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1 Introduction  

1.1 Complex analysis 

Following books have been used for the basic definitions: 

• Complex variables and applications (Brown & Churchill, 2009) 

• Visual complex analysis (Needham, 1998) 

• Schwartz Christoffel Mapping (Driscoll & Trefethen, 2002) 

• Complex Analysis and Conformal Mapping (Olver, 2017) 

 

Definition 1.1. Complex numbers. 

A complex number has the form 𝑧𝑧=𝑎𝑎+𝑖𝑖𝑖𝑖, a, b ∈ ℝ, where:  

• the imaginary unit is defined as 𝑖𝑖= √−1  

• 𝑎𝑎 is the real part of 𝑧𝑧, 𝑎𝑎=𝑅𝑅𝑅𝑅 (𝑧𝑧),  

• 𝑖𝑖 is the imaginary part of 𝑧𝑧, 𝑖𝑖=𝐼𝐼𝐼𝐼 (𝑧𝑧).  

• The set of all complex numbers is denoted by ℂ. 

Definition 1.2. Arguments of complex number. 

Let r and θ (r, θ ∈ ℝ) be polar coordinates of the point 𝑎𝑎, 𝑖𝑖 ((𝑎𝑎, 𝑖𝑖) ∈ ℝ2) that corresponds to a non-zero 

complex number 𝑧𝑧=𝑎𝑎+𝑖𝑖𝑖𝑖.  

Since 𝑎𝑎=r·cos𝜃𝜃 and 𝑖𝑖=r·sin𝜃𝜃, the number 𝑧𝑧 can be written in polar form as  

𝑧𝑧= r·(cos𝜃𝜃 + 𝑖𝑖sin𝜃𝜃) = r 𝑅𝑅𝑖𝑖𝜃𝜃 

where r is a positive real number called the modulus of 𝑧𝑧 (written also as |𝑧𝑧|), representing the distance 

of z from the origin 0.  

The phase or argument (written as arg𝑧𝑧) 𝜃𝜃 is a real number, is defined up to an integer multiple of 2π, 

represents the oriented angle between the real axis and the ray from the origin to z. 𝜃𝜃 is measured in 

radians. 

 
Figure 1:  Cartesian and polar representation of a complex number. 
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Theorem 1.1. Law of arguments of products. 

Let 𝑖𝑖, 𝑐𝑐 ∈ℂ. Then arg (𝑖𝑖·𝑐𝑐) = arg b + arg c.   (1) 

   

Theorem 1.2. Law of arguments of power. 

Let 𝑖𝑖 ∈ℂ, 𝑐𝑐 ∈ℝ. Then arg 𝑖𝑖𝑐𝑐=𝑐𝑐·arg𝑖𝑖. (2) 

Definition 1.3 Complex Function 

A complex function is a function 𝑓𝑓 whose domain and range are subsets of the set ℂ of complex numbers.  

The function f of the complex variable z is then a rule that assigns to each value z in a set D, one and only 

one complex value w:   w=f(z), where w is called the image of z under f.  

The set D is the definition domain of f, the set of all images R = {w = f(z): z ∈ D} is called the range of f.  

 

Any such complex function f(z), with z ∈ D, can be uniquely written as a complex combination: 

f(z) = f(x + i y) = u(x, y) + i v(x, y) = w 

of two real functions, each depending on the two real variables x, y:  

its real part u(x, y) = Re (f(z)) = Re (w) and its imaginary part v(x, y) = Im (f(z)) = Im (w). 

 

The term “complex analysis” refers to the calculus of complex-valued functions f(z) depending on a single 

complex variable z.  

Complex differentiable functions (differently from what happens in the real domain ℝ) are necessarily 

analytic, meaning that they can be represented by convergent power series, and hence are infinitely 

differentiable.  

A complex function f(z) that is analytic in every point of a certain region R is said to be analytic in R. 

The points of non-analyticity are called singular points.  

If the function f(z) is analytic on the whole complex plane, then f(z) is called entire. 

Analytic functions have a wide range of physical and mathematical applications, and most of the results 

named in this work apply only to analytic functions. 

 
Definition 1.4 Polygons 

For the rest of this document, a (generalized) polygon Γ is defined by a collection of vertices w1, . . ., wn 

and real interior angles   α1, . . ., αn. We define for indexing purposes: wn+1 = w1 and w0 = wn. The vertices, 

which lie in the extended complex plane ℂ ∪ {∞}, are given in anticlockwise order with respect to the 

interior of the polygon. 
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Figure 2: A generalized polygon drawn in MATLAB with SC 

Toolbox 

Figure 3: A generalized polygon drawn in GeoGebra 

1.2 The Mapping Problem 

Mapping between two copies of the complex plane, show very important geometrical aspects of 

complex functions. 

A mapping f from a set D in the complex z plane to a set D’ in the complex w plane is denoted by: 

 w = f(z), z ∈ D; 

i.e., f takes a point from D in the z-plane into a unique point w, in the w-plane (D is the domain set, D’ 

the target set or range). 

 

f(z) 

 

Figure 4: Conformal mapping 

Definition 1.5 Conformal mapping.  

Let 𝑤𝑤 = 𝑓𝑓 (𝑧𝑧) be a complex mapping defined in a domain 𝐷𝐷 and let 𝑧𝑧0 be a point in 𝐷𝐷. Then we can say 

that 𝑤𝑤=𝑓𝑓 (𝑧𝑧) is conformal at 𝑧𝑧0, if it preserves oriented angles between curves through z0. 

In particular for every pair of smooth oriented curves 𝐶𝐶1 and 𝐶𝐶2 in 𝐷𝐷 intersecting at 𝑧𝑧0, the angle between 

𝐶𝐶1 and 𝐶𝐶2 at 𝑧𝑧0 is equal to the angle between the image curves 𝐶𝐶′1and 𝐶𝐶′2 at 𝑓𝑓 (𝑧𝑧0) in both magnitude 

and sense.  

The transformation w = f(z) is then said to be a “conformal transformation”, or a conformal mapping, 

when it is conformal at each point in D. 

The transformation w = f(z) is conformal if and only if it is holomorphic and its derivative f’ (z) is 

everywhere non-zero on D. 
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To classify the definitions of the different mapping in relation on how angles are eventually preserved, 

we can say that: 

• a mapping is called conformal (or angle-preserving, or biholomorphic) if it preserves local 

oriented angles between curves with respect to their magnitude and orientation  

• If every angle is mapped to an angle of same magnitude but opposite sign (orientation), the 

mapping is called anticonformal 

• a mapping preserving the magnitude of angles, but without the information whether the 

orientation is preserved or not, is called an isogonal mapping (Brown & Churchill, 2009, p. 241). 

To summarize, conformal maps preserve both angles and the shapes of infinitesimally small figures, but 

not their size or curvature.  

 

As visible in Figure 5, in the transformation w = za, a∈ ℝ, (a>1) we see an angle preserving dilatation and 

an anticlockwise rotation of the grid in the original square. The right side of the square rotates 45 degrees 

for each 0.5 increase of the exponent parameter a.  

The sequence of rotations (ignoring the related dilatations) in Figure 5 could be perceived like the 

opening a handheld fan. 

   

   
Figure 5: Conformal maps preserve angles and the shapes of infinitesimally small figures. Unit square is in the z plane, w =za, 

a=1.5 ,2 ,2.5, 3, 3.5. Implemented with MATLAB & Chebfun 
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Similarly, for the same transformation w = za, a∈ ℝ, (a<1) we see that the dilation (as a contraction 

here) of the original square and a clockwise rotation of the grid in the original square. The real half 

axis Re(z) >0 is mapped to himself. Angles in the figure are preserved, as made visible looking at 

the grid.  

 

  

 
 

Figure 6: Conformal maps preserve both angles and the shapes of infinitesimally small figures. Left: unit square in the z Plane; 

right: w =z0.5 = sqrt(z). Implemented with MATLAB & Chebfun 

Conformal maps can be defined between domains in higher-dimensional Euclidean spaces, and more 

generally on a Riemannian or semi-Riemannian manifold. 

An analytic function is conformal at any point where it has a nonzero derivative. Conversely, any 

conformal mapping of a complex variable which has continuous partial derivatives is analytic. Conformal 

mapping is extremely important in complex analysis, as well as in many areas of physics and engineering. 

For additional figures describing conformal transformation see also (Needham, 1998, p. 190)). 

 

Theorem 1.3. Riemann’s Theorem: There exists a conformal one to one transformation from any simple 

connected region in the complex plane (other than the plane itself) to the unit disk. It is uniquely 

determined up to the choice of three points in and their images.(Swan & Bruss, n.d.) 

 

 
 

Figure 7: Conformal Mapping and Riemann Theorem  

 

f 

https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Semi-Riemannian_manifold
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The Riemann mapping theorem guarantees that if D is any simply connected domain in the plane (other 

than the entire plane itself), then there exists a one-to-one conformal mapping w=f(z) that maps D 

onto the unit disk |w|<1.   

As a result of that, and because the inverse of a one-to-one conformal transformation is again a 

conformal transformation, any two simply connected regions of the plane are conformally equivalent. 

The two regions can then be mapped one to the other by a one to one conformal transformation. 

(Hendriks, 2009, p. 6) 

 

1.2.1 Some other conformal mapping plotted examples 

 

   

Figure 8: Square (side=) in z plane Q1 and related mapping under w=sin(z) and w=cos(z) 
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Figure 9: Square (side=2 ) centered in the origin and related mapping: w=sin(z), w=cos(z), w=1/z, w=1/z2, w=ez. 

1.2.2 Phase plot: visualizing of complex functions. 

Following information refer mostly to Chebfun MATLAB SW Guide (Driscoll et al., 2014) , Wegert work 

on visualization of phase portraits (Wegert, 2012) and the two MATLAB related libraries "Complex 

Function Explorer" and "Phase Plots of Complex Functions" (Wegert, n.d.) . 

 

Phase portraits are a technique for visualizing complex analytic functions of a single complex variable. 

They rely on the visual encoding of complex numbers through their phase (or argument). 

In a standard phase plot red indicates a phase of zero and the colors go from red to yellow, green, 

cyan, blue, magenta as the phase increases every 60 degrees (in the interval [0; 2]), in anticlockwise 

order. This generates for f(z) = z something like this: 

 
Figure 10: Two-dimensional color scheme used for phase plot, according to traditional color wheel. 

It is important to say even if phase plot can nearly identify analytic functions, this is not valid in general 

and it is possible to find a non-analytic function sharing the same phase plot with a certain analytic 

function (Wegert, 2012, p. 37). For this reason, we refer just to analytic functions and their properties. 
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Figure 11: Phase plot construction for the same function f=sin(z) using different representation options (MATLAB and Visual 

Complex Functions library) (Wegert, n.d.). 

The SW Mathematica offers a similar capability on phase portrait, without a specific package for realizing 

so many different phase plot pictures. An example of Color-wheel phase plot picture in Mathematica we 

can be checked in Figure 12. 

 
Figure 12: f(z)=Sin(z) (plotted with Mathematica) 

ComplexPlot[Sin[z], {z, -Pi - Pi I, Pi + Pi I},  ColorFunction -> "CyclicReImLogAbs", Frame -> False] 

1.3 Conformal transformations 

The Riemann mapping theorem (formulated in Riemann´s PhD thesis, 1851) ensures that every simply 

connected domain1 can be conformally mapped onto the unit disk. This theorem guarantees the 

existence of such mappings, but it tells us nothing about how to explicitly construct the mapping.  

The search for the mapping formulas is what still needs to be addressed. 

Example of standard conformal transformations: 

1. Translation: w = z + a; a ∈ ℂ 

 

 
1 Analogous representation was obtained later by Lars Ahlfors to multiply connected domain. 
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2. Rotation: w = eiΘ ·z    

3. Rotating dilatation: w = b·z, b ∈ ℂ; b ≠0 

4. Non-rotating dilatation, (expansion, homogeneous dilatation): w = b·z, b ∈ ℝ; b >0 (if b<1 it is 

a contraction, if b>1 an enlargement) 

5. Linear transformation w = a + b·z; a, b ∈ ℂ. It is in effect a composition of a translation, a rotation, 

and a dilatation 

6. Inversion. w = 1/z 

7. Composition of the above (it is equivalent to just one transformation)  

8. Möbius transformation (or linear-fractional transformation): 

w =
𝑎𝑎𝑧𝑧 + 𝑖𝑖
𝑐𝑐𝑧𝑧 + 𝑑𝑑

 
with (ad - bc) ≠ 0 

 

It can be proven, that Möbius transformation is a combination of two translations, a rotation, a dilatation  

and an inversion (Needham, 1998, pp. 122–124). See more details in paragraph 1.4. 

The conformal transformation 1 to 8 outlined above are visible in Figure 13 , we use as starting image 

the unit square placed in the first quadrant. 

 
  

   

   

Figure 13:Unit square and conformal transformation 1 to 8 



13 

 

9.  Schwarz-Christoffel transformation represent a group of conformal mappings onto polygonal 

domains. 

The historical development of the Schwarz-Christoffel mapping is outlined in chapter 1.5 and a detailed 

description is in chapter 2. 

Conformal transformations have many applications in physics, (e.g.: in fluid flow, mechanics, 

electrostatics and elasticity) because many physical properties remain invariant after such 

transformations (see chapter 4) and this helps simplifying and solving such problems. 

  
Figure 14: Example of Conformal Mapping using MATLAB  

1.4 Moebius transformation 

We describe here some properties of the Moebius transformation that will be used as reference in the 

next chapter. 

We already said that a Moebius transformation has the form: 

w =  f(z) =
𝑎𝑎𝑧𝑧 + 𝑖𝑖
𝑐𝑐𝑧𝑧 + 𝑑𝑑

 
with (ad - bc) ≠ 0 (3) 

 

We can outline following properties (Iske, 2020, pp. 63–67): 

• f maps the extended complex plane ℂ ∪ {∞}, onto itself. 

• f maps the class of circled and lines (generalized circle or "circline") to itself. 

• f is conformal at every point except its pole. 

• the inverse transformation 

z =  𝑓𝑓−1(w) =
dw −  𝑖𝑖
−𝑐𝑐𝑤𝑤 + 𝑎𝑎

 
with (ad - bc) ≠ 0 (4) 

is also a Möbius transformation. 

 

• A Möbius transformation is uniquely determined by three (different) points zi, i = 1, 2, 3. 
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Example 1.4.1: Finding a Möbius transformation that maps the upper half-plane {Im(z) >0} ; z ∈ℂ  to the 

inside of the unit-disk E { |𝑤𝑤| ≤ 1} ;w ∈ℂ  ,  such that a given point z1=i is mapped to w=0 and z2= ∞ to 

w=-1. 

1. z1=i is mapped to w=0 

0 =
𝑎𝑎(𝑖𝑖) + 𝑖𝑖
𝑐𝑐(𝑖𝑖) + 𝑑𝑑

 ;  𝑖𝑖 = −𝑖𝑖𝑎𝑎 

2. z2= ∞ is mapped to w=-1 => c= -a 

3. we can choose one of the parameters: e.g., a=1 => we obtain a=1; b=-i; c=-1 

4. We need to choose d in order to map the upper half-plane to the inside of the disk:  d=-i ensures 

that. 

w =  f(z) =
𝑧𝑧 −  i

−𝑧𝑧 −  𝑖𝑖
 

 

The real axis is mapped to the circle line. 

The function we just found can be rewritten as w= -c(z), where c(z) is called the Caley transformation 

and is also mapping the upper half-plane to the unit disk:  

c(z) =
𝑧𝑧 −  𝑖𝑖
𝑧𝑧 + i

 

 

Example 1.4.2: 

According to the Riemann Theorem for each transformation w=T(z) from the upper half-plane Im(z)>0 

to the unit disk there is an inverse transformation z=T-1(w) from the unit disk to the upper half-plane. 

 

If w= T(z)= (1 - i w)/(1+i w) then the inverse transformation is z= T-1(w) = (iz - i)/(z + 1). 

Both transformations are Möbius transformations. 

This example preludes to the Schwarz-Christoffel mapping from the unit disk, outlined later in chapter 

2.3. 

Now we introduce the Schwarz-Christoffel formula for constructing a conformal mapping from the upper 

half-plane onto a region G bounded by a polygonal curve.   

 

1.5 The History of Schwarz-Christoffel Mapping 

The idea of conformal mapping was first proposed by Carl Gauss in the 1820s.  

In 1851, Bernhard Riemann presented the famous Riemann mapping theorem in his doctoral 

dissertation, in which he proved that a bijective conformal mapping exists between any two simply 

connected regions.  
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In complex analysis, a Schwarz-Christoffel mapping is historically a conformal transformation of the 

upper half-plane onto the interior of a simple polygon. It was discovered independently by Hermann 

Schwarz in 1869 and Elwin Christoffel in 1867. Therefore, the mapping onto a simply connected 

polygonal domain is known as the Schwarz-Christoffel transformation.  

Elwin Bruno Christoffel was born in Montjoie Aachen, Germany on 10.11.1829. 

He studied at the University of Berlin, one of his teachers was Peter Dirichlet.  His work on the 

Schwarz-Christoffel transformations were published in various papers between 1867 and 1870.  

 

Hermann Amandus Schwarz was born in Hermsdorf, (Germany, now Poland) on 25.01.1843. He 

studied at the Technical University of Berlin, starting with chemistry. Later two of his teachers, 

Weierstrass and Kummer convinced him to study Mathematics. Schwarz’s published his work on 

this subject in two papers in 1869. 

  

Figure 15: Schwarz’s 1869 conformal map of a square onto a disk, reproduced from “Gesammelte Mathematische 

Abhandlungen (Schwarz, 1972) 

For more information on their life the reader can be referred to St. Andrews Scotland university 

biographies website: http://www-history.mcs.st-andrews.ac.uk/BiogIndex.html.  

 

There are three important points to consider: 

1. Most of the domains can be approximated by polygonal domains 

2. The mapping formulas are from standard domains like the upper half-plane onto polygonal 

domains, but very often the mapping is needed in the other direction, from the more complex 

domain (the polygonal) to the standard one.  

 

 
Figure 16: Schwarz-Christoffel transformation: the upper half-

plane is mapped onto a polygon bounded domain. 

Figure 17: Circular arc polygon domain mapping: the unit 

disk is mapped onto a polygon bounded domain, having 

arcs as sides. 

 

http://www-history.mcs.st-andrews.ac.uk/BiogIndex.html
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3. The problem of choosing the correct parameters. The mapping formula contains the preimages 

of the corners of the polygon and the related interior angle in these corners. The form of the 

image domain depends on these corner and angles. This problem is normally described as the 

“parameter problem" of the Schwarz-Christoffel transformation.  

 

Christoffel and Schwarz expanded this topic to different forms of the mapping formula by changing some 

of the properties of the image domains. This includes mappings onto the exterior of a polygon, domains 

with curved boundary parts and domains bounded by circular arc polygon.  

While they have discovered many mapping formulas, the parameter problem restricted them to just a 

number of simple examples.  

The Schwartz-Christoffel mapping received a rising interest again in the second half of the last century. 

The invention of the computer and the availability of always more performing calculation power, the 

availability of new dedicated software packages, the development of new algorithms, made the 

possibility to solve the parameter problem step by step easier.  

 

1.6 Last developments: numerical methods 

The possibility to solve the mapping as a computer aided problem caused the publication of many articles 

about the different aspects of the Schwarz-Christoffel transformation numerics. 

Even if the Schwarz Christoffel formula has been known since 1867-1869 it has not been used a lot, 

because of the complication of solving it without a computer. 

The prevertices are normally impossible to be calculated per hand from the polygon, and the locations 

of the prevertices affect the side lengths (but not the angles) of the image polygon in a highly nonlinear 

way. 

End of last century, a number of software packages regarding the Schwarz-Christoffel transformation 

become available.  Some tools were written in Fortran or in other programming languages, some other 

are based on commercial existing SW like MATLAB (see Driscoll SC Toolbox (Driscoll, 1996) (Driscoll, 

1994) (Driscoll, 2005) and related articles) or Mathematica. 

They relate on the assumption that the potential users work most in universities and have already 

anyway the commercial “core” software needed to use these programs or tools. The tools based on 

these commercial SW are then free to use.  

There is a huge number of small Mathematica or MATLAB programs or apps capable to show properties 

of Conformal mapping or SC mapping, but most of them share a common issue: the two mathematical 

platforms evolve very quickly, sometimes old commands are deprecated or after a “reasonable” time 

become invalid. They have every year a major release and some minor deliveries during the year. 



17 

 

This is not an issue for those people who want to write a brand-new piece of software, but it makes 

already developed software after some years potentially not usable anymore. In the best-case scenario, 

the user receives lot of warnings, even if this do not compromise the result. It is very difficult to reuse 

the existing software if the original author does not maintain it year after year.  

Wolfram Mathematica offers on their website also some generic programs not needing a license (named 

demonstrations or handbooks) and the related software code. There are some available “Mathematica 

demonstrations” written for conformal or even SC mapping, they are also officially maintained by 

Wolfram Mathematica. For a graphical demonstration on Conformal mapping, you can e.g. look at 

Wolfram Mathematica website https://demonstrations.wolfram.com/ACatalogOfConformalMappings/ 

(Rangel-Mondragon, 2011). 

For the numeric aspect of conformal mappings onto circular arc polygon domains please refer to  

Bjørstad and Grosse (Bjørstad & Grosse, 1987, pp. 19–32). 

A more general and detailed discussion of the numeric is available in Trefethen and Driscoll(Driscoll & 

Trefethen, 2002) or in "Numerical Approximation of the Schwarz-Christoffel Mapping" (§14.4.1 

in Handbook of Complex Variables.(Krantz, 2012, pp. 175–179)). 

A good overview of different numerical methods for conformal mapping can be found in Luteberget 

(Luteberget, 2010, pp. 36–55). 

 

1.6.1 Crowding 

Crowding (Hendriks, 2009, pp. 20–21) is a form of ill-conditioning that causes trouble in virtually all 

numerical methods for conformal mapping. The situation can be exemplified by the map from the disk 

to a rectangle with side length respectively a and 1, as in Figure 18.  The figure has been produced and 

calculated during this work with MATLAB SC Toolbox, inspired from Driscoll and Trefethen book (Driscoll 

& Trefethen, 2002). 

The angles at which the curves meet at the origin are the same as in the disk (because of conformal 

mapping). As the aspect ratio “a” grows, the angles between some pairs of these curves become 

exponentially small.  

 

   
Figure 18: Crowding explained through a map from the disc to a rectangle with a different side length ratio a, for a= 1, a=4, 

a=8 

This indicates that small changes in a point in the disk such as those induced by roundoff error on a 

computer can be amplified enormously by the map.  

https://demonstrations.wolfram.com/ACatalogOfConformalMappings/
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According to Driscoll It is quite difficult to distinguish adjacent prevertices in standard double precision 

arithmetic if the “a” ratio is larger than about 23, this is a sort of floating-point arithmetic limits.  

Crowding occurs whenever the target region has areas that are relatively long and thin (elongated 

regions). There are some workarounds to reduce this issue, but we will not discuss them here (Driscoll, 

2005). For a simple example on how crowding can be reduced using a different algorithm see chapter 

3.3.1. 

 

1.6.2 Conformal mappings onto multiple connected domains 

The bigger progress in this area in the last 20 years was the extension of the mapping formula to a 

multiply connected polygonal domains.  

   

Figure 19: Simply connected domain Figure 20: Connected domain, not simply Figure 21: Not connected domain 

The solutions of these problems can only be calculated with a computer, that is why the development 

of numeric was essential for getting solutions to this problem.   

A formula for conformal mappings onto doubly connected polygonal domains were discovered from 

Komatu in 1945, but a Software package to perform the calculation (named DSCPACK) was just 

developed by Hu in 1998 (Hu, 1998). 

De Lillo and Pfaltzgraff  proposed first an alternative approach to the mappings onto doubly connected 

domains (DeLillo & Pfaltzgraff, 1998) and then later a solution for so named Multiply Connected 

Schwarz-Christoffel domains (MCSC) (DeLillo et al., 2004) (Figure 22 and Figure 23).  De Lillo´s formula 

for MCSC has a similar structure to the original SCT for single domain for the unbounded case and a 

much complex one for the bounded one. 

We will not cover multiple connected domains in this work, but for any interest see also De Lillo´s 

article(DeLillo & Kropf, 2011) describing numerical computation for multiple connected domains. 
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Figure 22: MCSC map: map onto a multiply connected 

polygonal domain (Bauer, 2015, pp. 1–3). 

Figure 23: map onto a multiply connected arc-polygon domain 

(Bauer, 2015, pp. 1–3) 

2 Schwarz-Christoffel transformation 
As already introduced in chapter 1, the classical Schwarz-Christoffel transformation is a conformal 

mapping from the upper half-plane to a polygon. 

2.1 Introduction 

The idea behind the Schwarz–Christoffel (SC) transformation is that a conformal transformation f may 

have a derivative f ’ that can be expressed as (Driscoll & Trefethen, 2002, p. 1) 

 

𝑓𝑓′ = � 𝑓𝑓𝑘𝑘 
(5) 

for certain functions fk. 

A big number of conformal maps variations can fit into this basic formulation. 

 

In effect this is valid for all conformal transformations whose analytic forms are known as Schwarz–

Christoffel maps.  

From a geometric point of view, the formulation in (5) means: 

   

arg 𝑓𝑓′ = � 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑘𝑘 (6) 

In the classical transformation, each arg fk is designed to be a step function, so the resulting arg 𝑓𝑓′ is 

piecewise constant with specific jumps with the result that f maps the real axis to a polygon.  

 

Let P be the region in the complex plane ℂ bounded by a polygon Γ with vertices w1, . . , wn, given in 

anticlockwise order, and real interior angles α1, . . . , αn (P is the interior of the polygon Γ) .  

P is assumed for now to be bounded and without cusps or slits. The coefficients are αk ∈ (0, 2) for each 

k.  

Let f be a conformal map of the upper half-plane H+ onto P and let zk = f −1(wk) be the kth prevertex.  
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We take zn = ∞ ,without loss of generality. If infinity is not already a prevertex, we can simply introduce 

its image (which lies on Γ) as a new vertex with interior angle π. The other prevertices z1, . . ., zn−1 lie on 

the real axis and are then real.  

 

 
Figure 24: Notational convention for SCT 

As with all conformal maps, the main effort is in getting the boundary right. 

By the Schwarz reflection principle (also known as Schwarz's symmetric principle(Needham, 1998, p. 

254)) (Krantz, 2012, p. 95), f can be analytically continued across the segment (zk, zk+1).  In particular, f ′ 

exists on this segment, and we see that arg 𝑓𝑓′ must be constant there.  

The proof of the Schwarz–Christoffel mapping fundamental theorem is in next chapter 2.2. 

2.2 Schwarz-Christoffel theorem  

The proof follows mainly the two books of Mathews (Mathews & Howell, 2012, p. 370) and Driscoll 

(Driscoll & Trefethen, 2002, p. 3) we have already referenced in this document. 

We analyze in this chapter the construction of a one-to-one conformal mapping from the upper half-

plane Im (z) > 0 onto a domain P in the w plane where the boundary consists of straight-line segments.   

Many applications involving conformal mappings require the solutions of the “Schwarz-Christoffel 

Parameter Problem”, that is the problem of determining the prevertices of a Schwarz-Christoffel 

mapping. 

We want to find a function w = f(z) with the property expressed below in (3) (Chapter 2.2.1) 

Three of the prevertices zj, including if the case the already fixed zn = ∞ , may be chosen arbitrarily.  

The remaining n−3 prevertices are then obtained solving a non-linear equations system. 

 

2.2.1 Theorem formulation 

Theorem Schwarz-Christoffel 

Let P be the interior of a polygon Γ in the w plane with vertices w1, w2, ..., wn and interior angles α1, ..., 

αn specified in the positive (anticlockwise) order.  

There exists a one-to-one conformal mapping w = f (z) from the upper half-plane Im(z) > 0 onto P 

satisfying the boundary conditions:  
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wk = f (xk) for k = 1, 2, . . ., n - 1 and  

wn = f (∞), where x1 < x2 < . . . < xn-1 < ∞ 

(7) 

 

 

The derivative  f ′(z) is  

f ′(z)  = 𝐴𝐴(𝑧𝑧 − 𝑥𝑥1)(α1−1)(𝑧𝑧 − 𝑥𝑥2)(α2−1) … (𝑧𝑧 − 𝑥𝑥𝑛𝑛−1)(α𝑛𝑛−1−1) (8) 

and the function f(z) can be expressed as an indefinite integral: 

𝑓𝑓 (𝑧𝑧)  =  𝐴𝐴 +  𝐶𝐶 � � (𝜁𝜁 −  𝑥𝑥𝑘𝑘)α𝑘𝑘−1
𝑛𝑛−1

𝑘𝑘=1

𝑧𝑧

 
 𝑑𝑑𝜁𝜁 

(9) 

 

where A and C are suitably chosen complex constants (determining orientation, size, and position of the 

polygon Γ).  

In this special case, mapping from upper half-plane, all prevertices on the real axis, therefore xi ∈ ℝ ∪ 

{∞}. 

As already stated above, three of the points {xi} may be chosen arbitrarily. If we make the decision to 

take xn = ∞, then just two of the remaining {xi} can be chosen. 

 

Theorem Proof:  

For simplicity, we just consider the case where all prevertices are finite and the product ranges over the 

indices 1 to n. By the Schwarz reflection principle, the mapping function f can be analytically continued 

across the segment (xk, xk+1) of the real axis, so that f ′(z) exists there.  

We also see that arg f ′(z) must be constant on these segments, and that arg f ′(z) must jump at each xk, 

lim
𝑧𝑧→𝑥𝑥𝑘𝑘

+
𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(z) − lim

𝑧𝑧→𝑥𝑥𝑘𝑘
− 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(z) = (1- αk) = βk  (10) 

βk is the turning angle at wk (or the exterior angle at vertex k).  

The amount of rotation is in effect determined by arg 𝑓𝑓′(x). The function fk = (𝑧𝑧 − 𝑥𝑥𝑘𝑘)−𝛽𝛽𝑘𝑘  is analytic 

in the upper half-plane H+ (or Im(z)>0), has the specific jump on z = 𝑥𝑥𝑘𝑘 and has arg fk constant on the 

real axis. 

For all these reasons, now we can write a conformal map to a polygon as:  

 
f ′(z) = C ∏ 𝑓𝑓

𝑘𝑘
 (z)𝑛𝑛−1

𝑘𝑘=1  (11) 

By summing up the previous formula for f ′(z) we obtain the SC Formula for a half-plane  

𝑓𝑓 (𝑧𝑧)  =  𝐴𝐴 +  𝐶𝐶 � � (𝜁𝜁 −  𝑥𝑥𝑘𝑘)α𝑘𝑘−1
𝑛𝑛−1

𝑘𝑘=1

𝑧𝑧

 
 𝑑𝑑𝜁𝜁 

(same formula outlined in (9), A and C are suitably chosen complex constants). 

Formula (9) gives a representation for f in terms of an indefinite integral.  
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Also, the integral will involve a multivalued function, and a specific branch must be selected to fit the 

boundary values specified in the problem. Table 1 is useful for solving problems with 2 or 3 prevertices 

and angles that are always a multiple of π/2 (exponent are then ±1
2
 , ±1, . . . ). 

 

Table 1: Indefinite Integrals 

function integral 
1

(𝑧𝑧2 − 1)1/2 i Arcsin(z) = log ( z + (𝑧𝑧2 − 1)1/2) -i 𝜋𝜋
2

 
1

(𝑧𝑧2 + 1)  Arctan(z) 
1

(−𝑧𝑧2 + 1)1/2 Arcsin(z) 
1

𝑧𝑧(𝑧𝑧2 − 1)1/2 - Arcsin( 1
𝑧𝑧
 ) 

1
𝑧𝑧(𝑧𝑧  + 1)1/2 -2 Arctanh[(𝑧𝑧 + 1)1/2] 

(1 − 𝑧𝑧2)1/2 
1
2 𝑧𝑧(1 − 𝑧𝑧2)1/2 + 𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖𝐴𝐴 𝑧𝑧 

 

 

2.3 Schwarz-Christoffel mapping from the unit disk 

As important as the previous formula, is the one applying to the conformal map from the unit disk E. 

Let P be the interior of a polygon Γ in the w plane with vertices w1, w2, . . ., wn and interior angles α1, ..., 

αn specified in the positive (anticlockwise) order.  

Let f be any conformal map from the unit disk E to P.  

  

Then: 

𝑓𝑓 (𝑧𝑧)  =  𝐴𝐴 +  𝐶𝐶 � � (1 −   
𝜁𝜁 
𝑧𝑧𝑘𝑘

)αk−1
𝑛𝑛

𝑘𝑘=1

𝑧𝑧

 
 𝑑𝑑𝜁𝜁 

(12) 

A and C are suitably chosen complex constants, wk = f (zk) for k = 1, . . ., n. 

 

This variation can be derived from the basic SC principle; the only substantive difference between this 

formulation and the one mapping from the half upper plan, is that the product runs over all n prevertices. 

The form of the integrand appears to be slightly different, but in fact it is a constant multiple of the 

original form. The reason for the change is so that the branch cuts of the integrand will point away from 

the origin if the principal branch of the logarithm is used to compute them.  

2.3.1 Special case for regular polygons 

Just a note for a special case. If the polygon Γ is a regular one, then all angles have the same size. If n is 

the number of vertices, all exterior angles are 2π/n big. 
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The formula can be then rewritten as: 

𝑓𝑓 (𝑧𝑧)  =  𝐴𝐴 +  𝐶𝐶 � � (1 −   
𝜁𝜁 
𝑧𝑧𝑘𝑘

)2/n
𝑛𝑛

𝑘𝑘=1

𝑧𝑧

 
 𝑑𝑑𝜁𝜁 

(13) 

 

 

A and C are suitably chosen complex constants, wk = f (zk) for k = 1, . . . n. 

 

To show this special case we can write a small program that realizes the mapping for each regular 

polygon with n vertices (n ρ 3). For details see also (Driscoll & Trefethen, 2002, pp. 16–20). 
%function disctonregpoly(n)  % n  >=3; 
b(1:n,1) = -2/n; 
for j=1:n 
     v(j,1) = exp((j*2*pi*i*)/n); 
end; 
ang (1:n,1) = (1 + b(1:n,1));  
p = polygon(v,ang); 
fmap = diskmap(p); 
fmap = center(fmap,0); 
plot (fmap, 20, 20) 
 
 

  

  
Figure 25: SC mapping from unit disc to a n-regular polygon for n = 3, 4, 6, 9 
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2.4 Schwarz-Christoffel mapping from a strip 

The infinite strip S = {0 < Im z < 1} is very useful as a canonical domain.  

The first reason is because many applications involve an infinite channel. Secondly, because S is 

essentially the logarithm of the upper half-plane, crowded prevertex on the real line may become well 

separated on the S boundary and therefore easier to treat numerically.  It was implemented and 

advocated as a method for reducing crowding (see chapter 1.6.1). 

Under this map, the two ends of the channel always have identical “divergence angles.”  

For the Schwartz-Christoffel formula for a strip see please the reference in literature below.(Driscoll & 

Trefethen, 2002, p. 46) 

Because the two ends of the strip are preassigned, only one degree of freedom remains in the map: 

sideways translation of the strip, which can be fixed by placing a designated prevertex at zero.  

There are then just (n−1) real conditions necessary to calculate the remaining prevertices, where n is the 

number of vertices, once the channel ends have been excluded.   

We will use this mapping in chapter 4.3 , to show the application to capacity electric field. 
 
 

3 Example of computer assisted solutions.  
The Software programs and versions used for all following examples and for all the pictures present in 

this work are: 

• MATLAB R2020b with SC Toolbox 2.4.1, Chebfun, “Phase plot of complex functions” 
• Wolfram Mathematica 12.0 
• GeoGebra Classic 6 (just for drawing) 

 
 

3.1 Introduction to MATLAB SC Toolbox: notation on angles 

You can find in literature different expressions for the SC transformation and relative formulation, using 

either the interior or the exterior angles. We decided to use the interior angles αiπ firstly because it more 

common, but mainly to align to the documentation of SC Toolbox.  

The sum of all exterior angles is 2π.  Another way is to check if angles have been calculated correctly is 

(n-∑ 𝛼𝛼𝑛𝑛
𝑖𝑖=1  i) =2 or  ∑ (𝛼𝛼𝑛𝑛

𝑖𝑖=1  i) =n-2, where n is the number of vertices in the polygon. 
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Figure 26: Prevertices zi and vertices wj ; angles according to SC Toolbox: standard. If the transformation is from the extended 

half-plane, we can name the zi as xi, to make it clear they have all a value in ℝ 

 

We give now two examples taken from Matthews (page 373-380) and Driscoll but always using Driscoll 

notation for the angles). Using this notation for all internal angles we have for all polygon with slits αslit 

= 2; for vertex wi at infinity (−2 ≤ αi ≤ 0). 

3.2 Example: upper half-plane mapped to a strip 

Example 1 (Mathews & Howell, 2012, p. 373): function mapping the upper half-plane Im(z) >0 to the 

semi-infinite strip  
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MATLAB answer: commands in blue; output in black 
>> q = polygon([-pi/2,pi/2,i*Inf],[1/2,1/2,0]); 
>> plot (q) 
>> f = hplmap(q) 
   hplmap object: 
       vertex               alpha          prevertex        
 ------------------------------------------------------------------------------- 
 -1.57080 + 0.00000i    0.50000     -1.000000000000e+00 
  1.57080 + 0.00000i    0.50000      1.000000000000e+00 
  0.00000 +     Infi  0.00000                     Inf 
   
  c = 6.123234e-17 + 1i 
 Apparent accuracy is 1.71e-11 

>> plot (f) 

Figure 27: mapping the upper half-plane Im(z) >0 to the semi-infinite strip 

This Calculates the 3 prevertices in SC Toolbox: :  z1 = -1 ; z2 = +1; z3 = zn = ∞ 

The angles are α1 = α2 = ½; α3 = 0 

The integral of f ′(z) =  −𝑖𝑖
(𝑧𝑧2−1)1/2 can be calculated with a mathematical program like MATLAB or 

Mathematica and we know the analytic solution is f(z) = Arcsin z= -i log (z + (𝑧𝑧2 − 1)1/2) - 
𝜋𝜋
2

 

MATLAB answer: commands in blue; output in black 
>> syms z 
>> expr = -i/(z^2-1)^(1/2); 
>> F = int(expr) 
 F = -log(z + (z^2 - 1)^(1/2))*1i 
 

That is the right result, but in exp/log form. 

3.2.1 Integration 

SC Toolbox in MATLAB or Mathematica perform for the SC mapping calculation a numeric integration. 

Let´s see if it is possible to get, at least in some special easier cases, an explicit expression of the definite 

integral that solve the f(z) performing the mapping,  

We can try to integrate in MATLAB reusing the already calculated prevertices and α parameters. 

We obtain first as solution of (9), the definite integral f(z) where A and B still need to be calculated. 

f(z) = B + A G(z). The function G(z) is the result of the MATLAB program. 
v= [-pi/2,pi/2,i*Inf]; 
ang = [1/2,1/2,0]; 
n = size(v); 
index = n(2); 
p = polygon(v,ang); 
plot (p); 
fmap = hplmap(p) 
prev = [prevertex(fmap)] 
ang = [angle(p)] 
syms z; 
fder = 1; 
for j = 1:(index-1) 
  fderk = (z- prev(j))^(ang(j)-1) 
  fder = fder * fderk; 
end 
fder 
G = int(fder) 
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MATLAB calculates G(z) = i Arcsin(z).  A and B still need to be calculated with an equation system, using 

the conditions coming from the image values f(xi) = wi . 

 

 �
f(z)  =  A i Arcsin(z) +  B

𝑓𝑓(−1)  =  −𝜋𝜋/2
𝑓𝑓(1)  =  𝜋𝜋/2

        �
−𝜋𝜋
2

= 𝐴𝐴 −𝑖𝑖𝜋𝜋
2

+ 𝐵𝐵
𝜋𝜋
2

= 𝐴𝐴 𝑖𝑖𝜋𝜋
2

+ 𝐵𝐵
                        �𝜋𝜋 = 𝐴𝐴𝑖𝑖𝜋𝜋 −  2𝐵𝐵

𝜋𝜋 = 𝐴𝐴𝑖𝑖𝜋𝜋 + 2𝐵𝐵  that is solved 

for B=0 and A=-i 

That means f(z) = Arcsin z is the solution. 

Please read also next chapter, to get more information on how the code showed above not always gives 

a compact solution for the definite integral. 

3.2.2 MATLAB power expressions and explicit solution of indefinite integrals 

A manual analytic solution with lot of vertices become complex and additionally, if the angles are not 

multiple of π/2, is nearly impossible. In this case we need to use a computer and find a numeric solution 

of the problem. All Software tool we have used “just” perform a numeric integration to find the 

prevertices of the SC transformation, without giving an explicit description of the function f : H+ -> P that 

maps e.g. the half-plane to a certain region P . This is true even if an analytic solution would be possible. 

In general terms it is possible to try to ask a certain software (e.g., MATLAB) to find the explicit analytic 

primitive function, even if the answer is not always written as we would expect. 

To be precise, MATLAB has to be explicitly asked to recognize that several different binomial term with 

same power should be multiplied, to get a shorter more compact form (e.g.):  

1
(𝑧𝑧 + 1)𝑎𝑎

1
(𝑧𝑧 − 1)𝑎𝑎 =

1
(𝑧𝑧2 − 1)𝑎𝑎 

The consequence is that the solution of the integral is not as compact as it could be.  

This can be done with the “simplify” command, using the ‘steps’ option. 

 

MATLAB command MATLAB answer 

syms z; % just defining the variable  

simplify(( (z+1)* (z-1))) z^2 - 1 

simplify(( (z+1)^-1 * (z-1)^-1)) 1/(z^2 - 1) 

simplify(( (z+1)^-2 * (z-1)^-2)) 1/((z - 1)^2*(z + 1)^2) 

simplify(( (z+1)^-2 * (z-1)^-2),'Steps',10) 1/((z - 1)^2*(z + 1)^2) 

simplify(( (z+1)^-2 * (z-1)^-2),'Steps',57) 1/(z^2 - 1)^2 

 

Of course, this is not always needed, but it is good for teaching, to show how in simple cases you get to 

the same solution, manually or with a MATLAB program. 

In this case the automation of the integral procedure must get a manual human step where the function 

to be integrated is simplified. 
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MATLAB has various commands like “simplify” (algebraic simplification), “rewrite” (rewrite expression in 

terms of another function) and “combine” (combine terms of identical algebraic structure) to change 

the structure of a function or a mathematical expression. Other command that can be used are “collect”, 

“expand”, “numden”, “simplifyFraction”. 

Solving simple examples can be noted that if we are looking to find not only the prevertices, but also the 

explicit function solving the required SC conformal mapping, the MATLAB commands “simplify” and 

“rewrite” can be used. 

However, to write a program capable to compact every (simple) solution is not easy, it is enough to know 

that the numeric calculated solution is correct. 

3.3 Example 2: unit disk mapped to a L-shaped region 

For the unit disk mapping we present just a computer aided solution to the parameter problem (finding 

the prevertices zi) (Driscoll, 1994). 
MATLAB SC Toolbox: commands in blue; output in black 
>> p = polygon ([i -1+i -1-i 1-i 1 0]) 
p = polygon object: 
       Vertex        Angle/pi 
  ------------------------------------------- 
   0.0000 + 1.0000i     0.5000 
  -1.0000 + 1.0000i     0.5000 
  -1.0000 - 1.0000i     0.5000 
   1.0000 - 1.0000i     0.5000 
   1.0000 + 0.0000i     0.5000 
   0.0000 + 0.0000i     1.5000 
>> plot (p) 
>> f = diskmap (p) 
diskmap object: 
       vertex   alpha        prevertex         arg/pi 
 --------------------------------------------------------------------------------------------------------- 
  0.00000 + 1.00000i    0.50000    0.98974 + 0.14286i    0.045628948204 
 -1.00000 + 1.00000i  0.50000    0.98811 + 0.15378i    0.049144854229 
 -1.00000 - 1.00000i      0.50000    0.95325 + 0.30217i    0.097710854028 
  1.00000 - 1.00000i      0.50000   -1.00000 + 0.00000i    1.000000000000 
  1.00000 + 0.00000i      0.50000   -0.00000 - 1.00000i    1.500000000000 
  0.00000 + 0.00000i      1.50000    1.00000 + 0.00000i    2.000000000000 
c = -0.48783135 + 0.29499692i 
Conformal center at 0.4955 - 0.5829i 
Apparent accuracy is 6.31e-08 
>> plot (f) 
 

   
Figure 28:L-shaped region; unit disk mapped to a L-shaped region; same with map centered in (-0.5 -0.5i) 
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What is showed in Figure 28 are the images of ten evenly spaced circles centered at the origin and ten 

evenly spaced radii in the unit disk. Some sectors of the new grid are greatly distorted than others. The 

intersections of radii and circles preserve the orthogonality (conformal mapping). The 3rd figure on the 

right is obtained from the 2nd changing later the conformal center to (-0.5, -0.5 i) and re-plotting the 

map. In this case, of course, the prevertices are in general complex numbers. 

SC Toolbox can also map the disc to the exterior polygon as in Figure 29, plotted for the already 

calculated mapping. 

 

>> e = extermap (p) 
>> plot (e) 

Figure 29: unit disk mapped to the exterior of a L-shaped region.  

 

3.3.1 Crowding on an L-shaped region 

Crowding has been introduced in paragraph 1.6.1. 

If we check the effect of crowding on an L-shaped region we can see that the numeric computation can 

even fail if crowding is relevant. To avoid that we need a better and possibly more resource consuming 

algorithm.  

In MATLAB SC Tool this is solved using a different algorithm launched through the crdiskmap(f) command 

instead of standard diskmap(f) as it is shown in Figure 32 and Figure 33. 

The crdiskmap use a specific algorithm that may add trivial vertices to the original polygon. This can 

increase the calculation time if the region has many elongations and therefore many additional vertices.  
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Figure 30: unit disk mapped to a L-shaped region: longer side 

a=2 

Figure 31: unit disk mapped to a L-shaped region: longer side 

a=5 

  
Figure 32: unit disk mapped to a L-shaped region: longer side 

a=13. Standard algorithm is failing.  

Figure 33: unit disk mapped to a L-shaped region: longer side 

a=13. Solved with modified algorithm crdiskmap(f). 

 

4 Physics applications to 2D fluid flow and 2D electrostatics 
In this section we show that the SC idea can be applied to the classical fluid mechanics problem of ideal 

free-streamline flows (Brown & Churchill, 2009, p. 382) (Mathews & Howell, 2012, pp. 349–360). 

We said already in paragraph 1.2 that the transformation w = f(z) is conformal if and only if it is 

holomorphic and its derivative f’ (z) is everywhere non-zero on D. 

We consider therefore here only complex functions f(x + i y) = u(x, y) + i v(x, y)  that have the property 

to be holomorphic functions.  
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4.1 Two-dimensional free-streamline flows 

We consider here just holomorphic functions, defined on a simply connected region.  
 
If the domain of flow Dw in the uv plane is the image of a domain Dz under a transformation 

w = f (z) = u(x, y) + iv(x, y) , f(z) holomorphic in Dz 

we can consider his antiderivative   

F(f(z)) = F(w) = φ(u, v) + i ψ (u, v) 
 
 
For the class of holomorphic functions is true that F(w) is harmonic in the Domain Dw defined by the 

transformation w=f(z). A demonstration of that is present in most complex analysis books (e.g. 

(Needham, 1998, pp. 511-538)). The two functions Φ(u, v) and Ψ(u, v) are  both harmonic as well. 

The functions φ[u(x, y), v(x, y)] and ψ[u(x, y), v(x, y)] are harmonic in Dz. 
 

The function F(w) = φ(u, v) + i ψ (u, v) is named complex potential (of the flow) in the (u,v) plane and 

the composite function F[ f (z)] = φ [u(x, y), v(x, y)] + iψ[u(x, y), v(x, y)]  is the complex potential in the 

(x,y) plane. 

 

We can write for the derivative of F(z):  

F'(z) = φ x (x, y) + iψx (x, y) = φ x (x, y)- i φ y(x, y) = f(z) 

(because of the Cauchy–Riemann equations (Brown & Churchill, 2009, p. 385))  

 

We can also define: 

• The velocity as V =𝐹𝐹′(𝑧𝑧)�������  

• The module of the velocity is |𝑉𝑉| = |𝐹𝐹′(𝑧𝑧)| 

• The function ψ(x, y)  is the stream function. The level curves ψ(x, y) = constant,  are called the 

streamlines (same for ψ(u,v)  ) . 

• A streamline or natural boundary ψ(u, v) = constant in the (u,v) plane corresponds to a 

streamline or natural boundary ψ[u(x, y), v(x, y)] = constant  in the (x,y) plane. 

• The function φ(x, y) is called the velocity potential. The level curves φ(x, y) = constant,  are called 

equipotentials or iso-potential (same for φ (u,v)  ). 

• The equipotential curves are orthogonal to the streamline curves (Mathews & Howell, 2012, p. 

310) in both planes.  

The streamline defining a natural boundary works as a wall for the for the fluid flow. 

We consider only the two-dimensional problem and assume to have a steady-state flow (the fluid flow 

is unchanging in time). 
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The flow motion is assumed to be the same in all horizontal planes parallel to the z plane, the velocity 

being parallel to that plane and constant everywhere in time.  

Now we are considering just irrotational, incompressible fluids (Brown & Churchill, 2009, pp. 383–385) 

(Mathews & Howell, 2012, pp. 89–92). Additionally, we can also say that holomorphic functions in simply 

connected closed domains behaves like the functions describing conservative fields in physic (the 

integral over a closed path is zero) and are capable to model fluid dynamics, electrostatic or 

electromagnetic field functions. 

 

The definitions above can be ported to describe different physical phenomena,  in Error! Reference 

source not found.Table 2 there is an overview on how the name of the curves φ and ψ changes 

accordingly (Mathews & Howell, 2012, p. 329). 

 

Table 2: Interpretations for Level curves 

Physical phenomenon 
 Level curves 

φ(x, y) = constant  ψ(x, y) = constant 
Fluid flow Equipotentials Streamlines 
Electrostatics Equipotential curves Flux lines 
Heat flow Isothermals Heat flow lines 
Gravitational field Gravitational potential Lines of force 
Magnetism Potential Lines of force 
Diffusion Concentration Lines of flow 
Elasticity Strain function Stress lines 
Current flow Potential Lines of flow 

 

 

4.2 Image of a two-dimensional fluid flow turning a corner. 

In the next example, where we try to find the image of a (two-dimensional) fluid flow under a conformal 

transformation. 

 

Consider a flow in the first quadrant x > 0, y > 0 that comes in downward parallel to the y axis but is 

forced to turn a corner near the origin, similar to what is shown in Figure 34. 

To determine the flow, we look for a transformation that maps the first quadrant on the half upper plane 

like w = f(z) = z2: 

w = z2 = (x + iy)2 = x2 − y2 + i2xy  

The Q1 boundary of the z plane is mapped to the real axis in the w plane, that is the boundary of the 

upper half-plane Im(w) >0. 
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The complex potential for a uniform flow to the right in the upper half of the w plane is F = Aw, where 

A is a positive real constant.  

Using now the definitions from the previous paragraph 4.1: 

• complex potential in the Q1 quadrant: F= Aw = Az2 =Ax2 −Ay2 + i2Axy = φ(x, y) +i ψ(x, y) 

• velocity potential: φ(x, y) = Ax2 −Ay2 

• stream function for the flow:  ψ(x, y) = 2Ax y 

• the streamlines are the branches of the hyperbolas 2Axy = constant. 

• the fluid velocity is V = 𝐹𝐹′(𝑧𝑧)������� = 2𝐴𝐴𝑧𝑧����� = 2A(x − iy). 

• the module of the velocity |V| = 2A�𝑥𝑥2 + 𝑦𝑦2 , decreasing as far as the (x,y) point near the 
origin 

 
 
This example can be formulated also mapping in the other direction from the upper half z plane to the 

first quadrant of the w plane, in this case we can use the SC transformation (9) . 

 

%fluid flow streamlines 
v= [i,0,Inf]; 
ang = [1,1/2,-1/2]; 
p = polygon(v,ang); 
axis([-0.1 3 -0.1 3]), hold 
on 
plot (p); 
fmap = hplmap(p); 
plot(fmap,0,1*(1:10)) 

 

%fluid flow streamlines % & 
iso-potential 
v= [i,0,Inf]; 
ang = [1,1/2,-1/2]; 
p = polygon(v,ang); 
axis([-0.1 3 -0.1 3]), hold on 
plot (p); 
fmap = hplmap(p); 
plot(fmap,1*(-5:5),1*(1:10)) 

Figure 34: Streamline of a fluid flow in Q1. Figure 35: Streamline & iso-potential of a fluid flow in Q1. 

Figure 34 is obtained as Schwarz-Christoffel mapping from the upper half-plane to the first quadrant, the 

boundary polygon is expressed as a triangle with a vertex to infinite, a vertex in (0, 0) and a trivial vertex 

in (0, i). Sometimes it is needed to add trivial vertices to the polygon.  

This approach allows us to find the streamlines for the fluid flow in a domain of the w plane bounded by 

straight line segments. Figure 35: Streamline & iso-potential of a fluid flow in Q1.Figure 35 is the same 

with addition of the iso-potential curves: the mapping clearly preserves the orthogonality of streamlines 

and iso-potentials. 

 

The transformation from the upper half-plane to the first quadrant is of the type w= f(z) = z1/2, this can 

be calculated explicitly with the SC transformation, where the exponent ½ is direct consequence of the 

right angle in the polygon. 

Using MATLAB, we get as SC solution for this mapping:  

f(z) = A+C٠[2͘٠(z - 1) ½]  

that is also the same solution we find resolving manually the Integral in (9). 
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4.2.1 Fluid flow over a step 

We consider in this chapter only SC mapping from the half-plane Im(z)>0. 

We want to show in the next chapter that the Schwarz-Christoffel mapping allow us to find the 

streamlines for flows in the w plane bounded by straight line segments.  

We consider here z = t + iy.  

The flow in the upper half-plane Im(z) > 0 is seen as decomposed in streamlines with constant y = c. 

The image of the streamline -∞ < t <  ∞ will be a in the w plane a streamline given by the parametric 

equations 

   �𝑢𝑢 = 𝑢𝑢(𝑡𝑡, 𝑐𝑐)
𝑣𝑣 = 𝑣𝑣(𝑡𝑡, 𝑐𝑐) -∞ < t <  ∞ 

and will be oriented in the anticlockwise (positive) sense.  

The streamline u = u(t, 0), v = v(t, 0) is considered to be a boundary wall for the for the fluid flow. 

 

Consider the conformal mapping: 

w = f(z) = 1
π

 [ ( z- 1)1/2 + Log(z + (z2 - 1)1/2)] 

which is obtained by using the Schwarz-Christoffel formula, to map the upper half-plane Im(z) > 0 onto 

the domain in the w plane (Error! Reference source not found.) that lies above the boundary. 

The boundary consists of the rays u ≤ 0, v = 1 and u ≥0, v = 0 and the segment u = 0, - 1 ≤ v ≤ 0 

 
Figure 36: Domain in the w plane (Flow over a step) 

The image of horizontal streamlines in the z plane are curves in the w plane given by the parametric 

equation: 

w = f(t + ic) =  1
π

  (t2 -c2 - 1 + i2ct)1/2 + 1
𝜋𝜋

    Log[t + ic + (t2 -c2 - 1 + i2ct)1/2 ] , for  -∞ < t <  ∞ 

The new flow is that of a step in the bed of a deep stream and is illustrated in Figure 36. 

We use MATLAB SC Toolbox for the graphical part (Figure 36), where just the boundary and twenty 

streamlines are showed, hiding the radial iso-potential curves.  
v= [i,0,Inf]; 
ang = [3/2,1/2,-1]; 
n = size(v); 
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index = n(2); 
p = polygon(v,ang); 
axis([-3 3 -0.2 2.5]), hold on 
plot (p); 
fmap = hplmap(p); 
plot (fmap, 0, 20) 

4.2.2 Fluid flow around a slit 

We try to graphically show the fluid flow around a slit. This can be achieved with one conformal 

transformation w=f(z), or with a two-steps process(Mathews & Howell, 2012, p. 299). The function Z 

=(z2-1) maps the upper half-plane Im(z)>0 onto the Z-plane slit along the ray Y = 0, X = -1. Then the 

function w = Z1/2 maps the slit plane onto the slit half-plane, as shown in Figure 37. 

 
Figure 37: The composite transformation w = /(z) = (z2-1)1/2, and the intermediate steps Z= (z2-1)  and w= Z1/2 

Defining the slit and looking for the function w=f(z) with SC Toolbox: 

 

v= [0 , i, 0, Inf]; 
ang = [1/2, 2 ,1/2, -1]; 
n = size(v); 
index = n(2); 
p = polygon(v,ang); 
axis([-1.2 1.2 -0.2 2]), hold on 
plot (p); 
fmap = hplmap(p); 
plot (fmap, 0, 30) 
prev = [prevertex(fmap)]; 
ang = [angle(p)]; 
syms z; 
fder = 1; 
for j = 1:(index-1) 
  fderk = (z- prev(j))^(ang(j)-1) 
  fder = fder * fderk; 
end 
fder 
G = int(fder,z,'IgnoreAnalyticConstraints',true) 

Figure 38: MATLAB SC Toolbox Fluid flow around a slit  

 

The Answer from the MATLAB program (using 'IgnoreAnalyticConstraints' option) is: 

fder = z/((z - 1)^(1/2)*(z + 1)^(1/2)) 
G = (z^2 - 1)^(1/2) 
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We get as MATLAB answer G(z) = �(𝑧𝑧2 − 1), with in general f(z) = A*G(z) + B, see below. 

�
f(z) = A ∗ G(z) + B

f(−1) = 𝐴𝐴 ∗ 0 + 𝐵𝐵 = 0
𝐹𝐹(0) = 𝐴𝐴 ∗ 𝑖𝑖 = 𝑖𝑖

  
f(𝑧𝑧) = 𝐺𝐺(𝑧𝑧)

𝐵𝐵 =  0
𝐴𝐴 =  1

 

As B=0 and A=1, the final answer is f(z) = �(𝑧𝑧2 − 1) 

 

 

4.3 Electrostatic fields representation using SC mapping 

As we already discussed, conformal mapping f -> w=f(z) is an analytical function maps the complex plane 

Z into the complex plane W.  

In chapter 4 we have described some properties of holomorphic functions and introduced the idea of 

complex potential. Electrical field is also a conservative field and can be described using holomorphic 

functions.  

We refer now to F, ψ and φ in general, independently of the plane (x,y) or (u,v). 

We can reuse the definitions outlined in chapter 4: 
• The function F = φ + i ψ is named complex potential 
• The function ψ is named flux function. The level curves ψ = constant, are called iso-flux. 

• A iso-flux or natural boundary ψ = constant in the (u,v) plane corresponds to a iso-flux or natural 

boundary ψ = constant  in the (x,y) plane. 

• The function φ is called the velocity potential. The level curves φ = constant, are called 

equipotentials or iso-potential. 

• The equipotential curves are orthogonal to the iso-flux curves in both planes. 

 

The two examples below represent electrostatic fields in high voltage applications (Rogowski electrodes, 

designed to minimize the electric field on their ends) (Rogowski Electrodes --QuickField FEA Software, 

n.d., p. 1). 

The electric field is shown in the w plane. In this chapter we use the SC transformation from a strip to a 

polygon that has been drafty discussed in chapter 2.4. The electrodes, have a potential of +a and -a . 

We can try to represent Rogowski electrodes using again MATLAB SC Toolbox.  

In many cases, it is desirable to produce uniform electric fields between a set of electrodes. However, 

simple parallel plate electrodes are finite in size and therefore have electric field enhancement at the 

edges of the plates (Figure 40).  

Rogowski also studied the case of finite plate above an infinite ground plane, shown in Figure 39.  

In these 2 figures is very clear how the SC transformation works: the potential and the flux are 

represented by iso-potential and iso-flux lines in the W plane (Costa, 1999, pp. 23–24). The orthogonality 

of iso-potential and iso-flux lines is preserved through the conformal transformation. 
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%function condensator  
w = [Inf,1000-i,-2.5-i,Inf,-1+i,-2.5+i]; 
ang = [0,2,1,-2,2,1]; 
p = polygon(w,ang); 
f1 = stripmap(p,[1 4]); 
axis([-6 6 -2 10]), hold on 
plot(f1,15,15) 

 

Figure 39: Flow and potential lines associated with finite 

plate above infinite plate 

MATLAB SC Toolbox code (Figure 39), realized for this work 

 

%function condensator  
w = [Inf,-1-i,-2.5-i,Inf,-1+i,-2.5+i]; 
ang = [0,2,1,-2,2,1]; 
p = polygon(w,ang); 
f1 = stripmap(p,[1 4]); 
axis([-3 3 -2 2]), hold on 
plot(f1,15,15) 

 

Figure 40: Flow and potential lines of electric field: 

Rogowski electrode profile 

MATLAB SC Toolbox code (Figure 40) , realized for this work 

 

5 Beautiful Math (aesthetic pattern based on SC transformation) 
This final section is inspired from two very interesting articles written by Peichang Ouyang and other 

colleagues.(Ouyang et al., 2015) (Ouyang & Chung, 2014) 

The triangle is a basic shape in any geometrical space. However, a hyperbolic triangle could not 

exist in Euclidean space because its angle sum is less than π. This simple example suggests that hyperbolic 

and Euclidean spaces are in theory “inconsistent”.  

For planar figures, conformal mapping is a communication method between these two mathematical 

worlds. Conformal mapping can “translate” beautiful Euclidean art into another world, with different 

rules. This method of transforming Euclidean symmetric patterns into hyperbolic ones is also named 

“hyperbolization” of Euclidean ornaments.  

As an example, we take the Poincaré hyperbolic disk, a two-dimensional space having hyperbolic 

geometry defined on.  
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Figure 41: Poincare disk realized with Mathematica. The aesthetic patterns in the figure below can have arbitrary resolution 

without distortion. 

The Schwarz-Christoffel mapping provides the numerical method for conformal mappings. This will in 

effect allow to transform hyperbolic patterns, from a disc e.g., into a regular n-sided polygon. This is 

similar to what the Dutch artist M.C. Escher solved in his art pictures.  

The modern solution of the problem is to use Schwarz-Christoffel mapping, that can perfectly preserve 

the pattern structure.  

The applications of Schwarz-Christoffel mapping in arts are still on going and have still to be fully 

discovered. Using computer numeric integration and very modern software it is possible to introduce a 

method to create aesthetic patterns transforming e.g., Escher's “Circle Limit I” to a “Square Limit”. 

  

Figure 42: Escher's “Circle Limits I” and same picture conformally transformed with Schwarz-Christoffel mapping 

to a new  “Square Limits”(Fong, 2019) 

5.1 Implementation Details 

The numerical realization of Schwarz-Christoffel mapping has been refined for half a century. For the 

following picture the authors have used MATLAB SC Toolbox , the same tool mentioned above in this 

text many times.  

The authors have just applied three functions of SC Toolbox (polygon, diskmap, evalinv). 

These functions were called in the order described by the following steps: 
1. p = polygon(v), where v = [v1, v2, ..., vn] are the polygon vertices 
2. f = diskmap(p), which yields the desired Schwarz-Christoffel mapping f  
3. d = evalinv(f, w), which yields the inverse of f at w. 

 

Let w(i, j) be the element in row i and column j of matrix w. Then the corresponding conformal point in 

the unit disc D is w(i, j) = evalinv(f, w(i, j)).  Steps 1 through 3 outlined above realize numerically the 

conformal mapping f between w and D.  
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Figure 43 shows an example that conformally transforms a disc tiling into a regular pentagon. 

Thus, once we have a disc pattern, we can transform it into a specific polygon region and obtain a 

polygonal aesthetic pattern. (For the creation of disc patterns with the symmetry of triangle groups, see 

the “Beautiful Math, Part 3” article)(Ouyang & Chung, 2014). 

Because the inverse mapping method (d = evalinv (f, w) command) with SC Toolbox consumes lot of 

memory resources, the polygonal aesthetic patterns are indeed difficult to obtain. The transformation 

below takes nearly 30 minutes of CPU time on a professional university computer and the picture has 

just 2000x2000 pixel.  

 
Figure 43: (a) Poincare disk and (b) same picture converted to a pentagon. 

5.2 Gallery of Polygonal Patterns 

More complex pattern obtained by Ouyang and Chung and presented in their articles (Ouyang et al., 

2015) (Ouyang & Chung, 2014), an example of these patterns is copied in Figure 44. This is to show how 

mathematics allow people to express relations between numbers as a sort of “modern art”. 

 
Figure 44: Specially designed polygons. (a) Cross, (b) overlapping squares, (c) overlapping triangles, (d) non-regular octagon, 

(e) star, (f) diamond 
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9 Abstract 
This work describes the Conformal Mapping of domains by holomorphic functions. It gives in particular 

an overview on the Schwartz-Christoffel transformation and related developments. 

A very quick historic information on the development of the SC Transformation from the original 

discovery (Hermann Schwarz in 1869; Elwin Christoffel in 1867), current finding and results, enabled by 

the using of complex numeric algorithms and computers, are given as well. 

The Schwartz-Christoffel Transformation enables in many application fields the search for complex 

solutions in complex geometries if a simple solution in the canonic domain already exists.   

Between the very large number of applications that can use the Schwartz-Christoffel transformation and 

his mathematical developments, we have chosen some simple examples related to fluid dynamics and 

electrostatic. The solutions are represented graphically using a computer. 

The graphic representation is obtained in MATLAB or Mathematica (using special tools or libraries) and 

the software code written (or adapted) for drawing these images has been provided as well. 

 

10 Kurzzusammenfassung 
Diese Arbeit beschreibt die Konformen Abbildungen von Domänen mittels holomorpher Funktionen, 

insbesondere beschäftig sich mit der Schwarz-Christoffel Abbildung.  

Es wird eine kurze historische Darstellung gemacht und anschließend werden die wichtigsten Sätze 

dargestellt. 

Die Schwartz-Christoffel Abbildung erlaubt in viele Anwendungsgebiete, bei denen eine Lösung für 

einfache Domänen existiert, die Suche nach komplexeren Lösungen in komplexeren Geometrien.  

Es würden einfache Beispiele aus der Fluiddynamik und Elektrostatik ausgewählt, gerechnet und 

graphisch dargestellt. Die Berechnung und die graphische Darstellung basieren auf MATLAB oder 

Mathematica, mit der Hilfe von ausgewählte „Tools“ oder „Libraries“. 

Die Abbildungen und die Software Programme, die geschrieben oder adaptiert worden sind, werden 

ausführlich in dieser Arbeit dargestellt. 
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