
Masterarbeit / Master’s Thesis

Titel der Masterarbeit / Title of the Master’s Thesis:

Can Machine Learning enhance return predictability of selected

metal commodities?

verfasst von / submitted by

Benjamin Reinhard Achim Walter Albrechts BSc

angestrebter Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien 2021 / Vienna 2021

Studienkennzahl lt. Studienblatt /
Degree programme code as it appears on the student record sheet:

UA 066 974

Studienrichtung lt. Studienblatt /
Degree programme as it appears on the student record sheet:

Masterstudium Banking and Finance

Betreut von / Supervisor: Univ.-Prof. Mag. Günter Strobl, PhD

Mitbetreut von / Co-Supervisor: Dipl.-Inform. Dipl.-Volksw. Dr. Christian Westheide

This page is intentionally left blank.

Abstract

This thesis compares predictability of returns of the metal commodities Gold, Silver, Platinum, Pal-

ladium and Copper on multiple datasets and across multiple resampling periods. The goal is to

determine if deep learning models can confirm and/or enhance the findings of Tharann (2019) on

more recent data, who finds strong predictability on the same selection of metal futures out of sample

especially after including the Aruoba-Diebold-Scotti Business Conditions Index (ADS-Index).

Both the source code as well as a description of the data fields used are provided in order to make all

findings reproducible (with minimal installation efforts).

Overall, there are strong indications that metal returns are likely predictable and research should be

attractive for many types of investors with different asset re-allocation preferences. Tests are run with

daily, weekly, monthly and quarterly data on three different sets of predictive variables. As for the

utilized models, both Long Short Term Memory (LSTM) as well as Convolutional Neural Networks

(CNN) can outperform linear Ordinary Least Squares (OLS), still one of the most utilized tools in

existing research on similar topics, on the underlying datasets.

Kurzdarstellung

Diese Arbeit vergleicht die Vorhersagbarkeit von Renditen der Metallrohstoffe Gold, Silber, Platin,

Palladium und Kupfer auf verschiedenen Datensätzen und über mehrere Veranlagungsperiodizitäten.

Ziel ist es, festzustellen, ob Deep-Learning-Modelle die Ergebnisse von Tharann (2019) auf aktuelleren

Daten bestätigen und/oder verbessern können, wobei jener starke Indikatoren für eine solche Vorhersag-

barkeit auf derselben Auswahl von Metall-Futures aufdeckt, insbesondere nach Einbeziehung des

Aruoba-Diebold-Scotti Business Conditions Index (ADS-Index).

Sowohl der Quellcode als auch eine Beschreibung der verwendeten Datenfelder sind bereitgestellt, um

alle Ergebnisse (mit minimalem Installationsaufwand) reproduzierbar machen zu können.

Insgesamt gibt es deutliche Hinweise darauf, dass Metallrenditen vorhersehbar sind und die Forschung

für verschiedenste Anleger mit unterschiedlichen Präferenzen bei der Umschichtung von Vermögenswer-

ten attraktiv sein dürfte. Die Tests wurden mit täglichen, wöchentlichen, monatlichen und vier-

teljährlichen Perioden für drei verschiedene Datensätze durchgeführt. Insgesamt scheinen sowohl

Long Short Term Memory (LSTM) als auch Convolutional Neural Networks (CNN) lineare Klein-

stquadrateschätzer (OLS), eine häufig verwendete Methode in ähnlichen Veröffentlichungen, auf den

verwendeten Daten zu übertreffen.

I

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Main Goals and Research Questions . 2

2 Dataset and Preprocessing 4

2.1 Commodity (Log-)Returns . 4

2.2 Predictive Variables . 7

2.3 Equity Related Components . 8

2.3.1 Payout Policy . 8

2.3.2 Profitability . 10

2.3.3 Valuation . 11

2.3.4 Smart Beta . 12

2.4 Aruoba-Diebold-Scotti Index . 13

2.5 Other Predictors . 14

3 Predictability 15

3.1 The Random Walk Hypothesis . 15

3.2 Pre and Post Financialization . 16

4 Benchmarking 20

5 Long Short Term Memory 21

5.1 Introduction: Neural networks . 21

5.2 Formal Foundations . 23

5.2.1 Compact Recurrent Forms . 23

5.2.2 Backpropagation and Gradient Descent 24

5.2.3 Activation functions . 27

5.2.4 Data Preparation and Dimensionality . 30

5.2.5 Model Specification . 31

5.2.6 Regularization: Avoiding Overfits . 31

5.3 Results . 33

5.3.1 Daily Rebalancing . 34

5.3.2 Weekly Rebalancing . 35

5.3.3 Monthly Rebalancing . 36

5.3.4 Quarterly Rebalancing . 37

II

CONTENTS CONTENTS

6 Excursion: A Defense of Grid Search 38

6.1 Random Search . 39

6.2 Bayesian Optimization . 40

7 Convolutional Neural Networks 42

7.1 Introduction . 42

7.2 The Convolutional Kernel . 42

7.2.1 Causal vs. Non-Causal . 42

7.2.2 Interpreting Kernels . 43

7.2.3 Pooling and Flatten Layers . 44

7.3 Activation Functions . 44

7.4 Results . 45

7.4.1 Daily Rebalancing . 45

7.4.2 Weekly Rebalancing . 46

7.4.3 Monthly Rebalancing . 47

7.4.4 Quarterly Rebalancing . 48

8 Conclusion 49

A Appendix 54

A.1 Benchmarking: Full Results . 54

A.2 Implementation . 56

A.3 The Data Class . 56

A.4 The Data Model Class . 57

A.5 LSTM . 58

A.5.1 Scalable Hyperparameter Design . 58

A.5.2 Training: An Iterative Cycle . 60

A.6 CNN . 61

A.7 Data . 63

A.8 Source Code . 64

III

LIST OF FIGURES LIST OF TABLES

List of Figures

1 Prices and traded volumes for the included commodities. 3

2 Log returns are not normally distributed but tend to have slim tails. 5

3 Stationary and scaled features for the available data models incl. a heatmap of

their empirical correlations. 9

4 Changes in ADS have an unintuitive relationship with the S&P 500. Is it too

slow? . 13

5 Sketch of a basic FFNN in a supervised learning environment featuring feedfor-

ward and backpropagation mechanisms. Biases are abstracted from this illustra-

tion. 21

6 TANH vs. ELU . 30

7 Learning curves for two commodities on the Core Model with daily data. 32

8 LSTM Benchmarks on daily data . 34

9 LSTM Benchmarks on weekly data . 35

10 LSTM Benchmarks on monthly data . 36

11 LSTM Benchmarks on quarterly data . 37

12 CNN Benchmarks on daily data . 45

13 CNN Benchmarks on weekly data . 46

14 CNN Benchmarks on monthly data . 47

15 CNN Benchmarks on quarterly data . 48

List of Tables

1 Random walk? OLS regression of lagged returns. 16

2 Core Model Pre-Financialization . 19

3 Core Model Post-Financialization . 19

4 Full benchmarking results (I/II) . 54

5 Full benchmarking results (II/II) . 55

6 The Bloomberg Dataset . 63

IV

1 INTRODUCTION

1 Introduction

1.1 Motivation

This thesis explores the applicability of supervised deep learning to anticipate price movements

of metal commodities. Predicting returns is a feat undertaken for many generations of finance

researchers now. Evidence on asset price predictability can be traced back to roughly 120

years ago, when Charles Dow experimented with technical analysis and dividend growth to

yield information about future price developments on the equity market (Hamilton, 1922). In

fact, at times there seemed to be even a consensus among practitioners and, although less

so, academics that technical analysis, in essence exploiting past/historic information to infer

future return developments, provides informational value to investors (Lettau & Ludvigson,

2001; Brown & Jennings, 1989).

A more recent contribution to this fundamental question but with a slightly less optimistic

view for the equity market is Welch & Goyal (2008). They conclude that while their models

are indeed able to deliver a positive outperformance, they do not do so systematically. Many

are primarily driven by the oil shock in 1975, strongly time-varied, or could even be classified

as downright spurious. In a defense of return predictability Cochrane (2008) on the other hand

argues that empirical return developments are likely caused by time-variation of risk premia and

expected returns, not by changes in dividend growth as Dow suspected. The debate receives

further uplift in context of Factor Timing or Smart Beta strategies, namely attempts to time

investments in specific equity factors dynamically according to the current market situation

(Durand et al., 2011; Hodges et al., 2017).

However, the question begs why returns would be predictable at all. If they were, any market

participant could simply gain an extraordinary profit by trading on predictions early, which

would in consequence then price in any potential gains made from such a transaction faster and

may ultimately lead to a leveling out. Equity markets are closely monitored by many analysts

and institutions with large capital endowments after all. Furthermore, markets provide high

liquidity, low transaction cost and broad informational availability. If such an algorithm were

possible, why does it not exist already? While surely a puzzle on financial markets in general,

commodity markets on the other hand have a tendency to be less liquid than FX or equity. They

often require moving physical assets at high costs or even legally exclude financial investors from

1

1.2 Main Goals and Research Questions 1 INTRODUCTION

participating. This might ultimately open more room for return forecasting. Tharann (2019)

utilizes the predictive variables of and the groundwork laid out by Welch & Goyal (2008) to

get informed estimations on Gold, Silver, Platinum, Palladium, and Copper. His paper isolates

the long-term government bond yield and the Aruoba-Diebold-Scotti Business Conditions Index

(ADS-Index) developed by Aruoba et al. (2009) as the most influential predictive indicators,

showing strong evidence for return predictability at least in metal markets with an out-of-

sample R2 of up to 18.57%. Tharann (2019) finds predictability to be especially strong during

the Great Financial Crisis of 2008. This thesis fundamentally builds on this paper and aims

to extend the research by investigating if deep learning methods can produce better and more

reliable results on a similar feature set.

1.2 Main Goals and Research Questions

This thesis is an investigation into forecasting returns of commodities using deep-learning neural

networks. Concisely, it attempts to find answers to or extend the following:

1. Is there any predictive value for the selected metals at all?

2. If so, will applications of machine/deep learning be able to enhance the predictive power?

3. Does predictability vanish or improve using a broader set of features and/or different

asset re-allocation periods?

The focus is on the five selected commodity metals shown in Figure 1. Gold, the typically

perceived safe haven in times of crisis and held by many financial investors worldwide, Silver,

Platinum, Palladium and finally Copper, whereby the latter two are primarily used in industrial

contexts. This selection of commodities aims to:

1. Cover a spectrum of metals that feature both longer term value ap- and depreciation.

2. Represent various levels of demand from different types of investors.

3. Limit the set to those with sufficiently many datapoints available for reliable comparisons.

Since trading cost for commodities may be substantial, realizing this strategy is likely only

possible when utilizing cash-settled derivatives.

2

1.2 Main Goals and Research Questions 1 INTRODUCTION

Figure 1: Prices and traded volumes for the included commodities.

3

2 DATASET AND PREPROCESSING

2 Dataset and Preprocessing

The key source of all underlying analysis is a database collected from Bloomberg. The following

section will describe the core data model (also referred to as Core Model). It consists of the

original predictive variables as outlined by Tharann (2019). Since some of the used data are

only available at lower frequencies, corresponding predictive variables are excluded in higher

frequency models.

2.1 Commodity (Log-)Returns

Commodity primarily closing prices (PX LAST) of continuously rolled metal futures. Further-

more, information on PX OPEN, PX LOW, and PX HIGH is documented. Returns are calculated

by:

rt = log(
PX LASTt

PX LASTt−1
)

If daily asset reallocation is assumed, the formula incorporates opening prices to allow for an

overnight trading delay. Referring to last price quotations would assume instant execution

of future return inference and trade. Using the opening prices effectively implies selling the

portfolio at the last prices, running all processes over night and then buying at the opening

price of the following day:

rt = log(
PX LASTt

PX OPENt
)

Note that log(·) implies the natural logarithm in this case. Welch & Goyal (2008) represent

the commodity premium as:

crpt = rt − rf,t

Since a truly risk-free rate rf,t does not exist, many suitable proxies can be discussed. Brooks

& Yan (1999) compare two widely applied examples, namely the US-Treasury-Bill (T-Bill)

rate as well as the British London Interbank Offered Rate (LIBOR), whereby they find strong

deviations and differing characteristics for both. The yield curve for LIBOR turns out to be

steeper (spread between highest and lowest rate of any maturity) and with a smaller curvature

4

2.1 Commodity (Log-)Returns 2 DATASET AND PREPROCESSING

(a) Gold (b) Silver

(c) Platinum (d) Palladium

(e) Copper

Figure 2: Log returns are not normally distributed but tend to have slim tails.

5

2.1 Commodity (Log-)Returns 2 DATASET AND PREPROCESSING

(of the yield curve itself) than the treasury rate (whereby edge-cases exist at which both rates

even move in opposite directions). LIBOR is also generally higher, but the spread between it

and the treasury rate is not constant for any given maturity as LIBOR exhibits an overall flatter

yield curve. Since there are drastic differences at times, the US-index needs to be considered.

This is also appropriate in the context of the New York Mercantile Exchange (NYMEX) and

therefore US traded commodities. Furthermore, the great LIBOR scandal also highlighted

how safe some of these proxies ultimately really are (Hou & Skeie, 2014). However, the 3-

months T-Bill is already incorporated in the spread between long term and short term US

Bond rates as a predictive variable in the dataset. Deducting it in the dependent variable again

would potentially lead to biases during training and inference. It is therefore omitted from the

dependent variable.

Tharann (2019) utilizes 12 months excess returns of commodity future contracts rolled over

monthly data, defining the excess return as:

ert+1 = rt+1 − ft

whereby

rt+1 = log(
Ft+1,T

Ft,T
) + ft

and ft being the interest rate on a fully collateralized future contract. A complete collateraliz-

ation, i.e. buying commodity futures as well as treasury bills, is not the working assumption in

this thesis, as the risk-free rate is omitted from the dependent variable. The Bloomberg data

used in this thesis are continuously rolled contract prices. In general and given spot prices Pt,

the price of a future maturing at T can be denoted as:

Ft,T = E[PT] · (1 + rf,t)
t−T

The expectation around Pt indicates that future and spot prices need not be the same. Since

most assets are likely going up in price, at least in a market with positive inflation, the spot

price is typically below the future price. This is a situation referred to as Contango. Should

spot prices exceed future prices, a commodity is said to be in Backwardation.

6

2.2 Predictive Variables 2 DATASET AND PREPROCESSING

2.2 Predictive Variables

The Core Model consists of the following predictive variables illustrated in Figure 3:

� dividend payout ratio: The dividend payout ratio of the Standard & Poor’s 500 (S&P

500) (DVD PAYOUT RATIO).

� default return spread: The spread between investment grade S&P 500 corporate bonds

(SP5IGBIT PX LAST) and the long term US bond rates (USGG30YR PX LAST).

� default yield spread: The log spread between investment grade (SP5IGBIT PX LAST) and

high yield (SP5HYBIT PX LAST) S&P 500 corporate bonds.

� dividend yield: The gross aggregate dividend yield of S&P 500 stocks (GROSS AGGTE DVD YLD).

� inflation: Organisation for Economic Co-operation and Development (OECD) inflation

reports on consumer price indices for the US (CPIYOY PX LAST).

� lt us govbond rates: The 30 year US bonds rates (USGG30YR PX LAST).

� stock var: The variance of S&P 500 stock prices (SP5 PX LAST).

� term spread: The spread between the US bond (USGG30YR PX LAST) with the longest and

the bill (USGG3M PX LAST) with the shortest maturity.

� industry output gap: The US industry output gap (IPYOY PX LAST).

� unemployment: The reported OECD unemployment rate for the US.

� ads index: The ADS-Index as provided by the US Federal Reserve System (FED).

Core Model is primarily an equivalent dataset to Tharann (2019). However, commodities are

not represented by log excess returns on commodity futures but by simple log returns. The

primary reason behind this decision was the necessity of practical applicability, since predicting

excess returns as re = log(1+rA
1+rf

) would still require a model to predict the risk-free rate in order

to automate trading decisions. Extensions to this setting are:

� Extended Model, which in essence is simply the core model but expanded by

7

2.3 Equity Related Components 2 DATASET AND PREPROCESSING

1. Price to EBITDA ratio on the S&P 500 as a profit-potential oriented variable (since

EBITDA is close to FCF)

2. Return on Assets as a purely profit-oriented variable irrespective of the market cap-

ital structure

3. FX-rate of the Euro and US-Dollar, since this rate could influence the decision-

making of foreign buyers and sellers

� Large Model, which includes the extended model and the geometric outperformance of

MSCI-factors over the MSCI-World as a benchmark. Geometric outperformance is cal-

culated as:

rgeomop = log(
P Factor
t

P Factor
t−1

)− log(
PMSCIWorld
t

PMSCIWorld
t−1

)

This is indeed geometric and not arithmetic outperformance because of the included log

returns. The idea somewhat relates to Hodges et al. (2017) who conclude that factor

timing (or smart beta) strategies closely relate to the business cycle, whereby the latter,

as argued by Tharann (2019), has some effect on commodities as well.

2.3 Equity Related Components

All Equity-related data is sampled from the S&P 500 as a reference index for the US-market.

The S&P 500 itself is represented as a total return index, corrected for stock splits and dividends

(TOT RETURN INDEX GROSS DVDS).

2.3.1 Payout Policy

Payout policy is represented in the baseline dataset through the Dividend Payout Ratio. Di-

vidends are the result of residual income to a corporation. On the individual level, this implies

that when dividends are low or do not increase as anticipated, a companies’ income is likely

relatively low (et vice versa) compared to previous results. On an aggregate level, this could

be used as a higher frequency signal about the overall state of the economy than the Gross

Domestic Product (GDP) (delayed, quarterly, and corrected ex post) or Industrial Output

8

2.3 Equity Related Components 2 DATASET AND PREPROCESSING

(a) core model (b) Correlations

(c) extended model (d) Correlations

(e) large model (f) Correlations

Figure 3: Stationary and scaled features for the available data models incl. a heatmap of their
empirical correlations.

9

2.3 Equity Related Components 2 DATASET AND PREPROCESSING

(delayed, monthly). Ultimately, equity holders are residual claimants on the cash flows of their

corporation. At least for longer periods in time, not more can be paid out sustainably than has

been earned in the previous periods. Going further, reducing or not increasing (total) dividends

may also be punished by shareholders. In order to enhance their cash-out they might increase

pressure on management by exercising governance by action or exit, impacting the share price

of their company in the process. Even just potential stock buyers could change their decisions

based on updated information about dividend policy, as they might not be willing to pay a price

as high as before the announcement was made public. Empirically, evidence is present when

looking at announcement returns around publications of recent financial results. Using event

study methodology, MacKinlay (1997) shows that a day before and up to a week later pos-

itive/negative abnormal returns are observable for positive/negative earnings announcements,

respectively. But on the contrary, in a study assessing both short and long run performance of

dividend changing firms, Gunasekarage & Power (2002) show that while dividend cutters are

indeed punished in the short run, in the long run they outperform their dividend-increasing

counterparts. To correct for any structural changes in the paypout policy such as an increas-

ing preference of share repurchases over dividends, the Extended Model includes changes in

EBITDA of the S&P 500. EBITDA is the standardized accounting metric closest to free cash

flows. It captures a company’s income which can either be used for investments or distributed

to various stakeholders.

2.3.2 Profitability

In November and December 2020, examples such as Tesla, BYD, Nikola or even Xiaomi demon-

strated that while in spite of (temporary) negative net income, growth firms can still be ex-

pensive to buy. These are exceptions, however, since such management would not be feasible

for a mature market proxy such as the S&P 500. Furthermore, neither price levels nor their

growth rates are constant over time. As such, Shiller (2000, p. 182) finds a clear positive inter-

dependency between the Dividend Present Value and S&P 500 price levels. In economic terms,

one would expect that when profitability is relatively high the economy should be in a more

healthy state. But looking at empirical results from shopping goods pricing, Warner & Barsky

(1995) find that markdowns already start to occur when demand is excessively high, or in other

words, when profitability is at its peak. This is counter-intuitive, initially. One would expect

10

2.3 Equity Related Components 2 DATASET AND PREPROCESSING

prices to go up rather than down once demand outgrows supply or is on a comparatively high

level and, hence, prices to mark up (indeed these effects are well explained when looking at the

case of Veblen [luxury items] or Giffen goods [interplay of income and substitution effect], but

this is a minor puzzle for average convenience or shopping goods). A direct implication could

be that declining profitability of firms (on market level) indicates a delayed/future cooldown

of the economy with direct effects on commodity markets. Suitable profit indicators to capture

these events, even if only with a longer delay, would be both the return on assets (ROA) as well

as the return on equity (ROE). However, empirically both ratios exhibit a correlation of over

0.9 over the past 30 years. This may be regarded as soft multicollinearity and may negatively

affect interpretability primarily with linear regression models, so a choice needs to be made.

Since it allows for abstraction from leverage, ROA is added in the Extended Model.

2.3.3 Valuation

As price levels on the stock market are not constant over time, investors might condition their

trading behavior on current price levels relative to some measure of profitability. Following the

Efficient Market Hypothesis (EMH), markets should be closely following a random walk. The

hypothesis is famously linked to Malkiel & Fama (1970), although they were not first to discover

and write about it. Traces of this theory can be found almost 80 years earlier in Gibson (1889).

The EMH basically describes that markets are efficient at all times and relatively high or low

prices are a mere illusion of the spectator, since both (some form of) relevant information as

well as rational expectations about the future should be immediately priced in after becoming

known. Malkiel & Fama (1970) distinguish among three forms of efficient markets:

1. Weak Efficiency: All past trade information is already priced in.

2. Semi-Strong Efficiency: Weak Efficiency plus public information is already priced in.

3. Strong Efficiency: Semi-Strong Efficiency plus all private (Malkiel & Fama (1970) refer

to this as monopolistically accessible) information is already priced in.

A direct consequence of weak form efficiency would be a market that closely follows a random

walk. Weak efficiency would furthermore render technical analysis useless. Semi-Strong effi-

ciency would go further and not grant returns to fundamental market analysis as well, while

strong efficiency would even make insider trading unfruitful. If only weak efficiency holds, then

11

2.3 Equity Related Components 2 DATASET AND PREPROCESSING

predictability as attempted in this thesis should not allow for any dramatic outperformance

at all. If that were the case, nobody would try to invest costly resources in developing such a

tool to determine future returns and trade on these expectations. But if there is no reward for

pricing the information under Weak Efficiency, how can they be contained in market prices?

Grossman & Stiglitz (1980) investigate this paradox analytically. They find that under perfect

information transition there is no incentive for agents to become informed if the acquisition of

this information is costly. As a consequence, information could not be priced in at all anymore

and information-wise perfect markets could not exist.

Long-term efficiency may be questionable when considering the aforementioned contributions

of Shiller (2000). Looking at the Shiller-CAPE, defined as the ten year moving average of prices

over total earnings, the paper suggests that market prices relative to earnings exhibit temporal

ups and downs over time. A CAPE of e.g. 10 to 15 may be considered as cheap while 25+

would be somewhat expensive.

Overall, investors with distant investment horizons may profit from timing their investments

relative to market valuation levels. One way of accounting for earnings is dividends (although

share repurchases become more common recently). The dividends yield, defined as:

dy =
Total SPX Dividends

Total SPX Valuation

is therefore included. This is not to say that high and low yields may not be unambiguous.

High dividend yields may signal relative underpricing (consequence: valuation too low) or

that a company is in dire straights (consequence: adequate valuation). Similarly, a low yield

may reflect an overpriced stock (consequence: valuation too high) or high company growth

(consequence: valuation adequate), where future dividends are expected to grow.

2.3.4 Smart Beta

Factor investing has seen uplift in the past decade. What started originally with Fama & French

(1992) as an extension to the Capital Asset Pricing Model (CAPM), which incorporated risk

as the central driver of stock returns, has become its own field of research in the meantime.

Today, the MSCI Inc. offers indices on various factors, such as Momentum, Value, Quality or

Size as aggregated portfolios from subsets of a global selection of equities from the MSCI World

index.

12

2.4 Aruoba-Diebold-Scotti Index 2 DATASET AND PREPROCESSING

Hodges et al. (2017) analyze if investments into equities could be timed optimally. They

subdivide the business cycle in four segments, namely expansion, slowdown, contraction, and

recovery. By collecting returns conditional on these subsegments, they find that factor returns

are strongly related to the business cycle, with defensive assets like Quality working well during

slowdowns and Value as well as Size yielding the highest returns during recoveries.

This is systematic equity prediction on an aggregate level. It is unknown how many investment

firms already trade on this phenomenon, but there are likely many who have been actively

pricing these findings into factor stocks for a long time now. The idea is that if equity integration

with commodity markets really exists, this information could be of relevance to commodity

return developments as well.

As this is highly experimental and there is little research done on this topic, geometric smart

beta outperformance over the MSCI World as defined in section 2.2 is only added to the large

data model.

2.4 Aruoba-Diebold-Scotti Index

Figure 4: Changes in ADS have an unintuitive relationship with the S&P 500. Is it too slow?

The ADS-Index by Aruoba et al. (2009) is an attempt to obtain real business conditions at a

higher frequency than GDP would allow for. It contains the following components:

1. Jobless claims (Weekly)

2. Employment (Monthly)

3. Industrial production (Monthly)

13

2.5 Other Predictors 2 DATASET AND PREPROCESSING

4. Real personal income less transfer payments (Monthly)

5. Real manufacturing and trade sales (Monthly)

6. Real GDP (Quarterly)

Since the index is published immediately once new information is available, it can only reflect

the information available at that specific point in time, meaning, the most recent but already

potentially outdated information is regularly included. Furthermore, it is a mixed sampling

frequency indicator ranging from weekly to quarterly data. In any analysis of daily asset re-

allocations it is excluded throughout this thesis for this reason even though the provided data

is updated on a daily basis.

On average, the index is normed at zero. Positive deviations indicate an improvement of overall

business conditions while negative deviations signal an overall worsening. The absolute values

of the index may be used for comparison of both recession and boom scenarios.

The FED regularly provides updated datatables publicly for free. Tharann (2019) finds strong

improvements in predictability at least in-sample for the ADS-Index, but less so on new data

out of sample. Looking at the US equity market, there is an apparent inverse relation between

changes in ADS and returns on the S&P 500 as illustrated above, although this is probably

the opposite of what one would expect.

2.5 Other Predictors

Other predictors include macroeconomic variables such as GDP, industrial output and unem-

ployment rates for the US as indicators of the overall state of the economy. Further higher

frequency indicators included in the original dataset by Tharann (2019) are the previously

outlined bond indicators such as the term spread on US government bond indices and default

spreads between corporate and government bonds.

As US commodities or derivative contracts on them may also be traded by non-US investors,

the FX rate on the Euro to Dollar is included in the Extended Model as an experimental feature.

The idea behind this approach is that when the dollar becomes more expensive, long trades

in the US by European investors should become less attractive. Of course, longer term there

should be no difference in commodity prices between Europe and the US, but especially in the

very short term this might be tradable information.

14

3 PREDICTABILITY

3 Predictability

The initial setup requires a brief discussion about predictability in general. If commodity prices

are a Markov process and follow a random walk, then predictability on past features, meaning

already observed variables, should not play a role in determining any future price movement

or return. A Markov process in general characterizes a stochastic process in which the future

outcome is only determined from the current value, not how one has come there (Markov chain,

n.d.).

The second question is about the financialization of commodity markets in the early 2000’s,

which brought more and more financial investors on the table. The hypothesis would be that

technical predictive variables gained traction and might have added systematic effects into the

price movements due to systematic pricing of information (over other economic principles such

as economic order quantities for industrial trade).

3.1 The Random Walk Hypothesis

The first part addresses the Markov Chain hypothesis. A quick test for a random walk, a

potential consequence of at least weak market efficiency, can be performed by looking at an

arbitrary set of lagged returns. If the process is truly random, then returns should not contain

strong explanatory value and, hence, beta factors in a simple OLS regression should not be

(highly) significant and R2 should be sufficiently low. The test is conducted as follows:

H0 :

βi = 0, ∀ i εW[−n, 0[

α = E[r]

R2 = 0

rt=0 = α +
t=−1∑
t=−n

rtβt + u

Since a statistical test is likely to reject this multi-hypothesis in general as at least one part

of it will probably fail, the results, which for daily data are displayed in the table below, should

not be interpreted too tightly. On the contrary, each part of the H0 is discussed separately in

order to avoid this rejection bias.

15

3.2 Pre and Post Financialization 3 PREDICTABILITY

Gold PX LAST Silver PX LAST Platin PX LAST Palladium PX LAST Copper PX LAST

(1) (2) (3) (4) (5)

t-1 -0.0002 -0.0103 0.0318 0.0918∗∗∗ -0.0568∗∗∗

(-0.0356 , 0.0353) (-0.0472 , 0.0266) (-0.0065 , 0.0700) (0.0484 , 0.1352) (-0.0899 , -0.0237)
t-2 -0.0111 0.0114 -0.0319 -0.0271∗ -0.0064

(-0.0408 , 0.0185) (-0.0198 , 0.0426) (-0.0926 , 0.0287) (-0.0581 , 0.0039) (-0.0390 , 0.0263)
t-3 0.0107 0.0048 -0.0058 -0.0288∗ -0.0093

(-0.0211 , 0.0425) (-0.0267 , 0.0364) (-0.0353 , 0.0237) (-0.0609 , 0.0033) (-0.0429 , 0.0243)
t-4 0.0118 -0.0162 0.0199 0.0244 0.0116

(-0.0195 , 0.0432) (-0.0457 , 0.0134) (-0.0173 , 0.0572) (-0.0112 , 0.0600) (-0.0219 , 0.0451)
t-5 0.0257 0.0068 -0.0024 0.0031 -0.0051

(-0.0054 , 0.0569) (-0.0242 , 0.0377) (-0.0345 , 0.0296) (-0.0333 , 0.0395) (-0.0386 , 0.0285)
t-6 -0.0373∗∗ -0.0142 -0.0166 -0.0033 0.0153

(-0.0672 , -0.0074) (-0.0477 , 0.0192) (-0.0514 , 0.0182) (-0.0330 , 0.0265) (-0.0158 , 0.0463)
t-7 -0.0178 -0.0033 0.0005 0.0152 -0.0015

(-0.0482 , 0.0126) (-0.0319 , 0.0253) (-0.0287 , 0.0298) (-0.0179 , 0.0483) (-0.0344 , 0.0313)
t-8 -0.0071 -0.0318∗∗ -0.0320∗ -0.0294 0.0230

(-0.0374 , 0.0233) (-0.0609 , -0.0028) (-0.0643 , 0.0003) (-0.0700 , 0.0112) (-0.0081 , 0.0541)
t-9 0.0157 0.0142 -0.0016 0.0007 0.0129

(-0.0129 , 0.0443) (-0.0150 , 0.0434) (-0.0292 , 0.0261) (-0.0311 , 0.0325) (-0.0185 , 0.0443)

Observations 7,649 7,649 7,649 7,649 7,649
R2 0.0032 0.0020 0.0038 0.0113 0.0046
Adjusted R2 0.0020 0.0009 0.0026 0.0101 0.0034
Residual Std. Error 0.0099(df = 7640) 0.0178(df = 7640) 0.0140(df = 7640) 0.0201(df = 7640) 0.0160(df = 7640)
F Statistic 1.4215 (df = 9.0; 7640.0) 0.8986 (df = 9.0; 7640.0) 0.9751 (df = 9.0; 7640.0) 2.7890∗∗∗ (df = 9.0; 7640.0) 1.7080∗ (df = 9.0; 7640.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Random walk? OLS regression of lagged returns.

The explained amount of the variance looks to be relatively high for both Palladium and

Copper (compared to the predicted amounts in later analysis further below). We may be looking

at momentum effects for Palladium and short term mean-reversal for Copper. For Palladium,

the last three days seem to have a reversing impact on a significance level smaller than 10%,

while for Copper only the first past observation seems to exhibit some form of relevance (on a

significance level of less than 1%). The suspicion is further fueled by high significance of the

F-test statistic (all regression coefficients are zero) on the 1% level for Palladium and 10% for

Copper. This indicates that the R2 is probably different from zero, too. We may assume that

these metals do not necessarily follow a random walk, but instead offer a minuscule technical

advantage, even if the evidence is not so strong for Copper. Although some stars are observable

for the other commodities as well, any conclusion here would probably be weak and difficult to

justify. We likely cannot rule out a random walk in this case.

3.2 Pre and Post Financialization

This sub-chapter analyzes the previously discussed potential relation of asset prices with in-

creasing participation of technical and more trade-profit oriented traders from the investment

sector. Industrial companies likely buy when they observe large demand for their goods and

services, but commodity prices might, contrary to speculative market participants, not be their

16

3.2 Pre and Post Financialization 3 PREDICTABILITY

primary concern. In essence, prices might become more subject to systematic variation due

to the influx of speculative and informed traders in the early 2000s and the digitalization of

trading platforms via the then rapidly growing internet.

To get a more informed picture of this issue, one may take a look at price movements and the

predictive variables identified by Tharann (2019) in the regression tables below. The cut is

taken arbitrarily with the Commodity Futures Modernization Act in December 2000. Shamsher

(2021) argues [in context of the Indian market] that under the existence of financialization,

integration with equity stock markets should increase. Tharann (2019) fundamentally builds

his analysis and selection of variables on equity integration. Combining these two ideas, if

financialization in the US is present, then the predictive variables chosen by Tharann (2019)

should contain relatively more explanatory power after December 2000 then what they had

before.

The following is a high level investigation if these phenomena exist within the data. By com-

paring two OLS -regressions of real-time (non-shifted) equity data on log commodity returns

for all included metals we can see the effects at play for the adjusted R2. In general, the R2 can

be interpreted as the squared empirical correlation of predicted values vs. actual observations.

Typically it can be defined as

R2 :=
SSE

SST
= 1− SSR

SST

with SST as the sum of squared observed, SSE as the sum of squared estimated and, finally,

SSR as the sum of squared residual values. The downside to this metric is manifold. For once,

the R2 looses its interpretability in a regression without intercept, it is ambiguous in out-of-

sample evaluations (negative actual correlations become positive after applying the square) and

it rises with more included explanatory variables, even if those have virtually no explanatory

value. The latter point is the reason why one should not take a look at pure R2, but consider

the adjusted version

R2
adj := 1− (1−R2)

n− 1

n− k − 1

with n datapoints and k explanatory variables without the constant (Wooldridge, 2015).

Looking at the tables below, we can see negative R2
adj in the pre-financialization period up until

17

3.2 Pre and Post Financialization 3 PREDICTABILITY

December 2000 (with the exception of Palladium). Applying the same regression on the same

dataset with later observations, a strong change in the overall picture is observable. For all

regressions we can see positive R2
adj. Metrics for Gold and Silver, however, do not seem to be as

supportive. Overall it can be concluded that there is at least some indication of financialization

in the underlying dataset.

18

3.2 Pre and Post Financialization 3 PREDICTABILITY

Gold PX LAST Silver PX LAST Platin PX LAST Palladium PX LAST Copper PX LAST

(1) (2) (3) (4) (5)

ads index -0.5233 2.1425 -0.0924 2.5021 -0.0018
(-4.1464 , 3.0998) (-1.7976 , 6.0825) (-4.8171 , 4.6324) (-3.5271 , 8.5312) (-5.1305 , 5.1270)

const -0.1777 -0.0432 0.2296 -0.7888∗ 0.2374
(-0.5484 , 0.1930) (-0.8736 , 0.7871) (-0.3644 , 0.8235) (-1.6428 , 0.0652) (-0.9153 , 1.3902)

default return spread -0.1207 0.3962 -0.0406 0.6750 0.0580
(-0.6396 , 0.3982) (-1.0388 , 1.8311) (-0.8788 , 0.7977) (-1.1534 , 2.5033) (-1.2669 , 1.3828)

default yield spread -0.0084 0.1576 0.7320∗ -0.6321 0.2982
(-0.6177 , 0.6009) (-1.1634 , 1.4786) (-0.1096 , 1.5736) (-2.2525 , 0.9883) (-1.2047 , 1.8011)

dividend payout ratio 0.2082 0.3180 -0.0172 0.2458 0.1457
(-0.1952 , 0.6115) (-0.4727 , 1.1088) (-0.4906 , 0.4562) (-0.5093 , 1.0010) (-0.7928 , 1.0842)

dividend yield 0.3229 5.0872 -7.9048 -11.0840 0.7819
(-7.7367 , 8.3824) (-11.5404 , 21.7148) (-18.4808 , 2.6713) (-30.1868 , 8.0187) (-15.5069 , 17.0706)

industry output gap -1.3773 6.1931 -2.7932 -9.2483 1.1647
(-5.7985 , 3.0438) (-3.0067 , 15.3930) (-7.9508 , 2.3643) (-21.6297 , 3.1331) (-6.6110 , 8.9404)

inflation -1.0389 -0.9466 1.0155 -2.9612 2.1883
(-3.0033 , 0.9255) (-4.8459 , 2.9528) (-1.6802 , 3.7112) (-8.7558 , 2.8333) (-1.6419 , 6.0186)

lt us govbond rates 0.0227 -2.0238 3.0473∗∗ 5.6034∗ 0.0726
(-2.2402 , 2.2856) (-6.1428 , 2.0953) (0.1544 , 5.9403) (-0.6149 , 11.8216) (-4.2434 , 4.3886)

stock var 2.8585∗∗∗ 4.0782∗ 0.5605 3.8033 -0.6067
(0.8923 , 4.8247) (-0.2333 , 8.3898) (-2.1550 , 3.2760) (-1.4866 , 9.0933) (-5.0091 , 3.7957)

term spread -1.7058 -3.8544 -0.6479 -2.4090 1.4102
(-5.4200 , 2.0084) (-9.9647 , 2.2560) (-5.4078 , 4.1120) (-11.9418 , 7.1238) (-6.1051 , 8.9256)

unemployment 15.1965 -418.3083 -558.6821 962.5678 -565.2723
(-474.1214 , 504.5143) (-1693.8686 , 857.2521) (-1401.8633 , 284.4991) (-305.8324 , 2230.9681) (-2090.7375 , 960.1930)

Observations 70 70 70 70 70
R2 0.0959 0.1321 0.1460 0.1657 0.0443
Adjusted R2 -0.0756 -0.0325 -0.0160 0.0074 -0.1369
Residual Std. Error 0.0361(df = 58) 0.0691(df = 58) 0.0447(df = 58) 0.0903(df = 58) 0.0708(df = 58)
F Statistic 1.3861 (df = 11.0; 58.0) 3.8030∗∗∗ (df = 11.0; 58.0) 2.5194∗∗ (df = 11.0; 58.0) 1.2561 (df = 11.0; 58.0) 0.4226 (df = 11.0; 58.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Core Model Pre-Financialization

Gold PX LAST Silver PX LAST Platin PX LAST Palladium PX LAST Copper PX LAST

(1) (2) (3) (4) (5)

ads index -0.2693 -0.2289 -0.1142 1.1263∗∗∗ -0.1371
(-0.6203 , 0.0817) (-0.8254 , 0.3676) (-0.9195 , 0.6911) (0.4146 , 1.8381) (-0.8786 , 0.6043)

const -0.0683 -0.0637 0.0066 -0.0082 -0.0001
(-0.1755 , 0.0389) (-0.2734 , 0.1460) (-0.1337 , 0.1469) (-0.2066 , 0.1901) (-0.1496 , 0.1493)

default return spread 0.6604∗ 1.0275∗∗ 0.5812 0.3003 0.6957
(-0.0730 , 1.3938) (0.1467 , 1.9082) (-0.1171 , 1.2794) (-0.6688 , 1.2694) (-0.8300 , 2.2214)

default yield spread -0.0352 -0.0096 0.0451 -0.0082 0.0632
(-0.1037 , 0.0334) (-0.1379 , 0.1187) (-0.0330 , 0.1232) (-0.1258 , 0.1094) (-0.0380 , 0.1643)

dividend payout ratio -0.0403 -0.0746 -0.1020∗∗∗ -0.0390 -0.0596
(-0.1013 , 0.0208) (-0.1738 , 0.0246) (-0.1731 , -0.0309) (-0.1317 , 0.0537) (-0.1653 , 0.0461)

dividend yield 1.8910 3.0283 4.0310∗∗ 3.3492 4.0766
(-0.7416 , 4.5236) (-1.1630 , 7.2197) (0.8280 , 7.2340) (-2.0225 , 8.7210) (-1.4822 , 9.6354)

industry output gap -0.5602 -0.2376 -0.2861 0.1515 0.2530
(-1.5173 , 0.3970) (-1.6259 , 1.1506) (-1.7042 , 1.1319) (-1.8022 , 2.1052) (-1.4326 , 1.9385)

inflation -0.5365 -1.5300∗∗ -2.0724∗∗∗ -1.7075∗ -1.7938∗∗

(-1.3668 , 0.2938) (-2.9740 , -0.0861) (-3.6328 , -0.5120) (-3.5638 , 0.1488) (-3.2870 , -0.3006)
lt us govbond rates 2.1438∗ 2.4943 1.4044 -1.2672 0.7597

(-0.0455 , 4.3332) (-1.2591 , 6.2477) (-1.0707 , 3.8795) (-4.6405 , 2.1061) (-3.0136 , 4.5330)
stock var 1.4447 0.7255 0.9207 1.3880 -3.0420∗∗

(-1.7030 , 4.5924) (-2.5754 , 4.0264) (-2.2049 , 4.0462) (-2.6054 , 5.3814) (-5.4189 , -0.6652)
term spread -0.0531 -0.4585 -0.3883 -1.6030∗∗ -0.8200

(-0.6934 , 0.5871) (-1.6655 , 0.7485) (-1.2565 , 0.4800) (-2.9139 , -0.2922) (-2.0509 , 0.4109)
unemployment -20.9555 3.2985 -23.5951 63.3281 13.3482

(-73.9169 , 32.0059) (-85.0246 , 91.6217) (-91.9813 , 44.7912) (-31.4432 , 158.0995) (-76.0591 , 102.7554)

Observations 234 234 234 234 234
R2 0.0646 0.0637 0.1098 0.1164 0.1134
Adjusted R2 0.0182 0.0173 0.0657 0.0726 0.0694
Residual Std. Error 0.0476(df = 222) 0.0866(df = 222) 0.0661(df = 222) 0.0966(df = 222) 0.0747(df = 222)
F Statistic 1.1382 (df = 11.0; 222.0) 1.5981 (df = 11.0; 222.0) 3.2452∗∗∗ (df = 11.0; 222.0) 2.7913∗∗∗ (df = 11.0; 222.0) 2.7016∗∗∗ (df = 11.0; 222.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Core Model Post-Financialization

19

4 BENCHMARKING

4 Benchmarking

In order to assess the predictive power, a benchmark on the exact same underlying data is

conducted for all available models. These include OLS as a baseline and Long Short Term

Memory (LSTM) as well as Convolutional Neural Networks (CNN) as the challenging Deep

Learning architectures. The latter will be discussed in subsequent chapters.

For all three available data models (core, extended and large) as well as for all available res-

ampling periods, models are then trained and hyperparameters tuned automatically by em-

ploying grid search (see below in section 6). Resampling in this context refers to changing the

data frequency into daily, weekly, monthly and quarterly data. Then, predictions are run out

of sample on the most recent 20% of the entire dataset and the overall empirical correlation on

this new data (also referred to as accuracy and performance) is stored.

These results are then visualized in a chart with the OLS on the x-axis and the corresponding

challenger model on the y-axis for each data model and resampling frequency. All models are

trained in parallel to speed the process up.

The resulting charts are then analyzed whereby a 45°-line is drawn on which all points lie

where OLS performance equals challenger performance. Points which lie above this line can be

interpreted as superior models and points below are regarded as inferior.

20

5 LONG SHORT TERM MEMORY

5 Long Short Term Memory

5.1 Introduction: Neural networks

The baseline for LSTM starts with simple Feedforward Neural Networks (FFNN) which are

likely first proposed by McCulloch & Pitts (1943) in the form of perceptrons. The fundamental

idea is simple. A FFNN takes given input tensors in the input layer, wraps a specific activation

function around the input and sends it to a set of neurons in the hidden layer with some

weights in between to filter or stress a neurons output. The hidden layer takes the output from

the input layer as its input and proceeds in the same way directing its output to the output

layer (hidden layers are not necessary as we will see later. Multiple hidden layers are of course

possible, but the danger of overfitting is increased the deeper the network becomes). This is

what is commonly referred to the as the feed-forward process of neural networks. In supervised

learning, which is what this thesis is about, the so predicted output is then compared to the

real values. The discrepancy between these results is then evaluated by a convex cost function.

With gradient descent, the backpropagation mechanism is then performed by adjusting the

weights of the neural network in the direction of the negative gradient of the specified cost

function for the given output error. An illustration is provided in Figure 5.

Figure 5: Sketch of a basic FFNN in a supervised learning environment featuring feedforward
and backpropagation mechanisms. Biases are abstracted from this illustration.

21

5.1 Introduction: Neural networks 5 LONG SHORT TERM MEMORY

A compact-form neural network can be denoted as:

h = σh(Whx+ bh)

y = σy(Wyh+ by)

If the cost function equals the euclidian distance (least squares), the activation function σy = x

and there is no hidden layer, the network is equivalent to OLS with gradient descent. The

weights are then equivalents to the beta coefficients:

y = Wyx+ by

C =
1

2
(a− y)2 →Min

Long Short-Term Memory on the other hand is a recurrent neural network architecture which

dates back to Hochreiter & Schmidhuber (1997). Further refinements were developed in the

years after by Gers et al. (2000), who introduce the forget gate and add peephole connections

(from the cell to the gates). For a long time, computing limitations held LSTM s back. A real

breakthrough then happened in 2015, when Google (Danko, 2015) announced they would be

using them in their language models from now on. Another famous implementation of LSTM

was the Starcraft-AI AlphaStart developed by DeepMind who stroke a 100% victory rate over

the then worlds leading e-sports team Team Liquid in 2018 (Stanford, 2019), challenging the

public afterwards and continuing to win almost every match. Today, following market wide

adoption, LSTM s have become an industry standard for natural language processing (NLP),

as the extensive toolkits NVIDIA Nemo (NVIDIA Nemo: A toolkit for conversational AI ,

2019) and Kaldi ASR (Povey et al., 2011) show. LSTM s could be particularly interesting for

time series because of their recurrent nature, possibly allowing to identify repeating structural

patterns within the financial data we are working with in this thesis.

22

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

5.2 Formal Foundations

5.2.1 Compact Recurrent Forms

As discussed, LSTM is an extension to simple recurrent neural networks, which are a class of

artificial neural networks initially proposed by Elman (1990):

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)

whereby

xt : Input tensor

ht : Hidden layer

yt : Output tensor

W : Weight parameter

U : Recurrent weight parameter

b : Bias parameter

σ : Activation functions

An obvious problem with these models is their arbitrarily long tracking of time. While it

might only seem to be t− 1 initially, every iteration contains information of the past iteration.

As long as the weights in between the neurons are not zero, everything will be carried forward

indefinitely. This may not a good solution for financial time series, especially since the structure

of events is unknown. Furthermore, gradients in recurrent neural networks can explode or vanish

the farther the included observations reach back in time (discussion in the subsequent section

5.2.2).

23

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

For these reasons, LSTM s introduce several gates (Gers et al., 2000):

ft = σf (Wfxt + Ufht−1 + bf)

it = σi(Wixt + Uiht−1 + bi)

ot = σo(Woxt + Uoht−1 + bo)

cit = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ cit

ht = ot ◦ σh(ct)

whereby

ft : Forget gate

it : Input gate activation

ot : Output gate activation

cit : Cell input activation

ct : Cell state

5.2.2 Backpropagation and Gradient Descent

Fundamentally, the central problems of recurrent neural nets are exploding or vanishing gradi-

ents, which makes them generally unable to handle long time dependencies. Consider the simple

recurrent net denoted above. The recurrent component is located in the hidden layer:

h(t) = σ(Whx(t) + Uhh(t− 1) + bh)

In order to perform backpropagation process, one needs to calculate the loss or cost function

C at any step t = T with respect to the hidden state of an earlier step t = τ . To obtain the

24

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

gradient of the loss C(t), the derivative needs to be computed:

∂C(t = T)

∂h(t = τ)
=
∂C(t = T)

∂h(t = T)

T∏
τ<t

∂h(t)

∂h(t− 1)

In general, backpropagation through the network by gradient descent would be performed by

updating the weights for a given learning rate λ:

Wnew = Wold − λ(
∂C(t = T)

∂h(t = τ)
)

The Jacobian of the hidden layer at any given time t can be obtained by:

∂h(t)

∂h(t− 1)
= diag(

∂σ(Uhh(t− 1) +Whx(t) + bh)

∂Uh
)Uh

The derivative of the cost function may then be re-written as:

∂C(t = T)

∂h(t = τ)
=
∂C(i)

∂h(T)
UT−τ
h

T∏
τ<t

diag(
∂σ(Uhh(t− 1) +Whx(t) + bh)

∂Uh
)Uh

Note that the weight updating process fundamentally relies on this computed gradient. How-

ever, the gradient includes the weight matrix UT−τ
h , which is now multiplied by itself for T − τ

times. This multiplier captures the two quintessential problems of recurrent neural nets, namely,

the exploding gradients for weights > 1 and the vanishing gradients for weights < 1. A more

in-depth description of this problem is provided by Pascanu et al. (2013).

One solution to the vanishing gradient was published by Gers et al. (2000) who introduce forget

gates. The idea is to filter out information which is not anymore required since it has become

too old. These forget gates correspond to ft in the compact example above. The necessary

equations for implementing backpropagation with a forget gate are given by the following equa-

tions (Gers et al., 2000, p. 6ff, notation adapted) with out and in describing a layers output

25

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

and (recurrent) input gate, respectively:

∆ws,d = λ
∂yd(t)

∂netd(t)
(
∑
k

∂yk(t)

∂yd(t)
ek(t))y

s(t− 1) (1)

∂∆yk(t)

∂∆netk(t)
= σ′k(netk(t))⇒ δk(t) = σ′k(netk(t))ek(t) (2)

δoutj(t) = σ′outj(netoutj)(

Sj∑
v=1

h(ςcvj (t))
∑
k

wkcvj δk(t)) (3)

eςcv
j
(t) = youtj(t)h

′(ςcvj (t)) (4)

∂ςcvj (t)

∂wcvj s
=
∂ςcvj (t−1)

∂wcvj s
yfj(t) + g′(netcvj (t))yinj(t)ys(t− 1) (5)

∂ςcvj (t)

∂wwinj
s

=
∂ςcvj (t− 1)

∂winjs

yfj(t) + g(netcvj (t)yinj(t))ys(t− 1) (6)

∂ςcvj (t)

∂wfjs
=
∂ςcvj (t− 1)

∂wfjs
yfj(t) + h(ςcvj (t))σ′fj(netfj(t))y

s(t− 1) (7)

∂ςcvj (t = 0)

∂wsd
= 0 for d ε {f , in, cvj} (8)

∆wcvj s(t) = λeςcv
j
(t)
∂ςcvj (t)

∂wcvj s
(9)

In order to perform the backpropagation process, weights can then be updated as follows:

∆wsd(t) = λ

Sj∑
v=1

eςcv
j
(t)
∂ςcvj (t)

∂wsd
for d ε {f , in, }

26

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

whereby

s, d, k : Model output unit (index = k)

j : Memory block index

v : Memory cells in block j

ς : Internal states

eςvj : Internal states error at j, v

in : Input gate

out : Output gate

net : The unactivated model output

Only equations (5), (6), and (7) need to be kept in RAM for each iteration during the training

process. However, this way of performing gradient descent on all available data is computa-

tionally expensive. Therefore, Stochastic Gradient Descent (SGD) with momentum is used in

the final implementation. SGD works with random subsamples instead of considering the full

dataset at each step and can, thus, be calculated faster (note that the Jacobians dimension

increases with the amount of included observations).

5.2.3 Activation functions

In the original proposal of neural networks as perceptrons by McCulloch & Pitts (1943), neurons

were binary activators ε {0, 1}. Today, more sophisticated functions have replaced these simple

structures although their key purpose still remains the same. There are, generally, linear and

nonlinear activation functions, with the non-linear ones aiming to enable a network to learn

more complex mappings. A multitude of activation functions are available, but one must chose

carefully, since they can make a strong difference in reliability and rigidity of any neural model.

Changing the output activation function in the final Dense-layer in this thesis’ implementation

may cause some models to completely lose their ability to learn anything at all (jumping

gradients). This chapter discusses available candidates about their suitability to represent

financial returns. More specifically, good functions exhibit the following properties:

1. Are differentiable at any given point.

27

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

2. Are continuous and monotonous for any given input.

3. Allow negative returns.

4. Are unlimited or at least allow for sufficiently large positive returns.

5. Are lower-bound at -1 (returns cannot exceed -100%).

The original perceptrons binary activation (BIN) can be defined as:

σbin =

1, if ax + b > 0

0, else

This may be a good activation function if the target were to categorically distinguish between

positive and other returns. However, this is not the case and therefore its binary nature makes

it unsuitable for specific return prediction. A prominent and often-used continuous example

would be the logistic function (LOG) defined as:

σlog =
1

1 + e−x

which is unsuitable due to its nature of predicting positive returns only. A function which

satisfies properties (1) to (3), (5) would be the Tangens Hyperbolicus (TANH):

σtanh =
ex − e−x

ex + e−x

For x → ∞, σtanh approaches 1 while for x → −∞, σtanh is limited to -1. A good application

of this function may be the recurrent states within LSTM, since extreme shocks might not be

carried forward for too long. Limiting these extreme values at the upper bound as well could

therefore be a reasonable choice. However, for predicting returns themselves we would like to

capture extreme shocks once they may become likely. Thus, σtanh is not necessarily the best

option for the final Dense-layer.

28

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

The Exponential Linear Unit (ELU) is probably one of the better suited functions and satisfies

all properties from (1) to (5) at once as illustrated in Figure 6:

σelu =

γ(ex − 1), if x ≤ 0

x, else

1. The functions individual parts are differentiable: ∂σelu
∂x

=

γe
x, if x < 0

1, else

2. The functions individual parts are continuous and strictly increasing. At x = 0 both

parts are equal to 0, therefore the function by itself is continuous as well.

3. If x < 0, the activated output for input close to zero will be lower. For x ≥ 0 no change

will be applied.

4. Activated output < 0 is allowed if γ > 0.

5. σelu =∞ if x→∞, thus, infinite returns are indeed possible.

6. σelu = −1 if γ = 1 and x→ −∞

Since it reflects financial returns most appropriately, ELU with γ = 1 is the only used activation

function of the final Dense Layer which decodes the model predictions back to returns in all

neural implementations.

29

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

Figure 6: TANH vs. ELU

5.2.4 Data Preparation and Dimensionality

The model follows the standard setup for time-major implementations and therefore expects a

three dimensional tensor with the timesteps in the first, the observations in the second and the

features in the third dimension. First, the train- (60%), validation- (20%) and testsets (20%)

(specific split is configurable in the central config file config.yml) are sliced from the original

data. Since neural models benefit from feature scaling, two scalers are available. A max-scaler,

which limits the maximum amplitude of each data column to 1 as well as a standard scaler,

which applies the central limit theorem and converts data to a standard-normal distribution by

x−µ
σ
∼ N(0, 1). The standard scaler is what is used throughout this thesis, although max-scalers

are common as well, since they leave the original data structure unchanged. Feature scaling is

critical as the activation functions are designed to work with data especially around µ = 0 and

σ2 = 1.

Using two dimensional data as a Pandas DataFrame-object, the method lag leads adds the

30

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

required lags to the dataframe containing the input features from the specified data model.

Its output is then passed on to the function to 3d, which converts the Pandas DataFrame to a

Numpy array. To bring the result into the required three dimensions, the array is then reshaped

to have the introduced lags in the first, each observation in the second, and finally the original

features in the third dimension.

Due to the recurrent nature of the model, the data is intentionally not reshuffled, since one

of the key goals and anticipated benefits over static linear inference is to have LSTM identify

patterns and structure within the noisy data automatically.

5.2.5 Model Specification

The model itself consists of three layers: The input layer takes the Numpy array and computes

the input tensor, which is then passed on to a single LSTM -kernel, which encodes the returns

into a configurably sized, one-dimensional tensor. A single Dense-layer then decodes the en-

coded return vector back into a single return using the ELU activation function. The backward

pass is then performed on the validation data to ensure a sanity check in each epoch. The cost

function is the euclidean distance between the predicted and observed real returns of the next

period.

Hyperparameters are available for all three data models as well as for daily, weekly, monthly

and quarterly asset reallocation periods. They can be either parsed per model as a Python

dictionary or, alternatively, they are loaded from lstm hyperparams.yml, where they can be

modified in the preset Yaml structure.

The class may be used to self-infer alternative hyperparameters which are stored in a dedicated

folder (default is ”Export/Hyperparameters/LSTM/*”) as Json or Yaml formats and can be

sideloaded by adding them as a custom specification when running the training process.

5.2.6 Regularization: Avoiding Overfits

Multiple procedures are in place within the Lstm class as well as in its companion functions

to avoid over-fits. An over-fit describes a situation in which, given a fixed reference point,

prediction in sample improves, but accuracy out of sample deteriorates.

The first measure is the utilization of validation on new data during the training process. This

provides a sanity check for the model after each completed epoch. Structural over-fitting, or

31

5.2 Formal Foundations 5 LONG SHORT TERM MEMORY

(a) Stable learning (b) Short term instability with overall improve-
ments

Figure 7: Learning curves for two commodities on the Core Model with daily data.

learning by heart, might induce performance deterioration on new data.

Training for too long in general can reduce generalization as well. While each model is pre-

configured to be allowed a maximum of 10,000 epochs, a second trigger stops the training

process prematurely should the model continue to worsen for more than a predefined number

of 25 consecutive iterations on the validation set. Since we are already using the validation

data as a sanity check, errors on the training data are not straightforward as well. Thus,

early stopping is applied on the training set, too, but with 50 rather than 25 observations of

continuous stagnation or worsening to allow for short term volatility.

Dropout layers are utilized on both the recurrent model states as well as the original data. They

deactivate a randomly drawn set of neurons and therefore augment the data by inducing noise.

This should, ideally, enable the model to filter out noise when loading it for predictions. While

a good model should be structurally rigid against dropouts, it must be noted that financial data

is noisy already and, therefore, not all models may benefit from this procedure. How many

neurons are selected can be configured as well.

32

5.3 Results 5 LONG SHORT TERM MEMORY

5.3 Results

While LSTM ’s predicted returns were convincing initially, they only barely stood a robustness

test on new data and asked for many additional requirements in the tuning process (such as

minimum improvements in learning and a minimum amount of trained epochs). The models

validation set consists of entirely new data, and, with the right choice of hyperparameters,

learning was somewhat reliable with improving mean absolute percentage errors and euclidean

distances on both the train- as well as on the dev- set. However, the test data then showed

higher performance erosions than expected ex ante.

Even though training mostly seemed to improve continuously longer term, some models did

not fare so well. Often they improved very little or the early stopping triggers quit the process

after a few epochs. Model initialization has the biggest impact on model performance. Merely

the starting point defined by the applied seed value often decided upon success or failure as

even unreliable models may train for a long time, but optimize a flat local minimum instead of

finding a steep local or global optimum. For this reason, training has to be performed multiple

times on a range of given seed values in order to find the one that lies closest to a deep minimum

(it is not at all clear if the algorithm is really capable of detecting a global minimum). Hence,

models need to be executed in the aforementioned hyperparameter training environment which

self-monitors the learning behavior and picks the best out of the many runs as the valid model

specification.

Although each training process is run in a separate process-container and therefore many seed

values can be trained in parallel on a multi-cpu server or in a multi-gpu setup, generally, finding

the optimal model still takes a substantial amount of time. Stability issues with consumer grade

machines and time required for training per period also drive backtesting out of scope for this

thesis. A prototype of a backtest implementation is supplied in the prototyping section of the

source code.

33

5.3 Results 5 LONG SHORT TERM MEMORY

5.3.1 Daily Rebalancing

(a) Core Model

(b) Extended model (c) Large model

Figure 8: LSTM Benchmarks on daily data

On daily data, all models aside from Silver deliver an overall positive correlation on new data

with the restricted dataset. Palladium, to no surprise based on the indications seen in previous

chapters, performs well across all three data models. Overall, however, the additional features

in the extended data model did not enhance predictability consistently. The Large Model

with smart beta signals even deteriorated the predictive power of the underlying models quite

strongly. Nevertheless, the LSTM -models are not better than pure OLS with the exception of

Silver in the Extended and Large Model, which performs a lot less than the OLS -benchmark.

The original dataset by Tharann (2019) (Core Model without non-daily features) seems to work

best with LSTM.

34

5.3 Results 5 LONG SHORT TERM MEMORY

5.3.2 Weekly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 9: LSTM Benchmarks on weekly data

Similar results as for daily data can be observed on weekly resampling as well. The Core Model

delivers the most stable performance, with Palladium even reaching an out of sample predictive

power of more than 30% with OLS. Interestingly, introducing the additional datapoints deteri-

orated predictive power of OLS while simultaneously enhancing LSTM, with Palladium showing

an increase by a factor of two from the core to the Large Model. However, the differences are,

with the exception of Palladium, not too large.

35

5.3 Results 5 LONG SHORT TERM MEMORY

5.3.3 Monthly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 10: LSTM Benchmarks on monthly data

The story is continued when looking at monthly re-balancing. At this frequency, lagged eco-

nomic variables such as industrial output as well as the ADS-index are included as well. Pre-

dictability of asset returns is relatively solid across all metals for LSTM on both the core and

the Large Model, but not so much for OLS. It seems as if OLS continues to work well with

Palladium. Again, the larger datasets seem to benefit mostly OLS, not so much LSTM. Smart

Beta apparently continues to contribute value to Palladium only, bumping up the OLS to

almost 0.4 correlation out of sample.

36

5.3 Results 5 LONG SHORT TERM MEMORY

5.3.4 Quarterly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 11: LSTM Benchmarks on quarterly data

Resampling to quarterly data reduces the amount of available datapoints drastically. One would

suspect a neural network’s performance to be low in such environments, as they usually benefit

from larger amounts of data. Indeed, from all frequencies this is definitely a weaker supporter

for LSTM, especially on the larger models. The accuracy between predicted and actual returns

is close to zero for the Large Model, with the notable exception of Palladium.

37

6 EXCURSION: A DEFENSE OF GRID SEARCH

6 Excursion: A Defense of Grid Search

Grid search is a relatively simple but computationally expensive way of tuning hyperparameters.

The underlying principle is easy to code:

1. Define a set of hyperparameters.

2. Specify an initial set of hyperparameters to start from.

3. Define an evaluation set (usually this consists of both train and validation data).

4. Define a set of criteria to be evaluated.

5. For each defined hyperparameter: Train & save the model.

6. For each hyperparameter: Run predictions on the evaluation set.

7. Compare the results and select the best.

8. Repeat (2) to (8) until improvements become small enough.

This is cost-intensive when working with big data (such as audio or video, since a single training

cycle without transfer-learning and fine-tuning can take weeks or even months), but for tabular

data such as is used throughout this thesis, a modern PC is capable of running a single cycle

in a few hours. Furthermore, after a few cycles there are no more improvements observable

and since the already optimized parameters are taken in later runs on newer data, good results

seem to be achievable within a single cycle.

This is not to say that there are better (less expensive) methods available. Both LSTM as well

as the Convolutional Neural Network (CNN) were trained on other algorithms using ray[tune]

by Liaw et al. (2018). But, preemptively, optimization in context of the data used in this thesis

seems to be not as straightforward, maybe due to the low overall explanatory power of the

predictive variables. Grid search is the utilized algorithm for model tuning throughout this

thesis, therefore.

38

6.1 Random Search 6 EXCURSION: A DEFENSE OF GRID SEARCH

6.1 Random Search

One alternative is to pick random combinations more systematically using probability distri-

butions. The idea was brought forward in the early 2010s with one notable example being

Bergstra & Bengio (2012), who showed that random search can, given the same budget,

1. find models that are as good or better than grid search

2. at a fraction of the computational power.

This result is effectively achieved by searching through a smaller set of hyperparameters. Their

argument is that predictive power is mostly impacted by a fraction of the hyperparameters

available and, ergo, model optimization should follow primarily these important ones rather

than wasting time and energy on parameters which deliver little overall improvements. However,

they acknowledge that grid search

1. is simple to implement (with modern libraries this advantage does not hold anymore),

2. can be easily parallelized,

3. is reliable in low dimension spaces.

Especially the latter two arguments are likely the reason why random search turned out to

require a lot more time in this thesis’ setting. With grid search and GPU- as well as CPU-

bound training processes up to 16 parallel cycles could be run on a consumer desktop machine.

With more capable hardware and or distributed computing (using tools such as gRPC or

Docker Swarm), a cycle may be completed within the time for the longest individual training

and evaluation process (i.e. just a few minutes) using grid search. Since random search takes

inference on previous results, parallelization in practice may be limited.

Using ray tune with random search did produce inferior results for both LSTM as well as CNN

on given data (with mostly even negative correlation of actual vs. predicted returns).

39

6.2 Bayesian Optimization 6 EXCURSION: A DEFENSE OF GRID SEARCH

6.2 Bayesian Optimization

Another alternative to grid search would be Bayesian Optimization. One such Python imple-

mentation is provided and maintained by Nogueira (2014). To obtain a deeper understanding,

the following description is loosely based on Frazier (2018). Bayesian Optimization tries to

find a maximum value of an underlying continuous utility function U(x), which is unknown at

the time of execution, with a predefined budget of N steps. However, not only is the utility

function itself a black box, but also its properties such as the first and second derivatives are

unknown. Potentially observable values for U(x) also may or may not be noisy, adding further

complication. In order to infer the nature of this utility function, tools such as a Gaussian

Process Regression (Rasmussen, 2003) may be utilized. The idea is that by varying the hy-

perparameters, more and more observations are collected to increase the degree of the search

algorithm’s certainty which of the underlying estimated candidates match the observed results

best. But how to determine a function from which so far nothing is known of? First, one has

to define a starting point x0 with an arbitrary set of hyperparameters. The goal will be to

utilize an acquisition function A(x) to determine where the next best location x1 for evaluating

the unknown function (closer to its MAX or MIN) is located. Contrary to U , one knows the

first and second order derivatives of A and it is comparatively easy to evaluate. First, one has

to choose an appropriate Gaussian Process (GP) to determine the probability that any given

output matches the actual output of U :

P (U) = GP (U ;µ;σ2)

Let the underlying distribution of observations be Odist. The conditional probability, hence

Bayesian Optimization, of U for any observed distribution of Odist can then be denoted as:

P (U |Odist) = GP (U ;µU |Odist
;σ2

U |Odist
)

At first sight we have now replaced a complex optimization problem with a simpler one, but

what does it actually imply? In general, the goal will be to move where the expected improve-

ment E[U∗ − U(x)] is the largest, with U∗ denoting a hypothetical optimum of the underlying

utility function. This is of course knowledge one does not possess but may try to statistically ap-

proximate. Many functions may be used to achieve this such as the Probability of Improvement,

40

6.2 Bayesian Optimization 6 EXCURSION: A DEFENSE OF GRID SEARCH

in accordance with Brochu et al. (2010) defined as:

PI(x) = P (U(x) ≥ U(x∗))

= Ψ(
µ(x)− U(x∗)

σ(x)
)

Ψ(x) =
1

2
(1 + erf(

x− µ(x)

σ
√

2
))

erf(x) =
2√
π

∫ x

0

ek
2

dk

Note that Ψ denotes the cumulative normal distribution function. The acquisition function will

be evaluated multiple times on all available datapoints and the lowest (or highest, depending on

A) result is chosen as the valid one. It should be noted that while Probability of Improvement is

one of the earliest and simplest applied functions, it may get stuck in local optima. Therefore,

more sophisticated acquisition functions are utilized in modern libraries such as the one by

Nogueira (2014).

The next sample will then be drawn from the result of the acquisition function. Note that the

purpose of A is not to find the optimum hyperparameter, but merely the next step one should

try in order to move closer to the optimum. The target utility function U itself is modeled by

the Bayesian statistical model, not the acquisition function. A cooking recipe for this process

may look like this (Frazier, 2018):

1. Model U by defining a Gaussian Process.

2. Initialize the experiments environment on starting parameters (may be drawn at random).

3. Run training & inference on all available data with the current set of hyperparameters.

4. Update beliefs about the distribution of U based on these results.

5. Obtain the optimum of the acquisition function based on these updated beliefs.

6. Infer the probability via your statistical model for U.

7. Update your hyperparameter. Repeat steps (3) to (6) for a total of N − 1 times.

8. Return the hyperparameter that maximizes the statistical model for U.

Implementing Bayesian Optimization turned out to be challenging but unfruitful. Ultimately,

results were inferior to Grid Search.

41

7 CONVOLUTIONAL NEURAL NETWORKS

7 Convolutional Neural Networks

7.1 Introduction

Convolutional neural networks (CNN) are a class of deep artificial neural nets initially proposed

as a neocognitron by Fukushima (1988) and primarily extended and formalized by LeCun et al.

(1999). Today, they have become an industry standard on image processing, computer vision

and audio encoding for speech recognition. Contrary to the previously described Long Short

Term Memory, they are not recurrent but advanced feed-forward nets or multilayered per-

ceptrons. Fitting them can be challenging as they are prone to overfitting. Each neuron within

a multilayer perceptron is generally, with exceptions such as of dropout layers or deactivated

connections, tied to each other neuron in the net as long as its weight wks,d 6= 0.

But since they are Feedforward Neural Nets, ultimately, they are less analytically invovled and

can therefore be implemented in a more simple and straightforward fashion. They are not in-

spired by a specific analytic problem, such as the vanishing gradients of RNN with LSTM, but

are a direct analogy to biology. Namely, the detection hierarchy of the visual cortex as shown

in Bruce et al. (1981). Neurons seem to, first, extract high level features from simple stimulus

patterns, defining the broad locations of interest on the eye-retina. From these positions, the

network then gradually moves out and integrates further away and more complex structures

into the existing ones. Cells which are farther away from the originally detected pattern also

tend to cover a wider area. Both Sato et al. (1980) as well as Bruce et al. (1981) found evid-

ence for this procedure to happen in monkey brains, although further details of this paper are

spared from this thesis due to the questionable procedures involving torturing [both], killing

and disecting [Sato et al. (1980) only] the animals during the research process.

7.2 The Convolutional Kernel

7.2.1 Causal vs. Non-Causal

The key difference of Convolutional from Feedforward Neural Nets is the application of the

convolutional kernel. On time-series data this can be thought as sliding a window over the

input layer and looking at the opening at each point in time. This can be done causally or

a non-causally as explained below and interpreted in 7.2.2, with non-causal kernels being the

default.

42

7.2 The Convolutional Kernel 7 CONVOLUTIONAL NEURAL NETWORKS

The non-causal approach is a naive cross-correlation detection technique:

y(n) =

∑k

i=0 x(n+ i)h(i), if n = 0∑k
i=0 x(n+ i+ (s− 1))h(i), else

whereby:

x : Convolutional layer

n : Length of x

h : Kernel of x

k : Length of h

s : Strides (shift kernel by s)

y : Output

The causal approach can be denoted as:

y(n) =

∑k

i=0 x(n− i)h(i), if n = k - 1∑k
i=0 x(n− i+ (s− 1))h(i), else

(Srinivasamurthy, 2018, p. 7ff)

7.2.2 Interpreting Kernels

One observation from the above equations for the non-causal kernel is the not necessarily equal

input and output tensor lengths. Keras refers to this as its valid mode. Equal tensors can be

enforced using the same padding parameter in cnn hyperparams.yml. Furthermore, the non-

causal kernel relies on future outputs at any given point which induces a look-ahead-bias in

context of financial data. Therefore, the causal kernel is used in the implementation. The

padding hyperparameter to achieve this is set to causal in tensorflow/keras. The future time-

dependency of the non-causal kernel may not be obvious without an example. Consider the

case where n = 4, k = 2, and s = 1. For the non-causal kernel, this would result in the following

43

7.3 Activation Functions 7 CONVOLUTIONAL NEURAL NETWORKS

sequence:

y(0) = x(0)h(0) + x(1)h(1)

y(1) = x(1)h(1) + x(2)h(2)

y(2) = x(2)h(2) + x(3)h(3)

For the causal kernel, this would produce the following sequence:

y(1) = x(1)h(0) + x(0)h(1)

y(2) = x(2)h(0) + x(1)h(1)

y(3) = x(3)h(0) + x(2)h(1)

Clearly, the non-causal approach does not require information about future features already

today.

7.2.3 Pooling and Flatten Layers

The output of any Conv1D-layer is not in the correct dimensionality to allow convenient in-

terpretation. The pooling layer in Chollet et al. (2015) serves to reduce the dimensionality

in order to be able to process it further with a densing layer to a log commodity return. In

this thesis’ implementation, max pooling is utilized. Here, a window of size ζ slides forward

over the ouput of the Conv1D-layer with strides s to obtain the max value after each pooling

operation. The dimensionality of of the max-pooling’s input layer fundamentally depends on

the configuration of strides and kernel of the Conv1D-layer as outlined in the chapter above.

To shape the result into a one-dimensional array, a Flatten-layer concatenates the dimensions

accordingly.

7.3 Activation Functions

For CNN s final Dense layer the same reasoning applies as for LSTM. Financial returns on real

assets should not exceed -100% while positive returns are theoretically unlimited. Throughout

the implementation, unless otherwise specified, ELU is the appropriate activation function.

Note that since CNN s do not have recurrent layers.

44

7.4 Results 7 CONVOLUTIONAL NEURAL NETWORKS

7.4 Results

While LSTM s did not perform reliably better than linear models, CNN s did so on an at least

more consistent (i.e. lower observed variance) level. For the majority of resampling periods

and data models, CNN outperformed both OLS and LSTM. With a few exceptions, CNN also

produced more reliable results with mostly positive correlations of out of sample predictions

with real-world returns.

7.4.1 Daily Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 12: CNN Benchmarks on daily data

Daily asset allocation is clearly better done with OLS on this dataset. Adding more data seems

to have an ambiguous effect on predictive power for CNN but clearly imposes a deterioration

of OLS ’ performance.

45

7.4 Results 7 CONVOLUTIONAL NEURAL NETWORKS

7.4.2 Weekly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 13: CNN Benchmarks on weekly data

The Large Model overall yields the best results, with CNN outperforming OLS on all commod-

ities but Platinum. Again, the Extended Model seems to deteriorate predictive power while the

Large Model enhances it overall, which is some continuation of what we have seen previously.

However, CNN is better than OLS in this run with all results superseding the ones produced

by OLS on the Core Model. The latter barely even gets correct predictions while CNN is

relatively correct with the exception of only Platinum, the only commodity which exhibits a

slightly negative relation of predicted and observed returns of less than 0.1%, which is unlikely

different from zero at all.

46

7.4 Results 7 CONVOLUTIONAL NEURAL NETWORKS

7.4.3 Monthly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 14: CNN Benchmarks on monthly data

The story is continued on monthly data, with the notable exception of Palladium which, as

previously seen, works well with OLS. Reliability of CNN is drastically reduced with added

data with the most consistent results being achieved on Core Model.

47

7.4 Results 7 CONVOLUTIONAL NEURAL NETWORKS

7.4.4 Quarterly Rebalancing

(a) Core Model

(b) Extended Model (c) Large Model

Figure 15: CNN Benchmarks on quarterly data

Findings on quarterly data also do not differ much from what was already observed previously.

The deterioration effects of added data are notable in this example, not only in overall variability

of results, but also in a decrease of peak predictive power for CNN.

48

8 CONCLUSION

8 Conclusion

Evidence of Tharann (2019) could not only be confirmed on similar data taken from Bloomberg,

FED and the OECD instead of Datastream, but including daily, weekly and quarterly res-

ampling periods as well. Utilizing this investment strategy may, however, only work with

cash-settled derivatives. This thesis does not attempt to backtest the findings in a realistic

setting using data and trading delays, taxation issues, platform freezes during low liquidity, or

physical storage cost. It also does not provide instructions on how and with what financial

contracts one could make use of these findings. What it did find is some support of additional

benefits from incorporating the more modern approaches LSTM or CNN into return-predictive

analysis, since there are benefits to be gained from all three methods.

What is also clear after reviewing the results is that machine learning is not drastically su-

perior or will lead to sudden improvements over existing findings over night. Implementation

is cumbersome (compared with OLS, which is roughly 7 lines of code), training is expensive

and results are heavily dependent on well-selected hyperparameters. Furthermore, the benefit

of potentially getting slightly more accurate predictions is vastly outweighed by the almost

complete lack of standard tests or interpretability of model parameters.

The selected set of features by Tharann (2019) delivered the overall most consistent results.

While adding the additional datapoints did enhance predictability on some resampling frequen-

cies, it mostly lead to a clear deterioration out of sample. In a productive setting, Core Model

and therefore the original dataset is preferable.

While practitioneers and investors may definitely benefit from integrating Deep Learning into

their processes, in hindsight, available interpretability is not to be underestimated. The su-

perior feature selection process was mostly done using linear models, after all. Yet another

argument on why they are as important for empirical studies as they are as of today.

49

REFERENCES REFERENCES

References

Aruoba, S. B., Diebold, F. X. & Scotti, C. (2009). Real-time measurement of business condi-

tions. Journal of Business & Economic Statistics , 27 (4), 417–427.

Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal

of machine learning research, 13 (2).

Brochu, E., Cora, V. M. & De Freitas, N. (2010). A tutorial on bayesian optimization of expens-

ive cost functions, with application to active user modeling and hierarchical reinforcement

learning. arXiv preprint arXiv:1012.2599 .

Brooks, R. & Yan, D. Y. (1999). London inter–bank offer rate (libor) versus treasury rate:

Evidence from the parsimonious term structure model. The Journal of Fixed Income, 9 (1),

71–83.

Brown, D. P. & Jennings, R. H. (1989). On technical analysis. The Review of Financial Studies ,

2 (4), 527–551.

Bruce, C., Desimone, R. & Gross, C. G. (1981). Visual properties of neurons in a polysensory

area in superior temporal sulcus of the macaque. Journal of neurophysiology , 46 (2), 369–384.

Chollet, F. et al. (2015). Keras. https://keras.io.

Cochrane, J. H. (2008). The dog that did not bark: A defense of return predictability. The

Review of Financial Studies , 21 (4), 1533–1575.

Danko, Z. (2015). Neon prescription... or rather, new transcription for google voice.

Retrieved from https://blog.google/products/google-voice/neon-prescription-or

-rather-new/ (Accessed: 2020-06-01)

Durand, R. B., Lim, D. & Zumwalt, J. K. (2011). Fear and the fama-french factors. Financial

Management , 40 (2), 409–426.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14 (2), 179–211.

Fama, E. F. & French, K. R. (1992). The cross-section of expected stock returns. Journal of

Finance, 47 (2).

50

https://keras.io
https://blog.google/products/google-voice/neon-prescription-or-rather-new/
https://blog.google/products/google-voice/neon-prescription-or-rather-new/

REFERENCES REFERENCES

Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811 .

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern

recognition. Neural networks , 1 (2), 119–130.

Gers, F. A., Schmidhuber, J. & Cummins, F. (2000). Learning to forget: Continual prediction

with lstm. Neural computation, 12 (10), 2451–2471.

Gibson, G. (1889). The stock markets of london. Paris and New York, GP Putnam’s Sons,

New York .

Grossman, S. J. & Stiglitz, J. E. (1980). On the impossibility of informationally efficient

markets. The American economic review , 70 (3), 393–408.

Gunasekarage, A. & Power, D. M. (2002). The post–announcement performance of dividend–

changing companies: The dividend–signalling hypothesis revisited. Accounting & Finance,

42 (2), 131–151.

Hamilton, W. P. (1922). The stock market barometer: a study of its forecast value based on

charles h. Dow’s theory of the price movement. Barron’s, New York .

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9 (8),

1735–1780.

Hodges, P., Hogan, K., Peterson, J. R. & Ang, A. (2017). Factor timing with cross-sectional

and time-series predictors. The Journal of Portfolio Management , 44 (1), 30–43.

Hou, D. & Skeie, D. R. (2014). Libor: Origins, economics, crisis, scandal, and reform. FRB of

New York Staff Report(667).

LeCun, Y., Haffner, P., Bottou, L. & Bengio, Y. (1999). Object recognition with gradient-based

learning. In Shape, contour and grouping in computer vision (pp. 319–345). Springer.

Lettau, M. & Ludvigson, S. (2001). Consumption, aggregate wealth, and expected stock

returns. the Journal of Finance, 56 (3), 815–849.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E. & Stoica, I. (2018).

Tune: A research platform for distributed model selection and training. arXiv preprint

arXiv:1807.05118 .

51

REFERENCES REFERENCES

MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of economic

literature, 35 (1), 13–39.

Malkiel, B. G. & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical

work. The journal of Finance, 25 (2), 383–417.

Markov chain. (n.d.). Retrieved from https://www.lexico.com/en/definition/markov

chain (Accessed: 2021-07-11)

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics , 5 (4), 115–133.

Nogueira, F. (2014). fmfn/bayesianoptimization. https://github.com/fmfn/

BayesianOptimization. GitHub.

Nvidia nemo: A toolkit for conversational ai. (2019). NVIDIA Corp. Retrieved from https://

github.com/NVIDIA/NeMo (Accessed: 2020-12-07)

Pascanu, R., Mikolov, T. & Bengio, Y. (2013). On the difficulty of training recurrent neural

networks. In International conference on machine learning (pp. 1310–1318).

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., . . . Vesely, K.

(2011, December). The kaldi speech recognition toolkit. IEEE Signal Processing Society.

(IEEE Catalog No.: CFP11SRW-USB)

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on

machine learning (pp. 63–71).

Sato, T., Kawamura, T. & Iwai, E. (1980). Responsiveness of inferotemporal single units to

visual pattern stimuli in monkeys performing discrimination. Experimental Brain Research,

38 (3), 313–319.

Shamsher, S. (2021). Financialisation of commodities–empirical evidence from the indian

financial market. IIMB Management Review .

Shiller, R. C. (2000). Irrational exuberance. Philosophy and Public Policy Quarterly , 20 (1),

18–23.

52

https://www.lexico.com/en/definition/markov_chain
https://www.lexico.com/en/definition/markov_chain
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo

REFERENCES REFERENCES

Srinivasamurthy, R. S. (2018). Understanding 1d convolutional neural networks using mul-

ticlass time-varying signals. https://tigerprints.clemson.edu/cgi/viewcontent.cgi

?article=3918&context=all theses. Tigerprints.

Stanford, S. (2019). Deepmind’s ai, alphastar showcases significant progress to-

wards agi. Retrieved from https://medium.com/@towardai/deepminds-ai-alphastar

-showcases-significant-progress-towards-agi-93810c94fbe9 (Accessed: 2020-12-07)

Tharann, B. (2019). Return predictability in metal futures markets: new evidence. Heliyon,

5 (6), e01843.

Warner, E. J. & Barsky, R. B. (1995). The timing and magnitude of retail store markdowns:

evidence from weekends and holidays. The Quarterly Journal of Economics , 110 (2), 321–

352.

Welch, I. & Goyal, A. (2008). A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies , 21 (4), 1455–1508.

Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Cengage learning.

53

https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3918&context=all_theses
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=3918&context=all_theses
https://medium.com/@towardai/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9
https://medium.com/@towardai/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9

A APPENDIX

A Appendix

A.1 Benchmarking: Full Results

Frequency Data Model Commodity LSTM CNN LM

0 Daily core model Copper 7.855765 1.231855 -1.731914
1 Daily core model Gold 14.263361 13.654949 15.622235
2 Daily core model Palladium 10.223678 19.455670 8.968081
3 Daily core model Platin 4.903180 11.281590 13.959542
4 Daily core model Silver -3.264479 2.837894 23.492696
5 Daily extended model Copper 5.986084 8.642791 2.798055
6 Daily extended model Gold 11.180034 13.931827 14.588291
7 Daily extended model Palladium 20.201646 25.519845 -2.348762
8 Daily extended model Platin 7.661787 13.395938 13.835638
9 Daily extended model Silver -9.516964 17.909791 19.865214
10 Daily large model Copper -5.407870 8.603837 2.698088
11 Daily large model Gold -7.775665 6.496181 7.652523
12 Daily large model Palladium 2.235383 27.380199 -5.642145
13 Daily large model Platin 3.342933 7.671563 14.905031
14 Daily large model Silver 2.879581 14.311927 7.960900
15 Monthly core model Copper 19.283991 13.741453 -4.992170
16 Monthly core model Gold 12.750192 19.170700 9.017649
17 Monthly core model Palladium 19.953426 17.512982 28.238662
18 Monthly core model Platin 13.536538 7.107797 -13.820295
19 Monthly core model Silver 10.970230 8.258135 -8.920266
20 Monthly extended model Copper 3.800193 8.698888 2.219047
21 Monthly extended model Gold 21.979888 18.722205 7.908760
22 Monthly extended model Palladium 2.459666 -6.426083 27.009444
23 Monthly extended model Platin -7.765537 15.867141 -11.548875
24 Monthly extended model Silver -18.837286 4.386507 -8.588241
25 Monthly large model Copper -12.493132 16.977104 5.575502
26 Monthly large model Gold 28.819371 18.873808 -22.045190
27 Monthly large model Palladium 45.808909 35.108402 38.603278
28 Monthly large model Platin 19.747191 22.644017 -12.033417
29 Monthly large model Silver -0.816430 -21.602102 -10.659283

Table 4: Full benchmarking results (I/II)

54

A.1 Benchmarking: Full Results A APPENDIX

Frequency Data Model Commodity LSTM CNN LM

30 Quarterly core model Copper 20.296689 38.328777 -2.636376
31 Quarterly core model Gold 10.828894 10.299016 -34.507260
32 Quarterly core model Palladium 47.531552 34.061132 54.301352
33 Quarterly core model Platin -30.721093 52.659395 -1.201376
34 Quarterly core model Silver -16.565804 14.108166 -34.114770
35 Quarterly extended model Copper -8.126543 24.606863 10.203632
36 Quarterly extended model Gold 0.000000 7.069595 -27.766865
37 Quarterly extended model Palladium 29.884244 2.068325 52.513854
38 Quarterly extended model Platin 45.296327 11.723309 -4.644460
39 Quarterly extended model Silver -15.636853 0.067011 -36.393122
40 Quarterly large model Copper -5.441586 8.377852 2.644165
41 Quarterly large model Gold -4.350958 -7.500744 -33.734450
42 Quarterly large model Palladium 60.262002 25.257954 60.638827
43 Quarterly large model Platin 0.682452 28.122548 -3.316760
44 Quarterly large model Silver -14.435129 -3.468093 -23.223678
45 Weekly core model Copper -7.047141 7.827148 -11.127144
46 Weekly core model Gold 7.283705 9.973899 -4.847711
47 Weekly core model Palladium 10.418275 4.358027 -17.331356
48 Weekly core model Platin 8.502982 -0.464822 -13.576997
49 Weekly core model Silver 0.544852 6.248484 0.884102
50 Weekly extended model Copper -15.675575 8.489647 -1.547097
51 Weekly extended model Gold 9.625003 1.932030 3.370226
52 Weekly extended model Palladium 22.109509 -3.546229 -17.106414
53 Weekly extended model Platin 5.617370 -0.272297 -6.431496
54 Weekly extended model Silver 15.278584 5.077101 6.629064
55 Weekly large model Copper -1.073381 11.471302 1.361617
56 Weekly large model Gold 0.000000 11.203386 4.179197
57 Weekly large model Palladium -13.921071 6.148763 1.352354
58 Weekly large model Platin -2.259976 -2.571379 2.259181
59 Weekly large model Silver 15.274339 11.382509 4.072999

Table 5: Full benchmarking results (II/II)

55

A.2 Implementation A APPENDIX

A.2 Implementation

Python was the language of choice for both linear inference as well as implementing the neural

architectures. The goal was to create a maintainable framework for deep commodity predict-

ability, although in practice its application is limited mostly by the insufficient access to a live

data API. All neural architecture is build upon the underlying tensorflow-framework v2.5.0

published and maintained by Google, while linear inference is implemented via statsmodels,

an open source Python library. The most critical part, however, is the implementation of con-

sistent datasets across all models to ensure their comparability. For this purpose, the classes

Data as well as DataModel were built in a reusable and scalable context to make handling data

convenient and reliable across the project.

A.3 The Data Class

Data is the class intended to import the Bloomberg datasets into Pandas Dataframes. It was

developed in order to

1. define a standardized data format,

2. efficiently import the at times large source CSVs (ADS -Index),

3. deal with the inconsistent datasets and ensure consistency.

The data class only needs to be imported once and may then be passed on to DataModel in

order to obtain standardized predictors and dependent variables. Efficient importing is tackled

by using separate processes for each dataset which connect to temporary functions that read and

pre-process the source files. These functions are the only ones which need replacing should the

models ever be used with a live API. The data class furthermore allows removing of individual

assets should they not be needed in the central config file. Excluded commodities were

1. Steel rebar, since it dates back only to 03/2009 and is therefore insufficient to yield a

good estimation,

2. Aluminium, since it unsystematically contained longer periods of zero price movements,

possibly indicating a temporary trade suspension or de-listing.

56

A.4 The Data Model Class A APPENDIX

Another important issue were the inconsistent date-indices which required alignment for each

individual dataset. The prices and total values were forward-filled in order to make the datasets

machine-operable. Consistent train-, development-, and test-datasets are created by saving hard

limits of different time-periods at the pre-configured levels. The decision for this procedure was

mainly driven by the fact that the underlying data exhibited multiple structural breaks for all

included commodities. Any model trained on past data must be able to work on new data

as well. Using integers with a fixed seed for a shuffled time series is of course possible as

well, though it should be noted that both the recurrent as well as the convolutional neural

architectures obtain past datapoints as features as well, making bootstrapping and shuffling

not really a feasible option on dataset-level. The output of the data class is finally a dictionary

of dataframes for each subset within the datapool (such as commodities, equities, government

bonds, etc...) as well as class- and therefore project-wide limits for train-, dev-, and test-set.

A.4 The Data Model Class

DataModel is the second most important class throughout the project and has one purpose

only: to make pre-processing data as convenient and re-usable as possible. Its primary reason

is to separate up to three different data models: Core Model, Extended Model, and Large

Model. The final output is a consistent dataset packaged as a dictionary of dataframes with

the respective keys x for the predictive variables and y for the dependent variables. DataModel

furthermore allows for flexible transformation to analyze different portfolio re-allocation periods.

Supported are daily, weekly, monthly and quarterly re-balancing, whereby daily re-balancing

uses log returns over last and opening prices to account for a trading delay in between. Finally,

a container object collects all data produced by any model in a systematic way throughout this

thesis.

57

A.5 LSTM A APPENDIX

A.5 LSTM

A reusable class Lstm is available in lstm.py, which ensures consistency across all compared

data models and resampled periods. It takes the already discussed Data-class as its input in

the init-function and computes the three available data models from this component, which

then become available internally. This is especially important for consistent scalability, as

each Lstm-instance can then be remotely passed on to its own sub-processes container without

needing access to global data models. If this were not the case, interferences with other working

processes could be caused in shared memory between individual parallel processes.

Lstm may upon calling it:

1. Prepare the data in the correct format

2. Train the model for each commodity

3. Infer predictions from supplied data after training

4. Return pre-trained models for later use

5. Return a complete history of the training process

A.5.1 Scalable Hyperparameter Design

Neural networks are generally neither unique nor do they produce consistent results for different

commodities on the same set of features. As a result, a major part of developing these architec-

tures is to decide upon an optimal set of hyperparameters. This requires intensive computing,

a lot of patience and ideally a good algorithm. For Lstm, configurable parameters include the

following:

1. lags [integer]: How many past observations should be included?

2. epochs [integer]: Max-cap for epochs to be trained for.

3. seed [integer]: Due to the potential pitfall of local optimization, initializing the models

weights close to the optimum is one of the most critical aspects to consider. Setting an

appropriate seed makes the model not only perfectly reproducible, but it also allows for

comparing different predictable powers to identify the optimal initialization.

58

A.5 LSTM A APPENDIX

4. optimizer [string]: The optimizer defines the algorithm which performs the gradient des-

cent. For now, this is only Stochastic Gradient Descent (with momentum), primarily for

performance reasons. True gradient descent is slow and computationally intensive. To

speed it up, SGD performs gradient descent on a random subset only. Momentum helps

accelerating the descent further by either looking ahead or applying moving averages to

the gradients. The implemented version in this thesis is:

velocityt = momentum ∗ velocityt−1 − learning ratet ∗ gradientt

weightst+1 = weightst + velocityt

5. activation [string]: The activation function for the LSTM s output block. Typically, this

is ELU.

6. recurrent activation [string]: The activation function for the recurrent block. As already

indicated above, TANH usually delivered empirically superior results to ELU. However,

this differs from model to model.

7. use bias [boolean]: Indicates if the layer will utilize a bias (a fixed fector) or not. There

were only a few models who benefitted from not using a bias.

8. bias initialzer [string]: Determines the initial state of the bias vectors. For most models,

setting it to zero turned out to be a good choice.

9. kernel initializer [string]: Determines the initial weights for the LSTM s kernel (the non-

recurrent components in ft, it, ot and cit from the compact form). For almost all models,

a random normal distribution was selected.

10. recurrent initializer [string]: Determines the initial weights for the LSTM s recurrent

blocks. (the recurrent components in ft, it, ot and cit from the compact form). For

the majority of models, initializing them orthogonally (eigenvalues from any orthogonal

tensors are 1) produced reliable results.

11. dropout [float]: The percentage of dropout to be applied to ne non-recurrent neurons.

This turned out to be quite different for each model and required a lot of attention.

59

A.5 LSTM A APPENDIX

12. recurrent dropout [float]: The dropout percentage for the recurrent layers. This was an

equally mixed situation as for the dropout layers, although models which had already a

dropout seemed to benefit from a recurrent dropout as well.

Many more hyperparameters can be edited as well, but they mainly alter the models input/out-

put behavior. A comprehensive overview is available in the configuration file hyperparams.yml.

A deeper insight to these hyperparameters can be gained by looking at the source code for and

the official documentation of Tensorflow2/Keras by Chollet et al. (2015).

A.5.2 Training: An Iterative Cycle

Training the model and tuning the hyperparameters proved to be the most challenging and

time-consuming task. Each model had to be trained for:

1. Each considered data model.

2. Each considered resampling-/reallocation frequency.

3. Each commodity.

4. Each hyperparameter.

5. Each possible value for any given hyperparameter.

Thus, each tuning loop required at least 5 commodities * 3 data models * 4 resampling fre-

quencies * 12 hyperparameters = 720 cycles. This is a nonviable task without the help of some

automation. Therefore the class ScaleHyperparameters was created. It is supplied with a pre-

defined selection of hyperparameter candidates which it loops over autonomously. Using either

the validation data or random subsets of both train- and validation data, simple performance

metrics, namely the empirical correlation, euclidic distance and absolute percentage error were

evaluated after each implemented candidate. Ultimately, the best performing hyperparameter

was then saved in Yaml (or Json, alternatively) format as a starting point for manual invest-

igation. This hyperparameter scaling is only tested on Linux since the parent thread lasts too

long for a Windows-based machine and is terminated after a set amount of time has passed

or simply gets stuck. Furthermore, ECC-RAM is recommended, since system RAM-errors can

break Python’s multiprocessing queues (although this problem is a rare occurrence). A com-

plete training cycle on 16 parallelized instances required up to 24 hours. The GPU should not

60

A.6 CNN A APPENDIX

be used for training since it limits parallel training capabilities more than it enhances individual

threat speed (unless a large number of GPUs is utilized)

After each completed cycle, the models were trained and extensively tested by hand using the

corresponding two other performance metrics to obtain a better assessment. It is important to

mention in this context that the testing set itself remained untouched. Hyperparameters that

were deemed worthy were then permanently added into lstm hyperparams.yml.

A.6 CNN

All available hyperparameters for each model can be found in cnn hyperparameters.yml config-

file in yaml standard. The most important ones shall be discussed in this chapter:

1. kernel size [integer]: Length of the Conv1D-window. Also specifies the amount of included

lagged observations for all features which is required for the causal padding as described

above.

2. epochs [integer]: Upper-limits the amount of passes over the data during the training

process. Per default, this is set to 100,000 passes. Note that early stopping is applied

which likely ends the training process prematurely.

3. seed [integer]: Random initialization of he weights. Most important for getting a good

starting point before the training process is invoked to avoid optimizing local instead of

global minima.

4. optimizer [string]: Optimizer for the gradient descent. Currently, only SGD is supported,

but any other option may be added with by replacing the opt-variable in model.compile().

5. filters [integer]: Dimensionality of the Conv1D output space.

6. strides [integer]: Strides corresponding to s above, fixing the total stride length. Since

this i a Conv1D-model on a 2D source, only one-dimensional strides are supported. Fur-

thermore, if strides 6= 1 then dilation rate = 1 et vice versa.

7. padding [string]: While it can be changed, note that only causal makes sense in the

context of this application.

61

A.6 CNN A APPENDIX

8. use bias [boolean]: Use a fixed vector bias in the Conv1d layer. Most models benefitted

from it.

9. kernel initializer [string]: Applies weight initialization to all weights within the Conv1D

layer according to the specified seed if set to a random distribution. Most models empir-

ically benefited from a glorot-normal initialization (truncated normal distribution).

10. bias initializer [string]: Initializer for the bias vector. Applies only if bias is set to True.

Per default this is configured to be zero.

62

A.7 Data A APPENDIX

A.7 Data

Commodities Equity GovBond

0 GC1 Comdty/PX OPEN SPX Index/TOT RETURN INDEX GROSS DVDS USGG3M Index/PX OPEN
1 GC1 Comdty/PX HIGH SPX Index/DVD PAYOUT RATIO USGG3M Index/PX HIGH
2 GC1 Comdty/PX LOW SPX Index/IDX EST DVD CURR YR USGG3M Index/PX LOW
3 GC1 Comdty/PX LAST SPX Index/GROSS AGGTE DVD YLD USGG3M Index/PX LAST
4 GC1 Comdty/PX VOLUME SPX Index/RETURN COM EQY USGG6M Index/PX OPEN
5 SI1 Comdty/PX OPEN SPX Index/RETURN ON ASSET USGG6M Index/PX HIGH
6 SI1 Comdty/PX HIGH SPX Index/IDX EST PRICE BOOK USGG6M Index/PX LOW
7 SI1 Comdty/PX LOW SPX Index/PX TO EBITDA USGG6M Index/PX LAST
8 SI1 Comdty/PX LAST SPX Index/PX VOLUME USGG12M Index/PX OPEN
9 SI1 Comdty/PX VOLUME SPXT Index/PX OPEN USGG12M Index/PX HIGH
10 PL1 Comdty/PX OPEN SPXT Index/PX HIGH USGG12M Index/PX LOW
11 PL1 Comdty/PX HIGH SPXT Index/PX LOW USGG12M Index/PX LAST
12 PL1 Comdty/PX LOW SPXT Index/PX LAST USGG2YR Index/PX OPEN
13 PL1 Comdty/PX LAST USGG2YR Index/PX HIGH
14 PL1 Comdty/PX VOLUME USGG2YR Index/PX LOW
15 PA1 Comdty/PX OPEN USGG2YR Index/PX LAST
16 PA1 Comdty/PX HIGH USGG3YR Index/PX OPEN
17 PA1 Comdty/PX LOW USGG3YR Index/PX HIGH
18 PA1 Comdty/PX LAST USGG3YR Index/PX LOW
19 PA1 Comdty/PX VOLUME USGG3YR Index/PX LAST
20 HG1 Comdty/PX OPEN USGG5YR Index/PX OPEN
21 HG1 Comdty/PX HIGH USGG5YR Index/PX HIGH
22 HG1 Comdty/PX LOW USGG5YR Index/PX LOW
23 HG1 Comdty/PX LAST USGG5YR Index/PX LAST
24 HG1 Comdty/PX VOLUME USGG10YR Index/PX OPEN
25 RBT1 Comdty/PX OPEN USGG10YR Index/PX HIGH
26 RBT1 Comdty/PX HIGH USGG10YR Index/PX LOW
27 RBT1 Comdty/PX LOW USGG10YR Index/PX LAST
28 RBT1 Comdty/PX LAST USGG30YR Index/PX OPEN
29 RBT1 Comdty/PX VOLUME USGG30YR Index/PX HIGH
30 AL1 Comdty/PX OPEN USGG30YR Index/PX LOW
31 AL1 Comdty/PX HIGH USGG30YR Index/PX LAST
32 AL1 Comdty/PX LOW
33 AL1 Comdty/PX LAST
34 AL1 Comdty/PX VOLUME

CorpBond Macro SmartBeta

0 SP5IGBIT Index/PX OPEN GDP CUR$ Index/PX LAST MXWO Index/PX OPEN
1 SP5IGBIT Index/PX HIGH CPI YOY Index/PX LAST MXWO Index/PX HIGH
2 SP5IGBIT Index/PX LOW EUR Curncy/PX LAST MXWO Index/PX LOW
3 SP5IGBIT Index/PX LAST IP YOY Index/PX LAST MXWO Index/PX LAST
4 SP500BDT Index/PX OPEN CBOPGAPN Index/PX LAST MXWO000V Index/PX OPEN
5 SP500BDT Index/PX HIGH MXWO000V Index/PX HIGH
6 SP500BDT Index/PX LOW MXWO000V Index/PX LOW
7 SP500BDT Index/PX LAST MXWO000V Index/PX LAST
8 SP5HYBIT Index/PX OPEN MXWOQU Index/PX OPEN
9 SP5HYBIT Index/PX HIGH MXWOQU Index/PX HIGH
10 SP5HYBIT Index/PX LOW MXWOQU Index/PX LOW
11 SP5HYBIT Index/PX LAST MXWOQU Index/PX LAST
12 MXWOMOM Index/PX OPEN
13 MXWOMOM Index/PX HIGH
14 MXWOMOM Index/PX LOW
15 MXWOMOM Index/PX LAST
16 MXWOSZT Index/PX OPEN
17 MXWOSZT Index/PX HIGH
18 MXWOSZT Index/PX LOW
19 MXWOSZT Index/PX LAST
20 MXWDHDVD Index/PX OPEN
21 MXWDHDVD Index/PX HIGH
22 MXWDHDVD Index/PX LOW
23 MXWDHDVD Index/PX LAST
24 M1WOMVOL Index/PX OPEN
25 M1WOMVOL Index/PX HIGH
26 M1WOMVOL Index/PX LOW
27 M1WOMVOL Index/PX LAST

Table 6: The Bloomberg Dataset

The table above contains all data fields which were exported from Bloomberg L.P.

Data about unemployment in the US is taken from the following OECD website: https://data.oecd.org/unemp/unemployment-rate.htm

Data about inflation on consumer price indices is taken from the following OECD website: https://data.oecd.org/price/inflation-cpi.htm

The ADS-Index is provided by the FED: https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/ads

All sites were available on the 1st September 2021.

63

https://data.oecd.org/unemp/unemployment-rate.htm
https://data.oecd.org/price/inflation-cpi.htm
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/ads

A.8 Source Code A APPENDIX

A.8 Source Code

The GitLab repository for this thesis can be found at and cloned from https://www.gitlab

.com/achwalt/MasterThesisCode.git. Please contact the author to gain access to the source

data.

64

https://www.gitlab.com/achwalt/MasterThesisCode.git
https://www.gitlab.com/achwalt/MasterThesisCode.git

	Introduction
	Motivation
	Main Goals and Research Questions

	Dataset and Preprocessing
	Commodity (Log-)Returns
	Predictive Variables
	Equity Related Components
	Payout Policy
	Profitability
	Valuation
	Smart Beta

	Aruoba-Diebold-Scotti Index
	Other Predictors

	Predictability
	The Random Walk Hypothesis
	Pre and Post Financialization

	Benchmarking
	Long Short Term Memory
	Introduction: Neural networks
	Formal Foundations
	Compact Recurrent Forms
	Backpropagation and Gradient Descent
	Activation functions
	Data Preparation and Dimensionality
	Model Specification
	Regularization: Avoiding Overfits

	Results
	Daily Rebalancing
	Weekly Rebalancing
	Monthly Rebalancing
	Quarterly Rebalancing

	Excursion: A Defense of Grid Search
	Random Search
	Bayesian Optimization

	Convolutional Neural Networks
	Introduction
	The Convolutional Kernel
	Causal vs. Non-Causal
	Interpreting Kernels
	Pooling and Flatten Layers

	Activation Functions
	Results
	Daily Rebalancing
	Weekly Rebalancing
	Monthly Rebalancing
	Quarterly Rebalancing

	Conclusion
	Appendix
	Benchmarking: Full Results
	Implementation
	The Data Class
	The Data Model Class
	LSTM
	Scalable Hyperparameter Design
	Training: An Iterative Cycle

	CNN
	Data
	Source Code

