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Abstract

In the past few decades, an ever-increasing amount of empirical evidence has

consistently emphasized the fact that evolutionary changes can effectively occur at

an ecological rate. This realization drastically challenged the traditional isolated

treatment of ecological and evolutionary systems. The inclusion of contemporary

evolutionary changes into an ecological model can generate eco-evo feedbacks. These

describe the interplay of ecological changes, inducing changes in evolutionary proper-

ties, which in return feed back to ecological changes, or vice versa. We first give an

overview of existing works that show how eco-evo feedbacks can affect the stability

of a system. In particular, we present work showing how feedbacks can stabilize an

ecologically unstable system and destabilize an ecologically stable system. Moreover,

they can induce permanence, reverse the direction of limit cycles and even lead to

chaos. Varying the evolutionary speed can generate qualitatively different outcomes.

In the second part, theoretical studies that investigate the type of feedbacks respon-

sible for stabilizing or destabilizing a general multi-species community system are

reviewed.
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Zusammenfassung

In den letzten Jahrzehnten haben sich die empirischen Beweise dafür gehäuft, dass

evolutionäre Veränderungen mit einer ökologischen Geschwindigkeit stattfinden kön-

nen. Diese Erkenntnis stellt die traditionell isolierte Behandlung ökologischer und evo-

lutionärer Systeme drastisch in Frage. Das Einbeziehen von schnellen evolutionären

Veränderungen in ein ökologisches Modell kann sogenannte „Eco-Evo-Feedbacks“

erzeugen. Diese beschreiben das Zusammenspiel ökologischer Veränderungen, welche

Veränderungen der evolutionären Eigenschaften induzieren, welche wiederum zu ökol-

ogischen Veränderungen führen oder umgekehrt. Zunächst erfolgt ein Überblick über

bestehende Arbeiten, die zeigen wie sich Eco-Evo-Feedbacks auf die Stabilität eines

Systems auswirken können. Insbesondere werden Arbeiten vorgestellt, die zeigen

wie Eco-Evo-Feedbacks ein ökologisch instabiles System stabilisieren und ein ökolo-

gisch stabiles System destabilisieren können. Außerdem können Eco-Evo-Feedbacks

Permanenz verursachen, die Richtung von Grenzzyklen umkehren und sogar Chaos

auslösen. Änderungen der evolutionären Geschwindigkeit können zudem zu qualitativ

unterschiedlichen Ergebnissen führen. Im zweiten Teil der Arbeit werden theoretische

Studien vorgestellt, die untersuchen welche Art von Feedbacks die Stabilisierung oder

Destabilisierung eines Multi-Spezies-System verursachen können.
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1
Introduction
Why Eco-Evo Feedbacks matter

Throughout the past century, mathematical models have repeatedly proven to be
indispensable tools in studying the interactions between living organisms and unfold-
ing the hidden mechanisms driving the diversity of ecosystems - both in the context
of mathematical ecology and population genetics. The success of such models heavily
relies on the right choice of level of abstraction, i.e. simplifications of reality in order
to obtain a mathematically tractable problem, while at the same time incorporating
all "important" factors. The definition of "important" may vary across models and
depends on the desired level of accuracy. In order to pick the right choice of elements
to include into the model, a thorough biological understanding of the problem is
essential. Naturally, each mathematical model is only as good as the biological basis
it relies on. If this basis is faulty, then the results and predictions of each mathemat-
ical model built on those biological assumptions may be flawed and need to be revised.

One of those assumptions - which is shared by a large number of mathematical
models - is the fact that evolutionary changes occur on a much slower time scale
than the ecological ones. Indeed, many literature works commonly adopt the terms
"ecological time scale" and "evolutionary time scale" as a reference when discussing
different rates of change. When talking about an ecological time scale, one usually
means the time needed to observe notable changes in population densities. On the
other hand, the evolutionary time scale corresponds to the time needed to observe
changes in the species’ traits, resp. changes in allele frequencies. For species with an
intergenerational time span of one to three years - such as birds, or annual plants
- the ecological time span is typically assumed to be about 100 years (Thompson
1998). This is the time scale at which most ecological studies are carried through
and at which the resulting conservation decisions are based on. The evolutionary
time span for such species is often assumed to be in the range of thousands to
millions of years, depending on the generation length. Consequently, most ecological
models completely neglect any evolutionary components since they are assumed to
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remain roughly unchanged during the relatively short ecological time span. Classical
examples are the well known Lotka-Volterra models (Lotka 1920; Volterra 1928).
Due to this difference, ecological and evolutionary models have mostly been treated
separately throughout history. If one was interested in understanding the interactions
between organisms and their environment - possibly with the objective of maintaining
biological diversity found in nature - then ecological models were used. If one was
interested in the processes that have caused this diversity, then the focus was laid on
evolutionary models. At large, this isolated treatment of ecology and evolution was
the norm and well accepted by both the biological and mathematical community.

In the past few decades, however, an increasing amount of empirical evidence
consistently highlighted the fact that evolutionary changes can effectively occur at an
ecological rate (Frickel et al. 2016, DeLong et al. 2016). This realization drastically
challenged the traditional separation of ecological and evolutionary models. Impor-
tantly, this meant that on a contemporary time scale the ecological dynamics may
be affected by rapid evolutionary changes and vice versa. It is therefore essential to
incorporate evolution into the ecological models, since one might otherwise falsify the
outcome and provide misleading predictions. In order to grasp the full extent of these
distorted outcomes, theoretical work studying the effects of including evolutionary
aspects into an ecological model is urgently needed. There are a variety of ways by
which such theoretical studies can be approached, one being the investigation of so
called eco-evo feedbacks (sometimes referred to as eco-evolutionary feedbacks) and
their influence on the dynamics. Eco-evo feedbacks involve the reciprocal interac-
tions between ecological and evolutionary processes. They represent the interplay of
ecological changes (changes in the environment or in species abundances) that cause
changes in the evolutionary traits, which in return feed back and affect the ecological
properties of the system, or vice-versa. According to Govaert et al. (2019), one of the
first works analyzing these feedbacks dates back to the year 1961 in a publication by
Pimentel (1961). Nonetheless, for a long time most ecological studies were carried
out without considering the possibility that their observed results may have been
influenced by rapid evolutionary changes. It was a publication on eco-evolutionary
dynamics by Fussmann et al. (2007), which revived the interest in eco-evo feedbacks
among biologists and mathematical ecologists (Hendry 2016). Since then, an ever-
growing number of empirical evidence for rapid evolution, as well as works studying
the eco-evolutionary feedbacks have been published (Govaert et al. 2019).
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There are many ecological properties in a system that can be influenced by the
eco-evo feedbacks, such as stability, persistance, invasibility, permanence, directions
of stable limit cycles, and many more. In this thesis, we will focus on the stability of
multi-species community systems and give an overview of the few existing works that
analyze the influence of these feedbacks. The goal of this thesis is the presentation
of some of the most important numerical and most of all analytical results, which
have advanced our knowledge of how the eco-evo feedbacks can effectively alter the
stability of ecosystems. To highlight the fact that eco-evo feedbacks do truly exist,
in the second chapter we will present some empirical studies which clearly show that
evolutionary changes can effectively occur on a contemporary ecological time scale.
The main results are presented in the third chapter. The first part of this chapter
focuses on works which have analyzed the eco-evo feedbacks through numerical
simulations of specific community systems, which consist of at most three species.
Theoretical studies such as these - which are based on numerical simulations - are
quite numerous. In contrast, analytical results on the effects of eco-evo feedbacks on
system stability are hardly available with two notable exceptions by Patel, Cortez
and Schreiber, which will be presented in the second part of the third chapter (Patel
et al. 2018; Cortez et al. 2020). These are - at the time being - the only works which
have attempted to provide analytical results on the effects of eco-evo feedbacks on
system stability in general multi-species community systems. However, analytical
work on specific models, typically with few species, is available (Vasseur and Fox
2011, Schreiber et al. 2011, Schreiber and Patel 2015, Patel and Bürger 2019).
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2
Empirical Evidence

Before tackling the theory of how eco-evo feedbacks can affect system stability, we
first provide some empirical evidence of evolutionary change occurring at an ecological
rate. To this end, we present a chemostat experiment (Frickel et al. 2016) which
perfectly shows the coevolution of an algae-virus system at a rate congruent to the
ecological dynamics. Frickel, Sieber and Becks performed the experiment by starting
several chemostats all with the same isolated algae clone in order to minimize the
genetic variability. After 12 days, they added a virus to the chemostats and counted
virus and algae densities daily. Every other day, they removed a sample of algae
and virus populations in order to keep track of the evolutionary changes. The two
evolutionary properties of interests are on the one hand the resistance, resp. the
susceptibility of the algae population, and on the other hand the infectivity of the
virus population. At some specific time-points, several algae clones were isolated from
the chemostat and each exposed to a different virus population sampled from the past
up to the present. The resistance of the algae clone at a given time point was then
determined by comparing the growth of the algae samples with the different viruses,
to the growth of the same clone without the virus. Accordingly, the infectivity of a
specific virus population was determined by the number of host clones which could
be infected throughout this process.

The experiment initially led to so called arms race dynamics (ARD), where both
the host and the virus alternatively adapted to the evolutionary response of the
other (Figure 1). Thus, the oscillations in the first 45 days correspond to selective
sweeps of new resistant algae types. Eventually the oscillations were damped out and
the ARD ended with an almost general resistant algae type. The algae population
did however not reach fixation due to a trade-off between resistance and growth,
ultimately allowing the virus population to stabilize at some low density.

The critical observation of this experiment is that the evolutionary changes occurred
at a similar rate to the ecological dynamics. At the end of chapter 3, we will return to
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Figure 1: Illustration of the ecological and evolutionary dynamics of both algae and virus
in the chemostat experiment of Frickel et al. 2016. The green dots represent the logarithms
of the algae densities and the blue triangles represent the (logarithms) of the virus densities
each day. The grey bars denote the time points where experiments were made in order to
determine the evolutionary changes of the algae (susceptibility) and the virus (infectivity).
The color coded squares above the grey bars describe the evolutionary state of the algae, resp.
virus. The three squares corresponding to the algae evolution represent the susceptibility of
algae from one time step in the past (first square), contemporary time point (second square),
and one time step in the future to the contemporary virus. Similarly, the three squares
corresponding to the virus evolution denote the infectivity of the virus at one time step in
the past (first square), the contemporary time point (second square), and at one step in the
future (third square) to the contemporary algae population. The color green denotes that
the algae is resistant to the virus, the color blue means that the virus was able to infect the
algae, and grey denotes that the algae was susceptible to the virus, resp. that the virus was
unable to infect the algae.

this example with the purpose of understanding how the eco-evo feedbacks stabilized
the system.

While many similar examples confirm that the evolutionary time scales are in
some cases comparable to the ecological rates, it remains unclear how fast the relative
ecological and evolutionary rates really are. To this end, one can consider a standard
model - the so called Lande equation (Lande 1976) - which is commonly used to
describe the change in the mean of the trait under consideration:

ẋ = h2σ2∂W

∂x
,

where h2 is the heritability of the trait, σ2 the phenotypic variance of the trait and
finally W the mean fitness of the species. Using the standard definition of fitness,
i.e. the per capita growth rate of the species W = Ṅ/N and using the relation
∂
∂xW = W ∂

∂x(logW ), one obtains:
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ẋ = h2σ2∂ logW
∂x

W

⇔ ẋ = h2σ2∂ logW
∂x

Ṅ

N
.

Finally, dividing both sides by x, results in the fact that both the ecological and
evolutionary rates have the same unit and thus can be compared. All together, the
critical term which relates the ecological rate Ṅ/N to the evolutionary rate is given
by

C := h2σ2

x

∂ logW
∂x

.

This term can in theory be smaller or larger than 1, corresponding to slower or faster
evolutionary rates compared to the ecological ones. Interestingly, strong selection (i.e.
large values of ∂

∂x(logW )) will not guarantee fast evolutionary rates if the heritability
or the variance of the trait are too low. Using this framework, DeLong et al. (2016)
determined the relative evolutionary rates in 21 empirical systems with comparable
ecological and evolutionary time scales, including data of algae, protists, rotifers,
lizards, fish, mammals, and birds. The surprising result was that in all these systems,
the evolutionary rate varied, but never exceeded the ecological ones. Indeed, the
evolutionary rates were never faster than about two-thirds and on average about
one-fourth of the ecological rates.
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3
The Role of Eco-Evo Feedbacks
on Stability

3.1 Motivation

Motivated by the significant amount of empirical evidence - suggesting that eco-evo
feedbacks do effectively alter the long time behaviour of multi-species dynamics - we
now approach the topic from a theoretical point of view. In particular, we would
like to investigate whether and how these feedbacks affect the stability of ecosys-
tems, i.e. the ability to withstand inevitable, but small perturbations. Advancing
our understanding of the mechanisms that govern ecological stability is of utmost
importance, given the rise of natural, but first and foremost anthropogenic changes,
such as climate change and environmental degradation. Ecological disturbances such
as these will rather likely lead to ecological responses (changes of population sizes,
immigration of new species due to climate change) that change the selection pressure,
resulting in an evolutionary response, which in return "feeds back" on ecological
properties, or vice versa. The fundamental question whether a given ecosystem
can withstand and recover from such environmental stresses - eventually allowing
coexistence of all preceding species - is the key focus of many mathematical ecologists.
The aim of this chapter is the presentation of existing results that elaborate the
role of eco-evo feedbacks on the stability of multi-species community systems. In
particular we will address the following potential questions: Can eco-evo feedbacks
stabilize a system that is ecologically and/or evolutionary unstable? Is it possible
to identify for each model the exact types of feedbacks (ecological, evolutionary,
eco-evolutionary) that have a stabilizing/destabilizing effect?

Throughout this chapter, our main goal is the derivation of general analytical
results on multi-species community systems. This seemingly innocent task will
however quickly reveal itself to be surprisingly challenging. Indeed, analytical results
on the effects of eco-evo feedbacks concerning the stability of general multi-species
and multi-trait systems are - at the time being - hardly available, with two notable
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exceptions (Patel et al. 2018; Cortez et al. 2020). These results (Patel et al. 2018;
Cortez et al. 2020) will be introduced in section 3.3 and 3.4 respectively. While
general theory seems to be scarce, results on specific community systems are rel-
atively common (Vasseur et al. 2011; Schreiber et al. 2011; Schreiber and Patel
2015; Mougi 2012; Cortez and Weitz 2014). Unfortunately, most of these works only
provide numerical, rather than analytical results, which prevent a mechanistically
understanding of the underlying eco-evo effects on stability. Nonetheless, analyzing
specific community systems first, serves as a great starting point in understanding
and proving the potential dependence on system stability and eco-evo feedbacks.
These preliminary examples will bet limited to two or three species, with one or two
evolving traits. Eventually we aim to present results on models with an arbitrary
but finite number of interacting species, each of which in turn can have an arbitrary
but finite number of evolving traits, which in general are subject to frequency and
density dependent selection.

Before presenting the results, we first clarify what we mean by "system stability".
Throughout this thesis, we will always call a system stable, if it is locally stable
at an equilibrium. Local stability can be determined by calculating the Jacobian
and evaluating it at the equilibrium. Finally, deriving the eigenvalues will give us
the desired information on the local behaviour. In particular, if all the eigenvalues
have negative real part, then the equilibrium is stable. If however one eigenvalue has
positive real part, then we say that the equilibrium - and therefore the system - is
unstable. If the real parts of all of the eigenvalues are non-positive with at least one
eigenvalue having a negative real part, then we say that the equilibrium is neutrally
stable. If the real parts of all of the eigenvalues are zero, then we call the equilibrium
neutral. In addition to the notion of stability of a system, we call any matrix "stable",
"unstable", "neutrally stable" or "neutral" if it’s eigenvalues satisfy the previous
conditions. There are of course various other ways of defining system stability. A
system with a stable limit cycle around an equilibrium could for example also be
considered stable, even though the equilibrium itself is unstable. Another example
would be to call a system stable if it is globally stable. Indeed, since we restrict
ourselves to the local analysis of isolated equilibria, we might be missing the global
picture. The global dynamics can be much more complex if the system has more
than one coexistence equilibrium. However, since we limit ourselves to the analysis
of rather small perturbations, a local analysis - and thus, our definition of system
stability - is in most cases sufficient. Unfortunately, natural perturbations can quite
often be described as intense shake-ups, rather than gentle stirrings. In these cases,
a good understanding of the global behaviour is highly important: The trajectories
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close to a locally stable equilibrium could converge to some stable limit cycle or a
chaotic attractor if the perturbations are sufficiently strong. These dynamics are
often highly complex and relating them to the effects of eco-evolutionary feedbacks
is incredibly challenging. Fortunately, the exact ecological dynamics are in most
cases of lesser importance. The more crucial part is the question, whether all species
can continue to coexist after some environmental perturbation. There are various
mathematical concepts involving the notion of ecological coexistence: persistence,
invasibility and permanence. We briefly discuss permanence in section 3.2.2 and
present a result which relates the eco-evolutionary feedbacks to permanence of a
three-species apparent competition model.
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3.2 Examples: Specific communities

3.2.1 2-species competition

The first example presented is a 2-species competition model by Vasseur et al. (2011),
where one of the species has an evolving trait that effects the interaction coefficients.
Classical non-evolutionary competition models (constant interaction coefficients),
such as the Lotka-Volterra models (Lotka 1920; Volterra 1928) are straightforward to
analyze (at least in two dimension). We start by preliminarily studying this rather
simple model, with the intention of eventually comparing the results to the more
general and complex evolutionary case. The equations are given by:

ẋ = rxx(1− cxyy − cxxx) (3.1a)

ẏ = ryy(1− cyxx− cyyy), (3.1b)

where rx and ry correspond to the intrinsic growth rates of species x and y respec-
tively (Hofbauer and Sigmund 1988). The coefficients cxy and cyx correspond to
the interspecific interaction parameters, whereas the coefficients cx and cy corre-
spond to the intraspecific interaction parameters. All of the interaction terms are
assumed to be non negative. Note that in the absence of species y, the system
reduces to simple logistic growth of species x. For the analysis of the full model
(x 6= 0, y 6= 0), it’s sufficient to consider all possible isocline configurations. For the
Lotka-Volterra competition model, the non-trivial isoclines are linear with negative
slopes: y = (1− cxxx)/cxy for the x-isocline, and y = (1− cyx/cyy) for the y-isocline.

Four different isocline configurations are possible as depicted in Figure 2. Each
corresponds to one of three qualitatively different patterns: dominance, mutual
exclusion or coexistence.

Dominance: As the name suggests, one species dominates the other. Let’s
assume w.l.o.g that x is dominant. In this case, y goes extinct, reducing the dynamics
of x to simple one-dimensional logistical growth. As a consequence, x converges to
its carrying capacity Kx = 1/cxx. This pattern always prevails when both isoclines
do not intersect in the positive quadrant. In this case, the species with the "higher"
isocline is dominant. In Figure 2, (a) corresponds to dominance of species x over
y and (b) corresponds to dominance of species y over x. Biologically, this means
that both species share the same limited resource, which according to the so called
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Figure 2: Four possible isocline configurations of (3.1). Unstable equilibria are represented
by white circles, whereas asymptotically stable equilibria are represented by black circles. (a)
and (b) correspond to dominance of one species over the other. (c) corresponds to the case
of mutual exclusion. (d) corresponds to the case of coexistence.

competitive exclusion principle (sometimes referred to as Gause’s law) always drives
the weaker competitor to extinction.

Mutual exclusion: If interspecific competition is stronger than competition
among conspecifics, this could once more lead to the extinction of one of both
interacting species. Mathematically speaking, this corresponds to the case where the
isoclines intersect below the carrying capacity of both species (Figure 2c), leading to
an unstable interior equilibrium and two asymptotically stable boundary equilibria.
Depending on the initial frequencies of both species, the long-term outcomes will be
differently: Either they converge towards the carrying capacity of x and extinction
of y, or vice versa.

Coexistence: The most interesting case (from an ecologist’s perspective) is of
course coexistence. This is possible if the intraspecific competition between con-
specifics outweighs the competition with the other species. Mathematically speaking,
this corresponds to the case where the isoclines cross above the carrying capacity
of both species (Figure 2d), leading to two unstable saddles on the boundary and a
globally stable interior equilibrium at the intersection of the isoclines. Biologically,
this means that - unlike in the case of dominance - each species has its own private
resource. This is also known as the process of niche differentiation or the principle
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of limiting similarities, and is critical in promoting the high biodiversity found in
certain areas of the world.

Niche differences can arise through various ways, such as by using different
environmental areas or consuming specialized foods. While the theory about niche
differentiation enabling coexistence seems clear, empirical demonstrations of the
latter have proven itself to be much more challenging. While perfectly obvious
examples confirming the theory are easy to think of (Figure 3), there are exceptions
to the rule: Hispine beetles have been obeserved to eat the same food and share
the same habitat, without showing any evidence of intra- or interspecific aggression,
while according to the theory, they should be subject to interference competition
(Strong 1982). This inconsistency between theory and empirical observations suggest
that for a deeper understanding of coexistence in natural communities, additional
non-ecological factors may have to be considered as well.

Figure 3: Example of niche differentiation in nature. The five different bird species in the
illustration share the same habitat, while each have their individual niches. In this particular
example, the niche differences correspond to the different levels in the sand where they search
their prey and on which they feed on. This allows them to coexist peacefully without the
risk of extinction of any of the involved species.

Adding an evolutionary component

Following Vasseur et al. (2011), we now present an alternative mechanism allow-
ing coexistence, which assumes the additional existence of an evolutionary process
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occurring on a congruent time scale.
In classical character displacement theory, similar competing species evolve through
traits that create niche differences, ultimately allowing coexistence. Classical exam-
ples are the diverse beak forms (and functions) of the Galápagos finches (also known
as Darwin’s finches). Other examples, such as that of the Hispine beetles however,
show that these niche differences do not necessarily need to occur in real coexisting
communities. As an alternative explanation, Vasseur et al. considered traits that
are subject to so called neighbor-dependent selection: when rare (most "neighbors"
are heterospecifics), a species experiences stronger selection on traits associated to
interspecific competition, and when abundant (most "neighbors" are conspecifics), it
experiences stronger selection on traits involved in intraspecific competition. This
means that - in contrast to character displacement - the involved traits are not niche
axes, but allow stable coexistence by permanently shifting the respective dominance,
depending on the relative abundance of either species (eco-evo feedbacks). Impor-
tantly, this implies that the involved species won’t develop niche differences and
therefore cannot coexist in the absence of evolution according to Gause’s law. In
other words, the eco-evo feedbacks allows coexistence, in an otherwise ecologically
unstable system.

To begin with, Vasseur et al. assumed that only one of the two involved species
has an evolving trait, which in the following will be referred to as the variable
species and denoted by Nv. Accordingly, the other species will be referred to as the
fixed species and denoted by Nf . Furthermore, they assumed that the traits under
consideration all have a genetic basis, and that there exists a trade-off which ensures
that the optimal traits for dominance in a conspecific neighborhood (intraspecific
competition) preclude dominance in a heterospecific neighborhood (interspecific
competition). The trait for dominance in a conspecific neighborhood are now called
x and the other trait y. As depicted in Figure 4, the fitness landscape changes
depending on the relative abundances of the species. In a conspecific neighborhood,
fitness is maximized for low values of x (θc) and high values of y. In a heterospecific
neighborhood, fitness is maximized for high values of x (θH) and low values of y.
Since both traits are negatively correlated, it is therefore sufficient to only consider
trait x for the analysis.

For the ecological part, one can once more use a Lotka-Volterra competition model.
In contrast to (3.1), now the mean interspecific interaction terms (cfv(x), cvf (x)) and
the mean intraspecific interaction term of the variable species (cvv(x)), continuously
depend on the mean trait x. Only the conspecific interaction parameter of the fixed
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Figure 4: Illustration of the fitness landscapes in a neighborhood dominated by conspecifics
(A) and heterospecifics (B). In a conspecific neighborhood (A), the fitness is maximized for
small values of the trait x and large values of the trait y. In a heterospecific neighborhood,
the opposite is the case: the fitness is maximized for high values of x and low values of y.
Due to this trade-off, it is sufficient to only consider x for the analysis as depicted in (C),
where the fitness in a conspecific (resp. heterospecific) neighborhood is maximized for x = θC

(resp. x = θH). (Vasseur et al. 2011)
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species (cff ) remains constant. All together, gives:

Ṅf = rfNf (1− cfv(x)Nv − cffNf ) (3.2a)

Ṅv = rvNv(1− cvf (x)Nf − cvv(x)Nv), (3.2b)

The evolutionary dynamics are described in terms of the mean trait x and follow
the so called Lande equation (Lande 1976), which is, essentially, equivalent to the
so-called breeder’s equation:

ẋ = h2σ2 · ∂
∂x

(Ṅv

Nv

)
. (3.3)

Explanation of the equations

To begin with, one needs to note that in the equations (3.2), the mean of the
competition terms were used as coefficients, as opposed to the competition terms
themselves. For this, Vasseur et al. adopted the typical assumption for quantitative
traits, namely that x is normally distributed with mean x and variance σ2. Thus,
the mean interaction coefficients are given by the integral

cij(x) =
∫ ∞
−∞

cij(x) · 1√
2πσ2

exp
(−(−x− x)2

2σ2

)
dx. (3.4)

Here cij(x) denote the interaction coefficients as a function of the quantitative trait
x. Finally, multiplying them with the according distribution function and integrating
across all possible trait values gives the desired mean competition coefficients used in
equations (3.2). For a detailed analysis, the exact form of the interaction coefficients
cij(x) still need to be specified. Ultimately, they should resemble the graphs of
Figure 4C, i.e. they should be continuous in the trait x and attain a local minimum
or maximum at some finite value for x. The most obvious approach is to simply
consider Gaussian functions, however any similar functions with the same critical
points work fine as well. Since the interaction parameter of the fixed species cff
remains constant, only the terms cfv, cvf and cvv need to be considered:
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cfv(x) = a1 + exp
(−(x− θH)2

2τ2

)
(3.5a)

cvf (x) = 1 + a1 − exp
(−(x− θH)2

2τ2

)
(3.5b)

cvv(x) = 1 + a1 − δ − (1− 2δ) · exp
(−(x− θC)2

2τ2

)
. (3.5c)

Note that both cvf and cvv are upside-down Gaussian functions with a minimum
at θH and θC respectively. Minimizing cvv(x) in a conspecific neighborhood is always
the best strategy for the variable species, since this is equivalent to minimizing
intraspecific competition. Thus, x = θC corresponds to the optimal trait value for
the variable species in a conspecific neighborhood. Similar is true if the neighborhood
is dominated by heterospecifics: In this case, the optimal strategy for the variable
species is to minimize cvf (x) and maximize cfv(x), since this corresponds to dom-
inance of Nv over the fixed species. For simplicity, it is assumed that cvf (x) and
cfv(x) attain their critical points at the same value x = θH . Thus, θH corresponds
to the optimal trait value for the variable species in a heterospecific neighborhood.
A further assumption is that all three Gaussian functions have the same width τ .
Finally, a1 determines the extreme values of the respective functions and δ determines
the relative rate at which the coefficient cvv changes with the trait.

Figure 5: Interspecfic interaction terms as function of the quantitative trait x. Note that
αij(x) = cij(x). At x = θC , the interaction term cvv is minimized which means that the
variable competitor is best-adapted in a neighborhood of conspecifics. At x = θH , the
coefficient cvf is minimized whereas cfv attains its maximal value, which means that the
variable competitor is optimally adapted in a neighborhood dominated by heterospecifics.
(Vasseur et al. 2011)

Combining equations (3.3) and (3.5), and solving the integral results in the
following representation of the mean interaction coefficients used in the model:
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cfv(x) = a1 +
(

τ√
τ2 + σ2

)
exp

(−(x− θH)2

2τ2 + 2σ2

)
(3.6a)

cvf (x) = 1 + a1 −
(

τ√
τ2 + σ2

)
exp

(−(x− θH)2

2τ2 + 2σ2

)
(3.6b)

cvv(x) = 1 + a1 − δ − (1− 2δ) ·
(

τ√
τ2 + σ2

)
exp

(−(x− θC)2

2τ2 + 2σ2

)
. (3.6c)

For a better understanding of the evolutionary equation, we need to clarify what the
Lande equation actually describes. In its most general form, the Lande equation
is given by R = σ2

GS. Here R refers to the change in the mean of the quantitative
trait. S is the so called selection differential: S < 0 if Nv benefits from lower values
of the trait and S > 0 if selection favors higher values of the trait. In equation (3.3),
S is given by the derivative of the per capita growth rate of Nv w.r.t. the mean
trait x (fitness gradient), which obviously satisfies the previous properties. Finally,
σ2
G is the heritable component of the phenotypic variance, which determines the

rate at which the mean trait changes as a response to the selection differential S.
Indeed, the phenotypic variance can be written as σ2 = σ2

G + σ2
E , where σ2

G is its
heritable genetic component and σ2

E is the environmental component. The parameter
h2 = σ2

G/σ
2 is called the heritability of the trait. Using this, Lande’s equation can be

rewritten as R = h2σ2S. This representation of the change of the mean trait is useful
when studying the consequences of varying the evolutionary speed of the system,
which can then simply be done by changing the value of the heritability parameter h2.

Figure 6: Graphical representation of the model in Vasseur et al. 2011. (Figure from
Govaert et al. 2019)
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Numerical analysis of the model

As with most eco-evo models, the full dynamical behavior cannot be determined
by mathematical analysis. Therefore Vasseur et al. (2011) helped themselves with
numerical methods to understand the underlying effects of the eco-evo feedbacks. As
a preliminary step, they ignored the evolutionary dynamics and analyze the outcomes
of the pure ecological Lotka-Volterra model, while varying the value of the mean
trait x. To this end, they restricted the domain of x to [θC , θH ]. Indeed, if the
variable species lives in a neighborhood of conspecifics, then its per capita growth
rate is proportional to 1− cvv(x), thus selection on the trait decreases cvv(x). As a
consequence, x converges towards θC . On the other hand, if the variable species lives
in a neighborhood dominated by heterospecifics, then its per capita growth rate is
proportional to 1− cvf (x)Nf , thus selection on the trait decreases cvf (x). Similar to
the previous case, x will converge towards θH . Hence, the mean trait x is bounded
by θC and θH , and one can assume w.l.o.g. that θC < θH . Furthermore, Vasseur et
al. assumed that the competitive parameters depend on the mean trait x in such a
way that the variable species dominates in a heterospecific environment if x = θH ,
and the fixed species dominates if x = θC . A violation of this assumption leads to
the dominance of one of both species over the entire domain [θC , θH ]. As depicted
in Figure 2, dominance corresponds to the case where the isoclines do not intersect
in the positive quadrant. The species with the higher isocline dominates and drives
the other to extinction. Since in this case, dominance is reversed at the endpoints of
the selection domain, the isoclines will have to intersect at some intermediate value
x∗ ∈ (θC , θH). Three possible outcomes can emerge depending on the shape and
position of the interaction functions (Figure 7): coexistence, neutrality and mutual
exclusion.

The intersection of the isoclines with the Nf axes are given by 1/cff and 1/cvf .
Since both isoclines eventually change positions, there exists a value xf at which
1/cff = 1/cvf . The same is true for the intersections of the iosoclines on the Nv axes,
which are given by 1/cvv and 1/cfv. The trait value satisfying 1/cvv = 1/cfv will
accordingly be called xv. The ecological outcome at intermediate mean trait values
depends on the relative positions of xf and xv: (1) if xf < xv, the isoclines will inter-
sect above the carrying capacity of both species and as a result, one gets coexistence
at a stable interior equilibrium (Figure 7b); (2) if xf = xv, the outcomeis neutrality
(Figure 7c); (3) if xf > xv, the isoclines will intersect below the carrying capacity
of both species and the outcome is mutual exclusion (Figure 7d). Importantly, this
implies that the ecological outcome at intermediate values depends on the relative
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Figure 7: Isocline configurations for different mean trait values x ∈ [θC , θH ]. Note that
αij = cij . At the boundary points θC and θH the isoclines reverse their relative positions.
Consequently, the isoclines intersect (in the positive quadrant) for some intermediate value of
x. This can happen in three different ways depicted in (b), (c) and (d). Panel (b) illustrates
an intersection at a single point, resulting in coexistence at a globally stable equilibrium.
The second panel (c) shows the case of neutrality where a continuum of equilibria appear. In
the third case (d), the isoclines intersect at a single point, resulting in an unstable interior
saddle equilbrium and two stable boundary equilibria, leading to the extinction of one of
both species, depending on their initial densities. (Vasseur et al. 2011)
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positions of the intersections of cff (x) and cvf (x), and of cvv(x) and cfv(x). By the
choice of the interaction functions, it is guaranteed that each two functions intersect
exactly once in the selection domain (i.e. xf and xv are well defined), provided that
0 ≤ δ ≤ 0, 5. As depicted in Figure 8, varying the fixed parameter cff can lead to a
reversal of the relative positions of xf and xv. Thus, the ecological outcome can be
changed solely by varying cff .

Figure 8: Mean interspecific interaction terms as function of the mean trait x in the case
of xf < xv. Note that: αij = cij . The isocline configurations are depicted for several values
of the mean trait x. Since xf < xv, there exists some intermediate value of the mean trait
such that the isoclines intersect in a way which results in a coexistence equilibrium. (Vasseur
et al. 2011)

Next, Vasseur et al. included the evolutionary dynamics and simulated the model
for three different values of cff , corresponding to coexistence, neutrality and mutual
exclusion in the purely ecological model (Figure 9). To this end, they assumed that a
small number of individuals of the fixed species (Nf (0) = 0, 01) invade a population
of the variable species (Nv(0) = 1/cvv(x)) which is optimized for a neighborhood of
conspecifics (x(0) = θC).

If the intermediate ecological outcome for a fixed mean trait is coexistence, then
the mean trait in the full eco-evo dynamics converges towards an optimum at which
stable coexistence is possible once again (Figure 9a-c). If the intermediate ecological
outcome for a fixed mean trait is neutrality or mutual exclusion, then the mean trait
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Figure 9: Simulations of the eco-evolutionary model each corresponding to one of the three
possible intermediate ecological outcomes depicted in Figure 7. (a)-(c) correspond to a value
of cff which lead to coexistence in the ecological model; (d)-(f) correspond to a value of cff

which lead to neutrality in the ecological model; (g)-(i) correspond to a value of cff which
lead to mutual exclusion in the ecological model. Notation: αij = cij . (Vasseur et al. 2011)

oscillates within the selection domain, leading to alternating periods of dominance of
either species. Thus, in both cases, the species converges towards a stable limit cycle
(Figure 9d-i). A crucial observation is - as predicted in the beginning of this section
- that the eco-evo feedbacks allow coexistence in an ecologically unstable system
(Figure 9g-i). This phenomena can be understood as a form of so called intransitive
competition. Typically, in competition systems, there is a clear transitive hierarchy in
dominance among species: A dominates B or vice versa. Coexistence is only possible
if A and B have their own individual niches. In contrast, systems with intransitive
competition are not hierarchical: A dominates B, B dominates C and C dominates
A. Thus, there is no strongest or weakest species, just as in a rock-paper-scissors
game (Soliveres and Allan 2018). Typically, intransitive competition requires at least
three species to form such a loop. This outcome is however no violation to the rule
since the variable species can be simply interpreted as two different species: The
variable species adapted to heterospecifics wins against the fixed species, the fixed
species wins against the variable species adapted to conspecifics, and finally the
variable species adapted to conspecifics wins against the same species adapted to
heterospecifics.
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Conclusion

This model serves as a perfect demonstration of how eco-evo feedbacks can
stabilize an ecologically unstable system and provides a possible explanation for the
coexistence of species without niche differences, such as the Hispine beetles. Thus,
Gause’s law need not always be satisfied in natural communities. As a matter of
fact, a more recent study suggests that species coexisting while sharing the same
limited resource might even be advantageous in a changing environment (Prinzing
et al. 2017). The reason is that sharing the same niche might help promote mutualist
exchange, niche expansion and hybridization among the interaction species, which in
return helps them to resist natural perturbations.

3.2.2 Eco-evo feedbacks can destroy coexistence in simple predator-
prey models

In this and the following subsections, we briefly present some further examples on
how the eco-evo feedbacks can influence a system besides stabilizing it. The proofs
of the main results are omitted since the aim should simply be to highlight the
importance of feedbacks.

In the model of Vasseur et al. (2011), the eco-evo feedbacks promoted coexistence
in a system that would otherwise lead to the extinction of one of the involved species.
We now show that this does not always have to be the case. Indeed, as a first example,
we present a coexisting predator prey system, where incorporating an evolutionary
trait leads to the extinction of at least one of both species. As a basis, we start with
a simple Lotka-Volterra predator prey system without intraspecific competition:

Ṅ = N(r − cNMM) (3.7a)

Ṁ = M(cMNN − d), (3.7b)

where N is the density of the prey, M the density of the predator, r > 0 is the
intrinsic growth rate of the prey, cNM > 0 and cMN > 0 are parameters describing
the interaction between the predator and the prey, and finally d > 0 is the death
rate of the predator. This model was originally used by Vito Volterra to explain
the increased number of sharks and rays in the sea after the first world war, when
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fishing had been interrupted for a few years. A detailed analysis of this model can
be found in Hofbauer and Sigmund (1988). The phase plane of this model consists
of a continuum of periodic orbits around a unique coexistence equilibrium (Figure
10). Initial conditions that are "far" away from this equilibrium result in oscillations
that get dangerously close to the x, resp. y axis. Consequently, slight perturbations
of the model may lead to the extinction of one of both species. If we however start
with initial conditions that are reasonably close to the equilibrium, both species will
be able to coexist.

Figure 10: Illustration of the continuum of periodic orbits that appear in the phase portrait
of a Lotka-Volterra predator prey system without intraspecific competition.

Next, we include an evolutionary component to the model. For this, we assume
that the predator has an evolving trait that determines both its attack and death
rate. We assume that there is a trade off, such that trait values which are beneficial
in the interaction with the prey, result in a lower life expectancy, and thus a higher
death rate. Conversely, trait values which increase the life expectancy, result in a
decrease of the attack rate. If we describe the change of the mean trait x using the
Lande equation as in Vasseur et al. (2011), this gives:
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Ṅ = N(r − f(x)M) (3.8a)

Ṁ = M(g(x)N − h(x)) (3.8b)

ẋ = σ2
G ·

∂

∂x

(Ṁ
M

)
, (3.8c)

where the interaction terms f(x) and g(x) and the death rate of the parameter h(x)
are now functions of the mean trait x. The term σ2

G denotes the genetic variance of
the trait. By our assumption, an increase in the mean trait results in an increase
of the functions f , g and h, i.e. ∂f/(∂x) > 0, ∂g/(∂x) > 0 and ∂h/(∂x) > 0. The
simplest functions satisfying these conditions are linear functions f(x) = cNMx,
g(x) = cMNx and h(x) = dx, with cNM , cMN , d > 0. Plugging this into our model
gives us:

Ṅ = N(r − cNMxM) (3.9a)

Ṁ = M(cMNxN − dx) (3.9b)

ẋ = σ2
G · (cMNN − d). (3.9c)

Plotting the phase portrait of this new model reveals that the incorporation of
an evolutionary trait in this way destroys the continuum of periodic cycles found
in the ecological model and replace them with growing oscillations that spiral out
and asymptotically approach the boundary (Figure 11). Eventually, the densities of
both the predator and the prey reach values close to zero. Thus, slight perturbations
either lead the predator, or both the predator and the prey to extinction.
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Figure 11: Comparison between the dynamics of the ecological model (a),(c) and of the
model with an evolving predator (b),(d). The parameter values are r = cNM = cMN = d = 1.
All four plots start with the same initial conditions (N,M) = (1, 1.2). In (a) and (c), both
species coexist while exhibiting periodic oscillations. In (b) and (d), the full eco-evolutionary
dynamics are considered with σ2

G = 0.01. The eco-evolutionary dynamics in (b) and (d)
oscillate with growing amplitude and progressively approach the boundary, resp. zero., which
increases the risk of extinction.
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3.2.3 Rich eco-evo dynamics in a three-species apparent competi-
tion model

The second example we present is a 3-species apparent competition model by Schreiber
et al. (2011). The model is based on a Lotka-Volterra system of two prey species
with densities N1 and N2, which are consumed by a single evolving predator with
density P . Ignoring the evolutionary component, the system reduces to a purely
ecological model of the type:

Ṅ1 = r1N1(1− N1
K1

)− αN1N2 − a1N1P (3.10a)

Ṅ2 = r2N2(1− N2
K2

)− βN1N2 − a2N2P (3.10b)

Ṗ = P (e1a1N1 + e2a2N2 − d). (3.10c)

Takeuchi and Adachi (1983) showed that if αβ < 1, then three different outcomes
are possible: (1) Global convergence towards a coexistence equilibrium of all three
species; (2) Global convergence towards an equilibrium which only supports the prey
species, and thus results in the extinction of the predator; (3) Global convergence
towards an equilibrium supporting the predator and a single prey, resulting in the
extinction of the second prey. All together, convergence towards a globally stable
equilibrium is guaranteed in all three cases.

The model of Schreiber et al. (2011) is exactly of this type with α = β = 0,
i.e. the direct competition between both preys is ignored. However, they added
an evolutionary component to model and assumed that the predator’s attack rate
ai(x) on species i continuously depends on some trait x of each individual predator.
The trait x is assumed to be normally distributed with mean x and variance σ2.
The attack rates are maximized at some optimal trait value x = θi. More precisely,
they described them as a Gaussian function ai(x) = αi exp− (x−θi)2

2τ2
i

, where αi is the
maximal attack rate and τi measures the speed at which the attack rates decline
when moving away from the optimal trait value θi. Thus, if θ1 6= θ2, then there is a
trade-off s.t. the predators which are specialized on prey 1 are not best-adapted for
feeding on prey 2 and vice versa. Similar to the previous model of Vasseur, they now
averaged the attack rates
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ai(x) =
∫ ∞
−∞

ai(x)p(x, x) dx = αiτi√
σ2 + τ2

i

exp− (x− θi)2

2(σ2 + τ2
i )

,

where p(x, x) = 1√
2πσ2 exp− (x−x)2

2σ2 is the density of the normal distribution. All
together, the ecological dynamics are given by

Ṅi = riNi(1−
Ni

Ki
)− ai(x)NiP (3.11a)

Ṗ = P (e1a1(x)N1 + e2a2(x)N2 − d), (3.11b)

where ri are the intrinsic growth rates of the preys, Ki are their carrying capacity,
d is the death rate of the predator and the parameters ei determine how the prey
consumption is linked to the growth of the predator. As in Vasseur et al. (2011), the
evolutionary dynamics are described using the Lande equation

ẋ = σ2
G

∂W

∂x
, (3.12)

where W =
∑2
i=1 eiai(x)Ni−d is the average per capita growth rate of the predators’

population, and σ2
G is the genetic heritable component of the phenotypic variance

of the trait. Intuitively, selection tends to increase the fitness of the corresponding
species. However, since the fitness functions depend continuously on the trait x
- which might change over time - the fitness functions changes as well, leading to
eco-evo feedbacks. These feedbacks affect the overall outcome in different ways,
depending on the degrees of heritability h2 = σ2

g/σ
2 and phenotypic variance σ.

For σ2 = 0.04, the densities of all three species converge towards a stable
equilibrium (Figure 12a,b). This is consistent with the system behaviour in the case
of no evolution as shown by Takeuchi and Adachi (1983). However, if the value
of the phenotypic variance is decreased to σ2 = 0, 01, then interesting dynamics
can be observed by slightly shifting the heritage parameter h2. For small values
such as h2 = 0.1, the densities of all three species remain stable at an equilibrium.
Slightly increasing the heritability to h2 = 0.25 results in all three species exhibiting
sustained oscillations reminiscent of chaotic behavior (Figure 12d). This shows that,
the eco-evo feedbacks can induce oscillations in a system which would otherwise
converge towards a globally stable equilibrium in the case of no evolution.
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Figure 12: Different system behaviours are possible in the evolutionary apparent competition
model of Schreiber et al. 2011. The panels (a) and (b) illustrate the introduction of the
superior prey 1 (i.e. r1/α1 > r2/α2) in a system consisting of the predator and prey 2, where
σ2 = 0.04. In (a), h2 = 0.02 was chosen, whereas in (b) h2 = 0.25 was chosen. In both
cases, the densities first exhibit oscillations which are eventually damped out and the system
stabilizes at a new coexistence equilibrium. In panels (c) and (d), the long term dynamics
of the system consisting of all three species are illustrated for σ2 = 0.01. In panel(c), the
heritability parameter has value of h2 = 0.1. Here the densities remain stable at a coexistence
equilibrium. In panel (d), the heritability parameter is increased to a value of h2 = 0.25.
Here both the densities of all species and the mean trait x exhibit oscillations.
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3.2.4 Interlude: Permanence

As mentioned in the beginning of this chapter, throughout this thesis, we restrict
ourselves to the analysis of small perturbations. For this purpose, a local analysis
around the equilibrium is acceptable. In nature however, powerful perturbations
are not uncommon. Consequently, the global dynamics can be quite complex and
a local analysis won’t be sufficient anymore. Fortunately, in most cases we are not
interested in the exact dynamics. The question whether all species can survive in
the long term after strong disturbances is more important. To this end, we now
introduce the notion of permanence (Hofbauer and Sigmund 1988).

Consider the dynamical system

Ṅi = fi(N, x) ∀i ∈ {1, ..., n}

of n species, whose densities are captured in N = (N1, N2, ..., Nn), which depend on
l evolutionary traits x = (x1, ..., xl). We call the system permanent if there exists
some positive constant δ > 0 s.t. Ni(0) > 0 ∀i ∈ {1, ..., n} implies

δ < lim inf
x→∞

Ni(t) ≤ lim sup
x→∞

Ni(t) ≤
1
δ
∀i ∈ {1, ..., n}.

To illustrate how the eco-evo feedbacks can affect permanence in a system, we once
again consider the 3-species apparent competition model from the previous example.
The main result which we would like to present is from Schreiber and Patel (2015)
and states that under some conditions - in particular in the case of intermediate
trade-offs - the eco-evo feedbacks in this model can indeed induce permanence.

Theorem 3.1: Condition for permanence

(i). If the following holds

(a) ri
ai(θj) >

rj

aj(θj)(1− d
aj(θj)ejKj

) for i = 1, 2 and i 6= j

(b) W (K1,K2, x
∗) > 0 for all x∗ ∈ Q := {x ∈ R|∂W∂x (K1,K2, x) = 0}

then the system is permanent in R3
+ × R.

(ii). If the inequality in (a) is reversed for i = 1 (resp. i = 2), then the
equilibrium ( d

e1a1(θ1) , 0,
r1(1−N̂1/K1)

a1(θ1) , θ1) (resp. (0, d
e2a2(θ2) ,

r2(1−N̂2/K2)
a2(θ2) , θ2))

is stable. As a consequence, there exist initial positive population densities
(N1(0)N2(0)P (0) > 0) s.t. one of both prey species goes extinct. Thus,
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the system is not permanent.

(iii). If the inequality in (b) is reversed for some x∗, then the equilibrium
(K1,K2, 0, x∗) is stable. As a consequence, there exist initial positive
population densities ((N1(0)N2(0)P (0) > 0)) s.t. the predator population
eventually goes extinct. Thus, the system is not permanent.

Condition (a) means that prey 1 needs to have a positive per capita growth
rate when the predator is specialized on prey 2 (i.e. x = θ2) and vice versa. The
second condition (b) means that the predator needs to have a positive per capita
growth rate at all extrema of its fitness function, when both prey species are at their
carrying capacity. As a consequence of this theorem, one can show that if the carrying
capacities of the preys are high, then permanence is only possible at intermediate
trade-offs |θ2− θ1|. This can nicely be illustrated in the case r1

a1(θ1) >
r2

a2(θ2) (i.e. prey
1 is "superior" to prey 2). In this case, the relation

r1
a1(θ2) >

r1
a1(θ1) >

r2
a2(θ2) >

r2
a2(θ2)(1− d

a2(θ2)e2K2
),

is satisfied, thus condition (a) is always satisfied for i = 1 independent of the trade-off.
As a consequence, prey 1 will never go extinct. In order to relate the trade-off to
permanence of the system, one therefore only needs to consider the second prey and
the predator, and check for which values of the trade-off they can survive. As a start,
one can begin with prey 2 and assume that there is no trade-off, i.e. θ1 = θ2. Using
the assumption that the carrying capacity K1 is sufficiently large, one can easily
check that the inequality (a) is inverted for species 2. Thus, in the case of no trade-off,
prey 2 goes extinct. Increasing the trade-off results in a decrease of a2(θ1), and thus
in an increase of r2

a2(θ1) , which is precisely the left hand side of condition (a) for i = 2.
As a result, condition (a) for species 2 is more easily satisfied for larger trade-offs.
As a next step, condition (b) for the predator is considered. Since the per capita
growth rate of the predator depends on the strength of the trade-off, the same holds
for its extremas, which are collected in the set Q. In particular, in the case of τ1 = τ2,
one can show that for |θ2 − θ1| ≤ 2

√
σ2 + τ2 the predator’s fitness (as a function of

x, where both preys are assumed to be at their carrying capacity) is a unimodal
function with a single maximum. Thus, for condition (b) only a single inequation
needs to be verified since Q only consists of a single point. Increasing the trade-off,
i.e. |θ2 − θ1| > 2

√
σ2 + τ2, usually results in the fact that the fitness function (again

as a function of x, and both preys at their carrying capacity) will have two maxima
near x = θ1 and x = θ2. Consequently, a minimum will appear between both maxima.
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Finally, for sufficiently large trade-offs, the fitness function will be negative at this
minimum, resulting in the extinction of the predator population (part (iii) of the
theorem). To summarize, if prey 1 is superior to prey 2 and the carrying capacity K1

is sufficiently high, then weak trade-offs lead to the extinction of prey 2 and strong
trade-offs lead to the extinction of the predator. As a consequence, permanence is
only possible at intermediate trade-offs.

3.2.5 Types of predator-prey cycles

As a last example to highlight the importance of eco-evo feedbacks, we investigate
the types of cycles which may appear at unstable equilibria of predator-prey systems.
Intuitively, cycles in such systems consist of peaks in prey abundance which precede
peaks of predator abundance. If the predators are scarce, the prey will naturally
increase in abundance. Consequently, an increase of prey abundance corresponds to
an increase of food resource for the predators, which in turn allows them to increase in
abundance as well. Once the predators have reached some critical capacity, the prey
population won’t be able to grow anymore, leading to a decrease of their abundance,
followed by a decrease of the predators’ abundance. Plotting this in the phase
plane results in counterclockwise cycles. Classical models, such as the Lotka-Volterra
predator-prey models (Lotka 1920; Volterra 1928) share this prediction. Indeed,
empirical examples such as the predator-prey interactions of lynx and snowshoe
hare in Canada exhibit exactly such counterclockwise cycles where a rise in hare
abundance is followed by a rise in lynx abundance (Figure 13A). However, other
types of cycles have been observed as well: e.g. antiphase cycles in a rotifer-algae
system (Figure 13B) or cryptic cycles (i.e. the preys’ density remains constant while
the predator population exhibits cycles) in a phage-bacteria system (Figure 13C).
The question remains, how such counter intuitive types of cycles occur. One possible
explanation are the eco-evo feedbacks. Indeed, theoretical studies have shown that
including an evolutionary component to both the predator and the prey can lead to
antiphase and cryptic cycles (Mougi 2012). Cortez and Weitz went a step further and
showed that the coevolution between the predator and the prey can even completely
reverse the cycle, leading to clockwise cycles in the phase plane where peaks of
predator abundance precede peaks of prey abundance (Cortez and Weitz 2014).
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Figure 13: Illustration of different types of cyclic behaviours in exploiter-victim system
(Cortez and Weitz 2014). (A) Counterclockwise lynx-hare cycles (Elton and Nicholson 1942);
(B) Antiphase rotifer-algal cycles (Becks et al. 2010); (C) Cryptic phage-bacteria cycles
(Bohannan and Lenski 1999)

3.2.6 Varying evolutionary speed

Empirical evidence shows that evolution - while occurring on a congruent time
scale - can occur at various rates relative to the ecological processes (DeLong et al.
2016). Of course these relative differences need to be appropriate and not taken
to the extreme limits, since otherwise the model can be reduced to pure ecological
or evolutionary dynamics, and therefore eliminating the indirect effects of eco-evo
feedbacks. Nonetheless, it seems essential to investigate whether and how changes in
the evolutionary speed can affect the outcomes of eco-evo feedbacks in the previous
models. We present results for the two-species competition model of Vasseur et al.
(2011) and the three-species apparent competition model of Schreiber et al. (2011).
In both cases, this can be achieved by varying the heritability parameter h2, which
essentially determines the rate of the evolutionary response to the selection differential
of the quantitative trait under consideration.

2-species competition

Vasseur et al. (2011) investigated the potentially different outcomes of their
model, when varying the heritability h2 in a range from 0 to 1. They did this for
five qualitatively different parameter cases, corresponding to following ecological
outcomes: (a) a large intermediate coexisting region; (b) a small intermediate coex-
isting region; (c) neutrality at some intermediate trait value; (d) a small intermediate
mutual exclusion region; (e) a large intermediate mutual exclusion region (Figure
14). In the first case (a), the heritability has almost no effect on the outcome. For
nearly all values of h2, both species converge towards an equilibrium allowing stable
coexistence. However, if h2 is close to 0, the evolutionary trait won’t be able to
evolve fast enough. Consequently, during the initial phase of invasion of the fixed
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species, the variable species won’t adapt quickly enough to fight of the dominance
of the latter and go extinct. In the case of a small intermediate coexisting region
(b), the situation is quite a different one. For a start, the extinction threshold is
much higher than in the previous case. The reason is that the trait values allowing
coexistence are further away from the initial state x(0) = θC . Therefore, reach-
ing this region in a sufficiently short amount of time requires a higher heritability.
Further increasing the evolutionary speed eventually leads to an overshooting of
the coexistence equilibrium, leading to a Hopf bifurcation. Thus, coexistence is
still possible, however not at an equilbrium, but now in form of a stable limit
cycle due to evolutionary overcompensation. In the last three cases (c)-(e), the
extinction threshold is much higher than in the first two cases. This makes sense
since these cases correspond to ecologically unstable dynamics, therefore coexistence
requires a much higher rate of change of the evolutionary trait. Further increasing
the heritability h2 has a relatively small effect: increasing the evolutionary speed
leads to a faster turnover of the species’ dominance, resulting in slightly shorter cycles.

Figure 14: Bifurcation diagram for the two species competition model of Vasseur et al.
2011, showcasing the effects of increasing the heritability parameter H = h2 and thus the
evolutionary speed of the evolving species in different cases: (a) a large intermediate coexisting
region; (b) a small intermediate coexisting region; (c) neutrality at some intermediate trait
value; (d) a small intermediate mutual exclusion region; (e) a large intermediate mutual
exclusion region. The fixed species is represented in red, the variable species in blue and the
mean trait in black. The shaded regions correspond to oscillations of the species, resp. mean
trait. Low heritability parameters lead to the extinction of the variable species in all five
cases. Increasing the heritability first leads to coexistence at a stable equlilibrium in (a) and
(b). Further increasing the heritability parameter leads to a Hopf bifurcation in (b), resulting
in periodic orbits. In (c), (d) and (e), increasing the heritability leads to oscillations allowing
coexistence.
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3-species apparent competition

The second example we consider is the three-species apparent competition model
which was previously presented, both in the context of feedback induced oscillations
(Schreiber et al. 2011) and permanence (Schreiber and Patel 2015). As a matter of
fact, we already presented a result of Schreiber et al. (2011) which showed how changes
in the heritability can affect the system behavior. Indeed, if the phenotypic variance
remains fixed at σ2 = 0.01, then slight changes in the heritability h2 drastically
affects the behaviour of the model, changing it from a stable equilibrium to sustained
oscillations (Figure 12). Schreiber et al. (2011) showed that further increasing the
heritability can result in even more complex behaviour such as chaos (Figure 15).
Comparing this result to the outcome of the purely ecological model (Takeuchi and
Adachi 1983) - where only convergence towards a globally stable equilibrium was
possible - shows the importance of including the evolutionary dynamics in the case
of congruent ecological and evolutionary time scales. Neglecting the evolutionary
component - and therefore the effects of eco-evo feedbacks - can in some cases severely
distort the outcome of the dynamics and lead to false predictions.

Figure 15: Bifurcation diagram for one of the preys and the predator’s trait in the
apparent competition model of Schreiber et al. 2011, showcasing the effects of increasing the
heritability parameter h2 and thus the evolutionary speed of the predator’s trait. Both the
prey’s density and the predator’s trait converge towards a stable equilibrium for small values
of h2. Increasing the parameter first leads to a Hopf bifurcation resulting in oscillations.
Further increasing the heritability eventually leads to chaos for both the prey’s density and
the predator’s trait.
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3.3 General theory for slow and fast evolution

3.3.1 Stability conditions

Nearly all existing work on the effects of eco-evo feedbacks on system stability focus
on small, specific communities with at most two evolving species (Vasseur et al.
2011, Schreiber et al. 2011, Vasseur and Fox 2011). Moreover, due to the complex
mathematical tractability of indirect feedbacks, most of these works rely on numerical
rather than analytical methods, which prevents a deep understanding of the under-
lying effects. In recent years, several mathematicians have committed themselves
to the task of developing a general theory that provides analytical results on the
dependency of eco-evo feedbacks and system stability in general coupled ecological
and evolutionary systems. Their first result (Patel et al. 2018), will be presented in
this chapter and concerns the case of slow and fast evolution compared to the ecolog-
ical time scale. After all, empirical data (DeLong et al. 2016) as well as theoretical
results (Vasseur et al. 2011, Schreiber et al. 2011) have consistently highlighted the
existence and importance of the relative eco and evo time scales, when investigating
the effects of eco-evo feedbacks on system stability. Of course, as stated earlier, these
time scales - while being different - should still be comparable. For slow evolution,
this could be the case if there is low genetic variance which slows down the evolution
of the trait under consideration. Importantly, this difference in time scales should
not be taken to the limit, which in the extreme case would lead to negligible trait
adaptation, and thus reduction of the coupled system to a simple ecological process.
On the other hand, fast evolution can occur in a community with a high population
turnover, but with limited resources, which ultimately prevents the growth of the
population. Again, it’s important to note that this difference should not be taken to
the limit, which in the extreme case would lead to a constant population size and
thus reducing the coupled system to a simple evolutionary model of the involved traits.

We now present a general model of a multi-species community with evolving
traits by Patel et al. (2018), which we will be used for the analysis. For this, Patel
et al. assumed to have k interacting species and l evolving traits. Denoting the
densities of the species by N1, ..., Nk and the trait values by x1, ..., xl, results in the
following model

Ṅi = Nifi(N, x) (3.13a)

ẋj = εgj(N, x), (3.13b)
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where both N and x are vectors such that: N = (N1, ..., Nk) and x = (x1, ..., xl).
The functions fi are the per capita growth rates of the species, which depend on the
densities of all involved species and their traits. The selection functions gi describe
how the selection pressure - imposed by the densities of all species and their traits -
affects the evolution of the traits. The parameter ε determines that rate of adaptation
of the traits. Thus, a small ε corresponds to the case of slow evolution, whereas
a large ε corresponds to fast evolution compared to the ecological time scale. No
further assumptions on the type of functions fi and gj are made, in order to keep
the model as general as possible.

In the following, Patel et al. assumed that their model is at an equilibrium (N̂ , x̂)
and investigated the consequences of perturbations. In other words, they wanted to
determine the local stability of this equilibrium by studying the eigenvalues of the
Jacobian J evaluated at (N̂ , x̂):

J = J(N̂ , x̂) =

 A B

εC εD

 ,
where the submatrices A, B, C and D are given by

A =
(
∂(Nifi)/∂Nj

)
, B =

(
∂(Nifi)/∂xj

)
, C =

(
∂gi/∂Nj

)
, D =

(
∂gi/∂xj

)
.

The matrix A describes how the growth rate of species i changes with the density
of species j. The matrix B describes how the growth rates change w.r.t. the various
traits. C describes how the selection function of trait i changes with the density of
species j. And finally, D describes how the selection functions change w.r.t. the
other traits. The main goal is to investigate the effects which the eco-evo feedbacks
have on the stability of the equilibrium. However, Patel et al. went one step further
and tried to determine the individual roles of all of the direct and indirect effects on
the stability. The direct effects are those captured by the submatrices A, B, C and
D. The matrix A corresponds to the direct effects which the ecological processes
have on the species density, and D captures the direct effects which the evolutionary
processes have on the traits. Thus, A and D correspond to the Jacobian of the
uncoupled ecological and evolutionary processes respectively. In an uncoupled system
(i.e. B = C = 0), the Jacobian is a block matrix. Thus by simple linear algebra, the
equilibrium is stable iff it is stable in both the ecological and evolutionary process
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respectively. Local stability is determined by the eigenvalues of J . More precisely,
if the largest real part of the eigenvalues of the Jacobian - also called, the stability
modulus s(J) - is negative, then the equilibrium is asymptotically stable and thus
resistant to small perturbations. In the case of the uncoupled system, this mean that
s(J) < 0⇔

(
s(A) < 0 ∧ s(D) < 0

)
.

Since the aim is to investigate the effects of the indirect eco-evo feedbacks, from
now on a coupled system (C 6= 0 and B 6= 0) is assumed. In this case, the stability
of the equilibrium additionally depends on indirect eco-evo feedbacks. There are
two types of such feedback loops which Patel et al. investigated: eco-evo-eco and
evo-eco-evo feedbacks. The eco-evo-eco feedbacks incorporate the subsequent effects
of changes in the population densities that lead to a change of some evolutionary
traits, which in return alter the densities of the species. These three steps are
captured by the matrix BD−1(−C). The matrix C describes the effects of ecological
changes on the evolutionary dynamics and thus corresponds to the first step of the
eco-evo-eco feedbacks. In the second step, the evolutionary traits respond to these
changes and converge towards a new equilibrium. Thus the first and second steps
are given by the matrix D−1(−C). Finally, changes in the evolutionary traits lead to
changes in the species densities, which is captured by the matrix B. The evo-eco-evo
feedbacks can be described analogously and are captured by the matrix CA−1(−B).

Figure 16: Representation of the most important feedbacks in a model with congruent
ecological and evolutionary time scales. (I-III) The clockwise arrows represent the direct
evolutionary resp. ecological feedbacks which the trait, resp. ecological populations have on
themselves. (I) The counterclockwise arrows represent the feedbacks which the ecological
parameteres have on the evolutionary ones and vice versa. (II) The counterclockwise arrow
denotes the combined evo-eco-evo feedbacks. (III) The counterclockwise arrow denotes the
combined eco-evo-eco feedbacks. (From Patel et al. 2018)

The main results of this section (and of Patel et al. (2018)) are stated in the
next two theorems. For this, one needs to assume that the equilibrium (N̂ , x̂) under
consideration is hyperbolic (i.e. no eigenvalues with zero real part) so that the
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Hartman-Grobman theorem holds. This guarantees that the orbits of the dynamical
system near the equilibrium are topologically equivalent to those of the linearized
system.

Theorem 3.2: Stability condition for slow evolution

Suppose J,A,B,C and D are as defined above and ε > 0. Then, for a sufficiently
small ε, the following holds:

s(A) < 0 and s(CA−1B +D) < 0 ⇒ s(J) < 0

Proof. Patel et al. (2018) made use of some standard perturbation methods to prove
that the solutions λ of the eigenvalue equation Ju = λu have negative real part if ε
is sufficiently small.

For this, they used the following perturbation expansions:

J = J0 + εJ1 +O(ε2) (3.14a)

u =

 v0

w0

+ ε

 v1

w1

+O(ε2) (3.14b)

λ = λ0 + ελ1 +O(ε2), (3.14c)

with J0 =

A B

0 0

 and J1 =

0 0
C D

.
Plugging this into the eigenvalue equation and ignoring higher order terms gives:

J0

 v0

w0

+J0

 v1

w1

 ε+J1

 v0

w0

 ε = λ0

 v0

w0

+λ0

 v1

w1

 ε+λ1

 v0

w0

 ε.

By comparing the coefficients of ε0 one gets the following two equations:

Av0 +Bw0 = λ0v0 (3.15a)

0 = λ0w0. (3.15b)

38



Comparing the coefficients of ε1 additionally gives:

Av1 +Bw1 = λ0v1 + λ1v0 (3.16a)

Cv0 +Dw0 = λ0w1 + λ1w0. (3.16b)

Case 1: λ0 6= 0
In this case, equation (3.15)(b) implies that w0 = 0. By setting w0 = 0 in (3.15)(a),
one can see that λ0 is an eigenvalue of A. Because of the assumption s(A) < 0,
this implies in particular that Re(λ0) < 0. Since this holds for any eigenvalue
λ = λ0 + ελ1 +O(ε2) of J , it follows that s(J) < 0 if ε is sufficiently small.

Case 2: λ0 = 0
In this case one needs to look at the higher order terms λ1. From equation
(3.15)(a), one gets v0 = A−1(−Bw0). Plugging this into equation (3.16)(b) leads
to (CA−1(−B) +D)w0 = λ1w0. Thus, λ1 is an eigenvalue of CA−1(−B) +D. By
assumption, all eigenvalues of CA−1(−B) +D have negative real part, thus the same
holds for λ1. Since this holds for any eigenvalue λ = ελ1 +O(ε2) of J , it follows that
s(J) < 0 if ε is sufficiently small.

Before interpreting this result, we state an analogous theorem from Patel et al.
(2018) in the case of fast evolution:

Theorem 3.3: Stability condition for fast evolution

Suppose J,A,B,C and D are as defined above and ε > 0. Then, for a sufficiently
large ε, the following holds:

s(D) < 0 and s(A+BD−1(−C)) < 0 ⇒ s(J) < 0

Proof. Simply define J0 =

0 0
C D

 and J1 =

A B

0 0

. The computations are now

similar to those in the previous proof.
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Interpretation of the theorems

The most important consequence of Theorem 3.2, is that the evo-eco-evo feed-
backs are critical for the stability in the case of slow evolution. To better illustrate
this, Patel et al. (2018) considered the case of k interacting species, but with only
one slowly evolving trait. In this case, the condition of Theorem 3.2 can be written
as: (1) s(A) < 0 and (2) cA−1b + d < 0, where both c and b are vectors, and d

is a scalar. Condition (1) corresponds to the fast ecological response: After some
initial perturbation away from the equilibrium (N̂ , x̂), the ecological dynamics will
follow approximately the linear dynamics given by the matrix A, i.e., ˙̃N ≈ AÑ ,
where Ñ = N − N̂ is the deviation from the equilibrium. Thus, if this condition
is not satisfied, the solutions quickly diverge away from the equilibrium. Since the
evolutionary dynamics are assumed to be slow, they won’t be able to compensate this
effect, eventually resulting in an overall unstable equilibrium. For this reason, this
first condition is always necessary to guarantee the stability of J . The second condi-
tion (2) corresponds to the slow evolutionary response. It consists of the combined
effect of the direct evolutionary feedbacks (d) and the indirect evo-eco-evo feedbacks
(cA−1b). In the case of one single evolving trait, (2) states that the sum of the
corresponding matrices (here scalars) should be negative. Thus, the more negative
the evo-eco-evo term is, the more negative the whole sum will be, i.e. the more the
evo-eco-evo feedbacks will have a stabilizing effect. Similar is true if cA−1b is positive:
In this case, the evo-eco-evo feedbacks have a destabilizing effect. Intuitively, this
condition describes the combined effects of (a) the trait slowly changing as a direct
evolutionary response to the perturbation, and (b) the indirect effects which arise as a
fast ecological response to these evolutionary changes and thus affecting the selection
pressure, which in return feeds back to an indirect slow evolutionary response.

Using the stability condition of Theorem 3.2, four qualitatively different situations
are possible in an ecologically stable system (s(A) < 0):

(i) evolutionary stable and overall stable equilibrium

(ii) evolutionary stable and overall unstable equilibrium

(iii) evolutionary unstable and overall unstable equilibrium

(iv) evolutionary unstable and overall stable equilibrium

A system is "overall stable" if all of the eigenvalues of the Jacobian have negative
real part (i.e. s(J) < 0). On the other hand, "evolutionary stable" means that the
eigenvalues of the Jacobian of the evolutionary subsystem have negative real part
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(i.e. s(D) < 0) The cases (ii) and (iv) are of particular interest since they emphasize
the importance of the indirect evo-eco-evo feedbacks in the case of slow evolution. In
case (ii), the evo-eco-evo feedbacks destabilize a system which is both ecologically
and evolutionary stable. Accordingly, in case (iv), the evo-eco-evo feedbacks stabi-
lize a system which is evolutionary unstable in the absence of the ecological dynamics.

Concerning Theorem 3.3 it’s interesting to note that no particular assumptions
on the fitness functions gj and fi were stated, and thus a simple rearrangement
and renaming of the functions leads to the exact same mathematical situation as in
Theorem 3.2. Therefore, the proof of Theorem 3.3 follows directly from Theorem
3.2. The difference is that now the evolutionary stability is essential since it is the
faster process. The second condition corresponds to the combined effect of the direct
ecological and the indirect eco-evo-eco responses to some initial perturbation. Thus
the key finding of these theorems is that the indirect eco-evo-eco feedbacks are critical
for the stability in the case of fast evolution, whereas the evo-eco-evo feedbacks are
essential in the case of slow evolution.

3.3.2 Application

As an application of the theory of Patel et al. (2018), we go back to the two-species
competition model of Vasseur, which showed that the eco-evo feedbacks can indeed
stabilize an ecologically unstable system. For this, Patel et al. looked at a system
which - depending on the mean trait values - can either have ecological dominance
or mutual exclusion. Mathematically, this corresponds to the case where s(A) > 0.
In order to apply the general theory, one needs to assume to either have fast or
slow evoution. Thus, Patel et al. assumed to have fast evolution compared to the
ecological process, so that they could eventually apply Theorem 3.3. Interestingly,
the whole analysis can be done, solely by looking at the signs of the individual entries
of the Jacobian. Since the competition model under consideration contains only
two species, A will be a 2 × 2 matrix with only negative entries, D a scalar, and
both B and C will be vectors. Furthermore, since the aim is to apply Theorem 3.3,
Patel et al. assumed to have an evolutionary stable system, which corresponds to
D = s(D) < 0. For the signs of the vectors B and C they use the properties of the
trait of the variable species. For this, note that the Jacobian was evaluated at an
equilibrium, thus the first entry of B is zero. The second entry of B corresponds
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to the change in the fixed species when varying the mean trait. Since increasing
the mean trait value decreases the fitness of the fixed species, this entry is negative.
Finally, due to the selection pressure, an increase of the variable species leads to a
decrease in the mean trait value, while an increase of the fixed species leads to an
increase in the mean trait value. All together, the submatrices have the following signs:

A =

− −
− −

 , D = (−) , B =

0
−

 , C =
(
− +

)
.

The eco-evo-eco feedbacks are given by:

BD−1(−C) =

0
−

 (−)
(
− +

)
=

0
+

(− +
)

=

0 0
+ −

 .
Next, one needs to study the sum A+BD−1(−C). Since this is a 2x2 matrix, it’s
stability can be determined solely by looking at its trace and determinant. More
precisely, a 2x2 matrix is stable iff its determinant is positive and its trace is neg-
ative. The matrix A by itself is unstable by assumption. One therefore needs to
investigate what happens if BD−1(−C) is added. Obviously, this makes the trace
"more negative", but how is the determinant affected? For this one can consider:

det(A) = det

− −
− −

 = 1 - 2 and

det(A+BD−1(−C)) = det

− −
± −

 = 3 - 4 ,

where 1 = A11 ·A22, 2 = A12 ·A21, 3 = (A+BD−1(−C))11 ·(A+BD−1(−C))22

and 4 = (A + BD−1(−C))12 · (A + BD−1(−C))21. Note that 1 , 2 and 3
are positive. Furthermore, 3 is larger than 1 , since the lower right entry of
A+BD−1(−C) is more negative than A22. For 4 there are two possibilities: either
4 is positive and smaller than 2 ; or 4 is negative. In both cases, the determinant
of A+BD−1(−C) is larger than the determinant of A, which means that the eco-evo
feedbacks always have a stabilizing effect. If 4 is negative, then the determinant will
be positive, which according to Theorem 3.3 implies that the eco-evo-eco feedbacks
stabilize the system. Thus, Patel et al. (2018) analytically confirmed the results of
Vasseur et al. (2011) in the case of fast evolution.
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3.4 General theory for comparable eco and evo time
scales

3.4.1 Stability conditions in special cases

General analytical conditions for stability in the case of comparable ecological and
evolutionary time scales (i.e. intermediate rates of evolution) are much harder to
obtain and barely available. However there are a few special cases for which similar
stability results as in the previous section can be derived. Both results which we
present are based on the general model of Patel et al. (2018).

Stability condition for a single evolving trait

The first result is from Patel et al. (2018) and gives a sufficient condition for
instability in the case of k interacting species, but only one evolving trait. It holds
for all intermediate rates of evolution and states that if the system is ecologically
stable and overall unstable for slow evolution, then it is overall unstable for every
ε > 0. Thus, the Jacobian is given by:

J =

A b

εc εd

 ,
where b, c are vectors and d is a scalar.

Theorem 3.4: Stability condition for a single evolving trait

Suppose J , b, c, d are as defined above and ε > 0. Then, the following holds
∀ε > 0:

s(A) < 0 and s(d+ cA−1(−b)) > 0 ⇒ s(J) > 0

Proof. One can assume w.l.o.g. that the number of interacting species k is even (oth-
erwise, simply invert all of the inequalities in the proof). Note that the determinant
of a matrix is equal to the product of its eigenvalues. Together with the assumption
s(A) < 0 (i.e. that all the eigenvalues of A have negative real part) and the fact that
there is an even number of species, this implies that det(A) > 0. Next, Patel et al.
assumed that ε > 0 is very small. Using the assumption s(d+ cA−1(−B)) > 0 and
applying the stability condition from the last section for slow evolution, one gets
that the system is overall unstable, i.e. det(Jε) > 0. Finally, the sign of det(Jε) is
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invariant for all ε. This implies that det(J) = det(Jε) > 0 for every ε > 0.

Stability condition for symmetric Jacobian matrices

Similar stability conditions for k interacting species and l evolving traits are in general
difficult to obtain. However, if we limit ourselves to the quite strong assumption
that the Jacobian J is symmetric, then we can derive nice stability conditions for
comparable eco and evo time scales with ε = 1. The result relies on Sylvester’s law
of inertia, which we state without proof:

Lemma 3.5: Sylvester’s law of inertia

Let A ∈ Rn×n be a symmetric matrix and S ∈ GL(n,R) an invertible matrix.
Then A and STAS have the same number of positive and negative eigenvalues.

The statement of this lemma is interesting in the sense that it does not assume S
to be unitary, in which case the statement would be trivial (since in that case, A and
STAS would be unitary equivalent, which implies that they are similar). Importantly,
this law states that A is stable iff STAS is. To apply this result to the Jacobian, we
therefore need to assume that J is symmetric and of the following form:

J =

 A B

BT D

 ,
where A and D are symmetric matrices.

With the help of this lemma we can derive the following general stability condition:

Theorem 3.6: Stability condition for symmetric Jacobian

Suppose that J is symmetric and defined as above. Then, the following are
equivalent:

(i) J is stable
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(ii) s(A) < 0 and s(D +BTA−1(−B)) < 0

(iii) s(D) < 0 and s(A+BD−1(−BT )) < 0

Proof. We start by showing the first equivalence (i)⇔(ii) using Sylvester’s law of
inertia. Ideally one would like to derive a Cholesky decomposition of the type
J = LTDL, where D is a diagonal matrix. However due to the limited information
we have on the feedback matrices, the following factorization is the best we can do:

J =

 I 0
BTA−1 I

A 0
0 D +BTA−1(−B)

I A−1B

0 I



=

I A−1B

0 I

T A 0
0 D +BTA−1(−B)

I A−1B

0 I

 .
Note that the matrices A and D are symmetric as a consequence of J being symmetric.
Thus, A−1 is symmetric. Next, BTA−1(−B) is symmetric, which can easily be checked
by calculating the transposed: (BTA−1(−B))T = (−B)T (A−1)TB = BTA−1(−B).
Finally, D +BTA−1(−B) is symmetric as a sum of symmetric matrices. Together,
this implies that the block-diagonal matrix in the factorization is symmetric. Now
we can use Sylvester’s law of inertia which states that the block diagonal matrix is
stable iff the Jacobian is. Since the eigenvalues of a block-diagonal matrix are given
by the eigenvalues of the individual blocks, the Jacobian is stable iff both blocks are
stable, thus the statement follows.

For the equivalence (i)⇔(ii), we use the following similar decomposition:

J =

 I 0
D−1BT I

A+BD−1(−BT ) 0
0 D

I BD−1

0 I



=

I BD−1

0 I

T A+BD−1(−BT ) 0
0 D

I BD−1

0 I

 .
The block-diagonal matrix is symmetric by similar arguments as above. Therefore
we can apply Sylvester’s law of inertia which finally gives us the second equivalence.
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An important consequence of this theorem is that in the case of comparable
relative time scales (ε = 1), the eco-evo feedbacks cannot stabilize a system which
is ecologically or evolutionary unstable. Indeed, the theorem states that a stable
equilibrium requires both s(A) and s(D) to be negative. In contrast to the previous
results, this stability condition is both sufficient and necessary. Therefore, in addition
to the conditions for stability, the theorem provides conditions for instability too.
A surprising implication is that sufficiently strong eco-evo feedbacks can destabi-
lize a system which is both ecologically and evolutionary stable. Indeed, the more
"positive" BTA−1(−B) and BD−1(−BT ) get, the more s(D + BTA−1(−B)) and
s(A+BD−1(−BT )) become positive, i.e. the more the eco-evo feedbacks will have a
destabilizing effect. As an example, consider the real valued 2×2 Jacobian J =

(
a b
b d

)
.

Let’s assume that the system is both ecologically and evolutionary stable, i.e. a < 0
and d < 0. The eco-evo-eco feedbacks are now given by bd−1(−b) = b2(−d−1) > 0.
This term is positive independent of the value of b (since we assume that J is real
valued). Thus, s(a+bd−1(−b)) = a+bd−1(−b) can be positive if the term bd−1(−b) is
sufficiently large, resp. the eco-evo-eco feedbacks are sufficiently strong. In this case,
the system becomes unstable according to (ii) of Theorem 3.6. As a result, the eco-
evo-eco feedbacks can destabilize a system which is both ecologically and evolutionary
stable. Similarly, using ba−1(−b) = b2(−a) > 0 and s(d+ ba−1(−b)) = d+ ba−1(−b),
we can see that sufficiently strong evo-eco-evo feedbacks can destabilize the system
according to (iii) of Theorem 3.6. To summarize, if J is symmetric and ε = 1, then:
(1) the eco-evo feedbacks cannot stabilize an ecologically or evolutionary unstable
system; (2) the eco-evo feedbacks can destabilize a system which is both ecologically
and evolutionary stable.

As a warning note, one should mention that the assumption of a symmetric
Jacobian is quite restrictive and therefore not applicable in a realistic ecological
model. Indeed, in most ecological models with multiple species, the interacting
species influence each other in different ways, which results in a non-symmetric
Jacobian. Nonetheless this result is interesting since it shows that a generalization
(for all ε > 0) of the previous results of slow and fast evolution - namely that eco-evo
feedbacks can stabilize an unstable system - is not possible. On the other hand, this
theorem does not exclude the existence of a general instability condition, implying
that eco-evo feedbacks can destabilize a stable system. Thus, this theorem is in no
contradiction to the result of Patel et al. (2018) concerning a single evolving trait.

46



3.4.2 Identifying the influence of eco-evo feedbacks on stability

While the relative rates of ecological and evolutionary dynamics can indeed differ
(DeLong et al. 2016), in many empirical studies, the rates have been observed to
occur on a similar time scale (Haafke et al. 2016, Frickel et al. 2016, etc.). Stability
conditions similar to those of Theorem 3.2 and 3.3 are however not possible for arbi-
trary intermediate evolutionary time scales (arbitrary ε > 0), as shown by Theorem
3.6. To this end, a new approach is needed to identify the effects of eco-evolutionary
feedbacks in the case of arbitrary evolutionary rates. In this section, we will present a
general method by Cortez et al. (2020), which is useful to identify the influence of the
ecological, evolutionary and eco-evolutionary feedbacks on the stability of empirically
parametrized models. Applying this method to a large amount of empirical data may
grant a substantial insight on the underlying effects of the eco-evolutionary feedbacks
on system stability.

The method is based on a similar multi-species model as the one used in the case
of slow and fast evolution. The densities of the species will be denoted by N1, ..., Nk,
the trait values by x1, ..., xl, the functions fi are the growth rates of the species, and
finally the selection functions gi describe the effects of the selection pressure on the
evolution of the traits:

Ṅi = fi(N, x) (3.17a)

ẋj = gj(N, x). (3.17b)

A notable difference compared to (3.13) of the previous section are the missing
ε in the trait equations in order to include the cases of intermediate evolutionary rates.

Transformation of empirical models into the general form

The aim of this method is to take mathematical models which are parametrized
using empirical data and apply the theory to understand how the feedbacks affect
the stability in this particular case. Therefore, the first crucial step in the method is
to transform the parametrized models into the above form (3.17). Since this form is
quite general, in many cases, no transformations need to be done and this step can be
skipped. Nonetheless, one limitation of this model is the assumption of a continuous
trait. Indeed, many empirical studies use discrete trait models: In contrast to the
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general model of Cortez et al. (2020) - where the dynamics are given by separate
equations of the species density Ṅ and its trait ẋ - discrete trait models describe the
evolution in a single species, in terms of the dynamics of a discrete number of its
clones Ci. Each clone corresponds to an individual of this species with a different
trait value. In order to convert it into a continuous trait model, one starts by defining
N =

∑
iCi, which corresponds to the ecological variable in the general form. The

differential equation Ṅ is derived by applying the chain rule: Ṅ =
∑
i Ċi. For the

evolutionary variables, the frequencies of the different clones are used: xi = Ci/N .
Again, using the chain rule, this results in following differential equation in the
general model: ẋi = (NĊi − CiṄ)/N2.

Complementary pairs of subsystems

Once the model is transformed into the general form, the stability analysis can
begin. To this end, one needs to determine the Jacobian J and evaluate it at a
coexistence equilibrium (N̂ , x̂). The central idea of the method is to compare the
stability of the Jacobian to the stability of well chosen complementary pairs of
a subsystem. A subsystem describes the dynamics of a subset of ecological and
evolutionary variables, while the other variables remain fixed at their equilibrium
values. If the set of variables of two subsystems are disjoint and their union contains
all of the variables of the original model, then they form a complementary pair of
subsystems. Furthermore, the stability of a subsystem is determined by its Jacobian,
which is always a submatrix of J .

Note that the concept of subsystems is not new. In the previous section on
slow and fast evolution Patel et al. (2018) looked at subsystems too, namely the
ecological and evolutionary subsystems (we will from now on refer to this as the
eco-evo subsystem pair). This approach was useful to determine how the feedbacks
between the ecological and evolutionary variables affect the stability of the system.
In this section, Cortez et al. (2020) generalized this idea. After all, feedbacks need
not only occur between the ecological and evolutionary subsystems. Indeed, in some
cases, the main stabilizing forces turn out to be the feedbacks between completely
different complementary pairs of subsystems.

To illustrate how such subsystem pairs provide information on the relation be-
tween eco-evolutionary feedbacks and system stability, it’s worth looking at some
examples. First, consider the eco-evo subsystem pair. If the ecological an evolutionary
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dynamics were decoupled, the stability of the system would solely be determined
by the stabilities of the respective subsystems. This can be explained by looking at
the Jacobian, which in the decoupled case corresponds to a block diagonal matrix.
By simple linear algebra, the stability of the Jacobian is therefore determined by
the stability of both submatrices. If one now considers a coupled ecological and
evolutionary system, then the Jacobian does not have a block diagonal form anymore,
and the stability additionally depends on the feedbacks between both subsystems.
If the Jacobian is stable and at least one of the subsystems unstable, then the
feedbacks between the subsystems are stabilizing. If the Jacobian is unstable and
both subsystems stable, then the feedbacks have a destabilizing effect. This concept
can be generalized to arbitrary complementary pairs of subsystems. To see this,
simply rearrange the variables and use the same arguments as above. Another way
to illustrate this is to consider the characteristic polynomial of the Jacobian. For
simplicity reasons, Cortez et al. (2020) considered a four dimensional system with
three species N1, N2, N3 and one evolving trait x1. The Jacobian of this system is
given by:

J =


∂f1/∂N1 ∂f1/∂N2 ∂f1/∂N3 ∂f1/∂x1

∂f2/∂N1 ∂f2/∂N2 ∂f2/∂N3 ∂f2/∂x1

∂f3/∂N1 ∂f3/∂N2 ∂f3/∂N3 ∂f3/∂x1

∂g/∂N1 ∂g/∂N2 ∂g/∂N3 ∂g/∂x1

 .

If one denotes the submatrices corresponding to each subsystem by MS , where S
is the set of variables in this subsystem and the determinant of the submatrices by
|MS |, then the characteristic polynomial can be expressed as:

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,

where

a1 = −(|MN1 |+ |MN2 |+ |MN3 |+ |Mx1 |)

a2 = |MN1N2 |+ |MN1N3 |+ |MN1x1 |+ |MN2N3 |+ |MN2x1 |+ |MN3x1 |

a3 = −(|MN1N2N3 |+ |MN1N2x1 |+ |MN1N3x1 |+ |MN2N3x1 |)

a4 = |J |.

The Routh-Hurwitz criterion gives necessary and sufficient conditions for the
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stability of the Jacobian. Unfortunately, this conditions can get quite complex for
large matrices. Therefore Cortez et al. (2020) only used the necessary condition,
which states that all coefficients of the characteristic polynomial a1, a2, a3, a4 must
be positive. To see how the stability of the Jacobian relates to the stability of
subsystems, they additionally computed the characteristic polynomial of MN1N2N3 :

q(λ) = λ3 + b1λ
2 + b2λ+ b3,

where

b1 = −(|MN1 |+ |MN2 |+ |MN3 |)

b2 = |MN1N2 |+ |MN1N3 |+ |MN2N3 |

b3 = −|MN1N2N3 |.

As before, a necessary condition for the stability of MN1N2N3 is bi > 0 for all
i. Furthermore due to Routh-Hurwitz, a necessary condition for a neutrally stable
subsystem or a neutral subsystem with purely imaginary eigenvalues is bi ≥ 0 for all
i, with at least one positive bi . Note that for each i, bi is a partial sum of ai. This
is true for the characteristic polynomial of any subsystem. Thus, if the subsystem
is stable, neutrally stable or neutral with purely imaginary eigenvalues, then the
bi are non-negative and some of them positive, which implies that the coefficients
ai become more positive. Therefore, stable, neutrally stable or neutral subsystems
with purely imaginary eigenvalues have a stabilizing effect on the whole system.
In the case of a neutral subsystems with only zero eigenvalues, the coefficients bi
are all zero. Therefore, such subsystems have no direct effect on the overall sta-
bility of the system. If however at least one coefficient bi is negative - this is the
case for unstable subsystems - then at least one of the coefficient ai gets more neg-
ative. Therefore, unstable subsystems have a destabilizing effect on the whole system.

Motivated by these arguments, the next step in the method of Cortez et al. (2020)
is to choose a pair of complementary subsystems and determine its stability. If both
subsystems are stabilizing and the whole system is unstable, then this implies that
the feedbacks between the subsystems have a destabilizing effect. If at least one of
both subsystems is destabilizing and the whole system is stable, then this implies
that the feedbacks are stabilizing the system. Altogether, if the stability of the
Jacobian differs from what is predicted from the stabilities of the complementary
subsystem pair, then the feedbacks between the subsystems do influence the stability
of the whole system.
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Figure 17: Different complementary subsystem pairs in a system consisting of a resource
and two evolving species, a predator and a prey. The colored area in grey represents a
subsystem. The complementary subsystems consist of the species/traits which are not grey.
The subsystems in grey are: (a) the ecological subsystem consisting of the predator, prey and
resource; (b) The complementary subsystem to the subsystem consisting of the predator’s
trait; (c) The complementary subsystem to the subsystem consisting of the prey’s trait; (d)
The eco-evolutionary subsystem of the predator; (e) The eco-evolutionary subsystem of the
prey; (f) The complement to the subsystem which only contains the resource.
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Which complementary pairs of subsystems to choose?

There are a large number of possible pairs of subsystems one can study. Cortez,
Schreiber and Patel decided to focus on four types of complementary subsystems,
chosen for their biological significance. The first pair consists of the ecological and
evolutionary subsystems (Figure 17a). Analyzing the stability of this pair allows to
determine which effects the ecological, evolutionary and eco-evolutionary feedbacks
involving all species have on the whole system. The second subsystem pairs they
studied are the subsystems consisting of the evolutionary traits of a single species
and its complement (Figure 17b,c). This allows the identification of the influence
of evolutionary feedbacks of a single species. As a third type of subsystem pairs,
Cortez et al. considered the subsystems consisting of the ecological and evolutionary
variables of a single species and its complement (Figure 17d,e). Determining the
stability of these subsystem pairs will help to identify the effects of the feedbacks
within each species. Finally, the last subsystem pairs they considered are the subsys-
tems containing all of the variables (species and traits) within a single trophic level
and its complement (Figure 17d,e,f). By analyzing the stability of those subsystem
pairs, Cortez et al. (2020) managed to identify the effect of the feedbacks within each
trophic level.

Applying the method to empirically parametrized models

To illustrate how to apply the theory to an empirically parametrized model,
we return to the algae-virus experiment (Frickel et al. 2016) presented in chapter
2. In addition to the chemostat experiment, Frickel, Sieber and Becks derived a
mathematical model, which they parametrized using the data of the experiment. The
ecological variables in the model are the resource S which continuously flows into the
chemostat, the algae B = (B1, B2, B3, B4) which feed on the resource and the virus
P = (P1, P2, P3) which can infect the algae. The variables Bi and Pj correspond
to different algae and virus types such that Pi can infect Bj if and only if j ≤ i.
Consequently, B1 is susceptible to all three virus types and B4 corresponds to a
general resistant host. The change in resource S is given by

Ṡ = DS0 − c
4∑
i=1

gi(S)Bi −DS,

where S0 denotes the constant inflow of resource concentration in the chemostat, D
is the dilution rate specific to the chemostat, which determine both the rate of in-
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and outflow of the resource, gi(S) is the functional response of algae type i which
describes the consumption of the resource by Bi and c is a parameter describing
the resource conversion efficiency. The functional response of algae type i is given
by gi(S) := aiS/(H + S), where ai is the growth rate of Bi and H is the so called
half-saturation constant of the algae. The growth rates a1 and a4 were measured in
the experiment. Due to a trade-off between resistancy and growth rate, it followed
that a1 > aN . Assuming a linear trade-off (which is suggested by the data), the
growth rates of a2 and a3 were derived as ai := (a4 − a1)(i− 1)/3 + a1. In order to
derive equations for the change of algae and virus densities, one first needs to clarify
how the mutations can occur. Frickel et al. (2016) assumed that mutations are only
possible towards the neighboring type, i.e. the algae type Bi can have offspring Bi−1,
Bi or Bi+1 (for 1 < i < 4), B1 can only have offspring of type B1 or B2, B4 can
only have offspring of type B4 or B3, the virus type P1 can have offspring of type
P1 and P2, P2 can have any other virus type as offspring and finally P3 can only
have P3 or P2 as offspring. Furthermore Frickel et al. assumed that mutations occur
at rate ε. If two mutations are possible - meaning the algae or virus type has two
neighbors - then each mutation is equally likely and occurs at a rate ε/2. With this
in mind, Frickel et al. (2016) described the mutation rates by two tridiagonal matrices

MB =


(1− ε) ε/2 0 0
ε (1− ε) ε/2 0
0 ε/2 (1− ε) ε

0 0 ε/2 (1− ε)


for the algae types, where (Mb)ij denotes the rate of mutation from type j to type i,
and accordingly

MP =


(1− ε) ε/2 0
ε (1− ε) ε

0 ε/2 (1− ε)



for the virus types. The rates of change of algae densities are now given by:
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Ḃ1 =
[
(1− ε)g1(S)B1 + ε

2g2(S)B2
]
− Φ(P1 + P2 + P3)B1 −DB1

Ḃ2 =
[
εg1(S)B1 + (1− ε)g2(S)B2 + ε

2g3(S)B3
]
− Φ(P2 + P3)B2 −DB2

Ḃ3 =
[ε
2g2(S)B2 + (1− ε)g3(S)B3 + εg4(S)B4

]
− ΦP3B3 −DB3

Ḃ4 =
[ε
2g3(S)B3 + (1− ε)g4(S)B4

]
−DB4

where Φ is the viral adsorption rate which is constant among all virus types. Note
that each equation can essentially be divided into three parts. The first part (in
brackets) denotes the gain in abundance of the respective algae type. For fixed i, this
term includes the offspring of Bi which have not mutated and the offspring of Bi−1

and Bi+1 where the according mutation rate towards type i is taken into account.
The second part of the equation denotes the infected algae types which are removed
from the system. Since B4 is resistant to all three virus types, this term is missing
in the fourth equation. Finally, the term BDi denotes the outflow of algae in the
chemostat, which is determined by the dilution rate D. The change of virus densities
can be described in a similar way as:

Ṗ1 = βΦ
[
(1− ε)B1P1 + ε

2(B1 +B2)P2
]
− ΦB1P1 −DP1

Ṗ2 = βΦ
[
εB1P1 + (1− ε)(B1 +B2)P2 + ε(B+ +B2 +B3)P3

]
− Φ(B1 +B2)P2 −DP2

Ṗ3 = βΦ
[ε
2(B1 +B2)P2 + (1− ε)(B1 +B2 +B3)P3

]
− Φ(B1 +B2 +B3)P3 −DP3,

where β is the number of new virus particles which are created during the lysis
of an infected host cell. Note that each equation consists of three parts. The
first part corresponds to the gain in abundance of the virus types. In the case
of P1 for example: Virus particles of type P1 are either created upon lysis of a
host cell infected with the P1 virus when no mutation occurred, or they are
created upon lysis of host cell infected with the P2 virus when a mutation from
type 2 to type 1 occured. In the first case, ΦB1P1 corresponds to the number of
B1 which are infected by P1. Multiplying this term with β gives the number of
virus particles created by the infected hosts and finally multiplying the result
by (1− ε) gives the number of new virus particles of type P1 created during
this process. In the second case, Φ(B1 +B2)P2 are the number of B1 and B2

which are infected by P2. This term needs again to be multiplied by β, and
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since one is only interested in offspring of type P2 one still need to take into
account the corresponding mutation rate which in this case is ε/2. Both cases
together give the first part of the equation for P1. The other equations can be
explained analogously. The second part in each equation corresponds to the
virus particles which have infected a host and are removed from the system.
Finally, as in the equations for the source and algae, one needs to subtract
a term DPi which corresponds to the outflow of virus particles in the chemostat.

By introducing an additional matrix

A =


1 1 1
0 1 1
0 0 1
0 0 0

 ,

Frickel et al. (2016) rewrote the whole system in a more compact form as

Ṡ = DS0 − c
4∑
i=1

gi(S)Bi −DS (3.20a)

Ḃ = MB(g(S) ∗B)− (ΦAP ) ∗B −DB (3.20b)

Ṗ = MPβ(ΦATB) ∗ P − (ΦATB) ∗ P −DP, (3.20c)

where g(S) := (g1(S), g2(S), g3(S), g4(S)) and ∗ denotes the component-wise
multiplication.

In order to apply the theory one needs to transform this model into a con-
tinuous trait model of the form (3.17). The equation for S remains unchanged.
For the ecological equations, Cortez et al. (2020) introduced the new variables
B̂ = B1 +B2 +B3 +B4 and P̂ = P1 + P2 + P3, which correspond to the total
algae, resp. virus densities. The evolutionary variables are then denoted by
x1 = B1/B̂, x2 = B2/B̂, x3 = B3/B̂, x4 = P1/P̂ and x5 = P2/P̂ . To determine
the equilibria and stability of the system, one still needs to decide on the values
of the parameters used in the model. Based on the empirical observations of
the chemostat experiment, Frickel, Sieber and Becks used the values depicted
in table 1.
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Table 1: Parameter values used in the transformed model

Parameter Biological meaning Value
D Chemostat dilution rate 0, 1
S0 Inflow resource concentration 30
a1 Algae maximum growth rate of ancestor B1 0, 25
aN Algae maximum growth rate of ancestor B4 0, 15
H Algae Half-saturation constant 1
c Algae conversion efficiency 2, 3 · 10−5

Φ Virus adsorption rate 7, 5 · 10−8

β Virus burst size 100
ε Mutation rates 10−3

Parameter values from Frickel et al. (2016)

Inserting this into the transformed continuous trait model, gives
(S, B̂, P̂ , x1, x2, x3, x4, x5) = (2.01, 1210000, 0.00884, 0.726·10−4, 0.00224, 889000,
0.973 · 10−5, 0.005) as the equilibrium. This is consistent with the observation
of the chemostat experiment, where virus population eventually stabilized at
a low density. Next, one needs to determine the stability of the Jacobian at
this equilibrium. According to the computations of Cortez et al. (2020), the
Jacobian J is given by:



−0, 564 2, 32 · 10−6 0 −1, 85 −1, 24 −0, 618 0 0
20200 0 −0, 00101 80, 1 −26800 −53300 187 181

0 0, 0736 0 7, 97 · 106 7, 97 · 106 7, 93 · 106 −18500 −17900
0, 0000967 0 −6, 56 · 10−10 −1, 18 · 10−6 0, 000268 0, 00039 −1, 37 · 10−6 −1, 32 · 10−6

7, 93 · 10−7 0 −5, 38 · 10−12 0, 0000167 −0, 0222 6, 44 · 10−5 4, 83 · 10−6 −1, 09 · 10−8

2, 44 · 10−5 0 −1, 656 · 10−10 −0, 0001 0, 000022 −0, 0441 0, 000149 0, 000149
0 0 0 2, 26 · 10−5 −6, 46 · 10−5 −8, 69 · 10−5 −0, 0208 4, 06 · 10−5

0 0 0 0, 00897 0, 00897 −0, 0356 0, 000083 −0, 0201



The eigenvalues of J are (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) = (−0.463,−0.00437±
0.0792i,−0.1,−0.0365,−0.0204,−0.0207,−0.0222). Thus, the real part of all
eigenvalues are negative, which means that the equilibrium is stable. This is
again consistent with the observation in the chemostat experiment, where both
the algae and virus densities eventually converged towards a stable coexistence
equilibrium. In order to determine which feedbacks influenced this result,
Cortez et al. (2020) checked the stabilities of various complementary pairs of
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subsystem. The results are summarized in table 2.

In this example, all of the subsystems are either stable or neutrally stable,
and therefore have a stabilizing effect on the whole system. Since J is stable
as well, the stabilities of the subsystems are in no contradiction to the overall
stability of the system. Thus, in this example one cannot specify if the feedbacks
between the subsystems have a stabilizing effect. The most one can say is that
if they are destabilizing, then this effect is not strong enough to destabilize the
whole system.

Table 2: Stabilities of complementary pairs of subsystems in Frickel et al. 2016

Subsystem Variables Eigenvalues Stability*

Eco S, B̂, P̂ -0.463, -0.1, -0.000905 S
Evo x1, x2, x3, x3, x4, x5 -0.5·10−8, -0.0439,-0.0222, -0.0203, -0.0208 S
Host evo x1, x2, x3 −5.0610 · 10−8, 0.0222, -0.0441 S
Complement S, B̂, P̂ , x4, x5 -0.463, -0.1, -0.000905, -0.0208, -0.0201 S
Host eco-evo B̂, x1, x2, x3 0, −5.06 · 10−8, -0.0222, -0.0441 NS
Complement Ŝ, P̂ , x4, x5 0, -0.564, -0.0207, -0.0201 NS
Virus evo x4, x5 -0.0208, -0.0201 S
Complement S, B̂, P̂ , x1, x2, x3 -0.463, -0.00436± 0.0792i, -0.1, -0.0368, -0.0222 S
Virus eco-evo P̂ , x4, x5 0,-0.0208, -0.0201 NS
Complement S, B̂, x1, x2, x3 -0.463, -0.102, -0.044, -0.0222, -5.01 ·10−8 S

[∗] The letter S means that all of the eigenvalues of the subsystem have negative real
part and thus the subsystem is stable. On the other hand, NS is short for neutrally stable
and means that the real part of the eigenvalues are all non-positive, at least one of the
eigenvalues has negative real part and at least one of the eigenvalues is 0. (Table from
Cortez et al. (2020))

In order to understand how eco-evo feedbacks can affect system stability,
one needs to repeat this process for a large number of empirically parametrized
models and hope to observe patterns. Cortez, Patel and Schreiber did exactly
this and replicated the approach on an additional 8 models for which empirically
obtained parameter values were available. All of the included models were of the
type exploiter-victim (e.g. predator-prey, pathogen-host, parasite-host), where
the densities either converged towards a stable coexistence equilibrium or ex-
hibited sustained oscillations around an unstable equilibrium. Analyzing those
models can therefore grant further insights on which type of feedbacks cause
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sustained oscillations and which type of feedbacks cause convergence towards a
stable equilibrium. The results of Patel, Cortez and Schreiber are summarized
in table 3. Across the nine models, four exhibited sustained oscillations around
an unstable equilibrium and four models converged towards a stable equilibrium.
The stabilities of the different subsystems differed depending on the trophic
level (exploiter or victim) and the type of subsystem (eco, evo or eco-evo). The
most noticeable difference can be observed when comparing the ecological and
the evolutionary subsystems: In all but one model, the ecological subsystems
were stable, whereas the evolutionary subsystems were only stable in four out
of nine models. Another noticeable difference can be seen when comparing the
eco, evo and eco-evo subsystems of the exploiter to the eco, evo and eco-evo
subsystems of the victim species: For the exploiter species, the subsystems
were stable, neutrally stable or neutral in all but one model, whereas for the
victim species, the subsystems where stable in only four models.

In order to understand how the feedbacks between the subsystem affected
the stability of the system, Cortez et al. (2020) compared the stabilities of
complementary subsystem pairs. They divided the models into two groups
and started with the four models with an unstable equilibrium. The ecological
subsystem was stable in three models, whereas the evolutionary subsystem
was stable in all four models. Thus, the feedbacks between the ecological
and evolutionary subsystems were either destabilizing or they were stabilizing,
however not strong enough to stabilize the whole system. The evo, eco and
eco-evo subsystems of the exploiter species were stable or neutrally stable in all
four models, whereas their complement was unstable in all four models. This
means that the feedbacks between the subsystems of the exploiter and their
complement were either destabilizing or stabilizing, however not strong enough
to stabilize the whole system. Finally, the eco, evo and eco-evo subsystems of
the victim species were unstable in all four of the models exhibiting cycles and
their complementary subsystems were stable or neutrally stable in three models.
As before, this implies that the feedbacks between the victim subsystems and
their complements were either destabilizing or they were stabilizing, however
insufficiently strong to stabilize the whole system. Next, Cortez et al. (2020)
looked at the five models with a stable equilibrium. In three models, all of the
subsystems were stable or neutrally stable. Thus, in these cases, the feedbacks
were either stabilizing or they were destabilizing, however insufficiently strong
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to destabilize the whole system. In one of the five models, all subsystems
but one were stable. In this system, the feedbacks between the exploiter eco
subsystem and its complement were sufficiently strong to stabilize the whole
system. Finally in the last of the five stable models, all of the complementary
subsystem pairs contained exactly one unstable subsystem. Thus, the feedbacks
between all of the five subsystem pairs had a stabilizing effect which was
sufficiently strong to stabilize the whole system.
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4
Conclusion and Future Research

Conclusion

The evergrowing number of empirical and theoretical works studying the
influence of eco-evolutionary feedbacks on system stability shows that the
traditional separation of ecology and evolution is artificial and needs to be
revised. Indeed, laboratory experiments (Frickel et al. 2016; DeLong et al.
2016) and data collections of natural communities (DeLong et al. 2016) con-
sistently show that rapid evolution on a contemporary ecological time scale is
possible. The immense amount of empirical evidence suggests that a drastic
rethinking is needed. The incorporation of evolutionary aspects into ecological
systems is imperative and needs to be the norm of modern ecological modeling.
Purely ecological models without any evolutionary elements may generate false
explanations and predictions, with potentially severe consequences in areas
such as natural resource management or wildlife conservation. This concern is
well-founded and strengthened by a number of theoretical works that show the
extent of how neglecting the eco-evo feedbacks can distort our perceived reality
(Vasseur et al. 2011; Schreiber et al. 2011; Schreiber and Patel 2015; Mougi
2012; Cortez and Weitz 2014; Patel et al. 2018).

Eco-evo feedbacks can stabilize ecologically unstable systems and allow co-
existence in competitive communities without the creation of niche differences
(Vasseur et al. 2011). This contradicts Gause’s law that states that in such cases,
the weaker competitor should always be driven to extinction. Inconsistencies of
Gause’s law are however not new. Indeed, many empirical examples of natural
communities, such as that of the Hispine Beetles have coexisted despite Gause’s
law predicting the contrary (Strong 1982). The eco-evo feedbacks merely serve
as a possible explanation for this phenomenon. Other theoretical work has
shown that eco-evo feedbacks can lead to permanence (Schreiber and Patel
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2015), drive antiphase or cryptic cycles in predator-prey models (Mougi 2012),
completely reverse the cycle directions in predator-prey models (Cortez and
Weitz 2014) or destabilize an ecologically stable system, leading to sustained
oscillations or even chaotic behaviour (Schreiber et al. 2011). While this thesis
was mostly focused on the effects that eco-evo feedbacks have on the stability of
systems, all this work shares a common interest, that is the accentuation of the
vast amount of unintuitive outcomes when taking the evolutionary aspects and
thus the eco-evo feedbacks into account. It is therefore essential to always at
least consider the possibility that the observed behaviours in ecological models
may be influenced by eco-evo feedbacks.

Nonetheless, simply including evolutionary aspects into the model may
not be sufficient and in some cases still lead to false outcomes. As a matter
of fact, the relative speed of the evolutionary and ecological variables are
highly important and can greatly influence the outcomes as well (Vasseur
et al. 2011; Schreiber et al. 2011). Slow evolutionary rates translate to weak
eco-evo feedbacks that may not be sufficient to exhibit a notable difference
in the outcome. Increasing the evolutionary rates increases the possibility of
observing the effects of eco-evo feedbacks, e.g. stabilizing an equilibrium and
allowing coexistence in an otherwise unstable ecological system (Vasseur et al.
2011). Further increasing the evolutionary speed in a system with a stable
equilibrium can lead to an overpowering of the eco-evo feedbacks, resulting in an
overshooting of the equilibrium, which is made visible by sustained oscillations
around the equilibrium (Vasseur et al. 2011; Schreiber et al. 2011) or even
chaotic behaviour (Schreiber et al. 2011). The importance of analyzing the
stabilizing properties of eco-evo feedbacks at different evolutionary rates is
backed up by theoretical studies (Patel et al. 2018; Cortez et al. 2020).

Indeed, depending on the evolutionary rates, different kinds of feedbacks
are essential in stabilizing a system (Patel et al. 2018). The indirect evo-eco-
evo feedbacks are critical in the case of slow evolution, whereas eco-evo-eco
feedbacks are essential in the case of fast evolution. This result is the first of
its kind. Unlike most of the previous works, which have limited themselves to
numerical results in systems consisting of only a few species, this work provided
analytical conditions that greatly advance our mechanistically understanding of
how the eco-evo feedbacks can stabilize a system. Furthermore, this result was
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pioneering in the sense that it was stated in the context of general community
systems with an arbitrary but finite number of interacting species and evolving
traits. Analytical results such as these are highly important and decisively im-
prove our knowledge on the fundamental question in eco-evolutionary dynamics
of how eco-evo feedbacks can influence the stability of an ecological system.

Similar analytical conditions - which determine the type of feedbacks that
are crucial for stabilizing a system - are, however, not possible in the case of
intermediate evolutionary rates (Theorem 3.6). Thus, in order to determine the
exact types of feedbacks that stabilize a system, alternative methods are needed.

One possibility is to determine the stability of different complementary pairs
of subsystems in empirically parametrized models and compare the predicted
stability of the subsystems to the actual stability of the Jacobian at an equilib-
rium (Cortez et al. 2020). This method gives us even further insights into the
types of feedbacks that have a stabilizing effect and - in contrast to the result of
Patel et al. (2018) - can even determine which feedbacks are destabilizing. One
limitation of this method is, however, that its success relies on the quantity of
empirically parametrized models available. On the plus site, this method can
continuously give us additional information on the types of feedbacks that are
stabilizing, resp. destabilizing, as the number of models that are parametrized
using empirical data grows.

Another possibility to determine the effects of eco-evo feedbacks in the case
of intermediate evolutionary rates - as proposed by Patel et al. (2018) - is the
use of so called loop analysis, a method developped by Levins (2020). Similar to
the method by Patel et al. (2018), loop analysis allows the identification of the
specific feedback loops which are responsible for destabilizing the equilibrium.
This is done by using special stability conditions depending on the length of the
feedback loop, and checking whether they are satisfied or not. One disadvantage
of this method is however that the number of loops, and thus the number of
stability conditions rapidly grows as the number of species and traits increases.

Future Research

While the presented work has greatly improved our understanding of the
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effects of eco-evo feedbacks on the stability of systems, the full nature of the
underlying mechanisms driving the feedbacks, and in particular the question if
and how they stabilize or destabilize a system seem still far away. Most studies
which have analyzed the influence of eco-evo feedbacks on stability provide
numerical results and are limited to two to three species with at most one
evolving trait. Simulations of larger community systems with several evolving
traits would certainly be interesting. Ultimately, however, analytical results will
always be favorable since they provide a better understanding of the underlying
effects resulted by the feedbacks. Unfortunately, such studies are - at the time
being - barely available with the two exceptions of Patel et al. (2018) and
Cortez et al. (2020).

While Patel et al. (2018) succeeded to determine which types of feedbacks
are essential for stabilizing a system in the case of slow and fast evolution,
similar results that determine the types of feedbacks that are essential for
destabilizing a system in the case of slow and fast evolution are not avail-
able and would be interesting to see in future works. Furthermore, stability
conditions as in Patel et al. (2018) for arbitrary intermediate ecological rates
would significantly improve our understanding of the relation between eco-evo
feedbacks and system stability. Unfortunately, such conditions are in general
not possible (Theorem 3.6). Thus, if one would still wish to obtain similar
stability conditions for intermediate evolutionary rates, one would need to
sacrifice the generality of the model used in Patel et al. (2018) and focus on
more specific cases.

One possibility would be to restrict the number of species or the number
of traits to one or two. After all, Patel et al. (2018) did precisely this and
consequently succeeded to provide an instability condition in the case of inter-
mediate evolutionary rates. Alternatively, one could try to keep the generality
of the model while focusing on only one kind of interaction between the in-
volved species. Indeed, the properties of competition, mutualism and predator
prey models are often considerably different. Focusing on a single type of
interaction could therefore greatly simplify the analysis of an eco-evolutionary
system. A third possibility would be to consider other types of eco-evo feed-
backs. Patel et al. (2018) restricted themselves to the investigations of the
feedbacks between the ecological and evolutionary subsystem. Cortez et al.
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(2020), however, showed that feedbacks between other kinds of subsystems
can have systematically different effects on the stability of the system. Future
works investigating the effects of eco-evo feedbacks on stability in systems with
intermediate evolutionary rates could therefore try to develop similar results
to that of Patel et al. (2018) while focusing on the feedbacks between the
subsystems presented in Cortez et al. (2020).

In contrast to a general stability condition, Theorem 3.6 does not exclude
the existence of a general instability condition for intermediate evolutionary
rates, as the example of Patel et al. (2018) with one single evolving trait shows.
Generalizations of this result for multiple traits would be interesting to see in
the future.

As a matter of fact, the publication of Cortez et al. (2020) provides a
method that could potentially answer most of the above questions. However,
the success of this method depends at large on both the quality and the quan-
tity of the empirically parametrized models available. In this study, only nine
models were analyzed. These were the only models parametrized with empirical
data, which Cortez, Patel and Schreiber managed to find. The small number
of models and the fact that all of those models were of the exploiter-victim
type, drastically weakened the relevance of the resulting observations. The
few empirically parametrized models available are insufficient to provide a
deeper insight, determining the influence of the different types of feedbacks
in a general system. However, due to the increasing recognition of rapid evo-
lution on an ecological time scale and the evergrowing number of theoretical
studies highlighting the importance of incorporating evolutionary aspects into
ecological models, more and more biological studies and collection of data -
both in the laboratory and in natural environments - are expected to appear in
the near future. In this case, the work of Cortez et al. (2020) can be applied
to a larger set of data, eventually advancing our understanding of the depen-
dency of eco-evo feedbacks and the stability of multi-species community systems.

Most works presented in this thesis were focused on the local stability around
an isolated equilibrium. The global dynamics can however often be substantially
more complex. Indeed, investigating the effects of eco-evo feedbacks on the
global dynamics in a general model is practically unfeasible. Fortunately,
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the question whether all species can continue to coexist after some initial
perturbation is more important than the analysis of the exact dynamics. Thus,
results on permanence are in most cases sufficient. Analytical work on the
effects of eco-evo feedbacks on permanence in a 3-species apparent competition
model is available (Schreiber and Patel 2015). Future works could therefore
follow a similar approach and investigate the effects of eco-evo feedbacks on
permanence in models with different kind of interactions.
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