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Abstract
This thesis describes theoretical work carried out in connection with the high-
mass matter-wave interference experiments at the University of Vienna. Its
scope ranges from the simulation and analysis of experimental data to the
proposal of a trapped interference scheme applicable to a variety of matter-wave
platforms.

The �rst main result of the thesis is the phase-space description of a near-
�eld interferometer with any number of gratings. This theory is used to analyze
a four-grating Talbot-Lau interferometer, in which passive compensation of low-
frequency vibrations and of the Coriolis force are expected. The compensation is
numerically con�rmed and its e�ectiveness is compared to existing techniques.

The second main result is the demonstration of Bragg di�raction of complex
molecules on optical gratings, to which the author contributed the basic exper-
imental design, simulations, and the interpretation of the data. This demon-
stration is a �rst step towards applying large momentum transfer coherent
manipulation techniques to the interference of heavy molecules and clusters.

The third main result is a new interference scheme for matter waves in
toroidal con�nement. The beam splitting and recombination in this scheme
rely on the free evolution in the waveguide and require no interaction with the
matter waves. The scheme is within reach of state-of-the-art experiments with
Bose-Einstein condensates, where it could be used to measure weak atom-atom
interactions or magnetic �eld gradients.
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Zusammenfassung
Diese Dissertation beschreibt theoretische Arbeiten, die im Zusammenhang mit
den Molekül-Interferenz-Experimenten an der Universität Wien durchgeführt
wurden. Die erzielten Ergebnisse reichen von der Simulation und Analyse expe-
rimenteller Daten bis zum Vorschlag eines neuen Interferenzschemas für Atome
und Moleküle in toroidalen Fallengeometrien.

Das erste Hauptergebnis der Arbeit ist die Phasenraumbeschreibung eines
Nahfeldinterferometers mit einer beliebigen Anzahl von Gittern. Diese Theorie
wird verwendet, um ein Talbot-Lau-Interferometer mit vier Gittern zu analysie-
ren, bei dem eine passive Kompensation niederfrequenter Schwingungen und
der Coriolis-Kraft erwartet wird. Die Kompensation wird numerisch bestätigt
und ihre E�zienz mit bestehenden Techniken verglichen.

Das zweite Hauptergebnis ist die experimentelle Demonstration von Bragg-
Beugung komplexer Moleküle an optischen Gittern, zu der der Autor das grund-
legende experimentelle Design, Simulationen und die Interpretation der Da-
ten beigetragen hat. Dieses Experiment stellt einen ersten Schritt in Richtung
kohärenter Manipulationstechniken mit großem Impulsübertrag für schwere
Moleküle und Cluster dar.

Das dritte Hauptergebnis ist ein neues Interferenzschema für Materiewel-
len in toroidalen Fallengeometrien. Die Erzeugung und Rekombination der
Superposition erfolgt in diesem Schema durch die freie Zeitentwicklung im Wel-
lenleiter und erfordert keine Wechselwirkung mit externen Feldern. Das Schema
kann mit Bose-Einstein-Kondensaten realisiert werden und erlaubt, schwache
Atom-Atom-Wechselwirkungen oder Magnetfeldgradienten zu messen.
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Preface

Autumn of 2011 was an exciting time to become a physicist. I remember Prof.
Marek Demiański starting my �rst physics lecture by taking out the day’s
newspaper and holding it high for everyone to see. The front page read

FASTER-THAN-LIGHT NEUTRINOS BAFFLE PHYSICISTS.

“If this turns out to be true, you will have an amazing challenge to face”, he
said. It did not, but I must admit I faced some amazing challenges nevertheless.
Prophetically, it was on the same lecture that I �rst learned about the work of
Markus Arndt: The fullerene di�raction experiment was given as an example of
how far the reign of quantum mechanics can stretch. I remember the experiment
(and the promise of viruses coming next) having quite an impact on me and my
colleagues. The e�ect proved to last and made me join the extended group of
Markus and Klaus in 2016.

Since then, I have worked in two great teams and become indebted to more
people than I can realistically thank. Among them to my supervisors Klaus
Hornberger and Markus Arndt, as well as to the entire Duisburg and Viennese
groups and the administration. Special gratitude is due for those who had the
patience to work with me directly. In addition to Markus and Klaus, this includes
Ben, Yaakov, and the Calzone team of Christian, Ksenija, and Stephan. Taking a
step back, I must thank Krzysztof Sobków and Prof. Andrzej Wysmołek, both of
whom opened the right door for me at the right time. Here’s to you, and to all
those “I quit” emails I never sent!
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Over on the other side of the dining hall was a chemistry table
(...). I went over and said, Do you mind if I join you? They can’t say
no, so I started eating with them for a while. And I started asking,
What are the important problems of your �eld? And after a week or
so, What important problems are you working on? And after some
more time I came in one day and said, If what you are doing is not
important, and if you don’t think it is going to lead to something im-
portant, why are you at Bell Labs working on it? I wasn’t welcomed
after that; I had to �nd somebody else to eat with!

R. Hamming [1]
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Talbot-Lau interference

1





Chapter 1

Introduction

Matter-wave di�raction and interference are among the oldest experimentally
established quantum phenomena. First observed for electrons in 1927 [2, 3],
they predate unambiguous demonstrations of the particulate nature of light by
nearly 50 years [4]. Since their discovery, matter-wave phenomena have only
increased in importance and are now relevant for many areas of physics and
technology. These areas range from laboratory tests of fundamental physics to
gravitational-wave astronomy and geological prospecting or navigation [5, 6].
The relevance of matter-wave interferometry will continue to increase, fueled by
recent achievements which have opened up new regimes of coherence time [7],
particle mass [8], and precision [9, 10].

In this work, we will mostly focus on one of the frontiers of matter-wave
interferometry: that of high particle mass. High-mass matter-wave interferome-
try has been pursued in Vienna starting with the seminal fullerene di�raction
experiment in 1999 [11]. This line of research has since progressed through a
number of increasingly challenging experiments [12, 13, 14], currently culmi-
nating in the interference of particles with masses exceeding1 25 000Da [8]. In
addition to the pursuit of record masses, high-mass interference experiments
have been used for quantum-assisted metrology of atoms [15], fullerenes [16,
17], and biologically relevant molecules [18], for decoherence studies [19, 20],
and more. The breadth of applications re�ects the unique ability of high-mass
interference experiments to delocalize particles virtually independently of their
internal structure.

Current record-setting high-mass interference experiments are appreciably
more complex than the paradigmatic double slit di�raction, both in terms of
the experimental apparatus and its theoretical description. The qualitative
jump occurred in 2002 with the shift from far-�eld, single-grating di�raction to

1Throughout the thesis, we will express masses in daltons (Da): a synonym of the uni�ed
atomic mass units (u), which has become standard in the literature of our sub�eld.

3



4 Chapter 1. Introduction

near-�eld di�raction in a three-grating Talbot-Lau interferometer (TLI) [12]. In
high-mass interference, the TLI o�ers two key advantages over far-�eld setups:
it has a higher mass acceptance for the same interferometer length and works
with uncollimated beams of any width. The latter is important because creating
intense beams of highly massive particles is challenging. The TLI con�guration
is still in use today2, although compared to the setup of 2002 a number of grating,
source, and detection innovations have been made. The record-breaking Long-
baseline Universal Matter-wave Interferometer (LUMI) additionally boasts an
order-of-magnitude greater length.

In this thesis, we will investigate ways to go beyond the TLI setup as currently
used. In this �rst part, we will largely restrict ourselves to the existing optical
toolbox of high-mass matter-wave interferometry. That is, we only consider
gratings and detection mechanisms which are either already in use or very
likely to work. In particular, in Chapter 4 we will �nd the optimal two- and
three-grating setups, intended as an upgrade of LUMI. In Chapter 3, we will
investigate the bene�ts of departing from a three-grating TLI by introducing
additional gratings. These phenomenological discussions build on Chapter 2, in
which we systematically formulate the theory of a TLI with an arbitrary number,
type, period, and spacing of gratings.

Before proceeding with the somewhat technical derivations of Chapter 2,
we give a qualitative introduction to the physical phenomena at work in a TLI.
We will discuss the single-grating Talbot e�ect and the double-grating Lau
e�ect, as well as basic di�raction mechanisms. We do so to show the simple
physics which is hardly discernible in the abstract phase-space treatment of
Chapter 2. An understanding of the underlying physics pays o�, as it allows us
to apply the same elementary concepts in di�erent ways. This is illustrated by
the beam-splitter-free interference scheme of Chapter 9, which follows from an
elementary description of the Talbot pattern produced by a phase grating.

1.1 The Talbot and Lau e�ects

The Talbot e�ect is the near-�eld self-imaging of a single di�raction grating [22],
which can be described as follows. Consider a particle of mass m, whose initial
state is given by a one-dimensional periodic wavefunction,

 (t = 0, x + d) =  (t = 0, x), (1.1)

2In our group, the term TLI is reserved for an interferometer consisting of three mechanical
gratings [21]. Here, we will refer to all Talbot-Lau-type interferometers as TLIs, irrespectively
of the number and type of gratings.
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a) b)

Figure 1.1: Illustration of the Talbot e�ect for plane-wave illumination at
normal (a) and slanted (b) incidence. The two-grating Talbot-Lau setup shown
transmits plane-wave components which produce Talbot patterns o�set by
integer multiples of the grating period. As a result, a high-contrast pattern is
formed downstream of the second grating even when the original illumination
is uncollimated.

where d is the period. Since the wavefunction is periodic, it can be decomposed
in a Fourier series

 (t = 0, x) =
∞

∑
j=−∞

 je2�ijx/d . (1.2)

Assuming a free Hamiltonian H = −ℏ2)2x/2m, the time-evolution of  is

 (t, x) =
∞

∑
j=−∞

 je2�ijx/d exp(−i
�j2ℎt
md2 ), (1.3)

which is periodic in time (up to a spatial shift) with a period referred to as the
Talbot time

TT =
md2

ℎ
. (1.4)

For we have

 (TT , x) =
∞

∑
j=−∞

 je2�ijx/d exp(−i�j2) =
∞

∑
j=−∞

 je2�ijx/d exp(−i�j) (1.5a)

=
∞

∑
j=−∞

 je2�ij(x−d/2)/d =  (0, x −
d
2)

. (1.5b)

To observe the Talbot revivals, one has to prepare a space-periodic initial
state. This can be done by illuminating a periodic structure (a di�raction grating
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with period d) with a plane wave at normal incidence. The case of non-normal
incidence can be reduced to the normal-illumination case by moving to a ref-
erence frame comoving with the particle3. In the comoving frame, the state
initially has no position dependence and becomes periodic upon traversing
the grating (in this reference frame the grating is moving, but this does not
spoil its space-periodicity). Therefore, Eq. (1.5) implies that revivals occur in
the comoving frame. Back in the lab frame, this means that for non-normal
incidence the revivals occur as they travel along the wavevector of the original
illumination (see Fig. 1.1b). Crucially, this results in washing out of the Talbot
pattern if the illumination is not collimated.

The collimation requirement can be relaxed thanks to the Lau e�ect [23,
24], which occurs when a second identical grating is placed at the location of
the Talbot image. As shown in Fig. 1.1b, the second grating blocks the plane-
wave components of the illumination which produce misaligned Talbot patterns.
With those components �ltered out, repeating the evolution for another Talbot
time produces a high-contrast pattern. That is because the patterns produced
by the transmitted plane-wave components align and add in intensity if the
original illumination is incoherent. The two-grating Talbot-Lau setup creates
a high-visibility pattern while conserving as much of the incoming particle
�ux as possible. In particular, it has a much higher transmission than a simple
collimator consisting of two consecutive slits. Because of this, the Talbot-Lau
setup is often used in combination with low-intensity sources, such as those in
high-mass or in antimatter interference [25].

The two-grating Talbot-Lau setup is the simplest example of what we will
refer to as a direct-detection TLI. In order to record the pattern produced by
an interferometer of this type, the particles must be deposited on a surface
and imaged with a microscope. Alternatively, the pattern can be detected
by placing an additional grating in the plane of the self-image and moving
it perpendicularly to the fringes. This repeatedly covers and uncovers the
density maxima, producing an oscillating �ux which is measured with a particle-
counting detector. We will refer to setups employing this detection scheme as
scanning-grating TLIs.

An important special case of the Talbot e�ect occurs when the phase of the
initial state is periodic, but its modulus is constant. In this situation, the revival
of the phase after multiples of the Talbot time does not result in a measurable
intensity pattern. To see how a density modulation can arise in this case, one

3We review the problem of changing reference frames in quantum mechanics in Ap-
pendix A. For a particle with a transverse momentum component equal to p0, the transfor-
mation referred to here is U(t) = exp(ip0tp/ℏm) exp(−ip0x/ℏ) exp(ip20 t/2ℏm).
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must consider the evolution (1.3) for TT /2. Beginning as in Eq. (1.5), we obtain

 (
TT
2
, x) =

∞

∑
j=−∞

 je2�ijx/d exp(−
i�j2

2 ) = ∑
even j

 je2�ijx/d − i ∑
odd j

 je2�ijx/d

(1.6a)

=
e−i�/4
√
2 [

(1 + i) ∑
even j

 je2�ijx/d + (1 − i) ∑
odd j

 je2�ijx/d]
(1.6b)

=
e−i�/4
√
2 [

 (0, x) + i
∞

∑
j=−∞

 je2�ijx/d exp(−i�j)]
(1.6c)

=
e−i�/4
√
2 [ (0, x) + i (0, x −

d
2)] (1.6d)

Therefore, if the initial state is  (0, x) = ei�(x) for a real �(x), we will have

|||||
 (

TT
2
, x)

|||||

2

= sin(�(x) − �(x −
d
2)) + const. (1.7)

In an appropriate parameter regime, a grating formed by a standing light
wave will only imprint a phase onto the matter wave. If the grating is formed
using a laser with wavelength � = 2�/k, this phase will be �(x) = �0 cos2(kx),
in which �0 is real [26]. Inserting this into Eq. (1.7) gives

|||||
 (

TT
2
, x)

|||||

2

= sin(�0 cos(2kx)) + const. (1.8)

The above equation illustrates the mechanism of pattern formation in TLIs with
optical phase gratings. However, the signi�cance of Eq. (1.6) extends beyond
conventional Talbot-Lau interferometry. We will show in Chapter 9 that the
emergence of a balanced superposition at half the Talbot time could be used to
perform a beam-splitter-free interferometric sequence.

1.2 Types of di�raction gratings
The theoretical approach of Chapter 2 does not require specifying the types of
gratings used. In fact, it does not even require specifying whether the particle-
grating interaction is treated using quantum or classical mechanics. Never-
theless, we give a brief overview of the possible grating choices here for the
sake of concreteness and to set the stage for the more experimentally-focused
Chapters 3 and 4.
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High-mass interference experiments currently employ combinations of the
three basic grating types: mechanical masks, optical phase gratings, and optical
depletion gratings. The mechanical gratings in use today are typically silicon
nitride membranes with evenly-spaced rectangular openings etched using a
photolithographic process. The period of such gratings is typically in the few-
hundred nanometer range. For example, the mechanical gratings of the LUMI
experiment have a 266 nm period, and gratings with periods down to 100 nm
have been used before [11]. Mechanical gratings are a simple way to obtain small
periods and thus large grating momenta. However, their usefulness is limited
by the dispersion forces acting between the particles and the walls of the slit.
The particle-grating interaction leads to a strong dependence of the di�raction
on the forward velocity of the particle. This washes out the interference pattern,
because the moderate intensity of high-mass beam sources does not allow for
strict velocity selection [27]. Additionally, in many cases the particles stick
to and clog the grating, suppressing transmission completely [21]. For these
reasons, mechanical gratings are being gradually replaced by optical ones in the
interference of record-high masses.

Optical gratings for high-mass matter waves come in two basic types: those
which only modulate the phase of the matter wave and those which additionally
modulate the amplitude. Both types are usually realized using a standing wave
of laser light. In both cases, the phase modulation is a result of the dipole-force
interaction between the light and the particle. To additionally achieve amplitude
modulation (in what is then referred to as an optical depletion grating), one
must post-select particles which have or have not absorbed a photon. Photon
absorption will happen preferentially at the antinodes of the standing light
wave, providing a periodic amplitude modulation. The post-selection is easy if
the particle is ionized or neutralized upon photon absorption, as then a simple
electrode will separate the charge classes [14]. If the molecule fragments upon
photon absorption, it can be discarded at the detection stage using a mass
�lter [28]. Because the probability of photon absorption and the phase of dipole
interaction are functions of the light intensity, the period of a standing-wave
optical grating will be equal to half of the laser wavelength. In the LUMI
experiment, a 532 nm green standing light wave thus creates an optical phase
grating with a period of 266 nm. Finally, the probability of photon absorption as
well as the dipole interaction phase are inversely proportional to the interaction
time with the grating. This makes the di�raction patterns produced by optical
gratings velocity-dependent. However, the velocity dependence here is weaker
than in the case of mechanical gratings, resulting in good compatibility with
high-mass interference.
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1.3 Multi-loop interferometer schemes

The basic experiment in matter-wave interferometry with atoms and neutrons is
the far-�eld Mach-Zehnder interferometer. It consists of three gratings or pulses,
whose role is to consecutively split, mirror, and recombine the wavepacket.
By adding additional mirrors between the split and recombination stages, the
geometry of the interferometer arms can be changed almost arbitrarily. By
choosing the right geometry, the interferometer can be made selectively insen-
sitive to rotation or external forces, as well as to a combination or gradients of
the two [29, 30]. Such insensitive con�gurations typically involve the two arms
undulating and crossing each other to form multiple loops of di�erent sizes (in
this terminology, a basic Mach-Zehnder interferometer would be a one-loop
scheme).

The simplest example of such a multi-loop interferometer is the “two-loop”,
“�gure-eight”, or “butter�y” interferometer, in which the arms form two identical
loops [31]. It consists of two beam splitters and two mirrors in each arm and
is insensitive to uniform accelerations. It has found applications in atomic
gyroscopes [32–34], gradiometers [35], in Stark shift measurements [36], and for
vibration cancellation [37]. This and other multi-loop schemes have also been
proposed for the detection of gravitational waves [38, 39] and for probing scalar
dark matter [40]. On the opposite extreme from the two-loop interferometer,
schemes with more than 50 loops have been demonstrated [41]. In general terms,
such highly-undulating schemes trade sensitivity for bandwidth. That is, they
are highly sensitive to signals oscillating at the frequency of the undulation
while suppressing o�-resonant signals. This is bene�cial in some applications,
as illustrated by the above examples.

In high-mass interference experiments, it would be desirable to tailor the
properties of TLIs in the same way it is possible with multi-loop far-�eld schemes.
In particular, a “two-loop” TLI setup could be useful for compensating low-
frequency vibrations and the Coriolis force due to the rotation of the Earth,
both of which pose a major challenge in high-mass interference experiments.
However, it is not immediately clear how a near-�eld interferometer could
form multiple loops. Unlike in a far-�eld setup, the free evolution in a TLI is
typically far too short for the di�raction orders to separate in space and to form
clearly visible interferometer arms. The lack of discernible arms and mirrors to
manipulate them makes it di�cult to draw a simple analogy between near- and
far-�eld interferometers. This apparent di�culty is compounded by the usual
intuitive description of a TLI. In it, each grating plays a qualitatively di�erent
role [21]: The �rst grating acts as an array of point sources to prepare coherence
for the second grating, the second grating produces the Talbot pattern, and the
third grating is used to detect it. From this perspective, it is not obvious what
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would be the role of any additional gratings or where should they be placed.
In the next chapter, we show that multi-loop TLIs can be constructed in

analogy to far-�eld setups and that they exhibit similar features as their far-
�eld counterparts. Later, in Chapter 3, we discuss the two-loop near-�eld
interferometer in detail.



Chapter 2

Talbot-Lau interferometers with
arbitrary number of gratings

In this chapter, we expand the phase-space description of a TLI [26, 42] to accom-
modate any number of gratings with arbitrary periods and distances between
them. Importantly, we will treat the evolution of the incident wavepacket in
its (possibly noninertial) center-of-mass frame. This results in a description
of near-�eld interference which closely resembles the treatments of far-�eld
interferometers. This correspondence will allow us to conclude that multi-loop
TLIs can be similarly e�ective in the compensation of external forces as their
far-�eld counterparts. In addition to this, performing the calculations in the
comoving frame results in signi�cantly more compact derivations compared to
the lab-frame description, which we present in Appendix B.

2.1 Interference pattern and signal

Hamiltonian in the comoving frame

We consider a particle of mass m �ying along the z axis with velocity v and
impinging on a series of k di�raction gratings. Since the particle’s forward
kinetic energy is much larger than the external and grating potentials typically
involved, we will assume that the motion along the z axis is uniform and can be
treated classically. We further assume that the bars of all gratings are aligned
with the y axis well enough so that di�raction in this direction can be neglected
and the motion treated classically. Motion along the x axis will be treated
quantum-mechanically, assuming a Hamiltonian

H =
p2

2m
− F(t)x, (2.1)

11
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in which F (t) is a possibly time-dependent, homogeneous external force.
The following calculations will be greatly simpli�ed if we perform them in

the reference frame comoving with the center of mass of the wavepacket. The
latter follows the trajectory

� (t) =
1
m

t

∫
0

dt ′
t′

∫
0

dt ′′ F(t ′′). (2.2)

We review the procedure of changing the reference frame in quantum mechanics
in Appendix A. Using the transformation rules derived there, we �nd the unitary
transformation to the comoving frame

U = exp(
i� (t)p
ℏ ) exp(−

ix
ℏ ∫

t

0
dt ′ F (t ′)) exp

(
i

2mℏ ∫
t

0
dt ′ [∫

t′

0
dt ′′ F (t ′′)]

2

)
,

(2.3)
as well as the transformed Hamiltonian

Hcm =
p2

2m
. (2.4)

As expected, the Hamiltonian in the comoving frame is that of the free particle.
Calculations in the comoving frame are simpler but their results must be

interpreted with caution. In the description of a typical experiment, the forward
velocity spread in the beam cannot be neglected. To account for it, one averages
the pattern derived for a �xed v by intensity over the velocity distribution.
However, di�erent velocity classes have di�erent trajectories (2.2), and therefore
the results obtained for them are with respect to di�erent frames of reference.
This means that results for di�erent velocities cannot be directly compared or
averaged, unless the quantity in question is frame-independent or is transformed
back into the lab frame. The same precaution applies to any external parameters
the force F might depend on, such as the voltage applied to a de�ection electrode.
When in doubt, we can compare the results obtained in the comoving frame
with those from an inertial-frame calculation, presented in Appendix B.

Transformations of the Wigner function

We will calculate the evolution of the transverse state ρ of the particle in the
Wigner representation,

w(x, p) =
1
2�ℏ ∫ ds eips/ℏ⟨x −

s
2
||||
ρ
||||
x +

s
2⟩

. (2.5)
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The primary bene�t of using the Wigner function is the ease of computing
the quantum and the classical predictions side by side and to the same level
of approximation. We discuss this in more detail in Section 2.4. In addition to
this, the phase-space formalism is also a natural starting point for including
decoherence [42].

As a �rst step, we derive the transformations of the Wigner function induced
by the gratings and by the free evolution between them. We will denote these
transformations by GTi and FFi , respectively. To �nd FFi , we note that the free
evolution of the Wigner function is the same as that of a classical phase-space
density [30]. That is,

(FFi w)(x, p) = w(x ′, p′), (2.6)

where x, p and x ′, p′ are related by the classical equations of motion. For the
free �ight after the i-th grating, we have

x = x ′ +
p′

m
Ti , (2.7a)

p = p′, (2.7b)

where Ti is the �ight time. Expressing the primed coordinates on the right-hand
side of Eq. (2.6) by x and p gives

(FFi w)(x, p) = w(x −
p
m
Ti , p). (2.8)

Di�raction at the i-th grating is described by a convolution

(GTi w)(x, p) = ∫ dpi Ki(x − Δxi , p − pi)w(x, pi), (2.9)

in which Δxi is the position of the grating in the comoving frame and Ki is the
transformation kernel. The latter is obtained from the transmission function ti(x)
of the grating as [26, 42]

Ki(x, p) =
1
2�ℏ ∫ dsi eipsi/ℏti (x −

s
2)

t ∗i (x +
s
2)

. (2.10)

The x-periodic transmission kernel can be decomposed in a Fourier series,

Ki(x, p) =
1
2�ℏ

∞

∑
ni=−∞

e2�inix/di ∫ dsi eipsi/ℏB(i)ni (
si
di)

, (2.11)

where di is the period of the i-th grating and B(i)n are known as the Talbot
coe�cients. To express the latter in terms of the grating transmission function,
we invert the decomposition (2.11),

B(i)n (� ) =
1
di ∫

di/2

−di/2
dx e−2�inix/di ∫ dp e−ip�di/ℏKi(x, p). (2.12)
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We then substitute the de�nition (2.10) of the kernel, yielding

B(i)ni (� ) =
1
di ∫

di/2

−di/2
dx e−2�inix/di ti (x −

�di
2 ) t ∗i (x +

�di
2 ) . (2.13)

From Eq. (2.13) we infer the following properties of the Talbot coe�cients, which
will be useful in subsequent calculations,

B−n(−� ) = B∗n(� ), (2.14a)
B∗n(� ) = Bn(� ) when t(−x) = t(x), (2.14b)

Bn(� + 1) = (−1)nBn(� ), (2.14c)

|ti(x)|2 =
∞

∑
n=−∞

e2�inx/diB(i)n (0). (2.14d)

Derivation of the interference pattern

The initial state of the particle just in front of the �rst grating will be

w0(x, p) =
�(X0/2 − |x|)

X0
D(p), (2.15)

where � is the Heaviside theta, X0 is the width of the illuminated area, and D(p)
is a distribution of the momenta in the particle beam. To calculate the state
after k di�raction gratings and free �ights, we must apply k compositions of
the transformations GTi and FFi to the above state. A single composition of GTi
and FFi takes the form

(FFi GTi w)(x, p) = ∫ dpi Ki(x − Δxi −
p
m
Ti , p − pi)w(x −

p
m
Ti , pi). (2.16)

Applying the above transformation k times to w0(x, p) and integrating over
momentum to obtain the particle density gives

wk(x) = ∫ dp (FFk GTk …FF1 GT1 w0)(x, p) (2.17a)

=
1
X0 ∫

dpdpk Kk(x − Δxk −
p
m
Tk , p − pk)

× ∫ dpk−1 Kk−1(x − Δxk−1 −
pk
m
Tk−1 −

p
m
Tk , pk − pk−1)

× …

× ∫ dp1 K1(x − Δx1 −
p2
m
T1 −

p3
m
T2 + …

p
m
Tk , p2 − p1)

× �(
X0
2
−
||||
x −

p2
m
T1 −

p3
m
T2 − ⋯ −

p
m
Tk

||||)
D(p1). (2.17b)
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We now expand the grating kernels in terms of Talbot coe�cients using Eq. (2.11),
obtaining

wk(x) =
1
X0

1
(2�ℏ)k

∑
n1,…,nk∈ℤ

ei(�x−�k )

× ∫ dsk …ds1 B(1)n1 (
s1
d1)

…B(k)nk (
sk
dk)

× ∫ dp exp
{
ip
ℏ (sk −

ℎTk
m [

n1
d1
+ ⋯ +

nk
dk ])

}

× ∫ dpk exp
{
ipk
ℏ (−sk + sk−1 −

ℎTk−1
m [

n1
d1
+ ⋯ +

nk−1
dk−1 ])

}

× …

× �(
X0
2
−
||||
x −

p2
m
T1 −

p3
m
T2 − ⋯ −

p
m
Tk

||||) ∫ dp1 eip1(−s1)/ℏD(p1). (2.18)

In Eq. (2.18), we have introduced two quantities which depend on the integers
n1, … , nk and characterize the terms in the summation. These are the wavenum-
bers

� =
k

∑
i=1

2�ni
di

, (2.19)

and the phases

�k =
k

∑
i=1

2�ni
di

Δxi . (2.20)

To arrive at the �nal form of the pattern, we carry out the integrations in
Eq. (2.18) starting from the innermost. For a broad beam1, the integrals over
p2, … , p can be approximated by Dirac deltas. This gives

wk(x) =
�(X0/2 − |x|)

X0
∑
�
ei�xP� , (2.21a)

P� = ∑
n1
d1
+⋯+ nkdk =

�
2�

e−i�kB(1)n1 (
s1
d1)

…B(k)nk (
sk
dk)

D̃(s1), (2.21b)

where

si =
ℎ
m[Ti(

n1
d1
+ ⋯ +

ni
di)

+ ⋯ + Tk(
n1
d1
+ ⋯ +

nk
dk)] (2.22)

and D̃(s1) is the Fourier transform of the initial momentum distribution,

D̃(s1) = ∫ dp1 e−ip1s1/ℏD(p1). (2.23)

1Technically in the limit of in�nite X0.
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Equation (2.21) gives the probability of detecting the particle at position x in
the comoving frame and constitutes the �nal result for a direct-detection inter-
ferometer. We have grouped the terms in the summation by their wavenumbers,
as in practice we are usually interested in the individual Fourier components P�
of the pattern.

Signal in a scanning-grating interferometer

Oftentimes the most practical way to detect the fringe pattern produced by a
TLI is by means of a movable mask. To do this, an additional grating is placed
in the plane of the interference pattern and scanned perpendicularly to the
fringes. This repeatedly covers and uncovers the density maxima, producing an
oscillating �ux of particles which is measured and constitutes the signal. The
latter is proportional to the transmission of the interferometer

I (xS) = ∫ dx wk(x) |tk+1(x − Δxk+1 − xS)|2 , (2.24)

in which xS , Δxk+1, and tk+1(x) are respectively the position, o�set, and the trans-
mission function of the mask. Expanding |tk+1(x)| and wk(x) using Eqs. (2.14d)
and (2.21a) gives

I (xS) = ∑
�,nk+1

(
1
X0 ∫

X0/2

−X0/2
dx ei(�+2�nk+1/dk+1)x)e

−2�ink+1xS /dk+1B(k+1)nk+1 (0)

× e−2�ink+1Δxk+1/dk+1P� . (2.25)

For largeX0, the integral over x in Eq. (2.25) approximates a Dirac delta, imposing
a constraint

� +
2�nk+1
dk+1

=
k+1

∑
i=1

2�ni
di

= 0. (2.26)

We will refer to the above as the last-grating condition. It picks up those
components of the pattern whose period is a unit fraction of the period of
the detection mask. This ensures that the resulting signal has the periodicity of
the last grating. In the same large X0 limit, the interference signal becomes

I (xS) =
∞

∑
nk+1=−∞

e−2�ink+1xS /dk+1Ink+1 , (2.27a)

Ink+1 = ∑
n1
d1
+⋯+ nkdk =−

nk+1
dk+1

e−i�k+1B(1)n1 (
s1
d1)

…B(k)nk (
sk
dk)

B(k+1)nk+1 (0)D̃(s1), (2.27b)

where �k+1 is de�ned analogously as in Eq. (2.20).
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Uncollimated illumination and phase gratings

The expressions for the pattern and signal simplify if the initial beam is un-
collimated, i.e., when D(p0) is very wide. We can then approximate D̃(s1) with
a Dirac delta and thus omit it in Eqs. (2.21b) and (2.27b) for the interference
pattern and signal. This requires restricting the summations in these equations
to ni satisfying

s1 =
ℎ
m

k

∑
i=1

ni
di
(Ti + ⋯ + Tk) = 0. (2.28)

We will refer to the above as the uncollimated-illumination condition. As shown
in Section 2.3, it has a straightforward graphical interpretation when the ni are
understood as di�raction orders.

When phase gratings are used in all inner positions (i = 2, … , k), the aver-
ages P0 and I0 of the interference pattern and signal simplify to

P0 = B(1)0 (0)B
(2)
0 (0) … B(k)0 (0), (2.29a)

I0 = P0B(k+1)0 (0). (2.29b)

To see this, note that the Talbot coe�cient B(i)ni (0) of a perfectly transmissive
grating is only nonzero for ni = 0 (see the property (2.14d)). Then, � = 0 implies
sk = 0 via their de�nitions (2.19) and (2.22), and sk = 0 implies nk = 0 via the
above property of B(i)ni . This in turn means n1/d1 + ⋯ + nk−1/dk−1 = 0 as � = 0,
which gives sk−1 = 0, etc.

Multi-loop TLIs

The Fourier components P� and Ink+1 of the interference pattern and signal
are sums indexed by as many integers ni as the interferometer has gratings
(see Eqs. (2.21b) and (2.27b)). For a given Fourier component, these indices
have to satisfy the constraint (2.19) on � and the uncollimated-illumination
condition (2.28). In a scanning-grating interferometer, they must additionally
ful�ll the last-grating condition (2.26). This gives two linearly independent
equations in the case of a direct-detection interferometer and three in the case of
a scanning-grating one. As a result, two-gating direct-detection interferometers
and three-grating scanning-mask ones are special. For them, the equations for ni
can have at most one solution, and the sums in Eqs. (2.21b) and (2.27b) for the
Fourier components P� and Ink+1 collapse to a single term. We will refer to those
setups as single-loop TLIs.

Direct-detection interferometers with more than two-gratings and scanning-
mask interferometers with more than three gratings will be referred to as multi-
loop TLIs. In these setups, each Fourier component of the interference pattern
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or signal is a sum of an a priori in�nite number of terms. These terms interfere
with each other, leading to a highly complicated dependence of the Fourier
components P� and Ink+1 on parameters such as the particle velocity. The presence
of many terms2 makes the treatment of multi-loop setups more subtle than that
of single-loop TLIs and motivates the use of recoil diagrams, which we discuss
in Section 2.3. In practice, the decay of the Talbot coe�cients with increasing n
means that usually considering a small number of low-n terms is su�cient. We
give an example of this in Chapter 3 when discussing the four-grating TLI.

2.2 Visibility and shift

Monochromatic beam

The pattern or signal measured in an interference experiment is usually char-
acterized by its visibility and spatial shift. To introduce these quantities in the
case of the interference pattern, we rewrite the complex Fourier decomposition
in Eq. (2.21a) as a real one:

wk(x) = ∑
�
ei�xP� = P0 +∑

�>0
2|P� | cos(�x + Arg P�), (2.30)

where for clarity we have neglected the �nite extent of the pattern. To obtain
Eq. (2.30), we have used that P−� = P ∗� . To see the latter, note that changing
the sign of � is equivalent to changing the sign of all ni which in turn changes
the sign of si and of the �k for every term. The former conjugates the Talbot
coe�cients via the property (2.14a), resulting in P−� = P ∗� .

The sinusoidal visibility of interference fringes with a spatial frequency � is
de�ned as

V� =
||||
2P�
P0

||||
, (2.31)

In most cases, the magnitude of the Fourier components P� decreases quickly
with increasing � and all but one can be neglected. When this is the case, the
modulation of the interference pattern is approximately sinusoidal and Eq. (2.31)
is a good approximation of the interferometric visibility. If the assumption of a
single dominating spatial frequency is not well satis�ed, the sinusoidal visibility
can still be measured, but may exceed unity.

The spatial shift of the interference pattern (2.30) is Arg P� . In a multi-loop
scheme, P� will be a sum of multiple terms, each entering with a di�erent phase

2From now on, the word term used without further speci�cation will refer to terms in the
sums in Eqs. (2.21b) and (2.27b) for the Fourier components P� and Ink+1 .
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(see Eq. (2.21b)). If the Talbot coe�cients are real3, these phases will be equal
to �k , de�ned as in Eq. (2.20). To calculate the latter, we assume that the gratings
are stationary in the lab frame. Their positions in the comoving frame are then
determined by the center-of-mass trajectory (2.2), that is,

Δxi = −� (T1 + ⋯ + Ti−1) (2.32)

and Δx1 = 0. Inserting the positions (2.32) into the de�nition (2.20) of �k gives
the shifts of the terms with respect to the comoving frame. To transform them
into the lab frame, we add the �nal position of the comoving frame, equal to the
end point of the trajectory. This gives

�lab
k = −

k

∑
i=2

2�ni
di

� (T1 + ⋯ + Ti−1) + �� (T1 + ⋯ + Tk), (2.33)

where the wavenumber � converts the frame’s position to a phase shift.
The interference signal (2.27a) in a scanning-grating interferometer can be

written as a real series analogously to Eq. (2.30). This motivates an expression
for the sinusoidal visibility of the signal which is analogous to Eq. (2.31), but
with the Fourier coe�cients Ink+1 , I0 in place of P� and P0. To obtain the shifts
of the terms contributing to the interference signal, we note that the latter is a
frame-independent quantity. The shifts will therefore be given simply by the
phases �k+1, de�ned as in Eq. (2.20). Inserting the grating positions (2.32) into
the latter gives

�k+1 = −
k+1

∑
i=2

2�ni
di

� (T1 + ⋯ + Ti−1). (2.34)

For a scanning-grating interferometer, both the shift of the pattern and of the
signal can be calculated. In order for the description to be consistent, these shifts
must be equal for every term. To verify this, we substitute � = −2�nk+1/dk+1
from the last-grating condition (2.26) in the phases (2.33) of the pattern terms,
obtaining the phases (2.34) of the signal terms.

As an additional veri�cation, we use Eq. (2.34) to reproduce the shift of the
interference signal in a three-grating, scanning-mask TLI. We assume equal
periods di = d and T1 = T , T2 = N T + � , where N is an integer and � is a small
detuning. If the particles are subject to a constant external force F = ma, the
center-of-mass trajectory is

� (T1 + ⋯ + Ti) =
a(T1 + ⋯ + Ti)2

2
. (2.35)

3This can usually be ensured by taking the grating transmission functions to be even (see
property (2.14b)).
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From the incoherent illumination and last-grating conditions, we have n1 = −N ,
n2 = N + 1, n3 = −1 for the lowest-frequency Fourier component I−1. Since
this is a single-loop con�guration, this is the only contributing term and the
phase �3 from Eq. (2.34) is simultaneously the shift of the pattern. Using the
above trajectory and ni with Eq. (2.34) reproduces the known result [26]

�3 = −
�a
d [N (N + 1)T 2 + 2(N + 1)T� + � 2]. (2.36)

As a �nal consistency check, we repeat the derivation of the interference
pattern and signal in an inertial frame and show that the results agree with
those obtained above. This is described in Appendix B.

Velocity averaging

The visibilities and shifts introduced above depend on the forward velocity of
the particle. As a result, they are not directly measurable unless the velocity
distribution in the beam is extremely narrow or a velocity-resolving detection
technique is used. What is accessible instead is the visibility and shift of the
velocity-averaged pattern or signal. If we denote the distribution of the velocities
in the beam by �(v), the sinusoidal visibility of the averaged pattern is

V̄� =
|||||

2 ∫ dv �(v)P�(v)
∫ dv �(v)P0(v)

|||||
, (2.37)

and an analogous expression holds for the visibility of the averaged signal. We
stress that in Eq. (2.37), the integration is inside the absolute value and the order
of these operations can not be changed4. Furthermore, the transmission P0 or
the average of the signal S0 are in general functions of velocity (for example
due to velocity-dependent opening fractions of material gratings) and must be
averaged as well.

To obtain the shift of the velocity-averaged pattern, we note that for an
arbitrary real function f (v)

∫ dv f (v) cos(�x + '(v)) = Re
{
ei�x ∫ dv f (v)ei'(v)

}
= C cos(�x + 
), (2.38)

where Cei
 = ∫ dv f (v)ei'(v), C ∈ ℝ. Taking the velocity average of the pat-
tern Eq. (2.30) and applying the above gives the shift of the averaged pattern,

Φ̄� = Arg ∫ dv �(v)P�(v). (2.39)

4Averaging the visibility instead of taking the visibility of the averaged signal is the single
most frequent source of inconsistencies between visibility calculations.
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In a single-loop interferometer, P� collapses to a single term and we have P� =
exp(−i�lab

k )|P� |, in which the phase is given by Eq. (2.33) and the modulus is
a product of Talbot coe�cients (see Eq. (2.21b)). If the latter is approximately
constant in the relevant velocity range, it factors out in Eq. (2.39) resulting in a
simple expression for the shift of the averaged pattern,

Φ̄� = Arg ∫ dv �(v) exp(−i�lab
k (v)). (2.40)

The shift of a velocity-averaged interference signal is obtained analogously.
Going beyond Eq. (2.40) and including the modulus |P� | can be problematic

for light particles, for which the Talbot coe�cients oscillate rapidly as a function
of velocity5. These oscillations are caused by the arguments si/di , which are
inversely proportional to the velocity and mass of the particle. The mean values
of the Talbot coe�cients vary slowly as a result of the velocity dependence of the
grating transmission functions. To suppress the fast oscillations and facilitate
numerical calculations, we can replace the Talbot coe�cients Bn(� ) with their
one-period averages

B̄n(v) = ∫
1

0
d� Bn(� ), (2.41)

where the right-hand side depends on v parametrically.

2.3 Graphical interpretation
It is instructive to visualize the terms contributing to the interference pattern
or signal using recoil diagrams. To draw the latter, we treat the integers ni as
di�raction orders, resulting in momentum transfers of niℎ/di at the respective
gratings. For every term, this allows us to draw a classical trajectory through
the interferometer, as shown in Fig. 2.1. In such a diagram, the wavenumber �
of the term is proportional to the slope of the segment before the optional last
grating. If the end of the trajectory is placed at the origin of the x axis, the si
become the x coordinates of the intersections of the trajectory with the gratings.
In particular, the uncollimated-illumination condition s1 = 0 then means that
the trajectory and its x-mirrored partner form a closed loop. For terms which
satisfy the last-grating condition (2.26), the trajectory extends beyond the last
grating with a zero slope.

In addition to the above properties, we �nd that the area of a recoil diagram is
proportional to the phase the corresponding term acquires as a result of constant

5For example, in a de�ection measurement with barium atoms in LUMI, the Talbot coe�-
cient of the second grating oscillates between zero and a �nite value up to 400 times over the
relevant velocity range of 200m s−1 to 700m s−1.
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Figure 2.1: In both the quantum and the classical description of a near-�eld
interferometer, the fringe pattern can be obtained by summing contributions
corresponding to classical particle trajectories. Each of the latter is described
by a series of di�raction orders ni , which together with the ratios of grating
periods di de�ne a recoil diagram, as shown above.

acceleration. To see this, note that di�raction at the i-th grating contributes to
the (signed) area of the recoil diagram like a triangle of base niℎ(Ti +⋯+Tk)/dim
and height v(Ti + ⋯ + Tk). Adding up contributions from all gratings gives the
area enclosed by the diagram with respect to a centerline passing through the
origin of the trajectory. If the diagram is not closed (s1 ≠ 0), a more natural
choice of the centerline is the one located symmetrically between the trajectory’s
start and end points. Shifting the centerline from the origin to the center of the
diagram subtracts the area of the rectangle s1v(T1 +⋯+Tk). With this correction,
the area of the trajectory becomes

A =
k

∑
i=1

niℎv
2dim

(Ti + ⋯ + Tk)2 − s1v(T1 + ⋯ + Tk). (2.42)

We now show that the phase (2.33) of a pattern term in the case of constant
acceleration a is proportional to the area (2.42). To do this, we �rst substitute
the accelerating trajectory (2.35) and the de�nition (2.19) of � into �lab

k . We then
transform the resulting expression, obtaining

�lab
k = �a

k

∑
i=1

ni
di
[(T1 + ⋯ + Tk)2 − (T1 + ⋯ + Ti−1)2] (2.43a)

= �a
k

∑
i=1

ni
di
(Ti + ⋯ + Tk)[2(T1 + ⋯ + Tk) − (Ti + ⋯ + Tk)] = −

am
ℏv

A. (2.43b)
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The introduction of recoil diagrams makes the phase-space description
of near-�eld interferometers under incoherent illumination analogous to the
treatment of far-�eld interferometers. In particular, the classical trajectories in
a recoil diagram and its x-mirrored partner correspond closely to the arms of
a far-�eld interferometer. In both cases, the interference pattern arises at the
intersection of the trajectories or arms and its period is inversely proportional
to the intersection angle6. Furthermore, the shift of the pattern thus produced
is given by the same phase (2.20) (cf. Eq. (5) in Ref. [43]), which for a constant
external force is proportional to the signed area enclosed by the arms. Because
the shifts are equal, we expect multi-loop TLIs (on the level of individual terms)
to be as e�ective as their far-�eld counterparts in the compensation of external
forces and their gradients. We give a concrete example of this in Chapter 3 by
considering the four-grating, “two-loop” TLI.

In addition to their conceptual signi�cance, the recoil diagrams have a
number of direct applications. They allow us to �nd promising interferometer
schemes given any set of grating periods, as viable schemes will tend to have
closed loops utilizing small di�raction orders. We can also use them to �nd ways
to detune an interferometer so as to suppress terms with undesirable properties,
as discussed in Section 3.1.

2.4 Classical description

An important qualitative di�erence between far- and near-�eld interferometers
is that the observation of fringes in the latter does not necessarily prove the wave
nature of the particles involved. An extreme example is obtained by sending the
distances between all the interferometer elements (the di�raction gratings and
the detector) to zero. In this limiting case, one would necessarily observe fringes
for classical and quantum particles alike, being just a shadow of the di�raction
gratings. To rule out a classical shadow, a pattern obtained in a near-�eld inter-
ferometer must be compared to the one predicted by classical mechanics. Only
when the observed pattern is stronger than what can be classically explained,
one can claim to have demonstrated a quantum superposition.

Fortunately, the classical prediction can be obtained analogously to the
quantum one. The only di�erences are the use of a classical phase-space density
in place of the Wigner function and the substitution of the grating kernel

6The period is inversely proportional to the di�erence of the transverse momentum com-
ponents of the interfering beams, which is proportional to their intersection angle when the
latter is small.
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in Eq. (2.9) by a classical one. The classical kernel is [26]

K ′(x, p) = |t(x)|2 �(p + ∫
∞

−∞
dt
)V (t, x)
)x ), (2.44)

in which � is a Dirac delta, V (t, x) is the grating potential experienced by the
particle, and t(x) is the transmission function of the grating. The |t(x)|2 term in
Eq. (2.44) masks the classical distribution with the transmission of the grating,
while the Dirac delta shifts it in momentum by the value of the classical impulse.
The use of a classical distribution function instead of a Wigner function requires
no further changes. In particular, the initial state (2.15) just in front of the �rst
grating stays the same as we assume no initial coherence in the beam. Obtaining
the classical prediction is therefore as easy as substituting the kernel (and thus
the Talbot coe�cients) in Eqs. (2.21b) and (2.27b). The ease of obtaining the
classical prediction is one of the key advantages of the phase-space description
of near-�eld matter-wave interference.

The classical Talbot coe�cients are de�ned analogously as the quantum
ones in Eq. (2.12), but using the classical kernel K ′ in place of the quantum K .
Their derivation for di�erent types of gratings can be found in Ref. [26]. Here
we only review one property of these coe�cients which will be useful later. For
classical Talbot coe�cient Cn corresponding to the quantum Bn, we have

Cn(0) = Bn(0). (2.45)

This follows from the de�nitions (2.10) and (2.44) of the kernels, from which we
get

Bn(0) =
1
di ∫

di/2

−di/2
dx e−2�inix/di ∫ dp K(x, p) =

1
di ∫

di/2

−di/2
dx e−2�inix/di |t(x)|2

(2.46a)

=
1
di ∫

di/2

−di/2
dx e−2�inix/di ∫ dp K ′(x, p) = Cn(0). (2.46b)

The property (2.45) is the formal statement of the zero-spacings limit invoked at
the beginning of this section. To see this, note that from the de�nition (2.22) of si
we have that the arguments of the Talbot coe�cients in the expressions (2.21b)
and (2.27b) approach zero when the interferometer length vanishes. Combined
with Eq. (2.45), this implies that in the zero-spacings limit the quantum and the
classical predictions coincide.
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2.5 Applications

Vibration sensitivity

The e�ect of vibrations on an interferometer depends on their frequency, mode,
and on the observable in question. Drifts slower than the integration time7 do
not diminish the visibility of the interference pattern. They can nevertheless
a�ect de�ection measurements, for which the phase stability of the pattern is
necessary. Vibrations faster than the integration time will in general lead to
visibility loss, which is treated in two limiting cases below.

The �rst case is that of independent translational grating vibrations, which
we describe following Ref. [21]. We take the grating positions to be

Δxi = Ai sin('i), (2.47)

in which Ai , 'i are the amplitude and phase of the vibration of the grating i.
Inserting these positions into the phase (2.20) gives the instantaneous spatial
shifts of the terms of the interference pattern or signal. We then average the latter
over the random phases '1, … , 'l , where l is the number of gratings including
the optional mask. In this way, we �nd that each term in the expansion of the
interference pattern or signal is suppressed by a factor

R =
1

(2�)l
l

∏
i=1

∫
2�

0
d'i exp

{
2�iniAi sin('i)

di

}
=

l

∏
i=1

J0(
2�ni
di

Ai), (2.48)

in which J0 is the zeroth-order Bessel function of the �rst kind.
An opposite extreme is the case of phase-stable, common-mode translational

grating vibrations with frequency !. In this case the grating shifts are

Δxi = A sin(![T1 + ⋯ + Ti−1] + '). (2.49)

The term-dependent suppression factor is then

R =
1
2� ∫

2�

0
d' exp

{

2�iA
l

∑
i=1

ni
di
sin(![T1 + ⋯ + Ti−1] + ')

}

(2.50a)

= J0
⎛
⎜
⎜
⎝
2�A

√
l

∑
i=1

(
ni
di)

2

+ 2∑
i<j

ninj
didj

cos(![Ti + ⋯ + Tj−1])
⎞
⎟
⎟
⎠
. (2.50b)

Unlike in the case of independent grating vibrations, the suppression fac-
tor (2.50b) depends on the particle velocity (via the �ight times Ti). As a result,

7In the LUMI experiment, the integration time is typically a few seconds.
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one must know the velocity dependence of the pattern or signal terms in order
to calculate the total visibility loss for a velocity-averaged pattern or signal. This
requires specifying the types and parameters of all gratings in the interferometer.
However, an approximate visibility reduction can be calculated given only the
velocity distribution if we neglect the dependence of the pattern or signal terms
on the velocity. One can then simply average the suppression factor (2.50b) with
the velocity distribution in the beam. This is justi�ed when the vibration-free
pattern or signal is approximately constant in the relevant velocity range.

Coriolis force compensation

Observing high-mass interference in a long-baseline horizontal setup such as
LUMI would not be possible without compensating the Coriolis force due to
the rotation of the Earth. In LUMI, the compensation is achieved by means of a
constant grating roll [44]. Tilting the gratings away from vertical introduces a
small gravitational acceleration component in the plane of di�raction, which
can be used to compensate other forces acting on the particle. Compensation
of the Coriolis force achieved in this way is not exact, because the latter force
is velocity-dependent while gravity is not. It is nevertheless good enough to
recover close to maximum contrast in many practical situations (see Ref. [44]
and Section 3.4).

The technique generalizes straightforwardly to a multi-loop interferometer.
For a constant acceleration a, the shifts (2.33) of the pattern terms are propor-
tional to a/v2, where v is the velocity of the particle. To �nd the grating roll �
which makes the shifts stationary as a function of velocity, we note that

)v�lab
k ∝ )v(

a
v2)

= )v(
g sin � − 2Ωyv

v2 ) =
2
v2(

Ωy −
g sin �
v ), (2.51)

where −2Ωyv is the x component of the Coriolis acceleration and Ωy is the
vertical8 (in the lab frame) component of the Earth’s angular velocity. The
component of the angular velocity lying in the plane of the interferometer results
in a Coriolis force acting along the grating bars and thus can be neglected. Setting
the expression (2.51) to zero gives the optimal roll angle �v for Coriolis-force
compensation at velocity v,

sin �v =
Ωyv
g

. (2.52)

8Strictly speaking, one should take here the component parallel to the grating bars, but
since the resulting roll angle will be small, the vertical component is a good approximation.
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Assuming optimal compensation at velocity v0, the shift (2.33) of a pattern term
becomes

�lab
k = −

Ωy(v0 − 2v)
2v2 [

k

∑
i=2

2�ni
di

(L1 + ⋯ + Li−1)2 − �(L1 + ⋯ + Lk)2]
, (2.53)

where Li = Ti/v are the distances between the gratings. Equation (2.53) cap-
tures the imperfect nature of the compensation and allows us to see when the
technique is likely to become insu�cient. We discuss this in further detail in
Section 3.4 when analyzing the four-grating TLI.

2.6 Notes on implementation

In order to make quantitative predictions using the theory presented in this
chapter, one has to implement it in software for numeric or symbolic calcula-
tions. In this section we present some guidance on how to do so, based on the
experience of having implemented the formalism as a Mathematica package.
Some parts of the following discussion are also relevant for back of the enve-
lope calculations (especially the following subsection) or for understanding the
occasional discrepancies with previous results.

Dimensionless parameters and similarity

The �rst step in making the formalism of this chapter suitable for numeric or
symbolic computation is moving to dimensionless quantities9. The interfer-
ometer properties we want to calculate, such as visibility or transmission, are
dimensionless themselves. That means they must be functions of dimensionless
parameters only [45]. Identifying those parameters has advantages beyond
making the problem amenable to machine computation. Most importantly, it
allows us to identify equivalent (or similar in the language of dimensional anal-
ysis) combinations of dimensionful parameters. Simple examples of equivalent
parameter combinations include those in which the power of a laser grating
varies in proportion to its vertical radius. All these combinations will have the
same peak light intensity in the grating and will (within the approximations we
use) result in identical interferometer performance. Identifying a complete set
of dimensionless parameters is a way to �nd all such equivalence relations. It
will also allow us to quickly tell which experimental parameters have to change

9An adept of Mathematica might argue that the latter can now integrate dimensionful
quantities and will even update the units correctly. A veteran will know that this is nowhere
near reliable enough for a project as big as this.
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and how in order to accommodate, for example, an increase in particle mass.
Finally, knowing all the dimensionless parameters gives us an overview of which
physical mechanisms in the interferometer are a�ected by which experimental
parameters and to what extent.

To �nd a complete set of dimensionless parameters10, we inspect the quan-
tities appearing in Eq. (2.37) for the visibility of the velocity-averaged pattern
and gather all dimensionful quantities into dimensionless groups. A complete
set of dimensionless parameters obtained in this way is shown in Table 2.1.
These parameters together determine all the dimensionless properties of an
interferometer.

Finding the term indices ni
The �rst step in the calculation of the interference pattern or signal is �nding the
sets of ni which de�ne the terms in Eqs. (2.21b) and (2.27b). This is done by solv-
ing the uncollimated-illumination and last-grating conditions (2.26) and (2.28)
with a constraint � ≥ 0. The latter is used to exclude terms which di�er only by
an overall sign, as the factor of 2 in the formula for visibility already accounts
for those. Additionally, a constraint on the magnitude of ni must be included
in order to obtain a �nite number of solutions. The resulting equations and
constraints can be solved easily using a symbolic computation package, for
example with Solve in Mathematica. We group the terms found in this way
by their wavenumbers � and usually restrict our attention to those with the
lowest value11. To ensure that we have included all the relevant terms, we add
more by increasing the constraint on the magnitude of ni until the quantities of
interest no longer change.

Talbot coe�cients

The Talbot coe�cients are best taken from Ref. [26] or later sources in order
to avoid the sign error found in earlier publications in the Bn of optical phase
gratings with absorption. This error is discussed in Ref. [26] (p. 98) and is
sometimes the reason for discrepancy with older visibility calculations. Another
common reason for discrepancies is neglecting the velocity dependence of the
phase �0 imprinted at the antinode of an optical grating.

In contrast to the analytic Talbot coe�cients for optical gratings, the full
coe�cients for mechanical gratings can only be obtained numerically. The

10We say parameter, because there is also a dimensionless variable, v/v0 which is integrated
over and does not enter the �nal result.

11In general, the smallest � is not known in advance, and thus we cannot directly solve for
the terms corresponding to it.
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Quantity Measures Appears in

di
d

Ratios of grating periods. d is a length scale
associated with the grating period, such as
the smallest or the average period.

The last-grating con-
dition (2.26) and the
uncollimated-illumination
condition (2.28).

Li
L

Ratios of distances between the gratings. L
is a length scale such as the total interferom-
eter length or the smallest of the distances
between the gratings.

As above.

Lℎ
v0md2

Interferometer length. v0 is the most proba-
ble particle velocity. This is proportional to
the ratio of the interferometer length to the
Talbot length v0TT .

Arguments of Talbot coef-
�cients, all grating types.

Δv
v0

Velocity spread. Δv is any linear measure of
variation, such as standard deviation.

Distribution of velocities in
the beam.

ΩyL2

v0d
Interferometer rotation. This is proportional
to the displacement of the gratings as a re-
sult of rotation during the transit of a particle
through the interferometer.

Phase shift (2.53) due to the
Coriolis force.

f Nominal opening fraction of a mechanical
grating.

Talbot coe�cients of me-
chanical gratings.

ℎc� ′b2

v20md6
Mechanical grating thickness. � ′ is the polar-
izability volume of the particle and b is the
thickness of the grating.

E�ective opening fraction
of a mechanical grating us-
ing Eq. (2.55) (see Page 30).

� ′P
ℎcv0wy

Phase modulation. P and wy are power and
vertical size of the optical grating.

Talbot coe�cients of opti-
cal gratings.

��
� ′

Absorption cross section. � is the wavelength
of the grating laser and � is the absorption
cross-section. This is proportional to the ratio
of the average number of absorbed photons
to the dipole-force phase. Cf. � in Ref. [26].

Talbot coe�cients of opti-
cal depletion gratings and
of optical phase gratings
with absorption.

Table 2.1: Dimensionless parameters of a TLI with mechanical or optical grat-
ings and in the presence of the Coriolis force. To obtain a complete set of
dimensionless groups, the last four quantities must be included multiple times
if they are di�erent for di�erent gratings. Note that a di�erent result for the
mechanical grating thickness would follow from Eq. (2.58).
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knowledge how to do it is rather fragmented in the literature, we therefore
provide a quick summary here. The �rst step is estimating the e�ective opening
fraction, which can be done in two ways. In both approaches, the e�ective
opening fraction has the form

f ′ = f −
2xc
d
, (2.54)

where xc is a critical impact parameter such that the particle will not be detected
if it enters the grating closer than xc to the slit wall. The two methods di�er in
how xc is obtained.

The �rst method takes xc as the impact parameter below which the classical
trajectory of the particle hits the grating bar. For a grating with thickness b
interacting with the particle via the retarded Casimir-Polder potential12 V (x) =
−C4x−4, this distance is given by [47]

xc = (
18b2C4
mv2 )

1/6

. (2.55)

A possible shortcoming of this method is that the de�ection of molecules which
barely escape collision with the grating will be quite strong. In most cases strong
enough for them to miss the detector at the end of the interferometer. This
means that Eq. (2.55) most likely underestimates the e�ective critical distance.

A way to address this is to set xc equal to a distance below which particle
de�ection exceeds a maximum detectable angle �c . To do this, one estimates the
de�ection upon grating transit as [48]

� ≈ −
V ′(x)b
mv2

, (2.56)

which is a good approximation as long as the higher-order term is negligible;
that is,

V ′′(x)v2m − [V ′(x)]2

6m2v2 (
b
v)

2

≪ 1. (2.57)

Using the same Casimir-Polder potential then gives

xc = (
4bC4
mv2�c)

1/5

. (2.58)

12The strongly retarded form of the Casimir-Polder potential is valid for distances much
larger than the particle’s largest resonant excitation wavelength [46]. It proved su�cient for
describing the di�raction of fullerenes on gratings with a 991 nm period [27], but must be used
with caution for smaller periods and for particles with larger polarizability.
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Figure 2.2: For a material grating with opening fraction f , the integrand in
Eq. (2.61) is only nonzero within the shaded regions.

By design, the latter will usually give a larger cuto� distance and thus a smaller
opening fraction than Eq. (2.55).

For easy reference, we include the C4 constant as found in Ref. [46], p. 180.

C4 =
3ℏc� ′

16� ∫
∞

1
d�

[(
2
�2
−
1
�4)

"� −
√
"� − 1 + �2

"� +
√
"� − 1 + �2

−
1
�4
�� −

√
"� − 1 + �2

�� +
√
"� − 1 + �2 ]

,

(2.59)
where " and � are static electric and magnetic relative permittivities of the
grating material, and � ′ is the polarizability volume of the particle. The latter
is a SI quantity expressing the proportionality between the dipole moment �
induced by an electric �eld E as [49]

� = 4�"0� ′E. (2.60)

The permittivity integral in Eq. (2.59) is sometimes omitted in applications. To
give an idea of the resulting error, we note that if one takes � = 1 and " = 7.5 for
silicon nitride, the integral evaluates to about 1.2.

The e�ective opening fraction determines the Talbot coe�cient at zero argu-
ment via Bn(0) = f ′ sinc(�nf ′) [26]. This is all that is needed if the mechanical
grating is used in the �rst or last positions. If it is used in the middle, the full
Talbot coe�cients need to be obtained via numerical integration. This is done
starting from the de�nition (2.13) of Bn by noting that for even t(x) the integrand
is hermitian. The latter allows us to restrict the integration to positive x̃ = x/d ,

Bn(� ) = 2 Re ∫
1/2

0
dx̃ e−2�inx̃ t (x̃ −

�
2)

t ∗(x̃ +
�
2)

. (2.61)
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For f ′ < 1/2, expressing t(x) in the eikonal approximation [26] and noting that
the integrand is only nonzero in the regions shown in Fig. 2.2 gives

Bn(� ) = 2 Re ∫
(f ′−� )/2

0
dx̃ exp

{

−2�inx̃ −
ibC4
ℏv [(

f ′

2
− x̃ +

�
2)

−4

+

+(
f ′

2
+ x̃ −

�
2)

−4

− (
f ′

2
− x̃ −

�
2)

−4

− (
f ′

2
+ x̃ +

�
2)

−4

]

}

(2.62)

when � ∈ [0, f ′] or � ∈ [1−f ′, 1], otherwise Bn(� ) = 0. For all � outside of the [0, 1]
interval, the coe�cient is then obtained using the periodicity property (2.14c).



Chapter 3

The four-grating Talbot-Lau
interferometer

In this chapter, we analyze the four-grating TLI, which could be useful for passive
compensation of low-frequency vibrations and of the Coriolis force due to the
rotation of the Earth. We will assume that the interferometer is illuminated
by an uncollimated source and that the last grating is scanned to detect the
interference pattern.

Each of the four gratings of the interferometer could be of a di�erent type,
leading to a large number of possible con�gurations. Here, we will focus on
two possibilities inspired by the current form and by the ongoing upgrade of
the LUMI experiment [21]. That is, on the mixed mechanical-optical setup
with 28 kDa oligoporphyrins or strontium atoms, and on the all-optical setup
with 100 kDa or 500 kDa hafnium clusters. The former con�guration will have
two mechanical di�raction gratings in the �rst and last positions, and an optical
phase grating with a wavelength of 532 nm in the middle. For the all-optical
setup, we will assume that 266 nm wavelength photoionizing depletion gratings
are used in all positions, and we will allow for the laser powers of the internal
and external gratings to be di�erent. For both interferometer types, we will
denote the common period of the gratings by d and the particle �ight time
between the �rst and the second grating by T . Unless otherwise noted, the total
length of the interferometer will be 2m when relevant.

3.1 Visibility

The �rst step in the calculation of the visibility of the interference signal is the
identi�cation of the relevant terms. We do this as described in Section 2.6. The
solutions with ∑4

i=1 |ni | ≤ 8 are shown in Table 3.1. There, we sort the terms

33
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No. ∑4
i=1 |ni | ni |�d/2�| Recoil diagram

1 4 1, −1, −1, 1 1

2 6 2, −3, 1, 0 0

3 6 1, −2, 2, −1 1

4 6 0, 1, −3, 2 2

5 8 3, −4, 0, 1 1

6 8 2, −2, −2, 2 2

7 8 1, 0, −4, 3 3

Table 3.1: Lowest-n terms contributing to the signal in a four-grating Talbot-
Lau interferometer. These are all terms for which ∑4

i=1 |ni | ≤ 8, excluding the
trivial one ni = 0.

by ∑4
i=1 |ni |: a heuristic metric motivated by the decay of the Talbot coe�cients

with n. We will restrict ourselves to fringes with the lowest spatial frequency;
i.e., those with �d/2� = 1. This leaves us with terms 1, 3, and 5, which we
respectively refer to as the trapezoidal, �gure-eight, and triangular terms. The
constant background in the interferometer signal is due to terms with �d/2� = 0;
i.e., the trivial term ni = 0 and term 2 in Table 3.1, which we refer to as the
top term. The latter as well as the inverse top term (No. 4 in Table 3.1) vanish
for the mechanical-optical setup because of the property of the phase gratings
discussed in Section 2.1.

The visibilities of the three- and four-grating interferometers in the absence
of external forces are compared in Fig. 3.1 for the mechanical-optical con�gu-
ration and in Fig. 3.2 for the all-optical con�guration. There, we also plot the
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Figure 3.1: Quantum (blue) and classical (orange) sinusoidal visibilities as a
function of grating separation1 in three- (left) and four-grating (right) interfer-
ometers in a mechanical-optical con�guration. On the right, contributions to the
quantum visibility from the trapezoidal (dotted) and the �gure-eight (dashed)
terms are shown. The peak phase modulation of the phase gratings is �0 = 3
and the opening fraction of the mechanical gratings is f = 0.42.

visibilities of the trapezoidal and �gure-eight terms. Because of the lack of ex-
ternal forces, the phases of both terms are zero and they interfere constructively.
The contribution of the triangular term is small, reaching at most 2 percentage
points of visibility for the mechanical-optical setup and at most 8 percentage
points for the all-optical setup. In Fig. 3.2 the sinusoidal visibility signi�cantly
exceeds unity. As discussed in Section 2.2, this is a sign that the assumption of
a single dominating spatial frequency is not well satis�ed. This is caused by
the inverse top and big trapezoidal terms (4 and 6 in Table 3.1), which produce
higher-frequency fringes with a combined visibility of about 0.7.

Both in the mechanical-optical and all-optical con�gurations, the dependence
of the visibility on the �ight time T between the gratings is similar for the three-
and four-grating interferometers. However, the total �ight time is 4T in a
four-grating setup compared to 2T in a three-grating one. Therefore, for a �xed
particle velocity and interferometer length, T /TT is half as large in a four-grating
con�guration as in a three-grating one. This has important implications for
the applicability of the four-grating and other multi-loop setups, especially
for experiments which are de-Broglie-wavelength limited. For experiments
which are not de-Broglie-wavelength limited, T /TT is large and can be halved

1The ratio T /TT can change as a result of changing interferometer length or changing
particle velocity. These two ways are not equivalent, because velocity of the particle also enters
the transmission functions of the gratings (in the case of optical phase gratings through �0,
which is inversely proportional to velocity).
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Figure 3.2: As in Fig. 3.1 but for interferometers with optical depletion gratings.
The peak phase modulation and the mean number of absorbed photons are
�0 = 4 and n0 = 8, respectively.

without losing the ability to distinguish the quantum pattern from a classical one.
However, high-mass interference experiments often operate in the T /TT ∼ 1
regime, in which T /TT cannot be further decreased without substantial loss of
distinguishability between the quantum and the classical patterns. In this case,
changing from a three-grating con�guration to a four-grating one would require
halving the velocity of the particles, which might be a signi�cant challenge.

In the presence of a uniform external force, fringes resulting from the dom-
inating trapezoidal and �gure-eight terms are a�ected di�erently. This is a
consequence of the di�erence in enclosed areas as de�ned in Eq. (2.42). Fringes
due to the positive-area trapezoidal term are displaced proportionally to the
magnitude of the applied force and to the inverse square of the particle velocity.
Fringes due to the zero-area �gure-eight term, on the other hand, remain un-
a�ected. If the external force or the velocity spread in the molecular beam is
small, this leads to visibility oscillations as the two sets of fringes slide against
and interfere with each other. If the force or the velocity spread is large, the
trapezoidal-term fringes are washed out completely, reducing the visibility to
that of the �gure-eight term.

If necessary, the visibility oscillation resulting from interference of the two
terms can be eliminated by detuning the interferometer. This can be achieved
by changing the grating separation to L + �L, 2L, L − �L, where �L ≪ L [30] (see
Fig. 3.3). This suppresses the trapezoidal term in exchange for introducing a
slight acceleration sensitivity to the �gure-eight term. The suppression follows
from the uncollimated-illumination condition (2.28), which the trapezoidal term
fails to satisfy in the detuned interferometer. The acceleration sensitivity arises
as the two loops of the eight �gure are no longer identical and thus the enclosed
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Figure 3.3: Detuning the four-grating interferometer by moving the middle
two gratings. This suppresses the trapezoidal term (blue) by violating the
uncollimated-illumination condition (2.28). The �gure-eight term is retained,
but imbalancing the two loops introduces a nonzero signed area and thus slight
acceleration sensitivity.

area does not vanish. Alternatively, the interferometer can be detuned by
increasing the spacing between the two middle gratings while decreasing their
period [50]. The bene�t of this detuning is that it does not compromise the
insensitivity of the �gure-eight term to acceleration. Finally, another possibility
is to selectively dephase the trapezoidal terms using additional standing-wave
pulses [51].

3.2 Transmission
Switching from a three-grating setup to a four-grating one a�ects the trans-
mission of the interferometer in two ways. First, the transmission is decreased
by the e�ective opening fraction of the new grating (equal to unity for phase
gratings). In addition to that, moving to a four-grating con�guration might
require changing the operating parameters, which can a�ect the transmission
of all gratings in the setup. The prime example of such a parameter is particle
velocity, which in�uences the transmission of all absorptive gratings. Similarly,
a change in the laser grating intensities will a�ect the transmission of optical
depletion gratings.

In the mechanical-optical con�guration, the extra phase grating is perfectly
transmissive and thus only the second mechanism applies. For an experiment
which is de-Broglie-wavelength limited, switching to a four-grating con�gura-
tion requires halving the particle velocity, which decreases the transmission of
the mechanical gratings. This can be seen from the Eq. (2.54) for the e�ective
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opening fraction and Eqs. (2.55) and (2.58) for the critical distance. Halving the
velocity increases the latter and thus the opening fraction reduction (which
can be as large as 40% for fullerene experiments with a 100 nm period grating)
by 26%.

In the all-optical con�guration, both reasons for the change in transmission
apply. Introducing an additional depletion grating decreases the �ux through
the interferometer by a factor

B0(0) = e−n0/2J0(
n0
2 ), (3.1)

where n0 is the mean number of photons absorbed at the antinodes. The above
follows from property (2.14d) combined with the Talbot coe�cients of a de-
pletion grating [26]. The factor (3.1) decays quickly with n0 and decreases the
transmission of the interferometer, which in most cases is already low for three-
grating setups. For example, we will show that the maximum of visibility for
a three-grating all-optical interference of 100 kDa hafnium clusters traveling
at 200m s−1 occurs with n0 ≈ 28 at the external and n0 ≈ 13 at the internal
grating. This results in a total transmission of only 0.2%. One can estimate that
switching to a four-grating con�guration in this situation, which would require
halving the particle velocity and adding another grating, would decrease the
transmission by a further order of magnitude.

3.3 Vibration sensitivity
The e�ect of vibrations on a multi-loop setup depends on their amplitude, mode,
and frequency and will be di�erent for di�erent terms. For three-grating setups,
the most stringent stability requirements typically result from independent
grating vibrations [21]. To evaluate their in�uence on the four-grating inter-
ferometer, we use Eq. (2.48) and plot the visibility reduction in Fig. 3.4. Since
the latter is a strong function of ni , the trapezoidal term is a�ected less than a
three-grating setup, and the �gure-eight term is a�ected more. However, for
moderate vibration amplitudes the di�erence is likely too small to be of practical
concern.

To investigate the sensitivity of the four-grating setup to common-mode
vibrations, we use Eq. (2.50b). Since in this case the reduction is velocity-
dependent, we average it over a Gaussian velocity distribution while treating
the magnitudes of the terms as constant. The result is shown in Fig. 3.5. We
�nd that the �gure-eight term is signi�cantly less sensitive to low-frequency
common-mode vibrations than the trapezoidal term or the three-grating setup.
This is expected from the acceleration-compensating property of the �gure-
eight term and has previously been observed in far-�eld interferometers for
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Figure 3.4: Visibility reduction in three- (blue) and four-grating interferometers
(�gure-eight term in orange, trapezoidal in green) as a result of independent
translational grating vibrations with amplitude A.

neutrons [37]. Multi-loop con�gurations could thus complement or supersede
the use of pendular suspensions for the suppression of low-frequency vibrations.

3.4 Coriolis force compensation

One of the main bene�ts of the four-grating con�guration is its partial insensi-
tivity to constant accelerations, and thus to the Coriolis force. Compensating
the latter was already necessary for achieving the recent mass record [8], and
will remain a prerequisite for all future high-mass interference experiments in a
horizontal con�guration. The currently employed compensation technique is
the “grating roll trick”, described in Section 2.5. We will use it as a point of refer-
ence for discussing the usefulness of the cancellation achieved in a four-grating
setup.

The grating-roll technique necessarily o�ers only an approximate com-
pensation of the Coriolis force. Nevertheless, we �nd that in existing and in
near-future high-mas interference experiments it allows for almost complete
recovery of maximal visibility. This is shown in Fig. 3.6, where we take the
record-breaking mechanical-optical setup [8] as an example of an existing ex-
periment and an all-optical interferometer for 100 kDa hafnium clusters as an
example of a near-future one. In these two cases, the maximal visibility in a
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Figure 3.5: Visibility reduction in three- (top) and four-grating interferometers
(middle: �gure-eight term, bottom: trapezoidal term) as a result of common-
mode translational grating vibrations. We assume a Gaussian velocity distribu-
tion with a mean of 200m s−1 and standard deviation of 10% of the mean.

four-grating setup is similar as in a three-grating one2. Therefore, the potential
bene�t from switching to a four-grating con�guration in these two scenarios is
small.

We expect the gain from using the four-grating con�guration to be signi�cant
when the Coriolis force compensation achieved using the roll trick is insu�cient.
The residual phase shift (2.53) after applying the latter is proportional to the
length of the interferometer squared and to the inverse of the particle velocity.
This suggests that the roll trick might become insu�cient as the velocity of
the particles is decreased. This is an important scenario, as decreasing particle
velocity is needed to maximize the mass of the interfering particles or the

2Strictly speaking, the all-optical four-grating setup can achieve a higher visibility than its
three-grating counterpart. However, this requires laser grating intensities which signi�cantly
reduce the particle �ux, as discussed in Section 3.2.
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Figure 3.6: Dependence of visibility on the middle grating power in a three-
grating interferometer showing Coriolis force compensation using the grating
roll technique. Left: 28 kDa oligoporphyrin interference in a mechanical-optical
setup (LUMI). Right: 100 kDa hafnium cluster interference in an all-optical setup.
The dashed line shows the visibility without Coriolis force, the dotted one is the
visibility with the gratings aligned to gravity (no compensation), and the contin-
uous one is with the gratings tilted by angle (2.52) to compensate the Coriolis
force. For oligoporphyrin interference, we take the experimental parameters of
261m s−1 mean velocity with a spread of 21% (standard deviation) [8], as well
as an absorption cross section � = 6.8 × 10−17 cm2 and a polarizability volume
� ′ = 1317Å3. For cluster interference, we assume a mean velocity of 200m s−1
with a spread of 40%, as well as � ′ = 1150Å3 and � = 9.1 × 10−15 cm2. The latter
are obtained as in Appendix A of Ref. [48] using bulk electric permittivity [52].
The power of the external gratings in the all-optical setup is held constant at 1W
and all vertical grating radii are taken to be 700 µm (1/e2 intensity). The length
of the interferometer is 1.96m.

superposition distance (in which case light particles would be used). In Fig. 3.7,
we compare the performance of the grating-roll technique to a four-grating
setup in these two cases of the low-velocity limit. We �nd that the three-grating
setup indeed loses a signi�cant portion of maximal visibility despite the roll
trick. However, in this case the four-grating setup does not o�er a signi�cant
improvement. That is primarily because the acceleration-insensitive term only
accounts for a half to a third of the maximal visibility in the four-grating setup
(see Figs. 3.1 and 3.2). The visibility in both setups is further decreased by the
large velocity spread.

The second case in which we expect the limitations of the roll trick to show
is that of an increased interferometer length. In Fig. 3.7, we compare the three-
and four-grating con�gurations for an interferometer with a total length of 20m.
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Figure 3.7: Dependence of visibility on the middle grating power in a three-
(blue) and four-grating (green) interferometers in the low particle velocity limit.
Left: Interference of strontium atoms in a mechanical-optical setup (LUMI). Right:
Interference of 500 kDa hafnium clusters in an all-optical setup. We assume
mean velocities of 30m s−1 with a spread of 50% for the atoms and 40m s−1
(20m s−1 for the four-grating setup) with 40% spread for the clusters. For the
latter we take � ′ = 5770Å3 and � = 4.5 × 10−14 cm2 [48, 52], while for strontium
we neglect the absorption and take � ′ = 29.6Å3. The remaining parameters are
the same as in Fig. 3.6, with the exception of the external grating power for the
four-grating setup, which is 0.4W. In the four-grating setup, the gratings are
aligned to gravity.

In this case, the visibility of the three-grating setup is decreased to the extent
that observing interference would be essentially impossible for atoms and heavy
clusters alike. The multigrating con�guration performs relatively well in this
limit even at moderate velocities. As a result, the four-grating scheme could be
necessary for TLIs with a length of the order of 10m.

The above result invites the question if such long interferometers are likely
to be built in a horizontal con�guration. One of the ultimate limitations on the
length of a horizontal interferometer is the vertical free fall, which determines
the minimum diameter of the interferometer chamber. In a 20m interferometer,
the �ight time of particles traveling at 80m s−1 is 250ms. This corresponds to
about 30 cm of free fall if the particles start with zero vertical velocity. This is
unpractically large, but can be reduced by directing the particle beam slightly
upwards so that the particle trajectory peaks in the middle of the interferometer.
In this case, the trajectory would be approximately 8 cm tall and thus much
easier to accommodate. However, what remains problematic is the vertical
dispersion of the beam, which grows with the square of the interferometer
length. In the same example, the vertical separation of the 80m s−1 and 100m s−1
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Figure 3.8: Like Fig. 3.7, but for a 20m long interferometer. Left: strontium atoms
traveling at 100m s−1. Right: 500 kDa hafnium clusters traveling at 80m s−1. In
both cases, we assume a 25% velocity spread.

velocity classes would exceed 10 cm at the end of the interferometer. This would
inevitably lead to strong velocity selectivity, which puts considerable limitations
on the minimum source brightness.

An alternative to a horizontal setup is a vertical one in which the particles are
trapped and cooled before being either launched upwards or dropped towards
the di�raction gratings. To achieve the same free evolution time as for particles
traveling at 80m s−1 in a 20m long horizontal setup, a drop height of 30 cm
would su�ce. If the particles are launched upwards instead, this reduces to
about 8 cm. Such reduction in interferometer length is clearly desirable and
makes the development of trapping and cooling techniques applicable to highly
massive particles a priority.

Finally, we note that in a vertical arrangement, the Coriolis force would be
less detrimental to interference than in a long-baseline horizontal setup. That
is because in a vertical setup, the Coriolis force can be made approximately
perpendicular to the grating vector. If the grating laser is coaxial with the particle
beam, orthogonality is guaranteed because the Coriolis force is perpendicular to
the velocity of the particle3. If the gratings are perpendicular to the particle beam,
orthogonality can be achieved by rotating them around the interferometer axis
such that grating slits are oriented in the East–West direction. In both setups,
the orthogonality of the Coriolis force and the grating vector is approximate,
because we have neglected the small transverse velocity components of the
particle. However, the Coriolis force resulting from those is relatively small and

3In this setup, the Coriolis force still a�ects the overlap of the wavepackets at the end of
the interferometer. However, this is a higher-order e�ect than the dephasing due to Coriolis
force in a horizontal setup.
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can be compensated using standard methods.



Chapter 4

Comparison of two- and
three-grating interferometers

The discussion in the previous chapter illustrates some of the di�culties in
comparing dissimilar interferometer schemes. In this chapter, we make those
di�culties explicit and show how to address them. The following treatment
complements our published work [48] with a detailed justi�cation of the signal-
to-noise �gure of merit. We also discuss how the latter can be extended to
include metrological experiments and di�erent sources of uncertainty. We end
with a discussion of the results and limitations of the current approach.

4.1 Figure of merit

The �rst problem we face when comparing interferometer schemes is the lack of
an adequate metric or �gure of merit. The visibility of the interference pattern
or signal is most often used for this purpose, but its limitations are easily seen:
an interferometer with unit visibility is not worth much if its transmission is
essentially zero. High visibility and transmission at the same time are also not
su�cient if they occur in a parameter regime for which the classical visibility is
large. A good �gure of merit should capture how well an interferometer serves
its purpose, and so in the �rst step we must de�ne the latter.

Here and in Ref. [48], we focus on interference experiments aiming to demon-
strate quantum superpositions of massive particles. For such a demonstration
to succeed, the di�erence between the quantum and the classical signals has to
be larger than any uncertainty involved. Assuming that statistical uncertainty
dominates, we can introduce a �gure of merit N proportional to the number
of baseline counts necessary for the quantum-classical di�erence to exceed the
shot noise. Baseline counts are a product of source intensity (in the relevant

45
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velocity class and solid angle), detection e�ciency, and integration time. Equiv-
alently, they are equal to the number of counts the experiment would register
with no gratings in place. Referring to baseline counts allows us to capture the
di�erences in interferometer transmission: A setup which wastes more particles
will require more baseline counts to achieve the same shot noise level. Another
bene�t of using N is the ability to treat imaging setups on equal footing with
scanning-grating interferometers.

For a scanning grating interferometer, the above �gure of merit can be
introduced as follows. Assume that the total data-taking time and the source
and detection e�ciency are such that without gratings we would register N
counts. Then assume that the scanning grating position xS , for which the
signal S(xS) attains a maximum, can be found using a negligible portion of these
counts. With this information available, the amplitude of the interference signal
can be measured in the most count-e�cient way by integrating for half of the
data-taking time at the maximum and for the other half at the minimum of
the signal. The expectation value of the number of counts registered at the
maximum is then

⟨N+⟩ =
N
2
max S(xS), (4.1)

and analogously at the minimum ⟨N−⟩ = N min S(xS)/2. The expectation value
of the measured amplitude is then

⟨N+ − N−⟩ ≈ NS� , (4.2)

where S� is the dominant term in the decomposition of the signal, Eq. (2.27a).
A result analogous to Eq. (4.2) holds in the classical scenario. The di�erence
between the amplitudes obtained in the quantum and in the classical case is

⟨N+ − N−⟩ − ⟨N+ − N−⟩cl = N (S� − Scl
� ) , (4.3)

where the superscript cl denotes the classical predictions. The variance of the
amplitude measurement assuming Poissonian counting statistics is

Var(N+ − N−) = NS0. (4.4)

That is because the variance of a sum of independent measurements is the sum
of variances, and the variance of a Poissonian variable is equal to its mean.
Equation (4.4) holds both in the quantum and in the classical case, because the
constant term S0 is the same in both cases (this follows from the equality (2.45)
of quantum and classical Talbot coe�cients at zero argument). The standard
error of the amplitude measurement is thus

√
NS0 in both cases. Dividing the
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signal (4.3) by this value of error gives us a signal-to-noise type �gure of merit.
Equating it to unity and solving for N gives

N =
S0

(S� − Scl
� )

2 . (4.5)

For a direct-detection interferometer, an analogous expression for N can be
obtained following a similar argument [48].

It must be noted that N is only a lower bound on the number of baseline
counts necessary for the quantum-classical discrimination task to succeed. The
reasons for that are twofold. First, a signal-to-noise ratio of more than unity is
certainly desirable, which in�ates N accordingly. Second, we have assumed an
impossible optimal protocol for measuring the amplitude. In it, the locations of
the maximum and the minimum of the signal are known and the entire count
budget can be spent on determining their values. This is not the case in practice,
and measuring the amplitude to the same precision as in this ideal case would
probably require at least an order of magnitude more counts. Therefore, one
must not put too much weight on the value of N for any single interferometer
con�guration (unless N is extremely high, then one is safe to conclude that the
con�guration is not viable). However, the ratios of N for di�erent interferometer
con�gurations are representative of the di�erences in baseline counts necessary
to achieve the same quantum-classical distinguishability.

If the need arises, the above approach can be extended in the following
ways. First, one can include the systematic uncertainty if there are reasons to
believe it exceeds the statistical error. This can be the case for particle species
for which the optical properties are highly uncertain. Including systematic
uncertainty would require restricting the (typically numerical) minimization
of N to the parameter regimes in which the signal exceeds a certain threshold
value. This cuto� value would need to be found by estimating the response
of the signal to variation in the uncertain parameters. Second, the �gure of
merit N can be adapted to experiments with a metrological focus, for which the
classically-predicted signal is irrelevant. This is as easy as omitting the classical
signal term from the de�nition (4.5) of N . The resulting metric captures the
ratio of the quantum signal to the shot noise, which determines the theoretical
limit on the precision of an experiment. With this modi�cation, N would be
suitable for comparison of metrological setups.

4.2 Numerical optimization
The second problem we face when comparing interferometer schemes or looking
for optimal con�gurations is the large number of possibilities. Even if we
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Particle m [kDa] � ′266 [Å
3] �266 [cm2] � ′532 [Å

3] �532 [cm2]

Insulina 5.8 600 4 × 10−17 600 0
Trp50

b 10 1000 9.1 × 10−16 1000 0
GFPac 27 2700 4 × 10−17 2700 0
Silver 100 2500 6.9 × 10−15 5200 2.1 × 10−16
Cesium 100 −2200 6.5 × 10−15 −22000 2.4 × 10−14
Silver 300 7400 2.1 × 10−14 15400 6.2 × 10−16
Cesium 300 −6700 1.9 × 10−14 −65000 7.2 × 10−14
a Absorption cross sections correspond to that of the photocleavable group [53].
b See Ref. [54].
c Green Fluorescent Protein

Table 4.1: Parameters of the molecules and clusters used for the comparison
of two- and three-grating interferometer setups shown in Fig. 4.1. Reproduced
from Ref. [48].

consider only one grating of each basic type (mechanical, optical phase, and
optical depletion), we arrive at 12 possible two- and three-grating combinations,
listed in Fig. 4.1. If we include four-grating interferometers, this number more
than doubles. Each grating con�guration can then be combined with a number
of sources, including metal clusters of di�erent composition and size, as well as
natural and arti�cial macromolecules. Each setup-source combination should
then be optimized over laser grating powers for every particle velocity to �nd
the best working parameters. Only once this is done, we can conclude that
certain interferometer schemes perform better than others.

In Ref. [48], we have used numerical optimization to tackle this complex-
ity with the aim of making the best possible use of the 2m baseline of LUMI.
At the core of our approach was the theory from Chapter 2, implemented
as a Mathematica package. In anticipation of the treatment of four-grating
setups presented in Chapter 3, we have restricted our attention to two- and
three-grating setups. We have also limited ourselves to the gratings already
in use at LUMI (266 nm period mechanical and optical phase gratings) in ad-
dition to a 133 nm period optical depletion grating, which could be obtained
by frequency-doubling the phase grating1. We have considered seven di�erent
sources, including a range of biomolecules as well as metal clusters. The optical
properties of the chosen particles are shown in Table 4.1. For each combination
of source and grating sequence, we have numerically minimized the �gure of

1This choice of grating types surely does not exhaust the promising possibilities. Notewor-
thy candidates include a 266 nm period optical depletion grating for clusters of metals with a
low work function.
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Figure 4.1: Comparison of two- and three-grating interferometer schemes in
terms of the �gure of merit N , introduced in Section 4.1 (smaller is better). N is
proportional to the number of baseline counts necessary to distinguish quantum
interference from classical fringes in a given setup. D, P, and M stand for optical
depletion, optical phase, and mechanical gratings. I denotes space-resolving
detection allowing for direct imaging of the interferometer pattern. The distance
between the �rst and second grating is equal to the distance between the second
and the third (or a detector for imaging setups), unless 1 ∶ 2 is noted. For 1 ∶ 2
setups, the second distance is twice as large as the �rst. The mean velocity of
the particles is optimized over a range of 30m s−1 to 600m s−1 and the velocity
spread is kept at 5% of the mean (standard deviation). Reproduced from Ref. [48].

merit N over the mean particle velocity and over the powers of all laser gratings.
To decrease the size of the parameter space, the powers of the �rst and third
laser gratings were kept equal (where applicable). The results are shown in
Fig. 4.1.

The biggest gap we �nd is between scanning-grating and direct-detection
setups. The latter typically need about an order of magnitude less baseline
counts to achieve the same degree of quantum-classical distinguishability2.
Direct-detection setups have been expected to be more count e�cient than

2Additionally, we expect the detection e�ciency to be higher in direct-detection setups
than in scanning-grating setups. This means that the former accumulate baseline counts faster
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their scanning-grating counterparts. However, this is the �rst time that this
advantage has been quanti�ed. Finally, we note that the di�erence in N between
the two interferometer types can be estimated analytically. To do this, we use
that the constant term of the signal (2.27) is smaller than that of the pattern (2.21)
by B(3)0 (0), while the modulation amplitude is multiplied by B(3)n3 (0) in the quantum
and by C (3)

n3 (0) in the classical case. Since B(i)n (0) = C (i)
n (0), N changes by a factor

[B(3)n3 (0)]
2/B(3)0 (0). This factor reproduces the observed di�erence in N when its

dependence on velocity is weak; that is, when [B(3)n3 (0)]
2/B(3)0 (0) changes little

over the velocity spread in the beam.
We now restrict our attention to the scanning-grating setups. Among these,

the mechanical-depletion-mechanical and the mechanical-phase-mechanical
con�gurations stand out in terms of performance for biomolecules and silver
clusters. However, these setups might be incompatible with clusters or large
molecules due to clogging of the mechanical gratings [21]. This is likely to be
most severe at the �rst grating, which is exposed to the largest particle �ux.
To alleviate the clogging issue, we could replace the �rst mechanical mask
with an optical depletion gating. Among the setups which implement this, the
asymmetric depletion-phase-mechanical one performs very well overall and is
only one grating substitution away from the existing LUMI setup. Going further,
the most reliable approach to the interference of highly massive clusters might
be to avoid mechanical gratings altogether. In this case, the triple-depletion
setup is the best choice.

It is worth noticing that the asymmetric depletion-phase-mechanical scheme
systematically outperforms its symmetric counterpart. The advantage of the
asymmetric setup lies in using lower-order di�raction at the second grating to
close the interferometer. Whereas the symmetric setup requires fourth-order
di�raction, the asymmetric one uses third-order di�raction. Similar advantages
should always be sought when considering TLIs with unequal grating periods.

Finally, two remarks are in order regarding the results of Ref. [48]. First,
the analysis predates the grating-roll technique of Coriolis force compensation.
The loss of visibility due to the Coriolis force thus in�ates the number of counts
necessary to achieve distinguishability. This is especially pronounced for the
most massive particles3. The second caveat is the assumption that for each
setup the optimal laser intensity can be reached. For insulin and GFP achieving
optimal N requires upwards of 20W of UV light for a grating radius of 150 µm.
This could limit the real-world applicability of such interferometers.

for the same source intensity. As a result, the di�erence in data taking time is likely to be even
larger than the di�erence in baseline counts.

3While the Coriolis force does not depend on mass, highly massive particles require a
longer �ight time, which increases Coriolis dephasing.



Chapter 5

Conclusions (Part I)

The three-grating Talbot-Lau interferometer (TLI) has been the basis for high-
mass interference experiments for almost 20 years. Most recently, the scheme
has been employed in the record-breaking LUMI experiment [8]. In this part of
the thesis, we have looked into the potential bene�ts of departing from the TLI
con�guration in LUMI and in future experiments by changing the type or the
number of the di�raction gratings. We have �rst turned to the latter possibility,
which required generalizing the existing phase-space description of pattern
formation in a TLI to include an arbitrary number of gratings. We have done
this in Chapter 2.

The most important feature of the generalized theory is the graphical inter-
pretation of the expressions for the interference pattern or signal. It allows one
to write down the complete pattern in any Talbot-Lau interferometer (including
asymmetric or magnifying setups) essentially by �nding closed-loop classical
trajectories. These trajectories visualize the “coprime integers r , s” of Ref. [26]
and earlier works, and naturally generalize to interferometers with any number
and period of gratings. The diagrammatic approach also makes it easier to
design interferometers with desirable properties, such as those which suppress
unwanted parasitic trajectories.

In Chapter 3, we have used the generalized theoretical approach to analyze
a near-�eld interferometer analogous to the �gure-eight far-�eld interferome-
ter [31]. We found that it is in many ways equivalent to two three-grating TLIs
performed one after another. In particular, the four-grating setup will require
twice as much free evolution time as a three-grating setup to produce a pattern
with a similar visibility. This makes it suboptimal for the interference of record-
breaking masses, in which the available coherent evolution time is a limiting
factor. In atomic gravity gradiometers, the doubled evolution time requirement
is one of the reasons why the two-loop con�guration is often substituted by two
three-pulse interferometers operating side-by-side [55].
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The two-loop scheme is valued for its insensitivity to constant forces and
low-frequency vibrations. We found that these advantages carry over from the
far-�eld scheme to its near-�eld counterpart. However, we �nd that usually
only about half of the maximal visibility in a four-grating setup bene�ts from
the insensitivity. This bounds the e�ectiveness of a two-loop scheme as a
compensation technique for vibrations or the Coriolis force to about 50% in
most scenarios. As a result, the two-loop scheme compares unfavorably to
existing methods of compensating the Coriolis force for interferometers with a
total length of a few meters. For an order of magnitude longer interferometer,
the existing techniques would be insu�cient for observing interference, and
the four-grating interferometer could be a viable alternative. However, with its
increased baseline requirement halving the achievable particle mass, a di�erent
approach such as a velocity-resolved measurement or a vertical setup may prove
more practical.

In Chapter 4 we have quanti�ed the bene�t of direct imaging of the interfer-
ence pattern and of using di�erent grating-type combinations in an update of
the LUMI experiment. To do this, we have introduced a �gure of merit propor-
tional to the source and detection e�ciency needed to demonstrate quantum
interference with a given setup. This allowed us to include the e�ects of varying
interferometer transmission when comparing and optimizing two- and three-
grating schemes. Using this approach, we have shown that direct imaging of
the interference pattern could save an order of magnitude in integration time
(assuming a spatially-resolving detector with the same e�ciency as the detec-
tors used in scanning-grating interferometers). The analysis of Chapter 4 also
in�uenced the upgrade of the LUMI experiment to a con�guration with three
optical depletion gratings, currently underway [21].
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Bragg di�raction and trapped
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Chapter 6

Introduction

In the �rst part of the thesis, we have analyzed new interferometers utilizing
the existing toolbox of high-mass matter-wave optics. In this part, we will focus
instead on expanding this toolbox. In particular, we will look for techniques
which increase the momentum transferred to the particles upon beam splitting
or the overall evolution time without increasing the interferometer length.

The momentum transfer and the evolution time together with the veloc-
ity of the particles determine the spacetime area enclosed by the arms of a
matter-wave interferometer. Since the enclosed area scales the sensitivity of
the interferometer to external forces, methods to increase it are highly valued
in all areas of matter-wave interferometry. In particular, this includes beam
splitters and mirrors with high momentum transfer and methods for suspension
or trapping of the particles during the interferometer sequence. In high-mass
matter-wave interference, increasing momentum transfer and evolution time
is important for two additional reasons. First, high momentum transfer could
allow for the construction of a far-�eld Mach-Zehnder interferometer for heavy
particles. The clear separation of the arms in such an interferometer would
allow for new applications, such as genuine quantum metrology1 or Aharonov-
Bohm-type experiments. Second, an increased evolution time would allow for
demonstrating quantum superpositions of even higher masses. In this case, the
prolonged evolution is necessary for the quantum dynamics to clearly diverge
from the classical prediction.

In matter-wave optics, a proven way to achieve large momentum transfer
is to use strong one-dimensional optical lattices to di�ract or guide the matter
waves. This includes the techniques of Bragg di�raction and Bloch oscillations,
which have been widely adopted in the �eld of atom interferometry. In the fol-

1The de�ection of the molecular or atomic beam measured in our current experiments is
a classical phenomenon. In a fully quantum scheme, one would interferometrically measure a
phase applied to one of the superposition components.

55



56 Chapter 6. Introduction

lowing section, we provide a brief overview of the theoretical and experimental
development of these techniques. Then, in Chapters 7 and 8, we discuss the
modern theory of Bragg di�raction and the experimental demonstration of the
technique with heavy molecules.

In Chapter 9, we focus on the goal of increasing evolution time and propose
an interference scheme for particles in periodic con�nement. The scheme
is inspired by the formation of a Talbot pattern behind a phase grating and
motivated by the recent progress in creating smooth toroidal traps for atoms.
We brie�y review this as well as historical progress in the interference of trapped
matter waves in Section 6.2.

6.1 Bragg di�raction

The next two chapters focus on the theory and experimental demonstration
of Bragg di�raction of large molecules. The term Bragg di�raction originates
in X-ray crystallography and has a precise meaning there, as well as in the
di�raction of neutrons or near-visible light [56]. It denotes the di�raction on an
regular array of weak scatterers, in which the interference of many re�ected
waves leads to a strong dependence of the total re�ection amplitude on the
incidence angle.

The same physical picture does not always apply to the di�raction of atoms
or molecules by “thick” optical potentials, which is nevertheless generally re-
ferred to as Bragg di�raction. The main di�erence lies in the amplitude of the
modulation of the scattering potential. To appreciate the di�erence, let us con-
sider the parameter q de�ned as the ratio of the depth of the grating potential to
the recoil energy. Bragg di�raction of neutrons will then be characterized by q
of the order of 10−5 [57]. On the other hand, large momentum transfer atom
optics will typically employ q of the order of 102 [58]. Qualitatively, this means
that in the atomic case the potential will have (or will be very close to having) a
classical turning point.

The �rst theoretical descriptions of atomic Bragg di�raction [59, 60] were
based on perturbation theory and were only accurate to leading order in q.
To achieve high-order di�raction with grating pulses of moderate duration,
atomic di�raction experiments quickly increased the potential depth beyond
the regime of validity of the leading-order solution. The breakdown of the latter
was �rst addressed by S. Dürr and coworkers [61], who proposed a solution
combining the adiabatic theorem with numerical diagonalization of a truncated
Hamiltonian. Their approach can be used to obtain the solution to any order in q
when the potential is switched on and o� adiabatically. For sudden switching, a
nonperturbative solution based on the Mathieu equation was found by M. Horne
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and coworkers [57]. The qualitative di�erence between these two types of
grating boundaries only appears for large q and was �rst demonstrated in
Ref. [62]. There, it was shown that smooth switching is necessary for achieving
high-order Bragg di�raction with moderate interaction times. Corrections to
the adiabatic solution were �rst derived using a generalization of the procedure
of adiabatic elimination [58]. Recently, an alternative approach using Landau-
Zener theory and including small detunings from the Bragg condition was
presented [63]. Previously, the treatments of o�-resonant di�raction were either
entirely numerical2 [64], limited to low di�raction orders [65], or used semi-
phenomenological models [66]. In Chapter 7, we �ll a minor gap in the available
treatments of Bragg di�raction by combining the approaches of Refs. [57, 61,
63] to give a nonperturbative solution in the case of adiabatic switching of the
potential.

Bragg di�raction of atoms was �rst demonstrated experimentally in 1988 [67].
About 30 years later, it became one of the main tools in large-momentum-
splitting atom interferometry [68]. Interferometers consisting only of Bragg
pulses were the �rst to reach 100ℏk splitting [69] and continue to be used in
state-of-the-art applications [9]. First demonstrated with atoms in 1996 [70, 71],
Bloch oscillations became widely used in atom interferometry around the same
time as high-order Bragg di�raction. This is not accidental, as Bloch oscillations
are essentially a sequence of high-�delity, �rst-order Bragg transitions. Com-
bined with low-order initial di�raction, they were �rst used in 2008 to obtain
large momentum transfer [72] and in 2009 to demonstrate large-momentum
beam splitting [73, 74]. The combined approach has since become common
and is employed in many of the recent headline atom-interferometric exper-
iments [7, 10]. Starting in 2013, a technique using two gratings moving in
opposite directions (referred to as double Bragg di�raction) was developed [75,
76]. It has recently been extended to symmetric Bloch oscillations, in which
two lattices are used to split and guide the matter waves throughout the inter-
ferometric sequence [77]. In Chapter 8, we present the �rst demonstration of
Bragg di�raction of heavy molecules [78]. This demonstration is a �rst step
towards employing Bloch oscillations and other advanced lattice techniques for
the manipulation of high-mass particles.

2Importantly, the authors of Ref. [64] have found that the e�ciency of Bragg-based matter-
wave optics is fundamentally limited by the initial momentum width of the wavepacket. This
is one of the factors contributing to the increased adoption of Bose-Einstein condensates as
sources for atom interferometry.
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6.2 Trapped interference
The basic promise of trapped matter-wave interference schemes is a long coher-
ent evolution time made possible by the suspension of the interfering particles
against gravity. Coherent splitting and holding of matter waves was �rst demon-
strated in 2004 with Bose-Einstein condensates in double-well potentials [79].
These early experiments (see also Ref. [80]) could reach a coherent hold time of
a few milliseconds. They were soon followed by interferometers using optical
pulses to manipulate condensates in stationary traps [81–83], which could reach
coherence times of the order of 10ms. In 2006, hold times of many seconds were
demonstrated for thermal clouds of atoms using Bloch oscillations [84], albeit
without interference. First interferometers incorporating Bloch-oscillation holds
were reported in 2012 [85], reaching coherence times of the order of 100ms. The
coherence times achievable in setups of this type successively increased [86],
recently culminating in the 20 s coherent hold time of Ref. [7]. In the trapping
of Bose-Einstein condensates, notable progress involves traps based on time-
averaged adiabatic potentials [87, 88]. Using this technique, toroidal traps with
picokelvin roughness have recently been demonstrated [89]. In Chapter 9, we
show that very smooth toroidal traps can be used for matter-wave interference
without beam splitting or mirror pulses.



Chapter 7

Di�raction of point particles on
optical lattices

7.1 Problem formulation

The polarizable point particle approximation

We will treat the interaction of molecules with light in the polarizable point
particle approximation. That is, we will assume that the particle responds to an
applied electric �eld E by inducing a dipole moment

� = �E. (7.1)

This approximation is standard in high-mass matter-wave interference as well
as in the treatments of atomic Bragg di�raction1. We further assume that the
polarizability � is scalar and real, in which case the particle-light interaction is
conservative and described by the Hamiltonian [26]

Hint = −
Re{�}
4

|E|2. (7.2)

We will express � in terms of the polarizability volume [49]

� ′ =
Re{�}
4�"0

. (7.3)

Using Eq. (7.3) and the de�nition of light intensity I = c"0|E|2/2, we write the
interaction Hamiltonian as

Hint = −
2�� ′

c
I . (7.4)

1In the atomic case, this approximation applies, because the lattice is usually far detuned
from the atomic transition. The excited state can then be adiabatically eliminated, which results
in a linear response to the electric �eld.
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We now assume that the lattice is formed by retrore�ecting the beam of a laser
with wavelength � = 2�/k and power P , directed along the x axis. The intensity
experienced by the particle will then be

I (x, y, z) =
8P

�wzwy
exp(−

2z2

w2
z
−
2y2

w2
y )

cos2(kx), (7.5)

where we have assumed that the molecular beam is narrow enough so that the
dependence of the intensity radii wy , wz on x can be neglected.

Hamiltonian in the lab and comoving frames

We consider a particle of mass m, �ying predominantly along the z axis and
impinging on a standing light wave with intensity (7.5). We will denote the
largest velocity component (along the z axis) as v. Following the same argument
as in the treatment of the Talbot-Lau interferometer in Section 2.1, we start by
reducing the problem to one dimension. That is, we approximate the movement
of the particle along the z axis as uniform, and we neglect the free fall during
grating transit. Using Eqs. (7.4) and (7.5) we then �nd the Hamiltonian for the
motion along the axis of the optical lattice

Hlab =
p2

2m
+ V (t) cos2(kx), (7.6a)

=
p2

2m
+
V (t)
4 (e2ikx + e−2ikx) + const., (7.6b)

with

V (t) = −
16P� ′

cwzwy
e−2v

2t2/w2
z . (7.7)

In the di�raction of atoms on far-detuned standing light waves, the Hamil-
tonian has the same form (7.6). However, the amplitude of the potential is
V (t) = ℏΩ2(t)/Δ, where Ω(t) is the single-photon Rabi frequency and Δ is the
detuning [58]. The potential can therefore be either attractive or repulsive
depending on the sign of the detuning. The dynamics are the same in both cases,
because changing the sign of the potential in Eq. (7.6a) is equivalent to a shift of
the x axis by �/2k = �/4 and the addition of a constant.

For some treatments of the di�raction problem it is convenient to have
the initial state of the particle always centered around p = 0. This can be
achieved by performing the calculations in an inertial frame which is initially
comoving with the particle. Assuming the particle is initially moving with mean
transverse velocity v0, the unitary transformation to the comoving frame will
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Figure 7.1: The division of the momentum space into even (blue) and odd
(orange) subspaces.

be (see Appendix A)

Ucm = exp
{
i
v0tp
ℏ

}
exp

{
−i
v0mx
ℏ

}
exp

{
i
mv20
2ℏ

t
}
. (7.8)

The Hamiltonian in the comoving frame is then analogous to Eq. (7.6), but with
the grating moving with velocity −v0,

Hcm =
p2

2m
+
V (t)
4 (e2ik(x+v0t) + e−2ik(x+v0t)). (7.9)

Hamiltonian in the momentum representation

Expressing the Hamiltonian (7.6) in the momentum representation highlights its
block structure as well as its connections to problems in other areas of physics.
Following Ref. [63], we write

Hlab = ∫
ℏk/2

−ℏk/2
dp [Heven

lab (p) + Hodd
lab (p)] , (7.10a)

Heven
lab (p) = ∑

n∈ℤeven
[
(p + nℏk)2

2m
|p + nℏk⟩⟨p + nℏk|

+
V (t)
4 ( |p + (n + 2)ℏk⟩⟨p + nℏk| + h.c.)] , (7.10b)

where h.c. stands for hermitian conjugate and the summation is over even
integers. The odd Hamiltonian Hodd

lab (p) is the same as Heven
lab (p), but with the sum

restricted to odd n. All the Hamiltonians introduced above act within orthogonal
subspaces of the Hilbert space (the even and odd subspaces are illustrated in
Fig. 7.1) and thus commute. That is, for any p1, p2 ∈ (−�/2, �/2]

[Heven
lab (p1),Heven

lab (p2)] = [Hodd
lab (p1),H

odd
lab (p2)] = [Heven

lab (p1),Hodd
lab (p2)] = 0 (7.11)

Therefore, we can think of the Hilbert space as consisting of shifted even and odd
momentum eigenstate ladders, which the time evolution does not couple. This
lack of coupling results from assuming the lattice being formed by a perfectly
monochromatic and collimated laser beam and is a great simpli�cation.
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The Hamiltonians governing the time evolution within each ladder have
a band-diagonal form. For example, the Hamiltonian of the non-shifted even
subspace is

Heven
lab (0) = ℏ!r

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱ ⋱ ⋱
q(t) 4 q(t)

q(t) 1 q(t)
q(t) 0 q(t)

q(t) 1 q(t)
q(t) 4 q(t)

⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7.12)

where we have introduced the recoil frequency and the dimensionless lattice
depth

!r =
ℏk2

2m
, q(t) =

V (t)
4ℏ!r

. (7.13)

Hamiltonian (7.12) is a Jacobi operator which arises in the classical mechanics
of coupled harmonic oscillators and in many other discrete one-dimensional
problems. As a result, many of its properties are known both in the �nite [90] and
in the in�nite-dimensional cases [91]. In quantum optics, Eq. (7.12) truncated to
an N -dimensional subspace is the Hamiltonian of an N -level atom interacting
with N − 1 laser �elds in the rotating wave approximation [92, 93]. It is one of
the standard models considered in the theory of coherent atomic excitation [94].

The non-shifted ladders are special from a physical perspective, because
they consist of states satisfying the Bragg condition. To see this, we note that
the optical lattice has a period �/2, and so the Bragg condition reads

� sin � = n�dB, (7.14)

where n ∈ ℤ, �dB is the de Broglie wavelength, and � is the angle between the
particle momentum and the lattice planes. For a particle with momentum ptot,
Eq. (7.14) is equivalent to

ptot sin � = nℏk, (7.15)

which means that the component of the particle’s momentum along the lattice
axis is an integer multiple of the photon momentum. This corresponds exactly
to the domain of Heven

lab (0) for even n and to the domain of Hodd
lab (0) for odd n. From

now on, we will thus refer to states satisfying Eq. (7.15) and to the subspaces
which contain them as (Bragg-)resonant.

The resonant subspaces are also special from a more abstract perspective
as the only ones respecting the parity symmetry (changing x to −x) of the
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optical lattice Hamiltonian (7.6). This allows us to decompose them further into
symmetric and antisymmetric subspaces which will be conserved by the time
evolution. The latter are spanned by the states

|n±⟩ =
1
√
2
(|nℏk⟩ ± |−nℏk⟩) , (7.16)

where for n = 0 we have only |0+⟩ = |0⟩. In the basis (7.16), the Hamiltonian in
the odd resonant subspace becomes

Hodd
lab (0) = H

odd+
lab + Hodd−

lab (7.17)

with [63]

Hodd±
lab = ℏ!r ∑

n∈ℕodd

(n2 ± �1nq(t)) |n±⟩⟨n±| + q(t)( |n + 2±⟩⟨n±| + h.c.), (7.18)

in which �1n is the Kronecker delta. The Hamiltonian in the even resonant
subspace decomposes similarly [63]. In non-resonant ladders, a decomposition
using basis states |p + nℏk⟩ ± |p − nℏk⟩ analogous to (7.16) is possible, but it is
not conserved by the time evolution and therefore far less useful.

The additional symmetry in the Bragg-resonant subspaces makes the time
evolution within them much easier to treat analytically. As a consequence,
virtually all analytical thick-grating treatments are restricted to this case (with
the notable exception of Ref. [63], which includes ladders shifted by |p| ≪ ℏk,
albeit with restrictions).

The Raman-Nath equations

The block structure of the Hamiltonian (7.6) allows one to reduce the time-
dependent Schrödinger equation to a set of ordinary di�erential equations. They
are referred to as the Raman-Nath equations, after an analogous set of equations
arising in the di�raction of light on acoustic waves in dielectrics [95]. These
equations are the starting point for many approximate solutions of the di�raction
problem, and can take a number of equivalent forms.

The basic form of the Raman-Nath equations is obtained by considering the
resonant subspace, in which every state can be written as2

| (t)⟩ =
∞

∑
j=−∞

cj(t) |j⟩ , (7.19)

2We note that the following procedure is exactly the same as the �rst steps in time-
dependent perturbation theory [96] or in the original proof of the adiabatic theorem [97].
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where we write |j⟩ ≡ |jℏk⟩ for the Bragg-resonant momentum eigenstates.
Inserting Eq. (7.19) into the time-dependent Schrödinger equation with Hamil-
tonian (7.6b) gives

iċj = j2cj + q(�)(cj−2l + cj+2l), (7.20)

where a dot denotes a derivative with respect to dimensionless time

� = !r t. (7.21)

The diagonal terms in the Raman-Nath equations can be removed by in-
cluding the free evolution of the momentum eigenstates in the ansatz (7.19).
Equivalently, this can be seen as working in the interaction picture with respect
to the free Hamiltonian. Using

| (� )⟩ =
∞

∑
j=−∞

eij
2�dj |j⟩ (7.22)

with the Hamiltonian (7.6b) gives

iḋj = q(�)(e4i(j−1)�dj−2 + e4i(j+1)�dj+2). (7.23)

This form of the Raman-Nath equations lends itself to the treatment with av-
eraging methods borrowed from classical mechanics, as discussed in Ref. [75].
Removing only one diagonal element with an ansatz

| (� )⟩ =
∞

∑
j=−∞

ein
2�gj |j⟩ (7.24)

gives
iġj = (j2 − n2)gj + q(�)(gj−2 + gj+2), (7.25)

which is a convenient starting point for deriving the Bragg approximation using
adiabatic elimination (see Ref. [58] and Appendix C).

Finally, a form of Raman-Nath equations which is especially well suited for
numerical calculations is the one following from an ansatz

| (� )⟩ =
∞

∑
j=−∞

fj(� ) |j/l⟩ , (7.26)

where l ∈ {1/2, 1, 2, … } determines the spacing of the basis states. For l = 1/2we
obtain a ladder with a 2ℏk spacing, su�cient for calculating the di�raction of
plane waves. For l ≫ 1we obtain a dense grid which can be used to approximate
the evolution of wavepackets with �nite momentum width. However, even with
large l the momentum of the initial state cannot be changed continuously. To
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alleviate this, we switch to the comoving frame in which the particle is initially
at rest. Using the ansatz (7.26) with Hamiltonian (7.9) gives

iċj = (
j
l)

2

cj + q(�)(cj−2le4i�� + cj+2le−4i��), (7.27)

where we have introduced the dimensionless initial momentum of the particle

� =
mv0
ℏk

. (7.28)

The time-dependence of q(� ) in the above equations is most often given by
a Gaussian pulse. We will parametrize it as

q(� ) = qmaxe−2�
2/�2 (7.29)

with qmax, � > 0. Up to the irrelevant sign, this corresponds to the standing light
wave potential (7.7) when

qmax =
8P� ′m�2

ℎ2cwzwy
, � =

wz!r
v

=
�wz

4LT
=
�ℎwz

mv�2
, (7.30)

where LT = vTT is the Talbot length.

7.2 Analytic solution methods
We now review the major analytic approaches to solving the di�raction problem,
with an emphasis on methods applicable to strong optical lattices. In prac-
tice, quantitative predictions and modeling usually rely on numerical methods.
Nevertheless, knowledge of the analytic approaches is necessary to be able to
navigate and utilize the di�erent di�raction regimes.

To the best of our knowledge, the last attempt at a cohesive classi�cation of
the matter-wave di�raction regimes is the one in Ref. [62]. There, the authors
delineate three di�raction regimes: Bragg or “thick grating”, Raman-Nath or
“thin grating”, and “channeling”. Di�raction in the Bragg regime results in only
two di�raction orders and is strongly dependent on the incidence angle. The
opposite is true in the Raman-Nath regime, where dependence on the incidence
angle is weak and many di�raction orders are populated. In the channeling
regime, the di�raction is the same as in the Bragg regime if the grating pulse
has a su�ciently smooth envelope, but the same as in the Raman-Nath regime
if the envelope has sharp boundaries3. In the Raman-Nath and Bragg regimes,

3The name “channeling” refers to this Raman-Nath-like di�raction, which can be under-
stood as resulting from the guiding of the particles by the valleys of the potential.
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the pro�le of the pulse has no qualitative in�uence on di�raction. In this
classi�cation, the Bragg regime occupies q < 1, while 4

√
2q� < 1 gives the

Raman-Nath regime, and the rest of the parameter space is the channeling
regime.

Even though this classi�cation could be updated to re�ect new developments
and terminology (such as the “quasi-Bragg” regime of Ref. [58] and later works),
this is beyond the scope of this thesis. Instead, we propose to view matter-wave
di�raction as a coherent control problem on the one hand, and as a scattering
problem on the other. From the coherent-control perspective, we expect analytic
solutions in the limits of instantaneous and of adiabatic switching of the driving
potential. From the scattering perspective, we expect analytic solutions when
the scattering potential is weak (perturbation theory) or when the de�ection is
small (eikonal approximation). These four approximations are discussed next.

The Mathieu equation

We �rst consider the time-independent version of the problem, that is with the
depth of the potential taken to be constant in time. The Schrödinger equation
with the optical lattice Hamiltonian (7.6) is then stationary and reads

[−
ℏ2)2x
2m

+ V cos2(kx)]  (x) = E (x). (7.31)

This equation is known as the Mathieu equation, the standard form of which
is [98]

d2w
du2

+ [a − 2q cos(2u)] w = 0. (7.32)

The above corresponds to the Schrödinger equation (7.31) for

u = kx a =
E − V /2
ℏ!r

, (7.33)

and for q = V /(4ℏ!r ) as used thus far. The Mathieu equation arises in numerous
mathematical and engineering applications. As a result, many of its properties
are known and scienti�c calculation packages typically include routines for the
calculation of its eigenvalues and solutions (the Mathieu functions).

A �rst important property of the Mathieu equation is its eigenvalue spectrum,
shown in Fig. 7.2 as a function of q. In the literature on the Mathieu equation,
the spectrum is referred to as the stability diagram, because it shows the combi-
nations of q and a for which bounded solutions exist. Because bounded solutions
are normalizable (and thus physical), the stability diagram is simultaneously the
spectrum of the optical lattice Hamiltonian (7.6). To interpret it properly, one
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Figure 7.2: The spectrum of the optical lattice Hamiltonian (7.6a) as a function
of the dimensionless lattice depth q. a is the energy in units of photon recoil
energy, with the mean value of the potential subtracted. The blue curves show
the threshold eigenvalues a0(q), a1(q), … (from the bottom) corresponding to
symmetric Bragg-resonant states. Analogously, the eigenvalues b1(q), b2(q), …
of antisymmetric Bragg-resonant states are shown in red.

must remember that in the dimensionless energy a the mean value V /2 of the
lattice potential is subtracted. From Fig. 7.2, we see that the Hamiltonian has a
continuous spectrum which divides into energy bands for |V | > 0.

Of particular importance are the threshold eigenvalues, corresponding to
the edges of the energy bands. In standard notation, the eigenvalues making
up the lower edges of the bands for q > 0 are denoted a0(q), a1(q), … , whereas
the upper edges are b1(q), b2(q), … . Their corresponding eigenstates are known
as the integer-order Mathieu functions of the �rst kind, denoted by cej and sej
respectively for aj and bj . These eigenstates are important because they are
orthonormal and complete in the Bragg-resonant subspace4.

In addition to spanning the subspace of Bragg-resonant states, the functions
cej and sej converge to the (anti)symmetric basis of it in the limit of vanishing
potential. This basis was introduced in Eq. (7.16) and in the position space is

4To see this, note that the cen and sen are complete and orthonormal in the subspace of
functions which are � or 2� periodic [98]. This subspace is exactly the Bragg-resonant subspace,
because the latter is spanned by states ⟨u|n⟩ ∝ exp(inu), which are �-periodic for even n and
2�-periodic for odd n.
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simply given by

⟨x|n+⟩ =
1
√
�
cos(nkx), (7.34a)

⟨x|n−⟩ =
1
√
�
sin(nkx). (7.34b)

Knowing that the Mathieu functions reduce to sines and cosines for q = 0 [98],
we introduce the Mathieu-function states such that

⟨x|an(q)⟩ =
1
√
�
cen(kx, q)

q→0
←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨x|n+⟩ , (7.35a)

⟨x|bn(q)⟩ =
1
√
�
sen(kx, q)

q→0
←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟨x|n−⟩ . (7.35b)

An exception is the state |a0(q)⟩, which must be de�ned as

⟨x|a0(q)⟩ =
√
2
�
ce0(kx, q) (7.36)

in order to converge to ⟨x|0+⟩ = 1/
√
� . That is because ce0(kx, 0) = 1/

√
2 in the

conventional normalization [98]. For further discussion and visualization of the
Mathieu states, as well as an in-depth discussion of the high-q regime, we refer
the reader to Ref. [57].

Square-pulse grating: diabatic approximation

In reality, the optical lattice always has a �nite extent, and thus q must be time-
dependent. Including the time dependence of q is relatively easy in the usual
limiting cases of sudden or adiabatic switching. We �rst turn to the former case,
which corresponds to a grating with a sharp square pro�le.

We assume that the interaction begins at � = 0 with the potential changing
in�nitely fast from 0 to a constant value V0 = 4ℏ!rq0. A Bragg-resonant initial
state | (0)⟩ = |n⟩ can then be decomposed in the basis of the Mathieu-function
states corresponding to the potential depth q0. The time evolution in the basis
of Mathieu states is straightforward, as they are the eigenstates of the lattice
Hamiltonian. We have

| (t)⟩ =
∞

∑
j=0

e−iaj� ⟨aj(q0)||n⟩ ||aj(q0)⟩ +
∞

∑
i=1

e−ibi� ⟨bi(q0)|n⟩ |bi(q0)⟩ , (7.37)

in which we have ignored a global phase due to the average value of the po-
tential. The overlaps ⟨a(q0)|n⟩ and ⟨b(q0)|n⟩ are easily obtained as the Fourier
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coe�cients of the Mathieu functions5. At the end of the interaction (or at any
point during the interaction), we can change the basis again to the free-particle
states |l⟩ to calculate the populations of the di�raction orders. We have (sup-
pressing temporarily the argument q0 of the Mathieu states)

|⟨l| (� )⟩|2 = 2
∞

∑
j1,j2=0

|||⟨aj1
||n⟩⟨aj2 ||n⟩⟨l||aj1⟩⟨l||aj2⟩

||| cos((aj1 − aj2)�)

+ 2
∞

∑
i1,i2=1

|||⟨bi1
||n⟩⟨bi2 ||n⟩⟨l||bi1⟩⟨l||bi2⟩

||| cos((bi1 − bi2)� )

+ 2
∞

∑
j=0,i=1

|||⟨aj
||n⟩ ⟨bi |n⟩ ⟨l||aj⟩ ⟨l|bi⟩

||| cos((aj − bi)�)

+ const. (7.38)

As discussed in the previous section, for small q0 the wavefunctions of the
Mathieu states |an(q0)⟩ and |bn(q0)⟩ converge to sines and cosines of nkx . They
will therefore only overlap signi�cantly with |±n⟩. In this case, most of the terms
in Eq. (7.38) can be neglected, leaving [57, 58]

|⟨±n| (� )⟩|2 = const. ± 2
∞

∑
j=0,i=1

|⟨an(q0)|n⟩|2|⟨bn(q0)|n⟩|2 cos(Ωn(q0)� ). (7.39)

As a function of time, the population will thus oscillate between the initial state
and its specular re�ection with the frequency given by

Ωn(q) = an(q) − bn(q). (7.40)

This phenomenon is referred to as the pendellösung and is universally associated
with Bragg di�raction. A plot of the pendellösung frequency Ωn(q) is shown
in Fig. 7.3.

The easiest way to obtain an analytic approximation of the pendellösung
frequency is to use tabulated small-q expansions of an [99] and bn [100]. Inserting
these into Eq. (7.40), one directly obtains Ωn up to twentieth order in q for
n ≤ 10. Beyond that, one can use the iterative procedure of Ref. [58] to obtain
the expansion of Ωn to any order in q. Alternatively, Ωn is easily calculated
numerically to any precision, as functions calculating an and bn ship with most
numerical software distributions6.

5For example, mathieu_even_coef and mathieu_odd_coef in SciPy, the scienti�c li-
brary in Python.

6For example, MathieuCharacteristicA and MathieuCharacteristicB in Mathe-
matica or mathieu_a and mathieu_b in SciPy.
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Smooth-pulse grating: adiabatic or quasi-Bragg approximation

The second case in which the time dependence of q can be treated analytically is
the limit of adiabatic switching of the interaction. This is also the most important
case for experimental applications, as it allows for large-momentum-transfer
matter-wave optics with manageable interaction times. Compared to square
pulses, it exhibits signi�cantly lower losses and better control of di�raction
phases [58, 63]. The treatment below uses the adiabatic theorem to describe
Bragg di�raction in a way that was pioneered in Ref. [61] and later signi�cantly
expanded in Ref. [63].

Let us assume that the particle is initially in the resonant, free-particle
state |n⟩. We will refer to this and other interaction-free eigenstates as bare states,
as is customary in the applications of the adiabatic theorem. The instantaneous
eigenstates of the time-dependent Hamiltonian are then referred to as the dressed
states. In our case, these are the Mathieu states ||aj(q)⟩, ||bj(q)⟩, where q is now
a slowly-varying function of time.

Since the grating pulse has a �nite duration, the bare states coincide with the
dressed states in the asymptotic past and future. We can therefore decompose
the initial state in the basis of dressed states

| (t → −∞)⟩ =
1
√
2
(|n+⟩ + |n−⟩) =

1
√
2
(|an(0)⟩ + |bn(0)⟩) . (7.41)

The dressed states |an(0)⟩ and |bn(0)⟩ will evolve independently from each other,
because they belong to the conserved symmetric and antisymmetric subspaces.
For even n, the Hamiltonians governing their evolution are the commuting
Heven+

lab (0) and Heven−
lab (0) (and analogously Hodd+

lab (0) and Hodd−
lab (0) for odd n). The

spectra of these Hamiltonians are discrete and nondegenerate, as shown in7

Fig. 7.2. We can thus invoke the adiabatic theorem in its simplest formula-
tion8 [97]. From it, we infer that an adiabatic grating pulse will not lead to
transitions between the dressed states. Instead, the latter will only acquire a

7There, the aj (q) (shown in blue) are the spectrum of Heven+
lab (0) for even j and of Hodd+

lab (0)
for odd j, etc.

8Beyond the simplest formulation, there are adiabatic theorems which allow for degen-
erate states and a mixed continuous-discrete spectrum [101, 102], as well as those which do
not assume an energy gap at all [103]. These formulations are of as much theoretical as of
practical importance. For example, they lead to quantum control protocols which use quickly-
varying Hamiltonians to approximate adiabatic evolution better than a slowly-varying Hamil-
tonian [104].
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dynamic phase9, such that

| (� )⟩ =
1
√
2 (exp

{
−i ∫

�

−∞
d� ′ an(� ′)

}
|an(� )⟩ + exp

{
−i ∫

�

−∞
d� ′ bn(� ′)

}
|bn(� )⟩) ,

(7.42)
where an(� ) and bn(� ) are shorthands for an(q(� )) and bn(q(� )). After the grating
pulse decays, the dressed states again coincide with the bare states and we can
write

| (t → ∞)⟩ =
1
√
2 (exp

{
−i ∫

∞

−∞
d� ′ an(� ′)

}
|n+⟩ + exp

{
−i ∫

∞

−∞
d� ′ bn(� ′)

}
|n−⟩)

(7.43a)

= cos(
1
2 ∫

∞

−∞
d� ′Ωn(� ′)) |n⟩ − i sin(

1
2 ∫

∞

−∞
d� ′Ωn(� ′)) |−n⟩ ,

(7.43b)

where the pendellösung frequency is as de�ned in Eq. (7.40).
From Eq. (7.43b) we see that at most two bare states are populated at the end

of the grating pulse. This means that Bragg di�raction in the adiabatic regime is
strictly lossless, independently of the peak grating strength. During the grating
pulse only two dressed states, but in general many bare states are populated.
This is a qualitative di�erence with respect to the Bragg di�raction on weak
potentials (discussed next), in which only two bare states are macroscopically
populated throughout the grating pulse. Because of this di�erence and its
signi�cant practical implications, most recent works on the topic refer to the
adiabatic Bragg di�raction as quasi-Bragg di�raction [58, 63, 75]. That is to tell
it apart from the weak-potential “deep-Bragg” regime.

Physically, Bragg di�raction arises because the optical lattice lifts the degen-
eracy between the symmetric and the antisymmetric components of a Bragg-
resonant state. The degeneracy is lifted because the maxima of the cos2(kx)
potential coincide with the maxima of the symmetric component (whose prob-
ability density is proportional to cos2(nkx)), but with the minima of the anti-
symmetric component (whose probability density is proportional to sin2(nkx)).
As a result, the symmetric component experiences a stronger potential and its
energy is increased more than the energy of the antisymmetric component.
Crucially, this alignment and antialignment of maxima repeats periodically only
if the period of the lattice is an integer multiple of the period of the state. That
is, if the state is Bragg-resonant. If it is not, the maxima of the potential will
coincide with the maxima of the symmetric and antisymmetric components

9The geometric phase is zero, because the trajectory of the system in the (one-dimensional)
parameter space encloses a zero area [105].
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equally often, and there will be no average di�erence in the potential these
two components see. This means that the lattice does not lift the degeneracy
between the symmetric and antisymmetric components of o�-resonant states.
As a result, in the adiabatic approximation there is no di�raction of o�-resonant
states.

An important question remaining is how gentle must the grating pulse be
in order to drive an approximately adiabatic evolution. For a Hamiltonian H(t)
containing no terms which oscillate in time, the evolution starting from an
eigenstate |En⟩ will be adiabatic if 10

max
t

||||
⟨Em(t)|ℏ)tH|En(t)⟩
[En(t) − Em(t)]2

||||
≪ 1 for all m ≠ n. (7.44)

The quasi-Bragg approximation is just the adiabatic approximation applied
to the time-dependent lattice Hamiltonian (7.6). Therefore, the conditions for its
validity are obtained by imposing Eq. (7.44) separately on the evolution of the
symmetric (|an⟩) and the antisymmetric (|bn⟩) component of the initial state. The
Hamiltonians governing the evolution of these components have di�erent forms
for even and odd n, which results in a total of four slightly di�erent conditions.
To give an example, for the odd-n symmetric component we get

max
�

|||||

⟨am(� )|)�Hodd+
lab |an(� )⟩

ℏ!r [am(� ) − an(� )]2
|||||
≪ 1 for all odd m ≠ n. (7.45)

Using the odd Hamiltonian (7.18), we obtain

max
�

||||||

q̇(� )
[am(� ) − an(� )]2 [

∞

∑
j=0

⟨j+|an(� )⟩ ⟨am(� ) (|j + 2+⟩ + |j − 2+⟩)|

+ ⟨am(� )|1+⟩ ⟨1+|an(� )⟩]

||||||
≪ 1 for all odd m ≠ n. (7.46)

The overlaps between the dressed and bare states are easy to calculate nu-
merically as Fourier coe�cients of the Mathieu functions. Additionally, for
moderate q the above condition can be simpli�ed by considering only m = n ± 2
and the term with j = n. Nevertheless, Eq. (7.46) and similar conditions remain
rather cumbersome.

In practice, the duration of the pulse is made as short as possible and includ-
ing corrections to the adiabatic evolution is sometimes necessary. These cor-
rections come in two forms: modi�cations of the pendellösung frequency (7.40)

10The validity conditions of the adiabatic approximation have been subject to controversy
following the inconsistency brought up in Ref. [106]. What we report here is based on Ref. [107]
and seems to be the presently accepted view.
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and losses to intermediate di�raction orders. Both arise as a result of coupling
between the dressed states (within their respective (anti)symmetric subspaces).
These corrections can be derived in a number of ways, and are a subject of ongo-
ing research. One general approach is to use “adiabatic perturbation theories”,
as discussed in Ref. [108]. Alternatively, an iterative scheme based on adiabatic
elimination can be used to obtain an expansion of the pendellösung frequency
in q and q̇, yielding non-adiabatic corrections [58]. One can also use results
from Landau-Zener theory to obtain corrections resulting from the interaction
between neighboring dressed states [63].

Using the nonadiabatic corrections derived in Ref. [58], we can give a plau-
sible adiabaticity condition which is much easier to use than Eq. (7.46). By
requiring that the lowest-order (in q̇/q) correction to the pendellösung frequency
is small gives

||||
q̇
q
||||
≪ 4

(

n−1

∑
j=1

j−1
)

−1

. (7.47)

The right-hand side of the above inequality is the (n − 1)st harmonic number,
usually denoted as Hn−1. For Gaussian pulses of the form (7.29), the inequality
translates to

� ≫
n−1

∑
j=1

1
j
≈ log(n −

1
2)

+
1

24(n − 1)2
+ 0.577..., (7.48)

where the approximation follows from one of the well-known upper bounds
on Hn [109] and is accurate to at least 0.005 for n ≥ 3. The o�set 0.577... is the
Euler-Mascheroni constant 
 . The condition Eq. (7.48) is much more convenient
for back-of-the envelope calculations than Eq. (7.46), but potentially less reliable.
That is because it only bounds the nonadiabatic phase corrections, and not the
losses.

Weak grating: the Bragg approximation

The Bragg approximation is a solution of the di�raction dynamics to leading
order in the grating strength q. The expression for the pendellösung frequency
in this approximation is [58–60]

Ωn(q) =
2qn

4n−1[(n − 1)!]2
. (7.49)

In principle, Eq. (7.49) can be obtained by treating the stationary Schrödinger
equation (7.31) using time-independent perturbation theory. While possible11,

11The expressions for arbitrary-order corrections to energies and wavefunctions in time-
independent perturbation theory are readily available [110].
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this is highly ine�cient, because the pendellösung frequency depends only on
the di�erence of the energy corrections to the symmetric and antisymmetric
states |n±⟩. This di�erence vanishes up to order n − 1, while the corrections
to the energies and to the wavefunctions do not. A direct solution would thus
involve an exponential number of terms which cancel in the �nal result.

A more e�cient, indirect way of obtaining Eq. (7.49) is by adiabatic elimi-
nation of the intermediate states |n − 1⟩ , … , |−n + 1⟩ (assuming n > 0). We do
this in Appendix C, loosely following Ref. [58]. Yet another way is to invoke
the N -level atom analogy [59, 60] and use the (perturbative) expression for the
n-photon Rabi frequency12. The results from all these approaches can be veri�ed
using the tabulated expansions of Mathieu eigenfunctions an(q) and bn(q), which
give the pendellösung frequency directly via Eq. (7.40).

Intuitively, the physics behind di�raction in the Bragg regime is that of
tunneling. When the lattice potential is turned on, the initial state |n⟩ is no longer
an eigenstate of the Hamiltonian and begins to disperse. With su�cient time, the
particle can tunnel through the energy-forbidden states to the degenerate |−n⟩
state on the opposite side of the energy parabola. This picture agrees with the
sharp decrease of the pendellösung frequency with n: The width of the potential
barrier increases with the di�raction order, which suppress the tunneling rate
immensely13.

An important qualitative feature of the Bragg regime is the vanishing dif-
ference between sudden and adiabatic pulses. That is because for very small q
the di�erence between the bare and the dressed states becomes negligible. In
particular, this means that sudden switching of the potential does not excite
additional dressed states, because their overlap with the initial state is small.

It is justi�ed to ask how small q must be for Eq. (7.49) to hold. This can
always be checked by comparing the approximate expression with the exact
value (7.40), as we do in Fig. 7.3. However, a rough analytic expression for the
limit of the Bragg approximation is useful for back-of-the envelope calculations.
A simple limitation on q is obtained from the derivation of Eq. (7.49) by adiabatic
elimination (see Appendix C). Adiabatic elimination requires that q is much
smaller than the smallest energy gap between |±n⟩ and the intermediate states.

12By comparing Eq. (7.25) to Eq. (15.10-2) in Ref. [94], we see that the analogy holds for cumu-
lative detunings Δj = j2 − n2 and Rabi frequencies Ωj = 2q(� ). Inserting these into Eq. (15.11-6)
in Ref. [94] gives the pendellösung frequency (7.49).

13This behavior is reminiscent of the dynamics of a particle in a double well potential and of
a popular lecture demonstration in which many pendulums of di�erent lengths are attached to
a common base. In the latter, if two of the pendulums have the same length and one is excited,
the energy can be seen to �ow from one resonant pendulum to the other and back with little
excitation of the non-resonant ones.
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Figure 7.3: Pendellösung frequency for di�raction orders n = 2, … , 6 (from top
to bottom). The continuous lines show the exact result (7.40), while the dotted
lines show the Bragg approximation (7.49). Circles on the exact curves show
the limit (7.50) of the validity of the Bragg approximation.

This gives
q ≪ 4(n − 1). (7.50)

This condition is illustrated in Fig. 7.3 with dots on the exact-solution curves for
q = 4(n − 1). For the di�raction orders shown, we �nd that this condition consis-
tently predicts the values of q for which the relative error of the approximation
reaches a �xed value. In Ref. [58], the authors derive a di�erent condition by
requiring that the qn+2 correction to Eq. (7.49) is small. This gives

q ≪
2(n2 − 1)
√
n + 2

. (7.51)

We �nd that Eq. (7.51) limits the absolute error of the approximation more
consistently, but the relative error less consistently than Eq. (7.50). A comparison
of the exact and approximate pendellösung frequencies with experimental values
can be found in Ref. [111].

Thin grating: the eikonal and Raman-Nath approximations

The last approximation applies when the transverse motion of the particle within
the grating can be neglected. For any grating strength and initial transverse
momentum of the particle, this becomes a good approximation when the grating
is su�ciently thin. The approximation is introduced by dropping the kinetic
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term in the Hamiltonian (7.6a). Up to a global phase, the evolution operator is
then

U = exp
{
−
i cos(2kx)

2ℏ ∫
∞

−∞
V (t)dt

}
=

∞

∑
n=−∞

(−i)nJn(
1
2ℏ ∫

∞

−∞
V (t)dt)e

2inkx,

(7.52)
where Jn are the Bessel functions of the �rst kind.

Equation (7.52) is referred to as the Raman-Nath [58] or Bessel-function
approximation [59], or as Kapitza-Dirac scattering [5]. It can be thought of as a
result of applying the “elementary eikonal” approximation14 [47] to the cos2(kx)
standing-wave potential. In the di�raction described by Eq. (7.52), the orders
are arranged symmetrically around the initial beam and their populations do
not depend on the incidence angle. This approximation has been su�cient to
describe all the di�raction elements used in high-mass interferometry so far [47].

Approximation (7.52) holds when the kinetic-energy term in the Hamiltonian
can be neglected in comparison to the potential term. For pure states extending
over many grating periods, this is the case when V (t) is much larger than the
instantaneous transverse kinetic energy spread ΔEk(t). Importantly, the action
of Eq. (7.52) in�ates ΔEk leading to a breakdown of the approximation for long
grating pulses. To �nd an approximate bound on the interaction time, we note
that the action of the evolution operator (7.52) implies a momentum transfer
with a magnitude

Δp(t) ≈
||||
k ∫

t

−∞
dt ′ V (t ′)

||||
. (7.53)

This is justi�ed by noting that Jn(x) are small for arguments x < n. The time
dependence of ΔEk(t) can then be estimated taking into account the initial
transverse momentum p0, giving

ΔEk(t) ≈

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(|p0| + Δp(t))2

2m
when |p0| < Δp(t), (7.54a)

2|p0|Δp(t)
m

otherwise, (7.54b)

where the �rst case corresponds to the state extending onto both arms of the
kinetic-energy parabola and the second to it remaining on one. Equation (7.54)
further assumes that the initial transverse kinetic energy spread can be neglected
compared to the one resulting from di�raction.

14This approximation is “elementary”, because it neglects the motion of the particle entirely.
This is in contrast to the conventional eikonal method in optics or in scattering theory, which
treats the motions as uniform instead.
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To obtain a practical criterion, we specialize to the case of a Gaussian pulse
of the form (7.29). Inserting it into Eq. (7.53) and integrating over time gives

Δp(t = ∞) = 2
√
2�qmax�ℏk. (7.55)

Inserting the momentum transfer into Eq. (7.54) and requiring that ΔEk(t =
∞) ≪ V (0) gives the conditions

� ≪
2√qmax − |�|
2
√
2�qmax

when |�| < 2
√
2�qmax�, (7.56a)

� ≪
1

2
√
2�|�|

otherwise, (7.56b)

where again � = p0/ℏk. These conditions generalize the 4
√
2q� < 1 of Ref. [62]

to nonzero incidence angle.

7.3 Numerical solution
The numerical solution of the Schrödinger equation with Hamiltonian (7.6a)
is relatively straightforward. That is because of the block structure of the
Hamiltonian, which allows for the reduction of the problem to a system of linear
ordinary di�erential equations. A convenient starting point for the numerical
solution are the Raman-Nath equations in the form (7.27). We use these combined
with the Gaussian grating pulse given in Eq. (7.29). The resulting equations
are easily truncated, written in matrix form, and integrated using any ordinary
di�erential equation solver. Depending on the context, we have used either
NDSolve from Mathematica or the Schrödinger equation solver sesolve
from QuTiP, the Quantum Toolbox in Python [112, 113].

Examples of the results are shown in Fig. 7.4, where we plot the e�ciency
understood as the fraction of the population found in the target state at the end
of the grating pulse. For an initial state | (0)⟩ = |n⟩, this is |⟨−n| (t → ∞)⟩|2.
As expected, we see that the e�ciency oscillates both as a function of interaction
time and of lattice depth. Importantly, an interaction time � > 0.1 is necessary to
see di�raction largely irrespectively of the desired order. We also notice that for
the interaction times shown, high-order di�raction requires strong potentials
with classical turning points. This can be seen by noting that a particle in
state |n⟩ will have a classical turning point when q > n2/4.

7.4 Classical dynamics
In this section we consider the classical analogue of the di�raction problem. A
classical counterpart of a plane wave initial state is an ensemble of particles
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Figure 7.4: E�ciency of fourth-, �fth-, and sixth-order di�raction (from the top)
as a function of dimensionless grating thickness � and peak grating strength qmax.

moving with the same velocity and distributed evenly in space. Since the problem
is periodic in x , it su�ces to consider particles distributed within one period
(0, �/k]. The trajectory of each particle is found by integrating the Newton’s
equations

dx
dz

=
vx
vz
, (7.57a)

dvx
dz

= −
1

mvz
dV
dx

. (7.57b)

Specializing to the case of the Gaussian pulse of the form (7.7)

V (z) = V (0)e−2z
2/w2

z cos2(kx), (7.58)
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and introducing the dimensionless coordinates x̃ = kx/� , z̃ = z/wz , we obtain

dx̃
dz̃

= ṽx (7.59a)

dṽx
dz̃

= �e−2z̃
2
sin(2�x̃), (7.59b)

where

ṽx =
kwzvx
�vz

, � =
V (0)k2w2

z

�mv2z
. (7.60)

The classical evolution is therefore determined by two dimensionless parameters:
the interaction strength � and the initial transverse velocity ṽx . To �nd the
correspondence between these and the quantum parameters qmax, � , �, we �rst
use the de�nitions (7.13) and (7.30) and get

� =
8
�
qmax� 2. (7.61)

We then use the de�nition (7.28) of � to obtain

ṽx (z → −∞) =
2
�
��. (7.62)

To solve Eq. (7.59) for an ensemble of N particles at once, we introduce
indices vi , xi , i = 1, 2, … , N and a vector X such that Xvi , Xxi is are the velocity
and position of particle i. The derivative dX/dz̃ is then given by Eq. (7.59a)
for the velocity indices and by Eq. (7.59b) for the position indices. The initial
conditions are given by Xxi = i/N , which gives evenly spaced particles, and by
Eq. (7.62). We solve the initial value problem obtained in this way using the
solve_ivp routine from SciPy. Example trajectories for a �xed interaction
time and a few potential depths are shown in Fig. 7.5. There, we also show the
histograms of the particles’ �nal transverse momenta in units of ℏk, obtained
analogously as � in Eq. (7.62).

Based on Fig. 7.5 we can already expect some qualitative similarities between
the classical and the quantum dynamics. For example, we see that as a function of
potential depth, the momentum of the outgoing particles oscillates between ±p0,
where p0 is the initial transverse momentum15. However, the full extent of
the similarity can only be appreciated in a side-by-side comparison, which we
present in Section 8.3 when analyzing the experimental data. More examples of
classical trajectories and a discussion of the long-interaction limit can be found
in Ref. [114].

15The restriction of outgoing transverse momenta to ±p0 is a result of the approximate
conservation of forward kinetic energy and is understandably predicted both by quantum and
by classical mechanics.
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Figure 7.5: Classical trajectories of particles in a sinusoidal potential (top) and
the histograms of �nal velocities (bottom) for three di�erent potential depths,
qmax = 12, 14, 25 respectively in (a), (b), and (c). The initial transverse momentum
of the particles is � = 5, and the grating thickness is � = 0.38. The parameters
in (b) correspond to our cipro�oxacin di�raction experiment in Fig. 8.5 for
molecules traveling at 250m s−1. We calculate 500 trajectories evenly spaced in
one grating period, plotting one in 25 in the top �gures.



Chapter 8

Demonstration of Bragg di�raction
of massive molecules

In this chapter, we describe the experimental demonstration of the Bragg di�rac-
tion of organic molecules with a mass of a few hundredDa [78]. We will focus on
the author’s contributions to the experimental design, simulation, and data anal-
ysis. The measurements were performed by Christian Brand, Ksenija Simonović,
Stephan Troyer, and Christian Knobloch.

8.1 Experiment design

For Bragg di�raction to occur, the particle must have a nonzero velocity com-
ponent along the axis of the optical lattice. This can be obtained in three basic
experimental con�gurations illustrated in Fig. 8.1. In the con�guration shown
in panel (a), the lattice is moving coaxially with the particle beam. This is the

Figure 8.1: Illustration of the basic possible con�gurations for a Bragg di�raction
experiment. a) Coaxial particle and laser beams, grating moving in the lab frame.
b) Perpendicular particle and laser beams, grating moving in the lab frame.
c) Particle and laser beams at an angle, grating stationary in the lab frame.

81
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θgrat

Sx
Sy

Figure 8.2: Far-�eld di�raction setup used for the demonstration of molecular
Bragg di�raction. The consecutive elements are (from bottom left): laser desorp-
tion source, horizontal delimiter Sx , vertical delimiter Sy , laser grating, screen,
objective, and a CCD camera. Image reprinted from Ref. [78].

con�guration typically employed in present-day atom interferometers. There,
the moving lattice is obtained using two frequency-shifted, counterpropagating
light �elds. Unlike the other two con�gurations, it is only compatible with
pulsed particle beams, which limits its applicability to high-mass interference.

In the con�guration shown in panel (b), the particle beam is strictly perpen-
dicular to a moving optical lattice. This con�guration is rarely used, but has
a number of advantages. First, the velocity component which determines the
order of Bragg di�raction is independent of the particle’s forward velocity. This
could be especially important for high-mass interference experiments, which
can usually a�ord only moderate velocity selection. Second, this con�guration
allows one to employ some advanced multi-lattice splitting techniques, such as
double-Bragg di�raction [75].

In the con�guration shown in panel (c), a moving optical lattice is avoided
by tilting the grating with respect to the particle beam. This is the con�g-
uration used in our experiment, as well as in early atomic Bragg di�raction
experiments [67, 115]. This con�guration has two properties which make it
disadvantageous in the long run. First, the particle’s forward velocity simul-
taneously in�uences the transverse momentum component and the grating
interaction time (provided the grating is not pulsed). Second, it relies on moving
mechanical parts while requiring the orientation of the mirror to be stable on a
microradian level. In our case, with measurement times reaching 30 hours, this
level of stability proved challenging to achieve.

A schematic view of the experimental setup is shown in Fig. 8.2. In simpli�ed
terms, the apparatus consists of a laser desorption source, a pair of delimiters,
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Particle m [Da] � ′st [Å
3] � ′532 [Å

3] �532 [cm2] (� ′/��)532
PcH2

a 515 101 [117] 9.6 × 10−18† 0.20
TPPb 614 105 [118] 1.7 × 10−17† 0.11
C60 720 89–98‡ 87‡ 2.8 × 10−18‡ 0.58
C70 40 109–123‡ 114‡ 2.5 × 10−17‡ 0.09
�-carotene 537 211–229 [18] 83 [18] 6.9 × 10−18† 0.23
DBATTc 376 69d 54d 9.6 × 10−18† 0.11
Cipro�oxacin 331 44 [119] 38.9d <3.0 × 10−20§ >28

a Phthalocyanine. b Thiamine pyrophosphate. c Dibenzanthanthrene. ‡ Ref. [120].
d Calculated by Armin Shayeghi. † Obtained from PhotochemCAD absorption spectra us-
ing Eq. (A1) from Ref. [48]. Except DBATT: spectral data from Ref. [121]. § This is an upper
bound corresponding to the absorption cross section at 390 nm in a methanol solution [122].

Table 8.1: Candidate molecules for the experimental demonstration of Bragg
di�raction. The parameters listed are: mass, static and optical polarizability
volume, absorption cross section, and a dimensionless parameter re�ecting the
ratio of dipole phase to the number of absorbed photons. In the last column,
the static polarizability is used in place of the optical one when the latter is not
available.

the laser grating, and a �uorescent detection stage. The total length of the
particle beam is 2.1m with the grating located about 1.5m downstream from
the source. The grating itself is formed by retrore�ecting a 532 nm laser with
up to 30W of power. The 7mm thickness of the grating is achieved using a
cylindrical lens, resulting in a vertical radius of the grating (about 50 µm) being
much smaller than the horizontal one. This achieves a high peak light intensity,
but makes precise alignment necessary. The delimiters are located directly in
front of the grating and are used for collimation, as well as for velocity selection.
A detailed description of the setup can be found in Refs. [78, 116].

Choice of the molecule

The choice of candidate molecules for the demonstration experiment is largely
dictated by the laser desorption source and by the �uorescence detection stage.
To be compatible with the source, the molecule must withstand the thermal strain
of desorption without fragmenting. As the detection o�ers no mass resolution,
the integrity of the desorbed molecules must be veri�ed independently (see the
Supplemental Material to Ref. [78]). To be detected, the molecule must absorb
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at the excitation laser wavelength1 and �uoresce strongly and long enough
while adsorbed on a quartz plate. From the molecules which are known or
expected to be compatible with the source and detection setups, we shortlisted
the candidates shown in Table 8.1.

In addition to the source and detection requirements, the molecule should
have a low absorption at the grating wavelength. That is to avoid scrambling
of the di�raction pattern by the recoils of the absorbed photons. Since absorp-
tion can be made less signi�cant in a molecule with higher polarizability by
decreasing light intensity, the molecules must be compared using the ratio of
the dipole-force phase to the mean number of absorbed photons. This ratio is
proportional to the parameter � ′/��, introduced in Table 2.1. A quick glance
singles out cipro�oxacin, which was thus used to obtain the most representative
di�raction patterns. However, because of low detection e�ciency it was not
possible to use it for series of multiple measurements or for alignment. In these
cases, phthalocyanine was used.

Choice of grating parameters

The necessary thickness of the grating was determined using the Raman-Nath
simulations shown in Fig. 7.4. From these, we infer that a dimensionless in-
teraction time � ≳ 0.25 is necessary for high-e�ciency di�raction. This holds
largely independently of the di�raction order or grating power. To satisfy this
condition for fast cipro�oxacin molecules traveling at about 350m s−1, we re-
quire wz ≳ 6.5mm. This motivates the experimental value wz ≈ 7mm. The
available grating power in the experiment is 30W, which focused to such wz
and wy = 45 µm gives qmax ≈ 35. According to Fig. 7.4, this should easily allow
us to reach sixth-order di�raction.

8.2 Di�raction image simulation

A simulation of the di�raction image is performed by building on the simple pro-
cedure for integrating the Raman-Nath equations described in Section 7.3. The
parameters necessary for the simulation are listed in Table 8.2. The simulation
procedure is as follows

1. For an extended source, calculate the x positions of the point sources that
will be used to approximate it. The source is assumed to have a Gaussian
pro�le and the spacing between the samples is smaller around the peak

1In the present experiment, 661 nm excitation was used for phthalocyanine and 420 nm or
266 nm for cipro�oxacin [116].
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Element Parameters

Particle
polarizability

mass

Source
radius

x positiona

Delimiter
z position

width
height

Grating

y position
z position
y o�setb

z radius
y radius

wavelength
power

incidence angle

Detector
y position
z position

height

Simulation

momentum grid spacing
x grid points
y grid points

interaction region depth
source points

a Averaged over for an extended source (see
caption).

b Optional. Grating is assumed to have
in�nite extent if not given, but grating y
radius still determines light intensity.

Table 8.2: Parameters entering the simulation of the di�raction images. The
origin of the coordinate system is taken at the center of source. If the source
has a �nite size, many images with nonzero x positions are generated and
averaged. If the simulation is to include the weighing of velocity classes, a
velocity distribution must additionally be speci�ed.
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than it is in the tails. An adequate list of samples is obtained by taking
evenly spaced samples in the (0, 1) interval and mapping them with the
quantile function of the Gaussian distribution (norm.ppf from SciPy).

2. Calculate the vertical positions of the image lines on the screen. The
number of lines is a parameter of the simulation (y grid points), and the
lines are evenly spaced starting from the detector y position and extending
to this position decreased by detector height.

3. For each point source and line

a) Calculate the forward velocity component vz of the molecular veloc-
ity class arriving at this height on the screen. We assume that the
source is located at the origin, and the z, y positions of the delimiter
and the landing site on the screen are z1, y1 and z2, y2, respectively.
The velocity vz is found by solving for the leading coe�cient of the
free fall parabola y = az + bz2. One obtains

b =
y1z2 − y2z1
z1z2(z1 − z2)

. (8.1)

The velocity vz then follows from the condition d2y/dt2 = 2bv2z =
−g, where g is the gravitational acceleration. Introducing Δy =
y2 − z2y1/z1; i.e., the vertical distance from the in�nite-velocity line,
we have

vz =

√
gz2 (z1 − z2)

2Δy
. (8.2)

b) Prepare the initial state in the plane of the delimiter, immediately
after it. We model the two distinct horizontal and vertical delimiters
with a single delimiter placed at their average z position. The initial
state is prepared in position space. Its modulus squared is Gaus-
sian with a standard deviation equal to the width of the delimiter (a
parameter of the simulation). Its phase is quadratic in x and corre-
sponds to a paraxially-approximated spherical wave originating at
the current point source location.

c) Calculate the dimensionless scattering parameters �, qmax, �. If the
grating y o�set is given, the light intensity entering qmax is scaled to
correspond to the height at which the molecules pierce the grating.
Otherwise the vertical variation of intensity is neglected and peak
intensity is used.
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d) Transform the state to momentum space using a fast Fourier trans-
form and perform the di�raction calculation as described in Sec-
tion 7.3.

e) Propagate the result from the end of the interaction region to the z
position of the screen and transform to position space. The propa-
gation is performed by multiplying with a transfer function in the
Fresnel approximation2.

4. For each point source, stack the lines vertically and average all the point-
source di�raction images by intensity. The averaging is performed with
Gaussian weights to re�ect the assumed pro�le of the source. Note that by
changing the weights one can adjust (within limits) the e�ective source
size without redoing any time-consuming calculations.

5. Apply a vertical Gaussian blur to the resulting image to account for the
�nite vertical extent of the source and of the delimiter.

6. Weigh the image vertically using an experimental height-intensity dis-
tribution or a postulated velocity-intensity distribution. Care has to be
taken when using a velocity distribution, as the mapping between vz
and position on the screen is not linear, and therefore the transformation
linking the two distributions is not a simple point substitution. The height
distribution �(y) is related to the velocity distribution �(v) via

�(y) =
||||
dv
dy

||||
�(v) ≈

||||
dvz
dy

||||
�(vz), (8.3)

where the approximation is justi�ed because the vz is much bigger than
the transverse velocity components.

The above procedure proved accurate enough to qualitatively reproduce
the data, despite making a number of approximations which we now discuss.
First, the initial state prepared after the delimiter is Gaussian in intensity, even
though the slit is square. Initial versions of the simulation used a square pro�le,
but the ringing artifacts thus introduced take an excessive number of point-
source images to average out. A better result was achieved using a Planck-taper
pro�le [123], but ultimately a Gaussian was chosen as it allows one to obtain
the observed, nearly-Gaussian pro�le of the molecular beam even with quick
point-source simulations.

Second, the vertical position of the delimiter is neglected, because to �rst
approximation it only changes the position of the image on the screen. The

2Even though the experiment in which the measurements were made is referred to as the
“far-�eld setup”, the Fraunhofer approximation is not fully justi�ed in its description.
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forward velocity component is independent of the vertical position of the delim-
iter (see Eq. (8.2)), but the magnitude of the particle’s velocity at the source is
not. However, we assume that the vz is large enough and the delimiter is ap-
proximately at the same height as the source, so that the initial vertical velocity
component is small for all molecules reaching the screen. The approximation in
Eq. (8.3) is then justi�ed.

An important part of the simulation procedure is verifying if the simulation
grid is large and dense enough to accurately represent the evolution of the
quantum state. To do this, we �rst note that the grid is de�ned by two parameters:
the number of points and their separation in momentum space. From these,
the size of the grid in momentum space as well as its size and point separation
in position space follow. The two grid parameters must be chosen such that
four conditions are met: the grid has to be large enough and dense enough in
position and in momentum space. The size conditions are easy to check, as
the expected position and momentum extent of the state is known. For point
density we use the following criteria

1. At least two grid points per 2� of phase of the initial state over its spatial
extent.

2. At least two grid points per 2� of phase of the propagation kernel for the
highest momentum component we expect (equal to the initial transverse
momentum of the particle). The most stringent requirement here is set by
the slow velocity classes.

8.3 Experimental data and analysis

Early cipro�oxacin data

The �rst high-quality di�raction image obtained with cipro�oxacin is shown in
Fig. 8.3 (a). The data is consistent with the population oscillating between two
di�raction orders in addition to small losses in the lower part of the image (see
Fig. 8.3 (c)). Based on the incidence angle and the 57 cm drift length between
the grating and the screen, we would expect a separation of 17(6) µm between
the di�racted and the undi�racted beams. This is slightly smaller than seen in
the data, but within the uncertainty if we include a �nite collimation angle, as
discussed next.

The separation between the beams appears to increase from top to the bottom
of the image; that is, with decreasing forward velocity. This suggests that the
momentum transfer is approximately constant, and the increasing separation is a
result of increasing �ight time for the lower velocity classes. The entire di�racted
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Figure 8.3: a) False-color di�raction image of cipro�oxacin at an incidence
angle of 15(5) µrad. The grating power is 29.3(2)W and the grating radii are
wy = 44(1) µm,wz = 7.05(5)mm. The delimiters Sx and Sy are set to 8 µm
and 45 µm, respectively. The velocity axis is taken from the simulation (b), as
the velocity distribution in the beam is not known. b) Simulated di�raction
image �tted to the data in (a), yielding a incidence angle of 18(2) µrad and a
vertical grating o�set of 90(10) µrad (see text). The simulation uses Raman-
Nath equations (7.27) with l ≈ 300 truncated to |j| ≤ 2048. The source radius
is 12 µm (standard deviation) and is approximated by averaging 9 point source
images. c) Vertically binned experimental data (black) with Gaussian �ts to the
di�raction orders (red, green, blue). The data is smoothed with a Gaussian �lter
with a radius of 1 camera pixel, corresponding to about 0.4 µm. Stephan Troyer
performed the �t in panel (c).
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structure is thus most likely a single di�raction order. The broad resonance
is a result of three factors: a natural width of the Bragg resonance resulting
from a �nite � , the wide opening of Sy leading to weak velocity selection, and a
relatively broad collimation angle. The latter is between 3 µrad and 10 µrad and
can only be estimated crudely. That is because it is very sensitive to the source
size and to the exact transmission pro�le of the Sx delimiter, which are not well
known3.

The velocity distribution in the beam is not known a priori, so the magnitude
of the momentum transfer cannot be inferred from the data in a straightforward
way. However, expecting a peak velocity of about 200m s−1 we can calculate
that 25 µm separation between the peaks on a screen 57 cm away corresponds to
a momentum transfer of about 4ℏk; that is, second-order di�raction. Importantly,
this is the highest-order di�raction that could have been observed in this setup
for any incidence angle. This disagrees with the prediction we made based on
Fig. 7.4 that 30W of power should be su�cient to observe di�raction up to sixth
order. We have suspected that this could be caused by a vertical misalignment
of the molecular and the light beams. If the molecules were only skimming the
edge of the grating, they would experience signi�cantly smaller light intensity
than at the center. This would in turn decrease the maximal di�raction order.

To investigate that, we have performed a least-squares �t of the numerically
simulated di�raction image to the observed one, as described in Appendix D. We
have obtained the best agreement with the data for a vertical o�set of 90(10) µrad
between the centers of the Sy delimiter and the grating. This means that the
grating was most likely signi�cantly below the molecular beam, and that a big
portion of the molecules only experienced a vanishing light intensity. Neglecting
free fall between the delimiter and the grating, we estimate that the molecules
passing near the bottom of the Sy would experience about 12% of the peak
intensity (and molecules passing higher up would experience even less). This
corresponds to qmax ≈ 4, for which second order of di�raction is the highest
possible, as con�rmed by a simple Raman-Nath simulation.

3The desorption laser is focused to a 1.3 µm radius, but depending on the thickness of the
molecular layer on the desorption window the e�ective source size can be many times larger.
The lower bound on the collimation radius comes from assuming a point source, and the upper
bound is from a source size estimated as in the Supplemental Material to Ref. [78]. We suspect
that the e�ective transmission of the Sx might deviate from a simple boxcar function, because
using the latter made it very hard to recreate the experimental pro�le of the undi�racted beam
in a simulation.
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Figure 8.4: Aligning the grating and the molecular beam using an optical �ber
mounted on a scanning stage. Adapted from a �gure prepared by Christian
Brand.

New cipro�oxacin data

In order to decrease the vertical o�set between the molecular and the laser
beams, it was necessary to develop a new in-vacuum alignment technique [124].
The technique employs a cleaved optical �ber inserted into the laser beam on a
scanning arm (see Fig. 8.4). By measuring the light intensity coupled into the
�ber while moving its tip through the beam, the center of the grating can be
found. Once this is done, the �ber tip is held in place and the molecular beam is
aligned using the shadow of the �ber tip visible in the molecular pattern. This
allows for very good alignment and its veri�cation between experimental runs.
The details of the technique can be found in Refs. [116, 124].

In addition to improved alignment, the second experiment uses a slightly
larger vertical grating radius of 55(5) µm and a smaller Sy opening of 25 µm in
order to make the intensity experienced by the molecules even more uniform
(to cope with the decreased �ux, the excitation wavelength in the detection
stage had to be changed). As the 30W grating laser was no longer available, the
new experiment uses a grating power of 14.6(2)W which results in qmax ≈ 14.
Based on the simple Raman-Nath simulations in Fig. 7.4, we expect to see up
to about 20% e�ciency of �fth order di�raction with this grating depth. This
�nds con�rmation in the data, shown in Fig. 8.5 (a). The separation of 50 µm
at 250m s−1 corresponds to a momentum transfer of about 10ℏk; i.e., �fth order
di�raction.

The improved alignment, smaller Sy opening, and the resulting clear separa-
tion of the di�racted beam simpli�ed the �tting of the simulated image (Fig. 8.5b).
In particular, we were able to neglect the variation of light intensity with height,
which decreased the number of �tting parameters by removing the grating o�set.
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Figure 8.5: a) False-color di�raction image of cipro�oxacin at an incidence angle
of −43(5) µrad and with the Sx delimiter set to 14 µm (remaining parameters
as discussed in the text). b) Simulated di�raction image �tted to the data in
(a), yielding an incidence angle of −44 µm. The simulation uses Raman-Nath
equations (7.27) with l = 700 truncated to |j| ≤ 8192. The source radius is 12 µm
(standard deviation) and is approximated by averaging 50 point source images.

The remaining two parameters (incidence angle and peak velocity) were found
by matching the position of the di�racted beam. The incidence angle was chosen
so that the separation between the di�racted and the undi�racted beams in the
simulation matched the data. This gave essentially the experimental incidence
value of −44 µm. Then, the vertical alignment of the two �gures was found by
matching the heights at which the di�racted peaks reach half of their maximal
intensities. With the vertical alignment in place, we could weigh the simulation
with the empirical height-intensity distribution, yielding the �nal simulated
image. Since the forward velocities in the simulation are known, the vertical
alignment also determines the forward velocities in the experimental image.
This allowed us to calculate the most probable velocity in the beam4 of 250m s−1.
Throughout the process, the source size was kept at the value of 12 µm found

4More precisely, aligning the two images �rst gives us the velocity corresponding to the
highest intensity on screen, which is 270m s−1. To obtain the probability distribution of veloc-
ities in the beam, we have to multiply the intensity distribution by the inverse of the Jacobian
from Eq. (8.3). The peak of the transformed distribution is then the most probable velocity in
the beam.
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when analyzing the �rst cipro�oxacin data.

Phthalocyanine power and incidence scans

Because of the tilted-grating con�guration of our experiment, the interaction
time and the initial transverse momentum change simultaneously as a function
of vertical position in a di�raction image. In order to isolate the dependence
on just one di�raction parameter, it is necessary to take a series of di�raction
images and focus on a single forward velocity class. However, taking multiple
consecutive di�raction images is not feasible with cipro�oxacin because of the
low detection e�ciency and thus long integration time. This can be alleviated by
switching to the dye molecules phthalocyanine, for which series of di�raction
images as a function of incidence angle and of power have been obtained. The
downside of using phthalocyanine is its measurable absorption at the grating
wavelength, which is di�cult to account for theoretically5. Additionally, even for
phthalocyanine the beam could only be collimated to a transverse momentum
spread of multiple photon momenta, which clouds the analysis.

The dependence of the di�raction of phthalocyanine on grating power is
shown in Fig. 8.6. As the power is increased, we observe two major e�ects:
the increasing separation between the di�racted and the undi�racted beams,
and the oscillating population transfer between the two beams (the intensity of
the di�racted beam exceeds that of the undi�acted one for P ≈ 4W and again
for P ≈ 10W). While the oscillating momentum transfer is expected from the
dependence of the pendellösung frequency on power, the increasing separation
is not. Indeed, the momentum transfer depends only on the initial transverse
momentum �, which is held constant. This expectation is con�rmed by a simple
plane-wave simulation shown in Fig. 8.6 (e).

The most probable cause of the discrepancy lies in the broad collimation
of the molecular beam. As can be seen from the 0W trace in Fig. 8.6 (d), the
momentum spread in the beam amounts to nearly 5ℏk. This is broad enough
to explain the appearance of multiple di�raction orders. In particular, with the
incidence angle corresponding to a mean transverse momentum of 3ℏk, we can
expect di�raction orders as low as the �rst. As a result, consecutively higher
di�raction orders become populated as the power is increased, leading to an
appearance of a continuously increasing momentum transfer.

The dependence of the di�raction of phthalocyanine on the incidence angle
is shown in Fig. 8.7. For plane-wave illumination, we would expect the sepa-
ration between the di�racted and the undi�racted beams to be proportional

5We estimate that molecules traveling at about 150m s−1 will absorb about one photon on
average for the typical beam size we use and 10W of power (see Supplemental Material of
Ref. [78]).
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Figure 8.6: a, b, c) False-color di�raction images of phthalocyanine at di�er-
ent grating powers. The incidence angle is about 30 µrad, which corresponds
to � ≈ 3 for the low velocities shown in (d). The double peak at 0W is acciden-
tal and caused by a hole in the collimation delimiter. d) Integrated intensity
pro�les showing the dependence of di�raction on grating power for velocities
from 143m s−1 to 175m s−1. e) The dependence of momentum transfer on laser
power, calculated using the Raman-Nath equations for plane-wave illumination
and a velocity of 160m s−1. The vertical laser grating radius is wy = 54(2) µm
and (in the data) the collimation slit width is 12.5 µm. Stephan Troyer performed
the velocity �tting (as described in the Supplemental Material of Ref. [78]) and
prepared the panels a–d.
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Figure 8.7: a, b, c) False-color di�raction images of phthalocyanine at di�erent
incidence angles. d) Integrated intensity pro�les for velocities from 234m s−1
to 255m s−1. The pro�les are manually aligned to center the undi�racted peak
(that is the right peak for negative incidence and the left peak for positive inci-
dence). The alignment of the small-angle pro�les (shown in gray) is ambiguous
and thus we align them by their center of mass. e) The dependence of momentum
transfer on grating incidence, calculated using the Raman-Nath equations for
plane-wave illumination and a velocity of 244m s−1. The dotted line shows the
geometric re�ection condition. The vertical laser grating radius is wy = 65(5) µm
and (in the data) the collimation slit width is 14.8 µm. Stephan Troyer performed
the velocity �tting and prepared the panels a–d.
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to the incidence angle. This expectation is con�rmed by a numerical calcula-
tion shown in Fig. 8.7 (e), in which the Bragg resonances fall on the geometric
re�ection line. In the data, the dependence of the separation of the peaks on
the incidence is clearly compressed. For example, upon changing the incidence
angle from −16 µrad to −69 µrad the separation increases by a factor of only 1.5
instead of the expected 4.3.

We believe that this is again a result of moderate collimation of the molecular
beam. From the −69 µrad pro�le we can read that the momentum spread in
the beam approaches 10ℏk. Because of this, the 16ℏk di�raction visible in the
simulation in Fig. 8.7 (e) can be seen even for angles much smaller and much
larger than the resonant 48 µrad. This e�ectively �attens the dependence of
peak separation on the incidence angle.

Comparison with classical dynamics

In Fig. 8.8 we compare the quantum and the classical dynamics as a function
of all three di�raction parameters: the incidence angle, the interaction time,
and the grating depth. The parameters in these �gures are chosen to match the
corresponding experiments; that is, the phthalocyanine angle and power scans,
and the cipro�oxacin image in Fig. 8.5. Importantly, the quantum images only
show the plane waves with transverse momenta equal to even multiples of ℏk,
omitting the unpopulated odd-ℏk plane waves in between. This approximately
accounts for the e�ective momentum resolution available in our experiments.
Because the collimation of the molecular beam always spans multiple photon
recoils, the stepwise nature of the momentum transfer is not clearly visible in our
data. Given this coarse momentum resolution, we �nd that the dependence of
quantum and classical dynamics on all di�raction parameters is nearly identical.
We must therefore conclude that the presented data do not show clearly quantum
behavior (which has been demonstrated under the same conditions and in the
same experimental setup on other occasions [125]).

Importantly, the close correspondence between the coarse-grained quantum
and classical dynamics is not speci�c to our choice of grating parameters. By
performing numerical comparisons like the one in Fig. 8.8, we �nd that it is
instead generic and holds in a large portion of the �–qmax parameter space. In
particular, experiments demonstrating atomic Bragg di�raction [67, 126] or
channeling [62], as well as Bragg-based atom interferometers [115] operate in
this regime6. However, in these experiments the atomic beams are typically
collimated to below a photon recoil, which makes the quantum nature of the

6Experiments which are deep in the classical regime include the manipulation of molecular
gases with optical lattices created by ultrashort laser pulses [127].
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Figure 8.8: Di�raction e�ciency assuming plane-wave illumination as a func-
tion of incidence angle (a) and grating power (b) in quantum and in classical
mechanics. The parameters are chosen to match the phthalocyanine measure-
ments: the angle scan (Fig. 8.7) in (a) and the power scan (Fig. 8.6) in (b). In
the quantum plots, we do not show odd p, for which the population is identi-
cally zero. To match this, the classical momenta (which change continuously)
are grouped into 2ℏk bins. The simulations are performed as described in
Sections 7.3 and 7.4.
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Figure 8.8: (Continued.) Di�raction e�ciency as a function of forward velocity
of the particle. The parameters are the same as in the cipro�oxacin di�raction
image (Fig. 8.5).

observed phenomena evident. The observation of a quantum–classical di�erence
without sub-recoil momentum resolution is possible, but requires extremely long
interaction times (� ≥ 5), which are usually only achievable with Bose-Einstein
condensates [128].



Chapter 9

Talbot-Lau interference in toroidal
traps

The physical limitation on the mass of a particle interfering in a Talbot-Lau
interferometer is determined by the required periodicity of the initial state
and the available coherent evolution time. In order to increase the latter, high-
mass interference experiments are likely to follow the trajectory of their high-
precision, atom-interfering counterparts: transitioning from horizontal-beam
setups into vertical-beam fountain con�gurations, and ultimately to guided
interferometers. The de�ning feature of the latter is that the matter waves
are con�ned in trapping potentials for most or all of the interference time.
Anticipating that, it is worthwhile to consider the ways in which the Talbot-Lau
interference scheme could generalize to a guided scenario.

An interesting way to perform matter-wave interference in a trap follows
from the description of the Talbot e�ect in Section 1.1. There, we stressed that
the Talbot revivals of a quantum state are a result of the periodicity of the initial
condition. This periodicity combined with the Hamiltonian of a free particle
yields a commensurate energy spectrum, which in turn implies a periodic time
evolution. In existing free-�ight interferometers, the periodicity of the initial
state is achieved using a di�raction grating. However, for guided matter waves
an intriguing way to enforce periodicity is to trap the particle in a closed-loop
waveguide. Combined with free evolution along the trap, this would result in a
spontaneous Talbot e�ect and could allow for an interferometer scheme without
di�raction elements or deformations of the trap.

We �nd that an interference scheme based on this idea is possible, even
though it is unlikely to be optimal for the interference of record-breaking masses.
That is because in this con�guration the Talbot time is determined by the size
of the trap, which cannot be decreased inde�nitely. Nevertheless, we �nd the
scheme to be a compelling macroscopic demonstration of the discreteness of

99
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orbital angular momentum, and to o�er some unique metrological possibilities.
In this chapter we largely follow our published work on the subject [129],

but place much more emphasis on the conceptual similarities to Talbot-Lau
interference. Additionally, we discuss the e�ect of imperfections in more detail
and present simpli�ed derivations of the main e�ects. We start by analyzing
the Hamiltonian of a particle con�ned in a tight waveguide and showing that
the Eq. (1.6), obtained in the context of Talbot-Lau interference, implies spon-
taneous beam splitting in toroidal waveguides. We then show that a complete
interference scheme with sensitivity to external phase as well as to gauge �elds
is possible. The discussion is closed by a consideration of relevant imperfections
and a numerical simulation of concrete proposed realization of the scheme with
a noninteracting Bose-Einstein condensate (BEC). We choose to focus on cold
atoms for the �nal proposal as with present technology the scheme would be
the easiest to implement using this platform.

Finally, we want to highlight that the interference scheme we propose is
related to experiments and proposals across many di�erent �elds. Most impor-
tantly to the experiments utilizing interferometric manipulation of orientational
quantum revivals to control molecular alignment [130]. However, we also draw
on the recent proposal to use orientational quantum revivals for a mesoscopic
demonstration of quantum interference [131]. On the other hand, related work
on center-of-mass revivals can be found in the context of toroidally-shaped
quantum dots [132].

9.1 Particle in a curved waveguide

Equation (1.6) shows that a periodic state will evolve into a balanced superpo-
sition of two shifted copies of itself after half of the Talbot time TT . However,
this calculation only holds for a free-particle Hamiltonian. To investigate under
what conditions the motion of a particle trapped in a waveguide is free (in
the longitudinal direction), we analyze the Hamiltonian for a general curved
waveguide. Analyzing the general Hamiltonian is also necessary to derive the
leading-order corrections to the desirable free-particle dynamics, which we do
later in this chapter.

We will assume that the waveguide follows a smooth and torsion-free
curve r(s), which we parametrize by its arc-length s. The Hamiltontian is then
expressed conveniently in the local Frenet-Serret coordinate system associated
with the curve. To introduce it, we let t = r ′ (a prime denotes derivative with
respect to s) be the tangent vector of the curve. Then � = |t′| is the curvature
and n = t′/�, b = t × n are the normal and binormal vectors. Using these, we
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can de�ne a local coordinate system (s, u, v) in which an arbitrary vector x is
given by x(s, u, v) = r(s) + un(s) + vb(s).

The Frenet-Serret coordinate system is curvilinear, and thus the normaliza-
tion condition for a wavefunction  includes a nontrivial Jacobian1,

1 = ∫ dsdudv (1 − �(s)u) | (s, u, v)|2. (9.1)

From now on, we absorb it into the wavefunction and work with the rescaled
� =

√
f  , where f (s, u) = 1 − �(s)u. This will allow us to deform the waveguide

(and thus the coordinate system) without having to re-enforce the normalization
condition. With the preparation in place, we can express the Hamiltonian for
the rescaled wavefunction � as [133, 134]

H = −
ℏ2

2m [)s
1
f 2
)s + )2u + )

2
v +

�2

4f 2
+
5(f ′)2

4f 4
−
f ′′

2f 3 ]
+ Vu(u) + Vv(v), (9.2)

where we have assumed that the trapping potential V separates V (s, u, v) =
Vu(u)Vv(v).

We now take the tight-con�nement limit by expanding the Hamiltonian (9.2)
to leading order in u. We do this by neglecting higher-than-leading powers of
the ratios of u to the characteristic length scales at which � and its derivatives
change. These small quantities are: �u, �′u/�, and �′′u/�2. The expansion gives

H ≈ −
ℏ2

2m ()
2
s + )

2
u + )

2
v +

�2

4 ) +
m!2

⟂

2
u2 + Vv(v) (9.3a)

−
ℏ2

2m [2�u ()
2
s +

�2

4 ) + 2�′u (1 + 3�u) )s +
�′′u
2 ] , (9.3b)

where we have also expanded the radial trapping potential Vu ≈ m!2
⟂u2/2.

In Eq. (9.3), the terms in the �rst line are zeroth-order in the small quantities,
whereas those in the second line are �rst-order. We will use the �rst-order terms
in Section 9.3 to estimate the necessary transverse con�nement, but �rst we
focus on the zeroth-order ones.

9.2 Interference scheme
Equation (9.3a) gives the Hamiltonian of the particle neglecting the transverse
extent of its state. We see that in this tight-con�nement limit, the transverse

1In addition to being curvilinear, the coordinate system is local. This means that it is not
well de�ned arbitrarily far away from the waveguide. For Eq. (9.1) to make sense, we must
assume that the curvature of the waveguide is gentle compared to the transverse extent of the
state  . This is not a limitation for us, as we will mostly be interested in the tight con�nement
limit.
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Figure 9.1: Beam-splitter-free interference in a toroidal trap. The free evolution
leads to spontaneous coherent splitting of a localized wavepacket, and applying
a phase to one of the components interferometrically controls the position of
the revival.

and longitudinal dynamics decouple. The longitudinal motion is governed by
the Hamiltonian

Hs = −
ℏ2

2m ()
2
s +

�2

4 ) , (9.4)

which describes a free particle when � is constant; i.e., when the waveguide is
toroidal. This means that a particle localized in a tight toroidal trap will exhibit
the free-evolution beam splitting shown in Eq. (1.6). We now argue that in this
case of toroidal trap not only beam splitting, but a full interferometric scheme
is possible.

Since Eq. (1.6) holds for any state �(s) given the Hamiltonian (9.4), it is in
fact a statement about the evolution operator U(TT /2),

U(
TT
2 )�(s) =

e−i�/4
√
2 [�(s) + i�(s −

d
2)] , (9.5)

where TT is the Talbot time (1.4) and d is the spatial period of the state. If we
imprint a phase ei' onto one of the superposition components above and then
apply U(TT /2) again, we get

U(
TT
2 )

e−i�/4
√
2 [�(s) + ie

i'�(s −
d
2)] =

−i
2 [(1 − e

i') �(s) + i (1 + ei') �(s −
d
2)]

(9.6a)

= ei'/2 [cos(
'
2)

� (s −
d
2)

− sin(
'
2)

�(s)] .

(9.6b)
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Therefore, imprinting a phase onto one of the superposition components in
Eq. (9.5) interferometrically controls the position of the revival. This observation
is at the core of the proposed interference scheme, shown in Fig. 9.1.

The most important (and the longest) time scale in the proposed protocol
is the time necessary for the spontaneous beam splitting to occur. It is equal
to half the Talbot time (1.4), which depends on the spatial period d of the state.
For an initial state which is well localized in a circular trap with radius R, the
latter is2 d = 2�R, resulting in a Talbot time

TT =
m (2�R)2

ℎ
=
2�mR2

ℏ
. (9.7)

A small but feasible trap might have R ≈ 5 µm, which gives a Talbot time
of 2.5msDa−1. With coherence times of the order of a second, this proposed
interference scheme could be thus applied to atoms and other light particles
with masses of the order of 1 kDa or less.

Another important time scale is that of wavepacket dispersion. Not only
does it determine the spreading of the initial state, but also the lifetime of the
well-separated con�guration in the middle of the interferometer protocol. It
therefore determines the time one has to apply the phase '. In the simplest
scenario, the initial state will be prepared in an isotropic harmonic trap with the
same frequency as the radial con�nement and quickly transferred into the ring.
Using the standard result for the dispersion of a Gaussian wavepacket, we can
then argue that the components of the superposition will remain well separated
for3 td ≈ 2/!⟂. The ratio of time scales td/TT can be expressed using the width
of the initial state � =

√
ℏ/m!⟂ as

td
TT

=
1
� (

�
R)

2
=
1
�
(��)2 . (9.8)

In the tight con�nement limit these times scales will therefore be vastly separated.
A rule-of-thumb estimate with �� ∼ 10−1 and TT of the order of a second gives
td ∼ 10ms. This is short, but still much longer than a typical interaction of a
particle with a grating in a Talbot-Lau interferometer, which is of the order
of 0.1 µs [21].

We now consider the possible origins of the phase di�erence in such an
interferometer scheme. One natural choice is imprinting ' using a far-detuned

2The period d could be made smaller than the circumference of the trap by preparing an
initial state with many identical lobes spaced regularly around the ring. This is an interesting
possibility, but we leave it out for simplicity.

31/!⟂ is the time in which the ground state of a harmonic oscillator with frequency !⟂
doubles its width. We add a factor of two to account for the time of focusing, in addition to
defocusing, of the wavepackets.
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laser pulse. Since td can be much longer than a grating transit time in free-
�ight matter-wave interferometry, the magnitude of phase imprinted in this
way could certainly be large enough to have a measurable e�ect. Alternatively,
the trap could be tilted to introduce a gravitational phase shift between the
two components. Assuming a tilt angle � , the magnitude of such phase shift
would be

'g ≈
2mgRtd sin �

ℏ
. (9.9)

For R ≈ 5 µm and 1mrad tilt, this is about 0.15 radDa−1 and thus likely a mea-
surable shift.

In a realization of the interferometer scheme with cold atoms, the phase
di�erence could also arise due to atom-atom interactions. In order to obtain high-
contrast interference, the interactions between the particles must be strongly
suppressed throughout most of the interferometric sequence (see Section 9.4).
Such suppression could be achieved using Feshbach tuning in select atomic
species [135]. However, when the two superposition components are well
separated, a weak magnetic �eld gradient along the separation axis would re-
sult in a measurable phase. This is a result of an opposite detuning of the
two superposition components from the zero crossing of the Feshbach reso-
nance. We can crudely estimate this phase using the self-interaction term of the
Gross–Pitaevskii equation (9.40). The self-interaction potential is

Vint =
4�ℏ2aN | |2

m
, (9.10)

where a and N are the scattering length and the number of atoms. Approximat-
ing N | |2 with the mean atom density n gives

'int ≈
Vinttd
ℏ

=
4�ℏΔantd

m
, (9.11)

whereΔa is the di�erence of the e�ective scattering lengths of the two wavepack-
ets. With a high but achievable value n = 5 × 1015 cm−3 for a noninteracting
condensate of 39K [136], this gives a phase of about 50 rad a0−1, where a0 is the
Bohr radius. Therefore, the scheme could allow one to measure small scattering
lengths with an accuracy of the order of 10−2 a0, an order of magnitude better
than the state-of-the-art time-of-�ight [137] or spectroscopic [138] measure-
ments for 39K.

Introducing a magnetic �eld has one further e�ect on the interference scheme
if the particle has a nonzero charge q. If we denote the tangential component of
the vector potential by A(s), the free longitudinal Hamiltonian (9.4) becomes

Hs =
1
2m

[iℏ)s + qA(s)]2 (9.12)
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Figure 9.2: Performing the interference scheme with a charged particle in the
presence of a magnetic �eld causes the pattern to rotate by an angle equal to
the Aharonov-Bohm phase. Similar e�ect occurs for particles possessing an
electrical or a magnetic dipole moment, as discussed in the text.

For now we specialize to the case of A(s) = const., for which

Hs = −
ℏ2

2m
)2s +

iℏqA
m

)s . (9.13)

The two terms in the Hamiltonian commute, and the latter simply generates
translations,

exp(
qAt
m

)s)�(s) = exp(
qAt
m

)s)

∞

∑
j=−∞

�je2�ijs/d =
∞

∑
j=−∞

�j exp
{
2�ij
d (s +

qAt
m )

}

(9.14a)

= � (s +
qAt
m ) . (9.14b)

Therefore, the evolution by Hamiltonian (9.13) consists of the time-periodic
free evolution discussed thus far, superimposed with a uniform rotation. At
the end of the interferometric sequence, the rotation angle qATT /mR is equal
to the Aharonov-Bohm phase qΦ/ℏ, where Φ = 2�RA is the circulation of
the vector potential around the trap (and thus the �ux of the magnetic �eld
through the ring). The proposed interferometer scheme could therefore be used
to demonstrate the Aharonov-Bohm and related e�ects, or for the measurement
of magnetic �elds. We illustrate the rotation e�ect in Fig. 9.2.

Importantly, for the rotation to occur, the magnetic �eld must be switched
on quickly and only after the particle begins to evolve freely in the ring. To
see this, we assume that before releasing into the ring the particle is held and
cooled in a stationary trap. This means that the initial state is centered around
zero kinetic momentum (the gauge-invariant momentum which determines the
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kinetic term of the Hamiltonian). If the �eld is on during cooling this means
⟨iℏ)s + qA⟩ = 0, whereas if the �eld is o� this means ⟨iℏ)s⟩ = 0. Therefore, in
the �eld-on case the particle starts with a canonical momentum ⟨−iℏ)s⟩ = qA,
which exactly cancels the rotation shown in Eq. (9.14). Unless the particle is in
a �eld-free region, this observation means that the rotation e�ect has a classical
analog. The corresponding classical system is a charged bead constrained to
move on a ring. If the �ux of the magnetic �eld through the ring changes, it will
induce a rotational electric �eld and accelerate the bead.

Finally, we show that for any magnetic �eld the tangential vector potential
component A(s) can be made constant using a suitable gauge transformation.
This makes the argument of the previous paragraph apply to any spatial depen-
dence of the magnetic �eld. For a gauge transformation of the form A ↦ A+)s�,
we �nd that it is su�cient to take

�(s) =
s

2�R ∫
2�R

0
ds′ A(s′) − ∫

s

0
ds′ A(s′). (9.15)

The above �(s) satis�es the periodic boundary condition �(0) = �(2�R) and
can be extended smoothly to a function on the entire space. After a gauge
transformation with such �, the tangential component of the vector potential is

A(s) + )s� =
1
2�R ∫

2�R

0
ds′ A(s′) = const. (9.16)

Additionally, we note that an analogous rotation e�ect can be obtained for
particles carrying a dipole moment. The dipole can be either electric or magnetic,
and could be either permanent or induced. In the case of an electric dipole �,
the treatment is the same as for a charged particle, but with qA replaced by (� ×
B) ⋅ t [139, 140]. The rotation angle at the end of the interferometric sequence
is then equal to the He-McKellar-Wilkens phase [139, 141]. In the case of a
magnetic dipole �m, we would substitute qA with (�m ×E/c2) ⋅ t and the resulting
angle would be equal to the Aharonov-Casher phase [142].

9.3 Imperfections
In this section, we analyze the robustness of the proposed interference scheme to
a number of imperfections. First, we consider the e�ects of technical limitations:
a tilt of the trap and its nonzero ellipticity. Second, we analyze the in�uence of
the centrifugal barrier, which is a source of dephasing inherent to the scheme.
For these three imperfections we will derive corrections to the energy spectrum,
which in the unperturbed case is

E(0)j =
ℏ2j2

2mR2
, (9.17)
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Figure 9.3: Fidelity of the revival in a toroidal trap in the presence of imperfec-
tions. The blue curves correspond to the ideal case of a one-dimensional revival.
The orange curves show the in�uence of a tilt of 1mrad (top), the centrifugal
barrier (middle), and an elliptical deformation of the trap with an eccentricity
of 0.5 (bottom). The parameters of the setup correspond to a realization with a
noninteracting BEC of 39K, discussed in Section 9.4.

with corresponding eigenstates

⟨s|j⟩ =
1

√
2�R

eijs/R . (9.18)

Whenever the obtained energy corrections deviate from quadratic dependence
on j, both the visibility and the timing of the revival will be a�ected. Disentan-
gling those two e�ects analytically proves to be di�cult. We therefore evaluate
their e�ect numerically, by plotting the �delity of the revival as a function of
time. We de�ne �delity as the overlap of the �nal and the �-rotated initial state.
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If the initial is

|� (0)⟩ =
∞

∑
j=−∞

cj |j⟩ , (9.19)

then the overlap will be

F (t) =
|||||
∫

2�R

0
ds � ∗(0, s −

d
2)

�(t, s)
|||||

2

=
|||||

∞

∑
j=−∞

cjc∗j e
i(�j−Ej t/ℏ)

|||||
. (9.20)

The �rst imperfection we consider is the presence of a potential of the form
V (s) = V0 cos(s/R) throughout the interferometric sequence. Such potential
could arise, for example, due to a permanent tilt of the trap. In this case, we
would have V0 = mgR sin � for a tilt angle � . We can quickly see that a potential
of this form does not shift the energies of the eigenstates |j⟩ to �rst order in V0.
That is because ⟨j|V (s)|j⟩ = 0. To �nd the second-order correction we note that

⟨j|V (s)|k⟩ =
V0
2 (�k,j−1 + �k,j+1) , (9.21)

where �kj is the Kronecker delta. Using this and the unperturbed energies (9.17),
we �nd the second-order corrections

E(2)j =
mR2V 2

0

4ℏ2 (j
2 −

1
4)

−1
=
m3g2R4 sin2�

4ℏ2 (j
2 −

1
4)

−1
. (9.22)

In Fig. 9.3, we show the e�ect of this correction for � = 1mrad and the parameters
of the BEC setup we discuss in detail in Section 9.4. These are m = 39Da for
potassium and R = 5.9 µm.

The next imperfection is the dephasing due to the centrifugal barrier. This
will predominantly a�ect the high angular momentum states, which will be
pushed outwards by the centrifugal force. Because of the larger equilibrium
radius, the high-j states will experience a di�erent trapping potential than the
low-j states and gradually dephase. To quantify this e�ect, we must go beyond
the one-dimensional treatment used thus far. We do this by considering the
full Hamiltonian (9.3), specializing for now to a perfectly circular waveguide.
Substituting � = 1/R in Eq. (9.3) gives

H = −
ℏ2

2m ()
2
s + )

2
u +

2u
R [)

2
s +

1
4R2 ]

+ )2v) +
m!2

⟂

2
u2 + Vv(v). (9.23)

In the dynamics described by Eq. (9.23), the out-of-plane motion (in the v
coordinate) still separates. To see the separation of the longitudinal and radial
motion, we write down the stationary Schrödinger equation for the in-plane
dynamics,
{
−
ℏ2)2s
2m

+ (1 +
2u
R )

−1

[−
ℏ2

2m ()
2
u +

u
2R3)

+
m!2

⟂

2
u2 − E(su)]

}
�(s, u) = 0. (9.24)
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It admits separable solutions of the form

�j(s, u) =
eijs/R
√
2�R

�j(u). (9.25)

Inserting the above ansatz into Eq. (9.24) gives the equation for the radial state �j ,

[−
ℏ2)2u
2m

+
m!2

⟂

2 (u + uj)
2

]�j(u) = (E
(su)
j − E(0)j +

m!2
⟂

2
u2j )�j(u), (9.26)

in which the j-dependent equilibrium position is

uj =
ℏ2

m2!2
⟂R3 (

j2 −
1
4)

. (9.27)

Equation (9.26) describes a harmonic oscillator, and so its right-hand side must
be equal to ℏ!⟂n (since !⟂ does not depend on j, the constant ℏ!⟂/2 can be
neglected). From this, we infer that the eigenvalues E(su) of the in-plane motion
are

E(su)jn = ℏ!⟂n + E(0)j −
m!2

⟂

2
u2j = ℏ!⟂n + E(0)j −

ℏ4

2m3!2
⟂R6 (

j2 −
1
4)

2
. (9.28)

In Fig. 9.3, we show the e�ect of these corrections for !⟂ = 6.4 kHz, correspond-
ing to the BEC realization of Section 9.4.

The �nal imperfection we analyze is an elliptical deformation of the trap. We
will parametrize the deformation with the eccentricity ", which is 0 for a circle
and between 0 and 1 for an ellipse. Nonzero eccentricity is especially likely in
optical traps as a result of residual astigmatism in the trap-generating optics. An
elliptical trap is also the simplest example in which the curvature potential �2(s)/4
does not vanish. Alas, �nding the leading-order correction in eccentricity is not
as easy as inserting the curvature of the ellipse into the Hamiltonian Eq. (9.4).
That is because the arc length s depends on the eccentricity, and through it also
the normalization condition and the momentum operator −iℏ)s . To perform a
systematic expansion in ", we must therefore �rst move to a parametrization of
the ellipse which does not depend on the eccentricity. To do this, we replace the
arc length s with the eccentric anomaly � ∈ [−�, �). Using the latter, an ellipse
in the xy plane of the trap is parametrized as

x = R cos � y = R
√
1 − "2 sin �. (9.29)

The line element is then

)s
)�

=

√

(
)x
)�)

2

+ (
)y
)� )

2

= R
√
1 − "2 cos2� ≡ f̃ (�), (9.30)
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and the curvature is [143]

�(�) =
√
R (1 − "2) [f̃ (�)]

−3/2
. (9.31)

The normalization condition using the new longitudinal coordinate reads

1 = ∫ dsdudv |�(s, u, v)|2 = ∫ d�dudv f̃ (�)|� (�, u, v)|2. (9.32)

To make it "-independent, we will use a rescaled wavefunction � = f̃ 1/2� . The
Hamiltonian for � will be4

H� = f̃ 1/2Hf̃ −1/2 = H(0)� + "2H(2)� . (9.33)

Applying the transformation to Hamiltonian (9.3) and expanding gives

H(0)� = −
ℏ2

2m [(1 +
2u
R )(

)2�
R2

+
1
4R2)

+ )2u] +
m!2

⟂

2
u2, (9.34)

in which we neglect the out-of-plane variable v, which remains decoupled from
the dynamics in the plane of the trap. As expected, Eq. (9.34) is the same as
the Hamiltonian for a circular trap, Eq. (9.23) (up to the constant 1/4R2, which
we have omitted there). The unperturbed solutions are therefore again of the
separable form (9.25),

�j =
eij�
√
2�

�j(u). (9.35)

For the eccentricity term we obtain

H(2)� = −
ℏ2

4mR2 [
1 +

3u
R
+ (1 +

5u
R ) cos(2�)] )

2
� +

ℏ2 sin(2�)
2mR2 (1 +

5u
R
+
9u2

R2 )
)�

−
ℏ2

16mR2 [
1 +

3u
R
− (1 +

11u
R ) cos(2�)] . (9.36)

The expectation value of the above in the unperturbed states (9.35) will only
have contributions from the non-oscillating terms, yielding

E(2)j =
ℏ2"2

8�mR2 (
1 +

3uj
R )(j

2 −
1
4)

. (9.37)

As shown in Fig. 9.3, the corrections (9.37) a�ect mostly the timing of the revival,
leaving the visibility largely unchanged. That is the case, because two of the
three j-dependent terms in Eq. (9.37) are proportional to j2. The remaining j4
term is suppressed by the small centrifugal o�set uj , resulting in relatively mild
dephasing.

4The transformation of the Hamiltonian is justi�ed as in Eq. (A.2), with the exception that
the operator f̃ −1/2 is time-independent and not unitary.
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g

Figure 9.4: An optical torus trap as used in the proposed realization of the
scheme with a BEC. The color of the beams corresponds to their detuning with
respect to the atomic transition, and a cross section of the BEC is shown in black.
The design of the trap is based on the setup in Ref. [144].

Red Blue Sheet

Wavelength 830 nm 532 nm 830 nm
Dimensionsa 13 µm 5.5 µm 5 µm × 200 µm
Power 2mW 2.5mW 10mW
Scattering rate 0.09 s−1 0.02 s−1 0.07 s−1
a e−2 intensity radii.

Table 9.1: Parameters of the laser beams forming the dipole trap in the proposed
setup (see Fig. 9.4). Additionally, the rates of photon scattering from each beam
are given.

9.4 Proposed realization with a BEC

We now propose a concrete setup in which the interferometer scheme discussed
in this chapter could be realized. We focus on a realization with a BEC, because
the long coherence times and ultra low temperatures make the demonstration
of the scheme relatively easy using this platform.

Since we expect atom-atom interactions to be detrimental to revival visi-
bility, we must choose an atomic species which is suitable for producing non-
interacting condensates. 39K satis�es this criterion due to its Feshbach resonance
structure [135] and additionally helps lower the required coherence time thanks
to its low mass. The trap in our proposal is based on the optical dipole trap in
Ref. [144]. It is formed by intersecting a horizontal light sheet with two coaxial
Gaussian beams: one attractive (red detuned) and one repulsive (blue detuned),
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as shown in Fig. 9.4. We decrease the dimensions of the setup by a factor of two
compared to Ref. [144] to obtain a Talbot time of the order of 100ms. We also
adjust the laser powers in order to obtain trapping frequencies corresponding
to at least 50 nK, while keeping the photon scattering rates below 0.1 s−1. This
limits the atom loss due to scattering to a percent level. The suggested parame-
ters of the trapping beams as well as the expected scattering rates are shown
in Table 9.1. In calculating the trapping potentials and the photon scattering,
we follow Ref. [145]. For the parameters in Table 9.1, we obtain the trapping
frequencies

!z ≈ 9.7 kHz ∼ 73 nK, !⟂ ≈ 6.4 kHz ∼ 49 nK, (9.38)

as well as a trap radius R ≈ 5.9 µm. For this con�guration, the Talbot time from
Eq. (9.7) is

TT ≈ 0.13 s. (9.39)

We now proceed to simulate the interference scheme in this setup using
the Gross-Pitaevskii equation (GPE). To do this, we �rst reduce the three-
dimensional and dimensionful GPE into a two-dimensional and dimensionless
form. In doing so, we follow Ref. [146]. We start with a three-dimensional GPE

iℏ)t = −
ℏ2

2m
∇2 + (V + NU0| |2)  , (9.40)

where N is the number of atoms, | |2 is normalized to 1, and, for scattering
length a,

U0 =
4�ℏ2a
m

. (9.41)

If we take the inverse of the radial trapping frequency !⟂ as our unit of time and
measure lengths in units of the width � of the corresponding harmonic ground
state, Eq. (9.40) becomes

i)t = −
1
2
∇2 + (Ṽ + �| |2)  , (9.42)

where

Ṽ =
V
ℏ!⟂

, � = 4�N
a
�
. (9.43)

In the weak-interactions limit and at su�ciently low temperature, the BEC will
to a good approximation occupy the ground state of the out-of-plane motion. In
this case, Eq. (9.42) can be reduced to a two-dimensional equation [146]

i)t = −
1
2
∇2 + (Ṽ + �

√
!z
2�!⟂

| |2) , (9.44)
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where !z is the frequency of the vertical con�nement. The resulting equation
can be solved using existing software libraries. We use a freely-available parallel
Trotter-Suzuki solver with a Python interface [147].

The simulation is performed on a 512 × 512 Cartesian grid with physical
dimensions of 20 µm × 20 µm. The potential we use is exact, obtained from a sum
of two Gaussian beams. The initial state in the simulation is isotropic and Gaus-
sian with radius � . We place it at the minimum of the radial trapping potential,
so as to start in an approximate ground state of the radial motion5. The �rst step
in simulating the interference scheme for a given interaction strength is �nding
the revival time. To do this, we �rst evolve the initial state for the analytically
calculated Talbot time (9.39). Towards the end of the evolution, we frequently
save snapshots of the state to �nd the dependence of the �delity (9.20) on time in
the vicinity of the revival. By locating the maximum of the �delity, a correction
to the analytic Talbot time is found. Once this is done, we redo the simulation
starting from the initial state and evolving for half of the new Talbot time. The
resulting state is then the starting point for the simulation of the interference
pattern. To perform the latter, we apply a phase to one superposition component
and evolve the state for a further TT /2. The phase is applied by multiplying
the wavefunction in the left half of the ring by exp(i' cos2(� − �)). Once we
have computed the �nal states for a number of values of ', we calculate the
atom count imbalance for each state. To do this, we calculate NR = | (�)|2 cos2�
(for |�| < �/2) and NL = | (�)|2 cos2(� − �) (for |� − �| < �/2) and take

ΔN =
NR − NL

NR + NL
. (9.45)

We �nd that the interference scheme tolerates interaction strengths up to the
equivalent of 1 a0 scattering length for 2 × 104 atoms. Although the atom density
is already visibly distorted at this interaction strength, the visibility of the signal
is only slightly a�ected (see Fig. 9.5). For stronger atom-atom interactions, a
visible distortion of the interference signal occurs.

5A Gaussian of the radial coordinate is only an approximation of the ground state, as it does
not account for interactions and because the radial trapping potential is not exactly harmonic.
However, we �nd that this approximation is good enough for our purposes.
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Figure 9.5: Simulation of the interference scheme realized using a nonin-
teracting (a) and weakly interacting (b) BEC of 39K in an optical trap. (a,b)
Snapshots of the particle density showing (left to right): the initial particle
density and dispersion, balanced superposition at half the Talbot time, and a
�nal interferometrically-controlled revival. At TT /2, we apply a phase of ' = �/3
to the left superposition component. The Talbot time is found numerically to
be 135.8ms in (a) and 136.2ms in (b). The scattering length in (b) is 1 Bohr
radius and the BEC consists of N = 2 × 104 atoms. c) Interference signal as a
function of external phase ' in the non-interacting case (as in (a), dots) and in
the interacting case (as in (b), diamonds). Plotted is the population imbalance
de�ned in Eq. (9.45) (di�erence of the number of atoms in the two ports divided
by the sum). The dotted line shows an ideal signal with unit visibility.



Chapter 10

Conclusions (Part II)

In the second half of the thesis, we have investigated matter-wave manipulation
techniques which may be used in future high-mass interference experiments. We
have �rst turned to Bragg di�raction, which is the basic component of state-of-
the-art techniques using strong one-dimensional optical lattices to manipulate
matter waves. In addition to regular Bragg di�raction, these techniques include
double Bragg di�raction, as well as regular and symmetric Bloch oscillations
used for beam splitting, acceleration, and suspension against gravity. Applying
these techniques to high-mass matter-wave interferometry could allow for clear
spatial separation of the superposition components, as well as for increased
particle mass.

In Chapter 7, we have reviewed the theory of the di�raction of polarizable
point particles on standing light-waves. We have put emphasis on adiabatic
Bragg di�raction on strong lattices (also referred to as quasi-Bragg di�raction),
which is the di�raction regime most often used in current applications. We have
stressed that the stationary Schrödinger equation is exactly solvable for any
lattice depth and matter-wave illumination angle. The solutions are given by
the integer-order Mathieu functions of the �rst kind for Bragg-resonant illumi-
nation and by fractional-order Mathieu functions for o�-resonant illumination.
In adiabatic Bragg di�raction the population oscillates between the original
and Bragg-re�ected beams (the pendellösung oscillation) with a frequency pro-
portional to the energy di�erence between the symmetric and antisymmetric
components of the state. The energies of these components are the eigenvalues
of the Mathieu equation, which are readily available in numerical packages and
in the form of tabulated expansions. As a result, the pendellösung frequency
can be immediately obtained to any precision both numerically and analytically.
In the adiabatic limit, Bragg di�raction is lossless for any di�raction order or
peak grating strength. However, the width of the Bragg resonances approaches
zero in this limit, which illustrates that nonadiabatic corrections are needed to
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describe realistic optical elements.
We have also clari�ed the di�erence between the quasi-Bragg and the deep-

Bragg regimes: the latter is simply a perturbative solution of the di�raction
problem to leading order in grating strength. In the deep-Bragg regime, only two
di�raction orders are macroscopically populated throughout the di�raction pulse.
This is in contrast to strong pulses in the quasi-Bragg regime, during which
many di�raction orders are populated. However, their population vanishes at
the end of the grating pulse as required by the adiabatic theorem.

In Chapter 8, we have described the �rst demonstration of Bragg di�raction
of complex molecules. The experiment showed high-order di�raction, achiev-
ing �/2 pulses with a momentum splitting of 10ℏk for cipro�oxacin and 14ℏk
for phthalocyanine. The magnitude of the momentum transfer is on par with
state-of-the-art single-pulse atomic Bragg di�raction, although the losses in
our experiment are signi�cantly larger. They are mostly a result of the broad
collimation of the molecular beam, which translates to transverse momentum
spreads signi�cantly in excess of a photon recoil. The broad collimation also
obscures the discrete nature of the momentum transfer, leading to strong simi-
larity of our results to classical de�ection. Finally, we were able to show that
photon absorption is not an obstacle for high-order molecular Bragg di�raction:
At least in the mass regime of a few hundred daltons, it can be mitigated by a
suitable choice of the molecule.

Bragg di�raction and other lattice techniques are special among state-of-the-
art methods for manipulating atoms with light, because they rely solely on the
dipole force in far-detuned light �elds. As we have demonstrated, this makes
them immediately applicable to the manipulation of complex particles. As a
result, momentum transfers of the order of 104ℏk as well as coherent guiding and
suspension are potentially within reach of high-mass interference experiments.
However, we must recognize that in their present form, lattice techniques fun-
damentally rely on a sub-recoil momentum spread of the manipulated particles.
Unless these techniques can be modi�ed to accept larger spreads, their adoption
in high-mass interference will be limited by the availability of bright sub-recoil
beams. From this perspective, the development of methods for transverse cool-
ing of high-mass particle beams is a priority. That is in addition to the search
for creative ways to adapt the lattice techniques to existing sources.

In Chapter 9, we have investigated a speci�c way to perform Talbot-like
interference with trapped matter waves. We have shown that the free evolution
in a toroidal waveguide leads to spontaneous beam splitting and recombination.
This could allow one to perform an interference scheme with no matter-wave
optics beyond the initial con�nement and the toroidal trap. In this con�guration,
the necessary coherence time is proportional to the mass of the particle and to
the radius of the trap squared. Since the size of the trap is not easily decreased
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below a few micrometers, we think that this setup is mostly relevant for the
interference of atoms or molecules with a mass up to about 1 kDa. We have
argued that this scheme could be used to precisely measure external forces such
as gravity, as well as weak interatomic forces. Additionally, the scheme could be
performed with a charged or polar particle in an electromagnetic �eld in order
to demonstrate a mesoscopic, Aharonov-Bohm-like e�ect.





Appendix A

Hamiltonians in comoving frames

Switching between the lab frame and inertial or noninertial comoving frames
is relatively common practice in the theory of matter-wave interference. The
general discussion of changing frames in quantum mechanics can be found, e.g.,
in Refs. [148–150]. Here, we brie�y review the most useful formulas, following
closely the Appendix of Ref. [151].

Let us assume that in reference frame A the Schrödinger equation reads

iℏ)t | ⟩A = HA | ⟩A . (A.1)

In a unitarily-related frame B we have | ⟩B = U | ⟩A and the Schrödinger
equation is

iℏ)t | ⟩B = iℏ)tU | ⟩A = (iℏ ()tU)U† + UHAU†)U | ⟩A . (A.2)

Equation (A.2) will have the form (A.1) when

HB = iℏ ()tU)U† + UHAU†. (A.3)

We will be interested in the unitary transformation

U = exp(i� (t)p/ℏ) exp(−i� (t)x/ℏ) exp(i'(t)/ℏ), (A.4)

where � , � , ' are arbitrary real functions of time. It transforms the canonical
coordinates in the following way

UxU† = exp(i� (t)p/ℏ)x exp(−i� (t)p/ℏ) (A.5a)
= x + exp(i� (t)p/ℏ)[x, exp(−i� (t)p/ℏ)] (A.5b)
= x + exp(i� (t)p/ℏ)[x, p])p exp(−i� (t)p/ℏ) (A.5c)
= x + � (t), (A.5d)

UpU† = p + � (t). (A.5e)
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Transformation (A.4) is thus general enough to describe changing to any rigidly
moving inertial or noninertial frame. To complete the transformation of the
Hamiltonian, we note that the �rst term in Eq. (A.3) can be expressed as

iℏ ()tU)U† = −�̇ (t)p − '̇(t) + �̇ (t)UxU† = −�̇ (t)p − '̇(t) + �̇ (t) (x + � (t)) . (A.6)



Appendix B

Theory of Talbot-Lau interference
(inertial-frame description)

In this section, we validate the results of Section 2.1 by rederiving the interference
pattern and signal in an inertial frame. Since the Hamiltonian (2.1) is at most
quadratic in position and momentum, the evolution of the Wigner function
between the gratings is again the same as for a classical phase-space density.
However, in the inertial frame the coordinate transformation describing the free
�ight after the i-th grating reads

x ′ = x +
p
m
Ti + �i , (B.1a)

p′ = p + m� ′i , (B.1b)

in which �i and � ′i are arbitrary position and velocity increments. The corre-
sponding transformation FFi of the Wigner function is

(FFi w)(x, p) = w(x −
p
m
Ti − �i , p − m�i), (B.2)

where
�i = �i − Ti� ′i . (B.3)

The grating transformation remains unchanged and is given by Eq. (2.9). A
single composition of GT and FF takes the form

(FFi GTi w)(x, p) = ∫ dpi Ki(x − Δxi −
p
m
Ti − �i , p − m� ′i − pi)

× w(x −
p
m
Ti − �i , pi). (B.4)
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We now apply the above composition k times to the initial state (2.15) and
integrate over momentum to obtain the pattern. This gives

wk(x) = ∫ dp (FFk GTk …FF1 GT1 w0)(x, p) (B.5a)

=
1
X0 ∫

dpdpk Kk(x − Δxk −
p
m
Tk − �k , p − m� ′k − pk)

× ∫ dpk−1 Kk−1 (x − Δxk−1 −
pk
m
Tk−1 −

p
m
Tk − �k−1 − �k ,

pk − m� ′k−1 − pk−1)
× …

× ∫ dp1 K1(x − Δx1 −
p2
m
T1 −

p3
m
T2 + …

p
m
Tk − x0, p2 − m� ′1 − p1)

× �(
X0
2
−
||||
x −

p2
m
T1 −

p3
m
T2 + …

p
m
Tk − x0

||||)
D(p1), (B.5b)

where

x0 = �1 + �2 + ⋯ + �k . (B.6)

Using Eq. (2.11) to expand the grating kernels gives

wk(x) =
1
X0

1
(2�ℏ)k

∑
n1,…,nk

exp

{

i�x − i�k − 2�i
k

∑
i=1

ni
di
(�i + ⋯ + �k)

}

× ∫ dsk …ds1 exp

{

−
im
ℏ

∑
i
� ′i si

}

B(1)n1 (
s1
d1)

…B(k)nk (
sk
dk)

× ∫ dp exp
{
ip
ℏ [sk −

ℎTk
m (

n1
d1
+ ⋯ +

nk
dk)]

}

× ∫ dpk exp
{
ipk
ℏ [−sk + sk−1 −

ℎTk−1
m (

n1
d1
+ ⋯ +

nk−1
dk−1)]

}

× …

× �(
X0
2
−
||||
x −

p2
m
T1 −

p3
m
T2 − ⋯ −

p
m
Tk − x0

||||) ∫ dp1 e−ip1s1/ℏD(p1).

(B.7)

We now carry out the integrations starting from the innermost. For large X0 the
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integrals over p2, … , p can be approximated by Dirac deltas, resulting in

wk(x) =
�(X0/2 − |x − x0|)

X0
∑
�
ei�xP� , (B.8a)

P� = ∑
n1
d1
+⋯+ nkdk =�

e−i(�k+�̃)B(1)n1 (
s1
d1)

…B(k)nk (
sk
dk)

D̃(s1), (B.8b)

where �k and the si are de�ned as in the comoving frame (see Eqs. (2.20)
and (2.22)), and the additional phase shift is

�̃k = 2�
k

∑
i=1

[
ni
di
(�i + ⋯ + �k) +

msi
ℎ
� ′i ]. (B.9)

The interference signal in a scanning-grating interferometer is obtained
from the pattern in the same way as in the comoving frame calculation in
Section 2.1. The resulting expression is the same as Eq. (2.27b), but with �k+1
replaced by �k+1 + �̃k . That is, the additional shifts �̃k of the pattern terms in the
inertial frame are also visible in the signal.

The di�erence between the patterns obtained in the comoving and inertial
frames lies in the way the trajectory of the particle enters the shift of the pattern.
In the comoving frame, the motion of the particle together with the lab-frame
positions of the gratings determine the grating shifts Δxi . These then determine
the shift of the pattern via the �k phases. In the inertial frame, the Δxi (and
thus �k) only contain the positions of the gratings with respect to the lab frame.
The motion of the particle enters instead through the additional shifts �̃k .

To see that the shift of the pattern is the same in both cases, we �rst use the
de�nition (2.22) of si to rewrite the second term in Eq. (B.9) as

k

∑
i=1

msi
ℎ
� ′i =

k

∑
i=1

� ′i [(
n1
d1
+ ⋯ +

ni
di)

(Ti + ⋯ + Tk) +
ni+1
di+1

(Ti+1 + ⋯ + Tk)

+ ⋯ +
nk
dk
Tk] (B.10a)

=
k

∑
i=1

ni
di [

(� ′1 + ⋯ + � ′i )(Ti + ⋯ + Tk) + � ′i+1(Ti+1 + ⋯ + Tk)

+ ⋯ + � ′kTk] (B.10b)

=
k

∑
i=1

ni
di [

Ti(� ′1 + ⋯ + � ′i ) + ⋯ + Tk(� ′1 + ⋯ + � ′k)]. (B.10c)
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Combining Eq. (B.9) with Eqs. (B.3) and (B.10c) gives

�̃k =
k

∑
i=1

2�ni
di [�i + ⋯ + �k + Ti(� ′1 + ⋯ + � ′i−1) + ⋯ + Tk(� ′1 + ⋯ + � ′k−1)]. (B.11)

Finally, we rewrite the pattern shift (2.33) obtained in the comoving frame as

�lab
k =

k

∑
i=1

2�ni
di

[� (T1 + ⋯ + Tk) − � (T1 + ⋯ + Ti−1)]. (B.12)

The trajectory � (T1 + ⋯ + Ti) is the result of composing Eq. (B.1a) i times and
starting from the origin of the phase space. This gives

� (T1 + ⋯ + Ti) = �1 + ⋯ + �i + T2� ′1 + ⋯ + Ti(� ′1 + ⋯ + � ′i−1), (B.13)

which inserted into Eq. (B.12) gives Eq. (B.11) as expected.



Appendix C

Bragg approximation via adiabatic
elimination

Based on the multilevel-atom analogy in atomic di�raction, we can expect that
for small grating strength q only transitions between the pairwise degenerate
states |p = ±nℏk⟩ ≡ |±n⟩ will occur. The e�ective two-state description can be
obtained for n > 1 by adiabatic elimination of the intermediate states [58], as
reviewed in this section. Our treatment follows the procedure of Ref. [58], Sec. II
analytically to �rst order, �lling some minor gaps. The approximate solution
is only worthwhile for n ≥ 3. For the lowest orders it is easy and far more

-5 5

j

10

20

30

40

Ej

q

Figure C.1: Energies of momentum eigenstates |j⟩, illustrating the multilevel-
atom analogy in Bragg di�raction. The particle is initially in the state |n⟩, here
assuming n = 5. For small grating strength q, only transitions between the |±n⟩
states are resonant.
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insightful to solve the problem via analytic diagonalization, like in Ref. [61].
Let us assume that at time �0 the particle is in the superposition of the |±n⟩

eigenstates,
| (�0)⟩ = gn(�0) |n⟩ + g−n(�0) |−n⟩ , (C.1)

where n > 0. We will subtract n2ℏ!r from the energy so that |±n⟩ correspond
to the ground states in the multilevel atom analogy (see Fig. C.1). This is
necessary for the simple adiabatic elimination (i.e., setting the derivatives of
the fast degrees of freedom to zero) to yield the correct result [152]. With this
subtraction, the evolution of the amplitudes gj is given by Eq. (7.25). If the
interaction energy q(� )/2 is small compared to the |n⟩ ↔ |n − 1⟩ energy spacing
(see Fig. C.1), levels other than |±n⟩ are far-detuned and can be adiabatically
eliminated. We do this by setting ġj = 0 for j ≠ n in Eq. (7.25) and solving the
resulting set of linear algebraic equations

0 = (j2 − n2)gj + q(�)(gj−2 + gj+2), j = n − 2, n − 4, … , −n + 2. (C.2)

We have truncated the a priori in�nite set of equations to only the n − 1 inter-
mediate states. The amplitudes of the outer states |±n ± 2⟩ , |±n ± 4⟩ , … can be
taken to be zero without a�ecting the result to lowest order in q, as we justify
later. Equation (C.2) is in matrix form

M

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gn−2
gn−4
⋮

g−n+4
g−n+2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−qgn
0
⋮
0

−qg−n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (C.3)

where M is a tridiagonal matrix

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δn−2 q
q Δn−4 q

q Δn−6 q
⋱ ⋱ ⋱

q Δ−n+4 q
q Δ−n+2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.4)

with Δn−2j = (n − 2j)2 − n2 = −4j(n − j). The solution of Eq. (C.3) for g±n∓2 is

gn−2 = −q (M−1
1,1gn + M

−1
1,n−1g−n) , (C.5a)

g−n+2 = −q (M−1
n−1,1gn + M

−1
n−1,n−1g−n) . (C.5b)
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From the symmetry of M we must have M−1
1,1 = M−1

n−1,n−1, M−1
1,n−1 = M−1

n−1,1. Using
this and inserting Eq. (C.5) into the Raman-Nath equations (7.25) for g±n gives

iġn = −q2 (M−1
1,1gn + M

−1
1,n−1g−n) , (C.6a)

iġ−n = −q2 (M−1
1,n−1gn + M

−1
1,1g−n) . (C.6b)

The diagonal terms contribute a light shift, which is not relevant to our problem
and can be removed by a substitution analogous to the one yielding Eq. (7.25).
This leaves us with equations solved by Eq. (7.43b) with

Ωn

2
= −q2M−1

1,n−1. (C.7)

To obtain Ωn, we must therefore �nd the inverse M−1 of a tridiagonal matrix.
This is in general a very hard task; however, we limit ourselves here to �nding
the solution to lowest order in q. To this end, we use the results of Ref. [153].
From their Corollary 2.1 we have

M−1
j,j = Δ

−1
n−2j + O(q

2), (C.8a)

M−1
i,j = (−1)

j−iqj−i
zi−1
zj−1

M−1
j,j for i < j, (C.8b)

where z0 = 1, z1 = Δn−2 and

zj = Δn−2jzj−1 − q2zj−2, j = 2, 3, … , n − 1. (C.9)

Using Eq. (C.8) we �nd the leading-order solution of Eq. (C.7) to be

Ωn

2
= −q2

[
(−1)n−2qn−2(

M−1
n−1,n−1

zn−2 )
q=0]

= (−1)n−1qn
n−1

∏
j=1

1
Δn−2j

=
4

[(n − 1)!]2 (
q
4)

n
,

(C.10)
in agreement with Eq. (7.49).

We now argue that the truncation to the n − 1 equations (C.2) does not a�ect
the above result. Let us assume we included 2i more states, so that now we have
a set of equations for gn+2i , … , gn+2, gn−2, … , g−n+2, g−n−2, … , g−n−2i . In the vicinity
of gn−2, the set of equations has the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱ ⋱ ⋱
q Δn+4 q

q Δn+2 0
0 Δn−2 q

q Δn−4 q
⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮
gn+4
gn+2
gn−2
gn−4
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮
0

−qgn
−qgn
0
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.11)
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where we denote the extended matrix by M̃ . To obtain ġn, we need the solutions
for gn−2 and gn+2 and therefore the matrix elements M̃−1

1+i,n−1+i , M̃−1
1+i,n+i , M̃−1

i,n−1+i ,
and M̃−1

i,n+i . There are now four terms of interest as we have two neighbors gn±2
and two g−n terms on the right-hand side of Eq. (C.11). To lowest order in q we
have

M̃−1
1+i,n−1+i = (−1)

nqn−2[
z̃i

z̃n−2+i
M̃−1

n−1+i,n−1+i]
q=0
, (C.12)

where the �rst two terms are the same as in M−1 because they depend only
on the di�erence of indices [see Eq. (C.8b)] and i cancels out. The diagonal
element is also the same as in M−1, because in zeroth order it is just the inverse
of the respective detuning [see Eq. (C.8a)], M̃−1

n−1+i,n−1+i = M−1
n−1,n−1 = Δ−1−n+2. Finally,

for q = 0 the additional detunings Δn+2i , … , Δn+2 cancel in the ratio z̃i/z̃n−2+i
yielding M̃−1

1+i,n−1+i = M−1
1,n−1 as desired. The matrix elements M̃−1

1+i,n+i and M̃−1
i,n−1+i

areO(qn−1), while M̃−1
i,n+i isO(qn), as can be seen from the di�erence of the indices.

They are therefore of higher order than the term we already considered and
do not enter the leading-order result. The argument proceeds in the same way
for ġ−n. We have thus shown that Eq. (C.10) is accurate to leading order in q
despite the �nite number of states considered in Eq. (C.2).



Appendix D

Least-squares �tting of di�raction
images

The simulation in Fig. 8.3 (b) is a least-squares �t to the data image in panel (a)
of the same �gure. The �t is performed over the following parameters: the inci-
dence angle, the grating y o�set, the peak of the molecular velocity distribution
(its shape can be obtained from the data directly), and to a limited extent over
source size. The remaining parameters (see Table 8.2) are held at their known
or estimated experimental values. The �tting procedure is as follows

1. Pre-process the data by

a) Leveling the background1. This is done by masking the di�raction
pattern, averaging the image along the y direction, and �tting a
smoothing spline (UnivariateSpline from SciPy) to the noise
�oor. The �oor is then subtracted from the image and the process
repeated along the x axis.

b) Centering the pattern. This is done by �nding the center of the
undi�racted beam and shifting it to x = 0. The center is found by
�tting a Gaussian to the y-average of a 50 µm horizontal stripe at
the top of the image.

2. Downsample the data. In our case by a factor of 7 to a resolution of 140 × 31
(width × height). This is done using decimate from SciPy. The smoothing
�lter used internally by decimate before downsampling is necessary for
obtaining a low-noise result. The downsampling factor has to be low

1Initial background correction is done in the acquisition software, but it proved insu�cient
to obtain a good �t. Additional �ltering is also crucial for obtaining a good vertical intensity
distribution.
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enough to conserve the physical content of the image, but high enough to
�lter out as much noise as possible.

3. Prepare a 3D array containing a selection of horizontal lines of the data
image. In each consecutive slice of the array, the selection of lines is
shifted vertically. We choose 21 lines separated by about 13 µm.

4. Prepare the simulations

a) Sample the simulated images from a given range of incidence angles
and grating o�sets. We chose sampling points in regular intervals
for each parameter. Then, for every parameter combination we
calculate 21 horizontal lines of the di�raction image, separated by
the same distance as the data lines selected in step 3. The simulations
are calculated as described in Section 8.2 without vertical averaging
or weighing with a velocity distribution (steps 5 and 6).

b) Downsample the simulated images in the x direction to match the
resolution of the downsampled data. We downsample by a factor
of 65, which requires the use of the �nite impulse response smoothing
�lter in decimate.

5. Find the least-squares match; that is, for each simulated image

a) Normalize the simulation lines and multiply them by the sums of
their respective data lines.

b) Subtract the theoretical image lines from the experimental ones and
calculate the sum of squares.

c) Normalize the sum of squares by the sum of squares of the data lines.

d) Pick another (vertically shifted) set of data lines and repeat.

In practice the above steps are not done sequentially, but simultaneously
using the array of shifted data lines prepared in step 3. The normalization
in step 5b is necessary because di�erent selections of lines contain di�erent
amounts of variability, as measured by their sum of squares.

6. Repeat step 5 for di�erent source sizes and �nd the one which results in the
smallest sum of squares. The source size can be changed (within a limited
range) without repeating the simulations, as described in Section 8.2. The
source size and the simulated image with the normalized sum of squares
are chosen as the best �t.
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Finally, to plot the �t alongside the data image we perform a simulation
with 50 horizontal lines and weigh it with the empirical vertical intensity distri-
bution. The latter is obtained by summing the image along the x axis and �tting
a smoothing spline to the result. If a parametric �t is desired (for example to
determine the peak velocity in the molecular beam), one has to use a Maxwell-
Boltzmann distribution transformed as in Eq. (8.3) and convolved with a square
or a Gaussian (to account for the �nite opening of the Sy).
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Abstract
Designing experiments which delocalize ever more complex and more massive particles requires
a quantitative assessment of new interferometer configurations. Here, we introduce a figure of
merit which quantifies the difference between a genuine quantum interference pattern and a
classical shadow and use it to compare a number of near-field interferometer schemes. This
allows us to identify the most promising setups for future tests of the quantum superposition
principle, and to discuss the perspectives of interferometry with complex molecules and clusters.

Keywords: matter wave optics, quantum optics in phase space, interferometry with clusters and
molecules

(Some figures may appear in colour only in the online journal)

1. Introduction

Matter-wave interference is a prominent example of funda-
mental quantum physics, with applications in quantum sen-
sing and metrology [1, 2]. On the fundamental side, it is a
direct test of the universality of the superposition principle
and its possible breakdown beyond a certain mass and com-
plexity limit [3–5]. Matter-wave interferometry has been used
for quantum-enhanced measurements of gravitational effects
[6–11] and in the search for dark energy [12]. Nanoparticle
interferometry can enable new quantum tests of the weak
equivalence principle [7, 13–15] in a range of internal particle
properties and masses that cannot be compared in any other
device so far [16]. Moreover, it has been suggested that cer-
tain candidates for dark matter might be best detected in
nanoparticle interferometry [17, 18]. Matter-wave interference

experiments of the future aim to probe gravity-induced
dephasing and decoherence [19–22, 26], and to test predic-
tions of the Newton–Schrödinger equation [23] or the
quantum nature of gravity [24, 25]. Interestingly, the influ-
ence of these phenomena tends to grow with the square of the
mass of the delocalized particle. This also holds for a recent
definition of macroscopicity, which quantifies the degree to
which nonlinear extensions of quantum mechanics can be
excluded [27].

On the applied side, a matter-wave interference pattern
can be thought of as a free-flying nanometric ruler, the dis-
placement of which can be measured with high sensitivity. In
atom interferometry, this enables precise measurement of
accelerations, such as those arising due to rotation or gravity
[28–30]. Based on the same principle, macromolecule and
nanoparticle interferometry can be developed for force sen-
sing and used to measure molecular properties [31, 32]. This
has been used to probe optical [33] and static [34] molecular
polarizability, dipole moments [35], absolute optical absorp-
tion cross sections [36], and to distinguish molecular con-
formers [37, 38]. Extended to large peptides and proteins,
such techniques can become a valuable tool for biophysical
chemistry.
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The instruments representing the state of the art in high-
mass matter-wave physics are the Kapitza–Dirac–Talbot–Lau
interferometer (KDTLI) [39] and the optical time-domain
matter interferometer (OTIMA). KDTLI demonstrated
quantum interference of bio-dyes, vitamins [34], and hot
molecules with masses beyond 10 000 Da [40]. It was also
used for many of the metrological applications mentioned
above [33, 35, 37, 38]. OTIMA has demonstrated interference
with molecular clusters [41, 42] and recently of molecules
with masses beyond 6000 Da [16].

Both KDTLI and OTIMA rely on the near-field self-
imaging of a diffractive element known as the Talbot–Lau
effect [43, 44]. It is a two-grating phenomenon, in which the
first grating prepares spatial coherence and the subsequent
grating acts as the diffractive element. The Talbot–Lau
scheme is especially suitable for high-mass interference
because of the lack of bright coherent sources for molecules
and clusters. Talbot–Lau interference is well-known in optics
[45–47], has been demonstrated with atoms [48], and is also
the basis for our present discussion. For a diffractive element
with period d, the self-images occur at integer multiples of the
Talbot length, l=L dT

2
dB, where λdB is the de Broglie

wavelength of the particle. The definition of LT implies that
pushing towards higher masses requires developments in
slowing and cooling of heavy particles, but also an increase of
the interferometer length. This motivates the present study of
the long-baseline universal matter-wave interferometer, an
instrument that is ten times longer than the current mass-
record holder, the KDTLI. The goal of the new interferometer
is to probe de Broglie wavelengths down to λdB=20–30 fm
and demonstrate interference of masses beyond 105 Da.

The article is structured as follows: in section 2 we
review the phase-space description of near-field interference,
and derive a figure of merit that is later used to compare
different interferometer setups. In section 3 we identify and
discuss the most promising interferometer schemes for
organic molecules, proteins, and atomic and molecular clus-
ters. We end with a summary in section 4.

2. Phase-space description of near-field matter-wave
interferometry

In this section, we describe the propagation of matter waves
through a near-field interferometer and quantify the resulting
interference pattern. We consider two- and three-grating set-
ups and provide both a quantum and a classical description.
Comparing these predictions is necessary to identify para-
meter ranges where quantum interference fringes are clearly
distinguishable from a classical shadow [49].

Both descriptions are performed in the phase space (x, p)
of the particle’s motion in the direction perpendicular to the
grating slits and the particle beam. We assume that the par-
ticle’s forward motion can be separated and is thus constant,
with velocity v. We further assume that the gratings are
aligned to gravity, so that the particle falls freely along the
grating slits. Gravity then only shifts the vertical position of
the pattern, but does not reduce the fringe contrast.

The phase-space description allows us to derive the
classical and quantum predictions based on the same
approximations, and to insert the various beam-splitting
components discussed in section 3. The phase-space
description can also be extended to include decoherence
events during free flight [50], measurement-induced beam
splitting [51], and various metrological agents such as
externally applied fields [34].

2.1. Quantum description

The transverse motional quantum state r̂ of the particle of
mass m is represented with a Wigner function defined as [52]


òp

r= - +( ) ˆ ( )w x p s x
s

x
s

,
1

2
d e

2 2
. 1psi

Assuming that the source uniformly illuminates an X0-wide
area of the first grating and that the momentum distribution in
the beam is D(p), the initial state can be written as

q= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ∣ ∣ ( )w x p
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X
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2
, 20
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where θ(x) is the Heaviside step function. After traversing the
first grating, the state becomes

ò= -( ) ( ) ( ) ( )w x p p x p p w x p, d , , , 31 0 1 0 0 0

where the transformation kernel  ( )x p,1 is a Wigner trans-
form of the first grating’s transmission function t1(x) calcu-
lated using the eikonal approximation [53]
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Between the first and second grating, the molecule propagates
for a time T1 under the influence of an external force causing
transverse acceleration a. This corresponds to a transforma-
tion of the form

¢ = - + -
⎛
⎝⎜

⎞
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m
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aT
p maT,

2
, . 51 1 1
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For the second grating and second propagation, analogous
transformations are performed, yielding ¢( )w x p,2 .

In a two-grating interferometer the particle is then
detected using a spatially-resolving detector. The probability
density of detection at position x is

ò= ¢( ) ( ) ( )P x p w x pd , . 62

In the wide-illumination limit  ¥X0 , the probability den-
sity P(x) approaches a periodic function with a Fourier
decomposition

å p= -
=-¥

¥ ⎛
⎝⎜

⎞
⎠⎟( ) ( )P x

X
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T

x

d
P

1
exp 2 i . 7
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n

0
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2 1

The Pn can be expressed in terms of the Fourier coefficients
x( )( )Bn

i of the transformation kernels  ( )x p,i . For the ith
grating with period di and În , these coefficients are
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defined as
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and taken to be 0 for Ïn . Assuming that the width of D(p)
is much greater than the grating momenta h/di (and that

 ¥X0 ), Pn can be expressed as [53]

= -p j
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where h is the Planck constant and the phase shift due to
external force is

j =
+( ) ( )na T T T

d2
. 10n

1 2 1

1

In all cases considered in this paper the acceleration will be
due to the Coriolis force

= W ( )a v2 , 11

whereW is the vertical component of Earth’s angular velocity
at the lab’s latitude and v is the forward velocity of the
molecule3.

A three-grating interferometer has one more grating after
the second propagation, which can be moved perpendicularly
to the fringes. This allows one to detect the presence of the
pattern by measuring the flux of the transmitted particles as a
function of the transverse position xS of the last grating. This
is useful because many detection techniques lack the spatial
resolution sufficient for direct imaging of the interference
pattern.

The probability that the molecule transverses a three-
grating interferometer is

ò= - - ¢( ) ( ) ( ) ( )S x x p p x x p p w x pd d d , , . 12S S2 3 2 2 2

In the wide-illumination limit  ¥X0 , the signal approaches
a periodic function with a Fourier decomposition

å p= -
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Sn can be expressed as [53]
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2.2. Classical description

In the classical description, the state of the particle is
described with a phase-space probability distribution f (x, p).
Before the first grating, f coincides with w0, given in
equation (2). Upon traversing a grating, f undergoes a trans-
formation of the same form as given in equation (3), but with
a classical kernel  ( )x p,1 instead of  ( )x p,1

 d= -( ) ∣ ( ) ∣ ( ( )) ( )x p t x p q x, , 151 1
2

1

where q1(x) is the momentum kick experienced by the particle
traversing the first grating at position x [53].

Using a decomposition of  ( )x p,i analogous to
equation (8) with coefficients denoted ( )Cn

i , we can express the
Fourier coefficients of the classical pattern and signal in a
form analogous to equations (9) and(14), but with ( )Bn

i

replaced by ( )Cn
i [50]. These coefficients will be denoted Pn

cl

and Sn
cl, respectively.

2.3. Figure of merit

A primary goal of an interference experiment with massive
particles is to demonstrate their quantum behavior by pro-
ducing a fringe pattern significantly more pronounced than
predicted by classical theory. To quantify how well an
interferometer performs at this task, we will calculate the
difference between the quantum and the classical fringe
modulation and compare it to the relevant noise scale4.

We assume that the particle detection rate in the absence
of gratings is constant and equal to N/T, where T is the total
data-taking time. In a two-grating interferometer, the mean
number of counts registered in a pixel of size Δx is then

D á ñ( ) ( )N x P x . 16

The averaging of the probability density P(x) is done over the
distribution of the velocities in the beam, and we have
assumed that Δx is smaller than the length scale at which P(x)
varies appreciably. Using equation (7) to expand P(x) we find
that the difference between the amplitude of nth order fringes
as predicted by quantum and classical theory is

D
á ñ - á ñ(∣ ∣ ∣ ∣) ( )N x

X
P P

2
. 17n n

0

cl

The noise in our measurements is due to Poissonian counting
statistics and its standard deviation can be estimated as5

D ( )x

X
NP . 18

0
0

This noise is identical in the quantum and classical models
and velocity-independent, hence no averaging is necessary.

We define our figure of merit as the number of counts N
for which the amplitudes of the lowest-order quantum and
classical fringes differ by two shot noise amplitudes. N can
then be obtained by equating the ratio of expressions(17)
and(18) to 2, yielding

=
á ñ - á ñ(∣ ∣ ∣ ∣) ( )N

P

P P
, 19

n n

0
cl 2

where n is the smallest index such that ¹P 0n . In a three-
grating interferometer, the integration is done in time bins,

3 The horizontal component of Earth’s rotation, which depends on the
azimuthal orientation of the interferometer, gives rise to a Coriolis force
acting along the grating slits and therefore can be neglected.

4 It should be noted that for purely metrological purposes this figure of merit
is less relevant. In that case the key parameters are fringe visibility and
count rate.
5 The standard deviation of the number of counts in a single pixel is
approximately DN xP X0 0 . Since we have X0/Δx independent pixels, the
noise is reduced by a factor of DX x0 , which gives equation (18).
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between which the third grating is moved. By reasoning
analogously as above, we arrive at an expression for N of the
same form as equation (19), but with P P,n n

cl replaced
by S S,n n

cl.
The main purpose of the figure of merit N is to compare

the performance of interferometer setups. However, we can
also use it as a guide when estimating the number of counts
each scheme requires in order to produce a manifestly
quantum fringe pattern. These experimentally relevant count
numbers are most likely one to two orders of magnitude
higher than N. The additional counts are necessary to offset
the imperfections which we neglected in this analysis, such as
residual grating vibration and misalignment or non-ionizing
photon absorption for biomolecules. Also, a signal-to-noise
ratio significantly higher than two is often desired, especially
if the experiment is to exclude modifications of quantum
mechanics despite significant uncertainty in molecular
parameters.

3. Long-baseline interferometers for molecules and
clusters

In this section, we compare the most promising configurations
of a two meter long interferometer for the diffraction of
proteins, as well as of metal and amino acid clusters, using the
figure of merit N of section 2.

3.1. Grating types

We consider three types of diffraction gratings: nano-
machined masks, optical phase gratings, and optical depletion
gratings (see figure 1). The Talbot coefficients Bn and Cn (see
equation (8)) for these grating types can be found in [53].

3.1.1. Material masks. A material grating (M) is a thin
nanostructured membrane, which serves to modulate the
matter wavefront of atoms, molecules, and clusters alike. This
type of grating is the most universal, but suffers from the
dispersive influence of the Casimir–Polder (CP) interaction
between the particles and the slit wall6. When the material
mask is used as the middle grating, this leads to strong
blurring of the interference pattern [56]. Therefore, we will
only consider material masks for the outer gratings, for which
the CP-interaction can be approximated as a reduction of the
effective slit width [57, 58], as discussed in appendix B.
Motivated by previous high-mass experiments [36], we will
assume silicon nitride gratings with a period of d=266 nm.

3.1.2. Optical phase gratings. A phase grating (P) can be
realized as a standing wave of laser light, which imprints a
periodic phase onto the matter-wave via the dipole interaction
[39, 59]. This type of grating is perfectly transmissive, does
not clog, and is compatible with high-mass interference
despite the dependence of the imprinted phase on the
particle’s velocity [60]. However, the outer gratings will

always be assumed to be absorptive masks, as required to
prepare coherence (G1) and to analyze the resulting density
pattern (G3).

In our analysis, we assume 532 nm light for a phase
grating with period d=266 nm. For highly transparent
dielectric materials, such as SiO2 spheres, this period could be
further reduced by a factor of two by using UV light.

3.1.3. Optical depletion gratings. A photo-depletion grating
(D) can be implemented as a standing light wave which ionizes
[41] or dissociates [61] the particles passing near its anti-nodes.
Provided that only the neutral or intact particles are counted,
these photo-processes lead to periodic molecular beam
depletion. This idea can be applied to tryptophan clusters [62],
a vast range of biomolecules [63], and many metal clusters [64].
In cases where the ionization energy exceeds the available
photon energy, photo-cleavage ionization can be implemented
by appropriate functionalization of the molecules [54].
Photo-fragmentation gratings are also expected to work for
beams of native RNA and DNA [65], which undergo intense
fragmentation upon UV irradiation. Depletion gratings may also
be realized via optical transfer of the particles to undetectable
internal states, which removes them from the detected ensemble
without actually depleting the molecular beam [66, 67]. In our
analysis, we assume a 266 nm UV-light depletion grating, which
yields a period of 133 nm.

Figure 1. The interferometer configurations in this survey consist of
up to three gratings, based on up to three different mechanisms. The
first grating (G1) must be absorptive to establish spatial coherence. It
can be realized as material mask (M) or a standing light wave
depleting the molecular beam (D). The second grating (G2) can be a
pure phase grating (P). Interference detection can be achieved either
by scanning an absorptive grating (G3), or by direct imaging (I) of
the molecules deposited on a surface. In our study M and P gratings
are defined to have a period of 266 nm, while D gratings have half
the period.

6 In naming the dispersion forces, we follow the nomenclature of [55].
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3.2. Particle species, sources, and detectors

We analyze various interferometer configurations in combi-
nation with seven prototypical biomolecules, amino acid
clusters and metal clusters (see table 1). This is an exemplary
and certainly not exhaustive list of potential candidates up to
300 000 Da. Biomolecules are especially interesting for
metrological purposes, while metal clusters or certain di-
electric nanoparticles promise the simplest implementation of
photo-depletion gratings and are suitable for high-mass
interference.

One of the greatest challenges in matter-wave experi-
ments is preparing a sufficiently intense, mass-selected, cold,
and directed particle beam. While many native and functio-
nalized organic molecules—from fullerenes and tailored tri-
peptides [69] to native vitamins [34]—can still be evaporated
in a Knudsen cell, molecular beams of complex amino acid
clusters and high-mass polypeptides can be prepared by laser
desorption into a noble gas jet [70]. We expect that photo-
neutralization of singly charged biopolymers [54] and
aggregated metal clusters [71] will facilitate the preparation of
neutral particle beams.

On the detector side, a key challenge is to efficiently ionize
neutral massive particles. While hot-wire detection [72] is a
simple and efficient tool for metal clusters with a low work
function, single-photon ionization offers high efficiency for a
larger range of metals and allows for excellent time resolution.
Post-ionization of large amino acid clusters [62] has been
observed but the detection of neutral proteins has remained a
grand challenge in physical chemistry [73]. This is being tackled
using functionalization and photo-cleavage [54].

In most molecule interferometers to date, ionizing
detectors count the molecules transmitted through the inter-
ferometer and the required spatial resolution is provided by
scanning a grating across the interference pattern. For some
setups in this study, we propose instead the adsorption of the
interferogram on a transparent surface, followed by high
resolution imaging using electron or optical super-resolution
microscopy [74–76].

3.3. Survey results

In order to compare the interferometer setups we numerically
compute and optimize the figure of merit N (see

equation (19)) for each combination of grating configuration
and particle species. The optimization is carried out over the
average velocity of the particles and the powers of the laser
gratings. For configurations with multiple laser gratings, the
powers of the outer gratings are held equal. The results are
summarized in figure 2.

For the biomolecules in our list, we find that all of the
setups considered offer similar performance. The greatest
difference can be seen between the imaging and the inte-
grating-detection setups, the latter typically requiring about an
order of magnitude7 more counts to achieve the same degree
of distinguishability between the classical and the quantum
model. Within both groups, optimal performance is offered by
the material-depletion setups (MDM and MDI), followed
closely by the material-phase (MPM and MPI) and the
asymmetric depletion-phase configurations (DPM 1:2 and
DPI 1:2). The MPM configuration is close to optimal among
these setups. The DPM 1:2 and DPI 1:2 setups are the best
alternatives should clogging of the material grating become a
problem. The calculated values of N suggest that all proposed
setups are viable with biomolecules if one can detect and
accumulate a total of several ten thousand molecular counts.

For 100 kDa metal clusters we find that, similar to bio-
molecules, the material-depletion setups offer the best per-
formance. Also, replacing the last grating with a spatially-
resolving detector has again the effect of lowering the
required numbers of counts by about an order of magnitude.
We find that some configurations are better for silver than for
cesium, because of the high polarizability of the cesium
cluster at 532 nm. In that case the best discrimination between
the quantum and the classical model would nominally be
achieved at low velocities, where for the same reason a
material grating becomes almost opaque. This is especially
pronounced for the setups MPM and MPI with a material
grating in G1 and a phase grating in G2. All considered setups
are viable with 100 kDa silver clusters for a few hundred

Table 1. Molecules and clusters used in this study and their parameters: polarizability volumes α and absorption cross sections σ at 266 and
532 nm. The absorption cross sections of insulin and GFP correspond to that of the photo-cleavable group [54]. The remaining values are
estimated as described in appendix A.

( )m kDa a (Å)266
3 s ( )cm266

2 a (Å)532
3 s ( )cm532

2

Insulin 5.8 600 4×10−17 600 0
Trp50 [68] 10 1000 9.1×10−16 1000 0
GFPa 27 2700 4×10−17 2700 0
Silver 100 2500 6.9×10−15 5200 2.1×10−16

Cesium 100 −2200 6.5×10−15 −22000 2.4×10−14

Silver 300 7400 2.1×10−14 15400 6.2×10−16

Cesium 300 −6700 1.9×10−14 −65000 7.2×10−14

a

Green fluorescent protein.

7 The exact factor can be estimated analytically in the following way. Note
that the removal of the last grating improves the transmission of the
interferometer by ( )( )B1 00

3 , while the pattern amplitude changes by
( )( )

( )B1 0nT d T d
3
1 3 2 1

in the quantum and by ( )( )
( )C1 0nT d T d
3
1 3 2 1

in the classical
model (see equation (14)). One can show that =( ) ( )( ) ( )B C0 0k

i
k

i and therefore,
when ( )Bk

3 is velocity-independent or when the velocity spread is small, N
changes by a factor [ ( )] ( )( )

( ) ( )B B0 0nT d T d
3 2

0
3

1 3 2 1
.
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thousand counts. This also holds for 100 kDa cesium clusters
if G2 is a depletion grating.

For clusters with a mass of 300 000 Da an imaging
interferometer can achieve the same discrimination between a
quantum and a classical model as a non-imaging scheme, but
it achieves that feat with ten times fewer counts. The high
polarizability of the cesium clusters is even more apparent
here, significantly affecting the performance of all config-
urations with a phase grating in G2. For 300 kDa silver
clusters a few million counts will be required, when the
Coriolis force is not compensated.

In all cases considered, the asymmetric depletion-phase-
material (DPM 1:2) performs better than its symmetric
counterpart. Because of the longer distance between G2 and
G3, low-order diffraction at G2 is already sufficient to close
the interferometer paths at G3. This is true for all Talbot–Lau
interferometers with unequal grating periods.

Figure 2 suggests that the minimal number of counts
required to verify the quantumness of the fringe pattern
increases with the mass of the particle. This is due to the
dephasing caused by the Coriolis force, which is proportional
to mass if the interferometer length is fixed. This can be seen
from equations (10) and(11) assuming the total transit time is
proportional to the Talbot time =T md hT

2 . If the Coriolis
force is compensated, the particle mass can be increased

without loss of distinguishability as long as the laser power
and the particle’s polarizability and velocity are adjusted
accordingly.

In the discussion above we assumed that for each setup
the optimal laser intensity can be reached. For insulin and
GFP we require more than 20 W of UV light for a laser beam
focused to a 1/e2 waist of w=150 μm. This is challenging
but within reach of intracavity UV power enhancement. For
metal clusters, laser intensities as low as 1 W at 266 nm or 15
W at 532 nm are sufficient, even at a waist of 750 μm. These
power levels are readily available from commercial light
sources.

4. Summary and outlook

Our results suggest that the MPM configuration, as used in
the earlier KDTLI interferometer [77] can be suitable for
quantum interference of biomolecules as complex as the
green fluorescent protein at 27 000 Da (see figure 3) or even
silver clusters beyond 300 000 Da, if the interferometer is
stretched by a factor of ten to L1=L2=1m. The arguments
in favor of metal clusters also hold for silicon nanoparticles,
which may eventually even be prepared by advanced cavity
cooling methods in a mass range of 106–107 Da [78].

Figure 2. Distinguishability of the quantum and the (hypothetical) classical pattern for various interferometer configurations and particle
species, as quantified by the count number N of equation (19) (smaller is better). D,M, and P stand for depletion, material, and phase grating,
respectively, and the letter I denotes spatially-resolving detection; e.g. by fluorescence imaging of surface-adsorbed molecules. The numbers
following the setup names specify the ratio of distances between the gratings, =L G G1 21 and =L G G2 32 , with L1:L2=1:1 if not otherwise
mentioned. These results are obtained assuming a Gaussian velocity spread in the particle beam with a standard deviation equal to 5% of the
average velocity. The latter is optimized for minimal N over the 30–600 m s−1 range.
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The survey also allows us to identify alternative schemes
to overcome foreseeable experimental challenges en route to
those goals. The alternative setups include the asymmetric
depletion-phase configurations (DPM 1:2 and DPI 1:2), where
the nanomask in G1 is substituted by a UV standing light wave
and G3 can either be a mechanical grating or an adsorptive
surface which is subsequently imaged. Photo-depletion grat-
ings are advisable when clogging of the material mask
becomes a limitation. The DDD and DDI configurations are
furthermore advantageous over MPM and MDM for high-mass
interference, for instance with cesium.

A major constraint to high-mass interference is the
dephasing due to the Coriolis force, which can be mitigated in
a figure-eight setup, as demonstrated for atoms [79, 80].

For each interferometer setup, we have found the molecular
velocity and laser power that minimize the number of counts
required to distinguish a quantum fringe pattern from a classical
moire effect. Optimal performance can be achieved when the last
grating is replaced by a single-particle imaging detector based on
fluorescence [76], STED [81], or highly sensitive scattering
imaging for particles beyond about 10 000 Da [82, 83].

These findings will guide future experimental efforts in
high-mass interferometry.
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Appendix A. Polarizabilities and cross sections of
biomolecules and clusters

In the following, we briefly describe how we estimate the
polarizability volumes and absorption cross sections shown in
table 1. These quantities enter the coefficients ( )Bn

i and ( )Cn
i

describing the particle-grating interaction.
For biomolecules, we use their static polarizabilities,

which we estimate by summing the contributions of aromatic
amino acids (including histidine), assuming that each con-
tributes 20Å3, and non-aromatic amino acids, assuming that
each contributes 10Å3. To estimate the absorption cross
section, we first estimate the molar absorption coefficient ε as
in [84]. The cross section is then obtained as

s
e

= ( )
N

log 10
, A1

A

where NA is the Avogadro number.
Polarizabilities for clusters are estimated based on the

experimental values of the real and imaginary part of the
complex refractive index [85, 86]. Using those, we calculate
the relative permittivity ò and then the polarizability volume
and absorption cross section using the formulas for a sub-
wavelength dielectric sphere [53]




a =
-
+

( )r Re
1

2
, A23




s
p
l

=
-
+

( )r8
Im

1

2
. A3

2 3

where λ is the wavelength and r is the radius of the cluster
estimated using the number of atoms and the Wigner–Saitz
radii taken from [87, 88].

Appendix B. Effective opening fraction of material
gratings

To estimate the effective slit width in the presence of particle-
grating interaction, we assume that the particles which get
deflected by more than a fixed angle θc remain undetected. If
the interaction potential is V(x) and b is the grating’s thick-
ness, the deflection angle to first order in the grating transit
time is

q » -
¢( ) ( )V x b

mv
. B1

2

Figure 3. Visibility of green fluorescent protein (GFP) interference
fringes in a material-phase-material grating interferometer, as
predicted by the quantum model. In the notation of equation (13), the
visibility is defined as ∣ ∣S S2 n 0, where n is the smallest value for
which ¹S 0n . The velocity distribution in the beam is assumed to
be Gaussian with mean v and 0.05v standard deviation. ā is a
measure of the strength of particle-grating interaction, defined as
a pa=¯ ( )P hcw8 2 z , where α is the polarizability volume, P is
laser power, wz is the 1/e2 intensity radius of the beam in the
direction of the molecules’ propagation, and h, c are the Planck
constant and the velocity of light. The phase acquired by particles
moving with velocity v through the antinode of the standing laser
wave is then pā v2 . Note, that GFP does not fluoresce in the
unsolvated vacuum state, nor can it be photo-ionized using standard
techniques. We thus assume that UV photo-cleavage ionization of a
small tag can be used [54].
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Equation (B1) is a good approximation as long as the higher
order term is negligible; that is, as long as

 - ¢ ⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )V x v m V x

m v

b

v6
1. B2

2 2

2 2

2

Substituting the CP potential for V(x) yields the cutoff
distance for a particle with static polarizability volume α0

 a
p q

= e⎛
⎝⎜

⎞
⎠⎟ ( )x

C c b

mv

12

8
, B3c

c

0
2

1
5

where [55]

ò n
n n

en em n

en em n

n
mn em n

mn em n

= -
- - +

+ - +

-
- - +

+ - +

e
¥

⎜ ⎟
⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥ ( )

C d
2 1 1

1

1 1

1
B4

1 2 4

2

2

4

2

2

is a constant depending on the static relative permittivities ε
and μ of the grating material. Knowing xc, we can calculate
the effective opening fraction ¢f from the physical value f.

¢ = - ( )f f
x

d

2
. B5c

Using ¢f , we can express the Talbot coefficients of the
material gratings as [53]

p= = ¢ ¢( ) ( ) ( ) ( )B C f nf0 0 sinc . B6n n

Many molecules also possess permanent electric dipole
moments. Their influence can be estimated using the orien-
tation-averaged, non-retarded potential of a dipole D in the
vicinity of a dielectric half-space

e
e pe

= -
-
+

e( ) ( )V x
D

x

1

1 48

1
. B7D

2

0
3

To do this, we take the potential in equation (B1) to be the
sum of the dipole potential(B7) and the CP potential.

Assuming parameters similar to those used in previous
high-mass experiments [36] ( f=0.42, ε=7.5 and μ=1 for
silicon nitride, b=100 nm, and θc=0.5 mrad) and the
prototypical particles listed in table 1, we find that the influ-
ence of the CP interaction is significant at slow velocities
(v≈100 m s−1), often reducing the opening fraction by a
factor of two. We further find that, although the dipole and the
CP potentials can be comparable, including the former
changes ¢f only by few percent points. This is because of the
very steep dependence of both forces, and thus the deflection
angle θ, on the particle-grating distance. The contribution of
the permanent dipole moments to the particle-grating inter-
action is therefore neglected in the present analysis.
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We demonstrate Bragg diffraction of the antibiotic ciprofloxacin and the dye molecule phthalocyanine at
a thick optical grating. The observed patterns show a single dominant diffraction order with the expected
dependence on the incidence angle as well as oscillating population transfer between the undiffracted and
diffracted beams. We achieve an equal-amplitude splitting of 14ℏk (photon momenta) and maximum
momentum transfer of 18ℏk. This paves the way for efficient, large-momentum beam splitters and mirrors
for hot and complex molecules.
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Introduction.—Matter-wave diffraction and interference
have numerous applications across the natural sciences.
Electron and neutron diffraction are key techniques in
condensed-matter physics and materials science [1,2],
while atom interferometers are utilized in tests of funda-
mental physics, as well as for measuring physical constants
and inertial forces [3,4]. Extending matter-wave interfer-
ence experiments to large molecules enabled quantum-
assisted studies of molecular properties [5,6] as well as the
interference of biomolecules [7,8] and particles with
masses beyond 25000 u [9].
One of the major techniques used in matter-wave

interferometry is Bragg diffraction. It employs thick
gratings [10] to coherently scatter the impinging particles
into a single diffraction order. This allows for the realiza-
tion of efficient matter-wave mirrors and beam splitters
[11,12]. Bragg diffraction stands in contrast to Raman-Nath
diffraction at thin gratings [13–15], which produces several
diffraction orders arranged symmetrically around the
incoming particle beam. Bragg diffraction was first dem-
onstrated for neutrons [16] and later for atoms [17],
Bose-Einstein condensates [18], electrons [19], and
diatomic molecules [20].
Here, we report on the first Bragg diffraction of complex

organic molecules. We show that the antibiotic ciproflox-
acin and the dye molecule phthalocyanine [see Fig. 1(a)]
can be reliably diffracted, despite being in a highly excited
rotational state and possessing more than 100 vibrational
degrees of freedom thermalized at 700–1000 K. This is an
important step towards efficient coherent manipulation of
functional, hot, and polar molecules.
Experimental setup.—The experimental setup is shown

in Fig. 1(b): the molecules are evaporated by a focused laser
beam, diffracted at a thick optical grating and collected on a

quartz slide at the end of the vacuum chamber. In detail, a
thin film of molecules is evaporated from the entrance
window of a vacuum chamber by focusing a 420 nm laser
beam down to a waist of 1.3ð1Þ μm. We have used mass
spectrometry to verify that molecular fragmentation can be
neglected in the evaporation process [21]. After 1505 mm
of free flight the molecular beam is transversely collimated
with a piezocontrolled slit Sx, which we set to about 14 μm.
After an additional 35 mm, the molecules are diffracted at a
standing light wave, realized by retroreflecting a laser beam
with wavelength λ ¼ 532 nm, power P ≤ 14.6ð2Þ W, and
waist along the flight direction wz ¼ 7.04ð5Þ mm. The
waist along y at the position of the molecular beam is set to
wy ¼ 55–65 μm as measured with a fiber-based beam
profiler [27]. The angle between the mirror surface and
the molecular beam θgrat is determined with an accuracy of
about 5 μrad. This is achieved by finding the zero-inci-
dence position of the actively stabilized piezo mirror mount
and tilting it by the desired θgrat before each run. Free fall in
the gravitational field leads to a vertical dispersion of the
molecular velocity at the detector surface. To ensure good
velocity separation, a vertical slit Sy with an opening of
25 μm is placed about 20 mm in front of the grating. The
slit is aligned with respect to the grating with an accuracy of
10 μm using the fiber-based profiler. The molecular dif-
fraction pattern is collected on a quartz plate, 570 mm
behind the grating and imaged using fluorescence micros-
copy [21]. The experiment is conducted at a pressure below
10−7 mbar to avoid collisional decoherence.
Ciprofloxacin is a polar biomolecule with a mass ofm ¼

331 u and a negligible absorption cross section of σabs ≪
10−18 cm2 for λ ≥ 400 nm [28]. It interacts with the
light grating via its optical polarizability volume
α0532 ¼ 38.9 Å3, which we calculated for the ground state
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geometry at the PBE0/Def2TZVPP level. Phthalocyanine is
a nonpolar dye molecule with a mass of m ¼ 515 u and a
static polarizability volume α0 ¼ 101 Å3 [29]. In contrast to
ciprofloxacin, it has a non-negligible absorption cross
section of σabs ¼ 9 × 10−18 cm2 at 532 nm [30]. This
allows us to observe the effect of absorption of the grating
photons on the diffraction process.
Theoretical model.—Atomic and molecular Bragg dif-

fraction follows from the induced dipole interaction of a
polarizable point particle with a thick light grating. The
particle moves initially with a velocity v ¼ ðvx; vy; vzÞ,
where vz ≫ vx; vy. Since the forward momentum mvz and
the kinetic energy mv2=2 are much bigger than, respec-
tively, the photon momentum ℏk ¼ 2πℏ=λ and the potential
depth, the motion in the z direction is virtually unchanged
by the grating and can be treated classically. The same can
be assumed about the y motion. Furthermore, the high vz
allows us to neglect the free fall during the particle’s
passage through the grating. All this reduces the problem to
the 1D dynamics along the x axis.
In a frame moving with the velocity vx the particle is

initially at rest while the grating is moving. The
Hamiltonian can then be written as

Ĥ ¼ −
ℏ2

2m
∂2

∂x2 − VðtÞcos2½kðxþ vxtÞ�; ð1Þ

where VðtÞ ¼ 16Pα0=ðcwzwyÞexpð−2v2zt2=w2
zÞ. The time-

dependent Schrödinger equation iℏ∂tψðt; xÞ ¼ Ĥψðt; xÞ
can be solved using the ansatz

ϕðt; xÞ≡ exp

�
−

i
2ℏ

Z
t

−∞
dt0Vðt0Þ

�
ψðt; xþ π=2kÞ ð2Þ

¼
X∞
j¼−∞

cjðtÞeikjx=n; ð3Þ

where n ∈ N is an arbitrary integer which determines the
spacing between the basis states. For plane-wave illumi-
nation an n ¼ 1 ansatz is sufficient; for numerical simu-
lation with finite collimation, however, n ≫ 1 is necessary.
Substituting Eq. (3) into the Schrödinger equation yields
the Raman-Nath equations [31],

ic0j¼
�
j
n

�
2

cjþ
γ

4
e−2τ

2=σ2 ½cj−2ne4iptrτþcjþ2ne−4iptrτ�;

ð4Þ

where a prime denotes a derivative over τ ¼ ωrt,
ωr ¼ ℏk2=2m, and

γ ¼ Vð0Þ
ℏωr

; σ ¼ wzωr

vz
; ptr ¼

mvx
ℏk

: ð5Þ

These correspond to dimensionless grating strength, inter-
action time, and momentum of the incident particle. The
interaction time parameter is close to the ratio of the grating
waist radius wz and the characteristic length scale of near-
field diffraction, the Talbot length LT ¼ λ2mv=4h [32], for
we have σ ¼ πwz=4LT .
The Raman-Nath equations have approximate, closed-

form solutions in the short-interaction and in the weak-
potential limits. The thin-grating (or Raman-Nath) approxi-
mation amounts to dropping the kinetic term in Eq. (1),
which is possible when the motion of the particle inside the
grating can be neglected. This requires σptr ≪ 1 and
σ

ffiffiffi
γ

p ≪ 1. In this regime the diffraction pattern is symmetric
and independent of the incidence angle. The weak-grating
(or Bragg) approximation amounts to the adiabatic elimi-
nation of all but two of the Raman-Nath equations. This is
possible when the depth of the grating potential is small
compared to the recoil energy, such that only transfer to the
Bragg-reflected state is allowed by energy conservation.
For ptr > 1 this is the case when γ ≪ 8ðptr − 1Þ [33].
In this regime, the interaction time necessary to achieve
high-order diffraction grows like a factorial ΓðptrÞ, as the
particle has to tunnel through increasingly many energy-
forbidden states.
When the above approximations cannot be used, the

solution can be obtained either via adiabatic expansion [33]
or numerically. In our experiments with ciprofloxacin
γ ≃ 55, σ ≃ 0.38, and ptr ≃ 5 (at 250 m=s), which lies in

(a)

(b)

FIG. 1. (a) The experiments are performed with the antibiotic
ciprofloxacin (left) and the organic dye phthalocyanine (right).
(b) A thermal beam of molecules is produced by microevapora-
tion and collimated vertically (Sx) and horizontally (Sy). After
1.5 m of free flight the molecules are diffracted at a thick laser
grating created by retroreflecting a 532 nm laser at a highly
reflective mirror. The angle of the mirror with respect to the
molecular beam θgrat can be controlled with μ rad precision. The
molecular diffraction pattern is recorded after further 0.57 m of
free flight by laser-induced fluorescence microscopy.
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this intermediate regime. We resort to numerical solution,
since the convergence of the adiabatic expansion is
slow. We note that in the intermediate regime both Raman-
Nath-like and Bragg-like (also called quasi-Bragg [33])
diffraction can occur, depending on the intensity profile and
the thickness of the grating [34]. We use a smooth Gaussian
profile with sufficient thickness to demonstrate Bragg-like
diffraction. The latter differs from diffraction in the weak-
potential limit in that the intermediate diffraction orders are
populated during the transit through the grating. This can
lead to losses if the interaction time and strength are not
optimally chosen. Finally, we note that classical dynamics
of particles in sinusoidal potentials can give rise to
analogous beam-splitting behavior [35]; however, a quan-
tum model is generalizable and appropriate in the absence
of plausible decoherence channels.
Diffraction of ciprofloxacin.—In Fig. 2(a) we show the

pattern obtained by diffracting ciprofloxacin molecules at
an incidence angle θgrat ¼ −43ð5Þ μrad. The y position in
the image determines the forward velocity of the particles,
which in turn determines the transverse momentum ptr and
the particle-grating interaction time σ.
For velocities above 300 m=s the interaction time is

short compared to the inverse of the characteristic frequen-
cies of the resonant Bragg transitions, and thus no dif-
fraction occurs. As the characteristic frequencies increase
sharply with decreasing ptr [33], a relatively sudden onset
of diffraction is observed at about 300 m=s. In the
300–150 m=s velocity range the molecules become con-
secutively resonant with the 6th–4th Bragg transition. The
expected momentum transfer in a Bragg transition of order
l is 2lℏk ∝ vz. Since the flight time between the grating and
the detector is inversely proportional to the forward
velocity, we expect an approximately constant separation
between the diffracted and the undiffracted beams.
The slight bend in the diffracted beam results from the

fact that the 6th order transition is dominant and thus
contributes also at nonresonant velocities.
As the Bragg condition is relaxed by the limited

interaction time, we observe no diffraction-free regions
in between the resonances. Nevertheless, the appearance of
a single diffracted beam and the asymmetry of the pattern
help distinguish the observed phenomenon from stochastic
photon absorption or Raman-Nath diffraction. We finally
note that at vz ≃ 210 m=s the amplitude of the diffracted
beam matches that of the undiffracted one, demonstrating a
10ℏk equal-amplitude beam splitter.
Numerical simulation using the Raman-Nath equations (4)

[Fig. 2(b)] qualitatively reproduces the observed pattern
[21]. The experimental and the simulated images are
vertically aligned by matching the heights at which the
diffracted peaks reach half of their maximal intensities. This
determines the most probable velocity in the molecular beam
of about 250 m=s.
Diffraction of phthalocyanine.—To explore the univer-

sality of molecular Bragg diffraction and its robustness to
absorption, we switch to the dye molecule phthalocyanine.
We quantify the absorption by setting θgrat to an angle for
which we do not expect diffraction and observing the
broadening of the molecular beam. From the width of the
beam we infer that on average one photon is absorbed
inside the grating [21]. Despite the absorption, we obtain
diffraction images of phthalocyanine, which are qualita-
tively similar to those of ciprofloxacin [see Fig. 3(a)].
The images exhibit oscillating population transfer [see
Fig. 3(b)] reminiscent of the Pendellösung oscillations
predicted by the theory of weak-potential Bragg diffraction
and demonstrated with neutrons [36] and atoms [37].
Similar oscillations can be seen in the power dependence
of the diffraction patterns [21].
To investigate the dependence of Bragg diffraction on the

incidence angle, we record a series of diffraction images in
which we vary θgrat (see Fig. 4). In agreement with the
expectations, we find the molecules diffracted to either side
of the incoming beam, depending on the sign of the
incidence angle. Similarly as for ciprofloxacin, the dif-
fracted molecules form a slanted stripe indicating a single
dominant transition. This transition is broadened by the
12 μrad collimation of the molecular beam [21], which
results in deviations from specular reflection seen in
Figs. 3 and 4. The highest momentum transfer recorded
was 18ℏk with an efficiency of 10% [Fig. 4(c)], and equal-
amplitude splitting was realized for a momentum separa-
tion of 14ℏk [Fig. 4(a)].
Discussion and outlook.—We have demonstrated Bragg

diffraction for the complex organic molecules phthalocya-
nine and ciprofloxacin. As our data is in qualitative
agreement with a simple polarizable-point-particle model,
we expect that this technique can be applied without
modification to any molecule of comparable size and
absorption cross section. That is irrespective of the details

(a) (b)

FIG. 2. False color image of the experimental (a) and simulated
(b) Bragg diffraction pattern of the antibiotic ciprofloxacin. The
laser grating waists are wz ¼ 7.04ð5Þ mm, wy ¼ 55ð5Þ μm, and
the collimation slit is set to 14 μm.
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of its electronic structure, dipole moment, etc. We have
demonstrated a balanced beam splitter with a momentum
separation of 14ℏk, which is to the best of our knowledge
the largest equal-amplitude splitting demonstrated for
molecules using optical gratings. Although with sufficient
laser power similar or even greater splitting could be
achieved with a thin optical grating, this would typically
reduce the particle flux by a factor of 10 as only two of the
many populated output beams have to be selected. The
same problem applies to mechanical gratings, which addi-
tionally are incompatible with polar molecules due to
rotational averaging.
Further development should increase the particle-grating

interaction time in order to decrease losses and sharpen the
Bragg resonances. A promising approach to achieve this is
slowing the molecules using buffer gas cells [39]. This
could ultimately allow for Mach-Zehnder interferometry
with large molecules. The possibility to selectively address
the arms in such a setup would, in turn, enable new
interference schemes utilizing the molecules’ chirality,
conformation, and possibly entanglement between the
molecules’ internal and external degrees of freedom.
Efficient Bragg diffraction could also enable pulsed
Bloch oscillation beam splitters to realize even larger
momentum transfers [40].
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acknowledges funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 841040.

(a) (b)

FIG. 3. Bragg diffraction pattern of the organic dye molecule
phthalocyanine at an incidence angle θgrat ¼ 5ð5Þ μrad. Panel
(a) shows the false color diffraction image. Panel (b) shows the
averages of 20 μm high stripes, smoothed with median and
Savitzky–Golay [38] filters, and annotated with their correspond-
ing velocities in m=s. The velocities are determined by compari-
son with a diffraction pattern produced by a material grating [21].
The laser grating waist for this measurement is wy ¼ 57ð3Þ μm
and the collimation slit width is 11.5 μm.

(a) (d)

(b)

(c)

FIG. 4. Angular dependence of Bragg diffraction of the dye
molecule phthalocyanine. Panels (a)–(c) show diffraction images
for the incidence angles 48 (a), −5 (b) and −69 μrad (c). The
images are 197 by 197 μm and the scale bars are 50 μm long.
Panel (d) shows the integrated intensity profiles for the incidence
angle varying from −69 to 48 μrad in steps of 10 μrad.
The profiles are averages of 16 μm high stripes of the diffraction
images corresponding to a velocity range of 234 to 255 m=s. The
curves are horizontally aligned to center the undiffracted beam
(which is the right peak for negative incidence and the left peak
for positive incidence). For �5 μrad we observe diffraction to
both sides of the initial beam and hence align the traces with
respect to their center of gravity. The laser grating waist for this
measurement is wy ¼ 65ð5Þ μm and the collimation slit width
is 14.8 μm.
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Simonović,1 Benjamin A. Stickler,3, 4 Klaus Hornberger,3 and Markus Arndt1, ∗

1University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
2German Aerospace Center (DLR), Institute of Quantum Technologies, Söflinger Straße 100, 89077 Ulm, Germany

3Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
4QOLS, Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom

(Dated: June 17, 2020)

LASER DESORPTION

We employ a tightly focused laser beam to thermally evap-
orate the molecules. This results in a high thermal load which
may lead to thermal decomposition of ciprofloxacin, espe-
cially the detachment of the carboxyl group (-COOH). As the
experimental setup offers no mass resolution, this might dete-
riorate the contrast of the observed pattern. To test whether
fragmentation occurs in our source, we desorbed ciprofloxacin
in high vacuum and collected the material 8 mm behind the
source. This sample was analyzed using matrix-assisted laser
desorption/ionization mass spectrometry and compared to the
pristine sample from the supplier. The mass spectra show that
the laser evaporation leaves more than 99% of ciprofloxacin
intact. For phthalocyanine this has been tested with the same
result [22].

FLUORESCENCE IMAGING

To visualize the diffraction images of ciprofloxacin, we il-
luminate the pattern with about 100 mW of 266 nm light
generated by a SIRAH WAVETRAIN 2 pumped by a CO-
HERENT VERDI V10. We use a rotating diffuser to achieve
uniform illumination at a grazing angle of incidence. The
fluorescence photons are collected via a 20-fold microscope
objective (ZEISS PLANNEO FLUAR, NA = 0.5) and sepa-
rated from the background via a bandpass filter transmitting
light in the range between 505 and 595 nm. The images
are recorded with a UV enhanced EMCCD camera (ANDOR
IXON DV885 - K(S-VP)), using a multiplication factor of 1
and an integration time of 20 s. Background-correction was
achieved by subtracting images under identical illumination
with and without molecules.

The patterns of phthalocyanine are recorded by illuminat-
ing the pattern with 661 nm light and recording the fluores-
cence in the range between 700 and 725 nm. For more details
see Refs. [23, 24].

DATA PROCESSING — CIPROFLOXACIN

We perform data processing of all diffraction images using
the SCIPY stack. For Fig. 2a) we averaged 6 individual
images of the deposited pattern and denoised the result with

-20 0 20 40-40
Position [µm]

without laser

with laser

Suppl. Fig. 1. a) Collimating a beam of phthalocyanine with the
Sx delimiter set to 4 µm leads to a Gaussian signal with a 1/e2

radius of wx = 4.4(1) µm at the detector. b) Inside a 30 W laser
beam the molecules absorb a mean number of 2 to 3 photons for
v = 140 m/s resulting in a broadened pattern. The spacing of the
peaks (4.9 µm) matches the recoil of a single 532 nm photon and
the resolved substructure suggests that re-emission after absorption
is not the dominant deexcitation mechanism.

a Gaussian filter with a radius of 1 camera pixel. We then
perform background correction (in addition to the background
subtraction done after image acquisition) by masking the
diffraction pattern, averaging the image along the y-direction,
fitting a smoothing spline, and subtracting the noise floor.
The same process is repeated along the x-axis. To find the
horizontal center of the diffraction pattern we fit a Gaussian
to a y-averaged, 16 µm wide horizontal stripe at the top of the
diffraction pattern.
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DATA PROCESSING — PHTHALOCYANINE

We determine the forward velocities in the images by com-
parison with a phthalocyanine diffraction pattern obtained
with a material grating in Ref. [24]. The patterns are aligned
by maximizing the overlap of their intensity distributions,
which are obtained by integrating the images horizontally.
For a material grating the diffraction orders are clearly sepa-
rated, and the position- as well as momentum-space separa-
tion between them is known, which allows us to calculate the
forward velocities.

To align the profiles in Fig. 4d) we fit them with a sum of
three Gaussians, two narrow ones for the peaks and a broad
one to account for the losses. The profiles and images are
then horizontally aligned with respect to the rightmost Gaus-
sian for negative incidence angles and the leftmost Gaussian
for positive incidence angles. By taking into account the
molecules’ forward velocity, we convert the horizontal axis
from pixel to ~k.

NUMERICAL SIMULATION — CIPROFLOXACIN

The diffraction image shown in Fig. 2b) is simulated
line-by-line (horizontally) by solving the Raman-Nath equa-
tions (4) using QUTIP [25, 26]. We truncate the infinite set
of equations to those with |j| < 213 and choose n = 700.
The initial state is Gaussian in position space with a parabolic
phase and a standard deviation of the probability amplitude
equal to 4.6 µm. The latter is chosen so that the width of
the undiffracted beam at the top of the experimental image
matches that in the simulation with the laser turned off. The
parabolic phase, in turn, is that of a paraxially-approximated
spherical wave with the source located 1505 mm (the dis-
tance between the source and the Sx delimiter) away. We
start by transforming the initial state to momentum space
via FFT and evolving it using QUTIP’s sesolve with a
time-dependent, band-diagonal Hamiltonian. We integrate
the Schrödinger equation over a time interval of 6σω−1r , after
which free propagation in momentum space (by multiplica-
tion with the transfer function in Fresnel approximation) is
performed. The result is then transformed back to position
space. The resulting lines of the simulation are stacked verti-
cally and multiplied by the intensity of the corresponding data
line. Then, a Gaussian filter is applied in the vertical direction
to the obtained image to account for the finite height of Sy. To
account for the horizontal extent of the source (and thus finite
transverse coherence), we calculate 50 diffraction patterns
for point sources with different x positions and average the
images by intensity with Gaussian weights corresponding to
an estimated source radius of 12 µm standard deviation.

z = 0

z0

z2

s

x‘

x

δ

δ‘‘

Suppl. Fig. 2. Estimating the effective source size δ and the collima-
tion radius of the molecular beam from the known on-screen stripe
radius δ′′ and collimation slit width s. The Gaussian peaks represent
the (approximately Gaussian) molecular densities in the source and
detector planes.

ABSORPTION INSIDE THE GRATING

To estimate the number of photons phthalocyanine absorbs
inside the laser grating, we limit the transverse velocity spread
in the molecular beam to about the recoil velocity by closing
the Sx delimiter to 4 µm. For molecules traveling at 140 m/s,
this leads to a most probable transverse velocity of 0.4 mm/s,
which corresponds to a kinetic energy of about 5 nK in this
degree of freedom. With the laser grating turned off, the
signal at the detector has a 1/e2 radius of 4.4(1) µm as shown
in Suppl. Fig. 1a). Turning on the grating with a power of
30 W, vertical radius wy = 44(1) µm, and incidence angle
θgrat = 1.25mrad, for which we expect no diffraction, results
in a broadening of the beam as shown in Suppl. Fig. 1b).
The lineshape exhibits a substructure whose spacing matches
the recoil of a 532 nm photon for molecules travelling at
140 m/s, assuming that the width of the individual peaks
remains constant. From the shape we infer that the mean
number of absorbed photons is about 2.5 at this laser intensity,
and thus in the range 0.8–1.0 at the intensities used in the
diffraction experiments.

MOLECULAR BEAM COLLIMATION

To estimate the collimation radius of the molecular beam,
we first estimate the source size using ray optics, as illustrated
in Suppl. Fig. 2. For an infinitely narrow collimation slit
at z = z0 and Gaussian source (at z = 0) with standard
deviation δ, we would expect a Gaussian stripe on screen with
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a)

100 µm

b)

100 µm

c)

100 µm

10 0
Momentum transfer ( k)

0 W

1.0 W

1.9 W

2.9 W

3.8 W

4.7 W

5.7 W

6.6 W

8.5 W

10.4 W

12.3 Wd)

Suppl. Fig. 3. Power dependence of Bragg diffraction of phthalo-
cyanine. Panels (a) and (b) show the diffraction patterns for laser
grating powers of 12.3 (a) and 5.7 W (b). The double peak visible at
0 W (c) is an artifact caused by the collimation slit. Panel (d) shows
intensity profiles integrated over a region corresponding to a velocity
range of 143–175 m/s.

width

δ′ =
z2 − z0
z0

δ. (SI.1)

If the slit has finite width described by a transmission function
t(x), the stripe on screen will be a convolution of the δ′-
wide Gaussian with a projection of the slit, t ((z0/z2)x′). To
obtain a simple analytical estimate of the stripe width, we
approximate a boxcar-shaped t(x) with a Gaussian with a
standard deviation of s/4. The stripe is then also Gaussian
with a standard deviation

δ′′ =

√(
sz2
4z0

)2

+

(
z2 − z0
z0

δ

)2

. (SI.2)

Eq. (SI.2) is easily inverted, allowing us to estimate δ knowing
s and δ′′. With a known source size δ and slit size s we can
estimate the one-sigma collimation radius to be

1

z0

(
δ +

s

2

)
. (SI.3)

Using Eq. (SI.2) we estimate the source sizes to be 12
and 10 µm for the data in Figs. 3 and 4, respectively. This
gives one-sigma collimation radii of 12µrad in both cases (the
two-sigma collimation radii are 20 and 19 µrad, respectively).

EFFECT OF GRATING POWER

To study the influence of the potential depth on the diffrac-
tion efficiency, we record diffraction patterns at grating pow-
ers ranging from 0 up to 12.3 W, as shown in Suppl. Fig. 3.
The profiles in panel (d) show the intensity oscillating be-
tween the diffracted and the undiffracted beams. Additionally,
the distance between the peaks increases as a function of
power, corresponding to a change in θgrat of about 20 µrad.
We attribute this to residual thermal drift in the experimental
setup.
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We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in
a ring trap. It operates without beam splitters, is sensitive to geometric phases induced by external gauge fields,
and allows measuring interatomic scattering lengths. We argue that orbital angular momentum interferometry
offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates
using state-of-the-art technology.

DOI: 10.1103/PhysRevResearch.2.022030

Introduction. Trapped interference experiments [1–8] are
promising platforms for the next generation of force and
acceleration sensors. Guiding matter waves enables atom
interferometers with long interrogation times, while provid-
ing considerable freedom for choosing the geometry [9–12].
Toroidal traps are particularly attractive for fundamental quan-
tum experiments [13–18] and for precision sensing [19–21]
with ultracold gases or fluids. The ring geometry implies
that the orbital angular momentum of the revolving particles
is conserved. As argued in the following, its fundamental
quantization can be exploited to realize trapped interference
schemes requiring no beam splitters.

We note that the free quantum dynamics in a ring ge-
ometry exhibit quantum revivals. An initially well-localized
wave packet quickly disperses along the ring on a timescale
determined by the orbital angular momentum spread. Only
after a much longer quantum revival time, which is inde-
pendent of the initial state, does the localized wave packet
briefly reappear due to the quantization of orbital angular
momentum [22]. Similar revival effects are encountered in
the orientation of revolving molecules [23–25], and they
have been proposed for electromagnetic pulse shaping in
semiconductors [26] as well as for macroscopic quantum
superposition tests with nanorotors [27].

Here, we propose an interference scheme which exploits
the brief emergence of a balanced superposition at half the
revival time. By imprinting a relative phase on the super-
position, one can coherently control at which antipode the
wave packet reappears after the full revival time. The pres-
ence of an additional gauge field induces a rotation of the
revival determined by the accumulated geometric phase. In
contrast to many existing proposals for interference in ring

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

traps [19,28,29], orbital angular momentum interference does
not rely on atomic spin states or collective excitations. It is
thus applicable to all matter-wave experiments with a toroidal
geometry, ranging from electrons in solid state quantum
rings [30] to nanoparticles in optomechanical traps [31]. Here
we discuss the special case of optically trapped atomic clouds
or Bose-Einstein condensates (BECs), and show that this
scheme is sufficiently resilient to be realizable with state-of-
the-art technology.

Interference scheme. In order to explain the interference
scheme we first consider the idealized case of a point particle
of mass m confined to a circle of radius R. Its Hamiltonian
reads H = L2

z /2mR2. Since the eigenvalues of the orbital
angular momentum operator Lz are integer multiples of h̄,
with eigenstates |�〉, the time evolution operator U0(t ) =∑

�∈Z exp(−ih̄t�2/2mR2)|�〉〈�| is unity for all even multiples
of the revival time

Trev = 2πmR2

h̄
. (1)

A straightforward calculation shows that the evolution
for the revival time performs a π rotation, U0(nTrev) =
exp(inπLz/h̄), with n ∈ N0. In a similar fashion, free evo-
lution for Trev/2 acts as a beam splitter, preparing a bal-
anced superposition of the initial state and its π -rotated ver-
sion [24,32],

U0

(
Trev

2

)
= e−iπ/4

√
2

(1 + ieiπLz/h̄), (2)

where 1 is the unity operator.
An initially tightly confined wave packet thus first dis-

perses on a short timescale determined by its initial angular
momentum uncertainty. The state then remains delocalized
over the ring for most of time, showing fractional revivals
such as Eq. (2) at fractions of the revival time. The lifetime of
these fractional and full revivals is determined by the initial
dispersion time, and is thus typically orders of magnitude
smaller than the revival time itself.
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FIG. 1. Schematic illustration of the orbital angular momentum
interference effect. A localized wave packet (a) quickly disperses
(b), before reappearing (c) at Trev/2 for a short period of time in a
balanced superposition of the original and mirrored locations; see (1)
and (2). Applying a relative phase ϕ between the two superposition
components controls final population imbalance at the antipodes
(d) after further time evolution for Trev/2. If a gauge field is turned
on quickly after releasing the wave packet, the interference pattern
(black) is rotated with respect to the field-free case (gray) by an angle
2γ�/h̄, equal to the Aharonov-Bohm phase [see Eq. (3)].

The dynamical beam splitting described by (2) is exploited
by the following interference scheme; see Fig. 1(a): The
particle is initially prepared in a well-localized state |ψ0〉.
After dispersing on a short timescale, the localized state reap-
pears at half of the revival time in a balanced superposition
(|ψ0〉 + i|ψπ 〉)/

√
2, with the π -rotated initial state |ψπ 〉 =

exp(iπLz/h̄)|ψ0〉. Then a relative phase ϕ is induced between
the two wave packets, for instance gravitationally by tilting
the ring, optically via laser illumination, or in the case of an
atomic cloud via magnetic control of the scattering length.
After imprinting the phase, the state evolves freely for an-
other Trev/2, yielding the final state |ψ f 〉 = cos(ϕ/2)|ψπ 〉 +
i sin(ϕ/2)|ψ0〉. The final position of the particle is thus deter-
mined interferometrically.

Gauge fields and external potentials. The interference ef-
fect depends sensitively on the interaction with external gauge
fields. If the field A(r) is minimally coupled to the kinetic
angular momentum Lz, the canonical angular momentum is
Lz − γ RA(α̂). Here γ is the gauge coupling and A(α) =
A(Reρ (α)) · eα (α) is the azimuthal component of the gauge
field evaluated at the angular position α.

The presence of A(r) implies a gauge-invariant flux
� = R

∮
dα A(α) piercing the ring interferometer and thus

modifying the free time evolution of the matter wave. The
unitary time evolution operator becomes

U�(t ) = V† exp

(
i
2γ�

h̄

t

Trev

Lz

h̄

)
U0(t )V, (3)

where V = exp (−iγ�α̂/2π h̄ + iγ R/h̄
∫ α̂

0 dα′A(α′)) can al-
ways be set to unity by choosing an appropriate gauge (sym-
metric gauge in the case of a constant field). Thus, a finite
flux induces a rotation of the recurred wave packet by the
Aharanov-Bohm-type phase 2γ�/h̄.

For example, if the particles are electrically charged, γ =
q, a magnetic flux � through the ring will shift the energy
levels [32,33] causing the wave packet to rotate. In a similar
fashion, the Aharonov-Casher phase [34] can be measured if a
magnetic dipole m = m0ez evolves in presence of the electro-
static field E(Reρ ) = E0eρ produced by a line charge. In this
case one has γ A = m × E/c2, implying γ� = 2πRE0m0/c2.
Likewise, geometric phases can result for a permanent or
induced electric dipole p in a magnetostatic field B, so that
γ A = p × B [35], or for a massive particle in a noninertial
frame rotating with angular frequency ω around the trap
center, so that γ A = mR2ω.

The presence of a weak external potential V (α) =
V0 cos(α − α0), such as that arising from a constant tilt of
the ring, leads to phase dispersion. To leading order in V0, the
energies are shifted by


E (pot)
� ≈ mR2V 2

0

4h̄2

(
�2 − 1

4

)−1

. (4)

Since this is not proportional to �2, a conservative torque
affects the shape of the recurring wave packet. This is in
contrast to gauge fields, which only shift the position of the
revival.

Revivals in 3D torus traps. The evolution of a particle in
a real-world (three-dimensional) torus trap differs from the
idealized situation described so far. The dynamics transverse
to the ring tangent affect the angular dynamics even if the
transverse motion remains in its ground state, since the cen-
trifugal force distorts the level spacing. Shape imperfections
and excitations of the transverse degrees of freedom can
further affect the interference. We will show next that the
proposed orbital angular momentum interference protocol
is nevertheless surprisingly robust and remains feasible for
realistic trap geometries.

To study the dynamics in a real-world torus trap, we
expand the full 3D Hamiltonian of a particle in a torus
trap and consider leading-order corrections in the transverse
size of the wave packet. For this sake, we use a Frenet-
Serret coordinate system (s, u, v) with arc length s and two
transverse coordinates u, v. Thus, the position vector is r =
R(s) + un(s) + vb(s), where R(s) traces the center line of
the torus trap, while n(s) = R′′(s)/κ and b(s) = R′(s) × n(s)
span the transverse plane at each position [36,37]. Here, κ =
|R′′(s)| is the curvature, where prime denotes derivative with
respect to s.

Since the new coordinate system (s, u, v) is curved,
coordinate-space normalization of the wave function includes
the root of the metric determinant (Jacobian) h. Expressing the
latter as h = 1 − κu and assuming that the trapping potential
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is separable in the transverse direction yields the Hamilto-
nian [36,37]

Hs = − h̄2

2m

[
∂s

∂s

h2
+ ∂2

u + ∂2
v + κ2

4h2
+ 5(h′)2

4h4
− h′′

2h3

]

+ Vu(u) + Vv (v), (5)

which acts on the rescaled wave function χ = √
hψ .

If the radially confining potential is harmonic with fre-
quency ω⊥ and assuming that centrifugal distortions and small
deviations from the ideal circular trap can be described by
expanding the Hamiltonian to first order in the small quantities
κσu, κ ′σu/κ , and κ ′′σu/κ

2 (with σu = √
h̄/mω⊥ the width of

the transverse ground state),

Hs ≈ − h̄2

2m

[
(1 + 2κu)

(
∂2

s + κ2

4

)
+ 2κ ′u(1 + 3κu)∂s

+ κ ′′u
2

+ ∂2
u + ∂2

v

]
+ mω2

⊥
2

u2 + Vv (v). (6)

Centrifugal energy corrections. For an ideal torus where
κ = 1/R the stationary Schrödinger equation becomes sepa-
rable. It admits solutions of the form

χ�kn(s, u, v) = 1√
2πR

ei�s/Rξ�k (u)�n(v), (7)

with eigenenergies E�kn = h̄2�2/2mR2 + E (u)
�k + E (v)

n where
k, n ∈ N0. Here, �n(v) are normalized eigenstates of the
harmonic motion out of the ring plane, whose eigenenergies
E (v)

n are independent of � and thus do not affect the revival
structure of the matter wave.

The radially confining harmonic potential in the
Schrödinger equation for ξ�k (u) is centrifugally shifted
by u� = h̄2(�2 − 1/4)/m2ω2

⊥R3,
[
− h̄2

2m
∂2

u + mω2
⊥

2
(u2 + 2uu�)

]
ξ�k (u) = E (u)

�k ξ�k (u). (8)

Thus, the eigenergies

E (u)
�k = h̄ω⊥

(
k + 1

2

)
− h̄4

2m3ω2
⊥R6

(
�2 − 1

4

)2

(9)

are lowered due to the centrifugal barrier.
The � dependence in the eigenenergies (9) can shift and

diminish the revival. Specifically, the �2 term in Eq. (9)
delays the revival without affecting its visibility, while the �4

correction decreases the fidelity of the revival and may further
modify the revival time. The optimal recurrence time can be
determined numerically from this equation.

Shape imperfections. In practice, deviations from the per-
fect circular shape of the torus trap are the most important
source of imperfections for optical traps. In particular, residual
astigmatism in the focusing optics may introduce a finite
ellipticity to the trap, which can be quantified with the help
of (6).

We replace the arc length with the eccentric anomaly β ∈
[−π, π ) used for the standard parametrization of the ellipse.
Thus, ∂s = h−1

ε (β )∂β/R, where R and ε are the semimajor axis
and the eccentricity and hε(β ) =

√
1 − ε2 cos2 β is the Jacobi

determinant of the ellipse. In lowest order of ε, the Hamilto-
nian reads as Hβ = h1/2

ε Hsh−1/2
ε ≈ H(0)

β + ε2H(ε)
β , where H(0)

β

describes the motion on the circle and

H(ε)
β = h̄2

2mR2

[
1 + 6u

R
− 2

(
1 + 5u

R

)
cos(2β )

]
∂2
β

+ h̄2

2mR2

(
1 + 5u

R
+ 9u2

R2

)
sin(2β )∂β

− h̄2

16mR2

[
1 + 3u

R
−

(
1 + 11u

R

)
cos(2β )

]
. (10)

This implies that the eccentricity-induced energy shift reads
in first-order perturbation theory


E (ε)
� = h̄2ε2

4mR2

(
1 + 3u�

R

)(
1

4
− �2

)
. (11)

Here we expressed the position expectation value of the radial
state by the centrifugal shift of the harmonic potential (8),
〈u〉 = −u�. The first-order influence of a finite eccentricity is
thus to decrease the revival time, while further diminishing
the revival due to the � dependence of the radial potential
minimum u�.

Implementation with BECs. We are now in a position to
argue that the orbital angular momentum interference scheme
can be realistically carried out with weakly interacting BECs
in an optical torus trap. For concreteness, we consider a
condensate of 39K in a trap formed by two coaxial Gaussian
beams, one repulsive and one attractive, intersected with an
attractive light sheet, as in Ref. [19]. The wavelengths of the
red- and blue-detuned laser beams are assumed to be 830
and 532 nm, respectively, with powers of 2 and 2.5 mW as
well as waists of 13 and 5.5 μm. The light sheet with the
same wavelength as the red-detuned laser has a power of
10 mW and waists of 5 and 200 μm, so that the trap radius
is R ≈ 5.9 μm and the transverse confining frequency ω⊥ ≈
6.4 kHz. The necessary coherence time of Trev ≈ 135 ms is
experimentally within reach [8].

Figure 2 shows the simulated dynamics of the orbital an-
gular momentum interference protocol for (a) a noninteracting
and (b) a weakly interacting BEC of N = 2 × 104 39K atoms.
We assume in both cases that the Feshbach resonances of
39K [38] are used to make the interactions (a) negligibly small
or (b) equivalent to a scattering length of one Bohr radius.
The tightly confined initial wave packet, loaded from three-
dimensional harmonic trap of frequency ω⊥, quickly disperses
around the torus. It then reappears in a superposition after
approximately 65 ms. The presence of interactions diminishes
the revival signal. However, even at a realistic transverse
confinement and interaction strength, the effect is still clearly
visible in the population imbalance displayed in panel (c). The
latter shows that the interference visibility exhibits almost the
ideal dependence on the imprinted phase. The numerical cal-
culations are based on the Trotter-Suzuki expansion [39–41].

For this setup, the centrifugal energy shift (9) amounts to a
few percent of the rotational energy for the highest-populated
� eigenstates (� 	 25). The corresponding correction to the
revival time is at a permille level, but, given the quick disper-
sion time, exact timing on the scale of a few microseconds
is required to imprint the phase and to observe the revival.
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FIG. 2. Mean-field simulation of the interference scheme shown in Fig. 1(a) realized with a BEC of 39K in an optical trap. (a) Snapshots
of the time evolution for a noninteracting condensate: initial particle density, dispersion, recurrent superposition at half of the revival time,
and final interferometrically controlled revival with ϕ = π/3. The external phase of exp(iϕ cos2 α) is applied on the left part of the ring at
Trev/2. The revival time Trev ≈ 135.8 ms is found by maximizing the overlap between the initial and final states for ϕ = 0. (b) As in (a) but
with interatomic interactions characterized by the scattering length of one Bohr radius for a BEC of N = 2 × 104 atoms. As a result of the
interactions the revival time changes to Trev ≈ 136.2 ms. (c) Interference signal as a function of external phase ϕ in the noninteracting [as in
(a), circles] and interacting [as in (b), diamonds] cases, as compared to the ideal situation (dotted line). The population imbalance is defined as
(NR − NL)/(NR + NL), where NR, NL are the numbers of atoms on the right and left sides of the ring, weighted with cos2 α.

In a similar fashion, the corrections of the revival time due
to interactions must be accounted for, as has been done
numerically in Fig. 2(a).

The relative phase ϕ can be imprinted, e.g., optically, via
tilting of the apparatus, or via induced interatomic interac-
tions. For example, if the trap is briefly tilted at Trev/2 the
gravitational potential yields the phase ϕg ≈ 2mgRtd sin θ/h̄,
where θ is the tilt angle and td is the revival lifetime. The
latter is the dispersion timescale td ≈ 1/ω⊥ of the initial
wave packet of width

√
h̄/ω⊥m. For the above example, this

requires tilting with a precision of hundreds of microradians.
Likewise, if the magnetic field on one side of the ring is

detuned from the zero crossing of the Feshbach resonance, the
matter wave acquires a relative phase ϕa ≈ 4π h̄ a nBEC td/m,
where a is the induced scattering length and nBEC is the
particle density in the initial state. With this one can measure
the scattering length with precision 
a ≈ 0.2a0 (with a0 the
Bohr radius), on par with state-of-the-art time-of-flight [42]
and spectroscopic [43] measurements for 39K.

Conclusions. We introduced orbital angular momentum
interference as an attractive platform for trapped matter-wave
interferometry in toroidal geometries. Since the proposed

scheme relies on the universal property of orbital momentum
quantization, realizations with many different systems can
be readily envisioned, e.g., single atoms or BECs in optical
traps, ions in electric traps, electrons in solid state quantum
rings, as well as molecules and nanoparticles in optical or
electrical traps. For the case of a BEC in an optical trap,
we have shown that the protocol is feasible with present-day
technology.

The interference effect is sensitive to the presence of gauge
fields. In the presence of a magnetic field flux �, for in-
stance, the revival of particles with charge q will be displaced
by the angle 2q�/h̄. Assuming that displacements on the
size of the initial wave packet can be angularly resolved,
fields below 10−7 T level can be detected with the setup
described above.
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