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Abstract vii

Zusammenfassung

Das Ziel von Assoziationsstudien ist die Identifizierung von Polymorphismen, die im Zusam-
menhang mit einem komplexen Merkmal stehen. Die Standardmodelle hierfür sind lineare
Modelle, die auf sogenannten “Single-Locus” Tests beruhen. Deswegen können Gene mit
nicht-linearem Effekt, sowie Gene, die zwar mit anderen Genen interagieren, aber selbst
keine marginale Effekte zeigen, nicht identifiziert werden. Die meisten komplexen Merkmale
sind jedoch durch multiple Gene und ihre wechselwirkende Effekte bestimmt. Wir zeigen,
dass ein nicht-lineares Modell, das auch Interaktionen und Heterogenität erfasst, mehr Gene
identifizieren kann als das Standardmodell. Hierfür haben wir eine Pipeline entwickelt, die
auf Random Forests beruht und die Anzahl der genetischen Marker (Prädiktorvariablen) in
jedem Schritt reduziert. Dies ist eine vielversprechende Alternative zu den linearen Modellen
in genomweiten (GWAS) und transkriptomweiten (TWAS) Assoziationsstudien. Weiterhin
erlauben Random Forests es, eine neue Assoziationsstudie (GTWAS) zu betrachten, indem
genetische und transkriptomische Variation in ein Modell integriert werden.

Abstract

The aim of association studies is to understand the genetic architecture of complex traits,
which is a fundamental issue in genetics. The standard approaches are based on linear mixed
models using single-locus tests. Therefore, they might miss nonlinear loci that are involved in
interactions but do not show significant marginal effects. Many complex phenotypes however
are determined by multiple loci and their interactive effects. We show that a model, which
allows for nonlinear effects, epistatic interactions and heterogeneity, increases the association
power. Due to the high-dimensionality of omics data, the search of epistatic interactions is
challenging. We have developed a pipeline based on random forests that reduces the search
space for significant associations and interactions in each step. It is a promising alterna-
tive to the traditional approaches in genome-wide (GWAS) and transcriptome-wide (TWAS)
association studies and furthermore allows us to construct genome-and-transcriptome-wide-
association studies (GTWAS), which integrate both genotypic and transcriptomic variation.
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Chapter 1

Introduction

1.1 Biology

1.1.1 Phenotype, genotype and gene expression

A phenotype is an observable characteristic of an individual which can be morphological,
physiological or behavioral [1, 2]. Phenotypes influence the viability or the reproductive suc-
cess of an individual and may be more or less adapted to the environment [2]. Phenotypic
variation between individuals of the same species is essential for natural selection and thus
evolution. Understanding this variation is necessary in many areas as for example crop im-
provement, breeding or disease treatment strategies. Phenotypes are not directly inherited
but are influenced by heritable and non-heritable factors. The non-heritable factors are ex-
ternal to the organism and are referred to as environmental factors. The genotype is the
part of an individual which is directly heritable. It is encoded in its genome in the form of
deoxyribonucleic acid (DNA) [2]. The amount of phenotypic variation that can be explained
by the genotype is called the heritability of a trait [1].

DNA is organized in two strands twisted around each other forming a double helix. Each
strand is a polymer that consists of smaller units called nucleotides, which differ in the four
bases that they contain: adenine (A), guanine (G), thymine (T) and cytosine (C). The two
DNA strands are held together by hydrogen bonds formed by A-T and G-C base pairings and
are complementary to each other. In eukaryotes1, the nucleus contains several DNA strands
which are called chromosomes [2]. Each chromosome is represented as a sequence composed
of the four letters A, G, T and C, which correspond to the bases of one of the complementary
strands [1]. Given some individuals of the same species, one usually is only interested in
positions of the DNA sequence differing between them as these represent a potential source
of genetic variability which could explain phenotypic variation. Generally, most of the DNA
sequence is identical between different individuals of a given species (e.g. 99.9% of the base

1Eukaryotes are organisms whose cells contain a nucleus enclosed with a nuclear envelope.
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2 Introduction

pairs are identical for humans). Genetic loci1 showing differences between individuals are
called polymorphic and the different variants which can be observed at these loci are called
alleles. One example of genetic variants are single-nucleotide polymorphisms (SNPs), which
are the result of point mutations in a single base pair [1]. Organisms can have different levels
of ploidy, where haploid organisms have a single copy of each chromosome, diploids have
two copies of each chromosome and some organisms even have higher levels of ploidy. For
haploids, a single-locus genotype is determined by a single allele while for diploids, it is given
by a pair of alleles [2]. An individual carrying two identical alleles is called homozygous while
an individual that carries two different alleles is called heterozygous [1].

The genotype can be divided into functional units called genes. They carry the genetic in-
formation that can be turned into functional products, which usually are proteins. There is
an important bridge between the genotype and the functional product which is gene expres-
sion [3]. Gene expression includes two main sequential steps. During transcription, DNA
is transcribed into ribonucleic acid (RNA) and during translation, RNA is translated into
proteins. Transcription is the key process which controls whether a gene is expressed or
not, and also its quantification level. All tissues and cells in an individual contain the same
DNA (ignoring somatic mutations) but different expression patterns create functional diver-
sity [4]. Furthermore, given the same tissue, different gene expressions between individuals
widely exist and can lead to phenotypic variation. High-throughput sequencing technologies
have not only enabled the profiling of genetic variants but also of transcriptomes (gene ex-
pression levels) [5]. This allows to study omic variation and its effect on phenotypic variation.

1.1.2 Arabidopsis thaliana

Arabidopsis thaliana is a flowering plant which is widely used as a model organism in plant
biology and genetics. The first plants to be experimented on were collected in 1905. Laibach
discovered that A. thaliana carries 5 pairs of chromosomes (within the nucleus) and pointed
out the benefits (amongst others a small genome size, a short lifecycle, diversity, selfing,...)
to adopt it as a model organism [6]. A. thaliana is a diploid organism but it is believed to be
at least 99% selfing. This makes it mainly homozygous [7] and thus it also naturally exists
as inbred lines. Furthermore, its high phenotypic variation makes A. thaliana an ideal model
system.

Flowering time is a locally adaptive trait which is subject to strong selection and which is well
studied [8]. In A. thaliana, the pathways controlling flowering time have been characterized,
thus it is well-understood molecularly. Also genes responsible for natural variation have been
identified. Using new computational approaches, findings can be validated by the abundant

1A locus is the position of a single base or on a broader level the position of a gene [2].
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information on the molecular networks and by using prior knowledge of the 306 flowering
time genes that have been characterized in the FLOR-ID database [9]. However, we claim
that it is also possible to obtain novel knowledge on the genetic basis of flowering time.

1.2 Association studies

1.2.1 Linkage disequilibrium

According to Mendel’s second law (law of independent assortment), genes are inherited in-
dependently of each other. However, this is only true if two genes are unlinked, i.e. if they
are located on different chromosomes. Genes that are located on the same chromosome, and
particularly genes that are close to each other, tend to be inherited together as it is unlikely
that some recombination event occurred between them [2].

Linkage disequilibrium (LD) is defined as the non-random association of two alleles in hap-
lotypes. In order to make disequilibria between pairs of alleles comparable, one often uses
the difference between the observed and expected frequency of haplotypes or the squared
correlation coefficient r2 as indicators of LD [2]. As a result of this, one usually observes a
correlation structure between loci in a population. This correlation structure is a well de-
fined function of the distance1 between nearby loci in populations. Due to selfing, A. thaliana
shows extensive linkage disequilibrium decaying approximately within 50 kb [10]. This brings
another advantage of selfing in association studies that it increases LD without decreasing
polymorphism that much [7].

1.2.2 Population structure

Population structure refers to any deviation from random mating, which leads to differences
in allele frequencies between subpopulations of a species. It often arises from geographical
separation (e.g. mountains and oceans) but also from phenomena as inbreeding or associative
mating. Even when there are no geographical barriers to gene flow, organisms tend to not
randomly mate across the species range. They rather mate with individuals close to where
they have been born and thus genetic and phenotypic differences can accumulate between
subpopulations of that species [11]. A. thaliana accessions have been clustered based on their
genotype [10]. The clusters separate the accessions along geographic boundaries indicating
that there is global population structure. This means that individuals are more similar to
individuals that grow close to each other than to individuals from far away, both genotypically
and phenotypically.

1The distance between two loci is given as the number of base pairs between them.



4 Introduction

1.2.3 Genome-wide association studies

A major goal in biology is to understand the genetic architecture of complex traits [8]. The
genetic architecture underlying a trait refers to the genetic variants that are associated to the
trait, including their number, their effect size, their allele frequencies and all the interactions
between them. Therefore the aim of genome-wide association studies (GWAS) is to identify
genetic variants that are responsible for phenotypic variation by mapping single-nucleotide
polymorphisms to the phenotype [8]. The power of GWAS to identify an association between
a SNP and a phenotype depends on the phenotypic variation within the population which is
determined by how strongly two alleles differ in their phenotypic effect (i.e. their effect size)
and their frequency in the population. Hence both rare variants and variants of small effect
present problems for GWAS [12].

GWAS has actually been initiated by human geneticists. Their aim was to find the genetic
basis of common human diseases. Due to advances in sequencing technology, GWAS are
considered as the standard approach to also understand the genetic basis of complex traits of
agricultural importance [13]. A highly polygenic or a complex trait is a phenotype which is
influenced by many genetic variants [14]. Although the standard models in GWAS are based
on single-marker and additive effects, most complex traits are associated to genes involving
interactions between them and also between genetic and environmental factors [15].

GWAS profits from linkage disequilibrium as it allows to identify genetic markers that tag
causal variants when they are in LD [16]. However, linkage disequilibrium can also make it
difficult to differentiate between causal variants and linked neutral markers [12]. Furthermore,
it is important to account for population structure in GWAS as it might lead to an increased
rate of false positives.

1.2.4 Expression quantitative trait loci studies

Expression quantitative trait loci (eQTL) studies identify genetic variants that are respon-
sible for variation in gene expression levels by studying gene expression as an intermediate
phenotype. A locus that explains variation in expression is called an eQTL. Depending on
the physical distance from the gene that they regulate, eQTLs are characterized as either
cis or trans acting. Cis eQTLs regulate the expression of nearby genes while trans eQTLs
regulate the expression of distant genes [17]. A genetic variant does not necessarily lead to
gene expression changes and it might not affect a phenotype, but studies have shown that
most genetic variants that do influence a phenotype do so by regulating the expression of the
genes [3, 18].
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1.2.5 Transcriptome-wide association studies

Transcriptome-wide association studies (TWAS) emerged as a promising technique to inte-
grate omics data from expression measurements into association studies. Whereas GWAS
associate phenotypic variation directly with genetic variants, TWAS map gene expression
levels to the phenotype allowing to get further insights into the intermediary effects on the
phenotype [5]. While for GWAS, the associations can not always directly be linked with the
causal gene due to linkage disequilibrium, TWAS do not have this limitation.

Studies have shown that most single-nucleotide polymorphisms influence the phenotype by
regulating the expression of genes [18]. However, there are scenarios where TWAS can iden-
tify phenotype-associated genes that are missed by GWAS and the other way around. If
a population does not contain any polymorphic marker nearby a causal gene (e.g. trans
eQTL), GWAS will miss this gene. If in this case expression variation of this causal gene
contributes to phenotypic variance, it can be identified by TWAS. Furthermore, variation in
expression leading to phenotypic variation does not have to be caused by an eQTL, but could
also be due to epigenetic variation in or near the causal gene or due to the complex regulation
consequence of other regulators for example. In these cases, the gene can not be identified
by GWAS. Also TWAS can miss causal genes that can be identified by GWAS, for example
genes that are not expressed at a sufficient level or genes for which the causal variant is not
associated with expression variation.

1.2.6 Current achievements of GWAS and TWAS in A. thaliana

As A. thaliana is highly selfing, it naturally exists as inbred lines. Inbred lines have the ad-
vantage that once they have been genotyped, they can be phenotyped multiple times which
allows to study different traits in different environments [13]. Therefore A. thaliana is a
well-suited organism to conduct genome-wide association studies.

Nowadays, the full genome sequences of more than 1000 natural inbred lines (accessions),
which are products of natural selection, are available [19]. This allows to quantify genome
variation in a large sample of accessions [20]. So far, more than 44, 600 significant associa-
tions have been identified while studying 462 phenotypes (AraGWAS database1). Generally,
transcriptome-wide association studies are less common in the literature than genome-wide
association studies, however Li et al. recently published a study that shows that the TWAS
results are complimentary to GWAS results and much less affected by linkage disequilibrium
[21].

1https://aragwas.1001genomes.org/

https://aragwas.1001genomes.org/
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1.3 The role of epistasis and heterogeneity

The term epistasis has been used for the first time by Bateson in 1909 [22]. Bateson had in
mind biomolecular interactions at the level of an individual when referring to epistasis (“bi-
ological epistasis”) [23]. Fisher however had a rather statistical definition of epistasis, which
is the deviation from an additive effect of two alleles at different loci (“statistical epistasis”)
[24]. This means that their contribution to a quantitative phenotype differs from the sum of
their individual (or marginal) effect [25]. An example would be one locus preventing another
locus from manifesting its effect, which could be interpreted as a multi-locus extension of
the dominance effect for alleles within the same locus [26]. Generally, two genes interact if
the effect of one gene depends on the state of the other gene [27]. Epistasis or gene-gene
interactions have been discussed in detail in [28].

Although genome-wide association studies could identify many genetic variants associated
with complex traits, the single identified genetic variants do not account for much of the
heritability of phenotypes. The authors in [29] have discussed potential sources for this miss-
ing heritability. Epistatic interactions are assumed to account for a substantial fraction of
missing heritability and to be important to understand the genetic architecture of complex
traits [30, 28]. Also in A. thaliana, epistatic interactions are likely to make a contribution to
the phenotype [31]. Generally, the presence of epistatic effects lowers the power of the stan-
dard models, which are based on single-marker tests. If for example the effect of one locus
is masked by effects of another locus, the power to detect the first locus is reduced [26]. For
more than two loci involved in an epistatic interaction, the situation is even more complicated.

Genetic heterogeneity describes the situation where different loci in different genes produce
the same phenotypic effect [12]. As many phenotypes are involved in local adaptation (e.g.
flowering time), the results of association studies depend on the origin of the samples. If the
samples come from a wide range of environments, the power of GWAS might be decreased
due to increased genetic heterogeneity. It has been shown that for local A. thaliana sub-
populations, the phenotypes are associated with different genetic variants. Some SNPs are
actually common (same minor allele frequency) in all subpopulations but only show a sign
of association for some subpopulations. This is probably due to differences in the broader
genetic background or to epistatic interactions with other loci [8]. So at the end, genetic het-
erogeneity actually falls within a definition which is interpretable as epistasis [26]. The fact
that some genetic variants only show an association for some subpopulations or accessions
that have certain alleles at other loci lowers the power of traditional models as they generally
lump an entire sample into a single group to assess average effects [32].



Chapter 2

Theory

2.1 Linear mixed models

A linear mixed model (LMM) is an extension of the linear regression model where variables
are divided into fixed and random effects [14]. While fixed effects are modelled as regression
parameters that are constant across individuals, random effects are modelled as being drawn
from a distribution and thus vary. This allows to account for random effects without having
to estimate a value for them [14]. The LMM can be described by the following model

y = Xβ + Zu + ϵ (2.1)

where y ∈ Rn represents the outcome variable, X ∈ Rn×p the intercept and the predictor
variables, β ∈ Rp the regression coefficients and ϵ ∈ Rn with ϵ ∼ N (0, Iσ2

ϵ ) the error. While
these terms are known from standard linear regression, Z ∈ Rn×m represents another set of
predictor variables. This time however, we are not interested in specified estimates of the
coefficients but use the associated random effects u ∈ Rm with u ∼ N (0, Iσ2

u) instead [14].
Thus the model can be expressed as a conditional distribution of the outcome variable y

y|u ∼ N (Xβ + Zu, Iσ2
ϵ ), u ∼ N (0, Iσ2

u). (2.2)

Under the distributional conditions from above, we get the following unconditional model1

y ∼ N (Xβ, ZZT σ2
u + Iσ2

ϵ ). (2.3)

In equation (2.3), the fixed effects enter the mean while the matrix Z and the random effects
enter as a component of the covariance matrix [14]. If we define σ2

g = mσ2
u, G = 1

mZZT and
use g ∼ N (0, Gσ2

g) instead of Zu, then the model can be rewritten as

y = Xβ + g + ϵ. (2.4)
1E[y] = E[Xβ] = Xβ and V ar(y) = V ar(Zu) + V ar(ϵ) = ZZT σ2

u + Iσ2
ϵ as Xβ and Z are fixed and

furthermore, the residuals ϵ and the random effects u are independent of each other.

7



8 Theory

If the specific values of Z are unknown but G can be calculated or estimated and if one is
mainly interested in estimating β, this representation of the LMM is more useful [14].

The aim in association studies is to identify genetic markers (e.g. SNPs or genes’ expression,
as predictor variables) that are significantly associated with the phenotype (outcome vari-
able). Assume that we want to test a single SNP x1 for an association with the phenotype
with some univariate model

y = β0 + x1β1 + ϵ (2.5)

to estimate the effect β1 and test its significance, while the true model is polygenic and
thus it should be y = u0 + x1u1 + ∑

k>1 xkuk + η [14]. If we run a univariate model as in
(2.5), the effect of the other markers is ignored and is modelled as part of the error, i.e.
ϵ = ∑

k>1 xkuk + η. Due to linkage disequilibrium and population structure, this results
not only in a correlation between the tested SNPs and the error term but also between the
errors of observations from the same subpopulation (ϵi and ϵj , i ̸=j are not independent if
observation i and j belong to the same subpopulation), which results in false positives [14].
In order to solve this problem, linear mixed models proved to be a robust and reliable method
for genome-wide association studies as they can correct for confounding effects [33]. LMMs
treat the SNPs that are not directly tested for an association as random effects [14]. The
effects uk are treated as identically and independently distributed random variables drawn
from N (0, σ2

u) and thus are not modelled as fixed parameters. Therefore g = ∑
k>1 xkuk

represents an additional genetic effect with variance σ2
g such that the model becomes

y = β0 + x1β1 + g + ϵ. (2.6)

For genetically similar individuals, the genetic effects are positively correlated [14]. This is
actually the same formulation than we got in (2.4) for the LMM. The matrix G is obtained by
calculating a kinship matrix which measures the correlation between two individuals using
the observed genotypes. However, any relationship matrix used to correct for population
structure only represents an approximation for the truly underlying genetic background [34].
The linear mixed model-based method in TWAS includes all gene expression levels, except
those in close physical proximity to the tested gene, as random effects to account for the
confounding effects, including the correlations among distal genes [35]. The error term ϵ in
a LMM is usually referred to as the environmental effect combining effects which are not
measured and random noise [14]. The main use of linear mixed models in association studies
is to estimate fixed and random effects (using maximum likelihood methods) and to test for
significant associations. The most common approach to estimate the variances of random
effects, i.e. the variance components is called restricted maximum likelihood (REML) as it
can produce unbiased estimates of variance and covariance parameters [36]. These estimates
are then used to test hypotheses about the fixed effect of the form H0 : β = 0.
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2.2 Machine learning

There are two major goals in mathematical modeling which include inference and prediction.
Inference is about creating a model in order to understand the underlying mechanisms of the
system or to test a hypothesis on how the system behaves. Prediction is about forecasting fu-
ture behaviour or unobserved outcomes of the system [37]. Although statistical and machine
learning models can be used for both, statistical models (e.g. linear mixed models) usually
rather focus on making inference while machine learning models (e.g. random forests) rather
concentrate on prediction.

Statistical models are based on making distributional assumptions and on restricting the
complexity of the model in order to make it interpretable. Machine learning does not assume
any model, which often results in better prediction accuracy [38]. However, machine learning
models can also be used to make inference while offering a non-parametric alternative to
traditional statistical models. They can capture nonlinear relationships between predictors
and the outcome and furthermore they also capture interactions between predictors that
contribute to the outcome. Thus they have more flexibility to learn the patterns from the
data. In machine learning terminology, an association study would be a supervised regression
problem (for quantitative traits) [39].

2.3 Random forests

A random forest is a fully non-parametric, tree-based machine learning algorithm which has
been introduced by Breiman in 2001 [40]. It involves growing an ensemble of mtree decision
trees and can be used for both classification (discrete outcome) and regression (continu-
ous/quantitative outcome). Each tree in the random forest is built on a bootstrap sample of
the observations and at each node a random subset of variables is chosen as potential splitting
candidates. In order to describe the theoretical aspects of the algorithm, we will rely on the
two books [41] and [42].

2.3.1 The basic principle of random forests

Let us consider a regression problem and assume that the data consists of p predictor vari-
ables x1, ..., xp, one continuous outcome variable y and n observations, i.e. (xi, yi)n

i=1 with
xi = (xi1, ..., xip) ∈ Rp and yi ∈ R. Starting at the root of the tree, a decision tree splits the
p-dimensional space into two regions represented by nodes and in each node, the outcome is
modelled by a constant which minimizes the squared error. This is done subsequently until
a stopping condition is met and the leaf nodes have been reached. Therefore a decision tree
is a model that partitions the p-dimensional variable space into K regions represented by the
leaves of the tree.
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Suppose that the p-dimensional variable space has already been partitioned into K distinct
regions Rk where k = 1, ..., K and ∪K

k=1Rk = Rp, Rm ∩ Rn = ∅, m ̸= n. A decision tree is
defined such that in each region for some x ∈ Rp, it fits a constant ck, k ∈ {1, ..., K} with

f(x) =
K∑

k=1
ck1(x ∈ Rk). (2.7)

For regression problems, the goal is to minimize the loss function represented by the squared
error L(yi, ŷi) = ∑n

i=1(yi − ŷi)2 with f(xi) = ŷi being the outcome which is predicted by the
model. Assuming that the regions R1, ...RK have already been identified, the squared error
is minimized by choosing ck as the mean outcome of all data points with xi ∈ Rk, i.e.

ĉk = 1
nk

∑
i:xi∈Rk

yi = ȳRk
(2.8)

where nk = |{i : xi ∈ Rk}|. The proof can be found in appendix B.

Now the question is how in the first place the regions R1, ..., RK are identified. At each node,
the decision tree needs to decide on the splitting variable xj , j ∈ {1, ..., p} and the splitting
point s which split the variable space into two smaller regions. The general objective function
which needs to be minimized is ∑K

k=1
∑

i:xi∈Rk
(yi − ŷi). As this is computationally infeasible,

decision trees use a Greedy algorithm, which is an algorithm that makes locally the best
choice at each node and which is referred to as recursive binary splitting. Consider a splitting
variable j and a splitting point s, and define the half-planes as

Rl = {xi|xij ≤ s} and Rr = {xi|xij > s}. (2.9)

At each node, the algorithm chooses the variable xj and the splitting point s which solve the
following minimization problem

minj,s[
∑

xi∈Rl(j,s)
(yi − ȳRl

)2 +
∑

xi∈Rr(j,s)
(yi − ȳRr )2] (2.10)

where ȳRl
is the mean outcome of the observations in Rl(j, s) and ȳRr the mean outcome of

those in Rr(j, s). In other words, the variable xj and the splitting point s which split the
variable space into Rl and Rr are chosen such that the resulting split minimizes the squared
error in each of the two resulting regions.

The determination of the best splitting point for each splitting variable is not computationally
intensive. Hence the algorithm can scan through all possibilities in order to find the best pair
(j, s). Once the best splitting pair has been found, the variable space is splitted into two
distinct regions. This process is repeated on the two previously defined regions until some
stopping criterion is fulfilled (see section 2.3.3).
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Decision trees might perform well on the data which has been used to build the tree but they
tend to overfit by building a tree which is too complex. Due to the hierarchical tree-building
process, they are very sensitive to small changes in the data, especially for splitting variables
at the top of the tree. The effect of some error at the root of the tree for example will affect all
splits below it. In order to reduce the variance, random forests rely on bootstrap aggregation
(or bagging), which is a general approach to reduce the variance of statistical learning models.

Assume that X1, ..., Xn are n independent and identically distributed random variables each
with variance σ2. Then V ar( 1

n

∑n
i=1 Xi) = σ2

n , thus the variance is reduced once the average
over a set of independent and identically distributed random variables is taken. This idea
can be applied to decision trees by taking multiple data sets from the population, building
separate decision trees on each set and averaging the predictions from the trees. In random
forests, mtree bootstrap samples of size n are used to build mtree decision trees. These are
samples that are drawn uniformly with replacement from the n observations in the data. In
average, each bootstrap sample consists of approximately two-third of the n observations1.
The remaining one-third is called the out-of-bag sample.

Given that mtree = B trees have been grown on different boostrap samples, each with pre-
diction function f⋆1(x), ..., f⋆B(x), the final prediction is made by averaging over all the trees

fave(x) = 1
B

B∑
b=1

f⋆b(x). (2.11)

Let the prediction of each decision tree f⋆b be a random variable Tb. As the trees are
trained on a sample from the same population, the random variables T1, ..., TB are identically
distributed with variance σ2 but they are not independent. The correlation between them is
given by ρ = Cov(Ti,Tj)

σ2 , i ̸=j. The variance of the random forest is then given by

ρσ2 + 1 − ρ

B
σ2 (2.12)

and the proof can be found in appendix B. For large B, the second term of the random forest
variance vanishes. However, it still depends on the correlation between trees. Generally,
decision trees in bagging tend to be highly correlated due to the fact that if there is for
example one strong predictor xj then most trees will split on xj in early splits. The goal is to
improve on bagging and to reduce the variance by decorrelating the trees. This is achieved
by randomly choosing a subset of mtry < p variables as splitting candidates from all of the
p variables at each node. Moreover, this also reduces the search space for the best splitting
variable. The algorithm can be summarised as follows [42]:

1Assume that there are n observations, then the chance of being drawn is given by 1
n

and thus the
probability of not being drawn among n trials is given by (1 − 1

n
)n. If n is big enough, one gets limn→∞(1 −

1
n

)n = 1
e

≈ 0.37. As each bootstrap sample is of size n, the other observations are duplicates.
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Algorithm Random forest
1. For b ∈ {1, ..., B}:

Draw a bootstrap sample with replacement of size n from the observations.
Grow a tree Tb on the boostrap sample by repeating the following steps until a stopping
criterion is reached:

i. Select a random subset of mtry < p from the p variables.
ii. Pick the best splitting variable xj and splitting point s among the mtry variables.
iii. Split the node into two daughter nodes Rl and Rr.

2. Output the ensemble of decision trees Tb, b ∈ {1, ..., B}.

2.3.2 Out-of-bag sample

An important feature of random forests is that due to bagging only approximately two-third
of the observations are used to train each tree, the other one-third being called the out-of-
bag (OOB) sample. The predictive accuracy of the model can be assessed through the OOB
sample, which removes the need of a test set and which is almost identical to n-fold cross-
validation [40, 42]. In order to calculate the OOB error, all trees in the random forest calculate
the predicted outcome for the observations in their OOB sample. For each observation in
the data, the prediction of all the trees containing it in their OOB sample is averaged and
the mean squared error is calculated. Finally, the OOB error is the mean of all the single
observation errors. Also the variable importance (see section 2.3.4) is calculated using the
OOB sample in order not to overestimate it.

2.3.3 Hyperparameters

Although random forests do not involve learning any parameters, there are some hyperpa-
rameters which are not learned during the tree-building process but have to be prespecified
by the programmer. One of them is the number of trees mtree that are built per random
forest. Breiman proved that the out-of-bag error is bounded and converges asymptotically as
the number of trees grows [40]. Generally, it is suggested to build around 500 to 1000 deci-
sion trees per random forest. Another hyperparameter is the size mtry of the random subset
of potential splitting variables at each node of a tree. The recommendation for regression
problems is to use mtry = p

3 and the effect of mtry has been discussed in the literature [43].
Finally, the programmer also has to define some criterion defining when to stop growing a
tree. Some strategies have been proposed, as for example only splitting a node in a tree if
the decrease in squared error exceeds some threshold. However, this strategy might not be
appropriate when there is no candidate splitting variable in the random subset that decreases
the squared error [42]. The most common strategy is to grow trees until a minimum node
size has been reached. For regression problems, the standard is to stop the splitting process
as soon as there are only 5 observations left in the node.
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2.3.4 Univariate permutation importance

Random forests are non-parametric, which means that there is no predefined functional form
between the predictors and the outcome, hence there is also no p-value or significance test
for predictor variables [44]. Nevertheless, random forests can not only be used to make
predictions on new data, but also to calculate variable importances and thus to choose the
most predictive variables. Several variable importance measures have been proposed but
the most frequently used is the permutation variable importance which has originally been
described by Breiman [45]. In order to calculate the permutation variable importance (VIMP)
of a variable xj , the observed and the permuted mean squared errors are assessed. First, the
OOB samples are passed down the trees and the mean squared error is calculated for each
tree. Then, in order to calculate the permuted mean squared error of a tree, several strategies
have been proposed. The most common one is to permute the values of the variable xj in the
OOB sample and to calculate the mean squared error for each tree again. Others rely on a
random left-right daughter node assignment for nodes splitting on xj when passing the OOB
samples down the trees [46]. No matter which permutation strategy is used, the permutation
variable importance of xj is given by

V IMPxj = 1
B

B∑
b=1

(
MSE

xj,perm

OOBb
− MSEOOBb

)
(2.13)

with B the number of trees in the forest, MSEOOBb
the observed OOB mean squared error

of the bth tree and MSE
xj,perm

OOBb
its permuted mean squared error. If xj is important (i.e.

predictive), the relation between the outcome variable and xj should be broken once xj is
permuted, leading to an increase in the mean squared error. The permutation importance
can be used to rank the variables by their predictiveness as important variables have high
permutation importance [30]. Another advantage of the permutation importance is that it
does not only take marginal but also interaction effects into account. Therefore variables that
have high interaction effects will also be retained [47]. This is an advantage when searching
for potential interactions as the search space can be reduced by calculating the univariate
permutation importance first. Thus random forests are well-suited as a variable selection
tool.

2.3.5 Bivariate minimal depth importance

Several measures to identify interactions have been introduced [48]. The bivariate minimal
depth variable is based on the original minimal depth, which relies on the observation that
predictive variables frequently split close to the root [49]. Ishwaran et al. studied this concept
by introducing maximal i-subtrees [46, 50]. A subtree of the original tree is an i-subtree if
the root node of the subtree is split on xi and it is maximal if it is not a subtree of a larger
i-subtree. Variables with maximal subtrees closer to the root have a larger effect on the
prediction accuracy and therefore are more important [51]. The univariate minimal depth
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(MD) importance Dxi involves measuring the distance of a maximal i-subtree to the root of
the tree and averages this distance over all the trees. The smaller the minimal depth value,
the more important the variable is. This concept can be extended for interactions as due to
the hierarchical structure of the tree, a split in one node is conditional on all the previous
splits and thus two interacting variables tend to split in the same branch of a tree. The
bivariate minimal depth Dxi,xj indicates the minimal depth of a variable xi with respect to
the maximal subtree of xj . As this measure is not symmetric, the interaction minimal depth
(IMD) importance between two variables xi and xj is defined as

IMDxi,xj = min(Dxi,xj , Dxj ,xi). (2.14)

Small values indicate a possible interaction between the variables xi and xj and thus suggests
that the interaction is important in the sense that it contributes to the outcome. However,
interactions identified by the bivariate minimal depth could also be additive when both vari-
ables have strong marginal effects. Therefore it can be used to filter candidate interactions.

2.3.6 Determination of significance

Random forests do not return significance p-values but they do return importance scores for
predictors and interactions [52]. Although these are reasonable measures, there is still the
issue of thresholding in order to determine significance [50]. Some strategies, as for example
relying on a cut-off for the number of predictors assumed to be important, have been proposed
[39]. However, this is not a reliable method as even in the absence of any association, this
method will identify important varibles and usually there is no prior knowledge on how to set
this cut-off [52]. Furthermore, the choice of the cut-off can not be statistically justified. The
most robust method to identify significant associations is to rely on permutation p-values and
to use a statistical cut-off as for example a 5% significance level [33]. Permutation p-values
have been applied to the Gini index which is used to calculate variable importance in classi-
fication tasks in order to determine whether a variable’s importance score is truly significant
[53]. The same method can be applied to both the permutation variable importance and the
interaction minimal depth.

The idea of permutation p-values is based on first calculating the observed importance and
then permuting the outcome S times and assessing the importance each time. These S

importances are called null importances as they represent the importance in a non-informative
setting. Depending on the distribution of the null importances, either a parametric or a non-
parametric/empirical p-value is calculated. If the null distribution fits a normal distribution,
the p-value is calculated by fitting a normal distribution to the S null importances. If it
does not fit a normal distribution, the p-value is calculated by counting the number of null
importances as more extreme (higher for the permutation variable importance and lower for
the interaction minimal depth) than the observed importance and dividing it by S.
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Multiple testing refers to the problem that more than one hypothesis is tested simultaneously
[1]. The tests that we perform are based on the null hypothesis H0 that there is no association
between a variable and the phenotype. If H0 is true but the test rejects H0, we make a type
I error (false positive). If the alternative hypothesis HA is true but the test accepts H0, we
make a type II error (false negative). We would like to have the two errors as small as pos-
sible but this is not possible as the two errors are related in the sense that a low type I error
probability leads to a high type II error probability and vice versa. For a statistical test, the
type I error probability is fixed at a level α (often 5%), which means that we can control the
probability of making a type I error at α. Hence if a test is performed at the 5% level and the
null hypothesis is true, there is a 5% probability of incorrectly rejecting the null hypothesis [1].

Multiple corrections have been suggested to control this error (e.g. false discovery rate [54])
but the standard in genome-wide association studies is to use a 5% Bonferroni threshold [12].
The Bonferroni correction ensures a control of the family wise error rate (FWER) which is
the probability to make at least one type I error and is based on dividing the original p-values
by the number of performed tests. For large m, this correction is rather conservative but in
order to control the occurrence false positives, we also applied a Bonferroni correction to the
univariate permutation p-values. As the interaction minimal depth only returns candidate
interactions, we did not apply a Bonferroni correction to the bivariate p-values but filtered
them for interesting patterns instead (see section 4.2).

2.4 Interpretable machine learning

Statistical models make distributional assumptions and restrict the complexity of the model
in order to make it interpretable. Machine learning models however follow a non-parametric
approach, which often results in less interpretable models [38]. They are usually referred to
as “black boxes” as it is not always clear how results have been obtained. Although machine
learning models generally focus on their predictive performance, there is a lot of research on
the interpretability of the models. We have already introduced importance measures which
are built-in features of random forests in order to make them more interpretable. However,
these only return predictive variables (and interactions) but they do not reveal anything
about the relationship between predictor variables and the outcome variable. Therefore we
will introduce two methods which tackle this problem and which work for different types of
machine learning models. They can be used to assess the effect a continuous variable has on
the outcome, i.e. how a change in a variable changes the predicted outcome1 [38].

1As the predictor variables in TWAS are continuous, the following methods can be used to visualize the
effect of gene expression variation on the phenotype.
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2.4.1 Partial dependence plots

The idea of partial dependence plots (PDP) is to visualize the predicted outcome f̂ as a
function of the continuous predictor variables [55]. Although PDPs can also be used to
visualize the effect of two variables on the predicted outcome, we will focus on the one-
dimensional case, i.e. visualizing f̂ with respect to a variable xk. Assume that there are p

predictor variables and that the predicted outcome depends on all the variables, i.e.

f̂(x) = f̂(x1, ..., xp). (2.15)

If we are interested in the effect of xk on the predicted outcome f̂ , we can condition f̂(x) on
the remaining variables x\k = (x1, ..., x̂k, ..., xp) and consider it to be a function depending
only on xk with

f̂x\k
(xk) = f̂(xk|x\k). (2.16)

f̂x\k
(xk) will depend on the values of x\k, but if this dependence is not too strong, then

the average or partial dependence function can represent the partial dependence of f̂ on the
variable of interest xk [55]. The partial dependence function is given by

f̄k(xk) = Ex\k
[f̂(x)] =

∫
f̂(xk, x\k)p\k(x\k)dx\k (2.17)

where p\k(x\k) is the marginal probability density of x\k and x = (x1, ..., xp). It is defined by

p\k(x\k) =
∫

p(x)dxk (2.18)

with p(x) being the joint density of x. Of course, the probability density of the predictor
variables is not known but it can be estimated from the data [55]. Assume that the data is
given by (xi, yi)n

i=1 with xi = (xi1, ..., xip) ∈ Rp. Then the partial dependence function in
(2.17) can be estimated by

f̄k(xk) = 1
n

n∑
i=1

f̂(xk, xi,\k).

The xi,\k represent the actual observed variable values from the training set. Hence the true
model is approximated by f̂ and the integral over x\k is estimated by averaging over the n

values of x\k observed in the data [56]. One assumption of partial dependence plots is that
the variable xk is not highly correlated to any of the variables in x\k, otherwise the averages
that are calculated for the partial dependence plots include data points which are not likely
to be observed [57]. Having identified predictive variables the first place, PDPs can be used
to get a visual representation of the relationship between the variable and the outcome which
could be linear, monotonic or even more complex. A flat PDP indicates that the feature is
not important [57]. The PDP is a global method in the sense that it returns plots showing
the global, average relationship of a variable with the predicted outcome [57].
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2.4.2 Individual conditional expectation plots

Partial dependence plots show the average relationship between a predictor variable xk and
the predicted outcome f̂ . However, if interaction effects are present, the relationship can be
heterogeneous and might be different for each individual observation and thus the average
curves of PDPs might be misleading. Individual conditional expectation (ICE) plots extend
PDPs in that they return the relationship between a variable of interest xk and the pre-
dicted outcome for each observation [56]. Thus they can show to what extent heterogeneous
relationships exist and help to identify interactions making a contribution to the predicted
outcome f̂ . We will use an example from [56] to illustrate the problem with PDPs. Consider
the following data generating process which includes one interaction

y = 0.2x1 − 5x2 + 10x21x3≥0 + ϵ (2.19)

ϵ
iid∼ N (0, 1), x1, x2, x3

iid∼ U(−1, 1).

We generated 1000 observations from this model and fitted a random forest in order to get
the predicted outcome f̂ . Interested in the effect of x2 on the predicted outcome, we can get
the true dependence of y on x2 (Fig. 2.1A) and the PDP combined with an ICE plot (Fig.
2.1B). The PDP (straight yellow line) suggests that x2 is not associated with the outcome.
The ICE plot (grey lines) however, shows that the predicted outcome is related to x2 by a
linear relationship which is increasing or decreasing depending on the sign of the variable x3

and thus suggesting that there are interaction effects.

Figure 2.1: An example of a partial dependence plot (PDP) incorrectly suggesting that there
is no relationship between a predictor variable and the outcome. (A) Scatter plot of y as
function of x2. (B) PDP (yellow line) and ICE (grey lines) of the data generating process
described in equation (2.19). The predicted outcome f̂ has been predicted by fitting a random
forest and the plot has been created with the package iml1. The plots have been modified
from [56].

1https://cran.r-project.org/web/packages/iml/index.html

https://cran.r-project.org/web/packages/iml/index.html


Chapter 3

Motivation

Association studies have successfully identified genetic loci that are associated with complex
diseases or traits. However, many of the identified loci only explain a small proportion of
the heritability, hence the question arises how the remaining, “missing heritability” can be
explained [29]. The standard approach in genome-wide (GWAS) and transcriptome-wide as-
sociation studies (TWAS) are linear mixed models. They assume linear relationships between
the genetic markers and the phenotype and furthermore the popular single-locus based hy-
pothesis tests assess the potential association of each marker without considering the other
markers [39]. In this study, we will focus on nonlinear individual effects, epistatic interactions
and genetic heterogeneity, from either or both of genetic and transcriptomic variation, and
their contribution to the “missing heritability”.

Identifying epistatic interactions is both statistically and computationally demanding due
to the high-dimensionality of omics data and hence the high number of tests that need to
be performed [12]. Several strategies to identify interactions have been proposed. The most
straight-forward would be an exhaustive search, addressed by constructing linear models while
allowing for pairwise interactions [58]. Due to the definition of epistasis being the deviation
from a model accounting for additive effects only, these tests of interaction seem to be the
most natural approach. However, it quickly becomes computationally infeasible as the num-
ber of loci increases. Some other current strategies in GWAS consist in reducing the number
of tests that have to be performed by only testing loci that previously have been shown to
be important in marginal GWAS or by reducing the dimensionality beforehand [59, 60]. The
problem with the first strategy is that marginal effects might eventually be absent and hence
loci that are involved in interactions but do not show strong marginal effects might be missed.

Machine learning models offer a non-parametric alternative to traditional statistical models.
A review on several machine learning algorithms that have been applied to genetic data has
been published [23]. The algorithms include neural networks, multifactor dimensionality re-
duction (has been developed to also detect higher-order interactions [61]) and random forests.
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Random forests are particularly interesting as they allow to incorporate a large number of
markers by handling high-dimensional data and have further advantages [52]. While linear
mixed models make the assumption that each phenotype is affected by simple linear, additive
effects of individual loci, random forests do not make any assumption about the underlying
genetic model. It is a non-parametric model, which learns patterns from the data and thus it
can capture nonlinear relationships and interactions. Another advantage of random forests
is that due to importance measures, it can be used as a variable selection tool. As the
permutation importance also takes interaction effects into account, variables with high inter-
action effects but only small marginal effects will be retained. Besides nonlinear effects and
epistatic interactions, an additional concern that traditional methods are confronted with is
the presence of genetic heterogeneity. Linear models assess average effects by lumping an
entire sample into a single group and thus have reduced power to detect associations if there
is genetic heterogeneity [32]. Random forests have been shown to be able to handle genetic
heterogeneity as early splits in the tree actually define separate models for separate subsets
of the data [47]. Therefore, random forests might actually perform better than single-locus
based linear models. The performance of random forests to identify interactions in GWAS
has been studied extensively, however it has mostly been applied to case-control data with-
out using measures to specifically identify interactions between genetic markers [48, 47, 32,
62]. Using the bivariate minimal depth importance, candidate interactions which potentially
contribute to the phenotype can be identified.

It has been shown that interactions are likely to contribute to the phenotype and that phe-
notypes are influenced by genetic heterogeneity (take A. thaliana as an example: [31, 8]),
thus allowing for interactions and heterogeneity might increase the power of association stud-
ies and reveal more loci with complex biology (partially) filling in the hidden heritability.
The aim of this thesis is to apply an improved random forest pipeline to A. thaliana multi-
omics data in order to identify complex, potentially interacting loci making a contribution
to the flowering time phenotype and improve the power of GWAS and TWAS. Furthermore,
random forests can handle different data types as predictors, thus we can combine discrete
SNPs and continuous gene expression in one model. This opens a new study, which we call
genome-and-transcriptome-wide association study (GTWAS). Integrating heterogeneous data
provides an opportunity to better understand the genetic architecture and thus the biology
behind associations that can not be identified when analyzing either genetic or transcriptomic
variation.



Chapter 4

Methods

Except if stated otherwise, all steps have been implemented in R statistical programming
language [63] and the plots have been created with the package ggplot21.

4.1 Data collection and preprocessing

The phenotypic data has been obtained from the public A. thaliana phenotype database Ara-
Pheno [64]. Phenotypic traits represented in this study include flowering time at 10◦C and
16◦C (FT102 and FT163), two flowering time measurements in different environments, which
are highly correlated (r = 0.88, p < 2.2e-16). The phenotypic values are scored as days until
the first open flower can be observed in the respective temperature. The genotypic data (only
SNPs are used here) has been obtained from the 1001 Genomes Consortium and is available
for 1, 135 accessions [65]. Missing values have been imputed by Haijun Liu with Beagle 4.1

[66], which is common in GWAS and necessary for the random forest to ensure all accessions
have genotype data for all the sets of variants. The RNA-seq data (gene expression) has been
generated and cleaned for population structure and additional batch effects by Yoav Voichek.

The general preprocessing steps involved removing accessions for which phenotypic values
were missing, leaving 1, 003 accessions for the flowering time at 10◦C and 970 accessions for
the flowering time at 16◦C. Then, the genotypic data has been filtered for a minor allele
frequency4 of < 2% (in PLINK [67]). The RNA-seq data has been cleaned by removing genes
that were expressed in less than 10% of the accessions, leaving 19, 554 genes’ expression. The
imputation of other missing values has been done using the minimum observed value for that
particular gene as missing values were probably due to low expression. After these steps, we
turned to preprocessing that is specific to random forests.

1https://cran.r-project.org/web/packages/ggplot2/index.html
2https://arapheno.1001genomes.org/phenotype/261
3https://arapheno.1001genomes.org/phenotype/262/
4The minor allele frequency is the frequency at which the second most common allele occurs in the

population.
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4.1.1 SNP filtering

The effect of correlated variables in random forests results in a reduction of the importance
for predictive variables that are correlated with many other variables [39]. Therefore, SNPs
have been pruned both in GWAS and GTWAS and additionally those associated with any
gene’s expression have been filtered out in GTWAS.

Due to linkage disequilibrium, there is some correlation structure between SNPs and thus
neutral SNPs that are linked to causal SNPs can act as surrogates of each other in the tree.
Assume that two linked SNPs tagging a causal SNP are assigned to the same tree. The
prediction accuracy might not decrease when permuting the values of one of the SNPs if the
values of the second SNP are unchanged [68]. This decreases the variable importance of both
SNPs and the more highly correlated the variables are, the more they can serve as surrogates
of each other (see 5.1.1 for the impact on this real dataset) [47]. Hence they might retain
undetected although they do tag a causal SNP and thus are predictive. Several approaches
have been proposed to handle this problem, including conditional variable importance [69].
However, this alternative importance is computationally intensive and thus not feasible for
high-dimensional data. Therefore, we pre-filtered the SNPs based on a correlation threshold
[70]. We used overlapping sliding windows of 50 kb and within each window, we filtered out
SNPs having a correlation higher than r2 = 0.8 to one of the other SNPs (implemented in
PLINK [67]). The filtered genotypic data was used both in GWAS and GTWAS as predictors of
the random forest. An additional filtering has been applied to the SNPs that are significantly
associated to genes’ expression (similar to the high linkage between SNPs, this indicates a
strong correlation between the SNP and the genes’ expression) in GTWAS. Yoav Voichek
generated SNPs passing the significance threshold in the eQTL study for each of the genes
that were available in the expression data. These SNPs act as eQTLs and thus are strongly
correlated with at least one of the genes’ expression, therefore they have been removed in
order to avoid potentially high correlations among the predictors and to improve the power
of random forest GTWAS.

4.1.2 Correcting for population structure

Various methods have been proposed to account for population structure in association stud-
ies and thereby reducing false positives. Price et al. suggested a regression-based correction
[71]. The idea relies on applying principal component analysis to the genotype data in order
to reduce the dimensionality of the data to a smaller number of axes of variation. These axes
being defined as the eigenvectors to the largest eigenvalues of the covariance matrix between
samples describe a maximum of the variability and are called principal components. For or-
ganisms displaying ancestry differences between individuals, principal components often have
a geographic interpretation (Fig. 4.1).
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Figure 4.1: Clustering 1, 135 A. thaliana accessions along the two first principal components
shows that the principal components have a geographic interpretation.

In order to correct for population structure in random forests, it has been recommended to
apply the two-step approach suggested by Price et al. and based on regression to both geno-
types and the phenotypes [72, 73]. Then, the adjusted genotypes and phenotypes are used as
predictor and outcome variables in the random forest analysis, respectively. Zhao et al. have
studied the sensitivity of the correction to the number l of principal components that are
being used [73]. As the results were almost identical for l = 10 and l = 20, we have followed
their approach and used l = 10 principal components in order to correct the genotype and
phenotype for population structure.

The approach can be summarized as follows:

• First, a principal component analysis was applied to the genotype matrix and the l

(= 10 in the present analysis) first principal components (PCs) were returned. The l

first PCs represent the eigenvectors to the l largest eigenvalues of the covariance matrix
between the samples.

• Then, each SNP and the phenotype data vector were transformed such that they are
orthogonal to the l selected principal components. This was done by regressing the data
vector on the l first principal components and calculating the residuals while fitting a
generalized linear model (GLM). As the genotype data is binary, a logit link function
has been used when regressing each SNP while a linear regression model has been used
for the continuous phenotype.

• Finally, the residuals of these models were used as predictor and outcome variables in
the random forest analysis, respectively.
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4.2 Pipeline

We optimized the hyperparameters on a subset of the variables (SNPs and genes’ expression)
in order to fix the hyperparameters that we would use for all of the random forest anal-
yses. We observed that the out-of-bag (OOB) error converged already after 100-200 trees
and thus we followed the general suggestion of building mtree=500 trees per random forest.
Furthermore, the OOB error was not very sensitive to the size mtry of the candidate splitting
variables at each node of the trees. Thus we used the (widely accepted) recommendation
for regression problems of mtry=p

3 where p is the total number of predictor variables in the
analysis. Finally, we stopped growing trees as soon as only 5 observations were left in a node.

After the preprocessing step, two panels of 970/1, 003 accessions were available for the flow-
ering time at 16◦C/10◦C in GWAS. TWAS has been applied to a subset of the accessions for
which gene expression was available including 453/470 accessions for the flowering time at
16◦C/10◦C and the same subset of accessions was available for GTWAS. Typically, the num-
ber of predictor variables included in association studies is huge. Although random forests
can handle high-dimensional data, dimensionality reduction and filtering are necessary to
capture associations and interactions. The pipeline that we have developed is based on a
multi-step approach which reduces the dimensionality of the data in each step.

The first step of the pipeline is reducing the number of variables for which univariate p-values
are calculated. As computing permutation p-values includes building S + 1 random forests
(in order to calculate S permuted importances and one observed importance), the number
p of predictor variables in the analysis has to be reduced in advance in order to reduce the
computational load. As the package ranger1 is particularly well suited for high-dimensional
data, the permutation importance was computed for all the p predictor variables in order to
rank them according to their importance. We have retained the k most important variables
(k = 200 for TWAS and k = 500 for GWAS and GTWAS). As the permutation importance
also takes interaction effects into account, interacting variables without marginal effects are
retained too.

The second step of the pipeline involves identifying significant trait-associated genetic mark-
ers while relying on permutation p-values. The vita2 package has been used to calculate
univariate permutation p-values for the k pre-selected variables as there is an implementation
of the approach described in section 2.3.6 [53]. In order to get reliable results, we computed
S = 1000 permuted importances to get the permutation p-values. Due to multiple testing,
a Bonferroni correction and a 5% significance threshold have been applied to the univariate
p-values in order to identify whether a variable’s permutation importance is truly significant.

1https://cran.r-project.org/web/packages/ranger/index.html
2https://cran.r-project.org/web/packages/vita/index.html

https://cran.r-project.org/web/packages/ranger/index.html
https://cran.r-project.org/web/packages/vita/index.html
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The third step in the pipeline aims to identify interactions making a contribution to the phe-
notype. In order to reduce the search space for interactions, we again only retained a subset
of the previous variables (SNPs or genes’ expression). As a Bonferroni corrected 5% signifi-
cance threshold would be too strict and we might miss many potential interactions, we tested
variables that have a raw univariate p-value < 0.05 for interactions as variables with interac-
tion effects also have high univariate permutation importance. Candidate interactions have
been identified by computing the interaction minimal depth. We used the “find.interaction”
function with the option “max.subtree” from the randomForestSRC1 package. In order to
identify reliable interactions, we again relied on permutation p-values and have implemented
the approach described in section 2.3.6 for the interaction minimal depth in order to get
bivariate p-values.

The last step included filtering the candidate interactions identified by minimal depth for
interesting non-additive patterns. The interactions returned by minimal depth might be ad-
ditive if for example two variables have strong independent marginal effects and therefore
happen to split nodes more often than other variables and thus have low interaction minimal
depth. We did not apply a Bonferroni correction to the bivariate p-values in order to reduce
both false positives and false negatives. Instead, we interpreted the interactions with raw
p-values < 0.05 as either additive or non-additive based on pairwise t-tests and based on
the patterns in figure 4.2, which has been modified from [25]. The advantage is that the
interactions are very interpretable in that way.

In GWAS, each node split is based on a 0/1 split as SNPs are binary, thus random forests do
not have to choose a splitting point s. In TWAS and partially also GTWAS (if the node is split
by a genes’ expression) however, the variables (genes’ expression) are continuous and random
forests do search for the best splitting point s which maximizes the variance in each resulting
node. Assume that the two variables 1 and 2 have been retained as their bivariate p-value is
< 0.05. Taking all of the accessions, the data is separated into 4 distinct haplotypes (or nodes
in random forest terminology) based on their values (alleles for SNPs and lower or higher
median for genes’ expression, as med(expr); Fig. 4.2) for the two interacting variables. In
order to identify interesting interactions, we first test whether a significant difference in mean
phenotype between the accessions in the left, respectively the right branch of the interaction
tree can be observed, i.e. how steep the slope is (represented by the black lines in Fig. 4.2).
This is tested with a Welch two-sample t-test (allowing for different population variances
[74]). Also, the signs of the slopes are of interest as different signs reveal very heterogeneous
effects (Fig. 4.2C).

1https://cran.r-project.org/web/packages/randomForestSRC/index.html

https://cran.r-project.org/web/packages/randomForestSRC/index.html
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Figure 4.2: Interaction patterns that can be identified in GWAS (above) and TWAS (below).
(A) is an example of an additive interaction while (B) and (C) are non-additive. This figure
has been modified from [25].

The first interaction pattern (Fig. 4.2A) would be classified as additive as each variable has
a marginal effect on the phenotype that does not depend on the state of the other. The other
two patterns would be classified as non-additive. The second pattern (Fig. 4.2B) describes
the situation where an allele of the first variable masks the effect of the second variable and
can be seen as a multi-locus extension of the dominance effect for alleles within the same lo-
cus [26]. In the third interaction pattern, the effect direction of the second variable depends
on the first variable. For both of the last patterns, a split on the second variable is more
probable given a previous split on the first variable. Interactions in GTWAS are classified
similarly including 0/1 splits for SNPs and ≤ / > split for genes’ expression. A summary of
how interesting interactions have been identified using pairwise t-tests can be found in the
supplemental data A.

Random forests profit from cases where at least one of the variables has some marginal effect
as only then it will be selected for a split. In figure 4.2B for example, it might happen
that the second variable does not have any marginal effect but based on a prior split on the
first variable, random forest will probably split on the second variable in the left branch of
the tree where it shows some marginal effect [25]. Generally, for this interaction pattern,
it might happen that both variables would be retained by a single-locus test if both show
some marginal effect, but it might also happen that the power to detect the second variable
is reduced [26]. Furthermore, whether random forests or single-locus approaches detect such
cases of course also depends on the frequencies in the population. In figure 4.2C however,
it might happen that none of the variables show any marginal effect and thus an interaction
like this might even be hard for random forests to capture [25].
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Finally, the pipeline is based on a multi-step approach which reduces the dimensionality of
the data in each step and can be summarized as follows:

Algorithm Multi-step random forest
1. Reduce the dimensionality of the data by calculating the permutation importance.

Retain the k most important variables.
2. Compute univariate permutation p-values based on the permutation importance.

Retain variables that have raw univariate p-values < 0.05.
3. Compute bivariate permutation p-values based on the interaction minimal depth.

Retain interactions that have raw bivariate p-values < 0.05.
4. Filter the candidate interactions based on pairwise t-tests.

In order to compare random forest results to single-locus approaches, we used the linear
mixed models (LMM) implemented in LIMIX and in OSCA for GWAS and TWAS, respectively
[75, 35]. We also filtered the SNPs for a minor allele frequency of 2%, however we did not
filter the SNPs for correlations but used all the available SNPs for LMM GWAS. In LMM
TWAS, we used the same genes’ expression that were also available in the random forest
analysis and corrected the phenotype for population structure by regressing out the top 10
PCs beforehand. A kinship matrix has been used to estimate the covariance matrix of the
random effects in LIMIX. OSCA (with the --moa mode) includes all gene expression levels as
random effects to account for confounding effects and correlations between distal genes and
thus to control for false positives [35].
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Results

We have conducted three types of association studies (GWAS, TWAS and GTWAS) with
univariate and bivariate analyses, leading to six different studies for each phenotype. First,
we will emphasize some properties of the pipeline and show how we optimized the pipeline
to make the results reliable and comparable. Then, we will get to the associations to show
that we can improve GWAS and TWAS by a non-parametric and non-linear model, which
furthermore allows us to combine both approaches into a GTWAS model. We will take
specific examples to show how the new findings enhance our understanding on genetics and
molecular biology.

5.1 Properties and optimization of the pipeline

5.1.1 Effect of SNP filtering

The effect of correlated variables in random forests (RF) results in a decrease of the im-
portance for predictive variables that are correlated with many other variables (see section
4.1.1). By focusing on a flanking region around FLOWERING LOCUS C (FLC ) (±100
kb; chromosome 5), we will show that important variables are being returned lower variable
importances when big linkage groups exist. FLC is one of the main flowering time genes
involved in flowering time regulation and encompasses SNPs which lead to variation in flow-
ering time. We will use flowering time at 16◦C as phenotype and use both non-pruned (2343
SNPs) and pruned (methods described in section 4.1.1; leaving 1089 SNPs) genotypes to test
the effect of LD filtering.

We have computed the permutation importance for both data sets, normalized them and
compared the importances on the subset of SNPs that are contained in both (1089 SNPs).
The SNPs in the FLC gene, that have been ranked as important (> 0.1) in both data sets,
have generally been returned higher variable importance once the SNPs have been filtered
for LD (Fig. 5.1A; mean pruned vs. non-pruned: 0.37 vs. 0.25). For the group of SNPs that
are not associated to the phenotype and thus have been returned lower variable importance

27
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in general (< 0.1), there are no significant differences between the importance scores (Fig.
5.1A; mean pruned vs. non-pruned: 0.04 vs. 0.05), which is also the case for the likely
non-functional flanking region of FLC (Fig. 5.1B). These findings suggest that filtering
highly correlated variables increases the power to identify potential positive targets while
maintaining unchanged importance levels (compared to including all correlated variables) for
irrelevant variables.

Figure 5.1: SNP filtering improves the power of random forests. Comparing the permutation
importances of SNPs located in the flowering time regulator FLC (A), respectively in a likely
non-functional flanking region of FLC (B) before and after SNP pruning.

We thus conclude that for predictive variables, big linkage groups result in a reduction of the
permutation variable importance. Furthermore, the computational load can also be reduced
by pruning the SNPs for highly correlated SNPs. Therefore, we will always filter the SNPs
based on linkage disequilibrium in the further analysis. The point to note in this way is that
although the significant SNPs will be highlighted in the following, they represent linkage
groups (loci-based) rather than individual variants.

5.1.2 Effect of population structure correction on both genotype and phe-
notype

Zhao et al. studied the effect of population structure correction in random forest analysis
[73]. The authors simulated case-control data by modeling random, differentiated and causal
SNPs. Differentiated SNPs show different allele frequencies and different rates of disease
among subpopulations. As they are indirectly correlated with the disease, differentiated SNPs
might be as good predictors as causal SNPs. When both differentiated and causal SNPs are
used in random forests, they compete with each other to be selected as the splitting variable
in each node.



5.1. Properties and optimization of the pipeline 29

Zhao et al. found that if population structure is not reasonably corrected for, random forests
might return low importances to causal SNPs and high importances to differentiated, but
disease-unrelated SNPs. They propose to correct the genotype and the phenotype by the
information of population structure from principal component analysis (as in section 4.1.2)
and to use the adjusted genotype and phenotype as the predictors and outcome in random
forest analysis, respectively. Population structure is a well-known confounding variable, and
in linear mixed models it usually is corrected by adding it as a fixed effect to the dependent
(predictor) variables. Here, we will show that population structure acts both on the dependent
and the independent (outcome) variables and therefore both genotype and phenotype should
be corrected for population structure. In addition to the previous simulation study [73], the
flowering time phenotype (16◦C) has been used as an example to demonstrate this in detail.

Figure 5.2: Population structure (PS) correction on both genotype and phenotype reduces
false positives and improves the power to detect true associations. (A) Random forest GWAS
using the raw genotype and phenotype, with the peak at chromosome 1 highlighted below.
(B) Random forest GWAS correcting only the phenotype for PS. (C) Random forest GWAS
correcting both the genotype and the phenotype for PS. Peaks have been annotated if a SNP
within 20 kb of a known flowering time gene exists. (D) Clustering and (E) distribution of
the alleles from the peak at chromosome 1 (chr1_s3905614) that are most highly correlated
with PS, measured with the principal components.
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Three flowering time genes FLC, DELAY OF GERMINATION 1 (DOG1 ) and FLOWER-
ING LOCUS T (FT ) have been associated with the flowering time phenotype by the linear
mixed model (see section 5.2 Fig. 5.5A), which provides a baseline for further comparison. We
first used the raw genotype and phenotype without any correction for population structure
(Fig. 5.2A), then the corrected phenotype only (Fig. 5.2B) and finally both the corrected
genotype and phenotype (Fig. 5.2C) as predictors and outcomes of the random forest anal-
ysis, respectively. In addition to the three well-known genes identified in the LMM, another
known flowering time regulator SHORT VEGETATIVE PHASE (SVP), was observed in
analyses where either none or both genotype and phenotype have been corrected for popu-
lation structure (Fig. 5.2A,C), while remaining non-significant in phenotype-only correction
(Fig. 5.2B). Compared to both genotype and phenotype corrected, the analysis with the raw
data identified a new peak on chromosome 1, at which the alleles show high correlation with
population structure (PC3 r2 = 0.61, p < 2.2e-16; PC6 r2 = 0.32, p < 2.2e-16), suggesting
confounding and thus a potentially false-positive candidate (Fig 5.2 A,D,E). This peak is
neither significant when correcting both genotype and phenotype for population structure,
nor in the linear mixed model, and furthermore it could not be related to any flowering time
gene. With all these findings, we conclude that phenotype-only correction in random forest
is not sufficient and lowers the association power, while additional SNP correction could not
only improve the power to find true associations, but also is necessary to reduce false positives.

Consistent with the study of Zhao et al., we have shown that the power to detect causal
genes increases and possibly spurious associations are well controlled when correcting both
the genotype and the phenotype, although correcting the genotype for population structure
means fitting p (= number of SNPs) linear models, which is computationally expensive to
some extent. Thus for all of the random forest analyses, we correct both genotype and
phenotype for population structure.

5.1.3 P-value estimation for univariate statistics

As seen in section 2.3.4, variables with high permutation importance are predictive and
thus associated to the trait while variables with low permutation importance are not. Since
the permutation importance is not that interpretable and straightforward in comparison
to significance levels in linear models, we wanted to compute individually trait-associated
variables (SNPs and genes’ expression, as univariate) p-values. Although univariate might not
be the right term as the permutation importance also takes interaction effects into account,
we will stick with this term to differentiate from the below bivariate interaction p-values. In
order to get the univariate p-values, we first computed the observed permutation importance
for each tested variable in a non-permuted setting and then S = 1000 permuted importances.
We next applied a Kolmogorov-Smirnov test to each null distribution of the individually
tested variables to test whether the importance score follows a normal distribution.
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As more than 95% of the null distributions did fit a normal distribution in univariate analyses,
for both GWAS and TWAS (Fig.5.3B,C), the univariate p-values have been calculated from
a normal distribution by fitting a Gaussian distribution to the S null importances for each
tested variable.

Figure 5.3: Univariate p-values improve the interpretation of the model. (A) Relation between
the univariate p-values and the univariate permutation importances from random forests.
(B,C) Examples of null distributions (colored areas), their observed permutation importance
(black circles) and the associated univariate p-value of highly significant SNPs from GWAS
(B), respectively of highly significant genes from TWAS (C). All SNPs are located within a
window <6 kb around the annotated flowering time genes.

The p-values estimated in this way are highly correlated with the importance scores, both
for GWAS and TWAS (Fig. 5.3A; p < 2.2e-16 and p = 4.19e-08, respectively). Variables
with high permutation importance do, while variables with low importance do not receive
significant p-values. Thus univariate p-values have been used in the following analyses.

5.1.4 P-value estimation for bivariate statistics

As seen in section 2.3.5, small values of the bivariate minimal depth importance indicate that
there is a possible interaction between two variables. Again, we wanted to compute bivariate
p-values to define a significance level as the raw minimal depth importance scores are not
that interpretable. In order to get the bivariate p-values, we first computed the observed
minimal depth interaction importance for each tested interaction in a non-permuted setting
and then S = 1000 permuted importances. As for the univariate analyses, we next applied
a Kolmogorov-Smirnov test to each null distribution to test whether the importance score of
the tested interaction follows a normal distribution.
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However, as more than 95% of the null distributions did not fit a normal distribution (Fig.
5.4B,C), bivariate p-values have been computed by using the empirical distribution of the S

null importances for each tested interaction.

Figure 5.4: Bivariate p-values improve the interpretation of interactions. (A) Relation be-
tween the bivariate p-values and the minimal depth interaction importances from random
forests. (B,C) Examples of null distributions (colored areas), their observed permutation
importance (black circles) and the associated bivariate p-value of candidate SNP-SNP inter-
actions from GWAS (B), respectively of candidate gene-gene interactions from TWAS (C).

The bivariate p-values estimated in this way are highly correlated with the importance scores
from minimal depth, both for GWAS and TWAS (Fig. 5.4A; p < 2.2e-16 for both). Interac-
tions with small minimal depth do receive significant p-values while interactions with large
minimal depth do not. Another advantage using bivariate p-values is that we do not have to
rely on some threshold of an absolute minimal depth value, which could not be chosen uni-
versally for GWAS and TWAS due to the different ranges of the importance scores (Fig. 5.4).
Due to the large number of SNPs in GWAS, it is less probable for a SNP to be chosen as one
of the candidate splitting variables as this probability decreases with the number of variables
increasing. Hence also the probability for two variables to have low interaction minimal depth
decreases. As there are fewer variables in TWAS than in GWAS (≈ 20, 000 genes’ expres-
sion compared to > 1 million SNPs), SNP-SNP interactions generally have higher interaction
minimal depth than gene-gene interactions (Fig. 5.4A). Permutation-based bivariate p-values
adapt to these ranges, are thus more robust to the number of variables used and are better
interpretable than the raw importance scores. This makes the direct comparison possible
not only between different omics, but also between machine learning and statistical models.
Therefore, bivariate p-values have also been used in the following analyses.
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5.2 RF improves GWAS power by incorporating interactions

5.2.1 Individually significant SNPs

First, we repeated previously published GWAS results for flowering time at 16◦C in a panel of
970 A. thaliana accessions by fitting a linear mixed model to the data (Fig. 5.5A; implemented
in LIMIX [75]; see section 4.2). There is only one peak on chromosome 5 near the flowering time
regulator DOG1 that reaches genome-wide significance when using a Bonferroni-threshold of
5%. However, two remaining peaks can not be ignored and are identified near the flowering
time regulators FT and FLC, which both have been associated to flowering time variation
before. We can compare the results from random forest univariate analyses to the results from
the linear mixed model and show that random forests improve the power of GWAS by allowing
interaction effects. Significant associations using a Bonferroni-threshold of 5% identified by
univariate random forest analyses have been cross-referenced with the FLOR-ID database
[9]. Although linkage disequilibrium is too extensive to find the causal variants with GWAS
alone, we have considered all candidate genes within 20 kb of a significant SNP association.
This left us with 6 significant candidate flowering time genes (Fig. 5.5B). The three genes
FT, FLC and DOG1 revealed with the LMM have been identified as well. Furthermore, we
have identified three flowering time regulators, which are not significant in the linear mixed
model (Fig. 5.5B; SVP, FY and LATE FLOWERING (LATE); most significant p-values
from the LMM in a 20 kb window of the respective loci of 1.57e-05, 7.73e-04 and 1.04e-04).
Another peak on chromosome 4 (whose significance comes only after FLC and SVP) could
not be related to any flowering time gene when using a 20 kb window.

Figure 5.5: Random forests improve the power of GWAS; more loci can be identified. (A)
Linear mixed model GWAS Manhattan plot for flowering time at 16◦C where the highest
peaks have been annotated. (B) Random forest GWAS Manhattan plot for flowering time
at 16◦C where candidate genes have been assigned to the SNPs from the FLOR-ID database
using a 20 kb window [9]. The lines indicate Bonferroni-significance thresholds for both plots.
The plots have been created with the package qqman2.

We have been interested in why these loci have been retained in individual random forest
2https://cran.r-project.org/web/packages/qqman/index.html

https://cran.r-project.org/web/packages/qqman/index.html
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analyses while they are not significant in the linear mixed model and suggest that epistasis
effects contribute to individual effects. The univariate permutation importance does not only
take marginal effects but also interaction effects into account. Thus even if a SNP has been
retained in univariate RF analyses, it might not show any significant marginal effect on its
own. We will take these specific examples to show that the power to detect loci can be im-
proved with random forests. Due to non-additive interaction effects, significant SNPs linked
to these loci show very heterogeneous effects depending on the broader genetic background.
Linear mixed models can not account for such heterogeneity as they fit average effects to
SNPs, which are fixed for the mapping population.

The flowering time gene SVP acts as floral repressor and interacts with many other flowering-
related genes3. When using a nonlinear model and allowing for interactions, SVP significantly
contributes to the flowering time phenotype and is found to be involved in many interactions
that have been retained in bivariate analyses. Its interaction with a SNP on chromosome
5 (chr5_s22627545-chr2_s9584590 (SVP); p < 0.05) is an example of an interaction where
the effect of the alleles is diminished once they occur together (Fig. 5.6A). An analysis of
variance (ANOVA) yielded significant variation among the four haplotypes (p < 2.2e-16) and
a post hoc Tukey test showed that the effect of SVP is significant in the left branch (allele 0 of
chr5_s22627545) of the tree (padj < 2.2e-16). Although the effect in the right branch (allele
1 of chr5_s22627545) of the tree is not significant, the effect direction changes depending on
the allele of the interacting SNP and thus is very heterogeneous. Furthermore, the minor
allele of SVP (allele 1 of chr2_s9584590) shows a high variance in flowering time (0/1 and
1/1 haplotypes are significantly different in their mean flowering time; padj < 2.2e-16). How-
ever, it does not show any significant difference to the other allele without considering the
heterogeneous effects (allele 0 of chr2_s9584590; 72.14 ± 16.55 vs. 78.45 ± 20.9, p = 0.0001
in LMM), explaining why this locus remains undetected in traditional LMM after correcting
for multiple testing.

The same situation occurs at FY, which has been described to be involved in flowering
time regulation and which significantly contributes to the flowering time phenotype through
interactions. Its interaction with a SNP on chromosome 4 (chr4_s5252410-chr5_s4334594
(FY ); p < 0.05) is an example where the effect of FY is masked for some accessions (Fig.
5.6B). Also here an analysis of variance (ANOVA) yielded significant variation among the four
haplotypes (p = 5.092e-09). A post hoc Tukey test showed that in the left branch (allele 0 of
chr4_s5252410) of the tree, FY significantly contributes to the phenotype (padj < 2.2e-16)
while its effect is masked in the right branch (allele 1 of chr4_s5252410) of the tree (padj =
0.99). Also here the minor allele shows a high variance in flowering time (padj = 0.01).
Although a SNP linked to the flowering time regulator LATE is significant in univariate

3FLOR-ID database describing the flowering time network (http://www.phytosystems.ulg.ac.be/

florid/).

http://www.phytosystems.ulg.ac.be/florid/
http://www.phytosystems.ulg.ac.be/florid/
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random forest analyses, we could not identify any interaction involving it, which might be
due to its low minor allele frequency of 6%. We still suggest that this locus has been retained
in univariate random forest analyses due to epistasis effects.

Figure 5.6: Trees of an interaction involving SVP (A), respectively FY (B) with the mean
± the standard deviation of the flowering phenotype, the sample size of the given haplotype
and adjusted p-values from a multiple comparison Tukey test. Significant p-values are given
and haplotypes with the same lowercase letter indicate no significant difference (padj > 0.05).

Manhattan plots for flowering time at 10◦C with a panel of 1003 accessions including ran-
dom forest and linear mixed model annotations can be found in the supplemental figures A
(Fig. A.1). One additional locus has been identified in random forest univariate analyses
(GIBBERELLIN 3-OXIDASE 2 [GA3OX2 ]). While it is not significant in the LMM (most
significant p-value from the LMM in a 20 kb window of the respective locus of 1.48e-04),
it has been shown to be involved in interactions. All these cases together indicate that, in
addition to the same power on linear effects, random forests could be further used to discover
loci underlying nonlinear effects, which are most likely caused by epistatic interactions with
other (hidden) candidate(s).

5.2.2 Interaction effects genome-wide

As the univariate GWAS analyses suggested that nonlinear interactions could be masked in
the LMM and being recovered by random forest, we next wanted to identify non-additive
interactions, while particularly focusing on new loci that possibly are not significant in uni-
variate analyses. The interactions returned by minimal depth are candidate interactions and
might actually involve additive effects of two SNPs. Thus we have not applied any Bonferroni-
correction to the bivariate p-values but have considered all interactions with raw bivariate
p-values < 0.05 and filtered them for interesting non-additive patterns using pairwise t-tests
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(methods described in section 4.2). SNPs involved in interesting interactions have been cross-
referenced with the FLOR-ID database using a 20 kb window [9]. This allowed us to identify
new loci, but first we will concentrate on two interactions involving loci that have also been
retained in univariate analyses (FT -SVP; DOG1 -FLC ).

The interaction involving FT and SVP revealed one of the lowest p-values (chr1_s24339560
and chr2_s9584590; p = 0.022). It has been shown that the effect of SVP significantly de-
pends on the genetic background and thus epistasis effects are crucial for this gene [76]. SVP
is significant in individual random forest analyses, however it can not be identified in the lin-
ear mixed model that only considers marginal effects. We have already shown an interaction
involving this same SVP SNP in figure 5.6A in univariate GWAS results. However, the SNP
on chromosome 5 involved in the previous interaction is not in linkage with the FT SNP. The
interaction between FT and SVP reveals that for accessions carrying the minor allele of FT
(allele 1 of chr1_s24339560), the effect of SVP is masked (padj = 0.17) while for accessions
carrying the major allele (allele 0 of chr1_s24339560), SVP represses flowering and thus there
is an effect (padj = 1.54e-04). The interaction tree can be found in the supplemental figures A
(Fig. A.3). We have only analyzed pairwise interactions but considering the common effect
of the two loci acting on SVP (chr5_s22627545 and FT ), we found that their effect is rather
additive and thus independent.

Furthermore, the pairwise GWAS analyses revealed a nonlinear interaction between DOG1
and FLC involving chr5_s18590741 and chr5_s3172910 (p = 0.031; chr5_s18590741 located
in the DOG1 gene; chr5_s3172910 located < 1 kb downstream of the FLC gene). An analysis
of variance (ANOVA) yielded significant variation among the four haplotypes (p < 2.2e-16)
and a post hoc Tukey test showed that the 1/1 haplotype is significantly different in mean
flowering time from all the others (Fig. 5.7A; padj < 2.2e-16). Although the interaction is
interesting in both directions, we will concentrate on the effect of DOG1 on FLC. This firstly
shows that for some accessions the effect of FLC is masked and secondly that the minor al-
lele of FLC shows a high variance (0/1 and 1/1 haplotypes are significantly different in their
mean flowering time; padj < 2.2e-16), suggesting heterogeneity due to epistasis effects. The
geographical map reveals that most of the haplotypes carrying the DOG1 allele for which
the FLC effect is significantly larger (haplotype 1/1) are located in Spain (Fig. 5.7B).

FLC has been described to be the main flowering time regulating gene. While in the linear
mixed model, the DOG1 peak is higher than the FLC peak, in random forests it is the other
way around as FLC has been returned higher permutation importance. As random forests
take interaction effects into account, it may reflect the biology behind the flowering time
network better: FLC is one of the major hubs in the network and the highest peak in the
random forest GWAS (Fig. 5.5B).
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Figure 5.7: Non-additive interaction involving DOG1 and FLC. (A) The boxplots are anno-
tated with the mean and the sample size of the given haplotype. The p-values are adjusted
p-values from a multiple comparison Tukey test. Significant p-values are given and hap-
lotypes with the same lowercase letter indicate no significant difference. (B) Geographical
distribution of the four haplotypes.

In addition to these interactions including loci that have been individually significant too,
the pairwise analyses reported other interactions involving loci that are not individually sig-
nificant in RF and that can not be identified in the LMM including ARABIDOPSIS ASH2
RELATIVE (ASH2R), ARABIDOPSIS THALIANA CENTRORADIALIS (ATC ), GA RE-
QUIRING 1 (GA1 ), GOLDEN2-LIKE 1 (GLK1 ) and MICRORNA156E (MIR156E). Al-
though all of these new genes identified in pairwise interactions are related to flowering time,
there is no further evidence in the FLOR-ID that they interact with specific genes. Further-
more, many of the SNPs involved in interactions could not be linked to any known flowering
time gene, which complicates the interpretation of SNP-SNP interactions. We have listed all
interactions including the above loci contributing to the flowering time phenotype at 16◦C
in the supplemental data A (Table A.1), providing a valuable resource for further explorations.

Finally, we want to emphasize how interactions identified in RF analyses could increase our
understanding on previous findings. The TWIN SISTER OF FT (TSF) flowering time gene
has been shown to interact with DOG1 in bivariate RF analyses for the flowering time phe-
notype at 10◦C (chr4_s10983356 and chr5_s18590741; Fig. 5.8A; n = 1003 accessions).
Interestingly, TSF is shown only significant in one subpopulation (Southern Iberian Penin-
sula, SIP) with regular GWAS [8]. The authors have shown that GWAS results depend
on where your samples come from and that sampling across a wide range of environments
increases genetic heterogeneity and thus reduces the power of GWAS [8]. They have di-
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vided accessions (a subset of 888 accessions of the 1003 accessions including only European
accessions) into 8 subpopulations using geographic information to identify more peaks spe-
cific to local populations. The most significant DOG1 SNP (chr5_18590501) has a very
low minor allele frequency for the SIP population (3%) while relatively intermediate in the
others (5% to 48%), which leads to the alternative explanation that the effect of TSF is
only detectable for accessions carrying the major allele of that DOG1 SNP. For the interac-
tion involving chr5_s18590741 (DOG1 ; r2 = 0.16 to chr5_18590501) and chr4_s10983356
(TSF), we observed that the effect of TSF is only visible for accessions carrying the 0 allele
of chr5_s18590741 (DOG1 ) (padj = 2.2e-06), while it is masked for accessions carrying the
other allele (allele 1 of chr5_s18590741; padj = 0.93; Fig. 5.8A for all 1003 accessions). While
on a global level, only ≈ 51% carry the 0 allele of the DOG1 SNP (chr5_s18590741), for the
SIP population it is ≈ 82% (Fig. 5.8A,B). Thus the effect on the flowering time phenotype
is significant for the SIP subpopulation (p = 7.2e-06; Fig. 5.8D) while it remains undetected
on a global level (p = 0.1; Fig. 5.8C). This shows that random forests can handle genetic
heterogeneity and might be more interpretable without building separate models for separate
subpopulations.

Figure 5.8: Random forest can handle genetic heterogeneity by allowing for epistatic interac-
tions. (A,B) Interaction involving DOG1 and TSF for the global and the SIP (South Iberian
Peninsula) subpopulation, respectively. The boxplots are annotated with the mean and the
sample size of the given haplotype. (C,D) Effect of TSF on the flowering time phenotype at
10◦C for the global and the SIP (South Iberian Peninsula) subpopulation, respectively. The
p-values are from pairwise t-tests.
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5.3 RF improves TWAS power by incorporating nonlinear ef-
fects

5.3.1 Individually significant genes

In the previous section, we showed that random forests improve the power of GWAS as
nonlinear interactions can be recovered. Our first interest in RF TWAS is whether we can
identify individual genes whose expression have a more complex relationship to the flowering
time phenotype and remain undetected by a linear model. Therefore, we first obtained TWAS
results for flowering time at 16◦C by fitting a linear mixed model to the data (Fig. 5.9A; im-
plemented in OSCA --moa [35]; see section 4.2). We used a panel of 453 A. thaliana accessions,
a subset of the 970 GWAS accessions for which genes’ expression levels were available. Af-
ter Bonferroni-correction, there are two significant associations including SUPPRESSOR OF
OVEREXPRESSION OF CO 1 (SOC1 ) and AT4G33625. SOC1 is one of the major hubs in
the flowering network [77], however it can not be identified by GWAS. We will elaborate on
this later and show that there is no correlated SOC1 polymorphism (Fig. 5.10). The second
most significant gene AT4G33625 was identified in a previously published A. thaliana TWAS
(using a LMM, n = 690 accessions [21]), however, there is no evidence in the literature for
it to be flowering time related. We have considered the 10 most significant genes and cross-
referenced these with the FLOR-ID database [9] and the previously published TWAS results
[21]. We found that 2 genes are included in the FLOR-ID database (SOC1, FRUITFULL
[FUL]), 5 genes have been identified in the TWAS study too (SOC1, RNA HELICASE 30
[RH30 ], PHYTOCHROME INTERACTING FACTOR 3 [PIF3 ], AT4G33625, AT5G49360 )
and TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9 ) has also been linked to flow-
ering time before [78]. As there is no clear evidence of a link to flowering time for the two
genes AT4G33625 and AT5G49360, the linear mixed model identified 5 known flowering time
regulators among the 10 most significant genes.

Figure 5.9: Random forests improve the power of TWAS; more loci can be identified. (A)
Linear mixed model TWAS Manhattan plot for flowering time at 16◦C. (B) Random forest
TWAS Manhattan plot for flowering time at 16◦C. For both plots, the 10 most significant
genes have been annotated. The lines indicate Bonferroni-significance thresholds.
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In random forest univariate analyses on gene expression, we could identify 10 significant asso-
ciations with the same flowering time phenotype, including all the 5 flowering time regulators
discovered by LMM TWAS (Fig. 5.9B), and another 3 new trait-associated genes (FT, FLC
and AT2G20440 ) whose expression levels have been associated with flowering time [9, 21].
FLC and FT are the only genes that have been identified in both random forest GWAS and
TWAS analyses and it actually has been observed before that both FLC polymorphism and
FLC expression are correlated with flowering time independently [79]. Compared to GWAS
analyses, we could identify new candidate genes in TWAS, thus the associations are comple-
mentary to each other, which is consistent with the results in [21]. SOC1 has been ranked
to be the most predictive and thus the most flowering time related gene in TWAS. Its gene
expression levels and the phenotype are highly correlated (r = -0.48, p < 2.2e-16), leading
it to be the most significant gene in the LMM as well. In SOC1 eQTL4 however, no SNPs
passed the significance threshold and there is also no significant GWAS peak (Fig. 5.10).
Still, variation in expression level of this gene contributes to phenotypic variation, and thus
it can be identified by TWAS. As we have already mentioned in section 1.2.5, variation in
gene expression levels could be due to unrevealed genetic variants, the complex regulation
consequence of the other regulators, or epigenetic variation in or near the gene.

Figure 5.10: GWAS Manhattan plot for flowering time at 16◦C zooming in on chromosome
2. SNPs in a 20 kb window around SOC1 have been highlighted in red. The line in grey
indicates the genome-wide Bonferroni-significance threshold.

Among the 10 most significant associations, random forest TWAS could identify 8 genes
that have been related with flowering time before, including the 5 genes from the linear
mixed model5. The advantage of random forests is that they can capture complex, nonlinear
relationships between the predictor variables and the outcome. Partial dependence plots can
be used to visualize the predicted phenotype as a function of the continuous gene expression

4The expression quantitative trait loci (eQTL) results have been generated by Yoav Voichek.
5Also among the 20 most significant associations from the linear mixed model, neither of the remaining 3

genes (FLC, AT2G20440, FT) from random forests can be identified. They have been ranked as 23rd, 35th
and 290th by their p-value, respectively.



5.3. RF improves TWAS power by incorporating nonlinear effects 41

levels, i.e. to visualize the average effect of gene expression on the phenotype (see section
2.4.1). As a control, we added the partial dependence plot of SOC1, where the average effect
is mostly linear (Fig. 5.11). The effect of the three genes that can not be identified by the
linear model (FLC, AT2G20440, FT ), however, is only partly linear (Fig. 5.11). FLC for
example, although its expression levels are high in late flowering and low in early flowering
accessions, is only linearly related to flowering time for high expression levels (r = 0.27, p
= 8.91e-07) while it does not show any significant effect on the flowering phenotype for low
levels (r = 0.06, p = 0.496). AT2G20440 has a rather sigmoidal effect on the phenotype and
FT only shows an effect for low expression levels. For these nonlinear cases, random forests
can clearly improve the power of TWAS.

Figure 5.11: Partial dependence plots of SOC1 and of the 3 genes that can not be identified
in the linear mixed model (FLC, AT2G20440, FT ). The effect of SOC1 on the phenotype
is clearly linear while for the others it is only partly linear. The genes are sorted by their
variable importance. The red points are used to indicate partial values (realisations of the
partial dependence function), the dashed red lines indicate a smoothed error bar of ± two
standard errors and the black dashed line is a smoothed function of the partial values. The
density bars at the bottom represent the distribution of the observations. The larger the
range on the y-axis, the larger the effect on the flowering time phenotype (16◦C). The plots
have been created with the package randomForestSRC8.

Finally, beside the 8 genes that have been related to flowering time before, random forest
TWAS identified two genes without any evidence in the literature to link them to flower-
ing time (AT2G27140 and AT3G51220 ). For both AT2G27140 and AT3G51220, the gene
expression levels are correlated with the phenotype (r = -0.19, p = 6.28e-05; r = -0.18, p
= 8.47e-05, respectively). However, interaction effects could also contribute to individual
effects as they are not significant in the LMM analysis, and the permutation variable impor-
tance in random forest does take interaction effects into account. We highlight how random
forest might have identified AT3G51220 and how it can be interpreted with the help of tools

6When dividing the accessions into two subpopulations based on where an effect of FLC is visible.
8https://cran.r-project.org/web/packages/randomForestSRC/index.html

https://cran.r-project.org/web/packages/randomForestSRC/index.html
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from interpretable machine learning (see section 2.4). When considering the partial depen-
dence plot (PDP) to visualize the effect of AT3G51220 on the phenotype, there is a rather
straight line indicating that there is no effect on the flowering time phenotype (yellow line
in Fig. 5.12A). Individual conditional expectation plots extend the results from PDPs as
they return the relationship between a gene of interest and the predicted phenotype for each
individual observation and thus can take interaction effects into account. Indeed, the individ-
ual effects of AT3G51220 are heterogeneous (grey lines in Fig. 5.12A). For some accessions,
there is an effect on the phenotype while for other accessions the effect seems to be masked.

Figure 5.12: Partial dependence plots (PDP), individual conditional expectation plots (ICE)
and interaction involving the significant gene AT3G51220. (A) PDP (yellow line) and ICE
(grey lines) plot of AT3G51220. (B) Non-additive interaction with SOC1. The p-values are
from pairwise t-tests. (C,D) Partial dependence and individual conditional expectation plots
of a subset of accessions from the left (C) and the right (D) branch of the interaction tree,
respectively. The plots in (A), (C) and (D) have been created with the package iml10.

In bivariate analyses, we identified an interaction involving AT3G51220 and SOC1 which
shows that there are heterogeneous effects on the phenotype depending on the broader back-
ground (Fig. 5.12B). The effect of AT3G51220 seems to be masked once SOC1 shows high
expression levels. In a next step, we can consider partial dependence plots and individual
conditional expectation plots when taking only the subset of accessions from the low and
high SOC1 expression (left and right branch of the tree; n = 227 in Fig. 5.12C; n = 226
in Fig. 5.12D), respectively. Correlations between the phenotype and gene expression levels

10https://cran.r-project.org/web/packages/iml/index.html

https://cran.r-project.org/web/packages/iml/index.html
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of AT3G51220 change when dividing the accessions into two subpopulations based on the
interaction with SOC1. While accessions in the left branch have a higher correlation with
the phenotype (r = -0.33, p = 2.94e-07) and the individual conditional expectation plot is
more homogeneous (Fig. 5.12C; however, there still are accessions without any effect on the
phenotype), there is no effect on the phenotype for accessions in the right branch (Fig. 5.12D;
r = 0, p = 0.95). Similar observations apply to AT2G27140. Confirming the potential links
of these novel candidates to flowering time might be worth to be studied experimentally.
Manhattan plots for flowering time at 10◦C with a panel of 470 accessions including random
forest and linear mixed model annotations can be found in the supplemental figures A (Fig.
A.2). In random forest analyses, 5 of the 10 genes overlap with the associations from the
phenotype at 16◦C while the others are novel candidates.

5.3.2 Interaction effects of gene-pair expressions

After univariate TWAS analyses, and inspired by the interaction finding between AT3G51220
and SOC1, we wanted to identify non-additive interactions involving genes that possibly are
not significant in univariate analyses. The interactions returned by minimal depth are can-
didate interactions and might actually involve additive effects of two genes. Thus we have
not applied any Bonferroni-correction to the bivariate p-values but have considered all in-
teractions with raw bivariate p-values < 0.05 and filtered them for interesting non-additive
patterns using pairwise t-tests (methods described in section 4.2). Consistent with the ob-
servation that SOC1 is one of the major hubs in the regulatory networks that underlie floral
timing and flower development by controlling other genes [80], SOC1 has been found to be
involved in many non-additive interactions.

Although we could not identify any new candidate gene from the FLOR-ID database, we did
identify novel genes involved in non-additive interactions, including SEPALLATA3 (SEP3 ),
which is a potential flowering time gene targeted by SOC1 [80]. SEP3 has no average effect
on the phenotype (Fig. 5.13B). However, it has been described that SOC1 binds to the reg-
ulatory regions of SEP3 [80]. By binding to SEP3, SOC1 activates SEP3 and promotes its
expression, and thus also its effect on flowering time. Accessions that have low SOC1 expres-
sion seem to have a masked (or at least not very significant due to a low sample size) effect of
SEP3 while for accessions with high SOC1 expression, SEP3 has a significant effect on the
flowering phenotype (p = 5.8e-04) as SOC1 promotes its expression (Fig. 5.13A). Similar to
SOC1, SEP3 also promotes flowering. Furthermore, we could retain interesting interactions
between known flowering regulators that have been confirmed experimentally. FLC inhibits
flowering (high expression leads to late flowering) while SOC1 promotes flowering (high ex-
pression leads to early flowering). It has been shown that FLC interacts with SOC1 and
delays flowering by repressing SOC1 via direct binding to the SOC1 promoter region, thus
high expression of FLC reduces the promotive response of floral signals [81]. First, there is a
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notable difference in sample sizes; when FLC expression levels are low, many accessions have
high SOC1 expression levels (n = 180); however, when FLC expression levels are high, only
a few accessions have high SOC1 expression levels (n = 46) as FLC represses the expression
of SOC1 (Fig. 5.13C). Also the mean SOC1 expression is significantly different depending
on FLC expression (Fig. 5.13D; p < 2.2e-16). This also leads to the fact that the effect size
of SOC1 is different depending on whether FLC expression is high or low (Fig. 5.13C).

Figure 5.13: Examples of non-additive interactions that have been identified in bivariate
TWAS analyses. (A) Interaction involving SOC1 and SEP3. (B) Partial dependence plot
of SEP3. (C) Interaction involving FLC and SOC1. The effect size of SOC1 depends
on expression levels of FLC as FLC has been shown to repress SOC1. (D) SOC1 shows
significantly different expression levels depending on FLC expression levels. The p-values are
from pairwise t-tests.

Random forests improve the power of TWAS by allowing nonlinear relationships. Further-
more, interactions allow us to better understand the biology behind the flowering network.
We proved that experimentally evidenced observations can be confirmed by the data, hence
novel genes involved in non-additive interaction might be target genes. The identified inter-
actions involving novel genes can be found in the supplemental data A (Table A.2).
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5.4 RF leverages GTWAS by combining multi-omics

5.4.1 Individually significant SNPs and genes’ expression

Random forests allow to integrate different data types (binary, multi-categorical or contin-
uous) in one single model and hence to construct GTWAS by integrating omics data from
different sources: in our present case SNPs and gene expression levels. We wanted to find
out whether we could detect more loci/relationships than in individual GWAS and TWAS
and get new insights into the flowering time network. For flowering time at 16◦C, a panel of
453 accessions, for which both SNPs and gene expression levels were available, have been used.

In univariate analysis of GTWAS, we could identify a subset of the loci that have been
identified in GWAS and TWAS, including FLC and DOG1 in the form of SNPs and SOC1,
FLC, AT2G20440, FT and PIF3 in the form of expression levels (Fig. 5.14). As eQTLs have
been filtered out due to correlations between the two data types (see section 4), the FLC
polymorphism and FLC expression are not correlated and thus are identified independently
of each other.

Figure 5.14: Random forests open GTWAS and allow the identification of one new locus
GASA5. GTWAS Manhattan plot for flowering time at 16◦C where candidate genes have
been assigned to the SNPs from the FLOR-ID database using a 20 kb window [9]. The line
indicates the Bonferroni-significance threshold.

Furthermore, a SNP (chr3_646496) near GAST1 PROTEIN HOMOLOG 5 (GASA5 ), a
gene included in the FLOR-ID database, has been identified. This gene has been described
to delay flowering by enhancing FLC expression and by repressing the expression of the two
flowering time genes FT and LEAFY (LFY ) [82]. Probably due to its low minor allele
frequency (3%), no SNP interaction involving GASA5 was retained in bivariate analyses.
However both for FLC and FT, we observed significant differences in mean expression for
accessions carrying the major respectively the minor allele of GASA5 (p = 1.64e-04 for FLC,
p = 1.6e-13 for FLC ). For accessions carrying the minor allele, mean expression is higher
for FLC and lower for FT, consistent with the observation that GASA5 inhibits flowering
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by promoting FLC and repressing FT expression. Important to mention is that the genetic
variant linked to GASA5 is not highly correlated with FLC or FT (r = 0.07 and r = -0.06,
respectively) expression as eQTLs have been filtered out.

5.4.2 Interaction effects between SNPs and genes’ expression

In bivariate GTWAS, we identified three new flowering time genes including AGAMOUS-
LIKE 42 (AGL42 ), AT2G32870 and PHYTOCHROME INTERACTING FACTOR 4 (PIF4 ;
chr2_17892882). AT2G32870 has not been linked to flowering time before but AGL42 has
been described to be involved in the floral transition and to promote flowering [83]. Both
were not identified in TWAS but have been found to be involved in many non-additive inter-
actions with SNPs (when also considering interactions with p-values > 0.05), however only
the interaction with SOC1, respectively FLC remained significant (Table A.3). This still
shows that adding omic data from other sources helps to identify new loci due to possible
interactions.

The flowering time gene PIF4 (chr2_17892882) has been found to be involved in a SNP-
gene interaction with SOC1. The SNP linked to PIF4 does not show any significant effect
on flowering time on its own (Fig. 5.15A; p = 0.064). However, when considering the
interaction with the expression of SOC1, its effect on the phenotype is very heterogeneous
and even shows different effect directions with significant differences in mean flowering time
depending on SOC1 expression (Fig. 5.15B). As in SOC1 and PIF4 eQTL no SNP passed
the significance threshold, we can rule out that PIF4 is an eQTL for SOC1 or vice versa,
suggesting that SNP-gene interactions are largely nonlinear.

Figure 5.15: Non-additive interaction that has been identified in bivariate GTWAS involving
SOC1 and PIF4. (B) Interaction involving SOC1 and PIF4 with their mean ± standard
deviation of the flowering phenotype and the sample size of the given haplotype. The p-values
are from pairwise t-tests.
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Although the biological evidence for this interaction is not clear, the results show that GT-
WAS can identify new loci and new interactions that are not identified in single GWAS or
TWAS analyses. Thus adding multi-omics in one model results in new peaks that can lead
to new and more complex biological discoveries. Interactions that have been retained in the
bivariate GTWAS analyses can be found in the supplemental data A (Table A.3).

One important point to mention is that in univariate and bivariate GTWAS, we have identified
almost all flowering time genes (except from TPS9 ) that were significant in univariate RF
TWAS, while only two genes from univariate RF GWAS have been identified (FLC and
DOG1 ). However, one has to take into account here that only a subset (n = 453) of the 970
accessions that were available in GWAS, have been used in GTWAS.
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Conclusion and discussion

Association studies aim to identify loci that are significantly associated to the phenotype,
which is a very fundamental issue in genetics. Both the power of identification of candidate
loci and the understanding of how underlying genetic effects contribute to phenotypic varia-
tion (the interpretability of the mathematical model) are important in practice. The goal of
this thesis was to show that a model, which allows for nonlinear effects, epistatic interactions
and heterogeneity, increases the power of association studies. Although machine learning
models are often accused to be “black boxes” where it is not clear how the results have been
obtained, we were able to develop an improved pipeline based on random forests which is well
interpretable and statistically justified. This pipeline allowed us to identify both individual,
possibly nonlinear loci and potentially interacting loci (with the interacting locus being iden-
tifiable or hidden) through the univariate permutation importance and the bivariate minimal
depth. Both in genome-wide (GWAS) and transcriptome-wide association studies (TWAS),
random forests outperformed the standard linear mixed model by the identification of more,
known and novel, flowering time genes. Combining an ensemble approach of both GWAS
and TWAS while opening genome-and-transcriptome-wide association studies (GTWAS), we
showed that we could increase the association power by identifying new loci that are not
significant in individual analyses. Generally, this shows the feasibility of integrating machine
learning models in association studies.

Random forests have the advantage that they are non-parametric and hence do not assume
any genetic model. A very important finding was that the main hub in the flowering network
FLC has been identified as the most important gene in random forest GWAS. Moreover, the
flowering time regulator SVP, which is known to be involved in epistatic interactions, has been
identified in random forests while remaining undetected in the linear mixed model. Therefore,
random forests might learn the true underlying model better than parametric models when
the genetic architecture is complex. They also outperformed the standard approach in TWAS
as they do not assume linear effects on the phenotype and thus could identify more known
flowering time genes. Furthermore, random forests facilitate the identification of epistatic
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interactions as the search space can be reduced through the univariate permutation impor-
tance. Regarding this, we identified epistatic interactions that involve loci contributing in a
non-additive way to the phenotype. While some of the statistical interactions identified in the
data have been confirmed experimentally and have been described in the literature, others
need to be evaluated at a biological level in order to study their real effects and mechanisms
on influencing flowering time, and thus to exclude the possibility that they are confounded
with some hidden factors (e.g. the environment), although these have been carefully con-
trolled in the current pipeline.

Although random forests performed better than the standard linear mixed model, they do
have some limitations. First, the computational load is much larger compared to the linear
mixed model. This is due to the data preprocessing steps, and mainly the correction for
population structure of the genotypic data, but also the introduction of significance levels
increases computations since multiple models have to be built. Then, a further disadvantage
of random forests is that the results might not be 100% reproducible due to the stochasticity.
Although we improved the reliability of the associations by introducing significance levels,
we realized that the pipeline is very sensitive to randomness, especially as the dimensionality
of the data is reduced in each step. Moreover, the removal of high linkage groups in GWAS
complicates the interpretability of the associations as in contrast to linear mixed models, the
number of SNPs tagging the causal variants is reduced. Finally, some loci that have been
identified in RF GWAS, could not be identified in the ensemble approach GTWAS. As we
have already mentioned, this might simply relate to the fact that only a subset (n = 453)
of the 970 accessions from RF GWAS, have been used. However, it might also partially be
due to the phenomenon that random forests prefer splitting on continuous variables if both
data types are available in the subset of candidate splitting variables [84]. This would lead to
SNPs being more unlikely to be returned a high variable importance and SNP associations
being harder to be identified in GTWAS. We would expect that all these aspects could be
overcome by further improvements.

As the results of our pipeline are encouraging, we propose a wide application to more traits
and/or more species, with some future directions that could be considered to improve. At
the data preprocessing step, we only filtered the SNPs for local linkage disequilibrium (LD).
However, long-distance LD does exist due to population structure and might lead to false
negatives. Therefore, the performance of the pipeline might be even better if long-distance
LD was corrected. Furthermore, we only focused on pairwise interactions and higher-order
interactions were beyond the scope of this work. However, they are likely to play an important
role in complex traits and thus new biological discoveries might be possible when taking them
into account. Considering these and potentially other improvements on the aforementioned
limitations, random forests provide a powerful alternative to the traditional approaches in
association studies, and therefore are very promising and worth studying in the future.
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Supplemental figures and data

Figure A.1: Linear mixed model (A) and random forest (B) GWAS results for flowering time
at 10◦C. Candidate genes have been assigned to the SNPs from the FLOR-ID database using
a 20 kb window [9]. The lines indicate Bonferroni-significance thresholds for both plots.

Figure A.2: Linear mixed model (A) and random forest (B) TWAS results for flowering time
at 10◦C. The lines indicate Bonferroni-significance thresholds for both plots.
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Figure A.3: Tree of the interaction involving FT and SVP with the mean ± the standard
deviation of the flowering phenotype, the sample size of the given haplotype and adjusted
p-values from a multiple comparison Tukey test.

Algorithm Analysis based on pairwise t-tests in order to interpret candidate interactions
that have been identified by the interaction minimal depth.

For i = 1,...,n (number of candidate interactions):
1. Separate the accessions in 4 distinct haplotypes h1, h2, h3 and h4 based on the values of the
variables involved in interactioni with their mean phenotypes m1, m2, m3 and m4.
2. Perform two-sample Welch t-tests test1 = t.test(h1, h2) and test2 = t.test(h3, h4).

If p-value(test1) < 0.05, p-value(test2) < 0.05 and sign(slope1) = sign(slope2):
interactioni → additive interaction

If p-value(test1) < 0.05, p-value(test2) > 0.05 and sign(slope1) = sign(slope2):
interactioni → non-additive interaction

If p-value(test1) > 0.05, p-value(test2) < 0.05 and sign(slope1) = sign(slope2):
interactioni → non-additive interaction

If p-value(test1) < 0.05, p-value(test2) < 0.05 and sign(slope1) ̸= sign(slope2):
interactioni → non-additive interaction
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SNP 1 SNP 2 p-value

chr5_s3190675 (FLC ) chr2_s8854032 (GLK1 ) 0.007
chr1_s19043372 chr5_s3192727 (FLC ) 0.007
chr2_s13022480 chr5_s3192727 (FLC ) 0.009

chr5_s18590741 (DOG1 ) chr5_s3397038 0.015
chr2_s13024062 chr5_s3192727 (FLC ) 0.016

chr4_s18590741 (DOG1 ) chr4_s1224865 (GA1 ) 0.02
chr1_s24339560 (FT ) chr2_s9584590 (SVP) 0.022

chr1_s25638206 chr5_s18590741 (DOG1 ) 0.024
chr5_s3192727 (FLC ) chr5_s3875146 (MIR156E) 0.024

chr1_s25641251 chr5_s18590741 (DOG1 ) 0.026
chr2_s9584590 (SVP) chr4_s172773 0.029

chr5_s18590741 (DOG1 ) chr5_s3172910 (FLC ) 0.031
chr4_s5252410 chr5_s4334594 0.031
chr5_s17415554 chr5_s3173596 (FLC ) 0.032

chr5_s18590741 (DOG1 ) chr1_s19081255 (ASH2R) 0.034
chr2_s11770118 (ATC ) chr5_s3192727 (FLC ) 0.034

chr2_s13022480 chr5_s3197574 (FLC ) 0.034
chr4_s5252410 chr5_s4334594 0.034
chr4_s470748 chr5_s3192727 (FLC ) 0.035
chr1_s5194758 chr5_s18590741 (DOG1 ) 0.036
chr2_s1094522 chr4_s435252 0.043

chr2_s9584590 (SVP) chr4_s682738 0.044
chr4_s1224865 (GA1 ) chr5_s17415554 0.045

chr2_s13024062 chr5_s3197574 (FLC ) 0.046
chr1_s25638206 chr5_s4334594 0.048

Table A.1: SNP-SNP interactions that have been identified in pairwise GWAS analyses for
flowering time at 16◦C, cross-referenced with the FLOR-ID database using a 20 kb window
[9]. Multiple SNPs could not be related with any known flowering time gene.
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gene 1 gene 2 p-value

AT2G45660 (SOC1 ) AT3G47050 0.001
AT2G45660 (SOC1 ) AT3G51220 0.001
AT2G45660 (SOC1 ) AT5G22860 0.001
AT2G45660 (SOC1 ) AT5G676000 (WINDHOSE 1 ) 0.001
AT2G45660 (SOC1 ) AT4G01800 (ALBINO OR GLASSY YELLOW 1 ) 0.006
AT2G45660 (SOC1 ) AT5G10140 (FLC ) 0.008
AT2G45660 (SOC1 ) AT5G63120 (RH30 ) 0.022
AT2G45660 (SOC1 ) AT5G60910 (FUL) 0.036
AT1G09530 (PIF3 ) AT5G01980 (BCA2A ZINC FINGER ATL 16 [BTL16 ]) 0.434

AT3G51220 AT5G01980 (BTL16 ) 0.27
AT2G45660 (SOC1 ) AT1G24260 (SEP3 ) 0.049

Table A.2: Gene-gene interactions involving novel and known genes that have been identified
in pairwise TWAS analyses for flowering time at 16◦C.
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variable 1 variable 2 p-value

AT2G45660 (SOC1 ) AT5G60910 (FUL) 0.001
AT2G45660 (SOC1 ) AT5G63120 (RH30 ) 0.001
AT2G45660 (SOC1 ) AT2G32870 0.001
AT2G45660 (SOC1 ) chr1_s25638206 0.001
AT2G45660 (SOC1 ) chr1_s27905306 0.001
AT2G45660 (SOC1 ) chr2_s17892882 (PIF4 ) 0.001
AT2G45660 (SOC1 ) chr2_s6917250 0.001
AT2G45660 (SOC1 ) chr4_s10489410 0.001
AT2G45660 (SOC1 ) chr4_s5464442 0.001
AT2G45660 (SOC1 ) chr5_s18607960 (DOG1 ) 0.001
AT2G45660 (SOC1 ) chr5_s18761369 0.001
AT2G45660 (SOC1 ) chr5_s3067861 0.001
AT2G45660 (SOC1 ) chr5_s3188552 (FLC ) 0.001
AT2G45660 (SOC1 ) chr5_s3220602 0.001
AT2G45660 (SOC1 ) chr5_s6388228 0.001
AT2G45660 (SOC1 ) AT5G10140 (FLC ) 0.002
AT5G10140 (FLC ) AT5G60910 (FUL) 0.002
AT5G10140 (FLC ) chr2_s17277841 0.002
AT5G10140 (FLC ) chr5_s18761369 0.002
AT5G10140 (FLC ) chr5_s6388228 0.002
AT5G10140 (FLC ) chr5_s3220602 0.003
AT5G10140 (FLC ) chr4_s15567763 0.004
AT5G10140 (FLC ) chr1_s27905306 0.009
AT5G10140 (FLC ) chr2_s6917250 0.017
AT5G10140 (FLC ) chr5_s18606182 (DOG1 ) 0.017
AT5G10140 (FLC ) AT5G62165 (AGL42 ) 0.023
AT1G65480 (FT ) chr1_s27905306 0.025
AT1G65480 (FT ) chr5_s18918834 0.029

AT2G20440 chr5_s3188552 (FLC ) 0.048

Table A.3: Interactions that have been retained in bivariate GTWAS analyses for flowering
time at 16◦C. The SNPs have been cross-referenced with the FLOR-ID database using a 20
kb window [9]. Many SNPs could not be related with any known flowering time gene.
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Proofs
Proof. Equation (2.8).
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Proof. Equation (2.12).
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