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Abstract

According to Felix Klein’s Erlangen program geometry is the study of invariants under
a certain group of transformations. For example for Euclidean geometry this is the well-
known Euclidean group. Analogously the less-known Laguerre geometry - which this
thesis is dedicated to - is the study of invariants under the group of Laguerre trans-
formations. Their characterizing property is that they preserve oriented hyperspheres,
oriented hyperplanes and their oriented contact. Depending on the space on which those
transformations operate, we will deal with hyperbolic, elliptic and Euclidean Laguerre
geometry. To do this, we use quadric models, where we can identify oriented hyperplanes
with points on and oriented hyperspheres with planar sections of a given quadric, the
so-called Laguerre quadric. Laguerre transformations then can be lifted to projective
transformations which preserve this quadric.

For this purpose it is necessary to review some basics on projective geometry and
quadrics, as well as introduce some tools for the work in quadric models. This will be
done in a preliminary chapter.

For hyperbolic and elliptic Laguerre geometry the quadric models are very similar,
since the corresponding Laguerre quadrics are both non-degenerate. Thus we will treat
those non-Euclidean Laguerre geometries in a common chapter.

For Euclidean Laguerre geometry the quadric is degenerate, making this model slightly
more complicated. For this reason, we treat this case in a separate chapter. Here, we will
also deal with another model of Euclidean Laguerre geometry, namely the cyclographic
model, which has already been treated by earlier generations (see e.g., [1]). Particularly
for the more thoroughly studied planar case, circles and lines of the plane are identified
with points and planes of the space, respectively.

Another perspective on Laguerre geometry will be given as subgeometry of Lie geome-
try, which can also be treated in a quadric model. The points of the so-called Lie quadric
represent oriented hyperspheres, oriented hyperplanes and points in the space that the
Lie geometry “lives” in. The Laguerre quadric can then be recovered as a hyperplanar
section of the Lie quadric, containing all the points of it that correspond to oriented
hyperplanes. In this sense Laguerre transformations are special Lie transformations, pre-
serving oriented hyperplanes. Therefore we will show how to embed the Laguerre quadric
into the Lie quadric in Chapter 5.

Finally, we shall give some chosen applications to show the benefits of working with
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Laguerre geometry. With this we want to show the potential of research on this geometry,
without going into detail since the main goal of this thesis shall remain to give an overview
of various models of Laguerre geometries.
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Zusammenfassung

Nach Felix Kleins Erlanger Programm ist eine Geometrie die Invariantentheorie einer
bestimmten Transformationsgruppe. So untersucht beispielsweise die wohlbekannte euk-
lidische Geometrie Invarianten unter der Gruppe der Euklidischen Bewegungen. Analog
dazu befasst sich die weniger bekannte Laguerre-Geometrie - der die vorliegende Arbeit
gewidmet ist - mit Invarianten der Gruppe der sogenannten Laguerre-Transformationen.
Charakterisierend für diese ist, dass sie orientierte Hyperebenen, orientierte Hyperkugeln
und deren orientierten Kontakt erhalten. Je nachdem in welchem Raum diese Transfor-
mationen operieren, unterscheiden wir zwischen hyperbolischer, elliptischer und euklidis-
cher Laguerre-Geometrie. Diese werden wir hauptsächlich in Quadrikenmodellen behan-
deln, in denen orientierte Hyperebenen bzw. Hyperkugeln mit Punkten auf bzw. innerhalb
einer ausgezeichneten Quadrik, der sogenannten Laguerre-Quadrik, identifiziert werden
können. In diesem Sinne können Laguerre-Transformationen zu projektiven Transforma-
tionen “gehoben” werden, die diese Quadrik erhalten.

Hierfür ist es offensichtlich notwendig, einige Grundlagen zur projektiven Geometrie
und insbesondere zu Quadriken zu wiederholen, sowie einige neue Werkzeuge zum Ar-
beiten in Quadrikenmodellen einzuführen. Dies wird in einem vorbereitenden Kapitel
vorgenommen.

Für hyperbolische und elliptische Laguerre-Geometrie sind die zugehörigen Quadriken-
modelle ähnlich, da die entsprechenden Laguerre-Quadriken nicht degeneriert sind. Da-
her werden wir diese nicht-Euklidischen Geometrien in einem gemeinsamen Kapitel be-
handeln.

Für euklidische Laguerre-Geometrie ist die Quadrik degeneriert, was das zugehörige
Modell etwas komplizierter macht. Daher behandeln wir diesen Fall in einem sepa-
raten Kapitel. Hier werden wir zusätzlich auf ein weiteres Modell der euklidischen
Laguerre-Geometrie eingehen, nämlich auf das zyklographische Modell, welches bere-
its von früheren Generationen studiert worden ist (siehe z.B. [1]). Insbesondere im
gründlicher erforschten ebenen Fall werden hier Kreise bzw. Geraden der Ebene mit
Punkten bzw. Ebenen des Raumes identifiziert.

Eine weitere Möglichkeit, Laguerre-Geometrie zu betrachten, ist als Teilgeometrie der
Lie-Geometrie, welche ebenfalls in einem Quadrikenmodell behandelt werden kann. Die
Punkte der sogenannten Lie-Quadrik repräsentieren orientierte Hyperkugeln, orientierte
Hyperebenen und Punkte des Raumes, in dem die Lie-Geometrie “lebt”. Die Laguerre-
Quadrik ist damit in der Lie-Quadrik als Menge aller Punkte, die orientierten Hyperebe-
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nen entsprechen, enthalten und kann als Schnitt dieser mit einer Hyperebene dargestellt
werden. In diesem Sinne sind Laguerre-Transformationen spezielle Lie-Transformationen,
nämlich jene, die orientierte Hyperebenen erhalten. Daher werden wir in Kapitel 5 zeigen,
wie man die Laguerre-Quadrik in die Lie-Quadrik einbettet.

Abschließend behandeln wir einige ausgewählte Anwendungen, um die Vorteile des Ar-
beitens mit Laguerre-Geometrie zu demonstrieren. Dadurch soll das Forschungspotential
dieser Geometrie aufgezeigt werden, ohne ins Detail zu gehen, da es das Hauptanliegen
der vorliegenden Arbeit ist, einen Überblick über die Theorie der Laguerre-Geometrie zu
geben.
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1 Introduction

Laguerre geometry is often referred to as the geometry of oriented hyperplanes and
hyperspheres. This is due to the fact that Laguerre transformations are defined as follows:

Definition 1.1. Laguerre transformations are bijective transformations that preserve

• oriented hyperplanes,

• oriented hyperspheres and

• oriented contact and non-contact between them.

The orientation of the fundamental objects can be defined by their normal vectors or
by the direction in which they are traversed. For hyperspheres one can also choose a
signed radius. The basic relation of oriented contact means that the objects do not only
need to be tangent, but their normal vectors have to face in the same direction as well
(see Figure 1.1) [12, p. 165–166]. Since in Laguerre geometry we are only interested in
oriented objects and their oriented contact we will sometimes omit the word “oriented”
in this thesis where no misunderstandings can arise. Also we will sometimes omit the
prefix “hyper” where the dimension is clear.

c1 c2 c1 c2

n1 = n2

nc = nl

n1 n2

nc nl

c l c l

Figure 1.1: Circles and lines in oriented contact (left) and non-contact (right)

Note that in Laguerre geometry the notion of “point” does not exist. What we intu-
itively consider a point is a hypersphere of radius zero. Thus, under Laguerre transfor-
mations points are in general not preserved, i.e., can be mapped to “any other sphere”
(we will see an example of this at the end of Chapter 4). For a point P being in oriented
contact with a hyperplane p or sphere s means the usual incidence relation of the point
lying on the plane or sphere, i.e., P ∈ p, or P ∈ s, respectively.
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1 Introduction

Sometimes it will be useful to consider a hypersphere as envelope of its (oriented) tan-
gent hyperplanes [12, p. 166]. Analogously a point can be interpreted as the envelope of
all lines passing through it.

In this thesis we want to study Laguerre geometry mainly with the aid of quadric
models based on A. I. Bobenko et al.’s Non-Euclidean Laguerre geometry and incircular
nets [2]. The basic idea of a quadric model is to embed the space in which the Laguerre
geometry “lives”, i.e., hyperbolic, elliptic or Euclidean space, in a projective space of one
(or, for Lie geometry, two) dimension(s) higher and identify a certain quadric in this
projective space. Hyperbolic/elliptic/Euclidean hyperplanes can then be identified with
points on this given quadric and hyperspheres with hyperplanar sections of it. Therefore
Laguerre transformations are induced by projective transformations which preserve this
quadric.

Clearly, it is necessary to review some basics on the projective space and quadrics. We
will provide these as well as introduce some tools for the work in quadric models in the
following chapter, based on [2], [6] and [11].
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2 Preliminaries

Definition 2.1. Let ∼ be an equivalence relation on Rn+1 \ {0} with

x ∼ y ⇔ ∃λ ∈ R : x = λy.

We call
Pn := P (Rn+1) := (Rn+1 \ {0})/ ∼

the n-dimensional real projective space and P the projectivization operator.

Denoting the equivalence class, i.e., the span of a vector x ∈ Rn+1 by [x], we can say
that points [x] of the projective space Pn correspond to lines of Rn+1 through the origin.
Thus, two vectors x, y with the same direction represent the same equivalence class, i.e.,
the same point [x] = [y] of Pn. Choosing an arbitrary representative x ∈ Rn+1 \ {0} we
denote by

x := [x] = [x1, . . . , xn+1]

the homogeneous coordinates of the corresponding point.

Definition 2.2. Points x with xn+1 = 0 are called points at infinity.

The affine space Rn can be extended to the projective space Pn by adding a point
at infinity to each line of Rn . Then parallel lines share the same point at infinity, i.e.,
intersect in it. The set of all points at infinity is called the hyperplane at infinity with
equation xn+1 = 0.

Definition 2.3. The projectivization U := P (U) ⊂ Pn of a linear subspace U ⊂ Rn+1 is
a projective subspace. It has one dimension less than the corresponding linear subspace,
i.e., dim(U) = dim(U)− 1.

We denote the projective subspace spanned by two projective points x,y by

x ∨ y := [x ∨ y] := P (span{x, y})

and analogously for an arbitrary number of points of Pn [2, p. 13].

Definition 2.4. Let f be a linear automorphism of Rn+1, i.e.,

f : Rn+1 → Rn+1

x 7→ f(x) := Ax

3



2 Preliminaries

for an invertible matrix A ∈ R(n+1)×(n+1). Then we call a map

t : Pn → Pn

x 7→ t(x) = t([x]) := [Ax]

which is induced by f , a projective transformation [11]. The group of projective trans-
formations of Pn is denoted by PGL(n+ 1).

Lemma 2.5. Projective transformations map projective subspaces to projective subspaces
while preserving their dimension and incidences [2, p. 13].

If we interpret the homogeneous coordinates [y1, y2, y3] of a point y ∈ P2 as line
coordinates, i.e., as coefficients in the equation y1x1 + y2x2 + y3x3 = 0 representing a
line, we get the dual projective plane P2∗. All theorems that hold for P2 also hold for P2∗

upon exchanging the terms “points” and “lines” while preserving incidences. In analogy to
the 2-dimensional case, the n-dimensional projective space Pn also has a dual projective
space Pn∗, where the dual counterpart of a k-dimensional projective subspace U of Pn is
an (n− k − 1)-dimensional projective subspace U∗ of Pn∗.

Definition 2.6. A map from a projective space to its dual projective space that preserves
incidences is called a duality [11].

Definition 2.7. Let 〈·, ·〉 be a non-zero symmetric bilinear form on Rn+1. A vector
x ∈ Rn+1 is called

• spacelike if 〈x, x〉 > 0,

• timelike if 〈x, x〉 < 0,

• lightlike or isotropic if 〈x, x〉 = 0.

The triple (r, s, t) consisting of the numbers r, s, t of spacelike, timelike and lightlike
vectors in an arbitrary orthogonal basis of Rn+1 w.r.t. the bilinear form 〈·, ·〉 is called
the signature of 〈·, ·〉. If t = 0, the bilinear form 〈·, ·〉 is called non-degenerate and t is
omitted in the signature [2, p. 14].

Definition 2.8. The subgroup of projective transformations whose corresponding linear
transformations of Rn+1 preserve a bilinear form with signature (r, s, t) is called the
projective orthogonal group PO(r, s, t).

Definition 2.9. Let 〈·, ·〉 be a non-zero symmetric bilinear form on Rn+1 with signature
(r, s, t). Then

Q := {x ∈ Pn | 〈x, x〉 = 0}

is a quadric in Pn (conic for n = 2). Its signature is well-defined as the signature of
the corresponding bilinear form 〈·, ·〉 up to interchanging r and s, which is equivalent to
multiplying the equation of the quadric by −1. A quadric is called degenerate if 〈·, ·〉 is
degenerate, i.e., if t > 0 [2, p. 14].
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Remark 2.10. A quadric is the projectivization of the set of all lightlike vectors in Rn+1

w.r.t. 〈·, ·〉. Thus a non-zero scalar multiple of 〈·, ·〉 defines the same quadric.

Definition 2.11. For a quadric Q the set of points dual to its tangent hyperplanes is
also a quadric which we call the dual quadric Q∗ to Q. For non-degenerate Q it has the
same signature as Q [2, p. 83].

Definition 2.12. A point v on a quadric Q is called a vertex of Q if

〈v, x〉 = 0 ∀x ∈ Rn+1.

A non-degenerate quadric contains no vertices. For a degenerate quadric its set of
vertices is a projective subspace of dimension t− 1.

Remark 2.13. A non-empty quadric that does not consist of only vertices uniquely
determines its corresponding bilinear form up to a non-zero scalar multiple and vice
versa [2, p. 14].

The signature of a projective subspace is defined by the signature (r, s, t) of the bilinear
form restricted to the subspace. Thus choosing a signature for the bilinear form already
determines the signature for every projective subspace. Since the signature of a quadric
is determined by the signature of the corresponding bilinear form up to interchanging r
and s, from now on (w.l.o.g.) we assume r ≥ s throughout this thesis.

Definition 2.14. A projective subspace which is contained in a quadric is called an
isotropic subspace.

Lemma 2.15. For a quadric Q ⊂ Pn of signature (r, s, t) the maximal dimension of an
isotropic subspace of Q is n− r = s+ t− 1 (see, e.g. [6, p. 57]).

Lemma 2.16. A line which is not an isotropic line intersects a quadric in either 0,1 or
2 points.

Definition 2.17. For a quadric Q with corresponding bilinear form 〈·, ·〉 we call

Q+ := {x ∈ Pn | 〈x, x〉 > 0}
Q− := {x ∈ Pn | 〈x, x〉 < 0}

the outside and the inside of the quadric Q, respectively [2, p. 14].

Remark 2.18. For a quadric Q of signature (r, s, t) with

• r = 0 the outside Q+ is empty.

• s = 0 the inside Q− is empty.

Lemma 2.19. For r 6= s and rs 6= 0 the subgroup of PGL(n+1) that preserves a quadric
Q of signature (r, s, t) is exactly the projective orthogonal group PO(r, s, t). For r = s
the projective orthogonal transformations and additionally all projective transformations
that interchange the two sides Q+, Q− of the quadric preserve the quadric Q.

5



2 Preliminaries

Definition 2.20. Let U ⊂ Pn be a projective subspace. We call

U⊥ := {x ∈ Pn | 〈x, y〉 = 0 ∀y ∈ U}

the polar subspace of U w.r.t. the quadric Q corresponding to the bilinear form 〈·, ·〉. If
Q is non-degenerate, we have:

dim(U) + dim(U⊥) = n− 1

[2, p. 15-16].

From the definition we see that points which lie in their own polar subspace are exactly
the points of the quadric. The polar subspace of a point x ∈ Q is the tangent hyperplane
of Q in x.

Definition 2.21. Let x ∈ Pn \Q be a point
not on a quadric Q. Then

CQ(x) :=
⋃

y∈x⊥∩Q

x ∨ y

is called the tangent cone or the cone of con-
tact to Q from x [2, p. 17].

For a non-degenerate quadric Q the intersec-
tion with the polar subspace x⊥ of a point
x ∈ Pn\Q is a quadric and the rulings of the
tangent cone are exactly the tangents to Q
from x, touching Q along the quadric x⊥∩Q
(see Figure 2.1).

x

x⊥

Q

CQ(x)

Figure 2.1: Tangent cone to a quadric in
P3

Let us now consider a fixed quadric Q of signature (r, s, t) with corresponding bilinear
form 〈·, ·〉.

Definition 2.22. A point p ∈ Pn \Q determines three maps:

σp : Pn → Pn

x 7→ σ(x) := [x− 2
〈x, p〉
〈p, p〉

p]
(2.1)

which is called the involution associated with p or the reflection in the hyperplane p⊥,

πp : Pn \ {p} → Pn

x 7→ πp(x) := [x− 〈x, p〉
〈p, p〉

p] = (x ∨ p) ∩ p⊥
(2.2)
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which is the central projection associated with p or central projection onto p⊥ [2, p. 25],
and

π∗p : Pn \ {p} → Pn

x 7→ π∗p(x) := x⊥ ∩ p⊥ = (x ∨ p)⊥
(2.3)

which is the polar projection associated with p or polar projection onto p⊥ [2, p. 38].

Proposition 2.23. The map σp has the fol-
lowing properties:

a) σp fixes p and its polar hyperplane p⊥.

b) For a line through p that intersects Q
in two points, σp interchanges the in-
tersection points.

c) σp is a projective involution, i.e., σp ◦
σp = id (see Figure 2.2).

p

p⊥

x = σp(σp(x))

σp(x)

Figure 2.2: σp acting on a quadric in P3

Before describing also the properties of the other two maps we first consider the inter-
section of Q and p⊥ which we denote by Q̃, i.e.,

Q̃ := Q ∩ p⊥.

Lemma 2.24. Let p ∈ Pn \Q be a point not on the quadric Q.

a) If p ∈ Q+, then Q̃ is a quadric of signature (r−1, s, t) and Q projects onto Q̃−∪ Q̃
under πp, i.e., πp(Q) = Q̃− ∪ Q̃.

b) If p ∈ Q−, then Q̃ is a quadric of signature (r, s−1, t) and Q projects onto Q̃+∪ Q̃
under πp, i.e., πp(Q) = Q̃+ ∪ Q̃ [2, p. 25–26].

This means, depending on whether p lies outside or inside of Q, the projection πp
restricted to Q \ Q̃ projects either onto the inside or the outside of the quadric Q̃. Since
πp(x) for a point x can also be described as (x ∨ p) ∩ p⊥, all points on the line x ∨ p
project down to the same point in p⊥. And since the line q ∨ p for a point q ∈ Q \ Q̃
intersects Q in exactly a second point q̃ 6= q (according to Lemma 2.16), a point of Q̃±

has exactly two pre-images in Q\Q̃ under πp which can be interchanged by σp (according
to Proposition 2.23b). Thus, we have:

7



2 Preliminaries

Proposition 2.25. The map πp has the fol-
lowing properties:

a) It fixes p⊥.

b) For p ∈ Q± the restriction of πp to
Q \ Q̃ doubly covers Q̃∓ .

c) Two points that project to the same
point under πp can be interchanged via
σp (see Figure 2.3), thus:

πp(Q) ' Q/σp

[2, p. 26].

p

p⊥

q

q̃

σp πp(q) = πp(q̃)

Figure 2.3: πp acting on a quadric in P3

Finally, the map π∗p maps each point x of Pn \{p} to the polar subspace of x∨p w.r.t.
Q. Since this is exactly the polar hyperplane of the (central) projected point πp(x) w.r.t.
Q̃, we have:

Proposition 2.26. The map π∗p has the following properties:

a) The polar projection π∗p(x) is the polar hyperplane of the point πp(x) w.r.t. Q̃.

b) Applying π∗p to a point x is equivalent to first applying πp to x and then polarity
w.r.t. Q̃ to the projected point πp(x) (see Figure 2.4).

c) For p ∈ Q± the restriction of π∗p to Q \ Q̃ doubly covers the set of all hyperplanes
of p⊥ that are polar to points in Q̃∓.

d) Each two points of Q that have the same image line under π∗p can be interchanged
via σp [2, p. 39].

8



p

p⊥

x

πp(x)

π∗p(x)

x⊥

Figure 2.4: π∗p acting on a quadric in P3
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3 Non-Euclidean Laguerre geometry

Now that we have all the tools we need, we can finally start treating Laguerre geometry
from the perspective of quadric models. As mentioned in the introduction, the basic idea
of quadric models is to embed the space in which one studies Laguerre geometry, i.e.,
hyperbolic, elliptic or Euclidean space, into the real projective space of one dimension
higher and identify oriented hyperplanes and spheres with points or hyperplanar sections
of a certain quadric in this projective space. For each space form a fitting quadric has
to be chosen. For the hyperbolic and elliptic case the correspondence between elements
of the quadric and hyperplanes and spheres of the studied space can be established by a
polar projection, or equivalently the composition of a central projection and a polarity.
Due to degeneracy of the quadric in the Euclidean case this is not possible and one has
to work in the dual projective space instead of applying polarity. For this reason, we will
treat Non-Euclidean and Euclidean Laguerre Geometry separately, starting with the 2-
dimensional hyperbolic case to give the reader a geometric intuition. We then generalize
the idea to arbitrary dimensions, before treating the elliptic case analogously. This study
in quadric models is based on [2].

3.1 Hyperbolic Laguerre geometry

3.1.1 2-dimensional hyperbolic Laguerre geometry

In this chapter we want to embed the hyperbolic plane H into 3-dimensional projective
space P3 and find a correspondence between points on a quadric Q ⊂ P3 and oriented
lines of H, as well as between planar sections of Q and oriented circles of H. After that
we will study Laguerre transformations of H, including the subgroup of projective trans-
formations that induces them and how transformations of this group can be decomposed,
as well as introduce an invariant of them. For that we mainly use [2, Sections 2.2 and 6.2].

For the hyperbolic plane H we use the Cayley-Klein model where the inside of the unit
circle, called the absolute circle, is identified with H and the points on the circle, so-called
ideal points, take the role of points at infinity. Hyperbolic lines are segments inside of the
absolute circle with two ideal endpoints. Amongst hyperbolic circles we distinguish be-
tween ordinary hyperbolic circles, hyperbolic curves of constant distance to a hyperbolic
line and horocycles (the differences will be discussed later in this section). The group of
hyperbolic motions consists of the transformations that preserve the absolute circle [4].

11



3 Non-Euclidean Laguerre geometry

To embed H into P3 we write the absolute (unit) circle as

Q̃ :

{
x2

1 + x2
2 − x2

4 = 0

x3 = 0
(3.1)

which is

Q̃ :

{
x2 + y2 = 1

z = 0
(3.2)

in inhomogeneous coordinates. It is the smallest circle lying on the rotational hyperboloid

Q : x2 + y2 − z2 = 1 (3.3)

(see Figure 3.1) [2, p. 8]. The latter one is a quadric with homogeneous equation

Q : x2
1 + x2

2 − x2
3 − x2

4 = 0, (3.4)

i.e., a quadric with signature (2, 2), containing Q̃ as quadric of signature (2, 1). Thus, we
found a quadric in P3 containing the absolute circle of H. Now we show how to identify
points and planar sections of Q with oriented lines and circles of H.

Correspondence between points/planar sections of Q and oriented hyperbolic
lines/circles

As mentioned above, the correspondence between ele-
ments of the quadricQ and ofH can be established by
a polar projection associated with a point p ∈ P3 \Q,
which raises the necessity for choosing a fitting point
p (the choice of p as well as the choice of the quadric
Q will be explained later). Let p be the point at
infinity of the z-axis, i.e.,

p := [0, 0, 1, 0] (3.5)

in homogeneous coordinates. Then the plane p⊥ car-
ries the absolute circle Q̃, i.e., Q̃ = Q∩p⊥ (see Figure
3.1).

p

H

Q

p⊥

Q̃

Figure 3.1: Embedding of H
into the hyperbolic
Laguerre quadric

Proposition 3.1. The restriction of the polar projection π∗p, defined as in (2.3) with
n = 3, to Q \ Q̃ yields a double cover of the set of all hyperbolic lines [2, p. 39].

Proof. This follows from Proposition 2.26c.

Geometrically, this can be explained as follows (see Figure 3.2): For an arbitrary
hyperbolic line the pole w.r.t. Q̃ is a point outside of Q̃, i.e., in Q̃+. Each point of

12



3.1 Hyperbolic Laguerre geometry

Q̃+ has exactly two pre-images under πp because the corresponding projection line is a
vertical line through the point of Q̃+ which has exactly two intersection points with Q,
one above p⊥ and one below. So the set of poles of hyperbolic lines (i.e., Q+) is doubly
covered by πp|Q\Q̃. Thus, since any polar projection can be decomposed into a central
projection and a polarity w.r.t. Q̃, the set of all hyperbolic lines is doubly covered by
π∗p|Q\Q̃.

p

x+

x−

πp(x±)

π∗p(x±)

Figure 3.2: Double cover of the hyperbolic lines

Each two points of the quadric that have the same image line under π∗p differ only by
the sign of their x3-components upon a fitting normalization, e.g. by setting one of the
other components equal to 1, for all points of P3. From now on, we will assume such a
normalization each time we distinguish orientations by the sign of a component in this
thesis. Furthermore, the two pre-image points can be interchanged via the reflection σp
in p⊥ (defined as in (2.3) with n = 3). Thus (Q \ Q̃)/σp corresponds bijectively to the
set of all hyperbolic lines. Since we are interested in oriented lines, we consider a map
# »

π∗p that maps each point x of Q \ Q̃ to a hyperbolic line in the same way as π∗p but
additionally endows the image line

# »

π∗p(x) with an orientation determined by the sign of
the last component of x. That is, we treat each hyperbolic line - which is the image
line of exactly two points x± = [x1, x2,±x3, 1] of Q \ Q̃ under π∗p - as consisting of two
oppositely oriented lines, where

# »

π∗p maps the point above p⊥ (positive x3-component)
to the positively oriented line, and the point under p⊥ (negative x3-component) to the
negatively oriented line. Thus,

# »

π∗p yields a bijective correspondence between points on
Q \ Q̃ and the set of all oriented hyperbolic lines, where σp acts orientation reversing.

13



3 Non-Euclidean Laguerre geometry

To describe
# »

π∗p analytically, one can distinguish the points x± as the intersection points
of two different pairs of rulings from the two families of rulings on Q:

Let R± be the two families of rulings on Q gener-
ated by rotation of the rulings r± : x = 1, y = ±z
around the z-axis (see Figure 3.3). Let l be an
arbitrary positively oriented hyperbolic line and
denote by l1, l2 the ideal points (on Q̃) of l, in the
order in which they are traversed. Let r±l1,2 de-
note the rulings from R± containing l1,2. Then
the point x+ on Q corresponding to l can be
written as

x

y

z

r+ r−

Q

p⊥

Q̃

Figure 3.3: Rulings on Q generat-
ing R+ and R−

x+ = r+
l1
∩ r−l2 . (3.6)

For the negatively oriented line l̃ the corresponding point x− is

x− = r+

l̃1
∩ r−

l̃2
= r+

l2
∩ r−l1 (3.7)

(see Figure 3.4) [2, p. 8]. Thus
# »

π∗p maps x+ to the positively oriented line and x− to the
negatively oriented one. Therefore we have:

Proposition 3.2. The set Q\Q̃ bijectively corresponds to the set
#»L of oriented hyperbolic

lines via the map
# »

π∗p : Q \ Q̃ → #»L, and the involution σp acts orientation reversing on
#»L.

π∗
p(x±)

πp(x±)

# »
π∗
p(x+

)
# »
π∗
p(x−)

(x+)⊥

(x−)⊥

r−
l2

r+
l2

= r+
l̃1

r+
l1

r−
l1

= r−
l̃2

l1 = l̃2 l2 = l̃1

x+

x−

Figure 3.4: Bijective correspondence between points of Q and oriented lines of H
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3.1 Hyperbolic Laguerre geometry

Remark 3.3. Particularly points on isotropic lines of Q correspond to pencils of parallel
lines of H, since the lines on Q are exactly its rulings from which each intersects Q̃ in
exactly one point yielding the point at infinity of these parallel lines (see Figure 3.5).

x1

# »

π∗p(x1)

x2

# »

π∗p(x2)

x3

# »

π∗p(x3)

Figure 3.5: Pencil of parallel oriented lines in H

We now want to find a correspondence between planar sections of Q and oriented
hyperbolic circles. As we already know how to retrieve a point on the quadric from an
oriented hyperbolic line, we might consider an oriented circle as envelope of its (oriented)
tangents and lift those to their corresponding points on Q (by applying

# »

π∗p
−1). Geomet-

rically, this means to find the pole of each tangent t w.r.t. Q̃ and lift it up or down to the
quadric along its connecting line with p (which is the polar line of t w.r.t Q), depending
on the orientation of t. Points corresponding to positive orientation lie on the “upper
half” of Q, i.e., above p⊥, those corresponding to negative orientation lie below p⊥. The
poles of tangents of a hyperbolic circle c w.r.t. Q̃ lie on a concentric circle in Q̃+. We
define:

Definition 3.4. We call the circle consisting of the poles of the tangents of a hyperbolic
circle c w.r.t. Q̃ the polar circle c⊥ of c [2, p. 21].

Lifting all tangents of a hyperbolic circle c to Q is therefore equivalent to intersecting
the cylinder through the polar circle c⊥ of c (which consists of the polar lines of the
tangents of c w.r.t. Q) with the “corresponding half” of Q, yielding a conic, i.e., a planar
section of Q (see Figure 3.6a). Thus, every oriented circle of H (bijectively) corresponds
to a planar section cQ of Q (where πp(cQ) = c⊥).

Remark 3.5. As points are circles (of radius zero), they must also correspond to planar
sections of Q. Considering a point P as the intersection of all hyperbolic lines through
it, the poles to these lines lie on a common line l ⊂ p⊥ that is polar to P w.r.t Q̃. Lifting
l to Q means intersecting the vertical lines though l with Q. Thus, hyperbolic points
correspond to conics on Q in z-parallel planes, i.e., hyperbolas [2, p. 11].
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3 Non-Euclidean Laguerre geometry

We lifted circles of H to Q by identifying them with their tangents and by applying
# »

π∗p
−1 to them. In other words: applying

# »

π∗p to a planar section of Q yields the tangents
of a hyperbolic circle, not its points. To get a map that actually gives us the points, we
identify a planar section cQ with the pole xc of the plane carrying c w.r.t. Q, which is
exactly the vertex of the cone of contact CQ(xc) touching Q along cQ (see Figure 3.6b).
As CQ(xc) is exactly the envelope of the tangent planes to Q along cQ, and π∗p maps
each point y of cQ to a tangent of the corresponding hyperbolic circle by intersecting
the tangent plane y⊥ in y with p⊥, the cone CQ(xc) corresponding to xc intersects p⊥

exactly in the hyperbolic circle corresponding to cQ (see Figure 3.6c). Finally, due to
the fact that the vertex of a cone of contact intersecting p⊥ in a hyperbolic circle, i.e., a
circle inside Q̃, must lie inside Q, we conclude: The map

π∗Cp : Q− → C
x 7→ π∗Cp (x) := CQ(x) ∩ p⊥,

where C is the set of hyperbolic circles, maps each point x of Q− to a circle in H. The
center of such a hyperbolic circle π∗Cp (x) is πp(x) and the polar line of πp(x) w.r.t. Q̃ is
the intersection line of p⊥ and the plane x⊥ (carrying the conic corresponding to c) [2, p.
9–10, 38–41]. Just as for π∗p and

# »

π∗p we want to consider the “oriented version”
#   »

π∗Cp of the
map π∗Cp , where the orientation of a circle π∗Cp (x) is again encoded in the x3-component of
x (in contrast to

# »

π∗p,
#   »

π∗Cp maps points with negative x3-component to positively oriented
circles, since the corresponding planar sections lie above p⊥). The map

#   »

π∗Cp then yields
a bijective correspondence between the points ofQ− and the set

#»C of oriented circles inH.
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3.1 Hyperbolic Laguerre geometry

y

cQ

c
c⊥ = πp(cQ)

# »

π
∗
p
(y)

(π
∗ p
(y

))
⊥

(a) Cylinder through c⊥ intersecting Q in the conic cQ ⊂ Q corre-
sponding to the oriented circle c ∈ H

cQ

c

xc

CQ(xc)

(b) Identification of an oriented circle of H with the pole of the
plane carrying the corresponding planar section of Q

y

# »

π∗p(y)

y⊥

cQ

c

xc

CQ(xc)

(c) Tangent cone CQ(xc) intersecting p⊥ in c, y⊥ intersecting in
the tangent to c corresponding to y ∈ cQ

Figure 3.6: Bijective correspondence between planar sections of Q and oriented circles of
H
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3 Non-Euclidean Laguerre geometry

Having identified hyperbolic circles with points inside of Q let us distinguish for which
points we get which type of hyperbolic circle:

As mentioned in the introduction of this section, in hyperbolic geometry we distin-
guish between ordinary hyperbolic circles, hyperbolic curves of constant distance to a
hyperbolic line and horocycles:

• A hyperbolic curve c of constant distance to a hyperbolic line l touches the absolute
circle Q̃ in two points, the ideal endpoints of the line l. Therefore, the pole z of
this line lies outside of Q̃ and we call z the center of c.

• A horocycle c has third order contact with Q̃ at its center z, whose polar line is
the common tangent of Q̃ and c in z.

• (Ordinary) hyperbolic circles do not have (real) intersection points with Q̃. As the
center of an ordinary circle lies inside of it, it also lies inside of Q̃, which means
that its polar line does not intersect Q̃.

Since the center of each type of a hyperbolic circle c is obtained by applying πp to the
corresponding point xc :=

#   »

π∗Cp
−1(c) of Q−, the type of c is determined by:

• the location of πp(xc) (inside, outside or on Q̃), i.e., by the value of 〈πp(xc), πp(xc)〉
(smaller, greater or equal to zero),

• whether the polar plane of xc w.r.t. Q (=plane carrying the conic corresponding
to c) intersects p⊥ in a line (=polar line of the center of c) outside, inside or in a
tangent of Q̃, or by

• whether xc ∈ Q− lies inside, outside or on the cylinder CQ(p) : x2 + y2 = 1 (see
Figure 3.7) [2, p. 8–10, 41].
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3.1 Hyperbolic Laguerre geometry

xc

cQ

πp(xc)

x⊥c
π∗p(xc)

c

CQ(p)

(a) Ordinary (oriented) hyperbolic circle c with center πp(xc)

xc

cQ

πp(xc)
x⊥c π∗p(xc)

c

CQ(p)

(b) (Oriented) horocycle c with center πp(xc)

xc

cQ
πp(xc)

x⊥c π∗p(xc)
c

CQ(p)

(c) (Oriented) hyperbolic curve c of constant distance to hyperbolic
line π∗p(xc)

Figure 3.7: Types of hyperbolic circles c depending on location of xc
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3 Non-Euclidean Laguerre geometry

Going back to bijection
#   »

π∗Cp , we notice that it has two major advantages over
# »

π∗p:

• We get a point model also for circles, not just for lines, which for computational
reasons is more convenient than to identify the circles with planar sections.

• If we allow
#   »

π∗Cp to operate on Q \ Q̃, we notice that it also yields a bijective corre-
spondence for the lines, because: The cone of contact for a point x on the quadric
is its tangent plane. By the definition of π∗p, intersecting this tangent plane with
p⊥ while preserving the orientation, we get exactly

# »

π∗p(x).
For this reason we expand the domain of

#   »

π∗Cp to (Q− ∪ Q) \ Q̃ and name the ex-
panded map b (indicating the bijective correspondence for oriented circles as well
as lines).

Proposition 3.6. The map b : (Q− ∪ Q) \ Q̃ → #»C ∪ #»L is bijective, where
#»C ∪ #»L are

oriented hyperbolic circles and lines. In particular:

• For x ∈ Q \ Q̃, b(x) is a hyperbolic line with pole πp(x) w.r.t. Q̃.

• For x ∈ CQ(p)−, i.e., 〈πp(x), πp(x)〉 < 0, b(x) is an (ordinary) hyperbolic circle
with center πp(x).

• For x ∈ Q− ∩ CQ(p)+, i.e., 〈πp(x), πp(x)〉 > 0, b(x) is a hyperbolic curve of
constant distance to a hyperbolic line with pole πp(x) w.r.t. Q.

• For x ∈ CQ(p) \ Q̃, i.e., 〈πp(x), πp(x)〉 = 0, b(x) is a horocycle with center πp(x)
[2, p. 41].

Let us summarize what we have so far: We chose a quadric Q and a point p ∈ P3 such
that the inside of the quadric Q̃ = Q∩ p⊥ could be identified with the hyperbolic plane,
in the sense of points and planar sections of Q corresponding to oriented hyperbolic lines
and circles, respectively. Now it also becomes clear, why we chose Q and p the way we
did: For the hyperbolic plane we need the inside of the unit circle Q̃ (or any projectively
equivalent model) which is a quadric of signature (2, 1). For Q we need a quadric of one
dimension higher which contains Q̃, i.e., Q is either a quadric of signature (2, 2) or (3, 1).
For the latter case, according to Lemma 2.24, p would have to lie outside of Q and Q
would project down to Q̃− ∪ Q̃ under πp. Since the projected points of Q are supposed
to be the poles of hyperbolic lines w.r.t. Q̃, they cannot lie inside the hyperbolic plane.
Thus, Q needs to have signature (2, 2), i.e., it is projectively equivalent to the rotational
hyperboloid (3.3). In this case, p has to lie on the inside of Q, in order for Q̃ to be a
quadric of signature (2, 1). In particular, it needs to be the pole of the plane carrying Q̃.
Since Q̃ is the unit circle lying on the rotational hyperboloid (3.3) as its smallest circle,
p must be the point at infinity of the z-axis.
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3.1 Hyperbolic Laguerre geometry

Hyperbolic Laguerre transformations

Now we turn our attention to Laguerre transformations of the hyperbolic plane and how
they can be characterized in our quadric model. Since those transformations preserve
oriented hyperbolic circles and lines, and since b yields a bijective correspondence between
certain points of the projective space (in particular: points of (Q− ∪ Q) \ Q̃ ⊂ P3) and
hyperbolic circles and lines, a Laguerre transformation can be lifted to a transformation
of P3, i.e.:

α = b ◦ t ◦ b−1

for any hyperbolic Laguerre transformation α and a certain transformation t (see Figure
3.8). Our goal is to find out of which type of transformation t is.

b−1

t

b

α

b−1(l)

(t ◦ b−1)(l)

l
α(l) = (b ◦ t ◦ b−1)(l)

Figure 3.8: Lifting hyperbolic Laguerre transformations to projective transformations

By their definition, Laguerre transformations have to preserve a) oriented circles and
lines, and b) their oriented contact. What does this mean for the transformation t of P3

that induces an arbitrary Laguerre transformation α?

a) Since α preserves oriented circles and lines, t must preserve Q and must not inter-
change the quadric’s sides, as oriented lines correspond to points on Q, and oriented
circles to points inside of Q.

b) The Laguerre transformation α also preserves the oriented contact of circles and
lines of H. Now the question arises: How do points of Q− ∪Q have to lie in P3 in
order for the corresponding oriented circles and lines to be in oriented contact?

Let us consider two circles c1, c2 in oriented contact with a common line l. Let
xc1 := b−1(c1),xc2 := b−1(c2),xl := b−1(l) be their corresponding points in Q−∪Q.
Then the tangent cones CQ(xc1), CQ(xc2) have a common ruling r through the
contact point of c1, c2 and l, which is a tangent to Q in a point q. The common
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3 Non-Euclidean Laguerre geometry

tangent plane Tr to the tangent cones along r, which is also the tangent plane to
Q in q (i.e., Tr = q⊥), intersects p⊥ in l, yielding q = xl (see Figure 3.9). Thus,
since the ruling r carries the vertices xc1 ,xc2 of the tangent cones corresponding to
c1, c2 and also carries xl, circles and lines of H are in oriented contact if and only
if they lie on a tangent to Q. For the special case of lines being in oriented contact
at a common point at infinity, we already have seen that the corresponding points
on Q lie on a common ruling of Q.

r

c1
c2l

xl x⊥l

xc1

xc2

Figure 3.9: Lifting hyperbolic Laguerre transformations to projective transformations

From b) we see that the transformation t has to preserve lines of P3, i.e., t must be a pro-
jective transformation. From a) we know that t has to preserve Q without interchanging
its sides. Hence, due to Lemma 2.19, the group of transformations that t belongs to is
exactly the projective orthogonal group PO(2, 2). In other words: Hyperbolic Laguerre
transformations are induced by PO(2, 2) [2, p. 42].

Proposition 3.7. Every Laguerre transformation α of the hyperbolic plane can be written
in the form:

α = b ◦ t ◦ b−1

for some t ∈ PO(2, 2).

Therefore, it is of interest how PO(2, 2) can be generated.
Let us denote by PO(2, 2)p the subgroup of transformations of PO(2, 2) which fix the
point p [2, p. 13]. We want to show that every transformation t of PO(2, 2) can be
decomposed into two transformations of the subgroup PO(2, 2)p and a so-called “scaling
along a pencil of concentric circles”. To understand this we first study which elements of
P3 correspond to pencils of concentric circles.
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3.1 Hyperbolic Laguerre geometry

Let (ci)i∈I be a pencil of concentric circles in H. For an arbitrary circle ci of the pencil,
the center is given by πp(xi) for xi := b−1(ci). The point xi lies on the projection line
πp(xi) ∨ p which is vertical. Thus, the centers of all circles of the pencil must lie on
this line. Since b−1 lifts circles of H to points inside of Q, every pencil of concentric
hyperbolic circles corresponds to points of Q− that lie on a vertical line of P3. Hence the
planes carrying the conics on Q corresponding to the circles of the pencil intersect p⊥ in
a common line, the polar line π∗p(xi) of the center of the circles ci (see Figure 3.10).

p

πp(x1) = πp(x2)π
∗
p
(x

1
) =

π
∗
p
(x

2
)

c1 c2

c1,Q

c2,Q

x1

x2

x⊥1

x⊥2

Figure 3.10: Pencil of concentric (ordinary) hyperbolic circles

Definition 3.8. Let c1, c2 be two circles of a pencil (ci)i∈I of concentric hyperbolic
circles, and let x1 := b−1(c1),x2 := b−1(c2) be their corresponding points in Q−. Then
we call the unique transformation Tx1,x2 ∈ PO(2, 2)p that maps x1 to x2 and preserves
each plane through the line x1 ∨ x2 (containing p) a scaling along the pencil (ci)i∈I of
concentric hyperbolic circles [2, p. 32–33].

23



3 Non-Euclidean Laguerre geometry

p

Tx1,x2

c1 c2

x1

x2

Figure 3.11: Scaling along a pencil of concentric (ordinary) hyperbolic circles

There are three types of scalings depending on the type of hyperbolic circles of the pen-
cil. A one-parameter family of scalings along a pencil of concentric (ordinary) hyperbolic
circles (see Figure 3.11)/hyperbolic curves of constant distance to a common hyperbolic
line/concentric horocycles (with center on Q̃) can be represented by the matrices

T cu :=


1 0 0 0
0 1 0 0
0 0 sin(u) cos(u)
0 0 cos(u) − sin(u)

 ,

T lu :=


1 0 0 0
0 cosh(u) sinh(u) 0
0 0 0 1
0 sinh(u) cosh(u) 0

 ,

T hu :=


1 0 0 0

0 1 + u2

2 u u2

2

0 −u2

2 −u 1− u2

2
0 u 1 u


for u ∈ R, respectively [2, p. 43].

Proposition 3.9. Every transformation t ∈ PO(2, 2) can be written in the form:

t = Φ ◦ Tut ◦Ψ (3.8)

where Φ,Ψ ∈ PO(2, 2)p and Tut ∈ {T cut , T
l
ut , T

h
ut} is a scaling for some ut ∈ R [2, p. 44].
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Remark 3.10. The group PO(2, 2)p doubly covers the group of hyperbolic motions
PO(2, 1) [2, p. 42]. In particular:

PO(2, 1) ' PO(2, 2)p/σp (3.9)

[2, p. 27].

Knowing that hyperbolic Laguerre transformations are induced by transformations of
PO(2, 2), invariants of this group can bring insights into invariants of Laguerre transfor-
mations.

Definition 3.11. For a quadric Q ⊂ Pn with corresponding bilinear form 〈·, ·〉 and two
points x,y ∈ Pn \Q we call

KQ(x,y) :=
〈x, y〉2

〈x, x〉〈y, y〉
(3.10)

the Cayley-Klein distance (short: CK-distance) between x and y.

Lemma 3.12. The CK-distance KQ associated with the quadric Q is invariant under
projective transformations that preserve Q [2, p. 18].

The CK-distance associated with the absolute circle Q̃ induces the hyperbolic distance
as follows:

Lemma 3.13. For Q̃, defined as in (3.2), the equation

KQ̃(x,y) = cosh2d(x,y) (3.11)

defines the hyperbolic distance d(x,y) between two points x,y ∈ H [2, p. 21].

Remark 3.14. Lemma 3.12 implies that KQ̃ is preserved under PO(2, 1) and because of
Lemma 3.13 the hyperbolic distance is preserved as well - which is obvious since PO(2, 1)
is exactly the group of hyperbolic motions.

Lemma 3.15. Let c1, c2 be two hyperbolic circles with a common tangent touching the
circles in y1,y2 and let x1,x2 be the points of P3 corresponding to c1, c2 (via b−1), i.e.,
x1 := b−1(c1), x2 := b−1(c2) (see Figure 3.12). Then

KQ(x1,x2) = KQ̃(y1,y2) (3.12)

[2, p. 39].
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p

y1
y2

c1 c2

x1 x2

Figure 3.12: Two hyperbolic circles with a common (oriented) tangent

A proof of this Lemma can be found in [2, p. 40]. It implies:

Proposition 3.16. The tangential distance between two (oriented) hyperbolic circles is
invariant under hyperbolic Laguerre transformations.

Proof. The tangential distance between two hyperbolic circles c1, c2 is the hyperbolic dis-
tance d(y1,y2) between the touching points of a common oriented tangent. The hyper-
bolic distance is induced by KQ̃(y1,y2), which is equal to the CK-distance KQ(x1,x2)

of the points x1,x2 ∈ P3 corresponding to the hyperbolic circles c1, c2, according to
Lemma 3.15. Since KQ(x1,x2) is the CK-distance associated with the quadric Q, due
to Lemma 3.12 it is invariant under the group PO(2, 2) which induces Laguerre trans-
formations of H. Thus the tangential distance is preserved under hyperbolic Laguerre
transformations.

3.1.2 n-dimensional hyperbolic Laguerre geometry

In this chapter we generalize the quadric model of hyperbolic Laguerre geometry for arbi-
trary dimensions bigger than 2 following [2, Section 6.2]. In analogy to the 2-dimensional
case, we choose a quadric Q and a point p in Pn+1 such that the inside of the quadric
Q̃ = Q ∩ p⊥ can be identified with the n-dimensional hyperbolic space H. As Bobenko
et al. demonstrate in [2, Section 4.4] this can be done with the inside of a quadric Q̃ with
signature (n, 1). For the signature of Q we therefore have two possibilities, (n+ 1, 1) or
(n, 2). In analogy to our argumentation in the 2-dimensional case (on p. 20), we need
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the points of Q to project onto the outside of Q̃ under πp, in order for the polar hyper-
planes of the projected points to be hyperbolic hyperplanes (i.e., hyperplanes inside of
Q̃). Hence, due to Lemma 2.24, we can only choose (n, 2). Thus we have

Q : 〈x, x〉Q := x2
1 + ...+ x2

n − x2
n+1 − x2

n+2 = 0

which we call the hyperbolic Laguerre quadric, and

Q̃ :

{
〈x, x〉Q̃ := x2

1 + ...+ x2
n − x2

n+1 = 0

xn+2 = 0.
(3.13)

The point p thus has to lie inside of Q, i.e., 〈p, p〉Q < 0. W.l.o.g we choose

p := [0, ..., 0, 1]

so Q̃ is the intersection Q ∩ p⊥, in analogy to the absolute circle in the 2-dimensional
case. The involution and the central projection associated with p then take the form:

σp : [x1, ..., xn+1, xn+2] 7→ [x1, ..., xn+1,−xn+2], (3.14)
πp : [x1, ..., xn+1, xn+2] 7→ [x1, ..., xn+1, 0], (3.15)

[2, p. 40].

Correspondence between points/hyperplanar sections of Q and oriented hyperbolic
hyperplanes/spheres

In analogy to Proposition 3.1 for the 2-dimensional case, for dimension n we have:

Proposition 3.17. The restriction of the polar projection π∗p (defined as in (2.3)) to
Q \ Q̃ yields a double cover of the set of all hyperbolic hyperplanes [2, p. 39].

Proof. See Proposition 2.26c.

Each two points x± of Pn+1 that project onto the same hyperbolic hyperplane p under
π∗p can be interchanged via σp which yields reversing the orientation of the corresponding
oriented hyperplanes that p carries (the orientation is encoded in the last component of
x±, as we see in 3.14) [2, p. 41]. Thus, by defining a map

# »

π∗p that maps points of Q\Q̃ to
the same hyperplanes as π∗p but additionally endows them with an orientation determined
by the xn+2-component of the corresponding point, we get a bijective correspondence
between Q \ Q̃ and the set of oriented hyperbolic hyperplanes.

Proposition 3.18. The set Q \ Q̃ bijectively corresponds to the set
#»P of oriented hyper-

bolic hyperplanes via the map
# »

π∗p : Q \ Q̃ → #»P , and the involution σp acts orientation
reversing on

#»P .

Moving on to hyperbolic hyperspheres, since πp(x) and π∗p(x) for any point x ∈ Pn+1

are polar w.r.t. Q̃ (according to Proposition 2.26a), we define (in analogy to Definition
3.4):
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Definition 3.19. The set of poles of all tangents of a hyperbolic hypersphere s is called
the polar hypersphere of s [2, p. 21].

Lifting an oriented hyperbolic hypersphere s to the quadric Q by applying
# »

π∗p
−1 to its

tangent hyperplanes can geometrically be described as follows: First we find the poles
of the tangent hyperplanes w.r.t. Q̃, which lie on the polar hypersphere s⊥ of s. Then
we intersect the connecting lines of points of s⊥ and p with Q, yielding two hyperplanar
sections of Q. One of those corresponds to s, the other one to the hyperbolic hyper-
sphere with opposite orientation. Thus, oriented hyperbolic hyperspheres correspond to
hyperplanar sections of Q.

To get a point model of the hyperspheres we identify each hyperplanar section sQ of Q
corresponding to a hyperbolic hypersphere s with the pole xs (w.r.t. Q) of the hyperplane
carrying sQ. In analogy to the 2-dimensional case, the pole xs is the vertex of the cone
of contact CQ(xs) touching Q along sQ, i.e., sQ = x⊥s ∩Q. The tangent hyperplanes to
CQ(xs) and Q in points of sQ coincide, and therefore those tangent hyperplanes intersect
p⊥ in tangent hyperplanes of s and the cone itself intersects in s. Furthermore, xs has
to lie inside Q in order for the hypersphere s to lie inside Q̃, i.e., to be hyperbolic. Thus
the map

π∗Sp : Q− → S
x 7→ π∗Sp (x) := CQ(x) ∩ p⊥,

where S is the set of all hyperbolic hyperspheres, takes each point of Q− to a hyper-
sphere of H [2, p. 39]. Its “oriented version”

#    »

π∗Sp (which endows the image circle of a
point x ∈ Q− with an orientation corresponding to the sign of the xn+2-component of
x) yields a bijective correspondence between Q− and the set of all oriented hyperbolic
hyperspheres. Just as in the 2-dimensional case, amongst those hyperspheres we distin-
guish between ordinary hyperbolic hyperspheres, hyperbolic surfaces of constant distance
to a hyperbolic hyperplane and horospheres depending on the location of πp(x) w.r.t.
Q̃, i.e., the value of 〈πp(x), πp(x)〉. Besides the spheres,

#    »

π∗Sp also yields the hyperbolic
hyperplanes when applied to points of Q\ Q̃. Hence we expand its domain to Q−∪Q\ Q̃
and name the expanded map b (in analogy to the approach in the 2-dimensional case).

Proposition 3.20. The map b : Q− ∪ Q \ Q̃ → #»S ∪ #»P is bijective, where
#»S ∪ #»P are

oriented hyperbolic hyperspheres and planes. In particular:

• For x ∈ Q \ Q̃, b(x) is a hyperbolic hyperplane with pole πp(x) w.r.t. Q̃.

• For x ∈ Q− ∩ CQ(p)−, i.e., 〈πp(x), πp(x)〉 < 0, b(x) is an (ordinary) hyperbolic
hypersphere with center πp(x).

• For x ∈ Q− ∩ CQ(p)+, i.e., 〈πp(x), πp(x)〉 > 0, b(x) is a hyperbolic hypersurface
of constant distance to a hyperbolic hyperplane with pole πp(x) w.r.t. Q̃.

• For x ∈ Q− ∩CQ(p) \ Q̃, i.e., 〈πp(x), πp(x)〉 = 0, b(x) is a horosphere with center
πp(x) [2, p. 41].
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Hyperbolic Laguerre transformations

Since points and planar sections of Q correspond to oriented hyperplanes and spheres of
H respectively (via b) and Laguerre transformations preserve those, we can lift hyper-
bolic Laguerre transformations to projective transformations that preserve the quadric
Q. Since the signature of the hyperbolic Laguerre quadric for dimensions n > 2 is non-
neutral, this is exactly the projective orthogonal group PO(n, 2) (c.f. Lemma 2.19) [2, p.
42].

Proposition 3.21. Every Laguerre transformation α of the n-dimensional hyperbolic
space can be written in the form:

α = b ◦ t ◦ b−1

for some t ∈ PO(n, 2).

In analogy to the 2-dimensional case, transformations of the group PO(n, 2) can be
decomposed into transformations of the subgroup PO(n, 2)p, which besides preserving
Q also fixes p, and a “scaling along a pencil of concentric hyperspheres” (that belongs
to one of three one-parameter families of scalings). A pencil of concentric hyperbolic
hyperspheres with center z corresponds to points of Q− that lie on the line z∨p ⊂ Pn+1.

Definition 3.22. Let s1, s2 be two hyperspheres of a pencil (si)i∈I of concentric hyper-
bolic hyperspheres, and let x1 := b−1(s1),x2 := b−1(s2) be their corresponding points
in Q−. Then we call the unique transformation Tx1,x2 ∈ PO(n, 2) that maps x1 to x2

and preserves each hyperplane through the line x1 ∨ x2 (containing p) a scaling along
the pencil (si)i∈I of concentric hyperbolic hyperspheres [2, p. 32–33].

Depending on the type of the hyperspheres of the pencil, i.e., whether they are hyper-
bolic hyperspheres, hyperbolic hypersufaces of constant distance to a hyperbolic hyper-
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3 Non-Euclidean Laguerre geometry

plane or horospheres, we have three types of scalings represented by:

T su :=


0 0

In
...

...
0 0

0 . . . 0 cos(u) sin(u)
0 . . . 0 − sin(u) cos(u)

 ,

T pu :=



0 0 0

In−1
...

...
...

0 0 0

0 . . . 0 cosh(u) 0 sinh(u)
0 . . . 0 0 1 0
0 . . . 0 sinh(u) 0 cosh(u)


,

T hu :=



0 0 0

In−1
...

...
...

0 0 0

0 . . . 0 1 + u2

2
u2

2 u

0 . . . 0 −u2

2 1− u2

2 −u
0 . . . 0 u u 1


where In is the identity matrix of size n and u ∈ R [2, p. 43].

Proposition 3.23. Every transformation t ∈ PO(n, 2) can be written in the form:

t = Φ ◦ Tut ◦Ψ (3.16)

where Φ,Ψ ∈ PO(n, 2)p and Tut ∈ {T su , T
p
u , T hu } is a scaling for some ut ∈ R [2, p. 44].

Remark 3.24. The group PO(n, 2)p doubly covers the group of hyperbolic motions
PO(n, 1) [2, p. 42]. In particular:

PO(n, 1) ' PO(n, 2)p/σp (3.17)

[2, p. 27].

In Section 3.1.1 we already defined the CK-distance associated to a quadric in a projec-
tive space of arbitrary dimension. Associated with Q̃ as in (3.13) it induces the hyperbolic
distance on the n-dimensional hyperbolic space:

Lemma 3.25. For Q̃, defined as in (3.13), the equation

KQ̃(x,y) = cosh2d(x,y) (3.18)

defines the hyperbolic distance d(x,y) between two points x,y ∈ H [2, p. 21].
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Remark 3.26. Analogous to Remark 3.14, from the previous Lemma we see that the
group of hyperbolic motions PO(n, 1) preserves the hyperbolic distance, since it is induced
by KQ̃ which is invariant under projective transformations that preserve Q̃ (according
to Lemma 3.12), i.e., transformations from PO(n, 1).

According to [2] Lemma 3.15 holds true for arbitrary dimension, that is:

Lemma 3.27. Let s1, s2 be two hyperbolic hyperspheres with a common tangent hyper-
plane touching the hyperspheres in y1,y2 and x1,x2 the points of Pn+1 corresponding to
s1, s2 (via b−1), i.e., x1 := b−1(s1), x2 := b−1(s2). Then

KQ(x1,x2) = KQ̃(y1,y2) (3.19)

[2, p. 39].

Thus the tangential distance is also an invariant of the n-dimensional hyperbolic La-
guerre geometry.

Proposition 3.28. The tangential distance between two (oriented) hyperbolic hyper-
spheres is invariant under hyperbolic Laguerre transformations.

Proof. The proof works analogously to the proof of Proposition 3.16 using Lemmas 3.12,
3.25 and 3.27.
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3.2 Elliptic Laguerre geometry

In analogy to hyperbolic Laguerre geometry we want to embed the elliptic space into
the projective space of one dimension higher and find a correspondence between points/
hyperplanar sections of a chosen quadric in this projective space and oriented elliptic
hyperplanes/spheres. The foundation for this is provided by [2, Sections 2.1 and 6.2].

3.2.1 2-dimensional elliptic Laguerre geometry

Bobenko et al. have shown in [2, Section 4.5] that the n-dimensional elliptic space can
be identified with the outside of a quadric with signature (n + 1, 0), whose inside is
empty while the outside is the entire projective space containing the quadric. Thus,
for 2-dimensional elliptic Laguerre geometry, similarly to the hyperbolic case, we again
choose a quadric Q and a point p in P3, but this time identify the outside of the quadric
Q̃ = Q ∩ p⊥ (with signature (3, 0)) with the elliptic plane E . Since the inside of Q̃ must
be empty (according to Remark 2.18), we want the quadric Q, containing Q̃, to project to
Q̃+ under the central projection πp that we will associate with p. Hence, due to Lemma
2.24, for the elliptic Laguerre quadric Q we choose a quadric of signature (3, 1), namely

Q : 〈x, x〉Q := x2
1 + x2

2 + x2
3 − x2

4 = 0,

which is the unit sphere in R3.

Since the real part of Q̃ should be empty (i.e., p⊥ should not intersect Q in real points),
p must lie inside of Q. W.l.o.g. we choose

p := [0, 0, 0, 1],

making p⊥ the plane at infinity of P3. The maps σp and πp, defined as in (2.1) and (2.2),
then take the forms

σp : [x1, x2, x3, x4] 7→ [x1, x2, x3,−x4],

πp : [x1, x2, x3, x4] 7→ [x1, x2, x3, 0].

In particular, σp interchanges antipodal points of the sphere Q, and πp takes each point of
P3 to the point at infinity of its connecting line with p (see Figure 3.13). For Q̃ = p⊥∩Q
we get

Q̃ :

{
〈x, x〉Q̃ := x2

1 + x2
2 + x2

3 = 0

x4 = 0.
(3.20)

As mentioned above, we identify the elliptic plane

E = Q̃+ = p⊥

with the outside of Q̃ which is the plane at infinity [2, p. 44].
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p

Q

E = Q̃+ = p⊥

πp(x±)

x+

x−

σp

Figure 3.13: Elliptic Laguerre quadric Q and E embedded into P3

Correspondence between points/planar sections of Q and oriented elliptic lines/circles

Just as for hyperbolic Laguerre geometry, we establish a correspondence with the help
of the polar projection π∗p associated with p.

Proposition 3.29. The restriction of the polar projection π∗p, defined as in (2.3) with
n = 3, to Q yields a double cover of the set of all elliptic lines [2, p. 39].

Proof. See Proposition 2.26 c.

Figure 3.13 illustrates how the elliptic lines are doubly covered, since the projection
line under πp for each point x+ of Q contains a second point of Q, namely its antipodal
point x−. Applying polarity w.r.t. Q̃ to πp(x±) yields the line π∗p(x±) in E . By the
definition of the polar projection (see (2.3)), we geometrically get π∗p(x±) by intersecting
the tangent plane in x+ or x− with p⊥, i.e., π∗p(x±) is the line at infinity of these
(parallel) tangent planes (see Figure 3.14).
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E

p

Q

π∗p(x±)

(x+)⊥

x+

x−

πp(x±)

Q̃

Figure 3.14: Double cover of the elliptic lines

Since σp interchanges the points x+ and x−, it reverses the orientation of the corre-
sponding oriented lines of E [2, p. 39]. Thus, just as for the hyperbolic case, we consider
the map

# »

π∗p which takes x+ to the positively oriented elliptic line and x− to the negatively
oriented one.

Proposition 3.30. The quadric Q bijectively corresponds to the set
#»L of oriented hy-

perbolic lines via the map
# »

π∗p : Q → #»L, and the involution σp acts orientation reversing
on

#»L.

E

p

Q

# 
»

π
∗

p
(x

+ )
# 

»
π
∗

p
(x
− )

π∗p(x±)

x+

x−

πp(x±)Q̃

σp

Figure 3.15: Bijective correspondence between points on Q and oriented lines of E
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Let us now proceed to oriented elliptic circles. We will show that they can be identified
with planar sections of Q, analogously to the quadric model of hyperbolic Laguerre
geometry. Interpreting an oriented circle c in E as envelope of its (oriented) tangents, we
can lift each tangent t to Q by applying

# »

π∗p
−1. Geometrically, we construct the tangent

plane to Q with t as its line at infinity and get the corresponding point on Q as contact
point of the tangent plane (note that there are actually two such tangent planes, but
we choose the one that yields the contact point corresponding to the orientation of t).
Repeating this for every tangent of c, those tangent planes envelope a cone touching Q
along a circle cQ, i.e., a planar section of Q. The plane carrying cQ has π∗p(xc) as line
at infinity, where xc is the vertex of the cone and πp(xc) is the center of c (see Figure
3.16a).

p

E

Q

y

y⊥

cQ

xc

# »

π∗p(y)

c

πp(xc)
π∗p(xc)

(a) Lifting an oriented circle c ⊂ E to Q via the cone of contact
CQ(xc)

p

E

Q

c

cQ

xc
CQ(xc)

# »

π∗p(y)

y

πp(y)

c⊥

(b) Lifting an oriented circle c ⊂ E to Q via the cone with vertex p
containing c⊥

Figure 3.16: Bijective correspondence between planar sections of Q and oriented circles
of E
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Since the polar projection π∗p can be decomposed into the central projection πp and
the polarity w.r.t. Q̃, alternatively to lifting an oriented circle to Q with the aid of a a
cone of contact, we could consider:

Definition 3.31. The poles of tangents of an elliptic circle c w.r.t. Q̃ lie on a concentric
elliptic circle. We call it the polar circle c⊥ of c [2, p. 21].

Thus, by applying polarity w.r.t. Q̃ to the tangents of a circle c in E , we get the points
of its polar circle c⊥ in E . Projecting its points to Q is equivalent to intersecting Q with
the cone with vertex p that contains c⊥. This yields two circles on Q from which we
choose the one that corresponds to the orientation of the tangents of c (see Figure 3.16b).

Remark 3.32. Points in E , as circles with radius zero, also correspond to planar sections
of Q, namely great circles [2, p. 8]. This is clear from the paragraph above, since the
elliptic lines passing through a point are polar to points on a common elliptic line.
Projecting this line back to Q yields the intersection of Q with a plane through p which
is the center of the sphere Q.

Finally, we can also identify the oriented elliptic circles with points in the projective
space instead of planar sections. For this purpose we identify each planar section cQ of Q
with the vertex xc of the cone of contact CQ(xc) touching Q along cQ, i.e., with the pole
of the plane carrying cQ. While for the hyperbolic Laguerre quadric the intersection with
the polar plane of every point inside of the quadric is non-empty and thus corresponds
to a hyperbolic circle, for the elliptic Laguerre quadric Q this is the case for every point
outside of Q. Thus the map

π∗Cp : Q+ → C
x 7→ π∗Cp (x) := CQ(x) ∩ p⊥,

where C is the set of elliptic circles, maps each point x of Q+ to a circle in E (with center
πp(x)) [2, p. 45]. Since each elliptic circle c has two pre-image points x+

c ,x
−
c under

π∗Cp (differing only by their x4-component), we denote the map, that distinguishes those
points as corresponding to different orientations of c, by

#   »

π∗Cp . In other words:
#   »

π∗Cp maps
x+
c ,x

−
c to the two oppositely oriented circles that c carries.

We see that, just as in the hyperbolic case,
#   »

π∗Cp also yields the oriented elliptic lines
when applied to the points on Q, since the cone of contact to Q with vertex x ∈ Q is the
tangent plane to Q in x. Hence, we expand the domain of

#   »

π∗Cp to Q+ ∪Q and name the
expanded map b. In analogy to Proposition 3.6, we get:

Proposition 3.33. The map b : Q+ ∪Q→ #»C ∪ #»L is bijective, where
#»C ∪ #»L are oriented

elliptic circles and lines. In particular:

• For x ∈ Q, b(x) is an elliptic line with pole πp(x) w.r.t. Q̃.
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• For x ∈ Q+, b(x) is an elliptic circle with center πp(x) [2, p. 45].

Before turning to Laguerre transformations of the elliptic plane, we want to consider
our results in the sphere model of elliptic geometry as well. In this model, the elliptic
geometry “takes place” on the unit sphere. Two antipodal points represent the same
“point” of E , elliptic lines are great circles, and circles of E are small circles, i.e., planar
sections that do not contain the center of the sphere. The orientation of lines and circles
is determined by the direction in which they are traversed [2, p. 7].

Now, if we want to transfer the “place of action” for elliptic geometry from the plane
at infinity p⊥ to the unit sphere (which is exactly the elliptic Laguerre quadric Q), we
proceed as follows:

• We take an arbitrary oriented line l in p⊥ to the great circle l̄, which is the inter-
section of Q = E with the plane containing p and the line at infinity l, and has
the same orientation as l. Since elliptic geometry now “takes place” on the surface
of the elliptic Laguerre quadric Q, it is interesting to consider the pre-image of l
under b. The point b−1(l) on Q is exactly the spherical center of the great circle
l̄ (i.e., the intersection point of Q with the axis of l̄ which lies on the left side of l̄
w.r.t. its direction of traversion), because: The point at infinity πp(b−1(l)) is polar
to l w.r.t. Q̃, making p ∨ b−1(l) the axis of l̄ (see Figure 3.17a).

• With the oriented elliptic lines, it is also determined how to take an oriented circle
of p⊥ to the sphere model, i.e., to a small circle of Q. Taking each tangent of a circle
c in p⊥ to E = Q, we intersect Q with planes through p, yielding great circles in
oriented contact with the elliptic circle c̄ that we are looking for (see Figure 3.17b).
Again, we would like to study the relation between c̄ and the corresponding planar
section of the elliptic Laguerre quadric Q. For an elliptic line l̄, i.e., a great circle,
its spherical center is the corresponding point on Q. Thus, for an elliptic circle c̄,
i.e., a small circle, the corresponding planar section cQ of Q consists of the spherical
centers of all great circles in oriented contact with c̄. Geometrically, we get c̄ and
cQ (from c ⊂ p⊥) by intersecting Q with the cone with vertex p containing c or c⊥

respectively, while considering the orientation. The circle cQ can alternatively be
retrieved by intersecting Q with the cone of contact CQ(b−1(c)).

• Finally, each point P of p⊥ is transferred to the sphere model by intersecting the
great circles of Q = E , corresponding to the lines through P , yielding the pair
(P̄1, P̄2) of antipodal points corresponding to P . This pair lies on the connecting
line of P and p. As points are also circles in Laguerre geometry, there must be
a planar section of the elliptic Laguerre quadric Q corresponding to (P̄1, P̄2) (or,
equivalently, to P), namely a great circle, according to Remark 3.32. This is exactly
the great circle that has P̄1 ∨ P̄2 as its axis, because it is contained in the plane
that has the polar line of P as its line at infinity (see Figure 3.17c) [2, p. 7–8].
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p

p⊥

E = Q

b−1(l)

l

l̄

πp(b−1(l))

(a) Taking an oriented line of p⊥ to a great
circle of Q

p

p⊥

E = Q

t

t̄

b−1(t)
cQ

c̄

c

πp(b−1(t))

(b) Taking an oriented circle of p⊥ to a
small circle of Q

p

p⊥

E = Q

PQ

l̄1

l̄2

P̄1

P̄2

Pl1
l2

(c) Taking a point of p⊥ to a pair of antipodal
points on Q

Figure 3.17: Transferring oriented elliptic lines and circles to the sphere model

Since with the sphere model oriented elliptic lines/circles and the corresponding points/
planar sections of the elliptic Laguerre quadric Q are located in the same space, namely
the unit sphere Q, one can easily lose track of which space we are currently working in, Q
as elliptic plane or Q as quadric in P3. To help with keeping track of that, the following
table is provided, together with a figure below, separating the elliptic space Q and the
elliptic Laguerre quadric Q into two different pictures.

sphere model E = Q elliptic Laguerre quadric Q ⊂ P3

elliptic line great circle point
elliptic circle small circle small circle
elliptic point pair of antipodal points great circle
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pp

Q ⊂ P3E = Q

b−1(l)

l̄

b−1(c)b−1(P )

cQ

c̄
PQ

P̄1

P̄2

Figure 3.18: Unit sphere Q as elliptic plane (left) and as elliptic Laguerre quadric in P3

(right)

Elliptic Laguerre transformations

Analogous to hyperbolic Laguerre transformations, elliptic Laguerre transformations of
the plane can be lifted to certain transformations of P3. Just as in the hyperbolic
case, those are exactly the projective transformations that preserve the elliptic Laguerre
quadric Q, i.e., transformations of the group PO(3, 1), due to the bijective correspon-
dence between planar points/planar sections of Q and oriented lines/circles of E [2, p.
45].

Proposition 3.34. Every Laguerre transformation α of the elliptic plane can be written
in the form:

α = b ◦ t ◦ b−1

for some t ∈ PO(3, 1).

b−1
b

α

t
b−1(l) (t ◦ b−1)(l)

l

α(l)
=

(b
◦ t
◦ b
−1 )(l

)

Figure 3.19: Lifting elliptic Laguerre transformations to projective transformations
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Just as the group PO(2, 2), which induces Laguerre transformations of the hyperbolic
plane, PO(3, 1) can also be generated by scalings along pencils of concentric circles and
transformations from the subgroup PO(3, 1)p which preserve p. Analogous to our ar-
gumentation for pencils of concentric hyperbolic circles (see p. 23), a pencil of elliptic
circles corresponds to points of Q+ that lie on a line through p. The planar sections of
Q, that correspond to those circles with common center z, lie in planes that intersect p⊥

in a common line, namely π∗p(z). Since π∗p(z) is a line at infinity, the planes are parallel
(see Figure 3.20). With this, we can define a scaling along a pencil of concentric elliptic
circles as follows:

Definition 3.35. Let c1, c2 be two circles of a pencil (ci)i∈I of concentric elliptic circles,
and let x1 := b−1(c1),x2 := b−1(c2) be their corresponding points in Q+. Then we call
the unique transformation Tx1,x2 ∈ PO(3, 1) that maps x1 to x2 and preserves each plane
through the line x1 ∨ x2 (containing p) a scaling along the pencil (ci)i∈I of concentric
elliptic circles [2, p. 32–33].

c1

x1
x2

c2

Tx1,x2

Figure 3.20: Scaling along a pencil of concentric elliptic circles

As mentioned above, with the group PO(3, 1)p and by choosing one specific one-
parameter family of scalings, one can generate the entire group PO(3, 1).

Proposition 3.36. Let

Tu :=


1 0 0 0
0 1 0 0
0 0 cosh(u) sinh(u)
0 0 sinh(u) cosh(u)

 , u ∈ R,

be a one-parameter family of scalings along concentric elliptic circles. Then every trans-
formation t ∈ PO(3, 1) can be written in the form

t = Φ ◦ Tut ◦Ψ,

where Φ,Ψ ∈ PO(3, 1)p and ut ∈ R [2, p. 46].

40



3.2 Elliptic Laguerre geometry

Remark 3.37. The group PO(3, 1)p doubly covers the group of elliptic motions PO(3, 0)
[2, p. 46]. In particular:

PO(3, 0) ' PO(3, 1)p/σp (3.21)

[2, p. 27].

Finally, we want to consider an invariant of PO(3, 1) to find an invariant of elliptic
Laguerre transformations. According to [2], the CK-distance KQ̃ associated with Q̃,
defined as in (3.20), induces the elliptic distance via the equation

KQ̃(x,y) = cos2 d(x,y)

[2, p. 23–24], and Lemma 3.15 holds true upon exchanging the term “hyperbolic” with
“elliptic” [2, p. 39]. Thus, analogously to Proposition 3.16, we have:

Proposition 3.38. The tangential distance between two (oriented) elliptic circles is in-
variant under elliptic Laguerre transformations.

c1
c2

x1 x2

Figure 3.21: Two elliptic circles with common (oriented) tangents

3.2.2 n-dimensional elliptic Laguerre geometry

Just like hyperbolic Laguerre geometry, elliptic Laguerre geometry can also be generalized
to arbitrary dimensions. We identify the n-dimensional elliptic space with the outside of
a quadric Q̃ of signature (n + 1, 0) which is contained in the quadric Q with signature
(n + 1, 1) as intersection with the polar hyperplane p⊥ (w.r.t. Q) of a point p inside of
Q, i.e.: The quadric

Q : 〈x, x〉Q := x2
1 + . . .+ x2

n+1 − x2
n+2

is the elliptic Laguerre quadric, the polar hyperplane p⊥ of the point

p := [0, . . . , 0, 1]

41



3 Non-Euclidean Laguerre geometry

w.r.t. Q intersects the elliptic Laguerre quadric Q in

Q̃ :

{
〈x, x〉Q̃ := x2

1 + ...+ x2
n + x2

n+1 = 0

xn+2 = 0

whose non-empty side
Q̃+ = E

is identified with the n-dimensional elliptic space. The involution and central projection
associated with p take the same form as in (3.14) and (3.15). Hence, πp again maps two
points of Pn+1, that differ only by their xn+2-component, to the same point in p⊥, while
σp interchanges them [2, p. 44].

Correspondence between points/hyperplanar sections of Q and oriented elliptic
hyperplanes/spheres

Proposition 3.39. The restriction of the polar projection π∗p (defined as in (2.3)) to
Q \ Q̃ yields a double cover of the set of all elliptic hyperplanes [2, p. 39].

Proof. See Proposition 2.26 c.

Each two points that have the same image-point under πp have the same image-
hyperplane under π∗p, and thus are interchangable via the involution σp [2, p. 39]. There-
fore we consider a map

# »

π∗p that takes the point with positive xn+2-component to the
positively oriented hyperplane and the point with negative xn+2-component to the neg-
atively oriented hyperplane, while applying σp reverses their orientations.

Proposition 3.40. The set Q bijectively corresponds to the set
#»P of oriented elliptic

hyperplanes via the map
# »

π∗p : Q → #»P , and the involution σp acts orientation reversing
on

#»P .

To lift elliptic hyperspheres to Q, we identify them with their tangent planes and lift
those up to Q via

# »

π∗p
−1. For that purpose, we first find their poles w.r.t. Q̃, then project

those back toQ by intersectingQ with their connecting lines with p (while considering the
orientation of the tangents or, equivalently, of the sphere). For an elliptic hypersphere
s the poles of its tangents lie on its polar hypersphere (which is defined analogously
to the polar sphere of a hyperbolic sphere, i.e., by exchanging the word “hyperbolic”
with “elliptic” in Definition 3.19). Thus, to get the points on Q corresponding to the
tangents of s, we intersect the cone with vertex p containing s⊥ with Q. This yields two
hyperplanar sections of Q, from which each corresponds to a different orientation of the
sphere s. Hence, upon identifying the sections with the poles (w.r.t. Q) of the planes
carrying them, the set of elliptic hyperspheres S corresponds to hyperplanar sections of
Q via the map

π∗Sp : Q+ → S
x 7→ π∗Sp (x) := CQ(x) ∩ p⊥
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3.2 Elliptic Laguerre geometry

[2, p. 45]. Denoting the map that encodes their orientation as well by
#    »

π∗Sp , we get a
bijective correspondence for the oriented elliptic spheres. Since the cone of contact for a
point on Q is the tangent hyperplane in this point,

#    »

π∗Sp also yields the oriented elliptic
hyperplanes. Thus, we expand the domain of

#    »

π∗Sp to Q+ ∪ Q and denote the expanded
map by b. We summarize:

Proposition 3.41. The map b : Q+ ∪Q 7→ #»S ∪ #»P is bijective, where
#»S ∪ #»P are oriented

elliptic hyperspheres and planes. In particular:

• For x ∈ Q, b(x) is an elliptic hyperplane with pole πp(x) w.r.t. Q̃.

• For x ∈ Q+, b(x) is an elliptic hypersphere with center πp(x) [2, p. 45].

Elliptic Laguerre transformations

Analogous to Laguerre transformations of the elliptic plane, the Laguerre transformations
of the n-dimensional elliptic space can be lifted to transformations of the group PO(n+
1, 1) since those preserve the elliptic Laguerre quadric Q (which carries the points and
planar sections corresponding to oriented elliptic hyperplanes and spheres) [2, p. 45].

Proposition 3.42. Every Laguerre transformation α of the n-dimensional elliptic space
can be written in the form:

α = b ◦ t ◦ b−1

for some t ∈ PO(n+ 1, 1).

Analogous to dimension 2, pencils of concentric elliptic hyperspheres correspond to
points of Q+ lying on lines through p. A scaling along such a pencil is then defined
analogously to Definition 3.22 by exchanging the word “hyperbolic” with “elliptic”, and
PO(n, 2) with PO(n+1, 1) [2, p. 32–33]. After choosing one specific one-parameter family
of scalings, with this and the subgroup PO(n+ 1, 1)p, which fixes p, we can generate the
entire group PO(n+ 1, 1):

Proposition 3.43. Let

Tu :=


0 0

In
...

...
0 0

0 . . . 0 cosh(u) sinh(u)
0 . . . 0 sinh(u) cosh(u)

 , u ∈ R,

be a one-parameter family of scalings along concentric elliptic hyperspheres. Then every
transformation t ∈ PO(n+ 1, 1) can be written in the form

t = Φ ◦ Tut ◦Ψ,

where Φ,Ψ ∈ PO(n+ 1, 1)p and ut ∈ R [2, p. 46].
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3 Non-Euclidean Laguerre geometry

Remark 3.44. The group PO(n + 1, 1)p doubly covers the group of elliptic motions
PO(n+ 1, 0) [2, p. 46]. In particular:

PO(n+ 1, 0) ' PO(n+ 1, 1)p/σp (3.22)

[2, p. 27].

Just as for 2-dimensional Laguerre geometry, the tangential distance between two
(oriented) elliptic hyperspheres is invariant under Laguerre transformations of the n-
dimensional elliptic space. The argumentation works analogously to the one in the planar
case and can be found in [2].
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4 Euclidean Laguerre geometry

Euclidean Laguerre geometry can also be studied in a quadric model although the ap-
proach slightly differs from the one for non-Euclidean Laguerre geometry due to degen-
eracy of the Euclidean Laguerre quadric. Analogous to the previous chapter we will first
introduce the quadric model for the 2-dimensional case and generalize it for arbitrary
dimensions based on [2]. Since 2-dimensional Euclidean Laguerre geometry has already
been studied more thoroughly than higher-dimensional and non-Euclidean versions in
earlier years, for example by W.Blaschke, we will additionally treat the more known
cyclographic model for planar Euclidean Laguerre geometry based on [1] and [9].

4.1 Quadric model of Euclidean Laguerre geometry

The basic idea is again to choose a certain quadric Q and a point p in a projective space
such that πp would map Q onto the outside of the quadric Q̃ = Q ∩ p⊥, just like for
hyperbolic Laguerre geometry where applying polarity w.r.t. Q̃ to the projected points
would give us the hyperbolic hyperplanes (see Chapter 3.1). In the Euclidean case, we
cannot use polarity because Q is chosen as a degenerate quadric. Instead, the outside of Q̃
can be identified with the dual Euclidean space E∗ and we get the Euclidean hyperplanes
by applying duality to the points of E∗ [2, Appendix A.2 and A.4].

4.1.1 2-dimensional Euclidean Laguerre geometry

We consider a quadric Q̃ with signature (2, 0, 1) which is an imaginary cone with its
vertex [0, 0, 1] as only real point. Its inside is empty, Q̃− = �, while its outside can be
identified with the space E∗ of all Euclidean lines, i.e.:

Q̃+ = P2 \ {[0, 0, 1]} =: E∗

(that is, each equivalence class [a, b, c] 6= [0, 0, 1] yields the homogeneous line coordinates
of the Euclidean line with equation ax1 + bx2 + cx3 = 0). Dualization of E∗ yields

(E∗)∗ = (P2 \ {[0, 0, 1]})∗ = (P2∗) \ ([0, 0, 1])∗ ' R2,

i.e., the projective plane P2 without its line at infinity x3 = 0, and thus can be identified
with the Euclidean plane E [2, p. 83–84].

Embedding Q̃ into a quadric Q of signature (2, 1, 1) we have:

Q : 〈x, x〉Q := x2
1 + x2

2 − x2
3 = 0 (4.1)

is a cone with vertex o := [0, 0, 0, 1] and we call it the Euclidean Laguerre quadric.
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4 Euclidean Laguerre geometry

Remark 4.1. In the literature on planar Euclidean Laguerre geometry one will probably
come across the Blaschke model, where oriented Euclidean lines and circles are identified
with points and planar sections of the so-called Blaschke cylinder

B : x2 + y2 = 1

(and Laguerre transformations can be lifted to affine transformations that preserve B).
As our goal is to identify points and planar sections of the cone Q with oriented Eu-
clidean lines and circles and as a cone and a cylinder are projectively equivalent, one can
already guess the connection between Q and B: The Euclidean Laguerre quadric Q is
the projectivization of the Blaschke cylinder B, i.e.,

Q = P (B).

For p we choose a point inside of Q, w.l.o.g.

p := [0, 0, 1, 0]

such that (according to Lemma 2.24) πp would project to the outside of a quadric with
signature (2, 0, 1), namely Q̃ = p⊥ ∩Q with equation

Q̃ :

{
〈x, x〉Q̃ := x2

1 + x2
2 = 0

x3 = 0.

The vertex of this imaginary cone Q̃ coincides with the vertex o of Q (see Figure 4.1).
As mentioned above we identify

Q̃+ = E∗

with the dual Euclidean plane [2, p. 87].

Correspondence between points/planar sections of Q and oriented Euclidean
lines/circles

Proposition 2.25b implies:

Proposition 4.2. The restriction of the central projection πp, defined as in (2.2) with
n = 3, to Q \ Q̃ yields a double cover of E∗.

Each two points of Q \ Q̃ that project onto the same point of E∗ can be interchanged
via σp (defined as in (2.1)), yielding the reversion of the orientation of the corresponding
Euclidean lines [2, p. 87].
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4.1 Quadric model of Euclidean Laguerre geometry

x+ = σp(x−)

o

p

E∗ ' p⊥ \ o

πp(x+) = πp(x−)

x− = σp(x+)

Figure 4.1: Double cover of E∗

Considering a map
# »

π∗p, that first maps a point on Q\Q̃ to a point in E∗ while preserving
its orientation (that is encoded in the sign of the x3-component), then takes it to a line
in E with this orientation, we get a bijective correspondence between points of Q \ Q̃
and oriented Euclidean lines.

Proposition 4.3. The set Q\Q̃ bijectively corresponds to the set
#»L of oriented Euclidean

lines via the map
# »

π∗p : Q \ Q̃ → #»L, and the involution σp acts orientation reversing on
#»L.

With the correspondence between points of Q\Q̃ and oriented Euclidean lines at hand,
we also have a correspondence between planar sections of Q (=conics) and the tangents
of oriented Euclidean circles, because: Under πp conics on Q project onto circles in E∗

since the projection lines (which are orthogonal to p⊥) form a cylinder that we intersect
with p⊥. Applying duality to the points of this circle in E∗ yields the tangents to the
dual circle in E (see Figure 4.2) [2, p. 87].

x1 x2

x3
cQ

o

Q

p

E∗

P3 P3∗

c

E
(πp(x1))∗

(πp(x2))∗
(πp(x3))∗

πp(x1) πp(x2)

πp(x3)

Figure 4.2: Correspondence between planar sections of Q and Euclidean circles
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Unlike for non-Euclidean Laguerre geometry, we cannot identify oriented Euclidean
circles with the poles (w.r.t. Q, in P3) of the planes carrying the corresponding conics
on Q due to the degeneracy of Q. Thus we cannot find a map b analogously to the one
for hyperbolic and elliptic Laguerre geometry respectively (see Proposition 3.6 and 3.33).
Instead we can identify them with certain points in the dual projective space P3∗: In the
dual projective space we have a quadric Q∗ which is dual to the cone Q. Since for a cone
all tangent (hyper-)planes pass through its vertex, its dual quadric must be contained in
the (hyper)plane dual to the vertex. Thus the dual quadric Q∗ to Q has signature (2, 1)
and is contained in the dual plane of the vertex o of Q, i.e., in the plane at infinity of
P3∗. A point x on a conic cQ ⊂ Q, corresponding to an (oriented) Euclidean circle c,
corresponds to a tangent t of c and is dual to a plane touching Q∗ and intersecting E in
t. Considering those planes for every x ∈ cQ, they envelope a cone intersecting the plane
at infinity in Q∗ and E in c (see Figure 4.3). Identifying c with the vertex xc of this
cone Γ(xc) corresponding to cQ by duality, we get the so-called “cyclographic model” of
planar Euclidean Laguerre geometry (which we will treat in detail in Section 4.2) [2, p.
87].

x
cQ

o

πp(x) = (b(x))∗

Q

p

E∗

P3 P3∗

xc

cb(x)

x∗

Q∗
o∗

Γ(xc)

E

Figure 4.3: Identification of Euclidean circles with points of P3∗

Remark 4.4. With the dual quadric Q∗ at hand, we get an analogy to the hyperbolic
Laguerre geometry (compare Remark 3.3), namely the correspondence between points
on isotropic lines of Q and pencils of parallel lines of E, because: An isotropic line l on Q
by duality corresponds to a tangent l∗ of Q∗, and the points on l correspond to parallel
planes with l∗ as their plane at infinity. Then these planes intersect E in parallel lines,
which correspond to the points on l via b (see Figure 4.4).
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x

y
z

l

cQ

o

Q

E∗

P3 P3∗

xc

c
b(x)

b(y)
b(z)

x∗
y∗ z∗

Q∗
l∗ o∗

E

Figure 4.4: Pencil of parallel (oriented) lines in E

Euclidean Laguerre transformations

Just as for non-Euclidean Laguerre geometry, due to the correspondence of elements of
the quadric Q and oriented Euclidean lines and circles, the projective transformations
inducing Euclidean Laguerre transformations have to preserve Q. These are exactly
the transformations of the group PO(2, 1, 1) according to Lemma 2.19 [2, p. 87]. Since
we cannot identify lines and circles with points in the same projective space (i.e., as
mentioned before, there is no map

#    »

π∗Sp as for hyperbolic or elliptic Laguerre geometry), we
cannot lift Euclidean Laguerre transformations to projective transformations in the same
way as for hyperbolic and elliptic Laguerre transformations (i.e., by decomposing them
into the form b ◦ t ◦ b−1 for some projective transformation t). But we can interpret each
circle as envelope of its tangents which bijectively correspond to points on a planar section
of Q via

# »

π∗p (see Proposition 4.3). Then
# »

π∗p yields a bijective correspondence for lines as
well as for circles and thus we can decompose each Euclidean Laguerre transformation
as follows:

Proposition 4.5. Every Laguerre transformation α of the Euclidean plane can be written
in the form:

α =
# »

π∗p ◦ t ◦
# »

π∗p
−1

for some t ∈ PO(2, 1, 1).

Remark 4.6. The subgroup PO(2, 1, 1)p ⊂ PO(2, 1, 1) doubly covers the group of dual
Euclidean similarity transformations PO(2, 0, 1). In particular:

PO(2, 0, 1) ' PO(2, 1, 1)p/σp (4.2)

[2, p. 87]. The dual transformations of PO(2, 0, 1), i.e., the transformations of the group
PO(2, 0, 1)∗, are the Euclidean similarity transformations (=motions and scalings) [2, p.
85].
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4 Euclidean Laguerre geometry

If we do not want to identify circles with their tangents, alternatively to using
# »

π∗p, we
can “split” the correspondence into two maps, acting on the set of oriented Euclidean
circles and lines respectively. This approach is taken for the cyclographic model, as we
will see later.

4.1.2 n-dimensional Euclidean Laguerre geometry

Euclidean Laguerre geometry for arbitrary dimensions works analogously to the 2-di-
mensional case: The n-dimensional dual Euclidean space E∗ can be identified with the
outside of a quadric Q̃ with signature (n, 0, 1), which we embed into a quadric Q with
signature (n, 1, 1) as intersection of Q with the polar hyperplane p⊥ of

p := [0, . . . , 0, 1, 0]

w.r.t. Q [2, p. 87].

Correspondence between points/planar sections of Q and oriented Euclidean
lines/circles

Proposition 4.7. The restriction of the central projection πp (defined as in (2.2)) to
Q \ Q̃ yields a double cover of E∗.

Each two points of Q \ Q̃ that project onto the same point of E∗ can be interchanged
via σp (defined as in (2.1)), which implies reversing orientation of the corresponding
Euclidean hyperplanes [2, p. 87]. Considering the related map

# »

π∗p that preserves the
orientation, we get:

Proposition 4.8. The set Q\Q̃ bijectively corresponds to the set
#»P of oriented Euclidean

hyperplanes via the map
# »

π∗p : Q\Q̃→ #»P , and the involution σp acts orientation reversing
on

#»P .

Turning to the hyperspheres, we again identify them with their tangent hyperplanes.
For each hypersphere those are dual to the points of a hypersphere in E∗, which is the
central projection of a hyperplanar section of Q. Thus oriented hyperspheres bijectively
correspond to hyperplanar sections of Q, where σp again acts orientation reversing. Just
as in the 2-dimensional case, we cannot identify hyperspheres with the poles (w.r.t. Q)
of the hyperplanes carrying the corresponding planar sections of Q (because Q is degen-
erate). Instead, we identify them with points in the dual projective space (in particular,
we identify each hypersphere s with the vertex xs of the cone Γ(xs) intersecting E∗ in s,
and the hyperplane at infinity in the dual quadric Q∗), yielding the cyclographic model
for dimension n [2, p. 87].
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4.1 Quadric model of Euclidean Laguerre geometry

Euclidean Laguerre transformations

Finally, considering the hyperspheres as envelopes of their tangent hyperplanes,
# »

π∗p
yields a bijective correspondence between points/hyperplanar sections of Q and hyper-
planes/spheres of E. Since the transformations of PO(n, 1, 1) preserve Q, we get:

Proposition 4.9. Every Laguerre transformation α of the n-dimensional Euclidean space
can be written in the form:

α =
# »

π∗p ◦ t ◦
# »

π∗p
−1

for some t ∈ PO(n, 1, 1).

Remark 4.10. The subgroup PO(n, 1, 1)p ⊂ PO(n, 1, 1) doubly covers the group of dual
Euclidean similarity transformations PO(n, 0, 1). In particular:

PO(n, 0, 1) ' PO(n, 1, 1)p/σp (4.3)

[2, p. 87]. The dual transformations of PO(n, 0, 1), i.e., the transformations of the group
PO(n, 0, 1)∗, are the Euclidean similarity transformations [2, p. 85].
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4 Euclidean Laguerre geometry

4.2 Cyclographic model of Euclidean Laguerre geometry

In this section we first explain how to identify circles and lines in the cyclographic model
of planar Euclidean Laguerre geometry. Then we show its relations to the quadric model,
before proceeding to Euclidean Laguerre transformations in this model. This section is
based on [1] and [9].

Correspondence between points/planes of R3 and oriented Euclidean circles/lines

For the cyclographic model of planar Euclidean Laguerre geometry, we embed the Eu-
clidean plane E = R2 into the space R3 as the plane with equation z = 0. We then
identify each point X = (X1, X2, X3) of R3 with an oriented circle c of E, namely the
circle with the orthogonal projection (X1, X2) as center and radius X3 (in particular,
if X3 = 0 we get a point of E, i.e., a Euclidean circle of radius 0). Geometrically, we
can get the circle c by intersecting E with the cone Γ(X) with vertex X and rulings
with isotropic directions. Since the radius of the circle c is the X3-coordinate of X, its
orientation depends on whether X lies above or below E. Thus, we have a bijective
correspondence between the points of R3 and oriented Euclidean circles.

Next, we identify each plane of R3 that intersects E at an angle of π
4 (which we call

an isotropic plane from now on) with its intersection line with E. Since each two planes
that can be interchanged by a reflection in E have the same intersection line, they yield
different orientations. Thus, we also have a bijective correspondence between isotropic
planes of R3 and oriented Euclidean lines [1, p. 136–137].

Definition 4.11. Consider the map

z : R3 → #»C
X = (X1, X2, X3) 7→ z(X) := c((X1, X2), X3),

where c((X1, X2), X3) denotes the oriented circle with center (X1, X2) and oriented radius
X3 (i.e., sgn(X3) encodes the orientation of the circle), and the map

z̃ : Piso →
#»L

p : p0 + p1X1 + p2X2 + p3X3 = 0 7→ z̃(p) := l(n, d),

where Piso denotes the set of isotropic planes in R3 and l(n, d) denotes the oriented line
with oriented normal vector

n =

{
(p1, p2) if p3 < 0

−(p1, p2) if p3 > 0

(i.e., sgn(p3) encodes the orientation of the line) and distance d = −p0
‖n‖ to the origin.

Then the pair (z, z̃) is called the cyclographic map [9, p. 6], [12, p. 167, 170].

Proposition 4.12. The cyclographic map yields a bijective correspondence between points/
isotropic planes of R3 and oriented circles/lines of E.
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E

Xc1

c1 = z(Xc1)

p1

l1 = z̃(p1)

Γ(Xc1)

Xc2

c2 = z(Xc2)

p2

l2 = z̃(p2)

Γ(Xc2)

Xc1
3

Xc1
3

π/4 Xc2
3

Xc2
3

π/4

Figure 4.5: The cyclographic map

Now the question arises: Which connection is there between this cyclographic model
and the quadric model from Section 4.1?

In Section 4.1.1, we mentioned that every oriented Euclidean circle c can be identified
with a point in the (projectively extended) space, namely the vertex xc of the cone Γ(xc)
(see Figure 4.3). The cone Γ(xc) is the envelope of its tangent planes which (by duality)
correspond to points of the planar section cQ corresponding to the circle c. Every such
point q = [q1, q2, q3, q4] of cQ ⊂ Q satisfies the equation of the quadric, i.e.,

〈q, q〉Q = q2
1 + q2

2 − q2
3 = 0. (4.4)

Since the corresponding tangent plane q∗ to Γ(xc) has the homogeneous coordinates
[q1, q2, q3, q4] of q as homogeneous plane coordinates, it satisfies the same equation. And
since (4.4) is equivalent to q2

1 +q2
2 = q2

3, the Euclidean intersection angle of q∗ with E is π
4

(which explains the term “isotropic” for such a plane, since (4.4) implies that its normal
vector is isotropic w.r.t. 〈·, ·〉Q). Thus, we see that Γ(xc) is exactly the projectivization
of the cone Γ(X) with X = z−1(c) in the cyclographic model.

Before proceeding to Euclidean Laguerre transformations in the cyclographic model,
let us investigate what isotropic lines, i.e., lines with isotropic directions, correspond to.
Let l be an isotropic line of R3 and X an arbitrary point on l. Then l is a ruling of Γ(X).
Let Y 6= X be another point on l. Then the unique isotropic plane through l corresponds
to a common tangent of the circles z(X) and z(Y ) (via z̃). Thus, isotropic lines of R3

correspond to pencils of circles that are all in oriented contact with a common tangent
(see Figure 4.6). Hence we have:

Proposition 4.13. Let c1, c2 be two oriented circles of E, and Xc1 := z−1(c1), Xc2 :=
z−1(c2) their corresponding points of R3. Let Q be the quadric defined as in (4.1). Then
the following statements are equivalent:

• The circles c1 and c2 are in oriented contact.
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4 Euclidean Laguerre geometry

• The vector Xc1 −Xc2 is isotropic.

• 〈Xc1 −Xc2 , Xc1 −Xc2〉Q = 0 [9, p. 7–8].

E

Xc1

Xc2

c1

Xc3

c2

p

l = z̃(p)

π/4

Figure 4.6: Pencil of circles in oriented contact with a common line in E

Euclidean Laguerre transformations

Analogous to the quadric model, we want to lift Euclidean Laguerre transformations to
the cyclographic model. In the cyclographic model this is slightly more complicated due
to the fact that the correspondence between objects of R3 and E is split into two maps
z, z̃ (cf. Section 4.1.1). By splitting also each Laguerre transformation into two maps,
operating on two different domains, it is possible though:

Proposition 4.14. Let T be the group of transformations t of the form

t(X) = λM ·X + b λ ∈ R, b ∈ R3,M ∈ R3×3

with M orthogonal w.r.t. the matrix D := diag(1, 1,−1), i.e.,

MT ·D ·M = D.

Let the pair (α, α̃) be a Euclidean Laguerre transformation, where α and α̃ operate on the
set of oriented Euclidean circles and lines respectively. Then the Laguerre transformation
(α,α̃) can be decomposed as follows:

α = z ◦ t ◦ z−1

α̃ = z̃ ◦ t ◦ z̃−1

for some t ∈ T [9, p. 13–15].
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E

z−1(c)

(t ◦ z−1)(c)

α̃(l) = (z̃ ◦ t ◦ z̃−1)(l)
(t ◦ z̃−1)(l)l

α̃

t

α

t

z̃−1(l)

c α(c) = (z ◦ t ◦ z−1)(c)

Figure 4.7: Lifting Euclidean Laguerre transformations to R3

An exact proof of Proposition 4.14 can be found in [9, p. 15-16]. For our purposes we
just mention that the matrix D induces the bilinear form

〈x, y〉 := xT ·D · y = x1y1 + x2y2 − x3y3

that corresponds to a quadric with signature (2, 1). This quadric can be interpreted as
the dual quadric Q∗ of the Euclidean Laguerre quadric Q (defined as in (4.1)). The
transformation matrix M of each transformation t ∈ T being orthogonal w.r.t. D means
that Q∗ is preserved unter t, because for any x ∈ Q∗ we have:

〈Mx,Mx〉 = (xM)T ·D · (Mx) = xT · (MT ·D ·M) · x = xT ·D · x = 〈x, x〉 = 0.

Since every isotropic line/plane is the ruling/tangent plane of the cone Γ(X) for some
X ∈ R3 that intersects the plane at infinity in Q∗, isotropic lines and planes touch Q∗.
Hence they are preserved under t and thus the cyclographic image of t preserves oriented
Euclidean circles, lines and their oriented contact, i.e., is a Laguerre transformation [1,
p. 138–140].

Finally, to conclude the chapter on Euclidean Laguerre geometry, we want to treat a
few examples of Laguerre transformations of the Euclidean plane:

• Euclidean similarity transformations are (point-preserving) Laguerre transforma-
tions since they are induced by PO(2, 1, 1)p ⊂ PO(2, 1, 1) (whose transformations
induce Laguerre transformations according to Proposition 4.5).

• The cyclographic image of the reflection in the plane X3 = 0 is a Laguerre trans-
formation which fixes all Euclidean circles and lines but reverses their orientation
(induced by σp ∈ PO(2, 1, 1)p).

• The cyclographic image of a translation in R3 parallel to the X3-axis, i.e., the
translation by a vector (0, 0, d) for d ∈ R, is called a dilatation and is a Laguerre
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4 Euclidean Laguerre geometry

transformation that increases or decreases the radius of each circle by d. This
means that each point gets “blown up” to a circle of radius d (see Figure 4.8).
Thus, dilatations are not point-preserving [9, p. 16].

E

(0, 0, d)

d d
dc1

c2

P

t(P )t(c1)

t(c2)

Figure 4.8: Dilatation t induced by the translation by (0, 0, d)

Note that the contact point P̄ of the images t(c1), t(c2) of two circles c1, c2, that are
in oriented contact, under a dilatation t cannot be the image point of the original
contact point P [1, p. 4], since P becomes a circle t(P ) of radius d touching t(c1)
and t(c2). Nevertheless, the new contact point P̄ needs to lie on all three circles,
t(c1), t(c2) and t(P ) (see Figure 4.9).

E

(0, 0, d)

d

c1

c2

P t(P )
t(c1)

t(c2)

P̄

Figure 4.9: Oriented contact of image circles under a dilatation

Remark 4.15. Just like the quadric model, the cyclographic model can also be gener-
alized to arbitrary dimensions by embedding the Euclidean space Rn into Rn+1 [12, p.
167, 170].
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5 Laguerre geometry from Lie geometry

In this chapter we will treat another perspective on Laguerre geometry, namely as sub-
geometry of Lie (sphere) geometry. For this purpose we give a short introduction to Lie
geometry and work in the quadric model, to embed the Laguerre quadric Q ⊂ Pn+1 (for
n-dimensional Laguerre geometry) into the so-called (one dimension higher) “Lie quadric”
QL ⊂ Pn+2. This is based on [1], [2] and [3].

In analogy to our approach for Laguerre geometry, we explain the basic concept for
dimension 2, for reasons of intuition and visual imagination. While in planar Laguerre
geometry the fundamental objects are oriented circles and lines, in Lie geometry we are
dealing only with oriented circles. Points are considered to be circles of radius 0, just as
in Laguerre geometry, and lines are circles of radius∞. All these types of (oriented) “cir-
cles” are referred to as Lie circles, while keeping the terms “circles”, “lines” and “points”
for the objects that we intuitively imagine as such, in order to avoid misunderstandings.
Just as for Laguerre geometry, the basic relation is that of oriented contact between Lie
circles, and Lie transformations preserve it as well as the Lie circles themselves. The
“types” however are in general not preserved, i.e., for example an oriented circle can be
mapped to a line or a point and vice versa. Here we can see that Laguerre transforma-
tions are special Lie transformations, namely those which preserve oriented lines.

Remark 5.1. Lie transformations which preserve points also form a special group of
transformations, namely the well-known Möbius transformations [1, p. 3–4, 13–15, 177–
178]. In particular, the group of Lie transformations is generated by the union of the
Laguerre and Möbius groups [3, p. 29].

We now want to consider a quadric model of Lie geometry. For that purpose, we define

QL : 〈x, x〉L := x2
1 + x2

2 + x2
3 − x2

4 − x2
5 = 0,

which is a quadric of signature (3, 2), as the Lie quadric [2, p. 48]. While points on
the Laguerre quadric Q only correspond to oriented lines, points on the Lie quadric
QL correspond to Lie circles, i.e., oriented circles, lines and points. In particular, the
correspondence is bijective (we denote it by bL from here on) [3, p. 1], and in [2] or [3] we
can find tables which show the correspondence between the coordinates of a point on QL
and “elements” of the Lie circle that it uniquely determines (i.e., center and radius of a
circle/unit normal vector and distance from the origin for a line). Especially for points in
the plane it is common in literature to choose the quadric model in such a way that they
would correspond to points on QL whose last component is 0 (representing the radius).
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5 Laguerre geometry from Lie geometry

Particularly interesting are isotropic lines on QL. Analogous to the quadric models of
planar hyperbolic and Euclidean Laguerre geometry, where isotropic lines of the Laguerre
quadric Q correspond to pencils of parallel lines with their point at infinity as common
point (see Remark 3.3 and 4.4), isotropic lines of the Lie quadric QL correspond to pencils
of Lie circles with a common contact element. In particular, such a pencil can either
consist of parallel oriented lines or of oriented circles with a common tangent [3, p. 22–
27]. The latter case reminds us of the cyclographic model of Euclidean Laguerre geometry,
where we concluded that isotropic lines correspond to pencils of oriented circles that are
in oriented contact with a common line. We even get a similar result to Proposition 4.13,
after defining:

Definition 5.2. Two points x1,x2 ∈ P4 which are orthogonal w.r.t. the bilinear form
induced by QL, i.e., which satisfy

〈x1, x2〉L = 0,

are called Lie orthogonal. In particular, Lie orthogonal points on QL lie on isotropic lines
of QL [2, p. 48].

Proposition 5.3. Let c1, c2 be two oriented circles and x1 := b−1
L (c1),x2 := b−1

L (c2)
their corresponding points on L. Then the following statements are equivalent:

• The circles c1 and c2 are in oriented contact.

• The line x1 ∨ x2 is isotropic.

• 〈x1, x2〉L = 0.

• The points x1,x2 are Lie orthogonal [3, p. 25].

Let us note: Lie circles correspond to points on QL and especially those which are in
oriented contact lie on isotropic lines of QL. Recall that Lie transformations preserve Lie
circles and their oriented contact. Now if we want to lift Lie transformations to trans-
formations in P4 analogously to Laguerre transformations, we know that the required
transformations need to preserve QL and need to preserve lines. Thus, due to Lemma
2.19, those are exactly the transformations of the group PO(3, 2) [2, p. 48].

Proposition 5.4. Every Lie transformation α can be written in the form:

α = bL ◦ t ◦ b−1
L

for some t ∈ PO(3, 2).

Now that we have an idea of Lie geometry, we want to see how Laguerre geometry
comes into play here, or in terms of the quadric model, how we can embed the Laguerre
quadric Q into the Lie quadric QL. In order to do that, we need the following definition:
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Definition 5.5. Let x be a point in P4. Then the set

L ∩ x⊥

is called the sphere complex determined by the point x. The complex is called

• elliptic if x ∈ Q+
L ,

• hyperbolic if x ∈ Q−L ,

• parabolic if x ∈ QL [2, p. 50–51].

Remark 5.6.

a) Since the points y in the polar hyperplane of a point x w.r.t.QL satisfy the equation
〈x, y〉L = 0, a sphere complex can also be defined as the set of points y ∈ QL that
are Lie orthogonal to the point x ∈ P4 that determines the complex [3, p. 46].

b) Any two elliptic/hyperbolic/parabolic sphere complexes are equivalent up to a
transformation of PO(3, 2) [2, p. 50].

As mentioned before, it is common in the literature to distinguish the points x on QL
which correspond to points in the plane, from such which correspond to oriented circles
and lines, by their last component being 0, i.e., x5 = 0. For this reason we consider the
hyperbolic sphere complex determined by the point

pL := [0, 0, 0, 0, 1].

The complex QM := QL∩p⊥L then consists of all points on QL that correspond to points
in the plane, since all points of p⊥L satisfy x5 = 0. Thus, Lie transformations whose
corresponding transformations of PO(3, 2) preserve QM are exactly the Möbius transfor-
mations since they preserve points. QM itself is a quadric of signature (3, 1) which can
be identified as the so-called “Möbius quadric” [2, p. 49–50], i.e., a quadric that can be
used for a model of Möbius geometry that works analogously to the ones for Laguerre
and Lie geometry, where the points and planar sections of QM can be identified with
points and circles, which are the fundamental objects of Möbius geometry [2, Section
5.4]. However, going into details here would go beyond the scope of this thesis. Our
focus is Laguerre geometry, the geometry of oriented circles and lines, hence we want to
find a sphere complex on QL that represents the oriented lines.

We consider the involution σpL associated with the point pL. It should play the role
of reversing the orientation in Lie geometry as well. Thus, the complex determined by
a point q ∈ P4, that should represent the oriented lines, must be preserved under σpL .
This condition is equivalent to 〈pL, q〉L = 0. Hence the complex Q̃L := QL ∩ q⊥ for
a point q ∈ P4 with 〈pL, q〉L = 0 corresponds to the set of all oriented lines of the
plane. Depending on whether the complex is elliptic, hyperbolic or parabolic, we recover
different geometries:
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5 Laguerre geometry from Lie geometry

• For q ∈ Q+
L , the elliptic complex Q̃L is a quadric of signature (2, 2) and can be

identified with the hyperbolic Laguerre quadric. In this case, we rename q =: qhyp

and Q̃L =: Qhyp.

The central projection πqhyp associated with the point qhyp projects the Lie quadric
QL onto the inside of Qhyp, in particular (Lemma 2.24 implies)

πqhyp(QL) = Q̃−L ∪ Q̃L = Q−hyp ∪Qhyp,

and the point phyp := πqhyp(pL) plays the role of the point p from the quadric
model of hyperbolic Laguerre geometry (see Section 3.1). Thus, by applying the
bijective correspondence bhyp from Proposition 3.6, that is determined by the polar
projection from phyp, to the points of πqhyp(QL), we recover hyperbolic Laguerre
geometry in the plane p⊥L ∩ q⊥hyp. In particular,

Q̃hyp := Qhyp ∩ p
⊥Qhyp
hyp = QL ∩ q⊥hyp ∩ p

⊥Qhyp
hyp ⊂ p⊥L ∩ q⊥hyp

(where the upper index ⊥Qhyp implies polarity w.r.t. Qhyp) plays the role of the
absolute circle Q̃ from Section 3.1.1.

• For q ∈ Q−L , the hyperbolic complex Q̃L is a quadric of signature (3, 1) and can be
identified with the elliptic Laguerre quadric. In this case, we rename q =: qell and
Q̃L =: Qell.

The central projection πqell associated with the point qell projects the Lie quadric
QL onto the outside of Qell, in particular (Lemma 2.24 implies)

πqell(QL) = Q̃+
L ∪ Q̃L = Q+

ell ∪Qell,

and the point pell := πqell(pL) plays the role of the point p from the quadric
model of hyperbolic Laguerre geometry (see Section 3.2). Thus, by applying the
bijective correspondence bell from Proposition 3.33 that is determined by the polar
projection from pell to the points of πqell(QL) \ Qhyp = Q+

hyp, we recover elliptic
Laguerre geometry in the plane p⊥L ∩ q⊥ell. In particular,

Q̃ell := Qell ∩ p
⊥Qell
ell = QL ∩ q⊥ell ∩ p

⊥Qell
ell ⊂ p⊥L ∩ q⊥ell

(where the upper index ⊥Qell implies polarity w.r.t. Qell) plays the role of the
imaginary cone Q̃ from Section 3.2.1.

• For q ∈ QL, the parabolic complex Q̃L is a quadric of signature (2, 1, 1) and can be
identified with the Euclidean Laguerre quadric. In this case, we rename q =: qEuc
and Q̃L =: QEuc.

Since the Euclidean Laguerre quadric is degenerate and thus we do not use polar
projection, we apply central projection from the point pEuc := πqEuc(pL) to recover
dual Euclidean geometry in p

⊥QEuc
Euc (where the upper index ⊥QEuc implies polarity

w.r.t. QEuc), then apply duality to recover Euclidean geometry [2, p. 51–54].
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Finally, the subgroup of the transformation group PO(3, 2) (which induces Lie transfor-
mations) that fixes the point q (which determines the Laguerre quadricQ = QL∩q⊥), i.e.,
PO(3, 2)q, doubly covers the projective orthogonal group inducing hyperbolic/elliptic/
Euclidean Laguerre transformations [2, p. 52]:

PO(3, 2)q/σq '


PO(2, 2) if q ∈ Q+

L

PO(3, 1) if q ∈ Q−L
PO(2, 1, 1) if q ∈ QL.

Remark 5.7. Since projective transformations that fix pL and q also fix πq(pL) ∈
q⊥ (which plays the role of the center of the polar projection used to induce hyper-
bolic/elliptic/Euclidean Laguerre geometry in pL ∩ q) and since σpL preserves q⊥, we
also have:

PO(3, 2){pL,q}/{σpL , σq} '


PO(2, 2)pL/σpL ' PO(2, 1) if q ∈ Q+

L

PO(3, 1)pL/σpL ' PO(3, 0) if q ∈ Q−L
PO(2, 1, 1)pL/σpL ' PO(2, 0, 1) if q ∈ QL.

This means that the subgroup of PO(3, 2) that fixes pL and q, i.e., PO(3, 2){pL,q}, quadru-
ply covers the hyperbolic motions/elliptic motions/group PO(2, 0, 1) whose dual trans-
formation group PO(2, 0, 1)∗ consists of Euclidean motions and scalings [2, p. 53].

Lastly, it should be mentioned that everything can be generalized for arbitrary dimen-
sions, i.e., Lie hyperspheres of the n-dimensional space can be identified with points on
the Lie quadric of signature (n + 1, 2) in Pn+2, and the group PO(n + 1, 2) induces Lie
transformations. The hyperbolic/elliptic/Euclidean Laguerre quadric (signature (n, 2),
(n+ 1, 1) or (n, 1, 1), respectively) can be recovered from the Lie quadric as intersection
with the polar hyperplane of a point outside/inside/on the Lie quadric [2, Section 7.2].
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6 Applications

In this chapter we show how the theory that we have acquired throughout this thesis
can be applied in practice. We demonstrate this by solving a few chosen geometrical
problems with Laguerre geometry.

6.1 Problem of Apollonius

The problem of Apollonius is posed as follows:

Given three circles in the plane, which are not all tangent to each other, find all
circles that are tangent to all three of them.

We will solve this problem for three oriented circles within the cyclographic model of
planar Euclidean Laguerre geometry. There, three oriented circles c1, c2, c3 can be lifted
to points Xc1 , Xc2 , Xc3 in R3, which are the vertices of the cones Γ(Xc1),Γ(Xc2),Γ(Xc3)
that intersect the base plane in c1, c2, c3. Recall that in this model two circles are in
oriented contact if and only if the connecting line of their corresponding points in R3 is
isotropic. This means that for a circle c in oriented contact to c1, Xc := z−1(c) must lie
on (a ruling of) the cone Γ(Xc1). Thus, we are looking for circles c whose corresponding
points Xc lie on all three cones Γ(Xc1),Γ(Xc2) and Γ(Xc3). In other words: We need to
find the intersection points of those three cones. Each two of them intersect in a conic,
yielding three conics that intersect in at most two points. These points correspond to
the circles that we are looking for (via z) [9, p. 9].

c
c̃

Xc

Xc̃

c1

c2

c3

Xc1

Xc2

Xc3

Figure 6.1: Solution circles for the problem of Apollonius (incl. corresponding cones in
R3)
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6 Applications

The 3-dimensional problem of Apollonius (where we determine the tangent sphere to
4 given spheres) is used for GPS (Global Positioning System). By measuring the time
difference between the time at which a signal is sent by a satellite and when it is received
by a vehicle, the GPS calculates the distance of the vehicle to the satellite. This distance
is called a pseudo range since it is not accurate. It contains an error because the clocks
of the satellite and the vehicle are not synchronized. Denoting the position of a satellite
by Si, its pseudo range by pi and the error by e, the position V of the vehicle must
lie on the sphere si with center Si and radius pi + e. Now if the GPS calculates the
pseudo-distances to 4 satellites (i ∈ {1, 2, 2, 4}), the errors must be equal since the clocks
of the satellites are synchronized, so V would be the intersection point of the spheres
si. Since the value of the error is unknown, we instead find the inscribed sphere s with
radius e touching all 4 spheres si and determine its center, which differs from s only by
a Laguerre transformation (namely a dilatation by e). Thus, the center of s is exactly
the position V of the vehicle (see Figure 6.2) [13], [5].

s

Ve

e

e

e

s1 s2

s3

s4

S1

S2

S3

S4

p1 p2

p3
p4

Figure 6.2: The principle of GPS
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6.2 Offsets

6.2 Offsets

In this section we show how to determine the offset of a planar curve using the cyclo-
graphic model of Laguerre geometry. For this purpose we first define:

Definition 6.1. The offset cd of a planar curve c at a distance d is the envelope of a
one-parameter family of circles with centers on c and radius d [9, p. 31].

Note that if the distance d is zero, we get exactly the original curve c, since the one-
parameter family of circles then degenerates to the points of c. Since in the sense of
Laguerre geometry, points are circles as well, we get an offset at an arbitrary distance
d 6= 0 by applying a dilatation by d to the points of c and finding the envelope of
the image circles [12, p. 166]. In terms of the cyclographic model (cf. Section 4.2) this
dilatation corresponds to a translation td of c by the vector (0, 0, d) (considering the
plane that carries c as the base plane z = 0) (see Figure 6.4a). For each point x of c, the
corresponding dilatated circle has a common tangent t with cd parallel to the tangent
of c in x [9, p. 31]. The cyclographic pre-image z̃−1(t) of this tangent is an isotropic
plane containing the isotropic line through td(x) and the contact point of t and cd (see
Figure 6.4b). For all points of c this one-parameter family of (isotropic) planes envelopes
a developable surface containing td(c) with isotropic rulings, intersecting the base plane
exactly in cd [12, p. 172]. In our case td(c) is a planar curve, but this developable surface
can more generally be found for a space curve from which each tangent is contained
in at least one isotropic plane. This is the case only for certain types of directional
vectors of the tangents. In Section 4.2 we have seen that the condition 〈x, x〉 = 0 for the
directional vector x of an isotropic line means that the line intersects the base plane at
an angle of π4 . Analogously the definition of spacelike and timelike vectors (see Definition
2.7) implies that a spacelike/timelike line intersects at an angle smaller/bigger than π

4 .
Thus, through a spacelike tangent there are exactly two isotropic planes, while through a
timelike tangent there are none. Therefore, the aforementioned developable surface can
be defined for space curves with isotropic or spacelike tangents.

Definition 6.2. Let c be a space
curve in R3 with spacelike or isotropic
tangents. We call the developable
surface(s), that the isotropic planes
through the tangents of c envelope, the
isotropic developable(s) of c.

Remark 6.3. A curve with only
isotropic tangents possesses only one
isotropic developable. Curves which
have spacelike tangents as well have two
isotropic developables (see Figure 6.3)
[9, p. 25].

c

c′

(c′)+d

(c′)−d

t+

t−
z̃−

1 (t
+ )

z̃−
1 (t
− )

Figure 6.3: Isotropic developables of a curve
c with spacelike tangents
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6 Applications

Thus, we get the offset of a curve c at a distance d by first applying translation td
by (0, 0, d) to it, then intersecting the base plane with the isotropic developable of td(c),
that corresponds to the orientation of (the tangents of) c (see Figure 6.4c).

x

c

t

cd
td(x)

z(td(x))

td(c)

d

d

(a) Lifting a dilatation by d to a translation
by (0, 0, d)

x

c

z̃−
1 (t)

t

cd
td(x)

z(td(x))

td(c)

(b) Pre-image plane of an oriented tangent
t of cd touching along ruling of Γ(td(x))

c
cd

td(c)

(c) Offset cd as intersection with an isotropic de-
velopable of td(c)

Figure 6.4: Constructing the offset of a planar curve c within the cyclographic model

Remark 6.4. In the case of td(c) having two isotropic developables, the intersection
with the second one yields the offset of the oppositely oriented curve at distance d, or the
offset of c at distance −d. Thus, for a certain orientation of c and a fixed d, the isotropic
developable through cd is uniquely determined. Therefore, to get the same developable
surface, one can also “start” from a curve in the base plane and define the unique isotropic
developable of it as the cyclographic pre-image of all circles in oriented contact with the
planar curve, or equivalently, as the envelope of the pre-image planes of the oriented
tangents of the planar curve.
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6.2 Offsets

Alternatively, one can also construct the isotropic developable of the original (planar)
curve c (in the sense of Remark 6.4), intersect it with a plane z = −d parallel to the base
plane and project the intersection curve orthogonally back onto the base plane (which is
equivalent to applying translation by (0, 0, d) to the intersection curve) (see Figure 6.5)
[12, p. 171–173].

c
cd

z = 0

z = −d

d

Figure 6.5: Isotropic developable of planar curve c
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6 Applications

6.3 Medial axis

In this section we show how to get the medial axis of a polygon (or more general, of a
closed curve) using the cyclographic model of Laguerre geometry.

Definition 6.5. The medial axis of a poly-
gon or a closed curve is the closure of the set
of all points which have the same distance to
at least two points on the polygon/curve [7].

Figure 6.6: Medial axis of a polygon

Let us consider a polygon P whose edges are oriented in such a way that their normal
vectors lie on the outside of P . We denote the inside, including the boundary, by IP . Let
x be a point on the medial axis m of P that has the same distance to two points x1, x2

of P . This means that there is a circle cx with center x and radius rx := xx1 = xx2

touching P in x1 and x2. If we take the plane which P lies in as base plane for Euclidean
Laguerre geometry and consider the pre-image of cx under the cyclographic map z, the
point z−1(cx) lies above x and its z-coordinate is exactly rx. We get z−1(cx) by inter-
secting the rulings of the cone Γ(z−1(cx)) (=isotropic lines) through the points p1 and
p2 (see Figure 6.7).

z−1(cx)

cxrx

rx

rx

P

xx1

x2

m

Figure 6.7: Cyclographic pre-image of a maximal circle cx in IP with center x ∈ m

Repeating this process for every point of m, i.e., finding the maximal circle with the
point on m as its center and determining its pre-image under z, we get a polyline m̃,
whose orthogonal projection to the base plane is the medial axis of P . We call m̃ the
medial axis transform of P . Due to the argumentation above, through every point y of
m̃ there are at least two isotropic lines that intersect P in the contact points of the circle
z(y). Thus, these lines corresponding to all points on m̃ cover the isotropic developables
through the edges of P . In other words: Intersecting the isotropic developables through

68



6.3 Medial axis

the (oriented) edges of a polygon and projecting the intersection polyline onto the base
plane orthogonally yields the medial axis of the polygon (see Figure 6.8). In particular,
the orthogonal projection of the intersection polyline, which we call the untrimmed medial
axis transform, carries more points than just the medial axis, therefore we call it the
untrimmed medial axis. To get the actual medial axis one has to remove points y from
the untrimmed medial axis transform whose orthogonal projection y′ does not lie in IP
and whose cyclographic image circles z(y) are not maximal circles in IP (i.e., where the
radius of z(y) is not the minimal distance of y′ to P ), yielding the medial axis transform
m̃.

m̃

Pm

Figure 6.8: Medial axis transform m̃ and medial axis m of the polygon P

In the same way we can find the medial axis of a closed curve: The isotropic devel-
opables through the components of a closed curve c intersect in the untrimmed medial
axis transform. Removing points y whose orthogonal projection y′ does not lie on the
inside Ic of the curve and whose cyclographic image circles z(y) are not maximal circles
in Ic, we get the medial axis transform whose orthogonal projection is the medial axis of
c [12, p. 173–174].

Remark 6.6. Since the edges/components of a polygon/closed curve are the envelopes
of the cyclographic image circles of the points of the medial axis transform, the medial
axis transform is sometimes used for shape reconstruction. As shown in the previous
section, we can also get offsets of the polygon/curve by applying a translation to the
medial axis transform [12, p. 175].
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7 Conclusion

Since the goal of this thesis was mainly to give an overview over the theory of Laguerre
geometry in different classical geometries, we have only seen a few applications of it in
the last chapter. Nevertheless, there exist plenty more, e.g., if we proceed further in the
area of offsets, Laguerre-geometric methods allow us to obtain any so-called “PH-curve”
(or “PN surface”), whose offset is always rational, which is important for CAGD (for
details, see [10]). As an example for a higher-dimensional application, a canal surface
(=envelope of a one-parameter family of spheres) can be interpreted as envelope of the
cyclographic image spheres of a curve in R4 [12, p. 176–177]. Other Laguerre-geometric
objects are “S∗-nets” (=quadrilateral meshes where each quad possesses a common tan-
gential sphere with its four adjacent quads) [8, p. 7] and “Laguerre checkerboard incir-
cular nets” (=quadrilateral meshes where the edges of every second quad - arranged in a
checkerboard pattern - are in oriented contact with a common circle) [2, p. 58–59], where
the latter ones pose an example for an application of non-Euclidean Laguerre geometry
as well.

As indicated above (non-)Euclidean Laguerre geometry has many applications in fields
like applied geometry, CAGD, incidence geometry, discrete differential geometry, etc. and
appears to leave many interesting and useful properties yet to be discovered.
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