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Abstract

In this thesis, I present my research in the field of mathematical population genetics that

I have carried out during my doctoral studies in mathematics at the University of Vienna.

The manuscript is structured into three parts, the first two each correspond to a published

paper whereas the third part is not yet submitted for publication.

The three chapters are connected by the overarching question of my research, i.e., how do

epistatic interactions influence the outcome of mathematical models in population genetics?

And more specifically, how does epistasis interact with the other evolutionary foces i.e.,

selection, recombination and migration? If the fitness of a haplotype depends not only on

the individual fitness effect of the haplotype-constituting alleles, but also on interdependent

fitness effects of these alleles, then these additional effects are called epistatic effects.

In the first chapter, Evolutionary dynamics in the two-locus two-allele model with weak

selection, we shed new light on the classical diploid two-locus two-allele model by assuming

weak selection. We reveal, amongst other things, that taking epistasis into account yields a

huge number of qualitatively different equilibrium structures and convergence patterns. The

vast majority is characterized.

In the second chapter, Loss of genetic variation in the two-locus multiallelic haploid model,

we study a haploid two-locus model with recombination and an arbitrary number of alleles

per locus. The hypothesis is that genetic variation always gets eliminated. Without epistasis,

this was already confirmed mathematically, whereas epistasis prevents the same methods

to be applied fruitfully. Here, we confirm the hypothesis in a simpler case and provide

considerable improvements for the general case that however, remains open.

In the third chapter, How epistasis and linkage influence the establishment of locally bene-

ficial mutations and the evolution of genomic islands, we were not interested in the long-term

behavior as in the first two chapters, but rather in the potential of a new mutation to survive

a short stochastic phase. We assume that this mutation is weakly beneficial and linked to an

already established polymorphism in a island population. This established polymorphism

is in migration selection balance, since the island population receives maladapted migrants

from a continental population. We provide a characterization of the parameter space in

which the mutant can survive the initial stochastic phase and thus successfully invades the

island population. Furthermore, we also give approximate expressions for the probability

with which an invasion is successful.

A more detailed motivation and discussion of these models, is given in the subsequent

introduction. Before that, a statement on the authors and their respective contributions

to each of the thesis’ chapters is given. A full list of references is provided after the

third chapter. The supporting information for chapters II and III can be accessed at

https://phaidra.univie.ac.at/o:1137886.
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Zusammenfassung

In dieser Dissertation präsentiere ich meine Forschungsergebnisse im Bereich der mathema-

tischen Populationsgenetik, die ich im Rahmen meines Doktoratsstudiums der Mathematik

an der Uni Wien erzielt habe. Die Arbeit ist in drei Teile gegliedert, von denen die ersten

beiden jeweils einer veröffentlichten Publikation entsprechen während der dritte Teil noch

nicht zur Publikation eingereicht wurde.

Die drei Kapitel sind durch die übergeordnete Fragestellung meiner Forschung verbunden:

Wie beeinflussen epistasische Interaktionen die Ergebnisse von mathematischen Modellen im

Bereich der Populationsgenetik? Im Besonderen, wie interagiert Epistasie mit den anderen

evolutionären Kräften, wie Selektion, Rekombination und Migration? Wenn die Fitness eines

Haplotypen sich nicht nur aus den individuellen Effekten der Haplotyp-konstituierenden

Allele zusammensetzt, sondern diese auch voneinander abhängen, dann nennt man diese

zusätzlichen Effekte Epistasie (epistasische Effekte).

Im ersten Kapitel, Evolutionary dynamics in the two-locus two-allele model with weak se-

lection, beleuchten wir das klassische diploide zwei-Lokus zwei-Allel Modell neu, indem wir

schwache Selektion annehmen. Wir stellen unter anderem fest, dass das Hinzunehmen von

Epistasie viele qualitativ unterschiedliche Gleichgewichtsstrukturen und langfristige Konver-

genzverhalten ermöglicht. Die allermeisten davon sind genau charakterisiert.

Im zweiten Kapitel, Loss of genetic variation in the two-locus multiallelic haploid model,

betrachten wir ein haploides zwei-Lokus Modell mit Rekombination und einer beliebigen

Anzahl an Allelen pro Lokus. Hierbei ist die gängige Hypothese, dass genetische Variation

immer verloren geht. Ohne Epistasie wurde dies schon mathematisch gezeigt, während diesel-

ben Methoden mit Epistasie nicht die gewünschten Ergebnisse bringen. In diesem Kapitel

bestätigen wir die Hypothese in einem einfacheren Fall und machen deutliche Fortschritte

im allgemeinen Fall, der aber offenbleibt.

Im dritten Kapitel, How epistasis and linkage influence the establishment of locally ben-

eficial mutations and the evolution of genomic islands, sind wir nicht am Langzeitverhalten

interessiert, sondern am Potential einer neuen Mutante eine kurze stochastische Phase zu

überleben. Wir nehmen an, dass diese Mutante einen schwachen Vorteil bietet und gelinkt

ist zu einem bereits etablierten Polymorphismus in einer Insel Population. Dieser bereits

etablierte Polymorphismus ist im Migrations-Selektions Gleichgewicht, da die Insel Popu-

lation schlecht angepasste Migranten von einer kontinentalen Population aufnimmt. Wir

charakterisieren den Parameter-Raum in dem die Mutante die stochastische Phase überlebt

und daher erfolgreich in die Insel Population einwandern kann. Darüberhinaus geben wir

Approximationen für die Wahrscheinlichkeit einer erfolgreichen Einwanderung an.

Eine ausführlichere Begründung und Diskussion dieser Modelle nehmen wir in der Ein-

leitung vor. Davor listen wir die Autoren und ihre Beiträge zu den jeweiligen Kapiteln auf.
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Am Ende der Arbeit geben wir alle Referenzen gesammelt an. Die Zusatzinformationen für

Kapitel II und III können unter https://phaidra.univie.ac.at/o:1137886 abgerufen werden.
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Introduction

Population genetics is a subfield of evolutionary biology that studies the genetic composi-

tion of populations and how the different evolutionary processes affect this composititon over

time. The most important evolutionary processes are natural selection, mutation, recom-

bination, random genetic drift and migration. To devise and analyze mathematical models

that express the impact of these processes on the genetic composition of populations is one

of the primary tasks of population genetics. Although, the effect of each of the above men-

tioned mechanisms is quite well understood in isolation, the interaction of these mechanisms

can get highly complex and thus, many open questions remain.

Progress on the impact of combinations of these mechanisms is difficult due to the mathe-

matical complexity and the lack of experimental results in this direction. Large genomic data

sets were unavailable until recently and the relative importance of the evolutionary forces

was largely unknown. However, with the start of the human genome project (e.g., see Venter

et al., 2001) in 1990 sequencing technology made enormous leaps and is now commonplace

all around the world. This opens up many opportunities to challenge the existing models

with real world data and to design new models based on empirical observations.

One major challenge that came with this sequencing revolution, was that in genomic

data acquired from natural populations, of course, one can not assume that the evolutionary

processes do not interact. Thus, it is a very challenging task to correctly analyze and

interpret such data. The missing-heritability problem (e.g., see Maher, 2008; Eichler et al.,

2010; Young, 2019) is one example, where the population genetic analysis of genomic data

was insufficient to account for the amount of heritability measured by means of quantitative

genetics via observing trait concordance within families. However, accounting for population

structure and linkage hugely improve the results.

Setting up evolution experiments in the lab allows for better control over some of the

mechanisms, e.g., the migration rate and the standing genetic variation. Still, there is a

plethora of phenomena that are not (yet) explainable by theoretical models. Most of the

traits of interest, e.g. height, circadian rhythm or diabetes, turn out to be so-called complex

traits or even highly polygenic, thus, complex mathematical models that combine selection

acting on several loci with several others of the evolutionary forces are of great importance.

Models that combine multi-locus selection with various other mechanisms are presented in

a recent review on multi-locus theory by Bürger (2020). In order to state mathematically

amenable models, it is often needed to make extensive simplifications. Common assumptions

are that the loci are in linkage equilibrium, i.e. the frequency of genotypes is statistically

uncorrelated and that epistasis has negligible influence on the fitness of a genotype. How-

ever, in many natural and experimental populations it is found that genetic interactions are

widespread, see e.g. Corbett-Detig et al. (2013). Furthermore, genotypes are often found
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to be in linkage disequilibrium (LD) and also that this is connected to epistasis (Zan et al,

2018).

In fact, already very basic two-locus two-allele models show that in a randomly mating

panmictic population, the presence of epistasis is necessary for the existence of equilibria in

LD. If epistasis is absent, then a polymorphism can only be maintained by some form of over-

or underdominance. If dominance is intermediate at every locus, then the fittest gamete goes

to fixation. This is different for structured populations, as a polymorphic, stable equilibrium

in migration selection balance can be maintained by genic selection (without dominance and

epistasis) as shown by Li and Nei (1974).

In our work, we incorporate epistasis into three different models and focus on its effects

and consequences.

Evolutionary dynamics in the two-locus two-allele model with weak selection.

In this first part of the thesis (published; see Pontz et al., 2018), we take the weak selection

limit of the classic diploid two-locus two-allele model and try to determine every possible

equilibrium configuration, i.e., the number and stability of internal and boundary equilibria.

Here, the loci are in fact in linkage equilibrium, however, epistasis plays a major role.

Without epistasis, i.e., the additive model, we found 6 different equilibrium configurations

that each admit, at most, one polymorhism. In the model with epistasis we provide at

least 185 different fitness matrices that all give rise to qualitatively different equilibrium

configurations. In one example, there are 5 polymorphic equilibria in total, three of which

are stable.

Furthermore, we analyze special cases by only taking specific forms of epistasis into ac-

count. For example, if we allow only for additive×additive interactions, then at most one

equilibrium can exist, whereas if we assume that epistasis is multilinear, then up to five

equilibria may exist, four of which are saddle points.

We conclude that taking epistasis into account allows for much richer dynamics. How-

ever, it remains rather well behaved as we state a Lyapunov function that excludes complex

behavior like chaos or limit cycles. This implies that, in the long run, all trajectories con-

verge to stable equilibrium points. Since there can be multiple stable equilibria, both on the

boundary as well as in the interior of the state space, where a population ends up depends

crucially on its starting genotypic composition.

Loss of genetic variation in the two-locus multiallelic haploid model.

In this second part of the thesis (published; see Pontz and Feldman, 2020), we provide a

mathematical framework for the analysis of a haploid model with an arbitrary number of

alleles at two loci. The hypothesis is that, in such a system, genetic variation always gets
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lost in the absence of mechanisms like mutation or migration that introduce new variation.

This seemingly simple and broadly accepted claim has, in fact, not been shown in general.

If either selection or recombination dominates the other force, then the claim is true as shown

by Kirzhner and Lyubich (1997) and Novak and Barton (2017). Furthermore, if selection and

recombination are of the same order of magnitude, then the claim is also true for additive

fitnesses. Taking epistasis into account, however, only the two-locus two-allele case has been

solved by Bank et al. (2012).

Our main result is that there is no isolated equilibrium at which the number of alleles

present at the two loci is different. Either the equilibrium does not exist, or there is a

manifold of equilibria. This is done by finding a linear system of equations, from which

the solution determines an equilibrium for the two-locus multiallelic haploid model. If an

unequal number of alleles is present, then the linear system is overdetermined and the result

follows.

By combining this result with other facts on the structure of the linear system and the

computation of implicit equilibrium coordinates, we provide a new proof for the two-allele

case and show the uniqueness and instability of the polymorphic equilibrium for a centro-

symmetric three-allele case.

In summary, epistasis is the source of the challenges towards a full analytical resolution

of the claim that genetic variation always gets lost in a haploid model without variation

generating mechanisms like mutation. However, our general result massively simplifies the

possible equilibrium structures that can occur in haploid two-locus models.

How epistasis and linkage influence the establishment of locally beneficial

mutations and the evolution of genomic islands.

In this last part of the thesis (Pontz and Bürger; in preparation), we analyze a haploid

two-locus two-allele model with constant unidirectional migration from a continent- to an

island-population. Here, we focus on the short-term effects by using stochastic processes

in contrast to the deterministic approaches that investigate the long-term outcomes in the

previous two chapters. In particular, we employ branching process theory to characterize the

parameter space within which a weakly beneficial de-novo mutation can successfully invade

the existing selection-migration balance of the island population.

Under the assumption of the branching process being slightly supercritical, we find good

approximations to the numerical solution for the probability of successful invasion, since the

underlying equations are transcendental and thus no explicit solution is available.

We show that for any given fitness scheme, increasing positive epistatic interactions yields

an increase in the probability of invasion. However, averaged over many mutation with

randomly distributed additive fitness effects and epistatic values, it turns out that physical
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linkage between two genes has an higher effect on increasing the invasion probability than

the occurence of epistatic interactions between the genes. This is especially important if

gene flow is strong.

As such a scenario of linked selection was suggested as a possible explanation for the

occurence of genomic islands of differentiation, we investigate this numerically.

We conclude that analyzing the effects of fixed epistatic values on a model is important.

However, it is also crucial to understand the average effect of a distribution of epistatic values

over many mutations, as this is what could be looked for in data.

Mathematical synopsis:

Here, I want to discuss some of the different mathematical approaches that are used in the

remainder of the thesis.

In each chapter a system of ordinary differential equations that describes the change of

haplotype frequencies over time, provides the basis of the respective model. In the first two

chapters, we analyze these equations directly and derive results on the long-term behavior of

the models. In the last chapter, the system of ODE’s serves as the basis for the formulation

of a two-type branching process. This branching process is analyzed and yields results on

short-term behavior of the haplotype frequencies. We use it to determine the probability

with which a newly introduced allele can survive the initial stochastic phase and achieve

high enough frequency such that it has succesfully invaded the population.

Since all of our models are two-locus models, the system of ODE’s consists not only of

a selection term (as in the one-locus case), but also of a recombination term. The selection

coefficients are determined by a fitness matrix. We always aim to derive our results for the

most general fitness matrix. However, sometimes this is not possible, which is why we also

have many results on simplified fitness matrices. Epistasis is accounted for by making it

explicit as one or more parameters in the fitness matrix, depending on the dimension of

the fitness matrix. Applying conditions on the possible values of the epistatic parameter is

frequently used to simplify the matrix and thus, the underlying model.

The recombination term of each ODE contains the measures of linkage disequilibrium. In

each chapter we deal with it differently. In the first, we are interested in the weak selection

limit of the general diploid two-locus twp-allele model, which restricts the state space of the

model to a small neighbourhood of the linkage-equilibrium manifold (see e.g. Nagylaki et al.,

1999). This means that results for the model under the assumption of linkage equilibrium

(no LD) carry over to the weak selection limit. This correspondence is especially important

for the question of convergence of solutions to equilibrium points. If linkage equilibrium is

assumed, then one can easily show that a Lyapunov function exists and thus complicated

behaviors like chaos or limit cycles can not occur.
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If the fitness matrix is of a special type, we also state a Lyapunov function for the haploid

model with multiple alleles at both loci in Chapter II. However, since in this model several

independent measures of linkage disequilibrium occur, the usual candidates for a Lyapunov

function do not work. However, the Lyapunov function we state here, is a quasi-concave

Lyapunov function. It is defined as the minimum of a certain ratio that depends on time.

Such a quasi-concave Lyapunov function was first applied by Hofbauer and Su (2016) to

a structured population genetic model. Here, we use it to prove global convergence to a

monomorphism by allowing control over the terms involving linkage disequilibria.

In the model of the third chapter, linkage disequilibrium is the reason why the fate of

a weakly beneficial de-novo mutation linked to a background polymorphism is interesting

and special at all. Tight physical linkage induces linkage disequilibrium, which means that

the mutant allele frequency is highly correlated to the frequency of the background allele

with which it first appears. Thus, if the de-novo mutation arises in an individual with the

beneficial background allele, then its chance to survive the initial stochastic phase (i.e., its

invasion probability) is increased, since it benefits from the beneficial background. Without

linkage disequilibrium the background locus has no effect on the invasion probability of the

new mutation.

From the multiple methods that are used to analyze the models, I want to highlight index

theory as a tool, which is in parts used in all three chapters. It assigns an index (−1 or +1)

to each equilibrium based on its position in the state space (boundary or interoir) and its

stability. Equilibria on the boundary have to be externally stable, i.e., attract orbits from

the interior, in order to get an index. A very useful and important theorem of index theory

is due to Hofbauer (1990) and states that the sum of the indices over all externally stable

equilibria is +1. In the first two chapters, we use it to directly infer results on equilibria in

the interior of the state space from the indices of the boundary equilibria. These properties

of the boundary equilibria are much easier to calculate. In the third chapter, the external

stability of the boundary equilibrium is important to determine if the branching process

survives or quickly declines.

Whereas most of our results are analytically exact, we use numerical exploration and

computations in parts of chapters I and III.

Outlook:

To conclude the introduction, I want to highlight some open questions that are related to

our results.

Expanding the general results in chapter II to more loci would be a interesting path

towards a fuller picture of the equilibrium structure in a haploid model with recombination.

The model in chapter III should be expanded to diploid populations. There, additional
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independent epistasis parameters would be introduced and this could lead to interesting new

effects.

13



Chapter I

Evolutionary dynamics in the
two-locus two-allele model with weak
selection

Martin Pontz, Josef Hofbauer, and Reinhard Bürger



Abstract

Two-locus two-allele models are among the most studied models in population genetics. The

reason is that they are the simplest models to explore the role of epistasis for a variety of im-

portant evolutionary problems, including the maintenance of polymorphism or the evolution

of genetic incompatibilities. Many specific types of models have been explored. However,

due to the mathematical complexity arising from the fact that epistasis generates linkage

disequilibrium, few general insights have emerged. Here, we study a simpler problem by as-

suming that linkage disequilibrium can be ignored. This is a valid approximation if selection

is sufficiently weak relative to recombination. The goal of our paper is to characterize all

possible equilibrium structures, or more precisely and general, all robust phase portraits or

evolutionary flows arising from this weak-selection dynamics. For general fitness matrices,

we have not fully accomplished this goal, because some cases remain undecided. However,

for many specific classes of fitness schemes, including additive fitnesses, purely additive-by-

additive epistasis, haploid selection, multilinear epistasis, marginal overdominance or under-

dominance, and the symmetric viability model, we obtain complete characterizations of the

possible equilibrium structures and, in several cases, even of all possible phase portraits. A

central point in our analysis is the inference of the number and stability of fully polymorphic

equilibria from the boundary flow, i.e., from the dynamics at the four marginal single-locus

subsystems. The key mathematical ingredient for this is index theory. The specific form of

epistasis has both a big influence on the possible boundary flows as well as on the internal

equilibrium structure admitted by a given boundary flow.

Key words: Selection, Recombination, Epistasis, Linkage disequilibrium, Equilibrium

structure, Phase portrait
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1 Introduction

One of the central goals of the pioneers of population genetics was to demonstrate that the

inheritance and evolution of continuously varying traits could be explained on the basis of

Mendelian genetics (Fisher 1918, 1930). Haldane (1931) and Wright (1935) were apparently

the first, who formulated explicit dynamical models for the evolution of gene frequencies if

selection acts on more than one locus. Under various assumptions about dominance, Hal-

dane considered two loci at each of which a wild type and a deleterious variant segregate.

Motivated by empirical examples, he assumed that if both variants occur in the same geno-

type, then they have a selective advantage. Wright investigated a model in which finitely

many loci contribute to a quantitative trait that is under quadratic selection toward an in-

termediate optimum. Both Haldane and Wright assumed that gene frequencies at the loci

are probabilistically independent, i.e., they are in linkage equilibrium, and derived the stable

equilibrium states as well as other properties of their models.

In an investigation designed to show that selection can lead to tighter linkage, Kimura

(1956) derived and studied a full two-locus two-allele model, i.e., one that takes into ac-

count linkage disequilibrium. The general (deterministic) two-locus two-allele model for the

evolutionary dynamics under selection and recombination was derived and investigated by

Lewontin and Kojima (1960). They deduced both general properties as well as properties of

special cases, such as additive gene action. Among others, they showed that strong epistasis

together with linkage disequilibrium can lead to significantly different outcomes than would

occur for independent loci.

Extensive analyses of a special class of fitness patterns, the so-called symmetric viability

model (which originated from Wright’s and from Kimura’s work), were performed by Bodmer

and Felsenstein (1967) and Feldman and Karlin (1970). The latter authors derived all fifteen

possible equilibria and determined their stability for several special cases. Later, Feldman

and Lieberman (1979) showed that as many as four boundary equilibria and two polymorphic

equilibria can be simultaneously stable, and Hastings (1985) demonstrated that up to four

stable internal equilibria may coexist. The complexity of this model is also underlined by

the finding of Ewens (1968) that there is a gap in the range of recombination rates for which

a pair of internal equilibria is stable. A comprehensive review of this model and its extension

to multiple loci can be found in Christiansen (1999).

Other important special classes of fitness patterns are the additive and the multiplicative

model, in which fitnesses of multilocus genotypes are obtained by adding or multiplying the

fitnesses of the constituent single-locus genotypes. In the former, additive epistasis is absent,

in the latter, multiplicative epistasis is absent. For additive fitnesses, mean fitness is a Lya-

punov function (Ewens 1969), all equilibria are in linkage equilibrium, and, generically, every

trajectory converges to an equilibrium point (Karlin and Liberman 1978, 1990; Nagylaki et al.
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1999). The multiplicative model is much more complicated, although the linkage-equilibrium

manifold is invariant. In this model and away from the linkage-equilibrium manifold, mean

fitness may decrease and for intermediate recombination rates, asymptotically stable equi-

libria may exist that are in linkage disequilibrium (e.g., Moran 1964, Moran 1968, Nagylaki

1977, Bodmer and Felsenstein 1967, Karlin and Feldman 1978, Hastings 1981). A detailed

review of the theory of two-locus and multilocus models is given in Bürger (2000, Chap. 2).

With general fitnesses, the dynamics in the two-locus two-allele model can be complex.

The existence of stable limit cycles has been demonstrated both for the continuous-time

model (Akin 1979, 1982) and the discrete-time model (Hastings 1981, Hofbauer and Iooss

1984). Such complex behavior cannot occur if loci are assumed to be independent, i.e., if

linkage equilibrium is imposed. Then the dynamics is gradient-like and mean fitness is a

global Lyapunov function (Nagylaki 1989).

However, even the case of two independent, diallelic loci has never been analyzed sys-

tematically. Although a Lyapunov function exists, the equilibrium structure can still be

quite complicated. For instance, Moran (1963) showed that, apart from degenerate cases,

the maximum number of internal (polymorphic) equilibria is five, and up to three can be

asymptotically stable.

In this study we perform a systematic analysis of the two-locus two-allele model with

constant fitnesses under the assumption of linkage equilibrium. The goal is to determine

and classify all possible equilibrium structures and phase portraits (Sections 3, 4). We

assume continuous time for reasons outlined below. We have not fully accomplished our

goal, however, we identified all 42 possible (equivalence classes of) boundary flows and 190

potentially possible extended boundary flows, i.e., flows at or close to the boundary. Of these

190 extended boundary flows, the existence of 185 could be proved; the other cases remain

undecided. In Section S1 of the Supplementary Information (SI), we present corresponding

phase portraits. A large number of extended boundary flows admits not only several non-

equivalent phase portraits, but also more than one equilibrium structure, as characterized

by the number and stability of boundary and internal equilibria.

We use this general analysis to obtain a detailed classification of equilibrium structures

and phase portraits for a number of important special cases that have received considerable

attention in the literature. These include the case of marginal overdominance or underdom-

inance (Section 5); linear isoclines, which turn out to exist if and only if fitnesses among

loci are additive or the only epistatic interactions are additive-by-additive (Section 6); mul-

tilinear epistasis (Section 7); equivalent loci (Section 8); and the symmetric viability model

(Section 9). These results provide considerable insight into the interplay of dominance and

epistasis to maintain genetic polymorphism.

The analysis of this simplified model has immediate implications for the full two-locus
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two-allele model. This is a consequence of a general theorem by Nagylaki et al. (1999), which

applies to multilocus systems. These authors proved under weak technical assumptions that

if selection is much weaker than recombination, then after an evolutionarily short period,

in which linkage disequilibrium decays to close to zero, the dynamics of the full model

(either in discrete or in continuous time) is governed by this weak-selection limit. The model

investigated in this paper is the weak-selection limit of the two-locus two-allele model with

selection and recombination.

2 Model

We start with the standard two-locus two-allele model with viability selection and discrete

time. Thus, we assume a randomly mating, diploid population with discrete and non-

overlapping generations in which viability selection acts on two diallelic, recombining loci.

Therefore, gametes are in Hardy-Weinberg proportions. Mutation, random drift, and other

evolutionary forces are absent.

Let A1 and A2 be the alleles at locus A, and B1 and B2 those at locus B. Let the

frequencies of the four gametes A1B1, A1B2, A2B1, and A2B2 be denoted by x1, x2, x3, and

x4, respectively, where
∑4

i=1 xi = 1, and let wij > 0 denote the (constant) viability of an

individual with genotype ij. In addition to positing absence of sex effects, i.e., wij = wji, we

posit absence of position effects, i.e., w14 = w23. The recombination probability is denoted

by r. The frequencies of alleles A1 and B1 are denoted by p = x1 + x2 and q = x1 + x3,

respectively. Letting D = x1x4− x2x3 be the classical measure of linkage disequilibrium, we

obtain

x1 = pq +D ,

x2 = p(1− q)−D ,

x3 = (1− p)q −D ,

x4 = (1− p)(1− q) +D .

(2.1)

Under the above symmetry assumptions, the fitnesses of genotypes are completely speci-

fied by the following matrix:

B1B1 B1B2 B2B2

A1A1 w11 w12 w22

A1A2 w13 w14 w24

A2A2 w33 w34 w44

(2.2)

Then evolution of gamete frequencies is given by (Lewontin and Kojima 1960)

x′i =
xiwi − ηiw14rD

ω̄
, i = 1, 2, 3, 4, (2.3)
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where η1 = η4 = −η2 = −η3 = 1, wi =
∑4

j=1wijxj is the marginal fitness of gamete i, and

ω̄ =
∑4

j=1wjxj is the mean fitness of the population. This is a dynamical system on the

simplex S4 which has received much attention in the literature but is well understood only

in special cases (see Introduction). For a review consult Chapter 2 in Bürger (2000).

If the assumption of linkage equilibrium, i.e., D = 0, is imposed, the dynamics (2.3)

simplifies to the following system of difference equations defined on the unit square [0, 1]×
[0, 1],

∆p = p(1− p) 1

2w̄

∂w̄

∂p
, (2.4a)

∆q = q(1− q) 1

2w̄

∂w̄

∂q
, (2.4b)

where by (2.1) mean fitness w̄ = ω̄(D = 0) is only a function of p and q; cf. Haldane (1931)

and Wright (1935, 1942). As shown more generally for multiple multiallelic loci by Nagylaki

(1989), w̄ is monotone increasing along trajectories of (2.4) and constant only at equilibria.

Therefore, if all equilibria are isolated points, every trajectory converges to an equilibrium.

In general, the manifold D = 0 is not invariant under (2.3). However, assuming weak

selection, i.e., setting wij = 1+smij, rescaling time according to t = bτ/sc, and letting s ↓ 0,

the so called weak-selection limit of (2.3) is obtained:

ṗ = p(1− p)1

2

∂m̄

∂p
, (2.5a)

q̇ = q(1− q)1

2

∂m̄

∂q
. (2.5b)

Here,

m̄ = m1pq +m2p(1− q) +m3(1− p)q +m4(1− p)(1− q) (2.6)

is the mean (Malthusian) fitness of the population and

mi = mi1pq +mi2p(1− q) +mi3(1− p)q +mi4(1− p)(1− q) (2.7)

the marginal (Malthusian) fitness of gamete i. We note that the dynamics (2.5) remains

unchanged if the same constant is added to every mij. If every mij is multiplied by the same

positive constant, only a change in time scale results. Therefore, in (2.5) we could substitute

wij for mij without changing the phase portrait. In particular, two of the nine parameters

in the fitness scheme (2.2) could be set to fixed, different values.

Nagylaki et al. (1999) proved (for multiple multiallelic loci) that if r > 0 is given, selection

is sufficiently weak, i.e., s > 0 is sufficiently small, and if all equilibria of (2.5) are hyperbolic,

then every trajectory of (2.3) converges to an equilibrium point on an invariant manifold,

Λs, which is contained in an O(s) neighborhood of the linkage-equilibrium manifold D = 0.

The dynamics on Λs is a small perturbation of the time-s map of the weak-selection limit
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(2.5), which is gradient-like. In particular, it is easy to show directly for (2.5), but also

follows from a result by Nagylaki (1989) for (2.4), that ˙̄m ≥ 0 for every (p, q) ∈ [0, 1]2 and

˙̄m = 0 if and only if (p, q) is an equilibrium. Therefore, m̄ is a strict Lyapunov function for

(2.5).

Because w̄ = 1 + sm̄, the equilibria of (2.4) and (2.5) are the same, and so are their

stability properties (since w̄ ≥ mini,j wij > 0). Therefore, if selection is sufficiently weak and

after some (usually short) time has passed (Nagylaki 1993), the dynamics of the full two-

locus system (2.3) is closely approximated by the dynamics of the weak-selection limit (2.5).

Therefore, each solution of (2.3) converges to an equilibrium point, and this equilibrium

point is in an O(s) neighborhood of an equilibrium of (2.5) (Theorem 3.1 in Nagylaki et al.

1999).

3 Equilibria and their stability

The four monomorphic equilibria Ci of (2.5), corresponding to fixation of gamete i, exist

always. They represent the corners of the state space [0, 1]2 (Fig. 1). The eigenvalues of the

Jacobian at Ci are easily calculated and are as follows:

p direction q direction
C1 = (1, 1) m13 −m11 m12 −m11

C2 = (1, 0) m24 −m22 m12 −m22

C3 = (0, 1) m13 −m33 m34 −m33

C4 = (0, 0) m24 −m44 m34 −m44

(3.1)

An equilibrium is called linearly stable, or a sink, if all eigenvalues (of its Jacobian) have

negative real part. If at least one eigenvalue has positive real part, it is linearly unstable. It

is called a source if all eigenvalues have positive real part, and it is a saddle if eigenvalues

with positive and negative real part occur. Obviously, the corner equilibrium Ci is linearly

stable if and only if the fitness of the homozygous genotype ii is higher than each of the two

‘neighboring’ single-locus heterozygous genotypes ij, where j differs from i by a single allele.

Next there may exist up to four equilibria at which one locus is polymorphic, so-called

single-locus polymorphisms (SLPs). They are located on the edges of the state space. We

denote the equilibrium on the edge connecting Ci with Cj by Eij (Fig. 1). The coordinates

of these edge equilibria are easily calculated and given by

Eij : q =
mij −mjj

2mij −mii −mjj

and p = 0 if ij = 34, and p = 1 if ij = 12 ; (3.2a)

Eij : p =
mij −mjj

2mij −mii −mjj

and q = 0 if ij = 24, and q = 1 if ij = 13 . (3.2b)

Therefore, the edge equilibrium Eij exists, i.e., is in the interior of the edge, if and only

if (mij − mii)(mij − mjj) > 0. Obviously, this is just the well-known condition of either
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Figure 1: The state space with all possible boundary equilibria. The orientation is such that
it corresponds to the fitness matrix in (2.2).

overdominance or underdominance applied to a one-locus boundary system. To distinguish

this notion of overdominance (underdominance) from that of marginal overdominance (un-

derdominance) introduced below, we call this overdominance (underdominance) on an edge.

The eigenvalues of the edge equilibria, hence their stability, can also be determined quite

straightforwardly, because the Jacobian is in triangular form, so that the eigenvalues appear

on the diagonal. One eigenvalue, called internal, determines stability of this equilibrium

within its edge. For Eij, it is given by

µij =
(mij −mii)(mij −mjj)

mii +mjj − 2mij

. (3.3)

Therefore, as is well known, the SLP Eij is linearly stable (unstable) within its edge if and

only if there is overdominance (underdominance) on this edge.

The other eigenvalue, called external, determines stability of the edge equilibrium transver-

sal to the boundary. If the external eigenvalue is nonpositive, the equilibrium is called

saturated or externally stable (Hofbauer and Sigmund 1998, Karlin 1980). This has the

interpretation that the allele missing on this edge cannot invade the population near this

boundary equilibrium. The external eigenvalues are of more complicated form than the in-

ternal eigenvalues and are presented in Appendix A1.1. The distinction between external

and internal eigenvalues will be essential for our analysis.

Thus, there are at least four boundary equilibria, but there may be up to eight. We ignore

the degenerate cases, in which every point on an edge is an equilibrium. This occurs if and

only if mii = mij = mjj, where i and j are gametes differing by one allele.

Finally, we turn to the internal, or fully polymorphic, equilibria. By (2.5), they are the

solutions of the two equations ∂m̄/∂p = 0 and ∂m̄/∂q = 0 that satisfy 0 < p < 1 and

0 < q < 1. Equivalently, these equations can be written as

p = f(q) =
mA1A2 −mA2A2

2mA1A2 −mA1A1 −mA2A2

, (3.4a)

q = g(p) =
mB1B2 −mB2B2

2mB1B2 −mB1B1 −mB2B2

, (3.4b)
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where

mA1A1 = m11q
2 + 2m12q(1− q) +m22(1− q)2 , (3.5a)

mA1A2 = m13q
2 + 2m14q(1− q) +m24(1− q)2 , (3.5b)

mA2A2 = m33q
2 + 2m34q(1− q) +m44(1− q)2 , (3.5c)

and

mB1B1 = m11p
2 + 2m13p(1− p) +m33(1− p)2 , (3.6a)

mB1B2 = m12p
2 + 2m14p(1− p) +m34(1− p)2 , (3.6b)

mB2B2 = m22p
2 + 2m24p(1− p) +m44(1− p)2 , (3.6c)

are the marginal fitnesses of the one-locus genotypes at A and B, respectively. (In the

presence of linkage disequilibrium, the expressions in (3.5) and (3.6) need to be normalized;

see Ewens and Thomson 1977.) Thus, the internal equilibria are the intersection points of

the isoclines p = f(q) and q = f(p).

The following results were proved by Moran (1963). We will give a slightly different proof

of the first statement.

Theorem 3.1. (a) If all equilibria are isolated, then (2.5) has at most five internal equilibria.

(b) Five internal equilibria can be realized, and up to three can be sinks.

(c) Sinks correspond to local maxima of m̄.

Proof. (a) To determine the intersection points of the isoclines (3.4a) and (3.4b), we have

to solve the fixed point equation

p = f(g(p)) . (3.7)

Because the numerators and denominators of f(q) and g(p) are polynomials of degree two or

less, numerator and denominator of the rational function f(g(p)) are polynomials of degree

four or less. Therefore the intersection points, hence the internal equilibria, are the zeros of

a polynomial of degree five or less.

(b) See Moran (1963) and panel 6 in Fig. S1 of the SI, which shows the phase portrait of

Moran’s example. (c) is also shown by Moran (1963). It follows immediately from the fact

that m̄ is a strict Lyapunov function.

To determine the stability of an internal equilibrium, we need the Jacobian.

Lemma 3.2. The Jacobian at an internal equilibrium (p, q) is given by

J = J(p, q) =

(
p(1− p)mA 2p(1− p)m̃
2q(1− q)m̃ q(1− q)mB

)
, (3.8)

where mA = mA1A1 +mA2A2−2mA1A2, mB = mB1B1 +mB2B2−2mB1B2, and m̃ = m1−m2−
m3 +m4. The eigenvalues of J are real.
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Proof. A simple calculation shows that

1

2

∂m̄

∂p
= pmA +mA1A2 −mA2A2 . (3.9)

Therefore, (2.5a) yields

∂ṗ

∂p
= (1− 2p)

1

2

∂m̄

∂p
+ p(1− p)1

2

∂2m̄

∂p2
= p(1− p)mA , (3.10)

because ∂m̄
∂p

= 0 at an internal equilibrium and mA = 1
2
∂2m̄
∂p2

. The other derivatives are

calculated in a similar way.

Finally, it is straightforward to compute the discriminant of J , which is the square of the

trace minus four times the determinant:

(tr J)2 − 4 det J = [p(1− p)mA − q(1− q)mB]2 + 16pq(1− p)(1− q)m̃2 > 0,

where the inequality holds because (p, q) ∈ (0, 1)2. Therefore, all eigenvalues are real.

For the rest of this paper, we impose the assumption

All equilibria of (2.5) are hyperbolic. (H)

Therefore, eigenvalues at equilibria are negative or positive, but not zero. This assump-

tions excludes not only curves of equilibria, but also complete dominance or recessivity of

an allele.

The stability of an internal equilibrium is most easily determined by employing the planar

Routh-Hurwitz criterion. It states that an equilibrium is (i) a saddle point if det J < 0, (ii)

a sink if det J > 0 and tr J < 0, and (iii) a source if det J > 0 and tr J > 0.

Motivated by Lewontin and Kojima (1960), we say that a locus (e.g. A) exhibits marginal,

or induced, overdominance at (p, q) if the inequalities

mA1A2 > mA1A1 and mA1A2 > mA2A2 (3.11)

hold. If both inequality signs are reversed, one obtains marginal, or induced, underdomi-

nance. The following result was proved by Kojima (1959). We will give a similar, but more

direct, proof.

Corollary 3.3. An internal equilibrium (p, q) is linearly stable, i.e., a sink, if and only if

both loci exhibit marginal overdominance at (p, q) and mAmB > m̃2.

Proof. By the Routh-Hurwitz criterion, the equilibrium (p, q) is a sink if and only if p(1 −
p)mA + q(1− q)mB < 0 and

det J(p, q) = pq(1− p)(1− q)(mAmB − m̃2) > 0 . (3.12)
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Therefore, both mA and mB must be negative. Because 0 < p < 1 must hold, (3.4) implies

that mA, mA2A2 − mA1A2 , and mA1A1 − mA1A2 all have the same sign. This together with

an analogous argument for locus B proves that marginal overdominance is necessary. The

sufficiency condition follows immediately from (3.12).

Remark 3.4. (i) As pointed out by Kojima (1959), (3.12) is equivalent to the condition that

the geometric mean of the dominance variances of each locus exceeds the additive-by-additive

variance of the two-locus system.

(ii) The proof of Corollary 3.3 shows that, at equilibrium, locus A displays marginal

overdominance if and only if (cf. Hastings 1982)

m2
A1A2

> mA1A1mA2A2 . (3.13)

4 Equilibrium structure and flows

Since the internal equilibria are obtained from the solutions of the quintic polynomial (3.7),

it is generally difficult to determine their number, position, or stability. Therefore, we first

study the possible flows on the boundary of the state space. Subsequently, we extend the

flows to a neighborhood of the boundary. Using index theory, we will be able to shed light on

the equilibrium structure, i.e., the number and stability properties of equilibria (for a precise

definition, see Section 4.3), and on the possible phase portraits, i.e., topological structures

of the flow (2.5). Finally, we exclude several potential equilibrium structures and generate

phase portraits for most of the remaining cases.

To facilitate the characterization of equilibrium structures and phase portraits, we identify

flows that are topologically equivalent or obtained by symmetry operations corresponding

to a relabeling of alleles at a locus (A1 or A2, B1 or B2) and of the loci (A or B). More

precisely, we define two systems of the form (2.5), or the corresponding fitness schemes M

and M̃ in R3×3 (2.2), to be equivalent, if there exists an edge-preserving homeomorphism h

of [0, 1]2 onto itself that maps orbits of (2.5) generated by M onto orbits generated by M̃

(preserving the arrow of time) i.e., the phase portraits are topologically equivalent. Here,

edge-preserving means that each of the four edges is mapped onto an edge, not necessarily

onto itself.

An edge-preserving homeomorphism is a composition of one of the eight symmetry op-

erations of the square with a ‘proper’ or ‘pinned’ homeomorphism of the square, i.e., a

homeomorphism that leaves the four corners fixed and maps each edge onto itself. The

symmetry group of the square, the dihedral group D4, consists of four reflections and four

rotations (including the identity). Therefore, each equivalence class is invariant under ro-

tations by multiples of 90◦, reflections about the diagonal or antidiagonal, reflections about
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the center, and reflections about the middle vertical or horizontal axis of the matrix (2.2),

or of the unit square (Fig. 1).

Finally, we call a fitness scheme M (or its induced flow (2.5), or its phase portrait) robust

if it has a neighborhood of equivalents in R3×3. This is essentially the concept of structural

stability, adapted to the selection equation (2.5). For the single-locus two-allele model, i.e.,

on every edge, there are three robust equivalence classes: they correspond to the classical

selection patterns of overdominance, underdominance, and intermediate dominance (directed

selection).

The goal of our paper is to find all robust (equivalence classes of) phase portraits arising

from (2.5). A necessary condition for robustness is that all equilibria are hyperbolic, i.e.,

condition (H) holds. A classical characterization of structural stability in two-dimensional

systems due to Andronov and Pontryagin (1937) implies:

If (2.5) satisfies (H) and there is no saddle connection in the interior of [0, 1]2, then this

system is robust.

Two saddles build a saddle connection if the stable manifold of one is also (part of) the

unstable manifold of the other saddle. Most phase portraits shown in Section S1 satisfy

this condition. Exceptions are some phase portraits of the symmetry classes s, b, and

e (defined below), where the phase portraits were generated by a matrix satisfying the

corresponding symmetry condition. In all these cases, however, breaking the symmetry

yields phase portraits that are members of the same class. Thus, they are robust in this

sense. We now explain how to obtain all these phase portraits in three steps.

4.1 Flows on the boundary

As shown in Section 3, on each edge there is either no or one equilibrium, and each edge

equilibrium can be internally stable or unstable. This gives 44 = 256 different types of

(nondegenerate) flows on the boundary. This type can be easily determined from the selection

scheme (2.2), by observing the order relations in each boundary row and boundary column,

i.e., overdominance, underdominance, or intermediate dominance. Applying the symmetry

operations, their number drops to 42 different boundary flows or, more precisely, boundary-

flow equivalence classes. They are displayed in Figure 2.

We recall that a matrix is called centrosymmetric if it is invariant under reflections about

the central entry, and bisymmetric if it is symmetric and centrosymmetric. A centrosymmet-

ric fitness matrix (2.2) gives rise to the well-studied symmetric viability model (Section 9).

A symmetric fitness matrix (2.2) represents a model in which the loci A and B are equivalent

(Section 8).

The following code was used to label boundary flows: EnmCkx represents a flow with n edge

equilibria, m of them internally stable, k linearly stable corner equilibria, and belonging to
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the symmetry class x ∈ {b, c, s, e, a}. Here, b, c, or s means that only a flow in this class can

be generated by a bisymmetric, centrosymmetric, or symmetric matrix. This does not imply

that all matrices generating such a flow have the respective symmetry property. The letter

e refers to a flow for which the flows at (at least) one pair of opposite edges belong to the

same single-locus class and have the same direction if there is intermediate dominance. This

is the case if the entries in the two boundary columns (or rows) of the fitness scheme have

the same order relation. The letter a indicates asymmetry, i.e., the boundary flow can not be

generated by a matrix with one of the above properties. In one case, E2
1C1a this distinction

is not sufficient; therefore, we used E2
1C1a

′, E2
1C1a

′′, E2
1C1a

′′′.
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Figure 2: The 42 possible boundary flows, or boundary-flow equivalence classes, for (2.5).
The 16 flow-reversal pairs are arranged vertically. For instance, E2

0C2c is the reversed bound-
ary flow of E2

2C0c, whereas E2
1C0e is self inverse. Internal stability is either indicated by the

solid dot (corner) or crosses (edge-equilibrium). A rhombus indicates internally unstable
edge-equilibria. 27



By reversing all arrows in a flow, the reversed flow is obtained. Equivalently, the signs of

all entries in the fitness matrix are reversed. It turns out that 10 of the 42 cases are invariant

under flow reversal. In Fig. 2, the other 32 cases are placed such that pairs obtained by

reversal are arranged vertically.

4.2 Extended boundary flows

Now we consider flows not only on the boundary, but in a sufficiently small neighbourhood

of the boundary. Here, external stability of the edge equilibria plays a central role (Figure

3). We need some preparation and recall when an equilibrium in our two-dimensional model

is called saturated (for the general definition, see Hofbauer and Sigmund 1998).

A corner equilibrium is saturated if and only if both eigenvalues are negative; cf. (H). An

edge equilibrium is saturated if and only if the external eigenvalue is negative. An internal

equilibrium is, by definition, always saturated. For a hyperbolic equilibrium x̂, the index is

defined by

ind(x̂) = sgn(det(−Jx̂)) = (−1)k, (4.1)

where k denotes the number of positive eigenvalues of the Jacobian Jx̂ at x̂. It follows, that

in a planar system an equilibrium with index −1 is a saddle point; sources and sinks have

index +1. The sum of the indices of all saturated boundary equilibria is called the boundary

index sum and denoted by δ. If there are no saturated boundary equilibria, then δ = 0.

In general, δ is not uniquely determined by the boundary flow because external eigenvalues

of edge equilibria may be positive or negative for a given boundary flow (Figure 3). However,

δ is uniquely determined by the extended boundary flow, which we use as a short hand for the

equivalence class (in the above sense) of flows with a given boundary flow (class) together

with the signs of the external eigenvalues of all edge equilibria. Of course, different extended

boundary flows of the same boundary-flow class may have the same δ.

Lemma 4.1. For a boundary flow of type EnmCk, the boundary index sum δ can assume at

most the (integer) values satisfying

k +m− n ≤ δ ≤ k +m. (4.2)

Every boundary flow in Fig. 2 satisfies k +m− n ≥ −2 and k +m ≤ 4.

Proof. We have to sum the indices of the saturated equilibria. Obviously, there are k stable,

hence saturated, corner equilibria and at most m saturated, internally stable edge equilibria.

This yields the upper bound k + m. Because the number of saturated, internally unstable

edge equilibria is at most n−m, the lower bound k − (n−m) results.

The second statement follows easily by checking Fig. 2.
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−1

+1

Figure 3: The boundary-flow class E2
1C0e with positive (left) and negative (right) external

eigenvalues at the edge equilibria. In the left panel, the edge equilibria are not saturated.
In the right panel, E12 is asymptotically stable and saturated with index +1, and E34 is a
saturated saddle with index −1. Therefore, δ = 0 in both panels. However, if the flow of
the left panel is reversed, i.e., all arrows are reversed, the flow of the panel on the right is
obtained after a rotation of 180◦. Such extended boundary flows, where the flow reversal
has the same boundary flow and δ, but a different external stability, can only occur for
boundary-flow classes that are invariant under flow reversal.

By systematic construction of the extended boundary flows for each of the 42 boundary

flows, we obtain 200 potential extended boundary flows (see Table S1). It is important to

recall that for given δ more than one extended boundary flow may exist. In the following

we show that not all of these 200 extended boundary flows can be realized for (2.5).

Theorem 4.2. Assume (2.5) and (H).

(a) The boundary index sum δ = −2 can not occur.

(b) The boundary index sum δ = −1 can not occur for E4
2C0c, E

3
2C0e, E

3
1C1e, E

2
1C0e, and

E2
1C0a.

(c) The boundary index sum δ = 0 can not occur for E3
2C0e and E4

2C0c with the edge

equilibria E34 and E24 saturated and the other(s) not.

(d) The boundary index sum δ = 0 can not occur for E3
1C1e with the edge equilibrium E13

saturated and the others not.

The proof is given in Appendix A1.2.

Remark 4.3. (a) The extended boundary flow described in Theorem 4.2(d) is the reversed

flow of the first extended boundary flow in Theorem 4.2(c).

(b) Table S1 informs us that there is exactly one potential extended boundary flow for

each of the cases excluded by Theorem 4.2, except for E4
2C0c and δ = −1. Then the two

potentially possible extended boundary flows are the reversed flows of each other and thus

both are excluded by Theorem 4.2.
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(c) We could not exclude the boundary index sum δ = −1 for the cases E3
2C0a, E3

1C1a,

E4
2C1s, E

4
3C0e, and E4

1C2e. However, we conjecture that δ = −1 does not occur.

(d) As a consequence of Theorem 4.2 and statement (b) of this remark, the number of

potentially possible extended boundary flows reduces to 190.

(e) It is important to note that statements (c) and (d) of Theorem 4.2 exclude the existence

of specific extended boundary flows and do not imply that the boundary index sum δ = 0

does not occur in these cases.

(f) The above theorem constrains the range (4.2) of possible values of δ to

max{−1, k +m− n} ≤ δ ≤ k +m. (4.3)

An important tool for drawing conclusions about internal equilibria is the following index

theorem:

Theorem 4.4 (Hofbauer 1990). Assume (2.5) and (H). Then∑
x̂ saturated

ind(x̂) = +1 , (4.4)

where the sum runs over all saturated equilibria.

This theorem has a number of important consequences. The simple proofs are left to the

reader.

Corollary 4.5. Assume (2.5) and (H).

(a) The number of saturated equilibria is odd;

(b) If δ is odd (even), the number of internal equilibria is even (odd);

(c) The number of internal equilibria is at least |1− δ| and at most five;

(d) If δ > 1, there are at least δ − 1 internal saddle points;

(e) If δ < 1, the total number of sinks and sources is at least 1− δ;
(f) The boundary index sum δ is invariant under flow reversal.

4.3 Established equilibrium structures and phase portraits

We show that 185 of the 190 theoretically possible extended boundary flows exist. This task

is simplified by taking flow reversals into account.

Importantly, flow reversal does not change the number or the index of internal equilibria.

Therefore, the boundary index sum δ is invariant under flow reversal (Corollary 4.5f). If we

identify flow-reversal pairs, it is sufficient to consider 16+10 boundary flow classes. Here, 16

is the number of representatives of boundary flows in Figure 2 that are not invariant under

flow reversal, and 10 is the number of boundary flows that are invariant. These 16 flows give

rise to 79 theoretically possible extended boundary flows (SI, Table S1). The 10 self-inverse
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boundary flows give rise to 42 extended boundary flows, 22 of which form flow-reversal pairs

(Table S1). Thus, up to flow reversal, there are 79 + 31 different extended boundary flows.

By Theorem 4.2, 2+5 of these flows cannot exist. We could not find 2+1 flows. Overall, we

present phase portraits for 75+25 extended boundary flows (Section S1 of the SI). Applying

flow reversal, this proves existence of 2× 75 + 35 = 185 different extended boundary flows.

Two flows yielding the same extended boundary flow (up to equivalence in the sense

defined above) may still differ in their equilibrium structure because they differ in the number

of internal equilibria or, if they have the same number of internal equilibria, in the number

of sinks, sources, or saddles. In addition, some equilibrium structures can be realized by

non-equivalent phase portraits (or flows).

We show existence of an extended boundary flow or equilibrium structure by presenting

a numerical fitness matrix (mij) yielding a flow on the entire state space, [0, 1]2, that has the

given extended boundary flow. Each equivalence class of flows on [0, 1]2 is represented by a

phase portrait. In general, the phase portrait is not uniquely determined by the extended

boundary flow, because already number and stability of internal equilibria are often not

uniquely determined.

In Section S1 of the SI, we present more than one phase portrait for several extended

boundary flows. We do this for cases for which we found more than one equilibrium structure.

In addition, we give examples of fitness matrices that yield the same equilibrium structure

but non-equivalent phase portraits. One particularly interesting case is E3
2C1a with δ = 1,

which admits three extended boundary flows and seven different phase portraits. One of

these extended boundary flows has two equilibrium structures, each with two phase portraits

(Fig. S2, Panels 1, 2, 3, 4). Another remarkable case is E4
3C0e with δ = 1, which admits

four different extended boundary flows (Fig. S2, Panels 2, 3, 4, 5). However, there is

also a considerable number of boundary flows for which the extended boundary flow is

uniquely determined by a given δ and also the equilibrium structure and phase portrait (up

to equivalence). See Table S1 and the phase portraits in Section S1 for detailed information.

4.4 Permanence

In mathematical modeling of biological systems, the notion of permanence is very important.

The dynamical system (2.5) is permanent if there exists a compact subset of (0, 1)2 such

that every solution starting at (p0, q0) ∈ (0, 1)2 enters this subset and remains there (consult

Hofbauer and Sigmund 1998 for an account on permanence theory). Permanence is equivalent

to the boundary being a repeller. It can be shown that it is sufficient for all stationary points

on the boundary to be repelling.

We want to identify which extended boundary flows can be permanent. First, δ 6= 0

implies that at least one boundary equilibrium is saturated and, therefore, attracts at least
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one orbit from the interior. Second, not all extended boundary flows with δ = 0 can be

permanent, because there are extended boundary flows for which one equilibrium on the

boundary is saturated with index −1 and an other has index +1. Therefore, an extended

boundary flow is permanent if and only if no boundary equilibrium is saturated. Thus, we

obtain:

Theorem 4.6. A full flow consistent with a boundary flow of type EjiC0x is permanent if

and only if no edge equilibrium is saturated.

Corollary 4.7. Assume (2.5) is permanent. Then

(a) the extended boundary flow is of one of the 14 classes E1
1C0e, E1

1C0a, E2
2C0c, E2

2C0s,

E2
2C0e, E2

2C0a, E2
1C0e, E2

1C0a, E3
3C0e, E3

2C0e, E3
2C0a, E4

4C0b, E4
3C0e, or E4

2C0c, and has no

saturated edge equilibrium;

(b) there exists an internal equilibrium that is a sink, for example the global maximum of

the mean fitness.

Proof. (a) follows from Theorem 4.6 upon comparison with Fig. 2.

(b) follows because m̄ is a (strict) Lyapunov function.

We note that each of the extended boundary flows in Corollary 4.7 could give rise to one,

three, or five internal equilibria. However, the boundary flow E4
4C0b is the only one for which

we found a fitness matrix such that (2.5) has five internal equilibria (see Fig. S1, panel 6).

5 Continuous isoclines: Marginal overdominance or

underdominance

In this and the next section we study which equilibrium structures and phase portraits are

obtained by imposing specific properties on the isoclines, since the internal equilibria are the

intersection points of the two isoclines. As special cases, we will encounter several important

and well-studied models.

We start by investigating the equilibrium structure if the isoclines are continuous and map

[0, 1] into (0, 1). We recall the definitions of marginal overdominance and underdominance;

see (3.11).

Lemma 5.1. The isocline f(q) (g(p)), defined in (3.4), is continuous and maps [0, 1] into

(0, 1) if and only if locus A (B) exhibits either marginal overdominance or underdominance

for every q ∈ [0, 1] (p ∈ [0, 1]).

Proof. From the definition of the isocline p = f(q), we obtain that f(q) is continuous if

and only if its denominator (2mA1A2 −mA1A1 −mA2A2) does not change sign on [0, 1]. The

requirement 0 < f(q) < 1 is then satisfied if and only if both mA1A2 −mA1A1 and mA1A2 −
mA2A2 have the same sign as the denominator. The argument for g(p) is analogous.
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This lemma implies that the graph of f(q) intersects the boundary of the state space

(precisely) at the equilibria E24 and E13, and the graph of g(p) does so at E24 and E13. If

both isoclines are continuous and map [0, 1] into (0, 1), we conclude from the lemma and

Theorem 3.1 that the number of interior equilibria is between one and five, and both bounds

can be assumed.

Next we want to derive the possible equilibrium structures if both loci exhibit marginal

overdominance everywhere, i.e., at every (p, q) ∈ [0, 1]2. Obviously, this is a much stronger

assumption than marginal overdominance at an equilibrium, as used in Corollary 3.3. We

will need the following lemma:

Lemma 5.2. Locus A exhibits marginal overdominance everywhere if and only if

m13 > max{m11,m33} and m24 > max{m22,m44}, (5.1)

i.e., overdominance holds on the edges q = 0 and q = 1, and

m14 > max
{
m12 −

√
(m13 −m11)(m24 −m22),m34 −

√
(m13 −m33)(m24 −m44)

}
. (5.2)

Proof. We observe that

ax2 + 2bx(1− x) + cx2 > 0 for every x ∈ [0, 1] (5.3)

if and only if a > 0, c > 0, and b > −
√
ac. Therefore, the conditions in the lemma follow

immediately because mA1A2 −mA1A1 and mA1A2 −mA2A2 can be written in the form of (5.3)

and need to be positive.

Theorem 5.3. Assume that both loci exhibit marginal overdominance everywhere. Then the

following holds:

(a) The boundary flow is of type E4
4C0b.

(b) No boundary equilibrium is saturated, whence δ = 0 and the system is permanent.

(c) There may exist one, three, or five internal equilibria.

(d) If there is a unique internal equilibrium, it is globally asymptotically stable.

(e) If there are three internal equilibria, two are sinks and one is a saddle.

(f) If there are five internal equilibria, three are sinks and two are saddles.

Proof. Statement (a) is clear from Lemma 5.2. Combining (3.11) with (A1.1) and Theorem

4.6 yields (b). Point (b) together with Corollary 4.5b gives claim (c). Theorem (4.4) yields

the desired numbers of saddles for (d), (e) and (f). Because the trace of J (3.2) is negative

due to (3.11), the internal equilibria with index +1 are sinks.

Phase portraits with one or three internal equilibria are shown in Fig. S1, panels 4 and

5. We could neither find an example for case (f) in Theorem 5.3 nor could we exclude it.
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Theorem 5.4. Assume that both loci exhibit marginal underdominance everywhere. Then

the following holds:

(a) The boundary flow is of type E4
0C4b.

(b) All boundary equilibria are saturated, whence δ = 0.

(c) There may exist one, three, or five internal equilibria.

(d) If there is a unique internal equilibrium, it is a source.

(e) If there are three internal equilibria, two are sources and one is a saddle.

(f) If there are five internal equilibria, three are sources and two are saddles.

Remark 5.5. The possible flows on [0, 1]2 for Theorem 5.4 are obtained by flow reversal

from flows occurring in the case Theorem of 5.3.

Finally, the following can be shown. We leave the simple proof to the reader.

Theorem 5.6. Assume one locus exhibits marginal overdominance everywhere and the other

marginal underdominance everywhere.

(a) The boundary flow is of type E4
2C0c.

(b) The two internally stable edge equilibria are saturated, whence δ = 2.

(c) There exists a unique internal equilibrium, and it is a saddle.

Remark 5.7. It seems interesting that there exist fitness matrices that do not satisfy the

assumption of the above theorem and generate a phase portrait with three internal equilibria

and the boundary flow E4
2C0c. Thus, the assumptions of marginal overdominance and un-

derdominance everywhere do not only constrain the potential boundary flows substantially,

but also the phase portraits that can occur for a given boundary flow.

6 Linear isoclines

Here, we study the dynamics of systems obtained by fitness matrices yielding linear isoclines.

This leads to a system of differential equations that has been investigated by Schuster et al.

(1981) to study the evolution of two strategies in asymmetric animal contests, for example

between two species. It also turns out to be equivalent to a model used by Zhivotovsky and

Gavrilets (1992) to study quantitative genetic variation under epistatic selection. A number

of well known models emerge as special cases, for instance the additive model or the haploid

model.

It will be convenient to reparameterize the fitnesses mij as follows:

B1B1 B1B2 B2B2

A1A1 2a1 + 2a2 + e11 2a1 + a2 + d2 + e12 2a1

A1A2 a1 + 2a2 + d1 + e21 a1 + a2 + d1 + d2 + e22 a1 + d1

A2A2 2a2 a2 + d2 0

. (6.1)
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Here, ai are allelic effects, di dominance effects, and eij epistatic effects. According to the

remark below (2.7), one additional parameter could be specified (e.g., by setting a1 = 1),

but we refrain from doing so. The general assumption (H) implies that we exclude complete

dominance or recessivity of an allele, i.e., |di| 6= ai for i = 1, 2, and analogous restrictions

apply to e12 and e21.

A straightforward calculation shows that the dynamics (2.5) becomes

ṗ = p(1− p)[a1 + d1(1− 2p) + 2e22q + 2(e12 − 2e22)pq

+ (e21 − 2e22)q2 + (e11 − 2e12 − 2e21 + 4e22)pq2] , (6.2a)

q̇ = q(1− q)[a2 + d2(1− 2q) + 2e22p+ 2(e21 − 2e22)pq

+ (e12 − 2e22)p2 + (e11 − 2e12 − 2e21 + 4e22)p2q] . (6.2b)

We note that the right-hand side of (6.2a) is simply the additive effect of allele A1 multiplied

by p, and analogously the right-hand side of (6.2b) yields the additive effect of allele B1.

Remark 6.1. A standard decomposition of the total genetic variance (e.g., Kempthorne

1955) shows that dominance-by-dominance interactions are absent if and only if e = e11 −
2e12−2e21+4e22 = 0, additive-by-dominance interactions are absent if and only if e12 = e21 =

2e22 and e = 0, additive-by-additive interactions are absent if and only if e11 = e12 = e21 =

e22 = 0, and dominance is absent if and only if d1 = d2 = 0 and e11 = 2e12 = 2e21 = 4e22.

We infer from (6.2) that both isoclines are linear if and only if

e11 = 4e22 and e12 = e21 = 2e22 . (6.3)

With this assumption, (6.2) simplifies to

ṗ = p(1− p)(a1 + d1 − 2d1p+ 2e22q) , (6.4a)

q̇ = q(1− q)(a2 + d2 − 2d2q + 2e22p) . (6.4b)

Interestingly, this is a model that was studied independently and in different contexts by

Schuster et al. (1981) and Zhivotovsky and Gavrilets (1992). The latter authors introduced

an n-locus version of the fitness scheme (6.1) with the constraint (6.3), as ‘the simplest

generalization of the additive model to include dominance and pairwise additive-by-additive

epistasis’. Schuster et al. (1981) identified all possible (non-degenerate) phase portraits for

(6.4). Because they were interested in a game-theoretical context, they studied a more

general model, in which one of the coefficients e22 in (6.4) was substituted by a sixth, in-

dependent coefficient. Then limit cycles can occur because the corresponding 4 × 4 fitness

matrix (mij) is not symmetric. Here, we present the results of Schuster et al. (1981) that

apply to our model (6.4) in our terminology and complement them. They also follow directly

from our results in Section 4.

35



Since the isoclines are linear, there is either no or one internal equilibrium. Therefore,

by Corollary 4.5c the boundary index sum can assume only the values δ = 0, 1, or 2. Fur-

thermore, if two edge equilibria exist on opposite edges, they must have the same internal

stability. This rules out the following 10 of the 42 boundary flows in Fig. 2: E2
1C0e, E

2
1C1a

′′′,

E2
1C2e, E3

2C0a, E3
2C1a, E3

1C1a, E3
1C2a, E4

3C0e, E4
1C2e, and E4

2C1s. In addition, the following

boundary flows are easily ruled out: E1
1C0a, E1

0C1a, E2
2C0a, E2

0C2a, E2
1C0a and E2

1C1a
′′. Fi-

nally, the planar Routh-Hurwitz criterion implies that the internal equilibrium (p̂, q̂) resulting

from (6.4) is

• a saddle if d1d2 < e2
22;

• a sink if d1d2 > e2
22 and d1p̂(1− p̂) + d2q̂(1− q̂) > 0; and

• a source if d1d2 > e2
22 and d1p̂(1− p̂) + d2q̂(1− q̂) < 0.

We summarize the results:

Corollary 6.2. Assume (6.4).

(a) The following eight boundary flows can have δ = 0: E2
2C0c, E2

2C0s, E3
3C0e, E4

4C0b (in

these cases the internal equilibrium is globally attracting); E2
0C2c, E2

0C2s, E3
0C3e, E4

0C4b (in

these cases the internal equilibrium is a source). The last four cases are the flow reversals

of the first four cases.

(b) The following ten boundary flows and their flow reversals can have δ = 1: E1
1C0e,

E1
1C1e, E1

1C1a, E2
2C0c, E2

2C0s, E2
2C0e (if only E12 is saturated), E2

2C1s, E2
1C1a (if both edge

equilibria are not saturated), E3
3C0e (if only E13 is saturated), E3

2C0e (if only E13 is saturated).

In addition, E0
0C1s and E0

0C1a have δ = 1. In all these 22 cases, an internal equilibrium does

not exist.

(c) The following five boundary flows and their flow reversals can have δ = 2: E1
1C1a,

E2
2C0c, E2

2C0s, E2
1C1a, E3

2C0e. In addition, E0
0C2b and E4

2C0c have δ = 2. In all these twelve

cases, the internal equilibrium is a saddle.

Therefore, a phase portrait is uniquely determined by its boundary flow and boundary

index sum δ. However, for 12 boundary flows, δ is not uniquely determined by the boundary

flow. For E2
2C0c, E

2
0C2c, E

2
2C0s, and E2

0C2s, δ can assume all three possible values, 0, 1, and

2.

Zhivotovsky and Gavrilets (1992) derived results about the maintenance of a multilocus

polymorphism, i.e., an internal equilibrium, and showed that several models investigated

previously, mainly in a quantitative-genetic context, can be obtained as special cases of their

model. Among others, they deduced the conditions for the existence and for the stability

of a fully polymorphic equilibrium if all loci have equal effects on fitness and selection is

sufficiently weak that linkage disequilibrium can be ignored. The assumption of equal effects

is equivalent to a symmetric fitness matrix, i.e., ai = a and di = d for every i.
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A more detailed study of this symmetric model was performed by Gavrilets (1993). If the

fitness matrix is symmetric (ai = a and di = d), the conditions for the existence and stability

of an internal equilibrium become very simple. An internal (nondegenerate) equilibrium

exists if and only if 0 < a+d
2(d−e22)

< 1. It exists and is linearly stable if and only if −d <
e22 < (d − a)/2. This condition can be satisfied only if d > a/3. It also implies that there

are internally stable equilibria on the edges p = 1 and q = 1. The corresponding boundary

flow is E2
2C0s with δ = 0. We will briefly return to this model in Section 8, where we treat

general symmetric fitness matrices.

Now we turn to two important special cases of the model (6.4).

6.1 The additive fitness model

This classical model (Bodmer and Felsenstein 1967, Ewens 1969) assumes that loci contribute

additively to fitness. Thus there is no epistasis, but dominance is admitted. It is obtained

from (6.1) by assuming

e11 = e12 = e21 = e22 = 0 . (6.5)

In fact, this model can be analyzed without ignoring linkage disequilibrium, i.e., the full

four-gamete system (2.3), and indeed for any number of loci. Ewens (1969a) proved for an

arbitrary number of multiallelic loci that mean fitness is a strict Lyapunov function. More-

over, every equilibrium is in linkage equilibrium. For diallelic loci, an internal equilibrium

exists if and only if at every locus there is either overdominance or underdominance. An

internal equilibrium is unique if it is isolated; it is globally asymptotically stable if there is

overdominance on the edges (Karlin and Liberman 1978, 1990). If r > 0, all trajectories

converge exponentially to an equilibrium on the linkage-equilibrium manifold D = 0 (Lyu-

bich 1992). For a more detailed review, see Bürger 2000 (pp. 48-50, 76-78). Therefore, the

flows derived by assuming D = 0 are representative for the full dynamics after a sufficiently

long time has passed and also for every trajectory that starts close to D = 0.

The isocline ṗ = 0 simplifies to a horizontal straight line (in a representation as in Fig.

1), and the isocline q̇ = 0 to a vertical straight line. It follows that locus A (B) exhibits

marginal overdominance if and only if it exhibits overdominance on one of the respective

edges, i.e., if and only if d1 > a1 (d2 > a2); analogously for underdominance. Therefore, in

accordance with the above mentioned results, we obtain:

Corollary 6.3. For the additive model the following boundary flows with boundary index

sum δ occur:

(a) E0
0C1s with δ = 1 if dominance is intermediate at both loci, i.e., −ai < di < ai;

(b) E2
2C0e (E2

0C2e) with δ = 1 if dominance is intermediate at one locus and the other

locus is overdominant (underdominant);
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(c) E4
4C0b (E4

0C4b) with δ = 0 if both loci are overdominant (underdominant);

(d) E4
2C0c with δ = 2 if one locus is overdominant, the other underdominant.

An internal equilibrium exists and is unique for the boundary flows E4
4C0b, E4

0C4b, and

E4
2C0c. It is globally attracting, a source, and a saddle, respectively. Each of the above

boundary flows admits only one phase portrait.

6.2 The haploid model

If selection acts on haploids instead of diploids, fitnesses can be assigned directly to gametes.

Denoting the fitness of gamete i by vi, straightforward calculations show that under the

assumption D = 0 the following dynamics is obtained (cf. Haldane 1931):

ṗ = p(1− p)[v2 − v4 + (v1 − v2 − v3 + v4)q] , (6.6a)

q̇ = q(1− q)[v3 − v4 + (v1 − v2 − v3 + v4)p] . (6.6b)

Comparison with (6.4) reveals that this is obtained from the fitness scheme (6.1) if one sets

d1 = d2 = 0, v4 = 0 (without loss of generality), v3 = a2, v2 = a1, v1 = a1 + a2 + 2e22, and

assumes (6.3). Therefore there is additive-by-additive epistasis but no dominance.

The isocline ṗ = 0 is given by the vertical line q = a1/(2e22), and the isocline q̇ = 0 is

given by the horizontal line p = a2/(2e22). Hence, there are no edge equilibria, but there

may exist one internal equilibrium given by these values. The only possible boundary flows

are E0
0C1s, E

0
0C1a, and E0

0C2b. Their boundary index sum is uniquely determined and δ = 1,

δ = 1, and δ = 2, respectively. It is easy to show that all three cases can be realized. An

internal equilibrium exists only in the third case, and it is a saddle. These results are in

accordance with results obtained previously for the following more general models.

In game theory, (6.6) is known as the replicator dynamic for 2×2 partnership games, which

is generalized by the replicator dynamics for 2× 2 bimatrix games. There, the coefficients of

p and q in (6.6) may differ. Schuster and Sigmund (1981) proved that periodic orbits occur

if these coefficients have opposite signs (see Hofbauer and Sigmund 1998, Sections 10 and

11, for a treatment of bimatrix games and the replicator dynamics).

The complete haploid selection model, i.e., without the assumption of linkage equilibrium,

was investigated by Felsenstein (1965), Feldman (1971), Rutschman (1994) and Bank et al.

(2012). Bank et al. (2012) proved that there exists at most one internal equilibrium and, if it

exists, it is unstable. Then two vertex equilibria are asymptotically stable. This corresponds

precisely to the boundary flow E0
0C2b. Otherwise, one vertex is globally asymptotically

stable (and the boundary flow is either E0
0C1s or E0

0C1a). The parameter combinations were

identified that lead to the respective equilibrium structures.
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7 The multilinear epistasis model

Hansen and Wagner (2001) introduced a model of gene interaction that assumes that the

effect of gene substitution due to changes in the genetic background (the other loci) can be

described by a linear transformation. Although their model is formulated in terms of genetic

effects on quantitative traits, it can be applied to our context if we consider fitness as the

trait. A two-locus version of this model, and its applications to the maintenance of genetic

variation, was studied by Hermisson et al. (2003). Following their formulation, the fitness of

the two-locus genotype AiAjBkB` can be written as

w(ij, k`) = µ+ α(ij) + β(k`) + γα(ij)β(k`) . (7.1)

Comparison with the fitness scheme (6.1) shows, after some calculation, that their model is

the special case of (6.1) obtained by assuming

e11 =
4a1a2e22

(a1 + d1)(a2 + d2)
, e12 =

2a1e22

a1 + d1

, e21 =
2a2e22

a2 + d2

. (7.2)

It follows that the isoclines ∂m̄/∂p = 0 and ∂m̄/∂q = 0 take the form

(a2 + d2 − 2d2p)ϕ2(q)

(a1 + d1)(a2 + d2)
= 0 , (7.3a)

(a1 + d1 − 2d1q)ϕ1(p)

(a1 + d1)(a2 + d2)
= 0 , (7.3b)

where

ϕi(x) = (a1 + d1)(a2 + d2) + 2e22x(ai + di − dix) . (7.3c)

Therefore, they are in product form. It is not difficult to show that the isoclines of (6.2) are

in product form if and only if (7.2) holds.

We define

p̃ =
a2 + d2

2d2

, q̃ =
a1 + d1

2d1

, (7.4)

and observe that 0 < p̃ < 1 (0 < q̃ < 1) if and only if there is overdominance or underdomi-

nance at locus A (B). If 0 < p̃ < 1 and 0 < q̃ < 1, we call the equilibrium (p̃, q̃) the central

equilibrium.

The isoclines may be composed of up to three straight lines. For ṗ = 0 (and in a

representation as in Fig. 1), these are the horizontal line p = p̃ and the two vertical lines

that are given by the solutions of ϕ2(q) = 0. If 0 < p̃ < 1, then the two edge equilibria

E13 and E24 exist and have the same value, p̃. Thus, edge equilibria occur always in pairs

on opposite edges. If in addition 0 < q̃ < 1, the other two edge equilibria and the central

equilibrium (p̃, q̃) exist. Furthermore, the intersection points of ϕ2(q) = 0 and ϕ1(p) = 0

may yield up to four additional internal equilibria. Thus, in total there may be up to five

internal equilibria.
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The case of five internal equilibria can be realized for overdominance at both loci as well

as for underdominance at both loci, but not if one locus exhibits overdominance and the

other underdominance (Theorem 7.1 and Table S3). The corresponding boundary flows are

E4
4C0b with δ = 4 and its flow reversal E4

0C4b .

Because opposite edge equilibria occur pairwise, flows of type E1
m or E3

m cannot occur. The

following theorem lists all possible equilibrium structures. Only 16 of the 42 boundary flows

in Fig. 2 can occur. In particular, it states the extent to which the equilibrium structure

can be inferred from the boundary flow. The proof is given in Appendix A1.3. Parameter

combinations that yield all possible equilibrium structures are given in Table S3.

Theorem 7.1. Assume (6.2) and (7.2).

(a) All possible equilibrium structures in the interior are given in Table 1.

(b) For the top twelve boundary-flow classes EnmCkx in Table 1, the number of asymp-

totically stable edge equilibria is min{m, δ}. For the other four classes, this is in general

wrong.
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Boundary δ = 0 δ = 1 δ = 2 δ = 3 δ = 4

flow

E0
0C1s − 0 − − −

E0
0C1a − 0 − − −

E0
0C2b − − 1 saddle − −

E2
2C0c − 0 − − −

E2
0C2c − 0 − − −

E2
2C0e − 0∗ − − −

E2
0C2e − 0∗ − − −

E2
1C0e − 0 − − −

E2
1C1a

′′′ − − 1 saddle − −
E2

1C2e − 0 − 2 saddles −
E4

4C0b 1 sink − 1 saddle − 1 source,
4 saddles

E4
0C4b 1 source − 1 saddle − 1 sink,

4 saddles

E4
3C0e 1 sink − 1 saddle or − −

1 source & 2 saddles

E4
1C2e 1 source − 1 saddle or − −

1 sink & 2 saddles

E4
2C0c 1 sink or − 1 saddle − −

1 source

E4
2C1s − 1 sink or source, − − −

1 saddle

Table 1: Internal equilibrium structures for the multilinear epistasis model. A ‘−’ indicates
that this value of δ does not occur and ‘0’ indicates that the number of internal equilibria
is zero. A comma means ‘and’. An asterisk, ∗ indicates that this case can be realized by
matrices with different extended boundary flows; thus there are two different equilibrium
structures. For the four boundary flows at the bottom, which admit two different inter-
nal equilibrium structures for one value of δ, each of the internal equilibrium structures is
generated by a different, but unique, extended boundary flow.

Remark 7.2. Because mean fitness is a strict Lyapunov function (Section 2), there is a

globally asymptotically stable equilibrium if and only if there is precisely one sink. This

occurs in the following cases: E0
0C1s and E0

0C1a (a corner equilibrium is globally attracting);

E2
2C0c, E

2
2C0e, and E2

1C0e (an edge equilibrium is globally attracting); E4
4C0b and E4

3C0e, each

with δ = 0 (the central equilibrium is globally attracting); E4
2C0c with δ = 0 (in this case

the central equilibrium is a sink, hence globally attracting).
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We observe from (7.2) that the multilinear model reduces to that with linear isoclines

in Section 6 if and only if d1 = d2 = 0 or e22 = 0. Thus, the multilinear model of epis-

tasis coincides with the epistatic model of Zhivotovsky and Gavrilets (1992) if and only if

dominance is absent, when it simplifies to the haploid model (Section 6.2), or if epistasis

is absent, when it reduces to the additive model (Section 6.1). It is easy to show that if

dominance and epistasis are present, the multilinear model and that of Zhivotovsky and

Gavrilets are different and none is a special case of the other. In biological terms, the reason

is that in the model of Zhivotovsky and Gavrilets there are no additive-by-dominance or

dominance-by-dominance interactions, whereas these interactions occur in the multilinear

model if dominance is present (as follows from eq. (7.2) and Remark 6.1).

Remark 7.3. (a) The following (extended) boundary flows occur in the multilinear epistasis

model but not in the model of Zhivotovsky and Gavrilets (1992): E2
1C0e, E2

1C1a
′′′, E2

1C2e,

E4
3C0e, E

4
1C2e, E

4
2C1s; E

4
4C0b and E4

0C4b (each with δ = 2 and δ = 4) and E4
2C0c with δ = 0

(see Table S2).

(b) The extended boundary flows that occur both in the multilinear epistasis model and

in the model of Zhivotovsky and Gavrilets are those occuring in the haploid model (no edge

equilibria), those occuring in the absence of dominance and epistasis (listed in Corollary

6.3), and E2
2C0c and E2

0C2c, each with δ = 1 (see Table S2). However, in the latter case the

fitness matrices are different.

8 Equal locus effects

If both loci contribute to fitness equally, the 3× 3 matrix in (6.1) is symmetric, i.e.,

a1 = a2 = a , d1 = d2 = d, and e21 = e12 . (8.1)

Under this assumption, which we impose throughout this section, only the nine boundary

flows in Fig. 2 occur that have a code ending by an s or b. However, additional restrictions

on the possible phase portraits and equilibrium structures occur as we will demonstrate now.

The symmetry implies that edge equilibria occur pairwise, i.e., (E24, E34) and (E12, E13).

Equilibria of a pair have the same internal and the same external stability. Therefore,

boundary flows with an odd number of stable corner equilibria give rise to odd values δ;

with an even number of stable corner equilibria δ is even.

Using the symmetry (8.1), we infer from (6.2) that the isoclines take the form

h(x) =
a+ d+ 2e22x+ (e12 − 2e22)x2

2d− 2(e12 − 2e22)x− (e11 − 4e12 + 4e22)x2
, (8.2)

where for the ṗ = 0 isocline we have h(p) = q, and for the q̇ = 0 isocline we have h(q) = p.

Therefore, we obtain up to three symmetric internal equilibria. They satisfy p = q and are
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the solutions of the cubic equation h(x) = x. In addition, there may exist a pair of internal

equilibria that are mirror images of each other with respect to the diagonal p = q. Since

the internal equilibria are the zeros of the quintic polynomial (3.7), this pair of equilibria is

given by the zeros of a quadratic polynomial.

For all possible boundary flows, the following theorem determines the number of internal

equilibria that can occur. Recall from Corollary 4.5 that the number of internal equilibria

is odd if and only if δ is even.

Theorem 8.1. Assume (6.2) and (8.1). Then δ is odd for boundary-flow classes with an

odd number of stable corner equilibria, and δ is even otherwise. In addition, the following

holds:

(a) For the boundary-flow classes E2
2C1s and E2

0C3s, each with δ = 1 or δ = 3, and for

E4
2C1s with δ = 3, the number of internal equilibria can be zero (only for δ = 1), two, or four.

(b) For the boundary-flow classes E4
4C0b and E4

0C4b, each with δ = 0 or δ = 4, the number

of internal equilibria can be one (only for δ = 1), three, or five.

(c) For the boundary-flow classes E0
0C1s (which has δ = 1), E0

0C2b (which has δ = 2),

E2
2C0s and E2

0C2s (which both have δ = 0 or δ = 2), E4
4C0b and E4

0C4b with δ = 2, and E4
2C1s

with δ = 1, the respective maximum number of internal equilibria (four or five) cannot be

assumed. Any smaller number of internal equilibria admitted by Corollary 4.5 (1 or 3 if

δ = 0 or δ = 2, 0 or 2 if δ = 1) can be assumed.

The proof is given in Appendix A1.4. Without proof (which is simple), we note that in

this symmetric case, δ = −1 can be excluded for E4
2C1s. Therefore, the only possible values

are δ = 1 and δ = 3.

Finally, we briefly treat two special cases. For the model of Gavrilets (1993) mentioned

in Section 6, i.e., eq. (6.4) with (8.1), the following boundary flows and values δ can occur:

All eight boundary flows from Corollary 6.2 ending with an s or b occur. For E0
0C1s, E

0
0C2b,

E2
2C1s, E2

0C3s, E4
4C0b, and E4

0C4b, the boundary index sum is already uniquely determined

(δ = 1, 2, 1, 1, 0, and 0, respectively). For E2
2C0s and E2

0C2s the case δ = 1 is easily excluded,

whence only δ = 0 or δ = 2 are possible.

If the symmetry assumption (8.1) is imposed on the multilinear epistasis model treated

in Section 7, the following boundary flows and equilibrium structures occur:

E0
0C1s (δ = 1) and E0

0C2b (δ = 2); in both cases, the equilibrium structure is unique.

E4
2C1s (δ = 1): both cases (sink and saddle, source and saddle) can be realized.

E4
4C0b and E4

0C4b: each with δ = 0 and δ = 4. δ = 2 cannot occur because this would

require neighbouring edge equilibria to differ in their external stability.

Interestingly, there are no equilibrium structures with two edge equilibria in the multilin-

ear model if loci have equal effects.
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9 The symmetric viability model

As already outlined in the Introduction, the so-called symmetric viability model has received

much attention in the literature. One reason is that special cases of it arise naturally when

two diallelic loci determine a quantitative character that is under stabilizing selection toward

an intermediate optimum (e.g., Wright 1935, 1952; Hastings 1987; Nagylaki 1989; Gavrilets

and Hastings 1993; Bürger and Gimelfarb 1999; Willensdorfer and Bürger 2003). For a

detailed review, consult Bürger (2000, Chap. 6.2).

It has the property that fitnesses of genotypes are invariant under the simultaneous ex-

change of A1 with A2 and B1 with B2. Therefore the resulting fitness matrix (2.2) is centro-

symmetric and depends only on four parameters. We shall use the following parametrization

(cf. Nagylaki 1989):

B1B1 B1B2 B2B2

A1A1 r1 + r2 +m r1 − l r1 + r2 −m
A1A2 r2 − l 0 r2 − l
A2A2 r1 + r2 −m r1 − l r1 + r2 +m

. (9.1)

This is equivalent to the most general form, as first introduced by Bodmer and Felsenstein

(1967). The model studied by Lewontin and Kojima (1960) corresponds to the special case

m = 0. Interestingly, this is also a special case of the multilinear epistasis model treated

in Section 7 (by setting a1 = a2 = e11 = e12 = e21 = 0 in (6.1)). Bodmer and Parson

(1962) assumed r1 = r2, which makes the matrix symmetric, in addition to being centro-

symmetric. Thus, only boundary flows ending with b can be realized. The most general

models of stabilizing selection (among those referred to above) require all four parameters.

However, because the double heterozygote has the highest fitness, and fitness of trait values

decay symmetrically with distance from the optimum, the four parameters have to satisfy

certain inequalities Nagylaki (1989).

Instead of (p, q) ∈ [0, 1]2, we use the coordinates (x, y) ∈ [−1, 1]2 defined by

p =
1 + x

2
, q =

1 + y

2
. (9.2)

This transforms the system (2.5) into

ẋ = (1− x2)(r1x+my + lxy2) , (9.3a)

ẏ = (1− y2)(r2y +mx+ lyx2) , (9.3b)

which will form the basis for the subsequent analysis.

It is immediate that the origin O = (0, 0) is an equilibrium and the dynamics is point-

symmetric with respect to it. In particular, if (x̂, ŷ) is an equilibrium of (9.3), so is (−x̂,−ŷ),

and both have the same eigenvalues because the respective Jacobian matrices are equal. We
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observe that the isoclines of (9.3) are in product form if m = 0, whence a special case of the

multilinear epistasis model emerges. The isoclines are linear if l = 0.

If the isoclines are not linear, they are given by

x = ψ1(y) =
−my
r1 + ly2

, (9.4a)

y = ψ2(x) =
−mx
r2 + lx2

. (9.4b)

Theorem 9.1. (a) The central, or symmetric, equilibrium O exists always.

(b) If l 6= 0 and r1r2 6= 0, the following pairs of unsymmetric internal equilibria may exist:

y1,2 = ±

√√√√−r1 −m
√

r1
r2

l
, x1,2 =

√
r2

r1

y1,2, (9.5a)

y3,4 = ±

√√√√−r1 +m
√

r1
r2

l
, x3,4 = −

√
r2

r1

y3,4. (9.5b)

In particular, we obtain:

(i) If sgn r1 = sgn r2 = sgn l, then at most one of these pairs is admissible.

(ii) If sgn r1 = sgn r2 = − sgn l, then both pairs may be admissible.

(iii) If sgn r1 = − sgn r2, then O is the only internal equilibrium.

The proof is given in Appendix A1.5.

It is straightforward to compute the Jacobian of (9.3). At an internal equilibrium (x̂, ŷ)

it simplifies to

J(x̂, ŷ) =

(
(1− x̂2)(r1 + lŷ2) (1− x̂2)(m+ 2lx̂ŷ)

(1− ŷ2)(m+ 2lx̂ŷ) (1− ŷ2)(r2 + lx̂2)

)
. (9.6)

See also Lemma 3.2. Evaluation at the central equilibrium O yields

JO =

(
r1 m
m r2

)
. (9.7)

From the Routh-Hurwitz criterion we infer the following

Lemma 9.2. Let

ρ = det JO = r1r2 −m2 , (9.8a)

tr JO = r1 + r2 . (9.8b)

Then O is a

(a) saddle with index −1 if ρ < 0,

(b) sink with index +1 if ρ > 0 and tr JO < 0,

(c) source with index +1 if ρ > 0 and tr JO > 0.
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Note that the sign of tr JO can be determined immediately from the fitness scheme (9.1).

If the fitness of the double heterozygous genotpye A1A2B1B2 exceeds the arithmetic mean

fitness of, for instance, the homozygous genotypes AiAiB1B1 and AiAiB2B2 (i = 1 or 2),

then tr JO < 0.

Remark 9.3. (a) Lemma 9.2 settles the internal equilibrium structure for the case l = 0,

in which O is the only internal equilibrium.

(b) Let r1r2 = 0. If r1 = r2 = 0, the equilibrium O is a saddle, and there exists either no

other internal equilibrium (if |m/l| > 1) or the curve of equilibria y = −m/(lx), yielding a

degenerate flow. If r1 = m = 0, then y = 0 is a line of equilibria, hence again degenerate. If

r1 = 0 and m 6= 0 and l 6= 0, then O is the unique internal equilibrium, and it is a saddle.

For the remainder of this section, we assume l 6= 0 and r1r2 6= 0. As a corollary to the

above theorem, we obtain

Corollary 9.4. If sgn r2 = − sgn r1, then O is the unique internal equilibrium. It is a saddle

point and δ = 2.

Proof. We already know from Theorem 9.1 that O is unique. If sgn r2 = − sgn r1, then

ρ < 0 and O is a saddle. Since the index of a saddle point is −1, Theorem 4.4 shows that

the boundary index sum is δ = 2.

Here is the main result of this section.

Theorem 9.5. (a) The internal equilibrium structures that can occur in the symmetric

viability model are given in Table 2.

(b) The stability of the boundary equilibria can be inferred from the boundary flow type

EnmCk as follows:

(b1) The number of asymptotically stable corner equilibria is k.

(b2) The number of asymptotically stable edge equilibria is min{m, δ}.
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δ = 0 δ = 2 δ = 4

Boundary ρ < 0 ρ > 0 ρ < 0 ρ > 0 ρ < 0 ρ > 0

flow

E0
0C2b − − 1 saddle 1 sink or source2, − −

2 saddles

E2
2C0c 1 saddle, 1 sink 1 saddle 1 sink or source1, − −

2 sinks 2 saddles

E2
0C2c 1 saddle, 1 source 1 saddle 1 sink or source1, − −

2 sources 2 saddles

E4
4C0b 1 saddle, 1 sink 1 saddle 1 source, 3 saddles 1 source,

2 sinks 2 saddles 4 saddles

E4
0C4b 1 saddle, 1 source 1 saddle 1 sink, 3 saddles 1 sink,

2 sources 2 saddles 4 saddles

E4
2C0c × 1 sink or 1 saddle 1 sink or source2, − −

1 source2 2 saddles

Table 2: Internal equilibrium configurations for the symmetric viability model. A ‘−’ indi-
cates that this value of δ does not occur (see Table S1) and ‘×’ indicates that this combination
of ρ and δ cannot occur. A comma means ‘and’. 1 Whether O is a sink or a source needs
to be determined from the sign of r1 + r2. 2 The stability of O switches under flow reversal,
which (in these classes) does not alter the extended boundary-flow class.

The proof is given in Appendix A1.5. Examples of all possible flows can be found in

Section S1 of the SI.

From Table 2, we infer immediately that O is the unique internal equilibrium if either

δ = 0 and ρ > 0 or if δ = 2 and ρ < 0. In fact, the table shows that the number of internal

equilibria can always be determined from the extended boundary flow and ρ.

Nagylaki (1989) identified all equilibrium structures and phase portraits for the special

case of the symmetric viability model that arises from stabilizing selection toward an op-

timum situated on the genotypic value of the double heterozygote. He admitted arbitrary

functions decaying from the optimum monotonically and symmetrically, and he assumed ab-

sence of linkage equilibrium. Thus, his model is a special cases of (9.3) (after transformation

(p, q) between (x, y) coordinates). He proved that only the two phase portraits for E0
0C2b

can occur and four of the five listed for E2
2C0c (if δ = 2 and ρ > 0, then O is a sink).
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10 Discussion

The analysis of the classical two-locus two-allele selection-recombination model is notoriously

difficult. As outlined in the Introduction, despite considerable efforts only special cases

are well understood, for instance, the models with additive or multiplicative fitnesses. We

investigated a simplification of the full two-locus two-allele model (2.3) by assuming that the

two loci are independent, i.e., in linkage equilibrium. This simplified model is given by (2.5)

and, essentially, goes back to Wright (1942), although special cases had been studied earlier

(Haldane 1931, Wright 1935).

The model (2.5) is not only much easier accessible to mathematical analysis than (2.3),

it is also of biological relevance because it has been derived as the weak-selection limit of

the full model. Therefore, it provides a good approximation if selection is not too strong

and the two loci are unlinked or only weakly linked. Indeed, under the non-degeneracy

assumption (H), a theorem by Nagylaki et al. (1999) demonstrates that in the full model

(2.3) and for sufficiently weak selection relative to recombination, every trajectory converges

to an equilibrium point, and every such equilibrium point is a perturbation of an equilibrium

point of the weak-selection limit (2.5). Throughout this paper, we assumed condition (H).

Importantly, mean fitness is a strict Lyapunov function for (2.5). Hence, every solution

converges to an equilibrium point (Section 2). This is not always the case in the full model,

either (2.3) or its continuous-time analog. For both the existence of stable limit cycles was

demonstrated (Akin 1979, 1982; Hastings 1981; Hofbauer and Iooss 1984) if selection and

recombination are of similar strength. For the weak-selection limit (2.5), Moran (1963)

showed that, in addition to the eight possible boundary equilibria, there may exist up to

five internal equilibria, and three can be simultaneously stable (Theorem 3.1). For the

full model (2.3), the maximum number of equilibria is 15, seven of them being internal

equilibria. This is an immediate consequence of a result of Altenberg (2010), who proved

the conjecture of Feldman and Karlin (1970) that the maximum number of equilibria in a

selection-recombination model with n gametes is 2n − 1.

Boundary flows, extended boundary flows, and phase portraits

Although we could not fully accomplish our goal of deriving and classifying all possible

equilibrium structures and (equivalence classes of) phase portraits of the weak-selection limit

(2.5), we identified the extended boundary flows, and determined all equilibrium structures

for several important types of fitness patterns. These results yield interesting insights into

the role of epistasis and dominance in generating equilibrium structures.

For general fitnesses, we identified all possible boundary flows, i.e., flows on the boundary

of the state space [0, 1]2 (Fig. 1). The four corners correspond to the monomorphic equilibria.
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The dynamics on the edges correspond to the single-locus dynamics when the other locus

is fixed for one or the other allele. There are 42 (topologically) different boundary flows or,

more precisely, boundary-flow classes because boundary flows that are obtained by relabeling

loci or alleles are identified (Section 4, Fig. 2). Of these 42 boundary flows there are 16 pairs,

for which a member of a pair is obtained by reversing the flow of the other member. The

other 10 boundary-flow classes are self inverse under flow reversal.

These boundary flows are by far not sufficient to describe all possible phase portraits on

[0, 1]2. As an intermediate step, we studied the extended boundary flows (Section 4.2). They

describe the dynamics in a small neighborhood of the boundary, in particular, the external

stability of the edge equilibria. A key ingredient for deriving the possible equilibrium struc-

tures and phase portaits on the full state space [0, 1]2 from a given extended boundary flow

is the boundary index sum δ (defined below eq. 4.1). The possible values of δ are constrained

by Lemma 4.1, and Theorem 4.2 shows that for specific boundary flows additional values

δ can be excluded. Thus, we are still left with 190 potentially possible extended bound-

ary flows. The most important tools for drawing conclusions about the internal equilibrium

structure are Theorem 4.4, which is a special case of a more general index theorem (Hofbauer

1990), and Corollary 4.5. Overall, we showed existence of 185 extended boundary flows by

providing a fitness matrix and a phase portrait generating such an extended boundary flow

(SI, Figs. S1 - S5, Table S1).

For a given boundary-flow class and a value of δ, there may still exist more than one

extended boundary flow yielding this boundary-flow class and this δ, an extended bound-

ary flow may be compatible with more than one equilibrium structure, and an equilibrium

structure may be generated by non-equivalent phase portraits (see Section 4.3 and Table S1,

as well as the phase portraits in Section S1). Apart from characterizing all possible equi-

librium structures or even all possible phase portraits, also more specific problems remain

unresolved. For instance, can a sink and a source in the interior coexist? There are also five

extended boundary flows, all with δ = −1, whose existence we could not exclude.

Permanence

An important notion in modeling biological systems is permanence. This is a generalization

of the notion of a protected polymorphism, which is mainly used for one-locus two-allele

models in (spatially) structured populations. Loosely speaking, permanence means that no

type or species will be lost because its frequency will remain above a certain threshold. For

our model (2.5), this implies that a permanent system can exhibit only 14 types of extended

boundary flows (Corollary 4.7), all having δ = 0. At least one of these extended boundary

flows (E4
4C0b) can be generated by permanent flows with one, three, or five internal equilibria

(Fig. S1 panels 4, 5, 6). Thus, the phase portrait is not uniquely determined by the extended
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boundary flow.

For every given fitness matrix generating one of the 14 boundary-flow classes of Corollary

4.7 and parametrized as in (6.1), a sufficiently strong increase of the epistasis parameter

e22 yields a permanent flow. This is a consequence of Corollaries 4.7 and A1.1, since in

the parametrization (6.1), e22 is the only parameter in m14 that is independent of the given

boundary flow.

Marginal overdominance or underdominance

In Section 5, we assumed that each locus exhibits either marginal overdominance at every

point (p, q) or marginal underdominance; see (3.11) and Lewontin and Kojima (1960). This

is equivalent to having continuous isoclines (3.4) that map [0, 1] into (0, 1). If there is

marginal overdominance at both loci, then E4
4C0b is the only possible boundary-flow class

and no boundary equilibrium is saturated. Therefore, the extended boundary flow is uniquely

determined, δ = 0, and the system is permanent. This is compatible with having one, three,

or five internal equilibria, of which one, two, or three, respectively, are sinks (Theorem 5.3).

We could find phase portraits with one or three internal equilibria, but not with five. We

could also not prove that five internal equilibria cannot be realized. Although Moran (1963)’s

example (Figure S1 panel 6) has boundary-flow class E4
4C0b and δ = 0, it does not satisfy

the assumptions of Theorem 5.3.

A result analogous to Theorem 5.3 holds if both loci exhibit marginal underdominance

because then every flow can be obtained by flow reversal. If one locus exhibits marginal

overdominance and the other marginal underdominance, then the boundary-flow class is

E4
2C0c, there exists a unique internal equilibrium, which is a saddle, and the two internally

stable edge equilibria are linearly stable (Theorem 5.6). Hence, the phase portrait, i.e., the

topological structure of the flow, is uniquely determined by the boundary-flow class.

Table S2 lists the extended boundary flows and indicates by which of the special fitness

patterns they can be generated.

Linear isoclines, or additive-by-additive epistasis

A particularly interesting special class arises if linear isoclines are posited (Section 6). With

the fitness parameterization (6.1) and the assumption (6.3), the dynamics (2.5) simplifies

to (6.4). This type of model has been studied independently, in different generality and in

different contexts, by Schuster et al. (1981) and by Zhivotovsky and Gavrilets (1992) and

Gavrilets (1993); see Section 6 for a more detailed appraisal. In population genetics terms,

(2.5) has linear isoclines if and only epistatic interactions are absent or (only) additive by

additive. The assumption of linear isoclines rules out 16 of the 42 possible boundary flows

and greatly reduces the number of possible phase portraits because there can be at most
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one internal equilibrium. Also the stability of the internal equilibrium, if it exists, is easily

determined. Corollary 6.2 lists all possible flows. In particular, the phase portraits of (6.4)

are uniquely determined by the boundary flow and by δ. For 12 boundary flows, however, δ

may assume more than one value.

Corollary 6.2 shows also that a stable internal equilibrium cannot exist unless there is

at least one internally stable edge equilibrium, i.e., there is overdominance in at least one

single-locus boundary system. Analogously, an internal source can occur only if there is

underdominance in at least one single-locus boundary system.

As discussed in Section 6.1 on the additive model, in the absence of epistasis all trajectories

of the full model (2.3) converge to the linkage-equilibrium manifold if the recombination rate

satisfies r > 0. Therefore, the phase portraits derived for (2.5) are representative for the full

model. In addition, every possible boundary flow determines the phase portrait uniquely

(Corollary 6.3).

Another important special case with linear isoclines is the haploid selection model (6.6).

Since there is no dominance, the only possible boundary flows are E0
0C1s, E

0
0C1a, and E0

0C2b.

As in the additive case, the phase portraits of (6.6) are uniquely determined by the boundary

flows: in the first two cases there is no internal equilibrium, in the third case there is a

saddle. The weak-selection limit (6.6) of the haploid model captures all possible equilibrium

structures and phase portraits of the full haploid model with linkage disequilibrium, at least

for continuous time (Bank et al. 2012 and Section 6.2).

Multilinear epistasis

The so-called multilinear model of epistasis was introduced by Hansen and Wagner (2001).

It assumes that the effects of gene substitutions due to changes in the genetic background

can be described by a linear transformation (Section 7). In this model, all types of epistatic

interactions can occur. In the two-locus case, these are additive-by-additive, additive-by-

dominance, and dominance-by-dominance interactions (cf. Remark 6.1). Interestingly, the

multilinearity assumption (7.1) turns out to be equivalent to assuming that the isoclines are

in product form; see (7.3). Therefore, they are composed of vertical or horizontal straight

lines. In the absence of dominance, the multilinear model and that of Zhivotovsky and

Gavrilets (1992) coincide. In this case, both models reduce formally to the haploid model

(6.6). Otherwise, they differ. In fact, up to five internal equilibria may occur in the multi-

linear model. It is also possible to have overdominance on every edge, i.e., in each marginal

one-locus system, but no stable internal equilibrium (Table 1, boundary flow E4
4C0b with

δ = 4). All possible equilibrium structures could be identified (Theorem 7.1). Seven of the

16 possible boundary flows determine the phase portrait uniquely.
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Equivalent loci

In Section 8, we briefly treat the equilibrium structures generated by symmetric fitness

matrices. This is equivalent to assuming that both loci are equivalent, an assumption made

in many investigations. Then only the nine boundary flows of Figure 2 ending with an s or

b can occur. The symmetry properties of this model greatly simplify its analysis, so that

for every possible boundary flow the possible values of δ and the possible number of internal

equilibria can be determined (Theorem 8.1). We note that Moran’s (1963) example of a

flow with three stable internal equilibria is symmetric. Thus, the assumption of symmetry

reduces the complexity of the two-locus model only in certain aspects.

The symmetric viability model

As indicated in the Introduction and in Section 9, the symmetric viability model may be one

of the best studied dynamical systems in population genetics. Although it depends on only

four parameters, its complexity seems to preclude a comprehensive mathematical analysis.

Even the subclass arising from models of stabilizing selection on a quantitative trait toward

an intermediate optimum is well understood only for special cases, such as quadratic or

Gaussian stabilizing selection (Bürger 2000, Chap. 6.2, Willensdorfer and Bürger 2003).

The weak-selection limit, eq. (9.3) in our parameterization (9.1) and in the transformed

coordinates, is still sufficiently complex to admit a wide variety of equilibrium structures

and phase portraits. Nevertheless, it is simple enough to admit the identification of all

possible equilibrium structures (Theorem 9.5 and Table 2). This requires knowledge of the

boundary-flow class (by definition, the types ending with b or c occur), the boundary index

sum, and the sign of two simple compound parameters (ρ = r1r2 −m2 and r1 + r2).

Theorem 9.5 shows that the maximum number of internal equilibria of (9.3) is five and

the maximum number of stable internal equilibria is two. This is different in the full two-

locus symmetric viability model with linkage disequilibrium. Then the maximum number

of internal equilibria is seven (Feldman and Karlin 1970), and four can be simultaneously

stable (Hastings 1985). Interestingly, the same maximum numbers of internal and of stable

internal equilibria occur in the special case arising from Gaussian stabilizing selection on a

quantitative trait (Willensdorfer and Bürger 2003). In the full two-locus model, three of the

seven internal equilibria are so called symmetric equilibria whose gamete frequencies satisfy

x1 = x4 and x2 = x3. In the weak-selection limit, these symmetry conditions collapse to

p = 1
2

= 1 − p and q = 1
2

= 1 − q or, in the (x, y) coordinates of Section 9, to x = y = 0.

Thus, in the weak-selection limit, the manifold defined by x1 = x4 and x2 = x3 collapses

to the single point (x, y) = (0, 0). The four unsymmetric equilibria determined by Feldman

and Karlin (1970) for the full model correspond to the four unsymmetric internal equilibria

determined by Theorem 9.1.
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Multiplicative fitnesses

The reader may have noticed that we did not treat multiplicative fitnesses, although the

multiplicative viability model has received great attention in the literature. This model has

always been treated in discrete time because then multiplicate fitnesses have an immediate

biological meaning. In contrast to the additive viability model, it has the property that the

linkage-equilibrium manifold (D = 0) is invariant under the map (2.3). However, in contrast

to the additive model, solutions do not necessarily approach linkage equilibrium and stable

equilibria with D 6= 0 may exist. By performing the weak-selection limit, multiplicative

fitnesses become additive because (1 + εa)(1 + εb) ≈ 1 + ε(a + b). Thus, the weak-selection

limits of the additive and the multiplicative model coincide.

Inferring stable two-locus polymorphisms

An interesting, old question is whether the maintenance of a stable two-locus polymorphism

requires some form of overdominance at the individual loci. Kojima (1959) showed for

independent loci, i.e., our model (2.5), that marginal overdominance (3.11) of both loci at

equilibrium is necessary for the maintenance of a stable two-locus polymorphism. However,

this condition is not sufficient (Corollary 3.3). For the full two-locus model, Hastings (1982)

showed that for a small range of recombination rates stable internal equilibria (sinks) may

display marginal underdominance. Theorem 5.3 and Fig. S1 (panel 5) show that unstable

internal equilibria may exist even if both loci display marginal overdominance on the whole

state space.

A simpler and more general question is whether inferences about existence and stability

of internal equilibria can be drawn from knowledge of the boundary flow. In general, the

answer is negative. Without further restrictions on the fitness scheme, (2.2) or (6.1), there

is no boundary flow that determines the phase portrait uniquely. It is even possible to

maintain an internal sink if no edge equilibrium exists, i.e., if all four marginal one-locus

systems display intermediate dominance. Indeed, all three boundary-flow classes E0
0 admit

an internal sink (Fig. S2, panels 2 and 4; Fig. S3 panel 2), but none of our special fitness

patterns does so.

In the model with linear isoclines, a stable internal equilibrium can occur only if there

is overdominance at least at two edges (boundary flows E2
2C0c, E

2
2C0s, E

3
3C0e). Overdomi-

nance at all four edges (E4
4C0b) is sufficient for the existence of an internal sink (Corollary

6.2). For multilinear epistasis, which admits not only additive-by-additive but also additive-

by-dominance and dominance-by-dominance interactions (though not in their most general

form), an internal sink can exist only if there are four edge equilibria. However, for each of

the six resulting boundary flows, there may exist either an internal sink or an internal source

(Theorem 7.1). For the symmetric viability model, at least two edge equilibria are necessary
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for the existence of an internal sink. However, for each of the five resulting boundary flows,

there may exist either an internal sink or an internal source (Theorem 9.5). Nevertheless,

for the models with linear isoclines (i.e., only additive-by-additive epistasis) and with mul-

tilinear epistasis, many boundary-flow classes determine the equilibrium structure uniquely

(Corollary 6.2 and Theorem 7.1).

Our treatment of special fitness patterns is not exhaustive. For instance, Hastings and

Hom (1990) determined the equilibrium structure of a model with stabilizing selection to-

ward an optimum with arbitrary position by assuming absence of linkage disequilibrium.

More recently, Feldman and Puniyani (2006) examined an extension of the Lewontin-Kojima

version of the full two-locus symmetric viability model, in which substitutions at locus A

do not depend on the background alleles at locus B, but substitutions at locus B depend

on the background locus A. The boundary flow classes that arise in this framework are

E2
2C0e, E

2
1C0e, E

2
1C2e, E

4
4C0b, E

4
3C0e and E4

2C0c.
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A1 Appendix

A1.1 The external eigenvalues

First we evaluate the Jacobian for system (2.5) only on each of the edges and obtain an

interesting connection between the external eigenvalues and the marginal fitnesses (3.5) and

(2.5):

λ34 = mA1A2 −mA2A2 (A1.1a)

λ12 = mA1A2 −mA1A1 (A1.1b)

λ24 = mB1B2 −mB2B2 (A1.1c)

λ13 = mB1B2 −mB1B1 . (A1.1d)

Here λij is the external eigenvalue at the boundary, on which Eij sits. On each edge of

the unit square exactly one allele is missing and the marginal fitnesses at the locus from

where it is missing, define the external eigenvalue.
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The eigenvalue λij evaluated at the corresponding Eij is

λ̂34 =
1

ξ2
34

[(m13 −m33)(m34 −m44)2 + 2(m14 −m34)(m34 −m44)(m34 −m33)+

+(m24 −m44)(m34 −m33)2],

(A1.2a)

λ̂12 =
1

ξ2
12

[(m13 −m11)(m12 −m22)2 + 2(m14 −m12)(m12 −m22)(m12 −m11)+

+(m24 −m22)(m12 −m11)2],

(A1.2b)

λ̂24 =
1

ξ2
24

[(m12 −m22)(m24 −m44)2 + 2(m14 −m24)(m24 −m44)(m24 −m22)+

+(m34 −m44)(m24 −m22)2],

(A1.2c)

λ̂13 =
1

ξ2
13

[(m12 −m11)(m13 −m33)2 + 2(m14 −m13)(m13 −m33)(m13 −m11)+

+(m34 −m33)(m13 −m11)2],

(A1.2d)

where ξij = 2mij−mii−mjj, ∀(i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}. The sign of λ̂ij determines

whether Eij is saturated or not and therefore, we often leave the leading positive factor away

in many computations in the main text as well as in the appendix.

Corollary A1.1. For suitable large |m14| the external eigenvalue λ̂ij has the same sign as

m14.

Proof. This is true, because parameter m14 shows up in each λ̂ij at the same position, is

independent of the given boundary flow and the two other factors multiplied with it, have

always the same sign if the corresponding edge equilibrium is admissible.

Now, we give the proofs of several of the main results.

A1.2 Proof of Theorem 4.2

(a) Since δ = −2 can occur only for E4
2C0c, it is sufficient to exclude this case.

The boundary flow E4
2C0c has four equilibria on the boundary edges. The upper (E12)

and the lower (E34) one are internally stable, while the two others (E24, E13) are internally

unstable. We assume that E34 and E12 are not saturated, while the other two are. This gives

δ = −2. Next, we compute the conditions for this situation for the viability parameters. λ̂34

and λ̂12 given in (A1.2) are positive:

(m13 −m33)(m34 −m44)2 + 2(m14 −m34)(m34 −m44)(m34 −m33)+

+(m24 −m44)(m34 −m33)2 > 0,

(m13 −m11)(m12 −m22)2 + 2(m14 −m12)(m12 −m22)(m12 −m11)+

+(m24 −m22)(m12 −m11)2 > 0,

(A1.3)
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whereas λ̂24 and λ̂13 are negative:

(m12 −m22)(m24 −m44)2 + 2(m14 −m24)(m24 −m44)(m24 −m22)+

+(m34 −m44)(m24 −m22)2 < 0,

(m12 −m11)(m13 −m33)2 + 2(m14 −m13)(m13 −m33)(m13 −m11)+

+(m34 −m33)(m13 −m11)2 < 0.

(A1.4)

For λ̂34 and λ̂12 the first and the third term are negative as can be easily seen by the

correspondence of the picture with the viability matrix. This implies a positive second term,

otherwise the eigenvalue would be negative for all choices of the parameters. For λ̂24 and λ̂13

the signs of the first and third terms are positive and this implies a negative second term.

This gives us the following relation:

m12,m34 < m14 < m24,m13 (A1.5)

From the boundary flow of E4
2C0c one can read off the relations

m24 < m12,m34 and m13 < m12,m34. (A1.6)

Therefore we have a contradiction.

(b) The other proofs are very similar to the one with δ = −2 shown above and are left to

the reader.

A1.3 Proof of Theorem 7.1

First we investigate when ϕi(x) = 0 has zero, one or two solutions in (0, 1). From (7.3c) we

find

ϕi(0) = (a1 + d1)(a2 + d2) , (A1.7a)

ϕi(1) = (a1 + d1)(a2 + d2) + 2aie22 , (A1.7b)

ϕ′i(xi) = 0 if and only if xi =
ai + di

2di
, (A1.7c)

ϕi

(
ai + di

2di

)
= (a1 + d1)(a2 + d2) +

(ai + di)
2e22

2di
, (A1.7d)

where we recall from (7.4) that p̃ = a1+d1
2d1

and q̃ = a2+d2
2d2

. As a simple consequence of these

properties, we obtain:

Lemma A1.2. The number of zeros in (0, 1) of the isocline ϕi is

(a) one if and only if

sgnϕi(1) = − sgnϕi(0); (A1.8)
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(b) two if and only if the following three conditions hold:

sgnϕi(1) = sgnϕi(0) , (A1.9a)

0 <
ai + di

2di
< 1, i.e., |di| > ai , (A1.9b)

sgnϕi

(
ai + di

2di

)
= − sgnϕi(0) ; (A1.9c)

(c) zero if neither (A1.8) nor (A1.9) are fulfilled.

Obviously, (b) requires 0 < q̃ < 1 if i = 1, and 0 < p̃ < 1 if i = 2.

Lemma A1.2 has a number of important consequences:

Remark A1.3. (i) Because ṗ = 0 if and only if p = p̃ or ϕ2(q) = 0, the flows on the opposite

edges q = 0 and q = 1 are equivalent if and only if ϕ2(q) = 0 has zero or two solutions in

(0, 1) which, in turn, is equivalent to ϕ2(0) and ϕ2(1) having the same sign. Otherwise, one

is the flow reversal of the other. An analogous statement holds for the flows on the opposite

edges p = 0 and p = 1.

(ii) If ϕ2(q) = 0 has two solutions, q1 and q2, then sgn ṗ(p, q) = − sgn ṗ(p, 0) = − sgn ṗ(p, 1)

for every q ∈ (q1, q2). This applies in particular to q̃. Therefore, the edge equilibrium

E12 = (1, q̃) is externally stable if and only if ṗ < 0 on the edges q = 0 and q = 1 for p close

to 1. An analogous statement holds if ϕ1(p) = 0 has two solutions.

(iii) If ϕ2(q) = 0 has no solutions in (0, 1), then ṗ does not change sign in small neigh-

borhoods of p = 0 and of p = 1. Therefore, E12 is externally unstable if and only if C1 (or

C2) is unstable on the edge q = 1 (q = 0).

(iv) If there is (precisely) one pair of edge equilibria, the number of intersection points of

ϕ1(p) = 0 and ϕ2(q) = 0 in (0, 1)2 can be 0, 1, or 2. Since in this case the equilibrium (p̃, q̃)

does not exist, the number of internal equilibria can be only 0, 1, or 2.

(v) If there are four edge equilibria, the number of intersection points of ϕ1(p) = 0 and

ϕ2(q) = 0 in (0, 1)2 can be 0, 1, 2, 4, and the number of internal equilibria can be 1, 2, 3, or

5.

In the main text, it has already been shown that edge equilibria occur only in pairs at

opposite edges. This excludes all boundary flows of type E1
mCk and E3

mCk, but also some

others (see below).

Boundary flows with no edge equilibria. Because opposite edge equilibria occur

pairwise, they occur if and only if dominance is intermediate at both loci, i.e., if and only

if −ai < di < ai for i = 1 and i = 2. The possible boundary flows are E0
0C1s, E

0
0C1a, and

E0
0C2b. By Lemma A1.2(b), there is at most one solution of ϕi(x) = 0 in (0, 1), whence

the number of internal equilibria is zero or one. Because one internal equilibrium can occur

only if ϕ1(p) = 0 and ϕ2(q) = 0 intersect, which implies that the flows at opposite edges
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have different direction, the boundary flow E0
0C2b is the only in this class with an internal

equilibrium. Because δ = 2, it is a saddle. This proves statement (a) of Theorem 7.1 for the

top three boundary flows in Table 1.

Boundary flows with one pair of edge equilibria. Without loss of generality we

assume that the pair E12 = (1, q̃) and E34 = (0, q̃) exists, and −a1 < d1 < a1. Although not

necessary, for the ease of the argument we compute the eigenvalues at the edge equilibria.

Recall from (3.3) and (A1.2) that the internal eigenvalue at the edge equilibrium Eij is

denoted by µij and the external by λ̂ij. We obtain

µ34 = (a2 − d2)q̃ , λ̂34 = a1 + d1 + e22q̃ , (A1.10a)

µ12 =
ϕ1(1)

ϕ1(0)
µ34 , λ̂12 =

d1 − a1

d1 + a1

λ̂34 . (A1.10b)

Therefore, E34 and E12 have the same internal stability if and only if ϕ1(0) and ϕ1(1) have

the same sign. They have different external stability because there is intermediate dominance

at the other locus.

As a consequence, since there is only one pair of edge equilibria, their total contribution

to the boundary index sum δ is either −1 or 1. These considerations restrict the possible

boundary flows and boundary index sums δ to (cf. Fig. 2, Lemma 4.1, Theorem 4.2): E2
2C0c

and E2
2C0e, their flow reversals E2

0C2c and E2
0C2e, E

2
1C0e (all with δ = 1), E2

1C1a
′′′ with δ = 0

or δ = 2, and E2
1C2e with δ = 1 or δ = 3.

Because the internal equilibria can result only from intersection points of ϕ1(p) = 0 and

ϕ2(q) = 0, there are two internal equilibria if and only if

sgnϕ2(q̃) = − sgnϕ2(1) = − sgnϕ2(0) (A1.11a)

and

sgnϕ1(1) = − sgnϕ1(0) ; (A1.11b)

cf. Remark A1.3(ii), (iv). (A1.11) can be satisfied only if the opposite edge equilibria have

different internal stability and if the flows on the other pair of edges have different direction.

As a consequence of (A1.11), the flows E2
2C0c, E2

2C0e, E2
0C2c, E2

0C2e, and E2
1C0e, which all

have δ = 1, cannot have an internal equilibrium. Thus, in all these cases the phase portrait

is uniquely determined by the boundary flow and statement (a) of Theorem 7.1 is proved

for these five boundary flows.

The boundary flow E2
1C1a

′′′ with δ = 0 can be excluded, as follows. Concordant with

Fig. 2, we assume that E12 is internally unstable and E34 is internally stable. Then δ = 0

requires that E12 is externally stable and E34 is externally unstable. Therefore, (A1.10b)

implies sgnϕ1(0) = − sgnϕ1(1). To obtain E2
1C1a

′′′, we need ṗ > 0 if q = 0, and ṗ < 0

if q = 1. These assumptions are equivalent to the following conditions: −a1 < d1 < a1,
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and d2 > a2 > 0 and sgnϕ2(1) = − sgnϕ2(0). Therefore, we have ϕ1(0) = ϕ2(0) =

(a1 + d1)(a2 + d2) > 0 and external instability of E34 requires λ̂34 > 0. Since we also need

ϕi(1) = (a1 +d1)(a2 +d2)+2aie22 < 0 for i = 1 and i = 2, we obtain a contradiction because,

by (A1.10a), e22 had to satisfy

−2d2(a1 + d1)

a2 + d2

< e22 < −
(a1 + d1)(a2 + d2)

2a2

. (A1.12)

This is impossible because the expression on the left exceeds that on the right. Therefore,

only δ = 2 is possible and the internal equilibrium is a saddle. This proves statement (a) of

Theorem 7.1 for the boundary flow E2
1C1a

′′′.

Finally, we treat the only remaining boundary flow, E2
1C2e. This has either zero or two

internal equilibria. Obviously, if δ = 3, there must be two internal saddles. If δ = 1, two

internal equilibria can be excluded because this would require that the internally unstable

edge equilibrium be also externally unstable, which is impossible by the argument in (ii)

above. This completes the proof of statement (a) of Theorem 7.1 for all boundary flow with

two edge equilibria.

Boundary flows with two pairs of edge equilibria. Since there are two pairs of

opposite edge equilibria, the central equilibrium (p̃, q̃) exists, and opposite equilibria have

the same external stability by (A1.10) and its analog for the other locus. Therefore, the

total contribution of the edge equilibria to the boundary index sum δ is −4, −2, 0, 2, or

4. These considerations restrict the possible boundary flows and boundary index sums δ to

(Fig. 2, Lemma 4.1, Theorem 4.2): E4
4C0b with δ = 0 or δ = 2 or δ = 4; E4

3C0e with δ = 0 or

δ = 2; their flow reversals E4
0C4b and E4

0C4b with the same values of δ; E4
2C0c with δ = 0 or

δ = 2; and E4
2C1s with δ = 1.

From Lemma A1.2(b) we infer that ϕ1(p) and ϕ2(q) can have four intersection points in

(0, 1)2 only if at each locus their is either overdominance at both edges, or underdominance

at both edges (by Remark A1.3(i), the flows on opposite edges are equivalent if there are

four intersection points). If there is overdominance at both loci (di > ai for i = 1, 2), a

simple calculation shows that there are four intersection points if and only if

−(a1 + d1)(a2 + d2)

2ai
< e22 < −

2di(a1 + d1)(a2 + d2)

(ai + di)2
for i = 1, 2 . (A1.13)

It is easily shown that this condition on e22 can be satisfied for every choice of |di| > ai.

If there is underdominance at both loci (di < −ai for i = 1, 2), the condition for four

admissible intersection points is again (A1.13). If there is overdominance at one locus and

underdominance at the other, then ϕi(0) < 0 for i = 1, 2. This leads to a contradiction

with the requirement ϕi

(
ai+di

2di

)
> 0 (A1.9c), which is equivalent to e22

(ai+di)
2

2di
> −(a1 +

d1)(a2 + d2), because the left-hand side assumes different signs for i = 1 and i = 2, whereas

the right-hand side is positive.
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Therefore, five internal equilibria can occur only for the boundary flow E4
4C0b and its flow

reversal E4
0C4b. For all other equilibrium structures with four edge equilibria, the number of

internal equilibria is at most three by Remark A1.3(v).

The eigenvalues of the central equilibrium (p̃, q̃) are easily calculated and can be written

as

ν1 =
a1 − d1

2d1(a2 + d2)
ϕ2(q̃) and ν2 =

a2 − d2

2d2(a1 + d1)
ϕ1(p̃) . (A1.14)

The external eigenvalues of the edge equilibria are obtained from (A1.10) and its analogon

for the second locus.

For the boundary flow E4
4C0b, the number of intersection points of ϕ1(p) = 0 and ϕ2(q) = 0

can be only zero or four because the flows on opposite edges are equivalent. Therefore, the

number of internal equilibria can be only one or five. If there are five, then (p̃, q̃) is a source

(by Lemma A1.2(b) and because ϕi(0) > 0) and all edge equilibria are externally stable.

Therefore, δ = 4 and the other internal equilibria are saddles. If (p̃, q̃) is the only internal

equilibrium, it is a saddle if δ = 2, and it is globally asymptotically stable if δ = 0. All these

cases can be realized (Fig. ***). This proves statement (a) of Theorem 7.1 for E4
4C0b and its

reversed boundary flow E4
0C4b.

We treat E4
3C0e. We have already shown that the boundary index sum is either δ = 0

or δ = 2. Following Fig. 2, we assume without loss of generality that E34 is the internally

unstable equilibrium. Remark A1.3(i) implies that ϕ1(p) = 0 has precisely one solution in

(0, 1) and ϕ2(q) = 0 has zero or two solutions in (0, 1). Therefore, the number of intersection

points of ϕ1(p) and ϕ2(q) is zero or two and the number of internal equilibria is one or three.

If there are no intersection points, the central equilibrium is a sink if δ = 0 (because then, by

A1.3(iii), all four edge equilibria are externally unstable), and it is a saddle if δ = 2. If there

are two intersection points and δ = 2, the central equilibrium is a source (because all edge

equilibria are externally stable) and the other two internal equilibria are saddles. With two

intersection points, the case δ = 0 can be excluded as follows: As in Fig. 2, assume that E34

is the internally unstable equilibrium. Because the other three edge equilibria are internally

stable, we have the conditions d2 < −a2 < 0, d1 > a1 > 0, (a1 + d1)(a2 + d2) + 2a2e22 < 0,

and (a1 +d1)(a2 +d2) + 2a1e22 > 0 (see (A1.7), (A1.8) and statement (i) above). By (A1.9c)

or (A1.10a), for two intersection points also (a1 + d1) + e22q̃ < 0 needs to be satisfied. This

easily leads to a contradiction and proves statement (a) for E4
3C0e and its reversed flow E4

1C2e.

For E4
2C0c flows on the opposite edges are equivalent and therefore, the number of inter-

section points of ϕ1(p) = 0 and ϕ2(q) = 0 can only be zero or four. The latter was excluded

above. Therefore, the internal equilibrium is a sink or a source if δ = 0, and it is a saddle if

δ = 2. Since these cases can be realized, statement (a) is proved for E4
2C0c.

Finally, for E4
2C1s (which can only have δ = 1) there exists the central equilibrium (p̃, q̃)

and precisely one additional equilibrium because (A1.8) holds for i = 1 and i = 2. The
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central equilibrium can be a sink or a source, the other equilibrium is a saddle (this follows

easily from the eigenvalues at (p̃, q̃) and the fact that opposite edges have different flow

direction). This proves statement (a) of Theorem 7.1 for E4
2C1s.

Since all other cases have been excluded, we have proved that all possible equilibrium

structures are listed in Table 1. Statement (b) of Theorem 7.1 follows easily from Table 1.

Parameter combinations that yield all possible equilibrium structures are given in Table S3.

A1.4 Proof of Theorem 8.1

The statement about the possible values of δ was already proved before. Also the existence

of equilibrium structures with a number of equilibria not explicitly excluded by Theorem 8.1

is shown in section S1 of the SI. Figures S2 (panels 1,2,3), S4 (panels 1,2) and S4 (panels 5,6)

show (a). Figures S1 (panels 4,5,6) and S5 (panels 1,3,5) show (b). And for the existence

claims of (c), see Figures S1 (panels 5,6), S2 (panels 1,2) S2 (panels 2,3), S3 (panels 1,2), S3

(panels 2,3,4) and S3 (panels 4,5). What remains to be proved is that four or five internal

equilibria cannot occur for the boundary flows listed in statement (c).

As already stated in the main text, the quintic polynomial f(g(p))− p (3.7), which yields

all internal equilibria, factorizes into a quadratic and a cubic polynomial. Since we want to

apply Descartes’ rule of signs (which states that the number of positive roots of a polynomial

is either equal to the number of sign changes between consecutive nonzero coefficients which

are ordered by ascending variable exponent, or is less than it by an even number), we

transform these polynomials using u = p/(1 − p). Then the zeros p ∈ (0, 1) correspond to

the zeros u ∈ (0,∞).

For the cubic polynomial r(u) =
∑3

i=0 riu
i that yields the symmetric equilibria (i.e., those

satisfying p = q), we obtain

r0 = −(a+ d) , r1 = −3a− d− 2e22 , (A1.15a)

r2 = −3a+ d− 3e12 + 2e22 , r3 = −a+ d− e11 + e12 , (A1.15b)

and for quadratic polynomial s(u) =
∑2

i=0 siu
i that yields the pair of asymmetric equilibria,

we obtain

s0 = −4d2 − d(e12 + 2e22)− a(e12 − 2e22) , (A1.16a)

s1 = −8d2 − d(e11 − 4e12 + 12e22)− a(e11 − 2e12) + 2e22(e12 − 2e22) , (A1.16b)

s2 = −4d2 + d(e11 − 3e12 − 2e22)− a(e11 − 3e12 + 2e22) + e12(e12 − 2e22) . (A1.16c)

From symmetry it follows immediately that if only one zero of s(u) is positive, the resulting

equilibrium cannot be admissible. Therefore, to obtain a pair of admissible equilibria from

s(u) = 0, the coefficients s0 and s2 must have the same sign and the coefficient s1 must have

the opposite sign.
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We start with the boundary flows E4
4C0b (with δ = 2), E4

0C4b (with δ = 2), and E4
2C1s

(with δ = 1), for which the proof is simple and based on the observation that the external

eigenvalues λij at the edge equilibria Eij satisfy λ12 = λ13 = −s2r3 and λ24 = λ34 =

s0r0. We prove the claim for E4
4C0b with δ = 2; then the case E4

0C4b follows from flow

reversal, and the case E4
2C1s is analogous. Because δ = 2, sgn(λ̂12) = − sgn(λ̂34) has to hold,

whence sgn(s2r3) = sgn(s0r0) follows. In addition, admissibility and internal stability of the

equilibria E12 and E24 implies r0 < 0 and r3 > 0. Hence, s2 and s0 opposite signs. This rules

out equilibria off the diagonal p = q, whence the maximum number of internal equilibria is

three.

For the boundary flows E0
0C1s, E

0
0C2b, E2

2C0s, and E2
0C2s, the proofs are more technical and

different proofs are needed for each case.

First, consider the boundary flow E0
0C2b. Without loss of generality, we can assume

a + d = −1 and a < 0 in (6.1) with (8.1). Then the boundary flow E0
0C2b is realized if and

only if the inequalities d > −1
2

and 1 < e12 < e11−1−2d hold. The proof is by contradiction.

Therefore, assume that five internal equilibria exist. Then the signs of the coefficients of r(u)

have to change three times, where we already know that r0 = 1 > 0. The conditions r1 < 0

and r2 > 0 result in the additional inequalities d < −3
2

+ e22 and 3e12 < 3 + 4d + 2e22,

respectively. From the last together with d > −1
2

we conclude e22 > 1. Also the signs of

the coefficients of s(u) have to change, and both − + − and + − + are possible. We give

the proof for the case − + −. By combining s0 < 0, s1 > 0, and s2 < 0 with the above

inequalities, we arrive at

d > −1

2
and e22 > 1 , (A1.17a)

e12 < 2e22 + 4d(d+ e22) , (A1.17b)

3e12 < 3 + 4d+ 2e22 , (A1.17c)

2[e12 + (d+ e22)(4d− e12 + e22)] < e11 <
4d2 + 6de12 − (e12 − 3)e12 + 2(e12 − 1)e22

1 + 2d
,

(A1.17d)

where the inequalities in (A1.17d) are due to the conditions s1 > 0 and s2 < 0, and the

right inequality in (A1.17b) comes from s0 < 0. However, we have not invoked 1 < e12 <

e11− 1− 2d. Simple rearrangements shows that (A1.17d) is satisfied for some e11 if and only

if

(1 + 4d− e12 + 2e22)(−e12 + 2e22 + 4d(d+ e22)) < 0

holds. (A1.17b) implies that the second factor is positive. By multiplying the first factor

with three, we can apply (A1.17c) and find, using (A1.17a),

3 + 12d− 3e12 + 3e22 > 4(2d+ e22) > 4(−1 + 1) = 0 ,

which yields the desired contradiction.
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The proof for the sign sequence + − + for s0, s1, and s2 is very similar and left to the

reader.

Next, we study the boundary flow E2
2C0s. We can scale fitnesses such that a + d = 1. In

addition, we have a + d > 2a, which implies d > 1
2
. The flow on the edge p = 1 implies

e11 < 2d−1+e12 and e12 < −1. Together with the assumption of three sign changes of r(u),

we obtain the following conditions:

1

2
< d < −e22

2
, (A1.18a)

e22 < −1 , (A1.18b)

1

3
(−3 + 4d+ 2e22) < e12 < −1 , (A1.18c)

e11 < 2d− 1 + e12 . (A1.18d)

We will show that (A1.18) implies s0 > 0 and s2 < 0, whence the pair of asymmetric internal

equilibria never exists. Assume s0 < 0. Then

2e22 − 4d(d+ e22) < e12 < −1

holds, and 2e22 − 4d(d+ e22) < −1 together with (A1.18a) implies

−1 + 4d2

2(1− 2d)
< e22 < −2d ,

which cannot be satisfied if d > 1
2
. Hence, s0 > 0 must hold.

Now assume s2 > 0. This yields the left inequality in

4d2 + e12(6d− 3− e12 + 2e22)− 2e22

2d− 1
< e11 < 2d− 1 + e12 ,

and the right inequality is (A1.18d). Then the inequality between the left and the right term

can be rewritten as

(1 + e12)(1− 4d+ e12 − 2e22) > 0 ,

which is impossible because 1 + e12 < 0 by (A1.18b) and 1− 4d+ e12− 2e22 > 0 by (A1.18c).

This finishes the proof of the case E2
2C0s. Because E2

0C2s is the flow reversal of E2
2C0s, we

have also excluded five internal equilibria for this case.

Finally we show, again by contradiction, that four internal equilibria are impossible for

boundary flow class E0
0C1s. Here we scale the fitnesses such that a + d = −1, and we have

d > −1
2
.

If there are four internal equilibria, then since in this case r0 and r3 are both positive,

there are three possibilities for r(u) to have two sign changes. It is easily seen that +−−+
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is impossible. We give the proof only for +−++. This yields the following inequalities:

−1
2
< d < e22 −

3

2
, (A1.19a)

e12 < 1 < e22 , (A1.19b)

e11 < 1 + 2d+ e12 . (A1.19c)

Next we want to show that s0 < 0 and s1 < 0 if (A1.19) holds.

Assume s0 > 0. Using (A1.19a) we get −4d2+e12
2(1+2d)

> e22 > d + 3
2
. The outer inequality

together with (A1.19b) is equivalent to

8(1 + d)d+ 3 < e12 < 1 ,

where now the inequality between the left and the right term implies 2(1 + 2d)2 < 0, which

is a contradiction and therefore s0 < 0.

Now assume s1 > 0. Applying (A1.19c), we get

8d2 + 2e12 − 2de12 + 12de22 − 2e12e22 + 4e2
22 < e11 < 1 + 2d+ e12.

The inequality between the outer terms is equivalent to

(−1 + 2d+ 2e22)(1 + 4d− e12 + 2e22) < 0 .

By using (A1.19a) and subsequently (A1.19b) for both factors, we find for the first

−1 + 2d+ 2e22 > 2(−1 + e22) > 0,

and for the second

1 + 4d− e12 + 2e22 > −1− e12 + 2e22 < 1− e12 > 0.

Thus we have again a contradiction and know that there can be at most one sign change in

the polynomial s(u). Hence no pair of asymmetric equilibria is possible under (A1.19). The

proof for the case + +−+ is left to the reader. This finishes the proof for case E0
0C1s.

A1.5 Proofs for the symmetric viability model

Proof of Theorem 9.1

Statement (a) of the theorem follows immediately from the dynamics (9.3). To prove (b),

we need some preparation.

Let l 6= 0 and r1r2 6= 0. First, we compute the coordinates yi,j and xi,j of the potential

unsymmetric equilibria. These are given by the intersection points of the isoclines (9.4).

Since the central equilibrium (0, 0) exists always, we assume (x, y) 6= (0, 0). It follows
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immediately from (9.4) that then x 6= 0 and y 6= 0. Therefore, we can eliminate x and

obtain after a short calculation

m2 r1

r2

=
(
r1 + ly2

)2
. (A1.20)

Thus, (A1.20) can have real solutions only if sgn r2 = sgn r1. This proves statement (iii) of

Theorem 9.1.

From now on we assume sgn r2 = sgn r1. Taking square roots in (A1.20), we obtain

± |m|
√
r1

r2

= r1 + ly2 , (A1.21)

and define

y± =
−r1 ± |m|

√
r1
r2

l
. (A1.22)

If y± > 0, the corresponding square roots exist and yield the expressions yi,j in (9.5) of

Theorem 9.1. Substituting the expressions yi,j(9.5) into (9.4a) gives

x1,2 =

√
r2

r1

y1,2 and x3,4 = −
√
r2

r1

y3,4 . (A1.23)

The following lemma lists the conditions for admissibility of the internal equilibria.

Lemma A1.4. Define

hi = ri + l for i = 1, 2 (A1.24)

and

εi =
ri
rj
−
(
hi
m

)2

for i = 1, 2 and j 6= i . (A1.25)

If |r1| ≥ |r2|, Table A1 states the conditions under which each of y+ and y− gives rise to a

pair of internal equilibria. If |r1| < |r2|, an analogous table gives these conditions, in which

the roles of x and y are exchanged, and r1, h1, and ε1 are substituted by r2, h2, and ε2,

respectively.

Obviously, the coordinates of the equilibria are given by (9.5).

Proof. As shown above, the solutions are admissible only if sgn r2 = sgn r1, which we assume

henceforth. The conditions in each of the cells are determined quite straightforwardly. For

illustration, we prove the case r1 > 0 and l > 0, and leave the other cases to the reader.

Because r1 > 0 and l > 0, only y+ can give rise to equilibria. Because |r1| ≥ |r2|, the

resulting pair of equilibria is admissible if and only if 0 < y+ < 1; cf. (9.5). Because l > 0,

0 < y+ < 1 is equivalent to

0 < −r1 + |m|
√
r1

r2

< l . (A1.26)
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0 < y+ < 1 0 < y− < 1

r1 > 0 ∧ l > 0 ρ < 0 ∧ ε1 < 0 −

r1 < 0 ∧ l < 0 − ρ < 0 ∧ ε1 < 0

r1 > 0 > l (ρ > 0 ∧ h1 < 0) ∨ h1 < 0 ∧ ε1 < 0

(ρ > 0 ∧ h1 > 0 ∧ ε1 > 0)

r1 < 0 < l h1 > 0 ∧ ε1 > 0 (ρ > 0 ∧ h1 > 0) ∨
(ρ > 0 ∧ h1 < 0 ∧ ε1 > 0)

Table A1: Each cell lists the conditions for the validity of the inequalities on top under the
respective assumptions on r1 and l on the left. The symbols ∧ and ∨ mean ‘and’ and ‘or’.

Multiplication of the left inequality by
√

r2
r1

shows that the left inequality holds if and only

if ρ < 0. The right inequality is equivalent to

|m|
√
r1

r2

< r1 + l = h1 , (A1.27)

where h1 > 0. Squaring and rearranging shows that the inequality is equivalent to ε1 < 0.

Thus, we have proved the conditions in the first row of the table.

The statement about the case |r1| < |r2| follows immediately from the symmetry of x and

y in the dynamics (9.3) and the according symmetry of yi,j and xi,j.

Now we can finish the proof of Theorem 9.1. Statement (b)(i) follows immediately from

the first two rows of Table A1, and statement (b)(ii) follows from the third and forth row.

This finishes the proof.

Proof of Theorem 9.5

Before proving the theorem, we present a number of results that will be needed. We begin

by presenting the coordinates and eigenvalues of the SLP’s in (x, y)-coordinates:

E12 :

(
1,−m

h2

)
, E34 :

(
−1,

m

h2

)
, (A1.28a)

E24 :

(
m

h1

,−1

)
, E13 :

(
−m
h1

, 1

)
. (A1.28b)

The internal eigenvalues are

µ34 = µ12 =
h2

2 −m2

h2

, (A1.29a)

µ24 = µ13 =
h2

1 −m2

h1

, (A1.29b)
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and the external eigenvalues are

λ̂34 = λ̂12 =
r2

h2
2

− r1

m2
, (A1.30a)

λ̂24 = λ̂13 =
r1

h2
1

− r2

m2
. (A1.30b)

The following lemmas will help to keep the proof simple.

Lemma A1.5. (a) E34 and E12 are admissible if and only if
(
h2
m

)2
> 1.

(b) E24 and E13 are admissible if and only if
(
h1
m

)2
> 1.

These statements follow immediately from (A1.28).

Lemma A1.6. Let sgn r2 = sgn r1. Then

(a) λ̂34 = λ̂12 > 0 if and only if sgn ε2 = sgn r2.

(b) λ̂24 = λ̂13 > 0 if and only if sgn ε1 = sgn r2.

These statements follow easily from (A1.30) and the definition of εi (A1.25).

Lemma A1.7. Let sgn r2 = sgn r1 and r1 6= r2.

(a) If E24 and E13 are admissible and sgn λ̂24 = sgn λ̂13 = − sgn(r1 − r2), then sgn r2 =

sgn(r1 − r2).

(b) If E34 and E12 are admissible and sgn λ̂34 = sgn λ̂12 = sgn(r1 − r2), then

sgn r2 = − sgn(r1 − r2).

Proof. Let sgn(r1 − r2) = −1. Then r2 > r1 and the following implications hold:

sgn r1 > 0⇒ m2r1 − h2
1r2 < r1(m2 − h2

1) < 0⇔ λ̂24 = λ̂13 < 0 (A1.31)

and

sgn r2 < 0⇒ m2r2 − h2
2r1 > r2(m2 − h2

2) > 0⇔ λ̂34 = λ̂12 > 0 . (A1.32)

Here, we used that m2 − h2
1 < 0 (m2 − h2

1 < 0) if E24 and E13 (E34 and E12) are admissible

(Lemma A1.5). By reversing the inequalities and the implications in (A1.31) and (A1.32),

we get statements (a) and (b) for the case sgn(r1− r2) = −1. If sgn(r1− r2) = +1, a similar

argument applies.

These lemmas help us to prove the following statements.

Corollary A1.8. (a) For E4
4C0b with δ = 4 and ρ > 0, O is a source.

(b) For E4
4C0b with δ = 2 and ρ > 0, O is a source.
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Proof. Without loss of generality (cf. Lemma A1.4), we can assume |r1| ≥ |r2|. Because we

assume ρ > 0, the index of O is +1.

(a) Since δ = 4 is assumed, there must be four internal equilibria, in addition to O.

Therefore, Theorem 9.1 implies that sgn r1 = sgn r2 = − sgn l. To achieve δ = 4, we need

sgn λ̂34 = sgn λ̂12 = sgn λ̂24 = sgn λ̂13 = −1. Suppose r1 < r2 < 0. Then sgn(r1 − r2) = −1

and Lemma A1.7(b) informs us that sgn r2 = − sgn(r1− r2) = 1, a contradiction. Therefore,

l < 0 < r2 ≤ r1 and tr Jo = r1 + r2 > 0 (9.8b). Because ρ > 0, the central equilibrium is a

source.

(b) Assume O is a sink. Then r1 + r2 < 0. Because δ = 2 and the index of O is +1, there

must be at least two additional internal equilibria. Theorem 9.1 implies that sgn r1 = sgn r2,

whence sgn r1 = sgn r2 = −1 follows. Table A1 from Lemma A1.4 shows that l > 0 is

necessary for the existence of at least two additional internal equilibria. Because δ = 2 and

no corner equilibrium is saturated, we have sgn(λ̂13) = − sgn(λ̂12). Lemma A1.6 shows that

only λ̂12 > 0 is compatible with r1 < r2 < 0, because otherwise statement (a) yields ε2 > 0,

which implies r2 <
(
m
h1

)2
r1 < r1, a contradiction (here, the second inequality follows from

by Lemma A1.5(b)). From the boundary flow itself, we get the inequalities

r2 + l +m < 0 > r2 + l −m, (A1.33a)

h1, h2 < 0 . (A1.33b)

This yields

0 > −l > r2 > r1. (A1.34)

We define ω(r1) = h2
1m

2λ̂13 = r1m
2−r2(r1+l)2. Then ω(0) = −r2l

2 > 0, ω(−l) = −lm2 < 0,

and ω(r2) = −r2(r2 + l−m)(r2 + l+m) > 0 by (A1.33a). Since ω is quadratic in r1 with the

positive leading coefficient −r2, it follows that ω(r1) > 0 for r1 < r2. This yields the desired

contradiction because sgn(ω(r1)) = sgn(λ̂13) < 0.

Now we are able to prove Theorem 9.5.

Proof. We prove the statements about the internal equilibrium structures in Table 2 column

by column. Table S1 shows that the boundary flows in Table 2 marked by ‘−’ cannot by

realized for the given δ. Therefore, it is sufficient to validate the cells with non-trivial entries

and the one marked by ‘×’. For each of these cells we show that the given equilibrium

structures are the only possible. Existence follows from the corresponding figures in Section

S1 of the SI.

Case 1, ρ < 0. Lemma A1.4 and Table A1 show that at most one pair of unsymmetric

internal equilibria can exist. Thus, the number of internal equilibria is one or three. Lemma

9.2 ensures that O is a saddle with index −1.
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δ = 0. To achieve an index sum of +1 from the internal equilibria, one pair of unsym-

metric equilibria with index +1 must exist. Three internal equilibria can indeed be realized

for the four indicated boundary flows. The two unsymmetric equilibria must be sinks for

the boundary flows E2
2C0c and E4

4C0b, because otherwise no stable equilibrium would exist.

The two flow reversal cases follow immediately.

It remains to prove that for the boundary-flow class E4
2C0c two unsymmetric equilibria

cannot exist. Unsymmetric equilibria exist only if sgn r1 = sgn r2 (Theorem 9.1). Because

for one pair of edge equilibria the internal eigenvalues are negative and for the other positive,

and because
(
hi
m

)2
> 1 by Lemma A1.5, equation (A1.29) implies sgnh1 6= sgnh2. Therefore,

r1 6= r2. Without loss of generality we assume |r1| > |r2|. If r1 > r2 > 0, then h1 = r1 + l >

r2 + l = h2 and h1 > 0 > h2. This implies r1 > 0 > l. Because ρ < 0, Table A1 shows that

two unsymmetric equilibria could exist only if h1 < 0, which is impossible. If r1 < r2 < 0,

then l > 0 and h1 < 0 follow. Again, Table A1 shows that two unsymmetric equilibria

cannot exist. Therefore, this boundary flow cannot be realized if ρ < 0 and δ = 0.

δ = 2. Three internal equilibria cannot be realized because at most one pair of unsym-

metric equilibria can exist, and each of these equilibria has the same index (see Section 9

below eq. 9.3). Thus, a total index sum of 1 can be realized only if O is the unique internal

equilibrium.

δ = 4. Here, one pair of unsymmetric equilibria, each with index −1, must exist to

achieve a total index sum of 1.

Case 2, ρ > 0. Lemma 9.2 shows that O has index 1.

δ = 4. Four saddles need to exist in the interior to realize this case. Corollary A1.8

informs us that O is a source.

δ = 2. The sum of the indices of the unsymmetric equilibria must be −2. This can be

realized only if there is one pair of unsymmetric equilibria, because the two members of each

pair have the same index. Corollary A1.8 informs us that O is a source for E4
4C0b, whence O

is a sink in the flow-reversal case E4
0C4b. In the other four cases, O can be a sink or a source.

δ = 0. We already know that O has index is 1. For E2
2C0c and E4

4C0b it must be a sink

because otherwise no stable equilibrium would exist. This also settles the two flow reversal

cases E2
0C2c and E4

0C4b. For E4
2C0c, O can be a sink or a source.

If more than one internal equilibrium exists, then sgn r1 = sgn r2 by Theorem 9.1. With-

out loss of generality (Lemma A1.4), we assume |r1| ≥ |r2|. Table A1 shows that because

ρ > 0, we must have sgn r1 = sgn r2 = − sgn l.

Assume three internal equilibria. Because O has index 1, the indices of the two unsym-

metric equilibria must be of different sign, which is impossible in the symmetric viability

model.

Assume five internal equilibria. Then Theorem 9.1 implies sgn r1 = sgn r2 = − sgn l.
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Table A1 shows that this implies sgn ε1 = sgnh1 = − sgn r1. By Lemma A1.6, this implies

λ̂24 = λ̂13 < 0.

We need to treat the boundary-flows classes separately. Because of the flow-reversal cases,

it is sufficient to study E2
2C0c, E

4
4C0b, and E4

2C0c. The boundary flow E4
4C0b can have δ = 0

only if no edge equilibrium is saturated, i.e., if all external eigenvalues are positive. This

contradicts λ̂24 = λ̂13 < 0.

For E4
2C0c, δ = 0 can be realized also if there are four saturated edge equilibria. Lemma

A1.6 implies sgn ε1 = sgn ε2 = − sgn r2 = − sgn r1. Because one pair of internal eigenvalues

is negative and the other positive, and
(
hi
m

)2
> 1 by Lemma A1.5, equation (A1.29) implies

sgnh2 = − sgnh1. Assume r1 ≥ r2 > 0. Then h1 = r1 + l > r2 + l = h2 and Table A1

shows that five internal equilibria require h1 < 0. Therefore, h2 < 0, which contradicts

sgnh2 = − sgnh1. An analogous argument applies if r1 ≤ r2 < 0.

It remains to exclude five internal equilibria for E2
2C0c. Assume that E12 and E34 are

admissible. Then they are internally stable. From the fitness scheme (9.1) we infer r1 > r2

and h2 < − |m| ≤ 0. Because δ = 0, these edge equilibria must be externally unstable,

whence sgn ε2 = − sgn r2 follows from Lemma A1.6. Lemma A1.7(b) shows that r2 < 0,

whence r2 < 0 < l and ε2 > 0 follow. The analog of Table A1 for the case |r2| > |r1| shows

that five equilibria require h2 > 0, a contradiction.
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S1 Phase portraits

The figures in this section display, up to flow reversal, phase portraits for 75 + 25 possible

extended boundary flows (see the explanation in Section 4.3). We show (at least) one

representative of a flow-reversal pair from each of the 25 equivalence classes (with respect

to topology and symmetry, as described in the first paragraphs of Section 4). For the 75

flow-reversal pairs we show only phase portraits yielding the upper type in Figure 2. For

several extended boundary flows, we present more than one phase portrait. We do this, in

particular, for cases where three, four, or five internal equilibria are compatible with a given

extended boundary-flow class. Black dots represent sinks, black circles sources, and green

dots (grey in black-white printing) are saddles.

Below each phase portrait, we provide the fitness matrix generating it. We found most

matrices by using the built-in FindInstance function of Mathematica, which we applied to

the set of inequalities that the parameters have to satisfy to yield the desired type of phase

portraits. Entries of the computed matrices are usually rational numbers, often ratios of large

integers. In most cases, we could find matrices in a neighborhood with integer entries that

yield the same type of phase portrait, which were then used. In addition, we tried to choose

the matrices such that the resulting phase portraits display the main features of the given

external boundary flow as clearly as possible. In a few cases, no visually entirely satisfactory

result could be achieved. We determined position and stability of the equilibria by numerical

solution of the system resulting from a given matrix. We produced the graphs by combining

the StreamPlot function for the orbits with the ListPlot function for the equilibria. Both are

built-in functions of Mathematica.

Concerning robustness, the following qualification needs to be made. Some phase portraits

of the symmetry classes b, s and e are robust only with respect to their symmetry property

because they were generated by a matrix satisfying the respective symmetry condition. They

may have saddle connections in the interior. In most of these cases, however, breaking the

symmetry yields phase portraits that are still members of the same class.

Finally, we note that many phase portraits were generated by matrices that do not satisfy

the symmetry assumption x of their boundary-flow class EnmCkx. The reason is that although

there exists a matrix with symmetry property x generating a phase portrait of the given

boundary-flow class and given δ, there also exist topologically non-equivalent phase portraits

that belong to the same boundary-flow class and yield the same δ, but do not satisfy the

symmetry property as such, i.e., they yield only a topologically equivalent boundary flow.
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Figure S1: δ = 0
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Figure S1: δ = 0
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Figure S1: δ = 0
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Figure S1: δ = 0

Panel 6 is the example given by Moran, which exhibits a saddle connection due to symmetry.
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Figure S1: δ = 0
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1
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Figure S2: δ = 1

Panels 1 and 2 show different phase portraits for the same equilibrium structure. So do
Panels 3 and 4.
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Figure S2: δ = 1
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Figure S2: δ = 1

87



Figure S3: δ = 2
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Figure S3: δ = 2

Panel 6 of Fig. S3 and Panel 1 have the same extended boundary flow and the same number
of equilibria, but different stability of the central equilibrium. The same holds true for Panels
3 and 4 (these differ only in the sign of m14).
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Figure S3: δ = 2

Panels 2 and 3 show different phase portraits for the same equilibrium structure. So do
panels 4 and 5.
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Figure S3: δ = 2

Panel 6 of Fig. S3 and Panel 1 show different phase portraits for the same equilibrium
structure. There is a saddle connection in Panel 5 due to the equality of the outer columns
of the fitness matrix (axisymmetry).
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Figure S3: δ = 2

Panels 2 and 3 show different phase portraits for the same equilibrium structure. So do
panels 5 and 6.
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Figure S3: δ = 2

Panels 5 and 6 show different phase portraits for the same equilibrium structure.
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Figure S3: δ = 2

In this figure, each row of panels shows a pair with the same equilibrium structure but
different phase portraits.
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Figure S3: δ = 2

Panel 5 shows a saddle connection, due to symmetry.
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Figure S3: δ = 2

Panels 1 and 4 show a saddle connection, due to equality of the outer columns (axisymmetry).
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Figure S3: δ = 2
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Figure S4: δ = 3

Panels 4 and 5 show different phase portraits for the same equilibrium structure.
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Figure S4: δ = 3

There is a saddle connection in Panel 5 due to symmetry.
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Figure S5: δ = 4

The first four panels show the double saddle connection and three different phase portraits
that can emerge from it. The last panel shows the only phase portrait with five internal
equilibria that differs from Moran’s example (cf. Fig. S1 Panel 6). It is generated by a
matrix from the symmetry class b.
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S2 Supplementary Information: Tables

S2.1 List of all potential extended boundary flows

E0
0C1s: 1

E0
0C1a: 1

E0
0C2b: 2

E1
1C0e, E

1
0C1e: 0, 1

E1
1C0a, E

1
0C1a: 0, 1

E1
1C1e, E

1
0C2e: 1, 2

E1
1C1a, E

1
0C2a: 1, 2

E2
2C0c, E

2
0C2c: 0, 1, 2

E2
2C0s, E

2
0C2s: 0, 1, 2

E2
2C0e, E

2
0C2e: 0, 1(2), 2

E2
2C0a, E

2
0C2a: 0, 1(2), 2

E2
2C1s, E

2
0C3s: 1, 2, 3

E2
1C1a, E

2
1C1a

′: 0, 1(2), 2
E2

1C0e: -1*, 0(2†), 1
E2

1C0a: -1*, 0(2†), 1
E2

1C1a
′′: 0, 1(2†), 2

E2
1C1a

′′′: 0, 1(2†), 2
E2

1C2e: 1, 2(2†), 3
E3

3C0e, E
3
0C3e: 0, 1(3), 2(3), 3

E3
2C0e, E

3
1C1e: -1*, 0(1*+2), 1(3), 2

E3
2C0a, E

3
1C1a: -1◦, 0(3), 1(3), 2

E3
2C1a, E

3
1C2a: 0, 1(3), 2(3), 3

E4
4C0b, E

4
0C4b: 0, 1, 2(2), 3, 4

E4
3C0e, E

4
1C2e: -1◦, 0(3), 1(4), 2(3), 3

E4
2C0c: -2*, -1(2†,*), 0(1*+2†), 1(2†), 2

E4
2C1s: -1◦, 0(2†), 1(2+2†), 2(2†), 3

Table S1: For each boundary-flow class the potential values of δ are given. The number
in parentheses gives the number of different extended boundary flows resulting in the same
δ. For the flow-reversal pairs, the given numbers apply to each member of the pair. A
“*” indicates an extended boundary flow whose existence was disproved; a “◦” indicates
an extended boundary flow whose non-existence is conjectured. A “†” indicates a pair of
extended boundary flows, where the number of saturated edge equilibria is different, but, up
to symmetry operations, they are in fact the flow reversals of each other (cf. Fig. 3).
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S2.2 List of all extended boundary flows and their occurrence in
the special cases

E0
0C1s: 1a,h,s

E0
0C1a: 1h

E0
0C2b: 2h,b

E1
1C0e, E

1
0C1e: 0, 1l

E1
1C0a, E

1
0C1a: 0, 1

E1
1C1e, E

1
0C2e: 1l, 2

E1
1C1a, E

1
0C2a: 1l, 2l

E2
2C0c, E

2
0C2c: 0l,c, 1l,m, 2l,c

E2
2C0s, E

2
0C2s: 0l,s, 1l, 2l,s

E2
2C0e, E

2
0C2e: 0, 1(1m+1a), 2

E2
2C0a, E

2
0C2a: 0, 1(2), 2

E2
2C1s, E

2
0C3s: 1l,s, 2, 3s

E2
1C1a, E

2
1C1a

′: 0, 1(1+1l), 2l

E2
1C0e: 0, 1m

E2
1C0a: 0, 1

E2
1C1a

′′: 0, 1, 2
E2

1C1a
′′′: 0, 1, 2m

E2
1C2e: 1m, 2, 3m

E3
3C0e, E

3
0C3e: 0l, 1(2+1l), 2(3), 3

E3
2C0e, E

3
1C1e: 0(2), 1(2+1l), 2l

E3
2C0a, E

3
1C1a: 0(3), 1(3), 2

E3
2C1a, E

3
1C2a: 0, 1(3), 2(3), 3

E4
4C0b, E

4
0C4b: 0ou,a,b, 1, 2(1s+1m,c), 3, 4m,b

E4
3C0e, E

4
1C2e: 0(1+2m), 1(4), 2(1+2m), 3

E4
2C0c: 0m,c, 1, 2ou,a,c

E4
2C1s: 0, 1(2+1m,s), 2, 3s

Table S2: For each boundary-flow class the values of δ are given. The number in paren-
theses gives the number of different extended boundary flows resulting in the same δ. The
superscripts stand for assumptions on the fitness parameters, under which the indicated
extended boundary flow can occur: ou, l, a, h, m, s, c and b indicate marginal over- or
underdominance (Sect. 5), linear isoclines (Sect. 6), additive fitnesses (Sect. 6.1), the hap-
loid model (Sect. 6.2), multilinear epistasis model (Sect. 7), the symmetric model (Sect.
8), the centrosymmetric model (Sect. 9) and bisymmetric fitness matrices, respectively. A
superscript a or h implies that this extended boundary flow can be generated by both the
model with linear isoclines and that with multilinear epistasis. A superscript b implies that
this extended boundary flow can be generated by both the symmetric and centrosymmetric
model. Therefore, for the first case, the superscripts l and m, and for the second case, the
superscripts s and c, are omitted.
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S2.3 List of parameter combinations for Theorem 7.1

Boundary δ = 0 δ = 1 δ = 2 δ = 3 δ = 4

flow

E0
0C1s − (1, 2, 0, 0,−2

5
) − − −

E0
0C1a − (3, 2, 0,−1, 5

8
) − − −

E0
0C2b − − (1, 1, 0, 0,−1)† − −

E2
2C0c − (2, 1, 4, 0,−2) − − −

E2
2C0e − (4, 3,−2, 4, 0), − − −

(1, 1, 1
4
,−9

5
)

E2
1C0e − (3, 4,−4, 2, 7

8
) − − −

E2
1C1a

′′′ − − (3, 2, 4,−1,−2) − −

E2
1C2e − (3, 6, 4,−5,−1) − (6, 9, 25,−17

2
,−1) −

E4
4C0b (0, 0, 1, 1, 0)† − (0, 0, 1, 5,−6)† − (0, 0, 1, 1,−3)†

E4
3C0e (2, 1, 4,−4, 8) − (1, 2, 3, 5,−10) or − −

(1, 2, 3, 5,−11)

E4
2C0c (0, 0, 1,−5, 11)∗,† − (0, 0, 1,−1, 0)† − −

E4
2C1s − (1, 2,−2, 4, 4)∗ − − −

Table S3: Parameter combinations yielding the equilibrium structures stated in Theorem 7.1.
The table has the same structure as Table 1, except that only one of a pair of flow-reversal
cases is listed. The numbers in parentheses are (a1, a2, d1, d2, e22). The other parameters can
be inferred from (7.2). An asterisk, ∗, indicates that by reversing the signs of all parameters,
the second possible equilibrium structure listed in Table 1 is obtained, i.e., the one with a
source instead of a sink. A dagger, †, indicates that this parameter combination is consistent
with the symmetric viability model, (9.1).
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Chapter II

Loss of genetic variation in the
two-locus multiallelic haploid model

Martin Pontz and Marcus W. Feldman



Abstract

In the evolutionary biology literature, it is generally assumed that in deterministic haploid

selection models, in the absence of variation-generating mechanisms such as mutation, no

polymorphic equilibrium can be stable. However, results corroborating this claim are scarce

and almost always depend upon additional assumptions. Using ideas from game theory, we

establish a condition on the fitness parameters of haplotypes formed by two loci such that a

monomorphism is a global attractor. Further, we show that no isolated equilibrium exists,

at which an unequal number of alleles from two loci is present. Under the assumption of

convergence of trajectories to equilirium points, we settle the two-locus three-allele case for

a fitness scheme formally equivalent to the classical symmetric viability model.

Key words: selection, recombination, haploid population, unstable equilibria, genetic vari-

ation, global stability

1 Introduction

Novak and Barton (2017) raise an important question for theoretical population genetics:

“When does frequency-independent selection maintain genetic variation?” For frequency-

independent selection acting on one-locus diploid genotypes, conditions for existence and

stability of polymorphisms are well established, (e.g., Karlin, 1984). Far less is known about

the dynamics under frequency-independent epistatic selection on two or more diploid loci

with recombination, although a few special selection regimes have been rigorously analyzed

(see e.g., Feldman and Karlin, 1970; Karlin, 1978; Karlin and Avni, 1981; Nagylaki, 1989;

Bürger, 2000; Pontz et al., 2018).

In stating that “Mathematically precise arguments for the erosion of genetic variation under

constant frequency-independent selection are scarce”, Novak and Barton focused on evolu-

tion of haploid populations. Feldman (1971) was one of the first to rigorously analyze the

existence and stability of polymorphism in a two-locus, two-allele haploid system with a

simplified constant frequency-independent selection scheme. He showed that if a polymor-

phism exists, it is unique and unstable. Rutschman (1994) generalized the results of Feldman

(1971) and showed global convergence to fixation of a single haplotype for all fitness configu-

rations that do not allow for an internal equilibrium. This last part of the full picture in the

haploid two-locus two-allele model was provided by Bank et al. (2012). They showed that

for the fitness regime not covered by Rutschman, a fully polymorphic equilibrium exists but

is always unstable.

Analysis of multi-locus, multi-allele haploid models with constant frequency-independent
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selection has been achieved in special cases. Kirzhner and Lyubich (1997) proved that fixa-

tion on a single haplotype occurs under strong linkage (i.e., sufficiently small recombination)

with epistasis, and with arbitrary linkage but additive allelic contributions to fitness. Novak

and Barton (2017) studied the same multi-locus, multi-allele system but assumed linkage

equilibrium throughout the dynamics, which entailed that selection was very weak. All of

these analyses (and that of Rutschman) identified a Lyapunov function that facilitated the

proof of convergence to equilibria where genetic variation was lost.

Thus, besides the case of additive fitnesses (and the trivial one-locus case), only the two-locus,

two-allele case has been resolved for intermediate values of recombination and selection.

Here, we consider a well-mixed haploid population with constant selection on two loci, each

with an arbitrary number of alleles. Our fitness scheme is general without any restriction

on the epistatic interaction between alleles. For convenience, the dynamics are stated in

continuous time. First, we apply a game-theoretic method used for a migration-selection

problem by Hofbauer and Su (2016) to show that if one allele dominates all the others from

the same locus, then this allele becomes fixed. An allele dominating another here means

that the fitness of a haplotype containing the dominating allele at one locus is greater than

the fitness of a haplotype containing any other allele at that locus for every choice of allele

at the other locus.

Further, we state and prove that no isolated equilibrium exists if the numbers of contributing

alleles from the two loci are unequal. This is done by finding a system of linear equations,

whose solution corresponds to an internal equilibrium. For unequal numbers of alleles at the

two loci, this system is overdetermined and thus, by basic linear algebra, has, in general,

no solution. We also use the above-mentioned system of linear equations to give a different

proof of the result by Bank et al. (2012). Finally, we show that there is a unique unstable

polymorphic equilibrium in the two-locus three-alleles model with centrosymmetric fitnesses.

2 Model

In a two-locus haploid model, we assume that at one locus the alleles are A1, ..., Am, while

at the other locus the alleles are B1, ..., Bn. Let xij and sij be the frequency and the fit-

ness, respectively, of haplotype AiBj and define the fitness matrix S = (sij)m×n. In the

following, we will mainly use the vector x, which is defined as the vector of all xij, i.e.,

x = (x11, . . . , x1n, x21, . . . , xm1, . . . , xmn)T . Following Nagylaki (1992, pp. 189–195) and

Novak and Barton (2017), we can write the change in frequency over time, ẋij =
dxij
dt

, as

ẋij = r(piqj − xij) + xij(sij − s̄), (2.1)

where s̄ =
∑

ij sijxij is the mean fitness. The expressions pi =
∑n

j=1 xij and qj =
∑m

i=1 xij

are the marginal frequencies of the alleles. As always, the sum of all haplotype frequencies
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is one,
∑

ij xij = 1. The quantities piqj − xij are measures of linkage disequilibrium (LD),

and r > 0 denotes the recombination rate.

We investigate stability properties of the monomorphic equilibria and existence and stability

properties of polymorphic equilibria. At equilibrium, the coordinates are denoted by a ˆ and

satisfy

0 = r(p̂iq̂j − x̂ij) + x̂ij(sij − ˆ̄s) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. (2.2)

These are mn quadratic equations in mn variables, from which we obtain∑
j

x̂ij(sij − s̄) =0 for i = 1, . . . ,m (2.3a)

and ∑
i

x̂ij(sij − s̄) =0 for j = 1, . . . , n. (2.3b)

The state space of (2.1) is the mn−dimensional simplex ∆mn as defined by

∆mn = {x ∈ Rmn : xij ≥ 0,
∑
ij

xij = 1}. (2.4)

Remark 2.1. System (2.1) is invariant with respect to adding a constant c to S. If wij =

sij + c, then w̄ = c + s̄ and thus wij − w̄ = sij − s̄ for every pair (i, j). It will be especially

useful to take c = −ˆ̄s, where ˆ̄s denotes mean fitness at a given equilibrium. At the same

equilibrium in the scaled fitness scheme, the scaled mean fitness is ˆ̄w = ˆ̄s− ˆ̄s = 0.

3 Results

3.1 Stability of monomorphic equilibria

First, we determine the conditions under which monomorphisms are stable, which in turn,

are used to give an upper bound for the number of stable hyperbolic monomorphic equilibria.

It is easy to see that each monomorphism is an equilibrium for (2.1).

To determine the local stability of equilibria, we compute the Jacobian J of ẋ, given by (2.1).

For every pair (i, j) the following hold:

∂ẋij
∂xij

= r(pi + qj − 1) + sij(1− xij)− s̄, (3.1a)

∂ẋij
∂xil

= rqj − xijsil if l 6= j, (3.1b)

∂ẋij
∂xkj

= rpi − xijskj if k 6= i, (3.1c)

∂ẋij
∂xkl

= −xijskl if l 6= j and k 6= i. (3.1d)
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If we fix (u, v) and sum over the corresponding column of J (by definition, each entry within

a column of the Jacobian has the same denominator), we get:∑
i,j

∂ẋij
∂xuv

=
∂ẋuv
∂xuv

+
∑
i 6=u

∂ẋiv
∂xuv

+
∑
j 6=v

∂ẋuj
∂xuv

+
∑

i 6=u, j 6=v

∂ẋij
∂xuv

=r(pu + qv − 1) + suv(1− xuv)− s̄+
∑
i 6=u

(rpi − xivsuv)

+
∑
j 6=v

(rqj − xujsuv)−
∑

i 6=u, j 6=v

xijsuv (3.2)

=r(
∑
i

pi +
∑
j

qj − 1) + suv(1−
∑
ij

xij)− s̄

=r − s̄.

Since (3.2) holds for every column of J , we conclude that (1, . . . , 1) is a left eigenvector of J

with eigenvalue r − s̄. Because this eigenvector is normal to the simplex, the corresponding

eigenvalue carries no information about the stability of an equilibrium.

Keeping this in mind, we can compute the Jacobian at the monomorphism where x11 = 1.

At this equilibrium, ˆ̄s = s11. Applying this to (3.1a) yields ∂ẋ11
∂x11

= r − ˆ̄s.

The other diagonal entries are given by

∂ẋ1j

∂x1j

=s1j − s11 if j 6= 1,
∂ẋi1
∂xi1

= si1 − s11 if i 6= 1, (3.3a)

and

∂ẋij
∂xij

= −r + sij − s11 if i 6= 1 and j 6= 1. (3.3b)

The remaining non-zero entries are given by:

∂ẋ1j

∂xij
= r if i 6= 1 and j 6= 1,

∂ẋi1
∂xij

= r if i 6= 1 and j 6= 1, (3.4a)

∂ẋ11

∂x1j

= r − s1j if j 6= 1,
∂ẋ11

∂xi1
= r − si1 if i 6= 1, (3.4b)

and

∂ẋ11

∂xij
= −sij if i 6= 1 and j 6= 1. (3.4c)

All other entries are zero.

Recalling the lexicographical order of the double indices in the vector x, inspection of the

non-zero entries shows that J |x11=1 is an upper right triangular matrix and therefore, the

eigenvalues are the diagonal entries given by (3.3).

108



We can, in general, relabel alleles and loci, such that the Jacobian of any monomorphism

is an upper right triangular matrix. This means that for the monomorphism Ai0Bj0 , the

mn− 1 eigenvalues that determine stability are given by

si0j − si0j0 if j 6= j0, sij0 − si0j0 if i 6= i0, (3.5a)

and

− r + sij − si0j0 if i 6= i0 and j 6= j0. (3.5b)

However, for certain choices of the fitness values, some of the monomorphisms are not isolated

and have an eigenvalue equal to zero as the following result shows.

Lemma 3.1. Every point on the edge connecting Ai0Bk1 with Ai0Bk2, given by xi0k1 +xi0k2 =

1, is an equilibrium if and only if si0k1 = si0k2.

Proof. On the edge connecting Ai0Bk1 with Ai0Bk2 we have xi0k1 + xi0k2 = 1 and xij = 0

for all i and j that do not form the pairs (i0k1) or (i0k2). Hence, piqj = 0 and thus, after

inserting this into (2.1), we have ẋij = 0 if i 6= i0 and j 6= k1, k2. Therefore, the only

equations of (2.1) with non-zero right-hand side are

ẋi0k1 = r((xi0k1 + xi0k2)xi0k1 − xi0k1)− xi0k1(si0k1 − si0k1xi0k1 − si0k2xi0k2)

= −xi0k1(si0k1 − si0k2)(1− xi0k1) = −ẋi0k2 .

This is zero for all 0 ≤ xi0k1 ≤ 1 if and only if si0k1 = si0k2 .

Remark 3.2. An analoguos result holds for the edge connecting Ak1Bj0 with Ak2Bj0

To avoid the complications of degenerate cases in the remainder of the text, we will often

invoke the following

Assumption A. The entries within each row of S are pairwise different, and so are the

entries within each column.

This means that for all pairs k1 6= k2, we have sik1 6= sik2 for all i and sk1j 6= sk2j for all j. In

other words, no two fitness values of haplotypes that share an allele are the same. However,

Assumption A does not imply that all fitness values are pairwise different. Furthermore,

it does not imply that all monomorphisms are hyperbolic, since there are still at most
mn(m−1)(n−1)

2
different values of r at which the eigenvalue given by (3.5b) is zero for at

least one of the mn monomorphisms. Nevertheless, Assumption A entails a fairly simple

classification of locally asymptotically stable monomorphisms.

Proposition 3.3. Under Assumption A, the monomorphism Ai0Bj0 is locally asymptotically

stable if and only if (i) si0j < si0j0 holds for all j 6= j0; (ii) sij0 < si0j0 holds for all i 6= i0;

and (iii) r > maxi,j(sij)− si0j0.
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Proof. Under Assumption A and with r > 0, the eigenvalues of the monomorphism Ai0Bj0 ,

as given by (3.5), are negative if and only if si0j0 is strictly greater than all other values in

row i0 and in column j0 and r > maxi,j(sij)− si0j0 holds.

This means that every potentially stable monomorphism can be identified by examining the

fitness matrix S. Its corresponding haplotype fitness si0j0 has to be maximal in both its row

i0 and column j0. This insight leads to the following result about the possible numbers of

locally asymptotically stable monomorphisms.

Corollary 3.4. Under Assumption A, in a system with n alleles present at one locus and

m at the other, there are between one and min(m,n) locally asymptotically stable monomor-

phisms.

Proof. By Proposition 3.3, the monomorphism corresponding to the largest entry of the

fitness matrix is always locally asymptotically stable because r > 0.

Let m ≤ n and let m be the number of rows of the fitness matrix. Assumption A implies that

each row has a unique maximum. There are exactly m such maxima. If each of these is also

the maximum in its respective column then the corresponding monomorphisms are locally

asymptotically stable for sufficiently large r by Theorem 3.3. There cannot be more.

Corollary 3.5. Suppose Assumption A holds and let si0j0 = maxi,j(sij). Then for every

r > 0 the monomorphism Ai0Bj0 is the only locally asymptotically stable monomorphism if

and only if for all pairs (k, l) 6= (i0, j0) we have skl < max (maxi(sil),maxj(skj)).

Proof. (Necessity) For a proof by contradiction, suppose there is a monomorphism AkBl

with k 6= i0 and l 6= j0 such that skl = max (maxi(sil),maxj(skj)), which implies maxj skj =

skl = maxi sil. Then r0 = si0j0 − skl ≥ 0 and (3.5) and Assumption A imply that AkBl

is locally asymptotically stable for r > r0. This contradicts the assumption that for every

r > 0, Ai0Bj0 is the only stable monomorphism.

(Sufficiency) Assume that skl < max (maxi(sil),maxj(skj)) for each pair (k, l) 6= (i0, j0).

Then Proposition 3.3 entails that AkBl is unstable for every r > 0. However, by Corollary 3.4

there is at least one locally asymptotically stable monomorphism, which has to be Ai0Bj0 .

If we assume that genetic variation is never maintained in a haploid population under se-

lection and recombination, then the monomorphism described in Corollary 3.5 would be

the natural candidate for a global attractor. However, no proof has been offered that ver-

ifies this, so it remains a conjecture in general. Under the assumption of tight linkage,

the monomorphism with the highest fitness is globally asymptotically stable (Kirzhner and

Lyubich, 1997).
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3.2 Dominating alleles

In the following, we apply ideas from game theory, in particular from a paper by Hofbauer

and Su (2016) about dominating strategies, to alleles. For a special class of fitness schemes,

this allows us to prove global stability of a monomorphism.

Theorem 3.6. If there exist alleles Ai0 and Ai1 such that si0j > si1j holds for every j, then

pi1 → 0.

Proof. Without loss of generality, suppose that s1j > s2j holds for all j. We show that the

minimal quotient Q(t) = x1l(t)
x2l(t)

= minj(
x1j(t)

x2j(t)
) is increasing along trajectories in t. First,

note that the subscript l = l(t) can assume different values in {1, . . . , m} at different times.

Further, if p1, p2 > 0, then for every given t

x1l

x2l

=
x1lp2

x2lp2

=
1

p2

∑
j

x1lx2j

x2l

≤ 1

p2

∑
j

x1jx2j

x2j

=
1

p2

∑
j

x1j =
p1

p2

(3.6)

holds, which is equivalent to

p1x2l − p2x1l ≥ 0. (3.7)

Then,

Q̇ =
1

x2
2l

(x2l [r(p1ql − x1l) + x1l(s1l − s̄)]− x1l [r(p2ql − x2l) + x2l(s2l − s̄)]) (3.8a)

=
1

x2
2l

(rql(p1x2l − p2x1l) + x1lx2l(s1l − s2l)) ≥ Q(s1l − s2l) > 0. (3.8b)

Define δ = minl(s1l − s2l) > 0. Then (3.8) implies

Q̇ ≥ Qδ (3.9)

and subsequently

Q(t) ≥ Q(0)eδt →∞ (3.10)

as t→∞.

This implies that
x1j
x2j

goes to infinity as t → ∞ for all j. Since the numerator is bounded,

x2j → 0 for all j and thus p2 → 0 as t→∞.

Remark 3.7. An analoguos theorem holds for the other locus.

This can be interpreted such that allele Ai0 dominates Ai1 , since for every background allele

Bj the haplotype containing allele Ai0 is fitter than that containing Ai1 . Almost intuitively,

this leads to the loss of Ai1 . Ultimately, if Ai0 dominates all other alleles at the same locus,

these should all go extinct. This is formalized in the following

Theorem 3.8. Suppose si0j0 > sij for all (i, j) 6= (i0, j0). If si0j > sij holds for all i 6= i0

and all j, then the monomorphism Ai0Bj0 is globally asymptotically stable.
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Proof. For each i 6= i0 we apply Theorem 3.6 and infer that allele Ai0 becomes fixed in the

population. Since si0j0 > sij for all (i, j) 6= (i0, j0) implies, in particular, that si0j0 > si0j for

all j 6= j0, the monomorphism Ai0j0 must be the only asymptotically stable monomorphism.

3.3 Polymorphic equilibria

We now study equilibria where at least three alleles are involved.

System (2.1) with state space ∆mn, where m < n, can always be imbedded in the system

with state space ∆nn where both loci have the same number of alleles. However, it simplifies

derivations if we think of the equilibria in subsystems as being fully polymorphic.

Thus, from now on we are mainly interested in the existence of fully polymorphic equilibria,

i.e., equilibria at which all haplotypes are present, so that the inequalities

0 < x̂ij < 1 (3.11)

hold for all i and j, which is equivalent to x̂ ∈ ∆0
mn. Here, 0 denotes the interior of the

simplex.

Our main result is

Theorem 3.9. If m 6= n, then (2.2) has either no or a continuum of solutions for which

(3.11) holds. Thus, there are no isolated equilibria with all mn haplotypes present.

In order to prove the theorem, we first need

Lemma 3.10. Define the matrix S̃(σ) = (s̃ij)m×n by

s̃ij(σ) =
sij − σ

r + σ − sij
, (3.12)

where σ ∈ R. For a given fitness matrix S = (sij)m×n and r > 0, a solution of (2.2) that

fulfills (3.11) exists if and only if there are σ̂ ∈ R, p̂ ∈ ∆0
m and q̂ ∈ ∆0

n such that

r + σ̂ − sij > 0 for all i and j, (3.13a)

S̃(σ̂)q̂ = 0, (3.13b)

p̂T S̃(σ̂) = 0. (3.13c)

If a solution exists, it is given by

x̂ij =
rp̂iq̂j

r + σ̂ − sij
for all i and j, (3.14)

and then

p̂i =
∑
j

xij, q̂j =
∑
i

xij, and ˆ̄s = σ̂ (3.15)

hold.
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Proof. (Necessity) From (2.2), we can compute the following identities:

x̂ij =
rp̂iq̂j

r + ˆ̄s− sij
for all i and j, (3.16a)∑

j

x̂ij(sij − ˆ̄s) = 0 for all i, (3.16b)∑
i

x̂ij(sij − ˆ̄s) = 0 for all j. (3.16c)

We insert (3.16a) into (3.16b) and (3.16c) to get:

rp̂i
∑
j

sij − ˆ̄s

r + ˆ̄s− sij
q̂j = 0 for all i, (3.17a)

rq̂j
∑
i

sij − ˆ̄s

r + ˆ̄s− sij
p̂i = 0 for all j. (3.17b)

Then (3.11) entails p̂i, q̂j > 0 for all i and j. Thus, we can write (3.17) as

∑
j

sij − ˆ̄s

r + ˆ̄s− sij
q̂j = 0 for all i, (3.18a)

∑
i

sij − ˆ̄s

r + ˆ̄s− sij
p̂i = 0 for all j, (3.18b)

or in matrix terms:

S̃(σ̂)q̂ = 0, (3.18c)

p̂T S̃(σ̂) = 0. (3.18d)

The remaining condition (3.13a) is implicit in (3.16a) because of (3.11).

(Sufficiency) If there exist p̂, q̂ and σ̂ that satisfy (3.13), then we have to show that these

give rise to an internal equilibrium of (2.1). First, we show that p̂ and q̂ satisfy the following

relations, i.e. they are indeed allele frequencies,

p̂i =
∑
j

x̂ij q̂j =
∑
i

x̂ij. (3.19)

To show this, we define

x̂ij =
rp̂iq̂j

r + σ̂ − sij
for all i and j. (3.20)

Then we can write∑
i

x̂ij =
∑
i

rp̂iq̂j
r + σ̂ − sij

= q̂j
∑
i

(r + σ̂ − sij)p̂i
r + σ̂ − sij

+ q̂j
∑
i

(sij − σ̂)p̂i
r + σ̂ − sij

= q̂j,

since p̂ ∈ ∆m and
∑

i
(sij−σ̂)p̂i
r+σ̂−sij = 0 by (3.13c).
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An analogous computation shows that p̂i =
∑

j x̂ij. This implies∑
ij

x̂ij =
∑
i

p̂i = 1, (3.21)

because p̂ ∈ ∆m. Hence, we can identify x̂ij as genotype frequencies that give rise to the

allele frequencies p̂ and q̂.

Next, we show that σ̂ = ˆ̄s. For this, we rewrite (3.20) as

rp̂iq̂j − x̂ij(r + σ̂ − sij) = 0. (3.22)

Summing (3.22) over all i and j, yields

r

(
1−

∑
ij

x̂ij

)
+
∑
ij

x̂ijsij − σ̂
∑
ij

x̂ij = 0, (3.23a)

which implies ∑
ij

x̂ijsij = σ̂ = ˆ̄s. (3.23b)

Now, we can write (3.22) as

rp̂iq̂j − x̂ij(r + ˆ̄s− sij) = 0, (3.24)

which is (2.2).

With this characterization of the polymorphism at hand, we can prove Theorem 3.9.

Proof of Theorem 3.9. If S and r > 0 are such that there exist no vectors p̂ ∈ ∆0
m, q̂ ∈ ∆0

n

and value σ̂ ∈ R such that all conditions in (3.13) are fulfilled, then no equilibrium exists.

The following argument shows that if there is a solution that satisfies (3.13), then there are

infinitely many in a continuum provided m 6= n.

Assume m < n and suppose there exist p̂ ∈ ∆0
m, q̂ ∈ ∆0

n and σ̂ ∈ R such that the conditions

in (3.13) are satisfied. The rank of an m × n matrix with m < n is at most m, while a

nontrivial solution of (3.13b) entails that S̃ is singular so that rank(S̃) ≤ m−1. This implies,

because of the rank-nullity theorem and n ≥ m + 1, that dim(ker(S̃)) ≥ n − (m − 1) ≥ 2.

Therefore, at least one additional linearly independent vector v exists in the kernel of S̃.

This solution vector does not necessarily lie in the simplex ∆0
n. However, q̂+εv

1+ε
∑

j vj
defines a

one dimensional manifold that is in ∆0
n for 0 < ε < ε∗ with ε∗ > 0 sufficiently small and is

a solution of (3.13b). Because of (3.14), this implies that the solution manifold in terms of

x̂ij is at least one-dimensional.

The characterization of internal equilibria given by Lemma 3.10 yields necessary conditions

for the existence of equilibria with an equal number of alleles at the two loci.
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Proposition 3.11. If n = m and an isolated equilibrium (x̂ij) of (2.2) satisfying (3.11)

exists, then the following hold:

(a) No row or column of S̃(ˆ̄s) consists only of entries of the same sign.

(b) rank(S̃(ˆ̄s)) = n− 1.

(c) det(S̃(ˆ̄s)) = 0.

(d) There is no other equilibrium with the same ˆ̄s.

Proof. Let q̂ be the vector for which (3.13b) holds. First, assume that there exists a row i

of S̃ with all entries positive. This implies
∑

j s̃ij q̂j > 0, a contradiction, because (3.13b)

holds for q̂. An analogous argument works for column j and p̂. This proves statement (a).

The rank of S̃ has to be smaller than n, because (3.13b) can only have a nontrivial solution

if S̃ is singular.

Now, assume that rank(S̃) < n − 1. Then by the rank-nullity theorem, dim(ker(S̃)) >

n − (n − 1) = 1. Therefore, at least one additional linearly independent vector v exists in

the kernel of S̃. This solution vector does not necessarily lie in the simplex ∆0
n. However,

q̂+εv
1+ε

∑
j vj

defines a one dimensional manifold that lies in the simplex ∆0
n for 0 < ε < ε∗ with

ε∗ > 0 sufficiently small and is a solution of (3.13b). This contradicts the assumption of an

isolated equilibrium. Thus statement (b) is true and statement (c) follows immediately.

If rank(S̃) = n− 1, then q̂ spans the kernel of S̃. Hence no other equilibrium with the same

ˆ̄s is possible and statement (d) follows.

Note, that statements (a)-(d) are not sufficient for the existence of an internal equilibrium.

In particular, statement (a) of Proposition 3.11 does not imply that a positive solution vector

exists. It is also not clear if there always exists a σ̂ that simultaneously fulfills (3.13a) and

statements (a) and (c) of Proposition 3.11.

However, Proposition 3.11 together with (3.13a) provides positive lower bounds on r that

allow an internal equilibrium. One of them depends only on the fitness matrix S.

Corollary 3.12. If n = m and an isolated equilibrium of (2.2) satisfying (3.11) exists with

mean fitness ˆ̄s, then

r > max
ij

sij − ˆ̄s > 0, (3.25a)

holds as well as a weaker bound that depends only on the fitness matrix

r > max
ij

sij −max
ij

(n)sij ≥ 0, (3.25b)

where max(n) denotes the n-th largest value (e.g., max(3) is the third largest value).
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Proof. Since the internal equilibrium exists, inequality (3.13a) of Lemma 3.10 implies that

r > maxij sij− ˆ̄s. Additionaly, statement (a) of Proposition 3.11 ensures that maxij sij− ˆ̄s >

0, since otherwise, all entries of S̃ would be negative. This proves (3.25a). The same

statement of Proposition 3.11 also implies that at least n entries of S̃ are positive, so that

within each of the n rows, at least one entry is positive. This entails that max
(n)
ij sij ≥ ˆ̄s and

thus

r > max
ij

sij − ˆ̄s ≥ max
ij

sij −max
ij

(n)sij ≥ 0 (3.26)

holds.

Furthermore, in simple situations, Lemma 3.10 and Proposition 3.11 allow us to obtain

results concerning the internal equilibrium structure.

Statements (c) and (d) combined yield an upper bound for the number of internal equilibria,

since each zero of det(S̃(σ)) gives rise to at most one equilibrium. Since det(S̃(σ)) is a

rational function of σ, the degree of the numerator polynomial determines the maximal

possible number of internal equilibria. For small numbers of alleles this argument gives rise

to a feasible method to determine all admissible internal equilibria. In fact, for two alleles

we show below that there is at most one internal equilibrium, which is also true for three

alleles with a centrosymmetric fitness scheme (see SI).

If W = (wij)m×n is the scaled fitness scheme with respect to a given equilibrium, then

S̃(ˆ̄s) = W̃ (0) (3.27)

holds by Remark 2.1. Here, W̃ (σ) is the matrix given by (3.12) corresponding to W . There-

fore, statement (c) of Proposition 3.11 implies thatdet(W̃ (0)) = 0. This yields an additional

identity that the scaled fitnesses wij have to satisfy. For small numbers of alleles, this can

be solved explicitly and implicit coordinates for the equilibrium can be obtained.

3.4 Two explicit cases with an equal number of alleles at both loci

Two alleles

In the two allele case, the following Theorem is already known from Bank et al. (2012), but

we present a different proof.

For the proof, it is useful to introduce the concept of the index of an equilibrium. Let t be

the number of positive eigenvalues of the Jacobian of an equilibrium, then the index of the

equilibrium is defined as (−1)t. Furthermore, a boundary equilibrium is called saturated if it

is externally stable, which is the case if and only if a gamete that is absent at the equilibrium

can not invade. The index theorem by Hofbauer (1990) states that the sum of the indices of

all saturated equilibria is 1. With this we can prove the following
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Theorem 3.13. System (2.1) restricted to two alleles at each locus has a unique internal

equilibrium if and only if r > maxij sij −max
(2)
ij sij and min(s11, s22) > ˆ̄s > max(s12, s21) or

the reverse order holds. If the equilibrium exists, it is unstable.

Proof. (Necessity) Without loss of generality, assume s11 = maxij sij. Since the equilib-

rium is unique, statement (a) of Proposition 3.11 yields

0 < sign(s11 − ˆ̄s) = − sign(s12 − ˆ̄s) = − sign(s21 − ˆ̄s) = sign(s22 − ˆ̄s).

This implies

s11 ≥ s22 > ˆ̄s > max(s12, s21). (3.28)

Additionally, inequality (3.25b) holds, which means in this case

r > s11 − s22. (3.29)

(Sufficiency) Without loss of generality, we assume s11 ≥ s22 > ˆ̄s > s12 ≥ s21. By

applying Proposition 3.3, we infer that the monomorphism A1B1 is asymptotically stable

for all r > 0, while the monomorphisms A1B2 and A2B1 are unstable for all r > 0. The

monomorphism A2B2 is asymptotically stable if r > s11 − s22. Since this is exactly the

condition r > maxij sij−max
(2)
ij sij, the monomorphism A2B2 is asymptotically stable. There

are no other boundary equilibria, since by Theorem 3.9 there is no equilibrium on the edges

where one allele is fixed.

Here, the sum of indices of all saturated equilibria on the boundary is 2, since, for monomor-

phisms, all eigenvalues are external and thus only stable monomorphisms are saturated.

Therefore, the index theorem by Hofbauer (1990) entails that the sum of all indices of inter-

nal equilibria has to equal −1 (they are saturated by definition). This entails an odd number

of internal equilibria, because the index of a hyperbolic equilibrium is either +1 or −1.

However, the degree of the numerator polynomial (in σ) of the determinant of the corre-

sponding matrix S̃(σ) is two (see SI for the exact expression). Hence, there are at most two

values of σ such that S̃(σ) is singular and this is a necessary condition by statement (b)

of Proposition 3.11. Thus, there are up to two internal equilibria. By the index argument

above, only an odd number of internal equilibria is possible and therefore, there is exactly

one internal equilibrium. By the index theorem, it has index −1, which implies an odd

number of positive eigenvalues and hence its instability.

With an additive scaling of the fitness matrix, detailed in Remark 2.1, we can easily write

the coordinates of the internal equilibrium as follows.

Corollary 3.14. Suppose, there is a unique internal equilibrium and S is the scaled fitness

scheme such that ˆ̄s = 0 at this internal equilibrium and š22 is defined as

š22 =
s12s21(r − s11)

s12(s21 − s11) + s11(r − s21)
. (3.30)
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If s22 = š22, then the equilibrium coordinates are given by

x̂11 =
s12s21(r − s11)

r(s11 − s12)(s11 − s21)
, x̂12 = − s11s21(r − s11)

r(s11 − s12)(s11 − s21)
, (3.31a)

x̂21 = − s11s12(r − s11)

r(s11 − s12)(s11 − s21)
, x̂22 = 1− x̂11 − x̂12 − x̂21. (3.31b)

The equilibrium is admissible if sign(s11s12) = sign(s21š22) = − sign(s11š22) = −1 and

r >

s11 if s11 > 0

s12 + s21 −
s12s21

s11

if s11 < 0
(3.32)

Proof. According to Remark 2.1, we can formally set ˆ̄s = 0 in S̃, restricted to two alleles per

locus, which simplifies further analysis. S̃ is a singular matrix if s22 = š22. Then we solve

(3.13b) and (3.13c) and use formula (3.14) to derive (3.31). Admissibility conditions follow

from Theorem 3.13, after one resolves the dependence of š22 on r with respect to sign(š22)

and r > š22. See also SI.

Three alleles

We now investigate the case of three alleles at each locus. Additionally, we assume that the

fitness scheme is centrosymmetric:

Sc =

B1 B2 B3( )s11 s12 s13 A1

s21 s22 s21 A2

s13 s12 s11 A3

(3.33)

In the sense that the matrix is the same but the entries correspond to haplotypes formed by

single alleles rather than by diploid genotypes, Sc is formally equivalent to the well-studied

symmetric viability model (Feldman and Karlin, 1970). In Sc, the fitnesses stay the same

under a simultaneous exchange of alleles A1 with A3 and B1 with B3. This is the case since

s32 = s12 and s23 = s21, which also entails that Sc violates Assumption A. Thus every point

on the edges connecting the monomorphisms A1B2 with A3B2 and A2B1 with A2B3 is an

equilibrium by Lemma 3.1. However, the specific form of Sc allows us to gain further insights

about the internal equilibrium structure, which was not possible for a general fitness scheme

with three alleles at both loci.

Since we are interested in the stability of a potential internal equilibrium, from now on, we

assume that an internal equilibrium exists with mean fitness at this equilibrium given by

ˆ̄s = 0 (see Remark 2.1). This simplifies (3.12) considerably, because

S̃c =

 s11
r−s11

s12
r−s12

s13
r−s13

s21
r−s21

s22
r−s22

s21
r−s21

s13
r−s13

s12
r−s12

s11
r−s11

 . (3.34)
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The coordinates of the equilibrium for which S is scaled, are described by the following

Proposition 3.15. Let S̃c be as in (3.34) and s11 6= s13. In addition, define

š22 =
2s12s21(r − s11)(r − s13)

(r − s12)E − s21(E + s12F )
, (3.35)

with E = s11(r − s13) + s13(r − s11) and F = s11 + s13 − 2r.

Then, an equilibrium, given by (3.14) satisfying (3.11), exists if and only if

s22 =š22, (3.36a)

r >max
ij

sij, (3.36b)

sign(s22s12) = sign(s22s21) = −1 (3.36c)

and

sign(s22s11) = + 1 or sign(s22s13) = +1. (3.36d)

Its coordinates are

p̂1 = p̂3 = −(r − s11)(r − s13)s21

r(E + s21F )
, (3.37a)

p̂2 = 1− 2p̂1 =
(r − s21)E

r(E + s21F )
(3.37b)

and

q̂1 = q̂3 = −(r − s11)(r − s13)s12

r(E + s12F )
, (3.37c)

q̂2 = 1− 2q̂1 =
(r − s12)E

r(E + s12F )
. (3.37d)

Proof. (Necessity) If the equilibrium exists, we can scale Sc such that S̃c is given by (3.34)

and ˆ̄s = 0. Then, condition (3.13a) simplifies to

r − sij > 0 for all i and j, (3.38)

which implies (3.36b). Statement (c) of Proposition 3.11 ensures that the existence of an

internal isolated equilibrium implies that det(S̃c(ˆ̄s)) = 0. This equation is linear in s22 and

thus has a unique solution, which is s22 = š22.

Furthermore, statement (a) of Proposition 3.11 implies (3.36c) and (3.36d), because other-

wise, at least one row or column of (3.34) consists only of entries of the same sign.

(Sufficiency) The determinant of (3.34) is linear in s22 and is zero if s22 = š22. Thus, S̃c is

a singular matrix and (3.13b) can have an admissible solution. Equating the first and third

row of (3.13b) yields

s̃11q̂1 + s̃12q̂2 + s̃13q̂3 = s̃13q̂1 + s̃12q̂2 + s̃11q̂3, (3.39a)
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which simplifies to

(s̃11 − s̃13)(q̂1 − q̂3) = 0, (3.39b)

where s̃ij denote the entries of S̃c. Since s11 6= s13, (3.39b) holds if and only if q̂1 = q̂3.

By applying
∑

j q̂j = 1, we can express (3.13b) solely in terms of q̂1 and solve for it. An

analogous argument yields p̂1 and we get (3.37).

By Lemma 3.10 these coordinates determine an equilibrium for (2.1). However, it remains

to show that p̂i and q̂j given by (3.37) are positive, under the conditions (3.36). Without

loss of generality, s22 = š22 > 0. This implies that s12, s21 < 0. Let h1 denote the numerator

and h2 the denominator of š22 given in (3.35). Since h1 is clearly positive, the same has to

hold for h2. Condition (3.38) also holds for š22 and simplifies to

0 < r − š22 =
(r − s12)(r − s21)E

h2

. (3.40)

Therefore, we conclude that sign(E) = sign(h2) = sign(s22) = 1, since the first two factors

of the numerator are positive because of (3.38). This is possible only if (3.36d) is true, since

otherwise, s11, s13 < 0 imply E < 0, provided (3.38) holds. Because of (3.38), F < 0 and

thus the denominators of (3.37) are all positive. A simple check reveals that this also holds

for each numerator of (3.37).

If s11 = s13, then S̃c given by (3.34) is clearly singular. However, one can easily check that

the resulting equilibrium is not admissible. If rank(S̃c) = 1, then the equilibrium is not

isolated by Proposition 3.11.

Whereas it is not necessary for the remainder of this section, the following is still a relevant

result in itself, and its proof is in SI.

Corollary 3.16. If the equilibrium (3.37) of (2.1) with the fitness matrix (3.33) exists, then

it is unique in ∆0
3.

In order to show instability of the internal equilibrium, the following property of the equi-

librium is crucial for our method.

Corollary 3.17. The equilibrium given by (3.37) is centrosymmetric, i.e.,

x̂11 = x̂33, x̂12 = x̂32, (3.41a)

x̂13 = x̂31, x̂21 = x̂23. (3.41b)

Proof. Application of (3.33) and (3.37) to (3.14) yields

x̂11 =
rp̂1q̂1

r − s11

=
rp̂3q̂3

r − s33

= x̂33. (3.42)

Similar computations establish the other three identities.
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Before we prove the instability of the internal poylmorphism, if it exists, we note that

Corollary 3.17 gives rise to the coordinate transformation (U) inspired by Feldman and

Karlin (1970), which provides the starting point for the proof.

We define:

u1 = x11 − x33, u2 = x12 − x32, u3 = x13 − x31, u4 = x21 − x23,

u5 = x11 + x33 − x12 − x32, u6 = x13 + x31 − x21 − x23, (U)

u7 = x11 + x12 + x32 + x33 − x13 − x21 − x23 − x31, u8 = x22.

From (U) and the simplex condition
∑

ij xij = 1, we derive the reverse transformation:

x11 =
1

8
(1 + 4u1 + 2u5 + u7 − u8), x12 =

1

8
(1 + 4u2 − 2u5 + u7 − u8),

x13 =
1

8
(1 + 4u3 + 2u6 − u7 − u8), x21 =

1

8
(1 + 4u4 − 2u6 − u7 − u8),

x22 = u8,

x23 =
1

8
(1− 4u4 − 2u6 − u7 − u8), x31 =

1

8
(1− 4u3 + 2u6 − u7 − u8),

x32 =
1

8
(1− 4u2 − 2u5 + u7 − u8), x33 =

1

8
(1− 4u1 + 2u5 + u7 − u8).

With this, we now derive the transformed system of equations from (2.1). This rather lengthy

system of ODEs is shown in the SI. The equilibrium coordinates x̂ij are also transformed

into the equilibrium ûi (see SI). Corollary 3.17 together with (U) imply ûi = 0 for i = 1, 2, 3

and 4.

With these prerequisites, we now prove the main theorem of this section.

Theorem 3.18. If the polymorphic equilibrium (3.37) of (2.1) under the fitness scheme Sc

(eq. 3.33) exists, then it is unstable.

Proof. For the new system in (ui), we compute the Jacobian Ju (see SI for the derivation)

and evaluate it at the hyperplane H given by ˆ̄s = 0 and ûi = 0 for i = 1, 2, 3 and 4. Clearly,

H contains the equilibrium.

The resulting 8× 8 matrix is in block diagonal form

Ju|H =

(
C1 0
0 C2

)
, (3.43)

where each block is a square matrix of dimension 4. As the determinant of the full matrix

is the product of the determinants of C1 and C2, we can analyze them separately.

The resulting expression for det(C1) (see SI for the expression) is then evaluated at the

coordinates ûi, i = 5, 6, 7 and 8. After some simplification, it can be written as:

det(C1) =
−s12s21(s11 − s13)2(r − s11)(r − s12)(r − s13)(r − s21)

(E + s12F ) (E + s21F )
(3.44a)

= −r
2(r − s12)(s11 − s13)2(r − s21)

(r − s11)(r − s13)
p̂1q̂1 < 0. (3.44b)
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This inequality holds, because condition (3.38) ensures that the ratio in inequality (3.44b)

is positive and −p̂1q̂1 < 0, since (3.37) is an admissible equilibrium.

The determinant of C1 is the product of the four eigenvalues and we can thus conclude that

at least one of them has to be positive. This implies that the equilibrium is unstable.

4 Discussion

We have conducted a rather general mathematical analysis of haploid two-locus multiallele

dynamics with constant selection and recombination. The model we use is the standard

continuous-time model for selection on haploids with recombination, shown in eq. (2.1).

In the first section, we provide conditions for locally asymptotic stability of monomorphisms

(Proposition 3.3) under Assumption A and show that at least one of them is always stable.

The upper bound for the number of stable monomorphisms is given by the smaller of the

number of alleles at each of the two loci. If both loci have the same number of alleles,

then this number is also the maximum number of stable monomorphisms (Corollary 3.4).

We also characterize the fitness matrices such that the monomorphism with the highest

fitness is the only stable monomorphism for every r > 0 (Corollary 3.5) and claim that it

is also globally asymptotically stable for all r. Although this remains unproven in general,

under the assumption of tight linkage, Kirzhner and Lyubich (1997) have shown that the

monomorphism, corresponding to the fittest haplotype, is asymptotically globally stable.

We use ideas about dominating strategies from game theory to prove global stability, for a

certain class of fitness matrices, in the section ”Dominating alleles”. If for a fixed background

allele the fitness of the haplotype formed with a given allele at one locus is greater than that

formed with any other allele at that locus and this holds for every background allele (i.e., at

the other locus), then the fitter allele is the dominating allele. Other, so called dominated,

alleles go extinct (Theorem 3.6). Hence, if one allele dominates all other alleles at the same

locus, then they all go extinct and the dominating allele is fixed (Theorem 3.8). Thus the two-

locus multi-allele problem is reduced to a one-locus multi-allele problem, where it is known

that the allele with the highest fitness fixes. As in Hofbauer and Su (2016) for a migration-

selection model, we apply a quasi-concave Lyapunov function to prove global convergence.

Speaking informally, this approach helps to get control over the terms involving linkage

disequilibria. These terms are introduced when we consider population genetic dynamics

with more than one locus and they are the reason why the usual Lyapunov methods that work

for one-locus models break down. Other multi-locus convergence problems could potentially

be treated by means of quasi-concave Lyapunov functions.

Lemma 3.10 represents a very useful and intuitive characterization of polymorphisms in

terms of two linear homogeneous systems of equations. Solvability of both systems in (3.13)

is necessary and sufficient for the existence of internal equilibria. If the numbers of alleles at
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the two loci are different, then one of the systems is overdetermined and in general has no

solution. However, in the degenerate case, where a solution exists, we showed that there is

a manifold of solutions. This means that for an unequal number of alleles at the loci, there

is either no internal equilibrium or there are infinitely many. This immediate consequence

is formalized in Theorem 3.9. If the two loci have the same number of alleles, we state

necessary conditions for the existence of an isolated internal equilibrium in Proposition 3.11.

This proposition, together with Lemma 3.10, entails that linkage between the two loci has

to be sufficiently loose for an internal equilibrium to exist. We derive an expression that

depends only on the fitness matrix S and entails that no isolated equilibrium can exist in

the interior if r is smaller than this expression (see eq. (3.25b) in Corollary 3.12).

If there are either two or three alleles (with centrosymmetric fitnesses) at both loci, these

general results on the existence of internal equilibria are used to establish uniqueness of the

polymorphism if it exists and its instability.

With two alleles at each locus it is rather straightforward to prove uniqueness of the internal

equilibrium by combining an index theorem by Hofbauer (1990) with Proposition 3.3, Theo-

rem 3.9 and Proposition 3.11. The index theorem also entails that the equilibrium is a saddle

point. This approach allows us to prove the uniqueness and instability of the polymorphism

simultaneously (Theorem 3.13) and is not as technical and computationally difficult as that

of Bank et al. (2012).

For three alleles at both loci, we need additional assumptions to establish an analogous

result. We assume a centrosymmetric fitness scheme, Sc, analogous to that of the classical

symmetric viability two-locus two-allele diploid model.

After scaling Sc such that ˆ̄s = 0, we determine the exact equilibrium coordinates (Proposition

3.15), which also exhibit centrosymmetry (Corollary 3.17). This allows us to apply the

coordinate transformation (U) that exploits this symmetry and is used to show instability of

the internal equilibrium in Theorem 3.18. In the SI, we show that the internal equilibrium

for this centrosymmetric three-allele model is unique (Corollary 3.16), although this fact is

neither needed nor implied by the proofs of Proposition 3.15 and Theorem 3.18. If there

were two isolated equilibria E1 and E2 with ˆ̄sE1 6= ˆ̄sE2 , then both Proposition 3.15 and

Theorem 3.18 could be applied to each of them separately. If we rescale S such that ˆ̄sE1 = 0,

then Theorem 3.18 implies that E1 is unstable. The equilibrium structure and stability does

not change if we rescale the fitness matrix S, and thus if we rescale it once more such that

ˆ̄sE2 = 0, then E2 is also seen to be unstable. This could be of relevance in systems with more

than three alleles, where a proof of uniqueness seems to be out of reach, although generalized

versions of Proposition 3.15 and Theorem 3.18 might be achievable.

The conditions stated in (3.36), together with Proposition 3.3, imply that three monomor-

phisms, in the centrosymmetric two-locus three-allele system, are locally asymptotically
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stable. This in turn implies, by Theorem 3.13, that in each of the three two-allele

subsystems spanned by these three monomorphisms a unique biallelic unstable polymor-

phism exists. Generalizing this argument in a rather speculative fashion, we claim that

n2 +
∑n

k≥2

(
n
k

)
= n2 + 2n − (n+ 1) is the maximum number of isolated equilibria for system

(2.1) with n alleles at both loci. There, we assume that for k > 1 alleles at both loci
(
n
k

)
isolated equilibria exist. This is only proven for n = 2, because the centrosymmetry as-

sumption in our treatment of n = 3 entails that four monomorphisms are not isolated, since

Lemma 3.1 ensures the existence of edges where every point is an equilibrium. However, if

we set s23 = s21 + ε and s32 = s12 + ε, then local perturbation theory implies that there are

32 +
(

3
2

)
+
(

3
3

)
= 13 isolated equilibria for ε sufficiently small. According to the claim we made

above, this should hold for the general three allele case. The claim also implies uniqueness

of the equilibrium with all n alleles present.

Our assumption of constant selection that is both frequency- and time-independent is of

course very limiting (see Metz, Mylius and Diekman 2008). A huge body of literature is

dedicated to the effects of non-constant selection, including analytical and numerical studies

as well as observational and experimental evidence for the occurence of these, e.g. Wittman

et al. (2017)

Examples of models with temporally fluctuating selection, mostly concerning mainly a single

diallelic locus, are in Haldane and Jayakar (1963), Karlin and Lieberman (1974), Hoekstra

(1975) and Nagylaki (1975). Models with two loci were studied by Kirzhner et al. (1995),

Bürger and Gimelfarb (2002), Novak and Barton (2017) and others. Assuming overlapping

generations Ellner and Sasaki (1996) show that fluctuating selection can maintain genetic

variation if the variance of the fluctuations is sufficiently large. Various ecological mecha-

nisms also help to maintain genetic variation, including explicit population regulation (Dean,

2005), genomic storage effects (Gulisija, Kim and Plotkin, 2016), migration between popula-

tions in each of which constant selection favors different alleles (see e.g. Karlin and McGre-

gor, 1972; Balkau and Feldman, 1973; Nagylaki and Lou, 2008; Lou, Nagylaki and Ni, 2013;

Bürger, 2014) and general negative frequency-dependent selection (e.g. Ayala and Campbell,

1974; Bürger, 2005; Schneider, 2006; Trotter and Spencer, 2007; Kopp and Hermisson, 2007;

Brisson, 2018).

In contrast to the complex biological scenarios above, the model and expected results ob-

tained here, for constant selection in a panmictic population, seem straightforward. Never-

theless, a general analysis is still lacking.

With the results presented here and the assumption that the trajectories converge to isolated

equilibrium points, it is clear that genetic variation, if it is maintained at two loci through

haploid selection and recombination, only occurs with the same number (larger than or

equal to 3) of alleles at both loci. If at one locus exactly two alleles occur or exactly three,
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and these three alleles have centrosymmetric fitnesses, then genetic variation is always lost

regardless of the number of alleles at the other locus. Ultimately, the population is fixed for

one allele at each locus. Additionally, variation vanishes if the fitness scheme is of the form

given in Theorem 3.8; The haplotype with the maximal fitness becomes fixed.

Supporting information

The supporting information, i.e., the Mathematica file SI, is available at

https://phaidra.univie.ac.at/o:1137886 and upon request.
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Chapter III

How epistasis and linkage influence
the establishment of locally beneficial
mutations and the evolution of
genomic islands

Martin Pontz and Reinhard Bürger



Abstract

A haploid two-locus two-allele continent-island (CI) migration model is investigated to ex-

plore the influence of linkage, gene flow, and epistasis on the fate of locally weakly beneficial

de-novo mutations arising in arbitrary physical distance to a locus that already maintains a

stable polymorphism on the island. We derive explicit conditions on the parameters permit-

ting a positive invasion probability. By assuming a slightly supercritical branching process

we derive an approximation for the invasion probability. We use this approximation together

with empirically motivated assumptions about distributions of the strength of epistasis to

analyze the effect of epistasis on the expected invasion probability and the size of emerging

genomic islands of divergence.

Key words: Selection, Linkage, Epistasis, Invasion Probability, Gene Flow

1 Introduction

Local adaptation of a population to a new environment is frequently considered as a first step

in a process leading to the emergence of a new species, because it increases the divergence

between spatially separated populations. Often, gene flow will counteract this adaptive

divergence. Gene flow may be especially detrimental to a peripheral population if new

locally beneficial mutations need to be established to improve adaptation. Since a de-novo

mutation starts out as a single copy, it is particularly prone to rapid loss caused by random

events. As already shown by Haldane (1927) and Fisher (1930), the probability of survival

of a mutant with selective advantage s is approximately 2s. Maladaptive gene flow reduces

or even annihilates this probability.

Extending a branching process model of Aeschbacher and Bürger (2014) by accounting for

genetic interactions between loci, we study the influence of linkage and epistasis on the fate

of a new, weakly beneficial mutation in a peripheral (island) population that is exposed to

maladaptive gene flow from the main (continental) population. By a well known dichotomy,

the mutant is either lost by random drift, which usually occurs rather quickly, or it invades

and becomes established in the population. In this case, its further growth trajectory is

(primarily) determined by selection in concert with other deterministic forces. Beneficial

mutations of large effect are believed to be very rare. If their selective advantage exceeds the

immigration rate, they have a positive establishment probability unless they arise in tight
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linkage to a deleterious background. As in Aeschbacher and Bürger (2014), we assume that

at some locus there already exists a stable polymorphism in the island population, which

was established because the selective advantage of the new (island) mutant at this locus

exceeded the immigration rate of the ancestral (continental) allele. Thus, a first step in local

adaptation has already been achieved.

We study under which conditions such a polymorphic locus can act as a crystallization point

for further adaptation. Because weakly beneficial mutations are more likely to occur than

strongly beneficial mutations (e.g., Orr, 2010; Bataillon and Bailey, 2014; Rice et al., 2015),

we focus on the case where the selective advantage of a new mutation on the island is smaller

than that of the island mutant at the polymorphic locus. Then the genetic background in

which the mutant occurs, and which contains the already established polymorphism, plays

a crucial role in enabling invasion and survival of the mutant.

Previous studies (e.g., Aeschbacher and Bürger, 2014; Yeaman et al., 2016) investigated a

similar question for diploids, however, with the restriction to a genic selection regime, i.e., by

ignoring dominance and epistatis. They showed that the probability of establishment of the

new mutation is always higher for loci that are tightly linked to the existing polymorphism

than for loosely linked loci. The interpretation was that this process favors the emergence

of genomic regions containing clusters of locally beneficial mutations, or at least of loci

contributing to divergence. Such regions were dubbed genomic islands of divergence (Nosil

et al., 2009; Feder and Nosil, 2010), of speciation (Turner et al., 2005), or of differentiation

(Harr, 2006). Interestingly, it was shown that often the maximum establishment probability

is attained for loci that exhibit strong but not complete linkage.

We extend and complement these results by taking into account genetic interactions be-

tween new mutations and the existing polymorphism. In general, the invasion probability

is increased by positive epistasis and tighter linkage. However, the relative contributions of

epistasis and linkage to the invasion probability depend crucially on the strength of gene

flow. For weak migration epistasis is more efficient in increasing the invasion probability,

whereas for strong migration linkage is more important.

Although we are in an era of relatively cheap sequencing technology and advanced bioinfor-

matic tools, it is still unclear how epistatic values are distributed and which distribution is

most prevalent in diploid organisms (e.g., Ehrenreich, 2017; Gao et al., 2010). However, the

understanding of this is better for haploid organisms, because the fitness structure without

dominance effects is simpler, which also allows for mathematical approximations of the epis-

tasis distribution (e.g., Martin et al., 2007; Blanquart et al., 2014; Schoustra et al., 2016).

In order to take advantage of this fact and to limit mathematical complications, we explore

a haploid version of the general model.

By using data-motivated distributions of the strength of epistasis, we analyze the expected
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effect of epistasis. We are interested in the probability of invasion of an ‘average’ mutation

drawn from such a distribution. If longer time scales are taken into account, many new mu-

tations may appear in the population, and their physical distance to the ancestral mutation

as well as their additive and epistatic effects on fitness may be considered as being drawn

from appropriate distributions. Taking the average of the invasion probability of all these

mutations, ranging from those that are lost to those that are established, we can draw con-

clusions about the general importance of these evolutionary forces for the adaptive potential

of a population and for the expected genomic signatures underlying adaptation. For the

latter, we follow Yeaman et al. (2016) and estimate the approximate size of genomic islands

of divergence in dependence on the properties of epistasis.

2 Methods

2.1 Model and biological scenario

We study a model that is closely related to a model first employed by Aeschbacher and

Bürger (2014), which is a diploid, discrete-time, two-locus two-allele model with continent-

to-island (CI) migration. Whereas these authors assumed genic fitnesses, i.e., no dominance

or epistasis, we include a parameter for genetic interaction between the two loci, but assume

a haploid population.

The two loci are denoted by A and B and their alleles by A1, A2 and B1, B2. These form

the four haplotypes A1B1, A1B2, A2B1, and A2B2, which occur at frequencies x1, x2, x3,

and x4 on the island. We assume that the population on the continent is well adapted and

fixed for alleles A2 and B2. The (im)migration rate to the island is denoted by m, i.e.,

each generation a fraction m of the adult population (after selection and recombination) on

the island is replaced by individuals of the continental population. The recombination rate

between locus A and locus B is denoted by r, and the allele frequencies of A1 and B1 on the

island are p = x1 + x2 and q = x1 + x3, respectively.

Initially, the island population is fixed for A2, whereas at locus B the locally beneficial allele

B1 has arisen some time ago and is in migration-selection balance, which requires that its

selective advantage b exceeds the migration rate m (see below). Then a weakly beneficial

mutation occurs at locus A, resulting in a single copy of A1. Its fate is determined by direct

selection on locus A, linkage to the selected locus B, migration, genetic interaction between

the loci, and random genetic drift.

We focus on the scenario, where the island population is so large that after an initial stochas-

tic phase during which the mutant is either lost or increases to appreciable frequency, the

dynamics becomes deterministic. This implies, under some technical conditions, that the

fate of A1 is decided during the stochastic phase. If it survives this phase, it will reach either
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an attractor in the interior of the state space (most likely, a fully polymorphic equilibrium)

or B1 goes extinct but locus A stays polymorphic (see notebook S1 for details). This survival

of the stochastic phase is what we synonymously call successful invasion or establishment.

2.2 Fitness and evolutionary dynamics

We use the following fitness scheme, which is general for a haploid two-locus two-allele model.

The matrix W = (wij) of relative genotype fitnesses on the island is normalized such that

W =

B1 B2( )
1 + a+ b+ e 1 + a A1

1 + b 1 A2

, (2.1)

where a > 0 is the selective advantage of the new mutant A1 relative to the resident (conti-

nental) type A2 on the background B2, and b > 0 is the selective advantage of B1 relative

to B2 on the background A2. The parameter e measures epistasis, i.e., the deviation of the

fitness of A1B1 from additivity. The only restriction we pose on e is −1− a− b < e, so that

the fitness of A1B1 is positive. We have negative (positive) epistasis if e < 0 (e > 0).

The evolutionary dynamics of such a haploid model depends on the life cycle of the popula-

tion. We investigate only the dynamics in which selection occurs first, followed by recombina-

tion and migration. For weak evolutionary forces, the dynamics becomes independent of the

order of selection, recombination, and migration (e.g. Bürger, 2014), and explicit formulas

simplify (e.g., Sect. 3.2).

Because selection occurs before recombination, we define the measure D of the linkage dise-

quilibriuum by

D =
1

w̄2
(w11w22x1x4 − w12w21x2x3) . (2.2)

Then the dynamical equations can be written as

x′1 = (1−m)
(w11x1

w̄
− rD

)
, (2.3a)

x′2 = (1−m)
(w12x2

w̄
+ rD

)
, (2.3b)

x′3 = (1−m)
(w21x3

w̄
+ rD

)
, (2.3c)

x′4 = (1−m)
(w22x4

w̄
− rD

)
+m, (2.3d)

where the mean fitness is given by

w̄ = w11x1 + w12x2 + w21x3 + w22x4 (2.4)

(cf. Felsenstein, 1965, chapter ”Selection and Recombination”, p. 364).

Throughout this paper, we assume that the selective advantage b of B1 is large enough so

that a stable polymorphism at B can be maintained in the island population independently
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of any other locus. A simple calculations shows that this is case if and only if b > m/(1−m)

or, equivalently, if

0 < m < mB :=
b

1 + b
(2.5)

(cf. Haldane, 1930; Wright, 1931). Then the equilibrium frequency of B1 is

qB =
b−m(1 + b)

b
. (2.6)

We call this equilibrium EB.

As argued above, we assume throughout that the new beneficial mutant that occurs, A1, has

a small fitness effect a by which we mean a < b. We note that many of the tedious calcula-

tions performed to derive the results presented below are given in Mathematica notebooks

(Wolfram Research 2020), which constitute the supplementary files S1 – S5.

2.3 Two-type branching process

We model the initial stochastic phase, after occurrence of A1, by a two-type branching

process in discrete time (Harris, 1963). The two types are the haplotypes A1B1 and A1B2.

Depending on the initial occurrence of the mutant on background B1 or B2, the invasion

probability of A1B1 or A1B2 is denoted by π1 or π2, respectively. The probability that

A1 initially occurs in an individual with the B1 background depends on the equilibrium

frequency of B1 at EB, which is qB in (2.6).

The (mean) invasion probability π̄ of A1 is thus the sum of the two conditional probabilities

weighted by the frequencies of B1 and B2 at equilibrium:

π̄ = q̂Bπ1 + (1− q̂B)π2 . (2.7)

The invasion probability of A1 depends crucially on the so-called mean matrix M which, for

a two-type process, is the 2 × 2 matrix with entries λij, where λij is the mean number of

j-type offspring produced by an i-type parent in each generation (while the mutant A1 is

rare). The entries λij can be obtained from of our basic recursion system (2.3) by computing

the Jacobian J at the single-locus polymorphism EB and identifying M as the transposed

of the left upper 2 × 2 submatrix of J , which describes the dynamics of A1B1 and A1B2

(for details, see File S1, Sect. 6). Thus, the linearized dynamics around the equilibrium EB

pointing into the simplex is given by

(x′1, x
′
2) = (x1, x2)M, (2.8)
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where, by a simple computation,

M =
1−m
w̄2
B

(
w11(w̄B − rw22(1− qB)) rw11w22(1− qB)

rw12w21qB w12(w̄B − rw21qB)

)
(2.9a)

=
1

b(1 + b)(1−m)

(
(1 + a+ b+ e)[b(1−m)−mr] (1 + a+ b+ e)mr

(1 + a)[b(1−m)−m]r (1 + a)[b(1−m)(1− r) +mr]

)
,

(2.9b)

where w̄B = w21x3 +w22x4 = 1 + bqB = (1 + b)(1−m) is the mean fitness at EB, and (2.9b)

is obtained by substitution of (2.1) into (2.9a).

It is well known (e.g. Harris, 1963) that invasion occurs with positive probability if and only

if the leading eigenvalue λ of M satisfies

λ > 1 . (2.10)

3 Analysis of the invasion condition

To apply the above theory to our model, we compute the leading eigenvalue λ of M and find

(File S1, Sect. 6)

λ =
b(2 + 2a+ b+ e)(1−m)− [b(1 + a(1−m)) + em]r +

√
R

2b(1 + b)(1−m)
, (3.1)

where

R = b2(b+ e)2(1−m)2 − 2b(b+ e)(1−m)[(2 + 2a+ 2b+ ab+ e)m− (1 + a)b]r

+ [em+ b(1 + a(1−m)]2r2 . (3.2)

Using (3.1), we can rewrite the invasion condition (2.10) in the form

L <
√
R, (3.3)

where

L = 2b(1 + b)(1−m)− b(2 + 2a+ b+ e)(1−m) + [b(1 + a(1−m)) + em] r . (3.4)

It will be useful to define φ = (R− L2)/[4b(1−m)], which simplifies to

φ = b(b− a)(a+ e)(1−m)

+ r
{
b(1 + a)(a+ e)− [b2 + b(1 + a+ a2) + (1 + 2b+ ab)e]m

}
. (3.5)

Note that 4b(1 −m) > 0 and thus does not influence the sign of φ, which is linear in both

m and r. Therefore, the invasion condition (2.10) is satisfied if and only if L < 0 or φ > 0.

In File S2, Sect. 2, we show that L < 0 implies φ > 0. As a consequence,

λ > 1 if and only if φ > 0 . (3.6)
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3.1 Characterization of the invasion condition in terms of the mi-
gration and the recombination rate

According to (3.6), invasion of A1 is possible if and only if φ > 0. Below, we define a critical

migration rate m∗ and then, alternatively, a critical recombination rate r∗ to characterize

the parameter region in which invasion of A1 can occur. The detailed derivations of the

following results can be found in File S2, Sect. 3. We start by defining

er = −a+ (1 + b)
r

1− r
(3.7a)

and

m∗ =
b(a+ e)[b− a+ (1 + a)r]

b(b− a)(a+ e) + [b2 + b(1 + a+ a2) + e(2b+ ab+ 1)]r
, (3.7b)

and note that er > 0 if and only if r > a
1+a+b

. The following is our first main result.

Proposition 3.1.

(i) If −1− a− b < e ≤ −a, then invasion is impossible.

(ii) If −a < e < er, then 0 < m∗ < mB and invasion is possible if m ∈ [0,m∗).

(iii) If er ≤ e, then invasion is possible if m ∈ [0,mB).

Proof. The proof can be simplified by transforming the linear function φ(m) in (3.5) into a

function ψ̂(z) by substituting m = bz
(1+b)(1+z)

. This strictly monotone transformation maps

the interval [0,mB) = [0, b
1+b

) for admissible m (such that EB exists) onto the interval [0,∞)

for z. Then ψ(z) = (1+z)(1+b)
b

ψ̂(z) is linear in z and has the same sign as ψ̂(z). In fact,

ψ(z) = c0 + c1z, where

c0 = (1 + b)(a+ e)(b− a+ r(1 + a)) (3.8a)

and

c1 = (b− a)(a+ e− (1 + a+ b+ e)r). (3.8b)

If −1− a− b < e < −a, then c0 < 0 and c1 < 0, and thus ψ(z) < 0 if z > 0. This settles (i).

If −a < e < er, then c0 > 0 and c1 < 0. Therefore, ψ(z) > 0 if z ∈ (0, z∗), where z∗

is the zero of ψ(z). The corresponding zero of φ(m) is m∗ given by (3.7b). In this case,

0 < m∗ < mB is clearly satisfied and thus, (ii) holds.

If e > er, then c0 and c1 are positive. This implies that ψ(z) > 0 if z > 0, which in turn

implies (iii).
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As already noted above, φ is also a linear function in r and thus we can reformulate Propo-

sition 3.1 in terms of r. We define

em = −a+
(b− a)(1 + b)m

[(1 + b)2 + b(b− a)](1−m)− (1 + b)
(3.9a)

and

r∗ =
(1−m)(a+ e)(b− a)b

[b(1 + b) + a(1 + a)b+ (1 + 2b+ ab)e]m− (1 + a)(a+ e)b
, (3.9b)

and note that em > 0 if m > a(1− a+ 2b)/(1 + a+ b+ 2ab− a2), where the lower bound is

close to a if a and b are small. Now we can reformulate Proposition 3.1 as follows.

Proposition 3.2.

(i) If −1− a− b < e ≤ −a, then invasion is impossible.

(ii) If −a < e < em, then 0 < r∗ < 1
2

and invasion is possible if r ∈ [0, r∗).

(iii) If em ≤ e, then invasion is possible if r ∈ [0, 1
2
].

Proof. With the transformation r = z
2(1+z)

, the proof is similar to that for Proposition

3.1.

Of course, the parameter regions described by Propositions 3.1 and 3.2 are identical. How-

ever, it is useful to have these two representations, because we want to investigate how

epistasis interacts with linkage and with migration by studying possible invasion of A1.

Remark 3.3. (i) The above propositions show that invasion of A1 is possible only if there

is no sign epistasis, i.e., if a+ e > 0, which means that the genotype A1B1 in fitness scheme

(2.1) must have higher fitness than the other genotypes.

(ii) Simple calculations show that if 0 < m∗ < mB, then m∗ is strictly increasing in e and in

a, and m∗ is strictly decreasing in r. In addition, m∗ = mB if e = er.

(iii) Analogously, r∗ is strictly increasing in e and in a, and it is decreasing in m provided

e > −a. In addition, r∗ = 1
2

if e = em.

(iv) Therefore, these propositions show that invasion of A1 is always facilitated by larger e.

Moreover, em increases in m and er increases in r.

(v) We conclude that for fixed selection coefficients a, b, and e satisfying a + e > 0, a

reduction in r (m) will increase the maximum value of m (r) for which invasion is possible.

(vi) The proof of Proposition 3.1 implies that λ = 1 if and only if m = m∗ or, equivalently,

r = r∗.

(vii) If A and B are completely linked (r = 0), then λ is independent of m and invasion of

A1 is possible for every m if a+ e > 0.
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Figure 1: Critical migration and recombination rates, m∗ and r∗, below which invasion of
the mutant A1 can occur. The solid curves in panels A and B show the exact expressions
for m∗ and r∗, given by (3.7b) and (3.9b), respectively, as functions of the epistatic value
e. The dashed curves show the corresponding weak-forces approximations, which are given
by (3.12b) and (3.12d). In both panels the other parameters are a = 0.01 and b = 0.04;
therefore, mB ≈ 0.0385.

3.2 Weak-forces approximation

Several of the above expressions are complicated and do not easily provide analytical insight.

However, if we assume that all evolutionary forces are weak, then much simpler expression

are obtained. For this purpose, we scale the parameters for selection, migration, and re-

combination as follows: a → δα, b → δβ, e → δε, m → δµ, r → δρ, and assume that δ is

small. By performing series expansions to first order in δ of the entries of the mean matrix

M and returning to the original parameters (i.e., using roman font again), we obtain the

weak-forces approximation

M̃ =

(
1 + a+ e−mr/b mr/b

r(1−m/b) 1 + a− b− r(1−m/b)

)
. (3.10)

By applying the same procedure to every x′i − xi in the recursion system (2.3), we obtain

a system of approximating differential equations. Computing the Jacobian of this system

at the equilibrium EB, where in continuous time x1 = x2 = 0, x3 = q̃B = 1 − m/b, and

x4 = m/b, we find that the upper left 2× 2 submatrix is M̃− I, where I is the 2× 2 identity

matrix.

Throughout, we use the tilde ˜ to denote the weak-forces approximation. The leading

eigenvalue of M̃ is

λ̃ = 1− 1

2
(b+ r − 2a− e) +

1

2

√
(b+ e)2 + 2(b+ e)

(
1− 2m

b

)
r + r2. (3.11)

Straightforward calculations show that the bounds used in Propositions 3.1 and 3.2 simplify
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to

mB ≈ m̃B = b, (3.12a)

m∗ ≈ m̃∗ =
b(a+ e)(b− a+ r)

(b+ e)r
, (3.12b)

er ≈ ẽr = r − a, (3.12c)

r∗ ≈ r̃∗ =
(b− a)(a+ e)b

(b+ e)m− (a+ e)b
, (3.12d)

em ≈ ẽm = −a+
(b− a)m

b−m
. (3.12e)

With these definitions, the following weak-forces versions of Propositions 3.1 and 3.2 are

easily derived, which yields simpler interpretations of the invasion conditions.

Proposition 3.4.

(i) If e ≤ −a, then invasion is impossible.

(ii) If −a < e < r − a, then 0 < m̃∗ < b and invasion is possible if m ∈ [0, m̃∗).

(iii) If r − a ≤ e, then invasion is possible if m ∈ [0, b).

Proposition 3.5.

(i) If e ≤ −a, then invasion is impossible.

(ii) If −a < e < ẽm, then r̃∗ > 0 and invasion is possible if r ∈ [0, r̃∗).

(iii) If ẽm ≤ e, then invasion is possible if r ∈ [0,∞).

Remark 3.3 applies to these propositions as well.The computations for Sect. 3.2 are presented

in File S5, Sects. 1,2.

4 Invasion probabilities

So far, we have characterized the parameter regions in which invasion of the new mutant A1

is possible, but we have not yet quantified the probability of invasion. In the following, we

assume discrete time and that the number of offspring of type j produced by an individual

of type i is Poisson distributed with mean λij, where the λij are the entries of the matrix M

given by (2.9b). Branching-process theory (e.g. Harris, 1963) states that the probabilities

σ1 = 1− π1 and σ2 = 1− π2 of loss of type-1 and type-2 individuals, respectively, are given

by the smallest positive solutions of

s1 =e−λ11(1−s1) · e−λ12(1−s2), (4.1a)

s2 =e−λ21(1−s1) · e−λ22(1−s2). (4.1b)
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Therefore, the invasion probabilities π1 and π2 of A1B1 and A1B2, respectively, as well as the

mean invasion probability π̄ of A1, defined in equation (2.7), can be computed numerically.

Below, we refer to this as the (exact) numerical solution.

Remark 4.1. (i) If m = 0, then (2.9b), (2.6), and (2.7) show that λ12 = 0 and π̄ = π1.

Therefore, by (4.1a), π̄ depends only on λ11, which is independent of r if m = 0. Thus, π̄ is

independent of r if m = 0. The simple intuitive explanation is that in this case allele B1 is

fixed on the island under our initial equilibrium condition (see eq. 2.6) so that the mutant

A1 occurs always on the background B1, which makes recombination irrelevant in the early

phase of invasion.

(ii) If r = 0, then λ12 = λ21 = 0 and the principal eigenvalues of M becomes λ = λ11 = 1 +

(a+e)/(1+b). Therefore, π1 depends only on λ11, and π2 depends only on λ22 = (1+a)/(1+b),

which is less than 1 if a < b, as we assume throughout. Therefore, π2 = 0 and π̄ = q̂Bπ1,

which depends only on a + e but not on a and e separately. Also this result has a simple

intuitive explanation: In the absence of recombination, the mutant cannot invade if it occurs

on the ‘bad’ background B2, because on this background its invasion rate is λ22 < 1 and

without recombination it cannot recombine onto the ‘good’ background B1. Because the

invasion rate of A1B1 is λ11 = 1 + (a + e)/(1 + b), the migration rate enters the invasion

probability π̄ = q̂Bπ1 only through the equilibrium frequency of B1.

In general, the transcendental equations in (4.1) cannot be solved analytically. However, we

can obtain approximations of the invasion probabilities by assuming a slightly supercritical

branching process. For this purpose we assume that the mean matrix M = M(ε) depends

on a parameter ε > 0 such that its leading eigenvalue, given in (3.1), can be written as

λ(ε) = 1 + ρ(ε), where ρ(ε)→ 0 as ε→ 0.

Let u(ε) = (u1(ε), u2(ε)) and v(ε) = (v1(ε), v2(ε))T be the positive left and right eigenvectors

of M(ε) corresponding to the leading eigenvalue λ(ε). They are normalized such that

2∑
j=1

uj = 1 =
2∑
i=1

uivi (4.2)

holds. For a slightly supercritical branching process, the invasion probabilities πi = π
(ε)
i are

of order ε and can be expressed as

π
(ε)
i =

2(λ(ε)− 1)

B(ε)
vi(ε) + o(ε), (4.3)

where B(ε) is a complicated expression (Athreya, 1993; Haccou et al., 2005, pp. 126-128).

This approximation is valid for general offspring distributions, such that the matrix M(ε)

is primitive for every ε > 0, i.e., some power is strictly positive. Under the assumption of
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independent Poisson offspring distributions, we obtain (Appendix A1.1)

B(ε) = λ(ε)2

2∑
j=1

uj(ε)vj(ε)
2 . (4.4)

Aeschbacher and Bürger (2014, eq. (64) in File S1 of their Supporting Information) provided

a formula equivalent to

BAB(ε) = B(ε) + λ(ε)

(
1−

2∑
j=1

uj(ε)vj(ε)
2

)
. (4.5)

In general, BAB(ε) differs from B(ε), which is the correct slightly supercritical approximation

in the sense of Athreya. In Appendix A1.1 we prove that B(ε) ≤ BAB(ε) holds always.

Because M is stochastic if λ = 1, it follows easily that B(ε) = BAB(ε) if ε = 0. For our

choice of M (2.9), ε = 0 if and only if m = m∗ or r = r∗ (see Remark 3.3). In addition,

BAB(ε) = B(ε) if m = 0 or r = 0 (see below).

4.1 Properties of the mean invasion probability π̄ and its approx-
imations

Now we apply the above approximations to our mean matrix (2.9b) to investigate the prop-

erties of π̄ in dependence on the parameters a, b, e, r, and m. The explicit expressions of the

leading terms of the invasion probabilities π
(ε)
1 and π

(ε)
2 and the mean invasion probability

π̄(ε) are complicated and not very informative (see, e.g., (3.1) for the principal eigenvalue

λ). They are derived and presented in File S3, Sect. 2. Below, we present simple explicit

approximations only for special cases.

In the sequel, we write π̄
(ε)
B for the approximation of π̄(ε) obtained by substituting B(ε) from

(4.4) into the leading-order term in (4.3) (for i = 1 and i = 2) and using (2.7). We write

π̄
(ε)
BAB for the analogous approximation obtained from BAB(ε) in (4.5). Despite the fact that

the difference between B(ε) and BAB(ε) can be of order ε, it turns out that for a relatively

wide range of parameters, in particular for small recombination rates, π̄
(ε)
BAB provides a more

accurate approximation of π̄(ε) than π̄
(ε)
B (Figure 2). In particular, it better reflects certain

qualitative features of the true (numerically computed) π̄(ε) as a function of r.

In the absence of migration, we obtain the approximation

π̄
(ε)
B = π̄

(ε)
BAB =

2(1 + b)(a+ e)

(1 + b+ a+ e)2
(at m = 0) , (4.6)

and in the absence of recombination, we obtain

π̄
(ε)
B = π̄

(ε)
BAB =

2(1 + b)(a+ e)

(1 + b+ a+ e)2

(
1− m(1 + b)

b

)
(at r = 0) . (4.7)
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Both are readily derived from the respective first-order approximations of (π
(ε)
1 , π

(ε)
2 ) in m and

in r (see eqs. (A1.5) and (A1.7) in Appendix A1.2 and File S3, Sects. 2,6). In confirmation

of Remark 4.1, the approximation (4.6) is independent of r in the absence of migration.
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Figure 2: Dependence of the mean invasion probability π̄ on the migration rate (A) and
the recombination rate (B) for three different values of epistasis. The solid curves show π̄,
where the numerical solution (π1, π2) of the exact equations (4.1) has been substituted into

(2.7). The dotted curves show the approximation π̄
(ε)
B , and the dashed curves show π̄

(ε)
BAB

(File S3.2). The line color legend in A applies to both panels. The insets show the relative
error of the approximations with respect to the numerical solution of (4.1). The dashing of
the curves in the inset corresponds to the dashing of the approximations in the main figure.
In both panels we have a = 0.06 and b = 0.1. In panel A, r = 0.1 and in panel B, m = 0.06.

The first-order approximation of π̄
(ε)
B in m near m = 0 is given by eq. (A1.8a) in Appendix

A1.2 and is decreasing in m. We conjecture that π̄ is generally decreasing in m, because this

is supported by all our numerical results. However, as is clearly visible in Fig. 2 and shown

analytically below, π̄ and its approximations are not necessarily decreasing in r.

Figure 2 demonstrates that both approximations, π̄
(ε)
B and π̄

(ε)
BAB, are quite accurate. This

is consistent with the fact that they are identical if m = 0, m = m∗, r = 0, and r = r∗.

Whereas π̄
(ε)
B appears to be always smaller than the exact value of π̄, π̄

(ε)
BAB intersects the

exact curve for π̄ and is then greater than it. This, however, is not a general feature (Fig.

S1, which is analogous to Fig. 2B, but with r = 0.001). We note that in Fig. 2A, we

have em ≈ 0.004. Therefore Proposition 3.2 implies that only the red curves are strictly

positive for every r ∈ (0, 0.5). For the black curves, the mean invasion probability is zero if

r ≥ r∗ ≈ 0.36, and for the blue curves if r ≥ r∗ ≈ 0.09. In Fig. 2B, we have er ≈ 0.06 and

therefore all curves decay to 0 in the interval (0,mB) (Proposition 3.1). The critical values

are m∗ ≈ 0.083 for the red curves, m∗ ≈ 0.074 for the black curves, and m∗ ≈ 0.058 for the

blue curves.

Figure 2 shows that increasing epistasis (larger e) increases the mean invasion probability of

A1, and all our numerical results confirm this. A general proof seems difficult, but at least
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the principal eigenvalue λ is increasing in e by Remark 3.3. With the scaling of epistasis as

in (2.1), this is not surprising because increasing e raises the fitness of A1B1.

Figure 2B demonstrates also the more subtle, but biologically interesting, effect that in-

creased epistasis slows down the decay of the mean invasion probability with increasing

recombinational distance between the two loci (compare the decay of the red curves with

the black and blue curves). This is not a universal feature of epistasis, because the effect

depends on the strength of migration (see Figs. 3 and 4), but it has important consequences

for the evolution and the size of genomic islands of differentiation.

The weak-forces approximations of the invasion probabilities are simpler than those used

above, but still quite complicated. They are provided in Appendix A1.3.

For low migration rates and if mutant A1 alleles have a small effect and are only loosely

linked to the existing polymorphism, a simple and useful approximation for the invasion

probability is obtained. Indeed, if we assume a,m, e � r, b and use either π̄
(ε)
B or π̄

(ε)
BAB, we

find to leading order in a, m, and e:

π̄(ε) ≈ π
(ε)
1 ≈ π̄simp = 2

(a+ e)(b+ r)− (1 + b)mr

(1 + b)(b+ r)
. (4.8)

The reason why π̄(ε) ≈ π
(ε)
1 is that if a,m � b, the frequency of B1 at the equilibrium EB

is close to one. In addition, the invasion probability π2 of A1 on the deleterious background

B2 is always smaller than π1. Therefore, the contribution of the term (1 − q̂B)π
(ε)
2 in (2.7)

to π̄(ε) is negligible in this case.

The approximation π̄simp in (4.8) is increasing in a and e, and decreasing in m and r. It

shares these properties with the invasion condition (Remark 3.3) because π̄(ε) = 2(λ(ε)− 1)

to first order in a,m, e if a,m, e � r, b. If e = 0, the approximation (4.8) simplifies to

equation (4) in Yeaman et al. (2016).

From (4.8), we immediately derive the following approximation for the effect of epistasis on

the invasion probability:

π̄simp(e)− π̄simp(0) =
2e

1 + b
. (4.9)

Here, π̄simp(e) indicates the dependence on e. In fact, 2e
1+b

seems to be an upper bound for

the increase of the invasion probability caused by epistasis; it is most accurate for very small

m (Fig. 3).

Similarly, the effect of linked relative to unlinked loci can be estimated by

π̄simp(r)− π̄simp(1
2
) =

2mb(1− 2r)

(1 + 2b)(b+ r)
, (4.10)

whereas

π̄simp(m1)− π̄simp(m2) =
2r(m2 −m1)

b+ r
(4.11)
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Figure 3: Comparison of the effects of epistasis and of linkage on the mean invasion prob-
ability π̄, which is shown for the four possible combinations of the two values of e and the
two values of r shown in the legend. The parameters a = 0.05 and b = 0.1 are kept constant.
Apart from the fact that this confirms that positive epistasis and linkage increase π̄ (relative
to no epistasis and no linkage), the most remarkable effect is that the red solid and the black
dashed curves intersect. The vertical dotted line indicates the analytical prediction for this
intersection point, which is given by eq. (4.13). As discussed in the text, this shows that for
weak migration, epistasis may be more efficient in increasing π̄, whereas for stronger migra-
tion, tighter linkage may be more efficient. That fact that curves of the same color, i.e., with
the same e, coincide at m = 0 is in line with the analytical finding that π̄ is independent of r
if m = 0 (see (4.6) and the subsequent argument). Inset (a) shows the difference between the
two curves of the same line style (dashed or solid), i.e., the effect of epistasis on π̄. Inset (b)
shows the difference between the two curves of the same line color, i.e., the effect of linkage
on π̄. The orange curve in each inset represents the analytical prediction of the respective
difference as given in (4.9) and (4.10), respectively.

yields the effect of differences in the migration rate. The expressions (4.9), (4.10), and (4.11)

give crude but simple approximations for the effects of varying a single parameter (see the

orange curves in the insets of Figs. 3 and 4).

Finally, the solution of the equation

π̄simp(e = 0)− π̄simp(r = 1
2
) = 0, (4.12)

in terms of m is

me-r =
(1 + 2b)(b+ r)e

b(1 + b)(1− 2r)
. (4.13)

This is the value of m, for which the mean invasion probability of unlinked epistatic loci is

the same as of linked nonepistatic loci (see Fig. 3).
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Figure 4: Mean invasion probability as a function of the recombination rate r under an
alternative parameterization of epistasis. Here, b = 0.1 is constant as in the other figures,
but a and e are varied such that the fitness of the best genotype, A1B1, is held constant at
1 + a′ + b = 1 + a + e + b = 1.15. Hence, the fitness of A1B2 varies. The inset shows the
difference between curves of the same color, i.e., the effect of migration if everything else
stays constant. The orange curve represents the analytical approximation (4.11). All other
curves show the exact numerical solution obtained from (4.1).

In Fig. 2, we have already seen that increasing epistasis and decreasing recombination tend

to increase the mean invasion probability. Fig. 3 also shows this effect, but in addition it

shows the following more interesting effect. If migration is weak, then positive epistasis

between unlinked loci is more efficient than linkage between non-epistatic (additive) loci

in boosting the mean invasion probability, whereas if migration is strong, linkage is more

efficient (observe that the red solid curve and the black dashed curve intersect). A reasonably

accurate estimate of the critical migration rate at which these curves intersect is given in

(4.13) and is shown as a vertical dashed line in Fig. 3.

In Fig. 4, the mean invasion probability π̄ is displayed as a function of r for different combina-

tions of a, e, and m. In particular, a and e are individually varied such that a+e = constant.

Therefore, the fitness of A1B1 is fixed for all shown combinations, and only the fitness of

haplotype A1B2 varies with a. The reasoning behind this choice is that, instead of (2.1), the

epistasis parameter e could be defined by

W =

B1 B2( )
1 + a′ + b 1 + a′ − e A1

1 + b 1 A2

, (4.14)
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where a′ = a+ e. Which scaling is more appropriate may depend on the situation that one

intends to model and is discussed below. In light of this parametrization, Remark 4.1(ii)

can be reformulated such that the value of π̄ at r = 0 is determined only by the parameter

a′, and not by e. For r > 0, π̄ depends on a′ and on e, as is shown by the divergence among

curves of the same dashing style. This is also the case for the first-order approximation

(A1.6) of π̄.

Figure 4 shows that the rate of decline of π̄ with increasing r and constant a′ is determined

by the value of e. A small positive, or even negative value, of e entails a slower decay of π̄,

because increasing e reduces the fitness 1 + a′ − e of the haplotype A1B2.

The difference of the invasion probabilities for different migration rates (difference between

curves of the same color) is shown in the inset. The analytical approximation (4.11) (orange

curve) is quite accurate for strong recombination, but fails for low recombination. This is

not unexpected because the approximation (4.8), from which (4.11) is derived, assumes large

r.

Finally, it seems worth noting that π̄ is more sensitive to changes in the recombination rate

r if m is relatively large compared to a. In particular, for given selection parameters, the

decay of π̄ as a function of r is faster if m is larger (compare the dashed with the solid curves

in Fig. 4).

4.2 Non-zero optimal recombination rate

Figure 2B demonstrates that for small r, π̄ can increase and be maximized at a non-zero

recombination rate. The red and black curves in Fig. 2B provide examples, in which the

(exact) mean invasion probability π̄ (solid curves) and the approximation π̄
(ε)
BAB (dashed

curves) have a non-zero optimal recombination rate, whereas π̄
(ε)
B (dotted curves) has its

maximum at r = 0.

Here, we derive an estimate for the parameter region in which a non-zero optimal recombi-

nation rate is expected by computing a critical value a∗ such that ∂π̄(ε)/∂r < 0 at r = 0 if

a < a∗, and ∂π̄(ε)/∂r > 0 at r = 0 if a > a∗. In the second case, π̄(ε) has a local maximum

at some r > 0 (potentially, at r = 1
2
, see e.g. Fig S2). From the first-order approximation

π̄
(ε)
B in (A1.6), we derive immediately

a∗B = −
1 + 2b+ e(2 + b)−

√
1 + 8b+ 4e+ 6b(2b+ e) + b2(4b+ e2)

2(1 + b)
> 0 . (4.15)

Analogously, from π̄
(ε)
BAB (see file S3), we obtain

a∗BAB = −
2 + 3b+ e(2 + b)−

√
4 + 16b+ 4e+ b(4e+ 17b) + b2(4b− 2e+ e2)

2(1 + b)
> 0 . (4.16)

In accordance with the observation in Fig. 2B that π̄
(ε)
BAB exhibits an optimal recombination

rate if the true π̄ does, a∗BAB provides a much better prediction than a∗B for the range of
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parameters in which the exact, numerically determined invasion probability π̄ of A1 has a

non-zero optimal recombination rate. Here are the critical values of a for the parameters in

Fig. 2B, where a = 0.06:

• If e = 0.025 (red curves), then a∗B ≈ 0.080, a∗BAB ≈ 0.033, and a∗BAB < a < a∗B,

• If e = 0 (black curves), then a∗B ≈ 0.085, a∗BAB ≈ 0.047, and a∗BAB < a < a∗B.

• If e = −0.025 (blue curves), then a∗B ≈ 0.090, a∗BAB ≈ 0.0602, and a < a∗BAB < a∗B.

Indeed, all blue curves are monotonically decreasing.

By assuming weak evolutionary forces and applying the corresponding limit (Sect. 3.2) to

a∗B (or working with (A1.11)), we obtain

a∗B ≈ ã∗B = b . (4.17)

Therefore, with weak evolutionary forces and because a < b, π̄
(ε)
B decreases with increasing

recombination near r = 0. In contrast, the weak-forces approximation applied to a∗BAB yields

a∗BAB ≈ ã∗BAB =
b− e

2
, (4.18)

such that a nonzero optimal recombination rate is predicted by this approximation if b−e
2
<

a < b. Indeed, this inequality is satisfied for the red and black dashed curves in Fig.

2B, but not for the blue curves. Hence, (4.18) provides a rough, but simple, estimate of

when π̄ exhibits a non-zero optimal recombination rate, whereas (4.17) never predicts this

phenomenon. In particular, (4.18) shows that positive epistasis increases the range of values

a for which π̄(ε) is maximized at a strictly positive recombination rate.

In closing, we note that a non-zero optimal recombination rate was already inferred by

Ewens (1967) for a two-locus model of a panmictic diploid population, and by Aeschbacher

and Bürger (2014) for a diploid version of the present continent-island model, but without

taking epistasis into account.

5 Averaged invasion probabilities

Efficient local adaptation of the island population will require the successful invasion, or

establishment, of several, if not many, weakly beneficial mutants. They can occur at an

arbitrary physical distance to the already established polymorphism, and neither their addi-

tive nor their epistatic fitness effects will be known a priori (and often also not a posteriori).

Therefore, we investigate various scenarios in which the recombination rate between A and

B, as well as the effects a and e of the new mutants, are drawn from appropriate distri-

butions. In order to obtain expected invasion probabilities of the new mutant A1, we need
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to integrate the mean invasion probability π̄ with respect to the chosen distributions of the

parameters r, a, and e. For the recombination rate between loci A and B we follow Yeaman

et al. (2016) and assume a uniform distribution of r ∈ [0, 1
2
]; we denote the corresponding

probability density by u(r). For the distribution of additive fitness effects a, we assume a

exponential distribution with mean ā, which we denote by

f(a) =
1

ā
e−a/ā. (5.1)

For the distribution of epistatic effects, we consider two cases. In the first, we follow Martin

et al. (2007), who deduced an epistasis distribution from an extended version of Fisher’s

geometric model and fitted it to two empirical data sets from haploid organisms. Their

epistasis distribution is a normal distribution with mean 0 and variance twice the variance

of the additive fitness effect of the new mutation (thus, independent of the ‘ancestral strain’),

i.e.,

E[h] = 0 and Var[h] = 2ā2, (5.2)

where h denotes the probability density of e. Defined in this way, h(e) is a distribution of

epistatic interactions between random mutations (i.e., beneficial and deleterious), whereas

in our model both mutations (A2 → A1 and B2 → B1) are beneficial.

Building on the work by Martin et al. (2007), Blanquart et al. (2014) provided results for

the mean and variance of a distribution of genetic interactions between beneficial mutations.

Denoting the density of epistatic effects between beneficial mutations by h+, we conclude

from their equation (S13) that h+ is a normal distribution with mean and variance given by

E[h+] = −πā and Var[h+] = (16− π2)ā2, (5.3)

which implies that 89.8% of all mutations have a negative epistatic effect.

Because analytical evaluation of the expectations of the approximate invasion probability

π̄
(ε)
B with respect to the distributions of r, a, or e seems unfeasible, we present only results

from numerical integration of the exact, numerically determined π̄. Our main focus is on

the role of linkage and epistasis.

In order to approximate, for instance, the integral π̄u =
∫ 1/2

0
π̄(r)u(r)dr for the average

invasion probability of linked mutations with fixed a, b, and e, we define a grid in r and m.

At each grid point the numerical value of the integrand is computed. The resulting discrete

two-dimensional surface is subsequently approximated by a continuous function with the

built-in Mathematica method Interpolation. This continuous function is then numerically

integrated over r to get a numerical approximation for π̄u. Analogous methods are used to

compute the invasion probability averaged over f , h or h+, or over combinations of these

distributions, which are always assumed to be independent.
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We use notation such as

π̄f =

∫ ∞
0

π̄(a)f(a)da, π̄f,u =

∫ 1/2

0

∫ ∞
0

π̄(a, r)f(a)da u(r)dr, (5.4a)

π̄f,u,h =

∫ ∞
−∞

∫ 1/2

0

∫ ∞
0

π̄(a, r, e)f(a)da u(r)dr h(e)de, (5.4b)

for invasion probabilities averaged over the indicated distributions. To emphasize that a

particular value is fixed, e.g., e = 0 or r = 1
2
, we indicate this by additional subscripts, e.g.,

by π̄f,e=0 or π̄f,h,r=1/2, respectively. Since the distributions are independent, a different order

of the subscripts does not change the result.

Figure 5A shows that linkage affects the averaged invasion probability in essentially the same

way for all three values e = −0.005, 0, 0.005 (compare the shapes of the curves of the same

line style but of different color). The averaged invasion probability is always declining in

m, and for large r this decline is much steeper than for small r. Indeed, when m gets close

to mB, invasion probabilities with the same strength of linkage ‘group’ together (see inset),

whereas for small m invasion probabilities with the same e are similar, and identical if m = 0

(Remark 4.1(i)). Because of the averaging over a, invasion is possible for every m ≤ mB since

mutants of large effect can occur even if ā is small. However, the corresponding invasion

probability may be negligibly small for large m, especially if r is large (see inset). Thus, in

concordance with previous results (e.g., Fig. 1B and Fig. 4), this figure confirms that tight

linkage becomes essential for facilitating, or even enabling, invasion if migration rates are

high.

Figure 5B demonstrates the consequences of drawing epistatic effects from either the dis-

tribution h (green curves) or h+ (orange curves). In the first case, where E[h] = 0, the

invasion probability close to m = 0 is higher than if e = 0, regardless of the degree of linkage

(cf. Remark 4.1). In the second case, in which epistatic effects are negative on average,

i.e., E[h+] < 0, the invasion probability (orange curves) for small migration rates is reduced

substantially compared to both other scenarios.

Notably, in Figs. 5A and 5B, curves of different color and dashing style can cross. For instance

in B, the short-dashed black curve is above the solid and the long-dashed green curve unless

m is very small. Thus, tight linkage provides a greater advantage for invasion than a higher

fitness (1 + b + a + e) of the double mutant A1B1 caused by positive epistasis. For small

m, the higher fitness provides the greater advantage. Similarly, above a critical migration

rate, the invasion probability of tightly linked mutations with, on average, negative epistasis

(short-dashed orange curve) is higher than that of unlinked or loosely linked mutations with

no epistasis (long-dashed and solid black curves), and even higher than that with, on average,

positive epistasis (long-dashed and solid green curves). We observed this effect already in

Fig. 3 for fixed values of e and r, where we discussed it briefly. In particular, (4.13) provides

a reasonably accurate approximation for the critical value m at which the advantages of
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Figure 5: Averaged invasion probabilities of new mutations as functions of m. In all panels
the invasion probability is averaged with respect to f(a) with mean ā = 0.01. The only
constant parameter is b = 0.1, so that the maximum possible migration rate is mB ≈ 0.091.
(A) For each of the (fixed) epistatic values e = 0.005, 0, −0.005, the invasion probabilities of
A1 under free recombination (r = 0.5) and under tight linkage (r = 0.01) are compared with
that under a uniform distribution u(r), indicated in the legend by r ∼ u. The inset shows the
approach to zero for m close to mB. (B) is analogous to (A) except that e is drawn from the
distributions h (indicated by e ∼ h, green) or h+ (e ∼ h+, orange), or e = 0 (black). Here,
E[h] = 0, Var[h] = 2ā2 = 0.0002, and E[h+] = −πā ≈ −0.031, Var[h+] ≈ 0.00061, according
to (5.2) and (5.3) with ā = 0.01. Note that the black curves in A and B are identical. For
the epistatic values in A and the epistasis distributions in B, panel (C) displays the ratios
of the invasion probabilities averaged over a, r, and potentially e (i.e., π̄f,u,e=−0.005, π̄f,u,e=0,
π̄f,u,e=0.005, π̄f,u,h,π̄f,u,h+), and the corresponding invasion probabilities for unlinked loci (e.g.,
π̄f,h,r=1/2). The line colors in C match those in A and B. Thus, the invasion probabilities
shown by the solid curves in panels A and B are divided by those of the long-dashed curves
of the same color. The curves tend to infinity at the value m at which the dashed curves in
A and B reach zero. (D) shows the ratios of the invasion probabilities averaged over a and
e and of those without epistasis. The solid curves are obtained by additional averaging over
r, i.e., they show π̄f,u,h/π̄f,u,e=0 and π̄f,u,h+/π̄f,u,e=0. Thus, the invasion probability of each
of the colored curves in B is divided by the invasion probability of the black curve in B of
the same dashing style. The gray horizontal line in C and D is at 1 to provide a reference
for the ratios.
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higher epistasis and tighter linkage balance.

The effect of linkage on the invasion probability is further highlighted in Figure 5C. For

various choices of e (fixed or drawn from a distribution), the graph shows ratios of invasion

probabilities averaged over a and potentially e when A1 occurs at a randomly chosen recom-

binational distance r (r ∼ u), and the correspondingly averaged invasion probabilities when

A1 occurs at an unlinked locus. All curves start at 1 and tend to infinity at mB. The shape

of these curves shows that at high migration rates the strength of epistasis is a much weaker

factor in determining the invasion probability than linkage.

Panel D displays the ratios of the invasion probability averaged over f and either h or h+ and

the invasion probability in the absence of epistasis, each for three different recombination

scenarios. Thus, in D, each of the green and orange curves in B is normalized by the black

curve in B with the same dashing style. Conspicuously, the green curves are all above one

and the orange curves below one. Therefore, a symmetric epistasis distribution with mean 0

(h) facilitates invasion of A1 compared to absence of epistasis, and an epistasis distribution

with negative mean (h+) impedes invasion compared to absence of epistasis. Interestingly,

for both distributions and all three recombination scenarios, except the green long-dashed

curve (for h and r = 0.5), the ratio of invasion probabilities is higher at m = mB than at

m = 0. Thus, epistasis tends to contribute more to invasion for high migration rates than

for low ones. Furthermore, if m is small, then for both h and h+ the long-dashed curves are

closer to the respective solid curves, whereas the short dashed curves are closer to the solid

curves if m is close to mB. Hence, if migration is weak, the invasion probability of unlinked

loci contributes more to the average, whereas the contribution of linked loci matters most if

migration is strong.

6 Approximate size of a genomic island

Yeaman et al. (2016) discussed several categories of explanation for the occurrence or main-

tenance of genomic islands of elevated FST between a pair of parapatric populations. A

particularly likely explanation is that linkage of locally beneficial de novo mutations to an

already established selection-migration polymorphism facilitates successful invasion of such

mutations in the face of maladaptive gene flow. Because linkage depends strongly on physical

distance, invasions should be successful predominantly locally around the already polymor-

phic site and thus lead to genomic islands of divergence.

Similar to the quantity C95 that was introduced by Yeaman et al. (2016), we investigate the

quantity C50, the 50% window size, which is the smallest neighborhood of the polymorphic

site in which 50% of all new mutations became established. Thus, C50 is the value of r

required to contain 50% of the probability density of π̄ as a function or r. Formally, C50 is

defined by
∫ C50

0
π̄(r)dr = 1

2

∫ 1/2

0
π̄(r)dr.
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A small value of C50 corresponds to a locally restricted genomic region in which the mutations

profit from their linkage to the polymorphic site. A high value of C50 indicates that loosely

linked, i.e., mutations in a large genomic region, contribute substantially to the cumulative

invasion probability.
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Figure 6: The size of the window within which 50% of all successfully establishing linked
de novo mutations occur (C50) averaged over a with ā = 0.01. The black and the purple
curve are for fixed values of epistasis, e = 0 and e = 0.05, respectively. The orange and the
green curve are for the average over h+ and h, respectively. Here, b = 0.1. The units on
the ordinate are in centimorgan, thus we identify r = 0.01 with 1cM. Based on Haldane’s
mapping function, this is a suitable approximation if r . 0.25.

We compute C50 numerically and focus, in particular, on the effect of epistasis on the window

size. In accordance with intuition, C50 decreases with increasing m in all observed instances.

In the absence of epistasis this was also observed for C95 by Yeaman et al. (2016). For

small to intermediate migration rates, there is a sharp decline of the window size (Fig. 6).

The decline is sharpest for a high fixed value of epistasis (purple curve), and more gradual

and onsetting at smaller migration rates for the other three cases (no epistasis or epistatic

coefficients drawn from either h or h+). The reader may keep in mind that the window size

is computed based on successfully invading mutants; therefore, the fact that π̄ decreases as

a function of m (Sect. 4) does not directly yield the observed decay of C50.

The results in Fig. 6 show that fixed positive epistasis increases the range of migration rates

in which the window size is wide, so that the emergence of tight clusters of mutations, or

distinct genomic islands, is unlikely unless migration is quite strong. This is not surprising

because in this figure e = 5ā is assumed for all new mutations, thus epistasis provides a
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substantially increased invasion probability to mutants of small additive effect; therefore,

they can invade even if they are not tightly linked to the polymorphism. The figure also

shows that if epistatic values are drawn from a distribution (e ∼ h or e ∼ h+), C50 is very

similar to the window size observed in the absence of epistasis. This has a relatively simple

explanation. Both distributions have a variance that is proportional to ā2 (eqs. 5.2, 5.3),

and most of the successfully invading mutants therefore have a small positive epistatic effect

(between 0 and 0.04 for the parameters shown). They increase the invasion probability of

mutants of small effect much less.

It seems counterintuitive that C50 is higher for epistatic effects drawn from the distribution

h+ (orange curve), which has a negative mean, than C50 for epistatic effects drawn from

the distribution h (green curve), which has mean 0. However, the variance of h+ is about

three times higher than that of h, so that the range of values e > 0 that contribute most

to an increased invasion probability is nearly the same for both distributions. Drawing a

value e from that range is about four time as likely if e is drawn from h instead of h+,

but this affects mainly the invasion probability, i.e., the invasion probability of a mutant a

with epistatic effect drawn from h+ is considerably smaller than the invasion probability of

a mutant a with epistatic effect drawn from h, but the window is computed conditional on

invasion. Conditional on invasion, mutants with e drawn from h+ have a slightly higher a

than mutants for which e is drawn from h; therefore, they can invade at a (slightly) higher

distance from the polymorphic site. In summary, if the scenario that the strength of epistasis

is related to the additive effect is realistic, then epistasis may have only a weak effect on the

emergence and size of a genomic island of differentiation.

7 Discussion

We have provided an analysis of the effects of epistasis on the fate of a new, weakly beneficial

mutation in a haploid population that is exposed to maladaptive gene flow. The mutant, A1,

arises at a locus A that is linked (recombination rate r) to an already established migration-

selection polymorphism EB at a locus B. The existence of the polymorphism requires that

the immigration rate m of the deleterious allele B2 is bounded by the constantmB = b/(1+b),

where b is the selective advantage of B1. In particular, we characterized the region of the

parameter space, in which the de novo mutation A1 can survive the stochastic phase after its

occurrence (Propositions 3.1, 3.2, 3.4, 3.5). The first two propositions apply to evolutionary

forces of arbitrary strength, whereas the two others are derived under the assumption of

weak evolutionary forces, which yield simple and intuitive conditions for invasion. In each

case, invasion is impossible if e < −a. In this parameter regime, A1 exhibits sign epistasis,

i.e., the mutation A1 is deleterious in the presence of B1, but beneficial on the B2 background

(Weinreich et al., 2005). Therefore, sign epistasis prevents establishment of A1 independently
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of the (total) strength of the evolutionary forces. This is in line with the known effect of

sign epistasis to constrain the selective availability of mutational trajectories to genotypes

of high fitness, as laid out by Weinreich et al. (2005).

If the strength of epistasis is between −a and a certain bound er or em, which depends on

r or m, respectively, and on b, then invasion is possible below a critical value of m or r,

respectively. If e > er or e > em, then invasion of A1 in an equilibrium population at EB

is possible for every (admissible) m or r, respectively. The critical values er and em can be

positive or negative. If they are positive, then an additive mutant A1 (e = 0) can invade

only for sufficiently small m or r, respectively (see Fig. 1).

It is also important to determine if A1 can enter the population exclusively through the

single-locus polymorphism EB, or if there are further possibilities. If allele B1 is absent from

the island population, then, of course, A1 can invade the resident population consisting of

A2B2 individuals if m < a
1+a

= mA. If B1 is present and 0 < m < mB, then the single

locus polymorphism exists and invasion of allele A1 is possible (Propositions 3.1 and 3.2).

If m > mB > mA (which holds because we assume a < b), then the island population is

swamped by the continental type A2B2, which eventually becomes fixed.

A full treatment of the deterministic haploid two-locus two-allele dynamics under the weak

forces assumption with continent-to-island migration can be found in Bank et al. (2012).

They showed that the maximum possible number of internal equilibria is three and at most

one of them is stable. This stable equilibrium corresponds to a so-called Dobzhansky–Muller

incompatibility (DMI), which is the key to explain the evolution of intrinsic postzygotic

isolation. The convergence to this DMI is the most likely outcome of the long-term dynamics

after successful invasion, provided the population size is sufficiently high.

Because the equations of branching process theory that yield the probability of invasion are

transcendental, there is no analytical solution. However, if one assumes that the branching

process is slightly supercritical, then general approximations are available (Athreya, 1993;

Haccou et al., 2005, and Sect. 4). Although the explicit approximations are complex and not

directly informative (File S3.2), they are useful to investigate the dependence of the invasion

probability on the model parameters (Sect. 4.1). We find that the invasion probability is

always decreasing with respect to m, but this is not so with respect to r. There exists a

parameter region in which a non-zero optimal recombination rate occurs. This means that

there is an r > 0, where the invasion probability is maximized (Sect. 4.2). This phenomenon

was also observed in the diploid case without epistasis (Aeschbacher and Bürger, 2014).

Local adaptation to a new environment is often modeled by assuming that a quantitative

trait is subject to Gaussian stabilizing selection, where the population mean is displaced

from the fitness optimum. If this displacement is large, the fitness landscape around the

mean or the wild type will be convex in this setting. In particular, every mutation that
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brings the population closer to the optimum is beneficial and positive epistasis will accelerate

adaptation. For this situation our parametrization (2.1) is well suited. If the population is

not far from the optimum, the fitness landscape will be concave and the maximum fitness

cannot be exceeded by new mutations. In this situation, the parameterization in (4.14) may

be most appropriate. If mutations of large effect can overshoot the optimum, then, depending

on the background on which they occur, they may reduce fitness. In such a case, negative

epistasis may be beneficial for invasion. This effect is demonstrated in Fig. 4, where the

highest invasion probability occurs for negative epistasis, especially if linkage is weak (green

curves). Once e < −a, invasion is no longer possible in our model (e.g. Proposition 3.1).

Obviously, our model was not designed to study invasion close to a fitness optimum.

Because, in general, neither the genetic effects (a and e) of mutants nor their recombinational

distance (r) from the existing polymorphism are known, especially not a priori, in Sect. 5 we

studied expected invasion probabilities if a, e, and r are drawn from probability distributions.

We assume that the distribution f of additive fitness effects is exponential with mean ā.

Recombination rates are drawn from a uniform distribution.

The distribution of epistasis (in fitness) depends crucially on the relative position of the

population with respect to the optimum on the fitness landscape. We use two different

ones. The normal distribution h, which has mean 0 (see eq. 5.2), was derived from Fishers

geometric model for the epistatic interaction between arbitrary mutations (Martin et al.,

2007). This may be only of limited suitability for our purposes, because we model epistasis

as the interaction between A1 and B1, which both are advantageous. To account for the

interaction of beneficial mutations, we use h+, a normal distribution with a negative mean

(see eq. 5.3). This distribution was also derived from Fisher’s geometric model by considering

the interactions of beneficial mutations (Blanquart et al., 2014). In the derivations of h and

of h+, it was assumed that the population is far away from the optimum.

It would be interesting to explore more realistic distributions of additive effects and recom-

bination rates, e.g., accounting for recombination coldspots. However, even for our relatively

simple choice of distributions, we only show numerical results, due to the intractability and

complexity of the analytical derivations of the averaged invasion probabilities (not shown).

We found that the effects of linkage and epistasis on the invasion probability, considered as

a function of m, are essentially independent. A change in the recombination rate affects the

invasion probability in a similar way across different epistatic values. Drawing the recombi-

nation rate from a uniform distribution again has a similar effect across different epistatic

values (see Fig. 5A,B).

Averaging over epistasis has more subtle consequences for the invasion probability. The effect

depends crucially on the properties of the distribution of epistasis. The effects of averaging

over h or h+ can be summarized as follows. For each degree of linkage, the larger share of
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positive epistatic values in the distribution of h leads to a general increase of the invasion

probability if compared to the non-epistatic case. The opposite is true if e is distributed

according to h+ with a negative mean. These facts are apparent in Fig. 5D, which shows the

ratios of the invasion probability with and without epistasis for the same degree of linkage.

Comparison of curves with different degree of linkage in Fig. 5 shows that an effect observed

already in Fig. 3 (for fixed values of e and r) extends to distributions of the parameters r

and e. For small values of m, a larger fraction of positive epistatic values is more efficient

in boosting the invasion probability in comparison to a non-epistatic scenario with tighter

linkage. This is reversed at some value of m, such that the scenario with non-epistatic linked

loci is more effective in enhancing invasion (e.g., compare the black solid curve with either

the orange dotted or the dashed green curves in Fig. 5B).

Finally, we investigated the effect of epistasis on the size of the neighborhood, or window,

around an already existing polymorphism in which 50% of all successfully invaded linked de-

novo mutations occur (see Fig. 6). If the additive fitness value is drawn from an exponential

distribution, we can conclude that epistatic values taken from either of our two distribu-

tions, do not substantially affect C50 in comparison to e = 0. This is in stark contrast to

the difference in effect of these distributions on the averaged invasion probability (see Fig.

5). The reason is that C50 is conditioned on successful invasion. In this regard, the two

distributions are very similar, as is shown in Fig. 6. In summary, unless epistasis is positive

and very strong, on average it seems to have a weak effect on the size of genomic islands.

However, because positive/negative epistasis can increase/decrease the invasion probability

of mutants substantially, it may strongly affect the time horizon in which genomic islands

emerge. In general, only for values of m from the upper half of the migration rate inter-

val, pronounced, locally restricted genomic islands can build up through de-novo mutations

around an established polymorphism. Interestingly, this is also true if the bulk of mutations

has (slightly) negative interaction with the background allele.

Supporting information

The supporting information, i.e., the Mathematica files S1-S5, are available at
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A1 Appendix

A1.1 Approximations of the invasion probability π
(ε)
i in (4.3)

Here, we derive the expression B(ε) given in (4.4), which plays a key role in the approximation

of the invasion probability π
(ε)
i in (4.3), derived for a supercritical branching process by

Athreya (1993) (see also Haccou et al., 2005, pp. 126-128). In addition, we show that the

expression BAB(ε) given by Aeschbacher and Bürger (2014) (eq. (64) in their Supporting

Information, File S1) satisfies (4.5) and B(ε) ≤ BAB(ε). However, if r > 0, in general the

difference between BAB(ε) and B(ε) is of order O(ε), so that BAB(ε) does not always yield a

first-order approximation in ε of π
(ε)
i . Nevertheless, for small values of r, BAB(ε) often yields

a more accurate approximation of π
(ε)
i than B(ε). In particular, in contrast to B(ε), it has

the feature that the invasion probability may be maximized at a positive r.

We assume independent Poisson offspring distributions. Our starting point is the expression

(5.81) in (Haccou et al., 2005, pp. 127), which in our notation from Section 4 reads

B(ε) =
2∑

k=1

uk Var

[
2∑
j=1

vjξkj

]
+ λ(λ− 1)

2∑
j=1

ujv
2
j , (A1.1)

where ξkj are the Poisson variates for the offspring distribution, so that the expected number

of offspring of type j of a type k parent is E[ξkj] = λkl. Therefore, Var[ξkj] = λkl. For

notational simplicity, we omit the dependence of λ, u, and v on ε. Recall from Section 4

that the entries of the mean matrix M are the λkl, and that λ is its principal eigenvalues.

We observe that

2∑
k=1

uk Var

[
2∑
j=1

vjξkj

]
=

2∑
k=1

uk

2∑
j=1

v2
j Var[ξkj]

=
2∑
j=1

v2
j

2∑
k=1

ukλkj

= λ
2∑
j=1

v2
juj (A1.2)

because u is the left principal eigenvector of M. Substituting (A1.2) into (A1.1) yields (4.4).

Aeschbacher and Bürger (2014, eq. (64) in File S1 of their Supporting Information) had

obtained an erroneous expression (because of a missing superscript), which after using uM =

λu can be written as in (4.5). Now we show that B(ε) ≤ BAB(ε). It suffices to show∑2
j=1 ujv

2
j ≥ 1. From the normalization (4.2), we obtain u2 = 1 − u1 and v2 = (1 −

u1v1)/(1− u1). Therefore,

u1v
2
1 + u2v

2
2 = u1v

2
1 + (1− u1)

(1− u1v1)2

(1− u1)2
= 1 +

u1(1− v1)2

1− u1

≥ 1 . (A1.3)
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It is easily seen that
∑2

j=1 ujv
2
j − 1 = O(ε), but not necessarily of order O(ε2). Therefore,

B(ε) and BAB(ε) may differ in first order of ε. Therefore, (4.3) shows that BAB(ε) does not

necessarily provide an approximation of π
(ε)
i to order ε. However, if r = 0, then BAB(ε) =

B(ε). To show this, we need the explicit formulas; let’s see, what we really need; we already

have (4.6).

Let 0 < a < b < 1, e > −a, and 0 < m < b/(1 + b). If r → 0 or if m→ 0, then

B(ε)→ (1 + a+ b+ e)2

(1 + b)2
, (A1.4)

and the same holds for BAB(ε).

Refer to figures for the accuracy of the approximation based on BAB(ε) and for the fact that

it shows maximization at r > 0.

A1.2 Explicit approximations for small m or small r

Because λ(ε) = 1 + ρ(ε) = 1 if r = r∗ or m = m∗, we have π
(ε)
1 = π

(ε)
2 = 0 in these cases. In

addition, for small r and based on B(ε), we obtain the approximation(
π

(ε)
1 , π

(ε)
2

)
=

2(1 + b)(a+ e)

(1 + b+ a+ e)2

(
1− (1 + b− a− e)mr

b(a+ e)(1−m)
,
(1 + a)[b(1−m)−m]r

b(b+ e)(1−m)

)
+O(r2). (A1.5)

From (2.6), (2.7) and (A1.5) we obtain for the mean invasion probability close to r = 0:

π̄
(ε)
B =

2(1 + b)[b(1−m)−m]

b2(b+ e)(1 + b+ a+ e)2
·
(
b(b+ e)(a+ e)

− [b− a+ b(b− 2a− e− a2 − ae)− (a+ e)2]mr

1−m

)
+O(r2). (A1.6)

The leading-order term can be rewritten as in (4.7).

For small m, the first-order approximation is more complicated, so we give only the leading

term: (
π

(ε)
1 , π

(ε)
2

)
=

2(1 + b)(a+ e)

(1 + b+ a+ e)2

(
1,

(1 + a)r

b+ e+ r(1 + a)

)
+O(m) . (A1.7)

For π̄
(ε)
B , I obtained the following first-order approximation in m near m = 0:

π̄
(ε)
B =

2(1 + b)(a+ e)

(1 + b+ a+ e)2

−m 2(1 + b)(b+ e)

b(1 + b+ a+ e)2(b+ e+ r + ar)3
[A0 + A1r + A2r

2 + A3r
3] , (A1.8a)
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where

A0 = (1 + b)(a+ e)(b+ e)2 , (A1.8b)

A1 = (b+ e)[(2a2 + b)(1 + b) + (3 + 2b+ a+ 2ab− e)e+ a(2 + b)] , (A1.8c)

A2 = (1 + a)[2b2 + e(2− 3a+ ab− 3e) + b(2− 2a+ a2)] , (A1.8d)

A3 = (1 + a)2(1− a+ b− e) . (A1.8e)

In the supporting material File S3, Sect. 4, we show that π̄(ε) is decreasing for small m. We

do this by showing that A0 + A1r + A2r
2 + A3r

3 > 0, if 0 < r < 1/2.

A1.3 Explicit approximations for weak evolutionary forces

For weak evolutionary forces (Section 3.2), the approximations for π become simpler:

π̃
(ε)
1 =

√
R̃
(
b(2a− b+ e− r) +

√
R̃
)(

b(b+ e+ r) +
√
R̃
)

b2 (2b3 + b2(4e+ 3r) + b(2e2 + 3er + r(r − 6m)) + r(
√
R̃− 6em)

(A1.9a)

π̃
(ε)
2 =

2mr − b(b+ e+ r) +
√
R̃

2mr
π̃

(ε)
1 (A1.9b)

and

π̃
(ε)
1AB =

(
b(2a− b+ e− r) +

√
R̃
)(

b(b+ e+ r) +
√
R̃
)

2b
√
R̃

, (A1.10a)

π̃
(ε)
2AB =

2mr − b(b+ e+ r) +
√
R̃

2mr
π̃

(ε)
1AB (A1.10b)

or shorter:

˜̄π(ε) =

√
R̃
(
b(2a− b+ e− r) +

√
R̃
)(

b(b+ e+ r)− 2m(b+ e) +
√
R̃
)

b2 (2b3 + b2(4e+ 3r) + b(2e2 + 3er + r(r − 6m)) + r(
√
R̃− 6em)

(A1.11)

and

˜̄π
(ε)
AB =

(
b(2a− b+ e− r) +

√
R̃
)(

b(b+ e+ r)− 2m(b+ e) +
√
R̃
)

2b
√
R̃

(A1.12)

with R̃ = b(b(b+ e)2 + 2(b+ e)(b− 2m)r + br2).
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SI figures
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Figure S1: For three different values of epistasis the establishment probability π̄ is plotted as a
function of the migration rate. The solid curves correspond to the numerical solution π̄. The
dotted curves correspond to the approximation π̄

(ε)
B , whereas the dashed curvescorrespond

to π̄
(ε)
BAB. The inset shows the relative error of the approximations with respect to the exact

numerical solution. The dashing of the curves in the inset corresponds to the dashing of the
approximations in the main figure. The parameters are a = 0.06, b = 0.1 and r = 0.001.
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Figure S2: The invasion probability as an increasing function of the recombination rate. The
dashed curves are for r = 0.5, which is in this case the optimum. The orange curves have the
lower migration rate m = 0.03, whereas m = 0.05 for the red curves. The other values are
a = 0.09, b = 0.1 and e = 0.75. The inset shows the difference between the curves variable
in r and those with r = 0.5 for large r.
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Figure S3: In this Figure, the approximation π̄B (red curves) has two local optima, one at
r = 0 and another one for r > 0. The black curve is the numerical solution, whereas the blue
curves correspond to π̄BAB. The parameter values are a = 0.0035, b = 0.004, m = 0.002 and
e = 0. Thus, a∗ = 0.00397. The inset shows, in detail, what happens for small r.
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Zan Y., Forsberg K. G. and Carlborg Ö. 2018. On the Relationship Between High-Order

Linkage Disequilibrium and Epistasis G3: GENES, GENOMES, GENETICS, vol. 8 no. 8

2817-2824

Zhivotovsky L. A., Gavrilets S. 1992. Quantitative variability and multilocus polymorphism

under epistatic selection. Theor. Popul. Biol. 42, 254-283.


