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DEUTSCHSPRACHIGES ABSTRACT

In dieser Arbeit präsentieren wir den ersten Schritt zur
Verallgemeinerung von einem neuen geräuschempfind-
lichen effizienten geräte-unabhängigen Veri-
fizierungsprotokoll für Quantenzustände, das erstmals
von Hayata Yamasaki, PhD. präsentiert wurde.
Wir demonstrieren seine quadratische Verbesserung
bezüglich notwendigerer Testrunden im Vergle-
ich zu zeitgenössischen robusten selbst-testenden
Verifizierungsmethoden für eine bestimmte Klasse
von Quantenzuständen. Außerdem prästentieren
wir Verbesserungen in dessen Anwendung und
Skalierbarkeit im Einsatz für eine gewisse Art von
Quantencomputer (MBQCs).



Noise-Receptive Efficient Device-Independent Quantum State Verification of
simply-connected Triangle Graph States

Within this thesis, we present the first step towards generalization of a novel noise-receptive efficient
device-independent quantum state verification protocol introduced by Hayata Yamasaki, PhD. in [52].
We demonstrate its quadratic improvement in necessary rounds K over state-of-the-art robust self-
testing protocols for a specific class of quantum graph states. Moreover, we present improvements in
applicability and scalability in terms of measurement-based quantum computers and the absence of usual
strict restrictions on the statistics of examined quantum states. At the end of this work, we provide
insights into possible further improvements, using notions of quantum relative entropy.
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I. INTRODUCTION

Quantum information is one of the most promising
research disciplines in the field of modern quantum
physics. By using the laws of quantum physics to store
and manipulate information in a coherent way, novel
possibilities (as compared to classical information
processing) emerged, such as quantum computing,
quantum meteorology, quantum simulations, and
many more, with the promise of having a new techno-
logical revolution.
Quantum computation is an example of exploiting
the laws of quantum physics to achieve a significant
speed-up in solving computational tasks [13, 26, 39].
In the following, we will focus on the verification
of resource states and measurements being used in
measurement-based quantum computation (MBQC)
[39, 40].

In the paradigm of one-way MBQCs, computation is
solely based on local measurements conducted on a
highly entangled state (resource state). It is known
that MBQCs that use a specific general class of quan-
tum states (general hypergraph states) as resource
states need to conduct Pauli-X and -Z measurements
only to achieve quantum computational universality
[46], in contrast to usual MBQC-protocols using
ordinary quantum graph states (a trivial subclass of
hypergraph states) as resource states [39, 40]. In order
for a MBQC-protocol to run expectantly in a labora-
tory, one needs to assure that the resource state being
used in the lab (experimental state) is sufficiently close
to the state on paper (theoretical state). Additionally,
for a measurement-based quantum computational
protocol, accuracy of the measurements is pivotal.
Hence, before starting a computational task, both,
the state and the measurements, need to be verified
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(or tested). An example of a contemporary approach
concerning this is known as robust self-testing [45].

Most of the robust verification protocols for quantum
graph states and measurements require measurements
in a tilted basis [48, 49]. When using hypergraph
states as a resource for a MBQC, this states to
be impractical, since an additional measurement
basis to Pauli-X and −Z basis would be required to
conduct a computational protocol, which is costly
with respect to quantum error correction. However,
Yamasaki et.al. found out that a specific kind of
highly fault-tolerant MBQC-protocol presented in [53]
seems to abstain from a tilted basis requirement for
verification purposes [52].
In this paper, we will present the idea behind this
novel verification protocol for a specific quantum
graph state (triangle graph state) and demonstrate a
possible generalization scheme for a broader class of
states.

This work is structured as follows: We start with nec-
essary preliminaries concerning graph states and and
self-testing. Then, we introduce an existing efficient
verification protocol for graph states presented by Zhu
and Hayashi in [56] that refrains from the tilted mea-
surement basis requirement, but is only applicable to
a noiseless experimental environment. Subsequently,
we introduce Yamasakis novel device-independent ver-
ification protocol for a specific kind of graph states
[52] that states as an overall improvement of Zhu and
Hayashis work. Finally, we try to present a possible
first generalization step for his method to a simply-
connected two-triangle graph state and discuss further
generalization schemes.

II. GRAPH STATES

Quantum graph states (short: graph states) find nu-
merous different applications in quantum information
theory [23, 39]. In this chapter, we will give a short
overview of their mathematical descriptions and an
easy implementable example on how to manipulate
them in a fashioned manner.

A. Mathematical Description

Let G(V,E) be a mathematical graph, consisting of n
vertices V = {vi}

n
i=1 that are connected via edges E =

{eij ∣ i, j ∈ V } [28]. Let us put one qbit ∣+⟩ = 1
√

2
(∣0⟩ +

∣1⟩) on each vertex without letting them interact at
first. This results in an initial product state [17] (Fig.
1 as an example for a triangle graph with no interaction
between the vertices.):

∣G⟩in =
n

⊗
vi

∣+⟩ ≡ ∣+⟩
V

A pair of qbits interact if their associated vertices
are adjacent. In other words, ∣+⟩i and ∣+⟩

j may inter-
act if ∃ eij ∈ E. It can be shown that, due to con-
straints that arise from the underlying (simple) graph
G, interaction between adjacent qbits can be suffi-
ciently restricted to the case where their interaction

∣+⟩A

∣+⟩B∣+⟩C

Figure 1. Three non-interacting qbits ∣+⟩i at three ver-
tices i ∈ {A,B,C}.

is an Ising interaction [17]. Using this, we can de-
fine an Ising-like interaction Hamiltonian HI

ij [17, 41]
as HI

ij = ZiZj and a two-particle unitary interaction

operator U Iij(φij) ∶= e−φijH
I
ij where φij denotes the

interaction strength/time between the qbits located at
i and j. As argued in [17], in order to reach maxi-
mal entanglement within the graph state, we choose
∀i, j ∈ V ∶ φij = π.
To avoid unnecessary cluttering of notation, we do not
use the Ising- interaction- picture further on, but rather
express the interaction between qbits in a quantum
graph states by controlled phase gates:

Uij = e
−iπHij (1)

with Hij ∶= ∣1⟩
i
⟨1∣⊗ ∣1⟩

j
⟨1∣. Using

P i(Z;mZ)
=

Idi + (−1)mZZi

2
(2)

where P i
(Z;mZ)

denotes the projector onto the

eigenspace of the Pauli-Z-operator at ∣+⟩
i, (1) can be

rewritten as

Uij ∶= P
i
(Z; 0) ⊗ Idj + P i(Z; 1) ⊗Z

j . (3)

Equivalently, one may write Uij = diag(1,1,1,−1).
One may argue that rewriting the interaction this way
corresponds the Ising-interaction-picture only up to
possible rotations around the z-axis. Neverthless, since
we are mostly interested in the entanglement proper-
ties of states obtained with underlying graphs, we may
omit those rotations, as they do not change the phys-
ical properties of the quantum states at investigation.
Therefore, by establishing the control phase gate Uij
as the unitary interaction operator between two adja-
cent qbits i, j ∈ V within a simple graph G(V,E) for
all practical purposes, we can go on to one possible
definition of graph states [17, 41]:

Definition II.1 (Graph state in the interaction formal-
ism). A quantum graph state ∣G⟩ corresponding to a
underlying mathematical graph G(V,E) is defined as
following:

∣G⟩ = ∏
{i,j}∈E

Uij ∣+⟩
V (4)

Note that all Uij within the product of the right hand
side of (4) commute. This may intuitively be under-
stood in terms of indistinguishability of the order of
interactions between the identical qbits involved in a
quantum graph state.
Abuse of notation. Note that one needs to adjust Uij
in (3) in order for multiplication over several edges as
in (4) to be well defined. This subtle alteration can be
done by taking the tensor product of Idk and Uij for
every k ∈ V ∖ { i, j }.
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∣+⟩A

∣+⟩B∣+⟩C

UABUAC

UBC

Figure 2. Depiction of a graph state ∣G⟩ on the tri-
angle graph G(V,E) with V = {A,B,C} and E =
{eAB, eAC, eBC}.

Uij and Pauli-X and -Z operators fulfill the following
commutation relations [41]:

Uij(X
i
⊗ Idj) = (Xi

⊗Zj)Uij , (5)

[Uij , Z
i
⊗ Idj] = [Uij , Id

i
⊗Zj] = 0. (6)

Using (5) and (6), leads to the motivation of an alter-
native definition of graph states that is independent of
a specific interaction picture [41]:

Definition II.2 (Graph state in the stabilizer formal-
ism). Given a mathematical graph G(V,E), the as-
sociated graph state ∣G⟩ is the unique simultaneous
eigenstate with eigenvalue 1 of every stabilizer Sv on
each vertex v ∈ V .
A stabilizer Sv on a vertex v is defined as a tensor
product of Pauli-X and Pauli-Z operators:

Sv ∶=Xv
⊗⊗
u ∈N (v)

Zu. (7)

Here N (v) ∶= {v ∈ V ∣∃{u, v} ∈ E} denotes the neigh-
borhood of v. I.e., using (7), the following equivalence
relation can be obtained:

∀v ∈ V, Sv ∣G⟩ = ∣G⟩⇔ ∣G⟩ graph state (8)

This definition will be mostly used further on through-
out this work. Interested readers may be referred to
(A) for a more detailed derivation of the equivalency
of both graph state definitions.

B. Vertex Coloring a Graph

Graph coloring is a merit of graph theory that finds
numerous fields of application in quantum physics, one
example being quantum graph state verification effi-
ciency [56] that we will shortly present below. One
method of graph coloring is known as vertex coloring,
which is a specific assignment of a color to each vertex
v ∈ V in a mathematical graph G(V,E), such that no
adjacent vertices share the same color. The minimum
number of colors needed is known as chromatic number
χ(G) [12]. A graph that is colored with the minimum
number of colors needed k is said to be k-chromatic. If
the number of used colors might exceed the minimum
amount, the graph is called k-colorable. For exam-
ple, the triangular graph in (II A) is 3-chromatic (it is
more usual to stick to the term k-colorable instead of
k-chromatic in most of the literature).

C. Changing Graph States by Local Measurements

As shown in [9, 17] f.e., there are many well-known
ways to change and manipulate graph states in a pre-
cise manner, using certain local Pauli measurements on

singular qbits of the graph state or linear optical de-
vices such as PBSs for fusing different graph states to-
gether. As demonstrated there, those manipulations on
the quantum state can be easily illustrated with the un-
derlying mathematical graph: Different measurements
on the quantum state are demonstrated by different
actions on the graph. For the scope of this project, we
will demonstrate the effect of a local Pauli-Z measure-
ment on a qbit in a graph state, which can be illustrated
as deletion of a vertex in the underlying mathematical
graph.

1. Local Pauli-Z-Measurement on ∣G⟩

Let us examine the so-called “deletion property” of
Pauli-Z measurements conducted on a quantum graph
state having a mathematical graph G(V,E) (depicted
in Fig. 3) consisting of two triangle subgraphs, denoted
as △ABC and △DEF, that are connected via one single
edge eCD: Conducting a local Pauli measurement on

A

CB D

E

F

Figure 3. Mathematical graph associated with a six-qbit
two-triangle quantum graph state.

a singular vertex D ∈ G(V,E) on a graph state results
in a unitary map original graph state ∣G⟩ to ∣G′⟩. For
the case of local Pauli-Z-measurements, we find that
the newly obtained state ∣G′⟩ can be deduced from the
original ∣G⟩ by means of deletion of the measured ver-
tex D ∈ G(V,E) and/or local unitary transformations
on the remaining ones. Generally, ∣G′⟩ can be deduced
utilizing the following proposition [17]:

Proposition II.1 (Local Pauli-Z-measurement on
∣G⟩). Let G(V,E) be the underlying graph of ∣G⟩.
Let P i

(Z;mZ)
, mZ ∈ {0,1}, be a projective Pauli-Z-

measurement on the qbit ∣+⟩i associated to the vertex
i ∈ V . Then,

P i(Z;mZ)
∣G⟩ =

= ∣G′⟩ =
1

√
2
(∣mZ⟩

i
⊗U i(Z,mZ) ∣G ∖ i⟩)

(9)

with

U i(Z;mZ=0) = Idi and (10)

U i(Z;mZ=1) = Z
N (i). (11)

For a proof of II.1, the reader may be referred to (A).
One may interpret this proposition physically as
following: if a single qbit located at i ∈ V is locally
measured with a Pauli-Z measurement, this leads
to an isolation of its resulting quantum state with
respect to the remaining graph state, hence the
subtraction of the measured vertex within ∣G ∖ i⟩

and the tensor product of ∣mZ⟩
i with the remaining

graph state (one can also interpret this as a result of
decoherence at the qbit located at i ∈ V ). As for the
graph state according to the remaining vertices ∣G′⟩,
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it either stays unaffected by that measurement or it
undergoes local unitary transformations, depending
on the outcome of P i

(Z;mZ)
∣G⟩. A depiction of a

post-measurement underlying graph associated with
measurement outcome mZ = 0 can be seen in Fig. 4:

A

CB D

E

F

Figure 4. Post-measurement underlying graph corre-
sponding to Pauli-Z-measurement outcome mZ = 0 at
D ∈△DEF ⊂ G(V,E).

Here, “deletion” of the vertex D ∈ △DEF in a graph
G(V,E) consisting of two connected triangles △ABC

and △DEF, can be seen.

The post-measurement underlying graph associated
with measurement outcome mZ = 1 can be depicted
as: The Z-symbol on the vertices {C,E,F} ∈ N (D)

A

ZB D

Z

Z

Figure 5. Post-measurement underlying graph for Pauli-
Z-measurement outcome mZ = 1 at D ∈ △DEF, which
was connected to △ABC. Z symbolizes the Pauli-Z-
measurements on the adjacent vertices V ∈ N (D) =
{C,E,F} of D.

symbolize the Pauli-Z-measurements of (11).

III. SELF-TESTING

Self-testing is the experimental verification of a quan-
tum state or quantum measurement in a device-
independent (DI) scenario [45] where the experimental
entity can be prepared in a similar manner for many
consecutive times.
The notion of self-testing was firstly introduced by
Mayers and Yao in [24]. Since then, it has become
synonymous to many approaches of verifying quantum
states and/or measurements that need few assump-
tions.
In this chapter, we will firstly introduce the notion of
device-independence, then, we will present a general
introduction to self-testing protocols and their underly-
ing assumptions. Within this subsection, we will define
the notion of robust self-testing as well and lastly, we
will present a self-testing protocol for verifying graph
states, following the approach of [56].

A. Device-Independent Protocols

The aim of device-independent protocols is to verify
quantum physical properties (like entanglement of a
quantum system) in a non-abstract fashion by mere ex-
amination and evaluation of experimental results with-
out the need to know precisely the physics of how they

are achieved. [45]
Imagine Charlie and Dorothy aim to verify entangle-
ment of a quantum state some source prepares. Both
are quantum physicists and so, they are familiar with
quantum state tomography. They know, in order to
fulfill their task, first, they need to create a specific
experimental setting, suitable to verify entanglement.
Then, they conduct their experiment, from which they
will collect sufficiently enough experimental data (re-
sults), that they will statistically evaluate at the end,
in order to verify entanglement. Their setting consists
of two laboratories with the quantum state source in
between, both have individual measurement settings
and each one of them measures one particle of a bi-
partite entangled quantum state (by implementing a
beam-splitter f.e.).
Now, imagine Alice and Bob come to visit. They are
familiar with the mathematical features of entangled
states, but they have no information on with the spe-
cific experimental setup Charlie and Dorothy created.
The only thing they can do is to evaluate the data the
experiment in some unknown setups provides. Never-
theless, both claim to be able to verify entanglement.
In order to do so, they need not know anything about
the setup, they do not assume the source does provide
entangled state, and they even do not need to know
the physics behind the experiment. They treat the ex-
perimental setup as a black box that gets some input
(the experimental setting) and provides some output
(the results). So, Alice visits Charlies laboratory and
Dorothy visits Bobs. They ask them to tell if the ex-
perimental setups in each round differs in some way,
without the need of specifics. They name each input
A,B, . . . and the respective outcome aA, aB, . . . . Af-
ter having collected sufficiently enough data, they can
write down correlations:

pAB (aA, aB ∣xA, xB) . (12)

for each A,B, . . . . Those correlations are probabili-
ties of measuring (aA, aB) conditioned on the mea-
surement settings xA, xB.
The method both choose relies on Bell non-locality and
Bells inequality [6]. J. Bell wrote down inequalities,
which use correlation functions of measurement out-
comes and their respective measurement settings, in
order to proof entanglement of a quantum state. A
Bell inequality consists of a function I on the set of
correlations {pAB (aA, aB ∣xA, xB)}

AB
that is upper

bounded by βC (classical bound):

I ({pAB (aA, aB ∣xA, xB)}
AB

) ≤ βC . (13)

(Pure) entangled states violate the Bell inequality. This
means, without physical knowledge of any kind, Alice
and Bob can verify entangled states. This procedure is
known as device-independent certification of entangle-
ment. [45].
If Alice and Bob were unsatisfied with the mere verifica-
tion of entanglement of state, but rather aim to verify
a specific quantum state in mind, device-independent
scenarios allow for this to be possible as well. It is
known that, although entangled state violate Bells in-
equality, they cannot do so arbitrarily strongly. There
exists an upper bound of maximal violation of a Bell
inequality, known as the quantum bound βQ > βC . So,
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if Alice and Bob aim to detect a state that maximally
violates Bells inequality (a maximally entangled state),
they can do so within the described device-independent
scenario. One might then say, Alice and Bob conduct
a self-test on the quantum state.
Nevertheless, although in theory possible, experimen-
tal obstacles, such as experimental noise, hinder the
experimentalists to actually measure data that implies
maximal violation of the Bell inequality associated with
the respective maximally entangled state they want to
verify. In order to take this into account, they need
to work within the merits of robust self-testing, where
upper bounds are respecting realistic experimental sce-
narios and limits.
After having presented the main idea behind self-
testing, let us explore important subtleties and its key
points of its mathematical description:

B. Basics of Self-Testing

Self-testing is based on device-independent Bell
tests. A Bell test is an observation of Bell inequality
violations that implies an entangled pure quantum
state corresponding to the underlying Bell inequality.

1. POVMs and Bell Operator B

Consider a Bell test on a bipartite quantum system
Alice (A) and Bob (B) share. In order for the veri-
fication protocol to be device-independent, correlation
functions (12) are being examined. According to Borns
rule, there should exist some quantum state ρAB and
some positive operator-valued measures (POVMs)

{MA
aA∣xA

}
aA
, {MB

aB∣xB
}
aB

(14)

that represent measurements on Alices and Bobs site
with respective measurement settings xA, xB and
corresponding measurement outcomes aA, bB.

Quantum states: Let P(H) denote the set of positive-
semidefinite linear operators on a Hilbert space H.
Then, a quantum state may be represented as an ele-
ment of a subset S≤(H) ⊂ P(H) (known as the set of
subnormalized states [47]), which is defined as:

S≤(H) ∶= {ρ ∈ P(H) ∣0 < Tr(ρ) ≤ 1} . (15)

Here, the subset of S≤(H) corresponding to Tr(ρ2) = 1
represents pure quantum states and the subset corre-
sponding to 0 < Tr(ρ2) < 1 represents mixed quantum
states. In the ongoing of this work, latter will be
represented by ρ̃ and former will be represented by
ρ. Furthermore, a quantum state ρAB ∈ HA ⊗ HB

that two parties, Alice (being represented by a Hilbert
space HA) and Bob (being represented by a Hilbert
space HB), share, will be denoted by superscripted
letters.

POVM: MA
aA∣xA

,MB
aB∣xB

of (14) are known as POVM

elements and they fulfill the following:

∀xA, aA ∶ ∑
xA

MA
aA∣xA

= 1
A, ∀xA ∶MA

aA∣xA
≥ 0

∀xB, aB ∶ ∑
xB

MB
aB∣xB

= 1
B, ∀xB ∶MA

aB∣xB
≥ 0.

(16)

Using POVM elements, correlations can be rewritten
according to Borns rule as:

pAB (aA, aB ∣xA, xB) = Tr (MA
aA∣xA

⊗MB
aB∣xB

ρAB
) .

(17)
Additionally, according to Naimarks theorem [29] [36,

45], we may use an isometry V A/B ∶HA/B → (HA/B)
′

to embed the Hilbert space the POVM elements act on,
HA, HB , respectively, into larger Hilbert spaces HA′

andHB′, respectively, in which they can be represented
by orthogonal projectors PA/B

aA/B∣xA/B
satisfying

∀xA ∶ ∑
aA

PA
aA∣xA

= 1
A ; ∀xB ∶ ∑

aB

PB
aB∣xB

= 1
B

as

MA
aA∣xA

= (V A
)
†
PA
aA∣xA

V A,

MB
aB∣xB

= (V B
)
†
PB
aB∣xB

V B.
(18)

Note that those projectors are also known as Naimark
dilated operators.
Importantly, the probabilities in (17) obtained by using
POVMs on Alices and Bobs respective smaller Hilbert
space and the probabilities using Naimark dilated op-
erators coincide [45]. Therefore, we may equivalently
investigate

PA
aA∣xA

≡MA
aA∣xA

,

PB
aB∣xB

≡MB
aB∣xB

(19)

further on. Using this, the following orthogonality
property can be obtained (equivalently for MB

aB∣xB
):

∀a, x, x′ ∶ MA
aA∣xA

MA
a′
A
∣xA

≡ δxx′M
A
aA∣xA

. (20)

Abuse of notation. Note that in the remainder of
this work, we will omit equivalency ≡ in our notation
and treat (20) as an equality, meaning, we will actu-
ally investigate Naimark dilated operators, PA

aA∣xA
and

PB
aB∣xB

, rather than the original POVMs, MA
aA∣xA

and
MB
aB∣xB

in (14).

In order to be able to write (17), we need some under-
lying physical assumptions [45]:

1. Quantumness: The experiment can be de-
scribed via the laws of quantum physics.

2. Locality: Alice and Bob are space-like separated,
i.e. there can be no signalling between them.

3. Freedom of choice: The measurement settings,
xA, xB, are being chosen at random and inde-
pendently from one another (there are no corre-
lations in A to B or vice versa).

4. IID: Each round of experiment is independent
and identical to one another, i.e. the statistics
within the correlation functions (12) are indepen-
dently identically distributed (i.i.d.).
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Those are the basic physical assumptions in all self-
testing scenarios. In order to verify if ρ̃AB in (17)
corresponds to the unique maximally entangled state
that is to be self-tested, we introduce a Bell operator
Bρ dependent on the state ρ that maximally violates
the Bell inequality in consideration. A Bell operator is
a sum of observables. In general, we may expand ob-
servables O in their respective spectral decompositions
as a sum of orthogonal projection operators Pα associ-
ated to the eigenspaces of eigenvalue α, multiplied by
the probability pα of obtaining α in a measurement:

O =∑
α

pαPα. (21)

In our case, different measurement settings account
to different observables. Additionally, recall that (19)
holds. Hence, we may bridge a connection between
POVMs (Naimark dilated operators) and the spectral
decomposition of observablesOA,B

aA,B on Alices and Bobs
site as

OA/B
aA/B

=∑
aA/B

p (aA/B ∣xA/B)M
A/B

aA/B∣xA/B
(22)

Using this, a Bell operator corresponding to self-testing
a bipartite quantum system with target state ρAB, can
be written as a sum of POVM elements:

BρAB ∶=∑
aA,aB
xA,xB

cAB
aA,aB
xA,xB

MA
aA∣xA

⊗MB
aB∣xB

(23)

with cAB
aA,aB
xA,xB

∈R and MA/B

aA/B∣xA/B
corresponding to the

measurements conducted on Alice’s/Bob’s site.

Using (23), (13) can be rewritten as:

I ({p (aA, aB ∣xA, xB)}
AB

) = Tr (BρAB ρ̃AB
) ≤ βC ,

(24)
where ρ̃AB denotes the bipartite quantum system a
source in a laboratory emits.
Due to unavoidable imperfections in the measurements
and state in a laboratory, maximal violation of a Bell
inequality can never be observed. In order to address
this, Alice and Bob use the method of robust self-
testing. Instead of demanding maximal violation of
a Bell inequality as an indicator for having a maximally
entangled state in the laboratory, robust self-testing
hinges on a self-testing statement. Mathematically this
means, instead of trying to obtain

Tr (Bρ (ρ̃ = ρ)) = βQ, (25)

in an experiment, one tries to estimate a lower bound
β on a Bell violation β

β ≤ βQ −Tr (Bρρ̃) , (26)

depending on the Bell operator Bρ and the quantum
system ρ̃ involved.

C. Analytical Estimations of Self-Testing Statements

There are different state-of-the-art approaches on how
to obtain β of (26) analytically [3, 20]. One state-
of-the-art approach is presented in [20] by Kaniewski.

Here, the author exerts the idea of extraction maps Ξ
and extractability violation trade-off functions Q:

QBρ(β) ∶= inf
ρ̃∈SBρ(β)

Ξ [ρ̃→ ρ], (27)

Ξ[ρ̃→ ρ] ∶= max
Λ

F 2 (Λ(ρ̃), ρ) , (28)

where maximization in (28) is done over all quan-
tum channels Λ (completely positive trace-preserving
maps), ρ̃ denotes the actual state the source emits in
the laboratory that is to be self-tested (experimental
state), ρ denotes a unique pure quantum state that
maximally violates the Bell inequality connected to the
respective self-test (target state), SBρ(β) denotes the
set of all quantum states that violate the Bell inequality
under consideration for (at least) some value β:

SBρ(β) = {ρ̃ ∣ βC ≤ β ≤ Tr (Bρρ̃) ≤ βQ} .

Fidelity :

F 2
(ρ, σ) ∶= (Tr(

√√
ρσ

√
ρ))

2

(29)

denotes the (Uhlmann) fidelity [27] between the quan-
tum states ρ and σ. Note that fidelity is symmetric
and if one of the states ρ = ∣ψ⟩ ⟨ψ∣ or σ was pure, it
may be rewritten as:

F 2
(ρ, σ) = ⟨ψ ∣σ ∣ψ⟩ . (30)

Furthermore, fidelity provides a definition of a met-
ric P (⋅, ⋅) on the set of subnormalized quantum states
S≤(H) (15) known as purified distance (firstly intro-
duced in [47]):

P (ρ, σ) ∶=
√

1 − F 2(ρ, σ). (31)

(28) and (27) provide a natural self-testing statement

Ξ[ρ̃→ ρ] ≥ QBρ(β). (32)

Using a different Bell scenarios in [20], Kaniewski
demonstrated in (32) that this statement can be fur-
ther developed to finding the numerical values of s ∈R
and µ ∈R in

F 2 (Λ(ρ̃), ρ) ≥ µ +wβ = 1 +
w

µ
β (33)

1. Minimum Amount of Tests in Robust Self-Testing
Scenarios

Recall that in a self-testing scenario, correlations are
estimated by measurement outcomes of K iid states
in a laboratory. After having collected a sufficient fi-
nite amount of data, a self-testing statement in the
form of (26) is being checked. The Bell violation β
depends on the number of rounds K indirect propor-
tionally. Mathematically, this can be seen by utilizing
Hoeffding’s inequality to estimate the correlation func-
tions from the measurement outcomes. [52].
Intuitively, a large amount of iid roundsK, each having
an identical mixed state that violates the Bell inequal-
ity for at least β, leads to a small deviation off the
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maximal Bell violation βQ for the mean state in the
order of:

β = O (
1

√
K

) . (34)

In quantum state verification experiments, one aims to
check if an imperfect state some source produces re-
sembled some perfectly known theoretical state [30] on
paper. One way to do so is to examine their closeness.
Mathematically, this can be described using trace dis-
tance (Schatten 1-norm) [27, 38]:
Let ρ denote a theoretical state and let ρ̃ denote an ex-
perimental state. They are said to be ε-close, (ε > 0),
if they obey the following inequality:

T (ρ̃, ρ) ∶=
1

2
∥ρ̃ − ρ∥1 =

1

2
Tr (∣ρ̃ − ρ∣) ≤ ε, (35)

where ε is frequently referred to as state accuracy [52],
∥ ⋅ ∥1 denotes the Schatten 1-norm [7, 8]:

∥A∥1 ∶=
n

∑
i=1

s�
i (A) (36)

with s�
i (A) denoting the singular values [19] of some

finite dimensional matrix A, (s�
i (A) > s�

j(A) if i > j),
and the absolute value ∣ ⋅ ∣ is defined as

∣ρ̃ − ρ∣ ∶=
√

(ρ̃ − ρ)(ρ̃ − ρ)†. (37)

In [14], C.A. Fuchs and J. van de Graaf introduced in-
equalities, connecting the trace distance (Kolmogorov
distance in [14]) to the square root of the Uhlmann
fidelity (Bhattacharyya coefficient in [14]):

1 −
√
F 2 (ρ̃, ρ) ≤ T (ρ̃, ρ) ≤

√
1 − F 2 (ρ̃, ρ). (38)

These established inequalities are well-known in current
literature as Fuchs- van de Graaf-inequalities. Note
that (38) is a (sufficiently) tight inequality, mean-
ing, there may exist no analytically obtainable quantity
bounding the trace distance T (ρ̃, ρ) from above or be-
low closer than the lhs and rhs of (38).
Using the upper bound of the Fuchs- van de Graaf
inequality, we note ε-closeness in a state-of-the-art ro-
bust self-testing scenario as in III C requires K rounds
in the order of [52] :

K = O (
1

ε4
) . (39)

IV. EFFICIENT VERIFICATION PROTOCOL FOR
GRAPH STATES

As demonstrated above, self-testing relies on a spe-
cific Bell operator that is being used for analyzing
upper bounds of fidelities. In [56], Zhu and Hayashi
proposed an alternative verification method applicable
for graph states [31], utilizing a verification operator Ω.

A. Verification Operator Ω

Recall the stabilizer definition of graph states (II.2).
In [56], Zhu and Hayashi proposed an operator Ω that

tests if the quantum state in the lab is an simultane-
ous eigenstate of a set of stabilizers, corresponding to
some theoretical quantum graph state. They defined
a verification operator (or strategy) for a graph state
corresponding to a mathematical graph G(V,E) as:

ΩG ∶=

∣V ∣

∑
v=1

µvP
v, (40)

P v =
Id + Sv

2
, (41)

where P v denotes the test projector onto the
eigenspace corresponding to eigenvalue 1 of the sta-
bilizer Sv on vertex v ∈ V (7) and µv denotes the
weight on vertex v ∈ V . A quantum state ρ passes the
test, if

Tr (ΩGρ) = 1. (42)

Therefore, passing the test implies that for ρ = ∣ψ⟩ ⟨ψ∣,
∣ψ⟩ is a simultaneous eigenstate with eigenvalue 1 of
all stabilizers Sv corresponding to the theoretical graph
state ∣G⟩. Uniqueness of graph states guarantees that,
in that case, ∣ψ⟩ = ∣G⟩.
Note that the stabilizer group is a subgroup of the Pauli
group that consists of tensor products between a Pauli-
X matrix, Pauli-Z matrices and the identity matrix
(recall (II.2)) only. Therefore, in contrast to self-testing
protocols, local Pauli-X and Pauli-Z measurements are
sufficient for verifying graph states using the method
in [56].

B. Efficiency

As demonstrated in [56, 57], the following inequality
involving fidelity holds:

Tr(ΩGρ̃) ≤ ν(ΩG)F 2 (∣G⟩ ⟨G∣ , ρ̃) + β(Ω), (43)

where ρ̃ denotes some unknown state that is to be
tested (similarly as above), β(ΩG) denotes the second-
largest eigenvalue of the verification operator ΩG and
ν(ΩG) ∶= 1 − β(ΩG) denotes the spectral gap. As
can be seen by observation, a larger spectral gap in-
dicates a more efficient test strategy. In [56], it has
been shown that, for graph states, the spectral gap
is closely connected to the chromatic number of the
underlying graph. In particular, the authors showed
that for k-chromatic graphs G(V,E) (meaning that
the minimum amount of colors have been used in ver-
tex coloring (II B)), the spectral gap equals the inverse
of the chromatic number:

ν(ΩG) =
1

χ (ΩG))
(44)

Remark: A verification protocol for quantum graph
state corresponding to a k-chromatic mathematical
graph is known as coloring protocol. In a coloring pro-
tocol the verification operator in (40) has equal weights
∀ v,w ∈ G(V,E) ∶ µv = µw [56].

V. METHOD

Most of the state-of-the-art robust self-testing pro-
tocols and other quantum state verification protocols
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provide either bounds on the fidelity between the ex-
perimental and target quantum state, as in (33), but
no bounds for the measurements therein, or only on
the measurements, without consolidating the fidelity or
similar notions as in [21]. There exists protocols that
address both, as the norm-inequality method in [45]
f.e., nevertheless, they require an impractical amount
of testsK. Within this chapter, we aim present a novel
method that includes both, a bound corresponding to
the states (state accuracy) and a bound corresponding
to the measurements (measurement precision), requir-
ing a significantly lower amount of required test rounds
K than existing robust self-testing and other quantum
state verification protocols.
Furthermore, note that the verification scheme pre-
sented in IV assumes perfect measurements and per-
fect states. In reality, state and measurement imper-
fections in the lab are unavoidable. In Yamasakis work
in [52], different sources of imperfections, intrinsic and
independent noise (noise) are being taken into account
and treated analytically, in order to establish a noise-
receptive quantum graph state verification protocol.

A. Jordans Lemma

Recall that in quantum physics, measurements of phys-
ical entities are represented by aforementioned observ-
ables (III B 1). Similar to III C, within our model, it suf-
fices to use Pauli-X and -Z measurements only. Lets
the denote the observable corresponding to a Pauli-X
and -Z measurement at Alices site OA

X and OA
Z (same

for Bob). Using (22) and assuming both measurement
outcomes, +1 and 0, are obtained equally likely, we may
write observables in terms of corresponding POVMs as:

OA
X =

MA
0∣xA=0 −M

A
1∣xA=0

2
, (45)

OA
Z =

MA
0∣xA=1 −M

A
1∣xA=1

2
, (46)

where xA = 0/1 accounts to Pauli-X or -Z measure-
ment.

While in theory, the observables and the POVMs
therein (III B 1) may be perfectly known, in reality,
unavoidable noises account to additional degrees of
freedom. Mathematically, this means that the dimen-
sion of the matrices associated with the observables
might be unknown and much larger than their the-
oretical counterpart. Different self-testing protocols
[4, 20, 45, 50] corresponding to Bell tests consisting
of dichotomic measurements accounted this environ-
mental influence utilizing Jordans lemma [37, 45]:

Lemma V.1. (Jordans Lemma) Given two dichotomic
Hermitian finite or countably infinite dimensional ma-
trices Ã, B̃ with eigenvalues ±1. There exists a choice
of basis in which both Ã, B̃ take a block diagonal form.
Within this basis, they may be written as a direct sum
of countably infinite or finitely many 2 × 2 matrices
Ãj , B̃j as:

Ã =⊕
j

Ãj(θj) =⊕
j

cos(θj)X + sin(θj)Z,

B̃ =⊕
j

B̃j(θj) =⊕
j

cos(θj)X − sin(θj)Z
(47)

where X denotes Pauli-X matrix, Z denotes Pauli-Z
matrix and θj denotes the angle between the projectors
onto the jth and jth+1 eigenspace in with Ãj and Ãj+1

are block diagonal, respectively.

A more detailed layout and a proof of Jordans lemma
can be found in [42].
Utilizing V.1 enables us to address ambiguous noise in
our measurement apparatus in the lab corresponding
to an dichotomic observable in theory. In the ongoing
of this work, the basis vectors of the vector spaces in
which Ãj(θj) are block diagonal will be represented
by {∣j⟩}

j
and they represent the additional statistical

mixture the theoretical perfect measurements get (ad-
ditional degrees of freedom) when implemented in the
laboratory, due to intrinsic imperfections. Furthermore,
we will refer to summands Ãj(θj) in V.1 as Jordan
measurements. Note that covering all possible angles
θj in (47) accounts to covering all possible realiza-
tions of the corresponding observables, which means,
all means of apparatus internal noise in the lab is cov-
ered within this analysis.
Note that there exists a unitary transformation U

U = (
cos π

8
− sin π

8
sin π

8
cos π

8

) .

such that ∀j ∶ θj = π
4
can be linked to the noiseless

case. This can be seen by recognizing that

If ∀j ∶ θj =
π

4
⇒ Ãj = U

1
√

2
(X +Z)U †

=X,

B̃j = U
1

√
2
(X −Z)U †

= Z.

(48)

B. Independent Noise

The lab the verification experiment is conducted in
might suffer from independent noise as well, com-
ing from external sources. As before, for demon-
strative purposes, let us assume verification of a
bipartite quantum state shared by Alice and Bob.
Let us denote the effect of these noise sources on
pAB (xA, xB ∣aA, aB)

(k)
as completely positive unital

matrices (EA
k )† and (EB

k )† [52]. Then, the correlation
obtained within the kth-round in the protocol may be
written as:

pAB (xA, xB ∣aA, aB)
(k)

= (49)

= Tr ((EA
k )

†M̃A
aA∣xA

⊗ (E
B
k )

†M̃B
aB∣xB

ρ̃AB
k ) = (50)

= Tr((M̃A
aA∣xA

⊗ M̃B
aB∣xB

) ((E
A
k )

†
⊗ (E

B
k )

†
) ρ̃AB

k ) .

(51)

(51) demonstrates that, within our model, independent
noise in the lab can be accounted to occur as additional
noise on the state rather than on the measurements,
which indicates stability of M̃A

aA∣xA
and M̃B

aB∣xB
. Note

that this allows us to reuse the same measurement de-
vices each round of verification. Stability of the mea-
surements is crucial for numerous quantum information
processing tasks such as verification of large resource
states in MBQCs, where implementing a large amount
of different measurement devices might not be scalable.
With (51), this obstacle might be overcome.
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C. Evaluating the Verification Operator

As presented in IVA, our proposed verification oper-
ator Ω consists of an addition of stabilizers as well.
However, we improve the method presented in [56] by
accounting to imperfections in Ω using Jordans lemma
(V.1) on the stabilizers. The verification operator
consisting of a sum of tensor products of imperfect
observables is denoted as Ω̃.

Apart from generalizing the verification protocol of
[56] to be noise-receptive, we use McKague’s result
on quantum graph states containing odd (induced) cy-
cles in their underlying mathematical (sub)graph [25]
(Recall that an odd cycle is a cycle with an odd number
of vertices, for example a triangle):

Lemma V.2. (Odd cycle property) Given a quan-
tum graph state ∣G⟩ with a corresponding mathemat-
ical graph G(V,E) containing an induced odd cycle
subgraph G′(V ′,E′), let Sv

′
denote the stabilizer on

v′ ∈ V ′ ⊂ G′(V ′,E′). Then:

∏
v′∈V ′

Sv ∣G⟩ = − ∣G⟩ . (52)

A proof of this statement can be found in [25].

Interpretation: We aim to provide a verification
operator that tests both, the stabilizer property of
II.2 and, in our case, the odd-cycle-property of V.2.
It is pivotal to recall the physical implementation of
a verification operator: please note that Ω should
not be misinterpreted as an observable consisting of
a superposition of measurements, since this would
be impractical and hard to implement in the lab. A
verification operator is a sum of test projectors (in
short tests) that verify if an arbitrary quantum state
is a simultaneous eigenstate to all of them with eigen-
value 1. Heuristically, the reader may imagine that
more testing possibilities to “check” this property ac-
count to a higher efficiency in the verification protocol.

In the case of verifying a single triangular graph
state ∣G⟩△ as depicted in II A, the according device-
independent verification operator Ω̃ABC may be de-
fined as [52]:

Ω̃ABC
=

1

4
(

IdABC
+ X̃A ⊗ Z̃B ⊗ Z̃C

2
+

IdABC
+ Z̃A ⊗ X̃B ⊗ Z̃C

2
+

+
IdABC

+ Z̃A ⊗ Z̃B ⊗ X̃C

2
+

IdABC
− X̃A ⊗ X̃B ⊗ X̃C

2
).

(53)

Utilization of V.2 leads to an improvement of the verifi-
cation operator presented in (40) by adding the fourth
term of 53. This could be also be seen utilizing the
inequality of (43).

VI. VERIFICATION PROTOCOL FOR A
TRIANGULAR GRAPH STATE

Within this chapter, we will summarize Yamasakis
method [52] for verifying a single triangular graph
state ρABC (A triangular quantum graph state is a
graph state having a triangle △ABC with vertex set
V = {A,B,C} and non-weighted edges connecting
each vertex as an underlying mathematical graph.)

A. Measurement Precision, State Accuracy and
Significance Level

Yamasaki bases his protocol on three physical merits:
measurement precision ∆, state accuracy ε and the sig-
nificance level δ. Before introducing the mathematical
definition and the meaning these notions, we point out
one important difference from our method to state-of-
the-art self-testing protocols.

1. Non-IID Verification

As listed in III B 1(4), in order to write down a Bell op-
erator for a self-testing scenario, one must assume that
the source produces i.i.d. states. In our method, such
an assumption is not needed. Concerning the statis-
tics the source provides, we only require independence
of the states ρ̃k and ρ̃k′ for k ≠ k′ that are produced
in the kth and k,th round/test, meaning that we may
write a sequence of states after n rounds as

ρ̃1 ⊗ ρ̃2 ⊗ ⋅ ⋅ ⋅ ⊗ ρ̃n. (54)

Using independence, after K rounds, we may define an
average state as:

ρ̃ =
1

K

K

∑
k=1

ρ̃k. (55)

Within the remainder of this paper, K in (55) equals
the minimum amount of tests needed for verifying
the average state the source produces as precisely as
aimed fo. The absence of a subscript in ρ̃ indicates
the average state after K rounds and the existence of
a subscript ρ̃k denotes a specific experimental state
the source produces in the kth round.

2. ε,∆ and δ

Measurement precision is a lower bound on the total
variation distance d(⋅, ⋅) of the probability distributions
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of measurement outcomes between Jordan- and perfect measurements:

For ∆ > 0 ∶

d (p̃ (aA, aB, aC ∣xA, xB, xC) , p (aA, aB, aC ∣xA, xB, xC)) ∶=

1

2
∥Tr (M̃A

aA∣xA
(θθθA

)⊗ M̃B
aB∣xB

(θθθB
)⊗ M̃C

aC∣xC
(θθθC

)ρ̃ABC
) −Tr(MA

aA∣xA
⊗MB

aB∣xB
⊗MC

aC∣xC
D (ρABC

))∥
1

≥

≥ ∆,

(56)

where p̃ (⋅ ∣ ⋅) denotes the correlation obtained in the
lab including noise in the measurements, p (⋅ ∣ ⋅) de-
notes the correlations assuming perfect measurements,
D(⋅) denotes a decoding map and θθθA/B/C represents
a touple consisting of the angles in the Jordan de-
composition (V.1) of M̃A/B/C

aA/B/C∣xA/B/C
. Heuristically, a

decoding map is a completely positive trace-preserving
linear map (CPTP map) that maps the experimental
state ρ̃ABC of arbitrary degrees of freedom as closely
as possible to the theoretical state (III C 1) ρABC of
fixed dimensionality.

For a more rigorous interpretation of D(⋅), we need the
notion of state accuracy:

For ε > 0 ∶

T (ρABC,D (ρ̃ABC
)) ≥ ε.

(57)

Here, T (⋅) denotes the trace distance (35) and ε de-
notes aforementioned state accuracy and may be in-
terpreted as the closest possible distance the theoret-
ical state ρABC and the decoded experimental state
D (ρ̃ABC) of equal dimensionality share for any choice
of D(⋅), which is dependent on intrinsic imperfections
in the source and external noise in the lab, as argued
in, VB.
The theoretical state always passes the test, as demon-
strated in (42). Since, in our protocol, we eased the
conditions on the experimental state and the measure-
ments to take noise into account, the passing condition
may be eased as well. Instead of requiring unity in (42),
we use a significance level 0 < δ < 1 and reformulate
the condition after K rounds of all k ≤ K states for
passing the test as:

For 0 < δ ≤ 1 ∶
K

∏
k=1

Tr(Ω̃Gρ̃k) ≤ δ, (58)

meaning that we assume to have a maximum proba-
bility of δ for all {ρ̃k}Kk=1 passing the test. Here, Ω̃G

denotes an imperfect verification operator associated
with a theoretical state ∣G⟩, which can be obtained by
replacing the perfect observables within the theoretical
counterpart ΩG by imperfect observables.
Furthermore, using Jordans lemma (V.1), we may write
the test operator as a direct sum of (2 × 2)3 matrices:

Ω̃G =⊕
jA

⊕
jB

⊕
jC

Ω̃GjAjBjC(θ
A, θB, θC

), (59)

where the subscripts of j denote the jth block Jordan
direct sum decomposition (V.1) of an observable acting
on the qbits of the graph state associated with the
vertices of the underlying mathematical graph △ABC.

Abuse of notation. In the ongoing of this work, we may
omit the angles argument of Jordan measurements and
Jordan verification operators if clear from context or ir-
relevant for explicit calculations. Additionally, we will
omit the subscript G, if obvious from context (In this
section, we are examining the verification of a triangu-
lar graph state, so G =△ABC).

B. Summarizing the Results

Using the notions introduced in VI A, Yamasaki et. al.
presented a mathematical layout for a novel verification
scheme in [52]. In this chapter, we will summarize
the main points of their work. For proofs and deeper
investigations, we refer to [52] and further upcoming
papers concerning this novel quantum state verification
approach.

1. Verifying Measurements

Utilizing the inequality of arithmetic and geometric
means, we note that the lhs of (58) is upper-bounded
by the passing probability of the average state:

K

∏
k=1

Tr (Ω̃ ρ̃k) ≤
⎛

⎝

1

K

K

∑
k=1

Tr(Ω̃ ρ̃k)
⎞

⎠

K

= (60)

= (Tr (Ω̃ ρ̃))
K

≤ δ, (61)

hence, it is sufficient to evaluate an upper bound of the
passing probability Tr (Ω̃ ρ̃) of the average state ρ̃.

Let ΠjA/B/C denote the projector onto the jth

eigenspace in which the Jordan measurement in V.1
takes a diagonal form. Then, we may project the state
onto the eigenspaces the Jordan measurements act on,
resulting in a direct sum:

⊗
jA

⊗
jB

⊗
jC

(ΠjA⊗ΠjB⊗ΠjC)ρ̃(ΠjA⊗ΠjB⊗ΠjC) =

=⊗
jA

⊗
jB

⊗
jC

p (jA, jB, jC) ρ̃jAjBjC ,

(62)
where the sum over j of p (jA, jB, jC) comes from

∑
jA,jB,jC

p (jA, jB, jC) ∶=

∶= Tr
⎛

⎝
⊗
jA

⊗
jB

⊗
jC

ΠjA ⊗ΠjB ⊗ΠjC ρ̃
⎞

⎠

(63)
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p (jA, jB, jC) denotes the probability of measuring
(“finding”) the qbits corresponding to A,B,C ∈ △ABC

quantum state ρ̃jA,jB,jC in the tensor product space
spanned by {∣jA⟩⊗ ∣jB⟩⊗ ∣jC⟩}

jA,jB,jC
.

Using this, we may rewrite (61) as:

Tr(Ω̃ρ̃) =∑
jA,jB,jC

p (jA, jB, jC)Tr(Ω̃jAjBjC ρ̃jAjBjC) .

(64)
For any state ρ̃jAjBjC , the maximum passing prob-
ability is upper-bounded by the largest eigenvalue
λmax (Ω̃jAjBjC) of Ω̃jAjBjC . This can be seen via de-
composing the state in the eigenbasis of the verification
operator. Therefore, (64) is upper-bounded by:

Tr(Ω̃ ρ̃) ≤ ∑
jA,jB,jC

p (jA, jB, jC)λmax (Ω̃jAjBjC) .

(65)
Before writing down the upper bound of (65), we will
sketch another result in [52], connecting the measure-
ment precision in (56) and the Jordan measurements.
Yamasaki et. al. showed that the angles magnitude is
an indicator for preciseness in measurements and ex-
amination of (56) may be surrogated by examination
of:

1

4
∑

jA,jB,jC

p (jA, jB, jC) (∣θA
jA ∣ + ∣θB

jB ∣ + ∣θC
jC ∣) ≥ ∆

(66)
instead. Using the largest eigenvalue of Ω̃jAjBjC (we
refer to the original work [52] for a full expression of
λmax (Ω̃jAjBjC)) and (66), Yamasaki et.al. obtained

an upper bound on the passing probability for K states
in terms of a given measurement precision ∆ as:

K

∏
k=1

Tr (Ω̃ABCρ̃k) ≤

⎛
⎜
⎜
⎝

1

4

⎛
⎜
⎝

2 +

√

1 + 3 cos2
8

3
∆
⎞
⎟
⎠

⎞
⎟
⎟
⎠

K

,

(67)
which yields a minimum number of tests K in order to
reach a significance level δ as:

K ≥
ln δ

ln( 1
4
(2 +

√
1 + 3 cos2 8

3
∆))

. (68)

Note that (68) scales quadratically in terms of 1
∆

[52].

2. Verifying the State

For verifying the state, we may assume “sufficiently
precise” measurements, meaning, instead of assuming
measurement precision as a lower bound as in (56), we
may state it as an upper bound:

1

4
∑

jA,jB,jC

p (jA, jB, jC)

∶=∆
θA
jA
,θB
jB
,θC
jC

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(∣θA
jA ∣ + ∣θA

jB ∣ + ∣θA
jC ∣) ≤ ∆.

(69)
In his work, Yamasaski chose a particular adequate de-
coding map:

D (ρ̃) ∶= TrJ
⎛
⎜
⎝
V

⎛

⎝
∑

jA,jB,jC

(ΠjA⊗ΠjB⊗ΠjC) ρ̃ (ΠjA⊗ΠjB⊗ΠjC)
⎞

⎠
V †

⎞
⎟
⎠
= ∑
jA,jB,jC

p (jA, jB, jC) ρ̃jAjBjC , (70)

where TrJ ( ⋅ ) denotes the partial trace
over aforementioned tensor product space
span ({∣jA⟩⊗ ∣jB⟩⊗ ∣jC⟩}

jA,jB,jC
) and V denotes a

unitary operator changing the basis in such a way that
the direct sum of two-dimensional blocks is represented
by the tensor product of the space representing the
label of the block and the two-dimensional space
representing each block [52]. This decoding map can
be locally implemented by a tensor product of three
CPTP maps acting on each system corresponding to
the vertices V = ABC.
Using this, (57) can be rewritten as

1

2

XXXXXXXXXXXX

∑
jA,jB,jC

p (jA, jB, jC) ρ̃jAjBjC − ρ
ABC

XXXXXXXXXXXX1

≥ ε. (71)

Lets write the Jordan verification operator in its spec-
tral decomposition:

Ω̃jA,jB,jC =
8

∑
j=1

λj ˜∣ψ⟩j
˜⟨ψ∣j . (72)

Using this, we may obtain an upper bound of (64) in
terms of the largest λ1 (θA, θB, θC) and second-largest

λ2 (θA, θB, θC) eigenvalue of Ω̃jA,jB,jC (θA, θB, θC) as

Tr (Ω̃jAjBjC ρ̃jAjBjC) ≤ λ2 + (1 − λ2) ⟨ψ̃1∣ρ̃jAjBjC ∣ψ̃1⟩ .

(73)
(Note that a similar result exists in [57] and that we
omitted the angle argument) Therefore, it suffices to
obtain an upper bound of λ2 and the fidelity between
the experimental state and the eigenvector correspond-
ing to the largest eigenvalue λ1 of the Jordan verifica-
tion operator Ω̃jAjBjC (θA, θB, θC) (29)

F 2
(∣ψ̃1⟩ ⟨ψ̃1∣ , ρ̃jAjBjC) = ⟨ψ̃1∣ρ̃jAjBjC ∣ψ̃1⟩ . (74)

Using a similar technique as for upper-bounding the
largest eigenvalue in terms of measurement verifica-
tion, Yamasaki et.al. provides us with an upper bound
of λ2 (θA, θB, θC) as:

λ2 (θA, θB, θC
) ≤

1

4
(2 +

2

3
∆θAjA

,θBjB
,θCjC

) . (75)

Note that this upper bound indicates a higher effi-
ciency of this protocol than the existing verification
protocol for hypergraph states, which is based on the
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chromatic number, in [56] possesses (compare (43)).

For bounding (74), we may analyze the purified

distance (31) P (∣ψ̃1⟩ ⟨ψ̃1∣ , ρ̃jAjBjC). Note that,

since purified distance is a metric on S≤ (H
ABC) ∋

{∣ψ̃1⟩ ⟨ψ̃1∣ , ρ̃jAjBjC}, P (⋅) is symmetric and fulfills the

triangle inequality on that domain:

P (∣ψ̃1⟩ ⟨ψ̃1∣ , ρ̃jAjBjC) ≥

≥ P (ρ̃jAjBjC , ρ
ABC

) − P (ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣) .
(76)

Therefore, the analysis reduces to obtaining a lower
bound on

P (ρ̃jAjBjC , ρ
ABC

) (77)

and an upper bound on

P (ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣) . (78)

Finding an upper bound on (78) can be achieved by
finding a lower bound of:

F 2
(ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣) . (79)

Concerning (77), recall the interpretation of the state
accuracy definition in (57), associating it with the clos-
est distance two states can be. Following Fuchs- van
de Graaf- inequalities (38), this means that the associ-
ated purified distance (31) funges as an upper bound
on state accuracy as well (considering tightness of the
inequality). Henceforth, we are motivated to define
the lower bound of (77) in terms of a state accuracy
εjAjBjC which is defined as the trace distance (35) be-
tween the target state ρABC and the projection of the
experimental state onto span ({∣jA⟩⊗ ∣jB⟩⊗ ∣jC⟩}):

T (ρABC, ρ̃jAjBjC) = εjA,jB,jC

⇒ P (ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣) = εjA,jB,jC .
(80)

As shown by Yamasaki, εjAjBjC correlates to the given
state accuracy ε in (57) as

∑
jA,jB,jC

p (jA, jB, jC) εjAjBjC ≥ ε. (81)

As for F 2 (ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣), Yamasaki obtained a

lower bound by means of numerical analysis as:

For C ∶= 0.281 ⋅ ⋅ ⋅ ∶ (82)

F 2
(ρABC, ∣ψ̃1⟩ ⟨ψ̃1∣) ≥ 1 − (

C
√

3
∆θAjA

,θBjB
,θCjC

) . (83)

For a reminder of ∆θAjA
,θBjB

,θCjC
, the reader may recall

(69).

Combining both results and recalling (31) yields an up-
per bound on (74) as

F 2
(∣ψ̃1⟩ ⟨ψ̃1∣ , ρ̃jAjBjC) ≤

≤ 1 − (εjAjBjC −
C
√

3
∆θAjA

,θBjB
,θCjC

)

2 (84)

Using (84), (75) and (81), Yamasaki et.al. showed that
the number of required tests concerning state accuray
may be lower bounded as

K ≥
ln δ

ln(1 − 1
2
(ε − ( C

√
3
+ 4

6
)∆)

2

+ 8
36

∆2)

. (85)

Note that (85) scales quadratically with a leading
term in the order of O(K) = 1

ε2+∆2 (for a more
detailed demonstration the reader may be referred to
the original paper [52]).

As a result, the minimum number of rounds K for
verifying a triangular quantum state with state accu-
racy ε and measurements with measurement precision
∆ simultaneously, given a significance level δ, the max-
imization over the number necessary for state verifica-
tion and the number necessary for measurement veri-
fication:

K = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

ln δ

ln( 1
4
(2 +

√
1 + 3 cos2 8

3
∆))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

ln δ

ln(1 − 1
2
(ε − ( C

√
3
+ 4

6
)∆)

2

+ 8
36

∆2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (86)

VII. GENERALIZATION TO TWO SIMPLY
CONNECTED TRIANGULAR GRAPH STATES

In this chapter, we present the main ideas behind our
method for verifying a quantum graph state corre-
sponding to a mathematical graph consisting of two
simply connected triangles △ABC and △DEF, further
on referred to as six-qbit two triangle graph state. This
work can be seen as a generalization of Yamasaki et.al.
work in [52], which was subsequently summarized in

VI.
More precisely, the mathematical graph G(V,E)

(which is depicted in II C, Fig. 3 and, as a reminder,
again here in Fig. 6) associated with the quantum state
in examination consists of two triangle subgraphs, de-
noted as △ABC and △DEF, which are connected via
one single edge eCD

1,2 . In other words, if

G(V,E) =
n

⋃
i=1

△Vi∪ e
lm
i,i+1. (87)



14

denotes a n- chain of simply connected triangles with
Vi being the vertices set of the ith triangle △Vi and
elm
i,i+1 denoting the connecting edge between the ith tri-
angle and its adjacent ith + 1 triangle within this chain
with l ∈ △Vi ,m ∈ △Vi+1 (or vice versa), then the fol-
lowing analysis will deal with the special case of n = 2:

A

CB D

E

F

Figure 6. G =
n=2
⋃
i=1

△Vi; ∪ eCD
i,i+1

A. Verification Operator Ω̃ABCDEF

As for a verification operator Ω̃ABCDEF, we follow the
recipe presented in VC, testing the stabilizer property
(II.2) and the odd-cycle-property (V.2) on the sub-
graph quantum states associated with the subgraphs
△ABC, △DEF simultaneously. Again, our protocol
is a coloring protocol (II B), therefore, all terms in
the expansion of the verification operator are equally
weighted. This leads us to defining Ω̃ABCDEF as:

Ω̃ABCDEF ∶=
1

5
(
1 + X̃A ⊗ Z̃B ⊗ Z̃C ⊗ X̃D ⊗ Z̃E ⊗ Z̃F

2
+
1 + Z̃A ⊗ X̃B ⊗ Z̃C ⊗ Z̃D ⊗ X̃E ⊗ Z̃F

2
+

+
1 + Z̃A ⊗ Z̃B ⊗ X̃C ⊗ Z̃D ⊗ Z̃E ⊗ X̃F

2
+
1 − X̃A ⊗ X̃B ⊗ X̃C ⊗ Z̃D ⊗ IdE

⊗ IdF

2
+

+
1 − IdA

⊗ IdB
⊗ Z̃C ⊗ X̃D ⊗ X̃E ⊗ X̃F

2
).

(88)

The (imperfect) Pauli-Z matrices acting on C and D in
the fourth and fifth term of (88) account to the connec-
tion of the two triangles. They originate from the odd-
cycle lemma (V.2). Since C ∈ △ABC and D ∈△DEF

are the connecting vertices of the simply connected
two-triangle graph state, respectively, the stabilizers
SC and SD with SC = Z̃A⊗Z̃B⊗X̃C⊗Z̃D⊗IdE

⊗IdF

and SD = IdA
⊗IdB

⊗Z̃C⊗X̃D⊗Z̃E⊗Z̃F, contain terms
Z̃D and Z̃C, that account to vertices, which are not
element of the respective triangles we aim to verify the
odd-cycle property in (V.2) of (they are not element of
the induced triangle subgraphs of V.2). Upon multipli-
cation as in (52), they originate naturally and do not
influence the examined property as argued in [25].
Using Jordans lemma (V.1), similarly as in (59), we
may rewrite (88) as a direct sum of Jordan verification
operators Ω̃jA,jB,jC,jD,jE,jF as:

Ω̃ABCDEF
=

=⊕
jA

⊕
jB

⊕
jC

⊕
jD

⊕
jE

⊕
jF

Ω̃jA,jB,jC,jD,jE,jF ,
(89)

where we omitted the angle argument in (59), in
order to avoid cluttering of notation. The motivation
of referring to the summands of (89) as Jordan
verification operators is similar to the motivation of
naming the summands in VA Jordan measurements.

In principle, one may proceed similarly to the protocol
of [52] summarized in VI. Nevertheless, computational

time and calculations for obtaining bounds as in VI
for obtaining a minimum K turn out to be unfeasi-
ble in the six-qbit two-triangle case. This motivates
the question whether it was possible to use results on
aboves single-triangle verification scheme for more gen-
eral graph states. Within the following chapters, we
will present the first step towards a generalization of the
verification method of a singular triangle graph state
by investigation a chain of two triangles, connected by
one edge.

B. Breaking down the Analysis to single Triangle Graph
State Verification

Let us recall how local Pauli-Z-measurements P i
(Z;mZ)

(2) act on graph states (II.1): A local Pauli-Z-
measurement is dichotomic with measurement out-
comes mZ = {0,1} and accounts to aforementioned
deletion of a vertex in the associated underlying math-
ematical graph. For exemplification, let us consider
PD
(Z;mZ)

acting on D, which is the connecting vertex
in △DEF to △ABC via one singular edge eDE ∈ E (sim-
ilar results are true for PC

(Z;mZ)
acting on C ∈△ABC).

Now, let us investigate the post-measurement test op-
erator on the triangle subgraph △ABC. Note that two
different cases accounting to two different measure-
ment outcomes mZ of P i

(Z;mZ)
need to be taken into

account. This indicates that the post-measurement
test operator should be a conditioned on mZ as
Ω̃ABC∣mZ :

Ω̃ABC
∣mZ=0 =

1

5
(

IdABC
+ X̃A ⊗ Z̃B ⊗ Z̃C

2
+

IdABC
+ Z̃A ⊗ X̃B ⊗ Z̃C

2
+

+
IdABC

+ Z̃A ⊗ Z̃B ⊗ X̃C

2
+

IdABC
− X̃A ⊗ X̃B ⊗ X̃C

2
+

IdABC
+ IdA

⊗ IdB
⊗ IdC

2
),

(90)
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Ω̃ABC
∣mZ=1 =

1

5
(

IdABC
+ X̃A ⊗ Z̃B ⊗ Z̃C

2
+

IdABC
+ Z̃A ⊗ X̃B ⊗ Z̃C

2
+

+
IdABC

− Z̃A ⊗ Z̃B ⊗ X̃C

2
+

IdABC
+ X̃A ⊗ X̃B ⊗ X̃C

2
+

IdABC
+ IdA

⊗ IdB
⊗ IdC

2
).

(91)

Note that both are connected via a unitary transfor-
mation that accounts to flipping the measurement out-

comes:

OC ∶ Ω̃ABC
∣mZ=0

X̃C
→−X̃C

ÐÐÐÐÐÐ→ Ω̃ABC
∣mZ=1, (92)

Using (90) and (91), we propose the following test
operators on each triangle subgraph △ABC and △DEF

respectively:

Ω̃ABC
(6) ∶= (Ω̃ABC

∣mZ=0 ⊗ P̃
D
(Z; 0) ⊗ IdE

⊗ IdF
+ Ω̃ABC

∣mZ=1 ⊗ P̃
D
(Z; 1) ⊗ IdE

⊗ IdF
) , (93)

Ω̃DEF
(6) ∶= (IdA

⊗ IdB
⊗ P̃C

(Z; 0) ⊗ Ω̃DEF
∣mZ=0 + IdA

⊗ IdB
⊗ P̃C

(Z; 1) ⊗ Ω̃DEF
∣mZ=1) . (94)

Here, the subscript “6” is implemented to avoid
confusion with the singular triangle analysis of (VI).

We propose that using (93) and (94) as verification op-
erators for the subgraph states associated with △ABC

and △DEF is equivalent to using (88) as a verification
operator on the original graph state ρ̃ABCDEF.

1. Generalized Verification Method

Verifying a six-qbit two-triangle quantum graph state
may be done by conducing tests on the individual trian-
gle subgraph states associated with △ABC and △DEF.
This may be achieved utilizing the deletion property of
(II.1) and, subsequently, using (93) and (94) as verifi-
cation operators on the post-measurement states, re-
spectively, at random. This method leads to an alter-

native verification operator Ω̃ABC;DEF, defined as:

Ω̃ABC;DEF ∶=
1

2
(Ω̃ABC
(6) + Ω̃DEF

(6) ) . (95)

If both triangle subgraph states can be verified that
way, using a similar protocol as presented in VI, unique-
ness of graph states (II.2) indicates that the prae-
measurement initial state ρ̃ABCDEF must have fulfilled
boundary conditions set by state accuracy εABCDEF,
measurement precision ∆ABCDEF and significance level
δ, similar to VI A 2. Thus, we need to express εABCDEF

and ∆ABCDEF in terms of εABC/DEF and ∆ABC/DEF

on △ABC/DEF, respectively, in order to obtain a min-
imum number K, dependent on δ, similar as demon-
strated in VI.
In order to inspect the subgraph triangular states
on △ABC/DEF, we use the following CPTP-map
N
θ
C/D
jC/D

( ⋅ ) reducing ρ̃(6)jA,jB,...,jF (see (62) for a simi-

lar definition) to subgraph states ρ̃(3)jA,jB,jC or ρ̃(3)jD,jE,jF ,
respectively:

NθDjD
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ∶=

∶= TrDEF((1
ABC

⊗ M̃D
0∣1,jD

(θD
jD)⊗ 1

EF
)ρ̃
(6)
jA,jB,jC,jD,jE,jF

(1
ABC

⊗ M̃D
0∣1,jD

(θD
jD)⊗ 1

EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(θD
jD)⊗ 1

EF
)ρ̃
(6)
jA,jB,jC,jD,jE,jF

(1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(θD
jD)⊗ 1

EF
)
†
), (96)

NθCjC
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ∶=

∶= TrABC((1
AB

⊗ M̃C
0∣1(θ

C
jC)⊗ 1

DEF
)ρ̃
(6)
jA,jB,jC,jD,jE,jF

(1
AB

⊗ M̃C
0∣1(θ

C
jC)⊗ 1

DEF
)
†
+

+ (1
AB

⊗ M̃C
1∣1(θ

C
jC)⊗O

D
jD ⊗ 1

EF
)ρ̃
(6)
jA,jB,jC,jD,jE,jF

(1
AB

⊗ M̃C
1∣1(θ

C
jC)⊗O

D
jD ⊗ 1

EF
)
†
), (97)

where {M̃0∣1,j , M̃1∣1,j} denotes a Jordan Z- measure- ment with outcomes mZ = 0,1, and OC/D
j denotes the



16

unitary operator flipping the measurement outcomes in
the conditional test operator of (91) as shown in (92).

C. Verifying Measurements on Ω̃ABC
(6) and Ω̃DEF

(6)

Similar to VI B 1, we aim to verify measurements on
a six-qbit two-triangle quantum graph state described

above. As in (56), we assume:

For ∆ABCDEF > 0 ∶

d (p̃ (aA, . . . , aF ∣xA, . . . , xF) , p (aA, . . . , aF ∣xA, . . . , xF)) ≥ ∆ABCDEF

(98)

and we wish to find a suitable K for a significance level
0 < δ ≤ 1, such that

⎛

⎝

1

K

K

∑
k=1

Tr (Ω̃ABC;DEFρ̃ABCDEF
k )

⎞

⎠

K

=

= (Tr (Ω̃ABC;DEFρ̃ABCDEF
))
K

≤ δ

(99)

is an inequality with a tight lower bound. Here, as in
VI B 1, ρ̃ABCDEF denotes an average state.

As argued in VI B 1, the maximum passing probability
of ρ̃ABCDEF is upper-bounded by the largest eigenvalue
λmax of the test operator Ω̃ABC

(6) and Ω̃DEF
(6) . Recall that

estimating the largest singular value (also known as
spectral radius σ(⋅)) of a finite dimensional Hermitian
matrix A is equivalent to estimating its spectral norm,
which is a special case of a matrix norm on a normed
vector space H ∋ v such that [19, 22]:

∥A∥op ∶= max
∥v∥2=1

∥Av∥2 . (100)

Here, ∥ ⋅ ∥2 denotes the usual Euclidean vector norm.
Using the spectral norm, we may show that the largest
eigenvalue λmax (Ω̃ABC

(6) ) is upper-bounded by:

λmax (Ω̃ABC
(6) ) ≤

1

5

⎛
⎜
⎝

3 +

√

1 + 3 cos2
8

6
∆A...F

⎞
⎟
⎠

(101)

For a proof of (101), the reader is referred to A. Note
that this bound is equivalent for the largest eigenvalue
of Ω̃DEF

(6) .
Thus, similar to (67), we obtain an upper-bound on

the passing probability for K experimental states as:

K

∏
k=1

Tr (Ω̃ABC;DEFρ̃ABCDEF
k ) ≤

≤

⎛
⎜
⎜
⎝

1

5

⎛
⎜
⎝

3 +

√

1 + 3 cos2
8

6
∆ABCDEF

⎞
⎟
⎠

⎞
⎟
⎟
⎠

K

≤ δ

(102)

As a result, for a given significance level δ, a minimum
number of tests K:

K ≥
ln δ

ln( 1
5
(3 +

√
1 + 3 cos2 8

6
∆ABCDEF))

(103)

is required for verifying the measurements on a six-qbit
two triangle state.

D. Verifying the State with Ω̃ABC
(6) and Ω̃DEF

(6)

As argued in VI B 2, obtaining the minimum number
to verify a state up to a given significance level δ may
be achieved by analyzing bounds on the second-largest
eigenvalue of the verification operator involved and on
a fidelity of the form (74). Again, for this task, we
will use the alternative verification operator (95) and
assume:

For εABCDEF,∆ABCDEF > 0 ∶ (104)

1

2

XXXXXXXXXXXX

∑
jA,...,jF

p(jA, . . . , jF)ρ̃
(6)
jA,...,jF

− ρA...F

XXXXXXXXXXXX1

≥ εA...F,

(105)

∑
jA,...,jF

p(jA, . . . , jF)(∣θ
A
jA ∣ +⋯ + ∣θFjF ∣) ≤ ∆ABCDEF.

(106)

To verify the state given these assumptions means to
find an upper bound of

Tr (Ω̃ABC;DEFρ̃ABCDEF
) =

=
1

2
∑

jA,...,jF

p(jA, . . . , jF)(Tr(Ω̃ABC
(6) NθDjD

(ρ̃
(6)
jA,...,jF

)) +Tr(Ω̃DEF
(6) NθCjC

(ρ̃
(6)
jA,...,jF

)))
(107)

which is similar to (64). As argued in VI B 2, the task to find an upper-bound of these summands may be
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reduced to finding an upper bound of:

Tr(Ω̃ABC
(6) NθDjD

(ρ̃
(6)
jA,jB,jC,jD,jE,jF

)) ≤ λABC
2 + (1 − λABC

2 )F 2
(∣ψ̃1⟩ ⟨ψ̃1∣

ABC
,NθDjD

(ρ̃
(6)
jA,...,jF

)) ; (108)

Tr(Ω̃DEF
(6) NθCjC

(ρ̃
(6)
jA,jB,jC,jD,jE,jF

)) ≤ λDEF
2 + (1 − λDEF

2 )F 2
(∣ψ̃1⟩ ⟨ψ̃1∣

DEF
,NθCjC

(ρ̃
(6)
jA,...,jF

)) . (109)

where λABC/DEF denote the second-largest eigenvalue

and ∣ψ̃1⟩
ABC/DEF

the eigenvector associated with the

largest eigenvalue of the Jordan operators Ω̃
ABC/DEF

(6)

in (93) and (94), respectively.
As in VII C, for the following, the analysis on both tri-
angles is equivalent, therefore, we conduct the calcu-
lations for either one of them up to our choosing. We
decided to inspect △ABC further on.
Considering the upper bound on the fidelity, equiva-
lently to VI B 2, we may investigate the purified dis-
tance (31) instead. Since the purified distance is a
metric on the set of subnormalized quantum states, it
fulfills the triangle inequality (or subadditivity [8, 19]):

P (∣ψ̃1⟩ ⟨ψ̃1∣
ABC

,NθDjD
(ρ̃
(6)
jA,...,jF

)) ≥ (110)

≥ P (∣GABC
⟩ ⟨GABC

∣ ,NθDjD
(ρ̃
(6)
jA,...,jF

))− (111)

− P (∣ψ̃1⟩ ⟨ψ̃1∣
ABC

, ∣GABC
⟩ ⟨GABC

∣) (112)

Now, importantly, we note that the eigenvectors of
the conditional verification operators Ω̃ABC

∣mZ=0,1 of (90)
and (91) coincide with the eigenvectors of the singular
triangle Jordan verification operator Ω̃jAjBjC of (64).
Following this, we may use the results of (83) to state
an equivalent upper-bound for (112). This leaves us to
analysing (111).
For this, may reutilize the triangle inequality:

P (NθDjD
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

), ∣GABC
⟩ ⟨GABC

∣) = (113)

= P (NθDjD
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

),NθDjD=0 (∣GABCDEF
⟩ ⟨GABCDEF

∣)) ≥ (114)

≥ P (NθDjD=0(ρ̃
(6)
jA,jB,jC,jD,jE,jF

),NθDjD=0 (∣GABCDEF
⟩ ⟨GABCDEF

∣))− (115)

− P (NθDjD
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ,NθDjD=0 (ρ̃
(6)
jA,jB,jC,jD,jE,jF

)) , (116)

where NθDjD=0 ( ⋅ ) is the reducing map of (96) without imperfections, thus, it maps the (perfect) six-qubit two-
triangle graph state precisely to the single triangle graph state analyzed in VI. Similarly, for the subgraph state
on △DEF, we have

P (NθCjC
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) , ∣GDEF
⟩ ⟨GDEF

∣) ≥ (117)

≥ P (NθCjC=0 (ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ,NθCjC=0 (∣GABCDEF
⟩ ⟨GABCDEF

∣))− (118)

− P (NθCjC
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ,NθCjC=0 (ρ̃
(6)
jA,jB,jC,jD,jE,jF

)) , (119)

where ∣G⟩
ABC denotes the single triangle graph state

analyzed in VI and ∣G⟩
ABCDEF denotes the target six-

qbit two triangle graph state.

Similarly to considerations in VI B 2, acknowledging
the triangle inequality splits the task into finding two
bounds, a lower bound of (115) and a upper bound of
(116) (similarly an lower bound of (118) and a upper
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bound of (119)) in terms of εABCDEF. As for (115) and (118), we found lower-bounds of:

εjA,jB,jC,jD,jE,jF
√

2
≤ P (N

θ
C/D
jC/D

=0
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) ,N
θ
C/D
jC/D

=0
(∣ρABCDEF

⟩ ⟨ρABCDEF
∣)) . (120)

For a proof of (120), the reader may be referred to A.

For an upper bound of the second-largest eigenvalue
λABC

2 of Ω̃ABC
(6) , we propose:

λABC
2 (θA, θB, θC

) ≤
1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

) . (121)

Here, ∆θAjA
,θBjB

,θCjC
is similarly defined as in (69), being

the sum of absolute value of the angle touples of
the at △ABC. For a proof of this upper bound, the
interested reader may be referred to A.

As for bounding (116), a numerical analysis may be
conducted. Due to a lack of computational resource

to directly evaluate a bound, we leave this task to the
reader. At this point, we want to draw attention to
the difference in CPTP maps in the arguments of the
purified distance, but equality in the quantum state the
maps are applied to. This indicates that this numerical
task may be solved within the realms of semi-definite
programming, which is a numerical technique being
treated in [51] for instance. Within this work, we will
leave this constant B open and conjecture that it takes
a similar quadratically scaling form as the bound of
(83).
As shown in A, the lower bound on the total amount
of rounds K to verify state accuracy with significance
level δ is given as

K ≥
ln δ

ln
⎛

⎝
1 − 1

2
(
√

3
5
ε − (

√
24
5

(B + C
√

3
) +

√
8

135
)∆)

2

+ 4
135

∆2
⎞

⎠

. (122)

As a result, the minimum number of rounds K for
verifying a six-qbit two triangle quantum state with

state accuracy ε and measurements with measurement
precision ∆ simultaneously, given a significance level δ,
is:

K = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

ln δ

ln( 1
5
(3 +

√
1 + 3 cos2 8

6
∆))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

;

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

ln δ

ln
⎛

⎝
1 − 1

2
(
√

3
5
ε − (

√
24
5

(B + C
√

3
) +

√
8

135
)∆)

2

+ 4
135

∆2
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(123)

VIII. CONCLUSION

In this work, we have demonstrated how a novel
improved method for quantum state and measurement
verification, introduced by Yamasaki et.al. in [52], may
be generalized from a single triangular quantum state
case to the a six-qbit two-triangle quantum state case.
We have demonstrated how this method states as
an improvement of state-of-the-art robust self-testing
protocols in terms of being able to simultaneously
verify measurements and the quantum state with
a quadratically lower amount of necessary rounds.
Furthermore, we pointed out that our method may be
applied to more general experimental scenarios, since
it does not require i.i.d statistics. Moreover, within
this method, measurement devices may be viewed as
stable, since external noise can always be accounted

to act on the state, which results in a better scalability
of a possible implementation into a MBQC.

The research conduced here has opened several inter-
esting questions that we leave for future investigations.
It is unknown if this protocol was open to further
generalizations, the most promising being a unprece-
dented noise-receptive quantum state verification pro-
tocol for hypergraph states, especially for the resource
state of Yamasaki et.al. fault-tolerant MBQC of [53].
We conjecture that there might be a possibility of fur-
ther improvement of the protocol, using insights of the
quantum relative entropic behaviour of quantum graph
states under CPTP maps, which we gave an unfinished
first idea scheme in A.
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Appendices
Appendix A: Pauli-Z deletion property

Proof of II.1.

P i(Z;mZ)
∣G⟩ =

= P i(Z;mZ)∏
{i,j ∈N (i)}∈E

(P i(Z; 0) ⊗ Idj+ P i(Z; 1) ⊗Z
j
) ∣+⟩

i
⊗

⊗ ∣G ∖ i⟩

Now, ∣G′⟩ depends on mZ with both results having the
same probability p(mZ) = 1

2
. Using the definition of

projectors P i
(Z;mZ)

2 = P i
(Z;mZ)

and orthogonality of
projectors onto their respective eigenspaces, ∣G′⟩ can
be written as:

∣G′⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
√

2
(∣0⟩

i
⊗ ∣G ∖ i⟩) if mZ = 0 or

1
√

2
(∣1⟩

i
⊗ZN (i) ∣G ∖ i⟩) if mZ = 1,

which proofs (II.1).

Note that a similar proof can be found in [17].

Appendix B: From interaction picture to stabilizer
formalism

Consider

∏
{a,b}∈E

UabX
u
⊗ Id =

= ∏
{u,v ∈N (u)}∈E

∏
E∋{e,j}∖{u,v ∈N (u)}

Uej UuvX
u
⊗ Id.

(124)

The tensor product Xu ⊗ Id indicates that one Pauli
measurement is being conducted on one singular ar-
bitrary vertex u ∈ V . (To be precise, Id ≡ IdV ∖{u},
but we will not use this to avoid cluttered notation. In
the following, Id will denote the tensor product of the
identity operators on the vertices not explicitly written
down otherwise.) Using (5), we get

∏
{a,b}∈E

UabX
u
⊗ Id =∏
{u,v ∈N (u)}∈E

∏
E∋{e,j}∖{u,v ∈N (u)}

UejX
u
⊗Zv ⊗ IdUuv.

Therefore, reusing the commutation relations of (5) for
each factor Uuv, v ∈ N (u) in (124), we can show that

[41]

∏
{a,b}∈E

UabX
u
⊗ Id = (Xu

⊗⊗
v ∈N (u)

Zv)⊗ Id ∏
{a,b}

Uab, (125)

which further on implies that

(Xu
⊗⊗
v ∈N (u)

Zv)⊗ Id ∣G⟩ = ∏
{a,b}

UabX
u
∣+⟩

V
=

= ∏
{a,b}

Uab ∣+⟩
V
= ∣G⟩ ,

(126)

where the second equality follows from the fact that
∣+⟩

u is an eigenstate of Xu (For the rest of the work,
the tensor product of the identity operator above will
be avoided to simplify notation).

Appendix C: Measurement precision bound

We want to find an upper bound of

Tr (Ω̃ABC
(6) ρ̃6) . (127)

As argued in VI B 1, finding an upper bound of (127) is
equivalent to finding the largest eigenvalue of Ω̃ABC

(6) .
As mentioned in VII C, this may be achieved by obtain-
ing the spectral norm of Ω̃ABC

(6) .
The spectral norm is a unitarily invariant matrix norm
[19]. Hence, for any unitary matrix U ,

∥UAU †
∥

op
=∥A∥op . (128)

Additionally, before going into the evaluation of the
largest eigenvalue bound, let us recall that the ma-
trix norm of a Kronecker product of matrices factorizes
[19]:

∥O1 ⊗O2 ⊗O3∥ =∥O1∥∥O2∥∥O3∥ . (129)

and that the action of any operator A ∈ L(H) is
upper-bounded by its largest eigenvalue (see also (73)):

∀v ∈H ∶ Av ≤ λmax (A)1Hv⇔ A ≤ λmax (A)1H.
(130)

Note that (130) indicates that the spectral norm is a
monotonically increasing functional, i.e.

∥A∥op ≤∥B∥op ⇔ A ≤ B. (131)

With (128) and (129) and (130) in mind, we may cal-
culate the largest eigenvalue of the (imperfect) verifi-
cation operator Ω̃ABC

(6) on the subtriangle △ABC as:

λmax (Ω̃ABC
(6) ) =∥Ω̃ABC

∣mZ=0 ⊗ P̃
D
(Z; 0) ⊗ IdE

⊗ IdF
+ Ω̃ABC

∣mZ=1 ⊗ P̃
D
(Z; 1) ⊗ IdE

⊗ IdF
∥

op
≤ (132)

≤∥λmax (Ω̃ABC
∣mZ=0)1H ⊗ P̃D

(Z; 0) ⊗ IdE
⊗ IdF

+ λmax (Ω̃ABC
∣mZ=1)1H ⊗ P̃D

(Z; 1) ⊗ IdE
⊗ IdF

∥
op

= (133)

=∥Ω̃ABC
∣mZ=0/1∥op

(∥P̃D
(Z; 0) + P̃

D
(Z; 1)∥op

) =∥Ω̃ABC
∣mZ=0/1∥op

≤
1

5

⎛
⎜
⎝

3 +

√

1 + 3 cos2
8

3
∆ABC

⎞
⎟
⎠

(134)

Here, the lhs of (134) results from the unitary invari-
ance of the spectral norm and the completeness rela-

tion of projection operators, whereas the upper bound
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on the rhs may be argued in VII C.
To bound the measurement precision ∆ABC on the
subgraph triangle △ABC given the measurement pre-
cision ∆ABCDEF on the the graph state ρ̃ABCDEF as-
sociated with (6), we may recall (66) in the six-qbit
two-triangle case, which reads as:

1

4
∑

jA,...,jF

p(jA, . . . , jF)(∣θ
A
jA ∣+⋅ ⋅ ⋅+∣θ

F
jF ∣) ≥ ∆A...F. (135)

We note that at least one of the following inequalities
must hold:

1

4
∑

jA,...,jF

p (jA, . . . , jF) (∣θ
A
jA ∣ + ∣θB

jB ∣ + ∣θC
jC ∣) ≥

∆A...F

2

(136)

or

1

4
∑

jA,...,jF

p (jA, . . . , jF) (∣θ
D
jD ∣ + ∣θE

jE ∣ + ∣θF
jF ∣) ≥

∆A...F

2
.

(137)
As both inequalities may be equally likely assumed, we
may reduce the further analysis to investigating only
one of them. This may be done without loss of gen-
erality, recalling the verification method presented in
VII C that states that both subgraph triangle state are
tested at random. Therefore, by the means of exem-
plification, let us investigate the case where (136) is
true. The probability distribution p (jA, . . . , jF) fac-
torizes. This can be seen by recalling the definition of
p (jA, . . . , jF) in (63):

p (jA, . . . , jF) = Tr
⎛

⎝
⊗
jA

⋅ ⋅ ⋅⊗
jF

ΠjA ⊗ ⋅ ⋅ ⋅ ⊗ΠjF ρ̃
ABCDEF⎞

⎠
= (138)

= Tr
⎛

⎝
⊗
jA

⊗
jB

⊗
jC

ΠjA ⊗ΠjB ⊗ΠjC ρ̃
ABCDEF⎞

⎠
Tr

⎛

⎝
⊗
jD

⊗
jE

⊗
jF

ΠjD ⊗ΠjE ⊗ΠjF ρ̃
ABCDEF⎞

⎠
= (139)

= Tr
⎛
⎜
⎝
NθDjD

⎛

⎝
⊗
jA

⊗
jB

⊗
jC

ΠjA ⊗ΠjB ⊗ΠjC ρ̃
A...F⎞

⎠

⎞
⎟
⎠

Tr
⎛
⎜
⎝
NθCjC

⎛

⎝
⊗
jD

⊗
jE

⊗
jF

ΠjD ⊗ΠjE ⊗ΠjF ρ̃
A...F⎞

⎠

⎞
⎟
⎠
= (140)

= Tr
⎛

⎝
⊗
jA

⊗
jB

⊗
jC

ΠjA ⊗ΠjB ⊗ΠjC ρ̃
ABC⎞

⎠
Tr

⎛

⎝
⊗
jD

⊗
jE

⊗
jF

ΠjD ⊗ΠjE ⊗ΠjF ρ̃
DEF⎞

⎠
= (141)

= ∑
jA,jB,jC

p (jA, jB, jC) ∑
jD,jE,jF

p (jD, jE, jF) , (142)

where (139) comes from the trace-factorization-
property of Kronecker products and equality in (141)

comes from N
θ
C/D
jC/D

( ⋅ ) of (96) and (97) being trace-

preserving. As a result, we may rewrite (136) (and
similarly (137)) as:

1

4
∑

jA,...,jF

p (jA, . . . , jF) (∣θ
A
jA ∣ + ∣θB

jB ∣ + ∣θC
jC ∣) =

=
1

4
∑

jA,jB,jC

p (jA, jB, jC) (∣θA
jA ∣ + ∣θB

jB ∣ + ∣θC
jC ∣)

=1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
jD,jE,jF

p (jD, jE, jF) ≥ ∆ABC ≥
∆ABCDEF

2
.

(143)

As a result, we may express (134) by the means of the
given measurement precision ∆ABCDEF as:

λmax (Ω̃ABC
(6) ) ≤

1

5

⎛
⎜
⎝

3 +

√

1 + 3 cos2
8

6
∆ABCDEF

⎞
⎟
⎠

(144)

Appendix D: Lower bound of (115) and (118)

Our goal is to find an lower bound of (115). Reformu-
lating this in terms of fidelity and having in mind that
both subtriangle graph states associated with △ABC

and △DEF are being examined, we may reformulate
the task to finding:

max
ρ̃
(6)
jA,jB,jC,jD,jE,jF

[F 2
(NθDjD=0(ρ̃

(6)
jA,...,jF

), ∣GABC
⟩ ⟨GABC

∣) ;F 2
(NθCjC=0(ρ̃

(6)
jA,...,jF

), ∣GDEF
⟩ ⟨GDEF

∣)] . (145)

Starting from the six-qbit two-triangle graph state
with underlying mathematical graph G(V,E) being de-

picted in Fig. 6, we may construct a complete set of
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mutually orthonormal basis states consisting of general
six-qbit graph states {∣ψk⟩ ⟨ψl∣}k,l

. Let us consider
the inner product of stabilizer states (as discussed in
[1] f.e.). Two stabilizer states ∣G⟩ and ∣G′⟩ are or-
thonormal if their set of stabilizer operators consists of
the same Pauli operator tensor products, but carry an
opposite sign. Furthermore, if a graph state ∣G⟩ ∈ H

undergoes a unitary transformation ∣G⟩ ↦ U ∣G⟩ for
U ∈ L (H) being a unitary operator, the set of stabi-
lizers for the final graph state ∣G⟩

′
= U ∣G⟩ transforms

as:

∣G⟩
′
= U ∣G⟩⇒ {Sv

′
}
v′∈V

= U {Sv}v∈V U
† (146)

Keeping this in mind, consider a graph state ∣G⟩ con-
sisting of of ∣V ∣ = n qbits. If we applied a Pauli-Zv uni-
tary transformation on one of qbits located at v ∈ V
of the underlying mathematical graph, the resulting
graph state ∣G⟩

′
= Zv ∣G⟩ is orthonormal to ∣G⟩. This

can be seen by recalling the anti-commutation rela-
tion between the Pauli-X operator in Sv and the ap-
plied Pauli-Z transformation, leading to a difference
in the sign within the respective stabilizer groups and,
hence, to orthonormality. Alternatively, without hav-
ing to keep [1] in mind, we may recall the interac-
tion picture defintion of stabilizer states of II.1 and the
commutation relation between CZ-gates and Pauli-Z
matrices (6):

Zv ∣G⟩ = Zv ∏
{i,j}∈E

Uij ∣+⟩
V
= ∏
{i,j}∈E

UijZ
v
∣+⟩

V
.

Note that Z ∣+⟩ = ∣−⟩. This results in:

⟨ ∏
{i,j}∈E

Uij(+)
V
∣Zv ∣ ∏

{i,j}∈E

Uij(+)
V
⟩ = 0.

This can be understood in different ways. On the one
side, the expectation value ⟨Z⟩ = 0, on the other side
∣+⟩ and ∣−⟩ are orthonormal, leading to the linear inde-
pendence of the respective graph states.
Using this fact, we may construct the set of basis states
by applying Zv to each v ∈ V and forming a set out of
the resulting states.
In our case, we may define our basis states as following:
For kA, kB, kC, kD, kE, kF ∈ {0,1}, define

∣ψkA,kB,kC,kD,kE,kF⟩ ∶=

∶= (ZkAA ⊗ZkBB ⊗ZkCC ⊗ZkDD ⊗ZkEE ⊗ZkFF ) ∣G(6)⟩ ,

(147)
where ρABCDEF = ∣G(6)⟩ ⟨G(6)∣ denotes the den-
sity matrix associated with our theoretical six-qbit
two-triangle graph state, Z0 = 1 and Z1 = Z.
With this notation, ∣ψ0,0,0,0,0,0⟩ = ∣G(6)⟩ equals
the theoretical state, and if the subscripts k ∶=

{kA, kB, kC, kD, kE, kF} of ∣ψk⟩ include kv = 1, Z is
applied to the qbit associated with v ∈ V . We use a
set

{∣ψkA,kB,kC,kD,kE,kF⟩ ∶ kA, . . . , kF ∈ {0,1}} (148)

of 64 orthonormal states as a basis for any six-qubit
graph state Ψ̃(6) as:

Ψ̃(6) = ∑
kA,...,kF∈{0,1}

∑
lA,...,lF∈{0,1}

αkA,kB,kC,kD,kE,kF,lA,lB,lC,lD,lE,lF ∣ψkA,kB,kC,kD,kE,kF⟩ ⟨ψlA,lB,lC,lD,lE,lF ∣ , (149)

where

αkA,kB,kC,kD,kE,kF,lA,lB,lC,lD,lE,lF ∶=

∶= ⟨ψkA,kB,kC,kD,kE,kF ∣ Ψ̃(6) ∣ψlA,lB,lC,lD,lE,lF⟩ .

(150)
Let us decompose ρ̃(6)jA,jB,jC,jD,jE,jF in a basis of pure
six-qbits triangle graph states:

ρ̃
(6)
jA,jB,jC,jD,jE,jF

=∑
k,l

αk,l ∣ψk⟩ ⟨ψl∣ , (151)

where k, l should be understood as k∪l. Due to similar
considerations as in (80), we can deduce the normaliz-
ability restriction following from the fidelity of

F 2
(ρ̃
(6)
jA,jB,jC,jD,jE,jF

, ∣G(6)⟩ ⟨G(6)∣) =

= ⟨G(6) ∣ ρ̃
(6)
jA,jB,jC,jD,jE,jF

∣G(6)⟩ =

= 1 − ε2jA,jB,jC,jD,jE,jF

(152)

as

α0,...,0 = 1 − ε2jA,jB,jC,jD,jE,jF . (153)

Note that rewriting the fidelity in form of an inner prod-
uct in (152) is justified by the purity of ∣G(6)⟩ ⟨G(6)∣

as argued in 30. As a result of (152), due to normal-
ization restriction of density states, this indicates the
following:

∑
k,l

αk,l − α0,...,0 = ε
2
jA,jB,jC,jD,jE,jF . (154)

Keeping this in mind, let us revisit (77):

P (NθDjD=0 (ρ̃
(6)
jA,jB,jC,jD,jE,jF

) , ∣GABC
⟩ ⟨GABC

∣) ,

(155)
where we used the fact that
NθDjD=0 (∣GABCDEF⟩ ⟨GABCDEF∣) reduces to the

single triangle graph state ρABC as argued in VII D.
Using the basis expansion of (151), we may rewrite
the fidelity terms of (145) as:

⟨GABC
∣NθDjD=0(ρ̃

(6)
jA,jB,jC,jD,jE,jF

) ∣GABC
⟩ =

= ⟨GABC

RRRRRRRRRRRRRR

NθDjD=0

⎛

⎝
∑
k,l

αk,l ∣ψk⟩ ⟨ψl∣
⎞

⎠

ABC RRRRRRRRRRRRRR

GABC
⟩ =

=∑
k,l

αk,l ⟨G
ABC

∣NθD
D
=0 (∣ψk⟩ ⟨ψl∣)

ABC
∣GABC

⟩

(156)
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⟨GDEF
∣NθCjC=0(ρ̃

(6)
jA,jB,jC,jD,jE,jF

) ∣GDEF
⟩ =

= ⟨GDEF

RRRRRRRRRRRRRR

NθDjD=0

⎛

⎝
∑
k,l

αk,l ∣ψk⟩ ⟨ψl∣
⎞

⎠

DEF RRRRRRRRRRRRRR

GDEF
⟩ =

=∑
k,l

αk,l ⟨G
DEF

∣NθC
C
=0 (∣ψk⟩ ⟨ψl∣)

DEF
∣GDEF

⟩ .

(157)

As a result, the analysis reduces to bounding:

⟨GABC
∣NθDjD=0 (∣ψk⟩ ⟨ψl∣)

ABC
∣GABC

⟩ , (158)

⟨GDEF
∣NθCjC=0 (∣ψk⟩ ⟨ψl∣)

DEF
∣GDEF

⟩ . (159)

In the following, we will present an exemplary
analysis of different cases of ρ̃

(6)
jA,jB,jC,jD,jE,jF

that represent the entirety of all 64 terms
occurring in NθD

D
=0(ρ̃

(6)
jA,jB,jC,jD,jE,jF

) and

NθC
C
=0(ρ̃

(6)
jA,jB,jC,jD,jE,jF

). We will analyse off-diagonal
terms, which should be understood as terms where
k ≠ l and diagonal terms, where k = l. As always, we
will exemplify the analysis of NθC

C
=0 (∣ψk⟩ ⟨ψl∣)

DEF
,

which corresponds to the subtriangle △DEF, by an
equivalent analysis on △ABC.

– Trivial case ρ̃(6)jA,jB,jC,jD,jE,jF = ρABCDEF:

NθDjD=0(ρ̃
(6)
jA,jB,jC,jD,jE,jF

) = ρABC. (160)

– Diagonal terms, Z acting on △ABC:

NθDjD=0 (ZAρ
(6)
jA,jB,jC,jD,jE,jF

ZA
) =

= TrDEF((1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)ZAρ

(6)
jA,jB,jC,jD,jE,jF

ZA
(1

ABC
⊗ M̃D

0∣1,jD
(0)⊗ 1EF

)
†
+

+ (1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)ZAρ

(6)
jA,jB,jC,jD,jE,jF

ZA
(1

AB
⊗OC

jC ⊗ M̃
D
1∣1,jD

(0)⊗ 1EF
)
†
) = (161)

= TrDEF

⎛
⎜
⎝
(1

ABC
⊗ 1

D
⊗ 1

EF
)ZA

(
ρjA,jB,jC ∣0

2
⊗ ρjD ∣0 ⊗ ρjE,jF)Z

A
(1

ABC
⊗ 1

D
⊗ 1

EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ 1

D
⊗ 1

EF
)ZA

(
ρjA,jB,jC ∣1

2
⊗ ρjD ∣1 ⊗ ρjE,jF)Z

A
(1

AB
⊗OC

jC ⊗ 1
D
⊗ 1

EF
)
†⎞
⎟
⎠
= (162)

= ZA
ρjA,jB,jC ∣0

2
ZA Tr(1D

⊗ 1
EFρjD ∣0 ⊗ ρjE,jF1

D
⊗ 1

EF
)+

+ZA
⊗ 1

B
⊗OC

jC

ρjA,jB,jC ∣1
2

ZA
⊗ 1

B
⊗ (OC

jC)
†

Tr(1D
⊗ 1

EFρjD ∣1 ⊗ ρjE,jF1
D
⊗ 1

EF
) =

= ZAρjA,jB,jCZ
A. (163)

– Diagonal terms, Z acting on △DEF:

NθDjD=0 (ZEρ
(6)
jA,jB,jC,jD,jE,jF

ZE
) =

= TrDEF((1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)ZEρ

(6)
jA,jB,jC,jD,jE,jF

ZE
(1

ABC
⊗ M̃D

0∣1,jD
(0)⊗ 1EF

)
†
+

+ (1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)ZEρ

(6)
jA,jB,jC,jD,jE,jF

ZE
(1

AB
⊗OC

jC ⊗ M̃
D
1∣1,jD

(0)⊗ 1EF
)
†
) = (164)

= TrDEF

⎛
⎜
⎝
ZE

(
ρjA,jB,jC ∣0

2
⊗ ρjD ∣0 ⊗ ρjE,jF)Z

E
+

+ (1
AB

⊗OC
jC ⊗ 1

D
⊗ZE

⊗ 1
F
)(
ρjA,jB,jC ∣1

2
⊗ ρjD ∣1 ⊗ ρjE,jF)(1

AB
⊗OC

jC ⊗ 1
D
⊗ZE

⊗ 1
F
)
† ⎞
⎟
⎠
= (165)

=
ρjA,jB,jC ∣0

2
Tr (1D

⊗ZE
⊗ 1

FρjD ∣0 ⊗ ρjE,jF1
D
⊗ZE

⊗ 1
F
)+

+ 1
AB

⊗OC
jC

ρjA,jB,jC ∣1
2

1
AB

⊗ (OC
jC)

†
Tr (1D

⊗ 1
EFρjD ∣1 ⊗ ρjE,jF1

D
⊗ 1

EF
) = ρjA,jB,jC (166)
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– Off-diagonal terms, Z acting on △ABC:

NθDjD=0 (ZAρ
(6)
jA,jB,jC,jD,jE,jF

) =

= TrDEF((1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)ZAρ

(6)
jA,jB,jC,jD,jE,jF

(1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)ZAρ

(6)
jA,jB,jC,jD,jE,jF

(1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)
†
) = (167)

= TrDEF

⎛
⎜
⎝
(1

ABC
⊗ 1

D
⊗ 1

EF
)ZA

(
ρjA,jB,jC ∣0

2
⊗ ρjD ∣0 ⊗ ρjE,jF)(1

ABC
⊗ 1

D
⊗ 1

EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ 1

D
⊗ 1

EF
)ZA

(
ρjA,jB,jC ∣1

2
⊗ ρjD ∣1 ⊗ ρjE,jF)(1

AB
⊗OC

jC ⊗ 1
D
⊗ 1

EF
)
†⎞
⎟
⎠
= (168)

= ZA
ρjA,jB,jC ∣0

2
Tr (1D

⊗ 1
EFρjD ∣0 ⊗ ρjE,jF1

D
⊗ 1

EF
)+

+ZA
⊗ 1

B
⊗OC

jC

ρjA,jB,jC ∣1
2

ZA
⊗ 1

B
⊗ (OC

jC)
†

Tr(1D
⊗ 1

EFρjD ∣1 ⊗ ρjE,jF1
D
⊗ 1

EF
) = ZAρjA,jB,jC (169)

– Off-diagonal terms, Z acting on △DEF:

NθDjD=0 (ZEρ
(6)
jA,jB,jC,jD,jE,jF

) = (170)

= TrDEF((1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)ZEρ

(6)
jA,jB,jC,jD,jE,jF

(1
ABC

⊗ M̃D
0∣1,jD

(0)⊗ 1EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)ZEρ

(6)
jA,jB,jC,jD,jE,jF

(1
AB

⊗OC
jC ⊗ M̃

D
1∣1,jD

(0)⊗ 1EF
)
†
) = (171)

= TrDEF

⎛
⎜
⎝
(1

ABC
⊗ 1

D
⊗ 1

EF
)ZE

(
ρjA,jB,jC ∣0

2
⊗ ρjD ∣0 ⊗ ρjE,jF)(1

ABC
⊗ 1

D
⊗ 1

EF
)
†
+

+ (1
AB

⊗OC
jC ⊗ 1

D
⊗ 1

EF
)ZE

(
ρjA,jB,jC ∣1

2
⊗ ρjD ∣1 ⊗ ρjE,jF)(1

AB
⊗OC

jC ⊗ 1
D
⊗ 1

EF
)
†⎞
⎟
⎠
= (172)

=
ρjA,jB,jC ∣0

2
Tr (1D

⊗ZE
⊗ 1

FρjD ∣0 ⊗ ρjE,jF1
D
⊗ 1

EF
)+

+ 1
AB

⊗OC
jC

ρjA,jB,jC ∣1
2

1
AB

⊗ (OC
jC)

†
Tr(1D

⊗ZE
⊗ 1

FρjD ∣1 ⊗ ρjE,jF1
D
⊗ 1

EF
) = 0. (173)

(160) corresponds to a case where the experimen-
tal state would yield no imperfections and, therefore,
would equal the theoretical six-qbit two triangle graph
state.
For clarifying the tensor product state of (162) and
(164), for example, recall the deletion property of II.1
and its depiction in Fig. (4) and Fig. (5).
Note that this property holds for Jordan measurements
and imperfect states as well. This can be justified by
acknowledging how imperfections may be modelled:
Imperfections may be interpreted as the result of en-
vironmental influences. As stated by Nielsen et.al. in
[27], the environment may be modelled in an operator
sum convention:

ρ̃
(6)
jA,jB,jC,jD,jE,jF

=∑
k

Ekρ
(6)
jA,jB,jC,jD,jE,jF

E†
k; (174)

M̃D
0/1∣1,jD

(θD
jD) =∑

i

EiM
D
0/1∣1,jD

(0)E†
i , (175)

where Ek = ⟨ek ∣U ∣ek⟩ are notions of environmen-
tal influence, where U represents a unitary inter-
action between the environment and the theoretical
state/perfect measurement and {∣ek⟩}k is an orthogo-
nal complete set of basis vectors representing the envi-
ronment. Let us remark that orthogonality here is not
a fictitious restriction, but can always be achieved via
Gramm-Schmidt process. Henceforth, EkE

†
j = δkj1.

Up to a sufficient approximation, let us assume that
the state and the measurements experience the same
environmental interaction/imperfections. [32] Then,



25

M̃D
0/1∣1,jD

(θD
jD)ρ̃

(6)
jA,jB,jC,jD,jE,jF

(M̃D
0/1∣1,jD

(θD
jD))

†
= (176)

= ∑
i,j,k

EiM
D
0/1∣1,jD

(0)E†
iEjρ

(6)
jA,jB,jC,jD,jE,jF

E†
j (EkM

D
0/1∣1,jD

(0)E†
k)

†
= (177)

=∑
i

EiM
D
0/1∣1,jD

(0)ρ
(6)
jA,jB,jC,jD,jE,jF

MD
0/1∣1,jD

(0)E†
i =∑

i

Ei (
ρjA,jB,jC ∣0/1

2
⊗ ρjD ∣0/1 ⊗ ρjE,jF)E

†
i = (178)

=
ρ̃jA,jB,jC ∣0/1

2
⊗ ρ̃jD ∣0/1 ⊗ ρ̃jE,jF . (179)

(173) comes from the tracelessness of Pauli operators.
The careful reader might wonder if it were nec-
essary to, additionally, differentiate whether the
Pauli-Z transformations that are applied on qbits
associated with vertices that may undergo Pauli-Z
projections according to the generalized verification
protocol (VII B 1), since they may act as special
cases. Nevertheless, note the commutation relation
[ZD,MD

0/1∣1,jD
(0)] = 0. Therefore, aboves analysis

applies to these cases as well.

Using this, let us revisit the fidelities (158) and (159).
We differentiate between the aforementioned different
cases:

– Trivial case of (160):
Here, the experimental state and the theo-
retical state are equal. Thus, its expan-
sion in the basis of (151) is trivial and the

fidelity F 2 (ρ̃
(6)
jA,jB,jC,jD,jE,jF

, ∣G(6)⟩ ⟨G(6)∣) =

1 ⇒ εjA,jB,jC,jD,jE,jF = 0. This stands in con-
tradiction to our initial assumption of (104) that
restricts εjA,jB,jC,jD,jE,jF to be strictly positive.
As a result, this case will not be examined any
further.

– Fidelity of diagonal terms on △ABC of (163):

F 2
(ZAρjA,jB,jCZ

A, ∣GABC
⟩ ⟨GABC

∣) = (180)

= ⟨GABC
∣ZA

∣GABC
⟩
2
= 0. (181)

Here, (181) can be seen as a result of aforemen-
tioned orthogonality between graph states.

– Fidelity of diagonal terms on △DEF of (166):

F 2
(ZDρjA,jB,jCZ

D, ρABC
) = (182)

= F 2
(ZDρjA,jB,jC ⊗ 1

DEFZD, ρABC
⊗ 1

DEF
) =

(183)

= F 2
(ρjA,jB,jC , ρ

ABC
) = 1. (184)

Here, we embed ρABC in HABCDEF ∋ ρABCDEF,
which does not change any physical properties of
the state. Subsequently, we used the involutority
of Pauli matrices to obtain the result.

– Fidelity of off-diagonal terms on △ABC of (169):

F 2
(ZAρjA,jB,jC , ∣G

ABC
⟩ ⟨GABC

∣) = (185)

= ⟨GABC
∣ZA

∣GABC
⟩ ⟨GABC

∣GABC
⟩ = 0 (186)

As a result, we notice that the expansion of the fidelity
on the rhs of

F 2
(NθDjD=0(ρ̃

(6)
jA,...,jF

), ∣GABC
⟩ ⟨GABC

∣) =

=∑
k,l

αk,l ⟨G
ABC

∣NθD
D
=0 (∣ψk⟩ ⟨ψl∣)

ABC
∣GABC

⟩ =

= α0,...,0 + ∑
k,l

k≠{0,...,0}
l≠{0,...,0}

αk,l

(187)
is non-zero for diagonal terms on △DEF only. Similar
calculations indicate the same for

F 2
(NθCjC=0(ρ̃

(6)
jA,...,jF

), ∣GDEF
⟩ ⟨GDEF

∣) =

=∑
k,l

αk,l ⟨G
DEF

∣NθC
C
=0 (∣ψk⟩ ⟨ψl∣)

DEF
∣GDEF

⟩ ,

(188)
namely, that the expansion terms of the fidelity on
△DEF are non-zero for diagonal terms on △ABC. As
a result, the normalization condition of (154) may be
rewritten as:

∑
k,l

αk,l = ∑
(k,l)ABC

α(k,l)ABC
+ ∑
(k,l)DEF

α(k,l)DEF
= ε2jA,...,jF ,

(189)
where

(k, l)ABC ∶= {k, l ∶ i ∈ {A,B,C} ∶ ki = li; i ∉ {A,B,C} ∶ ki = li = 0} ∖ {k = l = {0, . . . ,0}} ; (190)

(k, l)DEF ∶= {k, l ∶ i ∈ {D,E,F} ∶ ki = li; i ∉ {D,E,F} ∶ ki = li = 0} ∖ {k = l = {0, . . . ,0}} . (191)
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Note that this restriction indicates that both sum-
mands in (189), representing the fidelities on the in-
dividual subtriangles, are indirectly proportional and
upper bounded as:

∑
(k,l)ABC

α(k,l)ABC
≤
ε2jA,jB,jC,jD,jE,jF

2
, (192)

∑
(k,l)DEF

α(k,l)DEF
≤
ε2jA,jB,jC,jD,jE,jF

2
. (193)

Using the expansion of (187) (similarly for the fidelity
on△DEF), (192) and (193) indicate that (145) reaches
its maximum at:

max
ρ̃
(6)
jA,jB,jC,jD,jE,jF

[F 2
(NθDjD=0(ρ̃

(6)
jA,...,jF

), ∣GABC
⟩ ⟨GABC

∣) ;F 2
(NθCjC=0(ρ̃

(6)
jA,...,jF

), ∣GDEF
⟩ ⟨GDEF

∣)] =

= 1 −
ε2jA,jB,jC,jD,jE,jF

2
.

(194)

Using (31), the upper bound on the fidelities yields a lower bound on the purified distance of (115) (and
(118)) as:

P (NθDjD=0(ρ̃
(6)
jA,...,jF

), ∣GABC
⟩ ⟨GABC

∣) ≤

¿
Á
Á
ÁÀ1 −

⎛

⎝
1 −

ε2jA,jB,jC,jD,jE,jF
2

⎞

⎠
=
εjA,jB,jC,jD,jE,jF

√
2

,

P (NθCjC=0(ρ̃
(6)
jA,...,jF

), ∣GDEF
⟩ ⟨GDEF

∣) ≤

¿
Á
Á
ÁÀ1 −

⎛

⎝
1 −

ε2jA,jB,jC,jD,jE,jF
2

⎞

⎠
=
εjA,jB,jC,jD,jE,jF

√
2

.

(195)

Appendix E: Upper bound of λABC
2

Following [57], the second-largest eigenvalue of a ver-
ification operator Ω without imperfections can be ex-
pressed as:

λ2 =∥Ω − Pmax∥op . (196)

Here Pmax is the projector onto the eigenspace associ-
ated with the largest eigenvalue of Ω and∥ ⋅ ∥op denotes
the spectral norm of (100).

We propose this property still holds similarly in the case
of imperfect verification operators:

λABC
2 =∥Ω̃ABC

(6) − λmax(Ω̃
ABC
(6) )Pmax∥

op
. (197)

Note that the spectrum of both conditional operators,
Ω̃ABC
∣mZ=0 and Ω̃ABC

∣mZ=1 is equivalent. Then, using (197),
we may bound the second-largest eigenvalue as follow-
ing:

λABC
2 =∥(Ω̃ABC

∣mZ=0 ⊗ P̃
D
(Z; 0) ⊗ IdE

⊗ IdF
+ Ω̃ABC

∣mZ=1 ⊗ P̃
D
(Z; 1) ⊗ IdE

⊗ IdF
) − λmax (Ω̃ABC

(6) )Pmax∥
op

= (198)

=

XXXXXXXXXXXX

∑
i

λiPi ⊗ P̃
D
(Z; 0) ⊗ IdE

⊗ IdF
+∑

j

λjPj ⊗ P̃
D
(Z; 1) ⊗ IdE

⊗ IdF
− λmax (Ω̃ABC

(6) )Pmax

XXXXXXXXXXXXop

= (199)

=

XXXXXXXXXXXX

⎛

⎝
∑
i,j

λi (Pi ⊗ P̃
D
(Z; 0) + Pj ⊗ P̃

D
(Z; 1)) − λmax (Ω̃ABC

(6) )P ′
max

⎞

⎠
⊗ IdE

⊗ IdF

XXXXXXXXXXXXop

= (200)

=

XXXXXXXXXXXX

∑
i,j

λi−1 (Pi−1 ⊗ P̃
D
(Z; 0) + Pj−1 ⊗ P̃

D
(Z; 1))

XXXXXXXXXXXXop

= λ2 (Ω̃ABC
∣mZ=0,1) ≤

1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

) . (201)

Here, in (199), we expand the respective conditional
verification operators in their spectral form, in (200)

we write the tensor product in a compact form, using
the aforementioned equivalent spectrum of Ω̃ABC

∣mZ=0,1
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and we introduce Pmax = P ′
max ⊗ IdE

⊗ IdF. The lhs
of (201) comes from the fact that the tensor of (200)
associated with the largest eigenvalue is the same as
P ′

max and the rhs is a modified verrsion of (75), coming

from the difference of (93) and (53).

Appendix F: Minimum K for State Verification of ρ̃(6)

As a reminder, the task is to find an upper bound of:

Tr(Ω̃ABC
(6) NθDjD

(ρ̃
(6)
jA,jB,jC,jD,jE,jF

)) ≤ λABC
2 + (1 − λABC

2 )F 2
(∣ψ̃1⟩ ⟨ψ̃1∣

ABC
,NθDjD

(ρ̃
(6)
jA,...,jF

)) ≤ (202)

≤
1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

) +
⎛

⎝
1 −

1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

)
⎞

⎠
F 2

(∣ψ̃1⟩ ⟨ψ̃1∣
ABC

,NθDjD
(ρ̃
(6)
jA,...,jF

)) . (203)

As argumented in VII D, the fidelity

F 2 (∣ψ̃1⟩ ⟨ψ̃1∣
ABC

,NθDjD
(ρ̃
(6)
jA,...,jF

)) may be bounded

as:

F 2
(∣ψ̃1⟩ ⟨ψ̃1∣

ABC
,NθDjD

(ρ̃
(6)
jA,...,jF

)) ≤

≤ 1 −
⎛

⎝

εjA,jB,jC,jD,jE,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2

.

(204)

As a reminder, B is a conjectured constant that scales
quadratically as for the single-triangle case. Using this
and the fact, that the analysis is equivalent on both
triangles △ABC and △DEF, we may rewrite the upper
bound of (107) as:

Tr(Ω̃ABC;DEFρ̃ABCDEF
) = ∑

jA,...,jF

p(jA, . . . , jF)(Tr(Ω̃ABC
(6) NθDjD

(ρ̃
(6)
jA,...,jF

))) ≤ (205)

≤ ∑
jA,...,jF

p(jA, . . . , jF)
1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

)+ (206)

+ ∑
jA,...,jF

p(jA, . . . , jF)
⎛

⎝
1 −

1

5
(3 +

2

3
∆θAjA

,θBjB
,θCjC

)
⎞

⎠

⎛
⎜
⎝

1 −
⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠
= (207)

= 1 −

⎛
⎜
⎜
⎝

3

5

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)
⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠

⎞
⎟
⎟
⎠

+ (208)

+
2

15

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)∆θAjA
,θBjB

,θCjC

⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠

(209)

To evaluate (208), we look at:

1 −

⎛
⎜
⎜
⎝

3

5

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)
⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠

⎞
⎟
⎟
⎠

≤ (210)

≤ 1 −
⎛
⎜
⎝

3

5

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠

2
⎞
⎟
⎠
, (211)

where we used the condition of (106), and the factor- ization property of A and (143) with opposite direction,
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which is in line with (106). To evaluate (209), we calculate:

2

15

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)∆θAjA
,θBjB

,θCjC

⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠
≤ (212)

≤
4

15
∆

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)
⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

2
⎞
⎟
⎠
≤ (213)

≤
4

15
∆ABCDEF

⎛
⎜
⎝
∑

jA,...,jF

p(jA, . . . , jF)
⎛

⎝

εjA,...,jF
√

2
− (B +

C
√

3
)∆θAjA

,θBjB
,θCjC

⎞

⎠

⎞
⎟
⎠
≤ (214)

≤
4

15
∆ABCDEF

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠
. (215)

Here, we use a similar calculational scheme as in the
latter parts of [52], which is based on Cauchy-Schwarz-
inequality and, for, (214), we refer to

0 ≤
εjA,...,jF

√
2

− (B +
C
√

3
)∆θAjA

,θBjB
,θCjC

≤ 1, (216)

which comes from the fact that εjA,...,jF ≥

∆θAjA
,θBjB

,θCjC
, which is proven in [27].

This leads to an upper bound of:

Tr (Ω̃ABC;DEFρ̃ABCDEF
) ≤ (217)

≤ 1 −
⎛
⎜
⎝

3

5

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠

2
⎞
⎟
⎠
+ (218)

+
4

15
∆ABCDEF

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠
= (219)

= 1 −
1

2

⎛
⎜
⎝

√
6

5

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠

2
⎞
⎟
⎠
+ (220)

+
4

15
∆ABCDEF

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

− 2(B +
C
√

3
)∆ABCDEF

⎞

⎠
= (221)

= 1 −
3

10

⎛

⎝
∑

jA,...,jF

p(jA, . . . , jF)εjA,...,jF
⎞

⎠

2

+

√
72

5
∑

jA,...,jF

p(jA, . . . , jF)εjA,...,jF (B +
C
√

3
)∆ABCDEF− (222)

−
12

5
(B +

C
√

3
)

2

∆2
ABCDEF +

4

15
∆ABCDEF ∑

jA,...,jF

p(jA, . . . , jF)
εjA,...,jF

√
2

−
8

15
(B +

C
√

3
)∆2

ABCDEF = (223)

= 1 −
1

2

⎛
⎜
⎜
⎝

√
3

5
∑

jA,...,jF

p(jA, . . . , jF)εjA,...,jF −
⎛
⎜
⎝

√
24

5
(B +

C
√

3
) +

√
8

135

⎞
⎟
⎠

∆ABCDEF

⎞
⎟
⎟
⎠

2

+
4

135
∆2

ABCDEF ≤ (224)

≤ 1 −
1

2

⎛
⎜
⎜
⎝

√
3

5
εABCDEF −

⎛
⎜
⎝

√
24

5
(B +

C
√

3
) +

√
8

135

⎞
⎟
⎠

∆ABCDEF

⎞
⎟
⎟
⎠

2

+
4

135
∆2

ABCDEF. (225)

Here, in (225), we used the relation of (81). Recalling
the inequality for geometric and arithmetic means of

(61), we find a lower bound on necessary rounds K for
a significance level δ as
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Tr(Ω̃ABC;DEFρ̃ABCDEF
)
K
≤

⎛
⎜
⎜
⎜
⎝

1 −
1

2

⎛
⎜
⎜
⎝

√
3

5
ε −

⎛
⎜
⎝

√
24

5
(B +

C
√

3
) +

√
8

135

⎞
⎟
⎠

∆

⎞
⎟
⎟
⎠

2

+
4

135
∆2

⎞
⎟
⎟
⎟
⎠

K

≤ δ,

⇒K ≥
ln δ

ln
⎛

⎝
1 − 1

2
(
√

3
5
ε − (

√
24
5

(B + C
√

3
) +

√
8

135
)∆)

2

+ 4
135

∆2
⎞

⎠

.

(226)

Here, we have omitted the ABCDEF-subscripts for ∆
and ε, since they are clear from context.

Appendix G: Quantum Relative Entropy

Let S(ρ∥σ) denote the quantum relative entropy :

S(ρ∥σ) ∶= −Tr (ρ logσ) − S(ρ), (227)

where S(ρ) denotes von-Neumann entropy

S(ρ) ∶= −Tr(ρ log ρ). (228)

What is the motivation of considering quantum rela-
tive entropy when thinking quantum state verification?
Although it is well known that Fuchs-van-de-Graaf in-
equalties are tight, it has been shown that more in-
formation about the physical properties of the systems
involved in the fidelity estimations might lead to tight-
ening the bound. As shown in [11, 55], this additional
information should be maximum quantum relative en-
tropy. Since, within this work, Fuchs- van de Graaf-
inequalities have been used extensively to provide tight
bounds, we conjecture that further investigation would
lead to tighter bounds and hence to a lower number of
necessary rounds K for a significance level δ. Within
this chapter, we will present general considerations and
observations concerning quantum relative entropy.
We will start by finding a connection between the trace
distance of a decoded quantum state, (35), projective
trace-preserving measurements and quantum relative
entropy in case of positive or negative semi-definite
density matrices ρ̃ and ρB . Throughout this chapter,
ρB may thought of an embedding of a pure state ρ
into a larger Hilbert space H ∋ ρ̃, where the imperfect
state ρ̃ resides with D ∈ L (H)(compare (57)). In this
case, we note that quantum relative entropy provides
a lower bound for state-accuracy ε:

1

2
∥D(P̃θρ̃P̃θ − P̃0ρBP̃0)∥

1
≤ (229)

≤
1

2
Tr (∣P̃θρ̃P̃θ − P̃0ρBP̃0∣) = (230)

= Tr (Π (P̃θρ̃P̃θ − P̃0ρBP̃0)) ≤ (231)

≤ Tr (Π ∣P̃θρ̃P̃θ − P̃0ρBP̃0∣) ≤ (232)

≤
√

rk Π

√

Tr((P̃θρ̃P̃θ − P̃0ρBP̃0)
2
) ≤ (233)

≤
√

rk Π

√

Tr((P̃θρ̃P̃θ − P̃0ρBP̃0))
2

≤ (234)

≤ ±
√

rk Π Tr(P̃θρ̃P̃θ − P̃0ρBP̃0) ≤ (235)

≤
√

rk Π S(P̃0/θρBP̃0/θ∥P̃θ/0ρ̃P̃θ/0). (236)

(232) can be deduced from the identity ∣Tr(A) ∣ =

Tr ∣A∣ [5] for any Hermitian matrix A as well as the
Hölder duality of Schatten-norms [15, 27]:

Proposition A.1 (Hölder duality of Schatten-norms).
Let ρ and σ denote density matrices. Then,

∃Π2
= Π ∶ ∥ρ − σ∥1 = Tr (Π(ρ − σ)) . (237)

(233) comes from the Cauchy-Schwarz inequality for
Frobenius norms on positive matrices, (234) is true
for positive real discriminantes (it can also be seen as
an application of [54]) and (236) comes from Klein’s
inequality [7]:

Proposition A.2 (Klein’s inequality). Let A,B denote
density matrices. Then:

Tr (A −B) ≤ Tr (A (logA − logB)) = S(A∥B).
(238)

Note that a similar result, which is true for indefinite
matrices as well, is given in [2, 35]. Here, the au-
thors proved the following inequality (also known as
a variant of Csiszár- Kemperman-Kullback-Pinsker in-
equality [44]:

S (ρ∥σ) ≥
1

2
∥ρ − σ∥

2
1 (239)

As a reminder, an indefinite Hermitian matrix is a
matrix with both, positive and negative real eigen-
values. Let us considers the eigenvalues of ρ − ρ′,
where ρ denotes a pure state and ρ′ denotes a mixed
state. Recall that a pure states associated density
matrix is a singular matrix with only one non-zero
eigenvalue ∥ρ∥ = λmax = 1 and that a density matrix
associated with a mixed quantum state has more than
one non-negative eigenvalues, that are smaller than
one. Therefore, we note that ρ−ρ′ must be indefinite.
This indicates that in the realms of quantum state
verification, indefinite matrices are being investigated.
It can be shown that no explicit connection between
quantum relative entropy and the trace distance can
be made in that case:

1

2
∥ρ̃ − σ∥1 =

1

2
Tr (∣ρ̃ − σ∣) = (240)

=
1

2
Tr (Q + S) = TrS; (241)

TrS > Tr (S −Q) = −Tr (Q − S) = (242)

= −Tr (ρ − σ) = 0 ≥ −S (ρ∥σ) (243)

⇒
1

2
∥ρ̃ − σ∥1 ≥ −S (ρ∥σ) . (244)

In (241), we used the fact that we may rewrite ρ̃−σ =

Q − S, where Q,S denote positive matrices with re-
spective orthogonal support, a calculational technique
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being used in [27, 38] for instance. (Note that due to
Tr(ρ − σ) = 0 = Tr(Q − S)⇒ TrQ = TrS). Although
the result stands in no contradiction due to quantum
relative entropic positive semi-definiteness [8, 27], it
does not provide a clear connection between quantum
relative entropy and the trace distance of indefinite ma-
trices. Hence, for indefinite matrices, we decide to use
bounds in the form of (239) by taking the square-root
on both sides, for definite matrices though, we are able
to bound it further on with as shown above.
In the following, we want to investigate under what
circumstances quantum relative entropy might be de-
creasing under different projective quantum channels in

the respective slots of quantum relative entropy. For
this, recall the Kraus representation of CPTP projec-
tion measurements: Let K( ⋅ ) be a CPTP projection
measurement. Then, there exists projection operators
P , such that K( ⋅ ) takes the following form in the
Kraus representation [43]:

K(ρ) = PρP. (245)

In the following, we will assume this form and take the
projection operators to be Jordan operators P̃0 and P̃θ,
where the subscript indicates the respective angle in the
Jordan operator. Additionally, we assume that one of
the states, ρB is pure.
Investigation yields [33]:

S(P̃0ρBP0∥P̃θρ̃Pθ)
!
≤ S(ρB∥ρ̃) (246)

−Tr(P̃0ρBP̃0 log (P̃θρ̃P̃θ)) +Tr(P̃0ρBP̃0 log (P̃0ρBP̃0))
!
≤ −Tr (ρB log ρ̃) − S(ρB) (247)

−Tr(P̃0ρBP̃0 log (P̃θρ̃P̃θ)) +Tr(P̃0ρBP̃0 log (P̃0ρBP̃0))
!
≤ −Tr (ρB log ρ̃) (248)

Tr(P̃0ρBP̃0 log (P̃θρ̃P̃θ)) −Tr(P̃0ρBP̃0 log (P̃0ρBP̃0))
!
≥ Tr (ρB log ρ̃) (249)

Tr (P̃θP̃0ρBP̃0P̃θ log ρ̃)
!
≥ Tr (ρB log ρ̃) +Tr(P̃0ρBP̃0 log (P̃0ρBP̃0)) (250)

Tr (P̃θP̃0ρBP̃0P̃θ log ρ̃) −Tr (ρB log ρ̃)
!
≥ Tr(P̃0ρBP̃0 log (P̃0ρBP̃0)) ; (251)

Tr(P̃0ρBP̃0 log (P̃0ρBP̃0)) ≥ Tr (P̃0ρBP̃0 log ρB) (252)

Tr(P̃0ρBP̃0 log (P̃0ρBP̃0)) −Tr(P̃0ρBP̃0 log ρB) = S (P̃0ρBP̃0∥ρB) (253)

⇒ Tr (P̃0ρBP̃0 log ρB) + S (P̃0ρBP̃0∥ρB)
!
≤ Tr(P̃θP̃0ρBP̃0P̃θ log ρ̃) −Tr (ρB log ρ̃) (254)

Tr (P̃0ρBP̃0 log ρB) ≤ Tr(P̃0 ∣ρBP̃0 log ρB ∣) ≤

√

rk P̃0

√

Tr ∣ρBP̃0 log ρB ∣
2

(255)
√

Tr ∣ρBP̃0 log ρB ∣
2
≤ Tr ∣ρBP̃0 log ρB ∣ = Tr ∣P̃0 log ρBρB ∣ ≤

√

rk P̃0 Tr ∣log ρBρB ∣ = 0 (256)

⇒ S (P̃0ρBP̃0∥ρB)
!
≤ Tr (P̃θP̃0ρBP̃0P̃θ log ρ̃) −Tr (ρB log ρ̃) (257)

S (P̃0ρBP̃0∥ρB) +Tr (ρB log ρ̃)
!
≤ Tr(P̃θP̃0ρBP̃0P̃θ log ρ̃) ; (258)

Tr(P̃θP̃0ρBP̃0P̃θ log ρ̃) ≤ Tr(P̃θP̃0 ∣ρBP̃0P̃θ log ρ̃∣) ≤ Tr(P̃0P̃θ)Tr(∣ρBP̃0P̃θ log ρ̃∣) ; (259)

Tr(∣ρBP̃0P̃θ log ρ̃∣) ∶= Tr(∣P̃0P̃θ log ρ̃ ρB ∣) + r (260)

⇒ Tr (P̃0P̃θ)(Tr(∣P̃0P̃θ log ρ̃ρB ∣) + r) ≤ Tr (P̃0P̃θ)(Tr ∣P̃0P̃θ∣Tr ∣log ρ̃ρB ∣ + r) (261)

Tr (P̃0P̃θ)(Tr(P̃0P̃θ)Tr ∣log ρ̃ρB ∣ + r) ≤ rk P̃0 rk P̃θ sgn (Tr (ρB log ρ̃))Tr (ρB log ρ̃) +Tr(P̃0P̃θ) r (262)

⇒ S (P̃0ρBP̃0∥ρB) +Tr (ρB log ρ̃)
!
≤ −rk P̃0 rk P̃θ Tr (ρB log ρ̃) +Tr(P̃0P̃θ) r (263)

S (P̃0ρBP̃0∥ρB)
!
≤ − (rk P̃0 rk P̃θ + 1)Tr (ρB log ρ̃) +Tr (P̃0P̃θ) r (264)

S (P̃0ρBP̃0∥ρB)
!
≤ (rk P̃0 rk P̃θ + 1)S (ρB∥ρ̃) +Tr(P̃0P̃θ) r. (265)

In (248), we used that the entropy of a pure state
vanishes. In (250) and (252), we used that principal

matrix logarithm is an operator monotone concave
function defined on the matrix vector space of positive
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definite Hermitian matrices [10] [34]. As such,
utilizing Hansen-Pedersen-characterization [16, 18],
the following inequality holds:

Proposition A.3 (Hansen-Pedersen-Characteriza-
tion). Let P denote a finite-dimensional orthogonal
projection operator with P 2 = P , P † = P . For
X = X† > 0, log(X) is an operator valued monotone
concave function. The following equivalency holds:

log concave ⇔ log (PρP ) ≥ P log ρP. (266)

This equivalency can also be seen as a Jensen-type in-
equality [7, 8, 19]. In (253), we evaluated the Jensen
gap, which is the difference of both sides of a Jensen
type inequality and noticed that it equals quantum rel-
ative entropy of S (P̃0ρBP̃0∥ρB). (256) and (262) are
usage of Cauchy-Schwarz inequalities. As we did be-
fore, we noticed that the Cauchy-Schwarz inequality
for positive discriminantes can be furhter simplified us-
ing that

√
Tr(⋅2) ≤

√
Tr(⋅)2 [54]. In both cases, we

notice that the trace was taken over negative definite
matrices and as so, we may extract the sign-function
off the trace. For exemplification and demonstrative
purposes, assume we take the trace over the absolute
value of a negative definite k×k matrix (∀λk , λk < 0),
Tr(∣ρ log ρ′∣):

Tr(∣ρ log ρ′∣) =∑
k

∣λk ∣ =∑
k

sgn(λk)λk = −∑
k

λk.

(267)
(260) comes from the loss of the cyclic property of
the trace over the absolute value of a multiplication of
matrices. It is this loss that leads to the observation
that validity of (265) strongly depends on the sign of
r. This can be seen by acknowledging that all terms
appearing here are positive semi-definite, apart from r,
which may be negative.
As a result, we conjecture that the behaviour of quan-
tum relative entropy under CPTP projective measure-
ments strongly depends on the commutation relation
between the quantum states involved and the projec-
tive measurements. Note that, if ρB = ρ̃, this claim is
being strengthened as well, since, for negative r, (265)
would indicate that the quantum relative entropy in-
creases under projective measurements. We leave fur-
ther calculations to the reader.
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