
DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

Benchmarking in Cluster Analysis - Insights into Theory and
Application

verfasst von / submitted by

Mag. Rainer Dangl

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien 2021 / Vienna 2021

Studienkennzahl lt. Studienblatt / UA 786 880
degree programme code as it appears
on the student record sheet:

Dissertationsgebiet lt. Studienblatt / Informatik
field of study as it appears on the
student record sheet:

Betreut von / Supervisor: ao. Univ.-Prof. Mag. Dr. Marcus Hudec
Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. techn. Friedrich Leisch

Acknowledgements

This thesis marks the end of a long period of study, beginning with my teacher
training studies in English and Computer Science in the winter semester of 2004/05
and the subsequent doctoral degree in Computer Science. This has been an in-
credibly rewarding time and there are a number of people who I want to mention
here.

First, I want to thank my thesis supervisors Marcus Hudec and Friedrich Leisch
for the many years of support, guidance and patience. The valuable experience I
was able to gain during my doctoral studies made the years of study absolutely
worthwhile.

Another very important group of people are all my current and former colleagues
and study companions. In particular I want to thank Christoph Grapa, who has
become a great friend of mine and who has helped me in more than just one
mathematical emergency.

Finally, I am most grateful to my family. Without their support, this endeavor
would not have been possible. I want to thank my parents Elisabeth and Jo-
hann for their confidence throughout all these years, my wife Irene and my sisters
Bernadette and Gabriela for their emotional support and particularly my grand-
mother, who never stopped believing in me.

Abstract

This doctoral thesis covers the topic of benchmarking in cluster analysis from
two perspectives. After introductory chapters on clustering models and their val-
idation, a benchmarking study on a specific question is first discussed, namely
whether stability-oriented validation of clustering models offers a decisive advan-
tage compared to simple validation and, if so, whether the way of drawing the
resampling data sets from the overall data set plays a role. This issue is considered
in the context of internal and external model validation. Results show that when
clustering models are externally validated, a resampling-based approach tends to
yield better results. Lessons learned from the conduct of the study prompted a
discussion on general concepts for conducting benchmarking. This ranges from
considerations such as systematic and transparent documentation of data sets,
simulation parameters and design of the study to a concrete proposal of a gram-
mar for benchmarking in clustering. Here, the essential building blocks of a study
(data, methods, validation criteria) are assembled in the form of a benchmarking
object and an implementation of the same in R is presented. This solution allows
an easy combination of the building blocks into a clearly structured object, which
contains all parameters and elements for the execution of the benchmark. Further-
more, the thesis deals with a concrete subarea of benchmarking, the generation
of artificial data. For this purpose, an R package was developed that allows to
generate artificial data using simulation setups. The latter describe the metadata
of one or more data sets in a clearly specified form. From this metadata, the R
package can subsequently generate the actual data sets. This should greatly fa-
cilitate transparency and reproducibility of studies. As a way to efficiently collect
and access these simulation setups, a web application was also designed.

Zusammenfassung

Die Dissertation behandelt das Thema Benchmarking in der Clusteranalyse aus
zwei Perspektiven. Nach einführenden Kapiteln zu Clusteringmodellen und deren
Validierung wird zunächst eine Benchmarkingstudie zu einer konkreten Fragestel-
lung behandelt, und zwar ob stabilitätsorientierte Validierung von Clusteringmod-
ellen einen entscheidenden Vorteil im Vergleich zu einfacher Validierung bietet
und wenn ja, ob die Art und Weise des Ziehens der Resampling-Datensätze aus
dem Gesamtdatensatz eine Rolle spielt. Diese Fragestellung wird im Zusammen-
hang mit interner und externer Modellvalidierung betrachtet. Ergebnisse zeigen,
dass bei externer Validierung von Clusteringmodellen ein Resamplingbasierter Zu-
gang tendenziell bessere Ergebnisse liefert. Erkenntnisse aus der Durchführung
der Studie zogen Überlegungen zu grundlegenden Konzepten zur Durchführung
von Benchmarkingstudien nach sich. Dies reicht von generellen Überlegungen wie
beispielsweise systematische und transparente Dokumentation von Datensätzen,
Simulationsparametern und Design der Studie bis zum konkreten Vorschlag einer
Grammatik für Benchmarking im Clustering. Dabei werden die grundlegenden
Bausteine einer Studie (Daten, Methoden, Validierungskriterien) in Form eines
Benchmarkingobjekts zusammengesetzt und eine Implementation desselben in R
präsentiert. Dies ermöglicht ein einfaches Zusammensetzen der Bausteine zu einem
klar strukturierten Objekt, das alle Parameter und Elemente für die Durchführung
des Benchmarks enthält. Weiters beschäftigt sich die Dissertation mit einem
konkreten Teilgebiet von Benchmarking, der Erzeugung von künstlichen Daten.
Zu diesem Zweck wurde ein R Paket entwickelt, welches es ermöglicht künstliche
Daten mit Hilfe von Simulationssetups zu erzeugen. Letztere beschreiben die Meta-
daten eines oder mehrerer Datensätze in einer klar vorgegebenen Form. Aus diesen
Metadaten kann das R Paket in der Folge die tatsächlichen Datensätze erzeugen.
Dies soll Transparenz und Reproduzierbarkeit von Studien deutlich erleichtern.
Als Möglichkeit diese Simulationssetups effizient zu sammeln und zugänglich zu
machen wurde zudem eine Webapplikation entworfen.

Contents

Introduction 1

1. Data Clustering 3
1.1. Background . 3
1.2. Definitions . 3

1.2.1. Supervised vs. Unsupervised Classification Problems 3
1.2.2. Clusters and Groups . 4

1.2.2.1. Proximity Measures 6
1.3. Cluster Algorithms . 8

1.3.1. Non-Parametric Partitional Methods 9
1.3.1.1. k -centers Methods 9
1.3.1.2. Density Based Clustering 13
1.3.1.3. Implementation in R 20

1.3.2. Hierarchical Clustering . 20
1.3.2.1. Agglomerative Hierarchical Clustering 21
1.3.2.2. Cluster Linkage . 22
1.3.2.3. Implementation in R 24

1.3.3. Parametric Methods . 24
1.3.3.1. Gaussian Mixture Models (GMM) 26
1.3.3.2. Implementation in R 29

1.4. Cluster Analysis . 29
1.5. Summary . 30

2. Cluster Validation 31
2.1. Background . 31
2.2. Assessing Cluster Validity . 31

2.2.1. External Measures . 32
2.2.1.1. Selected Examples of External Indices 32

2.2.2. Internal Measures . 34
2.2.2.1. Selected Examples of Internal Indices 35

2.2.3. Issues with Internal and External Validation 39

2.3. Cluster Stability . 39
2.3.1. Stability Based Cluster Validity Methods 43

2.3.1.1. Model Explorer . 43
2.3.1.2. Figure of Merit . 44
2.3.1.3. Stability Based Model Order Selection 45
2.3.1.4. Consensus Clustering 46
2.3.1.5. CLEST . 47
2.3.1.6. Prediction Strength 49

2.4. Summary . 51

3. An Evaluation of Resampling Based Cluster Validation 53
3.1. Background and Related Work . 53
3.2. Resampling Methods . 54
3.3. Data . 56
3.4. Benchmarking Setup . 58

3.4.1. Experimental Design . 58
3.4.2. Simulation Settings . 59
3.4.3. Hardware and Software . 59

3.5. Results . 59
3.6. Summary . 71
3.7. Conclusion . 71

4. Elements of Benchmarking in Cluster Analysis 77
4.1. Background and Related Work . 77
4.2. Grammar as a Data Structure . 81
4.3. Building Blocks of a Benchmarking Grammar 82
4.4. Prototypical Implementation in R 83
4.5. Summary . 92

5. A Framework for Transparent and Reproducible Generation of Arti-
ficial Data 93
5.1. Background . 93
5.2. Framework Design and Terminology 94
5.3. Metadata . 95

5.3.1. Data Types . 96
5.4. The R Package bdlp . 99
5.5. The Web Repository . 105
5.6. Summary . 106

Conclusion 115

Bibliography 117

List of Figures 137

List of Tables 139

A. Prototype Code 141

Introduction

This doctoral thesis was written to look at the topic of benchmarking in unsu-
pervised learning, especially clustering, from several perspectives. First research
initiatives focused on, as outlined in the thesis expose, the foundations of stability
based cluster validation along with a benchmarking study addressing a concrete
data analytical problem of resampling approaches in stability based validation.
Results of this study were shared with project partners in Australia and provided
an insight into the interrelations between validation measures, resampling strate-
gies and validation methods. An introduction to data clustering, stability based
validation and the benchmarking study are discussed in chapters 1, 2 and 3.

Conclusions and experiences from the benchmarking study inspired a wider dis-
cussion on the nature of benchmarking in cluster analysis. Particularly, difficulties
in reproducibility and comparability of studies were a notable factor in investigat-
ing a general structural framework that should govern the setup of benchmarking.
A review of rules, guidelines and recommendations is done in chapter 4, along with
a prototypical implementation of how a structural frame of benchmarking in R may
be achieved. The thesis expose highlights the importance of a grammar for bench-
marking as a framework for implementing benchmarking studies in a transparent,
reproducible and comparable manner. Chapter 4 addresses this by introducing
elements that function as basic components of a grammar for benchmarking.

Furthermore, chapter 5 addresses another aspect that forms part of a bench-
marking grammar, the generation of simulation data. As mentioned in the thesis
expose, in cooperation with the IFCS task force on benchmarking, an R pack-
age was developed that aims to significantly improve the transparency and repro-
ducibility of artificial data. This is done by establishing the notion of a metadata
object in R that encapsulates all information necessary to generate actual data.
This should serve as another piece in the puzzle that comprises the problem of
how to address benchmarking in cluster analysis.

1

2

1. Data Clustering

1.1. Background

Data clustering is an unsupervised machine learning method that seeks to find
significant patterns or features in a given data set, without the help of a teacher
[110]. This can be done for various reasons, such as data reduction (computing
cluster centers as representatives), hypothesis generation and testing and for pre-
dictive purposes (obtaining a classification based on a cluster model for new data)
[85, 110, 178]. Furthermore, applications of clustering can be found in a wide
range of disciplines, for example operations management [205], business processes
[183, 205], bioinformatics [5], biomedical technology [5, 183, 204] and computer
vision [167].

This chapter reviews general concepts of clustering methods, discusses relevant
terminology and algorithms and thus establishes the foundation for the discussion
in the chapters thereafter.

1.2. Definitions

This section discusses basic notions, definitions and terminology with regard to
(un)supervised learning, clustering approaches and methods along with some il-
lustrative examples.

1.2.1. Supervised vs. Unsupervised Classification Problems

To begin with, the goal of machine learning is to obtain a model that has been
computed on the basis of some training data that can then predict values of new
data points, which can either be qualitative or quantitative. If these predicted
values are indeed quantitative in nature, one denotes this as a regression model, in
the case of qualitative output values as a classification model [21]. In the following
discussion and indeed chapters, we shall focus exclusively on the classification
domain.

The training data that is required to compute a model can be defined as a set
of predictor variables XT = (X1, ..., Xp), where p is the number of variables, and
the values that are to be predicted can be defined as a set of response variables

3

Y = (Y1, ..., Ym) where m is the number of those variables (as there can be more
than just one). The data points, or inputs are defined by xTi = (xi1, ..., xip) where
xi is the ith data point in the training data set [77].

This basic terminology applies to machine learning in general. If the model is
based on a training data set that includes response measurements yi in the form
of (xi, yi), ..., (xN , yN) where N is the number of of data points, the model is based
on a supervised learning method [77]. This is because the training data includes
an already known response variable that shall be predicted for new data. Thus,
the method can basically evaluate each xi and the computed response variable ŷi
with regard to yi that is provided in the training data. The error that needs to
be minimized in order to fit the model as well as possible to the training data is
generally characterized by some loss function L(y, ŷ), e.g. L(y, ŷ) = (y − ŷ)2 [77].

The other possibility is to conduct the computation of the classification model
without the already known response variables in the training data, thus only the set
of N observations (x1, ..., xN) is provided. This means that the the learning process
is unsupervised. As already mentioned, the purpose of qualitative classification is
to obtain a model that can detect groups of observations that are in some shape or
form similar. With regard to unsupervised learning, this task is called clustering.
There are other unsupervised learning methods, however. Principal Components
Analysis (PCA) and Multidimensional Scaling (MDS), where high dimensional
data are projected to a lower (e.g. two or three) dimension, are examples for
unsupervised learning methods often applied for the purpose of data visualization
and dimensionality reduction [21]. Association rule analysis is another method
that tries to find rules that govern the occurrence of joint values of variables in a
data set. For the case of binary data where Xj ∈ 0, 1 and X = (X1, X2, ..., Xp),
this is commonly referred to as market basket analysis [77]. For the subsequent
sections and chapters, we again narrow the scope from qualitative classification to
unsupervised classification, i.e. clustering.

As already mentioned, in a nutshell, the goal of clustering is to separate a finite,
unlabeled training data set X into a finite and discrete set of natural groups [67,
86, 98, 112, 203]. In the following section, clustering criteria and their relevance
for the notion of what precisely constitutes a cluster/group is discussed.

1.2.2. Clusters and Groups

Cluster analysis has a variety of applications, as already mentioned in section 1.1.
As noted above, in cluster analysis objects are grouped together in clusters where
objects within the same cluster are more similar to each other than to objects in
a different cluster [77]. This naturally raises the question how to define similarity.
Friedman et al. [77] and Kyan et al. [110] note that this cannot be answered
by giving a general definition, but rather depends on the subject matter under

4

investigation, i.e. the thematic aspect that is subjected to optimization by means
of the clustering criterion.

Animal Data Example The importance of the thematic aspect with regard to
the outcome of the cluster analysis is illustrated in an example in Figure 1.1, taken
from Theodoridis and Koutroumbas [178].

sheep

dog

cat
shark

lizard

seagull
sparrow

viper
goldfish
red	mullet

frog

red	mullet

goldfish
shark

sheep

seagull
sparrow

viper
frog

cat
dog

lizard

(b)(a)

sheep
dog
cat

lizard
seagull

sparrow
viper

goldfish

red	mullet

frog

(c)

shark
red	mullet
goldfish

shark

sheep

seagull

sparrow

viper
frog

cat
dog

lizard

(d)

Figure 1.1.: Clusters according to various aspects

Several animals are organized into clusters according to different aspects. There
are mammals (sheep, dog, cat), birds (sparrow, seagull), reptiles (viper, lizard),
fish (goldfish, red mullet, blue shark), and amphibians (frog). Clustering (a) shows
the animals grouped by their progeny as an underlying aspect. Alternatively, if
the existence of lungs is used, clustering (b) is the result. Furthermore, if the living
environment is used, clustering (c) is obtained, resulting in three clusters as the
frog can live in water and on land. Also, it is of course possible to use combinations
of aspects. Clustering (d) is obtained when the animals’ progeny and existence
of lungs is used as the underlying aspects. This shall illustrate that the exact
same data cannot only result in different clusters with regard to the observations
contained therein, but even different numbers of clusters.

If now a certain aspect is chosen that determines in which way observations in
a data set are supposed to be similar to each other, the question arises how to
measure similarity. This is discussed in the next section.

5

1.2.2.1. Proximity Measures

As Friedman et al. [77] claim, a fundamental part in determining the similarity
respectively dissimilarity of objects in a data set is the choice of an adequate
proximity measure: the results are generally expressed by an N ×N dissimilarity
matrix D, where N is the number of observations in the data set and each element
dii′ shows the distance between the ith and i′th observation. Friedman et al.
[77] furthermore note that most algorithms presume such a symmetric matrix
of dissimilarities with non-negative entries and zero diagonal elements (as there
obviously is no dissimilarity/distance between the same object di) as their input.
If then a value xij is given, where i = 1, 2, . . . , N and j = 1, 2, . . . , p and p are
variables (also called attributes or features), the pairwise dissimilarity dj(xij, xi′j)
between observations i and i′ is defined by some aggregate function ζ:

D(xi, xi′) = ζ(dj(xij, xij)) (1.1)

where ζ most often equates to the sum of the components

D(xi, xi′) =

p∑
j=1

dj(xij, xi′j) (1.2)

If dj(xij, xi′j) in equation 1.2 is then substituted with

dj(xij, xi′j) = (xij − xi′j)2 (1.3)

squared Euclidean distance (ED2) is obtained, which as Kyan et al. [110] and
Friedman et al. [77] note, is a very common distance measure:

DED2(xi, xi′) =

p∑
j=1

(xij − xi′j)2 (1.4)

Furthermore, from equation 1.4 one can state Euclidean distance (ED) as follows:

DED(xi, xi′) =

√√√√ p∑
j=1

(xij − xi′j)2 (1.5)

Additionally, a wide range of other possible distance metrics to measure dissimi-
larity exist, summarized in Table 1.1, such as for example a weighted (WED) or
standardized (SED) form of Euclidean distance. WED can be used to put greater
emphasis on one dimension over another, which means that the spherical cluster
structure usually assumed by Euclidean distance can be transformed into an el-
liptical shape. This should help with discovering elongated rather than spherical

6

Distance metric Formulation

Euclidean (ED) dED(xi, xi′) =
√∑p

j=1(xij − xi′j)2

Euclidean Squared (ED2) dED2(xi, xi′) =
∑p

j=1(xij − xi′j)2

Weighted Euclidean (WED) dWED(xi, xi′ , wi) =
√∑p

j=1wj × (xij − xi′j)2

where
wi is a vector of weights wj per dimension j

Standardized Euclidean (SED) dSED(xi, xi′) = dWED(xi, xi′ ,
1
si

)

where
si is the sample variance per dimension j

Mahalanobis (MhD) dMhD(xi, xi′) =
√

(xi − xi′)TS−1(xi − xi′)
where
S is any p× p positive definite covariance matrix
If S = I, then this reduces to ED
If S =

∑
is diagonal, this reduces to SED

(using sample variances)
Manhattan/City block (MD) dMD(xi, xi′) =

∑p
j=1 |xij − xi′j|

Cherbychev (CBD) dCBD(xi, xi′) = maxij|xij − xi′j|
Minkowski (MkD) dMD(xi, xi′) = (

∑p
j=1 |xij − xi′j|m)

1
m

Cosine (CD) dCD(xi, xi′) =
xi×xi′
||xi||||xi′ ||

= cos(θ)

where
θ is the angle between vectors xi and x′i

Pearson correlation (PCD) dPCD(xi, xi′) = 1− rxixi′
where

rxixi′ =
∑p
j (xij−xi)(xi′j−xi′)√∑p

j (xij−xi)
√∑p

j (xi′j−xi′)

is the Pearson Correlation Coefficient
between vectors xi and xi′

Table 1.1.: Commonly used distance metrics in clustering as shown in Kyan et al.
[110]

7

clusters. This can also be achieved by using the standardized form of Euclidean
distance (SED) where each dimension is normalized according to its respective
variance. Consequently, high variance dimensions are shrunk in comparison to
low variance dimensions [110]. A generalized form of this principle is Mahalanobis
distance (MhD), where the correlation in the data is taken into account by using
the inverse of the variance-covariance matrix of the data [49]. This again results
in a weighting that can stretch or shrink the data space [110]. Manhattan dis-
tance on the other hand computes the sum of orthogonal distances between pairs
of observations assuming that movement is restricted to one dimension at a time,
which according to Kyan et al. [110] is much like traveling along paths defined by
city blocks (hence the name). Cherbychev distance (MD), also called maximum
value distance, reduces MD by considering only the maximum value of one dimen-
sion [49]. Minkowski distance, the generalized metric distance (MkD), generalizes
between MD and ED [49, 110]. Cosine distance (CD) takes a completely different
approach, by considering the angle between vectors xi and xi′ . Finally, Pearson
correlation distance (PCD) evaluates whether variations along an entire vector
show a similar pattern as the variations along another vector [110].

1.3. Cluster Algorithms

As already mentioned, the main aim of cluster analysis is to group objects in clus-
ters that are similar to each other. One way to measure this is to use pairwise
dissimilarity of objects where dissimilarity in the same cluster is lower than of
objects in different clusters [77]. In section 1.2.2.1, proximity measures were dis-
cussed that can be used to calculate pairwise dissimilarity; another major choice
in cluster analysis naturally pertains to the cluster algorithm itself. In fact, using
pairwise dissimilarity is only one of many options to cluster data. For example,
Friedman et al. [77] mention three approaches: combinatorial algorithms, mixture
models and mode-seeking. Whereas combinatorial and mode-seeking methods em-
ploy a non-parametric approach to model estimation, mixture modeling does the
opposite: as the name suggests, this approach assumes that the data are com-
posed of a mixture of component density functions, where each component density
describes one of the clusters [77]. Xu and Wunsch [203] alternatively subsume
mixture modeling and combinatorial algorithms such as k -means under the term
partitional clustering and on the other hand hierarchical methods. For the purpose
of the present discussion, the following categorization is used:

� partitional non-parametric methods such as the k-centers family of algo-
rithms (k-means/k-medoids) and density based clustering

� partitional parametric methods such as Gaussian Mixture Models (GMM)

8

� hierarchical methods (single/complete linkage, etc.)

There are obviously considerably more algorithms in the unsupervised learning/-
clustering domain such as neural network methods (e.g. Self Organizing Maps),
probabilistic methods such as Hidden Markov Models or graph-theoretic approaches
(e.g. spectral clustering) [110]. However, the present discussion seeks to outline
the main branches of clustering and the enumeration above encompasses several
quite commonly used methods and serves as a good basis for an overview of clus-
tering methods. In the following, definitions and illustrative examples for the three
categories are discussed.

1.3.1. Non-Parametric Partitional Methods

Exemplary for partitional methods, this section focuses on squared-error methods
such as k-means/k-medoids and density based methods such as the DBSCAN
algorithm by Ester et al. [65]. These methods are non-parametric algorithms,
which means that they assign an observation to a cluster without regard to the
probability model of the underlying data [77].

1.3.1.1. k-centers Methods

As mentioned above - a quite widely used form of determining clusters in a data
set is by measuring dissimilarity between data points. Cichosz [42] claims that
the family of k -centers algorithms are not only the simplest but also most popular
algorithms that follow the dissimilarity approach. The basic algorithm common
to all of the k -centers methods can be described as follows [42]:

1. the number of clusters K (with K < N) is predetermined

2. clusters are represented by single attribute value vectors (i.e. a cluster cen-
ter)

3. the cluster formation and modeling process is done by iteratively assigning
data points to their closest and therefore least dissimilar cluster center and
afterward shifting the cluster centers to reflect the actual content of the
particular cluster

Friedman et al. [77] point out that an assignment of an observation xi of a data set
X where i ∈ 1, . . . , N is done by a so called many-to-one mapping by an encoder
k = C(i) which assigns the ith observation to the kth cluster. The goal is to
determine the encoder C(i) that does this based on the dissimilarities d(xi, xi′) for
every pair of observations in X. In order to compute this, Friedman et al. [77] note

9

that a function that specifies the degree to which the clustering goal is not met
needs to be minimized (essentially, a loss function), an example of this defined as

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′) (1.6)

and commonly referred to as the within cluster point scatter of a clustering C that
calculates how close observations in the same cluster are to each other. Considering
the total point scatter

T =
1

2

N∑
i=1

N∑
i′=1

dii′ =
1

2

K∑
k=1

∑
C(i)=k

(
∑

C(i′)=k

dii′ +
∑

C(i′)6=k

dii′) (1.7)

which is constant for the data set X and

T = W (C) +B(C) (1.8)

where B(C) is the between cluster point scatter given by

B(C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′) 6=k

dii′ (1.9)

and W (C) can also be stated as

W (C) = T −B(C) (1.10)

and shows that the goal of minimizing within cluster scatter results in maximizing
B(C). Importantly, Friedman et al. [77] note that doing cluster analysis in this
way by combinatorial optimization seems simple in principle given equations 1.8
and 1.10. However, optimization by complete enumeration is computationally only
feasible for small data sets due to the number of distinct assignments given by the
Stirling number of the second kind [77, 99, 174, 193]

S(N,K) =
1

K!

K∑
k=1

(−1)K−k
(
K

k

)
kN (1.11)

which, as Steinley [174] notes, for S(25, 4) results in approximately 4.69 × 1013

different partitions. Therefore, finding the global optimum is quite unlikely given
that most clustering problems involve large data sets where only a small part of
possible clusterings C can be examined. Due to this, strategies to find a suitable
local optimum are based on iterative greedy descent where an initial partition is
specified and cluster assignments are modified and thus improved stepwise un-

10

til convergence at a local optimum is reached where no iterative improvement is
observed any more. As it is only possible to examine a small part of all possible as-
signments, the algorithm usually only converges to a local optimum, which can be
sub-optimal when compared to the global optimum [59, 77]. Moreover, k-centers
methods are obviously quite sensitive with regard to the initial configuration of
cluster centers [110]. Still, as Meilă [125] notes, given well separated clusters the
algorithm could indeed converge toward the global optimum. The algorithm for
this kind of combinatorial optimization is thus given by algorithm 1.

Algorithm 1 General algorithm for combinatorial optimization in clustering [42]

Require: a data set X
1: Select initial cluster centers C1, C2, . . . CK
2: while convergence not reached do
3: for all training observation xi, . . . , xN ∈ X do
4: assign observation xi to cluster k = argminkd(xi, Ck)
5: end for
6: for k = 1, 2, . . . , K do
7: modify cluster center Ck based on cluster member set Xk

8: end for
9: end while

k-means The most well known and widely used method that follows algorithm
1 is k-means, which uses vectors of attribute value means as cluster centers [42,
77, 98, 110]. Friedman et al. [77] claim that it is intended for situations where
quantitative variables are used and squared Euclidean distance (equation 1.4) is
chosen as a dissimilarity measure. The within point scatter of equation 1.6 can be
defined as

W (C) =
K∑
k=1

Nk

∑
C(i)=k

||xi − x̄k||2 (1.12)

where x̄ is the mean vector of the kth cluster and Nk is the number of observations
therein. Therefore, assigning observations to cluster centers where the average
dissimilarity is minimized fulfills the convergence criterion of maximizing between-
cluster and minimizing within-cluster scatter stated above in equations 1.7, 1.6 and
1.8. Thus, in order to obtain

C = min
C

K∑
k=1

Nk

∑
C(i)=k

||xi − x̄k||2 (1.13)

11

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Figure 1.2.: iris data clustered with k-means (function kmeans())

given a set of observations S (where m is the mean of the currently assigned
cluster)

x̄S = arg min
C

∑
i∈S

||xi −m||2 (1.14)

the following optimization problem needs to be solved, which is done by an iterative
process based on algorithm 1.

min
C,{mk}

K∑
k=1

Nk

∑
C(i)=k

||xi −mk||2 (1.15)

A simple example of the k-means algorithm using the function kmeans() from
package stats [146] is its application to the iris data set by Fisher [70] along
with a scatterplot that illustrates the three clusters and their centers (Figure 1.2).

k-medoids The regular k-means algorithm has a notable drawback that pertains
to the calculation of the cluster centers: using the mean to minimize within cluster
scatter makes the method vulnerable to noise and outliers which might skew the
mean and distort the cluster centers away from where they should be [119]. An
effective, more robust method that counters this problem is k-medoids, i.e. the

12

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Figure 1.3.: iris data clustered with k-medoids (function pam())

partitioning around medoids method by Rousseeuw and Kaufman [154]. As the
name suggests, it uses so called medoids - selected cluster members that are the
least dissimilar to other members of the same cluster [42, 154]. It thus uses pairwise
dissimilarity to determine these medoids which reduces the impact of outliers or
noise. Furthermore, the cluster centers are not artificial observations, but actually
present in the data. Naturally, as Cichosz [42] notes, calculating pairwise dissimi-
larities results in a considerably higher computational demand than k-means but
can be beneficial in some applications. It certainly also depends on the data set,
as can be seen in Figure 1.3, there are only slight variations in the clustering re-
sult. However, it is clearly visible that the cluster centers i.e. medoids are actual
observations from the data set, not calculated means as in k-means. The model
in this example was calculated using function pam() from package cluster [120]
that is is based on the algorithm by Rousseeuw and Kaufman [154].

1.3.1.2. Density Based Clustering

Another non-parametric partitional method is density based clustering. However,
instead of minimizing pairwise distances between cluster members and a cluster
center as the k-center methods do, it tries to find groups by distinguishing high-
density from low-density areas. Furthermore, density based methods no not require
a pre-specified number of clusters as input and moreover do not make any assump-

13

tions with regard to the underlying probability density p(x) and the variance in
the data [106].

DBSCAN A well known method for density based clustering is the DBSCAN
(Density Based Spatial Clustering of Applications with Noise) by Schubert et al.
[161], an abstract description of the method is given in algorithm 2.

Algorithm 2 Abstract DBSCAN algorithm [161]

1: Compute neighbors for each point and identify core points
2: Join neighboring core points into clusters
3: for all non-core points do
4: Add to a neighboring core point if possible
5: Otherwise add to noise
6: end for

The DBSCAN method uses a simple minimum density level estimation, based on
a minimum number of points (minPts) within a radius ε (based on some distance
measure d) [161]. The ε neighborhood of an observation xi ∈ X and other points
xi′ is defined as [65]

Nε(xi) = {xi′ ∈ X|d(xi, xi′ ≤ ε)} (1.16)

Data points with more than a certain minimum number of observations (minPts)
within ε and thus Nε(xi) ≥ minPts are considered so called core points. If two
points xi and xi′ satisfy

xi ∈ Nε(xi′) (1.17)

and

Nε(xi) ≥ minPts (1.18)

which is the core point criterion, these two points are defined as direct density
reachable. If xi′ does not fulfill the core point criterion in equation 1.18, it is
defined as a border point instead of a core point. Furthermore, if two points
xi and xi′ are not directly density reachable but there exists a chain of points
x1 . . . xN where x1 = xi and xN = xi′ and all points in-between are directly density
reachable, xi and xi′ are called density reachable [65]. Finally, points are defined
as density connected if there is a third point xi′′ that is density reachable from
both xi and xi′ . A cluster is therefore defined as a set of density connected points.
All other points are considered noise and do not belong to any cluster. Figure
1.4 illustrates the concept. Observation A is a core point, directly connected to

14

Figure 1.4.: Core points in DBSCAN [161]

three other observations in its neighborhood. Points B and C are not core points
because there are fewer than minPts observations within their radius ε, but they
are density connected via several core points, thus still belonging to the same
cluster. They are furthermore labeled as border points. Point N is not in range of
any core point, thus not density connected and therefore considered noise [161].

Density based methods differ notably from k-centers methods with regard to the
limitations of the clustering. For example, as noted above, k-means can be more
easily distorted by outliers and noise in the data and favors spherically shaped
clusters [106]. In contrast, by separating high from low density regions, density
based methods ignore noise and outliers in the data much more effectively and can
model arbitrary cluster shapes such as elongated clusters. Due to this, the within-
cluster scatter is not necessarily low [106]. An example for density based clustering
is given in Figure 1.5. An artificial 2d data set containing 3 clusters was generated
including some noise data, uniformly distributed across the data space. This is
analyzed using the dbscan() function of package dbscan [84]. Using a k-nearest
neighbor distance plot, the optimal value for ε is determined - 0.8, approximately
the beginning of the elbow in the curve. The convex cluster hull plot then nicely
shows that the method is able to separate the high-density clusters from the low
density noise in the data. k-means on the other hand treats all data points the
same and thus severely distorts the clusters by including all noise points.

HDBSCAN There are some noteworthy issues with the DBSCAN algorithm. In
particular, the parameters ε and minPts are not always straightforward to select.
Furthermore, a fixed value for ε and minPts results in the assumption that all
clusters have similar density [37, 124]. A method that attempts to alleviate this

15

−5 0 5 10 15 20 25

−
5

0
5

10
15

20
25

True clusters with noise

dat[,1]

da
t[,

2]

0 200 400 600

0
1

2
3

4

Points (sample) sorted by distance

4−
N

N
 d

is
ta

nc
e

−5 0 5 10 15 20 25

−
5

0
5

10
15

20
25

Convex Cluster Hulls

x[, 1:2][,1]

x[
, 1

:2
][,

2]

−5 0 5 10 15 20 25

−
5

0
5

10
15

20
25

k−means cluster assignments

dat[,1]

da
t[,

2]

Figure 1.5.: Density based clustering compared to a k -means solution

16

issue is HDBSCAN by Campello et al. [37]. Apart from a data set X only a
parameter mpts is needed as input. This averts the problem of selecting ε and
minPts and consequently a certain density assumption across all clusters. The
following definitions are introduced by Campello et al. [37]:

1. The core distance dcore(xi) of an object xi ∈ X with regard to mPts is defined
as the distance from xi to its mPts-nearest neighbor, including xi

2. The ε core object is defined as an object xi ∈ X for each value of ε that
is greater or equal to the core distance of xi with regard to mPts, thus
dcore(xi) ≤ ε

3. The mutual reachability distance between two objects xi and xi′ is defined
as dmreach = max{dcore(xi), dcore(xi′), d(xi, xi′)}

4. The mutual reachability graph is a complete graph Gmpts , where all objects
in X are vertices and the weight of each edge is defined by the mutual
reachability distance between the respective pair of objects

Campello et al. [37] note that if a graph Gmpts,ε ⊆ Gmpts is obtained by removing
all edges where the respective weight is greater than ε, the connected components
of ε core objects correspond to the clusters obtained by applying DBSCAN with
mPts and ε as parameters. It therefore follows that all DBSCAN partitions for
ε ∈ [0, inf) can be computed in a nested, hierarchical way by iteratively removing
edges in decreasing order of weight from Gmpts . The exact procedure is stated in
algorithm 3.
An example of how results between DBSCAN and HDBSCAN can differ is shown
in Figure 1.6. The data (from McInnes et al. [124]) shows several clusters of varying
shape and density and noise points. After estimating a value for ε, the DBSCAN
clustering result is shown in the lower left. Quite clearly, ’bridges’ between clusters
cause the blue and red clusters to merge. Furthermore, several very small clusters
are split from the blue cluster that should not be there. The HDBSCAN den-
drogram nicely shows that there are six clusters that remain connected for quite
some time while the value for ε decreases. Indeed, the cluster assignments in the
lower right show that all clusters and noise from the original data are correctly
identified.

Outlier Detection It should be noted that density based clustering methods are
not only used for the purpose of obtaining actual clusters. Another important use
case is the detection of outliers, i.e. points that do not belong to dense regions and
thus clusters. Algorithms for this purpose have been proposed by Breunig et al.
[35] (LOF - Local Outlying Factor) and Tang and He [177]. Outlier detection

17

Algorithm 3 HDBSCAN algorithm by Campello et al. [37]

Require: a data set X and mpts

1: Compute the core distance with regard to mpts for all data points in X
2: Compute a Minimum Spanning Tree (MST) of Gmpts , the mutual reachability

graph
3: Extend the MST to obtain MSText, by adding for each vertex a self edge with

the core distance of the corresponding object as weight
4: Extract the HDBSCAN hierarchy as a dendrogram from MSText:

5: For the root of the tree assign all data points to the same label
6: for all all edges in MSText in decreasing order of weights do
7: Set the dendrogram scale value of the current hierarchical

level to the value of the edge with the highest weight
8: Remove edge with highest weight (or edges in case of equal weights)
9: Assign labels to the connected component(s) that contain(s)

the end vertex (or vertices) of the removed edge (or edges) to
obtain the next hierarchical level

10: if component contains at least one edge then
11: Assign a new cluster label
12: else
13: Assign a null label (i.e. noise)
14: end if
15: end for

18

−0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

data[,1]

da
ta

[,2
]

0.
00

0.
02

0.
04

0.
06

HDBSCAN*

ep
s

va
lu

e

−0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

DBSCAN clusters with eps = 0.025, minPts = 4

data[,1]

da
ta

[,2
]

−0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

HDBSCAN clusters for mPts = 50

data[,1]

da
ta

[,2
]

Figure 1.6.: Comparison of clusterings obtained by DBSCAN and HDBSCAN

19

methods are not the core focus of this thesis, therefore the respective methods are
not discussed in further detail here. However, they shall be noted as an important
application of density based data analysis that can be a notable factor in enhancing
the quality of the data.

1.3.1.3. Implementation in R

Apart from the implementation of the k-means algorithm in R in form of function
kmeans() in package stats [146] and function pam() in package cluster [120],
there are plenty of other implementations, among them packages flexclust [115],
ClusterR [132] and kernlab [101]. Implementations of density based clustering
can be found in packages dbscan [84] and fpc [89].

1.3.2. Hierarchical Clustering

Hierarchical clustering is another non-parametric method that determines clus-
ters based on a sequence of nested partitions [203]. This can either be done by
an agglomerative (bottom-up) or divisive (top-down) approach. Agglomerative
methods start at the bottom (i.e. the individual observations) and at each level
recursively merge clusters until all observations are grouped into a single cluster
[77]. Divisive methods work exactly the other way by splitting the data until each
data point forms a cluster by itself.

Hierarchical clustering differs notably from k-means and k-medoids clustering
as it does not require a pre-specified number of clusters or a starting assignment
for the cluster centers. Instead, both strategies require a proximity matrix that
contains the pairwise dissimilarities of observations which enables the algorithm
to either find the least dissimilar clusters to merge (agglomerative) or the most
dissimilar clusters to split (divisive) [203]. Due to the lack of required predefined
parameters, hierarchical clustering lends itself to handling real-world data, as de-
termining optimal values for the aforementioned parameters may be a challenge
[25, 202]

A hierarchical clustering can be represented graphically by means of a cluster
dendrogram, an example of which is shown in Figure 1.7, which also shows the two
hierarchical cluster methods. Furthermore, in a cluster dendrogram the complete
data set X is represented as the root node and the intermediate nodes describe the
proximity of objects to each other. For example, observation x1 and x3 are quite
similar to each other. Moreover, the height of the dendrogram signifies the distance
between observations. Thus, although observations x1 and x3 are separated by the
same number of intermediate nodes as x5 and x7, the distance between the latter
is greater [203]. A cluster model is then obtained by cutting the dendrogram at an
appropriate level, signified in Figure 1.7 by the dashed line. This model results in

20

x1 x2 x3 x4 x5 x6 x7

Agglomerative
hierarchical
clustering

Divisive
hierarchical
clustering

Figure 1.7.: The two options of hierarchical clustering as illustrated in Xu and
Wunsch [203]. Clusters are obtained by cutting the dendrogram at an
appropriate level, as indicated by the dashed line

two clusters with observations x1, . . . , x4 in cluster 1, and x5, x6 and x7 in cluster
2. The level of where to cut the dendrogram is entirely up to the researcher, and
depends on the context of the analysis.

In general, divisive cluster methods are less frequently used in practice, as they
are computationally intensive due to the fact that for a cluster with N obser-
vations, the algorithm needs to compute 2N−1 − 1 possible two-subset divisions
[1, 203]. Therefore, agglomerative methods are more commonly used. Even then,
hierarchical methods have a computational complexity of at least O(N2), which
poses a problem for large-scale data sets and several methods have been proposed
to address this such as BIRCH (Balanced Iterative Reducing and Clustering Using
Representatives) [207] and CURE (Clustering Using Representatives) [83].

1.3.2.1. Agglomerative Hierarchical Clustering

In agglomerative clustering, the algorithm starts (for a data set X with N number
of observations) with N clusters, therefore each cluster includes one observation.
These clusters are merged until one cluster is reached that contains all observations,
as described in Figure 1.7. Algorithm 4 details the method.

21

Algorithm 4 Agglomerative hierarchical clustering [203]

1: Start with N singleton clusters
2: Calculate a proximity matrix M based on some distance function D
3: while more than one cluster available do
4: In M search the minimal distance D(Ci, Cj) = min

1≤m,l≤N
m6=l

D(Cm, Cl)

5: Update M by computing distances between Cij and the other clusters
6: end while

1.3.2.2. Cluster Linkage

Another important choice that affects the computation of the model is the distance
function D, mentioned in step 3 of algorithm 4. There are several options for
measuring linkage of clusters, the main methods are single, complete and average
linkage, as well as Ward’s method.

Single Linkage The linkage function D(Ci, Cj) between clusters Ci and Cj is
defined by (from Abu-Jamous et al. [1]):

D(Ci, Cj) = min
xp∈Ci,xq∈Cj

d(xp, xq) (1.19)

where d(xp, Xj) denotes the distance between two observations xp and xj. This
means that with single linkage, the minimum distance between two objects in
different clusters is used to represent the distance between clusters Ci and Cj.
Friedman et al. [77] note that single linkage clustering tends to combine, at a rela-
tively low threshold, observations that are linked by a series of close intermediate
observations.

Complete Linkage Complete linkage, also known as farthest neighbor cluster-
ing, computes the distance between two clusters by taking the maximum distance
between a pair of observations in clusters Ci and Cj and is defined by (from Abu-
Jamous et al. [1]):

D(Ci, Cj) = max
xp∈Ci,xq∈Cj

d(xp, xq) (1.20)

Abu-Jamous et al. [1] note that complete linkage avoids the chaining problem
of single linkage that can result in elongated clusters. On the contrary, complete
linkage tends to find compact clusters of approximately equal diameters. However,
it may be a less optimal choice when there is a certain amount of noise in the data.

22

Average Linkage Abu-Jamous et al. [1] mention two ways of defining aver-
age linkage. The first is the weighted pair group method with arithmetic mean
(WPGMA) or McQuitty’s method where the distance between cluster is calcu-
lated by a simple average. The distance between clusters Ci and Cj where Cj is
composed of Cm and Cn is given by

D(Ci, Cj) =
D(Ci, Cm) +D(Ci, Cn)

2
(1.21)

The second method is called unweighted pair group method with arithmetic mean
(UPGMA) by Sokal et al. [169] and considered to be the superior method as it
weighs the averages by the number of objects in each cluster, therefore ensuring
that each observation in the data set is treated equally. The distance function is
given by

D(Ci, Cj) =
D(Ci, Cm)|Cm|+D(Ci, Cn)|Cn|

|Cm|+ |Cn|
(1.22)

Centroid Method This method [1], assigns a centroid to each cluster, which is
given by:

x̄i =
1

|Ci|
∑
xp∈Ci

xp (1.23)

and which is used to compute the distances between the cluster center and all
other cluster centroids which is defined by

D(Ci, Cj) = d(x̄i, x̄j) (1.24)

Abu-Jamous et al. [1] furthermore note that when two clusters are merged, the
new cluster centroid is computed from all newly combined data points (not as an
average of the two centroids).

Ward’s Method Proposed by Ward Jr [188], this method differs notably from
the single/average/complete linkage approach. Ward’s method uses the variance
criterion that seeks to minimize the within cluster scatter W (C) (equation 1.6)
based on squared Euclidean distance (equation 1.4) to determine for each potential
cluster merger the resulting increase in global heterogeneity, i.e. W (C). This
increase should be minimal, the criterion to be optimized is therefore given by
(from Murtagh and Legendre [135]):

D(Ci, Cj) =
|Ci| × |Cj|
|Ci|+ |Cj|

||x̄i − x̄j||2 (1.25)

23

where x̄ is the centroid of the respective cluster. Naturally, when all data points
form their own cluster, global heterogeneity is W (C) = 0. Clusters that minimally
increase this value are then merged [81]. Ward’s method is shown in comparison to
the other linkage methods in Figure 1.8. It should be noted that the determinant
criterion by Friedman and Rubin [76]

min
C
|W (C)| (1.26)

can be regarded as a generalization of Ward’s method [24]. While Ward assumes
spherical clusters of equal volume, Friedman and Rubin [76] assume elliptical clus-
ters due to non-independent variables, which are equal in volume, shape and ori-
entation [24]. Furthermore, both Ward and the determinant criterion are non-
parametric special cases of the general Gaussian mixture model (which is discussed
in section 1.3.3.1).

Specifically, the GMM example in Figure 1.9 includes a plot that shows the
Bayesian information criterion (BIC) of a number of GMMs where EII (spherical,
equal volume) is equivalent to a clustering obtained by Ward’s method and EEE

(ellipsoidal, equal volume, shape and orientation) is equivalent to a clustering
obtained by employing the determinant criterion. Obviously, neither are a good
fit for the data in that particular example, because the clusters in the data are
not spherical (which excludes Ward) and not equally oriented (thus excluding the
determinant criterion).

1.3.2.3. Implementation in R

Hierarchical methods are implemented in functions hclust() of package stats

[146] and agnes() (agglomerative) and diana() (divisive) of package cluster

[120]. Other implementations are isopam [158], genie [78], protoclust [19],
fastcluster [134] and flashClust [113].

1.3.3. Parametric Methods

Parametric methods assume that the groups in the data originate from a mixture
of underlying probability distributions where the challenge is to estimate the re-
spective parameters, which is typically done by maximum likelihood estimation
using the EM algorithm [11, 110]. Gaussian mixture models are a common exam-
ple for this approach and are used in the following section to illustrate parametric
clustering. However, other probability distributions such as Weibull can be used
as well, as demonstrated by Mair and Hudec [121].

24

42
23 15 16 45 34 33 17

21 32 3
7 25

14
47 20 22

7 12 3 4 48 2
6

30 31 13 46 2 10 35
43 9 39 11 49
36

50 8 40 4
1 1 18
5 38 28 29
44 24 27

6 19 1
18 13

2
10

7
99 61

58 94
11

0
10

9
13

5
13

6
11

9
10

6
12

3 69 88
63 11

5
10

8
13

1
12

0
10

1 65 60 86 80
74 79

64 92
62

70 81 82
54 90

91
89 95

10
0 96 97

68
83 93

56
67 85

72 77 78 87 51 53
75 98 5

5 59
66 76

52 57 15
0

71
12

8
13

9 1
47

12
4

12
7 1

22
11

4
10

2
14

3
73 84 13
4

11
6

13
7

14
9

11
3

14
0 1

25
12

1
14

4
14

1
14

5
14

2
14

6
10

4
11

7
13

8
10

5
12

9
13

3
11

2
11

1
14

8
10

3
12

6
13

0

0.
0

0.
5

1.
0

1.
5

Cluster Dendrogram

hclust (*, "single")
distmatrix_iris

H
ei

gh
t

10
8

13
1 10

3
12

6
13

0
11

9
10

6
12

3
11

8
13

2 11
0

13
6

14
1

14
5

12
5

12
1

14
4 10

1
13

7
14

9
11

6
11

1
14

8
11

3
14

0
14

2
14

6 1
09

10
4

11
7

13
8

10
5

12
9

13
3 15

0
71

12
8

13
9 11

5
12

2
11

4
10

2
14

3
13

5
11

2
14

7
12

4
12

7 7
3

84 13
4 12

0
69 88 66 76
77 55 59
78

87 51 53 8
6

52 57 75 98 7
4

79 64 92
61

99
58 94

10
7

67 85 5
6 91 6
2 72 68 83 93 9

5
10

0 89 96 97
63

65 80 6
0

54 90 7
0

81 82
42

30 31 2
6

10 35 1
3 2 46
36 5 38 28 29 4
1 1 18 5
0 8 40

23
7

43 3 4 48 1
4 9 39
17 33 34 1

5 16 6 19 21 32 3
7

11 49
45 47 20 22 4
4

24 27 1
2 25

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
distmatrix_iris

H
ei

gh
t

42
15 16

33 34 3
7

21 32 44 24 27
36 5 38 5

0 8 40 2
8 29 4
1 1 18

45 6 19 1
7

11 49 4
7

20 22
23

14 43 9 39
12 25

7
13 2 46 2

6
10 35 3

0 31
3 4 48 1
05

12
9

13
3 1

12
10

4
11

7
13

8
11

1
14

8
11

3
14

0
14

2
14

6
11

6
13

7
14

9 1
01

12
5

12
1

14
4

14
1

14
5

10
9

13
5 11

0
11

8
13

2
11

9
10

6
12

3
13

6
10

8
13

1 10
3

12
6

13
0 6

1
99

58 94 66 76 5
5 59
78 77 87 51 53
86

52 57 7
4

79 64 92
72

75 98
12

0
69 88 1

15
12

2
11

4
10

2
14

3 1
50 71

12
8

13
9 14

7
12

4
12

7 7
3

84 13
4

10
7

63
68 83 93
62

95 10
0 89 96 97 6
7 85 5
6 91
65 80 6

0
54 90 7

0
81 82

0
1

2
3

4

Cluster Dendrogram

hclust (*, "average")
distmatrix_iris

H
ei

gh
t

6 19 1
7

33 34
15 16

37 21 32 5 38 4
1 1 18 2
8 29 5
0 8 40 11 49 4
7

20 22
45 25

44 24 27
42

23
14 43 9 39 1
2

30 31
7 3 4 48
36

13 2 46 2
6

10 35
10

9
10

5
12

9
13

3 1
12

10
4

11
7

13
8

10
1

12
5

12
1

14
4

14
1

14
5

11
6

13
7

14
9

11
1

14
8

11
3

14
0

14
2

14
6 11

9
10

6
12

3 1
36

10
8

13
1 10

3
12

6
13

0
11

0
11

8
13

2 6
3

69 88 15
0

71
12

8
13

9 1
15

12
2

11
4

10
2

14
3

13
5

12
0

14
7

12
4

12
7 7

3
84 13

4
66 76 5

5 59
78 77 87 51 53 67 85 5
6 91 8
6

52 57 7
4

79 64 92
62 72

75 98
10

7
61

99
58 94

65 80 6
0

54 90 7
0

81 82 9
5

10
0 89 96 97 6
8

83 93

0
1

2
3

4

Cluster Dendrogram

hclust (*, "mcquitty")
distmatrix_iris

H
ei

gh
t

30 31 13 2 46 26 10 35 4
2

14 43 9 39 2
3 7 3 4 48 3
6 5 38 50 8 40 28 29 41 1 18 44 24 27 12 25 1
7 33 34 15 16 45 47 20 22 6 19 21 32 3
7

11 49 10
8

13
1

10
3

12
6

13
0

11
9

10
6

12
3

11
8

13
2

11
0

13
6

10
9

13
5

10
5

12
9

13
3

11
2

10
4

11
7

13
8

11
1

14
8

11
3

14
0

14
2

14
6

14
1

14
5

12
5

12
1

14
4

10
1

11
6

13
7

14
9 61 99 58 94 6
3

68 83 93 6
5 80 70 81 82 6
0

54 90 10
7

95 10
0 89 96 97 67 85 56 91 15
0 71 12
8

13
9

11
5

10
2

14
3

11
4

12
2 69 88 14
7

12
4

12
7

12
0 73 84 13
4 78 87 51 53 66 76 7
7 55 59 86 52 57 74 79 64 92 75 98 6
2 72

0
50

10
0

15
0

20
0

Cluster Dendrogram

hclust (*, "ward.D")
distmatrix_iris

H
ei

gh
t

42
16 1

5 6 19 1
7 33 34
23

14 43 9 39
45 37 21 25 32 12 44 2

4 27 5 38 4
1

50 29 2
8 8 40 1 18 11 49 4
7

20 22
7

36 26 30 31 46 13
2

10 35
3 4 48
11

8
13

2 61 99
58 94

13
5

11
0

11
9

10
6

12
3 1

36
10

3
10

8
13

1
12

6
13

0 1
09

10
1

14
2

14
6

11
6

13
7

14
9

11
3

14
0

12
5

12
1

14
4

14
1

14
5

11
1

14
8

11
2

10
4

11
7

13
8 10

5
12

9
13

3
10

7
11

5
12

0
69 88

86
12

2
11

4
10

2
14

3 1
50 71

12
8

13
9 8

4
13

4 73
14

7
12

4
12

7 5
7

74 79 64 92 7
5 98 5
2

87 66 76
55 59 7

8 77 51 53
63 80 65 60 72 62 56

67 85
91

70 81 82 5
4 90 95

10
0

89 96 97 6
8

83 93

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Cluster Dendrogram

hclust (*, "centroid")
distmatrix_iris

H
ei

gh
t

Figure 1.8.: Comparison of the major hierarchical clustering methods on iris data

25

1.3.3.1. Gaussian Mixture Models (GMM)

A Gaussian mixture model can be written as a linear superposition of several
Gaussian components [21, 118]:

P (x|Θ) =
K∑
k=1

πkp(x|θk) (1.27)

where πk can be regarded as positive weights with
∑K

k=1 πk = 1 and Θ as Θ =
(π1, . . . , πK , θ1, . . . , θK) representing the parameters for all mixture components
(i.e. clusters). Thus, each θk describes a Gaussian density function pk where
pk ∼ N (x|µk,Σk) [118]. The optimal parameters Θ are determined by Maximum
Likelihood (ML), which means that given a data set X, ML estimation will try to
find parameters Θ where P (x|Θ) is maximized. This is done by means of the log
likelihood function

L(Θ) = logP (x|Θ) = log
N∏
i=1

P (xi|Θ) =
N∑
i=1

log(
K∑
k=1

πkpk(xi|θk)) (1.28)

Liu et al. [118] note that finding an optimal solution is difficult due to the log of
the sum in the log likelihood function. They therefore suggest a latent variable
P (c|x) that represents the possibility of observation x contained in component c,
which results in the complete log likelihood function [21, 118]

N∑
i=1

K∑
k=1

P (ck|xi)(logπk + logN (xi|µk,Σk)) (1.29)

The complete log likelihood function in equation 1.29 is used to obtain estimates for
Θ for fixed P (c|x). This is done by means of the EM (Expectation-Maximization)
algorithm proposed by Dempster et al. [50] and detailed in algorithm 5. First,
initial values for parameters Θ are selected. Friedman et al. [77] suggest choosing
µk randomly, setting Σk equal to the overall sample variance

∑N
i=1(xi − x̄)2/N

and selecting 0.5 as an initial value for π. In the expectation step, the posterior
probabilities P (ck|xi) are computed, i.e. the probability γik that xi is generated
by component (i.e. cluster) ck. In the maximization step, the probabilities (or
responsibilities in Bishop et al. [21]) γik are used to update the estimates of Θ
(the weighted means and variances). The two steps are repeated until convergence
[77, 110, 118].

An example of a GMM model fit is shown in Figure 1.9, function Mclust() of
package mclust [163] is used to obtain a model for a data set of a mixture of three

26

Algorithm 5 EM algorithm for Gaussian mixtures based on Bishop et al. [21]

1: Initialize parameters Θ = (µ1,Σ1, π1, . . . , µk,Σk, πk) and evaluate initial log
likelihood according to equation 1.29.

2: E step: evaluate the responsibilities using current parameter values

γik =
πkN (xi|µk,Σk)∑K
j=1 πjN (xi|µk,Σk)

(1.30)

3: M step: Re-estimate the parameters using the current responsibilities:

µnewk =
1

Nk

N∑
n=1

γikxi (1.31)

Σnew
k =

1

Nk

N∑
n=1

γik(xi − µnewk)(xi − µnewk)T (1.32)

πnewk =
Nk

N
(1.33)

4: Evaluate the log likelihood given in equation 1.29 and check for convergence.
If convergence criteria not satisfied return to step 2.

27

1 gmm_model <- Mclust(testData)

2 summary(gmm_model)

3 --

4 Gaussian finite mixture model fitted by EM algorithm

5 --

6

7 Mclust EEV (ellipsoidal , equal volume and shape) model with

3 components:

8

9 log -likelihood n df BIC ICL

10 -1704.844 450 13 -3489.108 -3536.604

11

12 Clustering table:

13 1 2 3

14 146 156 148

−
46

00
−

42
00

−
38

00

Number of components

B
IC

1 2 3 4 5 6 7 8 9

EII

VII

EEI

VEI

EVI

VVI

EEE

EVE

VEE

VVE

EEV

VEV

EVV

VVV

5 10 15 20

7
8

9
10

11
12

13

5 10 15 20

7
8

9
10

11
12

13

5 10 15 20

7
8

9
10

11
12

13

Figure 1.9.: GMM for artificial data (mixture of three Gaussians from [172])

28

Gaussians, containing 150 observations each. It is possible to specify the number
of mixtures as an argument to function Mclust(), however, if left out, model
selection is done by computing the BIC (Bayesian information criterion) [162] for
a range of 1 to 9 Gaussians per default and the most suitable number according
to the BIC is selected. In this case, the optimal value of 3 is indeed detected, as
the elbow in the BIC curve in the upper left plot in Figure 1.9 shows. Due to
the overlapping clusters there is some uncertainty in the cluster border regions as
shown in the lower left plot. Overall, the classification plot (upper right) shows
a quite accurate classification outcome along with the estimated densities for the
three Gaussians (lower right).

Relationship with the k-means Algorithm Bishop et al. [21] note that the k-
means algorithm shows a close similarity with the EM algorithm. While k-means
does a hard assignment of observations to a particular cluster, the EM algorithm
does a soft assignment based on the posterior probabilities. Therefore, fuzzy clus-
ter assignments are possible, as illustrated in the example in Figure 1.9. More-
over, Bishop et al. [21] note that the k-means algorithm can be derived as a
non-probabilistic limit of the EM algorithm for GMM [118].

1.3.3.2. Implementation in R

Model based clustering is implemented in a number of R packages, for example
mclust [163], EMCluster [41], funHDDC [159],funFEM [33], HDclassif [16], gmm [40],
GMCM [20] and mixPHM [122].

1.4. Cluster Analysis

Handl et al. [86] propose three major steps for cluster analysis, which are illustrated
in Figure 1.10: pre-processing, the actual cluster analysis and model validation.
Within each step, several choices need to be made.

Firstly, with regard to feature selection, the observations that should be clus-
tered should obviously be represented by informative features [112]. This often
may require pre-processing such as standardization/normalization. Furthermore,
a crucial point is the selection of a suitable similarity measure/ distance function
as discussed in section 1.2.2.1.

Secondly, the clustering itself poses the problem of selecting a particular al-
gorithm. This is a difficult task, as a clustering algorithm encodes a model for
the data and assumes a certain structural tendency (e.g. elongated or spherical
clusters). [112]. A variety of possible approaches was discussed in section 1.2.2

29

Step 1: Pre-processing

Feature Selection
Normalization

Selection of distance function

Step 2: Cluster analysis

Selection of algorithm
Selection of algorithm parameters

Application of algorithm

Step 3: Cluster validation

Selection of validation technique(s)
Application of validation technique(s)

Figure 1.10.: The three main steps in cluster analysis in Handl et al. [86]

Thirdly, the obtained model has to be verified. A detailed review about the
range of possible validation techniques is done in chapter 2. This step is likely
the most important one, because a cluster algorithm will always produce a model
for a given data set. The task during the validation step is to determine whether
the model accurately reflects actually existing structure in the data, or whether
the grouping obtained is random and does not have a foundation in the data.
Furthermore, the validation step (as indicated in Figure 1.10), reflects back on the
previous two steps and may lead to a different approach to the data that yields
better results.

1.5. Summary

This chapter elaborated on essential terminology of unsupervised machine learn-
ing, specifically different approaches to clustering. Subsequently, different model
validation techniques are discussed as an important step of the overall cluster
analysis.

30

2. Cluster Validation

In this chapter, common validation methods for cluster models are introduced and
discussed with regard to their advantages and drawbacks. Particular emphasis in
this context is put on the notion of cluster stability. This technique is also used in
the simulation study in chapter 3.

2.1. Background

The previous chapter discussed a variety of methods and approaches toward data
clustering. However, as mentioned in section 1.4, selection of a specific method
and model computation is only one part of the overall process. Particularly, as
Xu and Wunsch [203] note, different methods and input parameters can result
in different clusters and/or produce different cluster structures for the same data
set (as was demonstrated in the example in Figure 1.5). It therefore follows that
an objective and quantitative evaluation of the clusters and the derived cluster
structure (i.e. cluster validation) is needed and especially important [60, 82, 85, 99].
If for example a data set contains no cluster structure at all, it is still possible to
apply a cluster method but the output will be meaningless and by extension any
further analysis [203]. Therefore, the problem of assessing cluster validity has
two aspects: determining the correct number of clusters and the evaluation of the
quality of a clustering solution [110]. This is particularly essential when dealing
with data where the data space is beyond the possibilities of visual inspection
[85, 110].

For the purpose of this thesis, the scope is now narrowed down to non-parametric
partitional methods, specifically the k-centers family algorithms. This is done
because particularly for these methods, the choice of the number of clusters is a
pivotal parameter that presents a considerable challenge in cluster model validation
and is mentioned by Dubes [60] as the ”fundamental problem of cluster validity”.

2.2. Assessing Cluster Validity

The two main possibilities to validate a partition is via external or internal mea-
sures. There is a fundamental difference between these approaches and they are
applied in distinct experimental settings [86, 149].

31

2.2.1. External Measures

External measures use, as the name suggests, pre-specified information about the
data set [85, 149, 203]. This is done by comparing the clustering C of a data
set X with the known true group labels (a priori information) [203], therefore,
essentially, the similarity of two sets of labels is calculated. This is done by pairwise
comparisons of group labels Y1 and Y2. Consequently, four combinations of such
a pairwise comparison are possible: two observations compared can be located in
the same cluster in both partitions (a), in different clusters in both partitions (d)
or in different clusters in Y1 but in the same cluster in Y2 (b) and vice versa (c).
An illustration of these combinations is shown in Figure 2.1.

−0.5 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

Y

X1

X2

−0.5 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

Y'

X1

X2

b

a

c

d
b

a

c d

21

\

AP

Figure 2.1.: Pairwise comparisons of group labels Y1 and Y2

2.2.1.1. Selected Examples of External Indices

In the following, an extensive (but not exhaustive) list of external validation in-
dices is given. These indices are relevant for the subsequent experimental study
in chapter 3. Generally, they range between 0 and 1, with some exceptions, as
mentioned below.

Rand Index The Rand index by Rand [147] is defined by

32

RI =
a+ b

a+ b+ c+ d
(2.1)

Adjusted Rand Index The ARI is a modified form of the Rand Index that cor-
rects for matches that are due to pure chance - in contrast to the Rand Index the
ARI can take on values between -1 and 1 [93].

ARI =

∑
ij

(
nij
2

)
− [
∑

i

(
ni.
2

)∑
j

(
n.j
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ni.
2

)
+
∑

j

(
n.j
2

)
]− [

∑
i

(
ni.
2

)∑
j

(
n.j
2

)
]/
(
n
2

) (2.2)

where nij is the number of observations that are common to cluster i in Y1 and
cluster j in Y2 (i.e. a), and ni. and n.j denote the number of observations in cluster
i and j in Y and Y ′.

Fowlkes-Mallows Index The Fowlkes-Mallows index [72] is given by equation
2.3

FM =

√
a

a+ b

a

a+ c
(2.3)

Jaccard Similarity The Jaccard similarity by Jaccard [97] is given by

J =
a

a+ b+ c
(2.4)

McNemar Index The McNemar index as described in [51], is defined by

NI =
d− c√
d− c

(2.5)

Sokal-Sneath Index The Sokal-Sneath index [169] is given by

SSI =
a

a+ 2(b+ c)
(2.6)

Czekanowski-Dice Index The Czekanowski-Dice index as described in [51], is
defined as

CDI =
2a

2a+ b+ c
(2.7)

The index is the harmonic mean of precision and recall coefficients and thus iden-
tical to the F-measure.

33

Kulczynski Index The Kulczynski index is defined by (from Kulczyński [109]):

KI =
1

2
(

a

a+ c
+

a

a+ b
) (2.8)

Hubert Gamma Index The Hubert Γ̂ index, described in [85], is the correlation
coefficient of two indicator variables Z1 and Z2 that are defined as binary variables
that take on the value 1 if observations mi and mj (i < j) are in the same cluster
of the partition and 0 otherwise. The index is thus defined as

HUB = Corr(Z1, Z2) =

∑
i<j(Z1(i, j)− µZ1)(Z2(i, j)− µZ2)

nσZ1σZ2

(2.9)

Using the definition of the pairwise group membership definitions, the index can
also be written as

HUB =
n× a− (a+ b)(a+ c)√

(a+ b)(a+ c)(d+ b)(d+ c)
) (2.10)

Unlike most other external indices, HUB takes on values between -1 and 1.

Rogers-Tanimoto Index The Rogers-Tanimoto index by Rogers and Tanimoto
[151] is defined as follows:

RTI(k) =
a+ d

a+ d+ 2(b+ c)
(2.11)

2.2.2. Internal Measures

Contrary to external indices, internal measures only use information that is intrin-
sic to the data set [85], which means that there is no outside information with which
to compare group labels. Handl et al. [86] note that internal indices put emphasis
on either one or a combination of the clustering qualities such as cluster compact-
ness/connectedness/spatial separation. This reflects the manner in which cluster
methods can be categorized (k-centers methods prefer compact, density methods
connected clusters), therefore indices that place emphasis on cluster compactness
rely on the within-cluster scatter, whereas spatial separation suggests an empha-
sis on the between-cluster scatter and connectedness obviously focuses on density
criteria.

Handl et al. [86] note that the literature provides several combinations of the
three aforementioned approaches. Particularly popular in this respect are the in-
dices that incorporate compactness and spatial separation, as they can show oppos-
ing trends: increasing the number of clusters tends to decrease the within-cluster

34

scatter, but at the same time also reduces the distance between clusters. Vice
versa, with increasing between-cluster scatter, intra-cluster homogeneity tends to
deteriorate. To alleviate this issue, many measures have been proposed that com-
bine both criteria into a final score, e.g. the Dunn index, listed below in equation
2.23 [62], the Davies-Bouldin index in equation 2.20 [48] and the Silhouette index
in equation 2.35 [153].

2.2.2.1. Selected Examples of Internal Indices

In the following, a number of commonly used internal indices is listed. The list
is not exhaustive, however, it again provides an overview of the indices used with
regard to the simulation study in chapter 3.

Hartigan Index The Hartigan index [87] is defined as

H(k) = (
Wk

Wk+1

)(n− k − 1) (2.12)

Banfeld-Rafterty Index Banfield and Raftery [11] define an index which is cal-
culated by the weighted sums of the logarithms of the mean within-cluster sum of
squares of each cluster.

BFI(k) =
K∑
k=1

nk log(
Wk

nk
) (2.13)

Calinski-Harabasz Index The CH index, introduced by Calinski and Harabasz
[36] is defined as

CH(k) =
n− k
k − 1

Bk

Wk

(2.14)

Krzanowski-Lai Index The KL index, proposed by Lai and T. [111] is given by
equation 2.15:

KL(k) = | DIFFk
DIFFk+1

| (2.15)

where DIFF is defined as

DIFF (k) = (k − 1)2/ptrace(Wk−1)− q2/ptrace(Wk) (2.16)

where p is the number of variables. The maximum of value of KL(k) denotes the
optimal number of clusters.

35

Log-SS-Ratio Index The Log-SS-Ratio index used in Dimitriadou et al. [56] is
given by:

LSR(k) = log(
Bk

Wk

) (2.17)

Trace-W Index The Trace-W index [52] in equation 2.18 is defined as the within-
sum of squares of the partition:

TR(k) = Wk (2.18)

Ball-Hall Index Ball and Hall [10] introduced an index that calculates the mean
of the squared distances of all points with respect to their cluster centroid (from
[52]):

BALL(k) =
1

K

K∑
k=1

1

nk

∑
i∈Ck

‖xik − x̃k‖2 (2.19)

where x̃ is a cluster centroid. In the special case where all clusters have equal size,
the equation is reduced to 1

nk
Wk

Davies-Bouldin Index For the Davies-Bouldin index [48, 52], we first define δk
the mean distance of the points that belong to cluster Ck to their cluster center
x̃k

δk =
1

nk

∑
i∈Ck

‖xik − x̃k‖ (2.20)

We also define as δk,k′ the distance between two cluster centers x̃k and x̃k′

∆k,k′ = d(x̃k, x̃k′) = ‖x̃k′ − x̃k‖ (2.21)

For each cluster k, the maximum Mk of
δk+δk′
δk,k′

is computed for all k 6= k′. The

Davies-Bouldin index is the mean of the values Mk:

DB(k) =
1

K

K∑
k=1

Mk =
1

K

K∑
k=1

max
k 6=k′

δk + δk′

∆k,k′
(2.22)

Dunn Index The Dunn index [52, 62] measures the distance between two clusters
(Ck) by calculating the distance between their closest points:

36

dk,k′ = min
i∈Ckj∈C′k

‖mk
i −mk′

j ‖ (2.23)

and taking dmin as the minimum of the vector of distances dk,k′ :

dmin = min
k 6=k′

dk,k′ (2.24)

Furthermore, we denote with Dk the largest distance between two points within a
cluster

Dk = max
i,j∈Cki 6=j

‖xik − xjk′‖ (2.25)

and define dmax as the largest distance of the cluster diameters Dk

dmax = max
1≤k≤K

Dk (2.26)

Finally, the Dunn index is defined as:

DUNN(k) =
dmin
dmax

(2.27)

PBM Index The PBM index, developed by Pakhira et al. [139], is calculated as
follows [52]:

PBM(k) = (
1

k
× ET
EW
×DB)2 (2.28)

where EW is the sum of the distances of the points in each cluster to their centroid
and ET the same to the data set centroid (i.e. the one-cluster solution). Obviously,
ET does not depend on the partition or the number of clusters, but is a constant
value. DB denotes the largest distance between two cluster centroids (x̃k, x̃k′):

DB = max d(x̃k, x̃k′) (2.29)

Silhouette Index The silhouette index, introduced by Rousseeuw [153] is com-
puted as follows (from Desgraupes [52]). First, the within-cluster mean distance
of a point xi to all other points of the same cluster is calculated:

a(i) =
1

nk − 1

∑
i′∈Ck
i 6=i′

d(xi, xi′) (2.30)

Second, the mean distance of xi to points of the other clusters is given by

37

D(xi, Ck′) =
1

nk′

∑
i′∈Ck′

d(xi, xi′) (2.31)

where b(i) is defined as the minimum of these distances

b(i) = min
k′ 6=k

D(xi, Ck′) (2.32)

for each point xi the silhouette width is then given by

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2.33)

which, as Desgraupes [52] notes, results in a value between 1 and -1, where 1 means
that point xi is assigned to the correct cluster, and -1 means that xi should be
assigned to a different cluster. The mean silhouette width for a cluster Ck is then
given by

Sk =
1

nk

∑
i∈Ck

s(i) (2.34)

which finally results in the silhouette index that is the mean of all cluster mean
silhouettes

SIL(k) =
1

K

K∑
k=1

Sk (2.35)

Xu Index Proposed by Xu [201], the Xu index is given by:

XU(k) = p log(

√
Wk

dn2
) + log(k) (2.36)

where p is the number of variables in the data set.

Gap Statistic The Gap statistic, proposed by Tibshirani et al. [180] is computed
as follows:

GAP (k) =
1

B

B∑
b=1

logWkb − logWk (2.37)

where B is the number of reference data sets generated from a uniform distribution
within the bounding rectangle of the original data. Wkb denotes the within cluster

38

sum of squares of the reference data sets. The optimal number of clusters is
indicated by the largest gap in the index values.

2.2.3. Issues with Internal and External Validation

Unfortunately, as Handl et al. [86] point out, there are issues for both validation
approaches. External measures suffer from biases with regard to the number of
clusters and the distribution of cluster and class sizes in a partitioning [85]. For
example, when looking at completeness of clusters, a one-cluster partition will of
course score perfectly and decrease as more clusters are added. Internal measures
show a similar tendency, as many of them are based on intra-cluster scatter which
is highest for the one-cluster solution and decreases with a growing number of
clusters. Also, internal measures can show biases with regard to the shape of
the underlying data and structure of the partitioning [86], because as mentioned
above, these measures rely on different clustering qualities.

2.3. Cluster Stability

As mentioned above, some validation measures may show biases toward a par-
ticular clustering quality that could affect the meaningfulness of the validation
process. Therefore, if one seeks to establish a general procedure for cluster valida-
tion, it should be applicable to any clustering algorithm and not be by definition
restricted to a particular group of methods [112]. This avoids the aforementioned
bias by not relying on assumptions about group structure or cluster quality in the
data. Lange et al. [112] therefore suggest a notion of the stability of clustering
solutions. This means that in principle, for two data sets drawn from the same
probabilistic source, the clustering should deliver similar results. In essence, it is
assessed whether solutions of clustering are replicable [112, 187].

This approach is illustrated in Figure 2.2. Three data sets are drawn from the
same probabilistic source (the true number of groups in this simulated data set is
4) and clustered repeatedly for several values of K. In the case of K = 2, where K
is smaller than the actual value, the true clusters are merged randomly. Given the
cluster structure in this example, the observations could reasonably be grouped in
two ways, and indeed these two versions occur during the three iterations. This
number of groups is thus not stable. The situation is even worse for K = 3 and
K = 5. One cluster is either randomly merged or split and the resulting clustering
is clearly not stable over the three iterations. Only the correct value K = 4
consistently produces the same cluster structure each time, even though the data
sets differ slightly for each iteration. They are however drawn from the same source
and therefore the correct number of clusters produces a stable result. According

39

to von Luxburg [187], the stability notion also elegantly avoids the question of
defining what a good clustering is - it only requires the results to be consistent.

A suggestion of how a general stability based validation algorithm can be for-
mulated is provided by von Luxburg [187]. To begin with, a distance measure is
needed to determine similarity between two clusterings C(XN) and C(X′N) for two
data sets X and X′ and sample size N . The instability of a clustering algorithm A
for a fixed number of clusters K and sample size N is then given by the expected
distance between the two clusterings on the different data sets [187]:

Instab(K,n) := E(d(CK(Xn), CK(X′n))) (2.38)

The instability in equation 2.38 should be minimized for a stable clustering solu-
tion. Algorithm 6 has been proposed by von Luxburg [187] as a general concept
that a variety of stability based validation methods follow. Essentially, for each
number of clusters where cluster stability should be evaluated, a certain number of
perturbed data sets are drawn. These are clustered and pairwise distances calcu-
lated. Finally the instability is computed and the number of clusters K is chosen
where a minimum is found.

The algorithm requires three important choices: firstly, the manner of the data
modification to obtain perturbed versions. Secondly, which method should be used
to compare the two clusterings. Thirdly, a choice of a distance measure to compute
the pairwise distances of clusterings.

With regard to data set perturbation, von Luxburg [187] mentions several strate-
gies that have been used in practice, such as drawing a random subsample without
replacement [15, 74, 112, 116], adding random noise [22, 127], random projections
in low-dimensional spaces (in the case of high-dimensional data) [168], sample data
from a model (for model-based clustering) [102] or drawing a random sample with
replacement (bootstrapping) [181]. It is essential to strike a careful balance when
employing one of the aforementioned strategies. If for example too much noise is
added to the data or the subsample is too small, the cluster structure might be
distorted and/or destroyed and thus made undetectable for the cluster algorithm.
If on the other hand too little modification is applied, the algorithm will always
obtain the same results and therefore trivial stability [187].

The second choice, how to compare clusterings in line 7 of algorithm 6, can be
addressed in three ways [187]: either the clustering obtained on the original data
can be compared with the clusterings of the subsamples [116], or clusterings of
overlapping subsamples [15], or clusterings of disjoint subsamples (which requires
an extension operator to extend each clustering to the domain of the second)
[74, 112].

The third choice pertains to the measure used to calculate the distance between
clusterings. If the two clusterings are defined on the same data, any external index

40

−2.5

0.0

2.5

5.0

7.5

0 5

K
 =

 2

0

5

−2.5 0.0 2.5 5.0 7.5
−2.5

0.0

2.5

5.0

7.5

0 5 10

−2.5

0.0

2.5

5.0

7.5

0 5

K
 =

 3

0

5

−2.5 0.0 2.5 5.0 7.5

0

5

0 3 6

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0 7.5

K
 =

 4

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0 7.5
−2.5

0.0

2.5

5.0

7.5

−3 0 3 6

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0 7.5

Draw 1

K
 =

 5

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0 7.5

Draw 2

−2.5

0.0

2.5

5.0

7.5

0 3 6

Draw 3

Figure 2.2.: Clustering results on three data sets drawn from the same source for
several values of K. Only for the correct number of clusters K = 4 all
three runs produce the same and thus stable result

41

Algorithm 6 Stability-based validation procedure [187]

Require: a set X of data points
Require: a clustering algorithm A
Require: the number of clusters K
Require: the number of modified data sets b

1: for k = 2, . . . , K do
2: Generate perturbed versions Xb(b = 1, . . . , bmax) of the original data set
3: for b = 1, . . . , bmax do
4: Cluster the data set Xb with A into k clusters to obtain clustering Cb
5: end for
6: for b, b′ = 1, . . . , bmax do
7: Compute pairwise distances d(Cb, Cb′) between these clusterings
8: end for
9: end for

10: Compute instability as the mean distance between clusterings Cb:

̂Instab(k, n) =
1

b2max

bmax∑
b,b′=1

d(Cb, Cb′) (2.39)

11: Choose the parameter k that gives the best stability, in the simplest case as
follows:

K := arg min
k

̂Instab(k, n) (2.40)

42

such as those listed in section 2.2.1.1 can be used. If the clusterings are defined
on different data sets, one can either use a restriction operator to restrict the
clusterings to the data points that are common to both data sets (in the case of
overlapping subsamples) or use an extension operator to extend the domain of the
first clustering into the domain of the second. This can be done by assigning new
data to the cluster centers of each clustering [187].

Finally, the calculated distances are summarized - in the case of line 10 of
algorithm 6 by using the mean. However, this is the simplest summary statistic,
and more elaborate statistics may be used [15, 18, 187]. The decision for a concrete
number of clusters is then done by selecting K for which minimum instability is
observed [116, 187]. von Luxburg [187] notes that ̂Instab(k, n) trivially scales with
increasing values of k, regardless of the underlying data structure. It therefore
may be necessary to normalize the values of ̂Instab, for example by using a null
reference distribution [18, 74] or random cluster label permutation [112]. The
first method is used in the CLEST [61] method, where a reference distribution is
defined on the same domain as the data set, but without any cluster structure.
Using a random uniform distribution is a simple means of doing so [187]. The
stability score of the reference data is then used to normalize the observed score,

thus ̂Instabnorm :=
̂Instab̂Instabnull

[187]. The second method, random label permutation,

is suggested by Lange et al. [112][187] and consists of first clustering the data set X
to obtain clustering C. The cluster labels are then randomly permuted, resulting
in Cperm. Instability is then calculated for both, and normalized instability is then

again given by ̂Instabnorm :=
̂Instab̂Instabperm

. The number of clusters is then chosen

according to the smallest normalized instability given by

K = arg min
k=2,...,kmax

̂Instabnorm(k, n) (2.41)

2.3.1. Stability Based Cluster Validity Methods

In the following, several methods are discussed that incorporate in some form the
general notion of cluster stability discussed in the previous section in algorithm
6. This is certainly not an exhaustive list; however, it provides an overview of
concrete implementations of the stability criterion in cluster validation.

2.3.1.1. Model Explorer

An early approach of stability based validation is the Model Explorer method,
introduced by Ben-Hur et al. [15] and shown in algorithm 7. The basic premise
of the algorithm is to draw two subsamples of the original data, cluster both
and measure according to some similarity criterion S whether the two cluster

43

models produce a similar result on the points common to both subsamples. This
is repeated for a specified number of subsampling runs and some range for k. An
important parameter is the selection of the percentage of the original data that is
used for a subsample, f . If chosen too small, the subsample might be not sufficient
to accurately reflect the clusters in the data. Some could be distorted or disappear
entirely. Ben-Hur et al. [15] recommend a value of 0.8.

Algorithm 7 Model Explorer algorithm [15]

Require: a data set X
Require: a maximum number of clusters kmax
Require: a number of subsamples nsub
Require: a clustering algorithm A(X, k)
Require: a similarity measure between labels s(Y1, Y2)

1: Set a size of the subsamples: f = 0.8
2: for k = 2, . . . , k = kmax do
3: for i = 1, . . . , nsub do
4: X ′1 = subsamp(X, f)
5: X ′2 = subsamp(X, f)
6: Y1 = A(X ′1, k)
7: Y2 = A(X ′2, k)
8: Int = X ′1 ∩X ′2
9: S(i, k) = s(Y1(Int), Y2(Int)), which computes the similarity

on the points common to both subsamples
10: end for
11: end for
12: Select k where similarity is close to 1

2.3.1.2. Figure of Merit

Another noteworthy early approach to resampling based validation is the Figure
of Merit by Levine and Domany [116]. The basic premise is the same as for the
model explorer algorithm, there is a parameter f (called dilution factor) that is
used to generate a number of subsamples of the original data. The difference is
that not pairs of subsamples are compared, but rather the cluster-connectivity
matrices of the subsamples which are given by

Tij =

{
1, if points i and j belong to the same cluster

0, otherwise
(2.42)

Levine and Domany [116] then define the figure of merit M(V) as the percentage

44

of agreement between the connectivity matrices obtained from the resampled data
sets T (µ) where µ = 1 . . .m and m is the number of resamples drawn and the
original data connectivity matrix T

M(V) = 〈〈δTij ,T (µ)
ij
〉〉m (2.43)

Thus for each pair of observations in the original data an average is calculated
of how many are present in one result of a subsample cluster solution. This is
in a second step averaged over all m resampling iterations. Consequently, 0 ≤
M(V) ≤ 1, where a score of 1 would indicate a perfect solution. The procedure is
summarized in algorithm 8.

Algorithm 8 Figure of merit method Levine and Domany [116]

Require: a data set X
Require: a cluster algorithm A

1: Choose parameters V of the cluster algorithm A
2: Perform cluster analysis on the full data set X
3: Construct m subsets of the original data set, by randomly selecting a subset

of size f
4: for m = 1, . . . ,mmax do
5: Perform cluster analysis for each subset
6: Calculate M(V)
7: end for
8: Vary parameters V in order to receive stable clusters where a local maximum

of M is reached

2.3.1.3. Stability Based Model Order Selection

Lange et al. [112] propose a different approach to resampling based validation by
noting that the algorithms by Levine and Domany [116] and Ben-Hur et al. [15]
could be biased as they measure similarity of clusterings on two non-disjoint data
sets. Therefore the overlap of the two subsets could already determine the group
structure, which in turn can lead to an artificially induced stability that is of course
not desired.

Thus Lange et al. [112] suggest to split the original data X (over r resampling
runs) into two disjoint data sets X ′1 and X ′2 of equal size and apply a clustering
algorithm A to both. Consequently, the results are not comparable because they
are computed from different data sets. This again is precisely the difference to
the methods proposed by Levine and Domany [116] and Ben-Hur et al. [15] whose
approaches to measuring similarity use subset overlap. In this case a mechanism is

45

needed to make the two clusterings comparable, as mentioned above, an extension
operator is necessary to extend the domain of one clustering into the other. Lange
et al. [112] suggest using X and its clustering result to train a classifier. The
classifier in turn is used to predict the group labels for X ′. These can then be
compared to the result of the cluster algorithm for X ′.

Thereafter, s random labelings of the clusters are generated and distances com-
puted. The average dissimilarity of the random labeling algorithm R is calculated
as Ŝ(Rk) and used to normalize the average dissimilarity of the original data set
clustering Ŝ(Ak) as given in equation 2.44. Finally, k is chosen according to the
lowest obtained value of S̄. Algorithm 9 details the method.

Algorithm 9 Stability based model order selection by Lange et al. [112]

Require: a data set X
Require: a number of splits r

1: for kmin, . . . , kmax do
2: for r = 1, . . . , rmax do
3: Split data into two halves X ′1 and X ′2 and apply A to both
4: Use (X ′1,A(X ′1)) to train a classifier φ and compute φ(X ′2)
5: Compute distance between solutions φ(X ′2) and A(X ′2) for X ′2
6: end for
7: Sample s random k-labelings and compute Ŝ(Rk)
8: Normalize each Ŝ(Ak) with Ŝ(Rk) to get an estimate for S̄(Ak):

S̄(Ak) :=
Ŝ(Ak)
Ŝ(Rk)

(2.44)

9: end for
10: Return k̂ = argminkS̄(Ak) as the estimated number of clusters

2.3.1.4. Consensus Clustering

Consensus clustering, shown in algorithm 10 and proposed by Monti et al. [128],
implements the stability notion by calculating connectivity matrices which again
show the pairwise cluster co-memberships. These are computed for a certain num-
ber of resampling iterations r according to some resampling scheme R (the exact
method of generating perturbed versions of the data is not strictly prescribed).
The definition of these connectivity matrices is the same as in 2.42, defined here
by M (r)(i, j) [128]. In addition, an indicator matrix I(r)(i, j) is needed, which
analogously encodes whether observations i and j of the original data are both
present in the resampled data set.

46

Algorithm 10 Consensus clustering by Monti et al. [128]

Require: a data set X
Require: a clustering algorithm A
Require: a resampling scheme R
Require: a number of resampling iterations r

1: for k = 2, . . . , kmax do
2: M ← 0 (empty set of connectivity matrices)
3: for r = 1, . . . , rmax do
4: D(r) ← R(D)
5: M (r) ← A(D(r), k)
6: M ←M ∪M (r)

7: end for
8: M(k) ← compute consensus matrix from M = {M (1) . . .M (r)}
9: end for

10: Choose k based on the consensus distribution of M(k)

Once a set of connectivity matrices has been obtained, the consensus matrixM
can be calculated as follows:

M(i,j) =

∑
rM

(r)(i, j)∑
r I

(r)(i, j)
(2.45)

Therefore each entry of M can take on a value between 0 and 1, where 1 denotes
perfect consensus. If the correct value for k was chosen, there should be a clear
block structure when the consensus matrix is plotted as a color coded heat map.
An example of this is shown in 2.3, where gene expression data (included as ex-
ample data set in the R package implementation ConsensusClusterPlus [198]) is
clustered using k-means and Euclidean distance for k = 2 to k = 4 along with the
cumulative distribution functions. k = 2 shows the clearest block structure.

Utro et al. [184] note that the consensus clustering method may be of little
use for large data sets due to its significant computational demand, claiming that
computation time may take weeks on a state of the art PC.

2.3.1.5. CLEST

The CLEST algorithm (11) by Dudoit and Fridlyand [61] works similarly to the
method proposed by Lange et al. [112]. For a range of number of clusters k =
2, . . . , K, disjoint subsamples X ′1 and X ′2 are clustered for partitions Y1 and Y2 and
a classifier is built with X ′1 and the cluster labels obtained from Y1. The classifier
as well as the cluster algorithm are applied to X ′2. The two sets of labels for X ′2 are
then compared by means of an external index I. This is done for B subsampling

47

consensus matrix k=2

1

2

consensus matrix k=3

1

2

3

consensus matrix k=4

1

2

3

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

consensus CDF

consensus index

C
D

F

2

3

4

Figure 2.3.: Consensus matrices and CDF plot for k = 2 to k = 4

48

runs, and a median value of I, defined as tk, is calculated. The same procedure
is then done for artificial data generated under a null hypothesis H0 : K = 1,
i.e. no cluster structure in the data, resulting in a value t0k = [1

B0
]
∑B0

b=1 tk,b where
pk is the proportion of tk,b that are at least as large as the observed value tk,
thus a p-value for tk. dk = tk − t0k is then defined as the difference between the
observed and expected value under the null hypothesis of K = 1. After repeating
for the complete range of possible number of clusters, the set K− is defined as
K− = {2 ≤ k ≤ K : pk ≤ pmax, dk ≥ dmin} where pmax and dmin are pre-
set thresholds. If K− is empty, the null hypothesis (no cluster structure) holds.
Otherwise the number of clusters is estimated as the number that corresponds to
the largest significant difference statistic dk.

Crucial parameters for the CLEST algorithm are the choice of the classifier
and the external index for comparison. Dudoit and Fridlyand [61] recommend
as classifier linear discriminant analysis with diagonal covariance matrix (DLDA)
and as external index the Fowlkes-Mallows similarity measure (FM). Furthermore,
Dudoit and Fridlyand [61] recommend PAM (partitioning around medoids) as
clustering procedure, pmax and dmin are both recommended to be set to 0.05, and
the reference data sets are proposed to be sampled from the uniform distribution.

2.3.1.6. Prediction Strength

Prediction Strength, proposed by Tibshirani and Walther [179], modifies the con-
cept of the external index somewhat in the sense that it measures agreement be-
tween partitions not in general, but cluster-wise. Algorithm 12 details the method.
It is not a typical stability based method along the lines of algorithm 6, but rather
an extended external index where cluster-wise agreement is measured on two sub-
samples (splits) of the original data.

After the data is split into a training and a test set (X ′1 and X ′2), the distance
between the two clusterings is calculated. This is done by using the training set
cluster centroids to predict the test set cluster memberships. The labels obtained
are compared to the labels from the test set clustering. Distance here is defined by
the co-memberships of observations - i.e. whether the same pairs of observations
end up in the same cluster in the test set clustering and when training set cluster
centroids are used for assignment (algorithm line 4, where D[P (Xtr, k), Xte]ii′ is
a N × N matrix with the ii′th element = 1 if observations i and i′ from the test
data fall into the same cluster if the cluster centers from the training set clustering
(P (Xtr, k)) were used for assignment). Afterward, the prediction strength is com-
puted using equation 2.46, where the minimum of co-membership agreements and
thus the least stable cluster is defined as the prediction strength. After repeating
for each possible k, the clustering Ck is selected where the prediction strength is
at its maximum.

49

Algorithm 11 CLEST by Dudoit and Fridlyand [61]

Require: a data set X
Require: a clustering method A
Require: a classifier Cl
Require: an external index I
Require: a number of subsampling runs B
Require: a number or reference data sets B0

Require: a maximum number of clusters K
Require: thresholds for pk and dk

1: for k = 2, . . . , k = K do
2: for b = 1, . . . , b = B do
3: Randomly split X into two disjoint sets, X ′1 and X ′2
4: Apply A to the learning set X ′1 to obtain a partition Y1
5: Build Cl using the learning set and the cluster labels from Y1
6: Apply Cl to the test set X ′2 to obtain labels Y
7: Apply A to the test set to obtain a partition Y2
8: Use I to compare Y and Y2
9: end for

10: Calculate the median tk of the similarity statistics obtained for each k
11: Generate B0 data sets under a suitable null hypothesis.
12: for all reference data sets B0 do
13: repeat steps 2 to 10 to obtain B0 similarity statistics tk,1, . . . , tk,B0

14: end for
15: Define t0k = [1

B0
]
∑B0

b=1 tk,b and let pk be the proportion of the
tk,b, 1 ≤ b ≤ B that are at least as large as the observed value
tk

16: Define dk = tk − t0k
17: end for
18: Define the set K− as

K− = {2 ≤ k ≤ K : pk ≤ pmax, dk ≥ dmin}

19: if set K− is empty then
20: k̄ = 1
21: else
22: k̄ = arg maxk∈K− dk
23: end if

50

Algorithm 12 Prediction strength by Tibshirani and Walther [179]

Require: a data set X
1: for k = 2, . . . , kmax do
2: Split X in a training and test set (X ′1 and X ′2 respectively)
3: Cluster X ′1 and X ′2 into k clusters
4: Calculate D[P (Xtr, k), Xte]ii′
5: Calculate Prediction Strength (PS):

PS(k) = min
1≤j≤k

1

nkj(nkj − 1)

∑
i 6=i′∈Akj

D[P (Xtr, k), Xte]ii′ (2.46)

6: end for
7: Select the clustering Ck with the maximum Prediction Strength

2.4. Summary

This chapter has introduced the basic concepts of cluster validation, specifically the
notion of validation by cluster stability. Several methods have been discussed that
use this procedure. In chapter 3, this matter is explored further by investigating the
resampling component of some of the methods discussed and how it might affect the
results of validation indices. For this purpose, a benchmarking study was done that
incorporates aspects of the methods that have been discussed above. For example,
CLEST by Dudoit and Fridlyand [61] and Prediction strength by Tibshirani and
Walther [179] are included as validation indices, while Model explorer by Ben-Hur
et al. [15] and Stability based model order selection by Lange et al. [112] provided
the algorithmic framework for the experimental design of the study. Consensus
clustering by Monti et al. [128] and the Figure of Merit by Levine and Domany
[116] demonstrate another approach to cluster stability via connectivity matrices.
Due to considerations with regard to study design and computational demands,
the latter two methods are not included in the study of chapter 3 (although it
should be noted that Prediction Strength does include the aspect of cluster-wise
co-memberships).

51

52

3. An Evaluation of Resampling
Based Cluster Validation

This chapter was published in Dangl and Leisch [47].

3.1. Background and Related Work

Generally, a clustering algorithm finds groups of observations in a data set that
are similar to each other. While there is a wide variety of clustering methods and
algorithms (hierarchical clustering, partitioning algorithms, density based meth-
ods, etc.), the basic process of how to achieve a meaningful partition of the data is
common to all of them and illustrated in Figure 1.10. A quite important point to
note is that the third part of the process - model validation - is perhaps the most
important part as it reflects back on the first to steps. The choice of the algorithm,
distance measure, variables etc. is obviously put to the test by validation. Thus,
thorough validation of a clustering result is crucial to the successful analysis and
interpretation of an obtained model. In principle, one commonly distinguishes two
main categories of validation measures: internal and external indices. They are
calculated for a specific range of number of clusters and the final decision is made
according to some optimal value - for some indices this is the maximum value,
for others the minimum and for some the biggest drop or increase in index levels
(often called the ’elbow’ method).

Internal indices use information for the calculation that is intrinsic to the cluster-
ing model - e.g. the within-cluster sum-of-squares or the squared distance between
cluster centroids. They therefore measure to a varying extent either the degree
of cluster separation, compactness and/or connectedness [86]. An overview of in-
ternal indices that are used in this study is given in Table 3.1, with a detailed
description given in section 2.2.2.1. One remark with regard to the Silhouette in-
dex: a(i) and D from equations 2.30 and 2.31 were slightly modified in this study.
Usually, these values indicate the average dissimilarity of the ith object to all other
objects of the same and nearest cluster respectively. In this study this was replaced
with the average dissimilarity to the cluster centroids. This greatly reduces the
computational burden and is a justified trade-off for the possibly slightly reduced
accuracy. Therefore, the Silhouette index is abbreviated QSIL (Quasi-Silhouette).

53

Index Name optimal value
Gap Statistic (GAP) elbow
Calinski-Harabasz Index (CH) maximum
Krzanowski-Lai Index (KL) maximum
Davies-Bouldin Index (DB) minimum
PBM Index (PBM) elbow
Hartigan Index (HART) elbow
Ball Index (BALL) elbow
Silhouette Index (QSIL) maximum
Cluster Sum of Squares (TR W) elbow
Log-Sum of Squares Ratio (LSR) elbow
Banfield-Rafterty Index (BFI) elbow
Xu Index (XU) elbow
Dunn Index (DUNN) maximum

Table 3.1.: Internal validation indices

External indices follow a quite different approach: they disregard the internal
structure of the data according to the clustering completely and only compare the
group labels to some known gold standard. As this means that external indices
essentially measure the similarity between sets, their values typically range between
0 and 1, where obviously a higher value indicates higher similarity (there are
exceptions; for example, the Adjusted Rand index and the Hubert Γ̂ similarity
range between -1 and 1). A list of indices selected for this study is given in Table
3.2 and detailed in section 2.2.1.1.

3.2. Resampling Methods

In the following, we discuss the method of resampling based cluster validation and
in conjunction the notion of cluster stability. Increased computational power has
greatly facilitated the application of resampling-based methods in recent years,
and numerous studies have been carried out that indicate that such an approach
helps to detect cluster structure present in the data more reliably [112, 133, 152].
The concept of cluster stability is closely connected to resampling-based valida-
tion methods: if clusters exist in the data, a clustering algorithm should, given
the appropriate number of clusters is selected, detect these clusters reliably over
repeated runs (as discussed in section 2.3. This should also be the case if the data
is slightly perturbed, as is the case with resampling [86].

As discussed previously, several validation methods that incorporate the no-
tion of stability and resampling have been introduced. For example Monti et al.

54

Index Name decision value
Rand Index (RI) maximum
Adjusted Rand Index (ARI) maximum
Fowlkes-Mallows Index (FM) maximum
Jaccard Similarity (J) maximum
Prediction Strength (PS) maximum
CLEST Algorithm (CLEST) maximum
Hubert Similarity Statistic (HUB) maximum
Czernandowski-Dice Index (CDI) maximum
Sokal-Sneath Index (SSI) maximum
Rogers-Tanimoto Index (RTI) maximum
McNemar Index (NI) maximum
Kulczinski Index (KI) maximum

Table 3.2.: External validation indices

[128] propose the method of consensus clustering where a consensus over multiple
clustering runs on resampled data is reached. Tibshirani and Walther [179] have
developed an external index (PS) that requires splitting of the original data to de-
termine the degree of stability that a certain number of clusters used provides. As
indicated above in Table 3.2, the index is also used in this benchmarking study.
Another index that is used in this study, the CLEST algorithm by Dudoit and
Fridlyand [61], also incorporates repeated resampling in its method. Other mea-
sures that base their approach on the notion of stability have been introduced by
Volkovich et al. [186], Tseng and Wong [182], Khan and N. [103], and Levine and
Domany [116]. As all of these studies show that the stability based approach might
be a promising one, the attempt of the study at hand is to investigate the effects
of resampling and cluster stability considerations in a systematic way. Therefore
we compare the the ’simple’ approach, where all validation is done on the original
data and its partition, with the resampling approach. Generally, each partition
is chosen by applying the k-means algorithm with three random restarts for each
value of the number of clusters k. With regard to the resampling approach, there
are several possible ways to resample data. We denote the following three methods
as the most widely used and representative options:

� Bootstrapping: drawing a subsample with replacement from the original
dataset with the same length. Bootstrap samples thus can contain multiple
entries of the same observation while others are not present in the subsample
at all.

� Splitting: the original data set is split into two non-overlapping halves.

55

� Subsetting: a certain percentage of the original data set is randomly selected
(in this study 75%). Consequently, overlap of varying degree is possible in
the two subsamples.

We define the original data set as X, two resampled data sets (e.g. bootstrap
samples) as X1 and X2, and the respective partitions as Y1 and Y2. Furthermore,
all indices are calculated for a specific range of clusters k = 2 to k = K (the case
of k = 1 is obviously disregarded, as it would always result in perfectly stable
values).

Similarly as Roth et al. [152], who define stability as the variability of two clus-
tering solutions drawn from the same source, we proceed in the case of external
indices - the cluster labels from Y1 and Y2 are compared to each other repeatedly
to measure stability (in contrast to the usual way of using external indices - by
comparing the cluster labels to a known truth). In order to calculate similarity,
all external indices in this study use co-memberships of observations. This is done
by calculating whether a pair of observations is either located in the same cluster
in both Y1 and Y2 or in different clusters in both Y1 and Y2 (agreement of the two
partitions) or in the same cluster in Y1 but in different clusters in Y2 and vice versa
(disagreement between partitions) - see Figure 2.1. There are two exceptions that
modify this general approach to some degree: Prediction Strength and the CLEST
method (see the previous chapter for details). As mentioned above, for the ’simple’
approach, all validation is done on the original data, therefore the original data
is used twice for the external validation measures, including the CLEST and Pre-
diction Strength algorithms (which, as mentioned above, are actually designed to
be resampling-based methods). However, for the sake of investigating the primary
hypothesis, we use the original data as pretend-resampled data.

For internal indices, we use a slightly different approach - as these indices do
not need a second clustering to measure agreement, we only draw one subsample.
This means that the splitting and subsetting scheme only differ with regard to the
percentage of observations selected. For the simple approach, the original data is
used. In both cases we assume that a correct number of clusters is found when over
repeated resampling runs, index values show a stable trend toward a particular k.

3.3. Data

In order to accurately evaluate index performance and differences between resam-
pling strategies, artificial data sets are used. These are drawn from different finite
mixtures of multivariate Gaussian distributions, with features that are selected to
reflect a range of difficulty with regard to number of variables, cluster separation,
number of observations and number of clusters. A full-factorial design is used,

56

-10 -5 0 5 10 15 20

-1
0

0
10

20

x1

x2

-10 -5 0 5 10 15 20
-1
5

-1
0

-5
0

5

x1

x2

-10 -5 0 5 10 15

-1
0

-5
0

5
10

x1

x2

Figure 3.1.: From left to right: good, close and overlapping clusters

resulting in the case at hand in 54 data sets (or rather, simulation settings) of
varying difficulty. The values for the four data set features are illustrated in Table
3.3, and a table with detailed parameters for each setting is shown in section 3.4.2.

The values are taken from Dolnicar et al. [57], but the setup in this study is
much smaller. We use less possibilities with regard to the number of observations
- 30 and 60 times the number of variables - as for the purpose of this study only
a smaller and a bigger option for data set size is needed. We also do not include
noise variables in the data sets.

No. of variables 10, 16, 22
No. of clusters 4, 6, 8
No. of observations 30/60 times the no. of variables
Cluster separation 0.1, 0, -0.1

Table 3.3.: Summary of data set features

The values for cluster separation refer to the separation index as described by Qiu
and Joe [144]. 1 indicates maximum possible cluster separation, -1 means complete
overlap. Thus the three values above indicate slight separation, close clusters and
beginning overlap. For a two-dimensional data set, the cluster separation values
are illustrated in Figure 3.1.

57

3.4. Benchmarking Setup

3.4.1. Experimental Design

The study is set up as follows: for each of the 54 simulation settings, 50 instances
are generated. These 50 instances of one data set are clustered with the k-means
algorithm and the aforementioned indices for a range of 2 to 10 clusters are cal-
culated. The supposed number of clusters is derived from these index values and
finally a percentage indicates how accurate the index is over the 50 instances of a
particular data set. This is the approach for the simple calculation, i.e. without
resampling. Additionally, each of the 50 instances of one data set is resampled 100
times for each resampling strategy mentioned above. The median index value of
the 100 subsamples is selected as the index value for each of the 50 instances. The
rest of the procedure is analogous to the simple calculation. Figure 3.2 illustrates
the process.

Data Generating Process for Dataset 1 to 54

Dataset

Boot-
strapping Splitting Random

Subsetting

Index
Calculation

Index
Calculation

Index
Calculation

Determine k
via Median

Determine k
via Median

Determine k
via Median

Clustering Clustering Clustering

Differences

Index
Calculation

Determine k

Clustering

Differences

100 x

50 x

Figure 3.2.: Benchmarking setup

This form of the setup (50 instances for each data set, 100 subsamples) has been
inspired by Tibshirani and Walther [179] and Ben-Hur et al. [15]. According to
Ben-Hur et al. [15], the huge number of subsamples that are drawn, clustered and
put through index calculation is used to make sure that the resampled median
index values are based on a sufficiently large number of calculations and thus satisfy
the needs of stability based validation. Compared to the simple calculations, we

58

can then reliably test the significance of whether resampling is actually worthwhile
given the considerably higher computational effort. Furthermore, as Figure 3.2
indicates, we also test whether there is a significant difference between the three
main possibilities of doing resampling.

3.4.2. Simulation Settings

Table 3.4 lists the parameters for each of the simulation settings. These values are
used as input to the function genRandomClust() of package clusterGeneration.
The size of the clusters is determined by selecting a value Observations×V ariables

k
, and

multiplying by 0.97 and 1.03 for an lower and upper boundary. Within this range,
a value for each cluster is randomly selected. By this, the clusters have roughly
equal, but not exactly the same size. All other inputs of genRandomClust() were
left at their default values.

3.4.3. Hardware and Software

With regard to the hardware and software used, calculations were run on the
Vienna Scientific Cluster (VSC2), which provides 1314 nodes with 16 processor
cores each. The statistical programming environment R [146] was used to carry
out the analysis and in particular, package clusterGeneration [145] was used to
create the benchmark data sets and the package flexclust [115] was used for the
clustering. The internal and external indices and benchmarking functions were
written from scratch for this analysis and implemented to work with flexclust.

3.5. Results

The data produced by the simulation study is analyzed as follows: for each of the
54 simulation settings, a result table was calculated that shows the index accuracy
percentage out of the 50 draws generated with respect to that particular setting.
Table 3.5 provides an example. As already mentioned and illustrated in Figure
3.2, for the simple slot, these percentages are only calculated from the 50 index
values obtained from the original data clustering instances (obviously, as there is
no subsample). For the resampling slots, the 50 index values are in turn based on
the median value of 100 subsample clusterings. The median was used due to its
higher robustness than the mean in order to ease the influence of bad resamples
and the resulting low index value.

Furthermore, each of the result tables have been reduced to an average value
over all indices per scheme. For the values in Table 3.5, this is shown in Table
3.6. This allows for a direct comparison of the four schemes; Figure 3.3 shows

59

Setting Clusters No. of observations No. of vars. Degree of Sep.
(times no. of variables)

1 4.00 30.00 10.00 -0.10
2 4.00 30.00 10.00 0.00
3 4.00 30.00 10.00 0.10
4 4.00 30.00 16.00 -0.10
5 4.00 30.00 16.00 0.00
6 4.00 30.00 16.00 0.10
7 4.00 30.00 22.00 -0.10
8 4.00 30.00 22.00 0.00
9 4.00 30.00 22.00 0.10

10 4.00 60.00 10.00 -0.10
11 4.00 60.00 10.00 0.00
12 4.00 60.00 10.00 0.10
13 4.00 60.00 16.00 -0.10
14 4.00 60.00 16.00 0.00
15 4.00 60.00 16.00 0.10
16 4.00 60.00 22.00 -0.10
17 4.00 60.00 22.00 0.00
18 4.00 60.00 22.00 0.10
19 6.00 30.00 10.00 -0.10
20 6.00 30.00 10.00 0.00
21 6.00 30.00 10.00 0.10
22 6.00 30.00 16.00 -0.10
23 6.00 30.00 16.00 0.00
24 6.00 30.00 16.00 0.10
25 6.00 30.00 22.00 -0.10
26 6.00 30.00 22.00 0.00
27 6.00 30.00 22.00 0.10
28 6.00 60.00 10.00 -0.10
29 6.00 60.00 10.00 0.00
30 6.00 60.00 10.00 0.10
31 6.00 60.00 16.00 -0.10
32 6.00 60.00 16.00 0.00
33 6.00 60.00 16.00 0.10
34 6.00 60.00 22.00 -0.10
35 6.00 60.00 22.00 0.00
36 6.00 60.00 22.00 0.10
37 8.00 30.00 10.00 -0.10
38 8.00 30.00 10.00 0.00
39 8.00 30.00 10.00 0.10
40 8.00 30.00 16.00 -0.10
41 8.00 30.00 16.00 0.00
42 8.00 30.00 16.00 0.10
43 8.00 30.00 22.00 -0.10
44 8.00 30.00 22.00 0.00
45 8.00 30.00 22.00 0.10
46 8.00 60.00 10.00 -0.10
47 8.00 60.00 10.00 0.00
48 8.00 60.00 10.00 0.10
49 8.00 60.00 16.00 -0.10
50 8.00 60.00 16.00 0.00
51 8.00 60.00 16.00 0.10
52 8.00 60.00 22.00 -0.10
53 8.00 60.00 22.00 0.00
54 8.00 60.00 22.00 0.10

Table 3.4.: Summary of simulation parameters

60

Bootstrapping Splitting Subsetting Simple
ARI 1.00 1.00 0.98 0.80
RI 1.00 1.00 0.98 0.82
J 1.00 1.00 0.98 0.80
FM 1.00 1.00 0.98 0.80
PS 1.00 1.00 1.00 0.90
GAP 1.00 1.00 1.00 1.00
CH 1.00 1.00 1.00 1.00
KL 0.98 0.96 0.98 0.74
DB 0.96 0.98 0.96 0.98
PBM 0.48 0.52 0.42 0.14
HART 0.80 0.86 0.76 0.64
BALL 0.94 0.92 0.96 0.70
CLEST 0.90 0.94 0.94 0.76
QSIL 0.98 0.98 0.98 0.98
TR W 1.00 1.00 1.00 1.00
LSR 0.94 0.94 0.94 0.96
HUB 1.00 1.00 0.98 0.80
CDI 1.00 1.00 0.98 0.80
RTI 1.00 1.00 0.98 0.82
SSI 1.00 1.00 0.98 0.80
NI 0.96 0.96 0.96 0.58
KI 1.00 1.00 0.98 0.80
BFI 1.00 1.00 1.00 1.00
XU 1.00 1.00 0.98 1.00
DUNN 0.70 0.60 0.70 0.34

Table 3.5.: Benchmarking result for data set 3 (10 variables, 300 Observations, 4
clusters, good separation)

61

Bootstrapping Splitting Subsetting Simple

0.9456 0.9464 0.9360 0.7984

Table 3.6.: Scheme means for Dataset 3

these average accuracies per scheme for all data sets. The values are sorted by
increasing accuracy, with the simple scheme as the reference category. The same
sorting is obviously used for the resampling slots, because of this the increase is
not monotonic.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DATASET

A
C

C
U

R
A

C
Y

Simple
Bootstrapping
Splitting
Subsetting

Figure 3.3.: Accuracy summary per scheme

The first observation that can be made in this analysis is that the three re-
sampling accuracies are notably distinct from the simple method. In order to test
whether this distinction is significant, a repeated measures ANOVA was performed
and p-values of 0.0127 (splitting), 0.03755 (bootstrapping) and 0.09722 (subset-
ting) were obtained. This, for α = 0.05, indeed suggests a significant advantage
of two resampling methods over the simple validation approach, the reference cat-
egory in the ANOVA (Table 3.12). Secondly, one can clearly observe that the
three resampling methods show a relatively similar pattern with regard to accu-
racy. It is only in the lower accuracy range (the lower fifth of the data sets),
where the resampling schemes drift apart and the splitting method seems to have
a notable advantage. It is furthermore the only scheme that at virtually all times
performs better than the simple approach and in almost all cases better than the
other resampling schemes. We therefore used another ANOVA to test for possi-

62

ble significant differences between the three resampling categories. This time the
splitting method is used as reference category, and with p-values of 0.136 and 0.273
for subsetting and bootstrapping respectively, the null hypothesis of no significant
difference when it comes to the resampling method as such is retained. However,
the splitting scheme appears to have a slight, yet non-significant edge over the
other strategies.

We continue to deepen the analysis by focusing on each scheme individually.
Therefore we first take the simple scheme from Figure 3.3 and do not only look at
the average accuracy across the data sets, but on the performance of the individual
indices. This is shown in Figure 3.4. Below the graph, a levelplot indicates the
complexity of the respective dataset; red for difficult (few observations, many
variables, cluster overlap, higher number of clusters), yellow for mid-range, blue
for easy (more observations, less variables, good separation, few clusters). The
first aspect to note is that several indices do not seem to perform well at all for
the benchmark data. Therefore the worst performing indices are shown in lighter
colors for better readability. The better performing indices obviously show a trend
of increasing accuracy from the more complex to the simpler data sets. However,
the spread even between the top indices is considerable - about 50 percentage
points, as for example in the mid-range data sets, accuracy values range between
about 0.5 and 1.

In contrast, Figures 3.5, 3.6 and 3.7 show the same individual index accuracies
for the resampling schemes. Two striking differences can be observed: for once, the
overall accuracy rate is notably higher (as was already concluded from Figure 3.3).
This again is particularly true for the top performing indices. Those that failed
completely are as before depicted in lighter colors. Secondly, the top performing
index accuracies spread across a much narrower range of about 20 percentage
points especially for the mid to easy data sets.

The level plot below each graph indicates which factor impacts accuracy to
which degree. The most apparent observation is here that separation values for
close and overlapping clusters are almost exclusively found in the lower half of the
accuracy range. To formally determine the significance of factor influence we test
again by means of an ANOVA. The obtained p-values are highly significant for
factors separation, clusters and observations. The mid to hard difficulty levels of
these factors are overwhelmingly found in the lower half of the accuracy range,
while for factor variables, this is not true to the same extent - the difficulty levels
of this factor are spread much more evenly across the accuracy range and hence
the non-significant test result. A summary of the p-values for all factors, among
with their model estimates and confidence intervals per scheme is given in Tables
3.7, 3.8, 3.9, 3.10. The reference category is always the ’easiest’ factor - 4 clusters,
many observations (60 times the number of variables), separation value 0.1 and 10

63

Figure 3.4.: Accuracy plots for simple

64

Figure 3.5.: Accuracy plot for bootstrapping

65

Figure 3.6.: Accuracy plot for splitting

66

Figure 3.7.: Accuracy plot for subsetting

67

variables).

Bootstrapping
p-value Estimate 2.5 % 97.5%

Clusters 6 0.00086 -0.11289 -0.17663 -0.04914
Clusters 8 3.89731E-11 -0.27240 -0.33614 -0.20866
Observations 30x 1.26438E-06 -0.14406 -0.19611 -0.09201
Variables 16 0.83746 0.00653 -0.05721 0.07028
Variables 22 0.91773 -0.00329 -0.06703 0.06046
Separation 0 0.00021 -0.12742 -0.19117 -0.06368
Separation -0.1 1.28333E-15 -0.37627 -0.44001 -0.31252

Table 3.7.: p-values for the bootstrapping scheme with model coefficients and con-
fidence intervals

Splitting
p-value Estimate 2.5 % 97.5%

Clusters 6 0.00149 -0.08640 -0.13788 -0.03492
Clusters 8 1.27165E-09 -0.19364 -0.24512 -0.14217
Observations 30x 0.00042 -0.07938 -0.12141 -0.03735
Variables 16 0.91191 -0.00284 -0.05432 0.04863
Variables 22 0.73232 -0.00880 -0.06028 0.04268
Separation 0 0.00066 -0.09333 -0.14481 -0.04186
Separation -0.1 1.02811E-15 -0.30578 -0.35725 -0.25430

Table 3.8.: p-values for the splitting scheme with model coefficients and confidence
intervals

We now extend the discussion beyond a mere comparison of resampling vs.
non-resampling based validation and the factors that could affect index accuracy.
The next step is to analyze the individual indices themselves with regard to their
general approach - external vs. internal validation. Furthermore, we draw a link
to the respective resampling schemes and the performance in relation to the index
used. Table 3.11 shows the average index accuracy over all data sets for each
scheme. The top performing external indices are highlighted in yellow, while the
top performing internal indices are highlighted in green. It is again noteworthy
that the highest accuracies are found in the splitting scheme, which is consistent
with the results discussed above. Moreover, all external indices achieve their best
result in the splitting scheme and all of them show very high accuracy rates. Only
index NI is slightly below 0.8 with a value of 0.78, but all other indices have values
above 0.8, ARI and HUB even 0.9. This strongly suggests that external indices

68

Subsetting
p-value Estimate 2.5 % 97.5%

Clusters 6 0.00042 -0.12116 -0.18532 -0.05699
Clusters 8 3.01720E-12 -0.29893 -0.36310 -0.23477
Observations 30x 1.05620E-07 -0.16376 -0.21615 -0.11137
Variables 16 0.74571 0.01040 -0.05377 0.07457
Variables 22 0.89301 0.00431 -0.05986 0.06848
Separation 0 0.00012 -0.13347 -0.19763 -0.06930
Separation -0.1 9.56361E-16 -0.38196 -0.44612 -0.31779

Table 3.9.: p-values for the subsetting scheme with model coefficients and confi-
dence intervals

Simple
p-value Estimate 2.5 % 97.5%

Clusters 6 0.00108 -0.07262 -0.11452 -0.03072
Clusters 8 5.76925E-11 -0.17662 -0.21852 -0.13472
Observations 30x 0.00011 -0.07176 -0.10598 -0.03755
Variables 16 0.88855 -0.00293 -0.04484 0.03897
Variables 22 0.59461 0.01116 -0.03075 0.05306
Separation 0 4.65925E-05 -0.09360 -0.13550 -0.05170
Separation -0.1 3.92373E-17 -0.27271 -0.31461 -0.23081

Table 3.10.: p-values for the simple scheme with model coefficients and confidence
intervals

69

benefit uniformly from a resampling based strategy, especially splitting, because
accuracy rates in the simple scheme are much less uniform and considerably lower.
Therefore these observation suggests that external indices clearly benefit from a
resampling based approach. In terms of recommendations, ARI and HUB are, as
already mentioned, the two top performing indices. However, the rest does not lag
behind dramatically except NI and PS, which performed slightly worse with around
0.8 accuracy. Yet still, based on these simulations, a resampling based external
validation approach should yield good results without depending too much on a
particular index.

As for internal indices, the matter is quite different. Several indices did not
perform well at all and are apparently not appropriate for the benchmarking data
at hand, for example DUNN, PBM and LSR produce average accuracy rates below
approximately 0.3. This makes selecting an index difficult, as of course for real
world data there is not such an easy means of checking accuracy. Yet still, some
indices performed exceptionally well, and can be regarded as recommendations
for internal validation strategies: QSIL and BFI produced the best results closely
followed by TR W , XU and DB. Furthermore, there is almost no difference be-
tween simple and resampling based validation for these indices. While when using
the splitting scheme, QSIL and BFI produced a correct cluster estimate > 0.9,
the only very slight difference to the simple slot is almost negligible, particularly
given the considerable savings in computational effort. The same is essentially
true for TR W, XU, and DB. Although GAP increases its accuracy slightly from
0.78 to 0.87, the only index to strongly increase its performance when used in a
resampling based validation is KL, as it jumps from 0.56 to 0.85. Still, on the
whole we conclude that internal indices generally benefit little from a resampling
based approach, especially if one takes the huge computational cost of some of
the indices (particularly QSIL and GAP) into account. It is also important that
all comparisons so far have been between the simple scheme and the best per-
forming resampling scheme, splitting. Subsetting and bootstrapping yield quite
similar results, generally a few percentage points lower in accuracy than the split-
ting scheme. However, several internal indices perform even slightly worse in the
bootstrapping and subsetting scheme than in the simple approach. This under-
scores our observation that given a well selected index, the simple scheme appears
to be sufficient for an internal validation strategy.

The usefulness of resampling for external vs. the underwhelming effect on inter-
nal indices can be visually demonstrated. We return to Figure 3.3, which shows
the mean accuracies for each data set and scheme. If we now use for the same vi-
sualization only either external or internal indices, we obtain Figure 3.8. The gap
between the resampling schemes and the simple method widens on the external-
only graph, whereas on the internal only graph the gap is much narrower (even

70

more so if we were to use only the top performing indices). Furthermore, once
we conduct another run of an ANOVA comparing the schemes, this time with the
selected subset of the two index groups the result is quite different to the full index
ensemble result at the beginning of this section. For the internal-only ANOVA,
only splitting comes close to statistical significance (0.0546), bootstrapping and
subsetting show much higher p-values (0.2843 and 0.4007). In contrast, for the
external-only ANOVA, all resampling methods show significant improvements over
the simple method (splitting 1.35e-0.5, bootstrapping 0.00279, subsetting 0.01634).
The p-values for the full ensemble of indices and for internal and external-only
ANOVAs are listed for comparison in Tables 3.12, 3.13 and 3.14. It thus appears
that the significant advantage of the resampling methods, in particular the split-
ting method, largely stems from the improved performance of external validation
indices. Internal measures contribute rather little to the statistical significance
obtained at the beginning.

3.6. Summary

Finally, in order to sum up the analysis, Table 3.15 shows at a glance a quick
summary of the benchmarking results. On the whole the study shows that a com-
bination of external and resampling based validation seems to promise consistently
good results. Should the computational power not be available, internal validation
is preferable, yet the selection of the index should be done with care. The other
two cases, external/non-resampling and internal/resampling are less optimal, as
for the former accuracy rates are lower and not as consistent as with resampling, for
the latter the resampling approach would not be an efficient use of computational
power that does not generally result in greater accuracy.

3.7. Conclusion

On the whole, this study has found that a there is a certain merit to using a
resampling based approach when validating a clustering model. This is particularly
the case when external criteria are used and the necessary computational power
is available, as this seems to produce reliable and accurate results. While using
resampling based validation can therefore help to boost model selection accuracy in
comparison to simple validation, the differences between the resampling methods
are not as clear-cut. The splitting scheme achieved slightly higher accuracy rates
than bootstrapping and subsetting, but not in a significant manner.

However, it is also important to stress that this benchmarking study certainly
cannot cover the entire range of clustering problems and thus the conclusions that

71

Bootstrapping Splitting Subsetting Simple
ARI 0.86 0.90 0.85 0.68
RI 0.78 0.88 0.74 0.71
J 0.83 0.87 0.81 0.65
FM 0.83 0.87 0.81 0.65
PS 0.73 0.81 0.71 0.76
GAP 0.84 0.87 0.82 0.78
CH 0.47 0.49 0.46 0.50
KL 0.81 0.85 0.79 0.56
DB 0.81 0.87 0.81 0.84
PBM 0.20 0.21 0.19 0.13
HART 0.45 0.49 0.44 0.44
BALL 0.53 0.55 0.53 0.30
CLEST 0.82 0.85 0.83 0.67
QSIL 0.85 0.91 0.85 0.89
TR W 0.80 0.86 0.80 0.84
LSR 0.24 0.27 0.24 0.31
HUB 0.86 0.90 0.85 0.68
CDI 0.83 0.87 0.81 0.65
RTI 0.78 0.88 0.74 0.71
SSI 0.83 0.87 0.81 0.65
NI 0.63 0.78 0.56 0.68
KI 0.83 0.87 0.81 0.65
BFI 0.86 0.92 0.85 0.88
XU 0.83 0.88 0.83 0.84
DUNN 0.28 0.22 0.27 0.14

Table 3.11.: Average accuracies over all data sets

All indices

p-value Estimate 2.5% 97.5%

Splitting 0.00127 0.12546 0.04975 0.20118
Bootstrapping 0.03755 0.08038 0.00467 0.15609
Subsetting 0.09722 0.06398 -0.01172 0.13969

Table 3.12.: ANOVA summary for all indices (reference category: simple method)

72

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scheme Comparison (only external)

DATASET

A
C

C
U

R
A

C
Y

Simple
Bootstrapping
Splitting
Subsetting

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scheme Comparison (only internal)

DATASET

A
C

C
U

R
A

C
Y

Simple
Bootstrapping
Splitting
Subsetting

Figure 3.8.: Accuracy summary per scheme internal and external indices sepa-
rately)

Only internal indices

p-value Estimate 2.5% 97.5%

Splitting 0.0546 0.07447 -0.00148 0.15043
Bootstrapping 0.2843 0.04137 -0.03459 0.11732
Subsetting 0.4007 0.03245 -0.04350 0.10840

Table 3.13.: ANOVA summary for internal indices (reference category: simple
method)

73

Only external indices

p-value Estimate 2.5% 97.5%

Splitting 1.35e-05 0.18071 0.10078 0.26063
Bootstrapping 0.00279 0.12265 0.04272 0.20258
Subsetting 0.01634 0.09815 0.01822 0.17807

Table 3.14.: ANOVA summary for external indices (reference category: simple
method)

External validation Internal validation
(Top: ARI, FM, HUB, J) (Top: QSIL, TR W,

BFI, XU, GAP)

Resampling very reliable strategy, little to no gain in accuracy
based mostly index-independent does not justify the
(recommended: computational effort
splitting)

Non-resampling accuracy significantly lower, performance strongly
based internal validation preferable dependent on index, great

variability in accuracy

Table 3.15.: Analysis summary

74

have been drawn are of course limited to the scope of the benchmarking data.
The conclusions from this study shall also serve as a basis for an evaluation on

real world benchmarking data to further deepen the understanding of the stability
notion and its implications for practical model selection in clustering.

75

76

4. Elements of Benchmarking in
Cluster Analysis

The previous chapters discussed model validation issues in clustering and a con-
crete implementation of a benchmarking problem. In the course of conducting
the study in chapter 3, a number of aspects were identified that caused difficul-
ties in designing the study. Therefore, this chapter aims to discuss benchmarking
in clustering from a general perspective, ranging from current issues to proposed
solutions and a prototypical implementation in R.

4.1. Background and Related Work

Clustering is a complex data analytic process that requires choices with every step
as discussed in section 1.4 (pre-processing of data, the analysis itself and the vali-
dation of the output). Particularly, not only is a wide selection of options available
for these steps, there are also constantly new methods introduced and developed.
Therefore, comparative evaluation, i.e. benchmarking, is critically important to
not only the developer of a new method (as a means of justification) but also the
researcher who seeks to make a decision about the best method for a given prob-
lem [185]. Benchmarking studies are thus carried out to measure performance of
different methods by using reference data sets and performance criteria for evalu-
ation purposes. This can be done either, as mentioned above, by a developer to
demonstrate the merit of a new method, or by an independent investigator without
a vested interest in one of the methods under scrutiny [191]. Weber et al. [191]
mention that a number of reviews have investigated this matter already from var-
ious angles, such as benchmarking design in general [8, 26, 30, 123, 137, 142, 208],
design practices in existing benchmarking studies [123], neutrality vs. bias in
benchmarking [27], real-world data design principles [28, 29], simulation study de-
sign [129], incorporation of meta-analysis techniques [66, 79, 80, 92], organization
and role of community challenges [32, 75] and benchmarking design for specific
types of methods [7, 185]. A more general discussion of benchmarking as a form
of meta-research is found in Ioannidis [95].

It is thus evident that a wide range of considerations are necessary in order to
organize a transparent, reproducible and neutral comparison study. For example,

77

a potential bias in benchmarking studies was found by Boulesteix et al. [27], in
which a range of studies were investigated where either a new method was intro-
duced and compared to existing solutions, or a ’pure’ comparison of methods was
done. The survey makes three main observations: firstly, benchmarking studies
where a new method is presented quite often present the new method as the best
solution, where pure comparison studies not always identify a winner. Secondly,
computational journals tend to publish less pure benchmarking studies than those
comparing a new method to existing ones. Finally, papers and studies presenting
new methods are never negative with respect to the new method. This suggests
that if a benchmarking study is conducted with a vested interest in one of the
methods under investigation, a potential bias might be the result. This naturally
is not desired in benchmarking, therefore Weber et al. [191] suggest the following
principles:

1. Define purpose and scope of the benchmarking

2. Include all relevant methods

3. Select (or design) representative data sets

4. Choose appropriate parameter values and software versions

5. Evaluate methods according to key quantitative performance metrics

6. Evaluate secondary measures including computational requirements, user-
friendliness, installation procedures, and documentation quality

7. Interpret results and provide recommendations from both user and method
developer perspectives

8. Publish results in an accessible format

9. Design the benchmark to enable future extensions

10. Follow reproducible research best practices, by making code and data pub-
licly available

With regard to (1), the purpose and scope of the benchmarking study should be
clearly defined at the beginning, as this will affect its design and implementation
[191]. In principle, Weber et al. [191] identify three main purposes of a benchmark-
ing study: demonstrating the merit of a new method (e.g. [114, 117, 138, 190, 209]),
a neutral comparison of methods (e.g. [13, 54, 63, 73, 100, 105, 148, 156, 157, 170,
171, 189]) and studies in the form of community challenges, such as the DREAM
[43, 68, 90, 108, 192], FlowCAP [3, 4], CASP [130, 131], CAMI [164], Assemblation

78

[34, 64], MAQC/SEQC [165, 166, 176] and GA4GH consortia [107]. The examples
and consortia mentioned are from the field of molecular biology as mentioned in
Weber et al. [191]. In determining the scope of a benchmarking study, the ques-
tion of available resources is certainly a notable trade-off. If chosen too broad, the
scope may exceed the available resources, if chosen too narrow the study might
not be representative and produce misleading results [191]. In order to strike a
balance, the challenge for neutral studies is to select methods where investigating
researchers are as equally familiar with as possible, and in the case of presenting
the merits of a new method, the developer should be careful to select state-of-
the-art methods and not disadvantage competing methods intentionally (e.g. by
tuning parameters or data sets) [185, 191]. This aspect is closely related to point
(2), where Van Mechelen et al. [185] note that a suitable choice of methods means
that within the scope of the study, there should be a broad choice of methods that
includes strong competitors [28].

Another crucial aspect is the choice of (real-world) or design of (artificial) data
sets (3), as it allows the methods under investigation to be evaluated under a range
of different conditions and settings [191]. In the case of real world data, the choice
should be representative of possible applications in practice [191] i.e. the scope
of generalization for the data sets should be well defined [185]. An attempt to
provide a set of well documented data sets is for example the benchmarking data
set repository of the IFCS task force on benchmarking [71, 185]. Using simulated
data provides the advantage that the exact structure of the data set is known and
therefore measurement of method performance is more straightforward. However,
the design of artificial data itself is less so, particularly the degree of complexity, as
the data scenario should neither be too simplistic or too complex [191]. If a range
of methods either fail or achieve perfect performance on a number of data sets,
evaluating actual performance becomes difficult. Therefore, if a set of different
parameters for artifical data is used, a full factorial design should be employed to
enable a thorough analysis on several levels of data complexity [185].

As already mentioned above, parameter settings for methods can also impact
the objectiveness of a benchmarking study. In point (4), Weber et al. [191] note
that ’appropriate parameter values’ should be chosen. This essentially means that
methods should not be disadvantaged in comparison to others when for the former
default values are used and for the latter extensive parameter tuning is done.
Weber et al. [191] suggest that in its simplest form all parameters for all methods
could be left at their default values, as for example in Saelens et al. [157], Couronné
et al. [44] and Schneider et al. [160].

The choice of performance evaluation measures, mentioned in point (5) is a
pivotal aspect of a study design. Of particular importance is the decision on the
nature of the criterion, as different criteria may imply different clustering solutions

79

[88, 185] which in turn could hinder a proper direct comparison of methods [191].
Moreover, subjectivity with regard to the choice of evaluation measures may lead
to results that do not reflect performance in real-life applications and/or give an
over-optimistic impression of the method under investigation [191]. These consid-
erations need to be taken into account when deciding upon a range of evaluation
metrics, particularly because the computational effort also is a factor; some metrics
in the benchmarking study in chapter 3 such as the Gap statistic or the CLEST
method demand a significant amount of computational power. Thus depending on
the methods and data, a suitable selection has to be made. For clustering, a range
of such measures is listed in sections 2.2.1.1 and 2.2.2.1, depending on whether
external or internal measures are used.

Weber et al. [191] also note in point (6) that not only pure performance evalu-
ation in terms of accuracy of clustering solutions is important, but also secondary
performance aspects, such as algorithm scalability, runtime, computational re-
quirements, code quality, user friendliness and documentation. Weber et al. [191]
further note that in Weber and Robinson [189] runtime of different methods varied
greatly on the same data sets, which along with other computational requirements
may be a prohibitive demand for some users in practice.

Van Mechelen et al. [185] claim that for interpreting and summarizing study
results in point (7), unconditional statements should be used with some caution,
particularly if they are based on some form of averaging as distortions of a mean
value can happen if some methods perform significantly worse than others. Fur-
thermore, Weber et al. [191] note that not only methods might not be directly
comparable, different users might be interested in different performance aspects of
the methods under investigation, therefore the target audience and their require-
ments should be kept in mind when giving recommendations, interpretations and
guidelines. Importantly, it needs to be emphasized that every study is of course
somewhat limited by the scope of the methods and data sets, which should be
made clear to the reader [185].

After study completion, the question arises in which form the results and re-
sources pertaining to the study can be made available (8) and whether possible
future extensions (9) are possible. A much more accessible means of not only trans-
porting, but also visualizing results and exploring them in an interactive manner is
for example by means of a web app using the shiny package [39] (examples include
Saelens et al. [157], Soneson and Robinson [171]), but a drawback of this of course
is that these resources need to be built and maintained, which cannot always be
guaranteed in the long run [191]. With regard to future extensions, Weber et al.
[191] note that a as new methods emerge, benchmark studies can quickly become
outdated. Therefore, if code and data is available in some form or fashion, com-
parisons against newer methods, other data set scenarios or parameter settings

80

are considerably easier. This could be combined with an interactive web app as
mentioned above (e.g. in Barton [12]), however, a practical implementation which
achieves that may require a substantial additional effort from study authors [191].

Finally, scientific findings and particularly benchmarking results should adhere
to principles of reproducible research (10), which is a concern in numerous study
areas [94, 191]. Donoho [58] notes that putting emphasis on reproducibility has a
couple of advantages: apart from changing oneself’s work habits, it facilitates effi-
cient teamwork. Also, by the fact that other researchers can access code and data
more easily, the impact of the original work is increased through more frequent
citations and thus a greater impact on the scientific community. This practice
should also be actively encouraged by journals [91], as a mere encouragement to
do so is usually not sufficient [31, 191]. Such an approach is facilitated by soft-
ware infrastructure such as reproducible workflow platforms, for example Galaxy
[2, 191] or KNIME [17]. With regard to analyses done with R, Weber et al. [191]
suggest making parameter values such as software version, random number seeds
and the operating system available, but also using packages that are specifically
dedicated towards managing benchmarking workflows and data sets. These in-
clude for example R package SummarizedBenchmark [104, 150], a package that
offers classes and methods for managing benchmarking experiments and that orig-
inates from comparison studies in computational biology. Other examples include
package DataPackagerR [69] for data management, Dynamic Statistical Compar-
isons [38], a tool to easily generate extendable benchmarks (written in Python,
but implementing additional tools in R) and R package workflowr [23] for anal-
ysis organization, collaboration and result sharing, which works with knitr [200]
and rmarkdown [6] and version control software (git) to create a website containing
time-stamped, versioned and documented results.

The guidelines discussed in this section should provide an overview of steps to
produce a transparent, reproducible and neutral benchmarking study. In the next
section, a more detailed look is taken at how to implement particularly trans-
parency and reproducibility considerations in R code when conducting a study
specifically in the context of clustering.

4.2. Grammar as a Data Structure

When attempting to formulate a structural framework for executing benchmarking
in R, the term grammar lends itself for this purpose. The Cambridge Dictionary
defines it as follows: ”(the study or use of) the rules about how words change
their form and combine with other words to make sentences” [53]. In other words,
this definition can be rephrased and applied to data analysis as ”(the study or
use of) the rules about how data and methods can be combined to form a data

81

analytic process”. Such a process could be a clustering model or a benchmarking
study. Therefore, even though the term itself is taken from the study of language,
its abstract definition as a set of rules that govern the formation of a process
can also be applied to data analysis. This is not without precedence; Wilkinson
[199] applied the notion to the field of graphics, and implementations are found in
package ggplot2 [194, 196] and ggbio [206]. Moreover, Wickham et al. [197] have
also applied the notion to data manipulation in package dplyr.

For example, in package dplyr the data set (which functions as the noun) is
modified by a number of functions such as mutate(), filter(), summarise(),
select() and arrange() (which function as verbs). An implementation such as
this makes the code considerably more readable, by narrowing the gap between
syntax and semantics. A similar approach shall thus be taken toward the issue
of implementing benchmarking problems in clustering. As already mentioned,
existing packages such as Kimes and Reyes [104], Finak et al. [69] or Carbonetto
et al. [38] already offer some functionality with regard to this matter, however, the
following prototypical implementation of a benchmarking grammar shall not only
address the issue of data structure definitions, but also emphasize easy readability
and user friendly setup of benchmarking.

4.3. Building Blocks of a Benchmarking Grammar

In order to translate the aforementioned definition of language grammar to its
corresponding structure in the context of clustering, the main components (the
equivalents to nouns in language) need to be identified. As mentioned in section
4.1, a benchmarking study consists of three main components that in this case
lend themselves as grammatical elements:

� methods: methods or algorithms that are defined by the scope and purpose
of the benchmarking study

� data sets: artificial and real-world data

� criteria: performance evaluation of investigated methods

A data-grammatical structure is then needed to arrange these fundamental build-
ing blocks into a unified structure that shall be defined as a benchmarking object,
basically encapsulating all information that is needed in one object. Subsequently,
the benchmarking object is processed by a benchmarking function, here defined
as runBenchmark() that uses the information to compute the cluster models and
the evaluation criteria. An illustration of this concept is given in Figure 4.1. The
missing link between these components is some form of concatenation (in language

82

grammar terms - a conjunction) that takes on the task of connecting methods, data
sets and criteria in a way that it can be efficiently processed by the benchmarking
function, in Figure 4.1 shown as %+%. A suggestion of how to achieve this is
demonstrated in the following section by means of a prototypical implementation
of the concept in Figure 4.1.

4.4. Prototypical Implementation in R

We start by defining the benchmarking object and its components (R code of
this section can be found in appendix A). The implementation follows an object-
oriented approach using the S4 class framework in R. S4 classes have a strict formal
definition (contrary to the S3 framework which is used throughout base R) and
lends itself more readily for OOP [195].

Therefore, as shown in the code below, a class benchmarkObject is defined.
Furthermore, S4 objects require so called slots that represent the state of the
object. As shown below, the object consists of six such slots, where methods,
data and criteria are obligatory as input slots. If external criteria are used
for model validation, the true group labels are also required. Thus an additional
fourth slot trueLabels can be used to store that information. If only internal
criteria are used, this slot can be left empty. Finally, models and validation

are slots where the results of the calculation done by method runBenchmark()

are stored. Thereby, after the benchmark has been executed, all information is
available clearly structured and encapsulated in one object.

Figure 4.1 shows the input and output slots of the Benchmarking object. The
symbol is used to access such a slot in actual R code - foo@data would therefore
show the data sets stored in the benchmark object foo.

1 setClass("benchmarkObject",

2 representation(

3 methods = "list",

4 data = "list",

5 criteria = "list",

6 trueLabels = "list",

7 models = "list",

8 validation = "list"))

The question now arises how to efficiently assign and store the items in the re-
spective slots. Particularly methods and their parameters are a notable issue. As
mentioned above, when applying sets of parameters, a full factorial setup com-
bined with the data sets is preferable. This is where the concept of a conjunction

83

List	of	methods List	of	data	sets List	of	criteria

Benchmarking	object

Method	1

Method	2

Method	3

Data	set	1

Data	set	2

Data	set	3

Criterion	1

Criterion	2

Criterion	3

runBenchmark()

List	of	computed
models

List	of	computed
criteria

%+% %+% %+%

@methods @data @criteria

List	of	True	Labels

@trueLabels

@models @validation

Labels	1

Labels	2

Labels	3

%+%

Figure 4.1.: Components of a benchmarking grammar

84

operator comes in. This is not new to R code; the pipe operator %>% of package
magrittr [9] is similarly used to link function executions and thus reduces the
need for complicated nested function calls. However, in this case, not sequences of
functions (i.e. verbs) are concatenated, objects such as data set or function calls
are to be combined in lists. It is therefore suggested to do this by means of a
second operator, %+% (based on %>% of package magrittr [9]). In its simplest
form, it plainly concatenates objects into a list, such as data sets. In the following
code, the iris data [70] and the artificial data set from Figure 1.9 are combined:

1 data_1 <- iris[,-5]

2

3 dim1 <- mvrnorm (150, c(5,10), matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

4 dim2 <- mvrnorm (150, c(10 ,10),matrix(c(2,-1.2,2,1.2) ,2,2))

5 dim3 <- mvrnorm (150, c(15 ,10),matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

6 data_2 <- rbind(dim1 , dim2 , dim3) %>% as.data.frame

7

8 data_list <- data_1 %+% data_2

9

10 > str(data_list , vec.len = 1)

11 List of 2

12 $ data_1:’data.frame ’: 150 obs. of 4 variables:

13 ..$ Sepal.Length: num [1:150] 5.1 4.9 ...

14 ..$ Sepal.Width : num [1:150] 3.5 3 ...

15 ..$ Petal.Length: num [1:150] 1.4 1.4 ...

16 ..$ Petal.Width : num [1:150] 0.2 0.2 ...

17 $ data_2:’data.frame ’: 450 obs. of 2 variables:

18 ..$ V1: num [1:450] 5.28 ...

19 ..$ V2: num [1:450] 11.8 ...

The more challenging problem arises when the methods under investigation should
be added to the slot methods. An option could be to just store the parameters
required by the methods in list form. A very simple example could be:

1 method_list <- kmeans %+% pam

2

3 > str(method_list)

4 List of 2

5 $ kmeans:Dotted pair list of 6

6 ..$ x : symbol

7 ..$ centers : symbol

8 ..$ iter.max : int 10

9 ..$ nstart : int 1

10 ..$ algorithm: language c("Hartigan -Wong", "Lloyd", "Forgy", "MacQueen")

11 ..$ trace : logi FALSE

12 $ pam :Dotted pair list of 12

13 ..$ x : symbol

14 ..$ k : symbol

15 ..$ diss : language inherits(x, "dist")

16 ..$ metric : language c("euclidean", "manhattan")

17 ..$ medoids : NULL

18 ..$ stand : logi FALSE

19 ..$ cluster.only: logi FALSE

20 ..$ do.swap : logi TRUE

21 ..$ keep.diss : language !diss && !cluster.only && n < 100

22 ..$ keep.data : language !diss && !cluster.only

85

23 ..$ pamonce : logi FALSE

24 ..$ trace.lev : num 0

The question however remains how to pass parameters and at the same time effi-
ciently realize (if so desired) a full factorial design. Therefore, the operator is also
able to handle parameter assignments:

1 method_list <- kmeans(x=data_1, centers =3) %+% pam(x=data_1, k=3)

2

3 > str(method_list , vec.len = 1)

4 List of 2

5 $:List of 2

6 ..$ method: chr "kmeans"

7 ..$ params:List of 1

8$:List of 2

9$ x :’data.frame ’: 150 obs. of 4 variables:

10$ Sepal.Length: num [1:150] 5.1 4.9 ...

11$ Sepal.Width : num [1:150] 3.5 3 ...

12$ Petal.Length: num [1:150] 1.4 1.4 ...

13$ Petal.Width : num [1:150] 0.2 0.2 ...

14$ centers: num 3

15 $:List of 2

16 ..$ method: chr "pam"

17 ..$ params:List of 1

18$:List of 2

19$ x:’data.frame’: 150 obs. of 4 variables:

20$ Sepal.Length: num [1:150] 5.1 4.9 ...

21$ Sepal.Width : num [1:150] 3.5 3 ...

22$ Petal.Length: num [1:150] 1.4 1.4 ...

23$ Petal.Width : num [1:150] 0.2 0.2 ...

24$ k: num 3

By this implementation, the methods are organized in lists with the parameters
passed in the function call. It should be noted that the parameters do not neces-
sarily have to have the same name, a correct list is created nonetheless. Finally, it
would be desirable to specify not only a simple function call, but specify a range of
data sets or a range of clusters centers or a range of other parameters that should
be subject to a full factorial design. This is also possible in this case. In the next
example, two data sets are created and passed as arguments to the parameter x,
which normally would only accept a single data set as argument:

1 data_1 <- iris[,-5]

2

3 dim1 <- mvrnorm (150, c(5,10), matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

4 dim2 <- mvrnorm (150, c(10 ,10),matrix(c(2,-1.2,2,1.2) ,2,2))

5 dim3 <- mvrnorm (150, c(15 ,10),matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

6 data_2 <- rbind(dim1 , dim2 , dim3) %>% as.data.frame

7

8 data_list <- data_1 %+% data_2

9

10 method_list <- kmeans(x=data_list , centers =3) %+% pam(x=data_list , k=3)

11

86

12 > str(method_list , vec.len = 1)

13 List of 2

14 $:List of 2

15 ..$ method: chr "kmeans"

16 ..$ params:List of 2

17$:List of 2

18$ x :’data.frame ’: 150 obs. of 4 variables:

19$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

20$ data.Sepal.Width : num [1:150] 3.5 3 ...

21$ data.Petal.Length: num [1:150] 1.4 1.4 ...

22$ data.Petal.Width : num [1:150] 0.2 0.2 ...

23$ centers: num 3

24$:List of 2

25$ x :’data.frame ’: 450 obs. of 2 variables:

26$ data.V1: num [1:450] 3.67 ...

27$ data.V2: num [1:450] 8.42 ...

28$ centers: num 3

29 $:List of 2

30 ..$ method: chr "pam"

31 ..$ params:List of 2

32$:List of 2

33$ x:’data.frame’: 150 obs. of 4 variables:

34$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

35$ data.Sepal.Width : num [1:150] 3.5 3 ...

36$ data.Petal.Length: num [1:150] 1.4 1.4 ...

37$ data.Petal.Width : num [1:150] 0.2 0.2 ...

38$ k: num 3

39$:List of 2

40$ x:’data.frame’: 450 obs. of 2 variables:

41$ data.V1: num [1:450] 3.67 ...

42$ data.V2: num [1:450] 8.42 ...

43$ k: num 3

In this example, not only are there two list entries for the two clustering meth-
ods, there are also two sub-lists each resulting in four possible method/parameter
combinations. The exact same approach applies to other parameters, such as for
example the number of clusters. In the following example there are 2 data sets
and a range of four number of clusters, resulting in 8 different parameter sets for
each method:

1 data_1 <- iris[,-5]

2

3 dim1 <- mvrnorm (150, c(5,10), matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

4 dim2 <- mvrnorm (150, c(10 ,10),matrix(c(2,-1.2,2,1.2) ,2,2))

5 dim3 <- mvrnorm (150, c(15 ,10),matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

6 data_2 <- rbind(dim1 , dim2 , dim3) %>% as.data.frame

7

8 data_list <- data_1 %+% data_2

9

10 k = 2:5

11

12 method_list <- kmeans(x=data_list , centers=k) %+% pam(x=data_list , k=k)

13

14 > str(method_list , vec.len = 1)

15 List of 2

16 $:List of 2

17 ..$ method: chr "kmeans"

87

18 ..$ params:List of 8

19$:List of 2

20$ x :’data.frame ’: 150 obs. of 4 variables:

21$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

22$ data.Sepal.Width : num [1:150] 3.5 3 ...

23$ data.Petal.Length: num [1:150] 1.4 1.4 ...

24$ data.Petal.Width : num [1:150] 0.2 0.2 ...

25$ centers: int 2

26$:List of 2

27$ x :’data.frame ’: 450 obs. of 2 variables:

28$ data.V1: num [1:450] 4.85 ...

29$ data.V2: num [1:450] 9.3 ...

30$ centers: int 2

31$:List of 2

32$ x :’data.frame ’: 150 obs. of 4 variables:

33$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

34$ data.Sepal.Width : num [1:150] 3.5 3 ...

35$ data.Petal.Length: num [1:150] 1.4 1.4 ...

36$ data.Petal.Width : num [1:150] 0.2 0.2 ...

37$ centers: int 3

38$:List of 2

39$ x :’data.frame ’: 450 obs. of 2 variables:

40$ data.V1: num [1:450] 4.85 ...

41$ data.V2: num [1:450] 9.3 ...

42$ centers: int 3

43$:List of 2

44$ x :’data.frame ’: 150 obs. of 4 variables:

45$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

46$ data.Sepal.Width : num [1:150] 3.5 3 ...

47$ data.Petal.Length: num [1:150] 1.4 1.4 ...

48$ data.Petal.Width : num [1:150] 0.2 0.2 ...

49$ centers: int 4

50$:List of 2

51$ x :’data.frame ’: 450 obs. of 2 variables:

52$ data.V1: num [1:450] 4.85 ...

53$ data.V2: num [1:450] 9.3 ...

54$ centers: int 4

55$:List of 2

56$ x :’data.frame ’: 150 obs. of 4 variables:

57$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

58$ data.Sepal.Width : num [1:150] 3.5 3 ...

59$ data.Petal.Length: num [1:150] 1.4 1.4 ...

60$ data.Petal.Width : num [1:150] 0.2 0.2 ...

61$ centers: int 5

62$:List of 2

63$ x :’data.frame ’: 450 obs. of 2 variables:

64$ data.V1: num [1:450] 4.85 ...

65$ data.V2: num [1:450] 9.3 ...

66$ centers: int 5

67 $:List of 2

68 ..$ method: chr "pam"

69 ..$ params:List of 8

70$:List of 2

71$ x:’data.frame’: 150 obs. of 4 variables:

72$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

73$ data.Sepal.Width : num [1:150] 3.5 3 ...

74$ data.Petal.Length: num [1:150] 1.4 1.4 ...

75$ data.Petal.Width : num [1:150] 0.2 0.2 ...

76$ k: int 2

77$:List of 2

78$ x:’data.frame’: 450 obs. of 2 variables:

79$ data.V1: num [1:450] 4.85 ...

88

80$ data.V2: num [1:450] 9.3 ...

81$ k: int 2

82$:List of 2

83$ x:’data.frame’: 150 obs. of 4 variables:

84$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

85$ data.Sepal.Width : num [1:150] 3.5 3 ...

86$ data.Petal.Length: num [1:150] 1.4 1.4 ...

87$ data.Petal.Width : num [1:150] 0.2 0.2 ...

88$ k: int 3

89$:List of 2

90$ x:’data.frame’: 450 obs. of 2 variables:

91$ data.V1: num [1:450] 4.85 ...

92$ data.V2: num [1:450] 9.3 ...

93$ k: int 3

94$:List of 2

95$ x:’data.frame’: 150 obs. of 4 variables:

96$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

97$ data.Sepal.Width : num [1:150] 3.5 3 ...

98$ data.Petal.Length: num [1:150] 1.4 1.4 ...

99$ data.Petal.Width : num [1:150] 0.2 0.2 ...

100$ k: int 4

101$:List of 2

102$ x:’data.frame’: 450 obs. of 2 variables:

103$ data.V1: num [1:450] 4.85 ...

104$ data.V2: num [1:450] 9.3 ...

105$ k: int 4

106$:List of 2

107$ x:’data.frame’: 150 obs. of 4 variables:

108$ data.Sepal.Length: num [1:150] 5.1 4.9 ...

109$ data.Sepal.Width : num [1:150] 3.5 3 ...

110$ data.Petal.Length: num [1:150] 1.4 1.4 ...

111$ data.Petal.Width : num [1:150] 0.2 0.2 ...

112$ k: int 5

113$:List of 2

114$ x:’data.frame’: 450 obs. of 2 variables:

115$ data.V1: num [1:450] 4.85 ...

116$ data.V2: num [1:450] 9.3 ...

117$ k: int 5

The same procedure is done for the validation criteria. In this example, package
clusterCrit [52] is used due to its straightforward implementation of internal and
external indices, although it is possible to pass any other (user-defined) function
as well. For this simple example, two internal (the within-cluster scatter Trace W
and the Dunn index [62]) and two external indices (Rand [147] and Jaccard [97])
are used.

1 library(clusterCrit)

2 int <- c("Dunn", "Trace_W")

3 ext <- c("Jaccard", "Rand")

4 ind <- intCriteria(crit=int) %+% extCriteria(crit=ext)

5

6 > str(ind)

7 List of 2

8 $:List of 2

9 ..$ method: chr "intCriteria"

10 ..$ params:List of 2

11$:List of 1

89

12$ crit: chr "Dunn"

13$:List of 1

14$ crit: chr "Trace_W"

15 $:List of 2

16 ..$ method: chr "extCriteria"

17 ..$ params:List of 2

18$:List of 1

19$ crit: chr "Jaccard"

20$:List of 1

21$ crit: chr "Rand"

Finally, having defined all components of the benchmarking, the benchmarking
object is assembled and passed to function runBenchmark() that performs the
model and validation computations and stores the results in slots models and
validation. In addition, the true cluster labels are also stored in order to compute
the external validation indices. The complete setup therefore is done as follows:

1 data_1 <- iris[,-5]

2

3 dim1 <- mvrnorm (150, c(5,10), matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

4 dim2 <- mvrnorm (150, c(10 ,10),matrix(c(2,-1.2,2,1.2) ,2,2))

5 dim3 <- mvrnorm (150, c(15 ,10),matrix(c(2 ,1.2 ,2 ,1.2) ,2,2))

6 data_2 <- rbind(dim1 , dim2 , dim3) %>% as.data.frame

7

8 data_list <- data_1 %+% data_2

9

10 groups_d1 <- iris[,5]

11 groups_d2 <- as.integer(c(rep (1 ,100), rep (2 ,100)))

12

13 k <- 2:5

14

15 int <- c("Dunn", "Trace_W")

16 ext <- c("Jaccard", "Rand")

17 index_list <- intCriteria(crit=int) %+% extCriteria(crit=ext)

18

19 bench <- new("benchmarkObject")

20 bench@data <- data_list

21 bench@methods <- kmeans(x=data_list , centers=k) %+% pam(x=data_list , k=k)

22 bench@criteria <- index_list

23 bench@trueLabels <- list(groups_d1, groups_d2)

24

25 bench <- runBenchmark(bench)

The structure of the benchmark object bench is quite extensive and not practical
to be shown here. However, an important part is obviously the validation slot,
the structure of which is given in the following example. It should be noted that
not only the calculated values are included, but also the full factorial setup of the
parameters to allow for easy filtering per method.

1 > str(bench@validation , vec.len = 1)

2 List of 2

3 $ kmeans:’data.frame ’: 8 obs. of 6 variables:

4 ..$ x : chr [1:8] "data_1" ...

90

5 ..$ centers: chr [1:8] "2" ...

6 ..$ Dunn : chr [1:8] "0.0765063348396643" ...

7 ..$ Trace_W: chr [1:8] "152.347951760358" ...

8 ..$ Jaccard: chr [1:8] "0.572307705879211" ...

9 ..$ Rand : chr [1:8] "0.763668894767761" ...

10 $ pam :’data.frame’: 8 obs. of 6 variables:

11 ..$ x : chr [1:8] "data_1" ...

12 ..$ k : chr [1:8] "2" ...

13 ..$ Dunn : chr [1:8] "0.0811107105653812" ...

14 ..$ Trace_W: chr [1:8] "153.325715983363" ...

15 ..$ Jaccard: chr [1:8] "0.587206482887268" ...

16 ..$ Rand : chr [1:8] "0.771901547908783" ...

Therefore, the results for data set 1 (the iris data) of method pam() can be
displayed by:

1 > bench@validation$pam %>% filter(x=="data_1")

2 x k Dunn Trace_W Jaccard Rand

3 1 data_1 2 0.0811107105653812 153.325715983363 0.587206482887268 0.771901547908783

4 2 data_1 3 0.098807393328081 78.851441426146 0.695858776569366 0.87973153591156

5 3 data_1 4 0.100843896817922 57.8779660876758 0.602400779724121 0.854765117168427

6 4 data_1 5 0.123508045438893 47.1354907407407 0.551614463329315 0.835973143577576

These values can then be analyzed further as desired. The emphasis of this ap-
proach on simple syntax enables easy extension of the setup. For example, if
additional methods should be included this can simply be done by concatenating
as many methods as needed (in the following case cclust() [55] and a parametric
model of package mclust [163]. This can of course also be done for validation
criteria or data sets.

1 bench@methods <- kmeans(x=data_list , centers=k) %+% pam(x=data_list , k=k) %+%

2 cclust(x=data_list , k=k) %+% Mclust(data=data_list , G=k)

3

4 bench <- runBenchmark(bench)

5

6 > str(bench@validation , vec.len = 1)

7 List of 4

8 $ kmeans:’data.frame ’: 8 obs. of 6 variables:

9 ..$ x : chr [1:8] "data_1" ...

10 ..$ centers: chr [1:8] "2" ...

11 ..$ Dunn : chr [1:8] "0.0765063348396643" ...

12 ..$ Trace_W: chr [1:8] "152.347951760358" ...

13 ..$ Jaccard: chr [1:8] "0.572307705879211" ...

14 ..$ Rand : chr [1:8] "0.763668894767761" ...

15 $ pam :’data.frame’: 8 obs. of 6 variables:

16 ..$ x : chr [1:8] "data_1" ...

17 ..$ k : chr [1:8] "2" ...

18 ..$ Dunn : chr [1:8] "0.0811107105653812" ...

19 ..$ Trace_W: chr [1:8] "153.325715983363" ...

20 ..$ Jaccard: chr [1:8] "0.587206482887268" ...

21 ..$ Rand : chr [1:8] "0.771901547908783" ...

22 $ Mclust:’data.frame ’: 8 obs. of 6 variables:

23 ..$ data : chr [1:8] "data_1" ...

24 ..$ G : chr [1:8] "2" ...

91

25 ..$ Dunn : chr [1:8] "0.338908682082323" ...

26 ..$ Trace_W: chr [1:8] "154.947" ...

27 ..$ Jaccard: chr [1:8] "0.595141708850861" ...

28 ..$ Rand : chr [1:8] "0.776286363601685" ...

29 $ cclust:’data.frame ’: 8 obs. of 6 variables:

30 ..$ x : chr [1:8] "data_1" ...

31 ..$ k : chr [1:8] "2" ...

32 ..$ Dunn : chr [1:8] "0.0765063348396643" ...

33 ..$ Trace_W: chr [1:8] "152.347951760358" ...

34 ..$ Jaccard: chr [1:8] "0.572307705879211" ...

35 ..$ Rand : chr [1:8] "0.763668894767761" ...

The major advantage of this approach, beside the flexible setup of methods and
data sets, is that all information on methods, data and their parameters along
with the computation results are stored clearly structured in one object. This
furthermore means that code that analyzes the benchmarking results can easily be
re-used, as the structure of the benchmarking object is of course always the same.

4.5. Summary

This chapter has reviewed the guidelines and theoretical considerations on how
benchmarking as such should be done. Furthermore, the concept of regarding the
concrete implementation of benchmarking in programming code as being governed
by structural rules that can be defined as a grammar was introduced and demon-
strated by an exemplary implementation. This provides for a transparent and
reproducible benchmarking process.

The next chapter focuses on one particular aspect of the benchmarking process:
artificial data. Rather than prescribing a set of rules of how simulation data should
be designed, the aim is to (much in the same way as was done in this chapter with
the benchmarking as a whole) establish a transparent and reproducible way to
create and share artificial data.

92

5. A Framework for Transparent
and Reproducible Generation of
Artificial Data

This chapter was published in Dangl and Leisch [46].

5.1. Background

When setting up a proper benchmarking study, one of the most important factors
that comes to mind intuitively is objectiveness. It is certainly inherent to the
definition of benchmarking that methods should be compared in a most objective
and neutral way in order to determine an unbiased winner. As noted in chapter
4, Boulesteix et al. [27] have conducted a survey that investigates the outcome of
comparison studies with respect to objectiveness. They found that benchmark-
ing studies which are conducted as part of a paper that presents a new method
very often identify said new method as the winner, while studies that exclusively
compare methods do not always identify a clear winner. As already mentioned,
this discrepancy may certainly be rooted in many aspects - for example overall
benchmarking study design, selection of methods to compare to, or selection of
benchmarking data. This chapter intends to address the latter of the three as
one aspect that can be improved upon. Selection of benchmarking data sets is
certainly one of the most crucial choices to make, and especially artificial data and
its design is a major factor to a successful comparison study.

However, it is not the focus of this chapter to introduce guidelines on how ar-
tificial data should look like; the proposed framework shall rather be regarded
as a contribution to an effort in the computational science community that has
gained some momentum in recent years: reproducible research [126]. In order to
substantiate scientific claims, this keyword refers to the necessity that researchers
should not only need to describe the results of experiments and studies, but also
provide a clear protocol which allows replication of those results by the reader
[126]. Unfortunately, computations and the resulting conclusions are quite often
taken at face value [58], which is especially problematic as studies find that fre-
quently either a number of details essential for successful reproduction are missing

93

[136], or replication is at least difficult [96]. These are points that are obviously
quite problematic in the context of benchmarking. Furthermore, insufficient repro-
ducibility also leads to an increase in retracted papers [173] and has quite severe
implications in practice, such as failed clinical trials [14, 143], which is certainly
also not intended by any researcher. Stodden [175] proposes several points that
should help to improve the situation, like providing links to source code and data,
keeping track of the computing environment and versions of software used and pub-
lishing data and code in non-proprietary formats and under open licenses. With
regard to the topic in this chapter - artificial data generation - the contribution to
reproducible research is an infrastructure making the data set that was used for
the computation easily available, a requirement that is also emphasized in Peng
et al. [141]. One of the primary problems is that quite often a major hindrance to
replicating results is that code that generates data is no longer available [140].

This issue shall be addressed by proposing a development framework for artificial
data that allows to easily create, exchange, and generate data sets. The frame-
work makes the development and generation of artificial data more transparent,
and more importantly, reproducible. Basically, the framework consists of a web
application that is used to store information on data sets and an R package that
is used to generate the data sets. The main advantage of introducing a common
framework for artificial data is that it is then very easy to obtain data from previ-
ous studies, should the author choose to make the code available to others (which
of course has to be cited properly - another incentive); furthermore, if suitable
data is already available from previous studies, there is no real argument to de-
velop new data from scratch. This in turn again reduces the tendency to develop
data selectively. Also, as noted above, quite often artificial data is insufficiently
described in publications, or the code is not available (or only available for another
software package), which makes re-coding of already used data quite cumbersome.
This is also greatly reduced by an artificial data repository.

5.2. Framework Design and Terminology

The framework was designed in order to achieve a maximum of platform indepen-
dence and ease of use, also for users who are not accustomed to programming.
Furthermore, an open source approach also greatly increases availability and will-
ingness to actually use this new way of managing artificial data.

The foundation of the whole concept is the R programming language due to its
widespread use in the statistical community. While some R experience is necessary
to create new benchmarking data sets with this framework, it is quite simple to
download and generate data from existing setups.
There are two main parts to the process: an R package and a web repository. The

94

UsersUsers

User 1

User 2

LibraryLibrary

Setup 1
- DS1
- DS2
- DS3

Setup 2
-DS1
-DS2
-DS3
-DS4

Data Data
GeneratorGenerator

Metadata
object

DataData

SQLite
Database

Web ApplicationWeb Application R PackageR Package

User 3User 3

Figure 5.1.: Framework layout

R package implements all functionalities that are needed to generate artificial data
sets from R script files that contain the metadata information. It also offers other
tools that are described in more detail below. The script files are the essential
part; basically, they have to be written from scratch by the user. They have to
conform to specific rules in order to work with the package. The web repository as
the second important part serves as a means to conveniently collect and exchange
script files. As illustrated in Figure 5.1, the repository hosts data sets that are
summarized in so called benchmarking setups. One user uploads a script file that
contains a benchmarking setup which consists of several data sets. Another user
can download the script file and generate the metadata information and in turn
the actual data with the R package on the local computer.

5.3. Metadata

The framework is based around the notion of using metadata as a means to most
efficiently store artificial data. The actual random numbers are not of great rele-
vance; if all parameters of how the data set was generated (data generating process,
random number seeds, etc.) are thoroughly documented, the data set can easily

95

be reproduced, eliminating the need to store the actual numbers. Furthermore,
this greatly increases transparency, because all essential parameters about the data
that could be of need in further analysis of test results are available. This also high-
lights why the title of this chapter proposes a ‘metadata framework’ - everything is
centered around metadata information. Therefore the script file contains no code
that generates actual numbers, it rather produces for each data set included in
the setup a metadata object (an S4 object, in R programming terminology) that
complies with the specifications in the R package and that is processed by it to
produce actual data. The structure of the metadata object varies to some degree
according to which data type is used (metric, binary, ordinal, etc.). Yet the basic
structure is approximately the same and is illustrated in Figure 5.2. The parame-
ters are assembled cluster-wise by the R package. All information necessary has to
be included in the script file, for example with regard to metric data this includes
at least the cluster centers, the variance-covariance matrix for each cluster, and
the number of observations in each cluster. Furthermore, also a number generating
function is needed. This can be just the name of the function if it already exists in
R or in some other package, but also a custom function can be provided. Finally,
also information on the random number seed is needed (which one to use, which
random number seed, etc.). This way, the metadata object can be processed.

This structure of metadata has several convenient advantages. There is no
need to awkwardly sift through programming code to extract information about
artificial data that somebody else has implemented. All information needed is
encapsulated in a clearly structured way in the metadata object. Moreover, the
design of the object is very flexible, it allows a very broad scope of possible data
sets. There is no prescribed random number generating function, no prescribed list
of obligatory parameters for each cluster. It merely prescribes a certain structure
that the metadata has to comply with. This provides a reliable structure that is
the same across all data sets of this type and this greatly simplifies understanding
and transparency.

5.3.1. Data Types

There are various data types for which metadata objects can be created. The most
commonly used type is certainly metric data, but there are several more: in order
to deal with categories there are binary and ordinal objects available; the functional
data type allows implementation of time series data and other scenarios needed for
functional clustering; there is also an implementation to generate random string
data.

96

Metadata&object

Parameters(for(cluster(1

Parameters(for(cluster(2

Data(generating(
process((DGP)
parameters

 V1 V2 Cluster
 3.260491 5.259840 1
 3.262322 5.131149 1
 4.790407 5.783151 1
 3.948815 5.536622 1
 5.092201 3.914907 1

.

.

.
 0.809411 -1.0999886 2
-3.752799 -2.8346572 2
-0.755387 -1.4755253 2
-1.478099 -2.2334436 2
 0.063736 -1.6004317 2

.

.

.

Figure 5.2.: Metadata to actual data

Metric Data

The metadata object for metric data primarily consists of two very important slots:
the distribution slot that contains the function which generates random numbers
(default is mvrnorm() from package MASS), and the clusters slot that contains
the parameters that the function in slot distribution requires. Consequently, the
arguments of the generating function and the list items in the clusters slot have
to correspond. The data set is then assembled cluster by cluster by the respective
function in the R package of the framework. The complete metadata object has
an additional third slot: seedinfo contains information on the random number
generator. Firstly, which one to use (the default is Mersenne-Twister, as it is the
default in R), which version of R and thus the generator (default is the current
R version) and the random number seed (default is 100). Figure 5.3 illustrates a
simple metadata object for metric data.

Ordinal and Binary Data

For binary and ordinal data, the basic structure is essentially the same as for
metric data, only the random number generating function is obviously different
(the default here is ordsample() from package GenOrd and generate.binary()

from package MultiOrd for ordinal and binary data respectively).

Functional Data

Functional data is the only type of metadata whose object differs notably from the
other types in terms of overall structure. The cluster centers here are functions,

97

Metadata&object

Slot%clusters

Cluster%1:%n=15,%mu=c(0,1),%Sigma=diag(1,2)

Cluster%2:%n=25,%mu=c(3,4),%Sigma=diag(1,2)

Cluster%3:%n=20,%mu=c(6,5),%Sigma=diag(1,2)

Slot%seedinfo

RN%seed:%100
RN%generator:%MersenneATwister

RN%version:%3.0.1

Slot%distribution

mvrnorm
(minimum%required%arguments:%n,%mu,%Sigma)

Figure 5.3.: Metric metadata object

which are stored as a list in a slot of the same name. The other slots provide all
other parameters that are needed to evaluate the functions; the primary element
being the gridMatrix, which encodes for each instance of a cluster center the
number of time points and location of evaluation. In slot interval, the upper
and lower boundaries are given; argument granularity determines the steps in-
between. Figure 5.4 for example shows that instance 1 of a particular cluster center
function is evaluated on position 3,4,6,7,8 and 10 of the interval. The evaluations
are irregular, otherwise each instance would be evaluated at the same time points.
Slots sd and sd_distribution determine the distribution and deviation of the
instances around the cluster center function.

String Data

String data is implemented to support benchmarking of string distance measures.
The structure of the metadata object is again quite similar to metric data in
Figure 5.3, except in slot distribution there is a function that generates ran-
dom strings based on a certain reference string and given a permissible maximum
string distance. Those parameters (reference string, which type of distance and
the maximum allowed distance) are again stored as a list for each cluster in slot
clusters.

98

1 > sampleGrid(total_n=10, minT=4, maxT=7, granularity =10)

2

3 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

4 [1,] 0 0 1 1 0 1 1 1 0 1

5 [2,] 1 0 1 0 0 0 0 1 0 1

6 [3,] 1 1 0 0 0 1 1 0 0 0

7 [4,] 0 1 0 1 1 1 1 0 1 0

8 [5,] 1 0 1 1 0 1 1 1 1 0

9 [6,] 1 1 0 0 1 0 0 0 1 1

10 [7,] 0 1 0 0 1 1 1 1 1 1

11 [8,] 1 1 0 0 1 1 0 1 1 1

12 [9,] 1 1 1 1 0 1 1 0 0 1

13 [10,] 1 1 0 0 0 1 1 1 1 1

Figure 5.4.: gridMatrix for 10 instances of a cluster center

5.4. The R Package bdlp

The R package bdlp [45] is the primary tool to develop and generate data. It
processes so called benchmarking setup files, which basically are R script files that
produce the metadata objects in the form described above. The package imple-
ments the metadata object classes and provides functions that create templates for
script files, check benchmarking setup files before submission and generate data
from metadata objects.

Files containing a benchmarking setup (which in turn contains definitions for
metadata objects) is in its most basic form an R script file that contains only
one function. This function can return two things: either information on the
data sets, or the metadata object for a specific data set. The former is merely
intended as information for the user, in order to get an overview and choose a
data set to generate; the latter is the basis to generate actual data, as explained
above. An very minimal example that can generate metadata for two data sets
and the accompanying info table is shown in Figure 5.5. For simplicity reasons,
the arguments setting the random number seed parameters and the corresponding
code have been omitted.

The obligatory function in the script file has to have a specific name: the author
of the setup and the year it was created and/or published. The arguments of
the function are also fixed. The info argument is used to toggle between info
table or metadata output, for the latter the respective setnr is obviously also
necessary. The seedinfo and metaseedinfo arguments are used to set the random
number generator parameters for metadata and actual data generation. As it is
of course possible to also have random effects already when generating metadata

99

1 require(MASS)

2

3 dangl2014 <- function(setnr = NULL ,

4 seedinfo = [...] ,

5 info = FALSE ,

6 metaseedinfo = [...]){

7

8

9 inf <- data.frame(n = c(50, 40), k = c(2,2),

10 shape = c("spherical", "spherical"))

11 ref <- "Dangl R. (2014) A small simulation study.

12 Journal of Simple Datasets 10(2), 1-10"

13 if(info == T) return(list(summary = inf , reference = ref))

14

15 [...]

16

17 if(setnr == 1) {

18 return(new("metadata.metric",

19 clusters = list(c1 = list(n = 25, mu = c(4,5),

20 Sigma=diag (1,2)),

21 c2 = list(n = 25, mu = c(-1,-2),

22 Sigma=diag (1,2))),

23 dist = "mvrnorm", seedinfo = seedinfo))

24 }

25

26 if(setnr == 2){

27 return(new("metadata.metric",

28 clusters = list(c1 = list(n = 20, mu = c(0,2),

29 Sigma=diag (1,2)),

30 c2 = list(n = 20, mu = c(-1,-2),

31 Sigma=diag (1,2))),

32 dist = "mvrnorm", seedinfo = seedinfo))

33 }

34 }

Figure 5.5.: Minimal example for an experimental setup file (simplified)

100

1 > source("dangl2014.R")

2 > dangl2014(info = T)

3 $summary

4 n k shape

5 1 50 2 spherical

6 2 40 2 spherical

7

8 $reference

9 [1] "Dangl R. (2014) A small simulation study. Journal of

Simple Datasets 10(2), 1-10"

Figure 5.6.: Info output for an experimental setup file

1 > meta <- dangl2014(setnr = 1)

2 > str(meta)

3 Formal class ’metadata.metric ’ [package "bdlp"] with 4 slots

4 ..@ standardization: chr "NONE"

5 ..@ clusters :List of 2

6$ c1:List of 3

7$ n : num 25

8$ mu : num [1:2] 4 5

9$ Sigma: num [1:2, 1:2] 1 0 0 1

10$ c2:List of 3

11$ n : num 25

12$ mu : num [1:2] -1 -2

13$ Sigma: num [1:2, 1:2] 1 0 0 1

14 ..@ genfunc :function (n = 1, mu , Sigma , tol = 1e-06,

empirical = FALSE , EISPACK = FALSE)

15 ..@ seedinfo :List of 3

16$: num 100

17$: chr "4.0.3"

18$: chr [1:3] "Mersenne -Twister" "Inversion" "Rejection

"

Figure 5.7.: Metadata object

101

1 > head(generateData(meta))

2 V1 V2

3 1 3.022824 6.146590

4 2 4.127758 6.030671

5 3 2.393572 5.210740

6 4 3.453221 4.794338

7 5 4.225362 6.570782

8 6 4.239723 4.162089

Figure 5.8.: Generation of data from the metadata object

1 > createDataset(name="dangl2014", setnr=1, draws =10)

2 |===| 100\%

3

4 10 version(s) of set no. 1 of setup dangl2014 generated.

5 Base seed 100 was used and is included in file name.

Figure 5.9.: Generation of data in form of an SQLite database

(e.g. location of cluster centers), two distinct sets of parameters can be defined.
Contrary to the strictly prescribed structure of the function, its content is highly

flexible though - apart from the requirement that either the info table or a valid
metadata object has to be returned, no specific restrictions are put on the code
that can be executed in the function body. It is certainly possible to load required
packages, even custom functions that are written from scratch by the developer
can be included. In this case these functions are added below and simply sourced
at runtime when the function is executed.

The benchmarking setup file can then be sourced and used to generate data.
Figure 5.6 shows how information on the setup can be displayed and Figure 5.7
shows the generation and structure of the metadata object for one of the sample
data sets of the example file in Figure 5.5. The metadata object can then be passed
as a parameter to the function generateData(), which generates the actual data
set (Figure 5.8). Once the script file is complete and all metadata objects work as
desired, multiple draws of data sets from one metadata object can be generated
(Figure 5.9). This is done by calling function createDataset(), where the name
of the benchmarking setup, the desired data set number therein, and the number
of draws have to be specified (and optionally of course the random number seed
parameters, which overrides the default ones specified in the script file). An SQLite

102

1 createFileskeleton("dangl2014", "rainer.dangl@boku.ac.at",

2 "BOKU Vienna", "Rainer Dangl", "metric",

3 data.frame(n = c(50, 40), k = c(2,2),

4 shape = c("spherical", "spherical")),

5 "Dangl R. (2014) A small simulation

study.

6 Journal of Simple Datasets 10(2), 1-10")

Figure 5.10.: Creating a new template

database file is produced that contains the data sets. At this point, the data sets
can then be further processed in other software environments that support this file
type, not necessarily in R.

In principle, there are three ways to arrive at a benchmarking setup file that
the package can process. Firstly, one can write the script file completely from
scratch, according to the formatting guidelines. Secondly, one can generate a
template for the script file using createFileskeleton() (Figure 5.10). It takes
as arguments some author information, the reference and the info table (basically
a stripped-down version of function saveSetup() described below). The resulting
.R file looks like Figure 5.5, just without the two metadata objects. Then, the
file can be modified further in a text editor. Thirdly, one can generate the script
file completely automatically as shown in Figure 5.11. Each metadata object
is initialized using the function initializeObject(). The arguments for this
function are the data type, number of clusters and the random number generating
function. Furthermore, one can also add information on the random number seed.
The objects are then modified by the user, i.e. filled with the cluster parameters.
Once the metadata objects are complete, the complete script file can be generated
using saveSetup().

If the user wishes to contribute the benchmarking setup to the web repository,
the user should run function checkSetup() (shown in Figure 5.12) before upload-
ing. This saves time because the same check is run on submitted files, and would
result in instant rejection if unsuccessful. After a successful check and upload, the
repository maintainers will have a final review of the new setup before it is made
public in the library.

103

1 obj1 <- initializeObject(type="metric", k=2, distfunc="mvrnorm")

2 obj2 <- initializeObject(type="metric", k=3, distfunc="mvrnorm")

3

4 [...]

5

6 objlist <- list(obj1 , obj2)

7

8 saveSetup(name="dangl2014", inst="BOKU",

9 table=data.frame(n = c(50, 40), k = c(2,2),

10 shape = c("spherical", "spherical")),

11 author="Rainer Dangl",

12 cit="Dangl R. (2014) A small simulation study.

13 Journal of Simple Datasets 10(2), 1-10",

14 mail="rainer.dangl@boku.ac.at",

15 objects=objlist)

Figure 5.11.: Creating a script file automatically

1 > checkSetup("dangl2014.R")

2 Sourcing input file ...

3 Done.

4 Checking consistency of function names ...

5 Done.

6 Checking reference ...

7 Done.

8 Checking whether a summary is produced ...

9 Done.

10 Checking whether metadata and datasets can be generated ...

11 Done.

12 Check complete! You can upload your benchmarking setup!

Figure 5.12.: Checking a setup file

104

5.5. The Web Repository

The website has been built using the R package shiny [39], which allows the
development of R based web applications. There is an open source server envi-
ronment available by RStudio [155] that runs a web app developed with shiny.
shiny allows to implement reactive programming paradigms in R which means
that function outputs are immediately updated once one of the input arguments
changes. This means that calculations such as plotting are available in real time on
the website and can react to changing inputs. For example, it is possible to select a
benchmarking setup and a particular data set therein and look at a plot, switching
to another data set triggers rendering of an updated plot. For this purpose, one
instance of the data set is generated from the metadata information and a plot is
drawn in real time and displayed on the website. Furthermore, it is possible to
select a benchmarking setup and to have a look at the source code before actually
downloading. These features also make using the framework easier for users that
have little or no programming experience or who do not usually use R in their
work.

The web repository (Figure 5.14) serves as a complement to the R package. It is
not strictly necessary in order to generate data - this can be done entirely locally
with the R package - but it is a convenient means to collect benchmarking setups
and making them available to the public in an easily manageable manner. Bench-
marking setups can be contributed by everybody and after an approval process by
the maintainer they are put in the library. Figure 5.13 shows the structure of the
website.

The download section includes a search page that features a live search form
that uses the obligatory reference part of the info output of the script file to
filter available setups based on authors, publication year and keywords in the title
(Figure 5.15). The download page itself features a form to filter by data type and
available setups and the included data sets thereof (Figure 5.16). Data sets can
be plotted (Figure 5.17) and their parameters modified directly in the source code
(Figure 5.18).

The contribute section is quite simple; there is a guide that links to the vi-
gnette (Figure 5.19) of package bdlp that contains a description of how to write a
setup file. The upload page itself only contains a submit form. After the upload
is complete, the website maintainer will review the submission. The R package
includes the aforementioned function checkSetup() that allows the user to check
the formal correctness of the script file already before submitting. If the reviewer
determines that the submission is not only correct with regard to syntax but also
content (especially whether there is a proper/correct citation), the setup is put
in the library. The submitter will be notified in any case, be it acceptance or
rejection. Furthermore, to simplify the generation of a new script file, a wizard

105

Figure 5.13.: Repository site map

can create the file skeleton (Figure 5.20), which is essentially the web version of
the createFileskeleton() function of package bdlp.

5.6. Summary

The Benchmark Data Library and the accompanying R package bdlp are not
only an attempt to standardize the format with which artificial data is stored
and generated, it is an initiative to promote increasing objectiveness in bench-
marking studies. The package should not just be a tool to create data, it should
help researchers to collaborate and share their work. This certainly cannot be
established overnight, but as the project is embedded in the efforts of the IFCS
task force on benchmarking, the project will receive attention and does have a
promising starting point.

Application in practice will also show further necessary modifications to the
platform and the package (e.g. adapting the structure of metadata objects, add
new data types, etc.), in order to support as many benchmarking applications as
possible.

106

Figure 5.14.: Home page

107

Figure 5.15.: Search page

108

Figure 5.16.: Show setup summary

109

Figure 5.17.: Plot view

110

Figure 5.18.: Editor view

111

Figure 5.19.: bdlp package vignette

112

Figure 5.20.: File creator wizard

113

114

Conclusion

In the course of this dissertation, the topic of benchmarking in unsupervised learn-
ing was addressed from several angles. Chapters 1 and 2 presented a general
overview of common algorithms in the field of clustering, with particular focus on
algorithms that employ stability based considerations. This led to a comprehen-
sive benchmarking study in chapter 3, where the interrelations between internal
and external validation measures, stability based methods and the method of im-
plementing the stability aspect were investigated. This resulted in findings and
recommendations regarding possible combinations of validation indices and strate-
gies for the application of stability-based methods. The results of this study were
shared with project partners and subsequently published in Dangl and Leisch [47].

Secondly, lessons learned from setting up this benchmarking study sparked a
discussion on how to approach benchmarking as such. Difficulties in replicating
simulation setups and comparability issues with other studies resulted in consid-
erations regarding some form of structural framework for benchmarking which
follows similar regularities as language grammar. The aim of chapter 4 therefore
was to discuss the foundations for a grammar of benchmarking. The prototyp-
ical implementation presented in the thesis emphasizes simple study setup and
expandability. The concept of a benchmarking object that contains all method,
data, and parameter information allows for a clearly structured and transparent
benchmarking setup, where the information can be easily combined by a conjunc-
tion operator % + %. The implementation was done in R using the S4 class object
oriented programming framework.

Thirdly, the specific aspect of artificial data generation in a benchmarking study
was investigated in chapter 5 and published in Dangl and Leisch [46]. Work in
this area was done in coordination with the IFCS task force on benchmarking that
resulted in Van Mechelen et al. [185]. While the IFCS task force is working on
a repository for real-world benchmarking data, chapter 5 of this thesis forms the
counterpart for artificial data. Specifically, the framework introduced in chapter 5
and implemented in R package bdlp (published on CRAN [45]) provides infrastruc-
ture to easily and transparently generate artificial data in a reproducible manner.
This intends to not only help streamline the benchmarking process as discussed in
chapter 4, but in particular the aspect of artificial data generation. Furthermore,
a web application based on package shiny [39] was developed to serve as a means
to efficiently store and share data setups generated with bdlp.

115

On the whole, the contribution of this thesis to the field of unsupervised learning,
specifically cluster analysis, is twofold. With regard to the application of bench-
marking in cluster analysis, this thesis offers new insights into stability based model
validation and how to apply it in practice. Furthermore, R package bdlp serves
as a means to improve and facilitate the generation of artificial data. With regard
to benchmarking theory, a discussion on how to conduct objective, transparent
and reproducible studies was done, along with a prototypical implementation that
offers a concrete way to do benchmarking that fulfills exactly these requirements.

116

Bibliography

[1] Basel Abu-Jamous, Rui Fa, and Asoke K Nandi. Integrative cluster analysis
in bioinformatics. John Wiley & Sons, 2015.

[2] Enis Afgan, Dannon Baker, Marius Van den Beek, Daniel Blankenberg, Dave
Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor, Carl
Eberhard, et al. The galaxy platform for accessible, reproducible and collab-
orative biomedical analyses: 2016 update. Nucleic acids research, 44(W1):
W3–W10, 2016.

[3] Nima Aghaeepour, Greg Finak, Holger Hoos, Tim R Mosmann, Ryan
Brinkman, Raphael Gottardo, Richard H Scheuermann, FlowCAP Consor-
tium, Dream Consortium, et al. Critical assessment of automated flow cy-
tometry data analysis techniques. Nature methods, 10(3):228, 2013.

[4] Nima Aghaeepour, Pratip Chattopadhyay, Maria Chikina, Tom Dhaene,
Sofie Van Gassen, Miron Kursa, Bart N Lambrecht, Mehrnoush Malek,
GJ McLachlan, Yu Qian, et al. A benchmark for evaluation of algorithms
for identification of cellular correlates of clinical outcomes. Cytometry Part
A, 89(1):16–21, 2016.

[5] Levent L Albayrak, Kamil Khanipov, Mark Rojas, George Golovko, Maria
Pimenova, Michael Kosoy, and Yuriy Fofanov. Exploration of natural align-
ment scoring rules and clustering thresholds for bacterial core/pan genome
analysis. In 2017 IEEE 17th International Conference on Bioinformatics
and Bioengineering (BIBE), pages 249–254. IEEE, 2017.

[6] JJ Allaire, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey,
Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard
Iannone. rmarkdown: Dynamic Documents for R, 2020. URL https://

github.com/rstudio/rmarkdown. R package version 2.1.

[7] Alexandre Angers-Loustau, Mauro Petrillo, Johan Bengtsson-Palme,
Thomas Berendonk, Burton Blais, Kok-Gan Chan, Teresa M Coque, Paul
Hammer, Stefanie Heß, Dafni M Kagkli, et al. The challenges of design-
ing a benchmark strategy for bioinformatics pipelines in the identification

117

https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown

of antimicrobial resistance determinants using next generation sequencing
technologies. F1000Research, 7, 2018.

[8] Mohamed Radhouene Aniba, Olivier Poch, and Julie D Thompson. Issues in
bioinformatics benchmarking: the case study of multiple sequence alignment.
Nucleic Acids Research, 38(21):7353–7363, 2010.

[9] Stefan Milton Bache and Hadley Wickham. magrittr: A Forward-Pipe Oper-
ator for R, 2014. URL https://CRAN.R-project.org/package=magrittr.
R package version 1.5.

[10] G. H. Ball and D. J. Hall. ISODATA. A novel method of data analysis
and pattern classification. Technical report, Menlo Park: Stanford Research
Institute, 1965.

[11] Jeffrey D. Banfield and Adrian E. Raftery. Model-Based Gaussian and Non-
Gaussian Clustering. Biometrics, 49(3):803–821, 1993.

[12] Michael Barton. nucleotid.es: an assembler catalogue. http://nucleotid.

es, (accessed April 17, 2020).

[13] Giacomo Baruzzo, Katharina E Hayer, Eun Ji Kim, Barbara Di Camillo,
Garret A FitzGerald, and Gregory R Grant. Simulation-based comprehen-
sive benchmarking of rna-seq aligners. Nature methods, 14(2):135, 2017.

[14] C Glenn Begley and Lee M Ellis. Drug development: Raise standards for
preclinical cancer research. Nature, 483(7391):531–533, 2012.

[15] Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon. A stability based method
for discovering structure in clustered data. In Pacific symposium on biocom-
puting, volume 7, pages 6–17, 2001.

[16] Laurent Bergé, Charles Bouveyron, and Stéphane Girard. HDclassif: An
R package for model-based clustering and discriminant analysis of high-
dimensional data. Journal of Statistical Software, 46(6):1–29, 2012. URL
http://www.jstatsoft.org/v46/i06/.

[17] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, To-
bias Kötter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel.
Knime - the konstanz information miner: Version 2.0 and beyond. SIGKDD
Explor. Newsl., 11(1):26–31, November 2009. ISSN 1931-0145. doi: 10.1145/
1656274.1656280. URL http://doi.acm.org/10.1145/1656274.1656280.

118

https://CRAN.R-project.org/package=magrittr
http://nucleotid.es
http://nucleotid.es
http://www.jstatsoft.org/v46/i06/
http://doi.acm.org/10.1145/1656274.1656280

[18] Alberto Bertoni and Giorgio Valentini. Discovering multi–level structures in
bio-molecular data through the bernstein inequality. BMC bioinformatics, 9
(S2):S4, 2008.

[19] Jacob Bien and Rob Tibshirani. protoclust: Hierarchical Clustering with Pro-
totypes, 2019. URL https://CRAN.R-project.org/package=protoclust.
R package version 1.6.3.

[20] Anders Ellern Bilgrau, Poul Svante Eriksen, Jakob Gulddahl Rasmussen,
Hans Erik Johnsen, Karen Dybkaer, and Martin Boegsted. GMCM: Unsu-
pervised clustering and meta-analysis using gaussian mixture copula models.
Journal of Statistical Software, 70(2):1–23, 2016. doi: 10.18637/jss.v070.i02.

[21] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford
university press, 1995.

[22] Meltzer Bittner, P Meltzer, Yidong Chen, Y Jiang, E Seftor, M Hendrix,
M Radmacher, Rm Simon, Z Yakhini, A Ben-Dor, et al. Molecular clas-
sification of cutaneous malignant melanoma by gene expression profiling.
Nature, 406(6795):536–540, 2000.

[23] John D Blischak, Peter Carbonetto, and Matthew Stephens. Creating and
sharing reproducible research code the workflowr way [version 1; peer review:
3 approved]. F1000Research, 8(1749), 2019. doi: 10.12688/f1000research.
20843.1. URL https://doi.org/10.12688/f1000research.20843.1.

[24] Hans Hermann Bock. Automatische Klassifikation: Theoret. u. prakt. Meth-
oden z. Gruppierung u. Strukturierung von Daten (Cluster-Analyse), vol-
ume 24. Vandenhoeck & Ruprecht, 1974.

[25] Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy Song.
Efficient agglomerative hierarchical clustering. Expert Systems with Appli-
cations, 42(5):2785–2797, 2015.

[26] Anne-Laure Boulesteix. Ten simple rules for reducing overoptimistic report-
ing in methodological computational research. PLoS computational biology,
11(4), 2015.

[27] Anne-Laure Boulesteix, Lauer Sabine, and Eugster Manuel J. A. A Plea for
Neutral Comparison Studies in Computational Sciences. PLoS ONE, 8(4):
e61562, 04 2013. doi: 10.1371/journal.pone.0061562. URL http://dx.doi.

org/10.1371%2Fjournal.pone.0061562.

119

https://CRAN.R-project.org/package=protoclust
https://doi.org/10.12688/f1000research.20843.1
http://dx.doi.org/10.1371%2Fjournal.pone.0061562
http://dx.doi.org/10.1371%2Fjournal.pone.0061562

[28] Anne-Laure Boulesteix, Robert Hable, Sabine Lauer, and Manuel J. A. Eu-
gster. A statistical framework for hypothesis testing in real data comparison
studies. The American Statistician, 69(3):201–212, 2015. doi: 10.1080/
00031305.2015.1005128. URL http://dx.doi.org/10.1080/00031305.

2015.1005128.

[29] Anne-Laure Boulesteix, Rory Wilson, and Alexander Hapfelmeier. Towards
evidence-based computational statistics: lessons from clinical research on
the role and design of real-data benchmark studies. BMC medical research
methodology, 17(1):138, 2017.

[30] Anne-Laure Boulesteix, Harald Binder, Michal Abrahamowicz, Willi Sauer-
brei, and Simulation Panel of the STRATOS Initiative. On the necessity
and design of studies comparing statistical methods. Biometrical Journal,
60(1):216–218, 2018.

[31] Anne-Laure Boulesteix, Silke Janitza, Roman Hornung, Philipp Probst, Han-
nah Busen, and Alexander Hapfelmeier. Making complex prediction rules
applicable for readers: Current practice in random forest literature and rec-
ommendations. Biometrical Journal, 61(5):1314–1328, 2019.

[32] Paul C Boutros, Adam A Margolin, Joshua M Stuart, Andrea Califano, and
Gustavo Stolovitzky. Toward better benchmarking: challenge-based methods
assessment in cancer genomics. Genome biology, 15(9):462, 2014.

[33] Charles Bouveyron. funFEM: Clustering in the Discriminative Functional
Subspace, 2015. URL https://CRAN.R-project.org/package=funFEM. R
package version 1.1.

[34] Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael
Bechner, Inanç Birol, Sébastien Boisvert, Jarrod A Chapman, Guillaume
Chapuis, Rayan Chikhi, et al. Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. GigaScience, 2(1):2047–
217X, 2013.

[35] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 93–104,
2000.

[36] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics - Theory and Methods, 3(1):1–27, 1974.

120

http://dx.doi.org/10.1080/00031305.2015.1005128
http://dx.doi.org/10.1080/00031305.2015.1005128
https://CRAN.R-project.org/package=funFEM

[37] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-
based clustering based on hierarchical density estimates. In Jian Pei, Vin-
cent S. Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu, editors,
Advances in Knowledge Discovery and Data Mining, pages 160–172, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37456-2.

[38] Peter Carbonetto, Matthew Stephens, and Gao Wang. Dsc: Dynamic
statistical comparisons. https://stephenslab.github.io/dsc-wiki/

overview.html, (accessed April 17, 2020).

[39] Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPher-
son. shiny: Web Application Framework for R, 2020. URL https://CRAN.

R-project.org/package=shiny. R package version 1.5.0.

[40] Pierre Chaussé. Computing generalized method of moments and generalized
empirical likelihood with R. Journal of Statistical Software, 34(11):1–35,
2010. URL http://www.jstatsoft.org/v34/i11/.

[41] Wei-Chen Chen and Ranjan Maitra. EMCluster: EM algorithm for model-
based clustering of finite mixture gaussian distribution, 2015. R Package,
URL http://cran.r-project.org/package=EMCluster.

[42] Pawe l Cichosz. Hierarchical clustering. In Data Mining Algorithms,
pages 349–372. John Wiley & Sons, Ltd, Chichester, UK, 2015. ISBN
9781118332580.

[43] James C Costello, Laura M Heiser, Elisabeth Georgii, Mehmet Gönen,
Michael P Menden, Nicholas J Wang, Mukesh Bansal, Petteri Hintsanen,
Suleiman A Khan, John-Patrick Mpindi, et al. A community effort to assess
and improve drug sensitivity prediction algorithms. Nature biotechnology, 32
(12):1202, 2014.

[44] Raphael Couronné, Philipp Probst, and Anne-Laure Boulesteix. Random
forest versus logistic regression: a large-scale benchmark experiment. BMC
bioinformatics, 19(1):270, 2018.

[45] Rainer Dangl. bdlp: Transparent and Reproducible Artificial Data Genera-
tion, 2017. URL https://CRAN.R-project.org/package=bdlp. R package
version 0.9-2.

[46] Rainer Dangl and Friedrich Leisch. On a comprehensive metadata framework
for artificial data in unsupervised learning. Archives of Data Science, Series
A (Online First), 2(1):63–78, 2017. doi: 10.5445/KSP/1000058749/22.

121

https://stephenslab.github.io/dsc-wiki/overview.html
https://stephenslab.github.io/dsc-wiki/overview.html
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
http://www.jstatsoft.org/v34/i11/
https://CRAN.R-project.org/package=bdlp

[47] Rainer Dangl and Friedrich Leisch. Effects of resampling in determining the
number of clusters in a data set. Journal of Classification, Jul 2019. ISSN
1432-1343. doi: 10.1007/s00357-019-09328-2. URL https://doi.org/10.

1007/s00357-019-09328-2.

[48] David L. Davies and Donald W. Bouldin. A Cluster Separation Measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1
(2):224–227, April 1979.

[49] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The
mahalanobis distance. Chemometrics and intelligent laboratory systems, 50
(1):1–18, 2000.

[50] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the Royal
Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[51] Bernard Desgraupes. Clustering indices. University Paris Ouest Lab
Modal’X, 2013.

[52] Bernard Desgraupes. clusterCrit: Clustering Indices, 2018. URL https:

//CRAN.R-project.org/package=clusterCrit. R package version 1.2.8.

[53] Cambridge English Dictionary, 2020. URL https://dictionary.

cambridge.org/dictionary/english/grammar.

[54] Marie-Agnès Dillies, Andrea Rau, Julie Aubert, Christelle Hennequet-
Antier, Marine Jeanmougin, Nicolas Servant, Céline Keime, Guillemette
Marot, David Castel, Jordi Estelle, et al. A comprehensive evaluation of
normalization methods for illumina high-throughput rna sequencing data
analysis. Briefings in bioinformatics, 14(6):671–683, 2013.

[55] Evgenia Dimitriadou. cclust: Convex Clustering Methods and Clustering
Indexes, 2017. URL https://CRAN.R-project.org/package=cclust. R
package version 0.6-21.

[56] Evgenia Dimitriadou, Sara Dolničar, and Andreas Weingessel. An examina-
tion of indexes for determining the number of clusters in binary data sets.
Psychometrika, 67(1):137–159, March 2002.

[57] Sara Dolnicar, Bettina Grün, Friedrich Leisch, and Kathrin Schmidt. Re-
quired Sample Sizes for Data-Driven Market Segmentation Analyses in
Tourism. Journal of Travel Research, page 0047287513496475, 2013.

122

https://doi.org/10.1007/s00357-019-09328-2
https://doi.org/10.1007/s00357-019-09328-2
https://CRAN.R-project.org/package=clusterCrit
https://CRAN.R-project.org/package=clusterCrit
https://dictionary.cambridge.org/dictionary/english/grammar
https://dictionary.cambridge.org/dictionary/english/grammar
https://CRAN.R-project.org/package=cclust

[58] David L Donoho. An invitation to reproducible computational research.
Biostatistics, 11(3):385–388, 2010.

[59] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay.
Clustering in large graphs and matrices. In Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms, pages 291–299. Society for
Industrial and Applied Mathematics, 1999.

[60] Richard C Dubes. Cluster analysis and related issues. In Handbook of pattern
recognition and computer vision, pages 3–32. World Scientific, 1999.

[61] Sandrine Dudoit and Jane Fridlyand. A prediction-based resampling method
for estimating the number of clusters in a dataset. Genome Biology, 3(7),
2002.

[62] J. C. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions. Journal
of Cybernetics, 4(1):95–104, 1974.

[63] Angelo Duò, Mark D Robinson, and Charlotte Soneson. A systematic
performance evaluation of clustering methods for single-cell rna-seq data.
F1000Research, 7, 2018.

[64] Dent Earl, Keith Bradnam, John St John, Aaron Darling, Dawei Lin, Joseph
Fass, Hung On Ken Yu, Vince Buffalo, Daniel R Zerbino, Mark Diekhans,
et al. Assemblathon 1: a competitive assessment of de novo short read
assembly methods. Genome research, 21(12):2224–2241, 2011.

[65] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[66] Evangelos Evangelou and John PA Ioannidis. Meta-analysis methods for
genome-wide association studies and beyond. Nature Reviews Genetics, 14
(6):379–389, 2013.

[67] Brian S Everitt. Cluster Analysis. Edward Arnold, 1993.

[68] Adam D Ewing, Kathleen E Houlahan, Yin Hu, Kyle Ellrott, Cristian
Caloian, Takafumi N Yamaguchi, J Christopher Bare, Christine P’ng, Daryl
Waggott, Veronica Y Sabelnykova, et al. Combining tumor genome sim-
ulation with crowdsourcing to benchmark somatic single-nucleotide-variant
detection. Nature methods, 12(7):623–630, 2015.

123

[69] Greg Finak, Bryan Mayer, William Fulp, Paul Obrecht, Alicia Sato, Eva
Chung, Drienna Holman, and Raphael Gottardo. Datapackager: Repro-
ducible data preprocessing, standardization and sharing using r/bioconduc-
tor for collaborative data analysis. Gates open research, 2, 2018.

[70] Ronald A Fisher. The use of multiple measurements in taxonomic problems.
Annals of human genetics, 7(2):179–188, 1936.

[71] IFCS Benchmarking Task Force. Cluster benchmark data repository, 2021.
URL https://ifcs.boku.ac.at/repository/index.html.

[72] Edward B Fowlkes and Colin L Mallows. A method for comparing two
hierarchical clusterings. Journal of the American statistical association, 78
(383):553–569, 1983.

[73] Saskia Freytag, Luyi Tian, Ingrid Lönnstedt, Milica Ng, and Melanie Bahlo.
Comparison of clustering tools in r for medium-sized 10x genomics single-cell
rna-sequencing data. F1000Research, 7, 2018.

[74] Jane Fridlyand and Sandrine Dudoit. Applications of resampling methods to
estimate the number of clusters and to improve the accuracy of a clustering
method. Technical report, Technical Report 600, Department of Statistics,
UC Berkeley, 2001.

[75] Iddo Friedberg, Mark N Wass, Sean D Mooney, and Predrag Radivojac. Ten
simple rules for a community computational challenge. PLoS computational
biology, 11(4), 2015.

[76] Herman P Friedman and Jerrold Rubin. On some invariant criteria for
grouping data. Journal of the American Statistical Association, 62(320):
1159–1178, 1967.

[77] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of
Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001.

[78] Marek Gagolewski, Maciej Bartoszuk, and Anna Cena. Genie: A new, fast,
and outlier-resistant hierarchical clustering algorithm. Information Sciences,
363:8–23, 2016. doi: 10.1016/j.ins.2016.05.003.

[79] Paul P Gardner, James M Paterson, Fatemeh Ashari Ghomi, Sinan Uğur U
Umu, Stephanie McGimpsey, and Aleksandra Pawlik. A meta-analysis of
bioinformatics software benchmarks reveals that publication-bias unduly in-
fluences software accuracy. BioRxiv, page 092205, 2017.

124

https://ifcs.boku.ac.at/repository/index.html

[80] Paul P Gardner, Renee J Watson, Xochitl C Morgan, Jenny L Draper,
Robert D Finn, Sergio E Morales, and Matthew B Stott. Identifying ac-
curate metagenome and amplicon software via a meta-analysis of sequence
to taxonomy benchmarking studies. PeerJ, 7:e6160, 2019.

[81] James E Gentle. Computational statistics, volume 308. Springer, 2009.

[82] Allan D Gordon. Cluster validation. In Data Science, Classification, and
Related Methods, pages 22–39. Springer, 1998.

[83] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient clus-
tering algorithm for large databases. ACM Sigmod record, 27(2):73–84, 1998.

[84] Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast
density-based clustering with R. Journal of Statistical Software, 91(1):1–30,
2019. doi: 10.18637/jss.v091.i01.

[85] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On Clustering
Validation Techniques. J. Intell. Inf. Syst., 17(2-3):107–145, 2001.

[86] Julia Handl, Joshua D. Knowles, and Douglas B. Kell. Computational cluster
validation in post-genomic data analysis. Bioinformatics, 21(15):3201–3212,
2005.

[87] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New
York, NY, USA, 99th edition, 1975. ISBN 047135645X.

[88] Christian Hennig. What are the true clusters? Pattern Recognition Letters,
64:53 – 62, 2015. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.patrec.
2015.04.009. URL http://www.sciencedirect.com/science/article/

pii/S0167865515001269. Philosophical Aspects of Pattern Recognition.

[89] Christian Hennig. fpc: Flexible Procedures for Clustering, 2020. URL https:

//CRAN.R-project.org/package=fpc. R package version 2.2-5.

[90] Steven M Hill, Laura M Heiser, Thomas Cokelaer, Michael Unger, Nicole K
Nesser, Daniel E Carlin, Yang Zhang, Artem Sokolov, Evan O Paull, Chris K
Wong, et al. Inferring causal molecular networks: empirical assessment
through a community-based effort. Nature methods, 13(4):310–318, 2016.

[91] Benjamin Hofner, Matthias Schmid, and Lutz Edler. Reproducible research
in statistics: A review and guidelines for the biometrical journal. Biometrical
journal, 58(2):416–427, 2016.

125

http://www.sciencedirect.com/science/article/pii/S0167865515001269
http://www.sciencedirect.com/science/article/pii/S0167865515001269
https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc

[92] Fangxin Hong and Rainer Breitling. A comparison of meta-analysis meth-
ods for detecting differentially expressed genes in microarray experiments.
Bioinformatics, 24(3):374–382, 2008.

[93] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Clas-
sification, 2(1):193–218, 1985. ISSN 0176-4268. doi: 10.1007/BF01908075.
URL http://dx.doi.org/10.1007/BF01908075.

[94] John PA Ioannidis. Why most published research findings are false. PLos
med, 2(8):e124, 2005.

[95] John PA Ioannidis. Meta-research: Why research on research matters. PLoS
biology, 16(3):e2005468, 2018.

[96] John PA Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xi-
angqin Cui, Aed́ın C Culhane, Mario Falchi, Cesare Furlanello, Laurence
Game, Giuseppe Jurman, et al. Repeatability of published microarray gene
expression analyses. Nature genetics, 41(2):149–155, 2009.

[97] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New
phytologist, 11(2):37–50, 1912.

[98] Anil K Jain. Data clustering: 50 years beyond k-means. ECML/PKDD (1),
5211:3–4, 2008.

[99] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[100] Alexander Kanitz, Foivos Gypas, Andreas J Gruber, Andreas R Gruber,
Georges Martin, and Mihaela Zavolan. Comparative assessment of methods
for the computational inference of transcript isoform abundance from rna-seq
data. Genome biology, 16(1):150, 2015.

[101] Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kern-
lab – an S4 package for kernel methods in R. Journal of Statistical Software,
11(9):1–20, 2004. URL http://www.jstatsoft.org/v11/i09/.

[102] M Kathleen Kerr and Gary A Churchill. Bootstrapping cluster analysis:
assessing the reliability of conclusions from microarray experiments. Pro-
ceedings of the national academy of sciences, 98(16):8961–8965, 2001.

[103] G. J. McLachlan Khan and N. On a resampling approach for tests on the
number of clusters with mixture model-based clustering of tissue samples.
Journal of Multivariate Analysis, 90:90–105, 2004.

126

http://dx.doi.org/10.1007/BF01908075
http://www.jstatsoft.org/v11/i09/

[104] Patrick K Kimes and Alejandro Reyes. Reproducible and replicable com-
parisons using SummarizedBenchmark. Bioinformatics, 35(1):137–139, 07
2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty627. URL https:

//doi.org/10.1093/bioinformatics/bty627.

[105] Keegan Korthauer, Patrick K Kimes, Claire Duvallet, Alejandro Reyes,
Ayshwarya Subramanian, Mingxiang Teng, Chinmay Shukla, Eric J Alm,
and Stephanie C Hicks. A practical guide to methods controlling false dis-
coveries in computational biology. Genome biology, 20(1):118, 2019.

[106] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-
based clustering. WIREs Data Mining and Knowledge Discovery, 1(3):231–
240, 2011. doi: 10.1002/widm.30. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/widm.30.

[107] Peter Krusche, Len Trigg, Paul C Boutros, Christopher E Mason, M Fran-
cisco, Benjamin L Moore, Mar Gonzalez-Porta, Michael A Eberle, Zivana
Tezak, Samir Lababidi, et al. Best practices for benchmarking germline
small-variant calls in human genomes. Nature biotechnology, 37(5):555–560,
2019.

[108] Robert Küffner, Neta Zach, Raquel Norel, Johann Hawe, David Schoenfeld,
Liuxia Wang, Guang Li, Lilly Fang, Lester Mackey, Orla Hardiman, et al.
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral
sclerosis progression. Nature biotechnology, 33(1):51, 2015.

[109] Stanis law Kulczyński. Die Pflanzenassoziationen der Pieninen. Imprimerie
de l’Université, 1928.

[110] Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah, and Ling Guan.
Unsupervised Learning: A Dynamic Approach. John Wiley & Sons, Ltd,
2014. ISBN 9781118875568. doi: 10.1002/9781118875568.ch2. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9781118875568.ch2.

[111] W. J. Lai and Krzanowski Y. T. A Criterion for Determining the Number
of Groups in a Data Set Using Sum-of-Squares Clustering. Biometrics, 44:
23–34, March 1988.

[112] Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M. Buhmann.
Stability-Based Validation of Clustering Solutions. Neural Computation, 16
(6):1299–1323, 2004.

127

https://doi.org/10.1093/bioinformatics/bty627
https://doi.org/10.1093/bioinformatics/bty627
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118875568.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118875568.ch2

[113] Peter Langfelder and Steve Horvath. Fast R functions for robust correla-
tions and hierarchical clustering. Journal of Statistical Software, 46(11):
1–17, 2012. URL http://www.jstatsoft.org/v46/i11/.

[114] Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. voom:
Precision weights unlock linear model analysis tools for rna-seq read counts.
Genome biology, 15(2):R29, 2014.

[115] Friedrich Leisch. A Toolbox for K-Centroids Cluster Analysis. Computa-
tional Statistics and Data Analysis, 51(2):526–544, 2006.

[116] Erel Levine and Eytan Domany. Resampling Method For Unsupervised Es-
timation Of Cluster Validity. Neural Computation, 13:2573–2593, 2001.

[117] Jacob H Levine, Erin F Simonds, Sean C Bendall, Kara L Davis, D Amir El-
ad, Michelle D Tadmor, Oren Litvin, Harris G Fienberg, Astraea Jager, Eli R
Zunder, et al. Data-driven phenotypic dissection of aml reveals progenitor-
like cells that correlate with prognosis. Cell, 162(1):184–197, 2015.

[118] Jialu Liu, Deng Cai, and Xiaofei He. Gaussian mixture model with local
consistency. In Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[119] Tagaram Soni Madhulatha. Comparison between k-means and k-medoids
clustering algorithms. In David C. Wyld, Michal Wozniak, Nabendu Chaki,
Natarajan Meghanathan, and Dhinaharan Nagamalai, editors, Advances in
Computing and Information Technology, pages 472–481, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. ISBN 978-3-642-22555-0.

[120] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: Cluster Analysis Basics and Extensions, 2019. R package
version 2.1.0 — For new features, see the ’Changelog’ file (in the package
source).

[121] Patrick Mair and Marcus Hudec. Multivariate weibull mixtures with pro-
portional hazard restrictions for dwell-time-based session clustering with
incomplete data. Journal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 58(5):619–639, 2009. doi: 10.1111/j.1467-9876.2009.00665.
x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-9876.2009.00665.x.

[122] Patrick Mair and Marcus Hudec. mixPHM: Mixtures of Proportional Hazard
Models, 2015. URL https://CRAN.R-project.org/package=mixPHM. R
package version 0.7-2.

128

http://www.jstatsoft.org/v46/i11/
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2009.00665.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2009.00665.x
https://CRAN.R-project.org/package=mixPHM

[123] Serghei Mangul, Lana S Martin, Brian L Hill, Angela Ka-Mei Lam, Mar-
garet G Distler, Alex Zelikovsky, Eleazar Eskin, and Jonathan Flint. System-
atic benchmarking of omics computational tools. Nature communications,
10(1):1–11, 2019.

[124] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density
based clustering. The Journal of Open Source Software, 2(11):205, 2017.

[125] Marina Meilă. The uniqueness of a good optimum for k-means. In Pro-
ceedings of the 23rd international conference on Machine learning, pages
625–632. ACM, 2006.

[126] Jill P Mesirov. Computer science. accessible reproducible research. Science
(New York, NY), 327(5964), 2010.

[127] Ulrich Moller and Dörte Radke. A cluster validity approach based on nearest-
neighbor resampling. In 18th International Conference on Pattern Recogni-
tion (ICPR’06), volume 1, pages 892–895. IEEE, 2006.

[128] Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus
clustering – A resampling-based method for class discovery and visualiza-
tion of gene expression microarray data. In Machine Learning, Functional
Genomics Special Issue, pages 91–118, 2003.

[129] Tim P Morris, Ian R White, and Michael J Crowther. Using simulation
studies to evaluate statistical methods. Statistics in medicine, 38(11):2074–
2102, 2019.

[130] John Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Torsten Schwede, and
Anna Tramontano. Critical assessment of methods of protein structure pre-
diction: Progress and new directions in round xi. Proteins: Structure, Func-
tion, and Bioinformatics, 84:4–14, 2016.

[131] John Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Torsten Schwede, and
Anna Tramontano. Critical assessment of methods of protein structure pre-
diction (casp)—round xii. Proteins: Structure, Function, and Bioinformat-
ics, 86:7–15, 2018.

[132] Lampros Mouselimis. ClusterR: Gaussian Mixture Models, K-Means,
Mini-Batch-Kmeans, K-Medoids and Affinity Propagation Clustering, 2019.
URL https://CRAN.R-project.org/package=ClusterR. R package ver-
sion 1.2.1.

129

https://CRAN.R-project.org/package=ClusterR

[133] G Bel Mufti, P Bertrand, and EL Moubarki. Determining the number of
groups from measures of cluster stability. In Proceedings of International
Symposium on Applied Stochastic Models and Data Analysis, pages 17–20,
2005.

[134] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering rou-
tines for R and Python. Journal of Statistical Software, 53(9):1–18, 2013.
URL http://www.jstatsoft.org/v53/i09/.

[135] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clus-
tering method: which algorithms implement ward’s criterion? Journal of
classification, 31(3):274–295, 2014.

[136] Anton Nekrutenko and James Taylor. Next-generation sequencing data in-
terpretation: enhancing reproducibility and accessibility. Nature Reviews
Genetics, 13(9):667–672, 2012.

[137] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. The self-
assessment trap: can we all be better than average? Molecular systems
biology, 7(1), 2011.

[138] Malgorzata Nowicka and Mark D Robinson. Drimseq: a dirichlet-
multinomial framework for multivariate count outcomes in genomics.
F1000Research, 5, 2016.

[139] Malay K Pakhira, Sanghamitra Bandyopadhyay, and Ujjwal Maulik. Validity
index for crisp and fuzzy clusters. Pattern recognition, 37(3):487–501, 2004.

[140] Roger D Peng. Reproducible research in computational science. Science
(New York, Ny), 334(6060):1226, 2011.

[141] Roger D Peng, Francesca Dominici, and Scott L Zeger. Reproducible epi-
demiologic research. American journal of epidemiology, 163(9):783–789,
2006.

[142] Bjoern Peters, Steven E Brenner, Edwin Wang, Donna Slonim, and Mari-
cel G Kann. Putting benchmarks in their rightful place: the heart of com-
putational biology. PLoS computational biology, 14(11), 2018.

[143] Florian Prinz, Thomas Schlange, and Khusru Asadullah. Believe it or not:
how much can we rely on published data on potential drug targets? Nature
reviews Drug discovery, 10(9):712–712, 2011.

[144] Weiliang Qiu and Harry Joe. Generation of Random Clusters with Specified
Degree of Separation. J. Classification, 23(2):315–334, 2006.

130

http://www.jstatsoft.org/v53/i09/

[145] Weiliang Qiu and Harry Joe. clusterGeneration: random cluster generation
(with specified degree of separation), 2013. URL http://CRAN.R-project.

org/package=clusterGeneration. R package version 1.3.1.

[146] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014. URL http:

//www.R-project.org/.

[147] William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

[148] Franck Rapaport, Raya Khanin, Yupu Liang, Mono Pirun, Azra Krek, Paul
Zumbo, Christopher E Mason, Nicholas D Socci, and Doron Betel. Com-
prehensive evaluation of differential gene expression analysis methods for
rna-seq data. Genome biology, 14(9):3158, 2013.

[149] Eréndira Rendón, Itzel Abundez, Alejandra Arizmendi, and Elvia M Quiroz.
Internal versus external cluster validation indexes. International Journal of
computers and communications, 5(1):27–34, 2011.

[150] Alejandro Reyes and Patrick Kimes. SummarizedBenchmark: Classes and
methods for performing benchmark comparisons, 2019. R package version
2.0.1.

[151] David J. Rogers and Taffee T. Tanimoto. A computer program for classifying
plants. Science, 132(3434):1115–1118, 1960. doi: 10.1126/science.132.3434.
1115. URL http://www.sciencemag.org/content/132/3434/1115.short.

[152] Volker Roth, Tilman Lange, Mikio Braun, and Joachim Buhmann. A re-
sampling approach to cluster validation. In In Intl. Conf. on Computational
Statistics, pages 123–128, 2002.

[153] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Math-
ematics, 20(0):53–65, 1987.

[154] Peter J Rousseeuw and L Kaufman. Finding groups in data. Hoboken: Wiley
Online Library, 1, 1990.

[155] RStudio Team. RStudio: Integrated Development Environment for R. RStu-
dio, PBC, Boston, MA, 2020. URL http://www.rstudio.com/.

[156] Wouter Saelens, Robrecht Cannoodt, and Yvan Saeys. A comprehensive
evaluation of module detection methods for gene expression data. Nature
communications, 9(1):1–12, 2018.

131

http://CRAN.R-project.org/package=clusterGeneration
http://CRAN.R-project.org/package=clusterGeneration
http://www.R-project.org/
http://www.R-project.org/
http://www.sciencemag.org/content/132/3434/1115.short
http://www.rstudio.com/

[157] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A
comparison of single-cell trajectory inference methods. Nature biotechnology,
37(5):547–554, 2019.

[158] Sebastian Schmidtlein, Lubomir Tichy, Feilhauer Hannes, and Faude Ulrike.
A brute force approach to vegetation classification. Journal of Vegetation
Science, 21(6):1162–1171, 2010. doi: 10.1111/j.1654-1103.2010.01221.x.

[159] A Schmutz and J. Jacques & C. Bouveyron. funHDDC: Univariate and
Multivariate Model-Based Clustering in Group-Specific Functional Subspaces,
2019. URL https://CRAN.R-project.org/package=funHDDC. R package
version 2.3.0.

[160] Jochen Schneider, Alexander Hapfelmeier, Sieglinde Thöres, Andreas Ober-
meier, Christoph Schulz, Dominik Pförringer, Simon Nennstiel, Christoph
Spinner, Roland M Schmid, Hana Algül, et al. Mortality risk for acute
cholangitis (mac): a risk prediction model for in-hospital mortality in pa-
tients with acute cholangitis. BMC gastroenterology, 16(1):15, 2016.

[161] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu. Dbscan revisited, revisited: why and how you should (still) use dbscan.
ACM Transactions on Database Systems (TODS), 42(3):1–21, 2017.

[162] Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):
461–464, 03 1978. doi: 10.1214/aos/1176344136. URL https://doi.org/

10.1214/aos/1176344136.

[163] Luca Scrucca, Michael Fop, Thomas Brendan Murphy, and Adrian E.
Raftery. mclust 5: clustering, classification and density estimation
using Gaussian finite mixture models. The R Journal, 8(1):205–
233, 2016. URL https://journal.r-project.org/archive/2016-1/

scrucca-fop-murphy-etal.pdf.

[164] Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan
Janssen, Johannes Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik
Dahms, et al. Critical assessment of metagenome interpretation—a bench-
mark of metagenomics software. Nature methods, 14(11):1063–1071, 2017.

[165] Leming Shi, Laura H Reid, Wendell D Jones, Richard Shippy, Janet A
Warrington, Shawn C Baker, Patrick J Collins, Francoise De Longueville,
Ernest S Kawasaki, Kathleen Y Lee, et al. The microarray quality control
(maqc) project shows inter-and intraplatform reproducibility of gene expres-
sion measurements. Nature biotechnology, 24(9):1151, 2006.

132

https://CRAN.R-project.org/package=funHDDC
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf
https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf

[166] Leming Shi, Gregory Campbell, Wendell D Jones, Fabien Campagne, Zhin-
ing Wen, Stephen J Walker, Zhenqiang Su, Tzu-Ming Chu, Federico M Good-
said, Lajos Pusztai, et al. The microarray quality control (maqc)-ii study of
common practices for the development and validation of microarray-based
predictive models. Nature biotechnology, 28(8):827, 2010.

[167] Fernanda B Silva, Rafael de O Werneck, Siome Goldenstein, Salvatore Tab-
bone, and Ricardo da S Torres. Graph-based bag-of-words for classification.
Pattern Recognition, 74:266–285, 2018.

[168] Mark Smolkin and Debashis Ghosh. Cluster stability scores for microarray
data in cancer studies. BMC bioinformatics, 4(1):36, 2003.

[169] Robert R Sokal, Peter HA Sneath, et al. Principles of numerical taxonomy.
Principles of numerical taxonomy., 1973.

[170] Charlotte Soneson and Mauro Delorenzi. A comparison of methods for dif-
ferential expression analysis of rna-seq data. BMC bioinformatics, 14(1):91,
2013.

[171] Charlotte Soneson and Mark D Robinson. Bias, robustness and scalability in
single-cell differential expression analysis. Nature methods, 15(4):255, 2018.

[172] Azad Soni. Clustering with gaussian mixture model, 2021. URL
https://medium.com/clustering-with-gaussian-mixture-model/

clustering-with-gaussian-mixture-model-c695b6cd60da.

[173] R Grant Steen. Retractions in the scientific literature: is the incidence of
research fraud increasing? Journal of medical ethics, pages jme–2010, 2010.

[174] Douglas Steinley. K-means clustering: a half-century synthesis. British
Journal of Mathematical and Statistical Psychology, 59(1):1–34, 2006.

[175] Victoria C Stodden. Reproducible research: Addressing the need for data
and code sharing in computational science. Computing in Science & Engi-
neering, 12(5):8–12, 2010.

[176] Zhenqiang Su, Pawe l P Labaj, Sheng Li, Jean Thierry-Mieg, Danielle
Thierry-Mieg, Wei Shi, Charles Wang, Gary P Schroth, Robert A Set-
terquist, John F Thompson, et al. A comprehensive assessment of rna-seq
accuracy, reproducibility and information content by the sequencing quality
control consortium. Nature biotechnology, 32(9):903, 2014.

133

https://medium.com/clustering-with-gaussian-mixture-model/clustering-with-gaussian-mixture-model-c695b6cd60da
https://medium.com/clustering-with-gaussian-mixture-model/clustering-with-gaussian-mixture-model-c695b6cd60da

[177] Bo Tang and Haibo He. A local density-based approach for outlier detection.
Neurocomputing, 241:171 – 180, 2017. ISSN 0925-2312. doi: https://doi.
org/10.1016/j.neucom.2017.02.039. URL http://www.sciencedirect.com/

science/article/pii/S0925231217303302.

[178] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition.,
volume 4th ed. Academic Press, 2009. ISBN 9781597492720.

[179] Robert Tibshirani and Guenther Walther. Cluster Validation by Prediction
Strength. Journal of Computational and Graphical Statistics, 14(3):511–528,
2005.

[180] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[181] Robert J Tibshirani and Bradley Efron. An introduction to the bootstrap.
Monographs on statistics and applied probability, 57:1–436, 1993.

[182] George C. Tseng and Wing H. Wong. Tight Clustering: A Resampling-Based
Approach for Identifying Stable and Tight Patterns in Data. Biometrics, 61:
10–16, March 2006.

[183] Marcia Urban, Martin Klemm, Kay Olaf Ploetner, and Mirko Hornung. Air-
line categorisation by applying the business model canvas and clustering
algorithms. Journal of Air Transport Management, 71:175–192, 2018.

[184] Raffaele Giancarlo Utro, Davide Scaturro, and Filippo. Computational clus-
ter calidation for microarray data analysis: experimental assessment of Clest,
Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer.
BMC Bioinformatics, 9(462), 2008.

[185] Iven Van Mechelen, Anne-Laure Boulesteix, Rainer Dangl, Nema Dean,
Isabelle Guyon, Christian Hennig, Friedrich Leisch, and Douglas Stein-
ley. Benchmarking in cluster analysis: A white paper. arXiv preprint
arXiv:1809.10496, 2018.

[186] Zeev Volkovich, Zeev Barzily, and L Morozensky. A statistical model of
cluster stability. Pattern Recognition, 41(7):2174–2188, 2008.

[187] Ulrike von Luxburg. Clustering stability: An overview. Foundations and
Trends® in Machine Learning, 2(3):235–274, 2009. ISSN 1935-8237. doi:
10.1561/2200000008. URL http://dx.doi.org/10.1561/2200000008.

134

http://www.sciencedirect.com/science/article/pii/S0925231217303302
http://www.sciencedirect.com/science/article/pii/S0925231217303302
http://dx.doi.org/10.1561/2200000008

[188] Joe H Ward Jr. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association, 58(301):236–244, 1963.

[189] Lukas M Weber and Mark D Robinson. Comparison of clustering methods
for high-dimensional single-cell flow and mass cytometry data. Cytometry
Part A, 89(12):1084–1096, 2016.

[190] Lukas M Weber, Malgorzata Nowicka, Charlotte Soneson, and Mark D
Robinson. diffcyt: Differential discovery in high-dimensional cytometry via
high-resolution clustering. Communications biology, 2(1):1–11, 2019.

[191] Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Sone-
son, Alexander Hapfelmeier, Paul P Gardner, Anne-Laure Boulesteix, Yvan
Saeys, and Mark D Robinson. Essential guidelines for computational method
benchmarking. Genome biology, 20(1):125, 2019.

[192] Matthew T Weirauch, Atina Cote, Raquel Norel, Matti Annala, Yue Zhao,
Todd R Riley, Julio Saez-Rodriguez, Thomas Cokelaer, Anastasia Vedenko,
Shaheynoor Talukder, et al. Evaluation of methods for modeling transcrip-
tion factor sequence specificity. Nature biotechnology, 31(2):126, 2013.

[193] Eric W Weisstein. CRC concise encyclopedia of mathematics. CRC press,
2002.

[194] Hadley Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010.

[195] Hadley Wickham. Advanced r. CRC press, 2019.

[196] Hadley Wickham, Winston Chang, et al. ggplot2: An implementation of the
grammar of graphics. R package version 0.7, URL: http://CRAN. R-project.
org/package= ggplot2, 3, 2008.

[197] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller. dplyr:
A Grammar of Data Manipulation, 2018. URL https://CRAN.R-project.

org/package=dplyr. R package version 0.7.6.

[198] Wilkerson, Matthew D., Hayes, and D. Neil. Consensusclusterplus:
a class discovery tool with confidence assessments and item tracking.
Bioinformatics, 26(12):1572–1573, 2010. URL http://bioinformatics.

oxfordjournals.org/content/26/12/1572.abstract.

[199] Leland Wilkinson. The grammar of graphics. In Handbook of Computational
Statistics, pages 375–414. Springer, 2012.

135

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
http://bioinformatics.oxfordjournals.org/content/26/12/1572.abstract
http://bioinformatics.oxfordjournals.org/content/26/12/1572.abstract

[200] Yihui Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC,
Boca Raton, Florida, 2nd edition, 2015. URL https://yihui.org/knitr/.
ISBN 978-1498716963.

[201] Lei Xu. Bayesian ying–yang machine, clustering and number of clusters.
Pattern Recognition Letters, 18(11):1167–1178, 1997.

[202] Qin Xu, Qiang Zhang, Jinpei Liu, and Bin Luo. Efficient synthetical clus-
tering validity indexes for hierarchical clustering. Expert Systems with Ap-
plications, page 113367, 2020.

[203] Rui Xu and Don Wunsch. Clustering, volume 10. John Wiley & Sons, 2008.

[204] Rui Xu and Donald C Wunsch. Clustering algorithms in biomedical research:
a review. IEEE reviews in biomedical engineering, 3:120–154, 2010.

[205] Menno Yap, Ding Luo, Oded Cats, Niels van Oort, and Serge Hoogendoorn.
Where shall we sync? clustering passenger flows to identify urban public
transport hubs and their key synchronization priorities. Transportation Re-
search Part C: Emerging Technologies, 98:433–448, 2019.

[206] Tengfei Yin, Dianne Cook, and Michael Lawrence. ggbio: an r package for
extending the grammar of graphics for genomic data. Genome biology, 13
(8):R77, 2012.

[207] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient
data clustering method for very large databases. ACM Sigmod Record, 25
(2):103–114, 1996.

[208] Siyuan Zheng. Benchmarking: contexts and details matter. Genome biology,
18(1):129, 2017.

[209] Xiaobei Zhou, Helen Lindsay, and Mark D Robinson. Robustly detecting dif-
ferential expression in rna sequencing data using observation weights. Nucleic
acids research, 42(11):e91–e91, 2014.

136

https://yihui.org/knitr/

List of Figures

1.1. Clusters according to various aspects 5
1.2. iris data clustered with k-means (function kmeans()) 12
1.3. iris data clustered with k-medoids (function pam()) 13
1.4. Core points in DBSCAN [161] . 15
1.5. Density based clustering compared to a k -means solution 16
1.6. Comparison of clusterings obtained by DBSCAN and HDBSCAN . 19
1.7. The two options of hierarchical clustering as illustrated in Xu and

Wunsch [203]. Clusters are obtained by cutting the dendrogram at
an appropriate level, as indicated by the dashed line 21

1.8. Comparison of the major hierarchical clustering methods on iris data 25
1.9. GMM for artificial data (mixture of three Gaussians from [172]) . . 28
1.10. The three main steps in cluster analysis in Handl et al. [86] 30

2.1. Pairwise comparisons of group labels Y1 and Y2 32
2.2. Clustering results on three data sets drawn from the same source for

several values of K. Only for the correct number of clusters K = 4
all three runs produce the same and thus stable result 41

2.3. Consensus matrices and CDF plot for k = 2 to k = 4 48

3.1. From left to right: good, close and overlapping clusters 57
3.2. Benchmarking setup . 58
3.3. Accuracy summary per scheme . 62
3.4. Accuracy plots for simple . 64
3.5. Accuracy plot for bootstrapping . 65
3.6. Accuracy plot for splitting . 66
3.7. Accuracy plot for subsetting . 67
3.8. Accuracy summary per scheme internal and external indices sepa-

rately) . 73

4.1. Components of a benchmarking grammar 84

5.1. Framework layout . 95
5.2. Metadata to actual data . 97
5.3. Metric metadata object . 98

137

5.4. gridMatrix for 10 instances of a cluster center 99
5.5. Minimal example for an experimental setup file (simplified) 100
5.6. Info output for an experimental setup file 101
5.7. Metadata object . 101
5.8. Generation of data from the metadata object 102
5.9. Generation of data in form of an SQLite database 102
5.10. Creating a new template . 103
5.11. Creating a script file automatically 104
5.12. Checking a setup file . 104
5.13. Repository site map . 106
5.14. Home page . 107
5.15. Search page . 108
5.16. Show setup summary . 109
5.17. Plot view . 110
5.18. Editor view . 111
5.19. bdlp package vignette . 112
5.20. File creator wizard . 113

138

List of Tables

1.1. Commonly used distance metrics in clustering as shown in Kyan
et al. [110] . 7

3.1. Internal validation indices . 54
3.2. External validation indices . 55
3.3. Summary of data set features . 57
3.4. Summary of simulation parameters 60
3.5. Benchmarking result for data set 3 (10 variables, 300 Observations,

4 clusters, good separation) . 61
3.6. Scheme means for Dataset 3 . 62
3.7. p-values for the bootstrapping scheme with model coefficients and

confidence intervals . 68
3.8. p-values for the splitting scheme with model coefficients and confi-

dence intervals . 68
3.9. p-values for the subsetting scheme with model coefficients and con-

fidence intervals . 69
3.10. p-values for the simple scheme with model coefficients and confi-

dence intervals . 69
3.11. Average accuracies over all data sets 72
3.12. ANOVA summary for all indices (reference category: simple method) 72
3.13. ANOVA summary for internal indices (reference category: simple

method) . 73
3.14. ANOVA summary for external indices (reference category: simple

method) . 74
3.15. Analysis summary . 74

139

140

A. Prototypical Implementation of a
Benchmarking Framework in R

1 setClass("benchmarkObject",

2 representation(

3 methods = "list",

4 data = "list",

5 criteria = "list",

6 trueLabels = "list",

7 models = "list",

8 validation = "list")

9)

10

11 findFunc <- function(fun) {

12 objects <- ls(envir = environment(fun))

13 for (i in objects) {

14 if (identical(fun , get(i, envir = environment(fun)))) {

15 return(i)

16 }

17 }

18 }

19

20 combineThings <- function(items){

21

22 require(magrittr)

23 items <- str_trim(items)

24 objlist <- list()

25

26 for(i in 1: length(items)){

27

28 if(str_detect(items[i], "\\(") == T){

29 objlist [[i]] <- getSetup(items[i])

30 }

31 else if(class(eval(parse(text=items[i]))) == "list" && class(

eval(parse(text=items[i+1]))) == "data.frame"){

32 dat <- eval(parse(text=items[i]))

33 d <- as.data.frame(eval(parse(text=items [2])))

34 dat <- list.append(dat , d)

35 names(dat)[length(dat)] <- items [2]

36 objlist <- dat

37 break

141

38 }

39 else if(class(eval(parse(text=items[i]))) == "list" && str_

detect(items[i+1], "\\(") == T){

40 funcs <- eval(parse(text=items[i]))

41 f <- getSetup(items [2])

42 funcs <- list.append(funcs , f)

43 objlist <- funcs

44 break

45 }

46 else if(is.function(items[i] %>% parse(text =.) %>% eval) == T)

{

47 f <- items[i] %>% parse(text =.) %>% eval

48 objlist [[i]] <- formals(f)

49 names(objlist)[i] <- findFunc(f)

50 }

51 else if(items[i] == "NULL"){

52 break

53 }

54 else {

55 objlist [[i]] <- eval(parse(text=items[i]))

56 names(objlist)[i] <- items[i]

57 }

58 }

59 objlist

60 }

61

62 pipe <- function (){

63 function(lhs , rhs){

64 parent <- parent.frame()

65 env <- new.env(parent = parent)

66 chain_parts <- splitExpr(match.call(), env)

67 combineThings(chain_parts)

68 }

69 }

70

71 splitExpr <- function(expr , env){

72 str <- as.character(expr)

73 c(unlist(strsplit(str[2], split = "%+%", fixed = T)), str [3])

74 }

75

76 ‘%+%‘ <- pipe()

77

78 getSetup <- function(a){

79

80 require(tidyverse)

81 require(rlist)

82 require(stringr)

83

84 p <- str_sub(a, as.integer(str_locate(a, "\\(")[1 ,1])+1, -2)

142

85 method <- str_split(a, "\\(")[[1]][1]

86 params <- str_split(p, " ,[:blank:]")

87 paramlist <- str_split(params [[1]] , "=")

88 paraml <- list()

89 gridlist <- list()

90

91 for(i in 1: length(paramlist)){

92 paramlist [[i]] <- str_trim(paramlist [[i]])

93 paraml <- list.append(paraml , paramlist [[i]][2])

94 names(paraml)[i] <- paramlist [[i]][1]

95

96 paraml [[i]] <- eval(parse(text=paraml [[i]]))

97 if(class(paraml [[i]]) == "data.frame" || class(paraml [[i]]) ==

"matrix")

98 paraml [[i]] <- nest(.data=paraml [[i]], data=everything ())

99 if(class(paraml [[i]]) == "list" && class(paraml [[i]][[1]]) ==

"data.frame"){

100 for(j in 1: length(paraml [[i]])){

101 paraml [[i]][[j]] <- nest(.data=paraml [[i]][[j]], data=

everything ())

102 }

103 }

104 gridlist <- list.append(gridlist , paraml [[i]])

105 }

106

107 fullgrid <- cross(gridlist)

108 parameter_formalsgrid <- list()

109 for(i in 1: length(fullgrid)){

110 names(fullgrid [[i]]) <- names(paraml)

111 parameter_formalsgrid <- list.append(parameter_formalsgrid ,

formals(method))

112 if(any(names(parameter_formalsgrid [[i]]) == "..."))

113 parameter_formalsgrid [[i]]$... <- NULL

114 pm <- fullgrid [[i]]

115

116 for(j in 1: length(pm)){

117 if(any(class(pm[[j]]) == "data.frame"))

118 pm[[j]] <- as.data.frame(unlist(pm[[j]], recursive = F))

119 if(any(class(pm[[j]]) == "list"))

120 pm[[j]] <- as.data.frame(unlist(pm[[j]], recursive = F))

121 }

122 fullgrid [[i]] <- pm

123 }

124 return(list(method = method , params = fullgrid))

125 }

126

127 runBenchmark <- function(obj){

128 f <- obj@methods

143

129 indexnames <- unlist(obj@criteria)[names(unlist(bench@criteria))

== "params.crit"]

130 datanames <- names(obj@data)

131 methodnames <- vector ()

132

133 for(i in 1: length(f)){

134 obj@validation [[i]] <- as.data.frame(matrix(ncol = length(f[[i

]]$params [[1]]) + length(indexnames), nrow=length(f[[i]]$

params)))

135 names(obj@validation [[i]]) <- c(names(f[[i]]$params [[1]]) ,

indexnames)

136 methodnames <- append(methodnames , f[[i]]$method)

137

138 for(j in 1: length(f[[i]]$params)){

139 m <- do.call(f[[i]]$method , f[[i]]$params [[j]])

140 obj@models <- list.append(obj@models , m)

141

142 for(h in 1: length(obj@data)){

143 for(s in 1: length(f[[i]]$params [[j]])){

144 x <- suppressWarnings(try(obj@data [[h]] == f[[i]]$params

[[j]][[s]], silent=T))

145 if(class(x) == "try -error" || all(x) == FALSE) {

146 next

147 }

148 else {

149 x <- all(x)

150 paramname_dat <- names(f[[i]]$params [[j]])[s]

151 break

152 }

153 }

154 if(all(x))

155 break

156 }

157

158 if(x){

159 setname <- datanames[h]

160 set <- obj@data [[h]]

161 }

162

163 s4flag = FALSE

164

165 if(isS4(m)){

166 s4flag = TRUE

167 n <- slotNames(m)

168 }

169

170 for(b in 1: length(f[[i]]$params [[j]])){

171 for(w in 1: length(m)){

172 if(s4flag ==TRUE){

144

173 gr <- suppressWarnings(try(f[[i]]$params [[j]][[b]] ==

length(unique(as.integer(eval(parse(text=str_c("m@"

, n[w])))))) && is.vector(eval(parse(text=str_c("m@

", n[w])))) == TRUE && length(eval(parse(text=str_c

("m@", n[w])))) == nrow(set), silent=T))

174 } else {

175 gr <- suppressWarnings(try(f[[i]]$params [[j]][[b]] ==

length(unique(as.integer(m[[w]]))) && is.vector(m

[[w]]) == TRUE && length(m[[w]]) == nrow(set),

silent=T))

176 }

177 if(class(gr)=="try -error" || gr == FALSE)

178 next

179 else if(gr==TRUE){

180 if(s4flag ==TRUE)

181 clust <- eval(parse(text=str_c("m@", n[w])))

182 else

183 clust <- m[[w]]

184 break

185 }

186 }

187 if(class(gr)=="try -error" || gr == FALSE){

188 next

189 }

190 else if(gr==TRUE)

191 break

192 }

193

194 if(s4flag){

195 for(k in 1: length(n)){

196 y=suppressWarnings(try(length(eval(parse(text=str_c("m@"

, n[k])))) == nrow(set) && length(unique(eval(parse(

text=str_c("m@", n[k]))))) == length(unique(clust)),

silent=T))

197 if(y == TRUE)

198 labels <- eval(parse(text=str_c("m@", n[k])))

199 else if(class(y) == "try -error")

200 next

201 }

202 } else{

203 for(k in 1: length(m)){

204 y <- suppressWarnings(try(length(m[[k]]) == nrow(set) &&

length(unique(m[[k]])) == length(unique(clust)),

silent=T))

205 if(y == TRUE){

206 labels <- m[[k]]

207 }

208 }

209 }

145

210

211 datindex <- which(names(f[[i]]$params [[j]])== paramname_dat)

212 values <- unlist(f[[i]]$params [[j]][- datindex])

213 obj@validation [[i]][j,1] <- setname

214 obj@validation [[i]][j ,2:(2+ length(values) -1)] <- values

215

216 require(clusterCrit)

217 for(p in 1: length(obj@criteria)){

218 if(obj@criteria [[p]]$method =="intCriteria") {

219 freeRowIndex <- which(is.na(obj@validation [[i]][j,]))

220 intCalculatedIndices <- unlist(do.call(obj@criteria [[p]]

$method , list(as.matrix(set), as.integer(labels),

unlist(obj@criteria [[p]]$params))))

221 obj@validation [[i]][j,freeRowIndex [1: length(

intCalculatedIndices)]] <- intCalculatedIndices

222 }

223 else if(obj@criteria [[p]]$method =="extCriteria"){

224 freeRowIndex <- which(is.na(obj@validation [[i]][j,]))

225 extCalculatedIndices <- unlist(do.call(obj@criteria [[p]]

$method , list(as.integer(labels), as.integer(

obj@trueLabels [[match(setname , datanames)]]), unlist(

obj@criteria [[p]]$params))))

226 obj@validation [[i]][j,freeRowIndex [1: length(

extCalculatedIndices)]] <- extCalculatedIndices

227 }

228 }

229 }

230 }

231 names(obj@validation) <- methodnames

232 return(obj)

233 }

146

	Introduction
	Data Clustering
	Background
	Definitions
	Supervised vs. Unsupervised Classification Problems
	Clusters and Groups
	Proximity Measures

	Cluster Algorithms
	Non-Parametric Partitional Methods
	k-centers Methods
	Density Based Clustering
	Implementation in R

	Hierarchical Clustering
	Agglomerative Hierarchical Clustering
	Cluster Linkage
	Implementation in R

	Parametric Methods
	Gaussian Mixture Models (GMM)
	Implementation in R

	Cluster Analysis
	Summary

	Cluster Validation
	Background
	Assessing Cluster Validity
	External Measures
	Selected Examples of External Indices

	Internal Measures
	Selected Examples of Internal Indices

	Issues with Internal and External Validation

	Cluster Stability
	Stability Based Cluster Validity Methods
	Model Explorer
	Figure of Merit
	Stability Based Model Order Selection
	Consensus Clustering
	CLEST
	Prediction Strength

	Summary

	An Evaluation of Resampling Based Cluster Validation
	Background and Related Work
	Resampling Methods
	Data
	Benchmarking Setup
	Experimental Design
	Simulation Settings
	Hardware and Software

	Results
	Summary
	Conclusion

	Elements of Benchmarking in Cluster Analysis
	Background and Related Work
	Grammar as a Data Structure
	Building Blocks of a Benchmarking Grammar
	Prototypical Implementation in R
	Summary

	A Framework for Transparent and Reproducible Generation of Artificial Data
	Background
	Framework Design and Terminology
	Metadata
	Data Types

	The R Package bdlp
	The Web Repository
	Summary

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Prototype Code

