
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Virus Orthologous Groups Assignment with DeepNOG and
VOGDB“

verfasst von / submitted by

Alexander Pfundner BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2021 / Vienna, 2021

Studienkennzahl lt. Studienblatt / UA 066 910
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Computational Science UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Thomas Rattei

Declaration of Authorship

I, Alexander Pfundner, declare that this thesis and the work presented is my own personal
work. I confirm that it is always clearly stated when I have consulted the work of others.
There are no co-authors in this work, any use of we refers to the reader and I, and is
solely a design on phrasing.

Acknowledgments

First and foremost, I want to thank my supervisors Thomas Rattei and Roman Feldbauer
for giving me the opportunity to work on this very interesting topic, for their ongoing
support and constructive criticism, working on this project was a great pleasure for me.
Many thanks go to all my colleagues at CUBE, Lovro, Roko, Ade, Michael, Lukas and Li
for providing such a kindly working atmosphere and also valuable advice.
My wholehearted gratitude goes to my family, my inspiring wife Alex, my wonderful
son Moritz, my caring parents Rudi and Gerlinde, as well as the best dogs in the world
Lore, Berta and Charlie. This accomplishment would not have been possible without you,
thank you for sticking with me.

iii

Abstract

Assigning functions to proteins is a central task in molecular biology. The amount of
sequence data that is produced nowadays can no longer be processed efficiently through
biological experiments, therefore computational methods are needed. The function of
a protein can be explained by its structure, which is largely encoded by the amino
acid sequence. Orthologs are genes that descended from a last common ancestor and
therefore have a high sequence similarity. Orthology resources are databases that cluster
orthologous sequences in groups, thus making it possible to transfer annotations from one
group to an unknown sequence that maps to this group.
This thesis investigates how recent developments in orthologous groups assignment
(DeepNOG) and the availability of a comprehensive virus orthology resource (VOGDB)
can be utilized to create a fast and accurate method for virus orthologous group assignment.
DeepNOG is a deep learning neural network approach that assigns sequences to orthologous
groups. VOGDB is a viral orthology database that includes all available viral proteins from
RefSeq and uses Hidden Markov models to model orthologous groups. Data preparation
for training a DeepNOG model from VOGDB data has to consider the biased nature
of the dataset in terms of the class cardinalities. The performance of the DeepNOG
model is compared to the Hidden Markov models of VOGDB in terms of assignment
confidence, runtime and memory consumption. Model applicability to real-world scenarios
is evaluated on external datasets.
The trained DeepNOG models achieve similar accuracy as the Hidden Markov models and
reduce the assignment runtime by at least a 100-fold and the memory consumption by a 30-
fold. Hyperparameter tuning revealed only marginal improvements when deviating from
the default configuration. Both methods agree and produce high confidence assignments
on other virus orthology resources. Performance for data from uncultivated viral genomes
was equally low for both methods with significant disagreement.

v

Kurzfassung

Proteinen Funktionen zuzuordnen ist eine zentrale Aufgabe der Molekularbiologie. Die
Menge an Sequenzdaten, die heute anfällt, kann durch biologische Experimente nicht
mehr effizient verarbeitet werden, daher werden computergestützte Methoden benötigt.
Die Funktion eines Proteins lässt sich durch seine Struktur erklären, die weitgehend
durch die Aminosäuresequenz kodiert wird. Orthologe sind Gene, die von einem letzten
gemeinsamen Vorfahren abstammen und daher eine hohe Sequenzähnlichkeit aufweisen.
Orthologieressourcen sind Datenbanken, die orthologe Sequenzen gruppieren, wodurch es
möglich ist, Annotationen von einer Gruppe auf eine unbekannte Sequenz zu übertragen,
die sich zu dieser Gruppe zuordnet.
Diese Arbeit untersucht, wie die jüngsten Entwicklungen in der orthologen Gruppen-
zuordnung (DeepNOG) und die Verfügbarkeit einer umfassenden Orthologieressource
für Viren (VOGDB) genutzt werden können, um eine schnelle und akkurate Methode
für die Zuordnung von Virusproteinen zu Orthologiegruppen zu erstellen. DeepNOG
ist ein Deep Learning Ansatz, der Sequenzen orthologen Gruppen zuweist. VOGDB ist
eine virale Orthologiedatenbank, die alle verfügbaren viralen Proteine von RefSeq enthält
und Hidden Markov Modelle verwendet, um orthologe Gruppen zu modellieren. Die
Datenvorbereitung zum Trainieren eines DeepNOG-Modells aus VOGDB-Daten muss die
Eigenschaften des Datensatzes in Bezug auf die Klassenkardinalitäten berücksichtigen. Die
Performanz des DeepNOG-Modells wird in Bezug auf Zuversichtlichkeit der Zuordnungen,
Laufzeit und Speicherverbrauch mit den Hidden Markov Modellen von VOGDB verglichen.
Die Anwendbarkeit des Modells auf reale Szenarien wird anhand externer Datensätze
bewertet.
Die trainierten DeepNOG-Modelle erreichen eine ähnliche Genauigkeit wie die Hidden
Markov Modelle und reduzieren die Zuweisungslaufzeit um mindestens das 100-fache
und den Speicherverbrauch um das 30-fache. Das Hyperparametertuning zeigte beim
Abweichen von der Standardkonfiguration nur marginale Verbesserungen. Beide Ver-
fahren stimmen überein und erzeugen Zuweisungen mit hoher Konfidenz für andere virale
Orthologieressourcen. Die Leistung für Daten aus nicht kultivierten viralen Genomen war
für beide Methoden gleich niedrig und Zuweisungen stimmten meistens nicht überein.

vii

Contents

Declaration of Authorship i

Acknowledgments iii

Abstract v

Kurzfassung vii

1 Introduction 1
1.1 Biological Background . 3

1.1.1 Sequence Homology . 3
1.1.2 Functional Annotation . 5
1.1.3 Viral Genomes . 6

1.2 Computational Background . 7
1.2.1 Machine Learning Basics . 7
1.2.2 Neural Networks . 9
1.2.3 Databases of Orthologs . 12
1.2.4 Orthologous Groups Assignment 14

1.3 Problem Description and Research Goals 16

2 Materials and Methods 17
2.1 VOGDB . 17
2.2 DeepNOG . 19

2.2.1 Architecture . 19
2.2.2 Word Embedding . 21
2.2.3 eggNOG Dataset . 21
2.2.4 Comparison to DeepFam . 22

2.3 Pipeline Overview . 23
2.3.1 Software Stack . 24

2.4 Data Preparation . 24
2.4.1 Group Splits . 25

ix

Contents

2.4.2 Member Thresholds . 26
2.5 Model Training . 26

2.5.1 Hyperparameters . 27
2.6 Model Inference . 28

2.6.1 Metrics . 28
2.6.2 Assignment Confidence . 30
2.6.3 Comparison with HMMs . 31

2.7 Performance on External Datasets . 32
2.7.1 pVOG . 32
2.7.2 IMG/VR . 32
2.7.3 Comparing Clusterings . 32

3 Results 35
3.1 Data Preparation . 35

3.1.1 Group Splits . 35
3.1.2 Member Thresholds . 37
3.1.3 Final Datasets . 37

3.2 Training Process . 37
3.2.1 Learning Curves . 39
3.2.2 Hyperparameter Optimization . 41

3.3 Assignment Performance . 43
3.3.1 Assignments of the Test Set . 43
3.3.2 Comparison with VOGDB HMMs 46
3.3.3 Comparison on External Datasets 48

3.4 Deployment . 50

4 Discussion 53
4.1 Challenges of the VOGDB Data . 53
4.2 Strengths and Weaknesses of DeepNOG 54
4.3 Potential for a Real-World Application . 54

4.3.1 Overfitting . 54
4.3.2 Production Pipeline . 55

5 Conclusion and Outlook 57
5.1 Data Augmentation . 57
5.2 Learning Rate Schedulers . 58
5.3 Implications of AlphaFold . 58

x

Contents

Abbreviations 61

List of Tables 63

List of Figures 65

Listings 69

References 71

xi

1 Introduction

Linking proteins with function is a key issue in molecular biology. Today’s large-scale
metagenomic projects produce immense amounts of sequencing data that can no longer be
processed efficiently with biological experiments [36]. Therefore, computational methods
that are able to extract functional information from protein sequences are needed.
There is broad agreement that the function of a protein can be explained by its structure.
At the same time, the amino acid sequence contains enough information to encode for
the structure [39]. Thus, logically the function of the protein is mainly determined by its
sequence.
Protein families are groups of proteins that descended from a common ancestor, having
similar functions and high sequence similarity. Assigning protein sequences of interest to
families enables us to gain annotation in a transitive manner. From this, two problems
emerge, firstly we have to group together protein sequences according to their orthologous
relationship, secondly new sequences need to be assigned correctly to the best fitting
group.
Orthologs are genes derived from a single ancestral gene in the last common ancestor of
the compared species [28]. It is assumed, that sequences of orthologous genes have higher
sequence similarity to each other than to any other genes from the compared genomes,
therefore symmetrical best hits can be used to identify orthologs.
The “Clusters of Orthologous Genes” (COG) [18] was the first genome-wide evolutionary
classification system for protein families. The term orthologous group (OG) extended the
notion of a genome-specific best hit to multiple genomes, thereby constructing clusters
of consistent best hits. Nowadays there are further orthology resources around, some
of them covering thousands of organisms from all domains of life and viruses, the most
popular ones include eggNOG [24], OMA [4] and OrthoDB [56].
In this thesis, we solely focus on the problem of assigning new sequences to precomputed
OGs. The two main approaches in assigning sequences of interest to OGs are alignment-
free and alignment-based methods, whereas the latter, although computationally expensive
[55], is the defacto standard, relying on Hidden Markov Models (HMM) built from multiple
sequence alignments (MSA) [11]. Alignment-free methods utilize concepts like k-mers to

1

1 Introduction

create feature vectors, which results in loosing the order of the protein sequence and thus
structural information, which leads to lower sensitivity.
Recent benchmark studies for protein orthology assignments reported AUC values in the
area of 0.70-0.80 for current state-of-the-art alignment-free and alignment-based methods
[57], [7]. The performance of alignment-free methods tends to vary stronger for different
datasets and scenarios. In contrast to this, alignment-based methods generalize better,
but with the cost of higher time complexity.
In large studies alignment-based methods manifest a common computational bottleneck
[15], issuing a demand for fast and accurate alignment-free methods. Recently, approaches
based on deep learning have shown to deliver a speed-up of multiple folds while still
obtaining the same high accuracy as alignment-based methods [14], [41]. These methods
reveal a new way of alignment-free methods, that are able to directly process raw sequences
without loosing information about sequence order.
In 2018 DeepFam [41] was published as the first deep learning model for OG assignment,
in 2020 DeepNOG [14] followed. Both models use a feedforward architecture with
convolutional units to extract knowledge from the input data. DeepFam uses a pseudo
one-hot-encoding to encode the amino acid sequence, DeepNOG utilizes a word embedding.
There were two models trained with DeepFam, one was trained on the COG database [18]
(which is manually curated and thus relatively small) for assigning COGs. The second
model was trained with the even smaller G protein-coupled receptor (GPCR) [6] dataset
on the sub-subfamily level, with a simple bottom-up approach for assignments of the
sub-family and family level.
DeepNOG was trained on the eggNOG [24] database, root and bacteria level. While
including COG as a supervised core, the main parts of eggNOG are built using an
unsupervised clustering approach. Performance of DeepNOG is superior to DeepFam for
both, COG and eggNOG databases [14] (the DeepNOG team rebuilt the DeepFam model
and trained it also on eggNOG).
When we want to assign viral proteins to viral orthologous groups (VOGs) we need
a resource that includes viral proteomes. Unfortunately, the COG database does not
include any viral proteomes and eggNOG solely includes viral proteomes from the UniProt
Knowledgebase [49], thereby not covering all available viral proteomes. Thus, in terms of
VOG assignment the usage of DeepNOG is strongly limited and it is therefore interesting
to find out if we can train a DeepNOG model from another orthology database that
specializes in viral proteins. VOGDB is an extensive resource for viral orthology [2], which
includes all publicly available genomes from RefSeq, therefore depicting a broad range of
taxonomic diversity.

2

1.1 Biological Background

In this thesis, we investigate the possibility of creating a deep learning model, similar
to DeepNOG and DeepFam, for VOG assignment, but trained with data from VOGDB.
Since eggNOG only includes a fraction of the viral proteomes contained in VOGDB, it
is expected that a similar deep learning model trained on VOGDB will have superior
capabilities to DeepNOG.
In contrast to the orthology of cellular organisms, we have to address multiple challenges
when working with viral genomes, e.g. very rapid and often massively varying rates of
evolution or the large-scale propensity of viruses for reassortment or recombination [44].
Also, we have to keep in mind, that for a large number of viruses the sequence data is
incomplete or not yet available. These problems have the consequences of no existing
universal approach for inferring virus orthology and therefore missing gold standard data.
With this, we expect various challenges in the creation of the model. For example, when
training a model, splitting the dataset into training, validation and test sets, requires
high class cardinalities. A more general problem arises when we want to evaluate the
models performance, as there is no gold standard dataset for VOGs that can aid us in
benchmarking. Thus, leaving us with the task of developing new metrics for evaluation. In
addition, VOGDB is constantly updated, so we need to design an automatic pipeline that
seamlessly integrates the deep learning model and tells us when retraining or reevaluation
is needed.

1.1 Biological Background

To investigate the evolutionary relationships between sequences we analyze the similarities
between sequences. We group sequences that are related to each other via an ancestral
sequence together and form clusters of sequences that share phylogenetic and functional
information. This enables us to transfer information to any new sequences that map
to these clusters. Considering the orthology of viruses, we are confronted with strongly
limited resources, which is unfortunate, since viral dark matter is flooding the sequence
repositories and the amount is expected to increase in the future [31]. In the following
sections, we will give an overview of the concepts needed for creating and applying
orthology resources, to gain functional annotation, focusing on viral genomes.

1.1.1 Sequence Homology

In comparative genomics, we look at conserved regions in genomes of organisms that
share the same traits. Homologous genes derived from a common origin and have the

3

1 Introduction

possibility to fulfill similar biological functions. Homology of sequences is indicated by
sequence similarity, which is the percentage of identical residues, also called sequence
identity. If two sequences are very similar, i.e. they share more similarity than expected
by chance, we get strong evidence that these sequences are related evolutionary via a
common ancestral sequence. However, there is no need for sequences to share significant
sequence identity to be homologous, there are multiple examples of obviously homologous
sequences based on e.g. statistically significant structural similarity [37]. Shared ancestry
between sequences can manifest from a speciation event, a duplication event or a horizontal
gene transfer (HGT) event, see figure 1.1 for a depiction of orthologous and paralogous
relationships of genes. Homologs created only by a speciation event are called orthologs
and homologs created by a duplication event are called paralogs. HGT is the direct
movement of genetic information between different organisms without a parent to offspring
transmission. Combining speciation, duplication and HGT with the concepts of gene loss
and rearrangements creates a complex structure of relationships around orthologs and
paralogs, which needs to be analyzed carefully.

Orthology

In order to give an accurate definition of orthology, it is important to clarify ones per-
spective on the problem. Biologists define orthology in terms of the functions of the gene
products and bioinformaticians define orthology in terms of the similarity of sequences.
In this work, we adopt the bioinformatics perspective and use the definitions of orthology
as given by Eugene V. Koonin. Orthologous genes originated from a single gene of the
last common ancestor of the compared species [28]. This statement gives rise to two
requirements that have to be met. At first, we require a single ancestral gene. If it can
be shown that the ancestral genome contained two paralogous genes that resulted in the
genes in question, we cannot consider an orthologous relationship. Secondly, the ancestral
gene must specifically come from the last common ancestor and not from a more ancient
ancestor. It is important to mention that there is no connection between orthology and
function, in this basic definition of orthology, but it is generally assumed that orthologs
share equivalent biological functions over different species [47].
When identifying orthologs, several accomplishments can be made, including the investig-
ation of the evolutionary process or creating clusters of genes to analyze their functional
potential [13]. The creation of OGs is important to many tasks in biology, such as the
before mentioned transfer of annotation to new sequences. In the past, several projects
focused on creating OGs using different construction approaches. The methods used

4

1.1 Biological Background

Figure 1.1: Example phylogenetic tree of a gene family, depicting orthologous and para-
logous relationships. Branch 1 shows an orthologous relationship of gene X in
the species A, B and C. Branch 2 features a duplication of gene Y in species
A creating a paralog in this species and co-orthologs to the genes in species
B and C. Branch 3 depicts a complex scenario with multiple paralogous and
orthologous relationships. Figure taken from [28].

can be split into two categories, namely clustering pairs of genes for similar functions or
utilizing phylogenetic trees to identify events producing different functions.
Typical errors in the creation of OGs often result from the presence of xenologs, as
these special types of homologs, violate the definition of orthology through the horizontal
transfer of genes [28].

1.1.2 Functional Annotation

With the computational background of this work and when speaking of functional
annotation, where we associate biological information with gene sequences, we always
consider an automatic annotation process. Manual annotation is still considered to be
the gold standard, but often not feasible in today’s NGS projects [10] and mostly limited
to model organisms. When performing an automatic prediction of function we utilize
local alignments of a query sequence against a sequence database. We then assign the

5

1 Introduction

annotation of the highest scoring result to the query sequence, following our assumption
that sequences that have high identity to each other evolved from a single ancestral
sequence. There are manually curated and automatically annotated protein databases,
where the latter have a much larger content, but also introduce inaccuracies, making the
transfer of annotation a difficult task.
Today, annotation of prokaryotes has matured by having a plethora of tools and extensive
annotation pipelines available [30]. In contrast, the task of annotating viruses is still
associated with limitations and there is for example no general approach that can deal with
several virus families. Viral genomes can be considered as very dynamic with much higher
mutations rates than cellular organisms [8]. This leads to a rapid decline of sequence
similarity, which is problematic for the creation and use of OGs based on bidirectional
best hits. For example, the evolutionary relationship of the enterobacterial phage PRD1
has been traced with the help of the virus capsids and not with the sequence data [35].
To classify viral genes, we distinguish the three categories: genes with homologs to cellular
organisms, virus-specific genes and viral hallmark genes. Since there is no single gene
shared by all known viruses [9], we have to look at proteins that are conserved over
larger taxonomic groups, i.e. proteins involved with housekeeping functions, encoding for
example virus structure or replication.

1.1.3 Viral Genomes

In this section, we want to discuss some of the properties that are special to viruses and
viral genomes when compared to classical cellular organisms. Further, we will highlight
the impact of these properties on our use case of transferring annotation between viral
genes with the concepts of orthology.
Viruses descended from multiple discrete viral ancestors [22], making them of polyphyletic
origin with no last universal common ancestor (LUCA). We classify viruses by the type of
molecule used for the organization of the genomic nucleic acids, known as the Baltimore
scheme [29]. In this classification, we differentiate between RNA and DNA viruses and
their strandedness (single or double) with positive or negative sense (in case of single-
stranded), which results in seven groups (see table 1.1 for Baltimore groups and designated
group names).
Viruses come with very different genome sizes, but compared with cellular organisms,
their genomes are mostly smaller. Genomes of RNA viruses are small and also have little
variation in genome size. DNA viruses show a much larger variation in their genome sizes,
from very small single-stranded DNA viruses having about 2 kb to giant double-stranded

6

1.2 Computational Background

Group name Description Genome type
Group I double-stranded DNA viruses DNA(+/-)
Group II single-stranded DNA viruses DNA(+)
Group III double-stranded RNA viruses RNA(+/-)

Group IV positive sense single-stranded
RNA viruses RNA(+)

Group V negative sense single-stranded
RNA viruses RNA(-)

Group VI single-stranded RNA viruses with
intermediate DNA in their life cycle RNA(+)

Group VII double-stranded DNA viruses with
intermediate RNA in their life cycle DNA(+/-)

Table 1.1: The seven groups of the Baltimore scheme. Classifying viruses depending on
their genome type and replication method.

DNA viruses with about 2 Mb, figure 1.2 shows the genome sizes and variation for every
Baltimore group. In accordance with the genome size, different viruses encode a different
number of proteins in the genome, whereby the length of the encoded proteins can also
involve large variation.

1.2 Computational Background

In the following sections, we will draw attention to the essential computational concepts
when learning how to assign VOGs to new sequences. We will give an overview of the
concepts behind machine learning and highlight the methods used in this thesis. Further,
we will take a look at the data, that is the OGs and how databases for OGs and more
specifically VOGs are constructed and applied.

1.2.1 Machine Learning Basics

Machine learning is a sub-area of artificial intelligence that enables systems to automatic-
ally learn from experience (data) and to improve without being explicitly programmed.
Machine learning can automatically generate knowledge, identify relationships and recog-
nize unknown patterns. These identified patterns and relationships can be applied to a
new, unknown data set in order to make predictions.
The field is divided into three kinds of methods, namely supervised learning, unsupervised
learning and reinforcement learning. In supervised learning, the relationship to a target
variable is always learned, the target variable can be a class or a numerical value. In

7

1 Introduction

Figure 1.2: Genome sizes of viruses for each Baltimore group. The gray area indicates
the maximum and minimum genome size. Figure taken from [5].

unsupervised learning, the algorithm does not receive any sample data, but rather data
from which the algorithm should independently identify hidden patterns. The fundamental
difference to supervised learning is that unsupervised learning is not designed to calculate
a prediction for a known target variable. With reinforcement learning, the algorithm is
not shown which action is the right one for each situation, but rather it receives positive
or negative feedback from a cost function. The cost function is then used to estimate
which action is the right one at which point in time. The key difference to supervised and
unsupervised learning is that reinforcement learning does not require any sample data
beforehand, the algorithm develops its own strategy in an iterative simulation.
In order for machine learning to work and the software to be able to make decisions, a
human has to train the algorithm. By providing training and sample data, the algorithm
can recognize patterns and relationships and thus learn from the data. This process is
also called model training. After a successfully completed learning process, the trained
model is used to evaluate unknown data. This means that better decisions can be made
based on these predictions. The main goal is to learn it automatically without human

8

1.2 Computational Background

intervention and adjust actions accordingly.
As the extraction of knowledge from raw data is often very difficult and the number of
features has a direct impact on the computational effort, feature engineering is required
for most algorithms. Feature engineering is the process of selecting, manipulating, and
converting raw data into features that can be used in machine learning, with the aim of
simplifying and accelerating data transformations while improving model accuracy. Most
of the time, the task of feature engineering is difficult, since it requires a lot of domain
knowledge. The ever-increasing amounts of input data in machine learning projects lead
to increased popularity of algorithms that can carry out feature engineering by themselves.

1.2.2 Neural Networks

Neural networks are algorithms that are modeled on the human brain, which results in
an abstract model of artificial neurons that are able to solve complex tasks. Currently,
neural networks are a very active research area, with multiple improvements and a lot
of applications every year. Neural networks can have different levels of complexity, but
essentially have the structures of directed graphs. If a neural network has particularly
deep structures, it is called deep neural network and the associated learning process is
then called deep learning.
Deep neural networks are able to process raw or unstructured data and require little domain
knowledge, as the algorithm performs the feature engineering itself. This advantage comes
with the cost of the need for strong hardware (high memory consumption and need of a
GPU), long-running training times and a lack of interpretability (black-box model). In
the following, we will introduce the concepts behind neural network models by looking at
the simplest form, which is the feedforward network. In addition to that, we will also
introduce the concepts behind the network architecture used in DeepNOG and DeepFAM
which is the convolutional neural network.

Feedforward Neural Networks

The feedforward neural network (FNN) is the basic model for all modern deep learning
approaches [20]. Intuitively, FNNs approximate functions, by learning the mapping y =
f(x,W), with x as the input data, W as the parameters to learn and y as the target output
(label, in case of a classification task). The network aspect arises from the fact that FNNs
are represented by chaining several functions together. In the network architecture, we
address these functions as layers, where we have input layers, output layers and hidden
layers. The number of the hidden layers is the depth of the network and defines the

9

1 Introduction

ability to approximate complex functions, figure 1.3 depicts a network diagram for a fully
connected (dense) FNN. More hidden layers raise the models ability, but also increase the
likelihood of overfitting and introduce a higher computational effort when training the
model.

Figure 1.3: Directed acyclic graph for a fully connected (dense) FNN. Edges represent
weights and nodes represent input, hidden and output values. Figure taken
from [45].

Linear models for classification use M linear combinations of non-linear basis functions
ϕ to transform the inputs x such that

y(x,w) = f

⎛⎝ M∑︂
j=1

wjϕj(x)

⎞⎠
where f is a non-linear activation function. In FNNs we let the basis functions depend on
tuneable parameters, such that they can be adjusted along with the coefficients when
training the model. Every layer consists of activations aj , e.g. the first layer is calculated
as

aj =
d∑︂

i=1

w
(1)
ji + w

(1)
j0

which is the sum of all combinations of weights wji and biases wj0 applied to the data
x. Consequently an activation function, like sigmoid, tanh or ReLU, is applied to every
computed activation. The outputs of the first layer are the units of the hidden layer,
which then again can be combined into another hidden layer. In the last layer, that is
the output units, depending on the use case, a final activation function, e.g. softmax, is
applied.
The flow of data through the network, we have described so far, is called forward
propagation. During training, we notice the error of the model, which is manifested by
the error function. Our goal is to approximate the minimum of this error function by

10

1.2 Computational Background

adjusting the weights accordingly, this is done in three steps. Firstly, we acquire the
gradient of the loss function by the backpropagation algorithm. Secondly, we evaluate
the derivatives with respect to the weights. Thirdly, we use the derivatives to adjust the
weights accordingly, usually making use of stochastic gradient descent algorithms.

Convolutional Neural Networks

A convolutional neural network (CNN) is a specific type of neural network optimized for
data that has a grid-structured topology (e.g. images). In a CNN we replace the general
matrix multiplication by a convolution, in at least one layer [20]. In the field of neural
networks, convolution is a mathematical operation, where we apply a small matrix, named
kernel, to the input, to produce a feature map. This technique allows for the extraction
of high-level features, while requiring fewer operations than a full matrix multiplication.
The kernels (often called filters) are applied to the input in a sliding-window approach,
see figure 1.4 for a depiction of this process.

Figure 1.4: Example of a convolution. A filter is applied in a sliding-window approach on
a two-dimensional input to produce a feature map. Figure taken from [45].

Each layer in a CNN is made up of three consecutive parts. In the first part, multiple
convolutions are performed in parallel and produce a set of linear activations. In the
second part, called detector, each activation is run through a nonlinear activation function
(e.g. ReLU). In the third part, we use a pooling function to summarize nearby neurons
(e.g. max-pooling for taking the maximum value of a rectangular neighborhood). In figure
1.5 we see a CNN which is able to detect handwritten digits, two convolutional layers
with max-pooling are used to extract features, followed by two dense layers performing
the classification.

11

1 Introduction

Figure 1.5: A CNN to classify handwritten digits. The network consists of two convolu-
tional layers with max-pooling for detecting features and two dense layers for
making the classification. Figure taken from [51].

Database Taxonomic Range # Proteomes
COG bacteria and archaea 1,309
eggNOG all domains of life, viruses 7,592
OMA all domains of life 2,326
OrthoDB all domains of life, viruses 7,588
OrtholugeDB bacteria and archaea 2,069

Table 1.2: Overview of a selection of orthology resources, depicting the included taxo-
nomic range and the number of proteomes. Full table available at ht-
tps://questfororthologs.org/orthology_databases.

1.2.3 Databases of Orthologs

The content of today’s orthology databases covers a very broad spectrum of applied
methodologies and specific use cases. Resources strongly differ for example in the number
of included species or the available taxonomic range. At the moment, the Quest for
Ortholog consortium lists about 50 different orthology resources on their website [19].
This group of scientists working in the field of orthology has set itself the task of collecting
and discussing the available resources in orthology and providing benchmark data sets for
the evaluation of these resources. In table 1.2 we can see an excerpt of this information
concerning the most important orthology databases, in general or specific for the use case
of this thesis.

In the following subsections, we will highlight the orthology resources that are most
important for our use case, namely COG, eggNOG and VOGDB. COG was one of the
first orthology resources and served as a seed resource for the construction of the eggNOG

12

1.2 Computational Background

database. COG was the dataset used for the development of DeepFam and eggNOG was
the dataset used for the development of DeepNOG. Further, the construction approach of
eggNOG guided the development of VOGDB.

COG

Since first published in 1997, the “Clusters of Orthologous Genes” database (COG) has
been a widely used tool for genome annotation and comparative genomics of microbes [17].
The latest update of COG was released in 2020 and contains 4,887 OGs, covering 1187
bacteria and 122 archaea [18]. The approach behind COG only uses complete genomes
and builds upon the assumption that any set of at least three proteins are most likely
true orthologs, if they have high similarity to each other and low similarity to any other
proteins from the same genomes. The success of previous COG versions is based on
extensive manual curation as well as extensive computational analysis for annotating
poorly characterized COGs. Drawbacks of the COG database include the lack of hierarchy
between OGs, the high sensitivity to domain rearrangements and the lack of scalability
due to the needed labour-consuming manual curation. [17].

eggNOG

The “Evolutionary genealogy of genes: Non-supervised Orthologous Groups” (eggNOG)
covers orthology relationships for thousands of organisms from all domains of life and
viruses. The database provides extensive functional annotations for its OGs, which cover
a broad taxonomic range. Further, eggNOG offers a hierarchy between OGs for different
resolutions, which in its actual release covers 379 taxonomic levels. At its core, eggNOG
uses a similar construction approach like COG, where three-way similarities between genes
are utilized to cluster sequences to OGs. The most recent version of eggNOG contains
4.4M OGs, covering 5090 organisms (4445 bacteria, 168 archaea, 477 eukaryotes) and
2502 viruses. New releases of eggNOG are published every two years, incorporating new
source databases and algorithmic improvements [24].

VOGDB

At the moment VOGDB is the largest resource for viral orthology. The current release
(vog207 - Oct 22, 2021) contains 28,386 VOGs with 438,852 proteins assigned to them,
coming from 10,046 genomes. The release cycle of RefSeq outputs a new release every
two months. A new release of VOGDB is computed and released also every two months,
referencing the latest RefSeq release by using the same release numbers. The VOGDB

13

1 Introduction

pipeline features three consecutive stages, see figure 1.6 for an overview. In the first stage,
viral genomes are extracted from RefSeq and filtered for quality and completeness. Also,
the algorithm tries to reannotate any polyproteins. In the second stage, the so-called
premature VOGs (preVOGs) are built via pairwise alignment and bidirectional best hits,
which then are clustered with a procedure similar to eggNOG and COG. In the last stage,
the preVOGs are enriched with remote homology information to become (mature) VOGs.
For this, HMMs are computed for each preVOG and aligned against each other to produce
an all-against-all matrix that can again be clustered to produce the matured VOGs.

Figure 1.6: Overview of the VOGDB pipeline. Figure taken from [2].

In the last years, VOGDB has been used in several projects, including a metagenomic
analysis investigating the viral distribution patterns in reef invertebrates [32] and another
study analyzing the mobility of genetic elements of viruses in eukaryotic cells [48].

1.2.4 Orthologous Groups Assignment

Computational methods for assigning new sequences to precomputed OGs can be grouped
into alignment-based and alignment-free methods. Alignment-based methods rely on
comparisons of multiple sequences and HMMs for database searching of proteins by

14

1.2 Computational Background

sequence homology [14]. To assign a sequence to an OG, an inference with all HMMs of
the database is required, which makes the approach computationally expensive. Alignment-
free methods offer an alternative to this problem, which is why they are actively researched.

Alignment-based Methods

HMMs have become very important in the field of protein family analysis, where these
methods have the advantage of representing a family of hundreds of homologous sequences
with a single model and thereby compensating the difference in speed when compared to
BLAST [43]. In the last years, HMMER’s performance has improved and in its actual
release (HMMER3) the speed difference to BLAST is negligible [16]. When looking at the
model performance, HMMs are still considered to be state-of-the-art in terms of accuracy
and sensitivity [14]. However, when assigning a protein sequence to a VOG, one must
search the sequence against all HMMs in the database, since every VOG is modeled by
a single HMM. Therefore, in this work special attention is paid to the extent to which
an alignment-free method based on deep learning can overcome these computational
problems.

Alignment-free Methods

The central question when developing an alignment-free method is how to derive feature
vectors from raw sequences. Before DeepFam was published, the best approach utilized
k-mers to create feature vectors [53], which in some cases showed better performance than
alignment-based methods [34]. Using k-mers introduces two obvious problems, namely
the loss of order information in sequences and the requirement of exact matches to the
k-mers which is not backed biologically since amino acids share biochemical properties.
DeepFam was the first alignment-free method that utilized a CNN to model OGs. A
DeepFam model is a multiclass classifier that assigns OGs from the COG database.
DeepNOG, inspired by DeepFam, is also a CNN which extracts patterns from protein
sequences and was developed to overcome several limitations of DeepFam [14]. DeepNOG
was initially developed to assign sequences to OGs from the eggNOG database, but it also
features a training module that allows the training for custom databases. Raw protein
sequences are taken as input and the model returns class labels for each of them. This
catalogs DeepNOG as an end-to-end learning method, where no feature engineering and
extraction is needed. A DeepNOG model is able to model all VOGs within a single
multiclass classifier, but the training process is still expensive and might require multiple
CPUs or even multiple GPUs. Later in the text, when we evaluate the DeepNOG model,

15

1 Introduction

we will compare DeepNOG extensively with the VOGDB HMMs, in terms of runtime,
memory consumption and of course assignment performance.

1.3 Problem Description and Research Goals

DeepNOG offers fast and accurate functional and taxonomic annotation for genomes from
cellular organisms. To this day, a similar method for annotating the genomes of viruses
does not exist. HMMs form a good baseline for the annotation of viral genomes, but they
are too computationally expensive to be applied in large-scale projects.
In this thesis, we want to investigate, if we can train a DeepNOG model with data from
VOGDB, to get a model for fast and accurate VOG assignment that has similar confidence
in its predictions like the state of the art HMMs.
Since the DeepNOG software offers us several parameters for tuning the training procedure,
we want to explore different parameterizations and the effects they have on the learning
process and the model performance. Further, we will also compare the DeepNOG model
to the HMMs from VOGDB in terms of execution runtime and memory consumption
as well as the applicability of both methods to real-world scenarios and uncultivated
genomes.
From this proposed workflow, the following key problems emerged. Firstly, we must
prepare the data to be used with DeepNOG by taking the number of sequences and
VOGs needed for training and evaluation into account, while keeping an eye on the
class cardinalities. Secondly, we must train a model that generalizes well and tune the
hyperparameters offered by DeepNOG to maximize model performance for this specific
dataset. Thirdly, an extensive performance evaluation has to be done, where we find out
how much loss in accuracy we get by using DeepNOG instead of the VOGDB HMMs, we
achieve this by comparing the two methods on internal (i.e. VOGDB data) and external
datasets. For the fourth and last step, we must find a way on how to integrate the model
retraining on new VOGDB releases into the VOGDB landscape.
Specific use cases for the resulting models include viral genome annotation, comparative
analysis of viruses, and metagenomic projects that focus on viruses. In particular, the
reannotation of viral genomes is strongly supported by the models, as we are subject to
time restrictions here and the method developed will be much faster than the methods
currently used.

16

2 Materials and Methods

2.1 VOGDB

The VOGDB dataset consists of several files (e.g. tab-separated, FASTA) and can be
downloaded from http://vogdb.org/download. Table 2.1 shows basic statistics of the
actual VOGDB release vog208 and table 2.2 gives an overview of all dataset files. The
files vog.faa.tar.gz, vog.members.tsv.gz and vog.hmm.tar.gz are particularly important in
this work. To assign VOGs for a given set of protein sequences the HMMER software
package is used. We use the tool hmmscan to search sequences against VOGs, see listing
2.1 for more details. After this, we parse the results file for the columns target name
(=VOG), query name and E-value and take the entry with the lowest E-value as the
assignment.

1 # Concat all HMMs into one single file
2 tar -xzOf vog.hmm.tar.gz > hmmdb
3 # Create HMM database for hmmscan
4 hmmpress hmmdb
5 # Search protein sequences against HMM database
6 # --tblout generates tab -separated output file
7 hmmscan --tblout result.txt hmmdb seqs.faa

Listing 2.1: Steps needed to perform a search of sequences against an HMM database.

Release date Nov 08, 2021
Release number vog208
Data source NCBI RefSeq release 208
Number of genomes 10,046
Number of proteins in VOGs 438,852
Number of VOGs 28,386
Virus specific VOGs (high/me-
dium/low stringency)

22,597/24,359/25,131

Table 2.1: Statistics of the latest VOGDB release vog208.

17

2 Materials and Methods

File Filetype Description
vog_functional_categories.txt text Letter codes for indicating func-

tional category.
vog.species.list TSV All genomes used for constructing

VOGs.
vog.proteins.all.fa.gz FASTA All proteins from the genomes in

vog.species.list.
vog.genes.all.fa.gz FASTA All gene sequences from the gen-

omes in vog.species.list.
vog.faa.tar.gz FASTA A file for every VOG and the pro-

tein sequences assigned.
vog.raw_algs.tar.gz MSA Multiple sequence alignments for

each VOG.
vog.hmm.tar.gz HMMER HMMs from MSAs for each VOG.
vog.members.tsv.gz TSV Proteins to VOGs mapping.
vog.annotations.tsv.gz TSV Annotations from SwissProt and

RefSeq.
vog.lca.tsv.gz TSV Taxonomic lineage of the LCA for

each VOG.
vog.virusonly.tsv.gz TSV Occurrence of VOGs in virus gen-

omes for different stringencies.

Table 2.2: The complete VOGDB dataset.

18

2.2 DeepNOG

2.2 DeepNOG

Initially trained and optimized to assign OGs from eggNOG, the DeepNOG software
allows also training new models for custom orthology databases. For this, DeepNOG
requires a specific set of input mapping and sequence files, table 2.3 gives details on
the file formats. DeepNOG offers multiple parameters to steer the training process, in
listing 2.2 the most straightforward version for training a custom model is shown. A
successful training outputs 3 files, namely a model file model.pth, a labels file labels.npz
and an evaluation file eval.csv. The model file consists of all the network weights and is
therefore the file we later use for assignments. The labels file holds the ground truth and
the assigned labels over each epoch. The evaluation file depicts the learning process by
listing accuracies and losses for training and validation for each epoch.

1 # Train DeepNOG model for custom databases
2 # -a network architecture used
3 # -o output directory for the model files
4 # -db database name
5 # -t taxonomic level in database
6 deepnog train
7 -a "deepnog" \
8 -o . \
9 -db "VOGDB" \

10 -t "1"
11 train.faa \
12 val.faa \
13 train.csv \
14 val.csv

Listing 2.2: Call of DeepNOG for training a model from a custom database.

2.2.1 Architecture

DeepNOG uses a feedfoward architecture with convolutions to extract patterns, figure 2.1
depicts the setup of the different layers in the network’s architecture. To get a numerical
representation of an input sequence, the sequence is mapped to a vector space, in machine
learning terms this is called a word embedding [12]. Applying this technique to protein
sequences is, to our knowledge, unique to DeepNOG and will be explained in more detail
in the following section. Then, a 1-D convolutional layer is applied to the embedding,
meaning that filters are moved over each column of the embedding. Filters come in eight
different sizes (8-36) and are used multiple times (up to 250). This creates a vector of

19

2 Materials and Methods

File Description

train.csv
Sequence-ID to VOG mapping, training split.
Columns: Row-Nr, Sequence-ID, VOG-ID
Mandatory header line: “,string_id,eggnog_id”

val.csv
Sequence-ID to VOG mapping, validation split.
Columns: Row-Nr, Sequence-ID, VOG-ID
Mandatory header line: “,string_id,eggnog_id”

train.faa FASTA file for model training, containing all
sequences for the sequence-IDs from train.csv.

val.faa FASTA file for model validation, containing all
sequences for the sequence-IDs from val.csv.

Table 2.3: Files needed for training a DeepNOG model on a custom database. CSV-files
represent sequence-ID to VOG mappings, FASTA-files contain the sequences
for the corresponding split.

weights modeling the occurrences of amino acids at specific positions in the subsequence.
The weights are then handed over to a SELU activation function, which was chosen over
a ReLU activation function for stability and efficiency reasons [27]. This results in filters
that are sensitive to discriminatory motifs for OG assignments. DeepNOG downsamples
the outputs of the convolutional layer utilizing adaptive-max pooling and then directly
places the classification layer (softmax layer) after it, which results in only one hidden
layer (dense layer) instead of two, thereby reducing the number of parameters greatly.

Figure 2.1: DeepNOG end-to-end model architecture consisting of three main parts, that
is the word embedding, the convolutional layer and the classification layer.

20

2.2 DeepNOG

2.2.2 Word Embedding

To be used with deep networks, sequences must be transformed into numerical vectors.
The most straightforward way of doing this is to use a procedure called one-hot encoding.
In one-hot encoding vectors have a fixed length, in our case this is the length of the
amino acid alphabet, and are set to 1 at a specific position (representing a specific amino
acid) and 0 elsewhere. This sort of encoding enforces equidistance between all amino
acids and thereby loosing chemical and biological properties, which represent important
features in our use case. To account for the similarities of amino acids, DeepNOG embeds
them into a word embedding, which is a vector representation that basically starts with
a randomized one-hot-encoding which is then jointly optimized during the training of
the network. This learned numerical representation of amino acids can have a lower
dimension than the length of the amino acid alphabet and we are also able to inspect it
visually for biological plausibility, see figure 2.2.

Figure 2.2: Representation of amino acids in the word embedding layer of DeepNOG. On
the left the random initializations before the training, on the right the learned
representations after training.

2.2.3 eggNOG Dataset

In the development of DeepNOG, the focus was set to the root and bacterial level of
eggNOG, as these taxonomic levels are highly relevant to metagenomic studies [14].
Most parts of the eggNOG database are constructed in an unsupervised manner, where

21

2 Materials and Methods

eggNOG
(bacteria) VOGDB

#OGs 206,782 28,386
mean 74 16
std 904 85
min 2 2
25% 2 2
50% 3 4
75% 7 8
max 97,670 7,764

Table 2.4: Comparison of the eggNOG (bacteria level) and VOGDB datasets. Descriptive
statistics for the number of OGs in the datasets, as well as OGs size distribution.

assignment of one protein to multiple OGs is allowed. DeepNOG assigns a single class
label (VOG) to every protein, that is the label with the highest prediction probability. In
the case of low confidence assignments, no label is assigned. Therefore, when training the
model, DeepNOG only considers proteins from eggNOG that are assigned to a single OG,
any multi-domain proteins are excluded. For the eggNOG root and bacteria levels, this
means that about a fraction of 3-4% of proteins is excluded [24]. To get an idea of how
the eggNOG dataset differs from the VOGDB dataset, we calculated descriptive statistics
on the number of OGs and OGs size for eggNOG bacteria level and VOGDB, see table
2.4. In the case of multiclass classification, class cardinalities are of particular interest,
figure 2.3 shows the similarities between OG size distributions for eggNOG and VOGDB.
Both datasets mainly consist of OGs with less than 10 members, as well as a few OGs
with a high count of members.

2.2.4 Comparison to DeepFam

DeepFam was the first alignment-free method that was based on deep learning [41]. It was
also the first alignment-free method that was fast, while at the same time being highly
accurate, when compared to the commonly used HMMER software. Besides that, the
DeepNOG team identified several limitations in the DeepFam approach. DeepFam utilizes
the COG database, which is manually curated but orders of magnitudes smaller than
eggNOG. This not only limits DeepFam’s applicability but also introduces scaling issues
when training on larger datasets. On top of that, DeepFam restricts the length of the input
sequences. Instead of adaptive-max-pooling, DeepFam uses a standard 1-max-pooling
layer which enforces a specific length of all input sequences (L=1000). Shorter sequences

22

2.3 Pipeline Overview

Figure 2.3: Similarities between OG size distributions for eggNOG and VOGDB.

get zero-padded and longer sequences are removed from the dataset. Thus, DeepFam is
not applicable to arbitrary sequences which is a hard limitation, especially when looking
at real-world applications.

2.3 Pipeline Overview

To find out whether VOGDB data is applicable to DeepNOG and whether the resulting
model can be used for VOG assignment, we create the following pipeline:

1. Data preparation

a) Extract Sequence-ID to VOG mapping from VOGDB

b) Align VOGDB sequences to UniRef to get UniRef cluster labels

c) Create member threshold datasets

d) Split the datasets into training, validation and test sets

2. Model training

a) Train a model for every UniRef-threshold combination

b) Evaluate the training processes and the model performances

c) Retrain and re-evaluate for different model parameterizations

3. Model inference

23

2 Materials and Methods

a) Perform assignments for every model on every test set

b) Evaluate model performances

c) Perform assignments with HMMs on every test set

d) Compare model performance of DeepNOG and HMMs

e) Compare runtimes and memory consumption

4. Performance on external datasets

a) Get subsets of pVOG and UViG datasets

b) Redundancy analysis

c) Perform assignments with DeepNOG and HMMs

d) Evaluate performances and compare results

2.3.1 Software Stack

In this work, depending on the task type, different tools and environments were used. The
task types included are: pure computational, investigative computational, data analysis
and orchestration. Pure computational tasks were done with a mixture of Shell and
Python scripts. Investigative computational tasks and data analysis were done using
Jupyter notebooks with Python. For putting it all together, i.e. orchestration, the
Nextflow workflow manager was used. See table 2.5 for more details on tools, software
packages and versions. For running data analysis tasks in Jupyter notebooks, a separate
python environment was created with Conda and loaded when needed. Computational
expensive tasks, as well as tasks that needed a GPU, were run on the Life Science Compute
Cluster [1] with an appropriate configuration.

2.4 Data Preparation

In a first step, we need to get a simple 1:1 protein to VOG mapping for all proteins
in VOGDB that are actually assigned to a VOG. The VOGDB file vog.members.tsv.gz
lists the VOG to Sequence-ID mapping in a 1:n fashion and therefore needs flattening
first to be further processed. The list of proteins needs then to be cleaned since it can
contain duplicate or empty entries. The resulting set of proteins was then used to create
a FASTA file containing solely assigned sequences. At this point, we would already be
able to split the dataset into a training, validation and test set and start training the
DeepNOG model right away. Unfortunately, randomly splitting (stratified split) would

24

2.4 Data Preparation

Software Version Library / Tool

Python 3.9.0

pandas 1.3.2
matplotlib 3.4.2
seaborn 0.11.2
scikit-learn 0.24.2
numpy 1.20.3
scipy 1.7.1
biopython 1.78
pytorch 1.8.0

Jupyter 1.0.0 jupyter lab 3.1.7

MMSeqs2 11-e1a1c
createdb
search
convertalis

DeepNOG 1.2.3

HMMER 3.3 hmmpress
hmmscan

MEME 5.1.1 fasta-subsample
Nextflow 21.04.0
Conda 4.10.3

Table 2.5: Software packages, tools and libraries used in this work.

introduce unwanted effects, like strong over-fitting, since we are facing here a dataset
with low class cardinalities and at the same time high class imbalance. These problems
limit the model’s applicability and performance. Also important to mention is that we
don’t have control over the used labels and have to take what the randomization gives us.

2.4.1 Group Splits

To overcome the unwanted effects of a stratified split, we make use of the so-called group
split. In this technique, the splitting is performed on a third-party label which ideally
encodes domain-specific stratifications [38]. In the case of sequences and OGs this is, for
example, any information that represents similarity between sequences, since OGs are for
the most part built on sequence similarity measures. UniRef clusters provide clustered
sets of sequences from the UniProt Knowledgebase [50] at several resolutions of identity
(100, 90 and 50), thereby uniting similar sequences under a single UniRef cluster label.
To obtain a protein to UniRef mapping, a sequence alignment of VOGDB to UniRef is
necessary. This resulted in 3 alignments, one for each UniRef resolution, which was done
by using the MMseqs2 software package [46]. The group split itself then was performed
with the DeepNOG utility function data.group_train_val_test_split() which makes use

25

2 Materials and Methods

of scikit-learn’s GroupShuffleSplit.

2.4.2 Member Thresholds

Since most VOGs have a very low class cardinality, it is important to investigate the
effects where we remove small VOGs from the dataset, thereby boosting the learning
process. Since fewer labels have to be classified and on average more data is available per
label, the model’s performance is expected to increase. To achieve this we introduced two
VOG member thresholds, namely one where we kick out VOGs with very few members
and one where we only include bigger VOGs, thereby reducing the scope of the dataset
strongly.

2.5 Model Training

When we combine the multiplicities of UniRef resolutions and member thresholds we get
the following 9 datasets:

• UniRef100 with no threshold

• UniRef100 with 10+ threshold

• UniRef100 with 100+ threshold

• UniRef90 with no threshold

• UniRef90 with 10+ threshold

• UniRef90 with 100+ threshold

• UniRef50 with no threshold

• UniRef50 with 10+ threshold

• UniRef50 with 100+ threshold

This means that for every DeepNOG parameterization, 9 model trainings have to be
done and evaluated. After a first training run with DeepNOG’s default parameterization,
we changed some of the default hyperparameters and retrained new models. We repeated
this process until we got a clear picture of the reachable model performance and the
influence of the different hyperparameters. To evaluate the training process we looked at
the learning curves, i.e. change in accuracy and loss for training and validation set for
each epoch, as well as the training runtime for every model.

26

2.5 Model Training

2.5.1 Hyperparameters

DeepNOG offers multiple parameters to tune the training process and its learning behavior.
Most of these parameters are passed as command line arguments, some of them have to
be specified in DeepNOG’s own configuration file. In the following text we will highlight
and explain the most important tunable hyperparameters of DeepNOG in our setup.

Batch Size

This parameter defines how many sequences are processed between the updates of the
internal network parameters. The default batch size of DeepNOG is set to 64 sequences,
for CPUs a batch size of 1 is recommended. Since larger batch sizes lead to fewer updates
of the network and vice-versa, this parameter can have an influence on the learning
process.

Dropout Rate

This parameter is set within the DeepNOG configuration file deepnog_config.yml in the
section architecture, with 0.3 being the default value. Dropout is a form of regularization
in which a fraction of the neurons gets randomly chosen to be dropped out (ignored) and
don’t receive updates from the backward pass. The resulting effect is that the network is
prevented from focusing on specific neurons and with that also from overfitting.

Number of Epochs

An epoch represents one full pass of the training data through the network, per default
DeepNOG does 15 epochs per training. Deep neural networks are usually optimized by a
set of iterative algorithms (e.g. gradient descent). The iterative nature of these algorithms
requires multiple training runs to ensure that it converges to the global minimum. The
number of epochs is the hyperparameter that influences the training runtime the most, so
it is recommended to start with a moderate amount of epochs and raise it if needed or
the performance is still expected to improve.

Learning Rate and Decay

The learning rate starts out with a fixed value and is then reduced after every epoch
by the learning decay. The default value for the learning rate is 0.02 and 0.75 for the
learning decay. With these parameters, we control the weights updates in feedback to

27

2 Materials and Methods

File Description

test.faa FASTA file with sequences from which VOG
assignments should be made.

test.csv
Ground truth mapping of Sequence-ID to VOG.
Columns: Row-Nr, Sequence-ID, VOG-ID
Mandatory header line: “,string_id,eggnog_id”

Table 2.6: Input files needed by DeepNOG for assigning VOGs to sequences, including
performance evaluation via ground truth labels.

the estimated error. Too small learning rates may lead to long training processes, on the
other hand, too large learning rates lead to instability.

2.6 Model Inference

To evaluate the performance of the trained models for unseen sequences, we use DeepNOG’s
inference module to assign VOGs for the test split of every dataset, see listing 2.3 for an
example call and table 2.6 for information on the supplied input files. For every sequence,
DeepNOG outputs an assignment accompanied by a confidence value. If we also supply
the ground truth labels, DeepNOG will report several performance measures that are
useful for evaluating multiclass problems.

1 # Assign VOGs for a set of sequences
2 # -w weights file of the trained model
3 # -t taxonomic level in database
4 # -a network architecture used
5 # --test_labels ground truth labels
6 deepnog infer \
7 test.faa \
8 -w model.pth \
9 -t "1" \

10 -a "deepnog" \
11 --test_labels test.csv

Listing 2.3: Call of DeepNOG for assigning VOGs to sequences with performance
evaluation via ground truth labels.

2.6.1 Metrics

To quantify the quality of VOG assignments, DeepNOG offers us the following performance
measures. Since DeepNOG models are multiclass classifiers, it is important to mention,

28

2.6 Model Inference

that the multiclass versions of these performance measures are involved. In contrast to
the more common versions coming from binary classification problems.

Accuracy

The fraction of correct predictions made by the model, i.e.

accuracy(y, ŷ) =
1

nsamples

nsamples−1∑︂
i=0

1(ŷi = yi)

with ŷi being the predicted label of the i-th row and yi being the true label. Accuracy
is usually the first metric to look at when evaluating the performance of a multiclass
classifier, but since this dataset features class imbalances, we need to look at further
metrics that aren’t that vulnerable.

Precision, Recall and F-measures

Considering a binary classification task, precision is the ability of the model to not classify
samples as positive when they are in truth negative. Furthermore, recall is the ability of
the model to retrieve all positive samples. F-measures are different weighted harmonic
means of precision and recall. In our case we only consider the F1 score, where recall
and precision contribute equally. For a multiclass classifier, the concepts of precision,
recall and F1 are transferred by looking at each label independently. How to consider the
labels independently is set by type of averaging. A macro-average means that the metric
is computed independently for each class and then averaged, so each class is treated
equally. On the other side, a micro-average will collect all the contributions of all classes
to compute the metric, thereby being more robust in case of a class imbalance. The
metrics are defined as followed. With

• y as the set of predictions and ŷ as the truth

• L as the set of class labels

• yl as the subset of predictions that have label l

• ŷl as the subset of the truth that have the label l

we get the metrics

• P (y, ŷ) as micro-average precision and 1
|L|

∑︁
l∈L P (yl, ŷl) as macro average precision.

29

2 Materials and Methods

• R(y, ŷ) as micro-average recall and 1
|L|

∑︁
l∈LR(yl, ŷl) as macro-average recall.

• F1(y, ŷ) as micro-average F1 score and 1
|L|

∑︁
l∈L F1(yl, ŷl) as macro-average F1

score.

where

• P (A,B) := |A∩B|
|A|

• R(A,B) := |A∩B|
|B|

• F1(A,B) := 2P (A,B)×R(A,B)
P (A,B)+R(A,B)

Matthews Correlation Coefficient

The Matthews correlation coefficient (MCC) is a measure that focuses its applicability to
problems that have a huge class imbalance [26]. Considering a multiclass classifier, the
MCC is defined with the help of a confusion matrix C and the set of all classes K.

MCC =
c× s−

∑︁K
k pk × tk√︂

(s2 −
∑︁K

k p2k)× (s2 −
∑︁K

k t2k)

with

• tk as the number of true occurrences of class k

• pk as the number of predictions of class k

• c as the number of correct predictions

• s as the number of samples

2.6.2 Assignment Confidence

For every sequence, DeepNOG outputs a probability distribution over the available classes.
The output of a single neuron represents DeepNOG’s confidence, that the sequence belongs
to the corresponding class from the set of available classes, keeping in mind that in this
problem and its setup we don’t know all the classes. Firstly, as mentioned above, the viral
protein sequence space is only marginally explored, so there always will be VOGs that
are missing in the dataset. Secondly, when splitting the data into training, validation and
test set, it is possible that whole VOGs, i.e. all sequences from a VOG are put into the

30

2.6 Model Inference

validation or test set, thereby missing in the training procedure and becoming unknown
to the model. When thinking about applicability in a real-world scenario, at first glance,
it might seem odd to omit VOGs completely, since the predictive power in terms of
assignable labels is reduced. At a second glance, our model becomes the opportunity to
learn the possibility that a sequence doesn’t map to any VOG, thereby strengthening the
models confidence. Furthermore, with VOGs being able to be unique to the validation
or test set we again prevent over-fitting and therefore get a more accurate validation
process and a much clearer performance evaluation. When evaluating the performance,
the fraction of assignments that were made with high confidence is of great interest. We
therefore count the number of assignments that pass a certain confidence threshold and
then show this together with e.g. the accuracy, so we immediately see if a model is able to
make good and meaningful assignments. The default confidence threshold by DeepNOG
is set to 99% which was determined by looking at the Pareto boundary of minimizing
false positives and false negatives for the eggNOG bacterial level.

2.6.3 Comparison with HMMs

To compare DeepNOG to the VOGDB HMMs, we use the tool hmmscan of the HMMER
suite to assign VOGs to the sequences of the test sets. With this, we are able to make
comparisons in terms of model performance, inference runtime and memory consumption.

HMMs Performance

The tabular output format of hmmscan is a HMMER specific file format, which can be
parsed by using the HmmerIO module of Biopython with option hmmer3-tab. Sequences
that aligned to HMMs are called hits, for every hit the E-value is reported. We determine
the hit with the lowest E-value for every sequence, according to a maximum threshold
to separate high from low confidence assignments. Since hmmscan doesn’t necessarily
find hits for all sequences, we have to collect the missing sequences and account them as
low confidence assignments, in order to have a comparable setup between DeepNOG and
VOGDB HMMs. In the last step, for the actual performance comparison, we compute all
the performance measures from DeepNOG for the HMMs assignments.

Memory and Runtime

To compare the memory consumption of both methods we look at the weights file of
DeepNOG and the HMM database of VOGDB. For a runtime comparison, we must differ
between DeepNOG running on a CPU or a GPU, as well as hmmscan running on a single

31

2 Materials and Methods

CPU or in a parallel setup. This results in 2 runs of DeepNOG and 2 runs of hmmscan.
We repeat this process multiple times and note the average runtime.

2.7 Performance on External Datasets

In this section, we further evaluate the model performance considering real-world scenarios.
For this we picked subsets of two external datasets, pVOG [21] and IMG/VR [40], and
run assignments with both DeepNOG and the VOGDB HMMs.

2.7.1 pVOG

The pVOG dataset was released in 2014 and is a small VOG resource. We expect the
sequences from the pVOG dataset to be highly redundant with VOGDB. To compare
assignment results of DeepNOG and VOGDB HMMs we simply calculate and visualize
the overlap per pVOG, for a subset of pVOGs.

2.7.2 IMG/VR

The IMG/VR dataset is a huge dataset of sequences of uncultivated viral genomes
(UViGs). UViG sequences are not contained in RefSeq, therefore we expect a very low
number of redundant sequences with VOGDB. Since IMG/VR is not a VOG resource
we cannot compare the overlap of assigned VOGs and have to deviate to other ways of
comparison, like clustering metrics.

2.7.3 Comparing Clusterings

To compare assignments by DeepNOG and VOGDB HMMs on a dataset that is not a
VOG resource, we utilize the assignments of the VOGDB HMMs as the ground truth
and the DeepNOG assignments as the predictions of a clustering problem. We then
compute two clustering performance measures, namely the Rand Index [23] and the
Mutual Information [54] metric. These clustering performance measures evaluate how
similar the separations of the data are between the predictions and the ground truth. In
other words, they measure the agreement between two clusterings, ignoring permutations.

Rand Index

The adjusted Rand Index obtains a value close to 0 for a random assignment and a
value of 1 in the case of a perfect agreement. With C as the ground truth and K as the

32

2.7 Performance on External Datasets

clustering we define

• a as the count of pairs of elements that are in the same set in C and K

• b as the count of pairs of elements that are in different sets in C and K

• C
nsamples

2 as the count of all possible pairs

Then the (unadjusted) Rand Index (RI) is defined by

RI =
a+ b

C
nsamples

2

The adjusted Rand Index (ARI) corrects the RI for chance by discounting the expected
RI E[RI] of random assignments and is defined by

ARI =
RI − E[RI]

max(RI)− E[RI]

Mutual Information

For a random assignment, adjusted Mutual Information scores close to 0. In case of a
perfect agreement, a score of 1 is obtained. In this measure, the concept of entropy is
used as the amount of uncertainty of a set of partitions. The entropy of an assignment U

is defined by

H(U) = −
|U |∑︂
i=1

P (i) log(P (i))

with P (i) being the probability that a randomly picked item from U falls into the class
Ui. The Mutual Information (MI) between two assignments U and V is then defined by

MI(U, V) =

|U |∑︂
i=1

|V |∑︂
j=1

|Ui ∩ Vj |
N

log

(︃
N |Ui ∩ Vj |
|Ui||Vj |

)︃
witch P (i, j) being the probability that a randomly picked item falls into class Ui and

Vj . Similar to the ARI, the adjusted Mutual Information (AMI) score corrects for chance
by discounting the expected MI E[MI] and is defined by

AMI =
MI − E[MI]

mean(H(U), H(V))− E[MI]

33

3 Results

3.1 Data Preparation

In this section, we will highlight the characteristics of the intermediate and final datasets,
including any supplementary data that was used in the data preparation step. In the
first step, we extract all sequence-IDs and sequences from VOGDB that are assigned to a
VOG. The release vog208 from November 8, 2021, was used. The resulting sequence-ID
to VOG mapping yields 434,836 unique entries. In the resulting FASTA file the number
of sequences matches this number exactly.

3.1.1 Group Splits

Training a model from a completely randomized stratified split of this dataset would
introduce unwanted over-fitting effects. By using a group split on a third-party label
we achieve a higher balance between in-model and out-of-model VOGs, which prevents
over-fitting, as it addresses the weaknesses of the dataset. To perform the group splits on
a third-party label, the cluster labels of UniRef100, UniRef90 and UniRef50 were used.
See table 3.1 for statistics of the latest release 2021_03 for the different sizes of the
datasets and the distributions of clusters according to size.

DeepNOG used a 96%/2%/2% training, validation and test split for the eggNOG data.
For VOGDB data we decided to stay with these percentages. These values already focus
on the maximum usage of the data for training which is, in the VOGDB case, even
more important, since the dataset is smaller than e.g. the eggNOG bacteria level. To

Clusters Singleton clusters <5 members clusters
UniRef100 277,482,692 91% 99%
UniRef90 135,301,051 71% 93%
UniRef50 48,531,432 63% 87%

Table 3.1: Properties of the latest UniRef release 2021_03 for all three levels of resolution.
Number of clusters per dataset and fractions of singleton clusters (i.e. clusters
of size 1) and clusters with less than 5 members.

35

3 Results

ensure the occurrence of the wanted effects of using a group split over a stratified split,
we investigated the overlap of VOGs between the training, validation and test split for
both splitting techniques. In the stratified split, the VOGs of the training set strongly
overlap with the VOGs from the validation an test set. As we can see in figure 3.1 in
the stratified split, the training set includes nearly all VOGs and there is also substantial
overlap between the test and validation set. Both of these effects would clearly increase
over-fitting. With the group splits we manage to set aside 10 to 50 times the number of
VOGs solely for the validation and test set, which we consider an acceptable result, that
will clearly aid the training process later.

Figure 3.1: Comparison of stratified split and group splits for different UniRef resolutions.
In the case of the stratified split, the training set includes nearly all VOGs
and there is also a substantial overlap between the test and validation set. In
the case of the group splits, a significant portion of VOGs is not included in
the training set.

36

3.2 Training Process

Threshold # VOGs % VOGs # Sequences % Sequences
all (no threshold) 28,210 100% 434,836 100%
10+ 6,408 23% 357,341 82%
100+ 704 3% 204,450 47%

Table 3.2: Properties of the datasets resulting from applying membership thresholds.
Depicting a nonlinear reduction of the number of VOGs and sequences in the
threshold datasets.

3.1.2 Member Thresholds

To investigate the effects of low vs. higher class cardinalities we extracted two subsets
from the dataset where we limit us to VOGs that surpass certain membership thresholds.
For a subset where we only select VOGs that have at least 10 members, the number
of VOGs and sequences in the dataset reduces greatly. See table 3.2 for details on
the resulting dataset and the implications of thresholds on the number of VOGs and
sequences, as well as figure 3.2 for a comparison of the VOG size distributions. For a
100+ members threshold, the dataset reduces further, with only 3% of VOGs remaining
while still having about half of the sequences. In this case, the machine learning problem
is decisively simplified, so we expect an improved performance over models trained from
the no threshold or 10+ members threshold datasets.

3.1.3 Final Datasets

If we combine all member thresholds with all UniRef resolutions, we get a total of 9
different datasets. A separate model will be trained on all of these datasets, see table 3.3
for the final number of VOGs included in the training, validation and test.

3.2 Training Process

In this section, we will cover the outcomes of monitoring the training process, as well as
evaluating different hyperparameter configurations. For the most part, we will investigate
the accuracies of the models, i.e. the progression of accuracy in the training itself and
the variation of accuracies on all datasets for every hyperparameter configuration. It
is important to note, that the performance of the model during and at the end of the
training process must not have direct implications on the assignment performance, at this
point of the machine learning process, it can just be seen as some kind of orientation.

37

3 Results

U
n
iR

ef
T

h
resh

old
#

T
rain

V
O

G
s

#
V

alid
ation

V
O

G
s

#
T
est

V
O

G
s

#
R

etain
ed

V
O

G
s

%
R

etain
ed

V
O

G
s

100
all

28,011
4,025

4,044
159

0.6%
100

10
6,406

2,575
2,599

1
0.02%

100
100

704
643

647
0

0%
90

all
27,791

2,936
2,895

371
1.3%

90
10

6,396
1,722

1,760
12

0.2%
90

100
704

493
492

0
0%

50
all

27,484
1,194

2,009
693

2.5%
50

10
6,364

1,120
1,137

42
0.7%

50
100

703
348

341
1

0.1%

T
able

3.3:C
ounts

ofthe
included

V
O

G
s

for
allparts

ofthe
split

for
every

dataset.
In

addition,the
num

ber
ofretained

V
O

G
s,

i.e.
V

O
G

labels
that

are
not

included
in

the
training

split,is
show

n.

38

3.2 Training Process

Figure 3.2: Density estimations of the VOG sizes for the membership threshold datasets.

3.2.1 Learning Curves

DeepNOG reports the accuracy and loss (i.e. the error of the model) on the training and
validation set for every epoch. Comparing the progression of these measures for training
and validation offers us a way of evaluating the training process quickly. Having all
the training progressions side-by-side gives us the opportunity to spot-check for possible
changes in the hyperparameter configuration, figures 3.3 and 3.4 depict such comparisons.

39

3 Results

Figure 3.3: Progression of model accuracy on training and validation set over epochs. In
an ideal setting, the curves for training and validation will converge to each
other and then stay close to each other while having a high accuracy outcome.
This would then mean that the model is not or only slightly overfitted. As we
can see here this is only the case for some of the datasets, which was expected.
The strongly reduced sets for the 100+ thresholds (bottom row) are easier to
learn. The same goes for sets that were split on the UniRef100 labels (left
column), where fewer VOGs are retained to the validation and test set.

40

3.2 Training Process

Figure 3.4: Progression of the error of the model on the training and validation set over
epochs. Similar to the accuracy curves, we want the two curves to converge
to each other and in this case of an error measure to go down and stay down.

3.2.2 Hyperparameter Optimization

To investigate the possibility of improving the training process we started out by tuning
single hyperparameters to get an initial picture of where there might be improvements
possible. In a second round, we then evaluated combinations of tuned parameters. This
resulted in the following deviations from the default hyperparameter configurations:

1. First round of tuning

• Dropout rate 0.4

• Dropout rate 0.5

• Dropout rate 0.6

• Dropout rate 0.7

41

3 Results

• Dropout rate 0.8

• Batch size 8

• Batch size 16

• Batch size 32

• Batch size 128

• Learning rate 0.005

2. Second round of tuning

• Epochs 30, Learning rate decay 0.375

• Dropout rate 0.4, batch size 16

• Dropout rate 0.4, batch size 128

• Dropout rate 0.6, batch size 16

• Dropout rate 0.6, batch size 32

The hyperparameter mostly investigated was the dropout rate, which was obvious since
the learning curves indicated over-fitting for most datasets and this is the hyperparameter
that directly influences the generalization. Smaller batch sizes were investigated because
of the concept of mini-batches [33], the higher batch size of 128 was investigated also
for influences on generalization. For tuning the hyperparameters that influence the
optimizer, learning rate and decay, little room for lowering were available, since the
default values are already very low. For example, tuning the learning rate decay was
only possible when doubling the number of epochs, since the learning process became
unstable for the default of 15 epochs. As tuning dropout rate and batch size looked
promising, multiple combinations were tested. In figure 3.5 we can see a comparison of
all hyperparameter configurations that were tested. Only a few configurations have an
improved or slightly similar accuracy as the default configuration. Unfortunately, changes
of the hyperparameters often led to a higher variation in the accuracies, which questions
the applicability of these configurations.

42

3.3 Assignment Performance

Figure 3.5: Boxplot of achieved validation accuracies on the 9 datasets for every hyper-
parameter configuration, ordered by mean accuracy. As we can see, only a few
configurations come close to the performance of the default parameterization.
Further, we see that changes of the hyperparameters often also introduce more
variation in the accuracies.

3.3 Assignment Performance

To get a clear picture of the true capabilities of the trained models, we analyze the different
models and hyperparameter configurations. We start with evaluating the performance of
the test sets, followed by a comparison with the performance that the VOGDB HMMs
have on these test sets. In the last step, we also compare DeepNOG and HMMs on two
subsets of external datasets, to get an assessment towards real-world applications.

3.3.1 Assignments of the Test Set

To evaluate the performance of the trained models for the test split, we supply the truth
labels when running the DeepNOG assignment module. With this DeepNOG is able to
calculate and report the previously mentioned performance metrics, see table 3.4 for the
performance of the model with the default parameterization.

As the evaluation of the training process previously predicted, only a few hyperparameter
configurations should be able to raise the model’s performance. In figure 3.6 we see
the reported accuracies for all 9 datasets for every hyperparameter configuration on the

43

3 Results

U
n
iR

ef
T

h
resh

old
A

ccu
racy

M
acro

P
recision

M
acro

R
ecall

M
acro

F
1

M
icro

P
recision

M
icro

R
ecall

M
icro

F
1

M
C

C

100
all

0.83
0.71

0.73
0.71

0.83
0.83

0.83
0.83

100
100

0.96
0.94

0.93
0.93

0.96
0.96

0.96
0.96

100
10

0.91
0.84

0.84
0.84

0.91
0.91

0.91
0.91

90
all

0.77
0.56

0.59
0.56

0.77
0.77

0.77
0.76

90
100

0.94
0.90

0.89
0.88

0.94
0.94

0.94
0.94

90
10

0.86
0.76

0.76
0.75

0.86
0.86

0.86
0.86

50
all

0.50
0.23

0.25
0.22

0.50
0.50

0.50
0.50

50
100

0.85
0.73

0.71
0.70

0.85
0.85

0.85
0.85

50
10

0.63
0.40

0.41
0.39

0.63
0.63

0.63
0.63

T
able

3.4:P
erform

ance
m

easures
for

assignm
ents

for
all9

test
sets

w
ith

the
default

m
odelparam

eterization.

44

3.3 Assignment Performance

test set. As expected, most parameterizations have lower performance than the default
settings. Also, like in the training process, the tuned hyperparameters introduce more
variation in the reported accuracies.

Figure 3.6: Boxplot of achieved assignment accuracies on the 9 datasets for every hy-
perparameter configuration, ordered by mean accuracy. Again, only a few
configurations come close to the default parameterization and often more
variation in accuracy is introduced.

Besides the ability of making accurate VOG assignments, it is crucial to analyze the
fraction of high confidence assignments the models are able to make, see table 3.5 for
details on high confidence assignments for the default configuration. In figure 3.7 we can
see the tuned models, that were able to raise the models accuracy as well as raising the
number of high confidence assignments. The cutoff value for an assignment being of high
confidence was set to c >= 0.95.

45

3 Results

UniRef Threshold # Assignments # High conf.
assignments

% High conf.
assignments

100 all 6,609 5,480 83%
100 100 2,518 2,369 94%
100 10 5,028 4,525 90%
90 all 6,536 5,082 78%
90 100 2,452 2,238 91%
90 10 5,377 4,549 85%
50 all 6,490 3,722 57%
50 100 2,214 1,805 82%
50 10 4,663 3,095 66%

Table 3.5: Statistics on assignment confidence for all 9 datasets for the default model
parameterization.

Figure 3.7: Top-performing hyperparameter configurations in comparison with the default
configuration (UniRef100, no member threshold). Raising the models accuracy
doesn’t necessarily improve the number of high confidence assignments. Also,
these configurations have different training runtimes underlying, e.g. reducing
the learning rate increases execution time, while raising batch size decreases
it.

3.3.2 Comparison with VOGDB HMMs

We used hmmscan from the HMMER suite to search every sequence from the test set
against the collection of HMMs from VOGDB. The resulting output file lists all the
sequences and their hits in the HMM database using an E-value to assess the quality of
that hit. To get the actual assignment we retrieve the VOG with the lowest E-value for
every sequence. Similar to the confidence threshold used for the DeepNOG assignments,
we only count an assignment as high confident if it has an E-value < 0.00001. In figure
3.8 we can see a performance comparison of VOGDB HMMs and DeepNOG on the test

46

3.3 Assignment Performance

set in terms of accuracy and number of high confidence assignments. On the complete
dataset, the performance of DeepNOG is lower than the performance of the HMMs, also
in terms of high confidence assignments. For the reduced datasets DeepNOG is able to
raise the performance and the number of high confidence assignments, surpassing HMMs
in the case of the 100+ members threshold dataset.

Figure 3.8: Comparison of VOGDB HMMs and DeepNOG assignment performance on
the UniRef100 test set. For the complete dataset, the HMMs surpass the
performance of DeepNOG greatly, both in accuracy and number of high
confidence assignments. For the 10+ members threshold dataset, DeepNOG
is able to gain performance and in the case of the 100+ members threshold
dataset, it achieves higher performance than the HMMs.

To investigate the reduction in runtime we ran an experiment where we assigned
the sequences of the UniRef100 no member thresholds test set for different setups of
DeepNOG and HMMER. DeepNOG was once run on a CPU (single-core) and once on a
GPU. HMMER was run in a single-core setup, as well as a parallel setup with 32 cores.
Every run was repeated 3 times and the average number of seconds for processing 1000
sequences was reported. To investigate a connection between sizes of datasets, the whole
experiment was repeated with the 100+ members threshold dataset, see figure 3.9 for
results of these experiments.

47

3 Results

Figure 3.9: Comparison of execution time for DeepNOG and VOGDB HMMs in seconds
per 1000 sequences. DeepNOG manages to be faster than the HMMs by a
100-fold when run on a CPU and a striking 1000-fold when run on a GPU.
Interesting to see is that the size of the dataset has no noteworthy influence
on the execution time.

In the last comparison, we looked at the needed memory in the assignment processes
of DeepNOG and the VOGDB HMMs. The HMM database created by HMMER needs
to be loaded in the memory as a whole for the entire assignment process, this database
has an approximate size of 4.2 GB. A DeepNOG model needs about 120 MB to load the
weights for making assignments, which is substantially smaller.

3.3.3 Comparison on External Datasets

We used subsets of the pVOG and IMG/VR datasets to compare DeepNOG and the
VOGDB HMMs further. Both datasets are very different in terms of size, actuality and
in their contemplated use cases. pVOG constitutes a VOG resource similar, but not
as extensive as VOGDB. IMG/VR is a massive resource for uncultivated viral genomes
(UViGs).

pVOG Subset

We randomly picked 16 VOGs from the pVOG dataset with 300-500 members each.
This resulted in a set of 5885 sequences for VOG assignment. The redundancy of these
sequences in VOGDB was analyzed for 0.1, 0.2 and 0.3 levels of difference in sequence
identity and resulted in 98% of pVOG sequences being already included in VOGDB. Both

48

3.3 Assignment Performance

DeepNOG and the HMMs were able to get a high number of high confidence assignments
for these sequences (DeepNOG 97%, HMMs 99%). In addition, we analyzed the similarity
of the DeepNOG and HMMs assignments for agreement, figure 3.10 shows the overlap of
these assignments.

Figure 3.10: Overlap of DeepNOG and HMMs high confidence assignments. Both methods
agree on 14 out of the 16 pVOGs.

UViG Subset

We randomly picked 10,000 sequences from the IMG/VR dataset, with 2-4% redundancy
in VOGDB, which was expected since UViGs are not included in RefSeq. DeepNOG
managed to assign 27% of sequences with high confidence, the HMMs managed to get
39%. Since IMG/VR is not a VOG resource we analyze the similarities between the

49

3 Results

assignments by taking them as the result of a clustering procedure. The computed ARI
of 0.2 indicates poor agreement between the two assignments. The computed AMI of 0.5
indicates some low-level form of agreement. To check for the possible case that the low
confidence assignments all belong to similar families, we ran a quick check, where we used
BLAST to retrieve annotations for 20 of these sequences from the UniProt Knowledgebase.
This check returned a diverse set of annotations, which indicates that the sequences with
the low confidence assignments belong to VOGs that have not yet been incorporated into
VOGDB and therefore the HMMs and DeepNOG are not able to classify them correctly.

3.4 Deployment

To integrate a DeepNOG model trained from VOGDB data into the VOGDB landscape,
we need a pipeline that trains a new model for every VOGDB release. This pipeline was
implemented with the help of the Nextflow workflow manager and resulted in a workflow
that consists of 3 processes that run locally and 5 processes that make use of the LiSC (2
of them need a GPU). The output of the pipeline is one DeepNOG model which is trained
on 99% of the data with 1% for validation, a test split is not needed and therefore omitted.
The dataset for training has no threshold on VOG sizes and UniRef100 cluster labels are
used for performing the group split. Further, the pipeline outputs a small report on the
training process, including training and validation accuracies, the set of class labels and
plots for the learning curves. Three of the processes have a runtime of more than an hour.
The VOGDB to UniRef100 alignment takes approximately 10h, the group split about 1h
and the training about 3h (all processes ran on multiple CPUs or GPUs). Figure 3.11
depicts the execution plan of the Nextflow workflow with a directed acyclic graph.

50

3.4 Deployment

Figure 3.11: Execution plan of the production workflow for retraining DeepNOG models
for every new VOGDB release. Ellipses depict processes, dots with arrows
downwards depict input files.

51

4 Discussion

In this thesis, we investigated if a DeepNOG model can be trained from VOGDB data to
make accurate and high confidence VOG assignments, similar to the HMMs from VOGDB.
Further, we evaluated the possibilities of tuning the DeepNOG model by deviating from
the default neural network parameterization. In the following sections, we will further
mention possible investigations considering this work, as well as some problems and
shortcomings of the VOGDB dataset, the DeepNOG implementation and the resulting
pipeline itself.

4.1 Challenges of the VOGDB Data

Multiple steps have been taken to prepare the data in accordance with the input require-
ments of DeepNOG and to challenge the training process in a way that overfitting is
reduced as much as possible. Here we want to address two problems that accompanied the
development. The first problem considers the huge amount of classes and the distribution
of VOG sizes, where we have mostly very small VOGs, that barely fulfill the requirements
to be used in such a massively multiclass classifier. To investigate this problem, we created
subsets where we discarded small VOGs from the dataset for two levels of membership.
This approach could be considered rough, since it for example ignores the fact that
there surely are VOGs in the dataset from which training almost never makes sense,
due to the lack of enough sequences or the properties of these sequences (e.g. length,
similarity to each other) and the VOG itself (e.g. closeness to other VOGs). Another
thing worth investigating would be the effects of removing the few really large VOGs
from the model and maybe training them in a separate model. The second problem
considers the characteristics of protein sequences, because sequences are to some extent
almost always similar to each other. Any machine learning approach that wants to process
sequences must find a way to incorporate, let’s say, just the right amount of similarities
between sequences, to succeed. In this work, these problems also transfer to the VOGs
and we think that incorporating the closeness of VOGs to each other in the class space
would lead to better results and more applicability in a real-world scenario.

53

4 Discussion

4.2 Strengths and Weaknesses of DeepNOG

In this work, we showed that DeepNOG is already highly optimized towards the use
case of orthologous group assignment. Due to the possible output of several performance
measures, the evaluation of a DeepNOG model can be done in a comprehensive way.
DeepNOG modules for training and assignment are comfortable to use and utility functions
inside the DeepNOG software package are well documented and accessible. To train a
neural network we process batches of sequences, after each batch, the model weights are
updated. If we have a structure in the sequence file for training, then it becomes possible
that all the sequences of a batch belong together (in this scenario the same VOG) which
could lead to a biased update which then enables overfitting. DeepNOG has a feature
to shuffle the input sequences, but this shuffling procedure is limited to a rather small
shuffle buffer of 216 sequences which doesn’t ensure that all sequences are picked randomly.
To overcome this shortcoming, any user of DeepNOG needs to shuffle the data before
processing it with DeepNOG. This creates an odd situation since the user is then required
to be familiar with randomization and shuffling procedures. Therefore, we propose that
the shuffling feature has to be improved in the DeepNOG software. Another problem
of DeepNOG comes from the strong optimization of DeepNOG towards GPUs, e.g. the
default batch size of 64. When training on a CPU, the sequences are processed one by
one, which constitutes a batch size of 1, so the training process is essentially different. We
think that this could reduce applicability and therefore needs to be investigated further.

4.3 Potential for a Real-World Application

Here we consider the use of DeepNOG for VOG assignment in real-world scenarios where
e.g. resources are limited or knowledge about deep learning approaches is little. In the
following sections, we will mention the requirements needed for a successful application of
our approach. In addition to that, we will discuss potential improvements.

4.3.1 Overfitting

VOGDB is already a resource of predicted information, which makes DeepNOG trained
on VOGDB data, a machine learning model that makes predictions of predictions. The
set of VOGs in VOGDB is not the complete set of VOGs and there is the possibility of
far more VOGs out there. In this work, we showed this fact by making assignments for
sequences from UViGs, which resulted in a high number of low confidence assignments
for both DeepNOG and the VOGDB HMMs. We can also see this in terms of overfitting

54

4.3 Potential for a Real-World Application

when we look at the learning curves, where we see that every of the 9 trained models is
overfitted. Sure, in some cases, the overfitting is only small, but we have to remember
that we already work with a model optimized for OG prediction and that the dataset has
undergone several adjustments to reduce overfitting.

4.3.2 Production Pipeline

The number of viral protein sequences added to each RefSeq release is not always the
same. Also, the increase of VOGs and the creation of new VOGs in VOGDB doesn’t
follow a linear pattern. If we train a DeepNOG model in accordance with every VOGDB
release, we might face different scenarios, which could influence the training process. To
keep track of things, we need to find a way of comparing the latest model to previous
ones. Due to the needed alignment of VOGDB against UniRef100, the data preparation
step becomes the most computationally expensive and long-running part of this pipeline.
To address this imparity, we could investigate an approach where we only consider the
new sequences of the VOGDB release for the alignment and use the UniRef labels from
mappings of previous releases.

55

5 Conclusion and Outlook

In previous sections, we showed that DeepNOG can be trained with VOGDB data to
get a very fast method for VOGs assignment, that has similar accuracy when compared
to HMMs, which are the state of the art. Deviations from the default hyperparameters
were investigated and allowed only for marginal improvements of accuracy and number
of high confidence assignments. Further, we investigated the agreement of DeepNOG
and HMMs on seen and unseen data. For data that already is included in VOGDB,
both methods strongly agree in the made assignments, which is only barely the case for
unknown data. To conclude this work we give an overview of the final model statistics
trained from the latest VOGDB release vog208, see table 5.1 for details on the latest
model created with the production pipeline. In addition, we will present some ideas on
tackling the problems of the mentioned weaknesses of the dataset and DeepNOG, as well
as an outlook of possible impacts on our use case from recent developments in the field of
protein structure prediction.

5.1 Data Augmentation

A possible way of reducing the problem of low class cardinalities in the VOGDB dataset
would be the addition of synthetic sequences to small VOGs. The idea is to take the
sequences of a small VOG and simulate slightly different sequences from them, while
preserving the characteristics that define the VOG membership of course. This would allow
to augment small VOGs and thereby raise the class cardinalities of the dataset. A first

Number of classes 28,148
Number of classes retained 62
Accuracy (validation) 91.6 %

Execution time CPU: 70 s/1000seqs
GPU: 6 s/1000seqs

Memory consumption 131 MB

Table 5.1: Properties of the latest model built from VOGDB release vog208.

57

5 Conclusion and Outlook

and very simple approach would be to randomly make substitutions in the sequences and
then checking if these substitutions still manifest conservative substitutions. This could be
achieved by checking for low differences in the BLAST positive scores (e.g. p = 0.1), which
would ensure that the substitutions are conservative and the VOG membership is thereby
not violated. A second, more sophisticated approach comes from recent developments in
the field of data augmentation of sequence models [42], where the models are trained on
the unaugmented dataset first and then synthetic sequences are added in a semi-supervised
manner. For this approach, the authors defined a replacement dictionary that models
the chemical properties of amino acids and makes substitutions in accordance with a
probability parameter. This parameter constitutes a new hyperparameter of the model
and is then assessed on how it affects the downstream assignments.

5.2 Learning Rate Schedulers

DeepNOG uses a very simple approach to change the learning rate throughout the training
process. In this so-called time-based schedule the learning rate for the next epoch is
lowered by a predefined fraction (learning rate decay) applied to the learning rate of the
current epoch. This means that the rate is gradually lowered and the optimizer uses
smaller step sizes as the training progresses. Other rather simple approaches that can be
used in training neural networks include reducing the learning rate by fixed steps or with
exponential decay, thereby gaining control over the learning rate in later epochs. More
sophisticated approaches, called adaptive learning rate methods, make use of heuristics
or utilize callbacks to performance measures to decide on how to adjust the learning
rate. Heuristic approaches introduce multiple new parameters which of course makes
subsequent hyperparameter optimization more challenging. Pytorch, the deep learning
framework used by DeepNOG, offers a learning rate scheduler called ReduceLROnPlateau
which allows for callbacks. The scheduler accesses a metric (e.g. accuracy) and reduces
the learning rate strongly if little or no improvements are seen over a predefined number
of epochs. Adding this feature to DeepNOG would surely improve the training experience.

5.3 Implications of AlphaFold

Published in mid 2021, AlphaFold is the first computational approach that is able to
predict protein structures close to experimental accuracy [25]. Behind these improvements
is a new type of neural network architecture and also a training procedure that incorporates
the evolutionary and physical constraints of protein structures. Recently, AlphaFoldDB

58

5.3 Implications of AlphaFold

was released [52], covering structure predictions for the proteomes of human and 20 other
model organisms. For the protein folding problem, this is a game-changer and AlphaFold
is predicted to have a major impact on research in life sciences and medicine in the future.
Similar to the biomedical consequences, the implications for studies of molecular evolution
could just be as profound [3], making structural biology become part of the tools used
in evolutionary research. In molecular evolutionary biology, the attention is usually set
to proteins where a small change in the sequence will lead to a different function. This
may limit the applicability of AlphaFold, since it is based, among other things, on the
assumption that similar sequences assemble similar structures. The expected range of
possibilities for evolutionary research offered by AlphaFold is currently set very broad,
ranging from making good predictions at the family level to predicting functional effects
of mutations or even the ability to reconstruct ancestral structures.

59

Abbreviations

• AMI - Adjusted Mutual Information

• ARI - Adjusted Rand Index

• AUC - Area Under the Receiver Operating Characteristic Curve

• CNN - Convolutional Neural Network

• CSV - Comma-separated Values

• CPU - Central Processing Unit

• DNA - Deoxyribonucleic Acid

• FNN - Feedforward Neural Network

• GPU - Graphics Processing Unit

• HGT - Horizontal Gene Transfer

• HMM - Hidden Markov Model

• LCA - Last Common Ancestor

• LUCA - Last Universal Common Ancestor

• MCC - Matthews Correlation Coefficient

• MI - Mutual Information

• MSA - Multiple Sequence Alignment

• NGS - Next-generation Sequencing

• OG - Orthologous Group

• RI - Rand Index

• RNA - Ribonucleic Acid

• TSV - Tab-separated Values

• UViG - Uncultivated Viral Genome

• VOG - Virus Orthologous Group

61

List of Tables

1.1 The seven groups of the Baltimore scheme. Classifying viruses depending
on their genome type and replication method. 7

1.2 Overview of a selection of orthology resources, depicting the included
taxonomic range and the number of proteomes. Full table available at
https://questfororthologs.org/orthology_databases. 12

2.1 Statistics of the latest VOGDB release vog208. 17
2.2 The complete VOGDB dataset. 18
2.3 Files needed for training a DeepNOG model on a custom database. CSV-

files represent sequence-ID to VOG mappings, FASTA-files contain the
sequences for the corresponding split. 20

2.4 Comparison of the eggNOG (bacteria level) and VOGDB datasets. De-
scriptive statistics for the number of OGs in the datasets, as well as OGs
size distribution. 22

2.5 Software packages, tools and libraries used in this work. 25
2.6 Input files needed by DeepNOG for assigning VOGs to sequences, including

performance evaluation via ground truth labels. 28

3.1 Properties of the latest UniRef release 2021_03 for all three levels of
resolution. Number of clusters per dataset and fractions of singleton
clusters (i.e. clusters of size 1) and clusters with less than 5 members. . . 35

3.2 Properties of the datasets resulting from applying membership thresholds.
Depicting a nonlinear reduction of the number of VOGs and sequences in
the threshold datasets. 37

3.3 Counts of the included VOGs for all parts of the split for every dataset.
In addition, the number of retained VOGs, i.e. VOG labels that are not
included in the training split, is shown. 38

3.4 Performance measures for assignments for all 9 test sets with the default
model parameterization. 44

3.5 Statistics on assignment confidence for all 9 datasets for the default model
parameterization. 46

5.1 Properties of the latest model built from VOGDB release vog208. 57

63

List of Figures

1.1 Example phylogenetic tree of a gene family, depicting orthologous and
paralogous relationships. Branch 1 shows an orthologous relationship of
gene X in the species A, B and C. Branch 2 features a duplication of gene Y
in species A creating a paralog in this species and co-orthologs to the genes
in species B and C. Branch 3 depicts a complex scenario with multiple
paralogous and orthologous relationships. Figure taken from [28]. 5

1.2 Genome sizes of viruses for each Baltimore group. The gray area indicates
the maximum and minimum genome size. Figure taken from [5]. 8

1.3 Directed acyclic graph for a fully connected (dense) FNN. Edges represent
weights and nodes represent input, hidden and output values. Figure taken
from [45]. 10

1.4 Example of a convolution. A filter is applied in a sliding-window approach
on a two-dimensional input to produce a feature map. Figure taken from
[45]. 11

1.5 A CNN to classify handwritten digits. The network consists of two con-
volutional layers with max-pooling for detecting features and two dense
layers for making the classification. Figure taken from [51]. 12

1.6 Overview of the VOGDB pipeline. Figure taken from [2]. 14

2.1 DeepNOG end-to-end model architecture consisting of three main parts,
that is the word embedding, the convolutional layer and the classification
layer. 20

2.2 Representation of amino acids in the word embedding layer of DeepNOG.
On the left the random initializations before the training, on the right the
learned representations after training. 21

2.3 Similarities between OG size distributions for eggNOG and VOGDB. . . . 23

3.1 Comparison of stratified split and group splits for different UniRef resolu-
tions. In the case of the stratified split, the training set includes nearly
all VOGs and there is also a substantial overlap between the test and
validation set. In the case of the group splits, a significant portion of VOGs
is not included in the training set. 36

3.2 Density estimations of the VOG sizes for the membership threshold datasets. 39

65

List of Figures

3.3 Progression of model accuracy on training and validation set over epochs.
In an ideal setting, the curves for training and validation will converge to
each other and then stay close to each other while having a high accuracy
outcome. This would then mean that the model is not or only slightly
overfitted. As we can see here this is only the case for some of the datasets,
which was expected. The strongly reduced sets for the 100+ thresholds
(bottom row) are easier to learn. The same goes for sets that were split on
the UniRef100 labels (left column), where fewer VOGs are retained to the
validation and test set. 40

3.4 Progression of the error of the model on the training and validation set
over epochs. Similar to the accuracy curves, we want the two curves to
converge to each other and in this case of an error measure to go down and
stay down. 41

3.5 Boxplot of achieved validation accuracies on the 9 datasets for every
hyperparameter configuration, ordered by mean accuracy. As we can see,
only a few configurations come close to the performance of the default
parameterization. Further, we see that changes of the hyperparameters
often also introduce more variation in the accuracies. 43

3.6 Boxplot of achieved assignment accuracies on the 9 datasets for every
hyperparameter configuration, ordered by mean accuracy. Again, only a
few configurations come close to the default parameterization and often
more variation in accuracy is introduced. 45

3.7 Top-performing hyperparameter configurations in comparison with the
default configuration (UniRef100, no member threshold). Raising the
models accuracy doesn’t necessarily improve the number of high confidence
assignments. Also, these configurations have different training runtimes
underlying, e.g. reducing the learning rate increases execution time, while
raising batch size decreases it. 46

3.8 Comparison of VOGDB HMMs and DeepNOG assignment performance
on the UniRef100 test set. For the complete dataset, the HMMs surpass
the performance of DeepNOG greatly, both in accuracy and number of
high confidence assignments. For the 10+ members threshold dataset,
DeepNOG is able to gain performance and in the case of the 100+ members
threshold dataset, it achieves higher performance than the HMMs. 47

3.9 Comparison of execution time for DeepNOG and VOGDB HMMs in seconds
per 1000 sequences. DeepNOG manages to be faster than the HMMs by
a 100-fold when run on a CPU and a striking 1000-fold when run on a
GPU. Interesting to see is that the size of the dataset has no noteworthy
influence on the execution time. 48

3.10 Overlap of DeepNOG and HMMs high confidence assignments. Both
methods agree on 14 out of the 16 pVOGs. 49

66

List of Figures

3.11 Execution plan of the production workflow for retraining DeepNOG models
for every new VOGDB release. Ellipses depict processes, dots with arrows
downwards depict input files. 51

67

Listings

2.1 Steps needed to perform a search of sequences against an HMM database. 17
2.2 Call of DeepNOG for training a model from a custom database. 19
2.3 Call of DeepNOG for assigning VOGs to sequences with performance

evaluation via ground truth labels. 28

69

References

[1] LiSC - Life Science Compute Cluster, University of Vienna, ht-
tps://cube.univie.ac.at/lisc, Accessed Dec 2021.

[2] VOGDB: Virus orthologous groups, Universitiy of Vienna, http://vogdb.org, Accessed
Dec 2021.

[3] Structural revolution? Nature Ecology & Evolution, 5(1):1–1, Jan 2021.

[4] A. M. Altenhoff, N. M. Glover, C.-M. Train, K. Kaleb, A. Warwick Vesztrocy,
D. Dylus, T. M. de Farias, K. Zile, C. Stevenson, J. Long, H. Redestig, G. H. Gonnet,
and C. Dessimoz. The OMA orthology database in 2018: retrieving evolutionary rela-
tionships among all domains of life through richer web and programmatic interfaces.
Nucleic Acids Res., 46(D1):D477–D485, Jan. 2018.

[5] J. A. Campillo-Balderas, A. Lazcano, and A. Becerra. Viral genome size distribution
does not correlate with the antiquity of the host lineages. Frontiers in Ecology and
Evolution, 3:143, 2015.

[6] M. N. Davies, A. Secker, A. A. Freitas, M. Mendao, J. Timmis, and D. R. Flower.
On the hierarchical classification of G protein-coupled receptors. Bioinformatics,
23(23):3113–3118, Dec. 2007.

[7] E. S. Deutekom, B. Snel, and T. J. P. van Dam. Benchmarking orthology methods
using phylogenetic patterns defined at the base of eukaryotes. Brief. Bioinform.,
22(3), May 2021.

[8] S. Duffy. Why are RNA virus mutation rates so damn high? PLoS Biol.,
16(8):e3000003, Aug. 2018.

[9] R. A. Edwards and F. Rohwer. Viral metagenomics. Nat. Rev. Microbiol., 3(6):504–
510, June 2005.

[10] G. F. Ejigu and J. Jung. Review on the computational genome annotation of
sequences obtained by next-generation sequencing. Biology (Basel), 9(9), Sept. 2020.

[11] S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi,
L. J. Richardson, G. A. Salazar, A. Smart, E. L. L. Sonnhammer, L. Hirsh, L. Paladin,
D. Piovesan, S. C. E. Tosatto, and R. D. Finn. The pfam protein families database
in 2019. Nucleic Acids Res., 47(D1):D427–D432, Jan. 2019.

71

References

[12] H. ElAbd, Y. Bromberg, A. Hoarfrost, T. Lenz, A. Franke, and M. Wendorff. Amino
acid encoding for deep learning applications. BMC bioinformatics, 21(1):1–14, 2020.

[13] G. Fang, N. Bhardwaj, R. Robilotto, and M. B. Gerstein. Getting started in gene
orthology and functional analysis. PLoS Comput. Biol., 6(3):e1000703, Mar. 2010.

[14] R. Feldbauer, L. Gosch, L. Lüftinger, P. Hyden, A. Flexer, and T. Rattei. DeepNOG:
fast and accurate protein orthologous group assignment. Bioinformatics, 36(22-
23):5304–5312, 12 2020.

[15] R. Feldbauer, F. Schulz, M. Horn, and T. Rattei. Prediction of microbial phenotypes
based on comparative genomics. BMC Bioinformatics, 16 Suppl 14(S14):S1, Oct.
2015.

[16] R. D. Finn, J. Clements, and S. R. Eddy. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Res., 39(Web Server issue):W29–37, July 2011.

[17] M. Y. Galperin, D. M. Kristensen, K. S. Makarova, Y. I. Wolf, and E. V. Koonin.
Microbial genome analysis: the COG approach. Brief. Bioinform., 20(4):1063–1070,
July 2019.

[18] M. Y. Galperin, Y. I. Wolf, K. S. Makarova, R. Vera Alvarez, D. Landsman, and
E. V. Koonin. COG database update: focus on microbial diversity, model organisms,
and widespread pathogens. Nucleic Acids Res., 49(D1):D274–D281, Jan. 2021.

[19] N. Glover, C. Dessimoz, I. Ebersberger, S. K. Forslund, T. Gabaldón, J. Huerta-
Cepas, M.-J. Martin, M. Muffato, M. Patricio, C. Pereira, A. S. da Silva, Y. Wang,
E. Sonnhammer, and P. D. Thomas. Advances and applications in the quest for
orthologs. Mol. Biol. Evol., 36(10):2157–2164, Oct. 2019.

[20] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[21] A. L. Grazziotin, E. V. Koonin, and D. M. Kristensen. Prokaryotic Virus Orthologous
Groups (pVOGs): a resource for comparative genomics and protein family annotation.
Nucleic Acids Research, 45(D1):D491–D498, 10 2016.

[22] A. Harish, A. Abroi, J. Gough, and C. Kurland. Did viruses evolve as a distinct
supergroup from common ancestors of cells? Genome Biol. Evol., 8(8):2474–2481,
Aug. 2016.

[23] L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–
218, 1985.

[24] J. Huerta-Cepas, D. Szklarczyk, D. Heller, A. Hernández-Plaza, S. K. Forslund,
H. Cook, D. R. Mende, I. Letunic, T. Rattei, L. Jensen, C. von Mering, and
P. Bork. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated
orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research,
47(D1):D309–D314, 11 2018.

72

http://www.deeplearningbook.org

References

[25] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[26] G. Jurman, S. Riccadonna, and C. Furlanello. A comparison of mcc and cen error
measures in multi-class prediction. PLOS ONE, 7(8):1–8, 08 2012.

[27] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural
networks. ArXiv, abs/1706.02515, 2017.

[28] E. V. Koonin. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet.,
39(1):309–338, 2005.

[29] E. V. Koonin, M. Krupovic, and V. I. Agol. The baltimore classification of viruses
50 years later: How does it stand in the light of virus evolution? Microbiol. Mol.
Biol. Rev., 85(3):e0005321, Aug. 2021.

[30] E. V. Koonin and Y. I. Wolf. Genomics of bacteria and archaea: the emerging
dynamic view of the prokaryotic world. Nucleic Acids Res., 36(21):6688–6719, Dec.
2008.

[31] S. R. Krishnamurthy and D. Wang. Origins and challenges of viral dark matter.
Virus Res., 239:136–142, July 2017.

[32] P. W. Laffy, E. M. Wood-Charlson, D. Turaev, S. Jutz, C. Pascelli, E. S. Botté,
S. C. Bell, T. E. Peirce, K. D. Weynberg, M. J. H. van Oppen, T. Rattei, and
N. S. Webster. Reef invertebrate viromics: diversity, host specificity and functional
capacity. Environ. Microbiol., 20(6):2125–2141, June 2018.

[33] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 661–670, 2014.

[34] T. Lingner and P. Meinicke. Remote homology detection based on oligomer distances.
Bioinformatics, 22(18):2224–2231, Sept. 2006.

[35] H. M. Oksanen and N. G. A. Abrescia. Membrane-containing icosahedral bac-
teriophage PRD1: The dawn of viral lineages. Adv. Exp. Med. Biol., 1140:85–109,
2019.

[36] E. Pasolli, F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini,
P. Manghi, A. Tett, P. Ghensi, M. C. Collado, B. L. Rice, C. DuLong, X. C.
Morgan, C. D. Golden, C. Quince, C. Huttenhower, and N. Segata. Extensive
unexplored human microbiome diversity revealed by over 150,000 genomes from
metagenomes spanning age, geography, and lifestyle. Cell, 176(3):649–662.e20, Jan
2019. 30661755[pmid].

73

References

[37] W. R. Pearson. An introduction to sequence similarity (“homology”) searching. Curr.
Protoc. Bioinformatics, Chapter 3(1):Unit3.1, June 2013.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[39] A. Possenti, M. Vendruscolo, C. Camilloni, and G. Tiana. A method for partitioning
the information contained in a protein sequence between its structure and function.
Proteins: Structure, Function, and Bioinformatics, 86(9):956–964, 2018.

[40] S. Roux, D. Páez-Espino, I.-M. A. Chen, K. Palaniappan, A. Ratner, K. Chu,
T. B. K. Reddy, S. Nayfach, F. Schulz, L. Call, R. Y. Neches, T. Woyke, N. N.
Ivanova, E. A. Eloe-Fadrosh, and N. C. Kyrpides. IMG/VR v3: an integrated
ecological and evolutionary framework for interrogating genomes of uncultivated
viruses. Nucleic Acids Research, 49(D1):D764–D775, 11 2020.

[41] S. Seo, M. Oh, Y. Park, and S. Kim. DeepFam: deep learning based alignment-free
method for protein family modeling and prediction. Bioinformatics, 34(13):i254–i262,
06 2018.

[42] H. Shen, L. C. Price, T. Bahadori, and F. Seeger. Improving generalizability of
protein sequence models with data augmentations. bioRxiv, 2021.

[43] J. Söding. Protein homology detection by HMM-HMM comparison. Bioinformatics,
21(7):951–960, Apr. 2005.

[44] H. Soueidan, L.-A. Schmitt, T. Candresse, and M. Nikolski. Finding and identi-
fying the viral needle in the metagenomic haystack: trends and challenges. Front.
Microbiol., 5:739, 2014.

[45] Stanford University. CS231n: Convolutional Neural Networks for Visual Recognition,
http://cs231n.stanford.edu/, Accesed Dec 2021.

[46] M. Steinegger and J. Söding. Mmseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

[47] R. L. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic perspective on protein
families. Science, 278(5338):631–637, Oct. 1997.

[48] J. Thannesberger, H.-J. Hellinger, I. Klymiuk, M.-T. Kastner, F. J. J. Rieder,
M. Schneider, S. Fister, T. Lion, K. Kosulin, J. Laengle, M. Bergmann, T. Rattei,
and C. Steininger. Viruses comprise an extensive pool of mobile genetic elements
in eukaryote cell cultures and human clinical samples. FASEB J., 31(5):1987–2000,
May 2017.

74

References

[49] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic
Acids Res., 45(D1):D158–D169, Jan. 2017.

[50] The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Research, 49(D1):D480–D489, 11 2020.

[51] Towards Data Science. A Comprehensive Guide to Convolutional Neural
Networks, https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53, Accessed Dec 2021.

[52] K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, A. Bridgland,
A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans,
A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. A. A. Kohl, A. Potapenko,
A. J. Ballard, B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy, D. Reiman,
S. Petersen, A. W. Senior, K. Kavukcuoglu, E. Birney, P. Kohli, J. Jumper, and
D. Hassabis. Highly accurate protein structure prediction for the human proteome.
Nature, 596(7873):590–596, Aug 2021.

[53] S. Vinga and J. Almeida. Alignment-free sequence comparison-a review. Bioinform-
atics, 19(4):513–523, Mar. 2003.

[54] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res., 11:2837–2854, dec 2010.

[55] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comput.
Biol., 1(4):337–348, 1994.

[56] E. M. Zdobnov, D. Kuznetsov, F. Tegenfeldt, M. Manni, M. Berkeley, and E. V.
Kriventseva. OrthoDB in 2020: evolutionary and functional annotations of orthologs.
Nucleic Acids Res., 49(D1):D389–D393, Jan. 2021.

[57] A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski. Alignment-free sequence
comparison: benefits, applications, and tools. Genome Biol., 18(1):186, Oct. 2017.

75

	Declaration of Authorship
	Acknowledgments
	Abstract
	Kurzfassung
	Introduction
	Biological Background
	Sequence Homology
	Functional Annotation
	Viral Genomes

	Computational Background
	Machine Learning Basics
	Neural Networks
	Databases of Orthologs
	Orthologous Groups Assignment

	Problem Description and Research Goals

	Materials and Methods
	VOGDB
	DeepNOG
	Architecture
	Word Embedding
	eggNOG Dataset
	Comparison to DeepFam

	Pipeline Overview
	Software Stack

	Data Preparation
	Group Splits
	Member Thresholds

	Model Training
	Hyperparameters

	Model Inference
	Metrics
	Assignment Confidence
	Comparison with HMMs

	Performance on External Datasets
	pVOG
	IMG/VR
	Comparing Clusterings

	Results
	Data Preparation
	Group Splits
	Member Thresholds
	Final Datasets

	Training Process
	Learning Curves
	Hyperparameter Optimization

	Assignment Performance
	Assignments of the Test Set
	Comparison with VOGDB HMMs
	Comparison on External Datasets

	Deployment

	Discussion
	Challenges of the VOGDB Data
	Strengths and Weaknesses of DeepNOG
	Potential for a Real-World Application
	Overfitting
	Production Pipeline

	Conclusion and Outlook
	Data Augmentation
	Learning Rate Schedulers
	Implications of AlphaFold

	Abbreviations
	List of Tables
	List of Figures
	Listings
	References

