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Abstract

Levitated nanoparticles have been established as a promising platform for testing quantum

physics on macroscopic scales. In this thesis, initial steps towards a new optical levitation

setup were implemented, that will radically improve coherence times of levitated nanopar-

ticles by enabling experiments in extreme ultra-high vacuum to reduce decoherence by gas

collisions, and in a standing wave optical trap to minimize decoherence by photon scat-

tering. As briefly outlined here, the experimental design is motivated by an envisioned

experiment for matter-wave control with nanoparticles and aims to employ recent achieve-

ments in Heiseberg-limited position detection to a standing wave configuration.

To enable the levitation of nanoparticles at sufficiently high vacuum for such experiments,

a major focus here is on the extension of the previously demonstrated particle loading

through hollow core photonic crystal fibers to below 10−9 mbar. This poses two new chal-

lenges: On the one hand, previous alignment methods with a preloaded particle cannot

be applied, on the other hand particle loading in XUHV cannot rely on friction from

the surrounding gas. To address these issues, we have implemented a mobile hollow core

fiber based optical trap and demonstrated particle loading at low vacuum using an optical

trap that captures the particle when it is near the potential minimum. These solutions

already integrated into the ultra-high vacuum chamber of the envisioned experiment and

are expected to enable optical manipulation of nanoparticles in XUHV in the near future.

Zusammenfassung

Levitierte Nanopartikel haben sich als neue Plattform für das Testen der Quantenphysik

auf makroskopischer Größenordnung etabliert. In dieser Masterarbeit werden die ersten

Schritte in Richtung eines neues Levitationsexperiments gesetzt, das die Kohärenzzeit

von levitierten Nanoteilchen erhöht. Dies wird bewerkstelligt durch die Verringerung von

Dekohärenz durch Kollisionen mit Gasmolekülen und der Verwendung einer optischen

Stehwelle zur Minimierung von Dekohärenz durch Streuung von Photonen. Wie kurz

beschrieben wird, ist das Design des Experiments motiviert durch ein geplantes Setup zur

Kontrolle von Materiewellen mit Nanoteilchen. Um dies zu umzusetzen, ist geplant die

kürzlichen Erfolge im Bereich der Heisenberg-limitierten Detektion auf optische Stehwellen

zu erweitern.

Um die Levitation von Nanoteilchen bei für derartige Experimente genügend hohem

Vakuum zu ermöglichen, besteht der Fokus dieser Arbeit auf die Erweiterung des zu-

vor gezeigten Teilchen-Ladens durch Hohlfasern auf Drücke unter 10−9 mbar. Dies kommt

mit zwei neuen Herausforderungen: Auf der einen Seite kann die zuvor verwendete Meth-

ode zur Ausrichtung der Hohlfaser, die ein schon geladenes Teilchen in der Falle benötigt
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hat, nicht verwendet werden und andererseits kann Teilchen-Laden in extremes Ultra-

hochvakuum (XUHV) sich nicht auf Luftwiderstand vom umgebenden Gas verlassen. Um

diese Probleme zu adressieren, implementieren wir eine neue mobile Hohlfaser-Falle und

haben die Übergabe von einem Teilchen in eine optische Falle, die aktiviert wird wenn das

Teilchen sich in ihrem Zentrum befindet, in moderaten Vakuumbedingungen gezeigt. Diese

Lösungen sind direkt in eine Ultrahochvakuum-Kammer eingebaut und es wird erwartet,

dass optische Manipulation von Nanoteilchen in näherer Zukunft bei XUHV-Bedingungen

möglich wird.
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Introduction

The advent of quantum mechanics in the early 20th century has introduced the scientific

community to concepts such as superpositions and intrinsic uncertainties of observables,

deemed strange or impossible in the classical world. These ideas were contained to the

atomic and subatomic scales and when Erwin Schrödinger first devised his now famous

feline-condemning Gedankenexperiment in 1935 [1], he argued that the theoretical exis-

tence of such a macroscopic quantum state displays the absurdity of the prevailing views

on quantum mechanics. Since then, the idea of macroscopic objects in distinctly quantum

mechanical superpositions has moved from the notepads of theoreticians towards the lab-

oratories of the experimental community.

Kick-started by Davisson and Germa in their 1928 demonstration of electron diffraction on

a nickel crystal [2], the field of matter-wave interferometry has since gained much traction

and is tackling topics from metrology to questions in fundamental physics. Since the days

of Germa the range of particle-masses that can be successfully interfered in such experi-

ments has increased drastically. Pioneering experiments with complex molecules Markus

Arndt performed the first matter-wave interference experiments with these objects in

1999 with C60 fullerenes [3]. In 2019 his group managed to observe interference fringes

for molecules with masses of 104 amu in a 2 m long Talbot-Lau interferometer [4]. This

constitutes the current mass-record in the field. Going to even larger masses is of great

interest to the community as it could enable testing of theories on the quantum gravity

interface [5] or further bound modified quantum theories as for instance collapse models [6].

Technological advancements in the control of levitated nanoparticles, together with their

excellent isolation from the environment, make these objects strong contenders as a new

platform for matter-wave experiments with masses above 108 amu. Especially the achieve-

ment of motional ground state cooling in an optical cavity [7] and in optical tweezers [8, 9]

over the last two years, has enabled the preparation of these nanoparticles into quantum

mechanically pure states. Novel and reestablished methods have been employed in propos-

als that aim for creating massive superpositoins of these nanoparticles [10, 11, 12, 13, 14].

However, the longevity of a quantum state and with it the maximum duration such a

matter-wave protocol can take, is directly related to the amount of interaction the object

has with its environment. These interactions are classified in decoherence theory [15].

For optically levitated nanoparticles the three main sources of decoherence are: 1) recoil

heating by the trapping beam. 2) interaction with blackbody photons. 3) scattering

with background gas molecules. The latter immediately localizes any extended quantum
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state and can only be reduced by decreasing the pressure at which the experiment takes

place. This poses a serious challenge as most currently conducted levitation experiments

are limited in pressure by the choice of mechanisms to load particles into the optical trap.

In this thesis we present the first experimental steps targeting interference phenomena

with levitated nanoparticles of mass 109 amu. The main focus of this work will be put on

the development of an updated hollow core photonic crystal fiber loading mechanism [16],

that is designed for direct loading of particles into the ultra high vacuum conditions which

is a requirement for the interference protocol. This thesis is structured into five chapters:

In the first chapter, we sketch the idea behind an interference experiment with optically

controlled nanoparticle matter-waves. The corresponding timescales motivate the experi-

mental setup build in this thesis and the required parameters.

The second chapter provids the necessary theoretical background for the experiment and

will discuss topics such as optical forces on Rayleigh particles, feedback cooling as well as

our advanced detection method.

The third and fourth chapters present the laboratory actualization of the hollow core fiber

loading mechanism into a standing wave optical trap designed minimize decoherence ef-

fects.

We conclude by summarizing the main results.
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1 Towards matter-wave experiments with levitated

nanoparticles

Matter-wave interferometry is a rich branch in the field of quantum optics trying to answer

questions as diverse as: does the Schrödinger equation hold for truly macroscopic systems?

[17] Can we detect signatures of modified quantum theories as for instance collapse mod-

els? [6] Do these massive objects in distinctly quantum mechanical superpositions hint

towards theories at the quantum gravity interface? [5]

This chapter will give an overview over the general idea of what constitutes a matter-wave

experiment. From there we will outline such an experiment for levitated nanoparticles

in a room temperature, tabletop environment. We discuss roadblocks that have to be

overcome in order to make this experiment possible, such as the topic of environmental

decoherence. Finally we give an outlook on what the work done in the context of this

thesis provides for that.

1.1 Matter-wave interferometry

The idea, that similar to massless photons, all particles that are in motion have wavelike

properties was born in Louis de Broglies’ 1924 thesis [18]. He associates a “de Broglie”

wavelength λdb to these objects according to their mass m and velocity v in the following

way (h beeing the Plank constant):

λdb =
h

mv
(1)

The first experimental confirmation of de Broglies theory was brought by Davisson and

Germa in 1928 [2]. In their experiment they fired a beam of slow moving electrons at a

nickel crystal observing similar diffraction patterns as prior predicted by Bragg for X-rays.

The wavelength calculated from the measured Bragg angles matched excellently with the

de Broglie wavelength expected for electrons of the velocities used in the experiment. This

constitutes the first laboratory observation of the wave-like nature of matter.

In the following decades wave effects of ever more massive particles were experimentally

demonstrated. In 1991 the first successful atom interferometers by Pritchard [19] and

shortly after by Kasevich and Chu [20] where reported. In 1999 the group of Anton

Zeilinger performed the first matter-wave experiments with complex molecules [3]. They

managed to interfere C60 fullerenes with a mass of m = 720 amu (1amu = 1.67 · 10−27 kg)

through a nanomechanical diffraction grating. The complexity and mass of the interfered
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bodies has since increased ever higher until the year 2019 where the group of Markus

Arndt set the to-date mass record by interfering complex molecules of m = 104 amu in a

2 m long Talbot-Lau interferometer [4].

In the following we will try to break down the working principle of these type of matter-

wave experiments to their basic components. While each of these previously mentioned

experiments are undeniably more complex and have specialized components to fulfill their

intended purpose Fig.(1) depicts a generic idea of such a translatory (particles in motion)

matter-wave interferometer (MWI).

Figure 1: Schematic translatory matter-wave interferometer: A source emits a coher-
ent beam of particles ψ1(x, t) that evolves and expands over a distance L1 before being
diffracted at an unspecified grating. After a distance L2 behind this grating where the
individual wavelets had time to interfere the interference fringes of the particles are mea-
sured at a detection.

In an initial step a coherent beam of particles is created. The wavefunctions ψ1(x, t) de-

scribing the particles in this beam are Gaussian wave packets. These packets expand in

width on their way to the grating over a distance L1, where they have to extends over

multiple slits in the grating. This produces at least two localized maxima of the wavefunc-

tion with a well defined relative phase propagating forward. Over the distance L2 these

maxima will further expand and overlap creating an interference pattern. In a final step

these patterns are measured at a detection of choice in a way that enables the resolution

of the individual interference fringes.

Experiments following these broad steps in one way or another have produced the mass

record on the observation of wave-like phenomena in matter. By upgrading these exper-

iments further in the direction of improved beam sources, grating refinement and new

imaging technology this limit can be raised even higher [4]. These schemes are however

not infinitely scaleable and are expected to hit a hard limit towards masses in the order of
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m = 109 amu [21]. To achieve interference of masses in this region or even beyond, other

types of interferometers have to be considered.

Optically levitated nanoparticles have been in discussion for use in matter-wave experi-

ments for some time now [10, 11, 12, 13, 14, 22]. The ability to precisely control these

objects through manipulation of optical potentials and their excellent decoupling from the

environment in high vacuum systems further incentives their usage for such applications.

To understand how nanoparticles as comparatively heavy objects can be considered as

contenders for matter-wave interferometry we turn to Fig.(2).

Figure 2: A) Levitated nanoparticles as harmonic oscillators: A dielectric nanoparticle
optically trapped in a focused laser beam can be described as harmonic oscillator that
experiences a restoring force F proportional to a spring constant ktrap and the particles
displacement from the trap center x. B) Quantum harmonic oscillators: If enough mo-
tional energy is removed from such a levitated nanoparticle and it is well enough isolated
from its environment it can be treated as quantum harmonic oscillator with discrete en-
ergy levels separated by the the energy ~ω, where ω is the frequency of the oscillator. For
each of the five depicted energylevels the corresponding wavefunctions ψn are shown. The

distances on the x-axis is given in the oscillators zero point fluctuation xzpf =
√

~
2mω .

The left side of Fig.(2A) schematically depicts a dielectric nanoparticle confined in an op-

tical trap formed by a focused light beam. For small displacements from the trap center,

this system can be approximated as a harmonic oscillator with a spring constant ktrap

proportional to the power of the trapping light and the mass of the oscillator m. If enough

motional energy of this confined particle is removed through a feedback cooling mecha-

nism, it can be treated as a quantum mechanical harmonic oscillator. The blue curve in

Fig.(2B) shows the harmonic potential V (x) created by the trapping laser the particle is

confined in. A quantum harmonic oscillator has discrete energy levels separated by an
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energy of ~ω where ω is the oscillation frequency of the particle in the trap. For the lowest

five of these discrete energy states the corresponding wavefunctions ψn are depicted in

Fig.(2B). Removing all the possible motional energy from this oscillator will prepare this

particle in its groundstate (n = 0). The wavefunction describing a particle in this state

is Gaussian and preparing a particle in this lowest energy state is a prerequisite for al-

most every proposed matter-wave interferometry scheme involving levitated nanoparticles

[10, 14, 22].

The steps to observe matter-wave interference for nanoparticles have certain similarities to

the generic matter-wave interferometer depicted in Fig.(1). After the initial state prepara-

tion the particle is released from its confining potential to make its wavepacket extension

expand during a free evolution. After this free evolution the particle wavefunction inter-

acts with some sort of non-linearity, e.g. an ultraviolet standing wave phase grating [22] or

a x2 measurement in a cavity [5] to create at least two spatially separated intensity max-

ima. After another free evolution the resulting fringes of the wavefunction are detected in

a final step of the interferometer.

The important first step of preparing these nanoparticles into their motional groundstate

has recently been achieved in three separate experiments [7, 8, 9] paving the way towards

the realization of these matter-waves experiments. However currently envisioned proposals

for these protocols rely on several hard to implement processes such as a big expansion

of the wavepacket [11] or strong interactions [14] in addition to them being conceived for

cryogenic temperatures.

In the next section we will briefly outline the idea of a matter-wave protocol that can be

conducted at room temperature in a tabletop environment.
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1.2 Optical micromanipulation for matter-wave interferometry

Over the last 18 months or so, a radically new approach to perform wavepacket control with

levitated nanoparticles in non-linear potentials has been developed by our research group

and fully worked out by Lukas Neumaier [23]. While the details of the envisioned scheme

are outside of the scope of this thesis, we outline the general idea together with some

experimental parameters as they give rise to environmental boundary conditions needing

to be met in order to successfully control the wavepackets of these massive objects.

The protocol is designed for levitated silica nanoparticles in with a mass of m = 109 amu

that are trapped in an λ = 1550 nm optical standing wave. The scheme consists of three

distinct steps separated by two times of free evolution, similar to the generic MWI de-

picted in Fig.(1).

In an initial step the particle is cooled close to its motional groundstate as done in [8].

Having reached this quantum mechanically pure and coherent state of the oscillator the

first free fall time begins where the particles confining optical potential is turned off. Dur-

ing this free fall the wavepacket of the oscillator will increase in width. At the end of

this free evolution the second step of the protocol in the form of the activation of a non-

linear optical potential is instigated. The particle interacts with this potential for a short

period of time compared to the timescales of the wavefunction dynamics (∼ 5µs). This

interaction creates fringes in the particles wavefunction in momentum space, similar to

how a Gaussian wavepacket displays fringes upon reflection on a barrier from its forward

and backward moving components interfering (see Fig.(3)). In the following free fall these

fringes are mapped from momentum space into position space where they are detected

through an instantaneous readout of the particle position through the trapping beam.

Figure 3: A) Wave packet reflected on a barrier: A right moving Gaussian wave packet
approaches an impassable barrier. B) The front part of the wave packet is reflected and
moves to the left while the back part is still moving towards the right. This makes the
wavepacket interfere with itself and gives rise to fringes. In a similar manner the wave
packet in the matter-wave protocol creates fringes from interacting with the non-linear
potential.
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A single protocol takes ∼ 20 ms from the first free fall time to the final detection of the

particle and in order to resolve the fringes of the interference pattern the protocol will be

performed several thousand times in one go. From the performed simulations a spacing

between the fringes of the interference pattern of > 0.1 nm is to be expected. This,

together with the requirement of ground state cooling gives rise for the need of a very

sensitive position detection of the particle.

The success of this proposed experiment heavily relies on the nanoparticle being able to

freely evolve without any coherence destroying interaction during the whole ∼ 20 ms of

the protocol. In order to quantify this in the form of bounds on experimental parameters

the next chapter takes a brief look at theory of decoherence for levitated nanoparticles in

the context of this matter-wave experiment.
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1.3 Challenges and decoherence theory

For a levitated nanoparticle like the one envisioned for the experiment the dominant

source of decoherence is the localization of the wavepacket through the photon recoil of

the trapping beam [24, 25]. This is not an issue for the two periods of free fall as the

particle does not interact with the trapping beam there, but it limits the time the particle

can interact with the non-linear potential. The number of coherent oscillations a particle

in an optical trap can perform takes the following form [26]:

Ncoh =
5

8π3

ε+ 2

ε− 1

λ3

V
(2)

Here ε is the particle polarizability, λ the wavelength of the trapping laser and V the

volume of the particle. From this relation we see that the longer the wavelength, the more

coherent oscillations are possible. By choosing λ = 1550 nm we balance the need for a big

Ncoh with the availability of low intensity noise lasers. For this wavelength, a typical par-

ticle radius of a = 71 nm and a particle polarizability of ε = 2.1 we get Ncoh = 186 for the

number of coherent oscillations. The oscillation frequency of the particle in any optical po-

tential is dependent on the optical power P of the beam creating the potential. This power

P has to be chosen in such a way that the number of oscillations the particle performs

during the interaction time of ∼ 5µs is well below the number of coherent oscillations Ncoh.

In addition to the decoherence due to photon recoil there are other, unavoidable forms of

interactions that limit the eventual lifetime of any quantum state and set the environmen-

tal boundary conditions for the success of the experiment.

In the theory of environmental decoherence first introduced by Joos and Zed in 1985 [15],

interactions with the environment are classified in two limiting cases: the short and long

wavelength limit. These limits refer to the (de Broglie-) wavelength of the particles inter-

acting with the quantum state in question. In the long wavelength limit the extension of

the quantum state is much smaller than the wavelength of the interacting particle. Inter-

actions of this type do not resolve the particle position perfectly, thus do not destroy the

quantum state after a single event and usually describe interactions with thermal black-

body photons. Interactions in the short wavelength limit on the other hand happen with

particles of wavelengths smaller than the extension of the wave-packet. These scattering

events fully resolve the position of the object, lead to a loss coherence and destroy the

quantum state. The scattering of gas molecules falls into this category. Here we will mostly

discuss this latter case as these exchanges immediately disable the further manipulation

of the quantum state.
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This entails, that for most experimental runs no gas molecule is allowed to directly scatter

on our evolving wave packet. The most straight forward way to suppress these interactions

is to reduce the background pressure in the volume the experiment is conducted. To further

quantify this, we take a look at the frequency of collision with background gas molecules,

as this gives the maximal amount of time a particle has for a coherent evolution. From

kinematic gas theory we get the mean free path Λfree of the particle as [27]:

Λfree =
1

4
√

2π

kbT

Pa2
(3)

Here kb is the Boltzmann constant, T the temperature of the gas and P the gas pressure.

The average background gas velocity for a Boltzmann distributed gas reads ṽgas =
√

2kbT
mgas

where mgas is the mass of the background gas molecules. The scattering rate fs is then

given by the ratio of the mean free path and this velocity.

fs =
8πa2P√
kbTm

(4)

Fig.(4) depicts the mean free time between two collisions of the nanoparticle with a gas

molecule in different pressure regime.

Figure 4: Mean free time of a nanoparticle: The blue line indicates the mean free time a
levitated nanoparticle displays for varying gas pressures at an environmental temperature
of T = 300 K and a particle radius of a = 71 nm. The black dashed line displays the
pressure required for a 20 ms collision free time, as required in the experiment described
above. The differently colored regions show different pressure regimes defined as follows.
Atmosphere down to 1 mbar: low vacuum (LV), 1 mbar to 10−3 mbar: medium vacuum
(MV), 10−3−10−7 mbar: high vacuum (HV), below 10−7−10−12 mbar: ultra high vacuum
(UHV) and below 10−12 mbar: extreme ultra high vacuum (XUHV) [27].
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From this figure one can deduce that in order to be able to perform the proposed 20 ms

long protocol we have to achieve levitation at pressures of around p = 10−11 mbar, well

within the ultra high vacuum (UHV) regime. In and of itself reaching these vacuum levels

is possible with the correct choice of vacuum pumps, as for instance a combination of

molecular turbo pumps, ion and non evaporative getter pumps (as in [28]) can, under

optimal conditions, reach pressures down to 10−14 mbar. Getting particles into traps that

reside at these very low pressures is on the other hand very challenging and has not been

achieved yet.
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1.4 Optical trapping in UHV

Since the first optical levitation experiments in vacuum performed by Ashkin in the 1970s

[29, 30] technological advancements pushed the boundaries of achievable pressures for these

types of experiments. Especially the first implementations of motional control of levitated

nanoparticles in the Rayleigh regime [31, 32] have contributed to this. Previous to these

feedback mechanisms the loss of particles for pressures � 1 mbar was observed. Since

then, many groups have conducted levitation experiments achieving UHV conditions at

pressures of 10−7 to high 10−9 mbar [25, 33, 34, 35]. Looking back at Fig.(4) this translates

into free-fall times between 1 and 100µs.

The main obstacle preventing the achievement of lower pressures, and therefore longer

undisturbed free fall times, is the contamination of the vacuum chamber walls, introduced

by the particle loading mechanism. The contaminants on the inner surfaces of the chamber

lead to an increased gas load and are not removable by the vacuum pumps.

The most commonly used method to load particles into optical traps, first implemented

in [36] and since used in numerous experiments [7, 8, 9, 33, 34, 37] is to capture particles

made airborne through an ultrasonic nebulizer. The sonicated particles are directed to-

wards the vacuum chamber where they per chance fall into the optical trap. While easily

implementable and very reliable, this method has several shortcomings in combination

with UHV experiments.

As mentioned above, the base pressure of a vacuum system can be severely impacted by

the cleanliness of the chamber in use. The aqueous particle solution in the nebulizer,

together with the alcohol its diluted in, cover the inside of the vacuum chamber at each

loading attempt. Baking the chamber at temperatures above 70◦C would remove this

material, but is impractical to impossible in practice, as this would entail a baking process

after each particle loading instance. Another issue with the nebulizer loading scheme is

that the successful trapping of particles for this method can only occur at low vacuum

conditions, where the drag force exerted by the background gas on the particle is still high

enough to slow the nanoparticles upon entering the trap. This means whenever there is

need for a new particle the whole vacuum system has to be brought up to pressures close

to atmosphere. If they are even still reachable, the subsequent pump-down can take up to

days in time, to go down to base pressures in the UHV regime.

For these reasons, scientific groups around the world have been developing alternative

schemes for loading particles into optical (and electrical) traps [38, 39, 40]. For more
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details on these methods see [16].

In order to enable levitation in a pressure regime below 10−9 mbar we pursue the imple-

mentation of a loading mechanism using hollow core fibers (HCF). With it the chamber

containing the optical trap is kept clean and at high vacuum conditions. This chamber is

connected to a secondary chamber through a HCF. A light standing wave consisting of two

counterpropagating laser beams through this fiber turns it into an optical conveyor belt

that guides particles from the second (loading-) chamber to the primary chamber and di-

rectly into the optical trap. In his master thesis Jakob Rieser demonstrated the successful

handover of levitated nanoparticles into an optical trap at pressures in the millibar regime

[16]. I participated in these efforts as an intern and with this master thesis, I develop and

introduce the technology to enable loading at 10−9 mbar based on HCF.
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1.5 The experimental scope of this thesis

The experimental work done for this thesis is separated into two (partially interconnected)

parts:

The initial part concerns the first steps towards an experimental implementation of the

discussed protocol for matter-wave interference. This entails setting up an optical stand-

ing wave trap for dielectric nanoparticles in an UHV compatible vacuum chamber. A

detection scheme for particles in this standing wave is implemented that has to meet two

requirements: first, a high enough sensitivity to resolve the sub-nanometer spacing of the

expected matter-wave fringes and second, a high enough collection efficiency of light scat-

tered by particle to enable groundstate cooling. Finally two different feedback cooling

methods, namely parametric feedback cooling and linear electric feedback cooling are set

up, one for pre-cooling the particle motion in order to prevent particle loss at low pressure

and the other one to actually cool the particle motion into its quantum groundstate.

The second part of the experimental work focuses on the improvement and UHV extension

of the HCF loading mechanism. Specifically two big updates have to be made. The current

method to align the HCF to the the optical trap, while accurate, is not UHV compatible.

A new alignment procedure involving co-moving piezostages is devised, which does not

impact the base pressure reachable by the vacuum system. The second update concerns

the conception, testing and addition of an electronic triggering mechanism required for

particle handovers from the hollow core fiber to the optical trap at pressures below the

viscous flow regime.
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2 Optics, optical forces and optomechanics

The goal of this work is to enable optical levitation of nanoparticles at pressures well

within the UHV regime. To achieve this, a hollow core fiber assisted loading scheme is

implemented. In this section a theoretical toolbox necessary for the understanding of the

following chapters is presented.

Starting off with Gaussian optics and the optical forces making levitation of nanoparticles

possible, this section will also outline the general dynamics of these particles. The last two

sections will elaborate on the idea of feedback cooling and the enhanced particle detection

scheme developed for this work.

2.1 Gaussian optics

The optical traps used to confine and control the dielectric nanoparticles in this work

are created by the focusing of continuous wavelength laser beams. Most lasers including

the ones used for this experiment, emit a fundamental transverse Gaussian (TEM00)

mode. The following section will elaborate on the principles and properties of single sided

Gaussian beams at first and subsequently on Gaussian beam standing waves.

Single sided Gaussian beams

The Gaussian beam is a special solution of the paraxial Helmholtz equation and takes the

following form:

E(r) = E0
ω0

ω(z)
exp

[
−r2

ω(z)2

]
exp

[
−ik r2

2R(z)

]
exp [−i (kz + ζ(z))] (5)

With the terms from Eq.(6-9) making up the Gaussian beam parameters, r the radial

coordinate, z the axial, k = 2π/λ the wavevector, λ the wavelength and E0 the beams

constant field vector.

ω(z) = ω0

√
1 +

(
z

zR

)2

Beam radius as distance z from ω0 (6)

R(z) = z

(
1 +

(zR
z

)2
)

Wavefront curvature (7)

ζ(z) = arctan

(
z

zR

)
Gouy phase (8)

zR =
πω2

0

λ
Rayleigh length (9)

(10)
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Here ω0 is the smallest beam radius also called the waist and the Rayleigh length zR

denotes the axial position at which the beam waist ω0 has increased by a factor of
√

2.

The time averaged intensity of the Gaussian beam reads:

I(r) =
2P

πω2(z)
exp

(
−2r2

ω2(z)

)
(11)

Here P =
∫
dx dyI = 1

4cε0πω
2
0E

2
0 is the optical power of the beam [41]. Fig.(5) depicts

the 2D-Intensity distribution of a single sided Gaussian beam propagating along the z-

direction.

Figure 5: Single sided Gaussian intensity profile: The central graph shows the 2D
intensity distribution of a normalized Gaussian beam. The plots on top and to the right
show the intensity along the z- and r- axis. The red lines indicate the beam radius, where
the intensity of the beam drops to 1/e2 of its axial value.

Finally we consider a situation where such a Gaussian beam is focused down through a

lens with a focal length of f in the paraxial approximation. The relation between the

waist before ω0 and after ω1 is the following.

ω1 =
λf

πω0
(12)
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As shown in [42] through the relations derived in [43] this expression and the paraxial

approximation in general do not hold for tightly focused Gaussian beams. For these beams

the paraxial approximation underestimates the beam waist and additionally does not

resolve the difference in focusing for the two radial directions x and y due to polarization

effects. These deviations from the paraxial approximation can be ignored for the content

of this thesis as they only become relevant for focusing of fields through lenses of numerical

apertures close to unity. The numerical aperture of a lens is defined as NA = n sin θ where

n is the index of refraction of the surrounding medium and θ the angle of divergence a

collimated beam displays after being refracted by that lens.

Gaussian standing waves

In the hollow core fiber loading mechanism as well as the optical trap Gaussian stand-

ing waves are a relevant concept. The standing waves in both cases are generated by

superimposing two counter-propagating coherent Gaussian beams.

Consider two Gaussian waves E1(r, z) and E2(r, z) with equal wavelength λ, polarization

vectors p and waists ω0. The beams are propagating colinearly but their wavevectors

point in opposite directions. The combined intensity of these beams is then calculated by:

I =
cε0

2
|E1 + E2|2 (13)

=
cε0

2

(
|E1|2 + |E2|2 + E∗1E2 + E1E

∗
2

)
(14)

(15)

Here the first two terms yield the respective intensities I1 and I2 similar to Eq.(11),

whereas the last two terms are the interference terms which can be combined to the term

in Eq.(16).

E∗1E2 + E1E
∗
2 = E01E02

ω2
0

ω2(z)
exp

(
−2r2

ω2(z)

)
cos

[
2k

(
r2

2R(z)
+ z

)]
(16)

Combining the intensities I1, I2 with these previous expressions and denoting the relative

intensity with χ = P2
P1

one obtains.

I(r, z) =
2P1

πω2(z)
exp

(
−2r2

ω2(z)

)(
1 + χ2 + 2χ cos

(
2k

(
r2

2R(z)
+ z

)))
(17)

For the case of the balanced standing wave meaning χ = 1 this reduces to the following

expression:
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I(r, z) =
8P

ω2(z)
exp

(
−2r2

ω2(z)

)
cos2

(
k

(
r2

2R(z)
+ z

))
(18)

Fig.(6) shows the intensity of a standing wave Gaussian beam for the case where R(z)� r.

Figure 6: Standing wave Gaussian intensity profile: The central graph shows the 2D
intensity distribution of a normalized standing wave Gaussian beam for the case where the
wavefront curvature term is neglected. The upper plot shows the intensity distribution
along the z axis and the right plot displays the intensity distribution along the radial axis.
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2.2 Optical Forces

The basic principle of optical levitation are the forces acted on dielectric particles by a

traveling electromagnetic wave. The following section will explore the origins and the effect

of these forces acting on such a particle in the Rayleigh regime (particle radius a� λ).

A traveling electromagnetic wave of wavelength λ illuminates a dielectric nanoparticle and

induces a point-like dipole oscillating at the frequency of the light field. The force consists

of two parts: first the force acting on the charges of the dipole in a spatially inhomogeneous

electric field and the Lorentz force acting on the moving dipole charges.

Following the derivation in [44] the expression for the force of a wave traveling in the

z-direction on a nanoparticle of complex polarizability α = α0

(
1 + iα0k3

6πε0

)−1
reads:

F = Fscatt + Fgrad (19)

=
α′′

2
I(r)∇φ(r) +

α′

4
∇I(r) (20)

With the wave vector k = 2π/λ, the dielectric constant of the nanoparticle ε, the speed

of light c, the beam intensity I(r), the fields real phase φ(r), the real part of the particle

polarizabilty α′, the imaginary part α′′, α0 = 4πa3ε0
ε−1
ε+2 and the vacuum permitivity ε0.

As can be seen in Eq.(20) the force is made up of two contributions. The first term is the

scattering force Fscatt and describes the absorption, reflection (scattering) or transmission

of photons by the particle. Each absorbed photon impinges momentum of pabs = ~k
(with ~ = h/2π the reduced Plank constant) and each reflected photon a momentum of

pref = 2~k. Thus the scattering force acts in the direction of propagation of the wave.

The scattering force alone would therefore not be able to spatially confine the particle on

its own.

The second part of the force is the so-called gradient force Fgrad and is a conservative force

pointing in the direction of the gradient of the electric field intensity. The gradient force

enables the spacial confinement of the particle at the position zeq where Fscatt +Fgrad = 0.

This condition is met at [41]:

zeq =
α′′

α′
zR(kzR − 1) (21)

Optical potential and stablility criteria

The gradient force is a conservative force and can be written as the gradient of an optical

potential Uopt.
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Fgrad(r) = −∇Uopt(r) (22)

(23)

And thus:

Uopt(r) =
α

cε0
I(r) (24)

The restoring force of a trapped nanosphere can, for small displacements, be linearly

approximated. For the optical potential this approximation takes the form of a Taylor

expansion up to the second order.

U(r) ≈
2∑
i=0

3∑
j=0

∂iU(r)

∂rij

∣∣∣∣
r,z=0

rij +O(r4
j ) (25)

The spring coefficient κi of this linear Hooke’s law approximation is therefore the second

term in this series κi = ∂2U(r)
∂r2i

. From this and the mass of the particle m one can deduce

the oscillation frequency of the particle Ωi =
√

κi
m .

Ω2
i =

1

m

∂2U(r, z)

∂x2
i

(26)

To ensure stable trapping of particles in optical potentials, two stability criteria have to

be met [45, 46]. The first ensures that the restoring gradient force dominates over the

scattering force in the direction of propagation of the beam. This is summarized in the

parameter R and for the criterion to be met, the following relation has to hold.

R =
Fgradez
Fscatez

=
3
√

3

128π5

λ5

a3ω2
0

ε+ 2

ε− 1
� 1 (27)

The second criterion relates to the need of a sufficiently deep enough potential well (see

Eq.(24)) to dominate over the kinetic energy of the Brownian particles of the background

gas. For a particle surrounded by a gas of temperature T this stability criterion has the

form of:

exp

(
−Uopt

kbT

)
� 10 (28)
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In most cases the trap is deemed stable if the potential at the trapping position is deeper

than 10 kbT and is therefore not heated out of the trap by the Brownian noise of the

background gas.

Combining these results with the single sided Gaussian beam and the standing wave

Gaussian beam, we can now deduce the behavior of nanoparticles trapped in either case.

For the following discussion we will always assume a beam of wavelength λ = 1550 nm,

an optical power of P = 100 mW, a particle radius of a = 75 nm and a waist size of

ω0 = 800 nm - these parameters are in the common range of previous experiments in the

field.

Forces from a single sided Gaussian beam

Starting off with the intensity of a single side TEM00 mode, described in Eq.(11), we can

deduce the forces acting on a nanoparticle through Eq.(20). Fig.(7) displays the forces

acting in the radial and axial direction of a nanoparticle.

Figure 7: Forces from a single sided Gaussian beam: The force acting on a nanoparticle
of radius a = 75 nm, through a Gaussian beam of wavelength λ = 1550 nm and power
P = 100 mW focused to a spot with a waist of ω0 = 800 nm. The force in the radial and
axial direction is plotted. As can be seen in the zoomed in area the force in the axial
direction is not null at the origin but shifted towards the +z direction due to the fact that
the scattering force Fscatt acts in the direction of the traveling beam.

The force experienced in the radial direction exceeds the force in the axial direction due to

the tighter confinement. Following from Eq.(21) the zero point of the force along the axial

direction is offset by zeq = 0.017λ due to the scattering force pointing along the direction

of propagation of the wave.

Inserting the optical potential calculated from Eq.(24) we get the following axial and radial

frequencies for the trapped particle.
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Ω2
r =

4Pα0

mπcε0

1

ω4
0

(29)

Ω2
z =

4Pα0

mπcε0

1

ω2
0z

2
R

(30)

Calculating these frequencies for the same values as used above and assuming a silica par-

ticle of density ρ = 2450 kg
m3 and radius a = 75 nm we get the following particle frequencies.

Ωr ≈ 2π · 92 kHz

Ωz ≈ 2π · 57 kHz

It can be seen that due to the difference in particle confinement along the axis a higher

trapping frequency for the radial directions than for the axial one is displayed.

The stability criteria (Eq.(27 & 28)) are checked for the case of the single sided beam.

Calculating the R parameter denoting the axial stability of the beam, for the parameters

given, we get R ≈ 3.9. This shows sufficient dominance of the gradient force over the

scattering force.

The second criterion demanding a deep enough potential well is displayed in Fig.(8). Here

the axial and radial profile of the optical potential in units of kbT (with T = 300 K) is

displayed. The red area is the region where this potential would not meet the 10 kbT

criteria. It is clearly visible that the condition of Eq.(28) is easily met, especially for the

center of the potential.

Forces from a Gaussian standing wave

The force acting on a levitated nanoparticle trapped in the central maximum of a standing

wave gaussian beam is depicted in Fig.(9). Along the axis of propagation the force now has

several points where its value is zero. Additionally, the force along the axis of propagation

is now higher than the radial force due to the increased confinement of the standing wave

maxima. To make the comparison between the single sided and the standing wave case

more apparent, here the (single sided) power is set to Ps = 50 mW as this sums up to a

total power of Pt = 100 mW.

In comparison to the case of the single sided Gaussian beam there is no offset for the zero

points of the axial force because the scattering term for the balanced standing wave is

equal to zero.
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Figure 8: Stability criterion for a single sided Gaussian beam: The optical potential
created by a Gaussian beam of wavelength λ = 1550 nm and power P = 100 mW that is
focused down to ω0 = 800 nm. The red region suggests a potential depth below 10 kbT .
This figure shows that these parameters give a sufficiently deep potential well according
to Eq.(28).

Figure 9: Forces from a Gaussian standing wave: The force acting on a nanoparticle of
radius a = 75 nm, by a balanced Gaussian standing wave with λ = 1550 nm and (total)
power Pt = 100 mW focused to a spot with a waist of ω0 = 800 nm. The force in the radial
and axial direction is plotted.

Taking a look at the particle frequencies we get in a standing wave configuration the

harmonic approximating gives the following expression for the axial and radial frequencies.
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Ω2
r,SW =

16Psα0

cπε0m

1

ω4
0

(31)

Ω2
z,SW =

16Psα0

cπε0m

1

ω2
0

(
1

z2
R

+ k2

)
(32)

Inserting numbers into these equations gives us these frequencies:

Ωr,SW ≈ 2π · 131 kHz

Ωz,SW ≈ 2π · 430 kHz

As expected, the radial frequencies increase by a factor of
√

2 compared to the single

sided case and the axial frequency even more due to the higher curvature of the confining

potential along this direction.

The stability criteria for the Gaussian standing wave are calculated in the same manner

as before. For the axial stability we see that for the case of a balanced standing wave the

R parameter approaches infinity and thus the axial stability is always given.

The second stability criterion of Eq.(27) is checked for the standing wave potential in

Fig.(10). Along with the central trapping position at the waists of the counter-propagating

beams there are other stable trapping positions at the side maxima of the standing wave

intensity separated by a distance of λ/2,

Figure 10: Stability criterion for a Gaussian standing wave: The optical potential
created by a Gaussian beam standing wave of wavelength λ = 1550 nm and (total) power
Pt = 100 mW that is focused down to ω0 = 800 nm. The red region suggests a potential
depth below 10 kbT . This figure shows that these parameters give a sufficiently deep
potential well according to equation 28.
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2.3 Particle dynamics

A particle confined in an optical trap at finite pressures experiences random kicks from

background gas molecules making the description of its dynamics necessarily a stochastic

one. This section gives a basic description of the dynamics of an optically trapped particle.

At ambient pressures the dynamics of the particle are governed by the viscous force due to

random collisions with the background gas. For small oscillations, the levitated nanopar-

ticle behaves like a damped driven harmonic oscillator of frequency Ω0 and its dynamics

are governed by the following Langevin equation:

ẍ(t) + γẋ(t) + Ω2
0x(t) =

1

m
Fth(t) (33)

Here x denotes the particle trajectory, γ the damping rate and Fth is the thermal force

introduced by the background gas. This stochastic force noise satisfies the condition in

Eq.(34):

〈Fth(t)Fth(t− τ)〉 = 2mγkbTδ(τ) (34)

Where τ is some temporal delay and the δ-function with the argument τ signifies that the

stochastic force noise is uncorrelated with itself at any other time.

The gas damping rate γ dependent on the local pressure p, is given by [47]:

γ =
6πηa

m

0.619

Kn + 0.619

(
1 +

0.310Kn

K2
n + 1.152Kn + 0.785

)
(35)

Where η is the viscosity of the gas, m the particle mass and Kn = Λfree/a the Knudsen

number given by the ratio of the mean free path of a background gas molecule and the

particle radius a.

For the case of long mean free paths and thus Kn � 1, given at pressures p < 10 mbar,

Eq.(35) simplifies to [48]:

γ =
64

3

a2p

mṽgas
(36)
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Here ṽgas =
√

8RT
πMgas

is the average background gas velocity, Mgas the molar mass of the

gas and R the universal gas constant.

The most straight forward way to solve Eq.(33) is to switch to frequency space via a

Fourier transform. This gives:

−ω2x̃(ω)− iγωx̃(ω) + Ω2
0x̃(ω) =

1

m
F̃th(ω) (37)

Solving this expression for x̃(ω) results in:

x̃(ω) =
1

m

F̃th(ω)

Ω2
0 − ω2 − iωγ

(38)

From this expression for the trajectory in frequency space we can deduce the power spectral

density of the oscillator through the Wiener-Khinchim theorem. It links the autocorrela-

tion function 〈x(t) − x(t − τ)〉 to the power spectral density Sx,x through the following

expression (for the case where τ = 0):

Sx,x = 〈|x̃(ω)|2〉 (39)

Now plugging in the expressions from Eq.(38) together with the condition of the force

noise term Fth from Eq.(34) we get this final expression for the power spectral density

(PSD) of the damped harmonic oscillator:

Sx,x(ω) =
2kbT

mΩ2
0

Ω2
0γ

(Ω2
0 − ω2)2 + γ2ω2

(40)

26



2.4 Feedback cooling

Laser noise, vibrations of the trap position [49] and internal heating of the trapped

nanoparticles as described in [50, 51] are some mechanisms that heat the center of mass

(CM) motion of a levitated particle. These effects or a mixture thereof, lead to the loss

of trapped nanoparticles at pressures between 1 − 0.01 mbar as reported from different

research groups and experiments [32, 34, 50, 52, 53].

To ensure stable trapping below these pressures, a feedback mechanism has to be employed

that effectively reduces the energy of the particle. This section gives a short introduction

into the dynamics of cooled levitated nanoparticles and the two feedback methods used in

this experiment.

2.4.1 Feedback cooled particle dynamics

The previous section introduced the general description of the dynamics of optically lev-

itated particles. Here we will discuss the updated dynamics for a particle experiencing

feedback cooling.

Introducing an external feedback force Ffb modifies the Langevine equation to:

ẍ(t) + γẋ(t) + Ω2
0x(t) =

1

m
(Fth(t) + Ffb(t)) (41)

Where Ffb is the feedback force parametrized as Ffb = mγfbẋ = mgγẋ introduced by the

feedback signal and g the gain of the feedback. The feedback damping γfb is expressed

as the feedback-gain g multiplied by the gas damping γ. Following the same steps as

in chapter 2.3 we can now deduce the power spectral density of such a feedback cooled

particle.

Sx,x(ω) =
2kbT

mΩ2
0

Ω2
0γ

(Ω2
0 − ω2)2 + γ2ω2(1 + g)2

(42)

This PSD of the cooled particle reduces to Eq.(40) for a gain of g = 0. Fig.(11) shows the

PSD for a particle at resonance frequency of Ω0 = 2π · 300 kHz with a damping rate of

γ = 2π · 15 kHz at temperature T = 300 K for gains of g = 0 and g = 25.

Using the Wiener-Khinchim theorem at τ = 0 it once more gives us an expression for the

mean squared displacement 〈x2(t)〉 of the particle.

〈x2(t)〉 =

∫
dωSx,x(ω) =

kbT

mΩ2
0

1

1 + g
(43)

27



Figure 11: Power spectral density of a levitated particle: The PSD for a particle
at resonance frequency of Ω0 = 2π · 300 kHz, at a damping rate of γ = 2π · 1 kHz, at
temperature T = 300 K for gains of g = 0 and g = 10. As can be seen the increase of the
gain lowers the peak of the PSD and overall decreases the area under it.

The equipartition theorem with a temperature associated to the center of mass motion of

the particle TCM states the following:

kbTCM = mΩ2
0〈x2〉 (44)

Inserting the result from Eq.(43) into this, we get an expression for the center of mass

motion temperature dependent on the feedback gain g.

TCM = T

(
1

1 + g

)
(45)

Considering only this expression the misconception that an ever higher feedback gain leads

to ever lower center of mass motion temperatures might arise. This cannot in fact be done

because until now the aspect of detection imprecision was left out.

The signal recorded by any detection scheme suffers from imprecision and therefore a

detection noise term xn(t) will be added to the real particle trajectory x(t). This means

that the feedback force Ffb does not only feed back on the actual particle motion but

also on the detection noise of the system [8, 54]. Looking at one final adjustment of the

equation of motion we get:
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ẍ(t) + γẋ(t) + Ω2
0x(t) =

1

m
Fth(t) + gγ(ẋ+ ẋn) (46)

Switching to the Fourier plane and calculating the power spectral density we get the

following expression:

Sxn,xn(ω) =
2kbT

mΩ2
0

Ω2
0γ

(Ω2
0 − ω2)2 + γ2ω2(1 + g)2

+
g2γ2ω2Sxn,xn(ω)

(Ω2
0 − ω2)2 + γ2ω2(1 + g)2

(47)

If we now assume that the power spectral density of the detection noise Sxn,xn is constant

in frequency (as is in most cases) we can now re-derive the expression for temperature

associated to the center of mass motion TCM via the equipartition theorem:

TCM = T

(
1

1 + g
+

g2

1 + g

γSxn,xn
2

)
(48)

This expression now shows that for an imperfect (real) detection system, increasing the

feedback gain indefinitely will in fact lead to heating of the particle after a certain optimal

gain gopt. This heating occurs because the mechanism begins to feed back the detection

noise into the system. The optimal gain parameter can be calculated by finding the

extrema of Eq.(48) with respect to g. This gives the following expression:

gopt =

√
γ−1S−1

xn,xn + 1− 1 (49)

Finally, if we want to know how one would see this power spectral density on a spectrum

analyzer, one has to calculate Sx+xn = 〈|x̃+ x̃n|〉. This expression reads:

Sx+xn(ω) =
2kbT

mΩ2
0

Ω2
0γ

(Ω2
0 − ω2)2 + γ2ω2(1 + g)2

+
(Ω2

0 − ω2)2 + γ2ω2

(Ω2
0 − ω2)2 + γ2ω2(1 + g)2

Sxn,xn (50)

Fig.(12A-C) show the power spectral density Sx+xn for a particle of resonance frequency of

Ω0 = 2π · 300 kHz, damping rate of γ = 2π · 1 kHz, temperature T = 300 K, for 3 different

feedback gains. The dashed lines show the PSD Sx,x of Eq.(42).

The gain chosen in Fig(12A) is small and thus the difference from the uncooled spectrum

is a rather small one. In part B the gain chosen is the optimal gain from Eq.(49). There it

can be seen that the actual cooled particle spectrum is almost exactly on the height of the

detection noise. The displayed spectrum Sx+xn is still above the detection noise to the left
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Figure 12: Real PSDs for different feedback gains: The PSDs for the case where the
detection noise xn is accounted for (solid line) and once without it (dashed line). The
parameters for this trapped particle are a resonance frequency of Ω0 = 2π · 300 kHz with
a damping rate of γ = 2π · 15 kHz and at temperature T = 300 K. The grey area shows
Sxn,xn the constant power spectral density of the detection noise. The case for g = 0 is
shown in every graph. In A a low gain is chosen, in B the optimal gain calculated through
Eq.(49) and in C a gain exceeding the optimal gain.

of the resonance frequency of the particle while to the right it already dips slightly below.

In graph C the spectra for a feedback gain above the optimal gain gopt are depicted. Here

we see that the orange line depicting the read out spectrum Sx+xn already dips below the

detection noise. This effect is known as noise squashing [35, 54, 55]. As discussed above,

at feedback gains of this height the particle is not cooled further but rather heated up again.

In our experiment two different feedback mechanisms are employed, namely parametric

feedback cooling as performed in [41, 56] and linear electric feedback cooling as in [8, 9].

Here we note that the previous calculations were done for a linear feedback force Ffb =

mgγẋ as this is the more important type of feedback in our setup intended to prepare

the particle into or close to its motional groundstate. Similar derivations can be done for

parametric feedback as can be seen in [41].

2.4.2 Parametric feedback cooling

Fig.(13) depicts the schematic working principle of the parametric feedback cooling tech-

nique.

Fig.(13A) displays the schematic setup for parametric feedback cooling. A laser beam

passing through an intensity modulator is focused down to create an optical trap where

a particle is confined. The three-dimensional movement of the particle is detected. The

signal for each axis is then frequency doubled by multiplying the trajectory of the particle

x(t) with its derivative ẋ(t) and thereafter phase-shifted. The three separate signals are

then summed up and sent to the modulator which in turn adjusts the laser intensity

accordingly.
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Figure 13: A) Parametric feedback scheme: The motion of a levitated nanoparticle
is detected along three axis. The recorded signals are frequency doubled, phase shifted,
summed up and sent to a light modulator that adjusts the trapping intensity accordingly.
B) One Parametric feedback cycle: A full parametric feedback cycle is depicted. The
modulator changes the steepness of the trap (in red) whenever the particle starts to climb
the well and decreases the steepness when it oscillates back to the trap center. This will
effectively decrease the particles motional energy.

In Fig.(13B) one feedback cycle is depicted. In 1) the particles moves down a shallow

potential (low laser intensity). Once the particle enters the center of the trap in 2) the

intensity is increased. This means the particle has to climb a steeper potential wall and

therefore loses some of its kinetic energy. In 3) the particle reaches the maximal displace-

ment where the potential is switched back to the shallow one. Thus the particle will not

gain back the same kinetic energy it has spent to go up the potential wall. At this point

the cycle repeats only in the opposite direction. Hence the increase and decrease of the

signal happens at twice the oscillation frequency explaining the need for the frequency

doubling. The result of this cycling is a loss of energy for the particle and a net cooling of

its center of mass motion.

2.4.3 Linear feedback cooling

Additionally to the parametric feedback cooling that cools the motion of the nanoparticle

in all three axes we employ linear cooling only along one axis of the particle motion.

Instead of modulating the trapping light to reduce the motional energy of the particle, an

external electric field acting directly at the particle is applied. Most nanoparticles carry a

non-zero net charge and thus an electric field will result in a Coulomb force acting on the

particle. Fig.(14) depicts the linear feedback scheme.

In Fig.(14A) the general linear cooling scheme for one axis is shown. A particle is levitated

in an optical trap created by a focused light beam and the motion of the particle along

the axis of propagation of the trapping beam is detected. From this signal detecting

the particle position, the particle velocity is generated by derivation. This signal is then

applied to an electrode and between it and another grounded electrode an electric field is

31



Figure 14: A) Linear feedback scheme: A general linear feedback scheme is depicted.
A feedback signal proportional to the particle velocity is sent to an electrode along the
detected axis of motion. Between it and a second grounded electrode an electric field is
formed that acts on the net charges of the particle. B) One linear feedback cycle: In light
red the optical trapping potential is depicted and within it the particle (with a net negative
charge). The electrodes apply feedback on the position of the particle dependent on the
velocity of the oscillator. This sinusoidal Coulomb force will lead to a “cold” damping of
the particle motion and a net cooling.

created. This electric field induces a Coulomb force on the net charge of the nanoparticle

proportional to the velocity. This velocity dependent force is also the reason this cooling

method is often called cold damping [35, 57].

In Fig.(14B) one feedback cycle is depicted. The optical potential the particle is confined

to is depicted as a light red parabola. In part 1) a net negative charged particle moves

towards the trap center with a small velocity and thus a small positive voltage is applied

to the left electrode. This results in a small Coulomb force acting on the particle (seen as

a red arrow). The particle increases its velocity as it approaches the trap center in part

2) and with it the voltage is also increased. When the particle moves up the potential

well its velocity as well as the Coulomb force is decreased. Upon reversing the direction

of motion, the voltage on the left electrode switches its sign and the reverse process starts

in part 3) of the figure. The repetition of this cycle will lead to an ever smaller variance

in the particle position, with it a decrease in the motional energy and thus a cooling of

this degree of freedom.

This second cooling mechanism will be employed after a pre-cooling phase performed

through three-dimensional parametric feedback cooling and is used to cool the motion

along the axial direction down to or close to the motional ground state of the particle.
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2.5 Particle detection

The ability to cool an optically levitated particle down to its motional ground state is

directly related to the amount of information about the particle trajectory that can be

collected [58]. From Eq.(48) we also see that the cooling limit is highly dependent on the

amount of detection noise inherent to the system. Decreasing detection noise and thereby

increasing the information about the particle trajectory is thus essential to achieve ground

state cooling. This section will elaborate on the methods and theory of the detection

system we utilize in our experiment.

2.5.1 Dipole scattering

In order to efficiently detect the motion of an optically levitated particle, its scattered light

field containing a position dependent phase is collected. In chapter 2.2 we established that

a trapped particle acts as a induced point-dipole. The electric field of such a dipole at

distance R� λ reads [59]:

Ed(r, θ) =
k2 sin θ

4πε0

eikr

r
αE0 (51)

Where α is the polarizability of the particle and θ is the angle between the polarization

vector of the the incident light field E0 and the direction of propagation of the dipole-field.

In order to detect this scattered light one has to figure out how much of it is scattered

backwards and forwards into the Gaussian beam trapping the particle. This has previously

been done for atoms in [60] and for levitated particles in [48]. In both cases the question

was not how much light is back/forward-scattered but how much light is scattered into a

(cavity-)mode that is orthogonal to the trapping mode. As Eq.(51) is not dependent on

the polar direction of the incoming beam, this problem can be treated in the same way as

is done in the two cavity cases.

The amount of light scattered back into these modes is defined by the overlap integral

between the Gaussian trapping beam and the radiated field. The Gaussian beam (for

z � zR) can be approximated by:

Eg(ρ, z) = E0
ω0

ω(z)
e

−ρ2

ω(z)2 e
−ik

(
z+ ρ2

2z

)
(52)

The overlap integral is calculated at distance f from the focus of the Gaussian beam

(ω0) where the trapping beam has the waist ω1 = ω(f). At this distance we know that

R � λ, so the far field approximation for the dipole allows the following simplification
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eikr/r = eikz+ikρ
2/(2z)/z. Further we are only interested in angles δθ around θ = π/2, which

are given by the numerical aperture (NA) of the trapping lens δθmax = ± arcsin(NA). So

in order to account for the scattering into the angles defined by the NA we integrate

sin(θ) over the relevant angles giving
∫

NA sin(θ)dθ =
∫ δθmax

−δθmax
cos(δθ) dδθ = 2NA. So the

expression for the radiated field (far from the focus) into angles defined by the NA reads:

Ed(ρ, z) =
k2NA

2πε0

eik+ ikρ2

2z

z
αE0 (53)

Now defining the overlap integral through a plane perpendicular to the axis of propagation

z we can write:

1

E2
0

∫ 2π

0

∫ ∞
0

EdEgρ dρ dϕ =
k2NAα

ε0

ω0

ω(z)z

∫ ∞
0

ρe
−ρ2

ω2(z)dρ (54)

=
k2αω0

2ε0

ω(z)

z
(55)

Using the relation from Eq.(56-58) and dividing the result in Eq.(55) by the effective mode

area A = πω0
2 we get the equation for our mode-matching factor β.

ω0 =
2

kNA
(56)

zR =
2

kNA2 (57)

ω(z)
z�zR= ω0

z

zR
= zNA (58)

This gives:

β =
1

A

1

E2
0

∫ 2π

0

∫ ∞
0

EdEgρ dρ dϕ (59)

=
αk2NA3

2πε0
(60)

This factor β connects the amplitude of the field scattered back (or forward) Eb/f to the

amplitude of the trapping beam in the following way:

Eb/f = iβEg (61)
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The imaginary unit i comes from the Gouy phase at great distance that we omitted in

Eq.(52). The β parameter is the reflectance/transmittance of the nanoparticle back into

the Gaussian trapping mode. As can already be seen in Eq.(51), the particle scatters

its field equally in the forward and backwards direction thus β stays the same for both

directions.

2.5.2 Detectable information

While the amount of photons scattered into the forward and backward direction is the

same, from Tebbenjohanns et al. [61] we know that the amount of information scattered

by the particle is not symmetric. From [62] we get that the probability density for a

particle to scatter a photon in direction ~kf = (cosϕ sin θ, sinϕ sin θ, cosϕ) is given by:

P (~kf ) =
3

8π

(
cos2(θ) cos2(ϕ) + sin2(ϕ)

)
(62)

This probablity density is depicted Fig.(15A) (for a particle at ~r = 0 trapped in a beam

moving along the z axis). Here we see that the probability density is symmetric for the

+z and -z direction. On the other hand, the information scattering into direction ~kf is

given through Eq.(63):

P ∗(~kf ) = P (~kf )(A− cos θ)2 (63)

Here A is a geometrical factor dependent on the NA of the lens focusing the trapping beam

and can be calculated from the appendix in [61]. The probability density from Eq.(63) is

displayed in Fig.(15B) and clearly shows a disparity concerning directions. Most of the

information about the particle position is actually scattered backwards not forwards.

Fig.(16) displays the direct comparison of the probability-densities in the x-z and y-z

plane. A zoom- in for the forward scattering is also included.

In order to quantitatively compare the amount of information with the amount of photons

scattered, we calculate the the integral over P and P ∗ for the relevant angles and divide

it by the total photons/information scattered [8]:

η
(∗)
coll =

∫
Ωcoll

P (∗)(~kf )dΩ∫
4π P

(∗)(~kf )dΩ
(64)

Here dΩ = sin θdθdϕ is the solid angle and Ωcoll the angles defined by the NA of the

trapping lens.
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Figure 15: A) Photon scattering pattern: The probability density of a trapped nanopar-
ticle scattering a photon into a given direction. The distribution is symmetric in z and y.
B) Information scattering pattern: The probability density of not photons but informa-
tion scattering in the z direction. There is a clear asymmetry in the directionality of the
information and most of it is scattered backwards not forwards.

Figure 16: 2D photon and information scattering: The 2D patterns of the scattering of
photons and information in the z direction for a dipole induced by a field polarized along
x and traveling in the z direction.
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For the case of NA = 0.6 at wavelength λ = 1550 nm we get a photon collection efficiency

of only ηcoll ≈ 0.14 but an information collection efficiency of η∗coll ≈ 0.37.

In the case of a standing wave trap, both beams can be efficiently collected and separated

by the means of a Michelson-Sagnac interferometer.

2.5.3 Detection of a particle in a standing wave: Michelson-Sagnac interfer-

ometer

As we have seen in the last section most of the information radiated by the particles is

scattered backwards not forward. Therefore it is beneficial to collect as much of this back-

scattered light as possible, as is done in [8, 9, 63].

The fact that our experiment utilizes a standing wave optical trap makes copying the

schemes of these experiments not feasible. In a double sided trap we would always also

detect the forward scattered light that contains much less information about the particle

position. So in order to filter the back-scattered light of the particle from the trapping

light and the forward-scattered light we employ a Michelson-Sagnac interferometer. Such

interferometers have been thought of previously by different groups on optomechanical

systems such as membranes [64, 65] or levitated nanoparticles [66, 67].

Fig.(17) displays the general setup of a Michelson-Sagnac interferometer. Light enters into

a 50/50 beamsplitter from mode a (further called the bright-port) of the interferometer and

is split into mode c and d. At position R along the interferometer a particle is trapped

in the standing wave intensity maximum between two high NA lenses (not included in

Fig.(17)). The total length of the interferometer is denoted by L.

The reason for calling this a Michelson-Sagnac interferometer is apparent if one imagines

a semitransparent mirror instead of a particle there. The Sagnac mode describes the light

that is transmitted through the mirror and interferes back at the beamsplitter to exit from

the port it entered. As we will see below, the Michelson mode is describing the part of

the beam that is reflected at the mirror and interferes at the beamsplitter to exit through

the other port (port B in Fig.(17), further called the dark-port).

The 50/50 beamsplitter transformation we are going to use for the calculation, are defined

as follows:
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Figure 17: Michelson-Sagnac interferometer: This MS-interferometer of total length
L is created by a beam entering through mode a. At position R along the beampath a
levitated nanoparticle is trapped between two lenses (not included in this schematic). The
letter a − d and A − D denote the modes entering and leaving the beamsplitter on the
in-/outside of the interferometer.

c =
a+ b√

2
(65)

d =
a− b√

2
(66)

A =
D + C√

2
(67)

B =
D − C√

2
(68)

To deduce what mode A and B look like we will propagate mode c and d through the

interferometer. Upon entering, these modes can be described by:

c(z) = c0e
ikzeiφ(z) (69)

d(L− z) = c0e
ik(L−z)eiφ(L−z) (70)

(71)

Here φ(z) = ζ(z − L/2) = arctan
(
z−L/2
zR

)
is the Gouy phase in a shifted coordinate

system.
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When propagating through the interferometer, these modes interact with the particle

which will scatter light as described in the previous section. The mode C and D consist

of three modes each, namely the mode that has not interacted with the particle, the light

that is forward scattered by the particle ct/dt and the light that is reflected of the particle

cr/dr from the counterpropagating mode. We will denote the mode matching factor for

the light transmitted as βt and the one for the reflected part as βr.

The mode C at the position L at the beamsplitter can be described in the following way:

C(L) = c(L)(1− l) + ct(L) + cr(L) (72)

= c0e
i(kL+φ(L))(1− l) + iβtc0e

i(kL+φ(L)) + iβrd0e
2i(k(L−R)+φ(L−R)) (73)

Here l denotes the amount of the trapping beam that is scattered and not in the original

mode c anymore. We can see that the transmitted part of the beam travels the length L,

while the reflected part for this mode travels the length 2(L−R). This length is longer or

shorter than the path L, depending on the particle postion R. The i in the reflected and

transmitted part is the i stemming from the Gouy phase in Eq.(61). The same thoughts

can be applied to the D mode:

D(L) = d0e
i(kL+φ(L))(1− l) + iβtd0e

i(kL−φ(L)) + iβrc0e
2i(kR+φ(R)) (74)

Now if we combine Eq.(73 & 74) via Eq.(68) we get an expression for the dark-port output

of the interferometer.

B =
1√
2

(
ei(kL+φ(L)) ((d0 − c0)(1− l) + iβt(d0 − c0)) + (75)

iβr

(
c0e

2i(kR+φ(R)) − d0e
2i(k(L−R)+φ(L−R))

))
(76)

From here we can plug in Eq.(65 & 66) for d0 and c0 and additionally substitute R =

L/2 + r, where r is a small offset from the interferometer center position. This together

with the fact that the Gouy-phase ζ(z) is antisymmetric gives the following result for the

dark-port:

B =
1

2
ei(kL+φ(L)) ((l − 1)b0 − iβtb0) + βr (2ib0cos(2(kr + ζ(r))) + 2a0 sin(2(kr + ζ(r))))

(77)

The same calculation for the bright-port gives the following result:
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A =
1

2
ei(kL+φ(L)) ((1− l)a0 + iβta0) + βr (2ib0sin(2(kr + ζ(r))) + 2a0 cos(2(kr + ζ(r))))

(78)

For no input at the dark-port (b0 = 0) and the usage of limz→∞ = π/2 giving φ(L) ≈ π/2
these modes reduce to:

A =
1

2
a0e

ikL(i(1− l)− βt) + a0βr cos(2(kr + ζ(r))) (79)

B = −a0βre
ikL sin(2(kr + ζ(r))) (80)

What can be seen from this result is that in the case of no particle being present βr/t = 0,

the whole power leaves through the bright-port. Additionally, because of the separation of

forward and backward scattered light through βr and βt it is now apparent that the only

output at the dark-port stems from light scattered backwards by the particle. It has to

be noted that the dark-port puts out no photons for the particle at the exact trap center,

but a displacement of the particle yields a linear response through the backward scattered

light.

2.5.4 Mode-matching of the dipole-field to a single mode fiber

As we have shown that there is a way to filter the back-scattered dipole radiation of the

particle from the trapping light and create a particle position sensitive dark-port output

we can now add one final signal to noise ratio increasing aspect to the detection scheme.

The scattered dipole mode of the particle can be imaged to the mode of a single mode

fiber. This yields two advantages: First, the mode matching with a local oscillator for

subsequent homodyne detection is easily done in fibers and second, confocal filtering fur-

ther suppresses stray photons without particle information from reaching the detection.

This fiber based confocal dipole detection is theoretically described in [68] and applied in

[8]. The following derivation will be a shortened version of the derivation for the confocal

detection which can be seen in its entirety in [69].

The imaging system in question is depicted in Fig.(18). On the right side of the image in

section 1, a particle radiates a dipole field E1 along the z direction. On the intersection

to section 2 a lens of focal length f1 collimates this field into the electric field E2, which

is further focused at the border of section 3 through a lens of focal length f3. The field

E3 is then imaged onto the core of the fiber in the beam’s focus.
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Figure 18: Confocal imaging system: The imaging system to map the dipole radiation
of a levitated particle in section 1, onto a single mode fiber core in section 3. The system
is defined by the magnification M = f3/f1 of the two lenses.

To figure out the optimal magnification M = f3/f1 we look at the photon collection

efficiency of this system ηc which is the normalized mode overlap between the dipole field

E3 and the principal mode of the single mode fiber Efib:

ηc(M) =
|
∫
E∗3(r3, δr)Ex

fib(r3) dA3|2∫
|Ex

3 (r3, δr = 0)|2 dA3 ·
∫
|Ex

fib(r3)|2 dA3
(81)

In order to maximize this overlap for different magnification, we first have to get an ex-

pression for the dipole field in section E3. This derivation is only going to be schematic

in nature. For the full derivation the references above are recommended.

The electric field at position r of such an induced dipole is given by [43]:

E1(r, δr) =
ω2

cε0
G∞(r, δr) · µ (82)

Here δr is the dipole position, ω = 2πc/λ the angular frequency of light, G∞ the dyadic

Green’s function in the far-field and µ the particle’s dipole moment µ = αE. This specific

Green’s function is given by:

G∞(r, δr) =
eikR

4πR

(
1− RR

R2

)
(83)

Where R is the absolute value of R = r− δr and RR denotes the outer product of these

two vectors. switching to spherical coordinates this dyadic Green’s function reads:
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G∞(r, δr = 0) =
eikr

4πr
×


1− cos2 ϕ sin2 θ − sinϕ cos θ sin2 θ − cosϕ sin θ cos θ

− sinϕ cosϕ sin2 θ 1− sin2 ϕ sin2 θ − sinϕ sin θ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ cos θ sin2 θ


(84)

Plugging Eq.(84) into Eq.(82) gives the following expression (for a dipole oriented along

ex):

E1(r) =
ω2µx
4πcε0

exp(ikr)

r


1− cos2 ϕ sin2 θ

− sinϕ cos θ sin2 θ

− cosϕ sin θ cos θ

 (85)

Here µx is the x-component of the dipole moment µ.

From there, unit mapping theory is used to first transform this field E1 after the refraction

at the first lens from spherical coordinates to cylindrical coordinates. The collimated beam

E2 described in cylindrical coordinates is refracted again (once more calculated through

unit mapping theory) and the field is switched back to spherical coordinates. Finally

utilizing angular spectrum representation the field is once more switched to cylindrical

coordinates as the integration in Eq.(81) is calculated over the surface of a cylindrical

fiber.

The dipole field E3 is then given by:

E3(r,M) = Cµx


Ĩd0 + Ĩd2 cos(2ϕ3)

Ĩd2 sin(2ϕ3)

−2iĨd1,2 cos(ϕ3)

 (86)

Where C = ik3√n1n3 exp(if1(k1 − k3M))/(8πMε0) with ni being the refractive indices

of the media in section 1-3 and ki = ni2π/λ are the associated wavenumbers in the media

(note: for us ni = 1). The terms Ĩ are integrals over Bessel functions and are defined as

follows:
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Ĩd0 =

∫ θmax
1

0
dθ1f(θ1)(1 + cos(θ1)g(θ1))J0

(
k3ρ3

M
sin θ1

)
(87)

Ĩd2 =

∫ θmax
1

0
dθ1f(θ1)(1− cos(θ1)g(θ1))J2

(
k3ρ3

M
sin θ1

)
(88)

Ĩd1,2 =

∫ θmax
1

0
dθ1f(θ1) cos(θ1) sin θ1M

−2 J1

(
k3ρ3

M
sin θ1

)
(89)

(90)

And here in turn f(θ1) = eik3z3g(θ1)
√

cos(θ1)/g(θ1) sin θ1 and g(θ1) =
√

1− (sin θ1/M)2.

Ji denotes the i-th order ordinary Bessel functions and θmax
1 is the angle defined by the

NA of the lens next to the dipole NA = n1 sin(θmax
1 ).

Now that we have the dipole mode defined we are only missing the fiber mode to evaluate

Eq.(81). The fundamental fiber mode for a single mode fiber with core radius a is given

by [70]:

Ex
fib(r, r) =

N J0

(uρ
a

)
eiβz~nx r ≤ a

N J0(u)
K0(w)K0

(wρ
a

)
eiβz~nx r ≥ a

(91)

Where N is a normalization constant, u =
√
n2

cok
2 − β2 and w = a

√
β2 − n2

clk
2 are the

transverse wave numbers with β the propagation constant, nco and ncl the refractive in-

dices of the fiber core and the fiber cladding and Kl the l-th order modified Bessel function

of the second kind. In order to find the transverse wave number one can use the fiber pa-

rameter V 2 = u2 + w2 = 2π/λaNAfib with NAfib the numerical aperture of the fiber.

Fig.(19A) shows the radial profile of the dipole field E3 of wavelength λ = 1550 nm for a

trapping lens of NA = 0.6, a fiber mode with NAfib = 0.14 and core radius a = 4.1µm.

The magnification was set to M = 6 for this plot.

Now evaluate the integrals in Eq.(81) numerically for different magnifications M and get

the graph from Fig.(19B). For this plot the same parameters as above were used and for

different magnification the integral of the overlap (seen in graph A) is calculated. This

means that the maximum collection efficiency for this imaging system is obtained for a

magnification of M ≈ 4 and yields a photon collection efficiency of η = 0.68.
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Figure 19: A) Modematching to a single-mode fiber: The amplitude of an imaged
dipole E3 at the position of the collection fiber together with the amplitude of the fiber-
mode itself and their overlap (all at ϕ = 0) is depicted. The fiber core is shown through
the grey region. B) Optimal magnification: The photon collection efficiency for different
magnifications at λ = 1550 nm for a trapping lens with NA = 0.6 into a single mode fiber
of core radius a = 4.1µm with NAfib = 0.14 is displayed. The maximum efficiency is found
for a magnification of 4.
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3 Optical trap in a Michelson-Sagnac interferometer

In this chapter of the thesis we will describe the first steps towards building a setup capable

of producing interference patterns for levitated nanoparticles. The first section will give

a general overview of the experimental layout and requirements, while the second section

goes into more detail of the actual laboratory implementation, the individual components

and a thorough description of a procedure on how to align the Sagnac interferometer the

optical trap is located in.

3.1 Schematic setup

As discussed in section 1.2 the optical trap the levitated nanoparticles are confined in,

consists of a standing wave beam. Fig.(20) depicts the schematics of the envisioned setup.

Figure 20: Schematic standing wave optical trap: The standing wave for the optical
trap is created by splitting an incoming beam at a 50 : 50 BS. The two counter propagat-
ing beams are overlapped and guided into an UHV compatible vacuum chamber. In this
chamber two high NA lenses focus the beams to create the optical trap. Two ring elec-
trodes (in yellow) along the beampath are used to prepare the particle into the motional
groundstate. The necessary detection efficiency is provided by a detection located at the
dark-port of the beamsplitter (see section 2.5).

The optical trap in this experiment consists of two counter propagating λ = 1550 nm

beams focused down by two high numerical aperture (NA) lenses situated in an UHV

compatible vacuum chamber. The two beams are created by a 50 : 50 beam splitter.

This serves two purposes: first, overlapping the two beams forms the required standing
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wave optical trap and second, the detection of the particle motion along the direction of

the beam can be greatly enhanced through a Michelson-Sagnac dark-port detection as

described in section 2.5.

A set of two ring electrodes (in yellow) located between the trapping-lenses is used to cool

the axial motion of the particle down to its quantum ground state.

Additionally to the H-polarized beam that makes up the optical trap a second co-linear but

orthogonally polarized beam can be added on top of first. This serves two purposes. On

the one hand this second beam is used for parametric feedback cooling which is necessary

to prevent particle losses below the viscous flow regime. On the other hand a fast switching

from one polarization to the other will eventually allow to create a second, spatially shifted

standing wave providing access to nonlinear components of the standing wave trap (see

section 1.2).
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3.2 Experimental setup

This section of the thesis will detail the steps taken to implement the setup envisioned

for the experimental setup as described in section 1.2. For the sake of clarity we split the

setup into three different parts: the beam-preparation where the necessary manipulation

of the laser is performed to accommodate for the needed purposes, the optical trap where

the actual trap within the vacuum chamber is described and the detection where the two

different ways of detection are displayed.

Beam-preparation

Before the optical trap in the Sagnac interferometer can be formed, the laser light has

to be manipulated in order to be able to perform all the needed tasks. In Fig.(21) this

preparation steps are depicted.

Figure 21: Beam preparation: A beam emitted by a 1550 nm laser source is split in
a 80 : 20 ratio at a polarizing beam splitter (PBS1). The beams in the transmitted
part (trapping arm) and the reflected arm (cooling arm) are impinged onto acousto-optic
modulators (AOM1/2). The zeroth order diffraction is blocked on either side and the
first orders are subsequently coupled into mode clearing fibers (MCF). A combination of
Faraday rotators (FR) and half wave plates (HWP) is used to collect light that returns
from the optical trap and is used for a split detection (PBS3) and feedback monitoring
(PBS4). Finally the light in the trapping arm and the light from the cooling arm are
recombined at PBS5 and directed towards the Sagnac interferometer.

A λ = 1550 nm laser source (NKT “Koheras Adjustic”) amplified by a fiber amplifier

(NKT “Koheras BOOSTIK HP”) serves as the light source in our experiment. This fiber

amplifier emits a linearly polarized beam of waist ω01 = 1 mm, that is split at the first

polarizing beam splitter PBS1. The half wave plate before it (red rectangle in Fig.(21))

is used to set a splitting ratio of approximately 80% in transmitted horizontally polarized

light and 20% in reflected vertically polarized light. The beam in the transmitted arm will

later create the optical trap while the beam in the reflected arm is used for parametric

feedback cooling. Thus the arms are henceforth called the trapping- and cooling-arm.

Starting in the trapping arm the beam passes through the first acousto-optic modulator

(AOM1) which is driven at a center frequency of ωAO1 = 2π · 100 MHz. This AOM is
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utilized to switch between low and high trapping powers very quickly, which is needed for

the triggering method discussed in chapter 4.3. The zeroth diffraction order of the AOM

is blocked while the first order is further coupled to a single mode fiber. This single mode

fiber (MCF for “mode cleaning fiber” in Fig.(21)) is used to restore a Gaussian beam

shape as AOMs introduce ellipticities into a beam. The lens following the MCF is chosen

in such a way, that the outgoing beam already has the right waist of ω02 = 1.7 mm to

create the optical trap in the chamber. Thereafter a HWP and PBS2 are placed in such a

way that they divert a small part of the beam for usage as a local oscillator signal in the

homodyne detection of the particles motion. The next optical elements, namely PBS3, a

Faraday rotator and one HWP are utilized to collect light that returns from the optical

trap. Finally the H-polarized light transmits PBS5 towards the vacuum chamber.

Returning to the trapping arm where the V-polarized light is diffracted by AOM2 with

a center frequency of ωAO2 = 2π · 100 MHz. This AOM will further be used to modulate

a more shallow optical trap on top of the main trap in order to cool the center of mass

motion of the particle. The mode cleaning fiber, PBS4 the rotator and the HWP serve the

exact same purpose as in the trapping arm with the one difference that the polarization

coming back from the Sagnac interferometer is V .

At the position of PBS5 the two beams are recombined. By first coupling the trapping-

arm into the mode cleaning fiber and then aligning the cooling-arm to the same fiber we

assure that the two modes are well matched.

These two co-linear beams of equal size but orthogonal linear polarizations are thereafter

sent towards the Michelson-Sagnac interferometer and the vacuum chamber.

Finally we take a look on the optics used to separate the forward and backward traveling

beams through PBS2(3) the Faraday rotators and the HWPs (Fig.(22)): in the forward

direction only H-polarized light transmits PBS3. This light is then turned by +45◦ in the

Faraday rotator to the “+”-state. From there the HWP can turn this polarization to any

other linearly polarized state. Assuming the state after the HWP is set to H once again

it will be transmitted by PBS5. When this horizontally polarized light returns from the

Sagnac interferometer, it will transmit PBS5 and be rotated to the |−〉 state by the HWP.

The Faraday rotator will once again turn it by +45◦ which makes the beam end up in the

V state before it returns to PBS3. There it is reflected to be used in a detection scheme.

Optical trap

Fig.(23) depicts the schematics of our optical trap within the Sagnac interferometer.

The two co-linear beams that were created in the beam preparation section are guided to

the interferometer-constructing beamsplitter using two mirrors. The beamsplitter is set to

a 50 : 50 splitting ratio (for H-polarized light). Each beam is guided through the vacuum
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Figure 22: Beam separation by polarization: The polarization of the H-polarized light
in the trapping-arm on its way to the setup in red and on its way back in blue. The
V-polarized light is reflected at PBS3 to be used in the 3D split-detection.

Figure 23: A) Schematics of the trap: The standing wave optical trap is created by
splitting the incoming beam at a 50 : 50 beamsplitter. The counterpropagating beams
are guided into the UHV compatible vacuum chamber where they are focused by two
identical NA = 0.6 lenses. The dashed line indicates the dark-port of the interferometer
for the advanced detection. A set of ring electrodes (here in yellow) are used for linear
feedback cooling. These electrodes together with the lenses are mounted in a custom
made lensholder. B) Lensholder: 3D model of the aluminum lensholder designed for the
experiment. The lenses (in blue) are clamped into the holder through two screws on the
top. C) Zoom in: Closer look onto the lensholder with a beam passing through it. The
copper electrodes are also depicted.

chamber by use of another mirror. Inside the chamber two NA = 0.6 trapping lenses

are mounted on a custom lensholder (see Fig.(23B & C)) separated by twice their focal

lengths. Between those lenses the highly focused standing wave trap, where the particles

are eventually confined, is formed. The incoming beam of waist ω01 = 1.7 mm is focused

down to a trap waist of ω0t = 1.15µm. These two NA = 0.6 trapping lenses are used for

this first version of the experiment and will eventually be replaced by higher NA lenses.

Also situated on the holder are two copper electrodes which are electrically isolated from

the rest of the aluminum piece and are further utilized for the linear electric cooling.

Finally, situated at the dark-port, is the fiber for the confocal detection as described in

chapter 2.5.3 and 2.5.4
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The light exiting through the bright port is sent back to the beam preparation part where

it is used for feedback monitoring and more importantly a 3D detection of the particle

motion via split detection.

Detection

Finally, we will take a look at the two detection methods implemented in this setup,

namely the split detection for the sensing of the particle motion along all three axis and

the greatly enhanced back scattering detection in a homodyne scheme along the z-axis.

Fig.(24) depicts the two detection schemes.

Figure 24: A) Split detection: The light reflected of PBS3 is split at another PBS to be
used in the x,y and z split detection of the particle motion. The difference signals from all 3
detections are connected to (multiple) RedPitaya FPGAs (field programmable gate arrays)
which are used to create a parametric feedback singal that is sent to AOM2 to modulate the
cooling beam. An additional signal is sent towards an electrical trigger for fast switching
of the trapping beam (see chapter 4.3). B) Homodyne detection: The in-fiber signals
from both the local oscillator and the dark-port backscattering detection are mixed at a
50:50 fiber-beamsplitter. The output fibers are connected to a balanced photodetector.
This difference voltage is used to create a linear feedback signal at a RedPitaya FPGA to
perform feedback cooling via the electrodes located on the lensholder.

The H-polarized beam returning from the Sagnac bright-port is reflected by PBS3 (see

Fig.(21)) to be used in the split detection. After PBS3 the beam is further split by a

HWP and another PBS. The reflected part is coupled into a fiber which is connected to

one port of a balance-photo diode. The other port of this diode is connected to a reference

signal from the same laser that does not contain any light from the particle. The light

transmitted by the beamsplitter is focused on a multimode fiberbundle (MMF-bundle) on

which four fibers are combined in a cross like shape. The laser is impinged on this cross

in such a way that all four fibers contain approximately the same amount of light. Now

combining the top and the bottom fiber in one detector (x-detection) and the left and

right fiber to the second one (y-detection) this gives the same result as a standard split

detection performed through D-shaped mirrors. The difference signal from each photode-

tector is connected to a RedPitaya field programmable gate array (FPGA) that is used
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as a phase lock loop (PLL) via the “PyRPL” package. The device creates a frequency

doubled feedback signal as described in chapter 2.4.2 which is then summed up and fed

back to the driver of AOM2 in order to modulate the trap. Additionally the difference

signal from one of the detectors (in Fig.(24) z-deteciton) is also received by an electronic

trigger that increases the intensity of the trapping laser upon the particle entry into the

trap (see chapter 4.3).

The second part of Fig.(24) depicts the homodyne detection of the back scattered light

for the greatly enhanced particle tracking along the axis of propagation of the trapping

laser. The in-fiber signals from both local oscillator and dark-port enter a 50 : 50 fiber

beamsplitter. Both of its outputs are further connected to a difference detector making

up the homodyne detection. Depending on the phase relation between the local oscillator

and the particle signal, either quadrature of the particle motion can be monitored. The

output of the photodetector is once more connected to a RedPitaya which in turn creates

the linear feedback voltage according to the particle signal from this homodyne detection.

The electrical signal from the FPGA is directly connected to the electrodes inside the

vacuum chamber to perform electric feedback. While the parametric feedback cooling is

mainly performed to enable levitation at pressures below 10−3 mbar this linear feedback

will be utilized to cool one of the motional degrees of freedom to a very low occupation or

even the ground state.
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3.3 Aligning the Sagnac interferometer

In chapter 2.5.3 the Michelson-Sagnac interferometer was established as a method to filter

the light back-scattered by the particle from the rest of the trapping and cooling beam.

There we treated the beamsplitter as a perfect 50 : 50 splitting device and also assumed

that the beams in both directions are not distinguishable to ensure perfect interference

at the light-/dark-port. In the real world application of this method there are several

sources of imperfection that make the actual implementation stray from the optimized

considerations and derivation done in the theory chapter.

Imperfect splitting of the beamsplitter, distortions of the wavefront, reflections on win-

dows and optics, clipping of the beam and imperfect overlaps of the counterpropagating

beams are the main contributions to this deviation. Left unchecked, these problems would

amount to a substantial decrease in interference at the beamsplitter. This would hence-

forth give a less dark darkport, which in turn would decrease the signal to noise ratio in

our axial detection of the particle motion. This section outlines the method to consistently

align the Sagnac interferometer to maximize interference.

Figure 25: A)-E) Alignment procedure: The method devised to ensure maximal inter-
ference in the ports of the interferometer. F) Alignment box: A CNC-machined box to
fit exactly over the lensholder (see Fig.(23B-C)). Two holes in its walls provide a straight
line through the center position of the lenses.

Fig.(25A - E) depicts the individual steps performed to align the Sagnac interferometer.

In the beginning of the process the lensholder from Fig.(23B - C) is already located in the

vacuum chamber but the trapping lenses are not yet fixed to it. Fig.(25A) depicts the

first step where the beam is pointed centrally to the beam splitter which is mounted on

a five-axis stage to ensure enough degrees for the following alignment steps. By turning
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the BS around the x-axis the splitting ratio is set to 50 : 50. Here it has to be noted that

beam splitters do not have the same splitting ratios for all polarizations and here we align

ours for H-polarized light. For the orthogonal polarization the splitting ratio was closer to

55 : 45. In both transmitted and reflected arms a mirror is placed on a translation stage

that can move in the z-direction.

For step B a box was CNC-machined (see Fig.(23F)) to fit exactly over the lensholder in

the vacuum chamber. The box has two 0.9 mm diameter holes in its side walls at the exact

height and width where the center of the lenses will be located. Mounting this alignment

box over the lensholder and placing a power measuring device behind the chamber allows

deterministic alignment through the system. In step B the translation stages and hori-

zontal tilting of the mirrors to the side of the chamber are used to roughly maximize the

power transmitted through the box for both reflected and transmitted arm. This fixes the

position of the mirrors in the Sagnac.

In step C for the transmitted arm the vertical tilting of the mirror before the beamsplitter

together with the vertical tilt of the right mirror in the interferometer is used to find the

vertical alignment through the box. For the reflected arm, the vertical tilt on the left

mirror plus the tilting of the BS around the y-axis is used. As the first part of this align-

ment step slightly changes the position the beam hits the beamsplitter, this may result

in a slight change in splitting ratio. If this is the case, the previous two steps have to

be repeated iteratively. In most cases a single repeat suffices to regain the splitting ratio

while keeping the alignment through the box. If the transmission through the box cannot

be increased any more, the box can be removed and at that point a camera can be placed

into the dark-port of the interferometer.

At this stage of the alignment the image produced by the camera will most likely still be

a either a bright spot or a bright spot with interference fringes on it. By slightly tilting

the mirrors to the side of the chamber thethe interference at the camera is maximized.

Fig.(26A) depicts the darkport output after the initial alignment through the box and

Fig.(26B) after the adjustment with the mirrors.

At this point the interferometer is aligned as well as it can be without the lenses, therefore

in step D the lenses are mounted into the aluminum holder. We found that even though

the working distance of our NA= 0.6 trapping lenses was specifically measured before the

lensholder was designed and ordered, when the lenses were put into the holder, the beam

passing through them was not collimated. The most likely source for this mismatch is due

to the uncertainty of ∼ 150µm for all distances in the CNC-machining process. In our

specific case the beam would strongly diverge which implies that the lenses were too close

together. The specific divergence angle θdiv is determined through two knife-edge waist

measurements of the beam after the lenses. From the measured angle of θdiv = 0.81◦±0.02◦
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we estimated the lenses to be too far apart by ∼ 300µm through Gaussian beam propaga-

tion. In order to correct for this we placed shim rings between the lenses and the holder.

These rings are available in different thicknesses down to 10µm. By placing these rings

into the holder the lenses are spaced further apart collimating the beams passing through

both lenses.

From there the final step of the alignment depicted in Fig.(25E) is to check if the interfer-

ometer is still closed with the lenses in place. Usually a slight mismatch due to imperfect

machining will be apparent. This can be eradicated by once again imaging the dark-

port through the CCD camera and minimizing the intensity of the interference pattern.

Fig.(26C) depicts the interference pattern attained after placing the lenses into the holder

and Fig.(26D) after the adjustments were performed and the pattern is minimized. As can

be seen the mode in Fig.(26C & D) is not perfectly Gaussian anymore. The imperfect in-

terference pattern hints at missalignment either through the lenses or improper mounting

of the lenses in the lensholder.

Figure 26: Visual impression of interferometer alignment A) Without lenses after
alignment box: Image of the dark port intensity right after the final alignment through the
box. B) Without lenses after adjustment: Image of the dark-port after slight adjustment
with the mirrors to the side of the vacuum chamber. C) With lenses: Image of the dark-
port mode after placing the trapping lenses into the holder. The mode is not uniform
or Gaussian which hints at a missalignemnt of some sort. C) With lenses after final
optimization: Image of the dark port after adjustments through the mirrors to the side
of the vacuum chamber.
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To quantify how well the interferometer is aligned the extinction ratio χ of the dark-port

can be measured. We define this as the ratio between the power impinging on the BS Pin

and the power measured in the dark-port Pdp. For a completely misaligned interferometer

the extinction ratio is χ = 2 as half of the input power leaves through the bright- and the

other half through the dark-port. A perfect interferometer would have χ→∞.

Here we measure the extinction ratio at two separate steps along the alignment process:

once just before the lenses are placed into the chamber χ1 and once at the very end of

the alignment process χ2. The first ratio χ1 was measured right at the end of the first

alignment without lenses:

χ1 = 98.4± 5.2 (92)

(93)

An extinction ratio of ∼ 100 is not very high. The origin of the excess light in the dark-port

was found to be a back-reflection in the reflected arm of the interferometer, stemming from

the right window of the vacuum chamber. When the reflected arm was blocked, the power

in the dark-port dropped to almost zero while a blocked transmitted arm only decreased

Pdp to less than a tenth of its original value. We conclude that this small fraction of light

is the real dark-port power and most of the light detected is actually a reflection. From

this we inferred the actual dark port intensity without the lenses in the holder:

χ1 = 2335± 112 (94)

(95)

Once the lenses were inserted and the alignment procedure as described above was finalized

the extinction ratio was measured again.

χ2 = 121.2± 6.3 (96)

To further infer what the actual power in the dark-port for this case was, a fiber was placed

into the dark-port. By also placing a half-wave plate into one arm of the interferometer

(and compensating for potential translations of the beam this might introduce) the inter-

ference at the beamsplitter can be actively suppressed. Doing this allows one to couple

an almost Gaussian mode into the single-mode fiber. Once this light is coupled into the

waveguide as well as possible, the wave plate is turned back to maximize the interference
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and the power in the single mode fiber is measured. This way the relevant mode can be

selected and measured. The extinction ratio χ2 for this case reads:

χ2 = 3954± 162 (97)

The addition of this single mode fiber increased the extinction ratio substantially. Nonethe-

less as can be seen from the shape of the interference fringes in Fig.(26C & D) there is still

room for improvements.

Discussion

Here we presented a setup capable of trapping a levitated nanoparticle in a standing

wave optical trap located in an ultra high vacuum compatible chamber. Additionally

the components and alignment of a greatly enhanced particle detection are presented.

For a better understanding of its actual implementation Fig.(27) provides some visual

impressions of the experiment.

We expect to need an increase in extinction ratio of another one or two orders of magnitude

in order to perform a Heisenberg limited measurement of the particle position in the liking

of [8].

Already at this stage we identify a few improvements concerning the Sagnac interferometer.

Specifically the back-reflections by the current uncoated borosilicate windows mounted on

a flange of the vacuum chamber. Exchanging these for wedged windows with an anti-

reflectant (AR) coating for 1550 nm will undoubtedly improve the issue with the stray

reflections. Additionally the current BS creating the Sagnac interferometer is an actual

cube instead of a plate BS. It is still open for investigation whether this is a potential

source of stray reflections.
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Figure 27: A) Entire optical setup: The complete setup on the optical table. In the center
of the table the UHV chamber can be seen. B) Sagnac interferometer: A close-up of
the Sagnac interferometer consisting of a cube beamsplitter and two mirrors is depicted.
To the right the small loading chamber and very faintly the hollow core fiber and its
feedthrough into the vacuum chamber can be seen. C) Lensholder with piezostage and
HCF: A close up of the CNC-machined lensholder with the trapping lenses mounted and
the cooling copper ring-electrodes glued to it is shown. Additionally the hollow core fiber
on the three piezo stages which are highly relevant in the next chapter can be seen.
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4 Hollow core fiber loading

In order to achieve UHV pressure levels and achieve coherence times on the order of several

ms (see section 1.3), a new loading method is required. We have chosen to implement a

particle loading scheme that uses hollow core fibers as particle conveyor belts. Previous

work based on the groundwork of Philip Russel [71] and David Grass [42, 52] done by

Jakob Rieser for his master thesis [16] saw successful transfers of nanoparticles from a

hollow core fiber (HCF) conveyor belt to an optical trap at moderate vacuum conditions

of ∼ 1 mbar.

In this thesis we build up on the work in [16], extending the HCF transfer scheme to UHV.

In particular we develop an alignment technique that does not require an a priori presence

of a particle in the tweezer and an electric trigger. This chapter presents the general idea

of HCF assisted loading and demonstrates how the updates to the scheme were developed

and implemented.

4.1 HCF loading scheme

Hollow core photonic crystal fibers (HCPCF) or short hollow core fibers (HCF), in compar-

ison to regular optical fibers, do not guide light on the principle of total internal refraction.

Instead they do so, by a crystalline band-gap structure around the core that prevents light

from leaking into the cladding [71, 72]. The fact that the light guiding region of these

fibers is hollow, opens up the possibility to transport materials through them. This has

previously been done to guide and trap ultra cold atoms [73, 74], move micrometer sized

dielectric particles [75, 76] and transport and manipulate dielectric nanoparticels [42, 52].

In the latter reference a proposal to use a HCF as an optical conveyor belt to guide

particles into optical traps at high vacuum conditions has already been made. In his

master thesis Jakob Rieser demonstrated handovers of nanoparticles from the hollow core

fiber conveyor belt to an optical tweezers at mild vacuum down to mbar pressures [16].

The schematic working principle of the particle deployment method is depicted in Fig.(28).

In this loading scheme a vacuum chamber (science chamber) containing the optical trap

the nanoparticles are to be handed over to, is connected to a separate loading chamber

through the hollow core fiber of length L. Connected to the loading chamber via a vacuum

valve, an ultrasonic nebulizer is able to produce airborne particles. The hollow core fiber

guides two counter-propagating beams of equal wavelength, creating a standing wave from

one chamber to the other. Particles in the loading chamber coming from the nebulizer

can be trapped in the intensity maxima of this standing wave and transported over long

distances. While at each loading attempt the loading chamber will be sprayed with parti-
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Figure 28: Hollow core fiber loading schematic: Two vacuum chambers are connected
through a HCF guiding a standing wave. The science chamber with the optical trap is
kept at UHV conditions, while the loading chamber is at a low vacuum pressures. A
nebulizer connected to the loading chamber via a valve creates airborne particles. These
particles are trapped in the standing wave intensity maxima and can be moved to the
science chamber where they are deposited into the optical trap.

cles and has to go up to almost atmospheric pressures, the science chamber stays always

clean and at high or even ultra high vacuum regimes.

As the fiber core is rather small in diameter (in the order of 10µm) and the fiber can be

rather long (∼ 1-2 m) the eventual conductance from the high vacuum to the low vacuum

chamber can be as small as 10−12 l/s [77] and thus does not impact the pressure ranges

reachable for the science chamber.

Finally, mounting the end of the HCF located in the science chamber on a 3D translation

stage, gives a precise control over where the particle is to be deposited, which is extremely

relevant for aligning the whole scheme.

When operational, this loading technique provides a novel method allowing direct and de-

terministic loading of nanoparticles into optical traps without having to break the vacuum

or contaminating the chamber. Therefore accessing loading to low UHV pressure regimes

and with it collision free times of the particle going towards 10-100 ms.

4.1.1 Movable standing wave

In order to guide the nanoparticles from the loading chamber into the science chamber a

method to move the intensity maximum of the standing wave deterministically is required.

Here we present the method implemented in our setup:

The fundamental modes of light guided by hollow core photonic crystal fibers are well

approximated with linearly polarized (LPmn) modes [78]. Of these modes the fundamental

and thus dominant one is the LP01 mode which has a 99% overlap with a TEM00 mode

[79]. Thus the standing wave created by two counterpropagating beams guided into the

59



hollow core fiber can be approximated by the Gaussian standing wave intensity described in

Eq.(17) or Eq.(18) in chapter 2.2. The high field seeking particles used in our experiments

are trapped in the intensity maxima of this standing wave. In order to transport the

particle along the fiber one of the two beams in the fiber has to be frequency-detuned with

respect to the second beam. Looking at the interference term of the intensity distribution

we get the following expression:

I ∝ |e(i(kz−2πνt)) + e(i(kz−2π(ν+∆)t))|2 (98)

= 2 cos2 (kz + π∆t) (99)

The particle will always follow the intensity maximum, i.e. where kz + π∆t = 0. For

∆ = 0 this will be at z = 0 but as soon as ∆ 6= 0 we get a time dependent position for the

trap center z = π∆t
k and a velocity of this maximum of:

v =
dz

dt
=
λ∆

2
(100)

So depending on the frequency detuning the intensity maxima and thus the particle

trapped within are moved along the fiber at varying speeds. A particle in a standing

wave generated by a λ = 1064 nm laser with one of the beams detuned by ∆ = 10 kHz

moves at a velocity of v ≈ 5 mm
s .

Fig.(29) depicts the schematic lab implementation of this movement. The detuning of

one of the beams with respect to the second is accomplished through two acousto optic

modulators, both of which are driven by the same RF power supply. Changing the driving

frequency of one of the AOMs will lead to the required detuning to move the standing

wave.

Figure 29: Movement of the standing wave: The two counter-propagating beams making
up the standing wave inside the HCF pass through one acousto optic modulator (AOM)
each. These modulators are driven by an RF signal generator that can frequency detune
its outputs separately. The speed at which the standing wave moves is dependent on the
value of ∆ω = 2π∆.
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4.2 HCF alignment procedure

Positioning the loading fiber well with respect to the optical trap is of utmost importance

in order to successfully hand over particles. Misalignment by more than half the optical

trap width can already mean that loading through the fiber is not achievable anymore. In

order to clarify what optimal position means, Fig.(30) displays the schematics of the HCF

and the standing wave optical trap.

Figure 30: A) Optimal HCF position: The HCF (in blue) is positioned centrally with
respect to the optical trap propagating along the z-direction. In the y-direction the closest
position the fiber can approach the trap, without clipping the trapping beam, is determined
by the divergence of the trap and the width of the hollow core fiber. B) Overlapping
standing waves: At the position of the particle (z = 0, y = 0) the tweezer standing
wave (along z with λt = 1550 nm) and the hollow core standing wave (along y with
λf = 1064 nm) overlap. With the fiber at a distance of Lmin = 40µm the waist of the fiber
trap at the tweezer standing wave actually spans over a range of ∼ 40 intensity maxima.

Fig.(30A) shows a close up of the experiment. The HCF, shown in blue is positioned along

the y direction. The λf = 1064 nm beams guided by it travel in the ±y-direction and make

up the standing wave of the optical conveyor belt. The λt = 1550 nm standing wave that

the particle is to be handed over to consists of two beams traveling in the ±z-direction.

The optimal fiber positions for the x and z directions are determined through overlapping

the waist of the optical trap with the center of the fiber core. In the y-direction, the

trap geometry constraints the closest distance the fiber can be positioned to the waist

of the trap before it starts to block the beam on either side (Lmin). For our case of a

fiber-(cladding) diameter dfib ≈ 125µm and a trapping numerical aperture of NA = 0.6

this minimal distance is given by Lmin ≈ 40µm.

Fig.(30B) shows the two overlapping standing waves traveling along y and z. The de-

picted graph is for a tweezer standing wave power of Pt = 0.1 W and hollow core fiber

standing wave power of Pf = 2 W. The distance Lmin = 40µm between the fiber and the

tweezer-waist makes the fiber-optical-trap expand substantially and at the position of the
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tweezer-trap the waist of the 1064 nm beam already covers ∼ 40 intensity maxima. It

has to be noted that only the central intensity maxima of the tweezer trap are relevant

because the depth of the potential falls off with a Lorentzian shape in the axial direction.

The method to align the HCF to the optical trap developed in [16] enables positioning of

the fiber with accuracy of ∼ 1µm to the tweezer. This is sufficient to successfully transfer

the particle to the trap. The big downside of this positioning scheme and the reason why

there is need for an updated method, is that in order to align the fiber, a particle already

has to be trapped in the optical tweezer. This particle is illuminated by a modulated

beam from the HCF. Radiation pressure induces momentum kicks of the particle and by

maximizing the visible displacement originating from this interaction, one can position

the fiber to the trapped particle and thus the trap itself. In order to load this first “align-

ment” particle, an ultrasonic nebulizer was used to get particles in an isopropanol solution

airborne and into the chamber. As discussed in chapter 1.4 the usage of such nebulizers

deeply impacts the base pressure reachable by the vacuum system through contamination

of the chamber walls. These contaminants can not not be pumped by vacuum pumps

making this alignment method not compatible with an experiment aiming for pressures in

the UHV regime.

The method to align the HCF to the optical trap presented in this work does not rely on

a particle being trapped initially and thus makes this procedure UHV compatible.

4.2.1 Two stage auto-alignment

Fig.(31) depicts the underlying idea that enables a clean procedure of aligning the fiber

to the optical trap.

As in [16], the hollow core fiber inside the vacuum chamber is mounted on a 3D-translation

stage seen in the figure to the left. The fiber emits a beam that is collimated by a fixed

lens inside the vacuum chamber. A second lens on the outside of equal focal length focuses

the beam down onto a second fiber, mounted on another 3D-translation stage. This fiber

also emits a beam of light to create the standing wave required for the particle transport

in and outside the HCF.

If the stage on the inside is now displaced in the z (or x) direction by d, the beam emitted

by the HCF is redirected at the first lens and the second lens will focus it again at a

different spot than before. As this imaging system is a 1 : 1 system the displacement the

focal spot has with respect to the optical axis is also d. If the second stage is now moved

to this focal spot, the coupling in both fibers will be restored.

If these steps (movement of the inner stage - recovery of the outer stage) are done in small

increments, so that the coupling into neither fiber gets too low, one has established a way
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Figure 31: A) HCF alignment principle: The hollow core fiber (to the left) is mounted
on a 3D - piezo translation stage. The light exiting the fiber is collimated on the first
lens still inside the vacuum chamber (represented by the grey area). Outside the chamber
a second lens (of equal focal length) is focusing the light onto another fiber (of similar
mode field diameter) which again is located on a 3D-piezo translation stage. The double
sided arrow in the middle signifies that the there is also a beam exiting from the fiber to
the right creating the standing wave. B) The stage on the inside is displaced by d along
the z direction. This creates an offset beam and a displacement in the image-plane of the
second fiber. As this is a 1 : 1 optical system, the beam coupling into the second fiber can
be regained by moving the second stage by −d in the z direction. The same thing applies
for the beam emitted by the left fiber.

how to safely move the hollow core fiber without loosing coupling. This opens up two

possible methods to align the fiber to the optical trap.

1. Scan and shoot: With the coupling into the HCF stable and thus the standing wave

inside and in front of the fiber active while moving the stage it is easy to scan an

area of possible correct positions with the piezo stage in the chamber. Previously,

whenever the position of the fiber was changed, light from the outside had to be re-

coupled into the HCF by hand. This meant that it was impossible to keep particles in

the fiber during these movements. The updated alignment process starts by finding

the correct distance to the trap in the y-direction, which can be determined by

monitoring light scattered off the fiber through a camera when moving the fiber in

and out of the tweezer standing wave. Once the HCF is in an acceptable position

in the y-direction, it is loaded with particles and a search pattern (i.e. a square)

is initiated. For each step a couple of particles are ejected from the fiber while

the detection of the tweezer light is monitored. If a particle is to pass through
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the trap, the detection will output a signal. The closer the particle passes through

the intensity maximum of the trap, the bigger this signal will be. After shooting a

couple of particles the stage is moved by a small increment and the previous step is

repeated. This can initially be done in a fixed big pattern like a square with wide

steps and once the general direction of the trap center is located, be repeated in

smaller steps to increase the precision and pinpoint the trap center.

2. Direct deposition: As discussed in [42], a particle trapped on the outside of the

hollow core fiber in combination with this fiber being mobile would make up the

ideal way to position the particle to an optical trap. In the same work and in [16]

particles are stably levitated extending 100 − 200µm outside the hollow core fiber.

Assuming the automatic alignment manages to hold the standing wave stable enough,

the particle can be moved while it is levitated in front of the fiber. Movement of

the particle through the optical trap will again be picked up by the detection. The

closer the particle is to the trap center, the bigger the signal at the detection will

be. This way the particle can directly be deposited into the optical trap once this

maximum is found and the HCF is aligned for future loading attempts.

4.2.2 Automatic alignment algorithm

Having established that an automatic fiber alignment system will open up the possibility

to align the HCF to the standing wave trap we have to address the fact that Fig.(31)

is a simplification. While it is true that in a perfect 1 : 1 system a displacement of one

stage leads to the same displacement at the second stage, in an actual implementation

the possibility for deviations from this optimal mapping is very real. Imperfection in the

position readout, repeatability and precision of the translation stages make a calibration,

monitoring and feedback system a requirement in order to position the stages correctly

and keep the coupling stable. Here we present our envisioned method for the co-movement

of the stages without destroying the standing wave. As the inner stage is moved in order

to find the maximum of the λt = 1550 nm trap, all the recovering steps described in

the following section concern the outer stage. The algorithm is applied in two steps:

first a predicted recovering move reliant on a calibration done before the experimental

run and second an automated algorithm for fine tuning. Wilfried Philip has successfully

implemented the control software of the stages in the course of his bachelor thesis [80].

Movement according to recorded mapping

In an optimal system of these two stages for every one of the i = 0, ..., N (x-y)-position

(x1
i , z

1
i ) of the inner stage, there is an optimal position (x2

i , z
2
i ) of the outer stage to recover

the most light into it. The light coupled into the HCF is monitored at a detector allowing

a real-time check of the alignment of the stages. In order to find a mapping that relates
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(x1
i , z

1
i ) to (x2

i , z
2
i ) a calibration measurement in 4 dimensions can be performed. The inner

stage scans positions in a certain range in x and z and for each position (x1
i , z

1
i ) a separate

scan of the outer stage is performed. In these outer scans the position of the intensity

maximum (x2
i , z

2
i ) can be found. From here there are two possible options. Either this

correspondence is directly used to relate one maximum to the other, or an approach using

first differences in the manner described in [80] is used.

The latter method relates the first differences (∆xi = xi−xi−1) of the inner stage maxima

positions (∆x1
i ,∆z

1
i ) to the outer stage first differences (∆x2

i ,∆z
2
i ) through this linear

system:

(
∆x2

i

∆z2
i

)
=

(
axx axz

azx azz

)(
∆x1

i

∆z1
i

)
(101)

Solving this linear system and retrieving the entries of this matrix allows the prediction

of the outer stage movement for any given inner stage positioning. In the optimal case

this matrix A is the unity matrix which would signify a perfect 1 : 1 correspondence from

one stage to the other. Measurement uncertainties in the stage position, fluctuation in

the laser intensity, a mismatch in the axis of the stages and non-linearities in the stage

movements (jumps) will lead to the deviation from this optimal case. Any deviation from

the perfect estimation will inevitably lead to the situation that the intensity after any

predicted step of the outer stage will not maximize the power into the HCF perfectly. For

this reason, an additional feedback step through a maximization algorithm is performed.

Automatic fine tuning algorithm

In order to re-couple the maximum amount of light into the fiber, the center of the fiber

core has to overlap with the intensity maximum of the Gaussian mode of the incoming

light-field. Fig.(32) displays the schematic working principle of one complete run of the

recovering algorithm.

Graph A starts with the beam not perfectly aligned after the step performed through

the mapping as described above. The fiber core is offset from the intensity maximum,

indicated by the blue cross. The first step performed in graph B is a small movement of

length δ along the -z-direction. Here the intensity is noted, and a step of length 2δ in

the opposite direction (graph C) is performed. The intensity is once again recorded and

compared to the one noted in graph B. As a zeroth order Gaussian beam only has one in-

tensity maximum moving the stage in the direction of the higher recorded value will move

the fiber core closer to the actual maximum. The movement in D is of arbitrary length

but long enough to see an increase and decrease in the intensity. During this whole motion
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Figure 32: Alignment algorithm: Graphs A)-I) display one full cycle in the alignment
algorithm. The Gaussian mode central to every graph represents the beam that has to
remain coupled or has to be re-coupled into the fiber. The green and blue crosses signify
the starting and stopping position for each step of the algorithm. Additionally on the
bottom of each Graph Istop the (normalized) intensity for the Gaussian mode is given. All
the units are kept arbitrary.

the intensity is monitored and mapped to the position of the stage. After the movement

is done, the stage positions itself to the location of the highest intensity (graph E). In

the case of an optimal incoming Gaussian beam this means that the z-direction is now

aligned. The scheme is repeated for the y-direction and after only two sets of movements

the intensity maximum is reached again.

This algorithm gives a simple way to find the maximum of a function with no other local

maximas, but of course in the actual implementation several details need further attention.

The size of the checking step δ (done in graphs B, C, F and G) to determine in which
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direction the intensity increases, is an essential parameter for the success of this method.

For a perfect Gaussian intensity δ can be arbitrarily small and the algorithm will still

find the maximum. In an actual intensity distribution created by a laser, picked up by a

fiber and measured by a photodetector this does not apply. The signal recorded at the

photodiode will have a noise contribution on it and if δ is too small the checking step

might result in movement in the wrong direction. The same holds for the case when the

fiber core is already close to the intensity maximum. There, the change of intensity is the

smallest for a given movement in either direction, so the possibility for an error is likely.

If, on the other hand the checking step δ is too big the risk of loosing excessive amounts

of coupling into the HCF is very real.

To circumvent these problems a variable checking step width δ(I/Imax) dependent on the

normalized intensity before each set of checking steps can be implemented. This way steps

close to the maximum can be larger than the ones further away from it.

In an actual implementation, the initial step by the leading stage can not exceed a certain

length for the same reason as before, as the standing wave intensity in the fiber would

drop drastically. Finally in the real world application it usually takes more then 2 sets of

steps to find the maximum. If the incoming Gaussian beam is not exactly circular and

has a slight ellipitcity to it, the algorithm will zig-zag towards the maximum in more than

two steps.

4.2.3 Experimental setup for the HCF alignemnt

Having established the principle of the HCF alignment, this section will give an overview

of the experimental realization. Fig.(33) shows the scheme of the HCF loading setup.

A λf = 1064 nm laser (Azurlight “ASL Fiber Laser” at power P = 3 W as used in [81]) is

split in a 50 : 50 ratio at a HWP-PBS combination. From here we go counterclockwise:

The beam passes through AOM2 which is driven at a center-frequency of ωAO2 = 80 MHz

with the zeroth order being blocked and the first order coupled into a single mode fiber.

The other end of this ∼ 1 m fiber is mounted on a set of 3 linear piezo translation stages

(Attocube “ESC3030”). The beam emitted by the fiber is then collimated by a lens, passes

through a HWP and a 1 : 1 telescope. This telescope was omitted from the discussion

in the previous section but changes nothing of the premise as the 1 : 1 imaging still

holes. The telescope is used to control the collimation of the beam and helps coupling

into the HCF. Using 2 mirrors, the beam is coupled into the HCF mounted on the second

trio of piezo stages (Attocubes “ANPx/z101”) located in the vacuum chamber. The lens

used to focus the beam into the hollow core fiber is mounted in the same lensholder the

two trapping lenses from Fig.(23) are held by. The hollow core fiber exits the vacuum

chamber through a fiber-feedthrough and is mounted inside the loading chamber (L-C).
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Figure 33: Hollow core fiber loading: The hollow core fiber conveyor belt is created by
two counter-propagating beams from a λ = 1064 nm laser. The two beams are created
by splitting at a PBS. Both beams pass through AOMs which enable to set the detuning
needed to transport the nanoparticles. One of the beams is coupled into a single mode
fiber which is mounted on a piezo translation stage (Atto 2). Together with a translation
stage on the inside (Atto 1), to which the hollow core fiber is mounted to, this creates
the alignment system discussed in the previous chapters. The intensity detection needed
for the protocol is taken through a dichroic mirror (DM). The hollow core fiber itself
is mounted in the loading chamber (L-C) which in term is connected to an ultrasonic
nebulizer.

This loading chamber is connected to an ultrasonic nebulizer via a vacuum valve. The

beam emitted by the hollow core fiber is then collimated by lens L4, passes through another

HWP and AOM1 (also driven at ωAO1 = 80 MHz) and is partially reflected by a dichroic

mirror (DM) to close the loop at the PBS. The light transmitted through the dichroic

mirror is used to track the amount of light coupled to the hollow core fiber, used for the

alignment algorithm. The clockwise beam propagates along the same path but in the

reverse direction.

With the concepts now explained, the next chapter provides the result of initial testing

of the this system, realizations from it and the appropriate measures taken together with

the resulting improvement.

4.2.4 Initial testing of the alignment procedure

Prior to the first tests with actual particles in the HCF, the working regime of the align-

ment procedure was tested to prevent the loss of particles in the fiber. These tests were

conducted by performing scans of the mode exciting the single mode fiber on Atto 2

(seeFig.(33)) for various positions of Atto 1. For a fixed position of Atto 1 the fiber on
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Atto 2 was moved in a square of approximately 20×20µm with a stepsize of∼ 500 nm while

recording the coupled power. Fig.(34) shows the recorded normalized intensity profile of

one scan.

Figure 34: Initial scan of mode profile into the HCF: The Gaussian mode profile aquired
by scanning the single mode fiber on Atto 2 while recording the light coupled into the HCF.
Each black dot represents one data point and the red color indicates the recorded intensity.

As expected the intensity profile has the Gaussian shape of the beam exciting the single

mode fiber. When fitting this with a Gaussian intensity profile we get a waist in the

x-direction for ω0x = 4.05± 0.01µm and in the z direction ω0x = 4.89± 0.14µm. This is

in acceptable agreement with the mode field diameter of mfd= 6.6µm of the hollow core

fiber.

After this initial scan the position of Atto 1 was changed in ∼ 6µm increments in the x

direction and the scanning process from above was repeated. For each scan the maximally

coupled intensity was recorded and is plotted in Fig.(35).

This plot displays an issue in implementation proposed in the previous chapter. The

maximum intensity that can be coupled into the fiber, and thus also power the standing

wave trapping the particles in it, is highly dependent on the position of the HCF and not

uniform as envisioned. Here we will give an explanation for why this problem arises.

The angles accepted into the guiding mode of any fiber are defined by its numerical

aperture. If either the beam is focused too strongly onto the fiber or the angle of incidence

exceeds these angles, the amount of light that can be coupled into the fiber reduces.

Fig.(36) depicts a ray transfer analysis of our optics system in place.

Two sets of beams emitted by the single mode fiber to the left are displayed. The black

one shows the rays for a fiber located in the center of the setup while the red beam is
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Figure 35: Maximal intensities for different Atto 1 positions: For different positions
of Atto 1 along the x directions scans were repeated and the maximal coupled intensity
(normalized to the intensity maximum from the scan in Fig.(34)) is depicted.

Figure 36: Ray transfer analysis: The (waist)rays emitted by single mode fiber (at
position 0 along the x axis) are propagated through the optics system in place towards
the HCF all the way to the right of the plot. The blue lines indicate the position of the
lenses. Two sets of beams are displayed one (in black) for the fiber emitting the beam at
zero displacement and the second (red) for a displacement of 50µm.

emitted by a fiber that is displaced (along the y axis) by 50µm. While the position of

the focused red beam on the right is at the height of 50µm as mentioned in chapter 4.2.1

the angle of incidence onto the HCF is extremely big and the coupling into the fiber will

therefore decrease drastically.

To further visualize this, Fig.(37) depicts the angle of incidence at the HCF for different

displacements of the single mode fiber.

For this graphic the ray transfer analysis from the previous figure has been repeated for

different displacements of the SMF to gain the angle of incidence onto the HCF. The
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Figure 37: Allowed incidence angles: In blue the angle of incidence onto the HCF for
different displacements of the single mode fiber is depicted. The orange dashed line shows
the acceptance angle defined by the NA of the hollow core fiber. For displacements that
result in a bigger angle of incidence than this, the coupling into the HCF will be severely
impacted (red region).

dashed orange line shows the acceptance angle θmax = arcsin(NA) of the hollow core fiber

and the red area, starting at the intersection of the blue line and the dashed orange line,

indicates the displacement regime where the angle of incidence starts to exceed θmax. For

our configuration this happens at a distance of dmax = 15µm.

Looking back at Fig.(35) we can see that at a displacement of ∼ 15µm from the (centrally

aligned) zero position the maximal coupling already drops down to below half of its central

value which fits well with the predictions from Fig.(37). Here it has to be noted that the

values obtained for Fig.(35) will not exactly fit expected values because the normalization

of the intensities did not take overall drifts of the laser power into account.

In order to overcome these problems the imaging system mapping the beam emitted by

the SMF to the HCF has to be changed to a true 1 : 1 system. This is implemented by

changing the arbitrarily placed 1 : 1 telescope in the beam path to a 4f configuration.

In this setting the distance between the collimation lens L3 and L2 is exactly one focal

length of L2 (denoted by f). L2 and L1 are separated by a distance of 2f and the distance

between L1 and L0 is once again f . In this configuration the incidence angle of the beam

from the SMF will (in theory) always be zero and thus re-coupling the maximum intensity

should be possible for arbitrary displacements of the HCF.

After exchanging the lenses L1 and L2 for lenses of the appropriate focal length and

position, the scans were re-done and the intensity distribution from Fig.(35) was repeated.

Fig.(38) displays the updated intensities.
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Figure 38: Maximal intensities for different Atto 1 positions in 4f configuration: The
plot from Fig.(35) for the updated 4f optics system.

Here we see that the change in optics indeed resulted in wanted effect of an increased

range of uniformity of coupled intensities, with respect to position of the HCF. After

HCF displacements that are greater than 150µm a sharp decrease is visible which implies

that the built 4f system is not perfect. The most likely origin for this imperfection are

not perfectly measured distances and a finite diameter of the lenses in the configuration.

Nonetheless this increase in range is sufficient for our purpose. If bigger ranges have to be

scanned a manual re-coupling through the mirrors outside the chamber can be performed.

4.2.5 Position mapping

With the increased range of possible scan positions the creation of the prediction mapping

described in section 4.2.2 can now be performed. To do so Atto 1 (inner stage) was moved

from its central position outwards in a spiral movement over a range of approximately

100 × 100µm. The resulting spiral with the (x1
i , z

1
i ) positions is shown in Fig.(39A). As

can be seen there is a slight overlap of scan positions in the +x direction which is attributed

to the stages having different step sizes for different directions.

At each of the (x1
i , z

1
i ) position depicted in Fig.(39A) a scan by Atto 2 in the liking of

Fig.(34) was performed and the center of the Gaussian intensity distribution was located

through a two-dimensional fit. Fig.(39B) depicts the these (x2
i , z

2
i ) positions of Atto 2

with respect to each (x1
i , z

1
i ) Atto 1 positions along the spiral.

From these two sets of positions the first differences needed to calculate the matrix from

Eq.(101) can be attained. Said matrix A is then acquired through a linear regression. The

standard deviations corresponding to the matrix entries aij are summarized in the matrix

σ.
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Figure 39: A) Stage 1 spiral: The spiral movement of Atto 1 performed to attain
different scanning positions for Atto 2. B) Mapping scans: The position of Atto 2 where
the intensity maximum was recovered for each Atto 1 position.

A =

(
0.910 0.171

−0.068 0.968

)
(102)

σ =

(
0.015 0.005

0.007 0.020

)
(103)

Matrix A can be interpreted such that that a step of length 1µm in the x-direction of

Atto 1 results in 0.91µm in the x-direction plus −0.068µm in the z-direction of Atto 2.

As expected the matrix is not too far of the identity. The off diagonal elements suggest

there is an angle between the movement axis of the translation stages.

4.2.6 Co-movement

Having retrieved the sensitivity matrix A, the first test of the co-movement of the stages is

started. In these first trials the stages were not moved simultaneously, but the inner stage

(Atto 1) performed a leading step and the second outer stage (Atto 2) retrieves by first

calculating the predicted step and then applying it. If the co-movement works correctly,

the recorded intensity after every second step (recovery outer stage) should stay constant

at the maximum coupling.

The motion of the inner stage was chosen to once again be a spiral depicted in Fig.(40A).

The (recovering) motion performed by the outer stage is depicted in Fig.(40B) and the

intensity recorded for every step is shown in Fig.(40C).

From Fig.(40B) one can immediately see that there are some issues with this process. The

calculated mapping is linear and thus a spiral created by Atto 1 that does not overlap
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Figure 40: A) Spiral movement by Atto 1: The leading steps performed by the inner
stage. B) Recovering steps by Atto 2: The movement of the outer stage according to
the position mapping. It can be seen that this is not a clean motion as would be expected
by the mapping being linear. C) Recorded normalized intensity: The intensity recorded
along every step of this co-movement trial. It is visible that after the first couple of steps
the intensity is lost and recovers for some steps to then decreases again.

(along the z-direction) should not yield any overlaps in the Atto 2 positions (also along z).

The intensities displayed in Fig.(40C) further points towards an issue. For an optimal co-

movement these normalized intensities should be high for all steps. Albeit not optimal, the

first couple of steps performed by the stage match the predicted steps from the mapping

closely. After∼ 70 steps the intensity is lost completely and then semi-periodically recovers

for a brief window to fall off again shortly after.

To further showcase the problem at hand we look at Fig.(41A). In blue we see the positions

that are predicted through the mapping dictated by the sensitivity matrix A from Eq.(102)

applied on the Atto 1 positions. In orange we see the positions Atto 2 actually moved to

(same as Fig.(40B)). For the central steps the positions overlap which explains why the

intensity holds in the beginning but drops thereafter. This supports the claim that the

movement commands sent to the stages do not lead to the expected positioning.

As to the semi-periodic recoveries of the intensity seen in Fig.(40C) we turn to Fig.(41B).

The blue graph in this figure shows the differences between the predicted movement and

the actual movement (in absolute values). The orange graph is the intensity recorded

for each step. What can be seen here is that for the cases where the difference in these
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Figure 41: A) Discrepancy between the calculated predictions and the actual posi-
tions: In blue we display the predictions according to the mapping calculated through the
sensitivity matrix A from Eq.(102) applied to the Atto 1 positions seen in Fig.(40A). In
orange we see the actual positions Atto 2 moved to (same as Fig.(40B)). B) Revivals of
the intensities: In blue we see the (normalized) differences between the calculated Atto 2
positions and the actual Atto 2 positions. In orange the intensity for every step is depicted
(same as Fig.(40C))). When the differences between the predicted and actual positions are
small the measured intensity slightly rises.

positions is small, the intensity slightly recovers which explains the revivals. While not

being strong evidence, this could point towards the capability of the mapping to recover

the intensity.

Next steps and potential improvements:

In order to be able to clearly argue for or against the ability of this mapping through

first differences to recover the intensities as assumed, we have to find the problem in po-

sitioning. This issue is most likely found within the code for this leading and following

movement. The control of the piezostages can at times be quite complex, due to a variety

of different types of movements these devices can perform (see Wilfried Philips thesis [80]).

Finding the correct mode of operation is often times a trial and error process. Once the
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correct mode is found we can directly see how well the mapping holds the intensity over

the movement and depending on this, we will determine the necessity of the recovering

algorithm discussed in section 4.2.2.

A second previously discussed approach that will also be tested in the near future is the

direct mapping discussed in section 4.2.2. As the calculation of the sensitivity matrix A

already requires to find the direct mapping (see Fig.(39B)) this is a matter of writing

a control algorithm that gradually moves through these optimal positions. A step wise

intensity check in the manner of Fig.(40C) can be produced to confirm a constant coupling

into the HCF. Once the basic principle of this is demonstrated with the wider step size

of the scan from Fig.(39B)), a more narrow scan can be performed that will enable the

movement to arbitrary positions within the scanned area, without the loss of coupling into

the HCF.

Once the successful co-movement of the stages without loss of coupling is demonstrated,

the first tests with nanoparticles in the HCF can commence. From there we use the “Scan

and shoot” or the “Direct deposition” method to find the center of the standing wave

target trap, completing the alignment of the hollow core fiber.
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4.3 Electronic trigger

With the HCF aligned to the optical trap there is need for one additional update in the

system. Namely a triggering mechanism to prevent the passage of the particle through

the optical trap at pressures bellow the millibar regime.

4.3.1 Necessity for a triggering mechanism

As mentioned in section 2.2 the gradient force acting on a dielectric nanoparticle is a

conservative force. Meaning in absence of any dissipative force, a particle will feel the same

acceleration towards the trap center when entering the optical trap, as the deceleration

towards the trap center upon leaving it. This is not a problem for the case of high gas

pressures, as the drag exerted on the particle by the background gas upon entering the

trap is enough to reduce the oscillator’s kinetic energy to the point where the restoring

force can keep it confined in the trap. This turns into a problem upon leaving the viscous

flow regime, as the reduced gas damping is not enough to keep the particle inside the trap.

In order to circumvent this problem we employ a triggering mechanism that only activates

the optical trap we want to deliver the particle to, once the particle transverses its center.

The tweezer is switched on and the particle is decelerated towards the trap center. Meaning

that as long as the kinetic energy of the incoming particle does not exceed the height of the

potential well the particle should be able to stay in the trap. Looking back at the stability

criterion from Eq.(28) and the Fig.(8 & 10) one can see that a velocity of v ≈ 5 mm
s , results

in a kinetic energy of Ekin ≈ 0.01 kbT . This is almost four orders of magnitude below the

unstable regime in Fig.(8 & 10).

Fig.(42) shows the schematics of the three situations mentioned above. In Fig. (42A) the

yellow background represents the presence of a background gas with gas damping γ. A

particle with some initial velocity enters the optical potential and stays in the trap due to

the damping provided by the gas. In part B there is no dissipative force present and the

particle will just transverse the trap and leave it with the same velocity that it entered

with. In part C the trap is only switched on once the particle arrives in the trap-center,

thus feeling only an inward deceleration and therefore enable trapping.

4.3.2 Trigger principle

In order for the trigger to successfully keep the particle from shooting through the tweezer,

the increase in trapping-intensity has to happen at a time the particle is positioned close

to the trap center. To do so, the motion detection of the particle in the optical trap can

be used in the following way:

If, in opposition to what has been shown in Fig.(42C), the trapping-intensity is not zero

from the beginning but only very small, light will still reach the split detection. When
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Figure 42: Handover cases: A) With background gas: A nanoparticle entering an
optical trap with some initial velocity. The yellow shading signifies the presence of a
background gas of damping γ. The gas damping introduces a friction term that dissipates
the kinetic energy of the particle to a point where it is stably trapped in the optical
potential. B) No background gas: No background gas is present and the particle is
accelerated inwards towards the trap center with the same magnitude as it is decelerated
inwards upon leaving the trap. Thus the particle keeps the initial velocity and is not
confined by the trap. C) With trigger mechanism: The switching mechanism where the
potential is only turned on once the particle transverses the trap center.

there is no particle in the optical trap, the detection signal will display a small voltage

around zero with a variance given by the noisefloor of the detection. The moment the

particle enters the shallow trap, it will begin to scatter more light into one, or the other

half of the split detection. This in turn significantly increases signal variance. This increase

can be used as a point in time at which (or shortly thereafter) the trap intensity has to

be increased.

In order for an electronic circuit to notice this increase in variance, the following method

to process the detection signal (schematically depicted in Fig.(43)) was devised.

With no particle in the trap, the signal recorded at the split detection has a very low

voltage (orange line in graph A), which at first has to be amplified to more handy levels

(blue signal). The time te is the time when the particle starts to scatter light from the

trap into the detection. The signal is rectified (graph B). To smooth out the signal and get

a clear increase at the time the variance rises, a lowpass-filter with a cutoff frequency of

ωcut ≈ Ωz/50, where Ωz is the particle frequency in the axial direction, is applied (graph

C). In the final step of the circuit a Schmidt-trigger or comparator with a tuneable setpoint

is used to create the final TTL signal that is sent out to increase the trapping intensity.
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Figure 43: Trigger principle: Graphs A)-D) show the processing of a signal coming from
the split detection to the trigger. The input signal has a small voltage which increases in
variance at the “trap-entering” time te. In the first step the signal is amplified to simplify
the following steps. The amplified signal is rectified, after which a lowpass-filter with
a cutoff frequency in the range of ωcut ≈ Ωz/50, where Ωz is the particle frequency in
the axial direction, is applied. Finally a comparator or Schmidt-trigger is applied to the
filtered signal that gives out a TTL signal, given a certain setpoint is reached.

As can be seen in graph D, the time ts at which the comparator “shoots” the high signal,

is not the same as the entering time and has a certain delay δtrig = te − ts. This delay is

caused by different factors in the circuit design and will be discussed in the next section.

Finally a short note on the choice of the cutoff frequency: a higher or lower cutoff could

be chosen but at much higher cutoffs noise in the empty detection signal could make the

trigger shoot randomly. In the same way a low cutoff frequency can make it difficult to

choose the correct setpoint.

4.3.3 Circuit realization and testing

This section will discuss the realization of the circuit performing the signal-processing

described in the previous chapter. Fig.(44) depicts the trigger circuit.

In a first step the small input signal Vin is amplified in the inverting operational amplifier

circuit to the signal V1 =
Rpot1

R1
Vin. Next, this amplified signal passes through a rectifier as

is described in [82]. In short, OP2 in combination with the two diodes acts as a one-way

rectifier resulting in the voltage V2 = −V1 for the case of V1 ≥ 0 and to V2 = 0 for the case

of V2 ≤ 0. Ignoring the capacitance C making up the lowpass filter, the third operational

amplifier is placed in as a regular amplifying circuit giving out V4 = −(V1 + 2V2). This
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Figure 44: Trigger circuit: The trigger circuit consisting of the four steps discussed in
the previous section. The input signal Vin is amplified in the first step by an inverting
operational amplifier circuit. In the next step a rectifier consisting of two more opera-
tional amplifiers is implemented. By placing a resistor and a condenser in parallel to the
second Op-Amp the output signal is lowpass filtered to the first order. In the final step
a comparator consisting of a final Op-Amp is implemented. Its set-point is adjusted with
another potentiometer. The output voltage Vout = 0 if the filtered signal does not rise
above the setpoint. If it rises above the set value, the circuit outputs Vout = +V

gives:

V4 =

V1 V1 ≥ 0

−V1 V1 ≤ 0
(104)

And thus rectifying the input signal. If now the capacitance C is added, V4 is additionally

first order lowpass filtered with a cutoff frequency of ωcut = 1
R2C

.

In the final step V4 is connected to the last amplifier OP4 acting as a comparator. The

ouput Vout = 0 as long as V4 ≤ Rpot2

R3
(+V ). If the voltage V4 rises above this setpoint the

output switches to Vout = +V creating the desired output signal.

Functionality and internal delay testing

We initially tested the trigger with two different signals: a constructed “dummy-signal”

and handover traces measured in the setup built for Jakob Riesers master thesis [16].

Fig.(45) shows the response of the trigger for these two types of test signals.

In Fig.(45A) a white noise signal followed by a sine like voltage with higher variance was

chosen to test the circuit. With the setpoint at 15 mV the trigger gives out the expected

5 V signal once the variance switches above this value. In Fig.(45B) a recorded handover

signal was chosen as test signal. This data of a transfer from hollow core fiber to an optical

tweezer was performed at high pressures, with slow particle velocity and as can be seen,

this data is already bandpass filtered. The particle falls into the trap at a te = 1.3 ms and
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Figure 45: A) Dummy-signal: The “dummy-signal” made up of a white noise part with a
low variance and a superposition of several sine-waves with a high variance was fed into the
trigger. With a setpoint of 15 mV the response of the trigger is depicted. B) Handover test
signal: An actual (bandpass-filtered) handover trace was fed into the trigger for testing.
At about 1.3 ms the particle enters the trap here which is registered by the trigger.

the setpoint is fixed to 13 mV. Here it is visible that the output of the trigger falls back

to 0 after a short time, as the variance decreases again.

Additionally to these test signals the functionality of the trigger was tested in a sepa-

rate setup [16] with the following parameters: low laser power P1 = 200 mW, high laser

power P2 = 950 mW in an λ = 1064 nm trap of waist ω0 = 770 nm. With the help of the

trigger the lowest pressure at which handovers could be performed there was pushed from

p ≈ 5 mbar to p = 6.5·10−2 mbar which was the base pressure of the vacuum system in use.

The internal delay of the trigger was measured upon sending a rectangular signal into the

circuit and monitoring the delay time after each component (differently colored regions in

Fig.(44)). We found that almost all of the delay enters at the lowpass filter of first order.

To precisely measure the delay of the whole circuit a rectangular signal of f = 200 kHz

was used as an input signal, a certain setpoint was defined and the time until the trigger

rises is measured and reported in Fig.(46A) for three different cutoff frequencies.
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Figure 46: A) Trigger response: A rectangular input signal of 200 kHz frequency is fed
into the trigger and the setpoint is fixed at 126 mV. The input signal variance is increased
above the setpoint and the time until the trigger reaches its 5V output is measured for
three different values of the cutoff frequency. B) Internal delay: The internal delay of the
trigger for different cutoff frequencies. For cutoff frequencies in the “unstable regime” the
averaging done by the lowpass filter of the trigger is so low, that the output is not stable
anymore. The three colored crosses indicate the three trigger signals in graph A.

Fig.(46B) shows the internal delay for several cutoff frequencies. Here it is visible that

a higher cutoff frequency results in a shorter internal delay. Increasing ωcut ever higher

to decrease the delay of the trigger is not possible: beyond a certain cutoff frequency the

averaging done by the lowpass filter is not efficient anymore and the rectified signal is

sent directly to the comparator. As this means random fluctuations are not smoothed

anymore, the trigger will tend to output a signal when it is not supposed to. This be-

havior starts to appear for frequencies ωcut > 110 kHz and is indicated by the red region

in graph B. This means, one has to find a sweet spot between short internal delays and

stable trigger-outputs.

In order to figure out which delays are within the acceptable range to still perform a

successful handover, we take a short look at the trapping geometry. In the optimal case

the trigger raises the trap intensity in the exact moment the particle arrives in the trap

center. If the trigger shoots too early and the particle is only on the outer edges of

potential, it will feel the complete inwards acceleration and thus behave as if there was no

trigger-mechanism at all. If the trigger shoots too late the particle will only see a reduced

inwards deceleration, potentially too little to keep it in the trap. Assuming a trap waist

of ω0t = 1.15µm we can use the expression for the velocity of the particle in the standing

wave, namely v = λ∆/2 to calculate the optimal delay, between the particle entering the

trap and the power of the trap increasing, so that the nanoparticle is located closest to

the trap center. Fig.(47) depicts these delay times for detunings from 1 Hz to 1 MHz.
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Figure 47: Optimal delay: The graph shows the optimal delay times between the particle
being registered by the trigger and the trigger shooting/intensity increasing for a given
detuning of the standing wave trap. These optimal times were calculated for a trap waist
of ω0t = 1.15µm. The red area shows the minimal internal delay of the trigger and thus
excludes optimal delays for detunings beyond ∼ 20 kHz.

From Fig.(46) we see that there is a minimal internal delay of the trigger circuit. Thus if a

particle was to get to the trap center in a time shorter than this delay, the trap would not

be able to snap at the optimal time. This is shown through the red area in Fig.(47) and

means for this concrete case that handovers for detunings much bigger than ∆ = 20 kHz

will get less and less likely. At this point there is, however, no reason known why larger

detunings should be necessary.

Integrating the trigger into the setup

Here we present the complete scheme to implement the trigger into the setup in order to

not only control the increase in trapping power but also include timed parametric feedback

cooling. Fig.(48) depicts the necessary components to accomplish these tasks.

Going through Fig.(48) from the left we see AOM1 and AOM2 (see Fig.(21)) creating the

trapping and cooling beams. These two rays are recombined before the vacuum chamber

with the experiment (here denoted by “setup”). The beams are monitored at a detector

and its output signal is split in two. Starting with the line going into the trigger and

ignoring the one going into the RedPitaya for now: when the particle enters the optical

trap, the output signal of the detector shows an increase in variance. The output of the

trigger signal is further sent into a TTL-input of a function generator which produces a

stable 5 V when detecting a rising slope. In addition the signal can be arbitrarily delayed

to optimize the timing according to the optimal delay. The signal is further sent to two

switches. Switch 1 controls the magnitude of the RF-signal sent to AOM1 and switch 2

controls the RF-signal that is sent to AOM 2 to perform the parametric feedback cooling.
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Figure 48: Trigger integration: In order to increase the intensity of the trapping beam,
the acousto optic modulator (AOM 1) that creates the trapping beam is used. The increase
in intensity is achieved by sending the signal from the trigger at first to a TTL-input of
another function generator and then to an electronic switch 1. The switch will change the
input of AOM 1 from low to high and by that increase the trap-depth. Additionally the
TTL signal is sent to a second switch 2. This switch is used to start the modulation of the
trapping intensity in order to cool the center of mass motion of the particle. The cooling
signal itself is created by diverting a part of the detection into a “RedPitaya” FPGA. The
ouput of switch 2 is sent into the modulation input of a variable attenuator which adjusts
the RF signal driving AOM2 accordingly.

Upon a particle entering the trap the trigger shoots, creating the 5 V signal from the

function generator. This in turn flips switch one, effectively increasing magnitude of the

RF-signal being sent to AOM 1, and therefor increasing the trap depth. At switch 2

the flip will lead to the modulation created for the parametric feedback cooling in the

RedPitaya to be sent to AOM 2.
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4.4 A complete HCF loading recipe

The previous sections have established all the necessary components required to hand

over a particle from a HCF into an optical trap located in a high or ultra high vacuum

environment. Here a complete “recipe” from the situation where the HCF is not aligned

to the optical trap, to a particle optically trapped at pressures in the UHV regime as we

plan it is detailed. The process is divided into four steps:

1. HCF pre-aligment: The initial stage of pre-alignment is not performed through the

methods described in section 4.2.1 but is performed by moving the HCF through

the trap and monitoring the light scattered off it through a CCD camera sensitive at

wavelengths around 1550 nm. This camera is placed on top of the vacuum chamber

and looks down onto the experiment. The stage is moved along the ±x direction

(for reference see Fig.(30)). By moving through the trapping beam in a constant

velocity the approximate mid of this beam can be found through monitoring of

the light scattered by the fibertip onto the CCD camera. Next the stage is moved

in the ±z direction. At the left and right edges of this movement the fiber will

once again pass through the trapping beam and scatter it. By middling between

these positions an approximate center is located in the z-direction. Finally in the

y-direction the fiber can approach the trap to the position just before light from the

tweezer is scattered off it and the fiber would clip the beam. This concludes the

initial positioning of the fiber.

2. HCF alignment with co-moving stages: The light from the reflected arm is re-

coupled into the HCF using the mirrors and the telescope of the 4f configuration

outside the chamber. Now the nebulizer is turned on and particles are slowly diffusing

into the loading chamber by gently opening the vacuum valve. The detuning in one

of the AOMs is turned to a typical value of ∆ = 10 kHz, giving particle velocities of

v = 5 mm/s. Depending on the particle concentration in the isopropanol solution of

the nebulizer, particles are pulled into the fiber at rates between 1-50 per minute.

From here either the “scan and shoot” or the “direct deposition” method from

chapter 4.2.1 can be used to scan an area around the pre-aligned position. Once the

center of the trap is found the next step can commence.

3. Initial high pressure handovers: Having the fiber now positioned to the trap, the

initial handover tests can commence. For the first handovers performed after a new

alignment run, the vacuum system is not immediately at UHV conditions but in a

regime where feedback cooling is not yet necessary (> 10−1 mbar). Here the trigger

and the connected electronics are switched on as described in the previous section
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(see Fig.(48)). Setting a delay of the TTL-output according to the chosen detuning

is necessary. At this point nanoparticles are once again diffused into the loading

chamber from the nebulizer, the detuning is turned to the chosen value and the

particles begin to be trapped in and move up the HCF. When the particle exits the

HCF and moves into λ = 1550 nm standing wave trap, the detection signal increases

in variance, the trigger picks this up and the process described in the previous

section sans the parametric feedback cooling activated by switch 2 takes place. If

the handover is successful, the detuning in the HCF standing wave is reversed, the

fiber is emptied of particles and the light through the fiber is either blocked or turned

off. If on the other hand no particle was trapped, the TTL-output is reset and the

next attempt is started.

4. Low pressure handovers: Once a particle is trapped in the λ = 1550 nm standing

wave and the HCF light is turned off, the parametric feedback cooling is started

and the pressure in the chamber is reduced. A pumpdown from 10−2 mbar to <

10−9 mbar will take up to days, which is why the alignment should not be altered

anymore afterwards as this would require a redo of the previous steps. As the bakeout

of the chamber happens even before the first step we expect no change in alignment

during the pumpdown. Once the base pressure is reached, all the system parameters

are fixed and the setup is ready for direct loading into UHV. The particle currently

in the trap can be removed and the previous steps are repeated, with the adjustment

that switch 2 is connected this time. Thus when a particle enters the trap, not only

does the intensity increase but the parametric feedback is activated.

This method establishes a clean, and deterministic way to enable optical levitation in UHV

conditions that additionally is also very fast, with the longest process being the particle

traversing the HCF lasting for about 3 minutes.
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5 Conclusion and outlook

During the course of this thesis, we have described initial steps in the implementation

of a new experimental setup that is designed maximize the coherence times of levitated

nanoparticles. Specifically, it aims to meet the requirements of an envisioned interference

experiment with nanoparticles of mass 109 amu in a non-cryogenic tabletop environment.

We focused in particular on two technical aspects that are highly relevant for enabling the

experimental realization of this ambitious project:

1. Standing wave trap and detection: A λ = 1550 nm standing wave optical trap

located in an ultra high vacuum compatible chamber was set up. Additionally

a sophisticated detection scheme using a Sagnac interferometer to filter the high-

information bearing photons, back-scattered by the particle, from the rest of the

light, was conceived, set up and aligned. The extinction ratio of the interferometer

was measured to be in order of 4 · 103. We estimate that an increase of this ratio by

one or two orders of magnitude will enable groundstate cooling of the nanoparticle

motion along the detected degree of freedom.

2. Nanoparticle loading at UHV: We use the already established method of loading

nanoparticles into optical traps using hollow core fibers [16] and further extend it

for usage in ultra high vacuum environments. Specifically we developed two new

methods:

(a) HCF alignment: In order to align the HCF to the target optical trap we devised

a novel approach using co-moving piezo-stages. These circumvent the need for

an a priori particle in the trap as was required in the previous version of the

HCF-loading method and therefor extend its range of usage into the UHV

regime.

(b) Electronic trigger: A triggering mechanism increasing the optical trap depth

upon a particle entering the standing wave trap was developed. This is required

as at pressures below the viscous flow regime the drag force exerted onto the

particle by the background gas is not strong enough to prevent it from traversing

the trap upon handover from the HCF.

Both of these methods are described in detail and preliminary results are presented.

Currently the co-movement of the piezo-stages is not yet fully operational. There is still a

prevailing issue concerning the application of the calculated mapping. As of this moment,

the plan as described in section 4.2.6 to either find the issue in the current mapping or

roll back one step towards the direct mapping, is in motion. Once the basic functionality
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of the motion according to either of the mappings is demonstrated, a finer map can be

produced to enable the movement of the stages to arbitrary positions within the scanned

areas, without the loss of coupling into the HCF.

The next step from there is to demonstrate the ability to find the λ = 1550 nm trap

through either the “Scan and shoot” or “Direct deposition” method. Being able to posi-

tion the HCF correctly with respect to the optical trap will allow the first handover trials

as described in the recipe presented in the last chapter of the thesis to commence.

Once this loading mechanism is completely operational and one can reliably transfer par-

ticles at ultra high vacuum conditions the big roadblock hindering the access to coherence

times of the particle wavepacket going towards 102 ms is removed. From there on, the

next challenges on the way towards the fully functioning matter-wave interferometry ex-

periment for dielectric nanoparticles of masses above 109 amu can be approached.

88



References
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