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PART 1 

General Introduction 

The anthropogenic emissions of greenhouse gases (GHG) into the atmosphere over the 

last decades and in the future will lead to increased average global surface temperatures 

(IPCC, 2014). This will alter biogeochemical cycling of all major elements and ecosystems, 

and impact species all around the globe. Consequences such as changes in precipitation, 

more frequent and more severe wildfires and torrential rains, or a rising sea-level threaten 

habitats and increase the risk of species extinction (IPCC, 2014). The potential loss of 

ecosystem services together with direct effects of a changing climate (e.g., desertification, 

extreme weather events, reduced food security and water availability), pose threats to 

our society in the future (IPCC, 2014). Adaptation to climate change and mitigation 

strategies to reduce GHG emissions are therefore some of the most important challenges 

to humanity in the 21st century.  

The response of earth`s climate system to future changes is estimated today using Earth 

System Models (ESMs) or Land Surface Models (LSMs), which are coupled to global 

atmospheric circulation models, connecting atmosphere with land and ocean. Predicted 

CO2 emissions are taken as an input and passed through the ESM or LSM. The result is an 

estimate of radiative forcing and corresponding temperature increase (IPCC Working 

Group I, 2013). Accurate predictions of climate change and policy decisions informed by 

these in part rely on the performance of ESMs. If certain model components are 

systematically under- or overestimated (or not even included at all), model predictions 

might be not reliable. This in turn will lead to misleading information on future GHG 

concentrations and global temperatures. It is therefore necessary to develop a solid and 

robust knowledge base on biogeochemical cycles, global carbon (C) pools and fluxes, 

which form the base of ESMs.  
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The Role of Soils in the Global Carbon Cycle 

Soils are an important part of global biogeochemistry, especially regarding the C-cycle. In 

their seminal book Biogeochemistry, Schlesinger & Bernhardt (2013) estimated the global 

active C pool at about 40,800 petagrams (1015) C, most of it stored in the oceans (38,000 

Pg). In terrestrial ecosystems, the largest amount of C is stored in soils (about 3800 Pg C 

in the first three meters of soils including peatlands and permafrost, Lal & Stewart, 2019). 

This is a lot more than what is contained in the atmosphere and biosphere (about 800 and 

600 Pg respectively, Lal & Stewart, 2019).  

Through photosynthesis, plants fix atmospheric CO2 and produce organic compounds that 

make up their biomass. Soil macro- and mesofauna, as well as changing environmental 

conditions (such as freezing-thawing, or drying-rewetting) break down dead plant 

material into smaller pieces (particulate organic matter, POM) that enter the soil system 

(Frouz, 2018; Swanston & Trumbore, 2009).  Plants also actively and passively exude 

organic compounds through their roots to attract symbiotic microorganisms and increase 

nutrient and water acquisition (Bais et al., 2006). This carbon adds to the dissolved organic 

matter pool (DOM) in soils. 

Most C in soils is contained in Soil Organic Matter (SOM), which can be defined as a  

“[…] mixture of recognizable plant and animal parts and material that has been altered to 

a degree that it no longer contains its original structural organization” (Oades, 1989, cited 

in Amundson, 2001). It is interesting to note that this definition does not account for 

microbial remains, i.e., microbially-derived ‘solid’ organic matter, thought to make up a 

significant part of SOM (Liang et al., 2019). Another more recent definition is given by 

Lehmann & Kleber (2015). They proposed “viewing soil organic matter as a continuum 

spanning the full range from intact plant material to highly oxidized carbon […]”. This 

definition includes the previously mentioned plant and animal remains, as well as 

bacterial and fungal necromass. The soil microbiome uses SOM as an energy source 

(catabolism) to build up their own biomass (anabolism). CO2 released during autotrophic 

respiration by plants and heterotrophic respiration by microbes completes the soil C cycle 

in the soil-atmosphere-plant-continuum (Norman & Anderson, 2005).  
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While primary production influences the C input into soil, the decomposition of Soil 

Organic Carbon (SOC) controls the C release from soils to the atmosphere. Consequently, 

microbial decomposition plays an important role in the global C-cycle (Liang et al., 2019). 

Due to the large amount of C stored in soils, an increase of this flux can increase global 

atmospheric CO2 concentrations, accelerating climate change through the greenhouse 

effect (Von Lützow et al., 2006; Rustad et al., 2000). 

Mechanisms of Carbon stabilization 

The turnover time (τ) of soil carbon is defined as the time until the carbon stock is 

completely depleted when there are no more inputs. It can be calculated for soils in a 

steady state as: 

𝜏0 =
𝐶

𝑆
    (1) 

with C being the mass of SOC and S being the sum of all C fluxes out of the system 

(Swanston & Trumbore, 2009). Processes that protect SOM from decomposition and 

therefore decrease the turnover time and increase the residence time of SOM in soils, are 

generally referred to as C-stabilizing processes (Von Lützow et al., 2006). Three main 

mechanisms of C stabilization in soils are generally defined (see Lützow et al., 2006): 

Selective preservation, inaccessibility, and binding to mineral surfaces. Other authors 

describe physical disconnection and sorption-desorption processes as the main 

preservation mechanism, in addition to freezing in permafrost (Schmidt et al., 2011).  

The concept of selective preservation is based on the theory of chemical recalcitrance, 

making molecules with certain structure or elemental composition less preferable for 

microorganisms (Von Lützow et al., 2006; Marschner et al., 2008). Over time, they 

accumulate in soils as long as substrates of higher quality are available. Traditionally, 

chemical recalcitrance of big organic molecules in soils was seen as the main mechanism 

of C sequestration. However, in the last two decades this view has been challenged, since 

for example experiments with stable isotopes revealed that complex polyaromatic 

molecules such as lignin are decomposed relatively quickly (Baveye & Wander, 2019; 
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Lehmann & Kleber, 2015; Von Lützow et al., 2006) and that the addition of labile 

substrates even enhanced the mineralization of recalcitrant molecules through the 

priming effect (Hamer & Marschner, 2005). Selective preservation can explain a 

“progressive change of residue composition during the initial stages of decomposition 

[…]” but not “[…] the long-term stabilization of potentially labile compounds” (Von Lützow 

et al., 2006). 

Organic matter (OM) cannot be decomposed if it is inaccessible to microbes or their 

extracellular enzymes. During aggregate formation (see below), residue in any stage of 

decomposition can be occluded within aggregates, protecting it from microbes (Von 

Lützow et al., 2006; Six et al., 2002). Another way of spatial inaccessibility can be a lack of 

water, since it is needed as transport medium for both substrates and extracellular 

enzymes (Schimel, 2018). If soil moisture is too low to form a water film that connects 

microbe and substrate, decomposition cannot happen. The probability for substrate to be 

decomposed also depends on its concentration in the soil: Lower concentrations lead to 

lower decomposition rates because of the decreased likelihood of a microbe encountering 

a substrate molecule (Don et al., 2013). 

SOM can sorb to mineral surfaces, forming strong organo-mineral associations (Kleber, 

Sollins, & Sutton, 2007; Lehmann & Kleber, 2015; Von Lützow et al., 2006). This sorption 

can happen through ligand exchange forming organo-mineral complexes, cation bridges 

with polyvalent cations (Ca2+, Mg2+, Fe3+, Al3+) and weak electrostatic van der Waals-forces 

(Kleber et al., 2007; Von Lützow et al., 2006). All these associations are highly dependent 

on the chemical structure of OM and other abiotic factors, such as which minerals are 

involved, or surface area and soil pH. Nevertheless, 50-75% of SOM can be found in 

organo-mineral associations in temperate soils (Christensen, 2001).  

Lehmann & Kleber (2015) combined both the concepts of inaccessibility of substrates and 

mineral protection in their “soil continuum model” (SCM). It consists of progressive 

degradation of plant and animal residues into large biopolymers and microbe-assimilable 

small biopolymers and monomers. Each size stage can be either protected from 

decomposition by occlusion within aggregates or by binding to mineral surfaces. The 
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smaller the compounds, the easier they are protected (by increased water-solubility and 

overall greater reactivity).  

As a more recent concept, Lehmann et al. (2020) proposed that C persistence in soils is a 

result of the interactions of microbes and their substrate, which depends on the chemical 

diversity of the substrate and is subjected to variations in time and the heterogeneity of 

their habitat: Microbes favour molecules that have a higher concentration in soils, 

because investing in metabolizing rare compounds is energetically less rewarding. This 

leads to a higher general diversity of compounds and with that a higher cost and lower 

benefit associated with their decomposition, increasing the overall persistence of C. 

Fluctuations in time (e.g., soil water content or temperature) and spatial heterogeneity 

can further influence this interaction positively or negatively, and together this “functional 

complexity” (Lehmann et al., 2020) could be used to explain and predict carbon 

accumulation in soils.  

Carbon Pools in Soils 

Models generally divide SOC into three pools with different turnover times, often defined 

as the “active”, “intermediate” and “passive” pool (e.g., Swanston & Trumbore, 2009). 

The active pool consists of undecomposed material or material in the early stages of 

decomposition such as plant litter, microbial necromass or root exudates that have a 

turnover time of “hours to months to years” (Swanston & Trumbore, 2009). As the 

probability of protection increases with decreasing particle size (see above), turnover time 

increases to “decades to centuries” (intermediate pool, Swanston & Trumbore, 2009) or 

even “thousands of years” (passive pool, Swanston & Trumbore, 2009). These pools have 

different sizes, with the “passive pool” is thought to contain most of the SOC (Schnecker 

et al., 2016).  

Different C pools in soils can be isolated in laboratories by using physical and chemical 

fractionation techniques. Chemical separation methods were often used in soil science to 

isolate humic substances that were thought to constitute the largest part of SOM. 

However, in the last decades this view was challenged and today, physical separation 
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methods are seen as a better way to gain representative SOM fractions (Baveye & 

Wander, 2019; Lavallee et al., 2020; Lehmann & Kleber, 2015). Fractions derived from 

separation with a density solution, e.g., sodium polytungstate (SPT, Na6[H2W12O40], ρ = 

1.6 – 2.0 g cm-3), are often associated with different SOM pools, and be used to infer 

active, intermediate and passive soil pools used in models. Their amount, C content, 

isotopic composition, as well as results from experiments with these fractions may be 

used to calibrate models (Crow et al., 2007; C. Poeplau et al., 2013; Von Lützow et al., 

2007; Zimmermann et al., 2007). In a first step, a light fraction with a density lower than 

1.6 to 2 g cm-3 is isolated. This fraction is mainly contains POM and is comparable to the 

active pool, consisting of relatively fresh plant inputs with a low turnover time 

(Zimmermann et al., 2007). The intermediate pool is represented by plant material (POM) 

in later stages of decomposition that has been protected from further decomposition by 

occlusion within soil aggregates. After the light fraction is removed, this occluded fraction 

is usually isolated by ultrasonication to disperse aggregates and a further SPT step. The 

remaining material (also called the heavy fraction) with a density greater than 1.6 to 2 g 

cm-3 consists of the mineral-associated OM (MaOM) and sand particles, which can be 

further separated by sieving to 63 µm. MaOM is regarded as slow-cycling (as discussed 

above) and comparable to the passive pool of models. There is also some OM contained 

in the sand-fraction (heavier than POM but larger than 63 µm). This fraction (together 

with dissolvable OM) is usually only a small proportion of total SOM and therefore usually 

not intensively investigated (Lavallee et al., 2020).  

While this separation can be done on bulk soil, it is often done with previously isolated 

aggregate size classes to include the different roles of SOM stabilization that aggregates 

of different sizes have (Six et al., 2004). Tisdall & Oades (1982) proposed that there is a 

hierarchical order of aggregates in temperate soils: Macroaggregates (> 250 µm diameter) 

consisting of microaggregates (< 250 µm) plus organic molecules that bind these together. 

Microaggregates in turn consist of primary particles (silt and clay) mostly held together by 

electrostatic forces. They can also be formed inside of macroaggregates. POM can be 

included anywhere in this soil matrix, for example between microaggregates inside a 

macroaggregate or inside of a microaggregate (Wilpiszeski et al., 2019). Soil disturbance 



 

15 

 

can release stable microaggregates from macroaggregates which then can clump together 

to form new macroaggregates (Six et al., 2000a). A combination of slaking (immersing dry 

soil in a defined volume of water for a specific amount of time) and wet-sieving (sieving 

with mesh sizes corresponding to aggregate size classes under water) can be used to 

isolate stable aggregates of different sizes (Von Lützow et al., 2007).  

Elevated Temperature 

According to kinetic theory, chemical reactions occur faster when temperature is 

increased and the availability of substrates is not limited (Arrhenius, 1889). The change in 

the reaction rate for every 10 °C change in temperature is defined as the Q10-value. This 

value is used to describe the temperature sensitivity of SOM as it depends on the 

activation energy needed for decomposition and the temperature (Feng & Simpson, 

2008): 

𝑄10 =
𝑘𝑇+10

𝑘𝑇
= exp [ 

10 × 𝐸𝑎

𝑅 × 𝑇 × (𝑇 + 10)
]    (2) 

With k being the reaction rate at the absolute temperature T (in K), Ea the activation 

energy needed for the reaction and R being the gas constant (8.314 J mol-1 K-1). SOM 

decomposition rates should increase with increasing surface temperatures caused by 

climate change. This might cause a positive feedback-loop, in which C stocks of soils are 

reduced and the concentration of CO2 in the atmosphere is further increased, which in 

turn further accelerates warming (Conant et al., 2011). Experimental evidence on this is 

however inconclusive and the response of SOM stocks to warming seems to be depending 

on a lot of factors, e.g., the ecosystem studied and the amount and length of warming 

(Poeplau et al., 2017) as well as the intrinsic temperature sensitivity of different SOM 

compounds present at a specific site (Davidson & Janssens, 2006). 

Conant et al. (2011) created a framework to conceptualize how elevated temperature can 

affect the interactions of decomposers and their substrate within the soil matrix and how 

that affects sorption and desorption of mineral-associated organic matter. 

Depolymerization rates generally increase due to increased enzyme activity, which leads 
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to more assimilable substrates for microbes. Enzyme activity ultimately depends on both 

the concentration of enzymes and of available substrate. Their concentration is influenced 

by microbes which produce extracellular enzymes based on their energy and nutrient 

demands. If the already produced enzymes become more active (as long as there is 

enough substrate and enough OM is depolymerized), microbes might downregulate their 

production.  

The microbial demand is also influenced directly by temperature. Microbial Carbon Use 

Efficiency (CUE), defined as C that is used for growth over C that is taken up (the fraction 

of assimilated substrate that ends up in microbial biomass; Dijkstra et al., 2011; Spohn et 

al., 2016) is thought to change with temperature. Higher temperatures theoretically 

increase microbial energy costs for maintenance which therefore favour respiration over 

growth, decreasing CUE and increasing CO2 fluxes from soil to atmosphere. Over time 

however, lower CUEs might reduce microbial biomass and decrease OM decomposition 

on a bigger scale again (Allison et al., 2010). It has also been shown however, that CUE is 

irresponsive to warming in the short- and in the long-term (Walker et al., 2018). The 

effects of increased microbial activity on the CO2 efflux in warmed soils are diminished by 

a smaller microbial biomass after the ecosystem reaches a new steady state (Walker et 

al., 2018).  

The time that is needed for an ecosystem to reach a new steady state is often much longer 

than the usual time frame of soil warming experiments. In fact, most experiments track 

changes on a very limited time scale (years rather than decades). Results from years of 

artificial warming might not translate to similar ecosystem responses after decades of 

warming, which is much more relevant in the sense of anthropogenic climate change 

(Walker et al., 2020). While increased reaction rates might affect microbial growth and 

respiration in the short term, warming-induced shifts of microbial communities might only 

show after multiple years (Radujković et al., 2018). Evidence obtained from comparing 

soils that have been warmed since decades to soils warmed for only some years 

(Sigurdsson et al., 2016), shows that the often observed sharp increase in respiration 

following warming returns to values characteristic of ambient soil after some time 

(Pendall, 2018). Walker et al. (2018) has shown that, while microbial traits such as growth 
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or respiration remained elevated in communities subjected to decades of warming 

compared to ambient controls, normalizing these values to the microbial biomass resulted 

in no differences. This indicates that there was no adaptation of the microbial metabolism 

to warming, supported by the result that CUE remained stable with increased 

temperature in this experiment (Pendall, 2018) and that there was no shift in microbial 

community profiles obtained from amplicon sequencing of the same sites (Radujković et 

al., 2018). Modelling results based on this data shows that reduced substrate availability 

might reduce microbial biomass in the long-term (Walker et al., 2018).  

Warming likely increases microbial respiration (per unit of biomass) in the short term, this 

leads to reduced amounts of easily available substrates which in the longer run reduces 

microbial biomass. Assuming plant inputs remain stable over this time, a reduced active 

microbial biomass reduces the probability of microbes encountering and decomposing 

SOM. Changing soil moisture regimes with climate change can add to the disconnection 

of microbes and substrate. While the remaining microbes are more active than before, 

the initially increased CO2 efflux from the ecosystem returns to previous levels. However, 

the soil net C balance is negative since the initially respired C does not re-enter the soil 

(Pendall, 2018). Although microbes are the main players regulating the soil-atmosphere 

feedback, these results show the importance of investigating substrate quantity and 

quality. When microbes cannot access or use OM in soils, they cannot respire it, regardless 

of temperature.  

How increasing temperature affects the SOC-climate change feedback highly depends on 

the temperature sensitivity of the different pools. From an energetic point of view, the 

amount of energy needed for decomposition increases with increasing protection. The 

slow-cycling pool can therefore be characterized as having a higher activation energy than 

the fast-cycling pool. According to kinetic theory (see equation 2), the decomposition rate 

increases proportionally more with increasing temperature in the pool with higher 

activation energy compared to one with lower activation energy. Global warming 

therefore should affect the passive SOC pool that contains the highest amount of C more 

than the other SOC pools (Conant et al., 2011). This difference in temperature sensitivity 

is not considered in SOC models, since evidence is often missing or inconclusive (Knorr et 
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al., 2005; Christopher Poeplau et al., 2017). Model-based predictions of future SOC stocks 

and CO2-fluxes to the atmosphere may therefore be too conservative and not accurately 

include SOC dynamics. 

SOM Quality 

The different origins of SOM (plant residues and exudates, animal products, microbial 

necromass and decomposition products) and constant biotic and abiotic transformations 

result in a chemically diverse mixture of molecules. Since each of these molecules has its 

own temperature sensitivity in theory (Davidson & Janssens, 2006), it is important to 

study the chemical composition of SOM to assess vulnerability of a specific site to climate 

change. While methods using (spatially resolved) spectroscopy can show elemental or 

molecular distributions directly embedded in soil architecture (Lehmann et al., 2008; 

Schlüter et al., 2019), their cost, effort and destructive nature make application on a large 

scale rather unfeasible (Wilpiszeski et al., 2019). Beside solid-state NMR, that has been 

widely used to assess the chemical composition of SOM (Chukov et al., 2018; Kögel-

Knabner, 1997), different chemical degradation techniques can be used to further isolate 

compounds with specific properties (Von Lützow et al., 2007). However, chemical 

methods are usually selective by nature (Derenne & Quéné, 2015) and obtaining a holistic 

view of SOM quality is therefore subject to interpretation and can be labour-intensive. A 

method that is similar in its application as solid-state NMR spectroscopy is analytical 

pyrolysis gas chromatography mass spectrometry (Pyr-GC/MS).  Pyr-GC/MS is a tool that 

can provide information on SOM on a larger scale (Derenne & Quéné, 2015). A sample is 

brought to a high temperature (in an oxygen-free atmosphere) where the complex 

molecules of SOM break up into smaller compounds, which can then be separated via gas 

chromatography and identified in a mass spectrometer. Some of these resulting 

compounds are characteristic for a specific type of the original macromolecule (e.g., for 

polyaromatics, lipids, lignin…), so the chemical composition of the original sample can be 

inferred. In addition, the substances derived from the pyrolysis can be used as a chemical 

fingerprint of the sample, and changes in this fingerprint with changing environmental 

conditions can then be used to gain insights into changes of SOM quality caused by 

environmental processes (Klein et al., 2020).       
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Elevated CO2 

Elevated atmospheric CO2 concentrations affect gross primary productivity and plant 

growth and pose a major indirect effect of soil carbon cycling. For example, plants 

subjected to elevated CO2 can keep their stomata closed more often to fix the same 

amount of C, which reduces evapotranspiration and increases their water-use efficiency. 

This reduced need for water by plants can alleviate drought stress in soils and maintain 

soil connectivity (Dieleman et al., 2012; Drigo et al., 2008; Kuzyakov et al., 2019). However, 

there are also more direct effects on SOM. Primary production generally increases under 

increased atmospheric CO2 concentrations. This in turn leads to an increase of litter inputs 

and rhizodeposition (Drigo et al., 2008; Kuzyakov et al., 2019). This increase of soil C could 

be substantial and offset further anthropogenic CO2 emissions in theory. For example, 

Schimel et al. (2000) modelled an annual increase of 0.08 Pg C in US soils mostly explained 

by CO2 fertilization (for the period of 1980-1993).  

This additional C in soils, however, may also stimulate the microbial community. In 

general, more labile C available  for microbes (e.g., through increased rhizodeposition) will 

result in an increase in their biomass and activity (Drigo et al., 2008; Kuzyakov et al., 2019). 

This in turn might increase the decomposition of SOM (through the priming effect, 

Fontaine et al., 2003) and offset the increased input caused by eCO2. The net C balance 

however in the end depends on a lot of factors such as the nutrient status of the soil 

(Kuzyakov et al., 2019). 

Elevated atmospheric CO2 concentrations may also change the quality of plant litter and 

exudates and can potentially influence microbial decomposition in this way (Drigo et al., 

2008; Pendall et al., 2004). For example, plant tissue is generally exhibiting higher C:N 

ratios when grown under elevated CO2 conditions compared to ambient conditions 

(Cotrufo et al., 1998). A reduced residue quality can decrease microbial decomposition 

(Six et al., 2001). However, according to stoichiometric theory, a higher resource C:N ratio 

also leads to larger losses of carbon from soil (Mooshammer et al., 2014; Zechmeister-

Boltenstern et al., 2015). Soil aggregation can also be influenced by CO2-induced changes 

of plant input.  Six et al. (2001) investigated the effect of elevated CO2 on soil aggregation 
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under different plant species (Trifolium repens and Lollium perenne). The higher-quality 

substrate of T. repens (higher quality meaning a higher N concentration of this rhizobial-

associated species compared to L. perenne) resulted in a higher macro-aggregate 

turnover, while the low-quality input of L. perenne increased aggregation and occlusion 

of POM. The increase in aggregate turnover from increased high-quality T. repens-inputs 

was explained by a stimulation of microbial activity which increased the production of 

microbially-derived binding agents (supporting aggregate formation) but at the same time 

also depleted labile C-pools more rapidly, resulting in earlier degradation of these newly 

formed aggregates. The low-quality L. perenne substrate did not induce this priming 

effect, which resulted in the stabilization of OM. This shows that the effect of elevated 

CO2 on SOM can vary strongly with plant species composition and therefore have 

contrasting results.    

Combination of Climate Change Factors 

The increased plant input could in theory offset the increased C output by a more active 

microbiome because of elevated temperatures. However, most data concerning the 

effect of elevated temperature or elevated CO2 is derived from experiments that only 

manipulate one of these factors and does not necessarily take into account that such 

combined effects are interactive rather than additive (Dieleman et al., 2012). Additionally, 

each climatic factor can induce a nonlinear rather than a linear response, which is difficult 

to catch without intermediate treatments in experiments and adds another layer of 

complexity (Piepho et al., 2017; Zhou et al., 2008). The resulting effect of the combination 

of increases in both temperature and CO2-levels is therefore difficult albeit very important 

to predict. Overall, the combination of both factors can result in additive, synergistic or 

antagonistic effects on a measured parameter compared to the effect of a single factor 

(Dieleman et al., 2012). An example for an additive effect would be the mentioned 

balancing-out of temperature-induced increases in decomposition rates and soil 

respiration by increased belowground plant input from higher atmospheric CO2 

concentrations (Pendall et al., 2004). The effect of one factor goes in one direction, the 

effect of the other factor in the opposite direction, the net result in the end is no change. 

In a synergistic interaction, the combined effect of two factors on one variable would be 
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larger than the effect of the individual factors alone, in an antagonistic interaction it would 

be lower (Mantyka-Pringle et al., 2019). If for example soil C stocks are higher in the 

combined treatment compared to the elevated CO2-treatment alone, temperature could 

have a synergistic effect, additionally increasing belowground C-allocation (e.g., by 

reducing plant nutrient limitation through temperature-induced increased reaction rates 

and microbial activity). In contrast, increases in leaf area by both elevated CO2 and 

temperature might overall increase evapotranspiration, reducing soil water content 

stronger than elevated temperature alone (Dieleman et al., 2012).  

A meta-analysis by Dielemann et al. (2012) revealed that, when combining both factors, 

the effect of elevated CO2 was generally stronger than that of temperature. The authors 

argue that this could be because of the larger relative increase of the CO2-concentration 

compared to the relative increase in temperature, resulting in larger effect sizes for CO2. 

This would however be in line with projected climate change. Simple additive interactions 

were rare, so informing models based on results of single-factor experiments could over- 

or underestimate an ecosystem’s response to environmental change. The authors also 

recognized that their study was impaired by a lack of data, further emphasizing the need 

for multifactorial experiments that combine treatments. Overall, there still is a lot of 

controversy on combined or interactive effects of climatic factors on SOM dynamics 

(Dieleman et al., 2012; Ma et al., 2020; Song et al., 2019; Yue et al., 2017), and 

understanding them better is necessary for improved predictions.  

Understanding how soil C processes will change in a future climate is important for 

predicting future atmospheric CO2 concentrations and thus global temperature. Future 

climate change effects are governed by the complex interplay of increased plant species 

compositions and productivity and microbial decomposition within the three-dimensional 

soil matrix, which is controlled by a variety of SOM protection mechanisms. Although the 

overall results will likely differ from ecosystem to ecosystem, studies that elucidate the 

response of different SOC fractions to combined warming and elevated CO2 treatments 

are key to fine-tune the feedback mechanisms between SOC and climate warming. This 

shall lead to improved models that allow more accurate predictions and in turn inform 

policy decisions that help prevent further acceleration of anthropogenic climate change.  
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The goal of the study presented here, was to elucidate the effect of a combined warming 

and elevated CO2 treatment on SOM storage, and SOM quality in different physical 

fractions of a temperate grassland soil. A combination of aggregate size class-separation, 

density fractionation and analytical pyrolysis-GC/MS was used on samples from a 

multifactorial climate-manipulation experiment to achieve this goal. 
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Introduction 

Soil Organic Matter (SOM) stores about four times more C than the atmosphere and six 

times more than the global vegetation (Lal & Stewart, 2019). The biotic and abiotic 

processes that regulate SOM formation, transformation and decomposition link 

atmospheric C and Soil Organic C (SOC) (Liang et al., 2019). As continuously rising 

anthropogenic CO2 emissions will increase global surface temperatures in the next 

decades (IPCC et al., 2014), the fate of SOM will play a crucial role, acting either as a source 

or sink for atmospheric C (Song et al., 2019). This will either amplify or alleviate 

consequences of climate change (IPCC Working Group I, 2013; Lavallee et al., 2020).  

The soil-atmosphere feedback is regulated by the interaction of plant inputs and soil 

microbes. The microbial activity and with that SOM decomposition depends on 

environmental parameters such as pore connectivity (enabling gas exchange) or water 

and nutrient availability (Christensen, 2001). The physical, three-dimensional structure of 

soil is the habitat of microbes, enabling their interaction with substrate and ultimately the 

processes of SOM formation and decomposition (Bronick & Lal, 2005). 

A soil structure model based on a hierarchical order of aggregates of different sizes was 

proposed by Tisdall & Oades in 1982: Primary particles of soil, such as silt (63-2 µm in 

diameter) and clay (<2 µm) clump together through electrostatic forces and form micro-

aggregates (miA, 63 µm – 250 µm) or silt and clay-sized aggregates (scA, < 63 µm). 

Polysaccharides produced by soil biota, such as root mucilage or microbial extracellular 

substances, act as organic binding agents, forming stable macro-aggregates (maA, > 250 

µm) out of miA (Six et al., 2000a). Through decomposition of binding agents or through 

(physical) stress events (e.g., drying-rewetting cycles (Navarro-García et al., 2012) or 

tillage (Six et al., 2000a)), maA are constantly turned over (Six et al., 2000a). miA in turn 

are thought to be a more stable sink for SOM and can stabilize it for longer times 

(Lehmann et al., 2007). 

Models that predict the response of soil carbon stocks to climate change often partition 

SOM into three pools: An active pool with a fast turnover, an intermediate pool and a 



 

25 

 

passive pool with a slow turnover (Swanston & Trumbore, 2009). These modelled pools 

do not directly correspond to any measurable soil carbon pool (Poeplau et al., 2018), but 

physical methods are used to isolate soil fractions that act as proxies for these pools (Crow 

et al., 2007; C. Poeplau et al., 2013; Von Lützow et al., 2007; Zimmermann et al., 2007). 

An established method to isolate physical fractions is the use of a density agent (e.g., 

sodium polytungstate, SPT) in combination with a dispersion step (e.g., ultrasonication) 

to destroy aggregates (Zimmermann et al., 2007).  

Physical fractions contain organic matter in different stages of decomposition and levels 

of protection: Free Particulate Organic Matter (fPOM) or plant-derived organic matter 

between aggregates, occluded or intra-aggregate POM (iPOM), and mineral-associated 

OM (MaOM), that mainly stems from processed (microbially-derived) material. The 

stability of OM, or the resistance towards microbial decomposition, is thought to differ 

between these fractions (Lützow et al., 2007): fPOM, consisting mostly of relatively fresh 

plant inputs is easily available for microbes and represents the most active pool. iPOM is 

similarly plant-derived,  however it is occluded within larger soil structures (aggregates) 

and therefore physically disconnected from and unavailable to decomposers (Don et al., 

2013; Zimmermann et al., 2007).  Aggregate turnover releases the occluded POM and 

make it available for decomposition (Six et al., 2000a; Zimmermann et al., 2007). Physical 

protection increases the residence time of iPOM in soil compared to fPOM, making it 

comparable to an intermediate SOM pool. MaOM represents the passive pool, because 

of the high activation energy that is thought to be needed to decompose OM that is 

adsorbed to minerals, making it unfavourable as an energy source for microbes 

(Zimmermann et al., 2007).     

Density fractionation can be performed on bulk soil or on previously isolated aggregate 

size classes. The latter has the advantage of combining information on soil structure and 

the properties of aggregates of different sized with that of different SOM pools, possibly 

improving model predictions.  

The multiple pathways of SOM formation as well as constant biotic and abiotic 

transformations result in a highly complex and diverse mixture of molecules (Derenne & 
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Quéné, 2015). If these formation processes are accelerated or slowed down by climate 

change, the chemical composition can change as well. Characterizing the chemical 

composition of OM might therefore give indirect insights into changes to the underlying 

SOM processes. 

Older, more decomposed SOM (e.g., MaOM) generally consists of more microbially-

derived N-containing compounds such as peptidoglycans or chitin and microbial 

polysaccharides than younger POM, which typically contains more lignin, phenols and 

alkanes (Geng et al., 2019; Schnecker et al., 2016). Thus, the chemical composition of SOM 

shifts from being having a more plant-derived chemical signature to a more microbial-

derived signature over time. 

The methodology used to describe the chemical composition of OM changed from 

chemical degradation to spectroscopical methods in the past decades (Kögel-Knabner, 

2017). One of the spectroscopic methods is analytical pyrolysis, where a soil sample is 

heated in the absence of oxygen. This breaks up the chemical bonds of high molecular 

weight compounds, resulting in smaller, volatile substances that can then be separated 

and analysed in a GC/MS system (Derenne & Quéné, 2015; Kögel-Knabner, 2000). A 

fingerprint of the original chemical composition of a sample can be constructed from the 

relative abundances of the pyrolysates afterwards. Some substances can be further 

assigned to certain origin classes (such as lipids, carbohydrates or aromatics), which adds 

more ecological information (Derenne & Quéné, 2015). Pyrolysis-GC/MS was used to 

analyse the chemical composition of SOM in previous studies. This was for example done 

to characterize SOM in NaOH-extracts from different ecosystems (Vancampenhout et al., 

2009), to elucidate the difference of SOM pools in density fractions (Poirier et al., 2005) 

and to investigate the effect of warming on the SOM chemical composition in different 

soil fractions (Schnecker et al., 2016). Since only minimal sample preparation is necessary 

and data analysis can be automated, Pyrolysis-GC/MS provides a way to quickly 

fingerprint SOM and detect changes to its chemical composition (Klein et al., 2020).   

An example on how to use this data would be the detection of a shift towards a lower 

abundance of plant-derived products with a warming treatment. This could hint at 



 

27 

 

temperature-induced higher microbial activity, processing more plant-derived material 

than before (Schnecker et al. 2016). A lower relative abundance of an individual 

compound or origin class can however also be interpreted as lower input of source 

material (Muñoz et al., 2008; Vancampenhout et al., 2009). In the example above, lower 

plant productivity by drought stress induced by higher temperatures could in theory also 

be the cause. So, while relative abundance data gives an overview on the chemical 

composition and differences between samples, establishing a causal link or quantification 

is difficult without additional measurements.      

Chemical reactions occur faster at higher temperatures as long as there is no substrate 

limitation (Arrhenius, 1889). From a strictly chemical point of view, the projected increase 

in surface temperature (1.5°C to 2°C at the end of the 21st century, IPCC et al., 2014) 

should also increase SOM decomposition rates. Microbially-produced extracellular 

enzymes are more active at higher temperatures so more OM may get depolymerized and 

could be respired (Conant et al., 2011). This would in turn cause a positive feedback-loop, 

further increasing atmospheric CO2 concentrations and temperature (Conant et al., 2011).  

As described above, the decomposition rate of a specific substrate is dependent on its 

molecular structure and its intrinsic temperature sensitivity (Davidson & Janssens, 2006), 

as well as its availability. Since the different pools represent OM in different stages of 

decomposition, the chemical composition and with that the temperature sensitivity 

varies. Evidence for different temperature sensitivities and how SOC stocks changes in soil 

fractions with eT is often inconclusive, which is why it is not incorporated into models 

(Knorr et al., 2005; Poeplau et al., 2017). A possible reason for this is that the mechanisms 

behind stock changes and temperature sensitivity is not fully understood. Including these 

mechanisms into ESM or LSM models could however be a crucial, since the passive pool 

(that stores the most C; Christensen, 2001; Schnecker et al., 2016) could be the most 

sensitive to increases in temperature (Conant et al., 2011).  

The protective capabilities of aggregation and soil minerals for SOM decomposition 

influence the response to eT. OM inaccessible to microbes or enzymes because of 

occlusion within aggregates or a too high activation energy because of mineral protection 
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might be unaffected by temperature increases (Conant et al., 2011). Unprotected OM 

pools such as free POM should therefore be more susceptible to increased enzymatic 

activity (Conant et al., 2011) and might be depleted first. While by-products of microbial 

decomposition might first act as binding agents which increase aggregate stability 

(Jastrow, 1996; Six et al., 2000b), these molecules might themselves then be decomposed 

when easily-available substrate becomes depleted after the short first burst of 

decomposition, reducing aggregation under eT (Grunwald et al., 2016).  

A lower substrate availability when labile substrates are becoming depleted might then 

also reduce the active microbial biomass (Allison et al., 2010). A lower number of active 

cells, less labile C or a lower soil connectivity due to decreased soil water content (Schimel, 

2018) could induce a substrate-limitation effect, where soil respiration rates return to 

unwarmed levels (Walker et al., 2020).  

An anthropogenic elevated atmospheric CO2 concentration (eCO2) does not only increase 

surface temperatures, it also directly influences plants and belowground carbon 

allocation. Plant primary production generally increases under eCO2 (Kuzyakov et al., 

2019). This also increases litter- and root-derived C input into soils (Drigo et al., 2008; 

Kuzyakov et al., 2019). If this additional soil C gets stabilized through mineral-association 

or occlusion and stays in the soil, C-losses from higher temperatures could be offset (at 

least partially, e.g. Schimel et al., 2000).    

More microbially available C however may increase microbial biomass and with that the 

microbial demand for nutrients such as N and P (Kuzyakov et al., 2019). Depending on the 

nutrient status of the soil and plant-microbe interactions, this can lead to higher microbial 

activity (e.g., microbial N  mining and subsequent SOM decomposition) and increased 

competition between plants and microbes, which can in turn hinder plant growth 

(Kuzyakov et al., 2019). If plants however dominate this competition, microbes can 

become nutrient-limited, which can in turn reduce SOM decomposition and increase soil 

C storage (Hu et al., 2001).  

Elevated CO2 changes the plant stoichiometry and OM quality, which also influences SOM 

dynamics (Drigo et al., 2008; Pendall et al., 2004). Plant tissue grown under eCO2 for 
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example can have a higher C:N ratio compared to control plants under ambient conditions 

(Cotrufo et al., 1998), resulting in a reduced plant litter quality and a decreased microbial 

decomposition (Six et al., 2001). As microbial activity in part controls soil aggregation 

(through the production and decomposition of binding agents), the soil structure and 

physical protection of OM is influenced by substrate quality. For instance, lower-quality 

substrate (in terms of a lower C:N ratio) stemming from L. perenne was shown to increase 

macro-aggregate stability and OM stabilization through reduced microbial decomposition 

compared to substrate from T. repens, which had a higher C:N ratio (Six et al., 2001).  

These examples show that the net effect of eCO2 and eT on SOC storage is context-

dependent and may differ for each ecosystem. Different plant species might react 

differently to eCO2, depending on their physiology and soil nutrient and water status. 

Similarly, the net effect of elevated temperature on SOM pools in the end depends on 

both substrate availability (temperature sensitivity, plant productivity/inputs, physical 

and chemical protection, soil connectivity) and increased enzymatic reaction as well as 

microbial respiration These complex combinations of factors complicates the prediction 

of future SOM stocks in an overall warmer climate with higher atmospheric CO2 

concentrations. 

Another layer of complexity is added when considering that most of the discussed effects 

of eT and eCO2 are derived from single-factor experiments only (Dieleman et al., 2012; 

Song et al., 2019). As ecosystems will be subjected to elevated levels of both temperature 

and CO2, possible combinatory effects have to be taken into consideration (Dieleman et 

al., 2012). These can differ from the effect of a single factor and can be additive, 

synergistic or antagonistic (Dieleman et al., 2012; Ma et al., 2020; Mantyka-Pringle et al., 

2019; Pendall et al., 2004). There is a lack of data on combined effects of eT and eCO2 on 

ecosystems in general (Dieleman et al., 2012; Ma et al., 2020; Song et al., 2019) and on C 

storage in soils especially (Yue et al., 2017). Using results from single-factor experiments 

to predict an ecosystem’s response to climate change ignores possible interactive effects 

(Dieleman et al., 2012; Ma et al., 2020), so understanding them is necessary for accurate 

predictions.  
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Meta-analyses on experiments that manipulate multiple environmental factors so far 

yielded inconclusive results (Ma et al., 2020). Depending on the methodology used and 

the variables examined, they found that complex, non-linear interactions of 

environmental factors were either frequent (Dieleman et al., 2012; Leuzinger et al., 2011) 

or rare (Song et al., 2019). A recent review analysed the effect of multiple environmental 

factors in different combinations on terrestrial C pools (Yue et al., 2017): Soil C pools were 

much less sensitive to the combination of eT and eCO2 compared to plant biomass. 

Warming decreased soil C, eCO2 increased it (Yue et al., 2017). The authors suggested that 

the combined effect may be additive, resulting in no significant net change of soil C in the 

combined treatments. Whether this result is meaningful in the context of climate change 

is however questionable, since the authors also acknowledge the lack of data and the 

differences in experiments and ecosystems.  

Although a lot of experiments that focus on the response of SOM to changing 

environmental factors were done in the past decades, there still is no consensus of the 

scientific community about the fate of SOM pools in a future climate, as the results were 

often contradicting (Song et al., 2019). A synthesis by Sulman et al. (2018) for example 

found that while most models predicted an increase of the CO2-flux from soils to the 

atmosphere and a decline of SOC stocks with warming, experimental results often 

opposed these predictions. It must be noted however, that almost no long-term studies 

are available that allow to verify model predictions. So, either some of the key 

mechanisms are missing in the models, or short-term experiments fail to predict long-

term responses well enough. One of the key mechanisms that is not well represented in 

ESMs is the individual response of different SOM fractions to climate change factors 

(Sulman et al., 2018). Recent studies investigated the effects of multiple environmental 

factors in different combinations on C dynamics in soil aggregates (Bai et al., 2020; Chen 

et al., 2019). The combined effects of eT and eCO2 on soil C pools, especially regarding 

changes in soil aggregation and the chemical composition of organic matter and how they 

might influence physical fractions with different functionalities, are not yet sufficiently 

studied. Combining techniques to separate SOM into different pools with measurements 

of their chemical composition such as pyrolysis-GC/MS has the potential to give insights 
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into the underlying mechanisms of SOM formation and their response to changing 

environmental conditions (Six & Paustian, 2014).    

We made use of a multifactorial climate manipulation experiment in Austria to investigate 

the combined effect of elevated temperatures and elevated atmospheric CO2 

concentrations on the amount and chemical composition of SOM in different grassland 

soil aggregate size classes and their density fractions. Specifically, we addressed the 

following research questions: 

1) What effect does eT, eCO2 and the combination of both factors have on soil 

aggregation and the distribution of SOM between mineral-associated and 

particulate OM? 

2) Does climate change affect the chemical composition of SOM in different 

aggregate size classes and their physical fractions?  

We broke down these research questions into the following hypotheses: 

(H1) The weight proportion of macro-aggregates and total soil C will increase in 

eCO2-treatments. We additionally expect that elevated temperatures will increase 

the decomposition of labile OM and thus lead to reduced fPOM levels as well as a 

lower proportion of stable macro-aggregates and overall lower bulk soil C levels.  

 

(H2) There is no net change in aggregation and total C content in the combined 

warming and elevated CO2 treatment, as the effects of eT and eCO2 are additive, 

cancelling each other out in the combined treatment.  

 

(H3) The chemical composition of SOM in maA, miA and scA is different, with 

maA having a higher relative abundance of pyrolysis products associated with 

plant-derived OM (i.e., lignins, carbohydrates), and miA have a higher relative 

abundance of more processed or older OM (i.e., aromatics/phenols, lipids).  
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(H4) Within in each aggregate size class and mineral-associated fraction, 

warming reduces the signal of plant material, and eCO2 increases it. However, 

these effects are additive, so no change will be seen in the combined treatments. 

 

To test these hypotheses, we applied a combination of wet-sieving and physical 

fractionation of the resulting aggregates. We then measured the weight, carbon and 

nitrogen content and the associated stable isotope ratios and analysed the chemical 

composition of the organic matter in all fractions by pyrolysis gas chromatography mass 

spectrometry.   

Material and Methods 

The study was conducted in a multifactorial FACE-experiment (“Free-Air Carbon Dioxide 

Enrichment”) in Austria to test the effect of elevated temperature and elevated 

atmospheric CO2 concentrations on SOM in different physical soil fractions. Wet-sieving 

was used to separate bulk soil samples into different aggregate sizes. The obtained 

aggregate size classes were then subjected to a density fractionation using a sodium 

polytungstate-solution (SPT) at a density of 1.6 g cm-³. The weight of each fraction was 

determined after drying at 60°C. C and N content as well as the isotopic signature (δ13C) 

were measured using an elemental analyser (EA 1110, CE Instruments) coupled to an 

isotope-ratio mass-spectrometer (IRMS, DeltaPlus, Finnigan). Pyrolysis-GC/MS was used 

to create a chemical fingerprint of samples and to detect shifts in chemical composition 

of organic matter between treatments. The experimental setup and methods used are 

described in detail below.  

Experimental Site and Setup 

The sites sampled for this study are part of the ClimGrass-experiment (“Grassland Carbon 

and Nutrient Dynamics in a Changing Climate”) at the HBLFA Raumberg-Gumpenstein 

(47°29′38″N, 14°06′03″E). It is classified as an alpine grassland, with mean annual 

temperature being 8.2°C and the mean annual precipitation 1056 mm. The soil is 
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described as a Cambisol with a loamy texture (Deltedesco et al., 2019; Séneca et al., 2020). 

The experiment was established in 2007 and was designed for response-surface 

regression, containing 4 by 4 m plots (n = 54) with ambient, intermediate (+1.5°C, +150 

ppm) and extreme (+3°C, + 300 ppm) levels of eCO2 and eT treatments in all possible 

combinations (Piepho et al., 2017). A detailed description of the experimental setup can 

be found in the supplementary material of Deltedesco et al. (2019). In short, temperature 

was increased on the eT-plots with infrared heaters and eCO2-plots were fumigated 

through rings which stream CO2-enriched air onto the vegetation. For this study, we only 

used the data from plots with extreme treatment combinations: A control treatment with 

ambient temperature and atmospheric CO2 concentration (n = 12), eT (+3°C above 

ambient temperature, n = 3), eCO2 (+300 ppm above atmospheric CO2 concentration,  

n = 3) and the combined treatment or “future climate” treatment eT x eCO2 (+3°C and 

+300 ppm, n = 8). The intermediate treatments were excluded to reduce complexity and 

gain a clearer picture of climate change effects on the measured variables in the different 

fractions.  

Sampling 

Sampling took place in October 2018. Multiple cores (4 to 5) were taken from the top 10 

cm and combined to yield approximately 100 g of fresh soil per plot. Big roots and visible 

stones were carefully removed manually, however samples were not sieved as to not 

further disturb the soil structure. For transport, samples were put into sturdy aluminium 

containers and covered with a cardboard lid to avoid compression of the soil. In the lab, 

the aluminium containers were opened and loosely covered with paper towels to allow 

the soil to air-dry over multiple days.     

Slaking and Wet Sieving 

The air-dried soil was submerged in deionized water on a 250 µm sieve for 5 minutes. 

Then, the sieve was moved 3 cm up- and down manually at a rate of 25 strokes per minute 

for 2 minutes. To ensure a similar sieving rate for each sample, a metronome was used. 

Floating organic material was manually removed with a coarse sieve and dried in a pre-
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weighed petri dish. This yielded the “coarse particulate organic matter”-fraction (cPOM). 

The remaining fraction on the sieve (> 250 µm, macro-aggregates, maA) was washed into 

a pre-weighed petri dish and dried in a drying oven at 60°C for at least 24h. The sieving 

process was then repeated at the same rate (25 strokes per minute for 2 minutes, 3 cm 

height) with the fraction < 250 µm on a 63 µm sieve, yielding the micro-aggregate (miA) 

fraction. The fraction < 63 µm was left to settle in a large plastic pan. Afterwards, excess 

water was removed with a syringe, then the remaining fraction was transferred into 

multiple conical falcon tubes (50 ml) per sample and centrifuged (10,000 rpm ~ 10,286  g 

for 2 minutes). Excess water was removed again with a syringe. The material contained in 

the multiple tubes for each sample was then combined into one pre-weighed falcon tube 

and centrifuged again. Then it was dried in a drying oven at 60 °C over multiple days to 

obtain the silt & clay sized aggregates and free particles (scA in the following). The dry 

weight of all size classes (maA, miA, scA) was determined, a subsample was homogenized 

in a ball mill (Retsch MM200, 30 rps for 3 min) and subsequently analysed via EA-IRMS 

and Pyrolysis-GC/MS. 

Density Fractionation 

To isolate different density fractions of OM in the aggregate size classes, 35 ml of SPT 

solution (ρ = 1.6 g cm-³, TC-Tungsten Compounds) was added to 5 g of maA and miA 

respectively in a 50 ml conical falcon tube (Greiner). In some cases, the wet-sieving yielded 

less than 5 g dry material (particularly in the miA-fraction), so here 3 g of soil were used 

together with 21 ml of SPT to maintain a ratio of 1:7 (w/v). The samples were then 

carefully inverted by hand 5 times and left to settle for one hour. After a centrifugation 

step (4,500 rpm; 3,083 g for 10 min; no deceleration step), the supernatant containing 

the fPOM-fraction (ρ < 1.6 g * cm-³ was carefully decanted onto a pre-weighed glass fibre 

filter (Whatman Glass Microfibre filter GFC) using a vacuum filtration unit. The fPOM on 

the filter was then thoroughly washed with deionized water to remove excess SPT. 

Material sticking to the walls of the filtration unit was washed carefully onto the filter or 

transferred there with a spatula. The falcon tubes containing the remaining soil was filled 

again to 35 ml (or 21 ml) with fresh SPT. After vortexing each sample for 60s to bring it 

into suspension, the aggregates were dispersed using a calibrated ultrasonication probe 
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(58 J ml-1: 2.030 kJ for 35 ml; 1.218 kJ for 21 ml). To isolate the iPOM-fraction, the samples 

were centrifuged again (4,500 rpm; 3,083 g for 20 min; no deceleration step) after another 

resting period of 1 hour. Like in the previous step, the supernatant containing the iPOM 

was collected onto a pre-weighed glass fibre filter. The filters with the POM fractions were 

dried at 60 °C and weighed. Subsequently, the material was carefully scraped of the filter 

paper using a spatula and transferred into 3 ml snap-cap reaction tubes for storage. The 

heavy fraction (ρ > 1.6 g cm-³) left in the falcon tube, consisting of sand- (> 63 µm) and silt 

& clay sized particles (< 63 µm), was washed multiple times by repeatedly filling the tube 

to 40 ml with deionized water, vigorous shaking by hand, centrifuging (2 min at 4,500 rpm; 

2,083 g) and discarding the supernatant until it had a conductivity < 200 µS cm-1 

(measured in the supernatant with a conductivity probe, Voltcraft LWT-01). This step was 

necessary to remove any leftover SPT from the sample. The heavy fraction was then also 

dried at 60°C. To separate sand and silt & clay, this fraction was then sieved to  

63 µm. It was necessary to grind the material carefully using a mortar and pestle before 

sieving because of the hard crust that formed during the drying process.  

The soil physical fractions yielded from each aggregate size class therefore were fPOM, 

iPOM, silt & clay and the sand-fraction. For EA-IRMS analysis, the silt & clay sized fraction 

was weighed in directly into tin capsules (10 mg, in triplicates). Depending on the amount 

that was available, 2 mg or 0.5 mg of fPOM or iPOM, respectively, was used here. Samples 

were homogenized in a ball mill (Retsch MM200, 30 rps for 3 min) beforehand. If too little 

material was available for grinding, the samples were homogenized as good as possible 

with a spatula.  

A subsample of the sand fraction was also milled, and 15 mg were used for EA-IRMS 

analysis. One sample of this fraction (from macro-aggregates) was additionally 

investigated microscopically using a stereoscope. For this, a small amount of dry and un-

milled material was used.  
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Pyrolysis GC-MS 

The chemical composition of density fractions and aggregate size classes was assessed 

using Pyrolysis GC-MS. For the fractions with a high C content (fPOM, iPOM) about 0.2 mg 

of finely ground sample material was weighed into pyrolysis glass tubes (DISC Pyrolysis 

Sample Tube, CDS Analytical). For milled bulk soil 0.6 mg and for milled bulk size classes 

and silt & clay sized fractions 1.5 mg of material were used. These amounts have been 

determined in pre-tests to yield chromatograms with the best peak separation and height. 

Samples were then pyrolyzed in a pyrolysator (CDS Pyroprobe 6200, CDS Analytical) by 

holding them at 50 °C for 5 seconds, then ramping the temperature up to 600 °C with a 

rate of 20 °C per second, where it was held for 20 seconds. The resulting pyrolysis products 

were flushed using 1 ml helium per minute into a GC-TOF-MS System (Pegasus BT, LECO) 

and the pyrolysis chamber was heated to 1,000°C for 15 seconds and flushed to clean it 

for the next sample. In the GC-System, a polar column (Supelcowax 10, Sigma-Aldrich) was 

used to separate the pyrolysis products. For this, the column was kept at 50 °C for 2 

minutes and then gradually heated to 250 °C with a rate of 7 °C per minute, where the 

temperature was held for another 5 minutes. The ChromaTOF software (version 5.0, 

LECO) was used to identify peaks by their mass spectrum.  

We developed a high-throughput semi-automatic approach for the analysis of the 

obtained chromatograms. For each sample type (e.g., silt & clay, POM or bulk soil) one 

reference sample was chosen visually that contains the most and best separated peaks. 

This reference chromatogram was analysed with a previously built inhouse library 

containing 120 substances, which can be assigned to a known origin in soil samples based 

on literature research (Tab. S9). We used the following classification for classes of origin: 

aromatics & phenols, carbohydrates, N-containing compounds, lignin-derived 

compounds, and lipids. These substances were previously identified by pyrolyzing soil 

standards and pure substances on our system and added to the library. We also included 

substances without a known origin if they occurred in many samples and contributed 

significantly to the overall peak areas; these substances are grouped in a class called 

“general”.  
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After automatically searching for all library peaks within the previously chosen reference 

sample, every hit was manually checked by comparing its mass spectrum to spectra from 

the NIST library (U.S. Department of Commerce National Institute of Standards and 

Technology) to confirm the identity of substances. The peaks of all other samples were 

then compared to those in the respective reference sample. This resulted in an aligned 

presence/absence list of the reference peaks for each sample with their corresponding 

peak area. All peaks with a signal to noise (S:N) ratio below 100 were removed from 

further analysis, as they, while having a low signal, contribute relatively more to the 

overall method error compared to peaks with higher S:N ratios (Dolan, 2009).  

The obtained list of peaks for every sample were then further processed with R (version 

3.6.2) using RStudio (version 1.2.5033, RStudio Inc.). A generalized full code example is 

provided as in the supplementary material (3). In short, peak area was normalized to the 

carbon content and amount of pyrolyzed sample, since higher C contents would generally 

lead to higher peak areas and baseline. To control for possible contamination of the 

pyrolysis system, a blank correction was performed by calculating the mean of the areas 

of substances contained in blanks (glass rods without sample; n = 6 per run) and 

subtracting this value from the respective substance area in each sample (for each run). 

The normalized and blank-corrected peak area was then treated like operational 

taxonomic units (OTUs) from phylogenetic analyses and the relative abundance of each 

peak in each sample was calculated using the “phyloseq” package (McMurdie & Holmes, 

2013). Peaks were further annotated with their origin class and treatment. Peaks that 

were not included in the previously built library were assigned as “unidentified”.  

Since manually choosing the reference sample is subjective and could introduce a bias, 

some data quality checks were implemented. “Unidentified” peaks that had a 

contribution > 1% of the total area were selected by our script and their mass spectrum 

was manually checked in the chromatograms.  This made sure that our approach did not 

miss substances that were not included in our library but characteristic for the respective 

samples. Similarly, identified peaks that had a “match” score of 700 to 850 were manually 

checked to avoid wrong identification. The match score is calculated by ChromaTOF and 

gives information on how well the deconvoluted mass spectrum of a substance matches 
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the one in the library (on a scale of 0 to 1000). Previous testing revealed that hits with a 

match score below 700 were not necessarily reliable, so a hit was only assigned by the 

program when the score was above 700. Above 850 on the other hand, peak identification 

was deemed as reliable and only occasionally checked by hand.    

This approach in the end yielded a presence-absence matrix containing the relative 

abundance of all reference peaks per sample type. Since we could not compare the 

unidentified peaks between reference samples (and therefore sample type), only the 

relative abundances of the substances contained in our library were used for further 

statistical analysis.   

Calculations and Statistics 

Using the EA-IRMS data as well as the dry weight of the obtained size classes, we 

calculated the proportion of C and N contained in each size class of the recovered amount 

of C and N in the bulk soil. Similarly, the C and N proportion of each density fraction of 

one aggregate size class was calculated based on the C and N sum of all density fractions 

of maA and miA respectively. Weight, as well as C and N recovery was estimated by 

subtracting the sum of all size classes (or density fractions) from the bulk soil (or bulk 

maA/mia respectively) values. We additionally calculated the C:N-ratio for each size class 

and density fraction by dividing the measured weight-% of C through that of N. The 

analysed variables based on the EA-IRMS measurements in the end were: Relative C and 

N content based on the sum of C and N in all size classes/fractions, C:N-ratio, δ13C-value 

and the proportion of fumigation-derived C (see below). The relative N-content followed 

a similar pattern as C content and is therefore not described in detail in the following 

sections (for detailed data see Fig. S1 and Tables S1, S2 and S7).  

All statistical calculations were done in RStudio using R. Since some of the sampled control 

and future climate plots were subjected to a drought treatment in 2017, a subset of the 

data containing only the ambient and future climate plots was tested for legacy effects of 

drought using type 2 ANOVAs. No significant effect of drought was detected, so these 

plots were included in their respective non-drought treatment in further analyses.  
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Linear mixed-effects models (function “lme” of package “nlme”, Pinheiro & Bates, 2013) 

were used to investigate the effect of the experimental factors (eT and eCO2) on the 

measured variables in the different bulk aggregate size classes and density fractions. The 

plot identity (“Plot”) nested with what side of the experiment the plot is on (“Design”) 

was included as random effect. This controlled for inherent differences between plots as 

well as differences between the two sides (left and right) of the ClimGrass-experiment. 

These side differences were revealed by previous experiments and are likely because the 

two sides were established at different points in time (Deltedesco et al., 2020).  

The complete model formula used was: 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ~ 𝐶𝑂2 ∗ 𝑇 + (1|
𝑃𝑙𝑜𝑡

𝐷𝑒𝑠𝑖𝑔𝑛
) 

Model residuals were checked for normality by visual inspection of the quantile-quantile 

plot and a Shapiro-Wilk test. If necessary, data was log-transformed, and outliers were 

removed to obtain normality. In data subsets (bulk size classes, density fractions) where 

significant model terms were present, a Tukey-HSD post-hoc test was done with the 

function “emmeans” of package “emmeans” (Lenth et al., 2021) to check if fractions 

differed significantly from each other. 

In some cases, additional statistical tests were performed to validate the model results. 

Specifically, type 2 ANOVAs with a Tukey-HSD post-hoc test were performed when a large 

increase or decrease in the mean of a variable was deemed non-significant by the lme-

model.  

The CO2 used for fumigating the eCO2-plots is depleted in 13C relative to atmospheric CO2 

and therefore has a δ13C-signature that strongly differs from the isotopic composition of 

the atmosphere. Thus, the δ13C-value of fractions on eCO2-plots can be used to estimate 

the amount of “new” C incorporated into these fractions since the beginning of the 

experiment. The proportion of “new” C was calculated with an isotopic mixing model 

according to Carrillo et al., 2018: 
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𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑒𝑤 𝐶 =  
δ13C𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − δ13C𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

δ13C𝑅𝑜𝑜𝑡 − δ13C𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 × 100 

With δ13C𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 being the measured δ13C-value of each fraction in the eCO2-plots, 

δ13C𝑅𝑜𝑜𝑡 the measured δ13C-value of the root biomass in the eCO2-plots and δ13C𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

the δ13C-value of the respective fraction in unfumigated control plots. Differences in the 

proportion of new C between the aggregate size classes and density fractions were also 

evaluated with LMEs, using “fraction” and “temperature” as model parameters. Since this 

was only possible to calculate on fumigated plots and those were almost all on the same 

side of the experiment (9 out of 11 plots total), we only included the plot identity as 

random term to keep the model as simple as possible. We were able to test for the effect 

of temperature because we calculated this value on all plots exposed to +300 ppm CO2, 

including those that were additionally warmed (the future climate treatment). Models 

were calculated using all data, as well as for subsets containing either all size classes or 

the density fractions of maA and miA respectively. To see which fractions contained 

significantly more or less new C than others, a Tukey-HSD post-hoc test was again 

performed.   

The pyrolysis-GC/MS relative abundance data of library substances was used to calculate 

a non-metric multidimensional scaling (NMDS) based on a Bray-Curtis dissimilarity matrix 

(function metaMDS of package “vegan”; Oksanen et al., 2019). A permutational analysis 

of variance (PERMANOVA) was used to identify significant differences in the chemical 

composition of the soil aggregate classes or density fractions, also in combination with 

treatment. This was done for similar sample types each: All bulk size classes, all POM-

fractions and all silt & clay-sized fractions. Additionally, treatment differences within each 

fraction were investigated by calculating a NMDS containing the data from only one 

fraction (e.g., macro-aggregate fPOM) and running a PERMANOVA on this subset. The 

relative abundance of all individual compounds was also z-transformed across similar 

samples (bulk size classes, silt & clay-sized fractions, POM-fractions) and heatmaps were 

drawn based on the calculated z-score to visualize which size classes or fractions had 

higher abundances of certain compounds. 
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Results 

A combination of slaking and wet-sieving was used to isolate four different size classes 

from sampled bulk soil (Fig. 1): Coarse POM (cPOM), macro-aggregates (maA, > 250 µm); 

micro-aggregates (miA, 63 µm – 250 µm); and silt and clay sized aggregates (scA, < 63 µm). 

For each plot, a subsample of maA and miA each was then separated into fPOM, iPOM 

and a heavy fraction via ultrasonication and density fractionation with sodium 

polytungstate (ρ = 1.6 g cm-3). A sieving step was included to further separate the heavy 

fraction of the maA and miA into silt & clay- (< 63 µm) and sand-sized (> 63 µm) particles.  

C- and N-content and the isotopic signature (δ13C) was determined by EA-IRMS analysis in 

bulk soil, all size classes and density fractions. Since the sand-sized fraction contained 

larger amounts of C and N than expected, both parts of the heavy fraction were treated 

as a separate mineral-associated OM pool each (sand-associated OM and silt & clay-

associated OM, SaOM and CaOM in the following).  

Wet Sieving and Density Fractionation 

An average of 98.58 ± 1.08 % of used bulk soil was recovered after wet sieving. The 

difference could be dissolved organic matter (DOM), but we did not measure this pool 

directly. Therefore, we cannot differentiate it from other losses, so we did not treat it as 

its own fraction. In the plots with ambient treatment, maA was the most prominent size 

class, followed by miA, scA and cPOM (Tab. 1a). Elevated CO2 had a significant effect (p < 

0.05) on the proportion of maA and miA, which was greater than ambient levels in eT x 

eCO2 for maA, and lower for miA. A Tukey post-hoc test revealed that this difference was 

marginally significant (p = 0.069 for the maA increase and p = 0.064 for the miA decrease, 

see Tab. S5). The weight proportion of other size classes was not affected by treatment. 

After density fractionation, 99.02 ± 0.67% of maA and 99.62 ± 0.06% of miA were 

recovered on average. Weight-wise, CaOM was the most dominant fraction in maA of 

ambient plots, followed by SaOM, while fPOM and iPOM were similar, but at lower levels 

(Tab. 1b). The weight proportion of fPOM was increased by about 36% on the eT plots and 

114% on eT x eCO2 compared to the proportion on ambient plots. 
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The influence of temperature on the mass of this fraction was marginally significant (p = 

0.098), the one of CO2 was significant (p < 0.05). Similarly, the weight proportion of iPOM 

was increased on eCO2 and eT x eCO2 by 55% and 46% respectively. CO2 significantly 

affected the weight proportion of the iPOM in maA (p < 0.01). There were no other 

significant effects of treatment on the weight distribution of maA density fractions.   

In miA, silt & clay and sand were at more similar proportions compared to those of maA 

(Tab. 1c). The proportion of fPOM and iPOM was lower and unaffected by treatment. 

Temperature influenced the proportion of silt & clay and sand significantly (p < 0.05). 

Compared to ambient, more silt & clay and less sand was found on eT and eT x eCO2 plots 

(+4.04% and +4.30%, and -4.36% and -4.28% respectively). 

Carbon content 

Average C recovery was 103.01 ± 2.98% for size classes, 93.59 ± 4.08% for maA fractions 

and 97.52 ± 2.36% for miA fractions. The total C of the bulk soil was slightly increased in 

all treatments (Fig. 2a). We however did not detect a significant overall effect of eT or 

eCO2 (Tab. 2a). This absence of a significant effect was further confirmed with a 2-way 

ANOVA (data not shown). The majority of C was contained in maA, followed by miA, scA 

and cPOM (Fig. 2d). Treatments did not significantly affect the distribution of bulk soil C 

between size classes. The bulk soil C:N ratio was significantly increased by eCO2 (p < 0.001) 

on eCO2 and eT x eCO2 plots. The miA C:N ratio was significantly decreased by 

temperature on the eT plots (p = 0.042). The C:N ratio of all other size classes was 

unaffected by treatment (Tab. S1). 

Bulk carbon in maA was slightly increased on eT and eCO2 plots (Fig. 2b), however not 

significantly affected by treatments (Tab. 2b). Most macro-aggregate C was found in 

CaOM, followed by SaOM, iPOM and fPOM. In eT x eCO2, iPOM-C was at a similar level
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Figure 1: Schematic of the used size class separation and density fractionation approach. 100 g of fresh soil was air dried and wet-sieved to obtain aggregates of different 
sizes (cPOM: Course POM, maA: Macro-aggregates, miA: Micro-aggregates, scA: Silt & Clay-sized aggregates). 5 g of maA and miA were subsequently fractionated using 
sodium polytungstate (SPT, Na6[H2W12O40]) with a density of 1.6 g cm-3 and a ultrasonication step (US, 58 J ml-1). This divided the sample into the light fraction (containing 
free POM (fPOM) and intra-aggregate POM (iPOM)) as well as the heavy fraction. After drying, the heavy fraction was sieved to 63 µm to differentiate between Sand-
associated and Clay-associated OM (SaOM and CaOM). In addition to the dry weight, C-content, N-content as well as the isotopic signature (δ13C) was determined using 
EA-IRMS for each bulk size class and density fraction. Pyrolysis-GC/MS was further used to fingerprint the chemical composition of size classes and fractions.  
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Table 1: Weight distribution of size classes (a) and maA/miA density fractions (b-c) by treatment. Weight-% values are 
mean ± standard error (n = 26). Corresponding model results (F-value and p-value, degrees of freedom = 22) are shown 
on the right side of the table. Significant model factors (CO2, temperature (T) and the interaction term (T x CO2)) are 
marked in bold (α = 0.05). The column “Transf.” marks cases where a data transformation was necessary to obtain a 
normal distribution of model residuals (log = logarithmical transformation).  

a) Weight by Treatment (in % of total weight) eCO2 eT eT x eCO2  

Size Class Ambient eT eCO2 eT x eCO2 F p F p F p Transf. 

maA 79.43±1.28 78.58±4.63 79.88±0.99 84.41±0.99 5.595 0.027 0.774 0.389 1.905 0.181  

miA 14.85±1.02 15.05±3.26 13.90±1.17 10.75±0.86 5.960 0.023 0.782 0.386 1.122 0.301  

scA 5.47±0.23 6.20±1.44 5.84±0.30 4.63±0.20 2.898 0.103 0.747 0.397 4.038 0.057 log 

cPOM 0.26±0.06 0.17±0.06 0.38±0.15 0.21±0.03 0.224 0.641 2.636 0.119 0.147 0.705 log 

 

b) Weight by Treatment (in % of total maA weight) eCO2 eT eT x eCO2  

maA Ambient eT eCO2 eT x eCO2 F p F p F p Transf. 

fPOM 1.28±0.23 1.74±0.43 1.36±0.16 2.74±0.58 5.064 0.035 2.994 0.098 0.771 0.389  

iPOM 1.32±0.15 1.10±0.08 2.06±0.26 1.93±0.23 10.326 0.004 0.509 0.483 0.037 0.850  

CaOM 56.91±0.71 51.99±4.64 56.19±3.24 55.24±1.43 0.069 0.795 2.491 0.129 1.062 0.314  

SaOM 38.62±0.53 43.70±4.78 38.66±3.21 39.78±1.29 0.016 0.901 3.097 0.092 1.171 0.291  

 

c) Weight by Treatment (in % of total miA weight) eCO2 eT eT x eCO2  

miA Ambient eT eCO2 eT x eCO2 F p F p F p Transf. 

fPOM 0.65±0.0.06 0.70±0.11 0.75±0.27 0.58±0.09 0.138 0.714 0.222 0.642 0.870 0.361  

iPOM 0.64±0.0.06 0.65±0.10 0.74±0.03 0.74±0.05 3.153 0.090 0.002 0.966 0.022 0.884 log 

CaOM 47.86±0.65 49.80±1.16 46.30±1.99 49.92±0.65 0.592 0.450 6.849 0.016 0.656 0.427  

SaOM 49.49±0.67 47.33±1.26 50.83±2.04 47.37±0.61 0.672 0.421 6.779 0.016 0.371 0.549  
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Figure 2: C content in mg C per g soil dry weight of bulk soil, bulk maA and bulk miA by treatment (a-c). LME model 
analysis yielded no significant effects of factors for these cases. Right side: Contribution of C in size classes to total C in 
bulk soil (d) and of density fraction C to total C of maA and miA respectively (e-f). Bars and error bars represent mean 
± standard error. Corresponding LME model results are shown in Tab. 2. 
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as the ambient plots, however, the proportion of heavy fraction C (CaOM and SaOM) was 

lower, and fPOM-C was higher (Fig. 2e). There was no significant combined effect of eT 

and eCO2 in the LME-model. eCO2 significantly increased the proportion of C stored in maA 

iPOM (Tab. 2b). Temperature significantly decreased the maA fPOM and iPOM C:N ratios 

(p = 0.032 and p = 0.018, Tab. S2 and Fig. S2).  

Bulk miA-C was reduced slightly, but non-significantly in eT x eCO2 (Fig. 2c). The 

distribution between fractions differed from maA. miA contained less POM-C and more 

heavy fraction-C compared to maA (Fig. 2e-f). miA POM-C was not affected by treatments. 

While the proportion of C in CaOM was slightly decreased and C in SaOM was increased 

in eT and eCO2 treatments (not significant), this pattern was flipped in the eT x eCO2 

treatment. A significant combined effect of both factors was found here in the LME model 

(Tab. 2c). miA CaOM C:N ratio was significantly increased on eCO2-plots (CO2 effect p = 

0.021, Tab. S2). Microscopical analysis of the sand fraction revealed that it contained both 

clear quartz crystals as well as brownish-coloured ones and conglomerates of smaller 

particles (Fig. S3).   

Incorporation of new C 

At the sampling timepoint, roughly 4 years after the start of the treatment with elevated 

CO2, the analysis of carbon isotope ratios showed that on average 18.48 ± 0.01% of bulk 

soil C has been derived from new carbon during these 4 years (Fig. 3a, panel 1). The factor 

“Size Class” had a significant effect on the proportion of new C (p < 0.001, Tab. 3). Bulk 

maA and miA were similar to bulk soil, while free silt & clay contained less new C (Fig. 3a). 

For all size classes, warmed plots contained less new C than ambient plots (temperature 

p = 0.056).  

The factor “Fraction” significantly affected the new C content of maA and miA density 

fractions (Tab. 3, p < 0.001). In maA, the POM fractions contained a higher proportion of 

new C than the heavy fractions (Fig. 3b). In miA, this difference was also found, however 

it was overall smaller (Fig. 3c). There was no significant overall temperature effect. MiA 

new C was significantly affected by the interaction of “Fraction” and “Temperature”  
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(p < 0.01). While the pattern observed from the bulk size classes (less new C on warmed 

plots) was also found in some density fractions of maA and miA, this difference was only 

significant for miA fPOM. Full post-hoc test results for the LME models can be seen in 

Tables S3 and S4.  

Chemical composition  

The NMDS based on the Pyrolysis-GC/MS data revealed that the aggregate size classes 

each formed its own separate cluster (Fig. 4a). scA had a larger variance compared to the 

other size classes. maA, miA and scA were differentiated mostly by the NMDS 2-axis, while 

cPOM was differentiated from all other size classes by NMDS 1. The PERMANOVA yielded 

a significant effect of “Fraction”, while no treatment effects or the combined treatment 

and fraction effect were found (Tab. 4). The NMDS containing pyrolysis-GC/MS data from 

all fractions below 63 µm (scA and maA/miA CaOM, Fig 4b) showed a similar pattern. maA 

and miA CaOM was differentiated from each other by NMDS 2 and both from free silt & 

clay by NMDS 1. Only “Fraction” was significant, similar to the bulk size classes.   

We did not find a significant influence of the factors eT, eCO2 or eT x eCO2 on the chemical 

composition within any investigated size class or fraction (Fig. S6-S8). The factor eCO2 was 

marginally significant in the PERMANOVA for bulk micro-aggregates and macro-aggregate 

fPOM (p = 0.086 and p = 0.062 respectively). The same was true for the combination of eT 

and eCO2 in bulk macro-aggregates (p = 0.078).  



 

48 

 

Table 2: LME model results (F- and p-value of included factors, df = 22) for C proportions between size classes (a) and 
density fractions (b for maA and c for miA). Bold values signify significant model factors (CO2, temperature (T) and the 
interaction term (T x CO2), α = 0.05). The column “Transf.” marks cases where a data transformation was necessary to 
obtain a normal distribution of model residuals (log = logarithmical transformation).   

a) eCO2 eT eT x eCO2  

Size Class F p F p F p Transf. 

maA 1.066 0.313 0.604 0.445 0.432 0.518 - 

miA 1.952 0.176 0.130 0.722 0.396 0.535 - 

scA 0.333 0.570 0.027 0.870 0.081 0.779 - 

cPOM 0.543 0.469 3.789 0.065 0.020 0.889 log 

 

b) eCO2 eT eT x eCO2  

maA F p F p F p Transf. 

fPOM 1.785 0.195 1.983 0.173 0.202 0.658 log 

iPOM 6.847 0.016 3.419 0.078 1.832 0.190 - 

CaOM 2.682 0.116 0.161 0.692 0.070 0.794 - 

SaOM 1.695 0.207 0.001 0.980 0.178 0.677 - 

 

c) eCO2 eT eT x eCO2  

miA F p F p F p Transf. 

fPOM 0.496 0.489 0.017 0.897 0.151 0.702 - 

iPOM 2.466 0.131 0.154 0.699 1.130 0.299 - 

CaOM 0.560 0.462 1.574 0.223 6.047 0.022 - 

SaOM 0.738 0.400 1.457 0.240 9.640 0.005 - 
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Figure 3: Proportion of new C (in % of total C) in size classes (a) and density fractions (b,c) on all fumigated plots 
(+300 ppm CO2 above atmospheric CO2 concentration) by temperature treatment (ambient temperature (n = 3) and 
+3 °C above ambient (n = 8)). Corresponding LME model results are shown in Tab. 3. Bars and error bars represent 
the mean ± standard error. Asterisks mark significant differences between ambient and warmed plots within one 
size class/fraction (Tukey post-hoc test, α = 0.05). Detailed post-hoc test results between all size classes/fractions 
can be viewed in Tables S3 and S4.   
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Table 3: LME Model results (degrees of freedom (df), F- and p-value of included factors) for the proportion of new C in 
size classes and maA/miA density fractions. Bold values signify significant model factors (Fraction, temperature (T) and 
the interaction term (Fraction x T), α = 0.05).   

Factor 
Fraction T Fraction x T 

df F p df F p df F p 

Size Classes 3 27.869 <0.001 1 4.814 0.056 3 0.303 0.823 

maA Fractions 3 43.376 <0.001 1 1.336 0.278 3 1.907 0.152 

miA Fractions 3 12.018 <0.001 1 3.252 0.105 3 4.655 <0.01 

 

Table 4: PERMANOVA results (degrees of freedom (df), F- and p-values) for the effect of fraction and treatment on 
pyrolysis-GC/MS relative abundance data of all found peaks with assignable origin from literature (based on a Bray-
Curtis dissimilarity matrix). Bold values signify significant model terms (α = 0.05).   

Factor 
Fraction Treatment Fraction x Treatment 

df F p df F p df F p 

Size Classes 3 158.373 <0.001 3 0.979 0.436 9 0.624 0.932 

Silt & Clay 2 113.761 <0.001 3 0.852 0.546 6 0.499 0.950 

  

    

    

   

   

             
     

 
 

 
 
 

          

    

    

   

   

                      
     

 
 

 
 
 

                                        

    

                                                  

Figure 4: NMDS based on a Bray-Curtis dissimilarity matrix of relative abundance data of peaks with known origin for all 
bulk size classes (a) and all silt & clay sized fractions (b). The calculated stress-value was 0.077 and 0.054 respectively. 
PERMANOVA results corresponding to the same matrix are visible in Tab. 4. 
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To see which substances or origin class drives the separation of size classes and fractions, 

the relative abundance data was z-transformed and compared in a heatmap. Comparing 

the aggregate size classes, N-containing substances had an overall lower relative 

abundance in cPOM compared to than the other size classes (Fig. 5). In turn, it had a higher 

relative abundance of lignin- and carbohydrate-derived compounds. miA had the highest 

relative abundance of lipid- and aromatics/phenol-derived compounds. scA was more 

similar to miA regarding the relative abundance of substances related to lipids and 

aromatics/phenols than maA. 

When comparing all silt & clay-sized fractions, the heatmap shows a higher relative 

abundance of compounds related to N-containing substances, lignin and carbohydrates in 

maA-CaOM compared to the other fractions (Fig. 6). miA-CaOM in turn had a higher 

relative abundance of lipid-derived compounds and scA could be characterized by the 

relative abundance of some specific compounds associated with lipids and 

aromatics/phenols. For all POM fractions, the difference between size classes was not as 

pronounced as for the mineral fractions, but still significant (p < 0.05, see Fig. S4 and Tab. 

S8). Here, we also found a marginally significant effect of treatment (p = 0.074). 
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Figure 5: Heatmap showing the z-transformed relative abundance data of all found library peaks for the different bulk 
size classes by treatment. Substances were categorized by their probable origin molecule class. The substance “Peak 
Unknown” corresponds to a peak with a big relative abundance that was not identifiable via the mass spectrum. Lig. = 
Lignin-derived compounds. 
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Figure 6: Heatmap showing the z-transformed relative abundance data of all found library peaks for the different silt & 
clay sized fractions by treatment. Substances were categorized by their probable origin molecule class. The substance 
“Peak Unknown” corresponds to a peak with a big relative abundance that was not identifiable via the mass spectrum. 
Lig. = Lignin-derived compounds. 
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Discussion 

Analysing carbon content, isotopic composition and chemical characteristics of physical 

soil fractions allows to gain insight into processes and mechanisms of formation and 

stabilization of soil organic carbon and how they might be affected by changing 

environmental conditions. Here we present evidence, that elevated temperature and 

elevated atmospheric CO2 concentration, or a combination of both, neither significantly 

influenced the total amount of C and N in bulk soil, nor the chemical composition of the 

size classes and fractions. There was a slight, non-significant increase in bulk soil C after 4 

years of climate change treatment. While the investigated size classes differed in their 

chemical composition, they were unaffected by the climate change treatments. We found 

some evidence, however, that SOM was re-distributed between different fractions under 

eCO2, and that the C turnover was slower under warming and elevated CO2. The following 

section will discuss the results in more detail and in the context of the investigated 

research questions and hypotheses.   

We investigated the distribution of SOM across the aggregate size classes and their 

density fractions. Overall, macro-aggregates were the most abundant size class by weight 

and were also responsible for storing most C and N. This is consistent with fractionation 

studies looking at similar ecosystems (Gioacchini et al., 2016; Six et al., 2001). Much less 

C and N was found in micro-aggregates, followed by silt & clay-sized aggregates. maA and 

miA differed in the distribution of OM between the density fractions, with maA having a 

higher relative proportion of fPOM and iPOM while miA in turn had a higher proportion 

of SaOM and CaOM. This is generally in line with the aggregate hierarchy concept and the 

idea that OM associated to maA is more labile than that associated to miA (Elliott, 1986; 

Six et al., 2000b).  

About 20% of SOC was newly formed in the four years since start of the fumigation in 

2014 and sampling in 2018. Doing a back-of-the-envelope calculation and assuming a 

steady state with constant turnover rates, this would mean that the whole SOC pool on 

average is turned over approximately once every 20 years in the top 10 cm. Yan et al. 

(2017) modelled ecosystem and soil C turnover based on primary production, C pool sizes 
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and climate variables. For grassland soil, they found a mean turnover time of 34.37 years, 

which would mean that the ecosystem studied in this experiment turns over faster than 

other, similar ecosystems, at least under elevated CO2. We found a decrease of the 

percentage of new C with decreasing particle size, which is in agreement with the 

aggregate hierarchy model of Tisdall & Oades (1982), where organic matter in smaller size 

classes is turned over slower than OM in bigger size classes. While the mineral-associated 

fractions of both maA and miA contained less new C than the POM-fractions and bulk soil, 

a considerable amount of C, i.e., about 14%, was also turned over in these fractions. This 

is in line with results that challenge the concept that mineral-associated OM is chemically 

recalcitrant or physio-chemically protected and therefore would only turn over very 

slowly (Torn et al., 2013).  

One particularity of this study is that we found notable amounts of C and N in the sand-

sized particles of both macro- and micro-aggregates. This led us to treat it as its own, 

stable OM fraction. In soil fractionation studies, the heavy fraction is usually corrected by 

the sand content to obtain the mineral-associated OM fraction (Elliott et al., 1991; 

Schweizer et al., 2019). Our finding shows that doing this might neglect a quite large part 

of OM in soils and could theoretically lead to wrong conclusions. A sand correction is 

usually done because sand particles are generally thought not to form the same chemical 

bonds with OM as clay minerals or iron- or aluminium-oxides. So it is assumed that the 

sand fraction contains neglectable amounts of OM and would therefore dilute the OM 

content of the aggregate size class under consideration (Elliott et al., 1991). However, OM 

can bind to iron oxides that are attached to sand particles and form an organic coating, 

stabilizing OM in the sand fraction (Elliott et al., 1991; Regelink et al., 2015). Indeed we 

found quartz crystals that appear to have an organic coating (indicated by a reddish-

brown colour, Muchovej et al., 2005) under the stereomicroscope (Fig. S3). Another 

possible reason for our finding could be that the heavy fraction formed a hard crust during 

drying that could not be broken up completely before sieving, so clumps of cemented silt 

and clay particles could have been found in the sand fraction if they were bigger than 63 

µm. This could also have been the case in our samples, as we found a few particles >63 

µm that appeared to be conglomerates of cemented smaller particles. However, this 
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could also have been encrusted quartz crystals – clearly it would require more research 

to investigate this (e.g., scanning electron microscopy-analysis or further dispersion of the 

sand fraction). Lavallee et al. (2020) also proposed the concept of “heavy POM” (POM that 

has a higher density than the density threshold used in fractionation studies), which could 

be a part of the heavy fraction. We however found no evidence of the presence of POM 

in the sand fraction using our imaging technique. If the conglomerates we found indeed 

are clay particles, they should be seen as a part of the CaOM pool. At this point, we were 

unable to determine the ratio of OM associated to (theoretical) clay-clumps in the sand 

fraction versus OM associated to coated sand particles, so we cannot tell whether the 

latter pool is of significant size and whether it has different, unique properties. However, 

the C:N ratio of SaOM found in both maA and miA was higher than the one of CaOM, 

indicating a differing chemical composition and less decomposed state. Pyrolysis-GC/MS 

fingerprinting of this fraction was not done but could shed more light on the composition 

of OM in this fraction. The distribution of OM between SaOM and CaOM was significantly 

altered on eT x eCO2 plots in micro-aggregates. While these fractions did not contribute 

much to total soil C and N pools, the importance of micro-aggregates for long-term C and 

N storage (Lehmann et al., 2007) brings some relevance to this. Our results show that the 

sand fraction should be investigated and not be generally neglected in soil fractionation 

studies, since it contains OM associated to sand particles. Further investigating the 

formation mechanisms, general importance of, and the impact that climate change will 

have on OM-encrusted sand in ecosystems might improve our general understanding of 

SOM dynamics.      

One of the main questions of this study was whether elevated temperature and elevated 

CO2 affect aggregation. Our results show that eCO2 enhanced soil aggregation by 

significantly increasing the relative proportion of macro-aggregates over micro- and silt & 

clay-sized aggregates. In addition, total soil C was slightly but non-significantly (p = 0.124) 

increased on plots exposed to elevated CO2. This trend as well as the observed increase 

in aggregation supports our hypothesis, that the weight proportion of maA and the total 

soil carbon increased at elevated CO2 levels (H1). The main reason for this finding most 

likely be higher levels of plant input in the rhizosphere (directly or via mycorrhiza) that 
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might have led to the formation of more macro-aggregates and/or might have stimulated 

the production of binding agents. This is supported by the significantly increased 

proportion of intra-macroaggregate POM with eCO2. Since the C:N ratio of this fraction 

was unaffected by CO2, the increase of this pool is likely due to the significant increase in 

the weight proportion and not to a higher C content. While we did not measure the C:N 

ratio of the vegetation directly, eCO2 did not change the C:N ratio of POM, in contrast to 

what others have found (Cotrufo et al., 1998). An increase in aggregation due to a lower 

microbial activity caused by changed litter stoichiometry (e.g., Six et al., 2001) is therefore 

unlikely, since POM stoichiometry would likely be altered as well in that case. Instead, 

higher atmospheric CO2 concentrations might have increased plant productivity and litter 

inputs (Drigo et al., 2008; Kuzyakov et al., 2019), which ended up as more fPOM and 

consequently iPOM in the investigated size classes on eCO2 and eT x eCO2 plots. All in all, 

the effect that eCO2 had on aggregation and the distribution of OM between size classes 

and fractions was consistent with what is reported in literature: For example, other 

studies also found a higher proportion of macro-aggregates with eCO2 (e.g., Rillig et al., 

1999 and Six et al., 2001), and no strong effect of eCO2 on bulk soil C was also reported 

(e.g., Dorodnikov et al., 2011 and Six et al., 2001). While SOC pools might not be directly 

affected by eCO2, the higher proportion of macro-aggregates and more intra-

macroaggregate POM with future climate conditions could increase the susceptibility of 

SOC stocks towards microbial decomposition, especially when processes that are known 

to destroy aggregates, such as land-use change (Wang et al., 2014) or drying/rewetting 

events (Navarro-García et al., 2012), are further intensified.  

We expected a depletion of the labile free POM-pool on warmed plots (H1). Our data 

however shows no effect of temperature on the amount of C and N stored in this pool. 

However, we found a significant reduction of the C:N ratio of macro-aggregate fPOM and 

iPOM with warming. Differences in the C:N ratio compared to control plots could either 

be caused by stronger microbial decomposition or by a changed plant input stoichiometry. 

Since we found no changes to neither the C and N pool sizes nor the δ13C-signal of these 

fractions under eT, which could accompany increased decomposition (if the input does 

not change and small rather than big molecules are decomposed), these findings overall 
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hint at a changed plant stoichiometry on plots exposed to eT. Contrary to our 

expectations, we also found no reduction of aggregation (estimated by the proportion of 

macro-aggregates) on warmed plots. Total as well as bulk macro- and micro-aggregate C 

and N were even slightly, but non-significantly increased on the warmed plots. The 

distribution of OM between pools was overall not significantly affected by the 3°C 

temperature increase in this study.  

One effect that warming had was a lower incorporation of new C coming in eCO2 plots. 

This was visible in in bulk soil and size classes as well as macro- and micro-aggregate fPOM. 

This indicates that C turnover in these physical fractions is slower under warmer climatic 

conditions. A possible explanation for this could be increased microbial respiration of 

newly introduced, plant-derived, labile material which results in less stabilization of fresh 

OM and in turn a higher proportion of “old” C compared to new C. This effect was only 

marginally significant (p = 0.056). We cannot differentiate whether the slower turnover is 

an effect of elevated temperature alone or if it arises from an interactive effect that eT x 

eCO2 might have had. Since the previously discussed findings hint at no increased 

decomposition on plots treated with eT alone, we can speculate that this effect is the 

result of the combination of both treatments: in such a scenario eCO2 would have 

stimulated plant productivity leading to more fresh OM input, which would be rapidly 

decomposed and respired by more active microbes, which are stimulated by warming. On 

eT plots alone the extra source of fresh plant input might be missing, resulting in no 

significantly higher decomposition. A slower turnover of stable C and a faster 

decomposition of plant input under future climatic conditions might have implications for 

SOM dynamics by influencing SOM quality in the long-run and with that the microbial 

community composition and processes over time.  

Interactive effects between climatic factors remain hard to predict and the resulting 

impact that the combination of warming and elevated atmospheric CO2 concentrations 

might have on SOM pools remains controversial (Ma et al., 2020). While there might be 

evidence in this study for an interactive effect of eT and eCO2 regarding C turnover as just 

discussed, the combination of both eT and eCO2 was almost never found to be significantly 

different from the effects of a single factor in this study. Whenever there was a significant 
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effect on the measured variables on the future climate plots (eT x eCO2), our statistical 

analysis mostly indicated that it came from the increase in CO2 and not temperature. 

While we therefore did not observe a cancelling-out of effects on eT x eCO2 plots as we 

hypothesized (H2), the results nevertheless hint at additive effects. For example, the 

higher weight proportion of macro-aggregates on eT x eCO2 plots could be attributed to a 

CO2 effect and was unaffected by temperature, indicated by the non-significant 

interactive term in the LME model results. This was therefore an effect of eCO2 and did 

not come from an interaction of these factors. So overall, our results suggest that the 

effect of elevated temperature and elevated CO2 were additive, with the CO2 effect 

dominating, and no apparent effect of temperature. Interestingly, we did not find this 

increase of maA weight on plots treated with eCO2 alone. In theory, this could be an effect 

of lower statistical power in the eCO2 treatment because of the lower number of 

replicates compared to the future climate treatment (n = 3 vs n = 9). The increase of the 

maA weight proportion on eCO2 plots compared to the control was below 1% however, 

while it was about 5% in eT x eCO2 plots. More research is therefore needed to find out 

why we only find the CO2 effect on the future climate plots. The absence of a temperature 

effect and possible interactive effects could also be due to the larger relative increase of 

the CO2-concentration compared to the relative increase in temperature, since CO2-

concentrations on eCO2 plots was almost doubled while it was increased by 3 °C on eT 

plots (~25% of field temperature in October, see Simon et al. 2020). This difference in 

effect size could lead to the domination of CO2 effects (Dieleman et al., 2012) and possibly 

overshadow any temperature or interactive effects. We have to keep in mind however, 

that a similar increase in CO2 and temperature as we simulated in our experiment, are 

possible by 2100. In a similar experiment (Carrillo et al., 2018) a reduction of soil C in 

fumigated and warmed plots (and no effect of warming under ambient atmospheric CO2-

concentration) was found, while using even higher levels of CO2-fertilization (+600 ppm in 

the growing season).  

Our results clearly show that, aside from a possible slower turnover of stable C, future 

climatic conditions mostly affect SOM in physical soil fractions via the increase in plant 

inputs. We do not know whether this finding will hold true after more years of simulated 
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climate change or if unpredictable interactive effects will arise in the future. For now, this 

study joins the ranks of those finding no significant interactive effect of elevated 

temperature and elevated CO2 on SOM, at least for the physical fractions we investigated. 

This suggests that ESM models will not need to implement complicated interactive effects 

which would simplify the modelling of future SOM stocks considerably.  

We hoped to gain further insight into the mechanisms that lead to the formation of the 

investigated SOM pools and how they might be affected by climate change by 

fingerprinting the chemical composition of these pools. While pyrolysis-GC/MS was used 

to analyse the chemical composition of SOM before, this study was the first in which 

pyrolysis-GC/MS was used to fingerprint the chemical composition of SOM in soil 

aggregate size classes and their density fractions under both eT, eCO2 and a combined 

future climate treatment. The results of our high-throughput fingerprinting approach 

show that, overall, the chemical composition of size classes (and density fractions) 

differed more in between each other than in between treatments within each fraction.  

Each investigated size class was characterized by its own, unique chemical fingerprint, in 

line with H3. We found a clustering in the NMDS that followed particle size: macro-

aggregates were more similar to micro-aggregates, which were more similar to silt & clay-

sized aggregates. As we hypothesized (H3), micro-aggregates were characterized by a 

higher relative abundance of lipids and aromatic & phenol-derived compounds than 

macro-aggregates. Both short-chained lipids and aromatics are generally considered to be 

more recalcitrant in soils and less affected by microbial decomposition than other 

compounds (Kögel-Knabner, 2000; Vancampenhout et al., 2009). This is indicative for a 

more advanced stage of decomposition of the investigated miA, consistent with the found 

slightly lower turnover than maA (estimated by the proportion of “new C”).  

Since macro-aggregates are thought to be made up of micro-aggregates as well as binding 

agents (Six et al., 2000a), we would have expected a higher relative abundance of 

carbohydrates that presumably stem from these binding agents in maA  (H3). We did, 

however, not find any evidence for that. For some carbohydrates, miA even had higher 

relative abundances than maA (e.g., 2-Cyclopenten-1-one, 2-methyl-, Furan, 2-methyl- 
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and 2-Furancarboxaldehyde, 5-methyl-). As the previously discussed findings suggest an 

older age of miA, it would be interesting to investigate if these fragments more often stem 

from microbially-derived carbohydrates rather than plant-derived carbohydrates. The 

compound library we used is not suitable to distinguish between the origin of 

carbohydrates (if that is possible at all), it would be necessary to isolate specific 

biomarkers that correspond to binding agents and include them in the analysis. The 

difference in lignin-derived compounds was generally not as pronounced between maA 

and miA as we expected. This indicates that lignin is present in both maA and miA at 

similar relative abundances. In soil, lignin gets gradually decomposed in a complex process 

(Zabel & Morrell, 2020) and could therefore still be present albeit simply more processed 

in the older micro-aggregates. Again, a modification of our library (adding more specific 

lignin biomarkers that maybe correspond to different functional groups of the polymer) 

would be necessary to further investigate this. 

The difference between the size classes was also visible in their silt & clay sized fractions. 

Macro-aggregate CaOM contained more lignin-, N-containing- and carbohydrate-derived 

substances, while micro-aggregate CaOM again had a higher relative abundance of lipids. 

Although macro-aggregates contain micro-aggregates, this result further emphasizes that 

there is a difference between the two size classes, with OM in micro-aggregates being 

generally older and more decomposed (Totsche et al., 2018). Even though macro- and 

micro-aggregate CaOM might have a similar turnover (as measured by the incorporation 

of C in eCO2-plots), they still seem to have inherently different chemical properties.  

Although we expected an effect of simulated climate change on the chemical composition 

of the investigated size classes and fractions, we did not detect a statistically significant 

influence of eT or eCO2. Apparently, the biotic and abiotic pathways that transform OM 

and lead to the formation of the individual fractions, exerted more control over the 

chemical composition in the end than any climate-driven change to plant inputs or 

transformation processes. These decomposition pathways themselves seem so far 

unaffected by climate change in this experiment. Since the chemical composition was not 

changed, the temperature sensitivity of the different molecules was likely also not 
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changed, which is in line with our previously discussed findings that elevated temperature 

did not significantly influence the size of the different investigated SOM pools.  

The high-throughput Pyrolysis-GC/MS-workflow we developed so far only allowed us to 

create and compare chemical fingerprints based on the relative abundance of the 

substances in our library. While they can be used to track changes and differences 

between samples (Klein et al., 2020), they by no means provide a complete picture of the 

chemical composition and also no quantification of chemical compounds. Adding the 

relative abundances of all unknown substances created in the pyrolysis process to the 

multivariate analysis could give a more complete picture of the chemical composition.  

Summary and Conclusion 

In summary we found that total soil C was unaltered and even slightly increased after four 

years of simulated climate change in this experiment. We found small changes to 

aggregation and the distribution of OM across different fractions with elevated CO2, 

especially in macro-aggregates. Higher atmospheric CO2-concentrations resulted in more 

macro-aggregates and a higher relative proportion of intra-macro-aggregate POM and 

lower proportions of mineral-associated OM, which could increase the susceptibility of 

SOM towards future disturbances. While the turnover of C was slowed down in some 

cases by elevated temperature, we could not detect significant changes in the chemical 

composition of the investigated size classes and fractions with our treatments and 

methods. So, while the time for OM to move from one physical pool into another might 

have been affected by elevated temperature, the chemical fingerprint of that pool did not 

change. Based on these results, we do not expect changes to occur to the chemical 

composition of the investigated SOM fractions with elevated temperature and elevated 

atmospheric CO2 concentrations. This also makes chemistry-induced changes to those 

processes that govern SOM stabilization and decomposition unlikely in a future climate. 

Surprisingly, we found a significant amount of OM associated to sand particles in maA and 

miA in this study. More research is needed to determine the relative importance of this 

pool with regard to its stability and carbon sequestration potential under climate change. 

Therefore, we argue against a simple sand correction of the mineral-associated OM in 
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fractionation studies and urge future fractionation studies to consider and further 

investigate this pool.  

Overall, this study indicates that separating SOM into different pools with different 

functionalities and turnover times, together with modelling additive effects of eT and 

eCO2 might be enough to predict future SOM stocks under climate change with sufficient 

accuracy, while including changes to the chemical composition of these pools and 

complex interactive effects might not be necessary. Whether these findings hold true in 

the long-term remains however unresolved.     
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Supplementary Material  

1) Supplementary Figures 

 
Figure S1: N content in mg N per g soil dry weight of bulk soil, bulk maA and bulk miA by treatment (a-c). Right side: 
Contribution of N in size classes to total N in bulk soil (d) and of density fraction N to total N of maA and miA respectively 
(e-f). Bars and error bars represent mean ± standard error. Corresponding LME model results are shown in Tables S1 
and S2. 
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Figure S2: Left column: C:N ratios of size classes (a) and density fractions of maA (b) and miA (c) by treatment. Right 
column: δ13C-value of size classes (d) and density fractions of maA (e) and miA (f) by treatment. Bars and error bars 
represent mean ± standard error. Corresponding LME model results are shown in Tables S1 and S2. 
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Figure S3: Pictures of the sand fraction of one macro-aggregate sample, taken with a stereoscope (once in a petri dish 
(a,b) and once zoomed in on sticky tape (c,d)). Blue circles: Clear, uncoated quartz crystals. Green circles: Quartz crystals 
possibly coated with iron oxidesa and organic matter. Red circles: Possible conglomerates of cemented smaller (silt & 
clay) particles.   
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Figure S4: NMDS based on a Bray-Curtis dissimilarity matrix of relative abundance data of peaks with known origin for 
POM fractions. The calculated stress-value was 0.173. PERMANOVA results corresponding to the same matrix are visible 
in Tab. S8. 
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Figure S5: Heatmap showing the z-transformed relative abundance data of all found library peaks for the different POM 
fractions by treatment. Substances were categorized by their probable origin molecule class. The substance “Peak 
Unknown” corresponds to a peak with a big relative abundance that was not identifiable via the mass spectrum. Lig. = 
Lignin-derived compounds. 
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Figure S6: NMDS based on a Bray-Curtis dissimilarity matrix of relative abundance data of peaks with known origin for 
singular size classes. A PERMANOVA resulted in so significant treatment effects (α = 0.05). Marginally significant 
PERMANOVA results are indicated in the corresponding graph. 
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Figure S7: NMDS based on a Bray-Curtis dissimilarity matrix of relative abundance data of peaks with known origin 
for macro- and micro-aggregate CaOM. A PERMANOVA resulted in so significant treatment effects (α = 0.05). 

Figure S8: NMDS based on a Bray-Curtis dissimilarity matrix of relative abundance data of peaks with known origin for 
POM fractions A PERMANOVA resulted in so significant treatment effects (α = 0.05). Marginally significant PERMANOVA 
results are indicated in the corresponding graph. miA fPOM was not analysed because not enough material was 
available for Pyr-GC/MS analysis after density fractionation. 
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2) Supplementary Tables 

Table S1: Linear mixed-effects model results (T and F-test) for all bulk size classes and variables. Significant model factors (CO2, temperature (T) and the interaction term (T x CO2)) are 
marked in bold (α = 0.05). “log-Lik”: Log-likelihood ratio, “df”: degrees of freedom. The column “Norm.” contains the p-value of a Shapiro-Wilk test of model residuals, “Transf.” marks 
cases where a data transformation or outlier removal was necessary to obtain a normal distribution of model residuals (log = logarithmical transformation). Variable abbreviations: 
“weight_rel”: Weight contribution of size class to bulk soil (in %), “C_abs”/”N_abs”: Absolute C or N content (in g) in size class per g soil DW, “C_atmperc”/”N_atmperc”: Atom-% C or N of 
size class, “C_perc”/”N_perc”: Proportion of C or N in size class of bulk soil C or N (in%), “CN”: C:N ratio of size class.    

    T-Test F-Test   

    CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size Class Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

Bulk C_abs 7.853 22 -0.364 0.719 -0.020 0.984 -0.509 0.616 2.559 0.124 0.317 0.579 0.259 0.616 0.127 log 

 N_abs 142.160 22 -0.212 0.834 -0.324 0.749 -0.336 0.740 1.656 0.212 0.675 0.420 0.113 0.740 0.647  

 δ13C -15.570 22 8.556 < 0.001 -0.948 0.354 1.068 0.297 248.160 < 0.001 0.060 0.803 1.140 0.297 0.922  

 CN -5.870 21 -1.192 0.247 1.089 0.289 -1.505 0.147 14.600 < 0.001 0.000 0.995 2.260 0.147 0.893 Removed Sample 7 

cPOM weight_rel -22.070 22 -0.591 0.561 1.398 0.176 -0.383 0.705 0.224 0.641 2.636 0.119 0.147 0.705 0.232 log 

 C_abs -22.390 22 -0.751 0.460 1.793 0.087 -0.559 0.582 0.523 0.477 4.047 0.057 0.313 0.582 0.055 log 

 C_atmperc -50.370 21 -1.122 0.275 2.779 0.011 -0.823 0.420 0.995 0.330 9.940 0.005 0.677 0.420 0.436 Removed Sample 49 

 C_perc -22.520 22 -1.038 0.310 1.445 0.163 -0.141 0.889 0.543 0.469 3.789 0.065 0.020 0.889 0.028 log 

 N_abs -22.740 22 -0.539 0.596 1.515 0.144 -0.479 0.637 0.211 0.650 2.865 0.105 0.230 0.637 0.111 log 

 N_atmperc 9.340 22 0.164 0.872 0.837 0.412 -0.548 0.589 0.000 0.999 0.407 0.530 0.300 0.589 0.892  

 N_perc -22.940 22 -0.872 0.392 1.213 0.238 -0.084 0.934 0.308 0.585 2.790 0.109 0.007 0.934 0.079 log 

 δ13C -40.580 22 10.262 < 0.001 -1.531 0.140 1.211 0.239 338.858 < 0.001 0.900 0.353 1.467 0.239 0.254  

 CN -55.940 22 -0.922 0.366 1.133 0.270 -0.290 0.775 1.212 0.283 1.789 0.195 0.084 0.775 0.596  

maA weight_rel -66.000 22 -2.066 0.051 -1.606 0.123 1.380 0.181 5.595 0.027 0.774 0.389 1.905 0.181 0.450  

 C_abs 4.100 22 0.631 0.535 0.734 0.471 -1.113 0.278 0.132 0.720 0.011 0.918 1.239 0.278 0.145 log 

 C_atmperc 8.840 22 1.576 0.129 1.493 0.150 -1.903 0.070 0.196 0.662 0.028 0.868 3.620 0.070 0.262 log 

 C_perc -72.110 22 -0.798 0.433 -1.012 0.322 0.658 0.518 1.066 0.313 0.604 0.445 0.432 0.518 0.975  

 N_abs 2.820 22 0.730 0.473 0.636 0.532 -1.012 0.323 0.008 0.929 0.020 0.890 1.023 0.323 0.134 log 

    T-Test F-Test   
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    CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size Class Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

 N_atmperc 31.900 22 1.851 0.078 1.119 0.275 -1.815 0.083 0.550 0.466 0.080 0.781 3.294 0.083 0.077  

 N_perc -72.100 22 -0.900 0.378 -0.814 0.424 0.632 0.534 1.154 0.294 0.267 0.611 0.400 0.534 0.839  

 δ13C -15.000 21 8.423 < 0.001 -2.131 0.045 1.654 0.113 240.280 < 0.001 1.820 0.191 2.740 0.113 0.732 Sample 48 NA 

 CN -8.460 22 -0.853 0.403 0.349 0.730 0.349 0.730 2.445 0.132 0.073 0.789 0.050 0.825 0.728  

miA weight_rel -61.400 22 1.876 0.074 1.377 0.182 -1.059 0.301 5.960 0.023 0.782 0.386 1.122 0.301 0.561  

 C_abs 118.730 22 1.693 0.105 1.715 0.100 -1.475 0.154 2.719 0.113 0.881 0.358 2.177 0.154 0.329  

 C_atmperc -1.910 22 -0.465 0.647 0.835 0.413 -1.234 0.230 5.605 0.027 0.007 0.934 1.522 0.230 0.274  

 C_perc -64.270 22 1.144 0.265 0.705 0.488 -0.630 0.535 1.952 0.176 0.130 0.722 0.396 0.535 0.772  

 N_abs 169.350 22 1.774 0.090 1.554 0.134 -1.420 0.170 3.050 0.095 0.583 0.453 2.016 0.170 0.537  

 N_atmperc 48.800 22 -0.208 0.837 0.407 0.688 -1.090 0.288 4.173 0.053 0.306 0.586 1.187 0.288 0.232  

 N_perc -65.610 22 1.112 0.278 0.659 0.517 -0.629 0.536 1.701 0.206 0.087 0.770 0.396 0.536 0.751  

 δ13C -9.230 22 9.641 < 0.001 -2.307 0.031 1.619 0.120 303.450 < 0.001 2.710 0.114 2.620 0.120 0.797  

 CN 2.740 22 -1.140 0.267 1.885 0.073 -0.547 0.590 1.640 0.214 4.650 0.042 0.300 0.590 0.186  

scA weight_rel 4.500 22 2.138 0.044 2.051 0.052 -2.010 0.057 2.898 0.103 0.747 0.397 4.038 0.057 0.073 log 

 C_abs -3.900 22 0.932 0.362 1.496 0.149 -1.108 0.280 0.714 0.407 1.012 0.326 1.229 0.280 0.058 log 

 C_atmperc 8.300 22 -0.919 0.368 0.167 0.869 0.459 0.651 0.306 0.586 0.524 0.477 0.210 0.651 0.022 log 

 C_perc -44.160 22 0.484 0.633 0.320 0.752 -0.284 0.779 0.333 0.570 0.027 0.870 0.081 0.779 0.058  

 N_abs -3.440 22 1.076 0.294 1.556 0.134 -1.209 0.239 0.910 0.350 0.970 0.335 1.460 0.239 0.145 log 

 N_atmperc 8.760 22 -0.722 0.478 0.219 0.828 0.334 0.742 0.163 0.690 0.446 0.511 0.112 0.742 0.066 log 

 N_perc -44.970 22 0.478 0.638 0.431 0.670 -0.372 0.714 0.252 0.620 0.055 0.816 0.138 0.714 0.097  

 δ13C -1.270 22 8.718 < 0.001 -1.551 0.135 1.601 0.124 272.000 < 0.001 0.300 0.576 2.600 0.124 0.018  

 CN -17.150 22 -0.668 0.511 -0.162 0.873 0.443 0.662 0.202 0.658 0.053 0.820 0.197 0.662 0.135  
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Table S2: Linear mixed-effects model results (T and F-test) for all maA and miA fractions and variables. Significant model factors (CO2, temperature (T) and the interaction term (T x CO2)) 
are marked in bold (α = 0.05). “log-Lik”: Log-likelihood ratio, “df”: degrees of freedom. The column “Norm.” contains the p-value of a Shapiro-Wilk test of model residuals, “Transf.” marks 
cases where a data transformation or outlier removal was necessary to obtain a normal distribution of model residuals (log = logarithmical transformation). Variable abbreviations: 
“weight_rel”: Weight contribution of size class to bulk soil (in %), “weight_abs”: Absolute weight of fraction (in g) per g soil DW, “C_abs”/”N_abs”: Absolute C or N content (in g) in size 
class per g soil DW, “C_atmperc”/”N_atmperc”: Atom-% C or N of size class, “C_perc”/”N_perc”: Proportion of C or N in size class of bulk soil C or N (in%), “CN”: C:N ratio of size class.    

     T-Test F-Test   

     CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size class Fraction Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

maA fPOM weight_abs 69.290 22 -1.565 0.132 -1.965 0.062 1.042 0.309 6.108 0.022 3.078 0.093 1.085 0.309 0.194  

  weight_rel -36.920 22 -1.325 0.199 -1.830 0.081 0.878 0.389 5.064 0.035 2.994 0.098 0.771 0.389 0.106  

  C_abs -20.150 22 -1.300 0.207 -1.473 0.155 0.646 0.525 5.399 0.030 2.122 0.159 0.417 0.525 0.244 log 

  C_atmperc -54.700 22 -0.530 0.601 0.717 0.481 0.866 0.396 1.884 0.184 3.792 0.064 0.750 0.396 0.927  

  C_perc -16.060 22 -0.596 0.557 -1.297 0.208 0.449 0.658 1.785 0.195 1.983 0.173 0.202 0.658 0.831 log 

  N_abs 169.100 22 -1.023 0.317 -1.829 0.081 0.781 0.443 3.678 0.068 3.354 0.081 0.609 0.443 0.065  

  N_atmperc 6.140 22 1.431 0.167 -0.461 0.649 -0.153 0.880 3.016 0.096 0.688 0.416 0.024 0.880 0.164  

  N_perc -19.150 22 -0.183 0.857 -1.315 0.202 0.079 0.938 1.808 0.192 3.322 0.082 0.006 0.938 0.274 log 

  δ13C -34.170 21 6.416 0.000 -3.423 0.003 2.943 0.008 179.604 <.0001 3.476 0.076 8.660 0.008 0.703 Removed 43 

  CN -58.940 22 -2.123 0.045 0.971 0.342 0.835 0.413 1.375 0.253 5.215 0.032 0.698 0.413 0.769  

 iPOM weight_abs -9.490 22 -2.862 0.009 0.239 0.813 0.405 0.689 15.219 0.001 0.595 0.449 0.164 0.689 0.387 log 

  weight_rel -21.100 22 -2.282 0.033 0.354 0.727 0.191 0.850 10.326 0.004 0.509 0.483 0.037 0.850 0.085  

  C_abs 112.650 22 -2.533 0.019 0.628 0.536 -0.204 0.841 17.129 0.000 0.486 0.493 0.042 0.841 0.449  

  C_atmperc -56.220 20 2.508 0.021 0.985 0.336 -1.769 0.092 3.302 0.084 0.165 0.689 3.129 0.092 0.766 Removed 11, 49 

  C_perc -63.230 22 -1.228 0.233 2.256 0.034 -1.353 0.190 6.847 0.016 3.419 0.078 1.832 0.190 0.709  

  N_abs 175.520 22 -2.179 0.040 -0.620 0.542 0.382 0.706 12.623 0.002 0.248 0.624 0.146 0.706 0.333  

  N_atmperc -1.560 22 2.385 0.026 -1.394 0.177 -1.104 0.282 0.539 0.471 10.094 0.004 1.218 0.282 0.130  

  N_perc -58.290 22 -1.579 0.129 0.486 0.632 -0.516 0.611 10.417 0.004 0.027 0.871 0.266 0.611 0.635  

  δ13C -39.560 22 5.729 0.000 0.134 0.895 0.254 0.802 107.535 <.0001 0.212 0.650 0.065 0.802 0.163  

  CN -50.080 21 -0.427 0.674 2.669 0.014 -1.224 0.235 0.434 0.517 6.641 0.018 1.498 0.235 0.120  
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     T-Test F-Test   

     CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size class Fraction Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

 CaOM weight_abs 35.140 22 -2.267 0.034 -0.557 0.583 1.782 0.089 1.019 0.324 1.126 0.300 3.174 0.089 0.152  

  weight_rel -65.720 22 -1.166 0.256 0.343 0.735 1.031 0.314 0.069 0.795 2.491 0.129 1.062 0.314 0.011  

  C_abs 108.640 22 -1.406 0.174 -1.015 0.321 1.010 0.323 1.976 0.174 0.169 0.685 1.021 0.323 0.427  

  C_atmperc -3.140 22 -0.279 0.783 -0.928 0.364 0.128 0.899 1.143 0.297 1.465 0.239 0.016 0.899 0.874  

  C_perc -77.370 22 0.623 0.540 0.086 0.932 0.264 0.794 2.682 0.116 0.161 0.692 0.070 0.794 0.751  

  N_abs 159.280 22 -1.375 0.183 -1.012 0.322 1.080 0.292 1.487 0.236 0.112 0.741 1.167 0.292 0.633  

  N_atmperc 47.640 22 -0.146 0.885 -0.833 0.414 0.091 0.928 0.682 0.418 1.235 0.279 0.008 0.928 0.877  

  N_perc -79.810 22 0.163 0.872 0.380 0.708 0.186 0.854 0.943 0.342 0.556 0.464 0.035 0.854 0.101  

  δ13C -19.940 22 5.995 0.000 -0.335 0.741 0.172 0.865 105.010 <.0001 0.090 0.763 0.030 0.865 0.420  

  CN -2.380 22 -0.648 0.524 -0.092 0.927 -0.355 0.726 3.450 0.077 0.260 0.618 0.130 0.726 0.698  

 SaOM weight_abs 40.520 22 -0.037 0.971 -1.051 0.305 -0.023 0.982 1.107 0.304 2.396 0.136 0.001 0.982 0.275  

  weight_rel -64.330 22 1.498 0.148 -0.431 0.671 -1.082 0.291 0.016 0.901 3.097 0.092 1.171 0.291 0.022  

  C_abs 103.310 22 -0.635 0.532 -0.449 0.658 0.003 0.998 2.192 0.153 0.418 0.524 0.000 0.998 0.082  

  C_atmperc -15.570 22 -1.036 0.312 -0.279 0.783 0.306 0.763 2.078 0.164 0.007 0.934 0.093 0.763 0.842  

  C_perc -75.510 22 1.078 0.293 0.288 0.776 -0.422 0.677 1.695 0.207 0.001 0.980 0.178 0.677 0.514  

  N_abs 163.490 22 -0.320 0.752 -0.536 0.598 0.335 0.741 0.157 0.695 0.181 0.675 0.112 0.741 0.129  

  N_atmperc 44.230 22 -0.497 0.624 -0.229 0.821 0.651 0.522 0.030 0.864 0.122 0.730 0.423 0.522 0.944  

  N_perc -74.140 22 1.003 0.327 0.507 0.617 -0.375 0.711 2.134 0.158 0.117 0.736 0.141 0.711 0.231  

  δ13C 56.170 22 -5.885 0.000 1.789 0.087 -1.525 0.142 127.700 <.0001 1.000 0.331 2.300 0.142 0.020 log*-1 

  CN 7.610 22 -0.856 0.401 -0.182 0.857 -0.097 0.923 3.265 0.085 0.134 0.718 0.009 0.923 0.035 log 

 

miA fPOM weight_abs -22.920 22 1.431 0.166 1.161 0.258 -0.910 0.373 3.133 0.091 0.530 0.474 0.828 0.373 0.406 log 

  weight_rel -3.880 22 0.722 0.478 1.000 0.328 -0.933 0.361 0.138 0.714 0.222 0.642 0.870 0.361 0.925  

  C_abs 153.350 22 1.222 0.235 0.623 0.540 -0.631 0.535 2.114 0.160 0.058 0.812 0.398 0.535 0.219  

  C_atmperc -88.850 22 0.228 0.822 -0.958 0.348 0.457 0.652 0.150 0.702 0.828 0.373 0.209 0.652 0.074  

     T-Test F-Test   
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     CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size class Fraction Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

  C_perc -65.360 22 0.180 0.859 -0.371 0.714 0.388 0.702 0.496 0.489 0.017 0.897 0.151 0.702 0.547  

  N_abs -25.240 22 1.298 0.208 1.253 0.224 -1.070 0.296 1.749 0.200 0.480 0.496 1.146 0.296 0.631 log 

  N_atmperc 1.100 21 1.123 0.274 1.955 0.064 -1.957 0.064 0.006 0.942 0.591 0.451 3.831 0.064 0.566 Removed 52 

  N_perc -53.820 22 0.033 0.974 0.799 0.433 -0.496 0.625 0.025 0.875 0.408 0.530 0.246 0.625 0.056  

  δ13C -45.150 22 1.887 0.072 -3.555 0.002 2.582 0.017 23.897 0.000 5.974 0.023 6.666 0.017 0.253  

  CN -11.210 22 0.210 0.836 -1.102 0.282 0.772 0.448 0.675 0.420 0.621 0.439 0.596 0.448 0.189  

 iPOM weight_abs 148.540 22 0.540 0.595 1.425 0.168 -0.811 0.426 0.453 0.508 1.474 0.238 0.658 0.426 0.642  

  weight_rel -1.970 22 -0.918 0.368 0.078 0.939 -0.148 0.884 3.153 0.090 0.002 0.966 0.022 0.884 0.023 log 

  C_abs 168.270 22 0.594 0.559 1.622 0.119 -0.882 0.387 0.655 0.427 2.032 0.168 0.778 0.387 0.207  

  C_atmperc -46.840 22 -0.020 0.984 0.784 0.441 0.089 0.930 0.704 0.410 1.514 0.232 0.008 0.930 0.008  

  C_perc -52.340 22 -1.833 0.080 -0.499 0.623 1.063 0.299 2.466 0.131 0.154 0.699 1.130 0.299 0.838  

  N_abs 234.630 22 0.800 0.433 1.166 0.256 -0.772 0.448 0.915 0.349 0.774 0.389 0.596 0.448 0.500  

  N_atmperc 10.700 22 0.672 0.509 -1.586 0.127 0.569 0.575 0.627 0.437 2.899 0.103 0.323 0.575 0.352  

  N_perc -42.600 22 -1.807 0.084 -0.807 0.428 1.138 0.268 2.767 0.110 0.001 0.981 1.294 0.268 0.303  

  δ13C -26.910 22 7.123 0.000 -1.220 0.235 0.915 0.370 163.220 <.0001 0.650 0.427 0.840 0.370 0.490  

  CN 21.760 22 -0.553 0.586 1.631 0.117 -0.360 0.722 0.020 0.879 3.950 0.060 0.130 0.722 0.037 log 

 CaOM weight_abs 53.710 22 1.578 0.129 0.849 0.405 -0.684 0.501 4.689 0.042 0.263 0.613 0.468 0.501 0.265  

  weight_rel -52.350 22 -0.085 0.933 -2.392 0.026 0.810 0.427 0.592 0.450 6.849 0.016 0.656 0.427 0.951  

  C_abs 133.470 22 1.333 0.196 0.319 0.752 -0.383 0.706 3.384 0.079 0.004 0.952 0.147 0.706 0.774  

  C_atmperc -2.430 22 -0.713 0.484 -1.638 0.116 1.020 0.319 0.587 0.452 1.701 0.206 1.040 0.319 0.181  

  C_perc -75.150 22 -1.762 0.092 -2.645 0.015 2.459 0.022 0.560 0.462 1.574 0.223 6.047 0.022 0.694  

  N_abs 184.390 22 1.531 0.140 0.243 0.810 -0.401 0.692 4.299 0.050 0.005 0.946 0.161 0.692 0.742  

  N_atmperc 53.710 22 1.578 0.129 0.849 0.405 -0.684 0.501 4.689 0.042 0.263 0.613 0.468 0.501 0.265  

  N_perc -73.330 22 -2.106 0.047 -3.061 0.006 3.126 0.005 0.203 0.657 1.339 0.260 9.773 0.005 0.414  

  δ13C -8.230 22 9.305 0.000 -1.132 0.270 1.041 0.309 282.690 <.0001 0.300 0.589 1.080 0.309 0.902  

  CN -9.520 22 -1.653 0.113 0.799 0.433 -0.207 0.838 6.201 0.021 0.884 0.357 0.043 0.838 0.324  
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     T-Test F-Test   

     CO2 T CO2 x T CO2 T CO2 x T Norm. Transf. 

Size class Fraction Variable logLik df t-Value p t-Value p t-Value p F-Value p F-Value p F-Value p p  

 SaOM weight_abs 51.390 22 1.310 0.204 1.439 0.164 -0.756 0.458 4.428 0.047 1.673 0.209 0.571 0.458 0.266  

  weight_rel -52.740 22 -0.026 0.980 2.237 0.036 -0.609 0.549 0.672 0.421 6.779 0.016 0.371 0.549 0.826  

  C_abs -13.320 22 2.650 0.015 2.763 0.011 -2.660 0.014 3.957 0.059 1.475 0.237 7.076 0.014 0.951  

  C_atmperc -23.050 22 2.119 0.046 1.961 0.063 -2.611 0.016 0.206 0.655 0.011 0.919 6.819 0.016 0.179  

  C_perc -75.010 22 2.312 0.031 3.080 0.006 -3.105 0.005 0.738 0.400 1.457 0.240 9.640 0.005 0.683  

  N_abs -12.510 22 2.861 0.009 2.522 0.019 -2.659 0.014 4.558 0.044 0.750 0.396 7.069 0.014 0.995 log 

  N_atmperc 33.800 22 2.564 0.018 1.792 0.087 -2.914 0.008 0.243 0.627 0.210 0.651 8.489 0.008 0.261  

  N_perc -75.190 22 2.334 0.029 2.694 0.013 -2.944 0.008 0.727 0.403 0.666 0.423 8.668 0.008 0.298  

  δ13C -18.820 22 4.340 0.000 0.252 0.803 0.083 0.935 60.610 <.0001 0.210 0.655 0.010 0.935 0.789  

  CN 2.690 22 -0.225 0.824 0.687 0.499 -0.200 0.843 0.021 0.887 0.617 0.441 0.040 0.843 0.134 log 
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Table S3: TukeyHSD-Test results of the LME models (see Tab. 3a) for the proportion of C derived from the fumigation treatment for all size classes. Bold values mark significant 
differences between size class & treatment combination (α = 0.05). 

 Size Classes Bulk Soil maA miA Silt & Clay 

Size Classes Temperature Ambient +3°C Ambient +3°C Ambient +3°C Ambient +3°C 

Bulk Soil 
Ambient         

+3°C n.s.        

maA 
Ambient n.s. n.s.       

+3°C n.s. n.s. n.s.      

miA 
Ambient n.s. n.s. n.s. n.s.     

+3°C n.s. n.s. n.s. n.s. n.s.    

scA 
Ambient 0.008 n.s. 0.001 n.s. n.s. n.s.   

+3°C 0.007 <.0001 0.002 <.0001 0.033 0.006 n.s.  
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Table S4: TukeyHSD-Test results of the LME models (see Tab. 3b + c) for the proportion of C derived from the fumigation treatment for maA/miA density fractions. Bold values mark 
significant differences between size class & treatment combination (α = 0.05). 

maA Fraction fPOM iPOM MOM Sand 

Fraction Temperature Ambient +3°C Ambient +3°C Ambient +3°C Ambient +3°C 

fPOM 
Ambient         

+3°C n.s.        

iPOM 
Ambient 0.072 n.s.       

+3°C n.s. n.s. n.s.      

CaOM 
Ambient <.0001 0.043 0.034 n.s.     

+3°C 0.002 <.0001 0.095 0.001 n.s.    

SaOM 
Ambient <.0001 0.083 0.099 n.s. n.s. n.s.   

+3°C 0.002 <.0001 0.068 <.0001 n.s. n.s. n.s.  

 

mIA Fraction fPOM iPOM MOM Sand 

Fraction Temperature Ambient +3°C Ambient +3°C Ambient +3°C Ambient +3°C 

fPOM 
Ambient         

+3°C 0.046        

iPOM 
Ambient n.s. n.s.       

+3°C n.s. 0.013 n.s.      

CaOM 
Ambient 0.041 n.s. n.s. n.s.     

+3°C 0.063 n.s. n.s. 0.031 n.s.    

SaOM 
Ambient 0.004 n.s. 0.029 n.s. n.s. n.s.   

+3°C 0.025 n.s. 0.074 0.002 n.s. n.s. n.s.  
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Table S5: Tukey-HSD post-hoc test results for the weight proportion of size classes or fractions with a significant 
treatment effect in the LME model (α = 0.05).  

a) maA Bulk Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 0.069 n.s. n.s.  

 

b) miA Bulk Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 0.064 n.s. n.s.  

 

c) maA fPOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 0.04 n.s. n.s.  

 

d) maA iPOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 0.093 n.s. n.s.  

 

Table S6: Tukey-HSD post-hoc test results for the relative carbon content of size classes or fractions with a significant 
treatment effect in the LME model (α = 0.05). 

a) maA iPOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 0.018 0.040   

eT x eCO2 n.s. n.s. n.s.  

 

b) miA CaOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 n.s. n.s. 0.066  

 

c) miA SaOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 n.s. n.s. 0.026  
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Table S7: Tukey-HSD post-hoc test results for the relative nitrogen content of size classes or fractions with a significant 
treatment effect in the LME model (α = 0.05). 

a) maA fPOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 n.s. n.s. n.s.  

 

b) maA iPOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 0.061 n.s. n.s.  

 

c) miA CaOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 n.s. n.s. 0.027  

 

d) miA SaOM Ambient eT eCO2 eT x eCO2 

Ambient     

eT n.s.    

eCO2 n.s. n.s.   

eT x eCO2 n.s. n.s. 0.059  

 

 

 

Table S8: PERMANOVA results (degrees of freedom (df), F- and p-values) for the effect of fraction and treatment on 
pyrolysis-GC/MS relative abundance data of all found peaks with assignable origin from literature (based on a Bray-
Curtis dissimilarity matrix). Bold values signify significant model terms (α = 0.05).   

 
Fraction Treatment Fraction x Treatment 

df F p df F p df F p 

POM 4 1180.04 0.020 3 688.39 0.074 12 -170.90 0.970 
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Table S9: Substance library used for Pyrolysis-GC/MS analysis with assigned origin classes from literature.  

Nr Substance Origin class Reference 

1 1H-Inden-1-one, 2,3-dihydro- Aromatics & Phenols Stewart (2012) 

2 2-Methylindene Aromatics & Phenols Zhe et al. (2019) 

3 Benzaldehyde Aromatics & Phenols Stewart (2012), Carr et al. (2010) 

4 Benzene Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

5 Benzene, 1-ethyl-2-methyl Aromatics & Phenols Zhe et al. (2019) 

6 Benzene, n-butyl- Aromatics & Phenols Stewart (2012) 

7 Benzene, propyl- Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

8 Ethanone, 1-(3-hydroxy-4-methoxyphenyl)- Aromatics & Phenols Stewart (2012) 

9 Ethylbenzene Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

10 Indene Aromatics & Phenols Vancampenhout et al. (2009), Carr et al. (2010) 

11 Mesitylene Aromatics & Phenols Zhe et al. (2019) 

12 Naphthalene Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

13 Naphthalene, 1-methyl- Aromatics & Phenols Tolu et al. (2017) 

14 Naphthalene, 1,6-dimethyl- Aromatics & Phenols Carr et al. (2010) 

15 Naphthalene, 2-methyl- Aromatics & Phenols Carr et al. (2010) 

16 o-Xylene Aromatics & Phenols Carr et al. (2010) 

17 p-Cresol Aromatics & Phenols Stewart (2012); Carr et al. (2010) 

18 p-Xylene Aromatics & Phenols Carr et al. (2010) 

19 Phenol Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

20 Phenol, 2-ethyl- Aromatics & Phenols Carr et al. (2010) 

21 Phenol, 2-methyl- Aromatics & Phenols Carr et al. (2010) 

22 Phenol, 3-ethyl- Aromatics & Phenols Vancampenhout et al. (2009), Carr et al. (2010) 

23 Phenol, 3-methyl- Aromatics & Phenols Stewart (2012) 

24 Phenol, 4-ethyl- Aromatics & Phenols Stewart (2012) 

25 Styrene Aromatics & Phenols Vancampenhout et al. (2009), Carr et al. (2010) 

26 Toluene Aromatics & Phenols Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

27 α-Methylstyrene Aromatics & Phenols Fabbri et al. (1998) 

28 Acetophenone Aromatics & Phenols Stewart (2012) 

29 1,4-Cyclohex-2-enedione Carbohydrates Stewart (2012) 

30 2-Cyclopenten-1-one Carbohydrates Zhe et al. (2019) 

31 2-Cyclopenten-1-one, 2-hydroxy- Carbohydrates Stewart (2012) 

32 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- Carbohydrates Stewart (2012) 

33 2-Cyclopenten-1-one, 2-methyl- Carbohydrates Stewart (2012) 

34 2-Cyclopenten-1-one, 2,3-dimethyl- Carbohydrates Stewart (2012) 

35 2-Cyclopenten-1-one, 3-methyl- Carbohydrates Stewart (2012) 

36 2-Furancarboxaldehyde, 5-methyl- Carbohydrates Vancampenhout et al. (2009), Stewart (2012) 

37 2-Furanmethanol Carbohydrates Stewart (2012) 

38 2-Propenal Carbohydrates Saiz-Jimenez & de Leeuw (1985) 

39 2-Vinylfuran Carbohydrates Stewart (2012) 

40 2,3-Anhydro-d-galactosan Carbohydrates Smith et al. 2016 

41 2(3H)-Furanone, 5-methyl- Carbohydrates Stewart (2012) 

42 2(5H)-Furanone Carbohydrates Stewart (2012) 

Nr Substance Origin class Reference 

43 2(5H)-Furanone, 5-methyl- Carbohydrates Stewart (2012) 
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44 3-Furaldehyde Carbohydrates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

45 5-Hydroxymethylfurfural Carbohydrates Stewart (2012) 

46 Acetone Carbohydrates Saiz-Jimenez & de Leeuw (1985) 

47 Benzofuran Carbohydrates Girona-García et al. 2019 

48 Benzofuran, 2-methyl- Carbohydrates Stewart (2012) 

49 Ethanone, 1-(2-furanyl)- Carbohydrates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

50 Furan, 2-methyl- Carbohydrates Vancampenhout et al. (2009), Stewart (2012) 

51 Furan, 2,3-dihydro- Carbohydrates Saiz-Jimenez & de Leeuw (1985) 

52 Furfural Carbohydrates Vancampenhout et al. (2009), Stewart (2012) 

53 Levoglucosenone Carbohydrates Vancampenhout et al. (2009), Stewart (2012) 

54 Maltol Carbohydrates Vancampenhout et al. (2009), Stewart (2012) 

55 2-Methoxy-4-vinylphenol Lignin Derivates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

56 Creosol Lignin Derivates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

57 Phenol, 2-methoxy- Lignin Derivates Stewart (2012), Carr et al. (2010) 

58 Phenol, 2-methoxy-4-(1-propenyl)-, (Z)- Lignin Derivates Stewart (2012), Carr et al. (2010) 

59 Phenol, 2,6-dimethoxy- Lignin Derivates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

60 Phenol, 2,6-dimethoxy-4-(2-propenyl)- Lignin Derivates Stewart (2012), Carr et al. (2010) 

61 Phenol, 4-ethyl-2-methoxy- Lignin Derivates Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

62 1-Decene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

63 1-Docosene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

64 1-Dodecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

65 1-Heptadecene Lipids Stewart (2012), Carr et al. (2010) 

66 1-Nonadecene Lipids Stewart (2012), Carr et al. (2010) 

67 1-Nonene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

68 1-Nonene, 4,6,8-trimethyl- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

69 1-Octadecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

70 1-Pentadecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

71 1-Tetracosene Lipids Carr et al. (2010) 

72 1-Tetradecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

73 1-Tridecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

74 1-Undecene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

75 3-Dodecene, (Z)- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

76 3-Eicosene, (E)- Lipids Stewart (2012), Carr et al. (2010) 

77 Cetene Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

78 Decanal Lipids Zang & Hatcher (2002) 

79 Decane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

80 Dodecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

81 Dodecane, 2,7,10-trimethyl- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

82 Heneicosane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

83 Heptadecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

84 Heptadecanoic acid,16-methyl-,methyl ester Lipids Stewart (2012) 

85 Hexadecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

86 Hexadecanoic acid, methyl ester Lipids Stewart (2012) 

87 Nonadecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

88 Nonanal Lipids Zang & Hatcher (2002) 

Nr Substance Origin class Reference 
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89 Nonane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

90 Octadecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

91 Pentadecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

92 Tetradecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

193 Tridecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

94 Tridecane, 2-methyl- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

95 Undecane Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

96 Undecane, 3,8-dimethyl- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

97 Undecane, 4,7-dimethyl- Lipids Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

98 1H-Pyrrole, 1-methyl- N-Containing Stewart (2012) 

99 1H-Pyrrole, 2-methyl- N-Containing Stewart (2012) 

100 1H-Pyrrole, 3-methyl- N-Containing Stewart (2012), Carr et al. (2010) 

101 2-Furancarbonitrile N-Containing Siljeström et al. 2014 

102 2-Propenenitrile N-Containing Stewart (2012) 

103 2-Pyridinecarbonitrile N-Containing Stewart (2012) 

104 3-Acetamidofuran N-Containing Tolu et al. 2017 

105 Acetamide N-Containing Tolu et al. 2017 

106 Benzenepropanenitrile N-Containing Stewart (2012) 

107 Benzonitrile N-Containing Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

108 Benzonitrile, 3-methyl- N-Containing Carr et al. (2010) 

109 Benzyl nitrile N-Containing Stewart (2012) 

110 Hexadecanenitrile N-Containing Stewart (2012) 

111 Indole N-Containing Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

112 Isoamyl cyanide N-Containing Stewart (2012) 

113 Octadecanenitrile N-Containing Carr et al. (2013) 

114 Pyridine N-Containing Vancampenhout et al. (2009), Stewart (2012), Carr et al. (2010) 

115 Pyridine, 2-methyl- N-Containing Stewart (2012), Carr et al. (2010) 

116 Pyridine, 3-methyl- N-Containing Stewart (2012) 

117 Pyrrole N-Containing Vancampenhout et al. (2009), Stewart (2012) 

118 Peak Unknown General & Unknown  

119 2-Propen-1-ol General & Unknown  
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3) Code Example 

# Generic code to evaluate peak area data and calculate relative abundance 

 

# Preparations ########################################################### 

 

# Load Packages 

library(tidyverse) 

library(plyr) 

library(readr) 

library(ggplot2) 

library(vegan) 

library(dplyr) 

library(tibble) 

library(phyloseq) 

library(metagMisc) 

 

# Working directory where output is stored: 

setwd("/Path_WD/") 

output_path <- "/Path_Output/" 

 

# Initialize Functions: 

sum_treat_fun <- function(df, treatment){ 

  x <- sum(df$Abundance[df$Treatment == treatment]) 

  return(x) 

} 

 

calc_rel_fun <- function(x, sum_treatment, treatment){ 

  rel_x = transform_sample_counts(x, function(x) x / sum_treatment) 

  df_x <- psmelt(rel_x) 

  df_x <- filter(df_x, Treatment == treatment) 

  return(df_x) 

} 

 

data_summary <- function(data, varname, groupnames){ 

  require(plyr) 

  summary_func <- function(x, col){ 

    c(mean = mean(x[[col]], na.rm=TRUE), 

      se = sd(x[[col]]/sqrt(length(x[[col]])), na.rm=TRUE)) 

  } 

  data_sum<-ddply(data, groupnames, .fun=summary_func, 

                  varname) 

  data_sum <- rename(data_sum, c("mean" = varname)) 

  return(data_sum) 

} 

 

# Import the individual samples as .csv files: 

# Exported from Chromatof in XIC and TIC and stored as .csv file 

 

mydir = "Samples" 

myfiles = list.files(path=mydir, pattern="*.csv", full.names=TRUE) 

# Imported Files: 

myfiles 

dat_csv = ldply(myfiles, read_csv) 

colnames(dat_csv) <- c("Sample", "Name", "RT", "Area", "RI", "Quant", "Match", "SN", 

"Origin", "Type", "Group") 

 

# Data Manipulation 

##########################################################################################

##### 

 

# Data is aligned with Reference Library and merged 

# with the total Library and Treatment file to get Origin of peaks and treatment Levels 

for this experiment.  

# Blank correction is performed. Peaks with negative area after this step get set to 0. 

NAs are put to 0 as well.    

 

# remove TIC 

dat_csv1<-subset(dat_csv,Quant!="TIC") 

 

# Create new Column with new unique names 

dat_csv1$Double<-paste(dat_csv1$Name,dat_csv1$Quant) 
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# remove +- character 

dat_csv1$Double <- iconv(dat_csv1$Double, 'utf-8', 'ascii', sub='_') 

 

 

# Import reference datafile (from reference sample) 

file <- file.choose(new = FALSE) 

reference <- read.csv(file,header=T,dec=".",sep=",") 

reference[reference==""] <- NA 

head(reference) 

 

# remove +- character 

reference$Quant <- iconv(reference$Quant, 'utf-8', 'ascii', sub='_') 

 

# Create new Column with new unique names (same names as line 67) 

reference$Double<-paste(reference$Name,reference$Quant) 

 

# Aggregate Samples  

m1 <- aggregate(Area ~ Sample + Double + Type  , data = dat_csv1, FUN = mean, na.action = 

na.pass) 

 

# Merge and align Samples and Reference 

new<- merge(reference, m1, by.y = "Double") 

 

# Select Columns we want to use 

new1<-new %>% 

  select(Double, Sample, Area) 

 

# reorganize (transpose) dataframe 

new1<-reshape(new1, timevar="Sample", idvar="Double", direction="wide") 

 

# create new dataframe with Blanks 

blank<-select(new1,contains("Blank")) 

 

# Import "Double" so names are the same, put it as first column 

blank<-add_column(blank, new1$Double, .before = 1) 

 

# calculate mean of blank of every peak  

blank<-data.frame(ID=blank[,1], Means=rowMeans(blank[,-1])) 

 

# Remove blank from dataframe so only samples remain 

new1<-new1[, -grep("Blank", colnames(new1))] 

 

# put NAs to 0 

new1[is.na(new1)] = 0 

blank[is.na(blank)] = 0 

 

# Substract mean of Blanks from samples 

result = new1[, 2 : ncol(new1)] - blank$Means  

 

# Create new dataframe with only important information, clean names etc, set negatives to 

0 

otumat <- cbind(new1$Double,result) 

otumat[otumat<0] <- 0 

for ( col in 1:ncol(otumat)){ 

  colnames(otumat)[col] <-  sub("Area.", "", colnames(otumat)[col]) 

} 

 

colnames(otumat)[1]<-"Name" 

a<-otumat$Name 

a<-gsub(" XIC.*","",a) 

otumat[, 1] <- a 

otumat[is.na(otumat)] = 0 

 

# Export file 

write.csv(otumat, file.path(output_path, "AbsolutePeakAreas.csv"), row.names=FALSE) 

 

#load samples description file (has to have same sample names as samples) 

file <- file.choose(new = FALSE) 

meta_table <- read.csv(file,header=T,dec=".",sep=";", row.names=1) 

meta_table[meta_table==""] <- NA 

meta_table$SampleID <- row.names(meta_table) 

head(meta_table) 

 

# C content of sample 

meta_table$C_amount <- (meta_table$Weight * meta_table$C_perc)/100*1000  ### Unit == µg 
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#### Transform absolute peak area into C amount 

otumat1 = setNames(data.frame(t(otumat[,-1])), otumat[,1]) 

otumat1 <- (otumat1*meta_table$C_amount)/rowSums(otumat1) 

otumat1 = data.frame(t(otumat1)) 

otumat1$Name <- otumat$Name 

otumat1 <- otumat1[,c(ncol(otumat1),1:ncol(otumat1)-1)] 

colnames(otumat1) <- colnames(otumat) 

otumat <- otumat1 

 

# Import Library file  

file <- file.choose(new = FALSE) 

library <- read.csv(file,header=T,dec=".",sep=";",  stringsAsFactors = FALSE) 

library[library==""] <- NA 

names(library) <- c("Name", "Origin", "Identified") 

 

# Merge library and dataframe, fill missing entries and clean data 

library<- merge(otumat, library, by = "Name", all = TRUE) 

library = subset(library, select = c(Name,Origin,Identified) ) 

library$Origin[library$Origin == "N-Containing"] <- "N Containing" 

library$Origin[library$Origin == "N-Containing "] <- "N Containing" 

library$Origin[is.na(library$Origin)] <- "Unidentified" 

library$Identified[is.na(library$Identified)] <- "NO" 

 

# Generate phyloseq object  

 

# Data is treated like Sequencing data where the OTUs resemble individual peaks. origin  

# and treatment are used to group them.   

 

rownames(otumat) <- otumat[,1] 

otumat <- otumat[,-1] 

otumat <- data.matrix(otumat) 

rownames(library) <- library[,1] 

taxmat <- as.matrix(library) 

meta_table$Lib.size = colSums(otumat) 

 

OTU = otu_table(otumat, taxa_are_rows = TRUE) 

TAX = tax_table(taxmat) 

SAM = sample_data(meta_table) 

 

physeq <- merge_phyloseq(phyloseq(OTU, TAX), SAM) 

sample_names(SAM) 

 

# Data Quality check 

 

# check if any OTUs are not present in any samples 

any(taxa_sums(physeq) == 0) 

physeq <- prune_taxa(taxa_sums(physeq) > 0, physeq) #use this to remove the OTU that are 

not found in any sample 

physeq 

 

# 3) Data normalization 

 

# Relative area per peak per sample is calculated for the barplots with error bars. 

Relative area per  

# origin per treatment is calculated for the stacked barplot.  

 

# calculate relative Abundance per Sample and transform to numeric for calculation of 

indices  

physeq.rel= transform_sample_counts(physeq, function(x) x / sum(x)) 

 

# Physeq Object for calculation of richness indices 

physeq.rel.alpha  = transform_sample_counts(physeq.rel, function(x) 

round((x*10000),digits=0)) 

 

# Convert phyloseq objects into dataframes  

df_rel <- psmelt(physeq.rel) 

df_norm <- psmelt(physeq) 

 

# Export Absolute Data (normalized by C content) 

write.csv(df_norm, file.path(output_path, "AbsolutePeakAreas_normalized.csv"), 

row.names=FALSE) 

 

# Export Relative Data 

write.csv(df_rel, file.path(output_path, "RelativePeakAreas.csv"), row.names=FALSE) 
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treat_list <- levels(SAM$Treatment) 

 

# Grouping by Treatment 

 

# Calculate area sum for each treatment and store in vector 

sum_all_treatments <-vector() 

 

for(i in 1 : length(treat_list)){ 

  sum_all_treatments[i] <- sum_treat_fun(df_norm, treat_list[i]) 

} 

 

# Create dataframe with relative Abundances per Treatment 

data_rel <- data.frame() 

 

for(i in 1 : length(treat_list)){ 

  tmp <- calc_rel_fun(physeq, sum_all_treatments[i], treat_list[i]) 

  data_rel <- rbind(data_rel, tmp) 

} 

 

data_rel_export <- subset(data_rel, select = c(Name,Sample,Origin,Abundance, Treatment) ) 

 

# Export Relative Data per Treatment 

write.csv(data_rel_export, file.path(output_path, 

"RelativePeakAreas_GroupedByTreatment.csv"), row.names=FALSE) 

 

save.image(file="environment.RData") 

 

# Quality Check  

 

require("tidyverse") 

require(plyr) 

require(readr) 

require("ggplot2") 

require("vegan") 

require(dplyr) 

require(tibble) 

 

# Aggregate Samples  

m2 <- aggregate(Area ~ Sample + Double + Type + SN + RT + Match  , data = dat_csv1, FUN = 

mean, na.action = na.pass) 

 

# Merge and align Samples and Reference 

new2<- merge(reference, m2, by.y = "Double") 

 

# Merge library and dataframe, fill missing entries and clean data 

library2<- merge(new2, library, by = "Name", all = TRUE) 

library2 = subset(library2, select = c(Name,Origin, Sample, Identified, SN, RT, Match, 

Area) ) 

library2 <- filter(library2, Identified == "YES") 

library2[is.na(library2)] = 0 

 

Peaks <- filter(library2, Match > 700)   

Peaks <- filter(Peaks, Match < 850) 

 

Peaks <- Peaks[order(Peaks$Sample, Peaks$RT),]    

 

write.csv(Peaks, file.path(output_path, "PeaksToCheck_Similarity.csv"), row.names=FALSE) 

 

PeakAreas <- read.csv(paste0(output_path,  "/RelativePeakAreas.csv")) 

 

PeakAreas <- filter(PeakAreas, Identified != "YES") 

 

PeakAreas <- filter(PeakAreas, Abundance > 0.01) 

 

write.csv(PeakAreas, file.path(output_path, "PeaksToCheck_Area.csv"), row.names=FALSE) 
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PART 3 

Summary  

It is still unclear whether carbon stored in soil organic matter (SOM) will act as a source or 

as a sink for atmospheric carbon in future climatic conditions. The aim of the present study 

was to analyze how different climate change drivers (elevated CO2 and warming) alone 

and in combination affect different soil aggregate classes and mineral-associated organic 

matter, ultimately to facilitate better model predications. Towards this goal, we used a 

combination of aggregate size class separation and density fractionation on soil from a 

multifactorial climate change experiment in Austria and analyzed the C and N content and 

isotopic composition, as well as the chemical composition of all obtained fractions. We 

found that total soil C was unaltered after four years of simulated climate change. Higher 

atmospheric CO2-concentrations resulted in more macro-aggregates and more intra-

macro-aggregate particulate organic matter, which could increase the susceptibility of 

SOM stocks to future disturbances. While elevated temperature slowed down the 

turnover of C in the bulk soil and aggregate size classes of plots subjected to elevated CO2, 

we could not detect significant changes in the chemical composition of the investigated 

size classes and density fractions across our treatments. Our results further demonstrate 

that the combined effects of elevated CO2 and warming on SOM fractions were additive 

and not interactive, at least in the short-term (4 years).  
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Zusammenfassung  

Es ist immer noch unklar, ob der in der organischen Bodensubstanz („soil organic matter“ 

- SOM) gespeicherte Kohlenstoff unter zukünftigen Klimabedingungen als Quelle oder als 

Senke für atmosphärischen Kohlenstoff fungieren wird. Das Ziel dieser Studie war es, zu 

analysieren, wie bestimmte Klimawandeltreiber (erhöhte Temperatur sowie eine erhöhte 

atmosphärische CO2-Konzentration) allein und in Kombination verschiedene 

Aggregatsklassen und mineral-assoziierte organisches Material beeinflussen, um letztlich 

bessere Modellvorhersagen zu ermöglichen Dafür haben wir eine Kombination aus 

Aggregatgrößenklassentrennung und Dichtefraktionierung an Böden aus einem 

multifaktoriellen Klimawandel-Experiment in Österreich durchgeführt und die erhaltenen 

Fraktionen auf ihren C und N-Gehalt sowie ihre isotopische und chemische 

Zusammensetzung hin analysiert. Unsere Ergebnisse zeigen, dass sich der 

Kohlenstoffgehalt des Bodens nicht durch den simulierten Klimawandel geändert hat. 

Höhere CO2-Konzentrationen in der Atmosphäre haben zu mehr Makro-Aggregaten und 

mehr partikulärem organischem Material innerhalb dieser Aggregate geführt. Dies könnte 

die Anfälligkeit der SOM-Vorräte gegenüber zukünftigen Störungen des Ökosystems 

erhöhen. Obwohl der Umsatz von C im gesamten Boden und in den 

Aggregatgrößenklassen durch erhöhte Temperatur verlangsamt wurde, konnten wir keine 

signifikanten Veränderungen in der chemischen Zusammensetzung der untersuchten 

Aggregate und Dichtefraktionen mit unseren Methoden feststellen. Unsere Ergebnisse 

zeigen auch, dass die Effekte von erhöhter Temperatur und atmosphärischem CO2 eher 

additiv als interaktiv waren, zumindest in den 4 Jahren seit Beginn des Experiments. 
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