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Abstract

The central topic of this thesis concerns the definability of various types of combi-
natorial families of reals. Among these families, we study in detail the definability of
towers and of ultrafilters at the low projective levels. We provide positive definability
results in the constructible universe L and show how they fail in other models such as
forcing extensions of L or Solovay’s model, in which every set of reals is Lebesgue
measurable. Among other things, we show that, although coanalytic bases for P- and
(2-points exist in L, a base for a Ramsey ultrafilter can never be coanalytic. In another
chapter, we prove that after forcing over L with countable support iterations of a large
class of posets, including e.g Sacks forcing, most types of “maximal" families of reals
have Al witnesses. This can be used to solve an open problem of Brendle, Fischer and
Khomskii.

In a second part, we study the generalized pseudointersection and tower numbers
p(r) and t(k) at uncountable regular cardinals x and provide results towards a possible
generalization of Malliaris’ and Shelah’s proof that p = t. We also give a natural way
to force p(x) < b(k).






Zusammenfassung

Das zentrale Thema dieser Arbeit betrifft die Definierbarkeit verschiedener Typen kom-
binatorischer Familien reeller Zahlen. Unter diesen Familien untersuchen wir im Detail
die Definierbarkeit von Tiirmen und Ultrafiltern beziiglich niedrig projektiver Kom-
plexitit. Wir liefern positive Definierbarkeitsergebnisse im konstruierbaren Universum
L und zeigen, wie sie in anderen Modellen versagen, z.B. in Forcingerweiterungen von
L oder im Solovay-Modell, in dem jede Menge reeller Zahlen Lebesgue-messbar ist.
Unter anderem zeigen wir, dass, obwohl koanalytische Basen fiir P- und ()-Punkte
in L existieren, eine Basis fiir einen Ramsey-Ultrafilter niemals koanalytisch sein
kann. In einem anderen Kapitel beweisen wir, dass nach dem Forcen iiber L mit
einer abzihlbar gestiitzten Iteration von partiellen Ordnungen einer groBen Klasse,
einschlieBlich z.B. dem Sackforcing, die meisten Typen von “maximalen” Familien
Aé—Deﬁnitionen haben. Dies kann zur Losung eines offenen Problems von Brendle,
Fischer und Khomskii verwendet werden.

In einem zweiten Teil untersuchen wir die verallgemeinerten Pseudodurchschnitts-
und Turmzahlen p(x) und t(x) auf tiberabzidhlbaren reguldren Kardinalzahlen s und
liefern Ergebnisse im Hinblick auf eine mogliche Verallgemeinerung von Malliaris’
und Shelahs Beweis, dass p = t. Wir geben auflerdem eine natiirliche Weise an,

p(k) < b(k) zu forcen.
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CHAPTER 1

Introduction

This thesis can be divided into two thematic parts. The first part and main body of
this thesis consists of Chapters 2-4 and deals with the definability of special families
of reals, prominent in topology, algebra, combinatorics or measure theory, that can
typically only be obtained by use of the Axiom of Choice. The second part, Chapter 5,
studies the pseudointersection and tower numbers in the higher Baire space <" for x a
regular uncountable cardinal. The research leading to this thesis resulted in four articles
each corresponding to a section. Two of them, [16], joint with V. Fischer, and [15],
joint with V. Fischer, D.C. Montoya and D.T. Soukup, are accepted and the other two,
[47] and [49], are currently under review.

We will provide first a historical introduction to the subject up until the current
state of the art. For readers that are not familiar with the required prerequisites, we give
a survey over some of the main notions in descriptive set theory and forcing necessary

to make sense of the results.

1.1 Historical overview

The reals are among the most fundamental and most important objects in mathematics.
Coming after the integers and the rationals, they are the first objects of an infinite
nature. The importance of their existence for proving strong theorems, even about just
the finite realm, is indisputable. Since its beginnings, the reals were set theory’s main
object of study. One of the earliest results is Cantor’s Theorem (see [10]) saying that
the set R of all real numbers cannot be put in a one to one correspondence with the
naturals. This did not only have a tremendous amount of implications, but it also lead

to the revolutionary concept of infinite cardinality. Cantor was effectively showing

1



2 Chapter 1. Introduction

that only a few very rudimentary facts about sets inevitably lead to different sizes of
infinity. It was the first time in history that the concept of actual infinity, which surely
has been subject to human thought for millennia, could be dealt with in a completely
formal mathematical setting. The cardinality' of a set A, which in the infinite case is an
abstraction of the concept of “the number of elements", is usually denoted by | A|. Thus
Cantor was showing that [N| < |R|. An immediate question that can be asked following
this observation is whether, there could be A such that |N| < |A| < |R|. In fact, this
very question became the first on Hilbert’s prominent list of open problem’s [27] from
1900. The assertion that no such A exists was named the Continuum Hypothesis,
abbreviated as CH. The general tendency, at least that of Cantor and of Hilbert?, was to
conjecture that CH is true.

In quest of finding a counterexample to CH or showing that there is none, mathe-
maticians started to look at many natural types of subsets of R. Obviously open sets
cannot satisfy the inequality above but the argument for closed sets is already less
trivial. The Cantor-Bendixson Theorem [33, Theorem 6.4] devises a fine analysis on
closed sets which can be used to settle the question and show that closed sets cannot be
used as such counterexamples. A larger class of sets encompassing that of closed ones
is formed by the Borel sets. These are sets that can be formed successively, starting
from open sets and taking countable unions, intersections and complements. What
about those sets? What about continuous images of Borel sets? These are called
analytic sets. Or their complements? These are the co-analytic sets. Answering these
questions required completely new tools and new insights about the deeper topological
and combinatorial structure of the reals. This layed the foundation of a field called
descriptive set theory, which studies these kinds of sets.

Although descriptive set theory seems, from our description, mainly topological in
nature, it has a strong connection to logic, especially to the notion of definability. In
most generality, a set A is definable from parameters aq, . . ., a,,_1 if there is a formula
o(x,ag,...,a,_1) in the language of mathematics, that holds true exactly of those
x which are members of A. It turns out that the Borel, analytic and co-analytic sets,
which were defined in a purely topological manner, each correspond precisely to a
class of logical definability in second-order arithmetic. In this way, they can be viewed
as complexity classes for subsets of reals, similar to the complexity of subsets of the

naturals according to computability theory. For the reader which is unfamiliar with this,

'Formally defined as the smallest ordinal that can be put in bijection to A, at least in contexts where
the Axiom of Choice is assumed.

2¢f. “Die Untersuchungen von Cantor [...] machen einen Satz sehr wahrscheinlich, dessen Beweis
Jedoch trotz eifrigster Bemiihungen bisher noch niemandem gelungen ist” in [27].
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we provide a preliminaries section below in which the main notions of descriptive set
theory are explained.

Another major development in the early 20th century was Zermelo’s formulation
[71] of seven independent “principles” through which set theory, and in fact, mathemat-
ics as a whole, could be treated axiomatically. Other than basing the foundational work
done by Cantor, and e.g. Russell (see [45]), on a few accessible axioms, it made it pos-
sible for Zermelo to formalize his much contested proof of the Well-Ordering Theorem
[70], making it indisputable on the grounds of his assumptions. For this, he formulated
the Axiom of Choice® which, by itself, corresponded to mathematical practice, making
it a natural assumption®. Later, in [19], Fraenkel proposed the Axiom of Replacement
as an addition to Zermelo’s list, in order to include other mathematical constructions,
most notably those involving transfinite recursion’. Zermelo’s axioms together with
Fraenkel’s Axiom of Replacement are known as Zermelo-Fraenkel-Choice (short ZFC).

The Axiom of Choice is much known for the controversy it created. A common
criticism is that it allows to construct objects without explicitly defining them. Even
more, it may produce counter-intuitive theorems such as the Banach-Tarski Paradox.
For this reason, it is often dealt with particular care and mentioned in every instance it
is used. Ironically though, it is a common experience to see non-logicians mentioning
it at times where it in fact can be avoided and in contrast not being aware of when it
is used in more subtle ways®. Nevertheless, throughout mathematics, the existence
of various kinds of maximal sets can typically only be obtained by an appeal to the
Axiom of Choice or one of its popular forms, such as Zorn’s Lemma. Under certain
circumstances, it is possible though, to explicitly define such objects.

In 1938, Godel made the first step to a solution of CH by showing that the negation
of CH cannot be proven on basis of ZFC alone (see [22], [23]). For this he defined
what is known as the constructible universe L. It turned out that L is not just useful
for questions surrounding CH but also for many others, especially ones related to
definability. The earliest result in this direction is probably due to Godel who noted
in [22, p. 67] that in the constructible universe L, there is a A%—deﬁnable well-order
of the reals (see [31, 25] for a modern treatment). Loosely speaking, we can exhibit

a concrete well-order of the continuum when the structure of the reals is not too rich.

3“Axiom der Auswahl". It is worthwhile to note that the standard modern proof of the Well-Ordering
Theorem in addition uses the Axiom of Replacement, which was not included in Zermelo’s original list.

4cf. Bona’s ever repeated joke “The Axiom of Choice is obviously true, the Well-Ordering Principle
obviously false, and who can tell about Zorn’s Lemma?".

3As an example, Fraenkel mentions that the existence of the set {N, P(N), P(P(N)), ...} cannot be
be argued based on Zermelo’s axioms alone.

5For instance, when we use that the countable union of countable sets is countable.
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Using similar ideas, many other special sets of reals, such as Vitali sets, Hamel bases or
mad families, just to name a few, can be constructed in L in a Al fashion. In particular,
such sets can be continuous images of coanalytic sets. This has become by now a
standard set theoretic technique that is so general that details can be usually omitted. In
many cases, these results also give an optimal bound for the complexity of such a set.
For example, a Vitali set cannot be Lebesgue measurable and in particular cannot have
a 3! or IT} definition. In other cases, one can get stronger results by constructing IT}
witnesses. This is typically done using a coding technique, originally developped by
Erd6s, Kunen and Mauldin in [13], later streamlined by Miller (see [38]) and further
generalized by Vidnyénszky (see [69]). For example, Miller showed that there are IT}
Hamel bases and mad families in L.

Recently, another phenomenon has been discovered that leads a path to I1} wit-
nesses. In [65], Tornquist showed in ZFC that the existence of 2 (r) mad families
already implies that of II}(r) ones. This turned out to be a general tendency. For
instance, Brendle, Fischer and Khomskii showed that the same holds true for maximal
independent families (see [8]). We are going to provide similar results.

On the other hand, families of the kind we mentioned usually do not admit analytic
witnesses. Mathias showed in [37], that there are no analytic mad families. Miller
proved the same for maximal independent families and Hamel bases (see [38]). In
contrast, it was shown recently by Horowitz and Shelah ([28], [29]), very surpsisingly,
that Borel maximal eventually different families and maximal cofinitary groups do
exist.

In 1963, Cohen gave the second part of the solution to CH by showing that CH
has no proof using the axioms of ZFC alone. For this he devised a revolutionary new
method that would become a major tool in set theory. His method is called forcing
and it shows how to extend models of ZFC by adding new sets (e.g. new reals) to it
and preserve ZFC. This is similar to when we form a field extension by adding a new
element to it and then adding ‘“anything that there shoud be*. In particular, forcing
can be used to create models which are different and much richer than L. Since the
assumption that V' = L is quite restrictive, it is interesting to know in what forcing
extensions of L, definable witnesses for the above mentioned kinds of sets still exist.
By now, various such results exist in the literature, e.g. in [9], [14], [18], [51] or [17].
Typically, witnesses in L are preserved directly in a forcing extension and Shoenfield
absoluteness ensures that they keep the same definitions. Only a few exceptions to this
exist so far, most notably [9], where the authors preserve the definition a mad family,

while its version in L is destroyed. We will provide a similar result in Chapter 4.
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1.2 Preliminaries

1.2.1 Descriptive set theory

Descriptive set theory studies definable subsets of the reals, or more generally, of Polish
spaces. It is usually much more convenient to work with spaces such as Baire space
w® or Cantor space 2“ instead of R, or any other Polish space, directly. w® is the
set of functions from naturals to naturals and 2¢ is the set of functions from naturals
to {0,1}. For concrete Polish spaces X, there are usually many effective ways to

associate members of 2“ or w* with elements of X. In full generality, we have that:

Fact ([33, Theorem 7.9]). Let X be a Polish space. Then there is a continuous

surjection ¢: w* — X. Moreover, there is a closed set C' C w* and a continuous
bijection: C — X.

In the context of X = R for instance, ¢ may be a computable function. More
precisely, there is an algorithm which, given an arbitrary long finite initial segment of
r € w¥ and n € w, computes a rational approximation up to the n’th decimal place of
¢(x). Closed subsets of w* (or of 2¢) are paticularly nice to work with since they have

the following representation theorem:

Fact ([33, Proposition 2.4]). Let T' C w<¥ be a tree, then the set of branches through
T, [T)={z ew’:Vnew(x[neT)}, is aclosed set. For any closed set C C w*,
there is a tree T C w<“ so that C = [T].

Definition 1.2.1. Consider the language of second-order arithmetic. It has two sorts of
variables, those for reals, usually using the letters u, v, w, x, y, 2, and those for natural
numbers, usually ¢, j, k,[, m,n. It has the common constant, function and relation
symbols 0, 1, +, -, < for naturals and an additional evaluation predicate x(n) = m. The

semantics of this logic should be clear. A formula ¢ is this language is called

— arithmetic, if quantifiers are only bound to natural number variables,

— Y, ifitis of the form 3z, . .., 2,0 (0, . . ., x,), where ¢ is arithmetic without
parameters,

— I0i,if it is of the form Vg, . .., z,¢(xy, . . ., x,), where 1 is arithmetic without
parameters,

— XL, ifitis of the form 3z, ..., x,¢(z, . .., x,), where ¢ is I1},
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— II%,,, if it is of the form Vo, . . ., 2,4 (o, . . ., x,,), Where ¢ is 2},

Moreover, a formula is ! (r), resp. IT! (r) for r € w®, if it is of the form (r) for
a X!, resp. II! formula . And itis 3!, resp. IT} (boldface) if it is 3} (r), resp. TI1 (r)

for some r € w>.

For any of the classes ' of formulas defined above, we say that a set A C w® is
I, or sometimes, I'-definable, if there is a formula ¢(x) € T" in one free variable x so
that A = {x € w¥ : p(z)}. We say that Ais AL, Al(r) or Al if A is both X!, resp.
¥L(r), resp. X! and T1}, resp. I} (r), resp. TT}.

This description can be easily adapted to concrete Polish spaces, other than w®,
such as R, changing the semantics. In this case for instance, we may stipulate that
z(0) = m says that |z] = m and for n > 0, x(n) = m says that the n’th digit in
the (or rather a canonically chosen) decimal expansion of x is m. More generally, if
{O,, : n € w} is abasis for X, z(n) = 1 could be understood as saysing = € O,, and
z(n) # las x ¢ O,. In the statements below, the specific semantics (i.e. the specific

choice of a basis) for arbitrary Polish spaces is irrelevant.

Fact. Let X be a Polish space and A C X. Then TFAE:

1. Ais analytic, i.e. A = f"B for some f:Y — X continuous, Y a Polish space
and B C Y Borel.

2. A= f"C for some f: w* — X continuous, C C w* closed.
3. A= f"w for some f: w* — X continuous.

4. Ais 3L

5. As the projection of a closed set C' C X x w®.

And in case X = w",

6. A= p[T), for T atree on w X w, where p|T] is the projection of [T to the first

coordinate.

Fact. Let X be a Polish space and A C X. Then TFAE:
1. Ais Borel.

2. Ais analytic and coanalytic, i.e. the complement of an analytic set.
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3. Ais Al

We fix from now on a relatively small, but still strong enough finite fragment of
ZFC which we call ZFC*. We do not specify it further but let us say that it does not

include the Powerset Axiom so that models of the form H (0) satisfy it.

Fact (Shoenfield Absoluteness). Let M C N be transitive models (possibly proper
classes) of ZFC* and r € M. Then, if v is X1(r) or IT; (1),

MEpe NEep.

Moreover, if (w)N € M and o is ¥1(r) or TIi(r), then

ME @< NEep

1.2.2 Forcing

Forcing is a technique that shows how to extend given models of set theory, by adding
specially chosen objects to it. It can be used to show that certain mathematical questions
cannot be settled on the basis of ZFC alone. Simply put and skipping the logical details,
this is done by providing a model of ZFC in which the question has a positive answer
and another one in which it is negative. But let us say that this is a rather superficial
description and does not always correspond to how set theorists think about these
results in practice. Forcing constructions usually reveal something much deeper than
merely saying that something does not have a proof. Forcing can also often be used to

prove results in ZFC, e.g. via Shoenfield absoluteness.

Definition 1.2.2. Let (P, <) be a partial order with a greatest element 1. Then we call

P a forcing poset or forcing notion.

— The elements of P are often called conditions and denoted with letters p, ¢, r. 1

is called the trivial condition.
— When p < ¢, we say that p extends q or sometimes that p is stronger than q.
— Aset D C Pis called dense if for every p € P there is ¢ € D such that ¢ < p.

— Aset G C Pis called a filter if for any p, q, if p € G and p < ¢, then g € GG, and
if p,q € G, then there is 7 € GG so that r < p, q.

Let (M, €) = ZFC*,P € M and G a filter on P.
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— We say that G is P-generic over M if for every dense subset D € M of P,
MNGND # 0.

Whenever G is P-generic over M, we can form a model M [G] which corresponds
to the smallest model extending M and containing G. The way M [G] is defined is via
the notion of P-names.

Definition 1.2.3. The class V¥ of P-names is defined recursively on ranks, stipulating
that every 7 € V¥ consists of elements of the form (p, o) for p € Pand o € V¥, For
example, () is the P-name of lowest rank. Whenever G C P and 7 is a P-name, we
define recursively the evaluation of 7 by G as 7[G| := {¢[G] : Ip € G((p,0) € 7)}.
For a class M, we define M[G] := {7[G] : 7 € VE N M}.

Fact. Let (M, €) = ZFC" be transitive, P € M and let G be P-generic over M. Let A
be an arbitrary finite fragment of ZFC. Then there is a finite fragment 3. of ZFC, so that

(M,€) £ ¥ — (M[G], €) k= A.

Moreover, M|G] is the smallest transitive model satisfying ZFC* with G € M|G|
and M C M|G|. Also, M and M |G| have the same ordinals.

Fact. Let (M, €) |= ZFC" be transitive. Whenever o(x, . . ., x,) is a formula in the
language of set theory, there is a formula V(y, z, xo, . . ., x,) so that for any forcing
poset P € M, any P-names 1, ...,7, € M andp € P, (M, €) = (P, p,10,...,7s)
iff for every G, P-generic over M with p € G,

(M[G], €) F e(nlG], ..., m[G]).

Moreover, for any P-generic filter G over M, (M[G], €) = o(10[G], ..., T,[G]))
iff there is p € G such that (M, €) = ¥(P,p, 70, .., Tn)-

Finally, generic filters exist when M is countable.

Fact. Let M, P be as before, p € P and let M be countable. Then there is a P-generic
filter G over M with p € G.

1.3 Structure of the thesis

In Chapter 2, we study the definability of maximal towers and of inextendible linearly

ordered towers (ilt’s), a notion that is more general than that of a maximal tower. We
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show that there is, in the constructible universe, a H} definable maximal tower that is
indestructible by any proper Suslin poset. Resembling earlier results in the literature,
we prove that the existence of a X2 ilt implies that the universe is close to L in the sense
that wlL = wy. Moreover, we show that analogous results hold for other combinatorial
families of reals. We prove that there is no ilt in Solovay’s famous model, in which
every set of reals is Lebesgue measurable. And finally we show that the existence of a
¥4 ilt is equivalent to that of a IT} ilt.

The next chapter deals with the definability of ultrafilters and ultrafilter bases on
the naturals. As a main result we show that there is no coanalytic base for a Ramsey
ultrafilter, while in contrast we can construct [T} P-point and Q-point bases in L. This
is interesting since a Ramsey ultrafilter is exactly an ultrafilter that is a P- and Q-point
at the same time. We also show that the existence of a A} |, ultrafilter is equivalent to
that of a H; base, for n € w. Moreover we introduce a Borel version ug of the classical
ultrafilter number u and make some observations.

In Chapter 4, we prove a fairly general result that applies to a large number of
examples of special families of reals. We show that after forcing with a countable
support iteration or a finite product of Sacks or splitting forcing over L, every analytic
hypergraph on a Polish space admits a Al maximal independent set. This extends an
earlier result by Schrittesser. As a main application we get the consistency of t = u =
i = wo together with the existence of a Al ultrafilter, a I} maximal independent family
and a A} Hamel basis. This solves open problems of Brendle, Fischer and Khomskii.
We also show in ZFC that 0 < i,.

In the last chapter, which corresponds to the second part of the thesis, our goal is to
study the pseudointersection and tower numbers on uncountable regular cardinals. First,
we prove that either p(x) = t(k) or there is a (p(x), A)-gap of club-supported slaloms
for some A < p(k). While the existence of such gaps is unclear, this is a promising
step to lift Malliaris and Shelah’s proof of p = t to uncountable cardinals. We analyze
gaps of slaloms and in particular, show that p(x) is always regular. This extends results
of Garti. Finally, we present a new model for the inequality p(x) = k™ < b(r) = 2".
In contrast to earlier arguments by Shelah and Spasojevic, we achieve this by adding
r-Cohen reals and then successively diagonalising the club filter which is shown to

preserve a Cohen witness to p(k) = k.






CHAPTER 2

Inextendible linearly ordered
towers

2.1 Introduction

A tower will be, as usual, a set X C [w]* which is well ordered with respect to reverse
almost inclusion, i.e. the relation z < y given by In € w(y \ n C z). A tower is
maximal if it has no pseudointersection. In the definition of a linearly ordered tower we
drop the requirement that the order is well-founded. An inextendible linearly ordered
tower is one that has no top-extension, i.e. has no pseudointersection.

The questions that we will ask and answer for towers are inspired to a great extent
by those that appeared in relation to mad families. Recall that two sets =,y € [w]“
are called almost disjoint whenever x M y is finite. An almost disjoint family is a
subset of [w]“ all of whose elements are pairwise almost disjoint. A maximal almost
disjoint family (mad family) is an infinite almost disjoint family that cannot be properly
extended to a larger one. For mad families, the story begins with Mathias’ influential
work [37] in which he showed that mad families cannot be analytic.

In Section 2.2 we will show that neither maximal towers nor ilt’s can be analytic
(Theorem 2.2.2 and Theorem 2.2.5). On the other hand we prove in Section 2.3, as a
main result, that IT} maximal towers do exist in L (Theorem 2.3.2), using the technique
developped by Miller in [38].

Another topic that has been studied extensively for mad families is the existence
of IT{ examples in various forcing extensions. For instance it has been shown in [9]
that there is a IT{ mad family in a model obtained by adding Hechler reals. In Section

2.4 we will outshadow all these questions for towers by showing that in L there is a II}

11



12 Chapter 2. Inextendible linearly ordered towers

maximal tower that is indestructible by any proper Suslin partial order (Theorem 2.4.3).

Section 2.5 deals with the value of w; in models where ilt’s can have simple
definitions. As a main result we show that the existence of a 33(z) ilt implies that
wi = wlL[x] (Theorem 2.5.3). The same has been shown for mad families in [66]. Using
similar ideas we show that this holds analogously for maximal independent families,
Hamel bases and ultrafilters (Theorem 2.5.7, 2.5.9 and 2.5.11). In [9] Brendle and
Khomskii ask whether there is some notion of transcendence over L that is equivalent
to the non-existence of a IT} mad family. The same question can be asked for other
families and our observations contribute to this question by giving a sufficient condition
of this kind.

In Section 2.6 we show that there is no ilt in Solovay’s model (Theorem 2.6.1). For
mad families this was a long standing open question first asked by Mathias in [37] and
solved by Tornquist in [66].

In Section 2.7 we show that the existence of a 33 ilt is equivalent to that of a IT} ilt
(Theorem 2.7.1). This theorem fits into a series of results stating that we can canonicaly
construct IT; objects from given 3 ones. For mad families this was shown in [65]. For
maximal independent families see [8] and for maximal eventually different families
see [17].

We will always stress the difference between lightface (I17, X1, ¥1) and bold-
face (I1}, 31, IT}) definitions as well as definitions relative to a fixed real parameter

(I} (z), 21 (z), 24(2)) to stay as general as possible.

2.2 Towers and Definability

Definition 2.2.1. A tower is a set X C [w]|* which is well ordered with respect to
the relation defined by z < y iff y C* 2. It is called maximal if it cannot be further

extended, i.e. it has no pseudointersection.

Theorem 2.2.2. A tower contains no (uncountable) perfect set, i.e. is thin. In particular

there is no X} maximal tower:

Proof. Assume X C [w]“ is atower and P C X is a perfect set. The set R = {(z,y) :
z,y € P Ay C* x} is Borel. P is an uncountable Polish space and R is Borel as
a subset of P x P . But R is a well order of P, which contradicts R having the
Baire property by [33, Theorem 8.48]. A maximal tower must be uncountable and an
uncountable analytic set has a perfect subset by the Perfect Set Theorem. Thus there is

no analytic maximal tower. [
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Theorem 2.2.3. Every ¥.)(x) tower is a subset of L|x] and thus of size at most wlL ]

Proof. 1f X is a X3 (x) tower then it contains no perfect set and is thus a subset of L[z]
by the Mansfield-Solovay Theorem [39, Theorem 21.1]. U

Corollary 2.2.4. The existence of a X} () maximal tower implies that w; = w".

All of the proofs above rely mostly on the fact that towers exhibit a well ordered
structure and the maximality is inessential. Thus it is natural to ask for a more general
version of a tower which is not trivially ruled out by an analytic definition. We call a
set X C |w]“ an inextendible linearly ordered tower (abbreviated as ilt) if it is linearly
ordered with respect to C* and has no pseudointersection. We call Y C X cofinal in
XifVe e X3y e Y(y C* x).

Theorem 2.2.5. There is no X1 definable inextendible linearly ordered tower.

Proof. Assume X = p[T] is an ilt where 7 is a tree on 2 X w.

Claim 2.2.6. There is T' C T'so that for every (s, t) € T", p[T{ ,

Proof. LetT" = {(s,t) : p[T(sy) is cofinal in X }. For every (u,v) € T'\ 1", we let
Ty, € X besuchthat Vy € p[T{,.)] (2w € y). The collection {x,,, : (u,v) € T\T"}
is countable and therefore there is x € X so that z C* x,,,, for every (u,v) € T\ T".
Now let (s,t) € 71" be arbitrary and 2’ € X such that 2’ C* x. As p[T(,4] is

| is cofinal in X.

cofinal in X, there is y € p[T{s4] so that y C* a’. Say (y,z) € [T{s4)]. For every
n € w, (y | n,z | n) € T because else we get a contradiction to y C* z. Thus
y € p[T{, ] O

By the claim we can wlog assume that for every (s,t) € T, p[1{s )] is cofinal in
X. Now consider 7" as a forcing notion (which is equivalent to Cohen forcing). The
generic real will be a new element of p[T'] together with a witness. Let ¢ be a name
for the generic real. Notice that the statement that p[7] is linearly ordered by C* is
absolute. Thus for every y € X there is a condition (s,t) € 7" and n € w so that either

(s,t)IF¢Cy\n
or
(s,t) IFy C ¢\ n.
The second option is impossible, because p[7{; ;)] is cofinal in X. We can thus find
(s,t),n € wand Y C X cofinal in X, so that forevery y € Y, (s,t) I ¢ C y \ n. Let

(z,z) € [T(sy)] be arbitrary. As Y is cofinal in X, there is y € Y so that y C* x. But
this clearly contradicts (s,t) I ¢ C y \ n. O
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Corollary 2.2.7. Every X} inextendible linearly ordered tower has a cofinal subset of

size wy.

Proof. Assume X is 3. Then it is the union of w; many Borel sets (see e.g. [40]). By
Theorem 2.2.5 each of these Borel sets has a lower bound in X. O]

Note that the above results can be applied similarly to inextendible linearly ordered
subsets of (w, <*).

2.3 ATl definable maximal tower in L

In this section we will show how to construct in L a maximal tower with a I} definition.
For this we apply the coding technique that has been developed by A. Miller in [38] in
order to show the existence of various nicely definable combinatorial objects in L.

Let O be the set of odd and E the set of even natural numbers.

Lemma 2.3.1. Suppose z € 2¥, y € [w]¥ and (z,, : o < 7y) is a tower, where v < wy,
so thatVa < (e N O] = w A |xe N E| = w). Then there is x € [w]|* so that
Va < vy(x C* z,), [t N O] =w,

tNEl=w z<rzxand|lyNw\ z| = w.

xNO| =w,

|t N E] =wand |[yNw\ x| = w. We assume that z is not eventually constant, else

Proof. ltis a standard diagonalization to find = so that Voo < y(x C* z,,),

there is nothing to do. Now given x find (n;);c, increasing in x so that n; € O iff
z(i) = 0. Let 2’ = {n; : i < w}. Then 2’ works. O

Theorem 2.3.2. Assume V = L. Then there is a 11} definable maximal tower:

In the rest of the paper, < will always stand for the canonical global L well-order.

Whenever r € 2, we write £, C w? for the relation defined by
mE,n iff r(2™3") = 0.

If E, is a well-founded and extensional relation then we denote with M, the unique
transitive €-model isomorphic to (w, E,.). Notice that {r € 2¥ : E, is well-founded
and extensional } is IT}.

If E, is a well-order on w then ||7|| denotes the unique countable ordinal « so that
(w, E,.) is isomorphic to (o, €). We also say that  codes «.. The set of 7 so that F, is a
well-order is called WO. WO is obviously I1}.

For any real x € 2“ we define w{ to be the least countable ordinal which has
no recursive code in z, i.e. the least ordinal « so that for any recursive function

r: 2¢ — 2% r(z) does not code a.
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Proof of Theorem 2.3.2. Let (y¢ : £ < wq) enumerate [w]“ via the canonical well order

of L. We will construct a sequence (5(&), z¢, x¢ : € < wy), where for every £ < wy:

— §(&) is a countable ordinal

— 2¢ € 2N Lse)4w

— 2¢ € [W]* N Lo(e) 4w

The sequence is defined by the following requirements for each § < wy:

1. 6(€) is the least ordinal ¢ greater than sup, . 0(v) so that ye, (6(v), z,, 7, : v <
€) € Ls and Ls projects to w'.

2. z¢ is the <, least code for the ordinal §(¢).
3. (x,rv < §)isatower and Vv < £(|z, N O] =w Az, N E| = w).

4. x¢is <y leastsothat Vv < {(z¢ C* 2,), [zt NO| =w, |[ze NE| =w, 2z <p x
and |[ye Nw \ 2| = w.

Notice that z¢ and x¢ indeed can be found in Ls()4., given that ye, (z, : v <
&) € Ls¢), and that L) projects to w. It is then straightforward to check that (1)-(4)
uniquely determine a sequence (0(§), z¢, ¢ : & < wy) for which (z¢ : & < wy) isa

maximal tower.

Claim 2.3.3. {z¢ : & < wi} is a II] subset of 2°.

Proof. Let ¥U(v) be the formula expressing that for some £ < wy, v = (§(v), 2,, 2, :
v < &). More precisely, W(v) says that v is a sequence (p,,(,, 7, : v < £) of some
length & + 1, that satisfies the clauses (1)-(4) for every v < &.

The formula W(v) is absolute for transitive models of some finite fragment Th of
ZFC which holds at limit stages of the L hierarchy. Namely we need absoluteness
of the formula ¢, (&, y) expressing that y = ye, ¢2(d, M) expressing that M = L;
projects to w and ¢3(z, §) expressing that z is the <, least code for 4.

Moreover we have that (§(v), z,, 2, : v < §) € Ls(¢)4., and that

L(S(E)—l-w ): ‘P<<5(V>7ZV7xV Vs €>)

for every £ < wy.

'This means that over L there is a definable surjection to w. The set of such 4 is unbounded in w .
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Now let ®(r, x) be a formula expressing that £, is a well founded and extensional
relation, M, = Th and for some v € M,

M, = visasequence (p,,(,, 7, 1 v < &) ANV(0) AT = .

We thus have that = = z, for some & < wy iff Ir € 29®(r, x). O(r, x) can clearly
be taken as a I} formula.

For any £ < wy, the well order 6(¢) is coded by z¢ and z¢ <7 x¢. Thus §(§) +w <
wff and thereis r € wag so that M, = Ls(¢)4w- In particular

3r € L re N2°(D(r, z¢)).
1
We get that
3 < wi(w = x¢) <> Ir € Lo N 2°(P(r, 1)).

The right hand side can be expressed by a I1] formula. [

]

Remark 2.3.4. By Theorem 2.2.3 the II} tower constructed above is a subset of L. This
implies that its definition will evaluate to the same set in any extension of L. As an
immediate corollary, we obtain that the existence of a H} definable tower is consistent
with ¢ > N; (here ¢ denotes the continuum), a question which has been of interest
for many combinatorial objects of the real line. For some more recent results in this
direction regarding maximal independent families and maximal eventually different

families of functions, see [8] and [17] respectively.

Corollary 2.3.5. The existence of a coanalytic tower is consistent with the bounding

number b being arbitrarily large.

Recall that the bounding number is defined as the least size of an unbounded family

in (w¥, <*). Itis a natural lower bound for many other classical cardinal characteristics.

Proof. 1t is well known that finite support iterations of Hechler forcing for adding a
dominating real preserve all ground model maximal towers to be maximal (see [2] for

more details). ]
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2.4 Indestructible Towers

Recall that the pseudointersection number p is the least cardinal s so that any set
F C [w]* with the finite intersection property and |F| < s has a pseudointersection.
JF has the finite intersection property if for any F' € [F]<“, (| F is infinite. We obtain

the following result.

Theorem 2.4.1. Assume p = c. Let P be a collection of at most ¢ many proper posets

of size c. Then there is a maximal tower indestructible by any P € P.

Proof. Let us call a P name = for a real a nice name whenever it has the form
Uneot(p,n) : p € Ay} where the A,’s are countable antichains in P. Remember
that when P is proper, then for any P name « for a real and any p € PP, there is a nice
name 9 and ¢ < p such that ¢ I j = 4. The number of nice P names is |P[*.

Let us enumerate all pairs ((P,, pa, ¥o) : @ < ¢) where p,, € P,, P, € P and g, is
a nice P, name such that p,, I- 7, € [w]*.

We construct a tower (z, : « < c) recursively. At step o we first choose a
pseudointersection x of (¢ : £ < ) (here we use a < p). Next we partition x into
two disjoint infinite subsets 2°, 2. Now note that p, IFp, (9o C* 2° A gy C* 2!) is
impossible. Thus we find ¢ € 2 and ¢, < p,, such that q, IFp, Vo €* 2°. Let z, = 2.

Now let = be an arbitrary [P name for a real for some P € P. We see easily that
theset D = {qg € P: Ja < ¢(q IF & €* z,)} is dense. Namely for any p we find

(Pa, Pas Ya) Where p, < p and p, I & = 9,. Then we have ¢, < p withq, € D. [
Definition 2.4.2. A forcing notion (P, <) is Suslin if

1. P C 2¢ is analytic,

2. <C 2% x 2% is analytic,

3. the incompatibility relation 1. C 2“ x 2¢ is analytic (and in particular Borel).

The next thing we want to show is that (in L) for P the collection of all proper

Suslin posets, we can get an indestructible maximal tower which is coanalytic.

Theorem 2.4.3. (V=L) There is a 11} maximal tower indestructible by any proper

Suslin poset.

Proof. First let us note that there is a recursive map f: Tree x[w]|* — 2%, where Tree
is the set of trees on w x w, such that f(T,y) € WO iff Vz € p[T|(Jz N (w \ y)| = w)
(see [40, Theorem 4A.3]). Fix this map f.
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For the construction of our tower we now enumerate via the canonical well order
of L all trees (T}, : & < wy) on w X w. Now as in the proof of Theorem 2.3.2 we define

a sequence (5(&), ze, ¢ : € < wy) with
— §(¢) is a countable ordinal
— 2 € 2N Lse)4w
— ¢ € (WY N L(e)+w
and the following properties:
1. (z,:v<§)isatowerand Vv < {(|z, NO| =w A |z, N E| = w).
2. 6(€) is the least ordinal § greater than sup, . d(v) so that
— (0(v), 2,y v < &), T¢ € Ly,

— there are disjoint pseudointersections z°, 2! € L;s of (z, : v < &) both

hitting O and F infinitely,

— either (a) there is (z,w) € [T¢] N Ls such that 2 C* 2° or (b) f(T, 2°) €
WO, || f(T¢,2°)|| < dand there s in Ls an order preserving map (w, E(z, 40)) —
1f (Te, )1,

— and Ls projects to w.
3. z¢ is the <y, least code for the ordinal §(¢).

4. ¢ 1s <y, least so that ¢ C* xb or xe CF 20 depending on whether (a) or (b)

holds true, |z N O] = w, |z N E| = w and z¢ <p z.

As in the proof of Theorem 2.3.2 we see that this definition determines a tower
(z¢ : € < wp) whichis II5.

Now let us note the following for a proper Suslin poset P. Whenever « is a nice P
name for a real and p € P, then the set

{zew”:Fg<phnezqlFfnew\ )}

is analytic (¢ I n € w \  iff Ir € dom z[(r,n) € & AT L q]).

Thus for any P, p € P and 7 a nice name there is o < w; so that

PIT) = {2 €W’ 1 Jg<pnezoqlfnew\a)}.

Consider z,, and the respective disjoint sets x° and z' at stage « of the construction.

There are two options:
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(a) Thereis (z,w) € [T,] such that z C* z°. In this case we have chosen z, C* x!
and there is ¢ < psothat [{n € w: ¢ If n ¢ 2} Nz'| < w. In particular
plfz C*x,.

(b) Or Ls) = “(w, Ey(1,0)) is isomorphic to an ordinal”. This means that L =
“(w, Ey(1;,20)) is isomorphic to an ordinal” and this means that for any = €
p|T,], = has infinite intersection with w \ z°. In this case we chose z, C* 2°.
Now if ¢ < p and n € w are arbitrary we can find » < ¢ and m > n such that

rl-m € & \ x,. This means again that p I & C* z,,.

Thus we have shown that for any proper Suslin poset P, & an arbitrary P name for a

real and p € P, p Iff ¢ is a pseudointersection of (x¢ : & < wy). O

2.5 w; and X! definitions

Definition 2.5.1. Let F be a filter on w containing all cofinite sets. Then Mathias
forcing relative to F is the poset M(F) consisting of pairs (s, F') € [w]<¥ x F such
that max s < min F. The extension relation is defined by (s, F') < (¢, E) iff t C s,
FCFandt\sCE.

Lemma 2.5.2. Assume that X is a 3} definable subset of [w]*, linearly ordered with
respect to C*. Then there is a ccc forcing notion Q consisting of reals so that for any
transitive model V' O V' (with the same ordinals), the reinterpretation of X in V' is

notaniltinV'.

Proof. As X is X3, X can be written as a union Ug <w, X¢ of analytic sets. Namely
whenever X = p[Y]| where Y C [w]¥ x 2 is coanalytic then Y can be written
as {(z,w) : f(z,w) € WO} for some fixed continuous function f related to the
definition of Y (see [40] for more details). Then X is defined as {z € [w]¥ : Jw €
2 (| f(z,w)] = £)}.

Moreover we see that in any model W O V' where w}/v = w}/ , the reinterpretation
of X is the union of the reinterpretations of the X¢.

If X has a pseudointersection x in V, then x will stay a pseudointersection of
(the reinterpretation of) X in any extension by absoluteness. The statement Vy(y ¢
X Vax C*y)is IT3. In this case let Q be the trivial poset.

If X is inextendible in V/, then for any { < w; there is ¢ € X so that Vy €
Xe(ze C* y). As X is linearly ordered with respect to C*, {z,, : @ < w; } generates a
non-principal filter 7. Let Q = M(F). Then in V? there is a real x so that + C* z,
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for every a < w;. By absoluteness Vy € X¢(ze C* y) will still hold true in V. In
particular Vy € X¢(z C* y) will hold true for any £ < w’.
As Q is ccc we have that w] ¢ = wy". This implies that z is actually a pseudointer-

section of X in V©. Again, this will hold true in any extension. 0

Theorem 2.5.3. If there is a X3 ilt, then w, = wi. More generally, the existence of a
L[z]

Y1 (x) ilt implies w, = wy
Proof. We only prove the first part as the rest follows similarly.

Suppose that X is a 33 ilt and w < w;. Apply Lemma 2.5.2 to (the definition of)
X in L to get the respective poset Q in L. As wf < wy, V = |P(w) N L| = w. But this
means there is a Q generic x € V over L. L[z|] C V, thus by Lemma 2.5.2 X has a

pseudointersection in V/, contradicting our assumption. U

Remark 2.5.4. We think that the proofs of Lemma 2.5.2 and Theorem 2.5.3 show-
case something interesting about Schoenfield absoluteness. Recall that Schoenfield’s
absoluteness theorem says that 33 formulas are absolute between any inner models
W C W, but it does not say anything about the relationship between w}’v and culW ".In
fact in many applications of 33 absoluteness W and W’ have the same w; (e.g. when
W' is a ccc or proper forcing extension of 1/7). But in this case it can be deduced di-
rectly from analytic absoluteness and the representation of ¥} sets as the same w; union
of analytic set in any extension with the same w;. The reason is that the existential
quantifier dJa < w; stays the same. So the full strength of Schoenfield absoluteness
is only needed in the case where w}" is countable in W’ and this is the case that we

crucially used in the proof of Theorem 2.5.3.

We also want to remark that the proofs of Lemma 2.5.2 and Theorem 2.5.3 are very
general and can be applied to many other maximal combinatorial families. For example

A. Tornquist has shown the following theorem in [66], using a similar argument.

Theorem 2.5.5. If there is a 33 mad family, then w, = wf. More generally, the

existence of a $(x) mad family implies wy = w.

The argument for maximal independent families is a bit different. Let us recall the

definition of a maximal independent family.

Definition 2.5.6. A set X C [w]“ is called independent if for any F' € [X]|<“ and
G € [X]<¥ where FNG = 0, N,ep® N[)eq(w \ y) is infinite. An independent

family is called maximal if it is maximal under inclusion.
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The set (),cp 2 N (,eq(w \ y) is often denoted o(F, ). We will also use this
notation below. Note that an independent family X is not maximal iff there is a real
x so that x N o(F,G) and (w \ ) N o(F,G) are infinite for all F, G € [X]|<“ where
F NG = (. Such a real will be called independent over X .

We obtain the following result.

Theorem 2.5.7. If there is a ¥} maximal independent family, then w; = w¥. More
L[z]

generally, the existence of a ¥}(x) maximal independent family implies w, = w;'™".
In [38] Miller basically proved that a Cohen real is independent over any ground
model coded analytic independent family. He did not put his theorem in these words,

so before we go on let us repeat his argument.

Lemma 2.5.8 ([38, Proof of Theorem 10.28]). Let ¢ () be a 31 formula defining an

independent family and let ¢ be a Cohen real over V. Then in V[c|, c is independent
over the family defined by ().

Proof. Let X denote the set {z € [w]* : ¢(x)} in any model extending V. Note that
in any model X is an independent family by Schoenfield absolutness. Let

K={rew”:3F € [X]™3G € [X]™(FNG=0AN|o(F,G)Nz| <w)}
and
H={zew®:IF € [ X|™AG € [X|™¥(FNG=0A|o(F,G)N(w\ )| <w)}.

These sets are both analytic. Note that x is independent over X iff x ¢ H U K. To
show that any Cohen real c is independent over X, i.e. ¢ ¢ H U K it suffices to prove
that / and K are meager. Why? When [ U K is meager then there is a meager F, set
C'so that H U K C (' and this statement is absolute (Vz(z € H U K — x € (). As
cis Cohen, V[c] = ¢ ¢ C and thus V[c| = ¢ ¢ H U K which implies that in V[c], ¢ is
independent over X.

So let us prove:

Claim. K and H are meager.

Proof. Suppose e.g. that H is nonmeager. The argument for K will follow similarly.
Because H is analytic it has the Baire property and is thus comeager somewhere. It
is well known and easy to see that any comeager set contains a perfect set of almost

disjoint reals. So let P C H be a perfect almost disjoint family. For each z € P we
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have F, and G, so that o(F,,G,) C* z. By the Delta system lemma, there is a set
S € [P]“t and R € [P]<“ so that

Vo #ye S(F,UG,)N(F,UG,) =R).

For any x € S we define R = RN F, and R, = RN G,. As S is uncountable there

is an uncountable S’ C S so that
Va,y € S'(R) = R) AR, = R,).

But now note that for any = # y € 5, F,NG, = (RNF,;)N(RNG,) = RINR, =
RY N R = (). By symmetry we also have that F}, N G,, = () and this implies that

(F UF,))N (G, UGy) =10.

In particular we can form o(F, U F},, G, U G,). By choice of F,, G,, F,,, G, we have
that
o(F,UF, G, UG, C*zny="10

as P was an almost disjoint family. But this contradicts the independence of X. [

]

Proof of Theorem 2.5.7. Assume X is a ¥} maximal independent family. Then in L,
X is also independent and it can be written as a union | J, <wt X¢ of analytic sets Xe.
Assuming for a contradiction wlL < wq, there is a Cohen real c over L. We have that
wILM = w{ and in L[c], X still corresponds to the union | J, <wt Xe. By the above
lemma c is independent over all the X so in particular c is independent over X . This
statement is I1} and thus absolute between any inner models containing c. In particular

in V, X is not maximal. U]

Theorem 2.5.9. If there is a X3 Hamel basis of R, then w; = wF. More generally, the
L[z]

existence of a X3(x) Hamel basis of R implies w; = w;™".
A Hamel basis of R is a maximal set of linearly independent reals over the rationals
Q. Again it was Miller who first showed that a Cohen real in R is independent over

any ground model coded analytic linearly independent family.

Lemma 2.5.10 ([38, Proof of Theorem 9.25]). Assume A C R is an analytic set of
reals that are linearly independent over the field of rationals. Assume c € R is a Cohen

real over V. Then in V'[c|, c is linearly independent over (the reinterpretation of) A.
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Proof. We assume that A # (), else the argument is trivial. Let z € A NV be arbitrary.
Suppose that U |- “¢ is not independent over A” where U C R is some basic open set.

Say g, ...,z € ANV and qo, ..., q. € Q are such that
Ul 3z, 2 € A\NVIqeat, -, qn € Q(é = qoxo + -+ + quty)

for some n € w. Now let ¢ € U be Cohen over V and zgiq,...,2, € A\
V. Qi1 - - - qn € Q so that
C:(J0$0+"‘+qn9€n-

Let s # 0 be a small enough rational number so that ¢ + sx € U. Recall that, as x € V,
¢+ sz is also a Cohen real over V. Thus let yx1,...,yn € A\ V,7rpy1,..., 7 € Q
so that

c+SsT=qoxo+ -+ QT + Tkr1Ye+1 + 0+ TnYn.

But now we have that

Th1Uke1 + 0+ Tnln — (Qe1Trgr + - + GuTn) = ST
and so A is not linearly independent in V'[c|. But this is impossible by absoluteness. [
Proof of Theorem 2.5.9. Same as the proof of Theorem 2.5.7. 0
For ultrafilters the proof is not much different. We give a proof in Chapter 3.

Theorem 2.5.11. If there is a X} ultrafilter; then w, = wk. More generally, the
existence of a S (x) ultrafilter implies w, = w-.
We want to remark the ideas above can also be used to show that under Martin’s

Axiom none of the families above have X} witnesses.

Theorem 2.5.12. MA(w,) implies that there is no X3 ilt, mad family, maximal indepen-
dent family, Hamel basis or ultrafilter.

Proof. For mad families this was proven in [66]. For ilt’s Theorem 2.2.3 is enough.
For ultrafilters it suffices to note that under MA(w,) every X1 set is Lebesgue mea-
surable (see [32]) and an ultrafilter cannot be Lebesgue measurable. The argument
for independent families and Hamel bases is the same. Write X' = |J,_,, B¢ where
the B¢’s are analytic. Let M be an elementary submodel of size w; containing all the
parameters defining the B¢’s. Then let ¢ € V' be Cohen over M and use Lemma 2.5.8

or Lemma 2.5.10 to conclude that c is independent or linearly independent over X. [
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2.6 Solovay’s model

In this section we prove the following result.
Theorem 2.6.1. There is no ilt in Solovay’s model.

Let us review some basics about Solovay’s model. A good presentation of Solovay’s
model can be found in [31, Chapter 26]. Assuming « is an inaccessible cardinal in the
constructible universe L we first form an extension V' of L in which w; = & using the
Lévy collapse (see again [31, Chapter 26]). Then we let W C V consist of all sets
which are hereditarily definable from ordinals and reals as the only parameters. IV is
then called Solovay’s model. The only facts that we use about W are listed below and
are well-known.

Suppose a € 2 N W is arbitrary, then

1. for every poset P € H (k) 9, there is a P generic filter over L[a] in W,

2. whenever x € 2¥ N W, there is a poset P € H (k)" o € H(k)"% a P name
and G € W a P generic over Lla] so that x = o[G].

Suppose X € P(2¥) N W. Then there is a € 2 N W and a formula ¢(x) in the

language of set theory using only a and ordinals as parameters so that

3. for any poset P € H(x)"9, o € H(k) a P name and G € W, P generic over
Llal,
oGl € X < 3p e GplF p(0)).

Until the end of the section we are occupied with proving Theorem 2.6.1. To prove
Theorem 2.6.1, assume that X € P(2¥) N W is linearly ordered with respect to C*. We
will show that X cannot be an ilt. Let a € 2¥ N TV and ¢(x) be as in (3). To simplify
notation we will assume that @ € L and thus L[a] = L. From now on let us work in L.

Lemma 2.6.2. Let P € H(k), p € P and o a P name so that p I (o). Then there is
Do, p1 < pand n € w so that for any m > n,

Ir <po(rlFmeo)—=p lFmeo.

Proof. Consider P x P € H(k) and o( and oy the P x P names so that whenever
G x G is P x IP generic over V' then 0y[Go X G| = d[Go], 01|Go X G4] = 0[Gy].
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Note that (p, p) IF ¢(00) A ¢(01), because whenever Gy x Gy is P x P generic over
V with (p,p) € Gy x Gy then Gy and G are P generic over V with p € Gy, G1. But
then there must be (po, p1) < (p, p) and n € w so that either,

(po,p1) IF oo\ n C oy

or
(po;p1) IF o1\ n C og.

Say wlog that (po, p1) IF 09 \ n C ;. Note that whenever 3y < py(ro IFm € o)

for some m > n then p; IF m € o. Suppose this was not the case. Then there is

r1 < p1 sothatry |- m ¢ o. But then (rg, 1) IF Im > n(m € o9 A'm ¢ o1) which is

a contradiction to (1, 71) < (po, p1)- .

Still in L, let (P¢, pe, 0¢ : £ < ) enumerate all triples (P, p, o), where P € H(x),
p € Pand o € H(k) is a P name so that p |- ¢(o). This is possible as |H (k)| = k.
For every £ <  we find p, p; < pe in P¢ and n € w so that for every m > n

Ir < prl-m e oe) = pil-m € o
Let e = {m € w: pg IF m € o¢} forevery & < k.
Claim. {x, : £ < k} has the finite intersection property.

Proof of Claim. Suppose w¢,, . .. T¢,_, are such that [),_, ¢, is finite, say (),_, 7¢, C

n. Consider the poset Q = [, Pe, € H(x), (pY,,...,p _,) € Qand forevery i < k,

o; the Q name so that whenever (Gy, . . ., Gi_1) is Q generic then 0;[Gox - - - X Gj_1]| =
O¢; [G%]

We have that (p? ..., p,_ ) IF ©(00) A--- Ap(ok_1) and thus, as X has the finite
intersection property, there is m > n and (ro, ..., 7%—1) < (pg, .., pg,_,) so that

(To,...,Tk_l) Fm e ﬂO’Z‘.

i<k
But this means that r; |- m € o; and thus m € z¢, for each individual ¢. This

contradicts (), _, x¢, € nasm > n. O

Let F be the filter generated by {z, : £ < x}. We have that F € P([w]*) and thus
F € H(r). Moreover we have that M(F) € H(x). Thus in W there is y € [w]* a
M(F) generic real over L.

Claim. Foreveryx € X, y C* x. In particular X is not an ilt.
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Proof of Claim. Let x € X be arbitrary. Then we have in L a poset P € H(x) and a P
name o so that there is in W a P generic G over V' so that z = o[G]. Moreover there is
p € Gsothatp I ¢(0).

It suffices to show that there is some { < x and ¢ € G so that ¢ IF ¢ C* 0. To
see this we simply show that the set of conditions ¢ € PP so that 3¢ < k(g IF z¢ C* o)
is dense below p. To show this fix p’ < p arbitrary. Let £ be such that (P, p’, o) =
(Pe, pe, o¢). But then pg < pe and pg I z¢ C* 0. O

This finishes the proof of Theorem 2.6.1.

2.7 X! versus IT]

Theorem 2.7.1. The existence of a X} (x) ilt implies the existence of a 11} () ilt.

Proof. We are going to prove the statement only for lightface Y1 as everything will
relativize. So let X be a X ilt.

Claim. X N L is cofinal in X (where L is the constructible universe).

Proof. By Theorem 2.5.3 we have that w; = wF must be the case. Thus X can be
written as a union | J,_,, X of analytic sets X¢ which are coded in L (see the proof of
Lemma 2.5.2). Note that X N L is an ilt in L by a downwards absoluteness argument.
This implies that for every £ < w; there is x € L N X which is a pseudointersection of
X¢. The statement “z is a pseudointersection of X" is absolute. Thus X N L is indeed
cofinal in X. U

As [w]” N L is X} we may just assume that X C L. Let p(z,w) be II} such that
r € X iff Jwp(z, w). Using 11} uniformization we can further assume that = € X iff
Nwep(x, w).

The idea will now be to get a linearly ordered tower that basically consists of x € X

together with their unique witness w. To do this we have to introduce some notation.

— Fory C [w x w]¥, we write y,, for y’s n’th vertical section.

— For = € [w]“, we write z(n) for the n’th element of .

We now define the new ilt Y which lives on w X w. Asety € [w X w|* isin Y iff

the following are satisfied:

1. Foreveryn > 1, y, = yo \ %o(n) or ¥, = 4o \ Yo(n + 1).
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0if ypp1 = n+1
2. Ifw € 2¥is such that w(n) = a1 = Yo \ Yol ) then ¢(yo, w) and

Lif Y1 = 9o \ Yo(n + 2)
in particular yp € X.

Claim. Y is I1] ilr.

Proof. (i) Checking whether y € [w x w]* is as described in (1) is Al. Checking
whether for the function w € 2¢ as in (2), ¢(yo, w) holds is IT}.

(74) Y is linearly ordered by C*: Let us note first that whenever z C* y then
eventually x(n) > y(n). Why is this the case? As x C* y (so z #* y), there is a big
enough n € w so that Vm > n(|ly N xz(m)| > m). But this means that z(m) > y(m)
for all m > n.

Now let’s assume that x # y € Y and without loss of generality that zy C* yo.
By the observation above there is an n so that for every m > n, xq(m) > yo(m) and

xo(m) € yo. But this also means that Ym > n,

T € 20 \ To(m) € yo \ Yo(m + 1) C Y.

In particular z,, C y,, for m > n. For k < n we have that ;. C* y;. Thus all together
we have that z C* .

(77) Y has no pseudointersection: Suppose z is a pseudointersection of Y. If
there is n € w so that |z,|] = w, then z, is a pseudointersection of X. Else let
r={minz, : n € wA z, # 0}. Itis easy to see that z must be infinite (else z
would not be C* below any member of Y'). We claim that x is a pseudointersection
of X. Namely let yp € X be arbitrary where y € Y. As z C* y, there is an
n so that Vm > n(z, # 0 — (m,minz,) € y). This means in particular that
Vm > n(z,, # 0 — min z,, € yo). O

]






CHAPTER 3

The definability of ultrafilters

3.1 Introduction

In this chapter we will study the definability of ultrafilters and more specifically
ultrafilter bases. Filters will always live on w and contain all cofinite sets. Thus a filter
is a subset of P(w) and we can study its definability. It is well known that an ultrafilter
can neither have the Baire property nor be Lebesgue measurable. This already rules
out the existence of analytic ultrafilter generating sets as the generated filter will also
be analytic and thus have the Baire property. But this still leaves open the possibility
of a coanalytic ultrafilter base since a priori the generated set will only be Al. Recall
that for 2,y € [w]* we write x C* y whenever z \ y is finite. An ultrafilter { is called
a P-point if for any countable F C U, there is x € U so that Vy € F(z C* y). U is
a Q-point if for any partition (a,, : n € w) of w into finite sets a,,, there is © € U so
that Vn € w(|z Na,| < 1). A Ramsey ultrafilter is an ultrafilter that is both a P- and a
Q-point. A more commonly known and equivalent definition for Ramsey ultrafilters ¢/
is that for any coloring c: [w]* — 2, there is x € U so that ¢ is homogeneous on z, i.e.

c | [x]? is constant. In fact we will show in Section 3.3 that:
Theorem 3.1.1. There is a 11} base for a P-point in the constructible universe L.
Theorem 3.1.2. There is a 11} base for a Q-point in the constructible universe L.

In Section 3.2 we will take another look at Miller’s coding technique which is used

for the above results. In strong contrast we will show in Section 3.4 that:

Theorem 3.1.3. There is no I} base for a Ramsey ultrafilter.

29
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Notice that any ultrafilter that is X! or IT! is already A'. Namely suppose that ¢
defines an ultrafilter, then we have that p(z) <> —p(w \ x). Moreover any base for an
ultrafilter that is 3}, or IT} generates a A}, or respectively a A} | ultrafilter.

In Section 3.5 we will compare A} ultrafilters to IT{ bases. As a main result we
find that:

Theorem 3.1.4. The following are equivalent for any r € 2, n € w.

1. Thereis a A} (r) ultrafilter.

2. There is a 11 (r) ultrafilter base.

In Section 3.6 we study the effects of adding reals to the definability of utrafilters.
In Section 3.7 we introduce a new cardinal invariant that is a Borel version of the

classical ultrafilter number u and make some observations.

3.2 Miller’s coding technique revisited

When we say that z codes the ordinal o, we mean the following. To any real z € 2¢

we associate a relation £, on w defined by
E.(n,m) <> z(2"3™) = 1.

This relation may be a linear order and if it is a well-order and isomorphic to o we say
that it codes «v. Such « is unique and we define ||z|| := a. More generally we say that
z codes M if (w, E.) is isomorphic to (M, €). The set of z € 2* coding an ordinal is
denoted WO. The set WO is tightly connected to coanalytic sets. On one hand side,
WO is itself TT} and on the other, for any IT} set X C 2“, there is a continuous function
f:2¥ — 2¥sothat X = f~1(WO).

There is a very canonical way of defining in L various combinatorial subsets X
of reals in a A} fashion. Typically the elements are found recursively by making
adequate choices which are absolute between models of the form L, (e.g. taking
the <, least candidate which has some simple property holding with respect to the
previously chosen reals).

Then x € X can be written as

EI3 [M is we%r—foundeq,x €Mand MV iL Ap(z)] 3.1
Ay Al
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or as

VM EV =L,z € M[M is not well-founded or M = p(z)]. (3.2)
. P / ~~ \ /
VAl . Al

Quantifying over models is shorthand for quantifying over codes in 2 of countable
models satisfying some basic set theoretic axioms. Thus e.g. (3.1) can be recast as
“Jz € 2¥((w, E,) is well-founded, z € (w, E,) and (w, E.) =V = LAp(x))”, where
r € (w, E,) means that z € M for M the Mostowski collapse of (w, E.). It is not
difficult to see that this can be expressed in a Al way.

As such, finding a Al ultrafilter base in L is very simple. The major improvement
in Miller’s technique is to get rid of the first existential quantifier in (3.1). This is done
by letting = already encode a relevant well-founded model M in a Borel or even in a

recursive way. Then if C' is the Borel coding relation used, the definition usually looks

as follows:
x i Y and Vz j 2°[~C(z, 2) or (w, E.) = Xi: LA ()], (3.3)
A A

for some known coanalytic Y.

Lemma 3.2.1. There is a lightface Borel set C C (2¥)3 so that whenever z codes
a<wyandr,y € 2¥ then (z,r,y) € C'iff y codes L,|r].

Proof. The claim is easy to verify by noting that an adequate £, can be constructed by
recursion on a.. Thus (z,7,y) € C can be defined by formulas of the form “3/V(E}, :
k € w) a sequence indexed via the order coded by z satisfying certain recursive

assumptions, [, is the union of all £},”. This definition is uniform on z and 7. O]

Lemma 3.2.2. There is a recursive function ()T : 2% — 2% so that whenever z codes

«, then (2)™ codes o + w.

nom

neven Ameven Az(2232) =1

Proof. Let (z)™ = ysuchthat y(2"3™) = 1iff ¢ n even A m odd

nodd Amodd An < m.
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3.3 IIi bases for P- and Q-points

In Chapter 2 we constructed, using Miller’s technique, a coanalytic tower (i.e. a set
X C [w]¥ well-ordered wrt * O and with no pseudointersection). A crucial property
of the tower was that all its elements were split by the set of even natural numbers. In
particular this meant that the tower could not generate an ultrafilter. We will construct
in L a tower generating an ultrafilter and thus generating a P-point.

Before we start to construct the IT} P-point base, we need some ingredients.

Definition 3.3.1. We call W™ the set of x € [w]“ containing arbitrary long arithmetic
progressions, i.e. Vk € wia,b e w({a-1+b:1 <k} Cx).

The following fact follows from Van der Waerden’s Theorem which is well known.

Fact. The set W = P(w) \ W is a proper ideal on w. It is called the Van der Waerden
ideal.

Proof of Theorem 3.1.1. Let (Y, )a<w, enumerate [w]|* via the global L well-order <.
The statement “y is the a’th element according to <, is absolute between Lg’s with
y € Lgand a € Lg. Let O: 2* — 2% be the following lightface Borel function: If
r C w we want to define a unique sequence (i, ),c. of subsets of w so that maxi,, <
min 4,41 and 7,41 is the next maximal arithmetic progression in = of length > 3 above
max ¢, (note that any pair of natural numbers forms an arithmetic progression). Now if
this sequence can be defined up to w (in particular every 7, is finite), then we define
O(z)(n) = 1iff 7, has even length. Else we let O(z)(n) = 0.

We construct a sequence (¢, 0¢ )e<,, Where z¢ € [w]*, §¢ < w; as follows.

Given (¢, 0¢)e<a We let d, be the least limit ordinal such that sup,_,, d¢ < da,
Yo € Ls, and 0, projects to w, i.e. Ls, 1, = 0 is countable. It is not difficult to see
that the set of ordinals projecting to w is unbounded in w;. x, = x is chosen least in

the <, well-order so that
(@) v C* z¢ forevery £ < a,
(b) z e WT
©) zCysorz Cw) Y-
(d) O(x) codes d,.

Note that any sequence (¢ )¢, defined as above is a tower generating an ultrafilter.
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Claim 3.3.2. z,, can be found in L, ..

Proof. Note that the definition of (x¢)¢<, is absolute between Lg’s. In particular
(2¢)e<qo can be defined over L;, . As ¢, projects to w, there is an enumeration (z"),,c,,
of {z¢ : £ < a}in Ls, 4,. Given y, we have that, as W is an ideal, that for every
E<a,yaNre € WHorw\ yo N ze € WT. Assume wlog that for cofinally many
Te, Yo N Te € WT is the case. This implies that for all z this is the case as (x¢)¢<q
forms a tower. Again as J,, projects to w, there is a real z € Ls,_ 4, N 2¥ coding 9.
Now we define a sequence (i, ),e., Of finite subsets of w so that maxi,, < mini,,
I C Yo N ﬂk <n x*, i, consists of an arithmetic progression so that its length is > n
and it is even ;ff z(n) = 1. Moreover min i,, is chosen large enough so that i,,_1 U i,

cannot form an arithmetic progression. = := | J, __ i, can be defined in Ls_, and

new

satisfies (a)-(d). Thus in particular the < -least such z exists in L, ;. ]

Remark 3.3.3. There is a formula ¢(x) in the language of set theory so that ¢(x)
iff 3(z = x¢) and Lg = ¢(x) for some [ implies that p(x) is true. Moreover

Lse 4o = 0(x¢) for every &.

Proof. ¢(x) expresses that there is an ordinal « and a sequence (¢, d¢)e<, according

to the recursive definitions given above so that x = x,,. [

Now we can check that the set X = {z¢ : £ € wy} is IT7. Let C and (-)™ be as in
Lemma 3.2.1 and Lemma 3.2.2. Then x € X iff

O(x) € WO and Vz[-~C(O(x)"™,0, 2) or (w, E.) E o(z)].
0

Definition 3.3.4. The ideal Fin? on w x w consists of 2 € P(w x w) so that V*n €
wV®m € w((n,m) ¢ x)

Proof of Theorem 3.1.2. The ultrafilter that we construct will live on w X w. Let
O: (Fin®)* — 2“ be the following Borel function. Given x € (Fin?)* let zo, 1 be
the first two infinite vertical sections of x. We denote with z(n) or x1(n) the n’th
element of xy or x;. Then
0if zo(n) > z1(n)
O(x)(n) = §
Lif z1(n) > xo(n).
As in the proof of Theorem 3.1.1 we let (Y, )a<w, enumerate [w X w|* and (P,)a<uw,

enumerate all partitions of w X w into finite sets via the well-ordering <.
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Similarly to the proof of Theorem 3.1.1 we construct a sequence (¢, d¢)¢<., Where
z¢ € (Fin®)*, intersections of finitely many elements in {z; : £ < w;} are in (Fin®)*
and 6 < w; as follows.

Given (7¢, 0¢)e<a We let o, be the least limit ordinal such that sup,_,, d¢ < da,
Yo, P € Ls, and 0, projects to w, i.e. Ls, 1., = 0, is countable. x, = x is then

chosen least in the < well-order so that
(a) {z} U {z¢: € < a} has all finite intersections in (Fin?)¥,
(b) z € (Fin*)7,
(©) 2 Cyaorz Cw) Yo,
(d) foreverya € P,, [anz| <1,
(e) O(z) codes 0.

Again we show that such an z,, exists and can be found in L;,_ 4.

Claim 3.3.5. x,, can be found in L, .

Proof. We have that if (z¢)¢, exists then it must be definable over Ls,. As d,, projects
to w there is in L4, ., an enumeration (z"),c, of all finite intersections of elements in
{z¢ : € < a}. Weare given y, € L, . It is not hard to see that either y,, or (w X w) \ Yo
is in (Fin?)* and has (Fin?)™ intersection with all ™. Without loss of generality we
assume y,, has this property. Let P, = {a; : i € w} and z € 2* N Ls_,,, code J,.
Further let ky < k; be first so that the ky’th and k;’th vertical section of y, is infinite.
Let (p;);je, enumerate w X w in a way that every pair (n, m) appears infinitely often.
Given (p;);c. we define recursively a sequence (m?, m});ec,, and auxiliarily (n;);e. as

follows:

— for every i, (m)

2,my) € Ya, (M7, m}) ¢ Uj<i ap,; and (m?, mj) € an,,

— if i = 3j for j € w, then (m{, m;) is in the p;(0)’th infinite vertical section of

Yo N 2P greater than k;,

o, — 0 _ 0 — 1 1 1 1

depending on whether z(i) = 0 or z(i) = 1.

Now the set {(m, m}) : i € w} € Ls, 4, satisfies (a)-(e) as can be seen from the

construction. In particular Ls_,, contains the <j-least such set. ]
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The set {z¢ : £ < wy} is now a base for a Q-Point and as in the proof of Theo-
rem 3.1.1 it is IT]. O

3.4 There are no I1; Ramsey ultrafilter bases

Definition 3.4.1. Let F be a filter. Then the forcing M(F) consists of pairs (a, F') €
[w]<“ x F such that maxa < min F. A condition (b, E') extends (a, F') if b is an
end-extension of a, £ C Fand b\ a C F.

M(F) is the natural forcing to add a pseudointersection of F.

Definition 3.4.2. Let F be a filter. Then we define the game G(F) as follows:

Player1 | [y € F FeF
Player II ag € [Fo]=v \ {0} a; € [[1]<\ {0}

Player I wins iff | J .., an € F.
Lemma 3.4.3. Let F be a filter on w. Then TFAE:

(i) For any countable model M, F € M, of enough set theory, there is x € F,
M(F) generic over M.

(ii) I has no winning strategy in G(F).

Proof. (i) implies (ii): Suppose ¢ is a winning strategy for Iin G(F) and let o, F € M.
Wlog we assume that o(()) = w. Thus Player II is allowed to play any ay as his first
move and then ¢ carries on as if ay had not been played. In particular this means that
any initial play ag of I is a legal move, i.e. (ay) € dom(o). Consider the dense sets
D, = {(s,F) : F € ({o({s0,---+5n-1)) : (S0,---,8p-1) € dom(0), ;1.5 =
st} forn € w. D, € M forevery n € w. By (i) there is x € F, M(F) generic over
M. This means that for every n € w there is s an initial segement of x and F' € F
so that (s, F') € D,, and = \ s C F'. Now using this construct a sequence (S;);c., and

(F})ic., recursively so that:
1. ;. 5 is an initial segment of z for every n € w,
2. maxs; < min s;4 forevery ¢ € w,

3. 2\ U;cp, 5i € F, forevery n € w,
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4. (U,_, 5, F,) € D,.

We find recursively that (s;);«, € dom(o), i.e. (S;)i<n is a legal move. But
Uicw 8i = ¥ € F contradicting o being a winning strategy for 1.

(ii) implies (i): Let M > F be countable and (D, )<, enumerate all dense subsets
of M[(F) in M. We describe a strategy for Player I: I starts by playing some Fj so that
there is (tg, Fy) € Dg. Then Player IT will play ag C Fy, i.e. (to U ag, Fy) < (to, Fo).
Now I plays F} so that there is (toUagUty, Fy) € Dy, (toUagUty, F1) < (toUag, Fp)...

By assumption there is a winning run (a;);e,, for Il according to this strategy. This
means that | Ja; € F and moreover z = | Ja; U |Jt; € F where ¢; are as described.

But z is now M(F) generic over M. O

It is a well known theorem that for ultrafilters ¢/, I not having a winning strategy
in G(U) is equivalent to U being a P-point. For sake of completeness we prove
a more general (in light of Lemma 3.4.3) version of this below. Recall that p is
the pseudointersection number, i.e. the least size of a set B C [w]“ with the finite
intersection property and no pseudointersection, a set z € [w]* such that x C* y for all
y € B. The bounding number b is the least size of a family B C w* such that there is no
f € w* eventually dominating every member of 5. It is well known that 8; <p < b.
An ultrafilter I/ is called a P, point if for any B € [U/]<" there is a pseudointersection

x € U of B. In particular a P-point is the same as a Py, -point.
Lemma 3.4.4. Assume v < p and U is an ultrafilter. Then TFAE:
(i) U is a P,-point.

(ii) For every M a model of enough set theory with |M| < k and U € M, there is
x € U which is M(U) generic over M.

Proof. (i1) implies (1) is trivial.

(i) implies (ii): Let |[M| < k < p. Then as U is a P,.-point, there is U € U so that
U C* V forevery V € M NU. Define for every D € M, which is a dense open subset
of M(U/) and every V' € M NU a function fpy: w — w so that for n € w:

Va Cn3b C [n, fpy(n)3IV' € MoU((alb, V') < (a, V)A(aUb, V') € DAU\ fp.y(n) C V).

The set of functions fpy is smaller than k < p < b. Thus there is one f € w®
dominating all of them. Let ig = 0, i,11 = f(i,). We write [, = [in, int1). AsU is an
ultrafilter, either Uy = J. ., I, N U or U; =
that U, € U.

Is,+1 NU 1s iInU. Assume wlog

new new
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We define a o-centered partial order P as follows. P consists of pairs (s, F') where
l. s:n— [w]<¥ for some n € w,

2. s(i) C I; forevery i < n,

3. s(i) = U N I; when i is even,

4. FeUudnM.

A condition (¢, F') extends (s, E) iff t O s, F¥ C E and (¢(i) C E) whenever
i € domt \ dom s is odd. For any D € M which is dense in M({/) we define a subset
of P, D as follows:

D={tF):(|J ti).F) eD}

iedomt

We claim that D is dense in P. Let (s, E) € P be arbitrary. Then as foe <*f
there is n € w so that [i2n41, fp E(92011)) C [f2n+1, t2n42) and 2n + 1 > dom s. Now
extend s to sq so that dom sy = 2n + 1 and sq(z) = () fori € 2n + 1\ dom s odd and
so(i) = U N I; for i even. By definition of fp g there is b C Iy, so that 3 C F
with (aUb, F') € D where a = | J; 5,41 50(i), (aUb, F) < (a, E) and U \ igy10 C F.
Lett = soU{(2n+ 1,b)}. Then (¢, F) < (s, E) inP and (¢, F) € D.

Now as k < p and by Bell’s theorem (see [6]) there is a P generic real g: w — [w|<¥
over M. But then z := |J,., g(i) € U as Uy C x and x is M{({/) generic over M. []

Corollary 3.4.5. Suppose U is a P-point, M countable and &/ € M. Then there is
r € U, M(U) generic over M.

Lemma 3.4.6 (see [24, Chapter 24]). Assume U € M is a Ramsey ultrafilter and x is
M(U) generic over M. Then every y C* x is M((U) generic over M.

Proof of Theorem 3.1.3. Suppose U is a Ramsey ultrafilter with a coanalytic base

X C [w]“. As X is coanalytic, there is a continuous function f : 2* — 2% so that
r € X« f(xr) € WO.

Let M be a countable model elementary in some H (6) where 6 is large enough and
U,f € M. As U is a P-point and by Corollary 3.4.5, there is = € U that is M(U)
generic over M. Moreover as U is Ramsey and by Lemma 3.4.6, any y C* x is also
generic over M. Let « = M Nw; and let y € X be arbitrary such that y C* .
Let 8 = [|f(y)], then 5 € MJy]. Thus § < a = M[y] Nw;. As y was arbitrary,
we have shown that the set X' = {y : f(y) € WO A ||f(y)| < a} C X contains
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{y C* x : y € X}. This means that X’ also generates /. But X' is Borel and cannot

generate an ultrafilter. 0

3.5 AlversusII;

Using a result of Shelah we can show the following.
Theorem 3.5.1. It is consistent that every P-point is A} and has no 1} base.

Proof. This follows immediately by [56, Theorem XVIII.4.1] and the subsequent
remark, which states that starting from L we can choose any Ramsey ultrafilter ¢/ and
pass to an extension in which U/ generates the unique P-point up to permutation of w.
Moreover this ultrafilter will stay Ramsey.

Thus let U be any (definition of a) A} Ramsey ultrafilter in L. Now apply Shelah’s
theorem to this ultrafilter and pass to an extension V of L in which U/” generates the
unique P-point and is Ramsey. In V, /¥ will still have the finite intersection property
and UL C U by Shoenfield-absolutness. Thus in V, 1" generates the same ultrafilter
asU. AsUV is Al the ultrafilter it generates will be Al as well. We know that in
V there is for every P-point V a permutation f of wsothat V € V « f(V) € U. In
particular VV has a Al(f) definition. On the other hand, every P-point is a Ramsey

ultrafilter so none of them can have a I} base by Theorem 3.1.3.
O]

Proof of Theorem 3.1.4. To simplify notation we assume that 7 = 0. Let i/ be a A,
ultrafilter. Let us introduce the following notation. For y € [w X w]*, we let y,, be y’s
n’th vertical section. We let z(y) = {n € w : y, # 0}. When z(y) is infinite then we
denote with y", the n’th nonempty vertical section of .

The Fubini product of U, U ® U, consists of all y € [w x w]¥ so that

{new:y, eU} €U.

U ® U is again an ultrafilter. We will show that it has a IT}, base. Let ¢(z, w) be I3
so that
r €U < Jw e 2°(p(x,w)).

Letr : w x 2¥ — 2 be a recursive function such that for any sequence (w;,)ncw
there is w € 2“, which is not eventually constant, so that r(n,w) = w, for every

n e w.



3.6. Adding reals 39

Let O: [w x w]* — 2“ be the function defined by
0if [2(y)| <w
O(y)(n) = ¢ 0if miny™ > miny"*!
1if miny™ < miny"™™.
O is obviously lightface Borel. Let us define X C [w x w]* as follows:
y€ X & [z2(y)] = wrp(2(y),r(0,0(y)AVn € wIs € [w]*[p(sUy", r(n+1,0(y)))].

X is obviously IT}. Moreover X C U ® U. To see this let us decode what y € X
means. The first clause in the definition of X says that y has infinitely many nonempty
vertical sections. The next clause ensures that z(y) € U as witnessed by (0, O(y)),
the 0’th real coded by O(y). The last clause ensures that for every nonempty vertical
section y™ of y, s U y" is in U for some finite s as witnessed by r(n + 1,0(y)),
the n + 1’th real coded by O(y). In particular y™ € Y. Thus we indeed have that
yeX syelUU.

Moreover we have that X is a base for i/ @ U. To see this fix © € U @ U and we
show that there is y € X so that y C w. Firstlet yo = J{{n} X u, : n € w,u, € U},
i.e. we remove from u the vertical sections that are not in /. Then we let wg be
such that ¢(2(yo), wo) holds true. Further we let w,, 1 be such that ¢(y{, w,+1) holds
true. Let w € 2* be a single real coding the sequence (w,,)pe, Viar, i.e. 7(n,w) =
w, for every n € w. Find a sequence (m,,)nc, so that m,, € yj for every n and
w(n) = 1iff m, 11 > m,. Such a sequence can be constructed recursively. Whenever
w(n) = 1 we can simply find m, ., € yi" large enough such that m,,,; > m,, and
if additionally w(n + 1),...,w(n + k) is a maximal block of 0s in w then we let
Mpgp1 =+ = Mpyrrr € Y"TEN - Ny +L Finally given the sequence (m,)new
let y = U{{z(v0)(n)} x (y§ \ mn) : n € w}, where z(yp)(n) is the n’th element of
2(yo). We see that y C yy C u, that z(y) = z(yo), that y" =* y{} for every n and that
O(y) = w. In particular y € X by definition of X.

]

3.6 Adding reals

Let AC V. Aset X € Viscalled OD(A) if it is definable over V' from ordinals and
elements of A as parameters. Recall that a poset P is weakly homogeneous if for any
p,q € P, there is an automorphism 7: P — P so that 7(p) is compatible to ¢. In this

section we will denote with P4 the collection of weakly homogeneous OD(A) posets.
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Theorem 3.6.1. Let ¢ be a Cohen real over V, P € (Py)VlY and G a P-generic filter
over V|[c|. Then in V'[c]|G], c is splitting over any set of reals with the finite intersection

property that is OD(V).

Proof. Let X € Vc|][G] be an OD(V) set of reals with the finite intersection property,
say V[d][G] £ “X = {z € [w]“ : ¢(x,a,a)}” where a € V and @ is a finite sequence
of ordinals. Wlog we may assume that X is a filter, since the filter generated by X is
also OD(V'). Suppose ¢ does not split X . This means exactly that c € X orw \ ¢ € X.
Thus there is s C ¢, deciding the formula and parameters defining [P, and p with
ple] € G, (s,p) IF “p defines a filter” so that either

(s,p) IFce X

or

(s,p) Fw\¢eX.

But now notice that ¢ = sU {(n,1 —m) : (n,m) € ¢,n > |s|} is also Cohen
over V with s C ¢ (we identify ¢ as a subset of w with its characteristic function).
Moreover V[c] = V[¢/] and thus P[] = P[¢]. Let po := p[c] and p; := p[¢’]. Working
in V[c| we find that py, p; € P, so there is an automorphism 7 of P so that 7(p;) is
compatible to py. Let H be P-generic over V[c| containing py and 7(p;). In either
of the above cases, V[c|[H] = ¢(c,a,a) A ¢(c,a,a). This is a contradiction to
(s,p) IF “p defines a filter”. O

Theorem 3.6.2. Let r be a random real over V, P € (Py)Vl'l and G a P-generic filter
over V[r]. Then in V[r|[G], r is splitting over any set of reals with the finite intersection
property that is OD(V).

Proof. Let us assume that [P is simply the trivial forcing, since this part of the argument
is essentially the same as in the last proof. As before we fix X € V[r] an OD(V) set
with the finite intersection property and we assume that it is already a filter.

First note that any finite modification of r is still a random real. Moreover, as
complementation is a measure preserving homeomorphism of 2“, the complement of a
random real is still random. Thus any ' =* w \ 7 is still random.

Now similarly as in the proof for Cohen forcing we find that there is Borel set B of

positive measure coded in V' so that » € B and

BlFreX



3.6. Adding reals 41

or
BlFw\ i€ X.

Recall that for any Borel set A of positive measure, its F closure A= {re2v:
Jy € A(xz =* y)} has full measure. To see this Let ¢ > 0 be arbitrarily small. Apply
n(AN[s])

Lebesgue’s density theorem to find a basic open set [s] C 2¢ so that S 1—e.

Follow from this that y(A) > 1 —e.

Now let C' := {w\ z : # € B}. C'is coded in V and has full measure. Thus we
have that r € B N C'. By definition of C, there is ' € B so that 7’ =* w \ r. Moreover
7’ is also a random real over V' by our first remark. r, 7" € X andw \ r,w \ 7’ € X are

both contradictions to X having the finite intersection property. [

Recall that Silver forcing consists of partial functions p: w — 2 so that w \ dom(p)

is infinite.

Theorem 3.6.3. Let s be a Silver real over V, P € (Py)V ¥ and G a P-generic filter
over V[s|. Then, in V'[s], there is a real splitting over any set of reals that is OD(V') in
Vls]|Gl.

Proof. Again we only consider the case when P is trivial. Let X € V[s] be an OD(V)
filter. Let Sy = {n € w : |{m < n:s(m) = 1}| is even}. As before assume p C s is
such that either

plES;e X

or
plFw)\ S; € X.

Let n = min(w \ dom(p)) and note that s’ defined by s'(i) = s(i) for all i # n
and s'(n) =1 — s(n) is also Silver and p C s’. But Sy =* w \ S;. We get the same

contradiction as in the last two proofs. [

Corollary 3.6.4. Let r € 2% and assume that there is a Cohen, a random or a Silver real
over L[r]. Then there is no Al(r) ultrafilter.

In particular, the existence of a Al(r) ultrafilter implies that w; = wlL I,

Proof. Suppose that ¢ is a Xi(r) definition for an ultrafilter and that ¢ is a Cohen,
random or Silver real over L[r]. In L[r|[c|, the set defined by ¢ will have the finite
intersection property by downwards absoluteness. Thus by Theorem 3.6.1, 3.6.2 or
3.6.3 respectively, L[r][c] = 3z € [w]“Vy € [w]*(=e(y)V (JzNy| =wA|lzNw\y| =
w)). This is a X}(z, c) statement, so by upwards Shoenfield absoluteness it holds true
in V' D Lix][c]. Thus ¢ cannot define an ultrafilter in V.
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The second part follows, since whenever wlL[T] < wq, there is a Cohen real in V'
over L[r]. O

Another way of seeing the above for Cohen or random forcing is to use the classical
result of Judah and Shelah (see [30]), saying that the existence of a Cohen or random
real over L[r| is equivalent to every Al(r) set having the Baire property or being

Lebesgue measurable respectively.

Corollary 3.6.5. There is no OD(R) ultrafilter, in particular no projective one, after
adding w; many Cohen reals in a finite support iteration, random reals using a product

of Lebesgue measure or Silver reals in a countable support iteration.

Proof. Let (c, : @ < wy) be Cohen reals added via a finite support iteration over
a ground model V' and suppose that in V[{c, : @ < wi)] there is an ultrafilter ¢/
definable from a real a and ordinals. It is well known that there is £ < w; so that
a € V[{ca: a € wy\ {¢})]. But then, by Theorem 3.6.1, c¢ is splitting over U, since
Vi{ea oo <wn)] = V{ca : a € wi \ {€})][cel.

The argument for random reals is essentially the same.

Let (P,, Qu :a < wy) be the w;-length countable support iteration of Silver
forcing. Any real a appears in V¢ for some ¢ < w;. But now note that P, is OD(V)
and weakly homogeneous. Moreover, P, = P¢ * Pwl. Thus applying Theorem 3.6.3,
we find that there is no ultrafilter definable from parameters in V¢ over V1, In
particular there is no OD({a}) ultrafilter in V%«1. O

3.7 The Borel ultrafilter number

The ultrafilter number u is the least size of a base for an ultrafilter. As with mad families
(see [41]) and maximal independent families (see [8]) it makes sense to introduce a
Borel version of the ultrafilter number that is closely related to the definability of

ultrafilters.
Definition 3.7.1. The Borel ultrafilter number is defined as
up := min{|B|: B C A}, UB is an ultrafilter}.

Note that X; < up, as a countable union of Borel sets is Borel.

Remark 3.7.2. Let u; = min{|B| : B C Af,|J B is an ultrafilter base} and 1, =
min{|B| : B C A}, |JB generates an ultrafilter}. Then vy = uy = up.
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Proof. Obviously, v}, < ul; < up. Remember that whenever B is Borel, then the
filter 5 that it generates is analytic. Thus u/; is uncountable as well. Now let B be a
collection of Borel sets, whose union generates an ultrafilter. We may assume that B is
closed under finite unions. For every B € B, let F'z be the filter generated by B. Since
F'p is analytic, we can write it as an w;-union Fg = J,_,, F§ of Borel sets. Now

consider {F§j : B € B, < wy}. It has the same size as B and is a witness for ug. [

Any coanalytic set is an w;-union of Borel sets. Thus the existence of a coanalytic

ultrafilter base implies that ug = N;.
Theorem 3.7.3. cov(M),cov(N),b <up <u.

Proof. Let B be a collection of < cov(M) many Borel sets and assume that | B has
the finite intersection property. Let M < H (0) for some large 0, so that | M| < cov(M)
and B C M. Then there is a Cohen real ¢ over M. But then in M|c|, ¢ is splitting
over every B € B. Moreover in V' it is true that c is splitting over B, by >;-upwards-
absoluteness. Thus c is splitting over | J B which cannot be an ultrafilter. The argument
for random forcing is exactly the same.

For b < up, note that any Borel filter is meager. By a classical result of Talagrand
(see [64]), meager filters F are exactly those for which there is f € w* so that
Vo € FV®n € w(x N [n, f(n)) # (). For B a collection of Borel filters, we let f5 be
such a function for every B € B. If B has size smaller than b, then there is a single
function f € w” so that fgp <* f for each B € B. Now note that 2y U 1 = w, where
2o = U, [f*(0), f271(0)) and zy = ([, [/*"*1(0), f***2(0)). But neither
nor x; can be in | B. N

Question 3.7.1. Ts it consistent that ug < u? Is it consistent that there is a II] ultrafilter

base while ¥; < u?

We will give a positive answer in the next chapter.






CHAPTER 4

Hypergraphs and definability in
tree forcing extensions

4.1 Introduction

The starting observation for this chapter is that almost all examples of maximal families
that we considered in the introduction can be treated in the same framework, as maximal

independent sets in hypergraphs.

Definition 4.1.1. A hypergraph E on a set X is a collection of finite non-empty subsets
of X,ie. F C [X]<¥\ {0}. Whenever Y C X, we say that Y is E-independent if
[Y]<“ N E = (). Moreover, we say that Y is maximal E-independent if Y is maximal

under inclusion as an E-independent subset of X.

Whenever X is a topological space, [X]<“ is the disjoint sum of the spaces [X]"
for n € w. Here, as usual, [X|" is endowed with the natural quotient topology induced
by the equivalence relation (xq,...,Zn1) ~ (Yo, Yn_1) iff {zo,..., 2y 1} =
{%0, - -, Yn_1} on the space of injective n-tuples on X. Whenever X is Polish, [X]<*
is Polish as well and we can study its definable subsets. In particular, we can study
definable hypergraphs on Polish spaces.

The main result of this paper is the following theorem.

Theorem 4.1.2. After forcing with the wy-length csi of Sacks or splitting forcing over

L, every analytic hypergraph on a Polish space has a A} maximal independent set.

This extends a result by Schrittesser [50], who proved the above for Sacks forcing,

which we denote by S, and ordinary 2-dimensional graphs (see also [51]). We will also

45
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prove the case of finite products but our main focus will be on the countable support
iteration. Splitting forcing SPP (Definition 4.4.1) is a less-known forcing notion that was
originally introduced by Shelah in [55] and has been studied in more detail recently
([61], [62], [25] and [35]). Although it is very natural and gives a minimal way to add
a splitting real (see more below), it has not been exploited a lot and to our knowledge,
there is no major set theoretic text treating it in more detail.

Our three guiding examples for Theorem 4.1.2 will be ultrafilters, maximal inde-
pendent families and Hamel bases.

Recall that an ultrafilter on w is a maximal subset U of P(w) with the strong
finite intersection property, i.e. the property that for any A € [U]<¥, | A| = w.
Thus, letting £, := {A € [P(w)]<¥ : | A| < w}, an ultrafilter is a maximal E,-
independent set. In the last chapter, we studied the projective definability of ultrafilters
and introduced the cardinal invariant ug, which is the smallest size of a collection of
Borel subsets of P(w) whose union is an ultrafilter. If there is a X ultrafilter, then
up = wi, since every 2% set is the union of w; many Borel sets. Recall that the classical
ultrafilter number u is the smallest size of an ultrafilter base. We showed in the last
chapter, that ug < u and asked whether it is consistent that ug < u or even whether
a Al ultrafilter can exist while w; < u. The difficulty is that we have to preserve a
definition for an ultrafilter, while its interpretation in L must be destroyed. This has
been achieved before for mad families (see [9]).

An independent family is a subset Z of P(w) so that for any disjoint Ay, 4; €
2159, [Maetg T N Nypes, @ \ 7| = w. Itis called maximal independent family if it
is additionally maximal under inclusion. Thus, letting £; = {AjUA; € [P(w)]<* :
| MNeeay ® M Npea, @ \ ¥| < w}, a maximal independent family is a maximal £;-
independent set. The definability of maximal independent families was studied by
Miller in [38], who showed that they cannot be analytic, and recently by Brendle,
Fischer and Khomskii in [8], where they introduced the invariant iz, the least size of a
collection of Borel sets whose union is a maximal independent family. The classical
independence number i is simply the smallest size of a maximal independent family. In
[8], it was asked whether ip < i is consistent and whether there can be a IT} maximal
independent family while w; < i. Here, IT] can be changed to Al, as shown in [8]. The
difficulty in the problem is similar to that before.

A Hamel basis is a vector-space basis of R over the field of rationals Q. Thus,
letting F;, = {A € [R]<¥ : Ais linearly dependent over Q}, a Hamel basis is a
maximal £j-independent set. A Hamel basis must be as large as the continuum itself.

This is reflected in the fact that, when adding a real, every ground-model Hamel basis
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is destroyed. But still it makes sense to ask how many Borel sets are needed to get one.
Miller, also in [38], showed that a Hamel basis can never be analytic. As before, we
may ask whether there can be a Al Hamel basis while CH fails. Again, destroying
ground-model Hamel bases, seems to pose a major obstruction.

The most natural way to increase u and i is by iteratively adding splitting reals.
Recall that for z, y € P(w), we say that x splits y iff [z Ny| = wand |y \ x| = w. Areal
x is called splitting over V' iff for every y € P(w) NV, x splits y. The classical forcing
notions adding splitting reals are Cohen, Random and Silver forcing and forcings that
add so called dominating reals. It was showed in Chapter 3, that all of these forcing
notions fail in preserving definitions for ultrafilters and the same argument can be
applied to independent families. For this reason, we are going to use the forcing notion
SP that we mentioned above. As an immediate corollary of Theorem 4.1.2, we get the

following.

Theorem 4.1.3. It is consistent that t = u = 1 = wy while there is a A% ultrafilter,
a 1} maximal independent family and a A} Hamel basis. In particular, we get the

consistency of ig,up < t,1i, U

Here, ¢ is the reaping number, the least size of a set S C P(w) so that there is no
splitting real over S. This solves Question 3.7.1 and the above mentioned question
from [8]. Moreover, Theorem 4.1.2 gives a “black-box" way to get many results, saying
that certain definable families exists in the Sacks model.

In [8], another cardinal invariant i, is introduced, which is the smallest size of
a collection of closed sets, whose union is a maximal independent family. Here,
it is irrelevant whether we consider them as closed subsets of [w]“ or P(w), since
every closed subset of [w]* with the strong finite intersection property is o-compact
(see Lemma 4.5.15). In the model of Theorem 4.1.3, we have that i, = ip, further
answering the questions of Brendle, Fischer and Khomskii. On the other hand we show
that 0 < 1., mirroring Shelah’s result that ? < i (see [68]). Here, 0 is the dominating

number, the least size of a dominating family in (w®“, <*).
Theorem 4.1.4. (ZFC) 0 < i,.

The paper is organized as follows. In Section 4.2, we will consider basic results
concerning iterations of tree forcings. This section is interesting in its own right and
can be read independently from the rest. More specifically, we prove a version of
continuous reading of names for countable support iterations that is widely applica-

ble (Lemma 4.2.2). In Section 4.3, we prove our main combinatorial lemma (Main
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Lemma 4.3.4 and 4.3.14) which is at the heart of Theorem 4.1.2. As for Section 4.2,
Section 4.3 can be read independently of the rest, since our result is purely descriptive
set theoretical. In Section 4.4, we introduce splitting and Sacks forcing and place it
in bigger class of forcings to which we can apply the main lemma. This combines
the results from Section 4.2 and 4.3. In Section 4.5, we bring everything together and
prove Theorem 4.1.2, 4.1.3 and 4.1.4. We end with concluding remarks concerning the

further outlook of our technique and pose some questions.

4.2 Tree forcing

Let A be a fixed countable set, usually w or 2.
(a) A tree T on A is a subset of A< so that foreveryt € T'andn < [t|,t [n € T.
(b) T is perfect if for every t € T there are sy, s; € 1" so that sy, s; 2 t and sg L s;.

(¢) Anodet € T is called a splitting node, if there are i = j € Asothatt™i,t7j €
T. The set of splitting nodes in 7 is denoted split(7").

(d) For any t € T' we define the restrictionof T'totas Ty = {s € T : s [ t}.

(e) The set of branches through 7" is denoted by [T] = {x € A¥ : Vn € w(x [ n €
T)}.

(f) AY carries a natural Polish topology generated by the clopen sets [t| = {z € A¥ :
t Cz}fort € A<“. Then [T is closed in A“.

(g) Whenever X C A¥ is closed, there is a continuous retract p: A — X, i.e.
¢"AY = X and ¢ [ X is the identity.

(h) A tree forcing is a collection [P of perfect trees ordered by inclusion.

(i) By convention, all tree forcings are closed under restrictions, i.e. if 7' € P and
t € T, then T, € P, and the trivial condition is A<¥.

() The set T of perfect subtrees of A<“ is a G5 subset of P(A<) and thus carries a
natural Polish topology. It is not hard to see that it is homeomorphic to w*, when
Al > 2.

(k) Let (T; : i < ) be a sequence of trees where « is an arbitrary ordinal. Then we
write @), 7T; for the set of finite partial sequences 5 where dom 5 € [a]<“ and

for every i € dom s, s(i) € T;.
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(1) (A“)™ carries a topology generated by the sets [s5] = {Z € (A“)* : Vi €
dom 5(x(7) € [s(7)])} for5 € Q),_, A“.

(m) Whenever X C (A“)* and C' C «, we define the projection of X to C as
X1C={z|C:zeX}.

Fact. Let P be a tree forcing and G a P-generic filter over V.. Then P adds a real
rg:=U{s € A VT € G(seT)} € A~

Definition 4.2.1. We say that (P, <) is Axiom A if there is a decreasing sequence of
partial orders (<,,;: n € w) refining < on PP so that

1. foranyn € wand T, S € P,if S <, T, then SN A<" =T N A<",

2. for any fusion sequence, i.e. a sequence (p, : n € w) where p,11 <, p, for

every n, p = [ \,c., Pn € Pand p <, p, for every n,

3. and for any maximal antichain D C P, p € P, n € w, there is ¢ <,, p so that
{r € D :r [ q}is countable.

Moreover we say that (P, <) is Axiom A with continuous reading of names (crn) if

there is such a sequence of partial orders so that additionally,

4. forevery p € P, n € w and y a P-name for an element of a Polish space1 X,

there is ¢ <,, p and a continuous function f: [¢] — X so that
q - 9y[G] = f(zq).

Although (1) is typically not part of the definition of Axiom A, we include it for
technical reasons. The only classical example that we are aware of, in which it is not
clear whether (1) can be realized, is Mathias forcing.

Let (Ps, Qg : B < «) be a countable support iteration of tree forcings that are
Axiom A with crn, where for each § < «,

e, “(<pn € w) witnesses that Qp is Axiom A with crn”.
(n) Foreachn € w,a C «, we define <,,, on P,, where

q<naD e (G<PAVBE (] Blrp, ¢(B)<5.0(B))) .

'In the generic extension V' [G] we reinterpret X as the completion of (X)"'. Similarly, we reinterpret
spaces (A“)%, continuous functions, open and closed sets on these spaces. This should be standard.
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(0) The support of p € P, is the set supp(p) = {f < a:plFp(p) # 1}.

Recall that a condition ¢ is called a master condition over a model M if for any
maximal antichain D € M, {p € D : ¢ J p} C M. Equivalently, it means that for
every generic filter G over V' containing ¢, GG is generic over M as well. Throughout
this paper, when we say that M is elementary, we mean that it is elementary in a large
enough model of the form H(6). Sometimes, we will say that M is a model of set
theory or just that M is a model. In most generality, this just mean that (M, €) satisfies
a strong enough fragment of ZFC. But this is a way to general notion for our purposes.
For instance, such M may not even be correct about what w is. Thus, let us clarify
that in all our instances this will mean, that M is either elementary or a ccc forcing
extensions of an elementary model. In particular, some basic absoluteness (e.g. for
E% or H% formulas) holds true between M and V', M is transitive below w; and w; is

computed correctly.

Fact (Fusion Lemma, see e.g. [3, Lemma 1.2, 2.3]). If (a,, : n € w) is C-increasing,
(D : 1 € w) is such that Vn € W(Pny1 <n.a, Pn) and |, ., supp(Pn) € U, e, @n € o,
then there is a condition p € P, so that for every n € w, p <,, .., Dn; in fact, for every
B<aplBIp(B) = Nyewbn(B):

Moreover, let M be a countable elementary model, p € M NP, n € w,a € MNa
finite and («; : i € w) a cofinal increasing sequence in M N«. Then thereis § <, ., pa
master condition over M so that for every name 1y € M for an element of w* and j € w,

there is i € w so that below q, the value of vy | j only depends on the P, -generic.

(p) For GG a P,-generic, we write Z for the generic element of || B<a A“ added by
P..

Let us from now on assume that for each 8 < avand n € w, Qg and <g,, are fixed
analytic subsets subsets of 7 and 72 respectively, coded in V. Although the theory
that we develop below can be extended to a large extend to non-definable iterands, we

will only focus on this case, since we need stronger results later on.

Lemma 4.2.2. For any p € P,, M a countable elementary model so that P,,p € M
andn € w,a C M N« finite, there is ¢ <,,, p a master condition over M and a closed
set [q] C (A“)“ so that

1. gl zg € [q],

forevery < q,
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2.qkq(B) ={se A~ :Fzelgd(zIB=Tc [ BAs C2(B))}

3. the map sendingx € [q] [ fto{s € A~V :z€ gz =T NsCz(p))}is

continuous and maps to Qg,
and for every name 1y € M for an element of a Polish space X,
4. there is a continuous function f: [q] — X so that ¢ -y = f(Zq).
(q) We call such g as in Lemma 4.2.2 a good master condition over M.

Before we prove Lemma 4.2.2, let us draw some consequences from the definition of a

good master condition.

Lemma 4.2.3. Let ¢ € P, be a good master condition over a model M and y € M a

name for an element of a Polish space X.
(i) Then [q| is unique, in fact it is the closure of {Zg : G > q is generic over V'}.
(ii) The continuous map [ [q] — X given by (4) is unique and
(iii) wheneverY € M is an analytic subset of X and G \F § € Y, then f"[q) C Y.
Moreover, there is a countable set C' C «, not depending on 1), so that

(iv) [q) | C is a closed subset of the Polish space (A“)¢ and [q] = ([q] | C) x
(Aw)a\c’

(v) forevery B € C, there is a continuous function g: [q] | (C'N () — Qp, so that
forevery T € [q,

g1 (@np))={seA™:Jzelg(z18=21BNsC2(p)}

(vi) there is a continuous function f: [q] | C — X, so that

Proof. Let us write, for every § < aand = € [q] | £,
T ={s€A:3zeqz|=2NsCz(0))}

For (i), let 5 € Q),_,, A< be arbitrary so that [5] N [g] is non-empty. We claim that

there is a generic GG over V' containing g so that Zs € [s]. This is shown by induction
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on max(dom(s)). For 5 = () the claim is obvious. Now assume max(dom(5)) = 3,
for 5 < a. Then, by (3), O := {z € [q] : s(B) € T3} is open and it is non-empty
since [5] N [q] # (). Applying the inductive hypothesis, there is a generic G > 7 so that
Tg € O.In V|G | ] we have, by (2), that T, 15 = ¢(3)[G]. Moreover, since Z¢ € O,
we have that s(3) € ¢(8)[G]. Then it is easy to force over V[G | ], to get a full P,
generic H O G | B containing g so that Ty | § = Z¢ | f and s(B) C zx(5). By (1),
for every generic G over V' containing ¢, Z¢ € [G]. Thus we have shown that the set of
such Z is dense in [g]. Uniqueness follows from [g] being closed.

Now (ii) follows easily since any two continuous functions given by (4) have to
agree on a dense set.

For (iii), let us consider the analytic space Z = {0} x X U {1} x Y, which is the
disjoint union of the spaces X and Y. Then there is a continuous surjection F': w¥ — Z
and by elementarity we can assume it is in M. Let us find in M a name 2 for an element
of w¥ so that in V|G|, if §[G] € Y, then F(Z[G]) = (1,y[G]), and if §[G] ¢ Y, then
F(Z[G]) = (0,9[G]). By (4), there is a continuous function g: [q] — w* so that
gk 2 = g(zg). Since ¢ I y € Y, we have that for any generic G containing ¢,
F(g9(zg)) = (1, f(Zg)). By density, for every = € [q], F(g(z)) = (1, f(Z)) and in
particular f(z) € Y.

Now let us say that the support of a function g: [g] — X is the smallest set C; C «
so that the value of ¢(Z) only depends on Z | C,. The results of [7] imply that if g is
continuous, then ¢ has countable support. Note that for all 5 ¢ supp(q), the map in
(3) is constant on the set of generics and by continuity it is constant everywhere. Thus
it has empty support. Let C' be the union of supp(g) with all the countable supports
given by instances of (3) and (4). Then C is a countable set. For (iv), (v) and (vi),
note that [g] | C = {7 € (A“)¢ : g~ (Z | a\ C) € [g]} for Z € [g] arbitrary, and
recall that in a product, sections of closed sets are closed and continuous functions are

coordinate-wise continuous. L]

Proof of Lemma 4.2.2. Let us fix for each 5 < « a continuous surjection Fjz: w* —
Qg. The proof is by induction on av. If & = f+1, then P, = ]P’g*QB. Letqo <,.D [ B
be a master condition over M and H > ¢ a P3 generic over V. Then, applying a
standard fusion argument using Axiom A with continuous reading of names in V[H]
to Qg, we find ¢(3) <z, p(S) a master condition over M [H| (note that H is also M
generic since ¢ is a master condition over /) so that for each name § € M[H| for
an element of a Polish space X there is a continuous function f: [¢(5)] — X so that
q(B) Ik y = f(i¢). Thus we find in V', a Pg-name ¢(3) so that g, forces that it is such a
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condition. Let M* > M be a countable elementary model containing ¢(/5) and g, and
let ¢1/2 <n.a o be a master condition over M *. Againlet M ™+ 5 M be a countable
elementary model containing ¢ /2. By the induction hypothesis we find 1 <,, 4 G1/2
a good master condition over M. Finally, let § = ¢ ¢(5). Then ¢ <, , p and
q is a master condition over M. Since ¢(8) € MT C M™T, there is a continuous
function f: [§1] — w¥, so that ¢, IF3 Fs(f(Zm)) = ¢(B). Here note that Fj is in M
by elementarity and we indeed find a name Z in M so that gy IF Fj3(2) = ¢(5). Let
@) = {z € (A)" 2 | B € (@) A2(B) € [F5(f(& | $))]}. Then [q] is closed and (1),
(2), (3) hold true. To see that [q] is closed, note that the graph of a continuous function
is always closed, when the codomain is a Hausdorff space. For (4), let y € M be a
P,-name for an element of a Polish space X. If H > ¢; is V-generic, then there is
a continuous function g: [¢(8)] — X in V[H] so that V[H] = q(5) I+ g(ig) = ¥,
where we view y as a Qg-name in M[H]. Moreover there is a continuous retract
@: AY — [¢(B)] in V[H]. Since M was chosen elementary enough, we find names ¢
and ¢ for g and ¢ in M. The function g o ¢ is an element of the space? C(A%, X),
but this is not a Polish space when A is infinite, i.e. when A“ is not compact. It is
though, always a coanalytic space (consult e.g. [33, 12, 2.6] to see how C'(A¥, X ) is a
coanalytic subspace of a suitable Polish space). Thus there is an increasing sequence
(Ye 1 £ < wi) of analytic subspaces such that | J,_,, Ye = C(A”, X) and the same
equality holds in any w;-preserving extension. Since q; /» is a master condition over
M, we have that 15 |- go ¢ € Ye, where & = M* Nw;. Since ¢ is a good
master condition over M and Y, € M, by Lemma 4.2.3, there is a continuous
function ¢’ € V, ¢’ [1] — Ye, sothat ¢; IF ¢'(Zy) = g o ¢. Altogether we have that
gy =g (xc | B)(xa(B)).

For « limit, let (o; : i € w) be a strictly increasing sequence cofinal in M N «
and let ¢y <,, , p be a master condition over M so that for every name y € M for an
element of w”, j € w, the value of 7 | j only depends on the generic restricted to P,,,
for some ¢ € w. Let us fix a “big" countable elementary model NV, with gy, M € N.
Let (a; : @ € w) be an increasing sequence of finite subsets of N N « so that ay = a

and (¢,
initial segments lying in NV, so that for every i € w,

a; = N N a. Now inductively define sequences (M, : i € w), (F; : i € w),

- My=M,7y=qo | ap,

- M;.11 > qo 1s a countable model,

The topology is such that for any continuous h mapping to C(A%, X), (z,y) — h(z)(y) is
continuous.
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- M, 7, a; € My
- 7; 1s a good P, master condition over M;,
- Tit1 <ptiainas 75 Qo | [0, Qigr).

Define for each i € w, ¢ = 7 ¢o | [, ). Then (g : i € w) is a fusion
sequence in P, and we can find a condition ¢ <,,, Go <, P, Where for each 3 < a,
a1 81 q(B) = N, &(B). Finally let [g] := (), ([7:] x (A%)l**)). Then (1) is
easy to check. For (4), we can assume without loss of generality that ¢ is a name for
an element of w* since for any Polish space X, there is a continuous surjection from
w* to X. Now let (i;) e, be increasing so that ¢ | j is determined on Paij for every
J € w. Since T is a good master condition over M, there is a continuous function
fit[Fi,] = w sothat7 -y | j= fj(iZ'G&ij) for every j € w. It is easy to put these
functions together to a continuous function f: [q] — 2¥,sothat f(z) [ j = f;(Z | ;).
Then we obviously have that 7 IF § = f(Zg).

Now let us fix for each 7 € w, C; C «; a countable set as given by Lemma 4.2.3
iew Ci- Then
(@ = [q] | C x (A*)*\® and [g] | C'is closed. For every 3 € o \ C, the map given in
(3) is constant and maps to Qg, as A<* is the trivial condition. Thus we may restrict
our attention to 3 € C. Let us write X; = ([7;] x (A¥)l*®)) | C for every i € w and
note that (), , X; = [q] [ C. Forevery 3 € C,z € [q] | (C N ) and i € w, we write

applied to 7;, M;, which by elementarity exists in N. Let C' = |J

Ty ={s€A:3zelg |CEIB=TAsCz(p)}

and
Ti={s€cA:3ze X;(z [ B=2NsCz())}

Claim 4.2.4. For every i € w, where 3 € a;, Ti"" <g,; Tt In particular, (., T%: €
Qs

Proof. If a1 < f3, then Tit' = T¢ = A<“. Else consider a P,,,,-name for
(T;*', 1) € T? where § = I | (C'N ). Such a name exists in M;,5 and
B € a; € M,yo. Thus <€ M, o and by Lemma 4.2.3, we have that for every
§ € [Fixa] 1 (CNB), (T4, T}) €<p,. thus also for jj = . The rest follows from the
fact that the statement, that for any fusion sequence in Qg, its intersection is in Q, is

IT} and thus absolute. O

Claim 4.2.5. T, = .., T%.

iEw T T



4.3. The Main Lemma 55

Proof. Let5 € R, A~“ and j € w be so that dom(5) C a;, MaX;cdoms) |5i| < J
and [s] N X; # (. Then we have that for every i € w, [s] N X; # 0. This is
shown by induction on max(dom(s)). If max(dom(s)) = minC'\ &, then the set
O={geX; ¢ ges]&,s(¢) € Tg} is open non-empty by continuity of the
map in (3) for 7*;. Applying the inductive hypothesis to O, we get for every ¢ > j, some
Z, € ON(X; ). Since T <¢; TZ and |s(€)| < j, we have that s(¢) € T% and we
can extend z; to z € X; N [s]. For i < j, there is nothing to show since then X; C X,

That T; C (., 7% is clear. Thus let s € (., 7%, say |s| = j. The claim is
proven by constructing recursively a sequence (5; : i > j) so that for every i € w,
dom(5;) =a;NC,VE € a; NC(|s:(&)| = 4), s:(B) 2 s, €[5 ] ] and [5,] N X; # 0.
Starting with 5o = {(, s)}, this sequence is easy to construct via the statement that
we just proved. Then ();5,[8;] is a singleton {z} so that z [ 8 = Z, 2(8) 2 s and
zelq | C. O

Now (2) follows easily. For the continuity of z — T}, let t € A<“ be arbitrary and
j large enough so that [t| < jand f € a;. Then{z € [q] [ B:t ¢ T:} ={z € [q] |
B:t¢Tiyand{z € [q | B:teTs} ={z€lq|B:te T} which are both open.
Thus we have shown (3). L]

Lemma 4.2.6. Let C C « be countable and X C (A“)C be a closed set so that for
every € Candx € X | f5,

{se A :Fze X(zB=TNsCz(p))} € Qs

Let M > X be countable elementary. Then there is a good master condition i over M
sothat [7] | C C X.

Proof. 1t is easy to construct ¢ € M recursively so that ¢ IF z¢ | C € X. By
Lemma 4.2.2, we can extend ¢ to a good master condition 7 over M. The unique
continuous function f: [7] — (A“)¢ so that for generic G, f(Z¢) = Z¢ | C, is so that
f(z) =z | Cforevery z € [r]. Since f mapsto X, [7] | C' C X. O

4.3 The Main Lemma

4.3.1 Mutual Cohen Genericity

Let X be a Polish space and M a model of set theory with X € M. Recall that x € X
is Cohen generic in X over M if for any open dense O C X, such that O € M, x € O.



56 Chapter 4. Hypergraphs and definability in tree forcing extensions

Let zg,...,x,_1 € X. Then we say that x, . .. x,_1 are mutually Cohen generic
(mCg) in X over M if (yo, ..., yx_1) is Cohen generic in X over M, where (y; : i <
K) is some, equivalently any, enumeration of {zy, ..., x,_1}. In particular, we allow

for repetition in the definition of mutual genericity.

Definition 4.3.1. Let (X; : | < k) € M be Polish spaces. Then we say that
To, .., Tn-1 € | [, Xi are mutually Cohen generic (mCg) with respect to the product
[1,-. X over M, if

(o, .y ) ,y,ffl_l) € HXlKl is Cohen generic in HXZKZ over M,

I<k <k

where (y} : i < Kj) is some, equivalently any, enumeration of {x;(l) : i < n} for each
[ <k.

Definition 4.3.2. Let X be a Polish space with a fixed countable basis . Then we
define the forcing poset C(2, X)) consisting of functions h: 25" — B\ {(}} for some
n € w such that Vo C 7 € 25"(h(o) 2 h(7)). The poset is ordered by function

extension.

The poset C(2¥, X') adds generically a continuous function x: 2* — X, given by
x(z) = y where (., h(z [ n) = {y} and h = [J G for G the generic filter. This
forcing will be useful in this section several times. Note for instance that if G is generic
over M, then for any = € 2*, x(z) is Cohen generic in X over M, and moreover,
for any g, ..., x,—1 € 2¥, x(20), ..., X(2,_1) are mutually Cohen generic in X over
M. Sometimes we will use C(2¥, X)) to force a continuous function from a space

homeomorphic to 2¢, such as (2¥)* for @ < w;.

Lemma 4.3.3. Let M be a model of set theory, K,n € w, X; € M a Polish space

forevery j < nand G al],_, C(2¥, X,)-generic over M yielding x;: 2* — X;

j<n
for every j < n. Then, whenever T is Cohen generic in (2*)% over M|G] and

Uy - -+, Up—1 € 2 N M |Z] are pairwise distinct,
T(x;(w) i <n,j<n)

is Cohen generic in
(Zw)K X HXi
<n

over M.
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Proof. Since 7 is generic over M it suffices to show that (x;(u;) : ¢ < n,j) is generic
over M(z]. Let O € M be a (2<“)*-name for a dense open subset of []._, (X;)" and

u; a (2<“)K -name for u;, 1 < n, pairwise distinct. Then consider the set

j<n(

D:={(h,5) € []C2*, X:) x (2)" : 3ty, ...ty € 2°
<n
(Vi <n(slt; Ci) AslE [T hi(t:) € O)}.
ij<n
We claim that this set is dense in [],_, C(2¥, X;) x (2<“)¥ which finishes the
proof. Namely let (h, 5) be arbitrary, wlog dom h; = 25" for every j < n. Then we
can extend 5 to § so that there are incompatible ¢;, with |¢;| > ng, so that & IF ¢; C 4,
and there are U, ; C h;(t; [ no) basic open subsets of X; in M for every ¢ < n and
j<mn,sothats IF ][, Ui; C O. Then we can extend / to /2’ so that h(t:) = Ui
for every i, j < n. We see that (h/,5') € D. O

4.3.2 Finite products

This subsection can be skipped entirely if one is only interested in the results for the
countable support iteration. Nevertheless, the following lemma is interesting in its own

right and can be seen as a preparation for Main Lemma 4.3.14.

Main Lemma 4.3.4. Letk € wand E C [(2¥)*]<« \ {0} an analytic hypergraph on
(2@)%. Then there is a countable model M so that either

1. forany Zo, ..., ZT,—1 € (2)F that are mCg wrt [],_, 2¢ over M,

{Zo,...,%n_1} is E-independent

or for some N € w,

2. there are ¢y, ..., dn_1: (2¥)" — (2*)* continuous, § € ),_, 2= so that for
any Iy, ..., T,—1 € (2¥)" N [3], that are mCg wrt [,_, 2* over M,

{¢;(Z;) : j < N,i < n}is E-independent but {Zo} U {¢;(To) : j < N} € E.

Remark 4.3.5. Note that N = 0 is possible in the second option. For example whenever
[(2¥)*]! C E, then () is the only E-independent set. In this case the last line simplifies
to “{j:(]} E E".
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Proof. Let k = Jg;,_1(Xg) ™. Recall that by ErdGs-Rado (see [31, Thm 9.6]), for any
c: [k]** — H(w), there is B € [x]™ which is monochromatic for c, i.e. ¢ | [B]** is

constant. Let Q be the forcing adding x many Cohen reals
(%(1,a) : @ < k) in2” foreach | < k

with finite conditions, i.e. Q = [[5“(2<“)*. We will use the notational convention that
elements of [k]%, for d € w, are sequences & = (ap, . .., aq_;) ordered increasingly.
For any a € [k]* we define Z5 := (2(0,a0)s - - - » 2(k—1,00_1)) € (2°)".

Let A be a Q-name for a maximal E-independent subset of {Z; : @ € [x]},

reinterpreting E in the extension by Q. For any & € [k]*, we fix p; € Q so that either
Pa=1Apslrzze A (1
or
pa -z € A. )
In case (2) we additionally fix Ny < w and (5%);<n, = (B*(@))i<n,, and we assume
that
PalF {Z5 i < Na} CAN{Z:} U {25 :i < Na} € E.
We also define H)(a) = {8} : i < Ny} U{y} € [k|<“ foreach [ < k.

Now for @ € [k]** we collect the following information:

(i) whether paii = Pao,....an1 F Zapk € A or not,

~~~~~

(i) 5= (pak(0,0), ..., pak(k — 1, ax_1)) € (2<)F,

(iii) the relative position of the ps for ¥ € T' := [],_, {2, ag11} to each other.
More precisely consider . dom py = {0} x do U~ --U{k — 1} x dj_, where
do,...,dy—1 C k. Let M; = |d;| for | < k and for each ¥ = (o, ..., a;,_,)
collect r; with domr; C {0} x Mo U ---U{k — 1} x Mj_; and r;([,m) =

p~(1, Bm) whenever 3, is the m’th element of d;.
In case pai - Zapk ¢ A we additionally remember
(iv) N = Najk,
(v) Ny = |H(a | k)|, foreach [ < k,

(vi) b € [, NV so that 3] is the b th element of H;(a | k), for eachi < N,
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(vii) @ € [],., Vi so that oy is the a;"th member of H;(a [ k),

(viii) the partial function » with domain a subset of | J,_, {{} x IV;, so that r(I,m) =
t € 2<¥iff pai (1, B) = t where 3 is the m’th element of H;(a | k).

And finally we also remember

(ix) for each pair 7,0 € [],_,{ca, azi1}, where 5 = (a,)icx and & = (oj7)i<ks
finite partial injections e;;5: N; — N; so that ¢;;5(m) = m’ iff the m’th

element of H;(7) equals the m’’th element of H,(J).

This information is finite and defines a coloring c: [x]?** — H(w). Let B € [k]“*
be monochromatic for c. Let M < H () be countable for ¢ large enough so that
k., B, (ps @€ [k]F),E,Ae M.

Claim 4.3.6. If for every a € [B]F, pa IF Z5 € A, then (1) of the main lemma holds

true.

Proof. Let Zy, . .., T,_1 be arbitrary mCg over M. Say {z;(l) : i < n} is enumerated
by (y; : i < K;) for every [ < k. Now find

0 Ko—1

Ky _1—-1
Oéo < ctt < Ofo

< o« e <a2_1 < <ak‘71
in M N B. Then there is a Q-generic G over M so that for any j € [],_, K,

230Gl = (W, ...,y ),

where 5 = (al°, ... ,osz:f). In particular, for each i < n, there is 3; € [B N M]* so

that 5, [G] = :T:Z7 Since pz, = 1 € G for every j3; we have that
M[G] = z; € AlG]
for every 7 < n and in particular
MIG] E {&; : it < n} is E-independent.
By absoluteness {Z; : i < n} is indeed E-independent. O
Assume from now on that ps I+ Z; ¢ A for every @ € [B]*. Then we may fix 5,

N, (Np)i<k, b fori < N, a,rand e;;; forall | < kand j,j" € [[,_.{2U',2l' + 1}

corresponding to the coloring on [B]?*.
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Claim 4.3.7. For any & € [B]* and 7,6 € [[,_,{car, a1},
ps | (domps Ndomps) = ps | (dom p; N dom pj).

Proof. Suppose not. By homogeneity we find a counterexample @, 7, 6 where B N
(o, cigpr41) is non-empty for every I’ < k. So let (I, ) € dom p; N dom p; such that
p+(1, 8) = u # v = ps(l, B). Let p € [B]* be such that for every I’ < k,

pr € (v, o) ifyp < op
pr € (Op,yr) if op <
P = Y if Y = 51/.

Now note that p’s relative position to 7 is the same as that of § to 7. More precisely,
let j,5 € [T, {20, 21" + 1} so that 5 = (o, ..., 05, ), 6 = (augy, - .. ,ajr ). Then
there is 3 € [B]* so that 5 = (8j,,...,0;,_,) and p = (8j,...,B; ). Thus by
homogeneity of [B]?* via ¢, p,(l, 3) = v. Similarly 4 is in the same position relative to

p as to 7. Thus also p;((, 5) = u and we find that v = u — we get a contradiction. [J

Claim 4.3.8. Foranyl < kand j,j € [[,_.{2U',2I' + 1}, e;55(m) = m for every

m € dome;; ;.

Proof. Let ag < -+ < agp € B so that (agy, agpy1) N B # () for every I < k.
Consider 7 = (o, vk, 6 = (ajr, Ju<k and again we find p € [B]* so that py is
between (possibly equal to) cy;, and ay,. If €55 (m) = m/, then if 8 is the m’th

element of H;(7), then § is m”’th element of H;(¢) aswell as of H;(p). But also [ is
the m’th element of H;(p), thus m = m/. O

Note that by the above claim ¢; ; 5 = (elJ,J)_l = ¢; 7 ; and the essential informa-

75”5
tion given by ¢; ; 5 is it’s domain.
Next let us introduce some notation. Let L be an arbitrary linear order. For any

g € {—1,0,1}* we naturally define a relation Rg on L as follows:

-1
0
1.

v < ifg(l)
DRy V< kS yy = w if g(1)

v >y if g(1)

Further we write 7R,/ iff 7R,fi or iR,. Enumerate {R, : g € {—1,0,1}*} without
repetition as (R; : ¢ < K) (it is easy to see that K = 3k2—+1). Note that for any v, i there
is aunique 7 < K so that 7 R;ji. Now foreach [ < k and i < K, we let

I; :=dome; ;5 C N,
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where jR;j'. By homogeneity of [B]** and the observation that ¢, ; 7 = ¢, 7, we see
that I; ; does not depend on the particular choice of 7, j/, such that j R;j’.

We consider the <., order on 2¢. For each [ < k and m < N;, we define a relation
Ey ., on (2¥)* as follows:

2By <+ m € I;; where ¢ 1s such that T R;y.
Claim 4.3.9. E, ., is an equivalence relation.
Proof. The reflexivity and symmetry of £ ,, is obvious. Assume that ZoE ,,Z; and
lel,ija and say jORiojl’ flRili‘Q and ZfoRZ‘QZEQ. Find /70, ’717 ’72 c [B]k so that
{(ve:i<3y<---<{y_,:i<3}
and
V' Ri7 Y Ry A Ry

If 3 is the m’th element of H;(7°), then {3 is also the m’th element of H;(F1), since
we can find an appropriate @ € [B]** and j, j’ so that 3° = (a;, )i<x and 7" = (ar)i<r,
jRi,j" and we have that m € I;;,. Similarly 3 is the m’th element of H;(7?).

But now we find again @ € [B]** and j, ;' so that 7° = (a;, )i<x and 7% = (1)<

Thus m € I;;,, as ;55 (m) = m and Zo L , To. O

Claim 4.3.10. E;,, is smooth as witnessed by a continuous function, i.e. there is a

continuous map @y, (2°)% — 2% so that TEy .7 iff 01.m(Z) = @1.m ().
Proof. We will check the following:
(a) For every open O C (2*)*, the E,, saturation of O is Borel,

(b) every Ej ,, equivalence class is G.

By a theorem of Srivastava ([63, Thm 4.1.]), (a) and (b) imply that £ ,,, is smooth,

i.e. we can find ¢ ,, Borel.

(a) The E;,, saturation of O is the set {7 : dy € O(ZE},,,y)}. It suffices to check
for each g € {—1,0,1}* that the set X = {Z : 35 € O(ZR,7)} is Borel. Let
S = {7 € (2°%) :[og] x -+ x [op_1] C O}. Consider

Ty <lex op 0¥ if g(l,) =-1
op 1Y <yex TP if g(l,) =1
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If o(Z) holds true then let & witness this. We then see that there is § € [og] ¥

- X [oy_1] with ZR,7. On the other hand, if § € O is such that Z R,7, then we
find ¢ € S defining a neighborhood of § witnessing ¢(Z). Thus X is defined by
¢ and is thus Borel.

(b) Since finite unions of Gs’s are G it suffices to check that {z : ngg} is G5 for
every jjand g € {—1,0,1}*. But this is obvious from the definition.

Now note that given ¢, ,,, Borel, we can find perfect Xy, ... X;_; C 2 so that ¢; ,,
is continuous on Xy X - -+ X Xj_1 (¢, 1s continuous on a dense G). But there is
a <jex preserving homeomorphism from X to 2* for each [ < k so we may simply

assume X; = 2¢. O

Fix such ¢, ,,, for every [ < k, m < Nj, so that ¢, ,,(Z) = x; (note that TE; .,y iff
x; = y;). Now let My < H(0) countable for  large, containing all relevant information
and ¢, € M, forevery | < k, m < N;. Let x;m: 2 — [r(I,m)] for | < k and
m # a; be generic continuous functions over My, i.e. the sequence (Xim)i<k.me N\{ar}
i8 [ T1ck meny fary (27, [r(1, m)]) generic over Mo. Let us denote with M the generic
extension of M,. Also let x;,, for m = q; be the identity and 1, ,,, = Xi.m © ¥i.m for

all [, m. Finally we set
$i(T) = (V11 (T))1<k
for each s < N.

Claim 4.3.11. (2) of the main lemma holds true with M, § and ¢;, © < N, that we just
defined.

Proof. LetZy. ..., T, € [5] be mCg wrt [],_, 2 over M. Let us write {Z;(1) : i <
n} = {yi 1 i < K;} forevery | < k, where ¢ <jex -+ <ex lel_l. Now find

0 Ko—1
@0<"'<OCO

in ‘B N M. 'For every j € [I,-: Ki, define y; := (yé(o), e ,yi(fl_l)) and a; =
(af)(o), . ,ozfc(_kl_l)). Then, for each i < n, we have j; € [],_, K; so that z; = y;,. For

each i < n define the function g;: |, {I} x H;(a5,) — 2, setting

7

gl(l7 B) = wl,m(fi)a

whenever (3 is the m’th element of H;(a;, ).
Now we have that the g; agree on their common domain. Namely let ¢y,7; < n and

(1, 8) € dom g;,Ndom g;,. Then if we set i to be so that Z;, R;;,, we have that m € I;;,
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where 3 is the m’th element of H, l(@iz‘o) and of H, l<0_‘3¢1 ). In particular z; ) ,,,%;, and

Y1m(Tiy) = P1m(T:,) and thus
o (1 8) = m(Tio) = Xam(Dn(T) = Xtm(£1m(Ti)) = Y (Ti) = 90 (1, ).

Let g := {U,.,, 9i- Then we see by Lemma 4.3.3, that g is Cohen generic in
[T(6)cdom g 2° over M. Namely consider K = >, ; K; and (y3,... ,y,ffl‘l_l) as a
(2<«)K_generic over M. Then, if (u; : i < n') enumerates {@;,,(7;) : i < n,l <
k,m < N;}, we have that every value of g is contained in {x;,(u;) : i < n',l <
k,m < N;}. Also note that by construction for every i < n, Pa;;, | dom g is in the
generic filter defined by ¢. Since {p% : 1 < n} is centered we can extend the generic
filter of g to a Q-generic G over M so that ps;, € G for every i < n.

Now we have that
Za;, |G] = z; and EBj(aji)[G] = ¢;(;)
forevery ¢« < nand j < N. Thus we get that
MG = (J{e(@) - j < N} € AIG] A {0} U {¢5(70) : j < N} € E.
i<n

Again, by absoluteness, we get the required result. [

4.3.3 Infinite products

Definition 4.3.12. Let (X, : i < o) € M be Polish spaces indexed by a countable
ordinal a. Then we say that Z,...,%Z,-1 € [], <o Xi are mutually Cohen generic

(mCg) with respect to the product [[.__ X; over M if thereare { =0 < --- < & = «

<o

for some k£ € w so that

Zo, - .., Ty_1 are mutually Cohen generic with respect to H Y; over M,
I<k

where Y = [];c,¢,,) Xi forevery [ < k.

Note that whenever Z, ..., Z,_, are mCg over M with respect to [], ., X; and
B<a,thenzy | fS,...,%,_1 | fare mCg over M with respect to HKﬁ X;.

Definition 4.3.13. We say that Ty, ...,7,_1 € [[,_, X; are strongly mCg over M
with respect to [ [,_, X if they are mCg over M with respect to [ [,_,, X; and for any

i,j <n,if £ =min{f < a:z;(8) # z;(5)}, then z;(B) # x;(B) forall § > &.
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Main Lemma 4.3.14. Let o < wy and E C [(2¢)%]<* \ {0} be an analytic hypergraph.
Then there is a countable model M, o + 1 C M, so that either

1. forany o, ..., Z,—1 € (2¢)* that are strongly mCg with respect to [ [, _, 2 over
M,
{Zo,...,%n_1} is E-independent
or for some N € w,
2. there are ¢y, ..., ¢n_1: (29)* — (2¥)* continuous, 5 € §),_, 2 so that for

any Zo, ..., Tn—1 € (2¥)* N [5] that are strongly mCg over M,

{¢;(z;) : 7 < N,i < n}is E-independent but {Zo} U {¢;(70) : j < N} € E.

Proof. We are going to show something slightly stronger. Let R be an analytic hyper-
graph on (2¥)* X w, M a countable model with R € M,a+ 1 C M and k € w. Then
consider the following two statements.

(1)g sk For any pairwise distinct Zo, . . ., Z,—; that are strongly mCg with re-

spectto [ [, 2¢ over M, and any ky, ... Kk, <k,

{Zo " ko,...,Zn-1" kn—1} is R-independent.

(2)r,mk: Thereis N € w, there are ¢y, ..., ¢n_1: (2)* — (2¥)* continuous,
such that for every z € (2¥)* and jy < j1 < N, ¢;,(Z) # ¢;, (%) and ¢, (7) # 7,
there are kg, ..., ky_1 < kand s € ®i<a 2<¢ so that for any pairwise distinct

To, ..., Tp_1 € (2¥)* N [5] that are strongly mCg with respect to [],_, 2 over

M,

{¢;(z;)"k; : 7 < N,i < n}is R-independent, but
{50k} U {65(50) Ky 1 j < N} € R
In fact, if £ > 0,

{z.7(k—=1):i<n}U{¢;(Z;)"k;: j < N,i <n}is R-independent.

We are going to show that whenever (1)g sy is satisfied, then either (1)g a1 OF
there is a countable model M* D M so that (2)g s+ 5. From this we easily follow
the statement of the main lemma. Namely, whenever F is a hypergraph on (2¢)?,

consider the hypergraph R on (2“)* x w where {Zo " ko, ..., Tp1 " kn_1} € R iff
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{Zo,...,Tn—1} € R. Then, if M is an arbitrary countable elementary model with
R, € M andif k = 0, (1) g arx holds vacuously true. Applying the claim we find M *
so that either (1) a1 or (2) g s+ 0. The two options easily translate to the conclusion
of the main lemma.

Let us first consider the successor step. Assume that « = 5 + 1, R is an analytic
hypergraph on (2“)* x w and M a countable model with R € M, + 1 C M so that
(1) g.azx holds true for some given k € w. Let Q be the forcing adding mutual Cohen
reals (29, ;, 214 : i,j € w) in 2*. Then we define the hypergraph R on (2¢)? x w
where {70 "m0, . . ., Jno1 " Mn_1} € RN [(2°)? x w]™ iff there is p € Q and there are
Kic€w kig,..., kiK1 <kforeveryi < n, so that

p ko U{ﬂiAZ'oMAk‘i,j < KiYU{y 4k j <m} €R.
i<n

Then R is analytic (see e.g. [33, 29.22]).

Claim 4.3.15. (1) ), , is satisfied.

Proof. Suppose o, - .., Y,_1 are pairwise distinct and strongly mCg over M, but
{9070, ...,Un—170} € R as witnessed by p € Q, (K; : i < n) and (kijri<mn,j<
K;), each k; ; < k. More precisely,
plFg U{QiAZO,i,jAk?z‘,j 1j < Ki} € R (o)
<n
By absoluteness, () is satisfied in M[yo, . .., Yn—1]. Thus, let (zo, j, 21 : 4, j €

w) be generic over M|y, ...,Yn—1] With p in the associated generic filter. Then

(Ui™ 20,,5) - @ < n,j < K;) are pairwise distinct and strongly mCg over M, but
U{gi/\Z(),iJAk?i’j ] < Kz} € R.
<n

This poses a contradiction to (1) g as - O

Claim 4.3.16. If (1) ), is satisfied for every m € w, then also (1)g s k+1-

Proof. Let Ty, ..., T,_1 € (2¥)* be pairwise distinct, strongly mCg over M and let

ko, ..., k,_1 < k. Then we may write {Zo " ko, ..., ZTn_1 kn_1} as
U Wi 2005 iy 1§ < K} UG 21057 k0§ <ma}, (*1)
i<n/

for some pairwise distinct g, ..., Yy—1, (K; 1 @ < n'), (kij i < n',j < K;),

(m; »i<n)yand (20, : 1,7 € w), (z1,; : 1,J € w) mutually Cohen generic in 2*
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over Mo, ..., Yn—1]. Letting m = max;-,,, m; + 1, we follow the R-independence

of the setin (x1) from (1) 1 .- O

Claim 4.3.17. If there is m € w so that (1) ., fails, then there is a countable model
M+ DO M so that (Z)R,MJr,k-

Proof. Letm > 1 be least so that (2) z , ,,, for some countable model My O M. We
know that such m exists, since from (1) 5 5, , we follow that either (1) 5,5 O (2) 7 0, 1
for some Mo, then, if (1) ), o, €ither (1) z 5/ 5 O (2) 3, o fOr some My, and so on. Let
G0y -y ON_1, Mo, ..., Mmy_1 <mand s € ®i<ﬁ(2<“) witness (2) z yz, - L€t My be
a countable elementary model such that ¢, ..., ¢pn_1, My € M;. Then we have that

for any 7 that is Cohen generic in (2*)° N [3] over M, in particular over M, that
{7-m}U{e;(5)"m;:j <N} €R,

i.e. thereis p € Q, there are K; € w, ki, ..., ki x,—1 < k forevery ¢« < N, so that

plrg U {0i(0) " 20,05 ki 2§ < Ky U{ds(9) 21 k1 < my}
i<N

U {gj’\zo,ij’\kNJ 1< KN} U {QAZ.LNJ‘A]{? 11 < m} € R. (x9)

By extending 5, we can assume wlog that p, (/; : i < N), (k;; i < N,j < K;)
are the same for each y € [s] generic over M, since (*2) can be forced over M;. Also,
from the fact that ¢; is continuous for every j < N, that ¢;(y) # g for every j < N,
and that ¢;,(y) # ¢j,(y) for every jo < j1 < N, we can assume wlog that for any
Yo, 1 € [8] and jo < j1 < N,

Qsjo (90) 7é Y1 and ¢jo (gO) 7é ¢j1 (gl) (*3)

Let us force in a finite support product over M; continuous functions o ;: (2*)° —
[p(0,4, j)] and x1,3,; : (29)7 — [p(1,4, )] fori, j € wand write M = Mi[(X0,ij> X1, :
i,j € w)]. Foreveryi < N and j < K; and z € (2*)“, define

$0,1,5(T) == ¢i(Z | B)” X0,,j(0i(Z | B)) and ko i j = ki ;.
Forevery i < N and j < m; and Z € (2¥)®, define

$15(Z) = 0i(T | B) x1,5(0s(z | B)) and k1,5 = k.

For every j < Ky and = € (2¢)®, define

Gon;(T) =T B xon,;(@ | B)and ko n; = kn ;.
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At last, define for every j < m — 1 and z € (2¥),

d1n;(T) =T [ xin; (T | B)and ky n; = k.

Lett € Q,_, 2<" be 5 with p(1, N,m — 1) added in coordinate 5. Now we have
that for any Z € [¢] that is Cohen generic in (2¥)* over M T,

{fﬁk} U {¢0,i7j(§?)ﬁk07i7j 11 < N,] < KN} U {¢17i7j(.ff)hk'17i7j 1 < N,] < ml}
U {¢17N’j(i’)ﬁlf1’]\[7j g <m— 1} € R.

This follows from (), and applying Lemma 4.3.3 to see that the xo; ;(¢:(Z | 5)),
X1 (@i(Z 1 B)), Xon; (@ | B), x1.n,;(Z | B) and z(F) are mutually Cohen generic
over M, [z | B]. Moreover they correspond to the reals 2 ; ;, 21, ; added by a Q-generic
over Mi[z | f3], containing p in its generic filter. Also, remember that (), is absolute
between models containing the relevant parameters, which M;[y] is, with g = & | £5.

On the other hand, whenever Ty, ..., Z,_1 € (2¥)* N [t] are pairwise distinct and

strongly mCg over M ™, letting 9o, . . . , §,s—1 enumerate {Z; | 5 : i < n}, we have that
{57 (m—1) i <n'}U{d;(7i) " m,:i <n',j < N}is R-independent.  (x4)

According to the definition of R, (%4) is saying e.g. that whenever AU B C (2¥)* is
an arbitrary set of strongly mCg reals over My, where A [ 3, B [ 8 C {y;, ¢;(y;) : i <
n',j < N} and in B, y; is extended at most m — 1 many times and ¢;(7;) at most m;
many times for every ¢ < n/, 7 < N, and, assuming for now that £ > 0, if f: A — &,
then

{z7f(z): 72 € A} U (B x {k}) is R-independent.

As an example for such sets A and B we have,
A= {(bo,i,j(i'l) l<n, it <N,j< Kz} U {il < n’}, and

B = {¢17i7]‘(i‘1) < n,i < N,j < ml} U {CbLN,j(fl) < n’,j <m — 1}

Again, to see this we apply Lemma 4.3.3 to show that the relevant reals are mutually
generic over the model M[go, ..., Y —1]. Also, remember from the definition of
¢1,,; fori < N and j < m, that, if ¢;(z;, [ B) = ¢:(Zy, | B), then also ¢1,;,(7y,) =
¢14,(Z1, ), forall ly, Iy < n. Equally, if Z;, [ 8 = Z;, [ (3, then ¢y n ;(Z1,) = ¢1.n5,(Z1,)
for every j < m — 1. Use (x3) to note that {g; : i < n'}, {do(y;) : i < n'},...,

{én_1(7;) : i < n'} are pairwise disjoint. From this we can follow that indeed, each y;
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is extended at most m — 1 many times in B and ¢;(¥;) at most m; many times. In total,

we get that

{00..;(T1) " kosj: 1l <ni<N,j<K;}Uu{z, (k—1):1<n'}U
{h1.j(®) " k:l<n,i<N,j<mi}U{p1n;(T) k:l<n,j<m-—1}

is R-independent.

It is now easy to check that we have the witnesses required in the statement of
(2) g.as+ - For example, ¢g, ;(Z) # T when i < N, follows from ¢;(Z) # z. For
the values ¢ x ;(Z) we simply have that xo n ;(Z [ 3) # x(5), as the two values are
mutually generic. Everything else is similar and consists only of a few case distinctions.
Also, the continuity of the functions is clear.

If k£ = 0, then we can simply forget the set A above, since K; must be 0 for every

© < N. In this case we just get that

{¢17Z’7j(.’fl)hk < n,i < N,j < mz} U {¢1,N,j(-fl)/_\k < n’,j <m — 1}

is R-independent,
which then yields (2) g as+ - O

This finishes the successor step. Now assume that « is a limit ordinal. We fix some
arbitrary tree 7' C w<“ such that foreveryt € T, {n € w : t"n € T}| = w and
for any branches = # y € [T], if d = min{i € w : (i) # y(i)} then z(j) # x(j)
for every 7 > d. We will use T' only for national purposes. For every sequence &, <
e <G =, welet Qg gy, = <Hl<k/(®ie[§l,§l+l) 2<w)<w> X (@iciega) 297
Qg,....¢,, adds, in the natural way, reals @OZ 1< K,i€w)and (2 : i € w), where
zZ); € (29)l6d) and z} € (2@)10®) for every | < K/, i € w. Whenever t € T Nw’,
we write ) = 20,7 -+ T2y _1)-Note that for generic (2, 1 i € w,l < k'), the
i€[€0,) 2.

Now, let us define for each & < « an analytic hypergraph R, on (2¢)¢ x 2 so that
{7970 04 <o U{g} 71 i < my} € Re N[(29)% x 2]™+™ where {770 : i <
not =mngand [{g}"1:i <ni}| =ny,iffthereare o =6 < --- < & =, (p,q) €
Qco,...60 Ki € W, kip, ... ki, -1 < kanddistinct £;0, ..., ¢k, -1 € T Nw* for every
i < ng, so that ¢;, ;,(0) # t;, ;,(0) for all ip < i; < ng and jo < K;,, 71 < K;,, and

(.9) o | J1007 2, ki <KJU{g "2 "ki<m} e R

1<ng

reals (20 : t € T N w*') are strongly mCg with respect to []

Note that each I¢ can be defined within M. It should be clear, similar to the proof

of Claim 4.3.15, that from (1) g as %, we can show the following.
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Claim 4.3.18. For every { < o, (1)r.m,1-

Claim 4.3.19. Assume that for every § < a, (1)g, ar2. Then also (1)g k1.

Proof. Let (), ..., o _y, T}, ..., T, _, be pairwise distinct and strongly mCg over M
and ko, ..., kn,—1 < k. Then there is ¢ < o large enough so that 7g [ &,...,z0 ;|
&y 1€, T fﬁare pairwise distinct and in particular, Z{ | [¢,«),..., 20 _; |
£, 0),z5 | €, ),...,%5 4 | [§, «) are pairwise different in every coordinate. Let
& =& & = o, Kj = 1forevery i < ngand tog,...,th-10 € TN w! pairwise

distinct. Also, write koo = Ko, +..» Kng—1,0 = Kng—1. Then, from (1) g, as,2, we have that

11+ V1672 Tkig:i <noyU{(z; [ €)72% "k :i < n,}is R-independent.
0,61 7 t; 5 7 7

0

By absoluteness, this holds true in M[(Z) | £, %} [ £ 11 < ng,j < ny)] and we find
that
{#)7k; 1 i < ng} U{Z} "k} is R-independent,

1

as required. 0

Claim 4.3.20. If there is £ < « so that (1) Re M2 fails, then there is a countable model
M™* D M so that (2)R,M+,k:'

Proof. If (1)g, a2 fails, then there is a countable model My 2 M so that (2)g, a1
holds true as witnessed by 5 € ), 2%, B N1 Dy -+ P10 (298 —
(29)¢ such that for any pairwise distinct o, - - ., %1 € (2*)¢ N [3] that are strongly
mCg over M,

{g,70: z<n}U{¢0( )0 z<nj<N0}U{<;5( )l <n,j < N1} (ks)

is R¢-independent, but

{70" 13 U{6)(50) "0 : j < No} U{¢j(5)"1:j < N1} € Re. (*6)

As before, we may pick M; > M, elementary containing all relevant information,
assume that () is witnessed by fixed {; = { < -+ < { = o, (p,q) € Qq,..c,,»
Ko, ..., Knog1, kigs -+ kir,—1and tig, ... tig, 1 € T Nw* forevery i < Ny, so
that for every generic 7y € (2*)% N [5] over M,

(p,q) Ik, {50" 2y, "k} U U {¢?(g0)ﬁzgyjhki,j 1 j < Ki}U

i<No

{¢]1'(§0)A5;Ak7 1J<Ni} €R. (%7)
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As before, we may also assume that 7, # ¢1O (Yo) # ¢“ (g1) for every 4o, 71 € [3]
and (jo,i1) # (j1,71). We let § = 57¢(N;). Now we force continuous functions
XPi (29)F = (29)es) N [p(l,4)] and ;@ (29)° — (2%)1) N [q(4)] over M, for
every i € w, | < k"and welet M+ = M;[(x];, xi : i € w,l < k')]. Finally we let

¢0,i,j(j) = ¢?(*T | g)AXO,ti,j(O)(Qé?(j [ f))A .- 'AXk’—lyti,j(k’—l)(qb?(a_; I 5))
forevery i < Ny and j < K;, T € (2¥)*, and
$14(%) = 6; (T 1 &) x1(0i (T 1 €))

forevery i < Ny, T € (2¥).
We get from (x7), and, as usual, applying Lemma 4.3.3, that for any z € (2¢)*N|[5]

which is generic over M,

{27k} U | {00s() hiy 1§ < Ki} U{14(2) ki < Ny} € R.

i<Ng
On the other hand, whenever Zo, ..., Z,—1 € (2¥)* N [§'] are strongly mCg over
M™, and letting ¥y, . . . , J—1 enumerate {T; [ £ : i < n'}, knowing that the set in (x5)

is R¢-independent, we get that

{z77(k=1):1< n’} U U {(ﬁo,i,j(i’l)/\km )< Kl < n'}U

i<Ng

{¢1.:(Z)) "k : i < Ny,l < n'} is R-independent,

in case £ > 0. To see this, we let 79 < --- < 7~ be a partition refining £, <
.., & witnessing the mCg of 7y | [, «), ..., Zw—1 | [, @) and we find appropriate
U,05 « ++» WO, Lo—1s -+ s Un—1,0y -+ s Un—1,Ln_1—1 € TN wk" and Vi € TN wk” for i <
Ny, 7 < K; to interpret the above set in the form
{gl/\zgm/\(k?—l) < n,t < LZ}U U {gb?(gl)’\égl,]’\hd 1< N()jj < Kl,l < TL}
1<Ng

U {qb%(gl)ﬁéil”\k 11 < Ni,l <n},

for Qy,,...n,,_,-generic (2, 2} 1 1 < k",i € w) over My[Jo, ..., Yn—1]. We leave the
details to the reader. In case k£ = 0, all K; are 0 and we get that

{¢1.:(7)) "k : i < Ny,l < n'} is R-independent.

Everything that remains, namely showing e.g. that T # ¢, ;(Z) is clear. [
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As a final note, let us observe that the case a = 0 is trivial, since (2*) has only

one element. ]

Remark 4.3.21. 1f we replace “strong mCg" with “*‘mCg" in the above Lemma, then
it already becomes false for &« = w. Namely consider the equivalence relation £ on
(2¥)¥, where T Ey if they eventually agree, i.e. if In € w¥m > n(z(n) = y(n)).
Then we can never be in case (1) since we can always find two distinct z and ¢
that are mCg and 7 £'y. On the other hand, in case (2) we get a continuous selector
¢o for E (note that N = 0 is not possible). More precisely we have that for any
z, y that are mCg, TE¢o(Z) and ¢o(Z) = ¢o(y) iff ZEy. But for arbitrary mCg
and y so that z—FEy, we easily find a sequence (z,, : n € w) so that Z and z,, are

mCg and zEZ,, but z,, | n = y | n for all n. In particular lim,¢, &, = y. Then
(b(] (37) = hmnew (bO (j:n> = hmnEw ¢O<j> = (bo(ﬂ_?)
Remark 4.3.22. The proofs of Main Lemma 4.3.4 and 4.3.14 can be generalized to &

that is w-universally Baire. For this, additional details are required, for example related

to the complexity of the forcing relation in Cohen forcing.

Definition 4.3.23. For Z, ..., Z,—1 € [[,_, Xi, we define
A(Zg, ..., Un-1) = {Qz,3, 1 #Jj <n}U{0,a},
where A,z = min{{ < a : z;(§) # x;(£)} if this exists and Az, ;. = aif T; = 7;.

Remark 4.3.24. Whenever Xy, . .., T,_1 are strongly mCg, then they are mCg as wit-
nessed by the partition {y < - - - < &, where {&, ..., &} = A(Zo, ..., Tp_1).

4.4 Sacks and splitting forcing

4.4.1 Splitting Forcing

Definition 4.4.1. We say that S C 2<% is fat if there is m € w so that for all n > m,
there are s,¢ € S so that s(n) = 0 and t(n) = 1. A tree T  on 2 is called splitting tree
if for every s € T, Ty is fat. We call splitting forcing the tree forcing SPP consisting of

splitting trees.

Note that for 7' € SP and s € T, T is again a splitting tree. Recall that x € 2%
is called splitting over V, if forevery y € 2 NV, {n € w: y(n) = x(n) = 1} and
{n € w:x(n) =1Ay(n) =0} are infinite. The following is easy to see.
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Fact. Let G be SP-generic over V. Then x¢, the generic real added by SP, is splitting

over V.
Whenever S is fat let us write m(.S) for the minimal m € w witnessing this.

Definition 4.4.2. Let S, T be splitting trees and n € w. Then we write S <,, 7" iff
S < T, split,(S) = split.,,(T) and Vs € split,, (S)(m(Ss) = m(T5)).

Proposition 4.4.3. The sequence (<,: n € w) witnesses that SP has Axiom A with

continuous reading of names.

Proof. Tt is clear that <,, is a partial order refining < and that <, ,;C<,, for every
n € w. Let (T,, : n € w) be a fusion sequence in SP, i.e. for every n, T,,11 <, T,.
Then we claim that 7" := (), ., T, is a splitting tree. More precisely, for s € T', we
claim that m := m((7},)s) witnesses that 7’ is fat. To see this, let n > m be arbitrary
and note that n > m > [s| must be the case. Then, since split, ,,(T,1) € T
we have that s € split.,,, | (T41) and m((T,41)s) = m. So find ty,t; € T),41 so
that to(n) = 0, t1(n) = 1 and |to| = |t;] = n + 1. But then ¢y,¢; € T, because
to,t1 € splite,,y (Thy1) € T.

Now let D C SP be open dense, 1" € SP and n € w. We will show that there is
S <,, T so that for every = € [S], there is ¢t C z, with S; € D. This implies condition
(3) in Definition 4.2.1.

Claim 4.4.4. Let S be a splitting tree. Then there is A C S an antichain (seen
as a subset of 2<¥) so that for every k € w,j € 2, if 3s € S(s(k) = j), then
at € A(t(k) = 7).

Proof. Start with {s; : i € w} C S an arbitrary infinite antichain and let m; := m(Ss,)
for every ¢ € w. Then find for each ¢ € w, a finite set H; C S;, so that for all
k € [m;, mi;1), there are to,t; € H;, so that to(k) = 0 and ¢;(k) = 1. Moreover
let H C S be finite so that for all £ € [0,mg) and j € 2, if Is € S(s(k) = j),
then 3¢t € H(t(k) = j). Then define F; = H; U (H N S,) for each i € w and let
F_y := H\ e, Fi- Since Fj is finite for every i € w, it is easy to extend each of
its elements to get a set F, that is an additionally an antichain in S;,. Also extend the
F!

elements of F'_; to get an antichain F” | in S. It is easy to see that A := Uie[—l,w) ;

works. O]

Now enumerate split, (7') as (o; : i < N), N := 2". For each i < N, let
A; C T, be an antichain as in the claim applied to S = 7},,. For every ¢« < N and
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t € A;, let St € D be so that St < T,. For every i < N pick t; € A; arbitrarily and
F; C A; afinite set so that for every k € [0, m(S")) and j € 2, if Is € A;(s(k) = j),
then 3t € Fi(t(k) = j). Then we see that S := (J,_y(U;ep S* U S%) works. We
constructed S so that S <,, T'. Moreover, whenever = € [S], then there is i < N be so
that o; C 2. Then z € [J,cf, St U Sy,] and since Fj is finite, there is t € F; U {t;} so
that ¢ C z. Butthen S; < S* € D.

Finally, in order to show the continuous reading of names, let ¢y be a name for
an element of w*, n € w and T € SP. It suffices to consider such names, since for
every Polish space X, there is a continuous surjection F': w“ — X. Then we have
that for each i € w, D; := {S € SP : s € w'(S IF g | i = s)} is dense open.
Let (T; : i € w) be sothat Ty <, T, T;11 <,4; T; and for every x € [T;], there
ist C x so that (T}); € D;. Then S = (,.,T; <, T. For every z € [S], define
flz)=U{s € w3t C x(S; IF s C y)}. Then f: [S] — w* is continuous and
Sy = f(zg). ]

Corollary 4.4.5. SP is proper and w*-bounding.

4.4.2 Weighted tree forcing

Definition 4.4.6. Let 7" be a perfect tree. A weighton T isamap p: T x T — [T]|<
so that p(s,t) C T, \ 1; for all s,t € T. Whenever py, p; are weights on 7" we write
po C py to say that for all s,t € T, po(s,t) C pi(s,t).

Note that if ¢ C s then p(s,t) = () must be the case.

Definition 4.4.7. Let T be a perfect tree, p a weight on 7" and S a tree. Then we write
S <, Tif S C T and there is a dense set of s, € S with an injective sequence (s, )new
in Sy, such that Vn € w(p(sy, Snt1) € 5).

Remark 4.4.8. Whenever py C p;, we have that S <, T implies S <, T

Definition 4.4.9. Let P be a tree forcing. Then we say that P is weighted if for any
T € P there is a weight p on T so that for any tree S, if S <, T"then S € P.

Lemma 4.4.10. SP is weighted.

Proof. LetT € SP. Forany s,t € T let p(s,t) C T\ T} be finite so that for any k& € w
and i € 2, if there is r € T} so that (k) = i and there is no such r € T}, then there is
such 7 in p(s,t). This is possible since 7T} is fat. Let us show that p works. Assume

that S <, T"and let s € S be arbitrary. Then there is sy 2 s in S with a sequence
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(Sn)new as in the definition of <,. Let k > m(Ty,) and 7 € 2 and suppose there is no
r € Ss, with (k) = . In particular this means that no such 7 is in p(s,,, s,+1) for any
n € w, since p(sn, Sn+1) C Ss,. But then, using the definition of p and m(7y,), we see
inductively that for each n € w such r must be found in 7 . Letting n large enough so

that k < |s,|, sp(k) = ¢ must be the case. But s,, € S,,, which is a contradiction. [

Definition 4.4.11. Sacks forcing is the tree forcing S consisting of all perfect subtrees

of 2<¢. It is well-known that it is Axiom A with continuous reading of names.
Lemma 4.4.12. S is weighted.

Proof. Let T € S. For s,t € T, we let p(s,t) contain all ¥4 € T \ T} such that
r~(1 —1i) € T and where |r| is minimal with this property. O

Recall that for finite trees 7j, 77 we say that 77 is an end-extension of 7{, written
as Ty C 11, if Ty € Ty and for every t € T \ T there is a terminal node o € term(7j)

so that o C ¢. A node o € 71 is called terminal if it has no proper extension in 7.

Definition 4.4.13. Let 7" be a perfect tree, p a weight on 7" and Tj, 77 finite subtrees
of T'. Then we write Ty <1, Ty iff Ty C 7' and

Vo € term(Tp)3N > 23(s;)ien € ((T1),)" injective
(30 =0 Asy_1 € term(T7) AVi < N(p(s;,8i+1) C Tl)). (*0)

Lemma 4.4.14. Let T be a perfect tree, p a weight on T and (T,, : n € w) be a sequence
of finite subtrees of T' so that T,, <1, T\, for everyn € w. Then ., T, <, T.

Proof. Let S :=J,c, Ty Tosee that S <, T note that | J, ., term(7},) is dense in .5,

new
in a very strong sense. Let o € term(7},) for some n € w, then let so, ..., sy,—1 be as
in () for T},, T, 1. Since sy, 1 € term(7,,.1) we again find sy, _1,...,Sy,_1 as in

(%o) for T, 11, T),+2. Continuing like this, we find a sequence (s; : ¢ € w) in S starting

with sg = o so that p(s;, s;+1) C S for all i € w, as required. O

Lemma 4.4.15. Let T be a perfect tree, p a weight on T" and Ty a finite subtree of T'.
Moreover, let k € w and D C (T)* be dense open. Then there is Ty t>, T, so that

Y{oo,... 011} € [term(Ty)]*Va), ..., 0, € term(T})
(VI < k(o) Co]) = (0),...,04_1) €D). (x1)
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Proof. First let us enumerate term(Ty) by 0y, ...,0x_1. We put s}, = o; for each
I < K. Next find for each | < K, s € T,s; C s{ above a splitting node in 7.
Moreover we find s}, € T, 1 SO that s, | s' and s} is longer than any node appearing
in p(s),s). This is p0551ble since we chose s} to be above a splitting node in Ty .
For each | < K we let Tl be the tree generated by (i.e. the downwards closure of)
{sh,sb} U p(sh, s1) U p(sh, sb). Note that s, € term(T%) as p(s, sb) L sb.

Let us enumerate by (f;)2<j<n all functions f: K — {1,2} starting with f the
constant function mapping to 1. We are going to construct recursively a sequence
(T!:2 < j < N)where T! T T!,, and (s} : 2 < j < N) without repetitions, for
each [ < K such that at any step 7 < N:

if f;(1) =
if f;(1) =

1. forevery | < K, s, € term(T ) and

N
VA
L~ e~

w

RO
IN
w

. L si Cti if f;(L)
2. forany {l; : i < k} € [K]*and (t;);< wheret; € term(T7,) and
st Lt if £(L)

forevery i < k, (to,...,tk—1) € D

3. forevery | < K, p(s!, JH)QT

Note that (1) holds true at the initial step j = 2 since fo(l) = 1, s, C sb and
s} € term(T3) for each | < K. Given T! and s! for each [ with (1) holding true we
proceed as follows. Let {t! : i < N;} enumerate {t : t € term(TNJ?) A st CHif (1) =
LAsh Ltif f;(I) = 2} foreach | < K. Now it is simple to find 7} € T, . C r! for
eachi < N;, 1 < K so that [{rl : i < N;,1 < K}]*

Let R; be the tree generated by T]z and {r! : i < N;} foreach [ < K. Itis easy to
see that TJZ C R, since we only extended elements from term(Tj) (namely the t.’s).
Note that it is still the case that 33 € term(R;) since sé- L ¢! for all i < N;. Next we
choose sé. 1 extending an element of term(R;), distinct from all previous choices and
so that s, C s, if f;1(I) = 1and s} C " if f;11(]) = 2.

Taking 7" 7,1 to be the tree generated by R; U {s),,} U p(s, s ) gives the next
step of the construction. Again R} C TJ +1» as we only extended terminal nodes of
R;. Then (3) obviously holds true and s’ , € term(T,,) since p(s’, s',,) L s\, . It
follows from the construction that (2) holds true for each le 41 replaced by ;. Since
R CT! 711 we easily see that (2) is satisfied.

Finally we put 77 = J,_ T}V It is clear that () is true, in particular that 7p <1, 7.
For (%) let {I; : i < k} € [K]* be arbitrary and assume that t; € term(7%) for each
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i < k.Let f: K — {1,2} be so that for each i < k if si C ¢, then f(I;) = 1, and if
sk 1 t;then f(I;) = 2. Then thereis j € [2, N) so that f; = f. Clause (2) ensured that
for initial segments ¢, C t; where ¢, € term(T;fH), (tys- .- th_y) € D. In particular
(to,...,tx—1) € D which proves (x1). O

Proposition 4.4.16. Let M be a countable model of set theory, Ry € M a perfect tree
and p; a weight on R, for every | < k € w. Then there is S; <, R, for every | < k so
that any Ty, . . ., Ty € ], [S1] are mutually Cohen generic with respect to [ [,_, [ Ri]

over M.

Proof. LetT := {0} U{(l)"s: s € R;,l < k} be the disjoint sum of the trees R, for
[ < k. Also let p be a weight on 7" extending arbitrarily the weights p; defined on the
copy of R inT. As M is countable, let (D,,, k;, ),e., enumerate all pairs (D, m) € M,
such that D is a dense open subset of 7" and m € w \ {0}, infinitely often. Let us find

a sequence (7}, )¢, of finite subtrees of 7', such that for each n € w, T;, <, T;,+1 and

V{00, ..., 08,1} € [term(T},)]""Voy, ... 0} _; € term(T,11)

VI < k(o1 Co7) = (00,...,0%, 1) € Dy]. (1)

We start with Ty = k<% = {0} U {{l) : | < k} and then apply Lemma 4.4.15
recursively. Let S := J, . T’,. Then we have that S <, T..

new

Claim 4.4.17. For any m € w and distinct xo, ..., Tpm1 € [S], (o, .., Tm_1) is

T -generic over M.

Proof. Let D C 1™ be open dense with D € M. Then there is a large enough
n € w with (D, k,) = (D,m) and oy, ...,0,_1 € term(7),) distinct such that
0o C Zgy...,0m—1 C xp_1. Then there are unique oy, ...,0,, , € term(7,;) such

that o) C z¢,...,0,, 1 € Tpm_1. By (x1), (00,...,00,_1) € D. O

» Ym—1 y Ym—1

Finally let S, = {s : (I)"s € S} and note that S; <,, R; for every [ < k. The

above claim clearly implies the statement of the proposition. [

Remark 4.4.18. Proposition 4.4.16 implies directly the main result of [62]. A modifica-
tion of the above construction for splitting forcing can be used to show that for 7" € M,
we can in fact find a master condition S < 7 so that for any distinct g, ..., z,_1 € [5],
(zo,...,Tn_1) is SP"-generic over M. In that case (5,...,S5) € SP" is a SP"-master

condition over M. We won’t provide a proof of this since our only application is
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Corollary 4.4.21 below, which seems to be implicit in [62]. The analogous statement

for Sacks forcing is a standard fusion argument.

Corollary 4.4.19. Let P be a weighted tree forcing and let GG be IP-generic over V. Then
G={SePnNV :xq € [S]}. Thus we may write V[z¢] instead of V[G].

Proof. Obviously G C H := {S € PNV : 2z € [S]}. Suppose that S € H\ G
and T € Gissuchthat T I- S € H\ G. Let M < H(A) be so that T, S,P € M,
for 6 large enough. By Proposition 4.4.16, there is 7" < T so that any = € [T"] is
Cohen generic in [T] over M. If there is some x € [T"] N [S], then there is t C x so
that M |= t Ibp ¢ € [S], where ¢ is a name for the generic branch added by 7'. But
then (7”); C S contradicting that (7"), I S ¢ G. Thus [T"] N [S] = 0, implying that
T'I- S ¢ H. Again this is a contradiction. O]

Corollary 4.4.20. Let P be a weighted tree forcing with continuous reading of names.
Then IP adds a minimal real in the sense that, for any P-generic G, if y € 2°NV[G]\V,
then there is a Borel map f: 2¥ — A% in V so that x¢ = f(y).

Proof. Using the continuous reading of names let 7' € G be so that there is a continuous
map g: [T] — 2¢ with T' IF y = g(xg). Moreover let M < H(f) be countable for
large enough 6 with g, 7" € M. Now let S < T be so that any z¢, x; € [S] are mCg in
[T] over M.

Suppose that there are xy # x; € [S], with g(xo) = g(z1). Then there must be
s Cxpandt C xy, so that M |= (s,t) k72 g(éo) = g(¢1), where ¢, ¢1 are names for
the generic branches added by 7. But then note that for any x € S;, since z and z
are mCg and s C xg, t C z, we have that g(x) = g(zo). In particular g is constant on
Syand S; IF g(zg) = g(@) € V.

On the other hand, if g is injective on [S], it is easy to extend ¢! to a Borel function
fiAY — 2%, ]

Corollary 4.4.21. VST is a minimal extension of V/, i.e. whenever W is a model of
ZFCsothatV CW C VS then W =V or W = V.

Proof. Let GG be an SP-generic filter over V. By Corollary 4.4.19, it suffices to show
that if (o : £ < §) € W\ V is an increasing sequence of ordinals, then z¢ € W
(see also [31, Theorem 13.28]). So let (¢, : £ < J) be a name for such a sequence
of ordinals and 7' € SP be such that T" I+ (é¢ : £ < 6) ¢ V. Note that this is in
fact equivalent to saying that (7', T") IFgpe (deldo] : £ < 8) # (Qe[dn] : € < 6),

where i, ©; are names for the generic reals added by SP?. Let M be a countable
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elementary model so that 7', (¢ : £ < §) € M and let 7" < T be a master condition
over M as in Remark 4.4.18. Then also 7" IF (d¢ : £ € § N M) ¢ V. Namely,
suppose towards a contradiction that there are zo, x; € [T”] generic over V' so that
(Gelmo] 1 € € 6N M) = (d¢[x1] : € € 6 N M), then (g, ;) is SP*-generic over M
and M [xo][z:1] = (delzo] : € < ) = (de[x1] : € < 0) which yields a contradiction
to the sufficient elementarity of M. Since 7" I (& : £ € 6 N M) C M we can view
(Gg - & € 0N M) as a name for a real, for M is countable. Back in 1V, we can define
(ag : £ € 60N M) since M € V C W. But then, applying Corollary 4.4.20, we find
that z¢ € W. O

4.4.3 The countable support iteration

Recall that for any perfect subtree 7" of 2<“, split(7") is order-isomorphic to 2<“ in a
canonical way, via a map 7y split(7') — 2<“. This map induces a homeomorphism
nr: [T] — 2“ and note that the value of 7r(x) depends continuously on 7" and z.
Whenever p is a weight on 7', ny also induces a weight p on 2<“, so that whenever
S <;2<¥, then 7];1(5) generates a tree S’ with S" <, T..

Let (Pg, Qg : f < A) be a countable support iteration where for each § < A,
IFpg QB = P, for some P € {SP, S}. We fix in this section a I’ name 3 for an element
of a Polish space X, p € P\ a good master condition over a countable model M,
where 1, X € M, and let C' C X be a countable set as in Lemma 4.2.3. For every
peCandy € [p] | (CNp),letus write

Ty={s€2: 3z lpz (CNB) =gArsC (@)}

According to Lemma 4.2.3, the map y — T} is a continuous function from [p] [ (C'Nf)
to 7. Let a := otp(C') < w; as witnessed by an order-isomorphism ¢: o — C. Then
we define the homeomorphism ®: [p] [ C' — (2¥)* so that for every y € [p] | C and

every § < a,
() [ (6+1) =) [ 7y, (y(e(5)))-

Note that for P € {SP, S}, the map sending 7' € PP to the weight py defined in
Lemma 4.4.10 or Lemma 4.4.12 is a Borel function from P to the Polish space of
partial functions from (2<*)? to [2<“]<“. Thus for 8 € C'and Z € [p] | (C'N ), letting
pz ‘= pr,, we get that T — p; is a Borel function on [p] | (C'N 3). For each § < «
and § € (2¢)°, we may then define j; a weight on 2<“, induced by p; and 7r,, where
T = ® (g™ z) | B for arbitrary, equivalently for every, Z € (2*)*\%. The map sending
y € (2¢)° to py is then Borel as well.
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Lemma 4.4.22. Let M, be a countable elementary model with My, p, Py € M, and let

5€ Q.2 Then thereis ¢ < p, a good master condition over Moy, so that

VZo,...,Tno1 € [@(P(To | C),...,(Tpr | C) € (2*)* N [5]
are strongly mCg wrt H 2% over Ml).

<o

Moreover [q] | C is a closed subset of [p] | C and [q] = ([q] | C) x (2*)M\C (cf.
Lemma 4.2.3).

Proof. We can assume without loss of generality that 5 = (J, i.e. [5] = (2¥)*. It will be
obvious that this assumption is inessential. Next, let us introduce some notation. For

any 6 < aand %o, . . ., Jn_1 € (2¥)°, recall that we defined
Ao, - Y1) = {Ay g, 1 i # j <n}U{0,}.
Let us write
tD(Gos - s Un1) i= (G L < k), (K2 1< k), (U 10 < n)),

where {&o < -+ < &} = Aoy -+ Un-1), K = {7 | [&,&+1) : @ < n}| for every
| < kand (U; : i < n) are the clopen subsets of (2¢)° of the form U; = [5,] for
8i € @¢.; 2= with 5; minimal in the order of ), _; 2= so that

yi € [5;) and Vi < n(y; # 7 = §; € [5i]),

for every i < n.
Note that for any oy < 4, if

tp(Yo [ 0oy Tn1 [ 00) = ((m s L <K, (M2 U< K), (Vi id < m)),
then V; = U; | &, for every i < n. Moreover, for any 5, ...,%, , € (2¥)° with
(- Tnr) = (& LK) (K2 U< k), (Ui i < m)),
we have that
(o [ G0, - Yy [ 00) = ((m s LK) (My 2 1 < K), (Vi i < m)).

Any o, ..., Yn—1, With tp(go, . . ., Un—1) := ((& : L < k), (K L < k), (U; i <
n)), that are mutually Cohen generic with respect to [ [,_; 2 over M; as witnessed

by §o < -+ < &, induce a J[; 1 (Rcie 0,1 2<w)Ki_generic and vice-versa. Thus



80 Chapter 4. Hypergraphs and definability in tree forcing extensions

whenever 7 is a [ [, (®eepe g, ) 2<w)Ki_name, we may write (%o, . . . , §,_1] for the
evaluation of 7 via the induced generic. It will not matter in what particular way we
define the [ [, (@¢cie, f141) 2<w)Ki_generic from given %y, . . . , ¥,_1. We may stipulate
for instance, that the generic induced by %o, ..., yn—11s (2; : [ < k,j < K), where
for each fixed [ < k, (Z,; : | < k,j < K;) enumerates {y; [ [§,&+1) 1 ¢ < n}in
lexicographic order.

Let us get to the bulk of the proof. We will define a finite support iteration
(Rs, Ss: 0 < «) in M, together with, for each § < «, an Rs-name X for a closed
subspace of (2¥)?, where IFRs, X(;O = X51 [ gy for every g < 07 < «. This
uniquely determines the limit steps of the construction. Additionally we will make
the following inductive assumptions (1)s and (2)s for all § < « and any R;-generic G.
Let o, . . ., Jn_1 € Xs[G] be arbitrary and tp(7o, . .., Jn_1) = (& : I < k), (K;: 1 <
k), (U; : i1 < n)). Then

(1)s Yo, - -, Yn—1 are strongly mCg over M; with respect to [ [,_, 2%,

(2)s and forany [, (Qeeie 0, 1) 2<«)Ki_name D € M, for an open dense subset of
a countable poset Q € M,

ﬂ{D[gé)v te 737:171] : gé)a s 723;71 € X57

Dy Thma) = (& S R), (K < k), (Ui < ) }
is open dense in Q.

Having defined Rs and XC;, for 0 < «, we proceed as follows. Fix for now G
an Rs-generic over M; and X; := X(;[G]. Then we define a forcing S; € M;[G]
which generically adds a continuous map F': X5 — T, so that for each § € Xj,
Sy = F(y) <z, 2=*. In M;[G][F], we then define X5, C (2¥)°T tobe {2z :y €
X5,z € [Sy|}. The definition of S; is as follows.

Work in M;[G]. Since the map § € (2¥)° — pj is Borel and an element of M,
and by (1)5 any g € X is Cohen generic over M, it is continuous on X;. Since X
is compact we find a single weight p on 2<“, so that p; C p for every y € X;. Let
{O, : s € 2<“} be a basis of X so that O, C O, fort C sand O, N O; = () for s L t.
This is possible since X is homeomorphic to 2. Let 7 be the set of finite subtrees
of 2<¢. Then S; consists of functions h: 2" — FT, for some n € w, so that for every
s Ct € 25", (h(s) <; h(t)). The extension relation is defined by function extension.

Note that Ss is indeed a forcing poset with trivial condition ().
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Given H, an Ss-generic over M, |G|, we let F': X5 — T be defined as

F(y) := U h(s).
s€2<% g€eOs
heH

Claim 4.4.23. For every y € X;, F(y) = Sy <; 2<%, in particular Sy <;, 2<“. For
any 9o, 91 € X, [Sg,] 0[Sy, ] # 0. Any 2o, ..., 2n1 € Uyex, [Sy] are mutually Cohen
generic in 2¥ over M,|G|. And for any countable poset Q € M, any m € w and
any dense open E C (2<)" x Q in M,[G|, there is r € Q and my > m so that
forany zgy, ..., 2,1 € UgjeX5 [Sy| where zy | m, ..., 2,1 | m are pairwise distinct,
((z0 [ Moy ..., 2n_1 | Mg),7) € E.

Proof. We will make a genericity argument over M;[G]. Let h € Ss be arbitrary. Then
it is easy to find &’ < h, say with dom(h') = 25%, so that for every s € 2% and every
t € term(h(s)), [t| > m. For the first claim, it suffices through Lemma 4.4.14 to find
h" < I/, say with dom(h”) = 259 qy < ay, so that for every s € 2% and t € 2%, with
s Ct,h"(s)<;h"(t). Finding h” so that additionally term(h” (to)) Nterm(h” (t1)) = 0
for every tg # t; € 2% proves the second claim. For the last two claims, given a
fixed dense open subset £ C (2<¢)" x Q in M;[G], it suffices to find r € Q and
to ensure that for any pairwise distinct s, ..., 5,1 € [ coa0 term(h”(s)) and ¢y 2
50y -y tp—1 2 Sp—1 With tg, ... 61 € [Ueqm term(R”(2)), ((to, ..., tn—1),7) € E.
Then we may put mg = max{|t| : t € [J,cpe, term(h”(s))}. We may also assume
wlog that Q = 2<%,

To find such h” we apply Lemma 4.4.15 as in the proof of Proposition 4.4.16.
More precisely, for every s € 2%, we find 70, T} t>; I/(s), and we find T C 2<¢
finite, so that for any pairwise distinct so, ..., sp—1 € [ c9a0 term(A'(s)), any t5 2
80, > tn-1 2 Spo1 With to, ... tn 1 € U cga0 jeo term(T7) and any o € term(7),
((to, ... tn_1),0) € E and term(T7) N term(T7) = () for every i,j € 2, s,t € 2%,
Then simply define h” < I/ with dom(h”) = 29! where h”(s7i) = T for s € 2%,
i€ 2. O

The function F is obviously continuous and X5, is a closed subset of (2¢)°*1,
with X541 [ 60 = (X531 [ 0) [ 9o = X5 | 6o = X, forevery g < 6 + 1.

Proof of (1)s41, (2)s+1. Let G be Ry generic over M; and 4o, . .., Un—1 € X(;H[G} =
Xs11 be arbitrary. By the inductive assumption we have that 5 [ 0,...,9p—1 [ 0
are strongly mCg over M, with respect to [[._,2“. By the above claim, whenever
yi [ 0 # y; |6, then g;(6) # y;(0). Thus, for (1)s41, we only need to show that
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U0y - - Un1 are mCg. Let tp(Jo, ..., Jn-1) = ((§ : L < k), (K, : 1L < k), (U; =i <
), tp(Yo | 0yevoyUnoa [ 0) = ((m = L < KN, (M : 1 < k),(U; | 0 :1i < n))
and n’ = [{y;(9) : © < n}| = Ki_;. Then we may view a dense open subset of
Hl<k(®§e[&7§l+l) 2<w) K ag 4 Hl<k’(®§€[m,m+1) 2<«)M:_name for a dense open subset
of (2<“)™. To this end, let D € M, be a [Lcv (@ecimm. 2<“)Mi name for a dense
open subset of (2<“)"’. Then we have, by (2)s, that

D - m{D[g67 T 7@;—1] : g(l)a s 7@7,1_1 € X(;,
(o) = (LK), (M2 1< W), (U 100 < m)) }

is a dense open subset of (2<“)" and D € M;[G | §]. By the above claim, (6, . . ., Yn_1(6)
are mCg over M;[G | 0] in 2*. Altogether, this shows that 4, . .., §,_1 are mCg over
M, with respect to [ [, s, 2.

For (2)541, let D € M, now bea ] (Recee,) 2<@)Ki_name for a dense open
subset of Q. Consider a name F in M, for the dense open subset of (2<¢)" x Q, where
for any v, ..., 9,1 € Xs, With tp(gg, ..., U,_1) = (L < E), (M : 1 < k), (U; |
d:i<mny),

E[ﬂ()? T 7:&;71] = {(Ev 7’) : Ml[g(/)? ce 7?;:171] ’:
1?”_ (S D[g&, ce ,gé_l][,ég, PN ,Z.In/_l]}7
where (%, . .., %y_1) is a name for the (2<%)" -generic. By (2)s, we have that
E= ﬂ{E[gg, T T T € X,

(- s Uyo) = (LS K, (My s 1< ), (U [ 95 < m)) |
is a dense open subset of (2<“)” x Q and E € M;[G | §]. Let m € w be large enough
so that for any i, j < n, if U; # Uj, then Vy; € U; N X541, 7; € Uj N X1 (yi(6) |
m # y;(d) | m). To see that such m exists, note that if U; # Uj, then U; N X514
and U; N X;4; are disjoint compact subsets of X, ;. By the claim, there is r € Q

and mg > m so that for any zg, ..., 2,y 1 € Uge)g; [Szl.if 20 [ m, ..., 21 [ m are

pairwise different, then ((zo | mo, ..., zw_1 | mg),r) € E. Altogether we find that

re ﬂ{D[g(l)a SR 7?41—1] : g(l)v SR mgrln—l S X5+17
(- Fs) = (& L <), (KL< k), (Ui < m)) |

Of course the same argument can be carried out below any condition in QQ, showing
that this set is dense. That it is open is also clear since it is the intersection of open

subsets of a partial order. [
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Now let § < « be a limit ordinal.

Proof of (1)s and (2)s. Let G be Rs-generic over My, o, . .., Jn-1 € X;5[G] = X,
this time wlog pairwise distinct, and tp(go, ..., Un-1) = ((& : | < k), (K} : | <
k), (U; : i < n)). We will make a genericity argument over M; to show (1)s and
(2)5. To this end, let Dy C Hl<k(®§e[§l,£l+1) 2<w)Ki be dense open, Dy € M, and
let D, € M, bea [Tcr(@ecie e 2<«)Ki_name for a dense open subset of Q. Then
consider the dense open subset Dy C [T, . (@¢cie, 61, 1) 2<)Ki % Q in M, where

D2 - {(TO7T1) 1T € DO N Tg I+ € Dl}
Also let hy € G be an arbitrary condition so that
ho IF Vi < n(U; N X5 # ().

Then there is dy < & so that supp(hg), £x—1 + 1 C do. We may equally well view Dy

asa ] 1 (®eepernn) 270" X (Reeiey_y 50 2~) <1 -name £ € M, for a dense
open subset

EC(Q 2% xQ=((Q ) xQ
)

£€[00,ék) £€[d0,0

We follow again from (2)s,, that the set E € M;[G' N Rs,], where
E= (Bl G BT € X,
tD(Fos -+ Up_1) = ((§o < -+ < &1 < o), (K 1< k), (U [ 0 10 < n>)}>

is dense open. Let ((fy, ..., 1,_1),7) € E be arbitrary and h; € G N Rs,, hy < hg, s0
that hy IF ((fo, ... tn_1),7) € E.

Let us show by induction on £ € [6y,d), & > sup (U
condition hy € R, hy < hy, so that

i<n dom(f;)), that there is a

ho IE g0, .. Gy € Xs(tp(Ts -, Uoy) = (& : 1< K), (K 1 1 < k), (Us i < m))
= 3y € [to] A+ Ay € [tni])

and in particular, if hy € G, then forall 3, ..., 7, € X5 with tp(%, ..., 7, ;) =
((& 1 < k), (K, : 1l <k),(U;:i<mn)), the generic corresponding to 4, ..., 7, _;
hits Dy, and r € D, [, .., 7., _1). Since hg € G was arbitrary, genericity finishes the
argument.

The limit step of the induction follows directly from the earlier steps since if
dom(t;) C &, with £ limit, then there is 1 < £ so that dom(¢;) C 7. So let us consider
step £ + 1. Then there is, by the inductive assumption, FL’Q € Re, 1_1’2 < hq, so that



84 Chapter 4. Hypergraphs and definability in tree forcing extensions

Ry 1E 550, Ty € Xs (0T, ) = (& LS k) (Ko U< k), (U i <))
= (Fo € [to ] A~ NGy € [tar [ €]).

Now extend R, to kY in R, so that there is m € w such that for every s € 2™ and
every i < n, either k4 I O, C U; | €or by I- O,N(U; | €) = 0, where (O, : s € 2<%)
is a name for the base of X ¢ used to define Sg. The reason why this is possible, is that
in any extension by R, and for every i < n, by compactness of X¢ N (U; | £), there is
a finite set a C 2<% so that X¢ N (U; | §) = U,., Os. Let us define h: 2™ — FT,

where

0 ifVi <n(hI-0,NU; | € =0)

h(s) = _ :
(te 2% t Cti(€)} ifhlIFO, CU;|€Eandi <n.

Note that h is well-defined as (U; | £) N (U; | §) = 0 for every i # j < n. Since
0 <, T and T <, T for any weight p and any finite tree 7, we have that RS- h e Sg
and hy = hy"h € R, is as required. O

This finishes the definition of R,, and X,. Finally let G be R,-generic over M; and
X, = X, [G]. Now let us define ¢ < p recursively so that for every § < a,

Ve e [g(P(z[C)[de X, 0).

If 5 ¢ C we let ¢(f) be a name for the trivial condition 2<“, say e.g. ¢(3) = p(fB).
If 6 € C,say = 1(d), we define ¢(/3) to be a name for the tree generated by

-1
nTiG[(Cmﬁ) (Sg)7

where Z ¢ is the generic sequence added by P, and § = ®(Z¢ | C) | §. This ensures
that g [ B IF ¢(B) € Qs A ¢(B) < p(B). Inductively we see that g [ 57p [ (A\ ) IF
O(zg [ C) | § € X, | 0. Having defined g, it is also easy to check that it is a good
master condition over M, with [] = ®71(X,) x (2°)*\°. Since for every 7 € [,
O(z | C) € X, and by (1),, g is as required. O

Proposition 4.4.24. Let E C [X]<% \ {0} be an analytic hypergraph on X, say E is
the projection of a closed set F C [X|<“ x w*, and let [ [p] | C — X be continuous
sothatp -y = f(zg | C) (cf. Lemma 4.2.3). Then there is a good master condition
g < p, with [q] | C a closed subset of [p] | C and [q] = ([q] | C) x (2*)*\°, a compact
E-independent set Y C X, N € w and continuous functions ¢: [q] | C — [Y]<V,
w: [q] | C — w¥, so that
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(i) either f"([q) 1 C) C Y, thus G-y €Y,

(ii) or vz € [q] | C((¢(Z) U{f(®)},w(Z)) € F), thus g I+ {y}UY is not
FE-independent.

Proof. On (2¢)® let us define the analytic hypergraph E, where

{gOJ e man—l} S E <~ {f(q)_l(gO)a e 7f<q)_1(gn—1))} € E
By Main Lemma 4.3.14, there is a countable model M and s € ®l <a 2<% 50 that either

1. for any %o, ..., ¥n—1 € (2¥)* N [5] that are strongly mCg wrt [],__ 2% over M,
{%0, - -, Un_1} is E-independent,

or for some N € w,

2. there are ¢g, ..., on_1: (2¥)% — (2¥)“ continuous so that for any o, . .., Jp_1 €
(29)* N [3] that are strongly mCg over M, {¢;(y;) : j < N,i < n}is E-
independent but {70} U {¢;(%) : 1 < N} € E.

Let M; be a countable elementary model with My, M, p, Py € M; and apply
Lemma 4.4.22 to get the condition ¢ < p. In case (1), let Y := f”([q] [ C). Then
(i) is satisfied. To see that Y is F-independent let Zy, . .., Z,_1 € [q] be arbitrary and
suppose that {f(Zo | C),..., f(Zn_1 | C)} € E. By definition of F this implies
that {®(zo | C),...,®(Z,_1 | C)} € E but this is a contradiction to (1) and the
conclusion of Lemma 4.4.22. In case (2), by elementarity, the ¢; are in M; and there is
a continuous function @ € M, with domain some dense G5 subset of (2¥)%, so that
slE{f(2),0;(2): j < N},w(z)) € F, where Z is a name for the Cohen generic. Let
o(z) = {f(27(¢;(2(2)))) : j < N}, w(z) = w(®(z)) forz € [q] [ C'and Y :=
Uzeggic #(Z). Since ®(z) is generic over M, we indeed have that (¢(z), w(z)) € F
for every = € [q] | C. Seeing that Y is E-independent is as before. 0

4.5 Main results and applications

4.5.1 Definable maximal independent sets

Theorem 4.5.1. (V=L) Let P be a countable support iteration of Sacks or splitting
forcing of arbitrary length. Let X be a Polish space and E C [X]<% \ {0} be an
analytic hypergraph. Then there is a AL maximal E-independent set in VE. If X = 2¢,
r € 2% and E is ¥21(r), then we can find a AL(r) such set.
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Proof. We will only prove the second part since the first one follows easily from the
fact that there is a Borel isomorphism from 2 to any uncountable Polish space X. If
X is countable, then the statement is trivial. Also, let us only consider splitting forcing.
The proof for Sacks forcing is the same.

First let us us mention some well-known facts and introduce some notation. Recall
that a set Y C 2¢ is ¥3(x)-definable if and only if it is 3; (z)-definable over H (w;)
(see e.g. [31, Lemma 25.25]). Also recall that there is a X1 set A C 2¥ x 2¢ that is
universal for analytic sets, 1.e. for every analytic B C 2%, there is some x € 2% so that
B = A,, where A, = {y € 2* : (x,y) € A}. In the same way, there is a universal IT0
set [ C 2¥ x [2¥]<% x w* ([33, 22.3, 26.1]). For any = € 2“, let E, be the analytic
hypergraph on 2“ consisting of a € [2¥]<¥ \ {(}} so that there is b € [A,]<“ with
aUb € E. Then there is y € 2 so that F, is the projection of F;. Moreover, it is
standard to note, from the way A and F are defined, that for every z, y = e(x,r) for
some fixed recursive function e. Whenever o < w; and Z C (2¥)“ is closed, it can be
coded naturally by the set S C ®z <a 2<% where

S={(Zla)ln:T€Zac|a ¥ necw}

and we write Z = Zg. Similarly, any continuous function f: Z — w* can be coded by

a function ¢: S — w=<“, where

f@= U <

5e€8,z€(3]
and we write f = f,. Forany § < aandz € Z | 3, letus write 1T} ; = {s € 2<¥ :
dze Z(z]d=2NsCz(0))} The set ¥, of pairs («, S), where S codes a closed
set Z C (2¥)* so that forevery f < aandz € Z | 8, Tz z € SP is then A, over
H (wy). This follows since the set of such S is I3, seen as a subset of P(Q),_, 2<“),
uniformly on «. Similarly, the set ¥ of triples («, S, ), where (o, S) € ¥y and ¢

codes a continuous function f: Zg — w®, is A;.
Now let (ce, Se, (¢ : € < wy) be a A;-definable enumeration of all triples («, S, () €
W,. This is possible since we assume V' = L (cf. [31, Theorem 25.26]). Let us recur-

sively construct a sequence (¢, ye, T¢, 7, 0 : & < wy), where for each § < wy,
L Ugce Az, = Ay, and A, U A, is E-independent,
2. e =(nej 1 j < N) forsome N € w,

3. Te € Se, (e, Te, me ;) € Wy forevery j < N and (og, Tg, 0¢) € Uy,
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4. either VZ € Zr,(fe,(T) € Ay) or VT € Zp, (Vn < N(fy.(T) € Az) A
({fﬂg,n(‘%)v ng(j) n< N}a f@{(j>) € Fe(yg,r)),

and (¢, ye, T¢, M, O¢ ) is <y -least such that (1)-(4), where <, is the A;-good global
well-order of L. That <, is A;-good means that for every z € L, the set {z' : 2/ <, z}
is A1(z) uniformly on the parameter z. In particular, quantifying over this set does
not increase the complexity of a 3J,,-formula. Note that (1)-(4) are all A(r) in the
given variables. E.g. the second part of (1) is uniformly IT{ (7) in the variables x¢, ye,

similarly for (4).

Claim 4.5.2. For every § < wy, (¢, ye, Te, e, O¢) exists.

Proof. Assume we succeeded in constructing the sequence up to £. Then there is
ye so that Ug/ <€ A, o = Ay By Lemma 4.2.6, there is a good master condition
7 € P, sothat [f] C Zg,, where P, is the ag-long csi of splitting forcing. Then
f¢, corresponds to a P, -name 3 so that 7 I § = f,(Zg). Let My be a countable
elementary model with y,P,,,7 € M and p < 7 a good master condition over M.
Applying Proposition 4.4.24 to E,,., we get ¢ < pand T C S¢ with [q] = Z7,, z¢ € 2%,

N € w and continuous functions f,, ., fo,, for j < N, as required. O

LetY = .., Az.- ThenY is ¥ (r)-definable over H(w:), namely z € Y iff
there is a sequence (¢, ye, Tg, e, O : € < o < wy) so that for every £ < a, (1)-(4), for
every (z,y,T1,7n,0) < (x¢,ye, Te, Me, 0¢), not (1)-(4), and = € A, .

Claim 4.5.3. In V¥, the reinterpretation of Y is maximal E-independent.

Proof. Let p € P and y € M, be a P-name for an element of 2, M, > P,p a
countable elementary model. Then let ¢ < p be a good master condition over M, and
C countable, f: [q] | C' — 2“ continuous according to Lemma 4.2.3. Now (2¢)% is
canonically homeomorphic to (29)%, a = otp(C), via the map ®: (2¥)¢ — (2v)°.
Then we find some { < w; so that o = a, ®"([q] | C) = Zg, and f, 0o & = [.
On the other hand, ®~'(Zy,) is a subset of [g] | C' conforming to the assumptions of
Lemma 4.2.6. Thus we get 7 < 7 so that [7] | C' C ®~'(Zz,). According to (4), either
7y € Ay or7l- {y} U A, U Ay, is not E-independent. Thus we can not have that
plFy ¢ Y A{y} UY is E-independent. This finishes the proof of the claim, as p and

y were arbitrary. [

To see that Y is Al(r) in V¥ it suffices to observe that any >} (r) set that is maximal
E-independent is already IT3(r). O
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A priori, Theorem 4.5.1 only works for hypergraphs that are defined in the ground
model. But note that there is a universal analytic hypergraph on 2¢ x 2, whereby we

can follow the more general statement of Theorem 4.1.2.

Theorem 4.5.4. After forcing with the wo-length countable support iteration of SP
over L, there is a A} ultrafilter, a 11} maximal independent family and a A} Hamel

basis, and in particular, ip =1y =up =w; <t =1=U= wo.

Proof. Apply Theorem 4.5.1 to E,, E; and Ej, from the introduction. To see that
i, = w; note that every analytic set is the union of ? many compact sets and that

0 = wy, since SP is w*-bounding. O]

Theorem 4.5.5. (V=L) Let P be either Sacks or splitting forcing and k € w. Let X be
a Polish space and E C [X]<% \ {0} be an analytic hypergraph. Then there is a A}

maximal E-independent set in 1%

Proof. This is similar to the proof of Theorem 4.5.1, using Main Lemma 4.3.4 and
Proposition 4.4.16 to get an analogue of Proposition 4.4.24. [

4.5.2 P-points

An interesting corollary of the construction in the proof of Theorem 4.5.1 is the

following.

Theorem 4.5.6. There is a A} P-point after forcing with the countable support iteration
of S or SP over L.

This is well-known for Sacks forcing, which preserves all ground model P-points,
in the sense that they generate a P-point in the extension again. The key observation is

the following.

Lemma 4.5.7. Let A C P(w) be a g-compact filter. Then there is a compact set
K C P(w) so that AU K generates a filter and for every C' € [A]“, thereis x € K a

pseudointersection of C.

Proof. Let us write A = UnEW K, each K, compact. We claim that there is an
increasing sequence (i, : n € w) so that for every n € w and any zg,...,z,2_1 €
Un<n Kms Ninenz Tm N [in, ing1) # 0. To see this note that C,, := {(F' : F €
[Um;n K]<"°} C [w] is compact for every n € w. Then it follows that for each i € w

there is it so that for every = € C,,, xN[i,i") # (), since {{x € P(w) : j € x} : j > i}
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must have a finite subcover of C,,. Now let K be the set of x € P(w) of the form
U,ew N F N [in, in1), where for each n, F, € [U,,, Kn]=". It is not hard to check
that K is as required. [

m<n

Proof of Theorem 4.5.6. Instead of constructing a sequence of analytic sets as in the
proof of Theorem 4.5.1, we construct a sequence of compact sets (K, : § < wy) using
a universal closed subset K C 2 x P(w). At every second step & we find the < -least
¢ so that K, is as in the above lemma applied to A = Ug, <¢ Kz, Here note that the
filter generated by a K, set is itself /. In the other steps we proceed as usual with
regards to the hypergraph F,. According to Proposition 4.4.24, the relevant set can be
found compact and the construction can continue. In the end, we have ensured that
the resulting ultrafilter is a P-point and it will keep this property by an absoluteness

argument. 0

If we drop the definability requirement in Theorem 4.5.6, a similar construction
shows that there is a P-point if we force over a model CH. This is interesting, since
it has been shown in [12] that there is no P-point after iterating with Silver forcing,

which is another tree forcing adding splitting reals.

4.5.3 Separating families and Borel chromatic humbers

The following is another interesting application of mutual genericity.

Definition 4.5.8. Let X be any set and B C P(X). Then we say that B is (Ry, 2)-
separating if for any countable A C X and z € X \ A, thereis B € Bsothatx € B
and AN B = 0.

(N1, 2)-separating families appear in [26], where it was shown e.g. that if | X| =
2% = N,, then there is an (X, 2)-separating family B C P(X) of size N, (see also [34,
3.1]). We show that in the Sacks or splitting extensions, if X is a Polish space, 3 can

consist of compact sets alone.

Theorem 4.5.9. After forcing with the countable support iteration of Sacks or splitting
forcing over a model of CH, for any Polish space X there is B C K(X), |B| =Yy, an
(N1, 2) separating family.

Here, K (X') denotes the collection of compact subsets of X.

Proof. Let Py = (P3,Qs : 8 < \) be the A-length countable support iteration

of Sacks or splitting forcing for some A. Let & and (; : ¢ € w) be P-names for
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distinct elements of X and py, € P,. Then, according to Section 4.4.3, there is a
good master condition p < py, C' C A countable, ®: [p] | C' — (2¢)“ the canonical
homeomorphism, ¢: « — C' an order isomorphism, f, g;: (2*)* — X continuous so
thatp IF & = f(®(zg [ O)) ANy = gi(P(Zg | C)) for every i € w, and a countable
elementary model )/, containing all these objects. According to Lemma 4.4.22, there
is ¢ < p a good master condition so that for any 3o, 71 € [g] | C, (%), P(7:1) are
strongly mCg over M.

Claim 4.5.10. There is 7 < g, a good master condition so that for any yo,y, € [r] | C
andi € w, f(®(0)) # 9:(P(7h)).

Proof. Suppose that there are 3y, i1 € [q] | C so that f(Zy) = ¢;(Z;) for some i € w,
where Zg = ®(7) and 7; = (7). If not we are simply done. Then note that 7y # 71,
by Lemma 4.2.3 (iii) and since ¢ I- @ # ;. In particular, Zy # 71, solet §y = Az, 7,

Then Zj is @), iclt,a
Mi[Zo]. In particular, there is 50 € @)c¢q) 2™ Z1 [ [§0,@) € [S0], forcing over

2<“-generic over M; and Z; [ [, ) is @ )2<w—generic over
M, [zo) that f;(Zo) = ¢;(Z1). By the continuity of g;, we find that g; is constant on
{Zo 16722 € [5] [ [§,a)}. Again, there is tg € &), 2%, To [ &o € [to], forcing
this over M;. Let Oy C [g] | C be an open non-empty set so that ®() € [to U so] for
every § € Oy. In particular, varying over y € Oy, f(®(y)) only depends on ®(y) | &o.

Suppose there are still g, 71 € Oq so that f(Zg) = ¢;(Z;) for some ¢ € w, where
again 7o = ®(y) and 1 = ®(7;). Then, we must have that 7o [ & # 71 | &. Else, by
a similar argument as before, using that f(Z,) only depends on Z [ § = Z; | &, there
isU C Oy so that forany y € U, f(®(y)) = g;(P(y)). This is impossible since we can
find7 < gsothat7 IFZ¢ [ C € U,and then 7 IF & = y,. Thuslet §; = Ay, 5, < &o.
As before, we find an open set O; C Oy, so that varying over § € Oy, f(®(g)) only
depends on ®(y) | &;.

Continuing in that fashion, we must be done after finitely many steps. In particular
we have found a non-empty open set O,, C [g] [ C so that for any i € w and y € O,,
f(@(9)) # g:(®(y)). Now it suffices to let 7 < g be so that 7 IF Zg [ C € O,,. O

If 7 < g is as in the claim, then we have that 7 IF & € B A y; ¢ B, where
B = (fo®)"([r] | C). By genericity we have shown that in V¥, every countable set
and a point can be separated by a ground model coded compact set, of which there are

N; many. [
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Definition 4.5.11. Let G C [X]? be a graph on a set X. Then G is called locally
countable, if the vertex degree of every z € X, ie. [{y € X : {x,y} € G}|, is at most

countable.

Definition 4.5.12. Let GG be a graph on a Polish space X. Then the Borel chromatic
number of G, xp(G), is the least size of a partition of X into Borel G-independent

sets.

Corollary 4.5.13. After forcing with the countable support iteration of Sacks or split-
ting forcing over a model of CH, y5(G) < X; for every analytic locally countable

graph GG on a Polish space X.

Proof. Let {B, : a < wy} be the compact sets given by Theorem 4.5.9. For every
a < wy, Ay = {x € B, : Yy € B,({z,y} ¢ G)} is G-independent. Each A, is
coanalytic and thus can be written as the N;-union of G-independent Borel sets A’,, for
i < w;. Enumerate {4}, : a,i < wi}as (4, : @ < wi) and put A} = A\ U, At
Then each A7) is Borel and G-independent and it suffices to show that ( J,_,, A, = X.
To see this, let z € X be arbitrary and A = {y € X : {x,y} € G}. Since A is
countable and x € X \ A, there is & < wy so that zz € B, and B, N A = (). But then
x € A,. ]

Using similar ideas as in the proof of Theorem 4.5.1, we easily find the following.

Corollary 4.5.14. After forcing with the countable support iteration of Sacks or split-
ting forcing over L, every analytic locally countable graph G on a Polish space X

admits a X1-definable coloring witnessing x5(G) < V.

454 0<iy

Lastly, we are going to prove Theorem 4.1.4.

Lemma 4.5.15. Let X C [w]|* be closed so thatVz,y € X (|Jz Ny| = w). Then X is

o-compact.

Proof. If not, then by Hurewicz’s Theorem (see [33, 7.10]), there is a superperfect
tree T C w<¥ so that [T] C X, identifying elements of [w]“ with their increasing
enumeration, as usual. But then it is easy to recursively construct increasing sequences
(sn :m € w), (t, : n € w) in T so that sy = ty = stem(T), for every n € w,

t, and s, are infinite-splitting nodes in 7" and so,41(|S2n|) > toni1(|t2ns1| — 1),
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t2n+2<‘t2n’) > 52n+1(’52n+1’ — 1) Then, letting xr = UnEw Sn and Yy = UnEt.u tn,
x Ny C |so|, viewing z, y as elements of [w]¥. This contradicts that x,y € X. O

The proof of Theorem 4.1.4 is a modification of Shelah’s proof that 0 < i.

Proof of Theorem 4.1.4. Let (C,, : a < k) be compact independent families so that
T = J,«, Ca is maximal independent and x < 0 and assume without loss of generality
that {C,, : @ < k} is closed under finite unions. Here, we will identify elements of
[w]¥ with their characteristic function in 2* at several places and it should always be

clear from context which representation we consider at the moment.

Claim 4.5.16. There are (z,, : n € w) pairwise distinct in L so that {x,, : n € w}NC,

is finite for every o < K.

Proof. The closure of 7 is not independent. Thus there is z € Z \ Z. Now we pick
(x, :n € w) C T converging to x. Since C,, is closed, whenever for infinitely many n,

x, € C,, then also x € C, which is impossible. O

Fix a sequence (x, : n € w) as above. And leta, = {n € w: x, € C,} € [w]**.

We will say that = is a Boolean combination of a set X C [w]“, if there are finite
disjoint Y, Z C X so that z = ([),cy ) N (M. w \ 2)-

Claim 4.5.17. For any a < k there is fo: w — w so that for any K € [C, \ {z, :

n € ay}|<¥, for all but finitely many k € w and any Boolean combination x of

K U{xzg,...,x}, N[k, fa(k)) # 0.

Proof. We define f, (k) as follows. For every [ < k, we define a collection of basic
open subsets of (2°)!, Og; == {[3] : 5 € 2<) AVi < (|si] > k) A (Fi <l,n €
ao(s;i C x,) V3 < j < I(s; £ sj))}. Further we call any [5] ¢ Oy, good if for
any F,G C [ with F NG = () and for any Boolean combination = of {x, ...z},
there is £’ > k so that for every i € F, s;(k') = 1, forevery i € G, s;(k') = 0 and
z(k") = 1. Let Oy ; be the collection of all good [5]. We see that | J,,(Op; U Oy,) is
an open cover of C, U (Cy,)? U -+ - U (C,)*. Thus it has a finite subcover (. Now let
fa(k) :=max{|t| : I[s] € O'Fi < k(t = s;)}.

Now we want to show that f, is as required. Let (yo, ..., y_1) € (Co \{z, :n €
aq})! be arbitrary, yo, . . ., ;1 pairwise distinct and k > [ so that y; | k # x,, | k for
alli <l,n€ayandy; [ k#y; | kforalli < j <. Inthe definition of f,(k), we
have the finite cover O’ of (C,,)" and thus (yo, ..., y;_1) € [5] for some [5] € O'. We

see that [s] € Oy, is impossible as we chose k large enough so that forno i < [, n € a,,
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s; C x, and forevery i < j <[, s; L s;. Thus [s] € Oy ;. But then, by the definition
of O1,, fo(k) is as required. O

As k < 0 we find f € w" so that f is unbounded over {f, : a < k}. Let

a¥ =z, and . := w \ , for every n € w. For any g € 2* and n € w we define

(m)

Ung = ﬂmgn zin . Further define y, = U,,c, Yng N f(n). Note 4,y C Y4 for
m < n and that y, C* y,, , forall n € w.

Claim 4.5.18. For any g € 2¥, y, has infinite intersection with any Boolean combina-
tion of |J .. Ca \ {zn : n € w}.

Proof. Let {yo,...,y1-1} € [Co \ {7, : 1 € a,}]' for some | € w, a < k be arbitrary.
Here, recall that {C,, : @ < k} is closed under finite unions. We have that there is some
ko € w so that for every k > ko, any Boolean combination y of {yo,...,y_1} and x
of {x,, : n <k}, xNyNk, fa(k)) # 0. Let y be an arbitrary Boolean combination of
{Y0,...,yi-1} and m € w. Then there is k > m, ko so that f(k) > f,(k). But then we
have that yy, , is a Boolean combination of {xy, . ..,z } and thus y;, ,NyN[k, f(k)) # 0.
In particular, this shows that y Ny, ¢ m and unfixing m, |y Ny,| = w. ]

Now let (), Q1 be disjoint countable dense subsets of 2*. We see that |y, Ny;,| < w
for h # g € 2*. Thus the family {y, : ¢ € Qy U @1} is countable almost disjoint and
we can find y, =" y,, for every g € Qo U @, so that {y : g € Qo U Q1 } is pairwise
disjoint. Let y = J 9€Q0 y,- We claim that any Boolean combination x of sets in Z has
infinite intersection with y and w \ y. To see this, assume without loss of generality
that z is of the form 2Nz ” N - .- N 2I®
inZ\ {z, :n € w}andg € 2. As @ is dense there is some h € )y such that
h| (k+1) =g (k+1). Thus we have that y/, C* 25 n---N22™ but also y} N 7 is

infinite by the claim above. In particular we have that y N« is infinite. The complement

, where 7 is a Boolean combination of sets

of y is handled by replacing )y with (J;. We now have a contradiction to Z being

maximal. O

4.6 Concluding remarks

Our focus in this paper was on Sacks and splitting forcing but it is clear that the
method presented is more general. We mostly used that our forcing has Axiom A with
continuous reading of names and that it is a weighted tree forcing (Definition 4.4.9),
both in a definable way. For instance, the more general versions of splitting forcing

given by Shelah in [55] fall into this class. It would be interesting to know for what
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other tree forcings Theorem 4.5.1 holds true. In [51], the authors showed that after
adding a single Miller real over L, every (2-dimensional) graph on a Polish space has
a Al maximal independent set. It is very plausible that this can be extended to the

countable support iteration. For instance, the following was shown by Spinas in [60].

Fact. Let M be a countable model, then there is a superperfect tree T' so that for any
x #y € [T)? (x,y) is M? generic over M, where M denotes Miller forcing.

On the other hand, M always adds a Cohen real. When trying to generalize results
about Cohen genericity to Miller forcing one has to be careful though since many nice

properties no longer hold true. Let us ask the following question.
Question 4.6.1. Does Theorem 4.5.1 hold true for Miller forcing?

A positive result would yield a model in which ip < iy, as per 0 < iy. No result of
this kind has been obtained so far.

Forcings adding dominating reals and preserving w; destroy A} definitions for
ultrafilters and the associated hypergraph £, is F,,. On the other hand, it was shown
by Brendle and Khomskii in [9] that in the Hechler model over L (via a finite support
iteration) there is a IT} mad family. Recently, Schrittesser and Térnquist showed that
the same holds after adding a single Laver real (see [52]). The hypergraph associated

to almost disjoint families is G 5. Thus we may ask, very optimistically:

Question 4.6.2. Does Theorem 4.5.1 hold true for Laver and Hechler forcing and Gy
hypergraphs?



CHAPTER 5

Towers and gaps at uncountable
cardinals

5.1 Introduction

The classical pseudointersection and tower numbers (p and t respectively) play a
significant role in the study of cardinal characteristics of the continuum and special
subsets of the reals. In this chapter we take the usual convention that a tower is already
implied to be maximal, i.e. not to admit a pseudointersection.

It was unknown for a long time whether these two cardinals coincide. Rothberger
proved in [43] and [44] that p < t and also that if p = N; then t = N; as well. The
consistency of p < t seemed plausible to many set theorists working in the area, hence,
the groundbreaking result of Malliaris and Shelah [36] came with considerable surprise:
the cardinals p and t are provably equal.

Meanwhile, recent years have seen an increased interest in the study of the combi-
natorics of the generalized Baire spaces ", when x is an uncountable regular cardinal.
This fruitful new area of research provided extensions of classical results from the
Kk = w case often requiring the development of completely new machinery to do so.
Striking new inequalities were proved as well between cardinal invariants of £ which
are known to fail in the classical setting. Thus a natural question becomes: Does
Malliaris and Shelah’s result mentioned above lift to the uncountable?

The goal of this chapter is to study the higher analogues of the tower and pseudoin-

tersection numbers. We start with some basic definitions.

Definition 5.1.1. Let s be a regular uncountable cardinal.

95
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1. Let F be a family of subsets of k. We say that F has the strong intersection
property (in short, SIP) if for any subfamily 7' C F of size < &, the intersection
() F' has size k.

2. We say that A C & is a pseudointersection of F if A C* F forall ' € F.!

3. A tower T is a C*-reverse-well-ordered family of subsets of x with the SIP that

has no pseudointersection of size k.

In the countable case, any C*-well-ordered family of infinite sets has the SIP.
However, for uncountable x, the SIP requirement is necessary as there are countable

C*-decreasing families of subsets of x with no pseudointersection of size .
Definition 5.1.2 (The pseudointersection and tower number).

1. The pseudointersection number for r, denoted by p(k), is defined as the minimal

size of a family F C [k]" which has the SIP but no pseudointersection of size x.

2. The tower number for k, denoted by t(x), is defined as the minimal size of a
tower 7 C [k]" of subsets of .

3. pa(r) is the minimal size of a family F of club subsets of x with no pseudointer-

section of size k.
4. t,(k) the minimal size of a tower T of club subsets of k.

Note that in the definition of p.j(x) and t.(k), there is no need to assume the SIP
as any family of clubs has the strong intersection property.
The study of the above cardinal invariants was initiated by Garti [21] and one of

the results which motivated the work on this project is the following:
Theorem 5.1.3. [2]] Let k be an uncountable cardinal such that k<" = k.
1. Ifp(k) = k*, then t(k) = k™.
2. If cf(27) € {kT,kTT}, then p(k) = t(k).

3. cf(p(k)) # K.

IAs usual, A C* F means that A \ F has size < k.
’E.g., consider a partition of « into sets {X,, : n < w} and look at 7 = {|J

Xpm:in €wl.

m>n
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Related consistency results also appear in the very recent paper of Ben-Neria and
Garti [5].

In Section 5.2 we introduce a natural higher analogue of the notion of a gap which
gives an interesting analogue of a theorem of Malliaris-Shelah, which is central to the
proof of p = t. More precisely, we work with club-supported gaps of slaloms® (see
Definition 5.2.4) and prove:

Theorem 5.1.4. Let k be a regular cardinal such that k<" = k. Either p(k) = t(k) or
there is a A\ < p(k) and club-supported (p(k), \)-gap of slaloms.

In Section 5.3, we study the possible sizes of gaps of slaloms which leads in

particular to the following result (see Corollary 5.3.2):
Theorem 5.1.5. For any uncountable, regular k, p(k) is regular.

Additionally, we consider a higher analogue of Martin’s Axiom (see Defini-
tion 5.3.8) and its effect on certain club-supported gaps of slaloms (see Theorem 5.3.9).
In Section 5.4, we look at the relation between p(x) and its restriction to the club

filter, p1 (), which has been shown to be equal to b(k).

Theorem 5.1.6. (GCH) For any regular uncountable k < )\, where k = k<", there is

a k-closed, kT -cc forcing extension in which p(k) = k1 < pa(k) = X\ = 2%,

Moreover, we extend the above result to a certain class of k-complete filters on x
(see Theorem 5.4.8). The consistency of p(k) < b(k)(= pa(r)) is originally due to
Shelah and Spasojevi¢ [59], however our techniques significantly differ from theirs: We
add k-Cohen reals and then successively diagonalise the club-filter while preserving a

Cohen witness to p(k) = k.

5.1.1 Notation, terminology and preliminaries

For a function f € x", we say that C' C k is f-closed if for any ¢ € C' and ( < &,
f(¢) < & Note that for any f, there are f-closed clubs (since « is regular). For a club
C C k, we let s¢ denote the function

so(C) = minC'\ (¢ +1).

In forcing arguments, smaller conditions are stronger.

3Note that there are no real gaps of function in x*. Indeed, there is no infinite <*-decreasing
sequence of functions in x® when x > c¢f (k) > w.
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One of the main tools in the study of p is Bell’s theorem: for any o-centered poset
[P and for any collection D of < p-many dense subsets of PP, there is a filter G C P
that meets each element of D. A higher analogue of Bell’s theorem has been given by
Schilhan in [46].

Definition 5.1.7.

— Asubset C' C Pis called x-linked, if given D € [C]<", there is a condition ¢ € P
such that ¢ < p forevery p € D.

— A poset [P is k-centered if there exists a sequence {C., : 7 < k} of x-linked
subsets of P'so that P =, _, C,.

— Assume P is < k-closed and k-centered, say P = | J___C., where all C,, are

Y<K
k-linked. Say that P is x-centered with canonical lower bounds if there is a
function f = f¥ : k<% — k such that whenever \ < s and (p, : @ < \) is a
decreasing sequence with p, € C.,_, then there is p € C,, with p < p, for all

a<dandy = f(7y,:a < \).

For convenience of the reader, we state the higher analogue of Bells theorem
mentioned above, as it appears an important tool in the analysis of p(«) and t(x). First,
note that if P is x-centered with lower canonical bounds, then [P is x-specially centered,

where:

Definition 5.1.8. [48, Definition 4.2] A poset PP is said to be x-specially centered if
P = {J,., C; where each C; is x-linked and whenever s € <"\ {0}, and

P CS(5,{Ci}iex) = {(pa : @ < lths) : Va(pa € Cya))}

is of cardinality strictly smaller than , then there is p € P which is a common lower

bound of all elements of sequences in P.

Theorem 5.1.9. [48, Theorem 4.3.3] Let k=" = k. Assume P is k-specially centered.
Then for any collection D of < p(k)-many dense subsets of P, there is a filter G C P

that meets each element of D.

5.2 On p(k),t(x) and gaps

In their seminal work, Malliaris and Shelah [36] proved that the classical cardinal

invariants p and t coincide, answering a longstanding open problem. By now, various
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interpretations of their proof surfaced (see [42, 20, 11, 46, 67]) and we shall outline an
argument for p = t to motivate our results presented here.

First, we need two notions of gaps. Let § = (y, : @ < A),Z = (25 : f < K)
be sequences from w*. We say that (y, %) is a pre-gap if for every v < a < A and
0 < fB <K,

Yy <" Yo <" g <" 5.

Definition 5.2.1. [36, Definition 14.11] We call (7, Z) a (A, k)-peculiar gap if it is a

pre-gap and for any z € w*:
1. ifforall &« < A, y, <* z then there is 3 < « such that 25 <* z,
2. ifforall B < K, 2 <* x4 then there is o < A such that z <* y,.

We give a short outline of the proof of p = t. We shall inductively aim to build a

tower from a witness to p using the following notion.

Definition 5.2.2. Let A be a family of subsets of w with the SIP and let B be an
C*-decreasing sequence of subsets of w, such that every element of B has infinite
intersection with all A € A (write B || A). We say that B is a pseudoparallel of A if

there is a pseudointersection of B that has infinite intersection with all elements of .A.
Lemma 5.2.3.

1. (Malliaris, Shelah [36]) If A = {A, : a < k} is not a pseudoparallel of
B = {Bgs: [ < p}fork <p, then there exists either a tower of length p or a
(p, K)-peculiar gap.

2. (Shelah [57]) If there is a (p, k)-peculiar gap, then there is a tower of length p.

Let (A, )a<p be a family of subsets of w witnessing p that is additionally closed
under finite intersections. Define a sequence of sets B, as follows. Let By = A, and
suppose we have constructed Bz = {B, : a < (8} for some § < p such that Bj || A.
If /5 is a successor ordinal ) + 1 put Bg = B, N Ag. Then Bgy, || A. If 5 is a limit
ordinal and Bg is a pseudoparallel of .4, take B be a witness for this property and put
Bg = BN Ag. Then, we have the following cases: either it is possible to carry the
construction along p-many steps, in which case the family {B,, : a < p} is a tower of
length p; or there is some ordinal 5 < p (which we can assume is regular) such that the
family Bg = {B, : a < 8} is not a pseudoparallel of .4. Then, by Lemma 5.2.3, there

is a tower of size p, which finishes the proof.
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The following results are motivated by the question whether p(x) = t(x) holds for
an uncountable cardinal x. Theorem 5.2.6 below is a generalized version of Lemma

5.2.3 (1) for uncountable cardinals.
Definition 5.2.4 (Slaloms).

1. Suppose that D C [k]" is a < k-closed filter. A D-supported slalom is a map
u: X — [k]<F\ {0} so that X € D. We also say that u is an X -based slalom.

2. If u is a D-supported slalom, then let set(u) = Ugcqomu) W(E)-

3. Whenever u, v are D-supported slaloms and for all but < x many ¢ € dom u N

dom v, u(§) C v(§), we write u C* v.

Definition 5.2.5. (Gaps of D-supported slaloms) A D-supported (1, \)-gap of slaloms

is a pair of two sequences ()<, and (v,)q< of D-supported slaloms so that

1. foranyy <+ < pand o < o/ < A,

* * *
U~ g Uny g Vo g Va,

2. there is no D-supported slalom w so that for all v < g and o < A,

* *
Uy C7w C7 vy,

With this, we are ready to state our main theorem.

Theorem 5.2.6. Let « be a regular cardinal such that k<" = k. Either p(k) = t(k) or
there is a \ < p(k) and club-supported (p(k), \)-gap of slaloms.

Proof. Suppose that (A, )a<p(x) is a family with the SIP but no pseudointersection.
Let £, denote a pseudointersection for (A,).<+ for v < p(x). Further, suppose that

p(r) < tk).

Claim. There is a club X C k so that for all v < p(k) and almost all £ € k,

E, N g sx(8) # 0.

Proof. For each v, let X, be the set of accumulation points of F.. Then X, is a club
in x and for all £ € s, E,N[¢,s5x (§)) # 0. Since p(r) < t(r) < ta(k) = pa(k)
(see Observation 5.4.2), we can find a single club X that is a pseudointersection of
(X5)y<p()- =
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Let us try and build sequences { Ba }a<p(x)> {Ya }a<p(s) S0 that for each 3 < p(k),

1. Yz is aclub,
2. Bg C* Byand Yy C* Y, forall o < 3,
3. Bg C* Ag, and

4. forall v < p(k) such that 5 < ~,

U B N E sx() * Bs.

€Yy

We could not succeed in constructing such a sequence of length p(x), as otherwise
B }a<nix) would be a tower of length p(x) < t(x) without pseudointersection. First,
p(x)

note that the SIP is still preserved at any intermediate stage.

Claim. The sequence {B,}q<) has the SIP.

Proof. Suppose that I € [A|". Then Y = [V, is a club and for any 7 €
p(x) \ sup I, the set ey B, N [€; sx(€)) has size x and is a pseudointersection

tO {Bp}pej. D

Moreover, we can only fail at some limit step 5 < p(x) along the construction.
Indeed, if 5 < p(x) and both Bs and Y3 have been already constructed we can put
Bgi1 = BgN Agyiand Ypi g = Y.

Fix this 8 where the induction must fail and lets try to approximate Bs and see

what goes wrong. First, take some pseudointersection club Z to the sequence {Y,, } o<z

Lemma 5.2.7. There is a C*-increasing sequence of slaloms

{uptsocot) C T ] PE 5x(€)))

£ez

so that domwu, = Z, is a club such that for all p and all oo < 3

U B n1g sx(€) € set(u,) € Ba N Ap.

§€Z,

The intuition is that each slalom u., gives an approximation for Bg by set(u.,) which

satisfies condition (4) with this fixed ~.
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Proof. The sequence is constructed inductively. Suppose we have defined {Z,}s<,<
and {u,} < < for some v € p(x) \ 4. We will try to force to find the next slalom ..
Let Z7 be a club, which is a pseudointersection of {Z,}s<,- and consider the

poset P, consisting of all triples (1, ), n) such that
1. dom(v) € [Z7]"is closed and n € &,

2. V¢ € dom(v)
E,NEsx(8) Cv(é) € AgnlE, sx(§)),

3. Y=Yy U, € [y]<" where ), C [5,7) and Y, C f3, and

4. if £ € Z7 \ n then

U () € () BN Asn 6 sx(€) (5.1)
PENo PEVL
and
EyN [ sx(€) € [ BN As N[E 5x(6)). (5.2)
pPEVL

The extension relation is defined as follows: (u, X',m) < (v,)Y,n) iff p O v,
X 2 Y, m >mnandforall { € dom(u) \ dom(v):

¢ >mnand U u,(&) C u(é) < ﬂ B,.
PEVo PEVL

Observation 5.2.8. For any pair (v,)) which satisfies condition (1)-(3) above and
almostall n € s, (v,Y,n) € P,.

Proof. Using the facts that || < &, V1| < & and u,(§) C [€, sx(&)) we can find
n(Yo, V1) € k such that for each £ € zZ \ (Yo, V1),

U (&) € () B,nAsn[€,5x(6)).
pPEVo pPEMN

Moreover, by the hypothesis on { B, }a<g for each p € V1, Uey, B, NS, sx(€)) €
B,. However Z C* Y, for each p € V) and £, C* Ag. Thus we can find m(Y1) € k
such that for each § € Z~ \ m());) we have

E,n[6sx(€) € () BonAgn g, sx(€)).

PEVL

Now, any n > max{n, m(Y1),n(Y, V1), max dom(r)} works. O
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Claim. The poset P, is k-specially centered.

Proof. Indeed, by k<" = k, k-centerdness holds if < xk-many conditions with the same
first coordinate are compatible. In the latter case, we can apply the above observation

to see that such conditions do have common lower bounds. L]
Claim. The poset P, is < k-closed with canonical lower bounds.

Proof. If {p;}.<; is a decreasing sequence of conditions, where j < x and p; =

(vi, Vi,m;) then let v~ = UKj v, Y = Ui<j Vi and n = sup;_; n;. Now extend v~ to

v by defining
v(€) = (B, 1€ 5x(9)) U [ w(©).
PEVo
This triple (v, ), n) is in P, and defines the canonical lower bound. O

For each p € vy the set D, = {(v,Y,n) € P, : p € YV} is dense. Indeed, given
pand (v,),n) € P, we can find a large enough n* above n so that (v,Y U {p},n*)

extends (v, Y, n). Furthermore:

Claim. For eachn € k the set D" = {(v,Y,n) € P, : 3( > n(¢ € dom(v))} is

dense in P.,.

Proof. For any ¢ > max(n,n), we can define ;+ O v on the set dom v U {(} by
Q) = (By N [¢sx()) U u(Q).
PEN
Then (p, Y, n) belongs to D" and extends (v, Y, n). N

By the generalized Bell’s theorem, there is a filter G' C [P, intersecting all the above

dense sets. Thus, we can finally define
Uy = U{V : 3Y3n such that (v, Y, n) € G}.

Observe that Z, = dom u, is a club subset of Z_~ and hence a pseudointersection of
all the other Zg for 8 < 7.
O

Note how set(u.,) is a reasonable candidate for Bg (with Z, playing the role of Yj):

Observation 5.2.9. set(u.,) is almost contained in Az and all B, for o < /3, and also

satisfies condition (4) for a particular ~.
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Finally, let us take a pseudointersection club for (Z,)s<<y(x) Which we shall call

Z again to ease notation. Now, we define

va(§) = Ba N Ag N €, 5x(§))

fora < fand £ € Z. In turn, for all ¥ < 4/, a < o’ and almost all £ € 7,

uy(§) C uy(§) C var(§) C valf).

Finally, if there is a club Y3 C Z and w(&) C [, sx(€)) for £ € Y} so that for all
v, and almost all § € Y,

uy(€) C w(§) C val8),

then Bz = set(w) would extend { B, } o< Since this is impossible (the construction of
the B-sets failed at step 3), we must have produced a (p(k), 5)-gap of club-supported
slaloms. 0

5.3 On the sizes of gaps of slaloms

Naturally, Theorem 5.2.6 prompts us to study the existence of (A, \2)-peculiar gaps
more closely. In fact, to prove p(x) = t(k), it would suffice to show that there are no
D-supported (p(x), A)-gaps of slaloms supported for some filter D.

Proposition 5.3.1 together with Theorem 5.2.6 show that p(x) is regular. The results
in this section show that in a certain sense there are no club-supported gaps of slaloms
which are small on both sides. However, in Proposition 5.3.4 we show that there are
short decreasing sequences of slaloms with no lower bound. Finally, in Theorem 5.3.10,

we see how generalized forms of MA affect the existence of gaps.

Proposition 5.3.1. Suppose k = k<" < A\, \y are regular cardinals and that there is

a club-supported (A1, \2)-gap of slaloms. Then p(r) < max{Ai, Ao }.

Proof. Let (u, @ o < Ap) and (vg : B < A2) be a club-supported (A, A2)-gap
of slaloms and assume max{\;, A2} < p(k). We can assume all the slaloms are
defined on a common club C' (by taking a pseudointersection for all the domains; see
Observation 5.4.2). We shall find a single w that fills the gap on a club set using the
generalized version of Bell’s theorem (see Theorem 5.1.9).

We define a x-specially centered poset Q as follows. Conditions in (Q are triples

q = (s4,07,03) where
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1. s?is a partial slalom defined on some closed, bounded subset of C,
2. ol € [\]*Ffori=1,2,and

3. forany a € o{, 8 € o4 and > max dom s, u,(n) C vg(n).

S R3
U
Q
o

The order on Q is defined as follows: We say p < ¢ if and only if s? J s9, o
and for all € dom(s?) \ dom(s?),

U wa(n) € s°(n) € () vs(m).

acod acod
Claim. Q is a k-closed, k-specially centered forcing notion of size \s.

Proof. For a fixed closed and bounded s C C, any subset of Q; = {¢ € Q : s? = s}

has a canonical lower bound. So the partition

Q= U{QS s € [C]™", s club}
witnesses the claim. O
Claim. Foreachn < k, a < Ay and B < Ay the following sets are dense in Q:
1. D, ={q € Q:n < maxdoms?}, and
2.&p={q€Q:aco],Becoi}

Proof. Fixq € Q,n < kand o < A1, f < \o. Let ¢ = (¢, 07 U{a}, 0l U{S}) so
that dom s’ = dom s U {u} and for any o/ € of U {a} and 8’ € o U {B},ifn > 1
then u. (1) C vg (n). Moreover, pick j to be above 7 and define s'(u) = Uaea? Ue ().
Then ¢ is a condition extending ¢ and ¢’ € D, N &, 3, as desired. O]

By Theorem 5.1.9, we can take a filter G C (Q which intersects all the dense sets
Dytoer U{Ea 8} as)en xr.- Then D = | J{dom s? : ¢ € G} is a club and
nin 7ﬂ ( 76) 1 2

w:U{sq:qeG}

is a slalom with domain D. Fix any («, 5) € (A1, A2) and pick ¢ € &€, 3 N G. Then for
any 7 > max dom s%, we have u,(n) C* w(n) C* vz(n) and so

Us CF w C* vg,

which finishes the proof. [
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Corollary 5.3.2. p(k) is regular.

Proof. This follows immediately from Theorem 5.2.6 and Proposition 5.3.1. Indeed,
if p(k) = t(k) then we are done since the latter is regular. Otherwise, there is a
(p(K), A1)-gap of slaloms with A\; < p(x). If p(x) is singular of cofinality Ao then we
can shrink the left-hand side of the original (p(x), A\;)-gap and get a (Ao, A1)-gap of

slaloms. This however, contradicts Proposition 5.3.1. L]
Yet another bound on the sizes of gaps is the following.

Proposition 5.3.3. Suppose that k is a regular, uncountable cardinal. If A < b(k) then

there is no club-supported (k, \)-gap of slaloms on k.

Proof. Let A < b(k). Suppose that & = (u, : @ < k) and v = (ve : £ < )
are sequences of club-supported slaloms on x, @ is increasing, v is decreasing and
Ug S v foralla < K, < A

Let C,, = domu,. For any club C' which is a subset of the diagonal intersection

A,<xCq, we can define a slalom we on C' by

It is clear that u,, C* we for any o < k.

Given a fixed § < A, there is a club Dy so that 8 € D, and v < 3 implies that
uo(B) C ve(B). The family {D, : £ < A} must have a pseudointersection D since
A < b(k) =pa(k).

Finally, let w = we where C = D N A,<.C,. Now, for any o < k and £ < A,

uq € w C ve and so w, v 1s not a gap. O

In particular, we proved that any x-sequence of club-supported slaloms on « has
an upper bound. There is an interesting asymmetry here, as there are short decreasing

sequences of slaloms without lower bounds.
Proposition 5.3.4. Suppose that k = k<" is a regular, uncountable cardinal.

1. There is a C*-decreasing, k-sequence of club-supported slaloms on k that has

no lower bound supported on a stationary set.

2. Suppose X is regular such that k < \ < 2%. Then, there is a k-specially centered
poset P which introduces a decreasing \-sequence of club-supported slaloms on

k with no lower bound supported on a club.
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Proof. (1) We define the decreasing sequence of slaloms o = (vg : § < k) with the

following properties
1. vy : Kk — [K]<%\ {0},
2. forany a < f < kand n > 3, v4(n) 2 va(n),
3. forany limit 3 € K, (.5 va(83) = 0.

The construction is done in « steps: at step 3, we define v, () fora < fand vs | S+ 1.
If 3 is a limit ordinal, then we make sure that the sequence of sets {v,(5) : a < 5}
is strictly decreasing with empty intersection. We can pick vg | 8 + 1 arbitrarily, for
example, vz(n) = {0} forall n < 5.

If 5 = o + 1 then again we make sure that {v, () : o < a} is strictly decreasing
and we can pick vg(n) = {0} forall n < .

Finally, given such a sequence o, assume that w : S — [£]<" \ {0} and w C* v,
for all o < k. If S is stationary then we can find a limit § € S so that a < (8 implies
that w(8) C v, (). In turn, (N, _5va(B) # 0 and this contradiction finishes the proof.

(2) Define P to be the set of conditions of the form p = (s?),e,» S0 that o? € [A]<F
and there is some p? < k such that s : u? — [k]<"\ 0.

Extension in P works as follows: p < ¢ if

1. o? D o?

_ b
2. forany o € 09, s? O s, and

3. forany o < S € o%and n € pP \ pl,

First, we show that the poset P is k-specially centered. Without loss of generality
assume A = 2%. Let B be a base for 2" consisting of basic open sets of the form
[t] = {x € 27 : t C z} where t € <#2. Thus |B| = k. Let T be the set of all
non-empty subfamilies I/ of B consisting of pairwise disjoint non-empty basic open
sets such that [I/| < k. Thus |T| = k.

Now, for each U = {U;};er € T and each § = {yi }ier € 7 (7" ([K]<")) let
CU,g) ={peP: 0" C| JU:,Vi € I(c"NU; # ) and if « € o”NU; then s, = y;}.

iel
Then the family
{CWU,g):UeT,ge (" (x)}
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is a partition of P witnessing that P is x-specially centered.

The following should be straightforward to check:
(@) D, ={peP:n < pP}isdenseinP;
(b) Ea={peP:ae€oP}isdenseinP.

So, we can take a generic filter G C [P and define

va:U{sg :p € G}

Observe that if < f < A and a, 5 € of for some p € G then for any n > pu?,
v(n) C va(n). Thus (v4)a<n is a decreasing sequence of slaloms.

Now, suppose w is a P-name for a slalom defined on a club and for all @ < A,
plkw C* v,. Take an elementary submodel M < H () of size ko < k with all relevant
parameters in M. Also, assume that M <"0 C M.

Construct a decreasing sequence of conditions (pg)e<y, in M, so that

1. forany ¢ < M Nk, thereis £(() < ko and 6 € M N« \ ¢ such that pP<© > ¢
and Peo) I (54 € dom w.

2. There is a sequence {7, }ne, € M Nk such that for some subsequence of indexes

{&n }new we have that pe, I-w(n) C v,(n) for each n > 7,.

Let § = M N k. Thus we arranged that sup,_,, 47 = ¢ and any lower bound ¢ for the
sequence (p¢)¢<x, Will force that 0 € domw and w(J) C (), vn(d). However, we
can find a lower bound ¢ such that ¢IF("),_ v,(6) = (. This contradiction finishes the
proof. [

We now define another kind of gap notion for slaloms:

Definition 5.3.5. Let (u, : @ < A) and (vg : f < p) be two sequences of slaloms
based on the same club set C' C . We say that {(u, : a < \),(vg : B < p)}isa
(X, p)-tight gap of slaloms if the following hold:

1. Foralla < o/ < A\, < ' < pand almost all £ in C,

Ua(€) C uar(§) C vp () C vp(8)-

2. If w is a C-supported slalom such that V5 < pu(w C* vg), then there is o« < A

such that w C* u,.
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3. If w is a C-supported slalom such that Voo < A(u, C* w), then there is 5 <
such that vg C* w.

Question 5.3.1. Clearly, if {(uq : @ < X),(vg : f < p)} is a (pu, A)-tight gap of
slaloms, then it is a gap. Do these notions coincide?

For the following result, we will use a higher analogue of Martin’s axiom relativized
to a certain class of posets. In order to do this, we will use the following definitions
and results of Shelah (see Section 2.2 in [4]).

Definition 5.3.6. Let s be an uncountable cardinal and QQ be a forcing notion. We say
that Q is stationary k" -Knaster if for every {p; : i < k7} C Q there exists a club
E C x* and a regressive function f on £ N S%" such that for any i, j € E N .S%", if
f(7) = f(y) then p; and p; are compatible.

Note that if a poset is stationary ' -Knaster then it is x*-cc.

Definition 5.3.7. Let x be an uncountable cardinal. A forcing notion (Q satisfies the

(*,)-property, and we say it is k-good-Knaster, if the following conditions hold:

1. Qis stationary x*-Knaster.

2. Any countable decreasing sequence of conditions in Q has a greatest lower

bound.
3. Any two compatible conditions in Q have a greatest lower bound.

4. Qis < k-closed.*

Finally, we can define our forcing axiom.

Definition 5.3.8. Let s be an uncountable cardinal. We say that M A (k-good-Knaster)
holds if and only if for every k-good-Knaster poset (Q and every collection D of dense

sets of Q of size < 2" there is a filter on Q intersecting all the sets in D.

In the following, we will exploit the consistency of MA (k-good-Knaster) stated

below.

Theorem 5.3.9. Assume GCH. Let k be a regular cardinal such that k<% = k and

A > k such that \<" = \. Then, there is a cardinal preserving generic extension in
which 2% = X\ and M A (k-good-Knaster) holds.

*In the original definition of Shelah, the requirement is somewhat weaker, i.e. that Q is -strategically
closed.
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The proof is presented in the Appendix. We now prove that M A (k-good-Knaster)
implies the non-existence of certain kinds of tight gaps of slaloms.

Theorem 5.3.10. Suppose that ) is a cardinal so that ¢f(\) > k*, A<* = X\ and that
MA (k-good-Knaster) holds. Then there is no tight (A, k)-gap of slaloms based on a
fixed club set C' C k.

Proof. Suppose towards a contradiction that there is a (\, x™)-tight gap of slaloms
{(uq : e < N), (vg : p < kT)} based on (without loss of generality)  and define the

following forcing notion Q. Conditions in QQ are pairs p = (S, o) where:
— 0 Cktand |o|< k.

= (8;)ieo 18 a sequence of partial slaloms with common domain, a fixed ordinal

|
W

=

p < K.
— Ifi €0, €np then s;(€) C v(§).

— Ifi* = sup(o), then i* > |o|.

A condition ¢ = (¢, 7) is said to extend the condition p = (8, o) if:
— T720.

— Foralli € 0,¢t; 3Js;.

Foralli <i' € cand £ € n, \ np, t:(§) C t(§).

— Forall j € 7\ oandi € o such that j < 4, there is £ € 7, \ 7, such that
Uz(g) C tj(é)-

We want to use our assumption of MA (k-good-Knaster) for this poset and some

(to be defined) collection of dense sets.

Claim. Q is stationary k™ -Knaster and < k-closed.

Proof. Suppose X = {p, : @ < kT} is a sequence of conditions in Q. We want to
show that there is a club £ C k™ and a regressive function f : EN S f — X such
that, if f(¢) = f(j) then p; and p; are compatible.

First, we use the pigeonhole principle and the A-system lemma in order to assume,

without loss of generality that for all ¥ < x* the following hold:

— =1 < k.
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— |oy|= A < k.
— 0,Noy =€

— Ifo, = {i,; : | < \*} (increasingly ordered), then s, = s> forall [ < A*. Here
and throughout the proof s, denotes s; .

— The sequence i, is strictly increasing in the first coordinate, for [ ¢ e.

Given v < 7/ < k™, we now claim that p, = (0,,5,) and p,, = (0,/,5,) are
compatible. If true, we can then define £ = k" and f : S f — k™ to be the constant
function with value 0 and we get the stationary ™ -Knaster condition.

To prove the claim, choose an ordinal ¢ > 7 such that, for each £ > (:

{vi, (&) :pe{v.YIAL< X}

is C-decreasing (this is possible because the ¢, ; are increasing and the way the v’s are
arranged).

Moreover, we can choose ( so that for all £ > (,

v (1N > Jui . (O]
Define a condition ¢ = (¢,7) as follows: 7 = 0, U o, and t = (¢j);e,. Put
¢ = dom(¢;) for all 7 and recall the enumeration of ¢., and 0., we have fixed above.

We consider the following cases:

— If j € ¢,i.e j =i, for [ < |e/, then define partial slalom ¢; as follows:

| sle) ifg <y
”@”_{w@>ﬁnsg<<

— If j =iy, for |e|< [ < A*, then define partial slalom ¢; as follows:

%@y_{sﬂ@ if ¢ <

v, ,(§) ifn <& <Candl’ <listhe supremum so that v; , , C* v;

— If j =iy, for [ < I < A*, define analogously as in the item above, i.e.

/

s;(§) i<
tj(§) = Ui (&) ifn <& < and! < lis the supremum so that v, S v
Uj(f) ifn§§<(’and{l’<l:vi - Uj}:®

ey
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Then ¢ < p, and ¢ < p,. [

It remains to prove that the poset Q has properties (2), (3) and (4) from Definition
5.3.7. Let {ps}a<y be a <-decreasing sequence of conditions in QQ, where p, =
(54, 04). Then there is a canonical lower bound p = (5, 0) where 0 = , 0o (Which
is still a set of size < k™) and 5 is defined as follows: 5 is a sequence of partial slaloms
(8i)ico With domain 1) = sup,., o < & such that s;(§) = U, ., 5§ () when s¢(£) is
defined (i.e. when ¢ € o,). This implies that properties (2) and (4) hold. Property
(3) hods, as if p = (5, 0) and ¢ = (¢, T) are compatible, then a canonical lower bound
r = (u, ) has the form v = U7, while the third and fourth conditions in the definition
of our poset determine how r must be defined.

Since by hypothesis MA (k-good-Knaster) holds, there is a generic G C Q inter-
secting the following dense sets. Let i € x* and n < k.

Diy={rcQ:0,ZiNVgeQ(qg<p—0,C%) An,>n}

The generic G adds first of all an unbounded subset of x* given by X = (J{o, : p €
G'}. Also, it generically adds " -many slaloms {w, : i € X}, where wl, = [ J{s! :
p € G and (8,); = s7}. These slaloms satisfy that for all i < j € X and for almost
all € € i wis(€) © wh(€)

Moreover, we have that for all i < 7 € X and for almost all ¢ € &

we(€) € wi(€) € vi(€) € vil§).

Now, using the hypothesis that {(u, : @ < A), (vg : B < kT)}is a (A, kT)-tight
gap of slaloms, given i € ¥, we can find (i) < A such that, for almost all £ € k
we(€) C tap)(§)-

Let o* = sup{«(i) : i € X¢}. Then for each i € X we can find 7; < & such that
for all £ > n;:

we(6) C uar (§) C vi(8)

Again, using the pigeonhole principle, we can assume without loss of generality that
n; = n*. Then we can pick a condition p = (0, 5) € G so that j € o where j € X and
|7 N Xg|> kand n, > n*

Since |o|< k, we can choose i € Xg N (j\ o) and ¢ = (7,t) < p for which
¢ € 7. Then, by the definition of the forcing Q, there is 7, < ¢ < 7, such that
v;(¢) C t'(¢) = wg(¢). But then we get v;(¢) C wg(¢) C uqx(¢) C v;(¢) whichis a

contradiction. O]
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5.4 Onp(x)and py(k)

The definitions of p(x) and t(x) invoke all x-complete filters (resp. towers) on &,
without giving any additional structural information. Thus it makes sense to first
consider smaller classes of filters that may be better understood. One natural way of
classifying x-complete filters is to consider larger filters in which they simultaneously
embed. This leads to the following definition:

Definition 5.4.1. Let F be a k-complete filter on x. Then
pr(k) :=min{|B| : B C F A B has no pseudointersection }

and
tr(k) == min{|T|: T € F AT is a tower}

whenever these are defined.

Note that pr(x) is defined exactly when F has no pseudointersection. One of
the most interesting examples is p. (k) = pc(x) where C is the club filter on x. Our
goal in this section is to study the relationship of p(k) to p. (k). We start with some

straightforward observations.

Observation 5.4.2. Let F be a r-complete filter on « such that px(x) is defined, then
1. k7 <p(r) < pr(k),

2. whenever tr is defined, pr(x) < tz(r) < t(k),

3. pa(k) = ta(k) = b(k).

Proof. (1) and (2) follow immediately from the definitions. (3) has been shown in [48].
Let us recall the argument. First note that p(x) as well as t.(x) are defined. To see
that they are equal, let A = p(x) and suppose that (C,, : @ < A) is a family of clubs
in £ with no pseudointersection of size x. Build a sequence (D,, : @ < \) of clubs
so that Dy is club and a pseudointersection of £ = {D,, : @ < f} U{C, : a < 5}
(note the closure of a pseudointersection is still a pseudointersection). This is possible,
since &g is a family of clubs of size < pq(k). Now (D, : a < A) is a witness for
ta(k) = A To see that p.i (k) = b(x) consider the map that sends a function f € k" to
Cr={a < k: f"a C a} and the map sending a club C' to s¢. O

The consistency of p(r) < b(x) was first shown in [59]. The argument for showing
that p(x) stays small in the generic extension, relies on the following theorem which is

the main result of the mentioned paper.
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Theorem 5.4.3. If k < p1 < t(k) then 2" = 2",

This theorem mirrors the situation at w. In order to keep p(x) smaller than ;. one
only needs to ensure that 2# will be strictly larger than 2% in the generic extension.
Using counting of names it can be seen that this will usually not be a problem (starting
with an appropriate ground model). Thus starting from GCH, having regular targets
p < Afor p(k) and b(x), we first use Cohen forcing to ensure that 2# = A\* and then
we increase b(k) to A with Hechler forcing and simultaneously diagonalize x-complete
filters of size < . In this extension 2# > 2* and we have ensured that p(x) does not
blow up.

We will present a more natural approach that amounts to showing that certain
witnesses for p(x) can be preserved while increasing b(x). This approach leaves more
freedom for cardinal arithmetic. On the other hand, up until now, we only know how to
apply it for a construction resulting in a model with p(k) = k™.

Let us introduce the forcing used to increase b(x) (i.e. pa(k)) or px(x) more

generally for certain classes of F. This poset has been used greatly in the past.

Definition 5.4.4. Let F be a base for a x-complete filter on x. The forcing M(F)
consists of conditions (a, F') where a € [k]<* and F' € F. The order is defined by
(b,E) < (a,F)iff EC Fandb\ a C F.

Fact. M(F) is k-closed and k" -cc (in fact k-centered with cannonical lower bounds).

In what follows, C will always refer to the collection of clubs from a specific model,
which should always be clear from context.

Our approach, that we announced earlier, will consist of showing that a < x support
iteration of M(C) will not add a pseudointersection to a previously added collection of
(more than x many) Cohen reals. As a warm up and an introduction to the argument

we will first show that this is the case when forcing with M(C) once.

Theorem 5.4.5. Let k be uncountable regular and k=" = k. Suppose (y, : a < k1) is
a sequence of Cohen reals added over V and that ¢ is a M(C) generic over V'[y]. Then
in V[g|[c], the filter generated by {y, : o < '} has no pseudointersection.

We write C,+ for the < k-support product of £ many copies of 2<%, the forcing

for adding a x-Cohen real. Let us first check the following:

Lemma 5.4.6. Whenever (y, : a < £7) is a C+ generic sequence, then {y, : o« €

KT} has the SIP in any further extension by k-closed forcing.
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Proof. LetT € [x7]<" be in any extension of V'~ by a k-closed forcing notion. Then
I' € V. By genericity over V' we may show that (1), .1 ¥« is unbounded in x. More
precisely, let p € C,+ and € €  be arbitrary. Let 6 > sup;cqom,(Ith p(7)) and extend
p to g such that ¢(i)(d) = 1 forevery i € T'. O

Proof of Theorem 5.4.5. In V[y] assume 2 is a M(C) name for an element of [x]".

Consider the set
X ={(a,a) :a € [k]*",a < k,3C € C((a,C) IF a € @) }.

Then X € V[(y, : @ < 0)] for some 6 < x*. We want to show that &[c] £* ys. First
recall that y; is in fact Cohen over V'[(y, : § # a < k™)]. Thus for the proof we may
simply assume that X € V and show that z[c] £* y where y is Cohen over V and ¢ is
M(C) generic over V[y].

Suppose in V' [y] that (a, C') is an arbitrary condition in M(C). We have that a € V'
and there is some name C' € V so that I-“C' is club” in Cohen forcing and C[y] = C.

Now suppose that s € 2<" is an arbitrary condition in Cohen forcing. Now let us
define two decreasing sequences {p! : i < k} and {p;} : i < x} in Cohen forcing such
that the following holds:

— o =po=>5
— if U, 0! = foand U, pi = fithen fo ' ({1}) N fr ({1}) = s ({1}),
— thesets C° = {a: Ji(p) IF a € C)} and C* = {a : Ji(p! I+ o € C)} are clubs.

The sequences p° and p' are simply interpreting sequences for C' below s. But we
additionally ensure that the sets defined by | J;_, p} and |, n p; are disjoint up to their
common initial part s. Call these sets 4° C x and y' C &

Let C' = C°N C". Recall that C' will still be club in V[y]. Thus there is b € [C]<*
and o > sup dom(s) so that minb > a and (a Ub,a) € X. As |J,_,. p! and ,_, p;
define disjoint sets there is at least one j € 2 so that « is not in 3/. Say wlog j = 0.
Now we can extend s to some ¢t = p for some 7 such that p) I b C C, o € dom(t)
and t(«a) = 0.

Thus by genericity we shown that back in V'[y] we can extend (a, C') to (aUb, C’) so
that (aUb, C") IF o € & but v ¢ y. Now by genericity of ¢ we know that [c] Z* y. [

Now we are going to consider the more general case of iterating M(C) many times
with < k-support. For an ordinal i we will write M(C); for the i-length < k-support
iteration of M((C).
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Theorem 5.4.7. (GCH) For any regular uncountable k < )\, where k = k=", there is

a k-closed, kT -cc forcing extension in which p(k) = k1 < pa(k) = X = 2%,

Proof. We are going to first add x* many (x-)Cohen reals (y, : @ < k™) and then
iteratively diagonalize the club filter for A many steps. Thus the poset that we are using
is P = C,.+ * M(C), where M(C), is a C,.+ name for the < x-support iteration of
M(C) of length A. This forcing notion is k-closed, has the x-cc and forces 2% = A
by a counting argument. Also it is clear that V¥ = p. (k) = \. Thus we are left with
showing that V¥ |= p(k) = k.

Let us make some remarks on the notation that we will use.
— We will assume that conditions in M[(C), always have the form (a, ¢), where

—a=(a;:1€l),Ie[N" a €[k,
— ¢ is a function with dom ¢ = I and ¢(¢) is a M[(C); name for a club for

every ¢ € [.

A pair (a, ¢) as above is naturally interpreted as the condition (;, ¢(7))e;-

— Similarly we will assume that conditions in C,.+ * M(C), have the form (p, @, §),

where
-peC,.+

—acV,

— ¢ is a C,+ name for an object as above.

It is easy to see, using x-closure, that conditions of this form are dense in PP.

— A nice M(C),-name # for an element of P (k) has the form

| 4o x {a}

a<k
where A, is an antichain in M[(C), (thus has size < k) and for every (a, q) € A,
and i € dom ¢, ¢(7) is a nice M(C);-name. Thus we define nice M(C);-names

for subsets of x inductively on i € \.

— It is well known that for any M(C),-name ¢ for a subset of x, there is a nice

name = so that Iy = x.
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— By induction on nice names we see that, | trcl(z)| < k. Namely, assume this
is known for nice M((C);-names for every ¢ < j. Let & be a nice M(C);-name.
Then & =
at most . For each condition (a,p) € A,, |domp| < k. For each i € dom(p),

oer Aa x {a} where each A, is a set of M[(C); conditions of size
p(7) is a nice M[(C);-name which, by assumption, has transitive closure of size at

most .

Claim. {y, : « € KT} has no pseudointersection after forcing with M(C),.

Proof. In V&« = V[g], let & be a nice M((C) name for an element of [x]*. Then there
isy < kT, such that & € V[(y, : @ € Kk, # 7)]. We will show that & can not be
almost contained in y,. Without loss of generality we may assume that z € V' and that
we are adding a single Cohen real y = y., over V' (by putting V[(y, : & € K, # )]
as the new ground model) and then we are forcing with M(C), in V[y].

Now suppose that (p,a,q) IF 2 \ e C 5, where (p,a, ) € C %« M(C), and ¢ € .
Let y be C generic over V' with p in the generic filter. Define iy € 2" so that /(i) =
p(i) = y(i) fori € dompand y'(i) = 1 — y(i) fori € k\ dom p. It is well known that
y' is also generic over V' with p in it’s generic filter. Moreover V]y| = V[y/| =t W.
But note that ¢ := ¢[y] # ¢[y'] =: ¢ is very much possible. Still in W, (a, ¢) and
(a,q') are compatible. Namely we may define 7: dom ¢ — W by putting (i) a M(C);

name for ¢(i) N ¢/ (7). By induction we see that for any i € dom ¢,
(@flirti)<(aliqli)(aliq i
and that
r il q(i),q (i) are clubs.
Thus indeed r(7) is a M(C); name for a club, so (a, ) is a condition and (a,r) <
(@,q),(a,q"). Now let (b, s) < (a,r) and 0 € & \ € so that
(b,s) -0 € .

SinceyNy Ce,§ ¢yord ¢y'. Say 6 ¢ y. Then whenever G is M(C), generic
over W with (b, s) € G, W[G] |= #[G] \ € € y. At the same time, (p, @, §) is in the
corresponding C * M(C), generic over V. This gives a contradiction. Similarly when
ey O

O

Analyzing the proof of the above result, we see that this result can be extended to a

more general class of filters.
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Theorem 5.4.8. (GCH) For any regular uncountable k < )\, where k = k=", there is
a k-closed, Kk -cc forcing extension in which p(k) = kKt < pr(k) = X\ = 2" for any

k-complete filter F on k that is ordinal definable over H (k™).

We say that F is ordinal definable over H(x") if there is a formula ¢ in the
language of set theory and finitely many ordinals oy < - - - < ,_1 < k™ so that

reF < H(k") | oz, a).
For example, C is ordinal definable over H (k™).

Proof. Let (p¢(x, a¢) : £ € k1) enumerate all formulas in one free variable = and
parameters @ = («o, . .., o) € (k1)<“ in the language {€}.

As before we first add ™ many Cohen reals using C,.+. Then in V' ++ we define
an iteration (P;, Q; : i < \) with Q; = [1ec o+ M(F¢) where

Fe={v e [w]": HK"" | pelz, @)}

if this defines a x-complete filter (in V%) or

Fe = {x}

else.

Again we consider conditions in P, as pairs (a,q) where doma € [k - A\]<",
ay+.ire € [K]<" and ¢ is a function with domain dom a so that (k% - i+ &) isa P;
name for an element of ;. Similarly we define the notion of nice names.

It is crucial to note that P, only depends on the model V®+ and not on the
particular set of generic Cohen reals. Then using the same argument as before we see
that p(k) = kT in VCet*Ex,

Now suppose F is ordinal definable over H(x") in VCst*¥x and p (i) is defined.
Say F is defined by . Let B C F with |[B| < A. Then there is i < A so that
B C VCet*Pi Moreover we find j > i so that (H(k");,€) < (H(k"), €), where
H(kt);={x € Hrk") : 2z € Vil To see this just note that |H (k*);| < A for
every i < A. Thus we can find the < A many required Skolem-witnesses over H (x™);
in H(x")g() for some S(i) < A. Applying S recursively x* many times, by taking
suprema at limits, yields the desired situation (since no new elements of H(x") are
introduced in limits of cofinality x™). In VGt *Pﬂ', F¢ is a k-complete filter on x with
B C F¢ and Q; adds a pseudointersection to . O

Theorem 5.4.9. (p(k) = 2%) Let P be a collection of k™ -cc forcing notions, each of
size < 2" and |P| < 2%. Then there is a tower which is indestructible by any P € P.
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Lemma 5.4.10. Let p(x) = \. There is amap ¢: 2<* — [k|* so that for each f € 2*,
(o(f I a):a <\ isatowerand p(s~0) N@(s™1) = 0 for every s € 2.

Proof. See the proof of Theorem 7 in [59]. [

Proof of Theorem 5.4.9. Let ¢ be as in Lemma 5.4.10 and A = 2*. Recall that if P is
kT-cc then we can assume that all P names for elements of [x|" are of size at most
. Enumerate all triples (P, po, Zo : @ < ) where P, € P, p, € P, and i, isa P,
name for an element of [x]". We recursively define f € 2* as follows:

Given s, € 2%, let yo = ¢(s,°0) and y; = (s, 1). As yo Ny = ) we have that
Pa IF o CF yo A 2, CF y is impossible. Thus for some ¢ € 2 we have that there
iS ¢o < po so that g, |- &4 Z* y;. Let 5441 = s, 0. At limits we let s, = U§<a Se.
Finally f := |, Sa-

The tower defined by f is as required. Namely given P € P, p € P and & a P-name
for an unbounded subset of «, say (P, p, &) = (P4, Pa, ©a), we have that ¢, < p,, forces

that & is not almost contained in (s,). O

5.5 Appendix

5.5.1 Consistency of MA(x-good-Knaster)

Finally, we present the proof of the generalized Martin’s Axiom for posets with
property (%) that we applied in Section 5.3. The proof is based on the following
iteration theorem but otherwise resembles the classical proof of Martin’s Axiom.

Theorem 5.5.1. (Shelah, 1976, see [58]). Let k be an uncountable cardinal and
(P, Qu:a< ) be a < k-support iteration such that for every a < §:

IFp,, Q,, satisfies property (%4)
Then Ps is stationary k+-Knaster.

Proof of Theorem 5.3.9. We define a < x-support iteration (P,, Q, : a < ) such that
forall @ < A:

— Ik Q, is has the property (%4)-

— IF]Qu|< A
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Since by Theorem 5.5.1 the poset P = P, is stationary ~*-Knaster and it is < k-
closed, IP preserves cardinals. Also, since A is regular and \* = A, we have |P,|< .

Define Q, by induction on o < A\ as follows. Fix a bookkeeping function 7 : A —
A x A such that 7(a) = (3, ) implies 8 < o If we have defined Qg for all 3 < o and
m(a) = (3,7), we can look at the y-th Pg-name Q in V% for a poset of size < A with
the property (%, ). Define Q, = Q.

First, we will show that that V¥ = MA"(k-good-Knaster_,) A 2 = X, where
MA (k-good-Knaster_,) is the restriction of MA (k-good-Knaster) to posets of cardi-
nality stricly smaller than \.

Let R be a P-name for a poset with property (x,.) such that IFp |R|< A and let D
be a P-name for family of < A\-many dense subsets of R. Then, using the k™ -cc, we
can find § < A such that both R and D belong to VF¢. We can choose then, v < \
so that R is the y-th name in V*# for a poset with property (x,). Hence, in the model
VE=1+1, the generic for R intersects all dense sets in D.

The argument above is enough to obtain the full MA (x-good-Knaser) in V*:

Claim. IfR is k-good-Knaster poset in V¥ and D is a collection of < \-many dense
sets in R, then there is R' C R of cardinality < \ which is also k-good-Knaster such

that the sets in D are dense in R'.

Proof. Given a dense set D € D, there exists a maximal antichain Ap C D and using
the stationary " -Knaster condition, this antichain has size at most . Consider then,
the poset S generated by the set of antichains { Ap : D € D} and has size < A (because
A<f = X). Now, consider the closure of S under properties (2), (3) and (4) in Definition
5.3.7 and notice that this process does not increase its size. Call the resulting poset R’
and note that it has the desired size and it is an element of the class k-good-Knaster.
Finally, if H C R’ is a generic intersecting all the dense sets in D, we can extend it to a
filter G O H, G C R meeting all sets in D. O

]

There have been other attempts to get higher analogues of Martin’s axiom at k = N;.

Specifically, let us mention one due to Baumgartner (see also [54, 53]):

Definition 5.5.2 (Baumgartner’s axiom [1]). Let P be a partial order satisfying the

following conditions:
— [P is countably closed.

— Pis well-met.
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— P is N;-linked.

Then if k < 2% and {D,, : @ < K} is a collection of dense sets of P, then there exists a

generic filter G C P intersecting all sets D,,.

Baumgartner also proved that the former axiom is consistent with 2% = R, and

2% = g, where k > N, is regular.
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