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1. Introduction 

1.1. Motivation 

According to the International Federation of Red Cross and Red Crescent Societies (IFRC) 

(2016), millions of people are at risk to suffer from preventable disasters. Although this is a 

well-known problem, the global investment is low when it comes to strengthening community 

resilience. Out of 100 US dollars that are used for international aid, only 40 cents are spent on 

means to reduce the risk of disasters, though it can save money and even lives. Therefore, the 

IFRC suggests that more money needs to be spent finding better solutions that will reduce the 

impact of disasters and help communities deal with them.  

Alejandra Borunda (2019) from National Geographic states that the climate change also affects 

the severity of disasters: The on average warmest years ever measured by the National Oceanic 

and Atmospheric Administration (NOAA) are 2014 to 2018, with, according to the IFRC 

(2016), 32 major droughts in 2015. 

In order to get a better overview of the recent situation regarding disasters, the following four 

figures are created with some of the data of Tables 1 to 4 (original source: EM-DAT, CRED, 

University of Louvain, Belgium) of the Worlds Disasters Report 2016 (Sanderson and Sharma, 

2016). For simplicity reasons only the number of disasters per region (Africa, America, Asia, 

Europe, and Oceania) and not the number of disasters per current state of human development 

are considered in this overview. The figures show data from 2006 to 2015 for each region and 

year separately and the sum (“Total”) of all regions for each year. 

Figure 1-1 shows the number of reported disasters per year, which are relatively constant for 

most of the regions. On average, 609 disasters occurred per year during these ten years. “Total” 

shows an overall decrease from 2006 to 2013 with a peak in 2010. 

According to Guha-Sapir, Vos, Below, and Ponserre (2011) at CRED (Centre for Research on 

the Epidemiology of Disasters), 2010 was the worst year in terms of deaths in over two decades. 

The two major disasters were the earthquake in Haiti and the heat wave (June – August) in 

Russia. The reported deaths were 222.570 in Haiti, and 55.800 (most of them caused by the 

heat wave) in Russia, which explains the highest peak in Figure 1-2. The other peak is caused 

by two enormous disasters in Asia, a cyclone and an earthquake, which accounted worldwide 

for 95.9% (or over 225.000 in absolute figures) of the reported deaths (Rodriguez, Vos, Below, 

and Guha-Sapir, 2009). The average number of deaths per year from 2006 - 2015 is 77.191,11, 

whereas the average number of people affected is 191.755.600. 
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Figure 1-3 shows that Asia is a lot more affected by disasters than the other regions. Guha-

Sapir, Vos, Below, and Ponserre (2012) state that 33 disasters including floods, storms, and 

tropical cyclones hit the Philippines in 2011 and affected many people. This country has never 

seen that many disasters, while Europe has had the smallest number of disasters since 1989. 

The number of disasters reported in Oceania was similarly low as in Europe and thus not many 

people were affected (Guha-Sapir et al., 2012). 
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The economic damage of disasters during these ten years is on average 142.481.400.000 US 

Dollars. “Total” in Figure 1-4 shows a peak in 2008 and another one in 2011. Both peaks were 

mainly caused by disasters in America and Asia. In 2008, hydrological disasters in America 

caused more damage than those of the previous years and two massive disasters in Asia, a 

cyclone and an earthquake, accounted for 61.5% of the monetary damage worldwide 

(Rodriguez et al., 2009). In America in 2011, mainly hydrological and climatological disasters 

amounted to a damage of 67.3 billion US Dollars and in Asia an increase in geophysical and 

hydrological disasters caused a damage of 276.0 billion US Dollars, which was the highest 

damage reported so far (Guha-Sapir et al., 2012).  

The discussed data stresses the importance of making major decisions in advance to be prepared 

and react quickly when a disaster occurs. In the long run, this will save lives and reduce costs. 

Since decisions must be fair (inequity-averse) in humanitarian operations, the goal is to 

distribute benefits equally among affected individuals (Mostajabdaveh, Gutjahr, and Salman, 

2020). 

1.2. Problem Statement 

When planning future disaster relief, decision-makers do not know where the disaster will occur 

or how bad its effects will be. This work focuses on the preparedness aspect of disaster 

management by developing a fair plan that provides affected people with shelters. 

This plan, later called solution, consists of two stages:  

In the first stage, permanent shelters are built before the disaster occurs. The advantages of 

doing this are that these shelters do not have to be finished fast and are therefore cheaper, and 

in case a disaster occurs, there are already some shelters available. 

The disaster itself is simulated by creating scenarios with different epicenters and strengths of 

impact. A second-stage decision is made for each of these scenarios separately, and temporary 

shelters are built, which are more expensive than the permanent shelters as they are needed 

immediately. This is important when a budget must be considered. 

Permanent and temporary shelters can only be built at potential locations. Which of these 

locations are finally chosen depends on fairness values. “Fairness” is maximized (inequity-

averse) and evaluated by two different approaches, ex-ante and ex-post. The aim of this thesis 

is to compare the results of these two approaches. 
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The solution is once determined by a complete enumeration algorithm and another time the 

first-stage decision is computed by a genetic algorithm, while the second-stage decision is still 

determined by the complete enumeration. These outcomes are then compared. 

Additionally, the best utilitarian solution is calculated and compared to the utilitarian costs of 

the ex-ante and ex-post solution. 

1.3. Overview 

In the first part of this thesis, the relevant theory and the implementation of the algorithms is 

discussed, while Section 6 provides the experimental results. 

Section 2 introduces and explains the two-stage model. Afterwards it is shown how scenarios 

are generated and then displayed in Excel. The last subsection visualizes how locations for 

shelters are chosen so that the distance to the population nodes is minimized. 

Section 3 contains the calculation of the fairness and utilitarian values. Two evaluation 

approaches, ex-ante and ex-post, are introduced and the utilitarian objective function is 

explained. 

Pseudo-codes are used to discuss the complete enumeration algorithm and the genetic algorithm 

in Sections 4 and 5 respectively. The basic operators a genetic algorithm usually consists of are 

explained in Section 5 as well. 

In Section 6, the results of the two algorithms are discussed and the ex-ante and ex-post 

solutions are compared. Furthermore, the best ex-ante/ex-post solution is plugged into the ex-

post/ex-ante objective function to compare the percentage differences of the solutions. A case 

study was conducted on the Gorkha earthquake that occurred in Nepal in April 2015, and the 

solution obtained is compared with the best possible solution. The last subsection introduces a 

budget and compares different combinations of permanent and temporary shelters. 
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2. Two-Stage Location Decisions 

2.1. Model 

As already mentioned before, two decisions must be made by the decision-maker. The first 

decision is made before the disaster occurs and is called first-stage decision. Here, it is decided 

at which potential locations the permanent shelters are built. Then, after some time, a disaster 

happens.  

Multiple scenarios are generated to simulate real disasters that affect different areas. Only a few 

scenarios are considered because otherwise the computing time would be too high. 

After the disaster occurred, the second-stage decision must be made. Temporary shelters are 

built at some of the remaining potential locations. At least one permanent shelter and one 

temporary shelter must be built.  

The two-stage model visualized in Figure 2-1 is based on the decision tree of Gutjahr (2020), 

who also addresses inequity-averse optimization under uncertainty and compares the results of 

the ex-ante and ex-post approach. In his paper, individuals are assigned to the best shelter in 

the second-stage decision, while additional shelters are built in this thesis, which is the main 

difference between the two models. 

 

 

Figure 2-1 Two-Stage Model, adapted from Gutjahr (2020) 

 

Decisions are made from bottom to top, which is called backward induction (Gutjahr, 2020).  

1) In this model there are two population nodes. A population node can represent e.g. one 

person, village, or city. The first index of the cost vector shows the distance of the first 

population node to its nearest built shelter. These distances are also referred to as costs or 
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fairness values and their calculation is later discussed in subsection 2.3 “P-Center Problem”. 

The same applies to the second index. 

2) A square represents a combination of temporary shelters selected from the remaining 

potential locations. The remaining potential locations consist of all potential locations minus 

those locations that were selected for the permanent shelters. There are as many squares as 

there are possible combinations (complete enumeration). Each combination consists of as 

many potential locations as temporary shelters should be built. This model has two different 

temporary combinations for each permanent combination.  

3) The second-stage solution contains the decision of 2), where the fairest temporary 

combination of the scenario (or random event) is chosen. This decision is based on the 

chosen evaluation approach, ex-ante or ex-post.  

4) Next come the scenarios or random events visualized by the edges. There are two scenarios 

per permanent combination and each of them has a probability of 1/2 (50%) to occur. For 

any permanent combination, the sum of the percentages of all scenarios is always 100%. 

5) These squares represent all possible permanent combinations. In this case, there are two of 

them.  

6) The very top of the model contains the fairest combination of the first-stage decision of the 

previous step. Which combination is chosen depends again on the applied evaluation 

approach. 

A solution or plan to this problem includes the chosen permanent combination and a temporary 

combination for each scenario. For example, the solution consists of the right permanent 

combination and the left temporary combination for both scenarios. If a disaster occurs that is 

more similar to the left than the right scenario, the temporary shelters of the left scenario are 

built and the distances of the population nodes to the available shelters are (8, 0). 

2.2. Scenarios 

The affected population nodes of each scenario are selected either manually or at random. When 

a scenario is generated randomly, a circle is randomly placed on a predefined area and any 

population node that lies inside the circle is affected. The radius of this circle is also chosen 

randomly but lies within a predefined range. 

In order to visualize the randomly generated scenarios, the centers and radiuses can be exported 

to Excel. Of course, the population nodes and potential locations must also be exported, and it 

is optional to add a weight to a population node, equal to the number of households. A relatively 

easy way to export data to Excel, and how this is done in this part of the code, is to use the 
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Table 2-1 Excel: Imported Coordinates 

Table 2-2 Excel: Imported Scenario Data 

external library “LibXL” (XLware, n.d.). Except for the case study, this library is not used in 

the “Results” section because it is a trial version and has limitations. Instead, the Excel files are 

converted to CSV files. An example of what the visualization looks like and how it is set up in 

Excel is given below. 

The following two tables, Table 2-1 and Table 2-2, are copied from the Excel file and contain 

the imported coordinates of the population nodes and potential locations, as well as the center 

point coordinates and radiuses of the scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 shows an area with population nodes and potential locations. This area represents a 

map. The first map does not have a scenario but each of the other identical maps visualizes a 

different scenario. Every population node that lies within or on the circle is affected.  

The coordinate systems must be created in advance as this is not possible with the external 

library. There is a detailed explanation of how a circle is visualized in an Excel chart on the 

website of Tushar Mehta (n.d.), with the small adjustment that the X and Y coordinates of the 

circle centers, which would otherwise be at (0|0), are added to the circle equation.  
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Figure 2-2 Scenarios in Excel 

2.3. P-Center Problem 

A cost vector in Figure 2-1 of subsection 2.1 “Model” contains the distance of each population 

node to its nearest built shelter. Unaffected population nodes have a cost of 0. These distances 

are Euclidian distances, and the p-center problem is used to select the locations for shelters 

where the distances to the population nodes are minimized.  

The idea of the p-center problem is as follows: There is a set of M potential locations. A chosen 

number of p shelters is built at some of the M potential locations so that the maximum distance 

of the population nodes that are assigned to the nearest shelters is minimized (Elloumi, Labbé, 

and Pochet, 2004). 
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Figure 2-3 P-Center Problem 

In Figure 2-3, the general concept of the p-center problem is demonstrated.  

1) At first, each of the population nodes is assigned to the nearest built shelter. 

2) After that, all distances are compared, and the longest distance is marked in red. This means 

that the population node that is connected to this red arrow is further away from its nearest 

shelter than all other population nodes and therefore has the maximum distance of this 

problem.  

3) Now this distance must be minimized by building an additional shelter. The distances 

between this population node and all remaining potential locations are compared.  

4) The nearest location is chosen and marked, and a shelter is built. Simply put, the maximum 

distance is minimized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the complete enumeration is performed in Figure 2-1 (Two-Stage Model) to get the best 

solution, all possible combinations are calculated, and the steps shown in the previous figure 

are a bit different in the implementation. 

The already built shelters in 1) represent one permanent combination of the first-stage decision. 

Instead of following the further steps, the shelters of the first temporary combination of the 

model are built, and the distances of the population nodes to the nearest shelters are calculated. 

This calculation is done for each temporary combination separately and then repeated for the 

next permanent combination. The best solution minimizes the maximum distance. 

1) 2) 

3) 4) 
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3. Evaluation Methods 

3.1. Conception of Fairness 

A study conducted by Mazepus and Leeuwen (2020) shows that people want decision-makers 

to distribute relief goods fairly, for example by following fair procedures. Contrary to this view 

there is the concept of utility, first introduced by Bentham in 1781. 

In Bentham’s work, the utility (e.g. happiness or the prevention of unhappiness) of a community 

corresponds to the combined utility of all its members. He further writes that an option should 

be executed if it increases the utility of the community, even if that means that the utility of one 

or more members decreases.  

John Rawls (1957) argues in his paper “Justice as Fairness”, that the utilitarian conception 

cannot be applied to all social issues without complications. He then gives an example that 

clarifies how differently the two concepts approach the same problem: 

o Concept of utility: Slavery should not exist because the gains of the slaveholder are smaller 

than the losses of the slave and society in general due to an inefficient labor system. 

o Concept of fairness: Slavery must be recognized by all involved, otherwise it will be 

rejected. This leads to an improvement for the people who are worst off, since they do not 

have to accept a principle that is bad for them. Therefore, the slaveholder’s gains are not 

even considered in this concept (John Rawls, 1957). 

The aim of this work is to compare two evaluation approaches, ex-ante and ex-post. The ex-

ante evaluation is carried out from the point of view before the disaster occurs, which minimizes 

the inequity of the expected outcome, while the ex-post evaluation is carried out from the point 

of view after the disaster has occurred, which minimizes the expected inequity of the outcome 

(Mostajabdaveh et al., 2020).  

Experimental results of Andreoni, Aydin, Barton, Bernheim, and Naecker (2020) give an 

insight into how people perceive fairness: 

o Ex-ante: There are 10 red and 10 blue lottery tickets. After all tickets have been assigned 

to two households (A and B), one ticket is randomly drawn (future event) and the winner 

receives some money. A owns all 10 red tickets without earning them. People are then 

asked how many of the blue tickets they would give to household A or B. Most people 

give all 10 blue tickets to B to give both households an equal chance of winning, which 

maximizes the fairness of chances (equal opportunity). 
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o Ex-post: After the blue tickets have been given to B, a ticket is randomly drawn (past 

event), and it is blue. People will now be asked if they want to reassign the blue tickets. 

Most people give half the tickets to A, which maximizes the chances of fairness (equal 

outcome). 

Andreoni et al. (2020) point out that most people, including decision-makers, tend to choose 

the fairest ex-ante solution ex-ante, but switch to the fairest ex-post solution ex-post. This time 

inconsistency is a known problem for the ex-ante approach and is discussed in more detail in 

Gutjahr (2020). Since calculating an optimal ex-ante strategy is pointless if the decision-maker 

deviates in the second stage anyway, Gutjahr proposes a recursive ex-ante policy to ensure that 

the strategy is executed. The author bases his policy on the concept of consistent planning 

which, applied to this model, means that for each scenario, the fairest temporary shelter 

combination is chosen. Because of this approach, the calculation of the second-stage decision 

is the same for ex-ante and ex-post. 

The results of these two evaluation approaches cannot be directly compared as it depends on 

the perspective (before or after the event) from which the solution is considered fair (Gutjahr, 

2020). 

In this thesis a decision is made in a way that the best or “fairest” outcome is achieved for all 

by minimizing the cost of the worst-off population node, which is done by applying the ex-ante 

and ex-post approach proposed in Gutjahr (2020). Based on Rawls (1957) conception of 

fairness, the number of households at each population node is ignored when calculating the ex-

ante and ex-post values, because every population node counts the same. However, when the 

utilitarian values are calculated, the number of households is included to get the utility of the 

community. In this work, the utility of a population node equals the distance to its nearest shelter 

multiplied by the number of households. 

3.2. Calculation 

In the following three subsections the calculations of the ex-ante evaluation, the ex-post 

evaluation, and the utilitarian objective function are explained. The solutions are calculated 

from bottom to top. The model used in the figures has two population nodes, two temporary 

shelter combinations per scenario, two scenarios, and two permanent shelter combinations. It 

depends on the scenario whether a population node is affected or not. Unaffected population 

nodes have a cost (Euclidean distance) of 0. To make it easier to find the corresponding part of 

the code in Appendix A, the numbers of the lines where the code starts are also given. 
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Figure 3-1 Ex-Ante Calculation, adapted from Gutjahr (2020) 

 

 

3.3. Ex-Ante Evaluation 

Figure 3-1 shows the calculation of the ex-ante solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Lines 42+59: The first step of the ex-ante evaluation is to mark the largest number of each 

cost vector in bold to obtain the population node of each vector that is worst off. If there are 

several largest numbers, they are all marked. This means that in the first cost vector 8 is 

marked, in the second 6, and so on. After that, all bold numbers that belong to the same 

scenario are compared and the smallest cost is underlined, which minimizes the maximum 

cost. The first two cost vectors belong to the same scenario. Therefore, 6 is underlined and 

the second decision node (temporary combination) is chosen. If there are multiple smallest 

costs, all are underlined and one temporary combination is randomly selected, unlike Gutjahr 

(2020), who then selects the combination with the better utilitarian value and if they are still 

equally good, uses lexicographic precedence. 

2) Line 127: The next step is to place the entire cost vector containing the underlined number 

(4, 6) next to the circle and connect the circle with the square. This is now the second-stage 

solution in case the first permanent combination is chosen and the first scenario occurs. 

3) In this model, both scenarios have a probability of occurrence of 50%. 

4) Line 137: To obtain the first index of the cost vector of the left decision node (permanent 

combination), the first index of the left cost vector in 2) is multiplied by the probability of 

its scenario and then the first index of the right cost vector is multiplied by the probability 

of its scenario. These two results are then added together. In this example, to obtain the cost 
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vector (6, 4) of the left decision node, 4 is multiplied by 1/2 and then 8 * 1/2 is added to this 

result. Thus, the first index (population node) has a cost of 6 and the second index has a cost 

of 6 * 1/2 + 2* 1/2 = 4. 

Lines 150+165: After performing the same calculations for the right decision node, step 1) 

is repeated, which means that the largest number of each cost vector is marked in bold and 

then the smallest marked number is underlined.  

5) Line 180: The cost vector with the underlined number (5, 4) is placed at the very top of the 

model. This is the first-stage solution and the edge connecting the circle with the decision 

node is marked. 

Now the solution of the ex-ante evaluation is visible. The first-stage solution is the permanent 

combination with cost vector (5, 4). The marked edge to the right branch of the model is 

followed and this permanent combination is built. Which temporary combination is built 

depends on the scenario that occurs. If scenario 1 occurs, then the left temporary combination 

with cost vector (8, 0) is chosen and if scenario 2 occurs, then the left temporary combination 

with cost vector (2, 8) is chosen.  

For this solution, the total cost or distance of each scenario is simply the summed cost of each 

vector in 2), which means 8 for scenario 1 and 10 for scenario 2. This calculation is important 

for the cost comparisons in the “Results” section. 

3.4. Ex-Post Evaluation 

Figure 3-2 shows how the ex-post solution is calculated. 

 

 

Figure 3-2 Ex-Post Calculation, adapted from Gutjahr (2020) 
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1) Lines 42+59: The first step of the ex-post calculation is identical to the first step of the ex-

ante calculation. First, the highest cost of each vector is marked in bold and then the smallest 

marked cost of the vectors that are connected to the same scenario is underlined. 

2) Line 59: Now, instead of placing the whole vector next to the circle (second-stage solution), 

only the underlined cost is taken. Again, the edge connecting the circle with the chosen 

square is marked, and this temporary combination is the second-stage solution. 

3) Each scenario has a probability of occurrence of 50%. 

4) Line 81: To obtain the value of the left permanent combination, the value of the left second-

stage solution is multiplied by the probability of its scenario (1/2) and the value of the right 

second-stage solution is also multiplied by the probability of its scenario (1/2). These two 

results are added together. In this case, the calculation is 6 * 1/2 + 8 * 1/2 = 7. 

Line 92: The costs of the permanent combinations are compared and the smallest value (7) 

is selected. 

5) Line 107: This value (7) is placed at the very top of the model (first-stage solution) and the 

edge connecting the circle with the decision node is marked. 

The solution is obtained by following the marked edges. This means that the first-stage solution 

is the left permanent combination with a value of 7. Now the second-stage solution depends on 

which scenario occurs. Scenario 1 has a value of 6 and the right temporary combination is 

chosen. Scenario 2 has a value of 8 and the right temporary combination is chosen.  

For this solution, the total cost or distance of each scenario is simply the summed cost of the 

chosen vector in 1), which is 10 (4+6 and 8+2) for both scenarios. This calculation is important 

for the cost comparisons in the “Results” section. 

3.5. Utilitarian Objective Function 

In contrast to the ex-ante and ex-post objective functions that maximize fairness, the utilitarian 

objective function minimizes total cost. Although the model of Figure 3-3 does not change, the 

first two steps of calculating the utilitarian solution are quite different compared to ex-ante and 

ex-post. 

1) Line 206: The cost vectors given in the figure are now weighted. This means that the cost 

vectors of the previous figures, e.g. Figure 3-2, are multiplied by the number of households 

(weight) that exist at a population node. In this example, population nodes 1 and 2 have a 

weight of 3 and 2, respectively. The first cost vector of the previous figures is (8, 7). 

Therefore, the calculations for the first weighted cost vector are:  

3 (weight) * 8 (cost) = 24 and 2 (weight) * 7 (cost) = 14.  
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Figure 3-3 Utilitarian Calculation, adapted from Gutjahr (2020) 

 

2) Line 206: To obtain the utilitarian cost of the community, the utilitarian cost of each 

population node in the weighted cost vector is simply summed. 

3) Line 212: Then the utilitarian costs of 2) that belong to the same scenario are compared and 

the smallest cost is placed next to the circle. This temporary combination is now the second-

stage solution and the edge is marked. 

4) Both scenarios have a probability of occurrence of 50%. 

5) Line 221: This step is identical to step 4) of the ex-post evaluation: To obtain the value of 

the left decision node (permanent combination), the values of the left and right scenarios that 

are connected to this decision node are multiplied by 1/2 (probability of occurrence). These 

two results are then added together. In this case, the calculation is 24 * 1/2 + 28 * 1/2 = 26. 

6) Line 226: The last step is to compare the values, take the smallest one, and put it at the top 

of the model. This is now the first-stage solution. Then the edge that connects the circle with 

the permanent combination is marked.  

The utilitarian solution is obtained by following the marked edges. For this example, this means 

that the right permanent combination is built with utilitarian costs of 23. When scenario 1 

occurs, the left temporary combination is chosen leading to total utilitarian costs of 24, and 

when scenario 2 occurs, the left temporary combination is chosen leading to total utilitarian 

costs of 22. 
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Figure 4-1 Complete Enumeration, adapted from Gutjahr (2020) 

 

4. Complete Enumeration 

When the problem shown in Figure 4-1 is solved by complete enumeration (CE), each branch 

of the model is computed and the best solution is chosen. This calculation can take decades or 

even longer for large problems (see section 6.5.2 “Time Measurement”). For this reason, only 

a small problem is solved by complete enumeration and the solutions of the larger problems are 

obtained by a genetic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

The complete enumeration algorithm is explained in Figure 4-2 via pseudocode and the 

implementation of this pseudocode is given in Appendix A. To make it easier to find the 

corresponding part of the code in the appendix, the numbers of the lines where the code starts 

are also given. 

1 Lines 6+17: First, all possible permanent combinations are calculated. The underlying 

mathematical formula of this function is the binomial coefficient 

(1) (
𝑛
𝑘

) = 
𝑛!

𝑘!⋅(𝑛−𝑘)!
 

where n represents the number of potential locations and k represents the number of 

permanent shelters that must be built. This formula means that choosing the same location 

more than once is not allowed and the order in which the locations are selected is not 

important (Weisstein, n.d.).  

2 Lines 6+17: Then, all possible temporary combinations are calculated for each permanent 

combination, using the same formula as before. This time, n represents the number of 

potential locations that are not already used for permanent shelters, and k represents the 

number of temporary shelters that must be built.  
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Figure 4-2 Pseudocode Complete Enumeration 
 

 

4 The scenarios and their probabilities of occurrence, as well as the affected population nodes, 

are either manually selected or randomly generated before the algorithm starts. 

6 Line 22: The cost vectors of all permanent combinations, scenarios, and temporary 

combinations are calculated. To compute the cost of each affected population node, the 

Euclidian distance to the nearest permanent or temporary shelter is determined. 

7 Lines 42: The fairness of each temporary combination is calculated regardless of whether 

the ex-ante or ex-post evaluation approach is used. 

8 Line 59: In this step, the fairest temporary combination of each scenario is found. 

9 Lines 137 (ex-ante) + 81 (ex-post): For each permanent combination, the fairness value is 

calculated depending on the selected evaluation approach. 

10 Lines 150+165 (ex-ante) + 81 (ex-post): Depending on the selected evaluation approach, the 

fairest permanent combination is chosen.  

Lines 180 (ex-ante) + 107 (ex-post): The algorithm then has all the relevant data for the solution, 

which consists of the fairest permanent combination and, for each scenario, one (the fairest) 

temporary combination. 
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5. Genetic Algorithm 

5.1. Introduction 

At the time Charles Darwin published his abstract “On the origin of species” in 1859, most 

naturalists still believed that every species was created independently from one another and that 

parts considered important for a species do not vary for each individual member of that species. 

Darwin observed that in fact even important parts do vary slightly and if this variation is an 

advantage for the individual in relation to current living conditions, then it is more likely to 

survive and consequently has a higher chance of being naturally selected for reproduction. This 

advantageous variation is then passed on to its offspring which again will have a higher chance 

to survive (Darwin, 1859). 

The genetic algorithm is based on Darwin’s theory of evolution and was first introduced in the 

1960s by John Holland with the aim of studying natural adaptation (Mitchell, 1998). In his book 

“Adaptation in Natural and Artificial Systems”, he proposed a mathematical framework to 

generalize factors of adaptive processes (Holland, 1992).  He notes that adaptive processes are 

important to several computational fields such as psychology (learning), artificial intelligence, 

and economics (optimal planning). When Holland first published his book in 1975, it did not 

receive much attention. However, this changed rapidly about ten years later, when learning was 

again seen as the key to artificial intelligence, and because genetic algorithms are capable of 

solving problems that could not be solved by standard approaches (Holland, 1992).  

Genetic algorithms (GAs) belong to a field called evolutionary computing and, like other 

metaheuristics, are often used for optimization purposes (Reeves, 2003). Although 

(meta)heuristics do not necessarily deliver optimal solutions (Reeves, 2003), metaheuristics do 

provide robust results and can be applied in many different fields (Hussain, Salleh, Cheng, and 

Shi, 2019). 

Since computing all possible combinations by complete enumeration heavily affects the 

computation time and is therefore “foredoomed in all but the simplest cases” (Holland, 1992), 

the first-stage decision is now replaced by a genetic algorithm as shown in Figure 5-1. The 

solution of the second-stage decision is still determined by complete enumeration. 
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Figure 5-1 Genetic Algorithm Model, adapted from Gutjahr (2020) 

 

 

 

 

In the next subsections, first a brief overview of the structure of the genetic algorithm used in 

this work is given and then each part is explained in more detail. 

5.2. Structure 

Figure 5-2 contains the pseudocode of the implemented genetic algorithm. The implementation 

of the genetic algorithm is given in Appendix B, and the numbers of the lines where each part 

of the code starts are given. The fitness values are calculated by a slightly adapted version of 

the complete enumeration algorithm and the code is therefore not included again. 

1 Line 6: The first function creates the initial 

population. A population consists of a chosen 

number of individuals called “chromosomes”. 

2 Then each of the chromosomes is evaluated 

by calculating its fitness value. If a 

chromosome has a high fitness value relative to 

the other chromosomes it means that this 

chromosome is a good solution to the given 

problem.  

3 At each iteration of the algorithm, a new 

population, also called “generation”, is 

delivered.  
Figure 5-2 Pseudocode Genetic Algorithm 
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4 Line 23 or 58: Each generation starts with selecting and pairing up the parent 

chromosomes. This selection is based on the fitness values calculated either at the 

beginning of the algorithm (step 2), or in step 8 of the previous generation.  

5 Lines 94+114 or 100+136: The next step is to perform the crossover, which basically means 

that one part of the chromosome of the first parent and a different part of the chromosome 

of the other parent are joined together and a new chromosome, called “child”, is created. 

These children replace the old population. 

6 Line 162: As the crossover could cause problems in the form of duplicate permanent 

shelters, a repair mechanism must be used to fix invalid chromosomes.  

7 Line 204: A mutation function is implemented that replaces a permanent shelter with a 

potential location since diversity is crucial for this kind of heuristic.  

8 Fitness values are calculated for the new generation, to either select the parents in the next 

generation or, if the  

9 termination criterion of the algorithm is met,  

10 determine the current best individual.  

5.3. Chromosome Representation 

Before the initial population can be created, a decision must be made about the representation 

of the chromosome. A chromosome is represented by a string and a string consists of several 

elements called “genes” that can take on values called “alleles” (Reeves, 2003).  

Holland (1992) claims that from a computational point of view, many genes with few alleles 

are preferred to few genes with many alleles, which means that a binary representation is usually 

preferred to an integer representation. Reeves (2003) states that some problems are naturally 

integer or real-valued and must be transformed into a binary string, while the chromosomes of 

other problems, such as the travelling salesman problem, are defined via a permutation. An 

example of such a permutation is given by the author: The solution (653478) specifies the order 

in which jobs are completed on a machine: Job 6 is done first, then job 5, and so on.  

As mentioned in the introduction of this section, the first-stage decision is replaced by a GA, 

which means that the chromosomes in this work contain the locations where the permanent 

shelters are built. Each chromosome contains one permanent combination. For this type of 

problem there are two obvious representations of the chromosomes, binary and integer.  

Figure 5-3 shows these two representations and both store the same information. In the given 

example, five potential locations are available and two permanent shelters are built.  
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Figure 5-3 Binary and Integer Chromosomes 

The binary chromosome consists of five genes, one for each potential location. Each gene has 

two alleles, 0 and 1. When a shelter is built, the gene is given the value 1, otherwise 0. Here, 

permanent shelters 1 and 4 are built. In the code, the chromosome is stored in a vector or array. 

The integer chromosome is much shorter and the genes contain the permanent shelters to be 

built. Each gene has five alleles, one for each potential location. Again, permanent shelters 1 

and 4 are built. 

 

 

 

 

 

 

 

Now the best representation for this problem has to be determined. To do this, both 

representations are implemented and tested in terms of performance (in microseconds). The 

results are compared, and the faster representation is chosen. 

For this purpose, only very simple versions of the functions (e.g. initial population, mutation, 

selection, …) are used in the code. The fitness function is the same for both representations and 

is therefore omitted. Two different problem sizes, given in Table 5-1, are generated completely 

randomly and used for testing.  

 

 

Permanent 

Locations 

Temporary 

Locations 

Potential 

Locations 

Population 

Nodes 
Chromosomes 

Small Problem Size 2 2 5 10 20 

Large Problem Size 3 3 10 30 100 

Table 5-1 Problem Sizes 

 

Since the runtime varies due to the scheduling algorithm of the operating system (Walls, 2016), 

and also depends on the selected seed, it is very likely that the measured time of each run is 

slightly different. To obtain more stable results, each problem size is run with 100 seeds and 

the arithmetic means are given in Table 5-2. 
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 1) Small Problem Size   2) Large Problem Size   
 Binary Integer %Δ Binary Integer %Δ 

1 Initial Population 321.60 308.76 -3.99 1940.27 1904.65 -1.84 

2 Mutation 77.34 84.17 8.83 694.65 960.62 38.29 

3 Selection 16.24 16.85 3.76 60.35 63.30 4.89 

4 Crossover 314.47 260.06 -17.30 1976.58 1281.20 -35.18 

5 Cross. Repair 143.38 82.06 -42.77 1277.04 692.64 -45.76 

Total Runtime 873.03 751.90 -13.87 5948.89 4902.41 -17.59 

Table 5-2 GA: Performance Comparison in Microseconds 

The performance of the mutation operator of the small problem size is 8.83% worse for the 

integer chromosome (IntC) compared to the binary chromosome (BinC) and it becomes a lot 

worse when the IntC and the BinC of the large problem size are compared. Since the mutation 

operator works directly with the alleles, it seems that Holland’s (1992) claim applies and that 

indeed a long string with few alleles is faster than a short string with many alleles. 

However, this does not apply to the implemented crossover operator since it only stores the 

elements of the parent vectors in the vectors of the children and does not change any alleles. 

Here, the long binary string has strong disadvantages compared to the short integer string, which 

worsen with increasing problem size. 

Overall, the total runtime of the IntC is faster than the BinC by 13.87% for the small problem 

and by 17.59% for the large problem. Therefore, an integer representation is chosen for this 

thesis.  

5.4. Initial Population 

Reeves (2003) argues that the number of chromosomes or size of the initial population should 

be chosen in a way that the search space can be explored effectively, but also efficiently in 

terms of computation time. The author further states that the initial population is usually 

randomly generated. However, reports show that the GA can find better solutions if a good 

solution from another heuristic is included in the initial population (Reeves, 2003). 

In this work, the chromosomes are randomly generated as explained with the pseudocode in 

Figure 5-4. The code is available in Appendix B, line 6. A vector is created (2) that stores the 

numbers of all the enumerated potential locations (3). Then a random location is selected from 

this vector (5), added to the chromosome (6), and deleted from the vector (7). This is done for 

the number of permanent shelters to be built (4) and repeated for the number of chromosomes 

in the population (1). Since the chromosomes are randomly generated, it is possible that the 

best solution is already present in the initial population, or that some of the chromosomes are 

identical. 
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Figure 5-4 Pseudocode Initial Population 

 

 

 

 

 

 

 

 

 

The size of the initial population of this implementation is rather small and usually has about 

20 chromosomes. A larger population would not be a problem as far as the computation time is 

concerned, but then it is quite likely that the best solution is already generated in the initial 

population since the chromosomes have few genes (integer representation). When the best 

solution is present in the initial population, a comparison of the number of generations needed 

to obtain the best result for ex-ante and ex-post would not be possible. 

5.5. Fitness Values and Diversity 

Fitness values are needed for the selection operator that chooses individuals, called parents, for 

mating (Vidal, Crainic, Gendreau, Lahrichi, and Rei, 2011). Vidal et al. (2011) explain that a 

fitness value is assigned to each individual in the population and this value shows how well an 

individual performs relative to the other individuals in that population.  

Although the authors emphasize that diversity is crucial for this field of metaheuristics and 

therefore propose a fitness function based on the cost and diversity of an individual to maintain 

variation, the experimental results of Bersano-Begey (1997) show that including factors other 

than just the value of the individual itself in the fitness function does not necessarily lead to 

better solutions. He states that, even though his initial approach helped the GA avoid local 

optima, it did not find good solutions, probably because the fitness value assigned to an 

individual differed a lot from its true value. Nevertheless, the author is convinced that variation 

is important because it helps avoid local optima and early convergence. 

The results of Bersano-Begey (1997) suggest that if additional factors are included in the fitness 

function, they should be used with caution. Therefore, in this thesis, only the costs/distances 

are considered in the fitness function and other methods (survivors in the crossover function 

and constraints in the selection function) are used to maintain diversity. Survivors are 
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individuals of the current population that are directly transferred to the new generation (Vidal 

et al., 2011). 

 
                              Figure 5-5 Pseudocode GA Fitness 

As already mentioned in the introduction of this section, only the first-stage decision is replaced 

by the genetic algorithm, but the second-stage decision of each chromosome is still computed 

by complete enumeration. This means that the fitness value of each chromosome is calculated 

by executing all the functions of the complete enumeration algorithm as shown in Figure 5-5. 

The major difference is that now the chromosomes replace the possible combinations of 

permanent shelters (Figure 4-2, line 1). 

Instead of fairness values, which are equal to costs and minimized in this work, fitness values 

are calculated. The fitness value of an individual is equal to the reciprocal of its cost (1/cost) 

since the fitness function is maximized. As the fitness function is an only slightly adapted 

version of the complete enumeration algorithm, the code is not included. 

5.6. Selection  

Individuals from the current population are selected, put into a mating pool, and used for 

breeding (Miller & Goldberg, 1995). As it is important to have “good” individuals in the mating 

pool, the individuals with a higher fitness value have a higher chance of being selected (Miller 

& Goldberg, 1995). The selection pressure, that determines how strongly the fitter 

chromosomes are favored, must be chosen carefully since a selection pressure that is too low 

will take a long time to find a good solution and a selection pressure that is too high delivers a 

sub-optimal solution more easily (Miller & Goldberg, 1995). 
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Figure 5-6 Roulette Wheel Selection 

Two of the most commonly used selection methods are the roulette wheel and the tournament 

selection (Jebari & Madiafi, 2013). These two methods are implemented in the code and are 

therefore explained in more detail. 

For the roulette wheel selection, a probability distribution is used, and for each individual, the 

probability of being selected depends on its fitness value (Reeves, 2003). Figure 5-6  illustrates 

the general idea of this method using the data provided in Table 5-3. Six individuals, their 

percentages, and the cumulated percentages are given in the table. The percentages are 

calculated by dividing the fitness of an individual by the sum of all fitness values of the whole 

population and multiplying the result by 100. The greater the selection probability of an 

individual, the larger its area on the roulette wheel (Reeves, 2003). This is illustrated in the 

figure: Individual B has the largest percentage and thus the largest area on the wheel. 

Now a random number [0, 100] is generated and the individual in whose area this number lies 

is put into the mating pool. For example, if the random number is 60, then individual C is 

selected. 

 

 

 

In the tournament selection method, a tournament is held among a chosen number of 

individuals. The individual with the best fitness value wins the tournament and is put into the 

mating pool (Miller & Goldberg, 1995). The number of participants in the tournament has a 

large impact on the selection pressure, as the fitness of the winner is on average higher the more 

individuals are competing (Miller & Goldberg, 1995). 

 

Figure 5-7 illustrates the tournament selection process. Here, three individuals (A, D, and E) 

are randomly selected to participate in a tournament. Using the percentages from Table 5-3 as 

fitness values, the values for individuals A, D, and E are 12.5, 12.5, and 18, respectively. This 

means that individual E wins the tournament and is put into the mating pool. 

 

Table 5-3 GA: Percentages of Individuals 

Individuals Percentages 
Cumulated 

Percentages 

A 12.5 12.5 

B 34.5 47.0 

C 15.5 62.5 

D 12.5 75.0 

E 18.0 93.0 

F 7.0 100 
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Figure 5-8 Pseudocode Roulette Wheel Selection 

 

 

 

 

 

 

 
 

Figure 5-7 Tournament Selection 

As already mentioned in the previous subsection, diversity is ensured in the selection functions. 

In the roulette wheel selection function, given in Figure 5-8, diversity is maintained in the first 

five lines. The code can be found in Appendix B, line 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In line 1 of the figure, the worst and the best chromosome are put into the mating pool. These 

chromosomes are later put directly into the new generation by the crossover algorithm and are 

therefore called survivors. Then a predefined number of chromosomes with low fitness is put 

into the mating pool (2). In the implementation, “low” corresponds to the worst 30% of 

chromosomes. Afterwards, again a predefined number of chromosomes with low or medium 

fitness is put into the mating pool (4). “Low or medium” corresponds to the worst 60% of 

chromosomes in the code. Both percentages were tested and seem to work well for this problem.  
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Figure 5-9 Pseudocode Tournament Selection 

In line 6, the roulette wheel selection starts. First, the shares or percentages of the chromosomes 

on the roulette wheel are calculated. This is done by summing up all the fitness values. Then 

each of the values is divided by this sum to get the percentage of each individual (7). After that, 

the percentages are cumulated and the results are stored in a vector (8). The first element of the 

vector is 0 and the last element is the sum of all percentages and must be 1.  

Now the empty slots of the mating pool are filled up (9). A random real number [0, 1] is 

generated (10) and the chromosome in whose share the random number lies wins (11+12). The 

same chromosome can win several times. 

Figure 5-9 shows the pseudocode of the tournament selection. The first five lines ensure 

diversity and are identical to the first five lines of the roulette wheel selection function. The 

code is given in Appendix B, line 58. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The tournament selection starts with line 6. For each empty slot in the mating pool, the 

chromosomes are enumerated, and these numbers are stored in a vector (7). Then, for the 

predefined number of tournament participants (8), a random chromosome from the vector (9) 

is put into the tournament (10) and deleted from the vector (11). The fitness values of all 

participants are compared (12+13) and the chromosome with the highest value is put into the 

mating pool (14). The same chromosome can win more than once. 
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5.7. Crossover 

The crossover operator creates, in general, one or more children (offspring) from two parents 

(Reeves, 2003). Several crossover approaches are given in Reeves (2003) and four of them, the 

one-point, two-point, m-point, and completely random crossover, are discussed in the following 

paragraphs. 

Figure 5-10 illustrates the one-point and two-point crossover. Each gene represents a potential 

location where a permanent shelter is built. “X” indicates the position where the two parent 

chromosomes are crossed over. This position is usually chosen randomly (Reeves, 2003).  

First, the one-point crossover is explained. Here, one crossover position is chosen randomly, 

and the results are child 1 and 2. Child 1 receives the first two genes (up to the crossover 

position) from parent 1 and the last three genes from parent 2. Vice versa for child 2. 

The two-point crossover follows the same concept with the difference that now two crossover 

positions are chosen randomly as shown in the figure. Child 1 thus receives the first gene from 

parent 1, the second and third from parent 2, and the last two again from parent 1.  

The resulting new individuals (children) replace the old population (Miller & Goldberg, 1995).  

 

 

Figure 5-10 One-Point and Two-Point Crossover 

 

Reeves (2003) states that any number of crossover positions (m-point crossover, where m > 1) 

can be chosen. He further mentions a completely random crossover, called uniform crossover, 

where the operator is implemented as a binary string, e.g. (1, 0, 0, 1, 1, 1). This string means 

that the second and third genes are taken from the second parent and the other genes are taken 

from the first parent, which is equivalent to a two-point crossover in this case.  
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Figure 5-11 Pseudocode One-Point Crossover 

The red numbers in Figure 5-10 indicate duplicate locations, which is forbidden in this type of 

problem because there is no value in building two shelters at the same location. These infeasible 

chromosomes need to be repaired. Pongcharoen, Khadwilard, and Hicks (2008) state that repair 

mechanisms are problem specific because the algorithm is different for each problem, e.g. 

binary or integer chromosomes and existing constraints. 

An interesting approach is used by Mostajabdaveh et al. (2020), who implement three different 

crossover operators and choose one at random when a crossover is required. 

In this work, a one-point and a two-point crossover operator are implemented, run separately, 

and the results are compared. Since the crossover mechanism may lead to infeasible solutions, 

the applied repair mechanism is also explained. 

Figure 5-11 shows the pseudocode of the one-point crossover. The code is available in 

Appendix B, lines 94+114. First, the crossover position is randomly chosen for each 

chromosome pair. As already mentioned in the previous subsection, survivors (the best and the 

worst chromosome) are put directly into the new generation without being changed (3). 

In line 4 of the figure, the crossover is performed for all pairs of chromosomes. A pair consists 

of two chromosomes (parents) that are directly adjacent in the mating pool. Two children 

(offspring) are generated from each pair. The first child receives all genes up to the crossover 

position from the first parent (6) and the remaining genes from the second parent (9). The 

reverse is the case for the second child. 

In the last line, the children (new generation) replace the old generation. 
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Almost the same steps are executed for the two-point crossover, given in Figure 5-12. The code 

can be found in Appendix B, lines 100+136. Again, the crossover positions are chosen (2) and 

the survivors are put into the new generation (3). But now, the first child gets the first (6) and 

last (12) sequence of genes from the first parent and only the middle sequence from the second 

parent. The reverse is true for the second child.  

The old generation is again replaced by the new generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12 Pseudocode Two-Point Crossover 

 

After the crossover is performed, a repair mechanism is applied to check if each solution is 

feasible. This repair function is given in Figure 5-13, and begins at line 162 in Appendix B. The 

function searches for one or more duplicate locations in line 2 of the figure. If there are 

duplicates (3), then the function finds the affected locations (4). 

For the number of duplicate locations (5), the still available locations are stored in a vector (6). 

Then a random duplicate location is selected (7) and replaced by a random available location 

from the vector (8+9). 
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Figure 5-13 Pseudocode Repair-Mechanism 

 

5.8. Mutation 

Most authors point out that mutation is necessary to prevent the algorithm from getting stuck 

in a local optimum by keeping the population diverse (Reeves, 2003). Experimental results of 

Grefenstette (1986) even indicate that the performance of algorithms is worse when mutation 

is not implemented as lost values are not recovered.  

Reeves (2003) lists different approaches that are used to implement mutation:  One approach is 

to generate a random number for each gene of each chromosome and compare it to a mutation 

rate. The drawback of this idea is that for long chromosomes/strings and a large population, the 

computation time could be strongly affected. A more efficient approach for a long string is to 

use a Poisson distribution with λ=1 to get a random variable that decides how many genes are 

mutated. Then a uniform distribution is used to determine which genes are mutated. 

When a gene of a binary chromosome is mutated, it is simply flipped e.g. from 0 to 1, and for 

non-binary strings, a value can either be chosen randomly from a pool or in case there are 

ordinal relations between the genes, constraints or biased probabilities can be implemented 

(Reeves, 2003).  

In the implementation, a random number is generated for each gene since the chromosomes are 

usually very short and the population size is small. Furthermore, the mutation rate is set to 5%, 

which according to Grefenstette (1986) is the maximum percentage that does not harm the 

performance. 

The pseudocode of the implementation is given in Figure 5-14, and the code in Appendix B, 

line 204. For all chromosomes except the last one (1) and all permanent shelters/genes (2), a 

random number [0, 99] is generated (3). If this number is smaller than the mutation rate (4), 
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Figure 5-14 Pseudocode Mutation 

then the gene is mutated. The last chromosome is not changed because the current best solution 

is stored at this position and excluding it from possibly being mutated ensures that the overall 

highest fitness value does not get worse. 

The process of mutating a gene is as follows: First, a vector is created to store potential locations 

(5). Afterwards, for all locations (6), it is checked if this location is already present in the 

chromosome and if this is not the case (7), then it is stored in the vector (8). A random location 

is selected from the vector (9) and this new location replaces the old permanent shelter (10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.9. Termination 

If no termination criterion is implemented, GAs would never stop running (Reeves, 2003). 

Reeves (2003) lists some common approaches: Terminate the algorithm after a certain number 

of generations, a preset time, or when the diversity of the population falls below a threshold. 

Another approach is to stop the algorithm when no improvement is achieved after a preset 

number of iterations (Leung & Wang, 2001). Hedar, Ong, and Fukushima (2007) claim that 

these standard termination criteria are a drawback as they are set by the user. Therefore, the 

authors propose a method where the GA itself decides when to terminate the algorithm. 

In Mostajabdaveh et al. (2020), two termination criteria are combined, which is also done in 

this work. The algorithm is stopped either after 50 generations without improvement of the best 

chromosome or after a total of 300 generations. These numbers have been tested and seem to 

work well for this algorithm. 



 

33 

 

6. Results 

6.1. General Settings and Overview 

In each of the subsections, the ex-ante and ex-post fitness values, the costs, and the utilitarian 

costs are discussed. Note that the fitness values cannot be directly compared due to the different 

objective functions. As it is interesting to know how well the best ex-ante/ex-post solution 

performs in terms of fitness values when plugged into the ex-post/ex-ante objective function, 

the percentage difference is also calculated in each subsection. The same is done for the 

utilitarian costs: the best ex-ante/ex-post solution is plugged into the utilitarian objective 

function and the percentage difference is compared. The underlying data (e.g. the coordinates 

of the population nodes) of both problem sizes is completely randomly generated. The 

algorithms are implemented in C++ and run on Windows 10, using an Intel Core i7-7700HQ 

and 8 GB RAM. 

Subsection 6.3.1.1 (“Increasing Population Nodes”) first shows and explains the results of a 

single seed and compares these results to the arithmetic mean of 100 randomly generated seeds. 

A single seed is discussed only in that subsection to keep the thesis at a reasonable length. For 

all other subsections the arithmetic means of 100 seeds are used. Additionally, mathematical 

formulas, that apply to all other subsections, are given and explained in this subsection. All 

results are rounded to two decimal places and the performance is measured in milliseconds. 

After discussing the solutions of the complete enumeration and the genetic algorithm of the 

small problem size (6.3 “Small Problem Size”), the genetic algorithm is applied to a large 

problem (6.4 ”Large Problem Size”) and different combinations of selection and crossover 

algorithms are compared. 

The next subsection (6.6 ”Case Study: Nepal”) focuses on a case study of Nepal. Based on 

probabilistic seismic hazard assessment and real data of major cities in central Nepal, the 

genetic algorithm is used to find a solution in case a disaster occurs. This solution is then 

compared to the data of a real disaster, an earthquake that occurred in Nepal in April 2015.  

A budget is introduced in the last subsection (6.7 ”Budget”). It is investigated how a different 

number of permanent and temporary shelters with the same budget affects the fitness values. 

This is important for decision-makers because temporary shelters are built where they are really 

needed on the one hand, but on the other hand they are much more expensive than permanent 

shelters because they have to be available as soon as possible. 
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Figure 6-1 Generating Random Numbers 

6.2. Input Data and Randomness 

Most of the required input data is either manually selected or randomly generated. It is also 

possible to import latitude and longitude of population nodes and the number of households 

from an Excel file.  

Since randomness is an important part of the code, it is briefly discussed in this subsection. 

According to Steve Ward, professor at MIT, deterministic algorithms produce identical results 

every time they are executed with the same seed (Rubin, 2011). He further states that the 

numbers generated are not truly random and are referred to as pseudo-random numbers. These 

numbers are sufficient for most purposes and are therefore used in this thesis. Truly random 

numbers are crucial when it matters that the outcome cannot be predicted, for example on an 

online poker site (Rubin, 2011). 

Detailed information about the following code can be found on the cplusplus website (The C++ 

Resources Network, n.d.). The standard library added to the code is called <random>. Two 

uniform distributions, the uniform discrete distribution and the uniform real distribution, are 

used. These distributions use a generator to create random numbers. The generator chosen is 

called “Mersenne twister random number engine”, which creates pseudo-random numbers by 

plugging a seed into an algorithm. This seed is produced by a generator called random_device, 

which creates non-deterministic random numbers.  

 

 

 

 

 

 

 

 

 

A small example is given in Figure 6-1. In line 5, a random number rd is generated, which is 

used to seed the Mersenne Twister engine in line 6. A huge series of numbers can be generated 

by this engine’s algorithm. Then the uniform discrete distribution is created with range [0, 5]. 

Line 8 shows how a random integer number of range [0, 5] is produced.  
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6.3. Small Problem Size 

Table 6-1 shows the default settings of the small and large problem sizes. For each problem 

size, the number of permanent shelters, temporary shelters, potential locations, and population 

nodes are independently increased by a constant number after each run and presented in separate 

subsections. For example, to observe how additional permanent shelters affect the result, only 

the permanent shelters are increased but the other settings remain constant. Table 6-2 contains 

the additional settings necessary for the genetic algorithm.  

 

 Permanent 
Locations 

Temporary 
Locations 

Potential 
Locations 

Scenarios 
Population 

Nodes 

Small Problem Size 2 2 8 3 10 

Large Problem Size 3 1 50 2 20 

Table 6-1 Default Settings 

 

 

 

 

 
Table 6-2 Additional Settings for GA 

6.3.1. Complete Enumeration 

Although the complete enumeration uses fairness values (based on distances or costs), these 

values are changed to fitness values (1/fairness) in all “Complete Enumeration” subsections to 

facilitate the comparison with the results of the genetic algorithm. Therefore, the objective 

function of the CE is no longer minimized (costs), but maximized (fitness). 

 

6.3.1.1. Increasing Population Nodes 

6.3.1.1.1. Fitness Values and Performance 

6.3.1.1.1.1. Single Seed 

In this subsection the population nodes increase by a constant number of additional nodes after 

each run, while all other settings stay the same. Table 6-3 shows the fitness values of the best 

ex-ante and ex-post solutions. Ex-ante fitness values λA cannot be directly compared with the 

ex-post fitness values ψP because their calculation is different. Instead, the best solution of each 

approach is plugged into the objective function of the other approach (λP and ψA). 

 

 

 Chromosomes Generations 
Mutation 

Rate 

Small Problem Size 10 300 5 
Large Problem Size 20 300 5 
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Figure 6-2 CE: Population Nodes: Single Seed: Fitness Values 
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 Population Nodes 

 
 10 13 16 19 22 25 

λA 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

5.48 10.81 9.09 8.10 6.96 7.93 

λP 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

5.48 10.19 9.09 7.19 6.73 6.43 

ΔA Difference Ante in % 0.00 5.73 0.00 11.23 3.28 18.96 

ψP 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

4.72 7.61 6.54 5.49 5.45 5.43 

ψA 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

4.50 6.45 6.54 5.08 4.21 4.66 

ΔP Difference Post in % 4.50 15.25 0.00 7.54 22.72 14.20 

Table 6-3 CE: Population Nodes: Single Seed: Fitness Values 

 

(2)                 1 (3)          2 

 

The fitness values of the table are visualized in Figure 6-2. The left graph displays the fitness 

values of the ex-ante objective (λA and λP) and the right graph shows the values of the ex-post 

objective (ψP and ψA). Both graphs decrease when the number of population nodes increases, 

which is easily explained by considering that some of these additional nodes are also affected 

by the disaster, leading to higher costs (distances) and since fitness = 1/costs, the fitness values 

decrease.  

 

 

 

 

 

 

 

 

 

 

 

The percentage differences (ΔA and ΔP) are computed by the two mathematical formulas given 

above, where (2) computes the differences of the solutions that are plugged into the ex-ante 

objective function and (3) computes the differences of the solutions that are plugged into the 

ex-post objective function. 
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Figure 6-3 CE: Population Nodes: Single Seed: Percentage Differences and Performance 
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For the data in Table 6-3 this means that to determine the ex-ante percentage difference ΔA of 

the second column (computed by equation (2)), the best ex-post solution is plugged into the ex-

ante objective function, leading to a fitness value of λP = 10.19. This value is subtracted from 

the ex-ante fitness of the solution with the best ex-ante fitness (λA = 10.81). The result is then 

divided by λA and multiplied by 100, which corresponds to 5.73%. Equation (3) shows that the 

same is done to calculate the ex-post percentage difference ΔP but this time the ex-post objective 

function is used. 

The ΔA results in the table show how much worse the best ex-post solution is when plugged into 

the ex-ante objective function (λP) compared to the best ex-ante solution that is also plugged 

into the ex-ante objective function (λA). The differences range from 0.00% to 18.96%. A 

difference of 0.00% means that the fitness values (λA and λP) are identical and therefore both 

solutions are equally good. λP is almost 19% worse than λA in the last column (25 population 

nodes).  

Similarly for ΔP, the differences range from 0.00% to 22.72% and are worse than the ΔA results. 

This means that for the seed used, plugging the best ex-post solution into the ex-ante objective 

function (λP) often results in smaller percentage differences than plugging the best ex-ante 

solution into the ex-post objective function (ψA). ΔA and ΔP are visualized in the first diagram 

of Figure 6-3.  
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The percentage differences of both evaluation approaches tend to increase as more population 

nodes are added, although no clear pattern is observed.  

Ex-post (ψP) usually performs slightly better than ex-ante (λA), as indicated by the right graph 

of Figure 6-3. A linear increase in computation time is observed as more population nodes are 

added.  

6.3.1.1.1.2. Multiple Seeds 

The Δ̅A and Δ̅P values of Table 6-4 are calculated by applying the following mathematical 

formulas. These formulas are very similar to the formulas of the single seed, but instead of 

plugging in just one fitness value, e.g. λA, the arithmetic mean of 100 randomly generated seeds, 

e.g. λ̅A, is now calculated and then plugged into the formula. 

 

(4)        1 (5)          2 

 

 
 Population Nodes 

 
 10 13 16 19 22 25 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

10.38 8.81 8.13 7.81 6.45 6.79 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

10.24 8.66 7.95 7.65 6.32 6.60 

Δ̅A Difference Ante in % 1.32 1.76 2.22 2.07 1.99 2.80 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

6.69 5.73 5.33 5.10 4.81 4.73 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

6.61 5.63 5.24 4.98 4.67 4.62 

Δ̅P Difference Post in % 1.11 1.82 1.80 2.30 2.79 2.22 

Table 6-4 CE: Population Nodes: Fitness Values 

While ΔP showed differences of up to 22.72% in Table 6-3, the largest difference in Table 6-4 

for Δ̅P is only 2.79%, which reveals how much a single seed can deviate from the arithmetic 

mean of many. This is also shown by comparing Figure 6-2 (single seed) with Figure 6-4: the 

ex-ante fitness values (λA and λP) of Figure 6-2 do vary (greatly), but the ex-ante values (λ̅A and 

λ̅P) of Figure 6-4 are almost the same. Another difference to Figure 6-2 is that it is now very 

clear that that fitness values decrease as the population nodes increase.  
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Figure 6-4 CE: Population Nodes: Fitness Values 

Figure 6-5 CE: Population Nodes: Percentage Differences and Performance 
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The first diagram of Figure 6-5 shows the percentage differences Δ̅A and Δ̅P. Compared to Figure 

6-3 (single seed), Δ̅P is now mostly smaller than Δ̅A, which means that plugging the best ex-ante 

solution into the ex-post objective function (ψ̅A) usually leads to results that are closer to the 

best result than plugging the best ex-post solution into the ex-ante objective function (ψ̅P). Both 

percentage differences, Δ̅P more than Δ̅A, increase as the population nodes increase. The 

performance of both evaluation methods is linear and again, ex-post (ψ̅P) performs slightly 

better than ex-ante (λ̅A).  
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6.3.1.1.2. Comparison of Costs 

6.3.1.1.2.1. Single Seed 

The costs of the ex-ante, ex-post, and utilitarian solutions are compared and given as 

percentages in Table 6-5. For the ex-ante and ex-post objective functions, the costs are simply 

the summed distances of all affected population nodes to their nearest shelter. For the utilitarian 

objective function, the distances of the affected population nodes to their nearest shelters are 

first multiplied by the number of households (weight) and then summed. The second column in 

the table specifies which costs are being compared:  

1) Costs of the solution with best ex-ante fitness (θA) are compared to the costs of the 

solution with best ex-post fitness (θP),  

2) Weighted costs (utilitarian costs) of the solution with best ex-ante fitness (γA) are 

compared to the utilitarian costs of the utilitarian objective function (γU), and  

3) Weighted costs (utilitarian costs) of the solution with best ex-post fitness (γP) are 

compared to the utilitarian costs of the utilitarian objective function (γU). 

Since this problem has three scenarios and the affected population nodes of each scenario can 

be completely different, the scenarios are compared separately. This means that for scenario 3 

and 10 population nodes in 1), the result is obtained by calculating the ex-ante costs θA and the 

ex-post costs θP (summed distances of all affected population nodes to their nearest shelter) of 

scenario 3 using formula (6). Similarly for scenario 3 and 10 population nodes in 2), but here 

the costs of the ex-ante solution of scenario 3 are multiplied by the number of households 

(utilitarian costs) and then compared to scenario 3 of the utilitarian solution γU using formula 

(7). 

Table 6-5 first compares θA with θP separately for each scenario. Positive numbers (red color) 

mean that the ex-ante costs θA are worse than the ex-post costs θP by that percentage. Zero 

(white color) means that both approaches are equally good and negative numbers (green color) 

mean that the ex-ante costs θA are better than the ex-post costs θP by that percentage. 

Considering the colors, it seems that the ex-ante costs θA are mostly worse than the ex-post 

costs θP, sometimes equally good, and only twice better for that specific seed. The numbers are 

percentage differences Δ1) and they are calculated with mathematical formula (6). The results 

range from -20.75% to 66.13%, which means that for scenario 2 and 19 population nodes, θA 

saves 20.75% of the costs compared to θP, but for scenario 3 and 10 nodes, the cost of θA is 

almost 2/3 higher than the cost of θP. 
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       Population Nodes     

   10 13 16 19 22 25 

  1) Ex-Ante (θA) Scenario 1 0.00 0.00 0.00 6.09 43.39 12.58 
Δ1)  vs. Scenario 2 20.00 37.75 0.00 -20.75 15.44 7.66 

       Ex-Post (θP) Scenario 3 66.13 -18.07 0.00 4.27 6.72 0.11 

  2) Ex-Ante (γA) Scenario 1 0.00 0.00 0.00 10.84 26.47 12.59 
Δ2)  vs. Scenario 2 18.30 36.38 1.17 0.00 17.24 9.81 

       Utilitarian (γU) Scenario 3 48.59 5.44 29.06 31.27 11.74 10.25 

  3) Ex-Post (γP) Scenario 1 0.00 0.00 0.00 0.00 -6.61 0.00 
Δ3) vs. Scenario 2 0.00 0.00 1.17 32.08 0.00 1.23 

       Utilitarian (γU) Scenario 3 0.00 46.15 29.06 29.16 11.31 8.02 

Table 6-5 CE: Population Nodes: Single Seed: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

 

(6) 1 (7)      2 (8)    3 

 

Next, γA and γU are compared. Unlike before, the costs are now weighted, that is, the number 

of households is taken into account. Again, the positive/negative numbers indicate by what 

percentage the ex-ante utilitarian costs γA are worse/better than the utilitarian costs γU. Since 

the utilitarian objective function chooses the solution with the minimum utilitarian costs, 

contrary to the ex-ante and ex-post objective functions that focus on maximizing fairness, it is 

no surprise that the ex-ante solution is mostly worse or, at best, equally good as the utilitarian 

solution. Here, from the perspective of the ex-ante solution, the worst percentage difference Δ2), 

calculated with mathematical formula (7), is 48.59%, and the best is 0%. 

Lastly, γP and γU are compared. The percentage differences Δ3) are computed with formula (8). 

These differences are overall better than the differences of 2) and there is even a reduction of 

6.61% for scenario 1 and 22 population nodes. However, due to scenario 3, the total costs (costs 

of all scenarios added together) of this ex-post solution are still higher than the total costs of the 

utilitarian solution. 

Figure 6-6 shows the costs of the ex-ante and ex-post solutions. Just as expected, considering 

that costs increase with each additional affected population node, both diagrams show an 

upward movement when the number of (affected) population nodes increases. At 25 population 

nodes in the ex-ante costs (θA) graph, the costs of scenario 1 decrease compared to 22 population 

nodes. The reason for this decrease is that as more population nodes are affected, the solution 

(combination of permanent and temporary locations) may change, which can reduce the costs 

of a scenario. 
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Figure 6-6 CE: Population Nodes: Single Seed: Ex-Ante and Ex-Post Costs 

 

 

 

 

 

 

 

 

 

 

 

Therefore, it is even possible that the total costs (costs of all scenarios added together) decrease 

when more population nodes are added. This can be observed in the ex-post costs (θP) graph at 

22 population nodes compared to 19. The total costs at 19 nodes are 272.85 units, while the 

total costs at 22 nodes are 264.59 units. 

6.3.1.1.2.2. Multiple Seeds 

The values given in Table 6-6 are percentages calculated with the mathematical formulas below. 

These formulas are very similar to those for the single seed with the difference that the 

arithmetic means of 100 seeds are calculated first and the results are then plugged into the 

equations. 

 

(9)        1 (10)           2 (11)    3 

 

       Population Nodes     

   10 13 16 19 22 25 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 -0.93 1.01 -1.52 0.99 0.43 
Δ̅1)  vs. Scenario 2 -0.22 0.75 0.83 -0.32 1.33 1.59 

       Ex-Post (θ̅P) Scenario 3 -0.46 -0.11 0.80 1.60 2.27 1.84 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 8.88 9.40 11.47 11.72 15.18 
Δ̅2)  vs. Scenario 2 11.82 13.23 16.56 15.03 15.52 18.71 

       Utilitarian (γ̅U) Scenario 3 13.89 14.56 13.06 14.90 13.59 15.96 

  3) Ex-Post (γ̅P) Scenario 1 0.00 9.45 6.14 11.43 10.61 10.47 
Δ̅3) vs. Scenario 2 10.28 11.78 12.86 11.77 11.88 12.03 

       Utilitarian (γ̅U) Scenario 3 9.82 12.18 12.82 12.13 9.47 8.28 

Table 6-6 CE: Population Nodes: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

�̅�1) =
�̅� − �̅�
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 �̅�2) =

�̅� − 𝜏̅

𝜏̅
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Figure 6-7 CE: Population Nodes: Ex-Ante and Ex-Post Costs 
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For Δ̅1), the percentage differences, ranging from -1.52 to 2.27, are much smaller than the 

differences of the single seed in Table 6-5, that range from -20.75 to 66.13, and even improved 

for the ex-ante approach, as there are now more negative percentages (highlighted in green) 

than before. To repeat, negative percentages mean that the ex-ante costs (θ̅A) are lower than the 

ex-post costs (θ̅P) by this percentage. However, the ex-post costs (θ̅P) are still mostly lower than 

the ex-ante costs (θ̅A). 

Comparing 2) and 3) of Table 6-6 with Table 6-5, almost every entry is now highlighted in red, 

showing that the ex-ante costs (γ̅A) and ex-post costs (γ̅P) are worse than the utilitarian costs 

(γ̅U) by this percentage. These percentages are often significantly lower than the percentages of 

the single seed. While the largest percentage difference of the single seed is 48.59%, the largest 

difference of the arithmetic mean is only 18.71%. 

 

  

 

 

 

 

 

 

 

 

 

 

 

As already indicated by 1) in Table 6-6, and shown in Figure 6-7, the graphs of both evaluation 

methods are almost identical with slight deviations. Again, the costs increase when more 

affected population nodes are added. 
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Figure 6-8 CE: Potential Locations: Fitness Values 
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6.3.1.2. Increasing Potential Locations 

6.3.1.2.1. Fitness Values and Performance 

Table 6-7 in combination with Figure 6-8 shows that the fitness values for both approaches 

increase as more potential locations are added.  

 
 Potential Locations 

 
 8 11 14 17 20 23 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

9.08 10.38 11.64 12.76 13.65 14.93 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

8.97 10.24 11.35 12.43 13.17 14.46 

Δ̅A Difference Ante in % 1.20 1.32 2.53 2.60 3.50 3.11 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

5.91 6.69 7.48 8.18 8.82 9.69 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

5.89 6.61 7.33 7.85 8.39 9.16 

Δ̅P Difference Post in % 0.33 1.11 1.99 4.00 4.88 5.45 

Table 6-7 CE: Potential Locations: Fitness Values 

The explanation for this increase is that as more potential locations become available, the 

algorithm can select better locations to maximize fairness for all affected population nodes. 
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Figure 6-9 shows a strong positive correlation 

between increasing potential locations and 

the percentage differences of ex-post Δ̅P, 

meaning that when plugging the best ex-ante 

solution into the ex-post objective function 

(ψ̅A), the resulting fitness value becomes on 

average worse compared to the best ex-post 

solution (ψ̅P) as more potential locations 

become available. The percentage differences 

of ex-ante Δ̅A also increase (with one 

exception), but to a lesser extent. 

 

An additional table (Table 6-8) has been included to explain the behavior of Figure 6-10. In 

Table 6-8, all possible combinations are calculated using the binomial coefficient (formula (1)). 

For the permanent combinations in the first column this means that n = 8 and k = 2, since 8 

potential locations are available and 2 permanent shelters are built (see 6.1 ”General Settings 

and Overview”), resulting in 28 permanent combinations. For the temporary combinations, the 

same formula applies, except that now n = 6 (8 potential locations – 2 permanent shelters 

already selected) and k = 2 (2 temporary shelters are built), which results in 15 temporary 

combinations. As the temporary combinations are calculated separately for each permanent 

combination, they must be multiplied by 28 (permanent combinations), resulting in 420 

possible combinations. 

 

 Potential Locations 
 8 11 14 17 20 23 

Permanent 
Combinations 

28 55 91 136 190 253 

Temporary 
Combinations 

15 36 66 105 153 210 

Possible Combinations 420 1980 6006 14280 29070 53130 

Table 6-8 CE: Potential Locations: Permanent and Temporary Combinations 

 

The right graph of Figure 6-10 illustrates the results of Table 6-8. Comparing the two graphs, 

it is clear that increasing the number of potential locations heavily affects the computation time. 

Here, the performance of ex-post is marginally better than the performance of ex-ante. 

 

Figure 6-9 CE: Potential Locations: Percentage Differences 
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Figure 6-10 CE: Potential Locations: Performance and Combinations 
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6.3.1.2.2. Comparison of Costs 

Considering the Δ̅1) values in Table 6-9, it appears that ex-ante has slightly lower costs than ex-

post for up to 14 potential locations, but the costs grow rapidly as the number of potential 

locations increases.  

Δ̅2) shows an even stronger correlation between utilitarian costs and potential locations. The 

costs of the ex-ante solution at scenario 3 is at first only 5.18% (column 1) worse than γ̅U, but 

this difference gets worse every time new locations are added, up to 34.84% (column 6). 

Δ̅3) also shows a link between costs and locations. The difference of column 1 is at first higher 

than the difference of Δ̅2), however, it does not grow as fast and does not even reach half of the 

costs of Δ̅2) in column 6. 

 

   Potential Locations 

   8 11 14 17 20 23 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 0.78 -0.22 1.22 2.73 5.78 10.33 

       Ex-Post (θ̅P) Scenario 3 -0.72 -0.46 -0.37 4.41 4.87 5.84 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅2)  vs. Scenario 2 6.27 11.82 16.39 24.14 27.80 31.14 

       Utilitarian (γ̅U) Scenario 3 5.18 13.89 19.11 22.77 30.35 34.84 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 

Δ̅3) vs. Scenario 2 6.98 10.28 11.44 13.63 12.63 12.89 
       Utilitarian (γ̅U) Scenario 3 6.41 9.82 12.30 14.73 16.60 16.02 

Table 6-9 CE: Potential Locations: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 
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Figure 6-11 CE: Potential Locations: Ex-Ante and Ex-Post Costs 
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In Figure 6-11 the costs of both graphs decrease. When more locations are added, it is possible 

that these new locations are placed closer to affected population nodes than already available 

locations, improving the fitness value and thus leading to lower costs (fitness = 1/costs). 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.1.3. Increasing Permanent Shelters 

6.3.1.3.1. Fitness Values and Performance 

As illustrated in Figure 6-12, which uses the data from Table 6-10, fitness values increase when 

more permanent shelters are built. However, strongly depending on the problem size, adding 

more shelters may not improve the solution. In this case, the fitness values of both evaluation 

approaches only grow for up to two permanent shelters. Three or more shelters do not further 

improve these values. The reason for this outcome is the position of the potential locations; for 

the first two permanent shelters the best locations are chosen, but all other locations are 

positioned in a way that they cannot contribute to a better solution. 

 
 Permanent Shelters 

 
 1 2 3 4 5 6 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

10.22 10.38 10.38 10.38 10.38 10.38 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

9.94 10.24 10.32 10.26 10.31 10.38 

Δ̅A Difference Ante in % 2.72 1.32 0.49 1.07 0.66 0.00 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

6.57 6.69 6.69 6.69 6.69 6.69 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

6.47 6.61 6.66 6.68 6.68 6.69 

Δ̅P Difference Post in % 1.59 1.11 0.40 0.02 0.08 0.00 

Table 6-10 CE: Permanent Shelters: Fitness Values 
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Figure 6-12 CE: Permanent Shelters: Fitness Values  
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The percentage differences in Figure 6-13 are 

quite high at the beginning, but decrease as 

more permanent shelters are built, which is 

plausible because an increasing number of 

shelters and a constant number of potential 

locations lead to similar or even identical 

fitness values.  

In the graph, the ex-post percentage 

differences Δ̅P are smaller than Δ̅A, suggesting 

that the best ex-ante solution plugged into the 

ex-post objective function ψ̅A delivers results 

that are (much) closer to the best ex-post 

solution ψ̅P than the obtained results of the best ex-post solution plugged into the ex-ante 

objective function λ̅P are to the best ex-ante solution λ̅A. 

 

 Permanent Shelters 
 1 2 3 4 5 6 

Permanent 
Combinations 

8 28 56 70 56 28 

Temporary 
Combinations 

21 15 10 6 3 1 

Possible Combinations 168 420 560 420 168 28 
Table 6-11 CE: Permanent Shelters: Permanent and Temporary Combinations 

 

Figure 6-13 CE: Permanent Shelters: Percentage Differences 
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Figure 6-14 CE: Permanent Shelters: Performance and Combinations 
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Similar to the previous subsection (6.3.1.2 “Increasing Potential Locations”), the number of all 

possible combinations of each run with a different number of permanent shelters is given in 

Table 6-11 and visualized in the right diagram of Figure 6-14. Again, the computation time (left 

diagram) is heavily affected by the possible combinations since all of them are calculated. Ex-

post performs slightly better than ex-ante. 

 

 

 

 

 

 

 

 

 

 

 

6.3.1.3.2. Comparison of Costs 

The ex-ante costs θ̅A of 1) in Table 6-12 only perform worse than the ex-post costs θ̅P when one 

permanent shelter is built. For all other numbers of shelters, the percentage difference Δ̅1) is 

mostly positive. 

   Permanent Shelters 

   1 2 3 4 5 6 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 1.43 -0.22 -0.82 -1.03 0.03 0.00 

       Ex-Post (θ̅P) Scenario 3 1.46 -0.46 0.19 0.25 -0.16 0.00 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 

Δ̅2)  vs. Scenario 2 17.29 11.82 7.63 5.08 1.94 0.00 
       Utilitarian (γ̅U) Scenario 3 14.13 13.89 6.82 4.48 1.98 0.00 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅3) vs. Scenario 2 15.02 10.28 7.87 3.78 2.95 0.00 

       Utilitarian (γ̅U) Scenario 3 10.85 9.82 7.38 4.49 1.98 0.00 

Table 6-12 CE: Permanent Shelters: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

For Δ̅2) and Δ̅3) a decrease in the percentage differences is observed when more permanent 

shelters are built. Six permanent shelters always result in a difference of 0% in this example 

because eight potential locations are available and two temporary shelters are built. Therefore, 

all locations are used and the costs are the same. 
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Figure 6-15 CE: Permanent Shelters: Ex-Ante and Ex-Post Costs 
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Figure 6-15 shows the costs of all three scenarios of both evaluation approaches. There are only 

minor differences between these two graphs. The costs decrease when the number of shelters 

increases, which is obvious because additional shelters can be located closer to some affected 

population nodes and therefore lead to shorter distances (=costs) for these nodes. The costs of 

scenario 1 do not decrease, which means that all added shelters are farther away from these 

affected population nodes than the already existing shelters. 

6.3.1.4. Increasing Temporary Locations 

6.3.1.4.1. Fitness Values and Performance 

The results of this subsection are very similar to the results of subsection 6.3.1.3 “Increasing 

Permanent Shelters”, as the total number of shelters (permanent and temporary) does not change 

and the problem size is rather small. 

 
 Temporary Shelters 

 
 1 2 3 4 5 6 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

10.21 10.38 10.38 10.38 10.38 10.38 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

9.97 10.24 10.17 10.32 10.33 10.38 

Δ̅A Difference Ante in % 2.38 1.32 1.97 0.52 0.40 0.00 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

6.55 6.69 6.69 6.69 6.69 6.69 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

6.31 6.61 6.68 6.69 6.69 6.69 

Δ̅P Difference Post in % 3.64 1.11 0.08 0.00 0.00 0.00 

Table 6-13 CE: Temporary Shelters: Fitness Values 
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Figure 6-16 CE: Temporary Shelters: Fitness Values 

Figure 6-17 CE: Temporary Shelters: Percentage Differences and Performance 
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Figure 6-16 visualizes the fitness values given in Table 6-13. These values increase when the 

number of temporary shelters increases. For ex-ante and ex-post, there is no further 

improvement after two temporary shelters are built. 

 

 

 

 

 

 

 

 

 

 

 

 

The left diagram of Figure 6-17 shows that the percentage differences for both approaches 

decrease when more shelters are built and the right diagram shows the performance for each 

number of shelters, which again strongly depends on the number of possible combinations, as 

discussed in the previous subsection.  
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Figure 6-18 CE: Temporary Locations: Ex-Ante and Ex-Post Costs 
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6.3.1.4.2. Comparison of Costs 

The percentage differences Δ̅1) in Table 6-14 indicate that the best ex-ante solutions have higher 

costs than the best ex-post solutions when only one temporary shelter is built, but when the 

number of shelters increases, ex-ante tends to have lower costs than ex-post. 

When the weighted ex-ante and ex-post costs are compared with the utilitarian costs (Δ̅2) and 

Δ̅3)), it appears that ex-ante causes much higher costs than ex-post for column 1, scenario 2 

(29.38%) and 3 (23.26%). However, as the number of shelters grows, the percentage differences 

decrease for both approaches.  

   Temporary Shelters 

   1 2 3 4 5 6 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 6.12 -0.22 -2.19 -0.85 -0.91 0.00 

       Ex-Post (θ̅P) Scenario 3 5.49 -0.46 -1.29 0.04 -0.28 0.00 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅2)  vs. Scenario 2 29.38 11.82 8.34 5.24 2.69 0.00 

       Utilitarian (γ̅U) Scenario 3 23.26 13.89 7.71 6.08 2.56 0.00 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅3) vs. Scenario 2 10.06 10.28 10.01 4.66 3.57 0.00 

       Utilitarian (γ̅U) Scenario 3 8.67 9.82 7.71 4.44 2.10 0.00 

Table 6-14 CE: Temporary Shelters: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

For scenarios 2 and 3 in Figure 6-18, the costs of the best ex-ante solution are a bit higher than 

the costs of the best ex-post solution when only one temporary shelter is built. Similar to the 

cost graphs of Figure 6-15 (permanent shelters), the costs decrease when the number of shelters 

increases. 
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6.3.2. Genetic Algorithm 

The purpose of this subsection is to compare the genetic algorithm (GA) with the complete 

enumeration (CE). Ideally, the fitness values of the GA are identical to the values of the CE. 

In subsection 6.3.2.3 “Increasing Permanent Shelters”, especially in Figure 6-26 (performance 

graph), it will become clear that the GA finds a solution much faster than the CE. However, this 

only applies to large problem sizes as the GA executes much more code than the CE, leading 

to a worse performance for small problem sizes. Furthermore, the GA may not find the best 

solution every time, as it can get stuck in a local optimum. In contrast to the performance graph 

of the permanent shelters, the performance graph of the temporary shelters (Figure 6-30) does 

not change because a complete enumeration is still applied to calculate all possible 

combinations of temporary shelters. 

The input data of the GA is given in 6.3 “Small Problem Size”. The two-point crossover is used 

in combination with the roulette wheel selection because these settings deliver the best fitness 

values, which will be shown later in section 6.4 “Large Problem Size”. 

6.3.2.1. Increasing Population Nodes 

6.3.2.1.1. Fitness Values and Performance 

Table 6-15 shows the fitness values of ex-ante and ex-post. The underlying calculations 

(explained in 6.3.1.1.1.2 “Multiple Seeds”) are the same as for the CE .These fitness values (λ̅A 

and ψ̅P) are identical to the fitness values of the CE, which means that the GA found the best 

solutions. λ̅P and ψ̅A vary slightly when compared to the CE values. This occurs when multiple 

solutions have the same fitness value for one objective function but lead to different fitness 

values when the solutions are plugged into the other objective function. When multiple 

  Population Nodes 
  10 13 16 19 22 25 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

10.38 8.81 8.13 7.81 6.45 6.79 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

10.20 8.75 7.91 7.58 6.31 6.60 

Δ̅A Difference Ante in % 1.65 0.68 2.71 2.95 2.07 2.71 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

6.69 5.73 5.33 5.10 4.81 4.73 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

6.64 5.65 5.21 4.99 4.66 4.61 

Δ̅P Difference Post in % 0.71 1.41 2.33 2.22 3.12 2.47 
Table 6-15 GA: Population Nodes: Fitness Values 
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Figure 6-19 GA: Population Nodes: Fitness Values 

Figure 6-20 GA: Population Nodes: Percentage Differences and Performance 
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solutions have the same best fitness value, one of them is randomly chosen, and therefore it is 

quite likely that this results in slightly different values (λ̅P and ψ̅A) for the CE and the GA.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-19 displays the fitness values of the previous table. For both approaches, the fitness 

values decrease as more population nodes are added due to increasing costs/distances that are 

caused by the additional nodes that are affected by the disaster. 

 

 

 

 

 

 

 

 

 

 

 

 

The left diagram of Figure 6-20 illustrates the percentage differences given in the Table 6-15. 

For both approaches, these differences tend to increase as more population nodes are added. 

The performance in the right diagram is almost the same for ex-ante and ex-post. Compared to 

the CE, it takes much more time for the GA to execute the code. For example, it takes the CE 
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Figure 6-21 GA: Population Nodes: Ex-Ante and Ex-Post Costs 

100 milliseconds to run the algorithm with 10 population nodes, whereas the GA needs over 

1,700 milliseconds. This is normal for small problem sizes, because the GA has much more 

code to execute than the CE. However, as the problem size grows, the GA is much faster and, 

given a particular problem (see section 6.5 ”Performance CE vs. GA”), provides a solution in 

e.g. about an hour, while it would take the CE many decades. 

6.3.2.1.2. Comparison of Costs 

Based on the rather small percentage differences (-1.87 to 2.95) in 1) in Table 6-16,  it appears 

that the ex-ante and the ex-post solutions perform almost equally well in terms of costs. 2) and 

3) are very similar, implying that both approaches perform equally well when plugged into the 

utilitarian objective function. Most cost values in this table are not much different from the 

values of the CE. 

   Population Nodes 

   10 13 16 19 22 25 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 -1.87 -0.34 -0.03 1.76 2.21 

Δ̅1)  vs. Scenario 2 1.41 2.24 1.81 0.26 1.92 1.09 

       Ex-Post (θ̅P) Scenario 3 -0.23 2.95 0.75 1.63 1.76 1.46 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 7.07 8.56 8.70 9.77 10.89 

Δ̅2)  vs. Scenario 2 10.92 12.39 13.09 9.50 12.22 12.51 

       Utilitarian (γ̅U) Scenario 3 7.88 11.86 12.16 11.22 10.93 9.54 

  3) Ex-Post (γ̅P) Scenario 1 0.00 8.56 8.49 8.80 7.66 8.35 

Δ̅3) vs. Scenario 2 9.61 9.89 10.49 9.21 10.53 11.51 

       Utilitarian (γ̅U) Scenario 3 8.41 8.54 10.88 9.17 9.47 7.83 

Table 6-16 GA: Population Nodes: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 
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Figure 6-22 GA: Potential Locations: Fitness Values 
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Figure 6-21 displays the costs of the three scenarios. Costs increase as more population nodes 

are added. Both graphs are very similar to the graphs of the CE. 

6.3.2.2. Increasing Potential Locations 

6.3.2.2.1. Fitness Values and Performance 

Comparing the fitness values of Table 6-17 with Table 6-7 (CE), some values of λ̅A and ψ̅P of 

the GA are found to be slightly lower than those of the CE. In these cases, the best solution 

could not be found for all 100 seeds. However, this is negligible as the differences are very 

small. 

 

  Potential Locations 
  8 11 14 17 20 23 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

9.08 10.38 11.64 12.76 13.63 14.93 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

8.91 10.20 11.39 12.13 13.26 14.28 

Δ̅A Difference Ante in % 1.85 1.65 2.13 4.93 2.72 4.33 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

5.91 6.69 7.48 8.17 8.81 9.67 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

5.89 6.64 7.35 7.92 8.48 9.09 

Δ̅P Difference Post in % 0.25 0.71 1.81 3.14 3.76 6.01 

Table 6-17 GA: Potential Locations: Fitness Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-22 displays the fitness values of the table above. These values increase for ex-ante and 

ex-post when more potential locations are available. 
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Figure 6-23 GA: Potential Locations: Percentage Differences and Performance 

 

 

 

 

 

 

 

 

 

 

 

 

Although the percentage differences of ex-ante in Figure 6-23 do not show the same clear 

pattern as in Figure 6-9 (CE), they still increase as the number of potential locations grows. 

While the performance graph of the CE is clearly exponential, the graph of the GA is much 

flatter, but its code takes a lot more time to execute. 

6.3.2.2.2. Comparison of Costs 

The percentage differences given in Table 6-18 are quite similar to those of the CE, except for 

2), which has much smaller differences. This means that the GA happens to deliver ex-ante 

solutions that lead to lower utilitarian costs than the ex-ante solutions of the CE. 

 

   Potential Locations 

   8 11 14 17 20 23 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 -0.27 1.41 0.05 0.89 6.79 9.63 

       Ex-Post (θ̅P) Scenario 3 -0.22 -0.23 2.14 1.73 3.09 6.96 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅2)  vs. Scenario 2 5.17 10.92 10.80 14.98 19.01 23.15 

       Utilitarian (γ̅U) Scenario 3 5.28 7.88 11.96 13.63 15.33 19.96 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅3) vs. Scenario 2 5.92 9.61 10.55 13.65 11.09 11.30 

       Utilitarian (γ̅U) Scenario 3 5.55 8.41 9.76 11.96 12.87 11.40 

Table 6-18 GA: Potential Locations: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

For all three scenarios and both evaluation approaches, the costs of the GA (Figure 6-24) and 

the CE (Figure 6-11) decrease as the number of potential locations increases. 
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Figure 6-24 GA: Potential Locations: Ex-Ante and Ex-Post Costs 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.2.3. Increasing Permanent Shelters 

6.3.2.3.1. Fitness Values and Performance 

Again, the fitness values of λ̅A and ψ̅P are the same when Table 6-19 (GA) is compared with 

Table 6-10 (CE), while λ̅P and ψ̅A are slightly different. 

  Permanent Shelters 
  1 2 3 4 5 6 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

10.22 10.38 10.38 10.38 10.38 10.38 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

10.04 10.20 10.27 10.25 10.37 10.38 

Δ̅A Difference Ante in % 1.88 1.65 1.05 1.23 0.02 0.00 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

6.57 6.69 6.69 6.69 6.69 6.69 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

6.48 6.64 6.67 6.68 6.69 6.69 

Δ̅P Difference Post in % 1.43 0.71 0.24 0.03 0.00 0.00 

Table 6-19 GA: Permanent Shelters: Fitness Values 

The diagrams of Figure 6-25 display the fitness values of the previous table and are quite similar 

to the diagrams of the CE. These values do not increase after two permanent shelters are built, 

and the values of λ̅P and ψ̅A are as good as the values of λ̅A and ψ̅P, respectively, when five or 

six shelters are built. 
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Figure 6-25 GA: Permanent Shelters: Fitness Values 

Figure 6-26 GA: Permanent Shelters: Percentage Differences and Performance 
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The percentage differences Δ̅A, illustrated in Figure 6-26, are mostly higher for the GA than for 

the CE, but for Δ̅P, the differences are mostly lower for the GA. As more shelters are built, the 

percentage differences decrease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing the performance graph of the GA and the CE (Figure 6-14), it becomes clear 

that the underlying calculations given in Table 6-20 (GA) and Table 6-11 (CE) are different. 

Since one chromosome equals one permanent combination and 10 chromosomes are used, the 

first row of Table 6-20 is always 10, which illustrates that not all possible permanent 

combinations are calculated for the GA. 
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 Permanent Shelters 
 1 2 3 4 5 6 

Permanent 
Combinations 

10 10 10 10 10 10 

Temporary 
Combinations 

21 15 10 6 3 1 

Possible Combinations 210 150 100 60 30 10 

Table 6-20 GA: Permanent Shelters: Permanent and Temporary Combinations 

 

Figure 6-27 visualizes the results of the table 

above. Again, the performance strongly 

depends on the number of combinations. 

 

 

 

 

 

 

 

 

 

6.3.2.3.2. Comparison of Costs 

The data of Table 6-21 is very similar to the data of the CE. In 1), the ex-ante evaluation 

performs slightly worse than the ex-ante evaluation of the CE. In 2) and 3), the worst percentage 

differences of the utilitarian costs are smaller than those of the CE. The differences decrease 

when more shelters are added. 

 

   Permanent Shelters 

   1 2 3 4 5 6 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 1.28 1.41 0.70 -0.22 -0.02 0.00 

       Ex-Post (θ̅P) Scenario 3 2.81 -0.23 -0.70 0.86 -0.47 0.00 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅2)  vs. Scenario 2 13.89 10.92 8.30 5.39 1.21 0.00 

       Utilitarian (γ̅U) Scenario 3 11.86 7.88 7.48 4.85 2.07 0.00 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 

Δ̅3) vs. Scenario 2 11.81 9.61 7.72 5.83 1.22 0.00 
       Utilitarian (γ̅U) Scenario 3 9.44 8.41 8.07 4.05 2.49 0.00 

Table 6-21 GA: Permanent Shelters: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 
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Figure 6-27 GA: Permanent Shelters: Combinations 
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Figure 6-28 GA: Permanent Shelters: Ex-Ante and Ex-Post Costs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-28 displays the distances/costs of ex-ante and ex-post. The graphs of both diagrams 

tend to decrease when more permanent shelters are added, and are almost identical to the graphs 

of the CE. 

6.3.2.4. Increasing Temporary Shelters 

6.3.2.4.1. Fitness Values and Performance 

The GA again found the best solutions for λ̅A and ψ̅P as given in Table 6-22. λ̅P and ψ̅A show 

negligible differences compared to the CE. 

  Temporary Shelters 
  1 2 3 4 5 6 

λ̅A 
Ex-Ante Fitness of Solution 
with Best Ex-Ante Fitness 

10.21 10.38 10.38 10.38 10.38 10.38 

λ̅P 
Ex-Ante Fitness of Solution 
with Best Ex-Post Fitness 

9.88 10.20 10.22 10.27 10.33 10.38 

Δ̅A Difference Ante in % 3.23 1.65 1.51 1.02 0.48 0.00 

ψ̅P 
Ex-Post Fitness of Solution 
with Best Ex-Post Fitness 

6.55 6.69 6.69 6.69 6.69 6.69 

ψ̅A 
Ex-Post Fitness of Solution 
with Best Ex-Ante Fitness 

6.25 6.64 6.68 6.69 6.69 6.69 

Δ̅P Difference Post in % 4.52 0.71 0.04 0.00 0.00 0.00 
Table 6-22 GA: Temporary Shelters: Fitness Values 

Both diagrams of Figure 6-29 and the first diagram of Figure 6-30 are very similar to the CE. 

The fitness values increase as more temporary shelters are built. The percentage differences 

decrease because the ex-ante and ex-post solutions become more similar as more shelters are 

built and when only eight potential locations are available. 
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Figure 6-29 GA: Temporary Shelters: Fitness Values 

Figure 6-30 GA: Temporary Shelters: Percentage Differences and Performance 
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Unlike the performance graph of Figure 6-26 (increasing permanent shelters), the performance 

graph of the GA in Figure 6-30 has the same shape as the graph of the CE (Figure 6-17) because 

the complete enumeration still has to be applied to calculate all combinations of temporary 

shelters. 
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Figure 6-31 GA: Temporary Shelters: Ex-Ante and Ex-Post Costs 

6.3.2.4.2. Comparison of Costs 

The costs given in Table 6-23 are very similar to those of the CE for the most part, except for 

2): the ex-ante utilitarian costs for one shelter are much lower for the GA than for the CE. 

 

   Temporary Shelters 

   1 2 3 4 5 6 

  1) Ex-Ante (θ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅1)  vs. Scenario 2 7.65 1.41 0.17 -0.39 -0.23 0.00 

       Ex-Post (θ̅P) Scenario 3 2.88 -0.23 -0.74 -0.37 -0.28 0.00 

  2) Ex-Ante (γ̅A) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅2)  vs. Scenario 2 16.29 10.92 7.92 4.38 1.36 0.00 

       Utilitarian (γ̅U) Scenario 3 12.37 7.88 6.27 4.07 1.87 0.00 

  3) Ex-Post (γ̅P) Scenario 1 0.00 0.00 0.00 0.00 0.00 0.00 
Δ̅3) vs. Scenario 2 7.93 9.61 7.14 4.94 1.56 0.00 

       Utilitarian (γ̅U) Scenario 3 8.07 8.41 7.04 4.42 2.18 0.00 

Table 6-23 GA: Temporary Shelters: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

For both evaluation approaches and for all three scenarios, the costs of the GA given in Figure 

6-31 are nearly identical to the costs of the CE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion, the fitness values of the GA are identical to the fitness values of the CE and only 

slightly worse in some cases. This proves that the GA succeeds in finding the best ex-ante and 

ex-post solution for almost every seed when the problem size is small. 
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6.4. Large Problem Size 

In this section, the genetic algorithm (GA) is applied to a larger problem size. The settings are 

given in 6.3 “Small Problem Size”. All four combinations of the two crossover operators (one-

point and two-point) and the two selection methods (roulette wheel and tournament) are 

compared:  

a) One-point crossover and roulette wheel selection,  

b) one-point crossover and tournament selection,  

c) two-point crossover and roulette wheel selection, and  

d) two-point crossover and tournament selection. 

After either 300 generations or 50 consecutive generations without improvement, the algorithm 

terminates. Since the behavior of increasing population nodes, permanent shelters, and 

temporary shelters has already been observed in the previous section, only the number of 

potential locations is discussed for the large problem size, as increasing the latter causes high 

additional computation times, allowing the GA to demonstrate its efficiency. 

6.4.1. Fitness Values and Performance 

According to Table 6-24, the best fitness values for the ex-ante and ex-post evaluation 

approaches for an increasing number of potential locations are obtained when the two-point 

crossover in combination with the roulette wheel selection (c)) is chosen. The second-best 

results for both approaches are obtained with the one-point crossover and the roulette wheel 

selection (a)), the third place is given to table d) (two-point crossover and tournament selection) 

and the fourth to table b) (one-point crossover and tournament selection). This ranking implies 

that the tournament selection is generally worse than the roulette wheel selection for this 

particular problem. 

 
a)  Potential Locations 

 
 50 60 70 80 90 100 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

2.49 2.62 2.61 2.70 2.70 2.74 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

2.27 2.34 2.40 2.44 2.38 2.43 

Δ̅A Difference Ante in % 9.01 10.74 8.07 9.77 11.94 11.19 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

1.67 1.76 1.76 1.81 1.80 1.81 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

1.54 1.64 1.60 1.68 1.68 1.71 

Δ̅P Difference Post in % 7.78 6.64 9.13 7.00 6.25 5.77 
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b)  Potential Locations 

 
 50 60 70 80 90 100 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

2.42 2.51 2.57 2.63 2.56 2.65 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

2.17 2.28 2.32 2.39 2.34 2.41 

Δ̅A Difference Ante in % 10.39 9.33 9.98 8.90 8.69 9.08 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

1.62 1.70 1.70 1.78 1.75 1.76 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

1.50 1.59 1.59 1.64 1.61 1.67 

Δ̅P Difference Post in % 7.52 6.34 6.55 8.15 7.92 5.09 

 

c)  Potential Locations 

 
 50 60 70 80 90 100 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

2.52 2.65 2.66 2.79 2.75 2.79 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

2.29 2.39 2.40 2.53 2.44 2.51 

Δ̅A Difference Ante in % 9.08 9.76 9.77 9.42 11.40 9.92 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

1.69 1.77 1.77 1.84 1.84 1.84 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

1.55 1.64 1.63 1.69 1.69 1.74 

Δ̅P Difference Post in % 7.87 7.59 7.97 8.21 8.09 5.78 

 

d)  Potential Locations 

 
 50 60 70 80 90 100 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

2.45 2.54 2.61 2.62 2.60 2.68 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

2.21 2.28 2.35 2.39 2.32 2.44 

Δ̅A Difference Ante in % 9.69 10.40 10.01 8.74 10.67 9.15 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

1.64 1.72 1.72 1.76 1.77 1.80 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

1.51 1.60 1.59 1.64 1.63 1.69 

Δ̅P Difference Post in % 7.73 7.45 7.70 6.95 8.07 6.08 

Table 6-24 Large GA: Fitness Values 

Figure 6-32 displays the ex-ante fitness values (λ̅A) of Table 6-24. These values increase slightly 

as the number of potential locations increases. As mentioned before, the settings of c) provide 

the best results. 
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Figure 6-32 Large GA: Fitness Values Ex-Ante, a)-d) refer to Settings a)-d) given at the beginning of section 6.4 
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Figure 6-33 Large GA: Fitness Values Ex-Post 
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The same pattern can be observed in Figure 6-33: The ex-post fitness values are higher the more 

potential locations are available. Again, c) provides the best fitness values. 

Figure 6-34 visualizes the percentage differences of ex-ante and ex-post. There seems to be no 

specific behavior when the number of potential locations increases. The percentage difference 

of ex-ante is almost always larger than the percentage difference of ex-post, which means that 

the best ex-post solution performs worse when plugged into the ex-ante objective function (λ̅P) 

than the best ex-ante solution when plugged into the ex-post objective function (ψ̅A). 
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Figure 6-34 Large GA: Percentage Differences 

Figure 6-35 Large GA: Performance 
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Figure 6-35 shows the performance of the different settings. The tournament selection 

(visualized in b and d) appears to be faster than the roulette wheel selection (displayed in a and 

c). Ex-post generally performs worse than ex-ante because on average more generations are 

needed to obtain the best solution. Interestingly, the setting that delivers the highest fitness 

value is the slowest (c), whereas the setting that leads to the worst fitness value is the fastest 

(d).  

In terms of the number of generations, it can be seen that the variances, which are displayed in 

Figure 6-36, of the ex-ante solutions are mostly (much) smaller than the variances of the ex-

post solutions. In addition, the variances of the tournament selection (diagrams b and d) are 

generally smaller than those of the roulette wheel selection (diagrams a and c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-36 Large GA: Variance in Numbers of Generations 
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According to the data underlying these diagrams (given in Appendix C), 50% of the seeds 

deliver the solution after roughly 20 to 30 generations. In most cases, the ex-post approach 

needs more generations than the ex-ante approach to find the best solution. Furthermore, the 

number of generations has a positively skewed distribution for all four combinations and both 

evaluation approaches, which means that very high numbers of generations are rather rare. The 

outliers do not seem to follow any pattern, neither for the ex-ante nor for the ex-post approach, 

nor for the different combinations. 

6.4.2.  Comparison of Costs 

In Table 6-25 the percentage differences in 1) show the same behavior for all combinations: 

The ex-ante costs are up to 16.46% worse than the ex-post costs in scenario 1, regardless of the 

number of potential locations available, and in scenario 2, ex-ante still has worse costs than ex-

post, but here the differences decrease with a higher number of potential locations. 

When the ex-ante utilitarian costs (γ̅A) are compared to the costs of the utilitarian objective 

function (γ̅U), γ̅A is up to 31.16% worse than γ̅U in scenario 1. These differences are smaller in 

scenario 2. 

The percentage differences of the ex-post utilitarian costs and the costs of the utilitarian 

objective function in 3) are usually smaller than the percentage differences in 2). This means 

that ex-post delivers better solutions than ex-ante in terms of utilitarian costs.  

 

a)   Potential Locations 

   50 60 70 80 90 100 

Δ̅1) 
1) Ex-Ante (θ̅A) Scenario 1 9.11 13.47 14.89 8.34 13.20 10.58 

 vs. Ex-Post (θ̅P) Scenario 2 2.98 4.76 5.77 2.36 0.91 0.39 

Δ̅2) 
2) Ex-Ante (γ̅A) Scenario 1 22.05 24.90 28.33 25.31 29.36 23.52 

 vs. Utilitarian (γ̅U) Scenario 2 15.64 17.74 18.04 13.84 13.34 14.76 

Δ̅3) 
3) Ex-Post (γ̅P) Scenario 1 10.10 9.73 10.45 13.80 13.18 11.96 

vs. Utilitarian (γ̅U) Scenario 2 10.76 12.67 10.06 10.12 11.50 13.46 

 

b)   Potential Locations 

   50 60 70 80 90 100 

Δ̅1) 
1) Ex-Ante (θ̅A) Scenario 1 14.16 10.65 11.04 9.88 13.79 14.66 

 vs. Ex-Post (θ̅P) Scenario 2 4.04 3.72 3.63 2.98 4.37 1.10 

Δ̅2) 
2) Ex-Ante (γ̅A) Scenario 1 19.56 24.93 23.47 19.72 29.99 25.94 

 vs. Utilitarian (γ̅U) Scenario 2 17.53 14.22 15.03 14.04 17.06 15.91 

Δ̅3) 
3) Ex-Post (γ̅P) Scenario 1 3.96 10.15 11.37 9.74 14.46 10.44 

vs. Utilitarian (γ̅U) Scenario 2 12.66 10.08 10.49 10.58 12.79 12.71 
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c)   Potential Locations 

   50 60 70 80 90 100 

Δ̅1) 
1) Ex-Ante (θ̅A) Scenario 1 16.46 15.15 15.25 14.91 14.91 12.45 

 vs. Ex-Post (θ̅P) Scenario 2 6.02 4.86 -0.08 3.86 4.43 2.44 

Δ̅2) 
2) Ex-Ante (γ̅A) Scenario 1 24.18 25.27 26.53 26.43 31.16 25.73 

 vs. Utilitarian (γ̅U) Scenario 2 17.95 15.71 12.49 17.21 17.67 15.94 

Δ̅3) 
3) Ex-Post (γ̅P) Scenario 1 6.81 8.45 9.11 8.98 13.37 12.75 

vs. Utilitarian (γ̅U) Scenario 2 11.29 10.65 12.51 11.09 11.53 11.57 

 

d)   Potential Locations 

   50 60 70 80 90 100 

Δ̅1) 
1) Ex-Ante (θ̅A) Scenario 1 6.18 12.45 10.52 7.64 15.44 4.71 

 vs. Ex-Post (θ̅P) Scenario 2 6.01 3.14 3.35 3.99 1.64 4.92 

Δ̅2) 
2) Ex-Ante (γ̅A) Scenario 1 17.14 22.58 21.82 23.90 26.74 19.77 

 vs. Utilitarian (γ̅U) Scenario 2 16.59 15.35 16.06 15.52 15.73 19.43 

Δ̅3) 
3) Ex-Post (γ̅P) Scenario 1 10.73 7.92 9.01 14.06 10.17 13.44 

vs. Utilitarian (γ̅U) Scenario 2 10.62 11.96 13.08 10.89 12.15 12.77 

Table 6-25 Large GA: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

Figure 6-37 shows the ex-ante costs of all four combinations and both scenarios. These costs 

differ only slightly and there is little improvement when more potential locations are available. 

This is the case when the additional potential locations are placed in a way that they do not 

benefit the affected population nodes. 

Similar to the ex-ante costs, the ex-post costs in Figure 6-38 hardly differ from each other and 

do not improve when additional potential locations are added. The ex-post costs are generally 

slightly lower than the ex-ante costs. 
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Figure 6-37 Large GA: Ex-Ante Costs 

0

50

100

150

200

250

300

350

400

450

50 60 70 80 90 100

C
o

st
s

Potential Locations

a) Ex-Post Costs (ρ̅)

Scenario 1 Scenario 2

0

50

100

150

200

250

300

350

400

450

50 60 70 80 90 100

C
o

st
s

Potential Locations

b) Ex-Post Costs (ρ̅)

Scenario 1 Scenario 2

0

50

100

150

200

250

300

350

400

450

50 60 70 80 90 100

C
o

st
s

Potential Locations

c) Ex-Post Costs (ρ̅)

Scenario 1 Scenario 2

0

50

100

150

200

250

300

350

400

450

50 60 70 80 90 100

C
o

st
s

Potential Locations

d) Ex-Post Costs (ρ̅)

Scenario 1 Scenario 2

Figure 6-38 Large GA: Ex-Post Costs 
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Since the aim of the objective function is to maximize fitness values, and the performance 

differences of the four combinations a)-d) are negligible, the combination with the highest 

fitness values (two-point crossover and roulette wheel selection) is the best choice for this 

particular problem. Therefore, this combination was applied to the small problem size in 

subsection 6.3.2 “Genetic Algorithm”. 

6.4.3. Comparison to Gutjahr (2020) 

As mentioned earlier, Gutjahr (2020) also addresses inequity-averse optimization under 

uncertainty and compares experimental results of the ex-ante and ex-post approaches. It 

therefore seems interesting to discuss the observations of both works. 

For ex-ante, Table 6-26 shows by how much the ex-ante fitness of the solution with the best ex-

ante fitness (λ̅A) differs from the ex-ante fitness of the solution with the best ex-post fitness (λ̅P). 

These percentages are calculated using formula (2). The same applies to the ex-post approach, 

but this time formula (3) is used. In addition, the data provided in Gutjahr (2020) is subtracted 

by 1 and multiplied by 100 to allow for comparison. 

 
  Potential Locations Gutjahr 

  50 60 70 80 90 100 (2020) 

Ex-Ante 

Min -24.89 -72.28 -41.92 -37.58 -32.79 -41.72 0.00 

Max 43.24 45.32 44.37 47.49 46.29 54.06 28.42 

Average 9.08 9.76 9.77 9.42 11.40 9.92 9.04 

Ex-Post 

Min -10.55 -19.89 -19.29 -30.46 -9.20 -36.19 0.72 

Max 34.80 38.17 33.61 33.45 31.91 29.05 16.73 

Average 7.87 7.59 7.97 8.21 8.09 5.78 8.89 

Table 6-26 Large GA: Comparison of Percentage Differences 

While the smallest percentage (Min) in Gutjahr’s paper is 0%, the smallest percentage of the 

large problem size (two-point crossover and roulette wheel selection) is even -72.28%. This can 

be easily explained as Gutjahr uses an approach (complete enumeration in combination with 

CPLEX) that delivers an optimal solution, whereas the large problem size is solved by a 

heuristic (genetic algorithm). For example, -72.28% means that λP delivers a much better 

solution than λA for this specific seed, which means that the GA got stuck in a local optimum 

when λA was calculated. 

The largest percentage (Max) is 54.06%, which shows that λP is a lot worse than λA for this 

specific seed. Although the Min and Max percentages of the ex-post comparison are (much) 

smaller than those of the ex-ante comparison for each column, these values are nowhere near 

the values reported in Gutjahr. However, the average percentage of each column is quite close 
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Figure 6-39 Large GA: Variance of Percentage Cost Differences 

to his work and the arithmetic mean of all average percentages (9.89% for ex-ante and 7.59% 

for ex-post) differs only slightly. Interestingly, the range (Max-Min) of ex-ante is much larger 

than the range of ex-post, implying that ex-post delivers less volatile results than ex-ante. 

 
 Potential Locations   Gutjahr 

 50 60 70 80 90 100 Average (2020) 

Ex-Ante 52 46 47 46 45 49 47.50 12 
Ex-Post 42 43 43 47 49 45 44.83 12 
Identical 6 11 10 7 6 6 7.67 0 

Table 6-27 Large GA: Number of Occurrences of Smaller Percentage Differences 

Table 6-27 shows how often the percentage differences of the ex-ante solutions (λA and λP) are 

smaller than the percentage differences of the ex-post solutions (ψP and ψA). When 50 potential 

locations are available, the number of seeds for which the ex-ante difference is smaller than the 

ex-post difference is considerable. For all other columns, the numbers are roughly the same. 

The averages show that the ex-ante difference is smaller than the ex-post difference in only 

2.67% of the 100 seeds. This means that the ex-ante fitness of the solution with the best ex-ante 

fitness (λA) sees the ex-ante fitness of the solution with the best ex-post fitness (λP) slightly 

more favorable than the ex-post fitness of the solution with the best ex-post fitness (ψP) sees 

the ex-post fitness of the solution with the best ex-ante fitness (ψA). 

To compare the average results and Gutjahr’s (2020) results of the previous table, both columns 

are converted to percentages. For Gutjahr’s results, the percentages are 50% and 50%, and for 

the average results the percentages (omitting identical results) are 51.44% and 48.56% for ex-

ante and ex-post respectively. Thus, both evaluation approaches deviate from Gutjahr’s results 

by only 1.44%. 
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Figure 6-39 explains why ex-ante is favored although its arithmetic mean (9.89%) is worse than 

the arithmetic mean of the ex-post solutions (7.59%). While the range (Max-Min) of ex-ante is 

clearly larger than the range of ex-post, the ex-ante median is usually lower than the ex-post 

median, meaning that generally more than 50% of the ex-ante solutions have a lower percentage 

difference than the ex-post solutions. The data provided in Gutjahr (2020) shows the same 

pattern, although it is less volatile and does not have any negative percentages since it is solved 

to optimality. 

6.5. Performance CE vs. GA 

The aim of this section is to first compare the fitness values of the CE and the GA of the small 

problem size and then give approximate run times for different numbers of permanent shelters 

for both algorithms. 

6.5.1. Visual Comparison 

For two settings (increasing number of potential locations and increasing number of temporary 

locations), at first the fitness values of the arithmetic mean of 100 seeds are illustrated separately 

for ex-ante and ex-post. Then, the single seed that produces the largest difference between the 

CE and the GA fitness values is discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-40 Comparison CE vs GA, Potential Locations, 100 Seeds 

While the fitness values in Figure 6-40 (100 seeds) of both diagrams look identical and the 

values of the GA are indeed only 0.12% worse for ex-ante and at most 0.19% worse for ex-

post, the fitness values of Figure 6-41 (single seed) are even 9.3% (for 20 potential locations) 

worse for ex-ante and 10.93% (for 23 potential locations) worse for ex-post. This outcome 
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shows that the GA mostly found the best solution for various numbers of potential locations, 

which is not surprising considering the very short length of the chromosomes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-41 Comparison CE vs GA, Potential Locations, Single Seed 

Similarly, for the temporary shelters in Figure 6-42 (100 seeds) and Figure 6-43 (single seed), 

the fitness values of the GA are only 0.03% (ex-ante) and 0.05% (ex-post) worse than the values 

of the CE when comparing the arithmetic means. For the single seed, the differences are also 

very small, 2.02% for ex-ante (for one temporary shelter) and 2.04% for ex-post (for one 

temporary shelter). The results show that the GA performs even better when the number of 

temporary shelters is changed compared to the number of potential locations.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-42 Comparison CE vs GA, Temporary Shelters, 100 Seeds 

 



 

77 

 

0

3

6

9

12

15

18

1 2 3 4 5 6

Fi
tn

es
s 

V
al

u
es

Temporary Shelters

Comparison CE vs GA, Ex-Ante

Complete Enumeration Genetic Algorithm

0

3

6

9

12

15

18

1 2 3 4 5 6

Fi
tn

es
s 

V
al

u
es

Temporary Shelters

Comparison CE vs GA, Ex-Post

Complete Enumeration Genetic Algorithm

 

 

 

 

 

 

 

 

 

 

Figure 6-43 Comparison CE vs GA, Temporary Shelters, Single Seed 

The differences of the number of population nodes and the number of permanent shelters are 

even smaller and therefore not visualized. 

6.5.2. Time Measurement 

The purpose of this subsection is to demonstrate the strength of the GA. Table 6-28 and Table 

6-29 compare the performance of the CE and the GA for different numbers of permanent 

shelters. Based on the measured time of the large problem size where three permanent shelters 

are built and the number of possible combinations, all other values in both tables are calculated 

for the GA. This means that the time values of the GA at three permanent shelters are directly 

taken from the large problem size. For example, the GA takes 17.81 seconds to execute the 

code when 50 potential locations are available and three shelters are built. To obtain an 

estimated time for two shelters, 17.81 is divided by all possible combinations of three shelters 

(940) and then multiplied by all possible combinations of two permanent shelters (960), 

resulting in 18.19 seconds. Therefore, these values are not actual results but represent a 

reasonable estimate. 

The time values of the CE are calculated similarly to the values of the GA, but instead of using 

the measured time of the large problem size, the measured time of the small problem size is 

used.  

The ex-ante performances of the GA and the CE are given in Table 6-28. While the CE is 

significantly faster than the GA when only one permanent shelter is built, the differences 

already decrease when a second shelter is added: At 70 potential locations, the GA is faster than 

the CE for the first time.  
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Permanent 
Algorithm 

Time Potential Locations 

Shelters Unit 50 60 70 80 90 100 

1 
GA seconds 18.57 21.53 26.16 30.43 33.61 40.09 

CE seconds 0.41 0.59 0.81 1.07 1.35 1.67 

2 
GA seconds 18.19 21.16 25.78 30.05 33.23 39.68 

CE seconds 10.05 17.54 28.06 42.12 60.23 82.90 

3 
GA seconds 17.81 20.80 25.41 29.66 32.85 39.28 

CE minutes 2.62 5.56 10.45 18.02 29.11 44.67 

4 
GA seconds 17.43 20.43 25.03 29.28 32.48 38.87 

CE hours 0.50 1.30 2.87 5.71 10.43 17.87 

5 
GA seconds 17.05 20.07 24.65 28.89 32.10 38.47 

CE days 0.19 0.59 1.56 3.57 7.39 14.15 

6 
GA seconds 16.67 19.70 24.27 28.51 31.72 38.06 

CE days 1.38 5.35 16.60 43.98 103.44 221.63 

Table 6-28 Performance: Ex-Ante: CE vs. GA, per seed 

It is noteworthy that the more shelters are built, the less time the GA needs to execute the code 

(see Figure 6-27 “GA: Permanent Shelters: Combinations”), while at the same time the runtime 

of the CE increases rapidly. For example, when only one permanent shelter is built and 100 

potential locations are available, the GA needs 40.09 seconds and the CE 1.67, whereas the 

required time for six shelters decreases to 38.06 seconds for the GA and increases to 221.63 

days for the CE. The time is given per seed, which means that in this case, calculating the mean 

of 100 seeds would take 60.72 years for the CE. 

 
Permanent 

Algorithm 
Time Potential Locations 

Shelters Unit 50 60 70 80 90 100 

1 
GA seconds 20.77 26.46 30.97 35.49 40.92 42.89 

CE seconds 0.37 0.54 0.74 0.97 1.23 1.52 

2 
GA seconds 20.34 26.01 30.52 35.04 40.46 42.46 

CE seconds 9.12 15.93 25.48 38.25 54.69 75.28 

3 
GA seconds 19.92 25.56 30.07 34.59 40.00 42.03 

CE minutes 2.38 5.04 9.49 16.36 26.43 40.57 

4 
GA seconds 19.50 25.11 29.62 34.14 39.54 41.59 

CE hours 0.46 1.18 2.61 5.18 9.47 16.23 

5 
GA seconds 19.07 24.67 29.17 33.69 39.08 41.16 

CE days 0.17 0.54 1.41 3.24 6.71 12.85 

6 
GA seconds 18.65 24.22 28.73 33.25 38.62 40.73 

CE days 1.26 4.86 15.07 39.94 93.93 201.25 

Table 6-29 Performance: Ex-Post: CE vs. GA, per seed 

For the CE, the ex-post evaluation (Table 6-29) takes less time to find a solution than the ex-

ante evaluation, but the opposite is true for the GA because ex-post usually needs more 

generations to obtain the best solution than ex-ante. The time values given in the two tables are 

not very different for the GA, but for the CE, the differences increase with the size of the 

problem.   
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6.6. Case Study: Nepal 

6.6.1. Settings 

In this section, the GA is applied to the data of a real disaster that occurred in Nepal. Nepal was 

hit by a major earthquake on April 25, 2015. Over 22,000 people were injured and almost 9,000 

died from collapsing buildings, landslides, and avalanches. Hundreds of aftershocks were 

followed by a second major earthquake on May 12 that destroyed over 600,000 houses and 

affected 8 million people (Reid, 2018). 

The underlying data for this case study is taken from Fikar, Hirsch, and Nolz (2018), who 

simulate how word of mouth and damaged roads affect the distribution of relief goods in central 

Nepal. This real-world data consists of latitude and longitude of 27 major cities in central Nepal, 

and the number of households in each city. Figure 6-44 was created by pasting the latitude and 

longitude values into Microsoft 3D Maps for Excel, a data visualization tool (Nepal, 2020). 

 

 
Figure 6-44 Nepal: Map of Central Nepal, 27 major cities, adapted from Nepal (2020)  

Although the combination with two-point crossover and roulette wheel selection delivers the 

highest fitness values for the large problem size, the results of this section are calculated using 

two-point crossover and tournament selection because this combination delivers slightly higher 

fitness values. To demonstrate how a real disaster might be handled, only the results of a single 

seed (and not the arithmetic mean of 100 seeds) are discussed in this case study. Due to 

otherwise high computation times, only one temporary shelter is built, but the number of 

permanent shelters varies. 
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In the next subsection (6.6.2 “Applying Genetic Algorithm”), scenarios are generated based on 

the estimated PGA (peak ground acceleration) values and afterwards the GA is used to find a 

solution. Subsection (6.6.3 “Real Event”) applies the GA to the data of the real earthquake. The 

results of these two subsections are then compared (6.6.4 “Comparison”). 

6.6.2. Applying Genetic Algorithm to Scenarios 

6.6.2.1. Generating Scenarios 

A seismic hazard map (Figure 6-45) which is based on estimated PGA values is taken from 

Rahman and Bai (2018) to create more realistic scenarios rather than simply placing them 

randomly on the previous map. PGA or peak ground acceleration is the maximum ground 

acceleration which is measured at a specific location during an earthquake (Sunaryo, 2017). 

The red star on the map indicates the epicenter of the April 25, 2015 earthquake, also called 

“Gorkha earthquake”, named after the district where it occurred (Gautam and Rodrigues, 2018). 

The location of this earthquake is only included to show where it happened and does not affect 

the locations of the scenarios, which are selected based on seismic hazard potential. 

Three scenarios (S 1, S 2, S 3) are placed on the map in a way that most of the orange and red 

(high seismic hazard potential) areas are included. The 27 population nodes (major cities) are 

taken from Figure 6-44. One difference to the previous subsections is that no new locations are 

added for potential locations. Each major city is now both, a population node and a potential 

location. Fikar et al. (2018) used this approach because shelters can be simply built within or 

near a city, and since this change does not affect the ex-ante or ex-post objective function, it is 

also used in this section. 

After the locations of the scenarios have been chosen, an appropriate probability of occurrence 

is determined for each scenario. Since greenish colors have a lower PGA value than orange 

colors, it seems reasonable to base the probabilities on colors. This will assign a higher 

probability to scenarios with predominantly orange areas. The calculation is performed as 

follows: First, the color with the lowest PGA value of all scenarios is determined, which is 

greenish-yellow. This is now the base color of all scenarios. For scenario 3, this color is simply 

hidden under the other colors. The circle area of this color is equal to the entire circle of a 

scenario, as it is the base. Then the estimated circle area of the next higher color (including the 

areas of all even higher colors) is added and so on. This is done for all scenarios. The result of 

a scenario is divided by the sum of the results of all scenarios to get the percentage of that 

specific scenario. In this case study, the percentages of scenario 1, 2, and 3, are 25.285%, 

31.525%, and 43.19% respectively. 
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Figure 6-45 Nepal: Scenarios based on PGA Values, adapted from Rahman and Bai (2018) 

As mentioned earlier, population nodes (cities) can be potential locations at the same time. 

Depending on the problem size, the number of potential locations could be huge without any 

constraints. Therefore, only the population nodes that lie within the circles (scenarios) can be 

potential locations. Which of these nodes are finally selected depends on a random number and 

the probability of occurrence of each scenario. Thus, a scenario with a high probability has a 

higher chance of having more potential locations than a scenario with a low probability. 

6.6.2.2. Fitness Values and Performance 

 

 

  Permanent Shelters 

 
 5 6 7 

λA 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

943.08 1135.96 1293.64 

λP 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

551.31 656.43 906.11 

ΔA Difference Ante in % 41.54 42.21 29.96 

ψP 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

446.49 513.03 653.84 

ψA 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

368.50 480.97 562.85 

ΔP Difference Post in % 17.47 6.25 13.92 

Table 6-30 Nepal: Fitness Values 
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Figure 6-46 Nepal: Fitness Values 

Figure 6-47 Nepal: Percentage Differences 

The fitness values given in Table 6-30 are visualized in Figure 6-46. For both approaches, the 

fitness increases when more permanent shelters are built, which is reasonable, as additional 

shelters can lead to a shorter travel distance for some of the affected population nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The percentage differences in Figure 6-47 do 

not appear to have any particular pattern, 

however, ΔA is always significantly larger 

than ΔP. This means that the best ex-ante 

solution (ψA), when plugged into the ex-post 

objective function, delivers results that are 

much closer to the best ex-post solution than 

vice versa. 

  

 

 

 

To observe how a different number of chromosomes affects the solution, the code is run again 

with 50 chromosomes instead of 20, with the result that both runs deliver identical fitness 

values. However, the number of generations differs in these two settings (Table 6-31). It takes 

up to 19 generations for ex-post to find the solution when 20 chromosomes are set, whereas 

only one generation is needed to when 50 chromosomes are set. 
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Figure 6-48 Nepal: Performance 
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Figure 6-48 shows the performance of 20 and 50 chromosomes. The difference of the two ex-

post graphs is considerable. When 20 chromosomes are set, the number of generations needed 

to find the result varies greatly and the measured time at five and six shelters is therefore much 

higher than the time of ex-ante. 50 chromosomes lead to a much more stable graph, where the 

algorithms of both evaluation approaches take roughly the same time, though ex-ante performs 

now worse than before. 

 

  

  

 

 

 

 

 

 

 

 

6.6.2.3. Comparison of Costs 

 

   Permanent Shelters 

   5 6 7 

  1) Ex-Ante (θA) Scenario 1 264.71 0.00 0.00 

Δ1)  vs. Scenario 2 -78.10 -63.33 -41.97 
       Ex-Post (θP) Scenario 3 -84.73 -74.37 -83.96 

  2) Ex-Ante (γA) Scenario 1 419.97 11.66 0.00 
Δ2)  vs. Scenario 2 -44.41 62.21 0.00 

       Utilitarian (γU) Scenario 3 547.52 269.26 1062.09 

  3) Ex-Post (γP) Scenario 1 0.00 0.00 2.72 
Δ3) vs. Scenario 2 395.58 784.54 471.45 

       Utilitarian (γU) Scenario 3 [0.00] [0.00] [0.00] 

Table 6-32 Nepal: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

Chromosomes 20 50 

Permanent Shelters 5 6 7 5 6 7 

Ex-Ante 1 1 1 1 1 0 
Ex-Post 8 19 1 1 1 1 

Table 6-31 Nepal: Number of Generations 
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Figure 6-49 Nepal: Ex-Ante and Ex-Post Costs 
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In Table 6-32, the costs of ex-ante in 1) are significantly lower than the costs of ex-post in all 

but one case. In scenario 3, ex-ante even saves up to 84.73% of the costs compared to ex-post. 

In 2), the ex-ante utilitarian costs are generally worse than the costs of the utilitarian objective 

function, and they are particularly bad in scenario 3, where they increase by up to 1062.09%. 

The ex-post utilitarian costs in 3) are almost the same as the costs of the utilitarian objective 

function in scenario 1, much worse in scenario 2, and zero in scenario 3. It is possible that the 

costs are zero if a shelter is built at each affected population node. The reason why the numbers 

of scenario 3 are in brackets is that the costs of ex-post γP are 0 and in this case the resulting 

percentage of formula (8) 𝛥3) =
𝛾𝑃−𝛾𝑈

𝛾𝑈
 x 100 is always -100%, no matter what value γU has. 

These results cannot be compared with the results of 2) and 3) and are therefore in brackets.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-49 displays the costs of all scenarios. The ex-ante cost of scenario 1 is at first higher 

than the ex-post cost but as the number of shelters increases, the costs decrease and remain the 

same. Scenarios 2 and 3 have identical ex-post costs that decrease as more shelters are added. 

However, even when seven permanent shelters are built, the costs of these two scenarios are 

still worse than the ex-ante costs.  
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6.6.3. Real Event 

6.6.3.1. Affected Districts 

After deciding on the best ex-ante and ex-post solution in the previous subsection, the best 

solution for the real disaster, a massive earthquake that has its epicenter in Gorkha district, will 

now be determined. In section 6.6.4 “Comparison of Scenarios and Real Event”, these solutions 

are compared.  

The map in Figure 6-50 was created by a leading humanitarian organization called REACH 

Initiative, which provides “granular data, timely information and in-depth analysis from 

contexts of crisis, disaster and displacement” (REACH Initiative, n.d.). Their data is important 

for decision-makers when dealing with crisis-affected areas. 

 
Figure 6-50 Nepal: Earthquake April 2015, adapted from REACH Initiative (2015) 

It visualizes how badly the population of each district is affected by the earthquake. The colors 

of the districts indicate the severity: white – not affected, yellow – light, orange – moderate, 

dark orange – severe, red – strong, dark red – very strong. Almost all districts are impacted by 

this disaster, so this case study focuses on districts that are more heavily affected, which 

corresponds to the severe to very strong cases.  

For a better overview, the color of the affected population nodes is changed to light blue on the 

map. Each population node (city) is a potential location at the same time. 
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Figure 6-51 Nepal: Real Event: Fitness Values 

6.6.3.2. Fitness Values and Performance 

Table 6-33 and Figure 6-51 show that the fitness values of both evaluation approaches increase 

as more permanent shelters are added. 

 

  Permanent Shelters 

 
 5 6 7 

λA 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

272.27 307.59 346.01 

λP 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

272.27 307.59 407.82 

ΔA Difference Ante in % 0.00 0.00 -17.86 

ψP 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

272.27 307.59 407.82 

ψA 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

272.27 307.59 346.01 

ΔP Difference Post in % 0.00 0.00 15.16 
Table 6-33 Nepal: Real Event: Fitness Values 

In the left diagram, the fitness value of ex-ante λA at 7 shelters is lower than the value of the 

best ex-post solution λP that is plugged into the ex-ante objective function. This means that the 

GA could not find the best ex-ante solution in this particular case. 

 

 

 

 

 

 

 

 

 

 

 

 

The left diagram of Figure 6-52 visualizes the percentage differences of ex-ante and ex-post. 

When five or six shelters are built, both approaches are equally good. However, when seven 

shelters are built, ex-ante shows a negative percentage because the solution of ex-post λP is 

better than the solution of ex-ante λA. 
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Figure 6-52 Nepal: Real Event: Percentage Differences and Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 Permanent Shelters 
 5 6 7 

Ex-Ante 3 61 17 
Ex-Post 3 70 8 

 

Table 6-34 shows how many generations are needed for each number of shelters to obtain the 

fitness values given in Table 6-33. Both approaches need the most iterations when six shelters 

are built. The number of generations heavily influences the performance of the algorithms, 

which is visualized in Figure 6-52. 

6.6.3.3. Comparison of Costs 

Although both solutions, ex-ante and ex-post, deliver identical fitness values when six shelters 

are built, the costs of these solutions are different according to 1) in Table 6-35. This is the case 

when several different solutions have the same fitness value. Therefore, the combination of 

permanent and temporary shelters is different for ex-ante and ex-post, leads to the same fitness 

values, but has lower costs for ex-ante.  

The ex-ante utilitarian costs γA are worse than the costs of the utilitarian objective function γU 

by up to 22.27%. The ex-post utilitarian costs γP in 3) are as good as the utilitarian function 

costs γU for five and seven shelters, but for six shelters the costs are even worse than the ex-

ante utilitarian costs γA of 2). 

 

 

 

Table 6-34 Nepal: Real Event: Number of Generations 
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Figure 6-53 Nepal: Real Event: Ex-Ante and Ex-Post Costs 
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  Permanent Shelters 

  5     6 7 
  1) Ex-Ante (θA) 

0.00 -12.34 43.51 Δ1)  vs. 
       Ex-Post (θP) 
  2) Ex-Ante (γA) 

0.00 22.27 10.05 Δ2)  vs. 
       Utilitarian (γU) 
  3) Ex-Post (γP) 

0.00 61.60 0.00 Δ3) vs. 
       Utilitarian (γU) 

Table 6-35 Nepal: Real Event: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

In Figure 6-53, the costs of both graphs are the same for five shelters, fall more steeply for ex-

ante than for ex-post when another shelter is added, and fall by almost 50% for ex-post when 

the costs of seven shelters are compared to those of five shelters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6.4. Comparison of Scenarios and Real Event 

In this subsection, the solutions of subsections 6.6.2 “Applying Genetic Algorithm to 

Scenarios” (hereafter referred to as “scenario solution”) and 6.6.3 “Real Event” are compared. 

For this purpose, the permanent and temporary shelters of the scenario solution are plugged into 

the code of the real event to start with the same settings (e.g. the same population nodes are 

affected). The code is executed separately for each scenario. 
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Figure 6-54 Nepal: Comparison: Fitness Values 
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6.6.4.1. Fitness Values 

The fitness values of the real event solution and the fitness values of the individual scenarios of 

the scenario solution are given in Table 6-36. Furthermore, the percentage differences of the 

fitness value of the real event and the fitness values of the individual scenarios are calculated 

for both evaluation approaches.  

  Permanent Locations 

 
 5 6 7 

λREAL Real Event (ante) 272.27 307.59 346.01 
λS1 Scenario 1 (ante) 140.77 140.77 140.77 
λS2 Scenario 2 (ante) 104.30 140.77 140.77 

λS3 Scenario 3 (ante) 92.48 140.77 140.77 

ΔA,S1 Diff. Real & S1 (%) 48.30 54.23 59.32 
ΔA,S2 Diff. Real & S2 (%) 61.69 54.23 59.32 
ΔA,S3 Diff. Real & S3 (%) 66.03 54.23 59.32 

ψREAL Real Event (post) 272.27 307.59 407.82 
ψS1 Scenario 1 (post) 112.74 118.59 119.50 
ψS2 Scenario 2 (post) 112.74 118.59 140.77 
ψS3 Scenario 3 (post) 87.31 118.59 114.34 

ΔP,S1 Diff. Real & S1 (%) 58.59 61.45 70.70 
ΔP,S2 Diff. Real & S2 (%) 58.59 61.45 65.48 
ΔP,S3 Diff. Real & S3 (%) 67.93 61.45 71.96 

 Table 6-36 Nepal: Comparison: Fitness Values 

These numbers are then visualized in Figure 6-54. In the left diagram, the fitness values of ex-

ante are compared. Since different population nodes are affected in each scenario, it is no 

surprise that the fitness values of the scenarios are much worse than the fitness values of the 

real event. The fitness of scenarios 2 and 3 grows when another shelter is added but for 

scenario 1, the fitness remains the same.  
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Figure 6-55 Nepal: Comparison: Percentage Differences 

Similarly, for ex-post, the fitness values of the scenario solutions are much worse than the 

fitness of the real event. The fitness of scenario 1 remains the same for all number of shelters. 

For scenario 2, the fitness increases when two shelters are added and for scenario 3, the fitness 

increases when one shelter is added. 

Figure 6-55 shows the percentage differences of Table 6-36. To facilitate the comparison of ex-

ante (blue colors) and ex-post (orange colors), the differences of the same scenario are displayed 

directly next to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

For five shelters, ex-post has a higher difference than ex-ante for scenarios 1 and 3, and a 

slightly lower difference for scenario 2. This part of the diagram seems to have an upwards 

trend. For six shelters, the differences remain the same for both approaches, but are a bit higher 

for ex-post. The ex-ante differences remain the same when seven shelters are built and vary 

when ex-post is applied. In general, ex-ante provides better and less fluctuating solutions than 

ex-post when compared to the real event solution. 

The time performances of the real event solution and the scenario solution cannot be compared 

due to different settings, e.g. the shelters of the scenario solution are simply plugged into the 

real event algorithm, whereas for the real event solution, all population nodes are potential 

locations, which takes much more time to execute. 
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6.6.4.2. Comparison of Costs 

In Table 6-37, the costs/distances of the ex-ante scenario solution are at least 104.14% worse 

than the costs of the ex-ante real event solution. The overall smallest percentage differences of 

1) are obtained when six shelters are built, and the differences are worst for seven shelters. In 

2), the percentages are usually much higher than in 1), implying that ex-post causes higher costs 

than ex-ante. Again, the differences are much smaller for six shelters than for seven shelters. 

When the utilitarian costs of the ex-ante scenario solution are compared to the utilitarian 

objective function of the real event, the differences Δ3) are a lot worse than the differences of 

the real event solution (Δ2)) given in Table 6-35. Scenario 1 delivers the solutions with the 

lowest costs. 

4) is quite similar to 3): the given percentages are much worse than those of Δ3) in Table 6-35. 

The ex-post utilitarian differences in 4) are usually worse than the ex-ante utilitarian differences 

in 3). Scenario 2 delivers the lowest costs for all number of shelters in 4). 

   Permanent Shelters 
   5 6 7 

  1) Scenario Solution (ex-ante) Scenario 1 104.14 105.82 188.56 
Δ1) vs. Scenario 2 188.89 118.59 186.96 

       Real Event (ex-ante) Scenario 3 197.93 118.59 227.62 
  2) Scenario Solution (ex-post) Scenario 1 209.09 153.63 392.66 

Δ2) vs. Scenario 2 167.18 124.96 289.04 
       Real Event (ex-post) Scenario 3 276.53 194.45 486.30 
  3) Utilitarian Scenario Solution (ex-ante) Scenario 1 194.17 179.42 216.79 

Δ3) vs. Scenario 2 379.37 221.99 223.01 
      Utilitarian (Real Event) Scenario 3 406.70 221.99 277.08 
  4) Utilitarian of Scenario Solution (ex-post) Scenario 1 321.90 288.81 306.69 

Δ4) vs. Scenario 2 275.13 234.05 210.88 
       Utilitarian (Real Event) Scenario 3 431.04 357.46 392.59 

Table 6-37 Nepal: Comparison: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

Figure 6-56 displays the costs of both evaluation approaches. The scenario solution costs are a 

lot worse than the costs of the real event solution. For all scenarios, costs are lowest when six 

shelters are built. Scenario 1 has the best ex-ante costs and the worst ex-post costs of all 

scenarios. 
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Figure 6-56 Nepal: Comparison: Ex-Ante and Ex-Post Costs 
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6.6.5. Choose Solution 

Now that the real event has occurred and its solution has been compared to the scenario solution 

in the previous subsection, it is possible to decide which scenario should be chosen to maximize 

fairness. Depending on whether ex-ante or ex-post is applied, this solution may vary. 

 
 Permanent Shelters 

 5 6 7 

Ex-Ante Scenario 1 Indifferent Indifferent 
Ex-Post Scenario 1 or 2 Indifferent Scenario 2 

Table 6-38 Nepal: Solution: Decision-Making based on Fitness Values 

Table 6-38 shows which scenario should be chosen to maximize the fitness value (see Table 

6-36) for each number of permanent shelters. For example, when ex-ante is used and five 

permanent shelters are built, the temporary shelter of scenario 1 delivers the highest fitness 

value. Although the earthquake’s epicenter is within scenario 2, this scenario is not necessarily 

the best choice because population nodes located outside of this scenario are also affected. 

 
 Permanent Shelters 

 5 6 7 

Ex-Ante Scenario 1 Scenario 1 Scenario 1 

Ex-Post Scenario 2 Scenario 2 Scenario 2 
Table 6-39 Nepal: Solution: Decision-Making based on Utilitarian Costs 

If only the utilitarian costs (see Table 6-37) are considered, the scenarios should be chosen 

according to Table 6-39. Here it can be seen that for ex-ante always scenario 1 and for ex-post 

always scenario 2 offers the solution with the lowest costs. 
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6.7. Budget 

6.7.1. Settings 

In most cases, decision-makers do not only need to select the best locations for a given number 

of shelters, but also stay within a certain budget. To observe how this budget affects the 

solution, this section compares the outcome of two combinations. The genetic algorithm is 

applied to this problem since it is quite big, and the arithmetic mean of 100 seeds is calculated. 

As the roulette wheel selection combined with the two-point crossover delivers the best results 

for the large problem size in section 6.4, it is also used for this problem. In the following 

example, permanent shelters cost 1 monetary unit and temporary shelters cost 2 monetary units, 

since temporary shelters are needed immediately and must be built as quickly as possible. 

The first combination consists of 4 permanent and 1 temporary shelter (4/1), and the second 

combination has 2 permanent and 2 temporary shelters (2/2). These combinations are chosen 

so that the number of monetary units (or budget) is the same for both combinations. For 4/1 this 

means 4 permanent shelters * 1 monetary unit + 1 temporary shelter * 2 monetary units equals 

6 monetary units. The result of combination 2/2 is the same (2*1 + 2*2 = 6). Therefore, the 

budget of both combinations consists of 6 monetary units. 

 

Population 
Nodes 

Potential 
Locations 

Scenarios Chromosomes Generations 

100 20 2 6 50 

Table 6-40 Budget: Settings for 4/1 and 2/2 

The settings of the two combinations are given in Table 6-40. A very low number of 

chromosomes is chosen because a higher number usually delivers the best solution after zero 

(starting population) or one generation, which would not allow a meaningful comparison of the 

number of generations of ex-ante and ex-post.  

6.7.2. Fitness Values and Performance 

Table 6-41 and Figure 6-57 show that all fitness values (λ̅A, λ̅P, ψ̅P, and ψ̅A) decrease when 

combination 2/2 is used. This is a reasonable outcome because now only four shelters are built 

compared to the five shelters of combination 4/1, which can lead to higher costs. 
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Figure 6-57 Budget: Fitness Values  

Figure 6-58 Budget: Percentage Differences and Performance 
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 Combinations 

 
 4/1 2/2 

λ̅A 
Ex-Ante Fitness of Solution with 
Best Ex-Ante Fitness 

1.00 0.97 

λ̅P 
Ex-Ante Fitness of Solution with 
Best Ex-Post Fitness 

0.97 0.94 

Δ̅A Difference Ante in % 3.04 3.20 

ψ̅P 
Ex-Post Fitness of Solution with 
Best Ex-Post Fitness 

0.92 0.89 

ψ̅A 
Ex-Post Fitness of Solution with 
Best Ex-Ante Fitness 

0.88 0.86 

Δ̅P Difference Post in % 4.04 3.12 

     Table 6-41 Budget: Fitness Values 
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Figure 6-59 Budget: Variance in Needed Generations, Frequency of Occurrences 

The percentage differences in Figure 6-58 do not seem to follow any pattern and are roughly 

the same. Executing the ex-ante code of combination 2/2 takes almost six times longer than 

executing the ex-ante code of combination 4/1. 

In Figure 6-59, the box-and-whisker plot shows the variance in the number of generations 

needed to obtain the best solution for each seed. Comparing ex-ante to ex-post in combination 

4/1, it appears that ex-post leads to a higher variance with fewer but higher outliers. Ex-ante of 

combination 2/2 has a negligible higher variance than ex-post. Interestingly, the median of all 

boxes is 1. 

To give an overview on what the frequency of occurrences looks like, a histogram of ex-ante, 

combination 4/1, is added. The histograms of ex-post and combination 2/2 look very similar 

and are therefore omitted. About 74% of the seeds find the best ex-ante solution within 0 to 3 

generations and only 1% of the seeds need 18 or more generations. 

 

 

 

 

 

 

 

 

 

 

 

  

6.7.3.  Comparison of Costs 

According to the percentage differences given in Table 6-42, ex-ante θ̅A performs slightly worse 

than ex-post θ̅P regardless of the combination. Compared to the best utilitarian costs γ̅U, the 

utilitarian costs of the best ex-post solution γ̅P are smaller than the utilitarian costs of the best 

ex-ante solution γ̅A. In 2) and 3), the differences of combination 2/2 are larger than the 

differences of combination 4/1. 
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Figure 6-60 Budget: Ex-Ante and Ex-Post Costs 
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   Combinations 

   4/1 2/2 

Δ̅1) 
1) Ex-Ante (θ̅A) Scenario 1 1.50 0.82 

 vs. Ex-Post (θ̅P) Scenario 2 0.38 0.49 

Δ̅2) 
2) Ex-Ante (γ̅A) Scenario 1 5.79 7.92 

 vs. Utilitarian (γ̅U) Scenario 2 4.43 7.45 

Δ̅3) 
3) Ex-Post (γ̅P) Scenario 1 4.05 6.53 

vs. Utilitarian (γ̅U) Scenario 2 3.80 6.59 

          Table 6-42 Budget: Comparison of Costs (Ex-Ante, Ex-Post, and Utilitarian) in % 

In Figure 6-60, the ex-ante costs of scenario 1 are slightly higher than the ex-post costs. The 

costs of both approaches and scenarios increase when combination 2/2 is built, which is 

reasonable because fewer shelters often lead to longer distances between shelters and affected 

population nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, for the discussed settings and combinations, 4/1 achieved better fitness values than 

2/2, as well as lower utilitarian costs. 

6.7.4. Impact of Settings 

The number of shelters (4/1 and 2/2) in the previous subsection may seem small but it is 

necessary due to high computation times. In this subsection it is shown how a larger number of 

potential locations, permanent shelters, temporary shelters, and chromosomes affects the results 

and runtime.  
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6.7.4.1. Large Number of Solutions 

Table 6-43 shows the total solutions that are calculated for each shelter combination. As 

explained in subsection 6.3.2.3.1, the number of permanent combinations is equal to the number 

of chromosomes, which in this case is 20. The number of temporary combinations of each 

column is calculated using the binomial coefficient (formula (1)), where n is the remaining 

number of potential locations (= potential locations – permanent shelters) and k is the number 

of temporary shelters. 

 

 Shelter Combinations 
 10/1 8/2 6/3 4/4 2/5 

Permanent 
Combinations 

20 20 20 20 20 

Temporary 
Combinations 

10 66 364 1820 8568 

Total Solutions 200 1320 7280 36400 171360 

Table 6-43 Impact of Settings: Number of Solutions, 20 Potential Locations, per Seed 

For the first column (10/1 = 10 permanent and 1 temporary shelter) this means that each of the 

20 permanent combinations has 10 temporary combinations, which leads to a total of 200 

solutions that must be calculated per generation and per seed. Therefore, for shelter combination 

2/5 and 100 seeds, 17.136.000 solutions are calculated per generation. As this calculation would 

take several days (see section 6.5 “Performance CE vs. GA”), the number of potential locations 

is reduced from 20 to 12 in Table 6-44. 

6.7.4.2. Small number of Potential Locations 

In Table 6-44 the same calculations are made as in Table 6-43 but this time with 12 potential 

locations. Shelter combination 2/5 now has only 5.040 solutions per generation and per seed. 

The fitness values of these settings are displayed in Figure 6-61. 

 

 Shelter Combinations 

 10/1 8/2 6/3 4/4 2/5 

Permanent 
Combinations 

20 20 20 20 20 

Temporary 
Combinations 

2 6 20 70 252 

Total Solutions 40 120 400 1400 5040 

Table 6-44 Impact of Settings: Number of Solutions, 12 Potential Locations, per Seed 
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Figure 6-61 Impact: Fitness Values 

Figure 6-62 Impact: Performance 
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The fitness values of ex-ante and ex-post (λ̅A, and ψ̅P) are identical for each shelter combination. 

This can easily happen when the number of potential locations is small compared to the number 

of shelters. For example, eleven shelters are built in combination 10/1, which means that only 

one of the twelve potential locations is not used. In 8/2, two potential locations are not used, 

and so on. In such cases it is very likely that the fitness values are the same and no meaningful 

comparison can be made.  

 

Figure 6-62 shows the performance of these 

combinations. The time that is required for 

each shelter combination is highly dependent 

on the number of temporary combinations 

given in Table 6-44. This graph shows 

exponential growth and it is therefore clear 

that an arbitrary large number of potential 

locations and temporary shelters cannot be 

chosen, as this would lead to enormous 

computation times.  
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Figure 6-63 Chosen Settings: Performance 

6.7.4.3. Chosen Settings 

In this subsection the settings that were eventually used for the “Budget” section are briefly 

discussed and compared to the previous subsection. 

Figure 6-63 (from subsection 6.7.2) is strongly influenced by the data in Table 6-45. Here, to 

obtain more interesting results, the number of chromosomes is reduced from 20 to 6. For shelter 

combination 2/2, although there are now even 20 potential locations are available, the total 

number of combinations per generation and per seed is only 918. Combination 4/1 takes longer 

than almost all shelter combinations of Figure 6-62 because this combination requires on 

average several generations to get the result, whereas the combinations of Figure 6-62 usually 

do not even require a single generation. This depends strongly on the number of chromosomes. 

 

 Shelter Combinations 
 4/1 2/2 

Permanent 
Combinations 

6 6 

Temporary 
Combinations 

16 153 

Total Solutions 96 918 
Table 6-45 Chosen Settings: Number of Solutions 

 

 

 

 

 

 

As explained earlier, the settings and the shelter combinations must be chosen carefully, 

otherwise the algorithm will either take a very long time to run or the results will not differ. 
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7. Conclusion 

Research shows that fairness is important when decisions for disaster relief must be made. 

Whether a decision is perceived as fair depends on the perspective from which it is evaluated. 

In this work, a two-stage model is first solved by complete enumeration and then by a genetic 

algorithm, using the ex-ante and ex-post evaluation approach to determine the fairness of the 

solutions. 

The experimental results of the large problem size indicate that, in general, the best ex-ante 

solution, plugged into the ex-post objective function, is usually much closer to the best ex-post 

solution than the best ex-post solution is to the best ex-ante solution when plugged into the ex-

ante objective function. The results of the case study support this observation, as the best ex-

ante solution, plugged into the ex-post objective function, is again closer to the best ex-post 

solution than vice versa. 

In terms of costs, the ex-ante solutions generally perform worse than the ex-post solutions, with 

the exception of the case study, where the ex-ante solutions have (much) lower costs than the 

ex-post solutions. The same is true for the utilitarian costs. While ex-post provides solutions 

that are closer to the utilitarian solution for the large problem size, ex-ante generally delivers 

solutions with lower utilitarian costs than ex-post when the case study is concerned. 

Although the ex-post approach takes slightly less time than the ex-ante approach to compute 

one generation, it usually requires more generations than ex-ante and therefore has poorer 

performance when the number of chromosomes is quite low. However, as observed in 

subsection 6.6.2.2, the performance of the ex-post approach tends to be better than the 

performance of the ex-ante approach when the number of chromosomes is larger. 
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Appendix A – Complete Enumeration 
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Appendix B – Genetic Algorithm 
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Appendix C – Large Problem Size 
 

a) Ex-Ante Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 30.39 31.64 35.35 36.84 37.26 42.99 

0% 1.00 1.00 0 0 1.00 1.00 
25% 2.75 8.75 8.75 11.00 10.00 14.00 
50% 21.00 21.50 30.00 31.00 31.00 36.50 
75% 51.50 49.00 52.50 52.25 52.50 65.25 

100% 108.00 102.00 173.00 173.00 132.00 133.00 

Standard Deviation 30.66 29.17 33.36 32.98 32.02 33.70 
Variance 940.30 850.96 1112.92 1087.93 1025.59 1135.97 
Skewness 0.88 0.90 1.58 1.35 0.98 0.71 

Range 107 101 173 173 131 132 
Interquartile Range 48.75 40.25 43.75 41.25 42.5 51.25 

 

 

a) Ex-Post Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 41.21 40.08 51.13 38.52 42.79 43.06 

0% 1.00 1.00 1.00 1.00 1.00 1.00 
25% 15.75 12.75 24.75 12.75 15.00 14.75 
50% 36.00 32.00 53.50 31.50 32.50 35.00 
75% 57.25 61.25 79.25 54.25 61.25 60.25 

100% 130.00 159.00 157.00 138.00 160.00 155.00 

Standard Deviation 31.25 35.06 35.00 32.47 36.13 32.72 
Variance 976.45 1229.41 1225.06 1054.49 1305.08 1070.74 
Skewness 0.86 1.06 0.41 1.04 1.05 0.85 

Range 129.00 158.00 156.00 137.00 159.00 154.00 
Interquartile Range 41.50 48.50 54.50 41.50 46.25 45.50 

 

 

b) Ex-Ante Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 22.14 24.67 35.35 36.84 37.26 42.99 

0% 1.00 1.00 0 0 1.00 1.00 

25% 1.00 2.75 8.75 11.00 10.00 14.00 

50% 13.50 15.00 30.00 31.00 31.00 36.50 

75% 37.25 39.00 52.50 52.25 52.50 65.25 

100% 123.00 99.00 173.00 173.00 132.00 133.00 

Standard Deviation 24.76 25.73 33.36 32.98 32.02 33.70 

Variance 612.87 661.90 1112.92 1087.93 1025.59 1135.97 

Skewness 1.38 1.06 1.58 1.35 0.98 0.71 

Range 122.00 98.00 173.00 173.00 131.00 132.00 

Interquartile Range 36.25 36.25 43.75 41.25 42.50 51.25 
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b) Ex-Post Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 31.88 32.11 32.10 38.82 34.68 40.67 

0% 1.00 1.00 1.00 1.00 1.00 1.00 

25% 4.00 7.25 7.00 8.00 7.50 9.75 

50% 23.50 26.50 26.50 25.50 29.50 32.00 

75% 52.75 51.00 47.50 60.00 53.00 60.50 

100% 115.00 113.00 169.00 177.00 143.00 186.00 

Standard Deviation 30.86 28.58 30.48 37.42 31.95 37.51 

Variance 952.05 816.89 929.22 1400.41 1020.66 1407.01 

Skewness 0.90 0.73 1.43 1.28 1.01 1.39 

Range 114.00 112.00 168.00 176.00 142.00 185.00 

Interquartile Range 48.75 43.75 40.50 52.00 45.50 50.75 

 

 

c) Ex-Ante Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 27.96 27.11 30.17 31.88 30.68 36.02 

0% 1.00 1.00 1.00 0 1.00 1.00 
25% 5.00 7.00 7.00 11.75 7.00 13.00 
50% 19.00 18.50 22.50 25.00 23.50 29.50 
75% 43.00 39.25 48.00 46.25 46.25 49.25 

100% 108.00 110.00 128.00 99.00 112.00 174.00 

Standard Deviation 26.92 25.67 27.84 25.75 28.08 31.08 
Variance 724.60 659.05 775.29 662.96 788.66 965.92 
Skewness 1.02 1.31 1.09 0.79 0.98 1.48 

Range 107.00 109.00 127.00 99.00 111.00 173.00 
Interquartile Range 38.00 32.25 41.00 34.50 39.25 36.25 

 

c) Ex-Post Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 38.37 44.42 44.56 45.85 47.42 42.03 

0% 1.00 1.00 1.00 1.00 1.00 1.00 
25% 10.50 14.75 16.75 16.75 21.00 17.00 
50% 30.00 36.50 40.00 39.00 44.00 37.50 
75% 58.00 69.25 61.50 64.50 68.50 62.75 

100% 147.00 139.00 204.00 135.00 170.00 129.00 

Standard Deviation 31.94 36.13 35.75 35.74 34.83 30.51 
Variance 1020.32 1305.46 1277.95 1277.36 1213.20 931.16 
Skewness 0.82 0.77 1.38 0.65 1.06 0.58 

Range 146.00 138.00 203.00 134.00 169.00 128.00 
Interquartile Range 47.50 54.50 44.75 47.75 47.50 45.75 
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d) Ex-Ante Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 21.95 22.85 23.33 23.24 23.92 31.20 

0% 1.00 1.00 1.00 0 0 1.00 
25% 2.00 2.75 2.00 4.00 3.00 5.00 
50% 13.00 17.50 18.00 13.50 14.50 23.50 
75% 37.25 35.50 40.00 39.75 37.00 45.00 

100% 113.00 89.00 107.00 89.00 155.00 129.00 

Standard Deviation 24.16 22.90 23.77 24.62 26.96 30.56 
Variance 583.54 524.37 564.83 605.90 726.72 933.76 
Skewness 1.30 0.98 1.08 1.09 1.79 1.17 

Range 112.00 88.00 106.00 89.00 155.00 128.00 
Interquartile Range 35.25 32.75 38.00 35.75 34.00 40.00 

 

d) Ex-Post Potential Locations 

 50 60 70 80 90 100 

Arithmetic Mean 29.36 29.87 34.30 32.13 33.05 34.01 

0% 1.00 1.00 1.00 1.00 1.00 1.00 
25% 3.75 4.00 8.75 2.75 4.00 6.00 
50% 17.00 19.00 27.00 19.00 24.50 29.00 
75% 46.00 49.00 48.00 48.75 49.00 52.50 

100% 175.00 127.00 186.00 163.00 166.00 127.00 

Standard Deviation 33.66 29.54 32.78 36.74 34.50 31.01 
Variance 1132.98 872.60 1074.70 1349.59 1189.91 961.40 
Skewness 1.81 0.92 1.63 1.55 1.55 0.96 

Range 174.00 126.00 185.00 162.00 165.00 126.00 
Interquartile Range 42.25 45.00 39.25 46.00 45.00 46.50 
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Abstract 

In disaster management, decisions have to be fair in order to be accepted by the majority of the 

population. In this work, shelters are built before and after a disaster occurred and the locations 

of these shelters are chosen so that fairness is maximized. The fairness of a possible solution is 

evaluated by two different approaches, ex-ante and ex-post, that are visualized using a two-

stage decision tree. Small problem instances are generated, first solved by complete 

enumeration, and then compared with the results of a genetic algorithm, while large problem 

instances are only solved by the genetic algorithm due to otherwise excessive computation 

times. In addition, the solutions of the ex-ante/ex-post objective function are plugged into the 

ex-post/ex-ante objective function and the percentage differences are compared. Afterwards, 

the ex-ante and ex-post solutions are plugged into the utilitarian objective function and 

compared with the utilitarian solution. 
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Zusammenfassung 

Im Katastrophenmanagement müssen Entscheidungen fair sein, um von der Mehrheit der 

Bevölkerung akzeptiert zu werden. In dieser Arbeit werden Schutzräume vor und nach einer 

Katastrophe gebaut und die Standorte dieser Schutzräume werden so gewählt, dass die Fairness 

maximiert wird. Die Fairness einer möglichen Lösung wird durch zwei verschiedene Ansätze 

bewertet, Ex-ante und Ex-post, die anhand eines zweistufigen Entscheidungsbaums visualisiert 

werden. Kleine Probleminstanzen werden generiert, zuerst durch vollständige Enumeration 

gelöst und dann mit den Ergebnissen eines genetischen Algorithmus verglichen, während große 

Probleminstanzen aufgrund ansonsten übermäßiger Rechenzeiten nur durch den genetischen 

Algorithmus gelöst werden. Zusätzlich werden die Lösungen der Ex-ante/Ex-post Zielfunktion 

in die Ex-post/Ex-ante Zielfunktion eingesetzt und die prozentualen Unterschiede verglichen. 

Anschließend werden die Ex-ante und Ex-post Lösungen in die utilitaristische Zielfunktion 

eingesetzt und mit der utilitaristischen Lösung verglichen.  

 


