12 of [Rud87| there is a subsequence ¢;, such that J., v;(x)
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converges to v;j;(z) a.e.. Now we have that Jey viguis bounded by an integrable function
and converges to |u|x B;, a.e., so by Lebesgue’s dominated convergence theorem

. 1
lim [ v @u@ds = [ u@lde > Zu(By).
Q Bj,

By assumption of the lemma the left-hand side is zero, so we can conclude that the
measure of the union of all the Bj; is zero. This union coincides with the set on which
u is non-zero, so u = 0 a.e.. O

1.2 Weak differentiability, examples

In this section we follow [Rin09, §5.2]. We begin with some notations. A typical point

r € R" is denoted by z = (z!,...,2"). A multiindex a = (ay,as,...,a,) is an n-tuple
of non-negative integeres «;. We denote by z® the monomial z® = z{'z5? ... 25" and

call it a monomial of order || = a1 + ag + ... + . By 9% is denoted the differential
operator of order |a|. If w is differentible and « is a multiindex then the differential of u
with respect to « is

0%u = 0952 ... O,

where

If we write 0“u we understand that « is an n-dimensional multiindex and that we differ-
entiate with respect to n variables and if we write 0; we assume ¢ is an integer between
0 and n. Here we recall Leibniz rule

o o)) =

«

B

for functions w and v that are |a| times continuously differentiable near x, where

()= == () ()

When we write Hs(R™) and S(R™) it means we have functions from R™ to C. But in
general, when we do not write the function spaces range it means that functions are real
valued.

)aﬁu(a;)aa%(a;),

Definition 1.4. A function u € L} (R") is called k times weakly differentiable if for

loc

every multiindex o with |a| < k there is a function u, € L}, (R™) such that

(=Dl [ 0%upde = (1) [ upe do = [ ud®¢ da (1.5)
/ [

for all ¢ € C3°(R™). The functions u, are called the weak derivatives of u .
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Remark 1.5. If eq. (1.5) holds for both v, and u,, then by Lemma 1.3 u, = v, a.e..
Usually we shall write 0%u instead of u,. Also we can replace R™ with any open subset
Q of R™ .

Definition 1.6. The set of all k times weakly differentiable, complex valued functions
defined on R™ such that all the weak derivatives are in LP(R") 1 < p < oo , is denoted
by WEP(R™, C™). The set of equivalence classes of elements in W*P(R" C™) we simply
denote by W*P(R™, C™), where two elements are equivalent if the set on which they are
different has measure zero. We define

1/p
lullwes = [ S0 /|aau|P d (1.6)
‘O¢|§l€ R
for an element u of W*P(R™, C™).
Later we will prove that || - ||y is @ norm on W*P(R", C™) spaces.

Remark 1.7. Analogously, we define W*?(R", R™) and WP (Q, C™) for any open sub-
set 2 of R".

Definition 1.8. Let the sequence {uy,}m>1 and u € WFP(R™). We say that {t;, }m>1
converges to u in W*P(R™) and write u,, — v in W*P(R") if

Jim{Jun, — allyrpgny = 0.

Lemma 1.9. Assume 1 < p < oo and let k£ be a non negative integer. Then || - ||yyr.»
defined in (1.6) is a norm on WHP(R" C™) with respect to which W*P(R" C™) is a
Banach space.

Proof. First we prove that || - ||}y +» is a norm. From (1.6)
Aullwrr = [AllJullwer VA €R,
and
llu|lwer =0 if and only if uw=0 a.e..

We need to check that
w4+ vllwes < ullwrr + [[v][wre

for u,v € WHP(R™,C™). If p = 1 then by (1.6) and by triangle inequality we obtain

lu+ vl = /]80‘ u+v)| dx < Z /]6‘%] dr + Z /\8o‘v| dr =

HUHW’CJ + vl
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Let us assume 1 < p < oo, then

Jut olfe, = 3 107w+ 0)p do <
|0¢|§k R™

Z /\8°‘u|8”‘ u+v)|P de + Z /|8O‘v|8°‘ u+v)|P7 dr.
lo|<k gn lo|<k gn
Note that if we let ¢ = p/(p—1) then we can use Holder’s inequality for counter measure:

1/p 1/q

> 0%ullo(u+ )Pt < [ > 0%l > 0% (u+ ) P10

jal<k lal<k jal <k

In particular

3 /\aauuaa(uﬂ)ypl da::/ S 0%ul| (u + )Pt da <

|a|<k Rn Rn la|<k
1/p 1/q
S| Y 0w e
R™ la|<k || <K

Now let us apply Holder’s inequality for the Lebesgue measure:

1/p 1/q
> 0%ul S " u+v)P | dr<
Rr \lal<k la|<k
p—1
p
/ S [ooulPds / S 0wt o)Pdr | =l + ol
o<k o<k

We have a similar inequality for v:
o [ 10ll0* ()Pt de < ollwrs e+ vl
|| <k gn
Together these inequalities yield
o+ 0 < lullwes lu+ oIy, + lolwsllu+olh, =
(lellss + ollwes) e+ ol

Finally we get ||u-+v|yes < ||wllyrne+]|v]prs. Next we need to prove that WP (R? C™)
is a Banach space. Assume that u; is a Cauchy sequence in WkP(R™, C™) then 0%u;
is a Cauchy sequence in LP(R™,C™). Since LP(R™,C™) is a Banach space then for
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every multiindex a with |a| < k there is a u, € LP(R",C™) such that 0“u; — u, in
LP(R"™,C™). Define u := uq for a = 0 then lim u; = (. o) in LP(R",C™). We need

]—)OO

to prove that
we WEP(RY, C™) and 9%u=u, (lo <k).

Fix ¢ € C3°(R™) then
/ ud“pdx = hm /u] “pdx =

R

lim ( |O‘|/8au odx = |a|/u odzx.

]—)OO

We conclude that u € WH*P(R", C™) and 0% = u, for every |a| < k. Finally
= wil[en = Z |0%u — 0%uj|Pdz — 0 when j — oo.
‘Ot|§k R

So u; converges to u in WkP and u is weakly differentiable with weak derivatives 0%u =
Ug- OJ

In case p = 2, W¥?2 is a Hilbert space.
Definition 1.10. Let H¥(R" C™) = Wk2(R",C™), so
HF(R™,C™) = {u: u e L*(R",C™),0% € L*(R",C™) V|a| <k},
where 0%u are the weak derivatives defined by (1.5).
Remark 1.11. Note that H k(R", C™) is a complex Hilbert space with the inner product
given by
_ o Ao k n m
(u,v) = Z 0%u(x) - 0%v(z)dr for w,ve HY(R",C™), (1.7)

and corresponding norm for this inner product is defined by
1/2
lullge = | > [ [0%uf® d . (1.8)

‘0‘|§k Rn

Let us give some examples of functions belonging to or not belonging to H*(Q) from
[Bhal2, page 182] .

Example 1.12. For Q = (—1,1) and u(z) = |z| Va € (—1,1). We show that u €
H(-1,1), but u ¢ H?(-1,1).
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Proof. Let us compute f_ll lu(z)|?dz :
1 1 31 1 1
/ ]u(x)]Qdac—/ :Ude:m—‘ =+ - = <oo=u(x) € L*(-1,1).
. . 3 373

The first order weak derivative is

%:ga:— -1 for -1 <z <0.

1 0 1
/ lg(z)Pdx = / ldx +/ lder =2 < o0
-1 -1 0
du

d
= o€ L?(—1,1). Thus u,d—u € L*(—1,1) from Definition 1.10 it follows that u €
x T

HY(-1,1).
Now we need to compute the second order of weak derivative . For V¢ € D(R)

(859)- (2 (8) - ()~ (o) Lot

= / (; - /OOO Wiw=o 9| =200) = (25,) =

du ()_{1 for0<z <1

Consequently,

d?u
—— =20 € D'(R).
Let us prove that the Dirac distribution is not integrable, § ¢ L} (—1,1).

loc

Suppose to the contrary that is 3f € L} (—1,1) with §,, = f.

loc

Choose p € D(R) such that supp(p) C (—1,1), p(0) =1 and we define
pi(x) == p(l(x —xp)) 1 €N. Then supp(p;) C (—1/1,1/1), pi(zo) = 1. Now we have

1/1 1/
L= pi(e0) = [Gage il =| [ $@)pt1(e = 2o))da] < [ 17@Iplie ~ a0)lda
1/ -1/1
1/1
<llplliw [ 1f@ldz >0 15
Y

This is a contradiction, so 6 ¢ Li (—1,1).

loc

Since L*(—1,1) C L} (—1,1) and 26 ¢ L} (—1,1) = u ¢ H*(—1,1). O

Example 1.13. Let Q = {(z,9) : 0 <z < 1,0 <y < 2",r > 0} C R? and u(x,y) =
% a€R VY(r,y) € Q If2a+7>1thenuec H(Q) .

)
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Proof. Let us compute [, [u(z,y)|*dzdy :

T

1 y=a" 1 y=x
/ lu(z, y)|*dzdy :/ (/ x2°‘dy> dz :/ 3:20‘/ dydx
Q 0 y=0 0 y=0

1
:/x2°‘+rd:v<oo if 2a+7r4+1>0.
0

Consequently, u(z,y) € L*(Q) for 2a +r > —1.
Notice that u is a C'°°-function in 2. Since the usual partial derivatives and weak

derivatives of v will coincide in  then d,u = az® ! | Oyu = 0 in €. It is clear that
dyu € L*() Ya,r and

1 y=x"
/ |8$u|2d:cdy = / </ a2x20‘_2dy> dx
Q 0 y=0
1

:a2/ 2270 < 0 if 2a—24+7r+4+1>0.
0

Hence d,u € L*(Q) for 2a +r > 1. We have proved that u,dyu,dyu € L*(Q) for
2.+ 1 > 1. By Definition 1.10 u € HY(Q) for 2a + 7 > 1. O

Example 1.14. If Q = R? and u(x1,22) is given by

1
In|Inr| f0r0<r:(x%+a:§)%<f
U($1,$2) = 1 €
0 for - < r < oo,
e

then u(z1,r9) € HY(R?).

Proof. Since |u(z1,22)| — oo when r — 0, it follows that u is unbounded and discontin-
wous in R2,
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First let us prove that u € L*(R?) :

/ u(zy, z2)?dryda, :/ (In|In7|)?dz dey =
R2

0<7‘<%
1 o 1
/ / (In | In7|)*rdrdd = 27T/ (In | In7|)%rdr.
0 0 0
. 1 ) 1 1
Let us estimate [ (In|lnr|)*rdr. For 0 < r < =, we get |In(r)] = —Inr = In - and
e r
1
for r = —,In— = —Ilne = —1. So Inr monotonically increases from —oo to —1 when
e e
1 1 1 1
r increases from 0 to —. Hence, 0 < r < - —=e< - <o = 1< - < - =
e e r r r
1
In|lnrf=Inlni <lnl=—Inr = (In|Inr|)? < (Inr)? for 0 < r < =. Consequently,
e

1 1
/e(ln]lnr\)zrdr < /e(lnr)Zrdr. (1.9)
0 0

1
Let us compute [ (Inr)?rdr using partial integration

: 2 Inr)2r2 r=2t :r2 9]
1:/ (Inr)2d = 07T = _/ r? 2l
0 2 2 r—0+ 0 2 T
1 . (In7)%? :
202 rgrél+ — —/0 rinrdr = (1.10)
Il IQ
1
— =1 — Is.
962 1— 12
Now let us compute I; and I :
. (lnr)2 ) 2Inr . Inr
Il = lim —~% = lim ——— = lim —
r—0+ 2r=2 0+ 2r(=2r=3)  ro0+ —2r—2
1 2
lim ——— = lim =0,

r—0+ —27“(—27’_3) r—0+ Z

and

2 2
r2lnr 1
5 27
2e r—0+ 2 4de
—_——
I3
2 2
. r?lnr . Inr . 1 . r
I3 = lim = lim — = lim —— = lim —— =0.
r—0+ 2 r—0+ 2r—2 r—0+ —4r . =3 r—0+ 4

10
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1 1 3
Hence 12:—2762—0—4762:—4762 X ; -
Insert I; and I in (1.10), then we obtain I = 22~ 0+ 12 T a2
Finally by (1.9) we have that
. 27 - 5
/ u(zy, 22)?drydy :27T/ (In|In7|)?rdr < T (R?).
R2

0

is the weak derivatives. Let

0
Now we need to show that —— € L*(R?),i = 1,2, where 8u

T T

us denote by {885

(:L')] the usual partial derivative of u with respect to z; (i = 1,2).

1
For0<r < —
e

Inr | dr r  r2lnr
Since r = (22 + z2) 2 then [0 ] . From the definition of the function u(z1, z2) it
L
ou 1
follows that ()| =0for = <r < oo. Thus
o0x; e
ZT; 1
-, O0<r<-—
|:au (x):| = r2lnr 1 e (111>
O 0, - <r<oo

0
Let us prove that { 4

o2, (:c)] € L*(R?), i=1,2:

ou 2 x2
= [ A— <
/ [axi (:1:)] dx1dxo /0<r<1 r4(lnr)2dx1d$2 <

2T 1
e dr
=92 =
/ / r4( lnr Az drds = 77/0 r(Inr)?

d(1 =11 (e -1
277/ (nr):%_[] :27T'71:27T<OO.
o (Inr)2 Inr] |, In(=)
e
ou . o . .
Let 3 i = 1,2 be the weak derivatives of u with respect to x;. We will prove that
T

11
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the usual derivative and the weak derivative of u coincide. Then, V¢ € D(R?),

) /0<r<i [3((;;?)] o /0<'r<i [SJZ (m)} Pl = (1.12)

~lim /Q [32125)} dx—i_/]]{? [88; (a:)} o(z)dz = —Jy + Ja,

e—0

J1 Ja

ou 1
8%(35) =0 for r > % Hence, Q. = {x : 2 = (21,22),e <7 = (22 + 23)2 < é}
is the closed annular circular domain enclosed by inner circle B, with radius € and outer
circle B1 with radius % The figure is given below.

e

since

T2

ot

: the unit normal to B1

e

n

® =

=

Applying Green’s theorem on the closed annular circular domain €. we get

u(w)g(ayni(By)ds =

Ji=tim [ u(@)é(x)n:(B.)ds + /
¢ (1.13)

e—0 B. B

lim u(x)op(x)n;(Be)ds,
e=0 /B,

12
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where n;(B;) (resp.n;(B1)) is the i th component of the unit vector normal n to B.

(resp. Bi). From the definition of the function u(xy,z2) it follows that u =0 on B1 so

e

the second term in (1.13) vanishes.

\Jﬂ—‘/ x)n;(Be)ds

< max |¢(x) |‘1n|ln€|’27r5—>0,

—‘/Sln\lne\é 2)na(B.)ds

when € — 0. Since Ve > 0, In|Ine| < |Ine| and

lime|lne| = lim —— = lim —5 =0
e—0 e—0 z e—0 —=

then eln|lne| < e|lne| — 0 when £ — 0. From the above discussion and from (1.13) it
follows that J; = 0. Finally from (1.12) we have that V¢ € D(R?),

(3) [ = <[]

with [ 5 (x)] defined by (1.11) for ¢ = 1,2. We have already proved that [g; (ac)} €
L*(R?) = g” (z) € L2(R?) for i = 1,2, so u(xy,x2) € H(R?). O
i

Lemma 1.15. Let 1 < p < oo and let k£ be a non negative integer. Then the space
C&°(R™,C™) is dense in WkP(R", C™).

Proof. Assume that u € W*P(R" C™) and ¢ € C§°(R") be such that ¢(z) = 1 for
|z| < 1. The existence such a ¢ is given in Proposition A.12 of [Rin09]. Let us show
that ¢;u € WHP(R™ C™), where ¢;(x) = ¢(x/l). Since u € WHP(R™ C™) it follows that
0%u € LP(R™,C™) for all |a| < k. By the Leibniz formula

(6
o*(om) = 3 ()0 b0
BLa B
Since 0°P¢; € C°(R™) and 9%u € LP(R",C™) then
9P $,0%u € LP(R",C™) :
/ 0% P g0Pupde < |0 By|%0%ul |, < oo.

R”

Consequently,
0% (Pu) € LP(R™,C™) for all |of < k.

13



1 Sobolev Spaces

We conclude that ¢;u € W*P(R? C™). To begin with we need to show that ¢;u converges
to u in WHP(R™, C™):

lor = ulZ s = 3 / 10 (bru — )Pl =

|| <K Rn
p

> / ( )aa P$10%u + ¢10°u — 0%u| da.

|a|<k gn |B<a

In the above expression if 8 < «, then 9*~8¢;0%u converges to zero pointwise everywhere
when [ — oo and it is bounded by a function in LP. By Lebesgue’s dominated convergence
theorem 0% #¢$;0%u convergence to zero in LP. By definition ¢;(z) = 1 for |z| <, so ¢ju
converges to u. Since ¢;u has compact support and ¢;u converges to u in WP (R", c™)
then we can assume that u also has compact support. Consequently J.u is a smooth
function with compact support. Let us show that

0% Jou(x /(;Sex— )0%u(y)dy.

Since ¢-(x — y) € Cg°(R™) and 0S¢ (z —y) = (—1)‘“'80‘%(33 —y) we have that

02 Jou(z) = / 02 (z — y)uly)dy = (~1)° / 0%:(z — y)u(y)dy (1.14)
J

By the definition of the weak derivative and since ¢.(z —y) € C§°(R"™) we get

el / 02 (x — y)uly)dy = / b — 9)Ou(y)dy. (1.15)
R R

0% J.u(x /qﬁgaz— )0%u(y)dy

Before the statement of Lemma 1.2 we proved that J-u converges to v in LP. Finally we
conclude that all u € W*P(R™ C™) can be approximated by J.u € C§°(R",C™). So the
space C5°(R™, C™) is dense in WkP(R™,C™) for 1 < p < oo. O

1.3 Schwartz space

In this section we follow lecture notes [HS09, §5.2].

Definition 1.16. We say that ¢ € C°°(R") is rapidly decreasing, if for all multiindices
a, B

Go,5(¢) = sup [2°D¢(z)| < oo.
rER™

The vector space of all rapidly decreasing functions on R" we call Schwartz space and

denote by S(R"™) .

14



1.3 Schwartz space

Definition 1.17. We say that the sequence (¢p,)n>1 € S(R™) converges to ¢ in S(R") if
for all multiindices «, 5 :

Qa,ﬁ(¢n —¢) =0 when n — oco.

Also, we can define convergence in S(R™) by increasing sequence of semi-norms

Qe(®) == Y qap(e), keNo.

|al,|BI<k

Theorem 1.18. The space S(R™) has a metric d : S(R™) x S(R™) — R defined by

d(9,v) —202 m ¢, € S(R™).

Proof. Let us prove that d(¢, 1) is a metric. From the definition of d(¢, ) it is clear that
d(¢, ) =0< ¢ =1 and d(¢, 1) = d(¢), ¢). It remains to show that for every p € S(R")

d(p,v) < d(o,p) + d(p,v). We will use that f(z) = 1im

increasing function and Qr(¢ — ¥) < Qr(¢d — p) + Qr(p — ¢) (as Qr(¢) is a semi-norm).

So
Qrlo—v) _  Qud—p)+Qilp—1)
1+ Q=) ~ 1+ Qu(d—p) + Qrlp—)

Now we use the following simple fact that for every a,b > 0 :

: [0,00) — [0,00) is an

a+b a b
T+a+bd — 1tatb + 14+a+b <

THe T 1 +b and finally we get

Q@ —p)+Qklp—¥) _ Quld—p) n Qr(p— )
1+ Qré—p) +Qrlp—v) ~ 1+Qr(¢—p) 1+ Qrlp—1¢)

Multiplying both sides of the above inequality by 2~* and summing for all k we get

i ok Qr(¢d — )

> —k Qk¢5 P —k Qk 1/1)
Q) =2 +Z

= 14+ Qk(e-p) = 1+ Qulp—1)
Now we have the desired result d(¢, 1) < d(¢, p)+d(p, ) and that d(¢, ) is a metric. O

Theorem 1.19. Convergence with respect to the metric d is equivalent to S-convergence.

Proof. Assume that the sequence (¢;,),>1 is converging to ¢ in S. We need to show that
d(pp, ) — 0 as n — oo.

Let € > 0. Choose N € N such that € > SNTT-

to ¢ in S there exists some mg € N such that for all n > mg we have Qn(¢dn — ¢) < 5.

Since the sequence (¢p)n>1 converges

15



1 Sobolev Spaces

Thus we obtain for any n > my :

<QN(¢>n—¢) <1
N
k Qr(on — K Qu(on — @)
d(on, 0) = 27" o+ >
27 T Qul ¢n T T Quldn )
1
k k _ —N-1
22 + Z 2” —¢) 21 -2V + oy 2
k=N+1
€
<--2(1- --2=c.
<010+ 2=c
So d(¢n,») — 0 as n — oo. And conversely, metric convergence implies S-convergence
since ¢q g(¢n — ¢) — 0 when n — oo. O

Theorem 1.20. S(R™) is a complete metric space.

Proof. Let us prove that any Cauchy sequence (¢n)n>1 € S(R™) converges to some
¢ € S(R™). The space L>*(R") is a Banach space with the norm || - ||s. Let us denote
by Cy(R™) = L>*(R™) N C(R™). This space is also a Banach space with the norm || - ||.
Suppose that (¢;),>1 is a Cauchy sequence in S(R™) then we obtain for every multiindices
a, B, xO‘Dﬁqﬁj is a Cauchy sequence in Cy(R™). Thus a:aDﬁqﬁj converges to some ¢, g €
Cy. Let us put ¢ = ¢gp. On the one hand xO‘Dﬁd)j converges to ¢, g in Cp and on the
other hand acO‘Df3<bj converges point wise to %3 S0 @5 = z*DB¢ = T%P0,3-

Now we need to prove that ¢, 5 € S(R"). For arbitrary fixed N € Ny and for any
multiindices «, 3 :

[2¥DPB||oo < [2*DPp — 2*DPpn |00 + [|[2*DP N |00 < 00.

SO ¢u p(¢) < co. It remains to prove that ¢; converges to ¢ in S(R™). Since 2*DP¢; is
a Cauchy sequence then for any € > 0 there exist Ny such that

D% — 2 D6l = lim 4 D%, — 2D 5o < (> No).
Therefore ¢; — ¢ in S(R™). O

Example 1.21. ¢ = e—alzl® Re(a) > 0is a smooth function but has not compact support
so e~z ¢ D(R™). This function is rapidly decreasing = e~ ¢ S(R"). Finally we
have e~9#1* € S(R™) \ D(R™).

1.4 Temperate distributions and Fourier transforms

In this section we follow lecture notes [HS09, §5.3 and §5.4].

Definition 1.22. A continuous linear functional u : S(R™) — C is called a temperate
distribution:
u(¢n) — 0in C when ¢, — 0 (n — o0) in S(R").

The set of all temperate distributions is denoted by S’(R™).
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1.4 Temperate distributions and Fourier transforms

Theorem 1.23. Assume u: S(R™) — C be a linear functional. Then u € S'(R™) if and
only if 3C > 0 3IN € Ny such that V¢ € S(R™)

u(@)] <CQN(9)=C Y [+*D7¢||c- (1.16)

laf,|BI<N

Proof. If ¢, — 0 in S(R™) then by (1.16) u(¢,) — 0. Hence u € S’'(R™). Now assume
that w is continuous but (1.16) does not hold: VN € N Jpn € S(R™) such that

lu(¢n)| > NQn(PN)-

In particular, ¢ # 0. Let us denote by ¥y = ¢n/(NQn(¢n)). This is a sequence in
S(R™) with

Qa,ﬁ(¢N) QQ,B(¢N) 1
qa, ¢N = = < =
M= NQu(ow) TN S daslon) © N
lal,|8|<N
__lu(on)] -

when N > max(|al, |8]). On the other hand |u(yn)| = > 1. We obtain
NQn(¢n)

da,8(¥n) — 0 but |u(ypn)| > 1. This is a contradiction to our assumption. O

A temperate distribution is a special case of a distribution, which is a continuous linear
form on Schwartz space. We need the concept of a temperate distribution to take the
Fourier transform.

Remark 1.24. For 1<p<oo LP(R")CS'(R").

Proof. The cases p =1 and p = oo are obvious. Let us prove theorem when 1 < p < oo.

From Holder’s inequality we have, if f € LP(R"), ¢ € S(R") and with ¢ such that

1 1
— + — =1 then
p q

0, 9)] < / 6] < Iflle N9l e-

Since ¢ € S(R") = Vie N, |o(z)| < m From this inequality we have
x
follta = [ otz <o) [
Rn - e (L+ |2[)%
d
Choose sufficiently large [ such that lg > n, hence fRn ﬁ is finite. Then
[(f, 0)] < CQu(9).

From Theorem 1.23 it follows that f € S’(R™). O

Remark 1.25. If f € C(R") is of polynomial growth : 3C, M > 0 such that
[f(@)] <O+ 2™ Vo e R",
then f € S'(R™).

17



1 Sobolev Spaces

Proof. Let us estimate |(f, ¢)| for all ¢ € S(R") :

v Qo) dzx
o< [ f@lo@is < [ e g2 et = cao) | it
If we choose | > M + n then [p, (1_|_|d;;r|)l—1\/l < oo and that |(f, )| < C1Qi($). From
Theorem 1.23 it follows that f € S’(R™). O

There is a theorem connected with this remark [Fri82, Theorem 8.3.1|, which states
that every temperate distribution is a finite order derivative of a continuous function of
polynomial growth on R™.

Definition 1.26. Let u € §’'(R") be a temperate distribution, then its Fourier transform
= Fu € §'(R") is the temperate distribution defined by:

(U, 6) = (u,¢) Vo € S(R™) (1.17)

with
h(&) = = x)e ® T dy x) = ! b(E)eETde.
36 = (Fo)(©) = R/ a)e € dn, ofx) = o R/ He)eere

Theorem 1.27. The Fourier transform F : §'(R") — S'(R™) is linear and bijective ,
and F and F~' are sequentially continuous maps S'(R") — S'(R").

Proof. From the above definition of Fourier transform it follows that F is linear and
sequentially continuous. Let us prove injectivity. Assume that 4« = Fu = 0, then
Vo € S(R") (Fu,F 1¢) = (u,¢) =0 = u=0.

Now we need to show surjectivity. First let us prove that V¢ € S(R™) b= (270)" .
From the Fourier inverson formula we get

L[ deetmas = [ (@n)md(—e)eERde = F((2m) ).

(2m)™ Jgn R

p(z) =

Using the fact that V¢ € S(R”) F(d) = (F¢) we obtain that

b= F((2m)"0) = (21) " F(J) = (21) "6,

Finally we have

(8, 6) = (@,9) = (u, @) = (27)"(u, &) = (27)" (0, 6) where d(z) = ¢(~z).
Hence .
(&, ¢) = (2m)"(0,¢) where (@) = u(—9). (1.18)

From (1.18) it follows that u = F(2r ") = F is surjective. Hence F : S'(R") —
S’(R") is bijective. Since F is sequentially continuous and bijective = F~! : S'(R") —
S'(R™) is also sequentially continuous. O
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1.5 Sobolev Spaces

Definition 1.28. The derivative of a temperate distribution u is defined by
(0%, ¢) = (—1)l*Nu, 0%¢) Vo € S(R™). (1.19)

Since ¢ € S(R™) then 9%¢ € S(R™). So (u,0%¢) is well defined. From (1.19) follows
that (0%u, ¢) is also well defined for V¢ € S(R™) and 0“u is continuous on S(R") =
0%u € §'(R™). Every temperate distribution is infinitely differentiable.

Theorem 1.29. The map 0“ : S'(R™) — S'(R™), for all multiindices « is linear and
continuous.

Proof. Let us prove linearity. We need to prove that Yu,v € S'(R") and Va,b €
C 0%au+ bv) = ad*u + bo*v :

(0°(au + bv), ¢) = (—=1)1*Nau + bv,0%¢) = (~1)1*N(au, 9°¢) + (—1)!* (bv, %)
= (=D)a(u, 0%¢) + (=1)b(v, 8°¢) = a(0%u, ¢) + b(0%v, ¢) = (ad™u + b0V, ¢).

Let us assume that vy — w in §'(R™) when k& — oco. We need to show that for all
multiindices a, 0%uy, — 0%u in §’'(R™). By (1.19) it follows

(0% — 0%u, ¢) = (=) Ny — u, 8%¢).

Hence |(0%uy, — 0%u, )| = [(ug, —u, 0*¢)| V¢ € S(R™). Since up, — v in S'(R™), k — oo
it follows that 0%ur — 0% in S'(R™). So 9% : S'(R") — S’(R™) is continuous on
S(R™). O

Theorem 1.30. If f € L2(R") then f € L%(R").
Proof. Recalling the Frechet-Riesz theorem |Wer05, Theorem V.3.6]:
There exists a unique v € L?(R") such that V¢ € L*(R") :

(f.0)= | ¢(2)p(x)da.

R

If ¢ € S(R") we obtain (f,¢) = (7,¢) = f = 7 in S'(R"). Since 7 € L2(R") = f €
L2(R™). O

Now we have collected enough knowledge and information to define Sobolev spaces.
In the following section we introduce Sobolev spaces and their properties. These spaces
are very useful in partial differential equations.

1.5 Sobolev Spaces

In this section we follow |[Rin09, §5.2|.
Let s € Rand £ € R™. We denote by A = A\(§) := (1—H§|2)%, where [£]? = €2 4+-E3+- - +&2
and hence A* = \*(€) = (1 +|¢[?)2.
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1 Sobolev Spaces

Definition 1.31. Let s € R . The Sobolev space Hs(R") is defined by
Hy(R") := {u € S'(R"), N0 € L*(R")} where @ = (Fu)(£).
The space Hs(R™) is called Sobolev space of order s € R on R".
Definition 1.32. For all u,v € Hs(R"), the inner product (u,v) g, (rn) is defined by
1 PN
(1) = () = e [ A @€ (1.20)

R

where @ = Fu, & = Fv and 9(€) is the complex conjugate of 9(&).
The corresponding norm is

el gy = Ilulls = (1, 0)2 = (2;) / 256 a(e)2de | (1.21)

Rn
Note also that [[ul| s, gn) = (27) 2 ||| 2 (n)-

Theorem 1.33. Vs € R, the space Hs(R™), equipped with the inner product (.,.)s defined
in (1.20) is a Hilbert space.

Proof. For the proof we need to show that every Cauchy sequence in Hs(R"™) is conver-
gent. Let (uy) be any Cauchy sequence in Hg(R™):

1
(2m)"

Jug — uml|? = /A%mk—amﬁdg—m when k,m — oc.

R

On the other hand,

/A28|a,c — Un|?dE = | A (g — @) 72 (gny = O,
Rn

so (A7) is a Cauchy sequence in L?(IR™), which is a complete space = Jw € L?(R™) such
that A%y, — w in L?(R™) when k — oo. From Remark 1.24 it follows that w € S'(R™)
= A *w € §'(R™). By Theorem 1.27 F : §'(R") — S'(R"™) is an isomorphism hence
Ju € §8'(R™) such that F(u) =4 = A""w € §'(R™). Since u € §'(R") = N\*u € S'(R").
But A\*@ = w € L*(R") which means that u € Hg(R™) and A\, — A4 in L?(R™) when
k — oo. Finally we have

1
@r)"

/)\23|a —dy|?dé — 0 when k — oo.
Rn

lu — w3 =

This shows that the Cauchy sequence (ug) converges to u € Hg(R™), hence Hs(R") is
complete space. ]
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Proposition 1.34. For s; > so , Hg, (R") — H,,(R") with
[ulls, < llulls,  Vu € Hs, (R™).
Proof. Let u € Hy (R™) = [ A2%1(&)|a(&)[2d€ < oo.
R
Since A\(&) = (1 + ]é\z)% > 1 and sy — 51 < 0 then A\2(52751)(¢) < 1. Let us estimate

lellss -

1
2

NI

sy = (2m) % / N2 () a(e) Pde | = (2m)F / X225 (€) A2 (6) (€ [P

n n

[NIES

< onF / N E)a(€)2de | = [lulls, < oo.

n

Hence u € H,(R™). We obtain Hy, (R") C Hg, (R™) with ||ulls, < |lulls, = Hs, (R") —
H,, (R™). O

Remark 1.35. For s > 0, Hy(R") < Ho(R") = L?(R") and ||ul| go = |Ju| 2.
For s > 0 we conclude that:
Hy(R™) = {u:u e L*(R"), X0 € L*(R")}
with (u,v)s and ||.||s defined by eq. (1.20) and eq. (1.21) respectively.

Example 1.36. Let us show that the partial differential operator —A+k? : Hy,o(R") —
H,(R™) is an isomorphism for all real k # 0,Vs € R, where A = 88722 + -+ % is the
n-dimensional Laplace operator. '
Set A = —A+k? . First we prove that for all u € Hy2(R"), Au = —Au+k?u € Hs(R"),
where k € R\ {0},s € R and the map A : Hsi2(R") — Hs(R™) is continuous. Let
u € Hsyo(R™) C S'(R™). Since F[—Au + k?u] = (|¢]? + k*)a € S'(R"™) where @ = F(u),
it follows that
N Fl=Au+ K] = X*(€]* + k) - @,

But

AT (I + £?) < max{1 K2H(1 + [¢*) - A° = C - X*F2

with C' = max{1, k?} > 0. Hence,
A | Fl=Au+ k)| < C - A2l

Since u € Hgi2(R™) then M\*2.4 € L?(R") = X\ - F[-Au + k?u] € L*(R") =
—Au + k*u € Hz(R™). Moreover,

| = Au B2 = (20) "0 - Fl-du+ K32 < (2m) " C2 X a) 3.
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We obtain || — Au + k?u||s < Cljul|sy2 with C > 0. Hence A : Hg2(R") — Hg(R") is
continuous.

Let us prove that A : Hgio(R™) — Hg(R™) is injective. For u € Hg1o(R"), Au =
—Au+ k*u=0in Hg(R") = (|¢]> + k?)a = 0 in S'(R™). Since [£]? +k? #0 =4 =0 in
SR =u=F1ti=0in S (R") = u=0in Hsa(R").

Now we need to prove that A : Hgio(R"™) — Hg(R™) is surjective. Let us take any
feHy(R") Cc SR = feS R = (| +E)1f e S(R.

Set v = (|¢)2 + k)" f € S'(R™), then

f=F = F P + kv = (—A+ k) F .

Define u = F~'v € §'(R"). Then (—A + k*)u = f € Hy(R") and (|¢]> + k)i = f. Let
us estimate A\5724 :

42 2\S+2 R 22 . R
N0 = ———|f| = =——5A%| f| < C1%f].
u ‘f|2+]€2’f‘ |f|2+k2 |f’— 1 |f|
1 1

: 2, 12 - 2 2\ s —

Since |€]° 4+ £ > min{1, k“}(1 + [£|*) it follows that e <y arE where C1 =
1

min{1, k2} > 0.

Hence

1
(2m)

1 2(s+2) |72

R
then u € Hgy9(R™). Thus, Vf € Hg(R") 3u € Hyyo(R™) such that Au = —Au+k*u = f
in Hy(R") it follows that —A + k? is surjective from H, o(R") onto H(R™). Hence
—~A+k?: Hg o(R") — H4(R") is a continuous, linear bijective map. Since Hy o(R")
and Hz(R™) are Banach spaces it follows that the inverse map is also continuous.
So —A + k? : Hg2(R") — H4(R™) is an isomorphism.

Definition 1.37. Let u € Hs(R") and let ¢ be a real number. We define a temperate
distribution (1 — A)*u whose Fourier transform is given by (1 + |£]?)!a(€).

Let us show that (1 — A)tu is in Hs_o;(R"™) for s,t € R:
L+ A7 FL1 =) u] =@+ )7 A+ a=(1+E)7a = Na,
s—2t

since u € Hy(R") it follows that (1 + [£[*) 2 F [(1— A)'u] = Ma € L*(R™). Hence
(1 — A)lu € Hs_9;(R"). Let us prove that, for t € R

1L = 2) sy = [lulls. (1.22)
By the definition of the norm on Hg(R") :

SCF [ 17 < o0

R

s—2t

s—2t
2

a2 L 2(s—1) A2\ 206
R R/ N ()| F((1 — A)!2u) Pde =

1 2\s—t a2 e L 251212 7¢ _ |12
o R/ (1-+ €)1+ Y s = R/ 2 fif?de = [l
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1.5 Sobolev Spaces

From the above equation it follows that (1 — A)/? is an homeomorphism from H,(R™)
to HS,t(Rn).

Remark 1.38. S(R") is dense in Hz(R"™) for any real s.
Proof. Assume that u € S(R"). First let us show that (1 — A)! : S(R") — S(R") is a

homeomorphism:

(1= A)u=F A+ a)]

Since F : S — S is a homeomorphism then @(¢) € S(R™) and that (1+]¢£]?)!a(¢) € S(R™).
So F71[(1+[¢3) a(¢)] € S(R™). Consequently (1 — A)': § — § is a homeomorphism.
By (1.22) we obtain that (1 — A)~%/2 is an isometric map from Hy(R™) = L*(R", C) to
Hy_(_s)(R") = Hy(R"). From Lemma 1.15 it follows that S(R") is dense in L*(R",C).
Since (1 — A)~*/2 maps homeomorphically S(R™) into itself and L?(R", C) into H,(R™)
then S(R") is dense in Hg(R™) for any real s. O

Let us mention that if v € S(R™) and k is a positive integer, then (1 — A)*u can
be interpreted in two ways. In one way, we interpret it as above and another way we
interpret it as a differential operator acting on u, where A is the standard Laplacian.
Let us prove the following lemma whose result is a very useful tool.

Lemma 1.39. For f,g € S(R") we have

@em)y™ | fgdé = | fgde. (1.23)
Rn R’I’L
Proof. First let us show that

fhdz = | fhdx for f heSRM). (1.24)
RTL R"

From the definition of the Fourier transform on S(R"),
@)= | FE&eerde.

Since f,h € S(R") C L'(R") we can apply Fubini’s theorem:
[ fame= [ ([ e i) nas= [ [ st -
R™ n Rn n JRn
L | rop@e s = [ 1) [ naeedads = [ s
R JR7 R™ n

Rn
So
fhdr = [ fhdz.
Rn Rn
Take
h(z) = (2m) "5(x) = (2m) " / g()ei€wde,

n
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then from the Fourier inversion formula we have i = g. By applying (1.24) we obtain

@em)™ | f(©g€)de= | f(x)g(x)da. (1.25)
]Rn Rn
]

As a consequence of this Lemma we have the following Remark.

Remark 1.40. Let u € S(R™) and f = g = 0% in (1.23). Since
oou = il*lgq
according to (1.23) we have
ery [ eile)de = [ 1oruto)Pde. (1.20)
Rn Rn
Remark 1.41. Any element g of the dual of L?(R", C) is given by
9(p) = I(1— A)*/%] where pe I*(R",C), (127)

and f is in the dual of Hz(R"™).

Proof. Due to Theorem 6.16 of [Rud87| and identity (1.23), for any g € (L*(R",C))
there is a x € L%(R",C) such that

g(p) = /ﬁf(d& for all p € L*(R",C).
Rn

Let us define ¢ := (1 — A)*/2y then ¢ = (1 + |¢[2)¥/2%. Since y € L?(R™,C) then
¢ € H_4(R™). Now define f € (Hs(R™))" by

f0) = [Goag = [0+ 1eP) s torall weH@EY. (129
Rn Rn

Taking p = (1 — A)¥2¢ € L2(R",C) we get p = (1 + [¢]?)¥/24). From (1.28) we obtain

4(p) = / (14 €2)2)RdE = f(1)) where o € Hy(R").

Rn
So g(p) = fl(1 — A)=%/2p] where pe L*(R" C). O

Let us analyze the relation between the spaces Hy(R") and H*(R",C) for k € N.
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1.5 Sobolev Spaces

Theorem 1.42. For k non-negative integer the spaces Hy(R™) and H*(R™ C) coincide:
H,(R") = H¥(R"™,C)

and their norms are equivalent :
There are constants C; j, > 0,7 = 1,2, such that for all u € Hy(R"),

Crillulle < llullgre < Copllullx
Proof. Recall the definitions of spaces Hj(R") and H*(R", C)
Hp(R") = {u:u e L*(R"), \*a € L2(R™)},
H*R" C) = {u:ue L*(R"),0 € L*(R",C) V|a| < k}.

According to (1.26)

/|8au| dx =

Summing this equality for |a| < k we get

3 /|aau| i =

lo|<k R \ I<k R}

2(6)2de for u € S(R™).

€)2d¢  for wu e S(R™). (1.29)

By Remark 1.38 S(R") is dense in Hi(R"™). Let us take u € Hi(R") then

Jull = e [+ IR < o

Rn

Let us mention that there are constant ¢; ;, > 0,7 = 1,2 such that

cLe(T+1EP)F < D7 2 < (1 + [E7)" (1.30)

|ov| <k
Using this inequality and (1.29) we can estimate HUHHk :

]uHHk = Z /laaupdx = /€2a| | d§ <

lol<k g \ I<k R

/ e (14 [€2)Ha(€)[Pde = eau]2 < oo,

]Rn

1
(2m)"
hence u € H¥(R", C) and ||ul| gx < \/Caxllullk- So we conclude that Hi(R") C H*(R",C).
Let us prove the converse H*(R",C) C Hj(R"). By Lemma 1.15 S(R") is dense in
H*(R", C). Assume that u € H*(R", C) then
[l = Z /\Go‘u\de < 0. (1.31)
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1 Sobolev Spaces

Now we need to estimate ||u||x. Again we apply the left hand side of (1.30) and use (1.29)

§2a’U 2d€ —

1
lulli = (L + e laE)? =5
) (27T) / |a|<k
(1.32)

20‘] 2d§ =c] k |8au|2dx = ci,lﬁHuH?{k < 00,
| I<k R la|<k gn

hence u € Hg(R") and ,/c1x||ullx < ||ul| gx. So we conclude that H*(R™,C) C Hj(R™).
Finally we get that H*(R",C) = Hj(R") and their norms are equivalent.
There are positive constants C; i, i = 1,2 such that for all u € H(R")

Crillulle < flull e < Copllulle:

Lemma 1.43. If « is a multiindex and s € R then

10% flls—ja) < C|If|s for all f € S(R"), (1.33)
where C is a constant, which depends on « and s. Hence 0¢ is a bounded linear operator
from Hg(R") to H,_|o(R™).
Proof. Due to Remark 1.38 S(R") is dense in Hg(R"). Let us compute [[0%f||s_|q :

10°F1 1 = g [ L+ IERlIeR fee)? < A,

Rn
Here we have used the inequality
E P+ g <o+ ),

where C'is a constant. Hence 0°f € H,_|o|(R"). The operator 9 : S(R") — S(R") is
bounded and linear. We can conclude that 0% can be extended to be a linear bounded
operator from Hg(R") to Hy_|4(R™). O

Lemma 1.44. Let u,v € Hg(R") and let a be a multiindex with |o| <'s. Then u and v
are in W52(R") and
(u, 0%0) 12 = (1)l (0%u, v) 2, (1.34)

where

(u,v)r2 = /uvdaz.

R
Moreover, if u,v € Hy(R™),s > 0 and t < s then (1 — A)"?u, (1 — A)/?v € L*(R*,C)

and

(1 = A)2u,v) 2 = (u, (1 — A)Y20) 2. (1.35)
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1.5 Sobolev Spaces

Proof. By Theorem 1.42 for any non negative integer s the spaces Hg(R™) and H*(R") =
W*2(R™) coincide. Since u,v € H,(R") it follows that 9%v,d%u € L?(R",C). Let us take
u,v € S(R™) and estimate (u, 0*v)r2. From (1.23) we get:

(u,0%) 2 = /u%dm = (2%)"/118/02@5. (1.36)
R7 R”

We need to compute 9o

50 = (i) o = (ZE)“ 5 = (—i€)* -0 = (—1)ll(ig)*D
1

Inserting the above result in ),we obtain
(u, 0%0) 2 = / Dl (i€)°Bde = (—1)l(2m)™" [ doupde
Rn
= (=Dl [ ovu(z)v(z)de = (-1 (0%, v) 2.
R

Let us prove that (1-A)!/?y € L*(R",C). Since u € Hs(R™) then (1—A)Y? maps H,(R™)
into Hs_¢(R"). By assumption s —t > 0 so Hs_(R") C Hp(R") = L?(R"), which means
that (1 —A)Y2u € L*(R™). Now let us check that ((1—A)Y2u,v) 2 = (u, (1 —A)?0) 2.
From (1.23) we get for u,v € S(R") :

(1 — A 2u,v) 2 = /

/ (L = D)Pudz = (u, (1 — A)20) 0.

Since S(R™) is dense in Hg(R™), then all results follow in general. O

(1 — A ?uvde = (2%)"/ 1+ |§]2)%ﬂg\d§ =

Lemma 1.45. Assume u € S(R") and assume ¢ € C*°(R",C) with all derivatives
bounded. Then
[pull < Cllullk, (1.37)

where C'is a constant , which depends on k and the sup norm of up to |k| derivatives of
é.
Proof. Due to Theorem 1.42 for any k& > 0 integer, the norms || - ||+ and || - ||z are
equivalent. By assumption |0F¢| < M. We obtain

1

2

lully < Crlléullge =Cr | 3 / 0% (pu) 2z | =

la|<k

N|=

Cy Z/ |Z<>aa BpoPuldx égcl-M Z/ |Z<>aﬁu|dx <

loo| <k || <k
1
2
G2 | 32 [ jovuPds | =Gy Mlully < Co-Co- Mifull = Clul

la|<k
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1 Sobolev Spaces
Let us prove (1.37) for negative k. First we need to show that for u,v € S(R")

|lu|lx = sup /u@daz , where A, = {v € SR") : ||v||-x < 1}.
veEAL

By (1.23) for u,v € S(R™) we obtain
o1 S 2\k /2.1 2\ —k/2%
/uvdx— @) /uvdﬁ— G /(1+ 1€]7)=a(1 + [£]%) "/ “odE. (1.38)
R" R" Rn

Let us apply the Cauchy-Schwarz inequality to the above equality:

_ 1 " 2\k/2| 7 2\—k/2
[ wide| < e [l -+ ER)210101+ [6) e <

R”l
1 ~12 2k ’ 1 =12 21—k ’ _ ~
o R/ 71+ l67) e <2”)"R[ TP+ 1) Fde | =l

Taking the supremum over v € A, in the above inequality we get:

sup /u@dm < || -

veEAL
n

Now we can choose v € S(R™) such that

0(€) = (1 + [ a(&) ully ",
where ||ul|x # 0. Then,

N

1 1
[v]|-k = (%)n/(l +ER)TF A+ PP @@ Pllullde | = (lullg® - llulf)® = 1.

Rn

Inserting this v in (1.38), we obtain

_ N 1 i 2 k:& u —1 _ 1 2\k i 2 U -1 —
R{ b = (2”>"R[ O+ ISPl d 5o R/ (1 + M) P ol e

-1
luallg® - Il = M-

Consequently, for u # 0 we obtain

sup /uﬂdx = [Jul|x-

veAL
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1.5 Sobolev Spaces

It is clear that this equality holds for u = 0. Let us compute the following:

[ i) = | [uude| = | a1+ i) 2001+ )20 | <

n n Rn
1 212 2k o 9 2k ’ _
T R/ a1+ Je)de (2”>”R[ GoP+ 1) Fde | -

lullell¢vll-k < Cllullillv] -k

In the third step we have used the Cauchy-Schwarz inequality and inequality (1.37) for
k non-negative in the last step. Let us take the supremum over v € Ay, then

lbulls = sup /qu_)dx < Clullx. (1.39)
vEA L

O]

Corollary 1.46. Let u € S(R") and let f € C*°(R"™, ') with all derivatives bounded.
Assume m and [ be non-negative integers, a be a multiindex with |a| <1+ m then

[fO%ull - < Cllully,
where C' depends on m, [ and a bound of 9% f for |a| < m.

Proof. According to Lemma 1.45 and Lemma 1.43

10Ul s < a0l = Gl ol < Ca - Collul -
Since |a| — m < [ then by Proposition 1.34

[l —mtiar < llulls-

Finally we get
| fO%u||—m < C||lull;, where C =Ci-Ch.

O]

Lemma 1.47. Let s1, 2,53 € R with 51 < s3 < s3 and let u € Hg,(R™). If a,b € (0,1)
are such that a + b =1 and «a is small enough then

lullsg < Ilullg, - Ilullg;- (1.40)

Actually,

33—52 $9—381

ey < a3 - ™
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1 Sobolev Spaces

Proof. By our assumption a,b € (0, 1) are such that a+b = 1. Let us set so = ts1+(1—t)s3
then by Holder’s inequality we obtain

lullZ, = /(1 +1EP)2la(e)Pde = /[(1 +HIEP) @ P + [€*)* |a(e)P] ~'de <
i

Rn
a b

/[(1+£I2)Sllﬂ(£)lz]t'id€ : /[(1+|512)33m(§)\2]<1t>-idg _

n n

a b

/(1+!§2)51\ﬂ(€>\2d£ - /<1+rs\2>83|a<§>|2ds = [luf2e - 2.

n n

Here we take a =t and b = 1 — ¢ and the result follows

b
lellsy < flulls, - lulls,-

Since t = 53 7 52 and 1 —¢ = %2 7 51 then we have
83 — 81 83 — 81
S3—52 52—51
Jullsy < flulls™" - fluflsg ™™

O

Let us consider situations where we can apply this lemma. Let {u;};>1 be a bounded
sequence in Hg, (R™) and let {w;};>; is a Cauchy sequence in Hy, (R™) with s; < s3. By
(1.40) we can prove that {u;};>1 is a Cauchy sequence with respect to any norm || - ||,
such that s; < s9 < s3.

b
et = wmlloy < = vl - g = w2 (1.41)

The sequence {w;};>1 is bounded in H, (R™) so that [[u; — um |5, < M. Since {u};>1 is
a Cauchy sequence in Hy, (R™) then Ve >0 3 N such that for I,m > N |ju; — um||s, <

()

Due to Fatou’s lemma the limit v is in Hg, (R™) :

g = um|[s, <e.

Jully, = [ (1 I laPde < timint [ (416 P < oc.
Rn — 00 Rn

Let us mention that the sequence {u;};>1 converges to u with respect to the weak topology
on Hg, (R™). If f is an element of the dual of H,,(R™) then there is a ¢ € H_4,(R™) such
that

f(0) = [ ddae

R
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1.6 Dualities

for all v € Hg, (R™). Let the sequence {¢m, }m>1 € S(R™) converges to ¢ with respect to
the norm || - ||—s;. Then

(6= G+ [ (= @)t + [ il - D).

n

fw) - f() = |

Due to (1.23) we have

n

) ~ f(u) = (2m)" L/ w(@=Gn)ds + [ (w— )iz + [ (6, - ¢>dm] .
For given ¢ > 0, we fix m, independently of [, so that Rj; |p — fm|dx < m
where C' = max{|w, |ul|, |¢m|}. For this fixed m, we can choose [ large enough such that

5
— uld. —— . Th
Rj; |u; — uldz < 30 (@n)" en

) — F(w)] < (2m)" / |6 — Bl + / g — ul| Bz + / | — Bldz| <
e-C e-C e-C }:g

@) |56 @nr 30 @nn 30 2o

Consequently the sequence {u;};>1 converges to u with respect to the weak topology on
Hg, (R™).

1.6 Dualities

In this section we introduce the duality of Sobolev spaces and follow [Rin09, §5.4| and
lecture note [HS09|. We start with the definition of bilinear form (-, -)g__ m,.

Remark 1.48. Assume ¢, 9 € S(R™) and refer to ¢ as a regular temperate distribution.
Then we obtain

(o) = [ @@l = (6,0)1 = () (5. D) = (2)

D(€)p()dE =

R

@m)™" | D(OA(-E)de = (2m) ™" / (1+ €370 (1 + [¢*)* (=€) de,

n

using the identity (1.23) and the fact that é({) = ¢(=£). Let us prove the last identity:

5O = [ o,

Consequently,

A

© = | o) 97 = p(-g).
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1 Sobolev Spaces

According to the Cauchy-Schwarz inequality:
()] < (2m)7" /R AP TERE O+ [EP)PR (=) lde <

R 1/2 1/2
en ([ asieryiera) ([ avirieerd) = l-el.
(1.42)

Due to Remark 1.38 the Schwarz space S(R") is dense in Hg(R™) for all s. Consequently
we can extend the map

(. 9) — (o, )

uniquely to a bilinear map H_4(R") x Hs(R"™) — C, which we write as
(1, 0) — (u,0) = (27)" / WE)D(—E)de Tor u e H_o(RY),v € Hy(R"). (143)

By (1.42) we obtain
(w0 | < lull=slvlls- (1.44)

So (u,v)g_, H, : H-s(R") x Hg(R™) — C is a continuous bilinear map.

Theorem 1.49. The bilinear form (-,-)g_, g, of (1.48) produces an isometric isomor-
phism
H_o(R") — (Hs(R"))",

where (Hs(R™))" is the topological dual of Hs(R™). So H_s(R™) consists precisely of the
linear and continuous forms on Hg(R™).

Proof. Let us fixu € H_4(R"™) and define ¢, : v = ¢, (v) = (w,v)g__ m,. Then v — ¢, (v)
is a continuous and linear map on Hg(R™) with |p,(v)| < [Ju||—s|[v]|s-

We will show that the map u — ¢, is an isometric isomorphism H_g — (Hg)*. First
let us prove isometry . For this we need to show that there exists some v € Hz(R"),
[olls = 1 with [@u(v)] = [[ul| -

Let us set vg = F (1 + [¢*)~*a(—¢€)) and v :=

follows that vy € S'(R™) and

0 From the definition of v it
[[volls

(1+[)7200 = (1 + [¢[*)~*/*a(=¢) € L*(R",C).
Consequently vy € Hg(R™) and

1/2

ool = (m) [ @ ey g laoPde) =

(om [ sy lacerae) = pul
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1.6 Dualities

Let us compute (u,vo)g_, H, :

(o), = (20) " [ a€)in(-e)d = 2m) " [ al©)(1+IeP) (e =

R

m)y ™ [ IO+ 167 de = ful? .

Since ||v]|s = Hivo =1 and (u,vo)m_, g, = ||ul|®, then
[[volls !ls
vo [, vo) | [lull®
[pulv)] = Ku, v)m_, m,] = [{u, VH o H,| = — = = [l s
b lvolls [lvolls el s ’
It follows that |¢y(v)| = ||u||—s. From this isometry, injectivity follows. It remains to show

surjectivity. Let u’ € (Hs)*, then by Riesz-Fréchet representation theorem 3w € H(R"™)
with

W () = (0,w) = (21) " / (1+ € 0(6)B(€)de.

n

Now set u := F (1 + |£2)°0(—€)). Let us prove that u € H_4(R") and u'(v) =
(u,v)g_, 7, = pu(v) for all v € Hg(R™). Since w € Hy(R™) and

(L+[E1)Pa = (L+ )72 (L+ €7)°D(=€) = (1 + [€[*)**0 (=€) € L*(R",C)
then u € H_s(R™). For all v € Hs(R™) we have

o (v) = (21)7" /

R

)" [ a(Eo(-€)ds = (wv)

(L gP)ra(e)@(e)de = (QW)_”/ (1 +[EP) o(=€)b(—¢)dE =

n

Consequently the map (u,v)g . g, : H-s(R") x Hg(R") — C is an isometric isomor-
phism. O

Since L?(R",C) and H,(R™) are isomorphic and L?(R", C) is separable, also Hs(R")

is separable. Assume

u e LP{[0,T],Hs(R",C™)}, wve L{[0,T], H_s(R",C™)},

where % + é =1.
Since (1—A)2 : Hy(R",C™) — L2(R*,C™) and (1—A)Z : H_((R",C™) — L(R",C™)
then

(1—A)2u e LP{[0,T], L*(R",C™)}, (1—A)=ve L{[0,T], L*(R",C™)}.
We define

T
(u,v) = /((1 — A)zu, (1 — A)2 v)edt, (1.45)
0
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1 Sobolev Spaces

since the integrand is measurable and bounded by an integrable function. Let us show
that (1.45) does not depend on s. Let r > s and

u € LP{[0,T], H,(R",C™)}

ve L]0, T], H_,(R",C™)}.
Then by (1.35) we obtain

(NI

T
(1= A)zu, (1 — A)Z v)2dt = / T (1-A)2u, (1—A)ZTv)edt =
0

(1= A)zu, (1 — A)Z v)edt.

We conclude that (1.45) does not depend on s, until the right hand side is defined. Let
us mention that for non-negative integer k£ and multiindex |a| < k, if

u € LP{[0,T], H,(R",C™)}, wv e LY[0,T], H(R",C™)},
then by Lemma 1.43
O%u e LP{[0,T], Ho(R",C™)}, 0% € L0, T], Ho(R",C™)}.

Due to (1.34)

T T
= /((1 — A)20%, (1 — A) 2 v)2dt = / “u, v)p2dt =
0 0

S

T

/ 1)1l (u, 0%0) 2dt = |a|/ (1 —A)2u, (1 — A) =2 %) 2dt =

0
(=) u, 0™v).

Proposition 1.50. Assume

Xs = LH{[0,T], Hs(R",C™)}
Y_, = L®{[0,T], H_4(R",C™)}.

Then for any F' € X7 there exists y € Y_; such that

F(z) = (2,9)

for all z € X and ||y[ly_, = || F||x=.
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Proof. For a given I' € X, define G € X by

G(zo) = F[(1 — A)= x0). (1.46)
From this definition it follows that [|G| x; = [|F||x;. Since Xo = LY{[0,T], L>(R",C™)},
according to Proposition 3.6 of [Rin09] we obtain a yo € Yy = L>{[0,T], L2(R",C™)},

such that
G(z0) = (z0,%0) and |yollv, = | F|l x>

for all zg € Xo. Now set y = (1 — A)2yo. Then from (1.46) and from (1.35), we obtain:
Flz)=G[(1-A)2z] = (1 - A)sz,(1—A)2y) = (z,y) for ze X,
Since y = (1 — A)3yp € Y_g, then from (1.22) we obtain

lyllv_. = llvollvs- (1.47)

So [[Fllxz = llgollve = llylly, as claimed. -

35






2 Sobolev Embedding

2.1 Young’s inequality, Sobolev embedding
In this section we follow [Rin09, §6.1 and §6.2].

Theorem 2.1. Assume p,q be positive real numbers such that

11
242 =1
p q
then
P
ab< = 4+~ (2.1)
p q

for all non-negative a,b. This inequality is called Young’s inequality.

Proof. Let us note that if either a or b are zero, then the inequality holds. So let a,b > 0.
Dividing both sides of (2.1) by b? we get:

a 1 o 1
v S - . — —
1 p v q
a? a?
Let us set ¢t = a/b?"!. Since il ey t? then the above inequality will be
equivalent to
I 7
t<—+—. (2.2)
q P

So inequalities (2.1) and (2.2) are equivalent. Hence we need to show that (2.2) holds.
Let us note that the function

t=t gt
- + -
q p
tends to infinity when t — oo and also when ¢ — 0. Let us show that it has a unique
-1 -1
P
minimum at ¢ = 1. We need to differentiate — + —— and solve the following equation:
p

1 -1
A
q p

1 p-1
2 <— +2 tp> =0.
a P
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2 Sobolev Embedding

Since t # 0 then

1 _
N
q p
p
P = =1
q(p—1)
t=1.
=gt
So the function — + —— has a unique minimum at ¢t =1 :
q p
U B |
—+t—2=>2-+-=-=1
q p qQ p
Consequently,
P
-+ ==t
qa P
So we obtain (2.1). O

We can generalize the Young’s inequality in this way.

Theorem 2.2. Let py,...,p; be positive numbers such that
1 1
— 4+ 4+ —=1 (2.3)
p1 Pk
If a1, ..., a are non-negative numbers then
4l Pk
a a
n Pk

Proof. Let us prove (2.4) by induction. It holds for k& = 2. Assume that it holds for some
k > 2. We need to prove that it holds for & + 1. Let p1,...,pg+1 satisfy

i—i—-“-l-i%-i:l. (2.5)
p1 Pk Pk+1
Letusset ry =p; fori=1,...,k—1 and
_ DPkPk+1
" o + Pyt
Then 71, ...,7 are positive numbers which satisfy (2.3). Consequently,

P1 Pr—1 r
a ap_y | (apapy1)™

a...app < 4+ + .
b1 Prk—1 Tk

Let us set p = py/ry and ¢ = pgy1/7%, then apply (2.1). We obtain that

TkD Tkq Dk Pk+1
a Q. a ap

(apaper)™ < k4 FEL — g (R BEL )
q Pk Pk+1

So we obtain (2.4) for k+1 . O
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Lemma 2.3. Assume p1,...,p; be positive numbers with
1 1
— 4+ 4+ — =1
P Pk

If u; € LPi(R™) for i = 1,...,k then uy ...u, € L'(R™) and

/]R” [ur .. .uglde < |uillp, - - - |luklp,- (2.6)

Proof. Let us note that if ||u;||,, = 0 for some ¢ then both sides of (2.6) are equal to zero.
So we can assume that ||u;|[p, > 0. Let us set v; = u;/||us||p, then ||v;]|p, = 1. According
to (2.4) we have

p1 Pk
/ \vl...vk\dxg/ <|1)1| +..._|_|Uk| >da::
n n\ P1 Dk

1 1 1 1

— vlpldx+-~-+/ vp|PRde = — |l [|PF 4 - - - 4+ — o ||BF =

L[ L fodrede = gyl

1 1

— + 4+ — = 1.

b1 Dk
Consequently

[ far <
nlunllpr Nugllp,

Multiplying both sides of this inequality by |[ui||p, - .. ||uk|lp, We get (2.6). O

Corollary 2.4. Assume py, ..., px be positive numbers such that the equality (2.3) holds.
If u; € L?Pi(R™) for i = 1,...,k then uy ... u; € L?>(R") and

Jur - uplle < fluallap, - - - lJukll2p,- (2.7)
Proof. Let us apply the above Lemma to u?, ... ,u% then
[ 1 aldn < -

Taking the square root, we obtain:

1/2 1/2p1 1/2py,
Up ... Uk 2dx < Uy 21 g . m 2Pk ] .
| |

s urll2 < llutllop, - - - llukll2p,-

So
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2 Sobolev Embedding

Definition 2.5. We denote by CF(R", C) the space which consists of all the C* functions
whose derivatives up to order k are bounded. We define the norm

k k
fllesncy = Y 10°F@)lley@nc) = D sup |0 f(@)]:
|ar|=0 |e|=0

Theorem 2.6 (Sobolev embedding). Assume k be a non negative integer and let
s>k+ % Then for all f € S(R™)

|l ey < ClIf s (2.8)

where C is a constant depending on k, n and s.

Proof. First let us prove the case k = 0. Due to the Fourier inversion formula for S(R"™)
and the Cauchy-Schwarz inequality we have

@)l =0 [ fE©)dsde < 2m) / F(©))de =
RTL

n

@r) [ (L IR+ )1l <

on ([ artetyeae) ([ avieprifore) -
1/2
e ([ e igae) il

If s > n/2 then (1 + |£|?)* is integrable and we obtain (2.8). If s — |a| > n/2 then
(1 + [€%)~*tlel is integrable for any multiindex . With similar assumptions for 9 f we
get

10% flleyme,c) < ClOYflls—|al-
By Lemma 1.43 we have

10% fllcyn.c) < CUO* flls—ja) < CI flls-
Summing these inequalities for all a such that |o| < k we get
1fllex@n oy < ClIfls-
[

Due to (2.8) we can associate the elements of H,(R™) with elements of Cff(R", C) for
s >k +n/2. Let us prove this. If ¢; — u in Hs(R"), ¢; € S(R™), then by (2.8)

H¢n - ¢mHC{f(R",C) < CHgbn - ¢m”5
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2.2 Gagliardo-Nirenberg inequalities

So ¢, is a Cauchy sequence in CF(R",C). By Theorem 3.12 of [Rud87| there is a subse-
quence of ¢; which converges to u a.e.. So we conclude that u is a function in C’{f (R™,C).
Due to Theorem 1.42 for any non negative integer k the space Hy(R"™) coincides with
HF(R™ C) and the norms are equivalent. So we conclude that for I > n/2 + k

Ifllcrgncy < Cllf -

Lemma 2.7. Assume 2 C R" be open and let u € L2 () is | times weakly differentiable.
Then u € C*(Q) for I > k +n/2.

Proof. Since u € L} () and it is | times weakly differentiable then the weak derivatives
are in L2 (). In the proof of Lemma 1.15 we show that if u € Wh2(Q) = H(Q) and
¢ € C5°(Q) then ¢pu € Wh2(Q) = HY(Q). From the above observations it follows that ¢u
is a C* function. By Proposition A.12 of [Rin09], for any compact subset K C €, there
is a ¢ € C§°(2) such that ¢(x) =1 for z € K . Consequently u € C*((Q). O

2.2 Gagliardo-Nirenberg inequalities

In this section we will follow [Rin09, §6.3]. We will prove some inequalities of Gagliardo,
Nirenberg and Moser. Let Y be a real vector space with inner product (-,-), where the
norm is induced by an inner product |y|3- = (y,y) for all y € Y. In the following lemmas
we will always use such a vector space Y. Let us denote by B(R",Y") the bounded linear
transformations from R™ to Y. Note that B(R"™,Y") is a real vector space with a norm.

Definition 2.8. We say that f : R" — Y is differentiable at x € R"™ if there exists
T € B(R",Y) such that

L@+ h) — f(x) = Thly

= 0. 2.9
h—0 l|h]]2 (29)

We call T the derivative of f at = and denote it by (D f)(z). If f is differentiable at every
x € R™ then we get a map Df : R" — B(R™,Y). If the map Df : R® — B(R™,Y) is
continuous we say that f is continuously differentiable. We denote the kth derivative by
DFf.

In this section we are interested in C§°(R",Y). Let f € C§°(R",Y), and define

1/p
1= ([ 1r@Rds) " e = s 1ol

for 1 < p < o0. Also,

1/p

1D £l = Z/ (@) @)yde | . 1D flloe = sup > [(0*f)(@)ly. (2.10)

o=l 2R 1 0)=
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2 Sobolev Embedding

Assume f,g: R" — Y are differentiable at x € R™ and let ¢(z) = (f(z), g(z)). Then ¢
is differentiable at x and

(Do) (@)]h = ([(Df)(x)]h, g(x)) + (f (), [(Dg)(x)]h). (2.11)

Let e; be the vector in R™ whose jth component is 1 and all other components are zero.
Then the partial derivative 0; f is the function whose value at z is given by (Df)(z)e;.
So

(0;f)(x) = [(Df)(x)]e;. (2.12)

Consequently,

959(x) = (0, f(x), g(x)) + (f(x), Djg(x)). (2.13)
Let us note that if f: R®™ — Y is smooth, then all the partial derivatives exist and are
also smooth.
Lemma 2.9. Assume 1 < j < n and assume that k,7 € R with 1 <r < k. Then for all
fe G R™Y),

19 £ 131/ < ClF Nl r—1) 195 fll2k s r-41) (2.14)

where a constant C' depends on an upper bound on k.

Proof. Let 2 < ¢ € R and let us define ¢; by

$i(x) = (f(2), 0 (@){0; f (x),0; f(2)) "7,

where the last factor is 1 if ¢ = 2. From our assumption on f(z) it follows that this
function has compact support. We need to show that ¢;(z) is continuously differentiable.
According to observations which we made in the beginning of this section, the expressions
(f(x),0;5f(x)) and (0, f(x),0; f(x)) are smooth functions with compact support. If ¢ = 2
then ¢; is smooth, so assume that ¢ > 2. If (9;f)(§) # 0, then we conclude that ¢; is
smooth in a neighborhood of £. Let us assume that £ is such that (9;f)(§) = 0. Denote
by j(x) = (0;f(x),0;f(x)), then 9; is smooth and for all 1 <k <n:

() = (00, f (), 0; f(x)) + (05 (x), Ok0; f (x)).
So (&) = Ok (§) = 0 and we conclude that
¥j(x) = O(lz — &)
Applying the Cauchy-Schwarz inequality to ¢;(z) we get:

165 ()] =I{F (@), ;1 (@) (03 £ (), 0 F(2)) T < |F(@)ly 5@ [ (2) T =

@)y (@) T = O(le — €M),

So we conclude that ¢; is differentiable in a neighborhood of £ and that the derivative is
zero. If (0;f)(x) # 0 we can differentiate ¢; with respect to the kth variable:

(0167) (@) = (0f (2), 0, (@) Wy @) T + (F(@), (069, £)(@) [w5(@)]"T +

2 (2.15)
(¢ —2){f (@), 0;f(x))(0;f (), (00; f)(x)) [¥;(x)] = .
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2.2 Gagliardo-Nirenberg inequalities

From the above observations we conclude that if £ is such that 0;f(£) # 0, then ¢;(x)
is continuously differentiable at £. If £ is such that 0;f(£) = 0, then D¢;(£) = 0. Let us
show that D¢;(x) is continuous at . Let 0;f(x;) # 0 and ; — £ with 0;f(§) = 0, then
from (2.15) we get Or¢j(x;) — Or;(§) = 0. Hence ¢; is continuously differentiable. Let
us compute (9j¢;)(z) :

—2

(9505) () = (03 (2), 03 (@) [ (@)T + (f(2), 02 () o5 (w)]) "%

o (2.16)
(q = 2)(f (@), 0;f (2))(0;f (), 0} f (x)) [y ()] = .
Integrating (2.16) over R™ and using the triangle inequality we get:
[ @us@.00@) @) da| < | [ (0,0)@)a]+
[ vt i)' + (g = 2)(7 (@), 037 (@)D ), 87 (@) [ () T ]
(2.17)

Since [pa(9j¢5)(x)dx = 0 then

/ 10, ()|l der < / (s b)) s
) (f(), ;£ (2))0; £ x), B2 (2)) [y ()] |

Let us denote

—4

I={f(2). 2f (@) [y (@) + (a — 2(f(2), &S (@))0;F (), 02 () [ty ()] T
We need to estimate |I|. Applying the Cauchy-Schwarz inequality we get:
1] < 1f @)y |05 £ (@) |y 0, f () [§+
(q = 2)|f(@)ly 1051 @)y 105 f (2)|v 18] f(2)ly|0; f ()5 =
(4= DI @)I¥105 1 (@)]v10;f ()57
Inserting this result into (2.18)

A 10 f (z)|3-dv < (¢ — 1)/R (@) 1y 107 £ ()10 f ()[4 *da. (2.19)
For ¢ = 2, if we interpret |0; f(x) qy_2 as 1, then

/R 10, f (@) [5-dz S/R | (@) Iy |07 f (@) lydz <[ fllok)r—1) 19 fll2k)(ri1)-
In the last step we have used Holder’s inequality, where k = r > 1. By assumption,
1 <r <k, so we set

2% ok 2%
- _7q2_r+1

7Q3iq_2-
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2 Sobolev Embedding

Hence ¢ > 2. Since 1/q1 + 1/g2 + 1/g3 = 1 then we can apply Hoélder’s inequality to
(2.19). So we obtain

/Rn 10; f (2)[3-dz < (g = D) fllar/ 1) 107 Fllak i) 0 F11F 2

Consequently,
19 134/ < CllF k=) 107 N2t 41

Let us also mention that if » = 1 then 2k/(r — 1) is interpreted as oo, and the constant
only depends on an upper bound on k. ]

Lemma 2.10. Assume 1 < j,1,7 € Z and assume that k,r € R with j <r <k+4+1—1
and [ > j. Then for all ¢ € C§°(R",Y),

1D 6lai /e < C (1D 6llaks oy + 1D Bl 1| (2.20)
where a constant C' depends on n and an upper bound on k£ and [ + <.
We interpret 2k/(r — j) as oo when r = j.
Proof. Let us apply (2.14), then we have
ID'3/p < CIID' Gll2kyr—1) 1D Bllaks (41, (2:21)

for 1 >1and 1 <r <k. Recall that

ab < Z(ea + < 'b)?

N | =

for all non-negative a,b and € > 0. Apply this inequality to (2.21):

D'k < C [%?HDl*l(ﬁsz/(rq) + 671HD1H¢H21</(7«+1)] :

This is inequality (2.20) in the case i = j = 1. Let us prove that

1D 8llte < C [lD 90l o—sy + COID™H Dl v (222)

where 7, k, 7,1, 1 satisfy the conditions of the lemma, also the condition that j,i <. We
prove this inequality by induction. From the observation above we know that it is true
for v = 1. Assume that inequality (2.22) works for v and let us prove it for v + 1. We
need to show that we can increase j to j + 1. Assume that we have conditions of the
lemma with j replaced by j + 1 and 1 < 4,5 <. Let us apply the induction hypothesis
tor' =r—j4,k=k/I'=1-74,9 =7 and 5/ =1, then we obtain

D" 8llok ) (r—iy < C |e1|| DT bllogjr—j1) + C(El)HDl¢||2k/r] .
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2.2 Gagliardo-Nirenberg inequalities

Inserting this inequality into (2.22) we obtain:

1Dl < C [2C |1 DT Blloksp—j-1) + CeID'Bllotyr | + CEID* Bllagr4) |-
(2.23)

So || D'¢||oy» appears also on the right hand side. Let us fix e; and assume that ¢ is
small enough, so that the coefficient of || D'¢||s/» can be smaller than 1/2. Then, we can
move it over to the left hand side and obtain (2.22) for j + 1

[ [EHDl_j_lqﬁHQk/(r—j—l) + C(&)| D™ Bl agr+4) (2.24)

Hence (2.22) holds for all r,k, j,1,4, which satisfy the conditions of the lemma and i <
v, 7 < v+1. Now let us assume that conditions of the lemma are satisfied with ¢ replaced
by ¢ +1 and that 1 <¢ <~ and j < v+ 1. Let us apply the induction hypothesis with
r"=r+i, K=k j=41U=1+iand? =1:

HDH%”%/(H@ <C |:€2||Dl¢”2k/r + 0(52)"Dl+i+1¢”2k/(r+i+1) . (2.25)

Inserting this result into (2.22) and using a similar argument as above, we obtain the
induction hypothesis for ¢ + 1. Consequently we have the induction hypothesis with
replaced by v + 1. O

For j =1 and r + i = k, as a consequence of this lemma we have

1D 6lansn < C [l llaksr1y + 1D+ 613 (2.26)

for all p € CP(R™,Y),l € N, k,r € Rsuch that l <7 and k —r € N.

Lemma 2.11. Assume [, 4 and ¢ be non-negative integers with [ < max{x, i} and assume
q,0,p € [1,00]. Let us set

a:ﬁ_ﬁjLM_g, ;L L (2.27)
q 0 q P

and assume that « and 8 are non zero. If 0 < C1,Cy € R are constants such that the
inequality
ID'¢llg < C1lID*¢]lo + C2]| D6,

holds for all ¢ € C§°(R™,Y), then o and 5 have the same sign and
ID'6llg < (Cr + Co)| Do/ D[ Digllg/ @+ for all ¢ € CFE(R™,Y).

If ¢ = oo, then we interpret n/q as 0 and similarly for n/p and n/p.
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2 Sobolev Embedding

Proof. If we set Q = || D'¢||4, R = ||D"8|, and P = ||D'¢||, then the assumed inequality
is transformed to

Q <CiR+ CyP.

Let us replace ¢(z) by ¢(sz), where 0 < s € R. Then from (2.10) we get:

ID'¢(sz)lly = s 5 |[D'p(x) g, [|1D"(52), = s* 2 | DPo ()],
and
1D ¢ (sz)||, = 5" 7 || D' ()] -

Consequently
siTrAQ < Oy stTOR 4 CystM PP,

Multiplying both sides of the above inequality by s e get:
Q < CysteTHnlaR 4 Oy ginle=lin/ap,

So
Q < C15°R+ Cos PP. (2.28)

Assume that o and § have different sign. If s tends to zero or oo then we can conclude
that Q = 0. Hence ||D'¢||, = 0 for all ¢ € C°(R™,Y). Since this is false, we conclude
that o and S have the same sign. If P or R is zero then ¢ is zero. Hence the inequality
holds. Let us set s = (P/R)Y (@5 where P and R are non zero. Inserting s in (2.28)

we have:
_a =B
P\ o+8 B
Q§C1(> R—i—CQ( )
R
B
ClPa+6 Ra+ﬁ +C2Po<+ Rao+8 =
(C1 + C’Q)PmRm.
Consequently,

ID'¢|l4 < (C1 + Ca)|| D' p||3/ @A) | D 2/ (e+8),

O]

Corollary 2.12. Assume 1 <[ € Z and let k,7 € R be such that [ <r and k —r € N.
Then for all ¢ € C§°(R™,Y)

/(k+l—r —r /) (k+l—r
1D $llanse < CllllG, 05+ | DEH g B+, (2:29)

where C is a constant.
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2.2 Gagliardo-Nirenberg inequalities

Proof. Since the corollary conditions satisfy Lemma 2.11 then we can apply it to (2.26).
And that the result of this corollary follows. Note that from the assumptions of Lemma
2.11 and (2.26) we conclude that:

2k 2k

g=—,0=——, pu=0,i=k+1l—-r, p=2. (2.30)
r r—1
Inserting this in (2.27) we obtain
B T (r—=1) _nr—nr+nl -2kl I(n—2k)
a=mg T gy PO ok EL
—n(r —k) (2k —n)
=N — 4 — — — A S A —K=(r—k)—2 2.31
g 2k+ (k+l—r)+1= % +(r—k)=(r—k) (2.31)
(I +Ek—r)(n—2k)
a+fB= 5% .
So
a l
a+B k+l-r
B k=

a+pB  k+l—1

Applying Lemma 2.11 and using the above results we obtain

D' llasr < C||¢||g’;/7;>/li;+l || Dl Y T,

Let us prove the case when aw = § = 0, where a and /3 are given in (2.27). Since [ > 1
and k — r is positive then a = § = 0 if and only if n = 2k. The constant C' in (2.26) only
depends on an upper bound on n, on k and on [ + k — . Assume that n = 2k, and set
ke =k+eand r. =r+e for e € (0,1). We can apply the Corrolary for [, k., r., and we
can choose constant which is independent of . Since k. — r. = k — r, so it remains to
prove that

T (191l = 9]

for smooth function ¢ with compact support and 1 < ¢ty < co.
Since ||¢[lt = ( [ (|¢(z)|}-dz)*/* and the norm |¢(z)|y defines a non negative real-valued
R”

continuous function with compact support. Then we only need to prove that tlir? Il =
—to

1%+, , where 9 is a continuous real-valued function with compact support. First consider
the case 1 < tp < oo. Since ¥ (x) is a continuous real-valued function with compact
support then || converges to |1)|" everywhere and is bounded by an integrable function.
By Lebesgue’s dominated convergence theorem, |¢|f — ’WH% So we conclude that
U]t = ||¥|lt,- Now let us prove the case g = co. Let 1) = 0 outside of a compact set K.
Consequently, for 1 <t < oo,

1/t

ol = | [ W@t < ol ln
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2 Sobolev Embedding

So,
lim sup [|[¢]]¢ < [|¥]|oo-
t—o0

Let us denote by A, = {z € R": [¢)(x)| > a}, for any real number o > 0. Then
1/t

o [u(Aa)] ! < / @)z | = |yl

If u(Aq) > 0, we conclude that
a < litminf 19|+
—00

Let ||¢]|oc = ap then
9]0 < liminf ||l on  Ag,.
t—o0

By combining the above results we have:

[9lloo < lim inf {|¢hfy < Timsup [[¢]; < [[¢]oo-
—00 t—o00
Hence, lim ||[¢||: = ||| co- O
t—o0

Corollary 2.13. Let k, [ be positive integers such that £ > [+ 1. We interpret 2k/(r —1)
as oo when r = [. According to the above corollary there is a constant C' such that

| D'6llaksr < CllllS D o]l§" for all ¢ € C5(R™, Y). (2.32)
Lemma 2.14. Let ¢1,...,¢; € C(R",Y) and let ay,...,0q be multiindices with

l
> || = k. Then
1=1

!
0% ¢1...0%ill2 < C YD ill2 ] T ll6slloc- (2.33)
i=1 j#i
Proof. Let us set k; = |o;| and p; = k/k; then 1/p; + ---+ 1/p; = 1. By applying (2.7)
we obtain
[0% d1...0%ill2 < (0% Drllonny - - 10 Pull 2k, - (2.34)

If only one k; # 0, then (2.33) is true. So let us assume that k; < k — 1. By applying the
inequality (2.32) with Y = R we obtain that

10161 ... 0%yl < Cllorl|i /¥ DR |55 - - | ull i /| DR |55, (2.35)
Since 1 — k;/k = ) kj/k then we can write the factors in [ groups of the form
J#i
ki/k
ID*ill2 [ T I 5llsc : (2.36)

JFi
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Let us apply the inequality (2.4):

ki/k ki/k
IDF 1112 TT N1l [ 1D%ill2 [T 165l <
#1 i#l
k& Bk
E Ry kR
k ki k ki
D%l [T Iosle | St (0% [Tl | 2=
J#1 J#l
k
1D%6xllo TT sl - 52+ -+ D6l T T 5 loe - o2 <
J#1 i#

Z 1D*ill2 T T Il

J#i

Inserting this in (2.35) we get

l
10%1 61 ... 0%l < C 1D gilla [T 11651o0-

i=1 i
O]

Let us show that (2.33) also holds when ¢1, . .., ¢; € H¥(R"), are such that ||¢;]|o < o0
fori=1,...,l. By Lemma 1.15 there is a sequence ¢; ,, € C5°(R"™) converging to ¢; for
i =1,...,1. From the proof of Lemma 1.15 and inequality (1.3) for p = oo it follows that
|dimlloo < ||@illoo. According to Theorem 3.12 of [Rud87| we can choose subsequences
of ¢im such that 0%¢;,, converges to 0“¢; almost everywhere. By applying Fatou’s
lemma 1.28 of [Rud87] we get the inequality (2.33) for é1,...,¢; € H¥(R™).
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3 Symmetric hyperbolic systems

In this chapter we follow [Rin09, Chapter 7]. Let us recall the definition of absolutely
continuous functions.

Definition 3.1. A complex function f, defined on an interval I is called absolutely
continuous (AC) if Ve > 0 there exists § > 0 such that

SIFB) = flew) < e
=1

for any n and any disjoint intervals («y, 1), ..., (an, Bn) in I whose lengths satisfy

n

> (Bi— ) <6

i=1

Lemma 3.2. (Gronwall’s lemma) Let f € L>([Ty, T]), k € L*([Ty, T]) be non-negative
functions and let G be an increasing, non-negative function on [Ty, 7], where Ty € R, T >
To. If

flt) <G()+ /k(s)f(s)ds for all t € [Ty, T (3.1)
To

then

f(t) < G(t)exp (7/ k(s)ds for all ¢t € [Ty, T7.

0

Proof. Since G is an increasing function it will suffice to prove the statement for ¢t =T
Therefore, we may suppose that G = G(T') is constant. Let us extend k and f to the
entire real line by setting them zero outside the interval [Ty, T]. Let us denote

F is differentiable almost everywhere and F' = kf by Theorem 7.11 of [Rud87]. Also F
is a real-valued continuous and increasing function defined on [Ty, T]. Due to Theorem

t
7.18(c) of [Rud87| F is absolutely continuous (AC) on [Tp,T]. Similarly, [ k(s)ds is
To
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3 Symmetric hyperbolic systems

absolutely continuous (AC) on [Ty, T]. Hence

is absolutely continuous. By Theorem 7.18 (a) of [Rud87| ¢(¢) is differentiable a.e. and
the derivative is

t t

g = kfexp —/k:(s)ds — kF exp —/k:(s)ds =
To TO
t

kE(f — F)exp —/k:(s)ds

To

From (3.1) it follows that ¢’ < 0. Since g is a real-valued and absolutely continuous
function on [Ty, T then by Theorem 7.20 of [Rud87]

g(t) — g(To) = / J@)de Ty<t<T.
To

Consequently,

Hence,

~

F(t)exp —/k(s)ds <G,

Tt
exp (7/ k(s)ds | .

0

Ft) <G
)

From (3.1) it follows that f(¢) < F(t). So

t

£ < Gty exp | [ his)as

0
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3.1 Energy inequalities

To define symmetric hyperbolic systems we need to recall some definitions.

Definition 3.3. An N x N square matrix A is called symmetric if it is equal to its
transpose A = AT :
a;; = aj; forevery 1<i,j<MN.

Definition 3.4. An N x N symmetric real matrix A is called positive definite if

2T Az >0 forall zeRY\{0}

Let us define linear symmetric hyperbolic systems. These are equations of the following

form :
n

Z A9 u+ Bu = f (3.2)
pn=0
U(O, ) = U,
where A¥*, pu =20,1,---,n and B are N x N real matrix-valued smooth functions on

Q) C R**L. The derivatives of A*, 1 =0,1,---,n and B are supposed to be bounded.
Here f and u are R¥-valued functions defined on €, and ug is a smooth function on R™.
By using Einstein summation convention we can rewrite (3.2) as

AlOuu+ Bu = f

u(0, ) = up. (3:3)

We say that (3.3) is a symmetric hyperbolic system if A*, pu = 0,1,---,n are sym-
metric. We suppose that AY is positive definite with a uniform positive lower bound.
Hence there is a real constant ¢y > 0 such that A% > ¢y. This means that for every
v € R* 2T A% > cozTIx = co|z|? where I is the identity matrix. Let us denote by
L = A*9,, + B. So (3.3) can be rewritten as

Lu=f (3.4)
u(0, ) = up.
Let u be a smooth solution to (3.3) on Sy = [0,7] x R™ and suppose that u, dyu satisfy

uniform Schwartz bounds. This means that for every a and 8 multiindices there is a
constant C, g such that

|2 [|0u| + |0%0pul](t, ) < Cap (3.5)

on S7. Then by (3.3), f also satisfies uniform Schwartz bounds. Let us analyze the basic
energy inequality. Let

1
E=E(t) = 3 /uTAou dz,
R

53



3 Symmetric hyperbolic systems

T

where u* is a transpose of u. Let us differentiate E with respect of ¢ :

2

1 1
OE =0 | = / ul Audzx| = 3 / Or(u A%u)dx =
R"” R

% /[atuTAou + uT (0, A% u + A°Oyu)]da =
RTL
% / [Oru” A%u 4 T (8, A®)u 4 uT A°Oyu)da.

Rn
Since A° is a symmetric matrix, a;j = aj; for i,5 =1,--- | N, then

Aul A% = uT A0,

1
OE = / [2uT(8tA0)u+uTA08tu dz.
Rn

By equation (3.3) we have that
A°9u + A'du + Bu = f.

Consequently we can rewrite the second term on the right hand side as

/uTAof)tu dr = / [qu —ul Al dpu — uTBu] dx.

R R”
We need to compute u? A'Q;u. Let us begin with

05 (u” Atu) = O;u” Alu 4 uT[(9; A u + A'd;u).
Since A’ is a symmetric matrix then
Ou’ Aty = u' A'du.

Consequently,
O (ul A'u) = 2uT A'dpu + u” (8;AM)u

. 1 . .
ul Aldu = 3 [@(uTAzu) - uT(a,-A’)u] .
Integrating both sides of the above equation we obtain

, 1 , , 1 ,
/uTAlaiu dr = 2/ [Gi(uTA’u) - uT(&-A’)u] dr = D) /uT(&Al)u dz,
R7 R7 R™
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3.1 Energy inequalities

where we have used the fact that [ 0;(u? A'u)dx = 0.
RTL
Summing the above equations we have that
1 1 -
O FE = / [QuT(&,AO)u +ul f+ iuT(aiA’)u — uTBu} dr =
R

(3.6)
1 1 :
/uT <28tA° + 5@# - B) wdz + /qu de.
n R’I’L
By our assumption, B and the derivatives of A, have an upper bound hence
(1o 0, 15 4 2
|u iatA + i&-A — B ) u| < M|ul*. (3.7)
By our assumption Ay has a uniform positive lower bound so
u® Agu > Colul?. (3.8)
The first term on the right hand side of (3.6) is bounded by CE:
(1o 0, 1o 4 2 M T 40
|u iatA —}-iaiA—B ulde < [ Mlul d:zgﬁ u A'udx < CE.
R” R” O n
Let us estimate [ |u” f|dz by using the Cauchy-Schwarz inequality:
R”
1/2 1/2
Jursiae< | furas) | [iseopa) <
Rn n n
1/2
1
Co /UTAO“dx 12 = CEY2[£ () o
RTL
So we have
OHE < CE+ CEY?||f(t,")]2, (3.9)

where C' is a constant whose value may change from line to line. Let us take . = EF+¢
for ¢ > 0. Since (3.9) holds for E. > 0 then we can divide by v/ E; :

oF

i S OB+ CIf(E )2

E;
Integrating the above inequality over [0, ¢] we get:

t t t

O E;
[Osis< [cBtsias+ [ Clts.ads
0o —° 0 0

55



3 Symmetric hyperbolic systems

t t
EM?(t) < EM?(0) +C/E;/2(s)ds+o/|f(s,.)||2ds. (3.10)
0 0

Now we apply Gronwall’s lemma, Lemma 3.2, where

G(t) = FY2(0) + C / 1£(5,) s
0

and
k(1) = C.
So
t
B2t < [ BV2(0) + o/ 1£(s,llads | €.
0
If e — 0 then

t
BY2(0) <  BV20)+C [ 1505 s | .
0

From this inequality follows the uniqueness of solutions to (3.3). Let u; and ug be two
different solutions for (3.3). Let us consider the energy of u; — ug. Since uy(0,-) =
us(0,-) = ug then EY/2(0) = 0. The second term of the right hand side of the inequality
is also 0. Since EY2(t) <0 it follows that uy (,-) = ua(t,-) on Sy.

Lemma 3.5. Let (3.3) have a solution and satisfy the conditions mentioned at the
beginning of this section. Let us define

1
Eilu] = 3 Z (0%u)T A°9%u da. (3.11)
|| <K Rn
Then
B,Ey, < CEy, + CE?(| | (3.12)

where the constants depend on the bounds on A* and B.

Proof. We need to estimate Ej. Since

then
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3.1 Energy inequalities

Hence for k& = 0 we obtain E = Ep[u]. Let us differentiate the above equation with
respect of ¢ :

OiEpu] = > 0,E[0"u] (3.13)

o<k

We recall that
LO“u = 0%Lu + [L,0%u = 0“f + [L, 0%u.

From (3.9) it follows that (3.12) holds for k = 0. Consequently,

8 E[0%u] < CE[0%u] + CEY?[0%u]||Ld%ul|5 = (5.14)
CE[0%u] + CEY?[0%u]||0% f + [L, 0ul|2. '
Let us compute [L, 0%u

(L, 0%u = A*0,0%u + BO“u — 0% (A"0,u+ Bu) =
AF0,0% + BO%u — [AF0“0uu + (0% A*)0u + (0“B)u + BO“u] = (3.15)
— (0%A*)9,u — (0“B)u.

Since all derivatives of A* and B are bounded then from the above expression we obtain

L, 8%ul < C (Z |0,u| + u) : (3.16)

lul=1

From (3.8) it follows that
lul? < Cul A%

and
10,u? < C(8,u)T A%, u.

Consequently,

L, 0> < C (Z Oyl + uz) <

[ul<1

C ( > (@) A% u + uTAOu) :

lul<1

Integrating both sides of this inequality over R™ we obtain

/Laaqug;<C/(

H[L,@“]u\b <C E%/Q[u] <C E,i/Q[UL

(0,u)T A9 u + uTAOu> dx.
lul<1

So,
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3 Symmetric hyperbolic systems

where k£ > 1. Let us insert this result in (3.14). To not burden our inequalities with many
constants we will use the same notation C for all of them.

0, B[0%u] < CE[0%u] + CEY2[0%u] (|0° f + [L,0]ull2) <
CE[0%u] + CEY?[0%u]||0% f||2 + CEY2[0%u]|||L, 8%]ulj2 <
CE[0%u] + CE2[0%u)| f|| g + CEY?[0%u) B, [u] <
CE[0°u] + CEY0°u]|| |l s + CEY[0°u] B *[u].

In the second step we have used the Minkowski inequality. In the third step we have
used the fact [|0%f||l2 < || f|| gx, when |a| < k. This follows from the definition of the ||-||2
norm and (1.8)

10%Fllz < [[F s < 11l g

Hence we obtain
8, E[0°u) < CE[0%u] + CEY2[0%U]|| f|| s + CEY?[0%u] By *[u).
Inserting this result in (3.13) we get

OEu] = Y aE0u < Y (CE[aau] + CEY2[0%] || s+ +0El/2[aau]E;/2[u])

o <k || <k
< CEu] + CE* || f|l s + CExlu] < CEglul + CE*[u) || £ -
]

Corollary 3.6. Let (3.3) have a solution and satisfy the conditions mentioned at the
beginning of this section then

t
EV(t) < C E;/2(0)+/Hf(s,-)||mds for t € [0, T, (3.17)
0

where the constant C' depends on k, the bounds on A* and B and on T

Proof. Let us define Ay = e C'E, 4 ¢ for £ > 0, here C' is the first constant from (3.12).
We need to estimate O Ay :

Oh =0y [e" By +¢] = ~Ce By + e OBy <
— Ce™C By + e | CB + CE||f || = CemC B2 fll e < (3.18)
Ce=OU2 [e=CU By 4 ] | g = O N2 fll v

Above in the first inequality, we have used (3.12). Since we assumed that C' depends on
T it follows that e=©*/2 can be estimated by a constant. Let us rewrite the inequality

Ol < CA? (1 f |l g
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3.1 Energy inequalities

Since Ax > € > 0, we can divide both sides of the above inequality by A,lq/2 :

8tAk
A}

< Clf Nl - (3.19)

Let us integrate this inequality over [0, ] :

t t
8tAk /
ds < Cflgrds.

Consequently
t
A0 < 870 +C [ eds

When ¢ — 0 the difference between A and Ej tends to a constant factor. Inserting in
the above inequality A, = C'E, we get the final result

t
B2 < ¢ | EY2(0) + / 17 (5, ) ds
0

O]

Let us mention that the above estimates also hold for CV-valued solutions to (3.3).
The real and imaginary parts of CN-valued solutions can be considered as two RY-valued
solutions with suitable right hand sides. Let us define

Eiu] = Ex[Reu] + Ei[Imu]

then we obtain (3.12) and (3.17) for CV-valued solutions.
The following Lemma will help us to prove existence of solutions to symmetric hyperbolic
systems.

Lemma 3.7. Let u be a solution of (3.3), under the assumptions made at the beginning
of this section. Then for ¢ € [0, 7] and for any k € Z we obtain

Jutt, e < © [Huw, e+ [5G ->||kds] (3.20)

where the constant C' depends on k, the bounds on A#, B and on T.

Proof. First we prove (3.20) for k a non-negative integer. Let us apply (3.17). By
Theorem 1.42 the norms || - ||+ and || - ||z are equivalent for k& non-negative integer.
Hence

t
B2t < o1 | EM*(0) + / 1£(5, lnds
0
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3 Symmetric hyperbolic systems

Let us estimate E,i/2. From the equation (3.11) it follows that

Z /aa TAOE)audx>— > /co|8au| dx

|Oé‘<k} Rn ‘Ot|<k3 Rn
> CillullFpe-

In the first step we use the fact that A° has a uniform positive lower bound cy. So
1
E; = Collull g = Collullx- (3.21)

Above in the second step we use the equivalency of the norms || - ||+ and || - ||x. Choosing

the constant C3 big enough we can assume that El/ 2( 0) < C3)|u(0,-)||x. Combining these
results we get

1/2
fute e < 2O < S a0+ [ sts,lhats] <
S Lentuto. i+ [ 1765 Meas| <€ [0, e+ [ 15062 ls).

We need to prove (3.20) for k£ a negative integer. For t € [0, 7] we define

From the conditions of the lemma it follows that g(t,-) also satisfies uniform Schwartz
bounds. Let us compute ||g(¢,)||—x :

1/2
otk = | oy [ I P+ )| =

1/2
{@i)n /Rnﬂ €)% (1 + |s|2>kdg] _

1/2
[(2710” /Rn“ " 'f'2>'“|ﬁ|2d€] = [lu(t, )&

Here we have used the Fourier transform definition of (1 — A)*u, that is F[(1 — A)ku] =
(1+ |€12)* 4. Let us estimate |[u(t, )| :

et )l = g, I~ r < CEMZ[gl(t) <

¢ BV /||Lg NE kds] <

(3.23)
c Hg(O,-)H_H/O ILg(s, )|k ds} -

& [u(0, )] + [ gt 1 ds] |
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3.1 Energy inequalities

In the second step we have used (3.21) and in the third step we have used (3.17). We
need to estimate the last term. Recall that
[L,(1=2)Fg=L(1-A)"g—(1-A)"Lg=
Lu—(1-A)*Lg=f—(1-A)FLg.
Consequently,
(1-2)"Lg=f—[L (1-24)"g.

We have that | \¥(¢)d]|2 = (27)"2||u|x. Applying the Minkowski inequality to the above
expression for the norm || - |2 we obtain

1L = 2)"FLg(t, )k < I1F (e + N[L, (L= A)F]g(t, )llx. (3.24)

By (1.22) we have that ||(1 — A)"FLg(t,)|lx = ||[Lg(t,-)||—. Let us rewrite the above
inequality

We need to estimate ||[L, (1 — A)"g(t,)||x :

L, (1= A)Flg(t, )k = [4#0 + A% + B, (1 — &) Fg(t, ) <
1[A# D, (1= A) g (t, )l + 1[A°0, (1 = A) g (t, ) e + 1B, (1 = A) g, ) -

Let us estimate each term of the right hand side of the above inequality. For 1 <y <n
we obtain

1A% 8,0, (1 = A) Mgl = (1 = A)*([A*Dy, (1 = A)Mg)| -k =
(1 = A)F(A",(1 = A)Fg) — (1 = A)*(1 = A)FA*d,g|| - =
11— A)F(A"8,(1 = A)Fg) — A*gl| -k = (3.25)
1A 8,9 — A"8g + P()(8(1 — A) " g)|| -1 =
1P(0)(9u(1 = D) *g) |-k < Cll(1 = ) *gllk = Clig]l k-
The first equality follows from (1.22). Since the linear partial derivative operator P(0)
has the order less than or equal to 2k — 1 then P(0)0,, will have order less than or equal

to 2k. From Lemma 1.43 the last inequality follows.
With similar steps we obtain an estimate for ||[A%0;, (1 — A)™¥]g|| :

1A%, (1 — A) gl = [1P(9)(@:(1 — A)Fg)]| -k <

I (3.26)
Cll0y(1 = A)"gllk—1 = C||0eg|| —k—1-

Since the linear partial derivative operator P(0) has order less than or equal to 2k — 1
then by Lemma 1.43 we obtain the first inequality. It remains to estimate the last term

1B, (1= 2)"glle < ClI(1 = 2)"glle = Cllgl - (3.27)
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3 Symmetric hyperbolic systems

Combining the above results we obtain
1L, (1= 2)"Mg(t, )k < Clig(t, Ml + Clldrg(t, )| k-1
It remains to estimate ||0¢g(t, -)||—k—1. From (1.22) it follows that
19496, M1 = 11 — A)*Auglls1. (3.28)
To compute |[(1 — A)7¥9,g||r_1 We need to define the operator Lo :
Lou = (A% Lu.
With this notation we have

[Lo, (1= A) Mg = Lo(1 = A) g — (1 - A)*Log =

Lou — (1 — A)_kLog = (AO)_lf —(1- A)_kLog. (3.29)

We can rewrite the last term as
(1=A) " Log = (1= A) (Lo — d)g + (1 — A) " dyg.
Inserting this expression to (3.29) we get
Loy (1= A) Mg = (4°)7Lf — [(1 = A)F(Lo — B)g + (1 — A)ayg]

So
(1=2)Fag = (A")""f = (1 - A)MLo — 8)g — [Lo, (1 = &) Fg.
Let us estimate (1 — A)™*d,g in Hy,_;.
11 = A) ™ Orglle—1 < 1(A") " Flln—1 + 11 = A) 7" (Lo — D) gllk—

3.30
+[1[Zo, (1 = A)Fgllk-1- (3.30)

We need to estimate each term of this sum. Due to Lemma 1.45

Let us estimate the second and the third terms on the right hand side of (3.30).

(A fllk=1 < ClIf lr-1- (3.31)

Lo = (AO)*IAOE)t + (AO)*lAiE)Z- + (Ao)ilB =0 + B’&l + BY
Lo — 0, = B'0; + B,

where we denote (A%)1 A = B? and (A°)~!B = B,

1= A) (Lo — 0)gllks = (Lo — B)gll k1 = [|B'sg + B gl x1 <

i 0 (3.32)
1B*0igll k-1 + 1 B°gl-k—1 < Cligll-x + Cllgll k-1 < Cllgll--
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3.1 Energy inequalities
In the second inequality we have used Lemma 1.43 and Lemma 1.46.
We need to compute the last term of (3.30)

Lo, (1 = A)Mgllk—1 = [|[0¢ + B'0; + B®, (1 — A)¥|g[lp—1 <
1106, (1 = A)Flgllk—1 + 1[B'Ds, (1 = &) Flgllx—1 + 1B, (1 = A)"*]glli—1.

Let us note that ||[0;, (1 — A)"¥]g|lx_1 = 0. With similar steps like in (3.25) we obtain:
1[B°0;, (1 = A)"Mgllk-1 < Cllgll--1-

1B, (1 = A) Flgllk-1 < Cll(L = 2)*glle—1 = Cllgll-k-1 < Cllgl| -

We conclude that
ITLo, (1 = A) Mgllk-1 < Cligll - (3.33)

Inserting (3.31), (3.32) and (3.33) in (3.30) we obtain

10eg(t, M —k—1 < C (& k=1 + 119 )=k + gt ) ll-k] <
C [llwtt, )k + 17 ) llk] -

Finally we can estimate ||u(t,-)||x :
t
e, Ml < € [nu(o,ouk [ s+ 15 ds] .

Since the conditions of Gronwall’s lemma are satisfied we can apply Lemma 3.2:
t
[u(t, )] < C [IIU(O,')Hk +/0 I1f (s, -)deS} et <

luo. e+ | fGs s

O]

Corollary 3.8. Let u be a solution of (3.3)under the assumptions made at the beginning
of this section. Then for ¢ € [0,7] and for k € Z we obtain

Ju(t, )llr < C [HU(T, Nk + /tT I1f (s, ')des] , (3.34)
where the constant C' depends on k, the bounds on A*, B and on T.
Proof. Let us define the operator L :
Ly = —AYT — t,2)(0pu)(t, x) + ANT — t,x)(O;u)(t, ) + B(T — t,z)u(t, x).

and denote
v(t,x) = u(T —t,x).
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3 Symmetric hyperbolic systems

The operators —L; and L are of the same type. Hence we can apply Lemma 3.7 and
obtain

¢
ot s < € 100+ [ rots, s
for all k € Z and all t € [0,T]. Since (L1v)(t,x) = (Lu)(T — t,z) we can rewrite the

above inequality as

T
ww»mzchwn»m+lumm»mw]

Now we are ready to prove uniqueness and existence of solutions to (3.3).

3.2 Uniqueness and Existence
In this last section we follow [Rin09, §7.3 and §7.4].

Theorem 3.9 (Uniqueness). Let A* and B be maps from Rt into the space of real-
valued N x N matrices with A*, = 0,1,...,n symmetric in C* and B in C°. Suppose
that for any compact interval [Ty, Ty], A° is positive definite on [T1,Ts] x R™ with a
constant positive lower bound and that all the matrices A* are bounded on [Ty, Th] x R™.
We assume that f : R"t1 — RY s continuous. Let uq and us be two Cl-solutions to
(3.3) defined on (a,b) x R™ where a < 0 and b > 0, with corresponding initial data ugy
and up2. Assume that Ty < 0,T5 > 0 and let [Th,Ts] be a compact subinterval of (a,b). If
uo1(x) = up2(x) for x € By(xg) then there is an so > 0 depending on the lower bound on
A% and the upper bound on A in [Ty, Ts] such that

ur(t,z) = ua(t,z) for (t,) € Cogprs0,11,1ns (3.35)
where
CIO,T,807T1,T2 =C= {(t, ac) S [Tl,Tg] x R™: ’t’ < 7“/80, S Br—sot($0)}- (3.36)

Moreover, if u is a C! solution to (3.3) on [T1,Ts] x R™,ug(z) = 0 for x € B,(x0) and
f(t,x) =0 for (t,x) € C, then u(t,z) =0 for (t,z) € C.

Proof. First we prove the second statement of the theorem, then by setting u = u; — us
the first statement follows. Let us denote

D = CJJo,T,So,O,Tz-

Let us compute the following expression

O {eiktuTAau} ,
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3.2 Uniqueness and Existence

where k is a constant and u” is the transpose of u. Here we use notation 9y = 0 :
O {e_ktuTAau} = —ke *yT A% + e7*9, [uTAau] =
— ke Myl A% 4 ¢~k [8a(uT)Aau + uT (90 (A%)u + A%Oqu)] =
— ke FuT A% 4 e~k [ZUTAO‘&IU + uTaa(AO‘)u] =
— ke Ful A% + e [207 f — 2u” Bu + u” 9, (A%)u] =
e Ry T [—kAO — 2B+ 8aA°‘] u+ 2e FTf.
In the third equality we used that dn(u’)A% = u” A®0,u, since the AY are symmetric

matrices. In the forth equality we used the equality (3.3), that is A“0qu = f — Bu. Let
us integrate both sides of the above equality over D :

/3a [e_ktuTAau} dx = /e‘ktuT [—k‘AO — 2B+ 0, A% u+ 2e "yl fdz.  (3.37)
D D

Let us apply Stokes’ theorem for the ordinary Euclidean metric on R"*! [Rin09, eq.(10.3)]
to the left hand side of the above equality

/Ga {e_ktuTAo‘u} dx = /(e_ktuTAo‘u)Nada, (3.38)
D oD
where N,, « = 0,1,...,n is the unit outward normal to 0D, and do is its surface

element. Let us denote by B the bottom of the cone D and by H the hull of D, then
0D = B U H. Let us rewrite the right hand side of (3.38)

[ T AN = [T AN+ [T AN
oD B H

The integral over B in the above equality is 0 since u(0,2) = 0 . For s¢ big enough Nj is

n .
much bigger than N;, i=1,2...,n. Since Ny- A° dominates > N;- A’ and is positive
i=1
definite then (e~ *u” A%u)N, is positive definite on H. Let us fix such an sg, then the
right hand side of (3.38) is non negative. By the conditions of the theorem f is zero in
D. By assumption A% has a positive uniform lower bound and B, and the 9,A% have
a uniform upper bound on D. Hence for some positive constant M and by choosing k&

large enough we obtain
/e_ktuT [~kAY — 2B + 00 (AY)] udz < —M/e_ktuTuda:. (3.39)
D D

Since in (3.37) the left-hand side is non-negative and the right hand side is non-positive
then both sides of the equality have to be zero. So w is zero in D. The claim in the
negative times follows by reversing time. O
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From the theorem we conclude the following Remark.

Remark 3.10. If the initial data coincide then (¢, x) = ua(t, x) in their domain. Let
us suppose that ug has compact support and for any compact interval [T1, T3], there is a
compact set K such that f(¢t,z) =0 for ¢t € [T1,T32] and x ¢ K, then there is a compact
set K such that u(t,x) =0 for ¢t € [T1,T»] and = ¢ K;.

Theorem 3.11 (Existence). In the initial value problem (3.3), suppose that uy €
CeR™,RN), f € O (R RYN). Let the real-valued N x N matrices A*, 1 =0,1,...,n
and B be smooth functions on R™. with all derivatives bounded. Let A" be symmet-
ric and A positive definite with a uniform positive lower bound. Then there exists a
unique solution v € C([0,T) x R*,RY) to (3.3) and a compact set K C R" such that
u(t,z) =0 fort € [0,T], T >0 and x ¢ K.

Proof. Recall that
L =A"0, + B.

Let us denote
L* = —A%9u — A'9u + (-9, A° — 9;A" + BT )u =

— 0(A%) — 0,(A'u) + BTu. (3.40)

Then —L* and L are operators of the same type. Hence we can apply Corollary 3.8 to
the operator L*

16t )| < C / 1(L56) (5, )| xdls (3.41)

for every ¢ € C§°(R"1 CVN) such that ¢(t,z) = 0 for all ¢t > T. Let us note that if
Y, € CR(R" CN), (t,2) = ¢(t,x) =0 for t > T and L*¢ = L*¢ then from (3.41)

o(t,-) = (t,-) for all t € [0,T].
Let us define for such a ¢ and for f € L'{[0,T], Hy(R",CV)}

T
F(L*¢) = / £)) p2dt. (3.42)
0

From the above observations and since ¢ is a smooth function it follows that F' is a well
defined functional. Assume that & > 0. From (1.44) it follows that

[F(L o) = [(f, ) < I fllloll—-

Inserting in the above inequality (3.41) we obtain

F(L7 )| < C/H (L*6)(s, )| _nds. (3.43)
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Consequently we can consider L*¢ as an element of
X = LY{[0,T], H_p(R",CM)}.
Let us denote by M the following subspace of X:
M =span{L*¢: ¢ € C°(R"**,C) such that ¢(t,z) =0 fort > T} C X.

So Fis a bounded linear functional on M. Applying the Hahn-Banach theorem (Theorem
5.16 [Rud87]), we can extend F' to a bounded linear functional on X. The norm of
the extension and the norm of the functional restricted to M coincide. According to
Proposition 1.50 there is a u € L>{[0,T], H,(R",C™)} such that

T T

F(L*$) = / (6(1), () edt = / (L (1), u(t)) padt.

0 0

First we prove the theorem for f € C§°(R™"!, RY) such that f(¢,-) = 0 for all ¢ < 0.
Hence we can extend u to L>{[—oc, T], Hi(R",CN)} by setting it 0 for t < 0. So

T T
/ (6(1), () dt = / (L7 (t), ult)) p2dt (3.44)

Vo € Cg°(R™L,CY) such that ¢(¢,-) = 0 for all t > T. According to Lemma A.5 of
[Rin09] there exists a U € L _[(—oo,T) x R",CV] which is k times weakly differentiable

loc
with respect to x such that

/T / ¢ fdudt = /T / L*¢ - Udzdt. (3.45)

—0co R" —oo0 R"

Assume inductively that for j + || < k and j <1 < k — 1 there is a function U;, €
L2 [(—00,T) x R™,CN] such that

loc
T T

/ /¢~Uj,adxdt = (—1)7Flel / /aga%-(‘fdxdt V¢ € C((—o0,T) x R",CM).

—oo Rn —o0o Rn

For brevity we write &/ 9°U = Uj.a. The case [ = 0 follows from (3.45). Let us mention
that any ¢ € C§°((—o0,T) x R, CY) we can write as 1) = A%. Let us set

g=(A""1[f — A'9;U — BU| (3.46)

and rewrite (3.45) as

/T / - gdxdt = — /T / O - Udzdt. (3.47)

—oo R™ —oo R™
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From the induction assumption the weak derivatives (90‘812 g exists and is in L} _[(—o0, T') x
R",CN] for |a| +j < k — 1 and any non-negative integer j with j < I. Let us insert
0%0l1 in (3.47) instead of 1. Hence we get that the induction holds for I 4 1. So U is
k times weakly differentiable with respect to (¢,x) in (—o0,T") x R™. From Lemma 2.7
it follows that for k large enough U is continuously differentiable. From the definition
of L* in (3.40), it follows that L* is the adjoint operator of L. Due to (3.45) and the
standard properties of adjoint operators we have

(¢, f) = (L*¢,U) = (¢, (L*)*U) = (¢, LU) V¢ € Cg°(R"1,CY). (3.48)

Hence LU = f and U = 0 for ¢t < 0. It remains to show that U is smooth. Here for each
k we obtain its corresponding U. Due to uniqueness we can assume that the solutions
coincide when they are in C'. Since the solutions U coincide for k large enough then the
smoothness of the solution U follows.

Let us now prove the existence theorem in the general case f € C§°(R" 1 RY). Let us
define

fe(t,z) = n(t/e)f(t, x). (3.49)
Here n € C§°(R,R) such that
0, fort <0
nt) =4 1, fort > 1

[0,1], otherwise.

We have already proved that there is a smooth solution u. to the equation Lu. = f. such
that u.(t,z) = 0 for all £ < 0. Due to Theorem 3.9 there is a compact set K such that

ue(t,z) =0forz ¢ K, t <T and Ve > 0. (3.50)

Applying to (3.20) we obtain

ey = ue, ) ()l < C/ n(s/e1) —n(s/e2)lll (s, ) llnds.
0

Consequently the Cauchy sequence u,. (¢, -) converges in any H*, which is a Banach space.
So wue(t,-) converges to u in H*. By (2.8) uc(t,-) converges to u in any C*-norm when
e — 0. Applying this to (3.3) we get convergence of any number of time derivatives.
Hence we obtain a smooth solution w on (0,77) x R™. We need to extend the solution to
t = 0. Let us define u(0,-) = 0. The higher time derivatives at 0 we get recursively from
(3.3). We need to prove that du and its higher time derivatives are continuous when
t — 0+ . Applying (3.20) for u.(t,z) we obtain

t t
luet, ) < C / 1e(s, )lnds < C / 1 (5. lleds.
0 0
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The right hand side of the above inequality is independent of €, hence this inequality
holds for u. Applying Lemma 2.7 for k large enough we get the above inequality for any
C*-norm in particular for C%-norm. We conclude that u(t, -) converges to 0 when ¢ — 0+
, hence u(t,-) is continuous at 0. From (3.3) we get

Bru(0,-) = (A°) L[ — A19u(0, ).

We conclude that Oyu(t,-) converges to its limit in any C*-norm. With similar steps,
using the above equality, we obtain the continuity at 0 for all higher time derivatives of
u. So the equation (3.3) for up = 0 and for f € C§°(R""!,RY) has a smooth solution
on [0,7) x R™. For uy # 0 we replace u with u — uptp, where ¢ € C§°(R) and ¥(t) =1
for t € [-1,T + 1]. Consequently for f € C$*(R™ RY) and by assumption that
ug € C§°(R™, RY) we obtain a smooth solution. O

Corollary 3.12. In the initial value problem (3.3), suppose that ug € C®(R",RV),
f € C®(R" 1 RY). The real-valued N x N matrices A*, B are supposed to be smooth
functions on R™*!. Let A* be symmetric and for any compact interval [T}, T3] there are
constants ag, by > 0 such that A° > ag and [|A*|| < b, u = 0,1,...,n on [Ty, Ty] x R™.
Then there is a unique solution v € C*(R"*!, RY) to (3.3).

Proof. First we construct the solution on [T7,7] x R™ where T" € (0,00). Then we
extend the solution to R. Let us assume that sy be the same as in Theorem 3.9. For
[T1,T) = [0,T] and r > T'sg + 1, we define

Cr={(t,z) €0, T] xR" : 2 € B,_5,(0)}. (3.51)
Assume that v, € C§°(R™*1) such that

_ 17 (t,[]?) € 027"+250T
Yrltz) = { [0,1], otherwise.

Let ¢, € C3°(R™) be such that

[ 1, ze€B.(0)
Or(z) = { 0, ¢ Ba(0).

Denoting by
Aqq = 1/%«140 + (1 - @[)T)AO(O’ 0)7 Aqln = ¢T’Ai7 B, =, B, up, = Grug,
and f,(t,x) = ¥, (t,x) o (z) f(t, ). The equation

A0 u+ Byu = fr,

w(0,) = g (3.52)

r

has a smooth solution u, by Theorem 3.11. Since sy depends on a lower bound on A°
and an upper bound on A’ then so depends on a lower bound on A% and an upper bound
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on A’. Applying Theorem 3.9 with this so to (3.52) we obtain that u,(t,r) = 0 when
t €10,7] and = ¢ Bay4s,:(0). Hence we conclude when w,(t,x) # 0 and ¢ € [0, 7] then

Ab(t,x) = A¥(t,x) and B, (t,z) = B(t, ). (3.53)
So u, is a solution to the equation

A'0,u + Bu = f;, (3.54)

U(O, ) = Uo,
on [0,7) x R™. Then wu, is a solution to (3.3) in region C,. Let us prove uniqueness of the
solution. Consider two different solutions w,, and u,, where r; < ra. From uniqueness
it follows that w,, = u,, on Cy,. Assume that (¢,z) € [0,7) x R™. Let us choose r such
that (¢,x) € C, and define u(t,z) = u,(t,x). We have shown that the solution does not
depend on r. So we obtain a smooth solution to the (3.3) on [0,7") x R™. It remains to
extend the solution on [0, T) x R™ to R**!. By using the uniqueness argument we define
the solution for arbitrary 7. The claim in the opposite time direction follows by reversing
time. O
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