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1. Introduction

Clustering is an important unsupervised learning task for exploratory data analysis
and widely used in fields such as machine learning, pattern recognition or data mining.
It has gained a lot of attention in the past years and still remains an active research
field. The goal of clustering is to group data, which shares similar characteristics, into
clusters. Commonly used clustering algorithms are k-means [9], DBSCAN [10] or Spectral
Clustering (SC) [11]. The difference to supervised learning is the aim to discover natural
groupings in unlabeled data [12]. Clustering facilitates the process of data exploration
and data understanding. The clustering result typically depends heavily on the used
data representation or, in other words, the choice of features. Thus, by learning a good
representation of the data, we can better extract useful, and relevant information [13].

However, as the dimension of data increases, traditional clustering algorithms experience
computational expense and poor performance. Therefore, dimensionality reduction has
become a crucial technique to overcome this difficulty. It enables the projection of high-
dimensional data to a lower-dimensional space by trying to preserve relevant information.
Existing dimensionality reduction techniques, such as Principal Component Analysis
(PCA) [14] or Linear Discriminant Analysis (LDA) [15] are often applied together with
clustering, as in [16] or [17]. Moreover, Deep Neural Networks (DNNs) have become an
attractive alternative for projecting high-dimensional data to a lower-dimensional space
since they yield good representations, e.g., in [18, 19]. These previous works applied
dimensionality reduction and clustering independently and sequentially. However, in
recent years a lot of research has been conducted showing an improvement of performance
by using these two methods in a joint manner as in [20, 21, 22].

Besides high-dimensional data, a second challenge we face is the heterogeneity of data,
e.g., a single instance might come with features in the form of images, text, audio, or
video [12]. Many deep clustering algorithms can be applied to one type of data but are
not well suited for handling multiple data types. In this thesis, we use the term multi-view
data to express that single instances can be represented by different data types. Since
many real-world data sets consist of a mix of various features, multi-view clustering has
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1. Introduction

become a relevant topic in research as in [4, 23, 24]. One major advantage of multi-
view data is that complementary and supplementary information from multiple views
can be leveraged. Consequently, multi-view representations can improve the clustering
performance [4, 25, 26]. Unfortunately, combining different views can be challenging when
facing multiple data types because it demands the creation of a shared space between
independent information and learning the importance of this information for the clustering
task [4, 27].

The term complex data is frequently used in connection with unlabeled, high dimensional
or multi-view data. However, another vital challenge is missing data. Especially when
dealing with large amounts of data or multiple data views, we often face incomplete
information. For example, companies lack information about their customers, e.g., age,
customer numbers or complete addresses, because data was not collected [28]. While
in recent years, numerous methods have been proposed for missing data imputation or
high-dimensional and multi-view data clustering, there is hardly any research addressing
those challenges jointly.

In this thesis, we aim to close this gap. We focus on developing Partial Multi-View
Variational Deep Embedding (Partial MV-VaDE), a deep probabilistic clustering model
for multi-view and missing data. We propose an approach combining different elements of
state-of-the-art methods to tackle this challenge. The basis of our approach is formed by
the existing deep probabilistic clustering model Variational Deep Embedding (VaDE) [3]
initially designed for clustering single-view data. By extending VaDE’s architecture with
an additional Variational Autoencoder (VAE) and integrating the Partial VAE from [8],
which uses a so-called Pointnet Plus (PNP) structure, we enable multi-view and missing
data clustering.

The remainder of this thesis is structured as follows: Chapter 2 discusses the problem
setting and defines the goals and contributions of this thesis. In Chapter 3, we provide
the necessary background information on deep clustering, multi-view learning and missing
data imputation, and explain essential preliminaries. Chapter 4 offers an extensive review
of existing deep clustering approaches, including single-view and multi-view clustering
methods, as well as generative and discriminative models. Also, we discuss several methods
proposed for missing data imputation. The methodology of our approach is introduced in
Chapter 5. Subsequently, we present the results of the conducted experiments in Chapter
6. Finally, Chapter 7 draws a conclusion and discusses possible future work.
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2. Problem Setting

In this thesis, we focus on the following deep probabilistic clustering problem, which
considers multi-view and missing data. We use a common notation convention throughout
this thesis, where we denote vectors of values as lower case bold symbols, e.g., v. To
refer to the ith position in v, we use the notation vi. Similarly to the vectors, we denote
matrices as upper case bold symbols, e.g., M .

We aim to develop and investigate models that can effectively cluster based on observed
features from different modalities. For instance, we might be interested in clustering
patients into healthy and sick, based on partially filled out health questionnaires and x-ray
images. As pointed out in [8], assessing a patient’s health status often requires several
tests that can be not only time-consuming but costly. This includes the special case of all
features of a specific modality being missing, for example cases where x-ray images are
not available. Thus, as part of this thesis, we want to also consider the problem where an
entire modality can be missing.

As it might not be possible to be certain about cluster assignments given only partially
available data, we take a probabilistic approach for modeling the data. Generally,
probabilistic clustering methods softly assign data points to clusters given a probability,
which indicates the likelihood of a data point belonging to a cluster. However, given
partial observations, the cluster assignments of unobserved data can be inferred given
a subset of observed data as in [8]. As the set of observed data can have different sizes,
consequently the inference requires to be able to handle arbitrary sets of observations [8].

Let x(1) = [x
(1)
1 , ..., x

(1)
|N|] and x(2) = [x

(2)
1 , ..., x

(2)
|M|] be two vectors with |N| and |M|

random variables describing the same instance x, where x(1) denotes the first data view
and x(2) the second data view and the value of variables of each view can be queried: x(1)j

for j ∈ N and x
(2)
j for j ∈ M . Furthermore, analogous to [8], let each view have a subset

of variables x
(1)
O and x

(2)
Q that are observed, where O ⊂ N , Q ⊂ M and x

(1)
U , x(2)

V that
are unobserved, where U = N \O and V = M \Q, respectively. So, the sets of observed
values can differ for x

(1)
O and x

(2)
Q .

Similar to [3] and [7], we assume that data samples are generated from an unobserved
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2. Problem Setting

latent variable z, which is distributed according to a prior probabilistic distribution, i.e., a
Gaussian mixture, and belongs to a cluster c. We aim to maximize the likelihood of data
samples x

(1)
O and x

(2)
Q and learn an estimation of the distributions’ parameters, i.e., the

mean µ and variance σ2, to group data samples generated from the same distribution to
the same cluster c. Therefore, analogous to [8], we optimize a partial clustering objective
depending solely on observed data samples x

(1)
O and x

(2)
Q from both views.

Lpartial = E
q(z,c|x(1)

O ,x
(2)
Q )

[︁
log p(x

(1)
O ,x

(2)
Q |z)

]︁
−DKL

(︁
q(z, c|x(1)

O ,x
(2)
Q ) ∥ p(z, c)

)︁ (2.1)

We aim to develop a deep clustering model that can effectively model partially observed
data from different modalities. Thus, we study existing deep clustering methods, and
investigate different approaches for multi-view clustering and missing data imputation.
We focus on the existing deep probabilistic clustering model Variational Deep Embedding
(VaDE) [3], and expect to learn if the model’s architecture can be extended such that
multiple data views can be handled. We examine an additive and multiplicative fusion
technique to create a shared subspace between two data modalities and want to determine
if these are suitable baseline methods for extending VaDE for multi-view data clustering.
Moreover, we are interested if VaDE’s clustering result can benefit from an additional
view. To effectively deal with partially observed data in multiple data modalities, we
investigate a state-of-the-art method for missing data imputation, the Partial Variational
Autoencoder (VAE) with the Pointnet Plus (PNP) structure from [8]. We aim to learn
if the integration of the Partial VAE into VaDE enables to effectively deal with missing
data samples. As for readability and simplicity, we combine the methods’ names and
propose the Partial MV-VaDE to cluster multi-view and missing data.

The main contributions of our work can be summarized as follows:

• We study state-of-the-art deep clustering methods for single-view and multi-view
data differentiating between generative and discriminative approaches and present
an up-to-date taxonomy that can be used for further research.

• We propose a deep probabilistic clustering model, Partial MV-VaDE that can model
partially observed data from two data modalities. To develop Partial MV-VaDE,
we take the following steps:

– We re-assess the performance of VaDE, which forms the basis of our approach
and compare the clustering results using different pre-training models.
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2. Problem Setting

– We extend VaDE’s architecture by another VAE to enable multi-view data
clustering. To create a common subspace between two data modalities, we
explore an additive and multiplicative fusion technique. The conducted experi-
ments show that the additive approach can fit the purpose of MV-VaDE. We
evaluate MV-VaDE on four multi-view data sets and compare the performance
to several baselines and the clustering scores of three state-of-the-art deep
multi-view clustering models.

– We integrate the Partial VAE with the PNP structure for each data view to
effectively handle only partially observed data in both views. We evaluate
the Partial MV-VaDE on several multi-view data sets for which we generate
missingness and compare the clustering performance to one baseline and two
state-of-the-art deep multi-view clustering models.

– Finally, we evaluate Partial (MV-) VaDE under different experimental con-
ditions, where we generate various and higher amounts of missingness for
multi-view data sets. To determine the model’s capability of handling missing
data, we investigate its changes in cluster probabilities given an increasing
amount of unobserved data samples.

5



3. Background

Deep clustering has become an attractive solution to discover patterns and understand the
underlying structure of unlabeled and high-dimensional data. However, we are interested
in whether the architecture of Deep Neural Networks (DNNs) allows the integration of
techniques for processing multi-view data and handling missingness.

In this chapter, we give a brief overview of relevant background material for under-
standing this thesis. First, some fundamental preliminaries regarding deep clustering are
explained. We review two methods in more detail, namely the Variational Autoencoder
(VAE) [7] and the Variational Deep Embedding (VaDE) [3], which form the basis of
our approach. Next, we focus on multi-view deep clustering and discuss several fusion
techniques, which enable the projection of multiple data views onto a common subspace
representation. Finally, the attention is drawn to incomplete data, where we discuss the
second building block of our approach, specifically the Partial VAE introduced by [8].

3.1. Deep Clustering

As outlined in [29], given large amounts of complex data, where only a few or no labels
exist, applying supervised methods becomes more difficult and hardly possible. For this
reason, unsupervised classification has become an essential method to process unlabeled
data into similar groupings [29].

Numerous methods have been proposed, e.g., [3, 29, 30, 31], yielding good clustering
performances by using DNNs and combining the tasks of dimensionality reduction and
clustering. As explained in [29], the non-linear transformation can adjust the latent space
based on the clustering result. Thus, clustering and representation learning can benefit
from each other when performed simultaneously.

The following sections give a brief overview of necessary preliminaries regarding deep
clustering models. Moreover, we review existing deep clustering approaches. One common
way to distinguish these methods is to group them into discriminative and generative
approaches [1]. While many well-performing discriminative algorithms have been proposed,
e.g., [21, 30, 32], these methods are solely applicable to clustering tasks as their goal is to

6



3. Background

learn a suitable decision boundary given observed data samples and the assumptions of the
clustering model. Contrary, generative models such as [7, 33] aim to learn a probabilistic
joint distribution of the underlying structure of the data, which enables the generation
of new and similar data samples. For example, the Variational Autoencoder (VAE) [34]
assumes that a latent variable is sampled from a Gaussian distribution described by mean
and variance, allowing similar data sampling. The VAE and the generative deep clustering
algorithm, named Variational Deep Embedding (VaDE) [3] are our main focus of interest.

3.1.1. Preliminaries

Generally, deep clustering algorithms comprise three essential components: (1) a deep
neural network (DNN) to project high-dimensional data to a lower-dimensional latent
representation, (2) a network loss to measure the similarity of input data and their
reconstructions, and (3) a clustering loss to assign data samples to clusters. We will
discuss these three elements in more detail and give some basic understanding of the deep
clustering algorithm structure.

In surveys [1] and [2], the authors established a constructive taxonomy for deep clustering
algorithms. We adopt their taxonomy and extend it with additional information, which
we gained throughout our research.

Deep Neural Networks (DNNs) are the main building block of deep clustering
algorithms. A DNN enables the projection of data to a latent representation, which
subsequently can be used for clustering. Since clustering high-dimensional data becomes
inefficient with the increasing number of features, dimensionality reduction is often
required. Using a DNN, we can project high-dimensional data to a lower-dimensional
space and try to capture important information.

During the research, we identified various models, e.g., the Autoencoder [6] or Variational
Autoencoder [7], and differences in network architecture such as fully-connected or
convolutional networks. In the following, we want to summarize the different architectures
and briefly explain their purpose.

• The Autoencoder (AE) [6] is an unsupervised DNN, which aims to learn the
reconstruction of input data. An AE consists of an encoder network and a decoder
network. The encoder learns to effectively reduce data dimension by trying to capture
important information. It transforms the input data into a latent representation
by performing data compression. The decoder learns to reconstruct data from the
latent space to be as close to the original input as possible. In this case, the latent

7



3. Background

dimension is defined smaller than the input’s dimensionality to prevent the model
from learning an identity mapping.

• The Stacked Autoencoder (SAE) [35] is a DNN that consists of multiple layers of
AEs. The model is trained layer-wise, and the output of each layer is connected to
the input of the successive layer.

• The Variational Autoencoder (VAE) [7] is considered as a deep generative model.
Similar to the AE, the VAE is composed of an encoder network and a decoder
network. The difference is that the VAE encodes the input data as a distribution
over the latent space from which we can sample a point in latent space.

• The Generative Adversarial Network (GAN) [33] consists of two competing networks,
particularly a generator and a discriminator. The generator aims to learn a distri-
bution to produce data samples, whereas the discriminator’s goal is to distinguish
between true and generated data samples.

As outlined in [1] and [2], these models can be based on different network architectures:

• The Feed Forward Neural Network (FFNN) or the Multi-Layer Perceptron (MLP)
builds on multiple connected layers of neurons.

• The Convolutional Neural Net (CNN) inspired by the human visual cortex comprises
several convolutional layers and subsampling layers, followed by one or more fully-
connected layers.

• The Deep Belief Network (DBN) is a generative graphical model, which is composed
of multiple Restricted Boltzmann Machines (RBMs).

The Network Loss can differ according to the used architecture. In the following,
we will explain the network loss of the AE, VAE and GAN.

An AE uses the reconstruction loss to measure the decoder’s performance in recon-
structing the encoded data. Thus, a reconstruction x̂i is compared to the original input
xi. An illustration of the AE and its objective is given in Figure 3.1. There exist several
techniques to compute the reconstruction loss. Commonly used methods are:

• Cross-Entropy (CE) Loss, which is used for binary-valued data and can be expressed
as:

LCE = −(xi log(x̂i) + (1− xi) log(1− x̂i)) (3.1)

where xi ∈ 0, 1.

8



3. Background

Figure 3.1.: Illustration of an AE, reproduced from [6].

• Sum-of-Squared Error (SSE) Loss, which can be used for real-valued input and can
be defined as:

LSSE =

|K|∑︂
i=1

(xi − xî)
2 (3.2)

where |K| is the number of samples.

• Mean-of-Squared Error (MSE) Loss, which is similar to the SSE and used for
real-valued data.

LMSE =

∑︁|K|
i=1(xi − xî)

2

|K|
(3.3)

Similar to the AE, a VAE benefits from the reconstruction term and combines it with the
KL-Divergence to a variational loss. A more detailed description of the variational loss is
given in Section 3.1.2.

Unlike the reconstruction and variational loss, a GAN actually uses two network losses
based on a single distance measure between probability distributions. The so-called min-
max loss [33] is derived from Cross-Entropy, where the Generator G aims at minimizing
and the Discriminator D tries to maximize the loss function:

min
G

max
D

LGAN (D,G) = Exi [logD(xi)] + Ezi [log(1−D(G(zi)))] (3.4)

where D(xi) is the discriminator’s probability estimate of xi originating from the true
data distribution and Exi is the expected value over all true data distributions. While
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3. Background

G(zi) is a data sample generated by G, which adds noise to the latent variables z and
Ezi is the expected value given all generated samples, D(G(zi)) is the discriminator’s
probability estimate of G(zi) originating from the true data distribution.

The Clustering Loss supports the process of finding clusters for data. In [1], the
authors distinguish between two types of frameworks based on the chosen cluster loss:

(1) Frameworks, where cluster assignments are computed directly during the network
training, such as:

• The k-means loss is used in, e.g., [21] to minimize the intra-cluster variance.

Lkmeans =

|C|∑︂
j=1

|K|∑︂
i=1

∥ x
(j)
i − rj ∥2 (3.5)

Here rj is the centroid of the jth cluster and |C| is the number of total clusters.

• The cluster assignment hardening loss, e.g., the Kullback-Leibler (KL) Divergence
measures the distance between an approximated distribution q(xi) and true distri-
bution p(xi).

DKL(p ∥ q) =

|K|∑︂
i=1

p(xi) log

(︃
p(xi)

q(xi)

)︃
(3.6)

In [30], the KL-divergence between soft cluster assignments and an auxiliary dis-
tribution is minimized to simultaneously learn feature representation and cluster
assignments.

• The agglomerative clustering loss applied in [32], aims to merge two clusters with
maximum affinity in a step-wise manner until some defined stopping criterion is
reached.

(2) Frameworks, using cluster regularization, which enforces the network to enhance
a cluster structure. To obtain cluster assignments, additional clustering is required and
performed on the learned data representation. Examples for cluster regularization losses
are:

• The locality-preserving loss, e.g., in [36, 37], which enforces a suitable clustering rep-
resentation by preserving the local neighborhood of latent variables z. A simplified
formulation of a locality-preserving loss can be expressed as follows:

Lloc =
∑︂
i,j∈ki

Ai,j ∥ zi − zj ∥2 (3.7)

10
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where ki is the set of k-nearest neighbors of a data sample xi, and A represents a
similarity measure.

• The group sparsity loss used in [37], where the latent space is divided into a number
of groups that corresponds to the assumed number of clusters |C|. The idea is
to determine relevant groups because these keep the intrinsic properties of data.
Therefore, the groups are weighted according to their sizes, where larger groups are
more relevant.

The Total Loss of deep clustering algorithms is often a combination of network loss
and clustering loss such as in [20, 21, 29]. The optimizing objective can be expressed as
follows [1]:

Ltotal = λLnet + (1− λ)Lcluster (3.8)

where Lnet and Lcluster indicate any network loss and any clustering loss, and λ can
define a trade-off between structure preservation and cluster compression. The structure
preservation indicates the degree of data reconstruction, whereas the cluster compression
specifies the cluster separation. Unfortunately, this hyperparameter can be challenging
to determine in an unsupervised setting. As outlined by [22], the task of learning data
reconstruction can be conflicting with the task of clustering. However, the authors also
explain, that by ignoring the reconstruction loss, the regularization of the embedded space
is missing, which can lead to arbitrary clusterings. For this reason, many deep clustering
approaches use a pre-training considering the reconstruction term only [3].

3.1.2. Variational Autoencoder (VAE)

The Variational Autoencoder (VAE), first defined in 2014 by [7] and [38], is a method,
which jointly learns a generative model and the variational approximation. This approach
has become attractive for various applications, e.g., unsupervised learning, representation
learning, or generative modeling. This section aims to give some preliminary knowledge
and understanding of VAEs. Definitions and explanations are adopted from the original
papers [7, 38] and [34], which discusses the approach in more detail.

The VAE is a probabilistic model, which comprises a generative and an inference
network. It assumes that data samples x are generated from an unobserved latent variable
z, which is sampled from a prior distribution. The joint probability distribution of the

11



3. Background

VAE over the data samples x and latent variables z can be defined as follows:

p(x, z) = p(x|z)p(z), (3.9)

where the latent variables z are sampled from a prior p(z), and the likelihood p(x|z) of
x depends on the latent variables z.

By this means, the generative process includes two significant steps, where (1) a latent
variable z is sampled from a prior distribution p(z), and (2) a value x is generated from
the conditional distribution p(x|z), which can be parameterized using a DNN. The key
idea is to infer samples of the latent variables z, which describe the observed data samples
x. However, the calculation of the posterior p(z|x) is an intractable problem because
of the evidence p(x), which requires expensive computation. Consequently, a second
posterior distribution q(z|x) is introduced, approximating the true posterior p(z|x).

So, the VAE consists of two independently parameterized models: (1) the inference, or
recognition model q(z|x), defined by the probabilistic encoder, and (2) the generative
model p(x|z) represented by the probabilistic decoder. The probabilistic encoder q(z|x)
aims to approximate the intractable true posterior p(z|x) by learning, given the data
samples x, a Gaussian distribution over possible values of z, which describe a generated
sample x. Similarly, the probabilistic decoder p(x|z) creates a Gaussian distribution over
possible values of x given the latent variables z. Figure 3.2 visualizes the architecture of
the VAE, where µ and σ2 define the means and variances of the prior distribution from
which a single latent variable z can be sampled by using the reparameterization trick [7]:
z = µ+ σ2 ∗ ϵ and ϵ is an auxiliary noise variable that follows a Gaussian distribution
ϵ ∼ N (0, 1).

Figure 3.2.: Illustration of the VAE, reproduced from [7].
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The models’ objective is to maximize the evidence lower bound (ELBO), also called
the variational lower bound:

LELBO(x) = Eq(z|x)
[︁
log p(x|z)

]︁
−DKL

(︁
q(z|x) ∥ p(z)

)︁
(3.10)

While maximizing the ELBO approximately maximizes the marginal likelihood p(x), it
also minimizes the KL-divergence between the approximated posterior distribution q(z|x)
and the true posterior p(z|x). As the goal is to maximize the ELBO with respect to both,
the variational and generative parameters, and a standard Monte Carlo gradient estimator
results in high variances, the authors introduce the Stochastic Gradient Variational Bayes
(SGVB) estimator [7]. The SGVB estimator is yield by using the reparameterization trick
on the variational lower bound and can be optimized straightforwardly with a stochastic
optimization method, e.g. Stochastic Gradient Descent (SGD).

3.1.3. Variational Deep Embedding (VaDE)

The deep clustering framework Variational Deep Embedding (VaDE) [3] forms the main
building block in this thesis. Following the descriptions and definitions of [3], this section
explains the methodology of the model.

VaDE is an unsupervised generative clustering model, which combines the VAE and the
Gaussian Mixture Model (GMM). Hence, the model can capture the statistical structure
of data and generate realistic data samples. Analogous to the VAE, VaDE assumes that
data samples x are generated from an unobserved latent variable z. Here, z is sampled
from a cluster c, which is picked from a prior distribution. The joint probability of VaDE
over the data samples x, latent variables z and a cluster c is defined as follows:

p(x, z, c) = p(x|z)p(z|c)p(c) (3.11)

where the cluster c is chosen from a prior p(c). The likelihood p(z|c) of the latent
variables z depend on c, and the likelihood p(x|z) of the data samples x depend on z.
The process of generating data samples x distinguishes for binary data implicating a
multivariate Bernoulli distribution and real-valued data, where x are sampled from a
Gaussian distribution. The steps of the generative process can be summarized as follows:

1. Cluster selection in p(c) : c ∼ Cat(π)

2. Latent variable sampling in p(z|c) : z ∼ N (µc,σ
2
cI)

3. Decoding to observation in p(x|z) : x ∼ Ber(µx) or x ∼ N (µx,σ
2
xI)
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In the first step, a cluster c is chosen given its prior probability π, where Cat(π) indicates
its categorical distribution. µc and σ2

c denote the mean and variance of the Gaussian
distribution corresponding to the cluster c, and I is an identity matrix. Accordingly, a
latent variable z can be selected from the cluster’s Gaussian distribution in the second
step. A DNN f(z;θ) parameterized by θ is used on the latent variables z and computes
the expectation for the mean and variances of the observed data samples x denoted as
µx and σ2

x, respectively. Finally, Ber(µx) or N (µx,σ
2
xI) can represent the multivariate

Bernoulli or the Gaussian distribution from which binary or real-valued data samples x

can be selected.

VaDE aims at optimizing the likelihood of the data samples x by inferring representative
samples of the latent variables z. As already discussed in Section 3.1.2 and explained by
[7], the calculation of the true posterior p(z, c|x) is expensive. For this reason, a second
posterior distribution (or variational posterior) q(z, c|x) is introduced to approximate
the true posterior p(z, c|x). The approximation is realized by employing another DNN
g(x;ϕ) parameterized by ϕ. By this means, the evidence lower bound (ELBO) can be
maximized using the Stochastic Gradient Variational Bayes (SGVB) [7] estimator and the
reparametrization trick [7]. As derived in [3], the LELBO(x) can be expressed as follows:

LELBO(x) = Eq(z,c|x)

[︃
log

p(x, z, c)

q(z, c|x)

]︃
= Eq(z,c|x)

[︁
log p(x|z) + log p(z|c) + log p(c)− log q(z|x)− log q(c|x)

]︁
(3.12)

Further, the ELBO can be rewritten as:

LELBO(x) = Eq(z,c|x)
[︁
log p(x|z)

]︁
−DKL

(︁
q(z, c|x) ∥ p(z, c)

)︁
(3.13)

where the first expression is considered the reconstruction term quantifying how well
data is represented. The second term is the KL-divergence between the prior p(z, c) and
the variational posterior q(z, c|x). This term enforces the network to enhance a cluster
structure.

Figure 3.3, which is reproduced from [3], shows a simplified illustration of VaDE’s data
generative process. The probabilistic decoder denoted by f(z;θ) yields a distribution
over possible data samples x given the latent variables z. The latent variables z are
generated based on c, which is picked from a GMM. Contrary, the probabilistic encoder
g(x;ϕ) produces a Gaussian distribution over possible values of latent variables z from a
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cluster c, given the data samples x.

Figure 3.3.: Illustration of the VaDE architecture, reproduced from the original paper [3].

3.2. Multi-View Deep Clustering

In many real-world applications, including healthcare, finance or marketing, we face
diverse data, including images, text, video or audio. In this thesis, we use the term
multi-view data to summarize different data types describing a single instance. For
example, we can describe an orange in multiple ways. We can use an image or describe
the fruit by its features such as taste, color, calories, or even shape. All of these are
different views of the same object. In the literature, there exist other terms like mixed
data, multi-modal data or heterogeneous data, which we summarize under the umbrella
term multi-view data.

As discussed in [5, 20], one substantial advantage of multi-view data is that observing
data from different viewpoints offers complementary and supplementary information.
This gain in information can support finding intrinsic patterns in data and improve the
performance of clustering tasks.

Few efforts have been made studying deep clustering algorithms for multi-view data,
e.g., in [23, 39, 40]. Clustering multi-view data is a complex task, which requires creating
a shared subspace between multiple data views and at the same time identifying the
importance of different views on the clustering result. As for deep learning, a DNN
is often used to extract modality-specific features for example in [4, 24]. Multi-modal
representation learning is used to integrate these features into a common subspace.

There exist various approaches for multi-modal representation learning, which are
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extensively discussed in [20]. Generally, simple baseline methods such as fusion by
addition, concatenation or multiplication can be used to create a joint representation of
multiple data views.

In the context of deep clustering some more suitable methods were proposed. For
example, [23, 39] use Canonical Correlation Analysis (CCA) to learn a nonlinear transform-
ation of two data views whose correlation is maximized. The multi-modal representation
in [4] is created by the sum of affinity matrices which are weighted based on each view’s
estimated confidence. Contrary, in [24] the authors introduce a self-expressive layer forcing
the modalities to share the same affinity matrix.

3.3. Missing Data Imputation

Another frequent problem in real-world applications is missing data. For example, an
online shop can lack information about users, e.g., age, gender, or orders, because data
were not collected correctly or due to system errors [28]. Also, medical records may contain
incomplete information about the patient’s health status [8, 28]. Unfortunately, acquiring
more data is not only time-consuming but costly. However, to make more suitable
recommendations for customers or to give a clinical diagnosis, additional knowledge is
often required for better understanding and decision-making [8].

Several approaches addressing missing data imputations, e.g., [28, 41], have taken
advantage of the VAE and amortized inference. We focus on a more recent approach, the
Partial VAE presented by [8] to predict missing data samples, and discuss this method in
the following section.

3.3.1. Partial VAE

The Partial VAE [8] is the second building block used in this thesis. Definitions and
explanations are used from the original paper [8].

The Partial VAE is an extension of the VAE, which can be used for missing data
imputation. It addresses the challenge, where a set of random variables x = [x1, ..., x|N|]

can be divided into a subset of observed xO, O ⊂ N and unobserved xU , U = N \ O

variables. Also, the set can contain arbitrary partitions of {U,O}, hence the set size of the
observed variables can differ. As the variational lower bound and the amortized inference
cannot be applied for VAE training given differently sized sets of observations, the authors
extend the amortized inference to handle partially observed data in the Partial VAE.
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The data generation p(x|z) in a VAE is factorized:

p(x|z) =
∏︂
j

pi(xj |z) (3.14)

For this reason, observed data samples xO and unobserved data samples xU can be
considered conditionally independent when given the latent variables z, and consequently
the inferences about xU can be reduced to the inference about z [8]:

p(xU |xO, z) = p(xU |z) (3.15)

As a result, xU can be estimated from z, given the posterior distribution p(z|xO). The
authors introduce a partial inference network q(z|xO) to approximate the true posterior
p(z|xO) and express the partial variational lower bound, which solely depends on xO, as
follows:

log p(xO) ≥ log p(xO)−DKL

(︁
q(z|xO) ∥ p(z|xO)

)︁
= Ez∼q(z|xO)

[︁
log p(xO|z) + log p(z)− log q(z|xO)

]︁
≡ Lpartial

(3.16)

To handle parameter-sharing across arbitrary sized sets of observed variables, the authors
propose to extend the amortized inference by introducing a set function, which is invariant
to permutations, and define q(z|xO) as an encoding:

Figure 3.4.: Illustration of the Partial VAE encoder reproduced from the original paper
[8].

d(xO) : = a(h(s1), h(s2), ..., h(s|O|)), (3.17)
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where sj contains the information of the input variable xj and the corresponding identity
variable ej , which is an unknown embedding optimized during training and |O| is the
number of observed variables. The variable sj is constructed by element-wise multiplication
sj = ej ∗ xj , referred to as the Pointnet Plus (PNP) [8] setting. The neural network h(·)
maps sj to the latent space with dimension L, and a(·) performs a permutation invariant
summation operation. The resulting encoding d with latent dimension L serves as input
to the probabilistic encoder network of a VAE. Figure 3.4 reproduced from [8], illustrates
the Partial VAE encoder for a better understanding.
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Various deep clustering techniques have been proposed targeting high-dimensional and
unlabeled data sets. Few efforts have been made to study deep clustering for multi-view
data. In the following sections, we discuss several state-of-the-art methods for deep
clustering. We study discriminative models and generative models for both single-view
and multi-view data. Finally, we review different methods to predict missing data.

4.1. Discriminative Deep Clustering Models for Single-View
Data

One of the first well-known deep clustering methods is Deep Embedded Clustering (DEC)
[30]. DEC is used for performance comparison by numerous other works. The method
works in a two-stage process, where first, an AE is used to learn a meaningful data
representation. Secondly, the clustering objective minimizes the KL-divergence between
soft assignments and auxiliary target distribution. Both soft assignments and centroids
are updated in an alternating process.

Similar to DEC, [5] present Discriminatively Boosted Clustering (DBC), a unified
image clustering framework. DBC adopts the characteristics of DEC. However, the
difference between these two models is that DBC uses a CNN. The authors show that
DBC outperforms DEC on image data sets.

Almost simultaneously with DEC, [32] introduce the novel method Joint Unsupervised
Learning (JULE). JULE uses a CNN combined with an agglomerative clustering approach,
where clusters are merged based on an affinity matrix. The model is optimized by
alternating between two steps: (1) Cluster assignments are updated in the forward pass,
while subsequently, (2) parameters are updated in the backward pass. Contrary to DEC
and DBC, JULE does not require any pre-training process.

In [42], an unsupervised discrete representation learning method, called Information
Maximizing Self-Augmented Training (IMSAT) is proposed. IMSAT uses data augmenta-
tion to model the invariance of learned data representations. An MLP is used to map data
into a discrete representation. During this process, predictions are regularized to be close
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to the original data. The authors define this process of regularization as Self-Augmented
Training (SAT). SAT is combined with the Regularized Information Maximization (RIM)
for clustering, where information-theoretic dependencies between inputs and predictions
are maximized.

Deep Adaptive Clustering (DAC) [43] is an image clustering framework based on a
CNN. The authors transform the clustering problem into a so-called binary pairwise
classification model, where DAC assumes that each pair of images belongs to the same
cluster or a different cluster. Images are represented by label features, whose similarity is
measured using cosine distance. By introducing a clustering constraint, the learned label
features are transformed to one-hot vectors and subsequently can be used for clustering.
The authors integrate an adaptive learning algorithm since the ground truth similarities
are unknown.

Clustering Convolutional Neural Network (CCNN) [44] solves clustering and feature
learning iteratively, where first k-means is applied on extracted features to obtain cluster
assignment. Secondly, the CNN updates its parameters and the cluster centroids. To
reduce computation and memory costs, the authors integrate the mini-batch k-means
algorithm. Their experiments show high scalability compared to other clustering methods
such as DEC.

The common ground of the discussed models is that the network is constraint by a
clustering loss only. The methods DEC and DBC use an AE loss to learn a meaningful
data representation, but this step is conducted independently from the clustering task.
We refer to this approach as two-staged because a pre-training and fine-tuning step is
performed, each optimizes a different objective function.

However, [32] presents the first method with a combined loss. The Deep Clustering
Network (DCN) uses joint dimensionality reduction and clustering. DCN is based on an
AE and combined with the k-means loss. The authors propose an optimization criterion
comprising three elements: (1) dimensionality reduction, (2) data reconstruction, and
(3) cluster assignment. DCN is optimized using alternating Stochastic Gradient Descent
(SGD), where the network parameters, assignments, and centroids are updated.

Introducing a combined loss can lead to a conflict between the reconstruction and the
clustering objective. Several deep clustering models attempt to balance this trade-off
with a hyperparameter, which can be hard to tune. However, [22] propose the framework:
Autoencoder Centroid based Deep-Clustering methods (ACe/DeC) without the need
of a hyperparameter. ACe/DeC learns a latent representation of two separate spaces,
a clustering and a shared space. This is accomplished by splitting the clustering loss
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into an objective that preserves the cluster structure and another that contains shared
information. The authors show that the integration of ACe/DeC into DCN can achieve
better clustering results. Also, using a centroid-based objective makes it applicable to
numerous centroid-based methods.

[5] presents the Deep Subspace Clustering Networks (DSC-Nets), which integrates a
self-expressive layer between encoder and decoder. The self-expressive layer enables to
learn an affinity matrix which is further used for subspace clustering. The loss function
during training combines the reconstruction loss and a regularization loss for the non-linear
mapping of the data.

In [45], it is claimed that models such as DSC-Nets suffer from a weak latent represent-
ation and, therefore, limit real-world data applicability. The authors propose Distribution
Preserving Subspace Clustering (DPSC), which minimizes the KL-divergence between
the original data distribution and the latent distribution. Thus, in addition to the recon-
struction and self-expressive term used in DSC-Nets, DPSC introduces the distribution
consistency loss. The authors show that this additional cluster objective improves the
model’s performance.

The Deep Manifold Clustering (DMC) model is proposed in [36] and aims to solve
unsupervised Multi-Manifold Clustering (MMC) problems. DMC optimizes a joint loss
function, which comprises two objectives: (1) A locality-preserving objective is minimized,
ensuring that structure-preserving representations are learned. (2) A clustering-oriented
constraint is introduced aiming at extracting cluster-specific representations. Given the
transformed representation, the k-means algorithm is performed for further clustering.

In [46] a new deep embedded regularized clustering (DEPICT) model is proposed to
create an efficient data-subspace mapping and accurate cluster assignments. DEPICT
brings two key aspects: First, a soft-max function is integrated to predict probabilistic
assignments optimized with KL-divergence. Secondly, a regularization term ensures the
balance of assignments. The clustering and auxiliary reconstruction loss functions are
combined to a unified objective and optimized using an alternating approach.

The Improved Deep Embedded Clustering (IDEC) [20] model is based on the ideas
of DEC. The difference between these two methods lies in formulating the objective
function. While DEC works in a two-staged phase and optimizes the reconstruction term
and clustering loss separately, IDEC incorporates a joint objective because the authors
claim that a joint optimization is essential for the clustering result. Therefore, DEC
keeps the decoder part of the AE, such that the model can perform clustering and learn
a meaningful representation at the same time. Their conducted experiments show that
IDEC outperforms DEC.
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Also, the Spectral Clustering with Deep Embedding (SCDE+) [47] model uses DEC as
a basis and combines it with SC. Essentially, the architecture of DEC is used to learn
a data representation, where SC is subsequently performed for clustering. As the SC
algorithm requires prior knowledge of the number of clusters, the authors integrate a
soft-max layer for estimation.

Whereas the previously discussed methods consider one single valid clustering, [29]
argue that real-world data can be partitioned in various valid ways. Recently, the authors
proposed a novel model called Deep Embedded Non-Redundant Clustering (ENRC),
which is the first to combine deep learning with non-redundant clustering. The ENCR
model consists of a non-redundant clustering layer between the encoder and decoder
network of an AE. While a linear transformation matrix aligns the structures within each
clustering, feature weights serve as a soft separation mechanism of the space. By this
means, the model can find multiple valid non-redundant clusterings in the embedded
space.

4.2. Generative Deep Clustering Models for Single-View
Data

Since discriminative models primarily serve the purpose of clustering tasks, generative
models have become a compelling and efficient alternative. One of the commonly used
approaches in this research area are the VAE and GAN, which serve as a basis for the
clustering task.

Deep Clustering with VAEs

The Variational Deep Embedding (VaDE) [3] was one of the first unsupervised generative
clustering approaches to combine the VAE with a GMM. Details on VaDE were discussed
in Section 3.1.3.

Similarly to VaDE, [48] also combines the VAE with a GMM and presents the Gaussian
Mixture VAE (GMVAE). The difference between those two methods lies in the formulation
of the generative process. Contrary to VaDE, GMVAE introduces an additional variable
sampled from a Gaussian distribution. Subsequently, the cluster probability can be chosen
from the introduced distribution.

More recently, the Deep Clustering via a Gaussian mixture VAE with Graph Embedding
(DGG) [49] model was proposed. DGG uses graph embeddings to preserve the local
structure of the data. While VaDE learns the distribution of latent features independently,
DGG enforces the connected distribution to become closer and defines a similarity graph.
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Model Network Architecture Lnet Lcluster Objective training Methods

Discriminative

DNN
MLP - Assignment loss Lcluster IMSAT

CNN - Assignment loss Lcluster

JULES

DAC

CCNN

AE

MLP AE-loss

Assignment loss
2-staged DEC

Joint

DCN

ACe/DeC

IDEC

ENCR

Regularization loss
Joint DMC

2-staged SCDE+

CNN AE-loss
Assignment loss

2-staged DBC

Joint DEPICT

Regularization loss Joint
DSC-Nets

DPSC

Generative

VAE MLP VAE-loss Assignments loss Joint

VaDE

GMVAE

DGG

Adversarial AE MLP AE-loss Assignments loss Joint DAC

GAN

MLP GAN-loss Assignments loss Joint
DASC

CatGAN

CNN GAN-loss
Assignments loss Joint ClusterGAN

Regularization loss Joint InfoGAN

Table 4.1.: Summary of existing deep clustering methods for single-view data, which
can be considered an extension of [1, 2] including more recently proposed
approaches.

The authors claim that the combination of graph information and GMM lead to more
accurate clustering results. The objective function minimizes the Jenson-Shannon (JS)
divergence [50] between data samples represented as nodes and their posterior distribution.

Deep Clustering with GANs

The Deep Adversarial Clustering (DAC) [51] model is based on the idea of adversarial
AEs and combined with a GMM to enable a suitable clustering space. The AE consists
of a GM-based random generator and an DNN-based adversarial discriminator, which
enforces the latent representation to follow the GM prior distribution. DAC aims at
optimizing three objectives using SGD, a reconstruction loss, the GMM likelihood and an
adversarial loss.
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In [52], the Categorical Generative Adversarial Networks (CatGAN) model is proposed.
Contrary to standard GANs which learn a binary discriminative function, the GAN model
used in CatGAN is extended to multi-class tasks. As a result, the discriminator does not
predict the probability of a single sample belonging to the true distribution but classifies
all data samples into a defined number of classes. At the same time, the generator creates
samples for all classes. The objective function consists of (1) a discriminator loss, where
mutual information between observed examples and their class distribution is optimized
and (2) a generator loss increasing the classifier’s robustness.

Similarly to CatGAN, [53] proposes a deep clustering approach based on a GAN, called
Information Maximizing Generative Adversarial Networks (InfoGAN). The difference to
CatGAN is that InfoGAN combines a variational regularizer, which ensures high mutual
information between latent variables and the generator’s distribution with the min-max
loss.

A different generative clustering approach is proposed by [31], named the ClusterGAN.
The authors replace the discriminator with an encoder network and integrate a clustering
specific loss which enables clustering in the latent space.

Deep Adversarial Subspace Clustering (DASC) [54] combines adversarial learning
with subspace clustering. DASC’s generator consists of three components: (1) an AE
learning the data representation, (2) a self-expressive layer producing an affinity matrix
for clustering and (3) a sampling layer generating real and fake data samples for evaluating
the subspace quality.

Table 4.1 summarizes the existing deep clustering methods for single-view data and can
be considered an extension of [1, 2], including more recent approaches. Following [1, 2],
the methods are grouped by their components, which were explained in Section 3, such as
(1) the model type distinguishing between discriminative and generative approaches, (2)
the network grouping methods that are based on, e.g., an AE, VAE or GAN, respectively,
or (3) the architecture, MLP versus CNN. Moreover, we include some information about
the methods’ objectives and optimization procedure. We group these methods by their
network loss and cluster loss. As for the cluster loss, we broadly differentiate between
a cluster assignment loss, where cluster assignments are computed directly during the
network training and a cluster regularization loss, which are objectives that enforce the
network to enhance a cluster structure. The optimization procedure can be distinguished
by using (1) a cluster loss solely, (2) a two-staged model, where first a reconstruction term
is optimized and subsequently a clustering objective, or (3) a joint training approach,
where network loss and cluster loss are optimized as one total loss.
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4.3. Deep Clustering Models for Multi-View Data

One of the earliest approaches of deep clustering targeting multi-view data is Deep
Canonical Correlation Analysis (DCCA) [39]. DCCA consists of two MLPs and uses CCA
to learn nonlinear mappings of two data views. The parameters of both transformations
are learned jointly to maximize the total correlation.

The DCCA model is extended to Deep Canonically Correlated Autoencoders (DCCAE)
in [23]. Instead of a simple MLP, the authors propose using two AEs and adding a
reconstruction loss to improve the model’s performance.

Both models, the DCCA and the DCCAE use a sequential learning approach, where
further clustering is required to obtain cluster assignments. For example, k-means can be
performed on the shared data representation obtained by the models. Moreover, both
approaches are restricted to two data views.

However, in [55], the Multi-view Clustering via Deep Matrix Factorization (MvC-
DMF) is proposed. MvC-DMF uses semi-non-negative matrix factorization for learning
hierarchical semantics of more than two data views. By this means, distances between
samples of the same cluster are minimized layer-wise. A graph regularizer is integrated,
preserving geometric structures in each view. The model is optimized in an alternating
approach such that SC can be applied to obtain the cluster assignments.

A different approach is introduced by [4], called the MultiSpectralNet (MvSN) [4].
MvSN combines Siamese nets [56] with SC for multi-view clustering, where first, each
view is trained independently. Subsequently, a multi-modal representation is created by
the sum of affinity matrices weighted based on each view’s estimated confidence. Further,
to obtain cluster assignments, k-means is applied to the shared representation.

Also, in [57], the authors present a method combining DNNs with SC, the Multi-view
Spectral Clustering Network (MvSCN). MvSCN aims at optimizing two objectives, a
so-called within-view and between-view similarity. Similarly to MvSN, Siamese nets [56]
are used to learn an affinity matrix for each view. Each view is mapped to the embedded
space given the obtained affinity matrices. Contrary to MvSN, an extra layer is added,
performing an orthogonal transformation on the input data and projects view-specific
features into a shared space. Again, k-means is applied to compute the cluster assignments.

[24] introduce one of the first methods using a GAN for multi-view clustering, named
the Deep Adversarial Multi-view Clustering (DAMC) model. DAMC consists of four
elements: (1) a multi-view denoising encoder projecting each view to a lower-dimensional
space, (2) a multi-view denoising generator creating data samples, (3) one discriminator
for each view, distinguishing generated from true data distributions, and finally (4) a deep
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Model Network Architecture Lnet Lcluster Objective training Methods

Discriminative

DNN MLP - Regularization loss Lcluster

DCCA

MvC-DMF

SiameseNet MLP - Regularization loss Lcluster

MvSN

MvSC

AE MLP AE-loss Regularization loss Joint DCCAE

Generative GAN MLP GAN-loss Assignments loss Joint DAMC

Table 4.2.: Summary of existing deep clustering methods for multi-view data.

clustering layer, minimizing the KL-divergence between true and generated distributions.
Overall, the model is optimized using a joint loss function, including a reconstruction
term, the GAN loss and a clustering loss.

Table 4.2 gives an overview of discussed deep clustering methods targeting multi-view
data. Compared to the number and variety of existing deep clustering approaches for
single-view data, there still exists research potential for deep clustering multi-view data
as existing methods mainly integrate objectives for cluster regularization. While cluster
regularization losses often require further clustering to obtain cluster assignments, DAMC
[40] is the only method that proposes a cluster assignment loss. Generally, objectives,
where network and cluster losses are optimized jointly could be studied further.

4.4. Methods for Missing Data Imputation

[41] and [28] are one of the first to use the advantages of the VAE and amortized inference
to manage missingness in data sets. As stated in [8], particularly for partially observed
data, it has become an attractive technique because of the speed requirement in various
real-life use-cases.

In [41], amortized inference is applied during training with complete data. The pre-
trained model is then used to infer missing data entries in the partially observed data
sets.

Since this method does not apply to many real-world data sets, [28] proposes Zero
Imputation (ZI), a technique where missing data is imputed with zeros and fed to the
inference network. ZI is used for both training and test set with missing data points.
However, a disadvantage of ZI is that it struggles with biases introduced from data sets,
where values are not missing entirely at random.

A more recent approach is presented by [8], called Efficient Dynamic Discovery of
high-value information (EDDI). The framework comprises the discussed Partial VAE,
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which predicts missing data points, and an acquisition function, which maximizes the
expected information gain. A detailed description of the methodology of the Partial VAE
can be found in the previous Section 3.3.1. The advantage is that the Partial VAE can
handle arbitrary sets of observed data and shares parameters across different sized sets.

Whereas EDDI serves as an efficient solution given enough training data, a novel infer-
ence method is proposed in [58], the Bayesian Deep Latent Gaussian Model (BELGAM).
The authors address the ice-start problem, which targets the deployment of machine
learning tasks given the minimum available amount of data. BELGAM can quantify
uncertainty and uses it to acquire unfamiliar but informative data to reduce the cost of
acquisition.
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This section proposes an extension of the VaDE [3] model to cluster multi-view data
sets containing missing data features. Therefore, we expand the model’s architecture to
exploit two different data views. Furthermore, we integrate the Partial VAE model in
the PNP setting [8] to enable the handling of missing features. We refer to the proposed
model as Partial MV-VaDE.

The suggested approach motivates the study of deep generative clustering methods
targeting real-world data, i.e., multi-view and missing data. Moreover, Partial MV-VaDE
gives an idea of how existing single-view clustering methods and techniques for missing
data imputation can be combined to solve a more complex challenge.

5.1. Network Architecture

Given two data views x(1) and x(2) describing the same instance x, where each view
can have a different dimension, we extend VaDE’s network with an additional VAE to a
multi-view inference model (probabilistic MV-encoder) and a multi-view generative model
(probabilistic MV-decoder). The probabilistic MV-encoder and probabilistic MV-decoder
comprise fully connected networks for each data view x(1) and x(2). The probabilistic
MV-encoders aims to learn a latent embedding separately for x(1) and x(2) based on
important modality-specific features. Using this setting we can handle views with different
data dimensions.

As this work concentrates on solving the clustering task for exclusively two data views,
the model is restricted to this number of modalities. However, the further extension
of the network architecture to more than two data views is straightforward and can be
considered future work.

To handle missing features x
(1)
U , x(2)

V , we integrate the Partial VAE architecture in
the PNP setting from [8] separately for each view. As discussed in Section 3.3.1 and
extensively studied by [8], observed variables x

(1)
O , x

(2)
Q in a VAE can be considered

conditionally independent from unobserved variables x
(1)
U , x(2)

V given the latent variables
z. Consequently, the inference about x

(1)
U , x(2)

V can be reduced to the inference about z.
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However, the inference under only partially observed data requires the model to share
parameters across different sized sets of observed data. For this reason, we use the
proposed set function PNP [8] to encode observations x

(1)
O , x(2)

Q of each view. The PNP

uses an aggregation operation that is invariant to the permutations of elements of x(1)
O ,

x
(2)
Q , hence allows arbitrary sized observation sets [8]. The obtained encodings can then

be used as input for the probabilistic MV-encoder network.

5.2. Generative Process

Similar to [3], we assume that data samples from both data views x(1) and x(2) are
generated from an unobserved latent variable z, which is distributed according to a
prior probabilistic distribution, i.e., a Gaussian mixture, and belongs to a cluster c.
We aim to maximize the likelihood of data samples from x(1) and x(2) and learn an
estimation of the distributions’ parameters, i.e., the mean µ and variance σ2, to group
data samples generated from the same distribution to the same cluster c. Analogous to
[3], the generative process given two data views can be described as follows:

1. Cluster selection In the first step, a cluster c is chosen given its prior probability
π: c ∼ Cat(π), where Cat(π) indicates its categorical distribution. The Gaussian
distribution corresponding to c is described by its mean µc and variance σ2

c .

2. Latent variable sampling Secondly, latent variables z can be sampled from this
distribution: z ∼ N (µc,σ

2
cI).

3. Decoding to observation The MV-decoder f(z;θ) parameterized by θ is used
on z and computes the expectation for mean (µx(1) , µx(2)) and variances (σ2

x(1) ,
σ2
x(2)) of the data samples from each view x(1) and x(2).

Finally, given the Gaussian distributions N (µx(1) ,σ2
x(1)I) and N (µx(2) ,σ2

x(2)I) a
data sample from x(1) and x(2) can be chosen. In the case of binary-valued data,
data points are sampled from a Bernoulli distribution Ber(µx(1)) and Ber(µx(2)).

As the goal is to optimize the likelihood of each views’ data samples, we build on recent
advances in variational inference in order to efficiently train the described latent variable
model and introduce similarly to [3] a probabilistic MV-encoder g(x;ϕ). The MV-encoder
aims to approximate the true posterior distribution, hence learns an estimation of the
distributions’ parameters such that data samples generated from the same distribution
can be grouped to the same cluster. As a result, the process of the inference model
involves one single step:
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Figure 5.1.: Illustration of the Multi-View VaDE architecture with a PNP setting.

Learning latent embeddings Given the data samples of the first data view x(1) and
a second data view x(2), the MV-encoder g(x;ϕ) learns a separate latent embedding for
each view. The learned embeddings describe the Gaussian distribution of a cluster c by
its mean µc and variance σ2

c . As we aim to create a common embedding space shared
by both views, we examine an additive and multiplicative technique to fuse the learned
embeddings. The process of modality fusion is described in more detail in the following
Section 5.4.

Figure 5.1 gives a simplified illustration of the Partial MV-VaDE, where observations of
each view are encoded using the PNP . The resulting encodings are then used as input for
the MV-encoder network, which learns latent embeddings on modality-specific features
for each data view. A fusion technique is used to create a latent embedding that is shared
by both views. The MV-decoder is used on the latent variables, which are sampled from
the clusters, and maximizes the likelihood of generated data samples from both views.

5.3. Loss Function

As mentioned before, Partial MV-VaDE aims at optimizing the likelihood of the data
samples from each view x(1) and x(2) and grouping data samples generated from the
same distribution to the same cluster c. For this reason, we maximize the ELBO by using
the SGVB and the reparametrization trick from [7]. Further, to consider both observed
x
(1)
O , x(2)

Q and unobserved x
(1)
U , x(2)

V data samples, we adapt VaDE’s ELBO objective
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and define a partial lower bound, which depends exclusively on x
(1)
O , x(2)

Q as proposed
by [8] for single-view data. The final loss function Lpartial(x

(1),x(2)) can be extended for
multi-view and missing data as follows:

Lpartial = E
q(z,c|x(1)

O ,x
(2)
Q )

[︁
log p(x

(1)
O ,x

(2)
Q |z)

+ log p(z|c) + log p(c)− log q(z|x(1)
O ,x

(2)
Q )− log q(c|x(1)

O ,x
(2)
Q )

]︁ (5.1)

The objective function can be rewritten as:

Lpartial = E
q(z,c|x(1)

O ,x
(2)
Q )

[︁
log p(x

(1)
O ,x

(2)
Q |z)

]︁
−DKL

(︁
q(z, c|x(1)

O ,x
(2)
Q ) ∥ p(z, c)

)︁ (5.2)

where the first expression is considered the reconstruction term, while the second term
defines the KL-divergence between prior and variational posterior. In fact, given our
multi-view setting, the reconstruction term comprises a reconstruction loss for data
samples from the first view x(1) and data samples from a second view x(2). The notation
log p(x

(1)
O ,x

(2)
Q |z) serves as simplification, which in fact can be composed in:

log p(x
(1)
O ,x

(2)
Q |z) ≡ log p(x

(1)
O |z) + log p(x

(2)
Q |z) (5.3)

5.4. Modality Fusion

The MV-encoder learns a latent embedding for each data view x(1) and x(2). The learned
embeddings describe the Gaussian distribution of a cluster c by its mean µc(1) , µc(2)

and variance σ2
c(1)

, σ2
c(2)

. As we seek to create a shared embedding of both views, we
examine two simple fusion functions, i.e., fusion by addition and fusion by multiplication.
Both methods are somewhat naive approaches for mapping cluster distributions of two
learned embeddings. Surely, more suitable approaches exist to create a meaningful shared
embedding space. However, these two methods fit our purpose of determining if the idea
of extending VaDE to target multi-view data sets is generally conceivable. Furthermore,
the model’s architecture facilitates a straightforward integration of both fusion methods.
Important to note is that this additive and multiplicative method require the latent
dimensions of all considered views to be of the same size.

So, by mapping the mean µc(1) , µc(2) and variance σ2
c(1)

, σ2
c(2)

of each view’s Gaussian
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distribution corresponding to a cluster c, we aim to create a distribution of c, that is
shared by both data views. The mapping process is accomplished by either

• an additive approach:

µc = µc(1) + µc(2) ,σ
2
c = σ2

c(1)
+ σ2

c(2)
(5.4)

• or multiplicative approach:

µc = µc(1) × µc(2) ,σ
2
c = σ2

c(1)
× σ2

c(2)
(5.5)

Both fusion techniques are examined and compared in Section 6.

5.5. Model Implementation

The Partial MV-VaDE was implemented using Python with the deep learning library
PyTorch [59]. An implementation of the model and all experiments are available at:
https://github.com/NovakoDo/Deep-Probabilistic-Clustering. The code used for
re-implementing VaDE 1 and integrating the Partial VAE 2 is adapted from their source
code, where the deep learning libraries Keras [60] and Tensorflow [61] were used.

We tried to ensure flexibility throughout the implemented network architectures so
that single components could be exchanged. By this means, the models can be modified
and improved for future work. The files train.py and eval.py are the main files to train
and evaluate the models. All models, including the AE, VAE, VaDE and their variations
in architecture (single-view, multi-view, partial-view), are implemented in models.py. To
support the code flexibility, we use .yaml-configuration files, where the model, the data set
and corresponding parameters, for example, the learning rate, batch size or model layers,
can be defined. We use four different scripts defining training and evaluation functions
for each setting: single-view data, multi-view data, single-view partially observed data,
and multi-view partially observed data. The files are named according to their setting,
e.g., partial_mv_train_and_eval_functions.py.

1Source code of VaDE [3] available at: https://github.com/slim1017/VaDE
2Source coder of Partial VAE [8] available at: https://github.com/microsoft/EDDI
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6. Experiments

We conducted a large number of experiments to assess the performance of our models. In
this chapter, we describe the experimental setup, the choice of model parameters, and
the obtained results. We will justify our chosen (pre-)training approaches and discuss
differences between the models.

The experiments are organized in three parts where, first, we re-assess the performance
of VaDE. In the second step, we shift the focus towards multi-view data and extend
VaDE’s architecture by an additional VAE in order to handle multi-view data, which we
refer to as MV-VaDE. We evaluate MV-VaDE on multi-view data sets and compare the
performance results to other methods. Finally, we evaluate VaDE with the integrated
PNP structure, called Partial VaDE, on data sets for which we generate missing data
points.

The goals of this chapter are defined as follows:

1. Assessing the performance of VaDE under different experimental conditions:

• Explaining differences in (pre-)training and reporting procedure compared to
[3].

• Examining multiple pre-training techniques, i.e., the AE, VAE and SAE.

2. Assessing the performance of MV-VaDE:

• Evaluating if an additional view of data can increase VaDE’s clustering per-
formance.

• Exploring two different fusion techniques, i.e., fusion by addition, and fusion
by multiplication.

• Comparing MV-VaDE to baseline and existing models.

3. Assessing the performance of Partial (MV-)VaDE.

• Comparing Partial MV-VaDE to existing and similar methods.

• Showing how effectively Partial VaDE handles higher amounts of missingness.
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• Examining the change of cluster probabilities given higher amounts of missing-
ness.

6.1. Evaluation Metrics

The performance of all models is measured using the unsupervised clustering accuracy
(ACC) [30], which is defined as follows:

ACC = max
m

∑︁|K|
i=1 1{yi = m(ci)}

|K|
(6.1)

where |K| is the total number of samples, yi is the ground-truth label, ci is the cluster
assignment generated by the model, and m ranges over all possible mappings between
clusters and labels. To find the best mapping, we use the Hungarian algorithm [62].

As one evaluation metric might not be enough to provide a full picture of the clustering
models’ performances, we use the normalized mutual information (NMI) [63] score as an
additional performance metric:

NMI(y, c) =
I(y, c)

0.5(H(y) + H(c))
(6.2)

where I defines the mutual information between y, the ground-truth labels, and c, the
cluster labels. Mutual information determines the reduction in entropy H of cluster labels
and can be expressed as follows:

I(y, c) = H(y)− H(y|c) (6.3)

Entropy H quantifies uncertainty by:

H(y) = −
|K|∑︂
i=1

p(yi) log p(yi) (6.4)

where p(yi) is the probability of a class label. Both metrics, ACC and NMI, lie in the
range between zero and one, where one represents the perfect clustering result.

6.2. Data set Description

For replicating the performance results reported in [3], we evaluate the re-implemented
VaDE model on three single-view data sets, which were used in the original paper: MNIST
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[64], Reuters-10K [65], and HHAR [66]. The performance of (Partial) MV-VaDE is
demonstrated on four multi-view data sets, namely WIKI, HW, BDGP, and MV-MNIST.
A comprehensive description of the data sets is given in the following. Also, a brief
summary of relevant statistics of the single-view and multi-view data sets can be found
in Table 6.1 and 6.3, respectively.

Single-view Data sets

• MNIST The MNIST [64] data set consists of 70,000 gray-scaled handwritten digits
of size 28 by 28 pixels, showing numbers from zero to nine.

• Reuters-10K The Reuters-10k data set forms a subset of 10,000 documents sampled
from Reuters [65]. To prevent any possible differences which could impact the
model’s performance, we use the pre-processed data set 1 generated by [3]. The
authors use four categories: (1) corporate/industrial, (2) government/social, (3)
markets, and (4) economics, and discard all documents with multiple labels. Based
on the remaining documents, tf-id features are computed on the 2,000 most frequent
words.

• HHAR The Heterogeneity Human Activity Recognition (HHAR) [66] data set
comprises 10,299 sensor records generated by smartphones and smartwatches. The
data set is classified into six categories of human activities, i.e., biking, sitting,
standing, walking, stair up, and stair down, where each sample has 561 describing
features.

MNIST Reuters10-K HHAR
# Samples 70,000 10,000 10,299
# Cluster 10 4 6
Input Dim. 784-D 2000-D 561-D

Table 6.1.: Overview of relevant statistics of the used single-view data sets.

Multi-view Data sets

• WIKI The Wikipedia (WIKI) data set [67] includes text and image features
assembled from the "Wikipedia featured articles". The text features are defined
by 10-D vectors, and the images are represented as 128-D vectors containing SIFT
descriptors. WIKI comprises 2,866 instances of data, including the ten most frequent
categories.

1Pre-processed data set is available at: https://github.com/slim1017/VaDE
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• HW The Handwritten numerals (HW) [68, 69] data set consists of 2,000 images
of handwritten numerals from zero to nine. In contrast to the MNIST data set,
where the model training is performed on the images, the HW data set comprises
six different features extracted from the collection of images. We use the 76-D
Fourier coefficients of the character shapes and the 216-D profile correlations as two
different data views.

• BDGP The Berkeley Drosophila Genome Project (BDGP) [70] data set contains
2,500 embryo images of drosophila. The images are classified into five categories,
where each corresponds to a stage of gene growth. Each of these images is represented
by a 1,750-D visual vector and a 79-D textual feature vector.

• MV-MNIST We extend the MNIST data set [64] by a second data view, including
categorical features, which describe the handwritten digits. Therefore, we define ten
categorical features, which serve as a substitute to the already existing images and
share additional information. We combine information on the numeric attributes
and the form or shape of the handwritten digits. The data is represented by binary
values, where the value 1 is assigned if the feature applies and 0 otherwise. We
generate the following features to describe the numeric attributes of the MNIST
digits:

1. Parity: We label even numbers as 1 and odd numbers as 0.

2. Division by three: Numbers divisible by three without a remainder are encoded
as 1, otherwise as 0.

3. Prime Number: Digits belonging to the group of prime numbers are assigned
to 1.

4. Fibonacci Number: Fibonacci Numbers are encoded as 1.

5. Sum of two squares: Numbers that can be expressed as a sum of two squares
are labeled as 1. This includes the digit zero, which is considered the sum of
two squares of zeros.

Also, we define features describing the shape and form of the handwritten digits
using:

6. Symmetry: Digits that are both horizontally and vertically symmetric are
labeled as 1, including the digits zero and eight.

7. Minimum one curve: Digits, where the shape shows at least one curve, are
marked as 1. All the remaining digits, i.e., one, four, and seven, are assigned
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to 0.

8. Only curves: If the shape reveals only curves, such as in zero, three, or eight,
we assign the data point to 1.

9. Bottom curve: Digits with a bottom curve are marked as 1, i.e., three, five,
six, and eight.

10. Horizontal line: Numbers having a horizontal line, including two, five, and
seven, are encoded as 1.

Table 6.2 gives an overview of the generated features and their encodings. We use
One-Hot Encoding (OHE) as a pre-processing step, which transforms these features
into a 20-D vector, where (1,0) is True and (0,1) is False. While using OHE on
binary features is somewhat uncommon, it enables to encode missing data as (0,0).

Features/ Digits 0 1 2 3 4 5 6 7 8 9
Parity 1 0 1 0 1 0 1 0 1 0
Division by three 1 0 0 1 0 0 1 0 0 1
Prime number 0 0 1 1 0 1 0 1 0 0
Fibonacci number 1 1 1 1 0 1 0 0 1 0
Sum of two squares 1 0 1 0 1 1 0 0 1 1
Symmetry 1 0 0 0 0 0 0 0 1 0
Minimum one curve 1 0 1 1 0 1 1 0 1 1
Only curves 1 0 0 1 0 0 0 0 1 0
Bottom curve 1 0 0 1 0 1 1 0 1 0
Horizontal line 0 0 1 0 0 1 0 1 0 0

Table 6.2.: Overview of the categorical MNIST features, which serve as a second data
view. The features are binary encoded, where 1 represents "True" and 0 is
"False".

MV-MNIST WIKI HW BDGP
# Samples 70,000 2,866 2,000 2,500
# Cluster 10 10 10 5
Input Dim. (View 1) 784-D 10-D 76-D 1,750-D
Input Dim. (View 2) 20-D 128-D 216-D 79-D

Table 6.3.: Overview of relevant statistics of the used multi-view data sets.

As for the data preparation, there exist two relevant scripts, prepare_datasets.py to
pre-process and split data such that each model can be evaluated on the same sets, and
generate_masks.py to create masks for each data set indicating missingness. Since we
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want to assess the performances of the Partial MV-VaDE in handling missing data points,
we need to compare the performance evaluated on the complete view of data. Therefore,
we create missingness for commonly used data sets, e.g., MNIST [64] or WIKI [67]. A
detailed description of how to run the code can be found in the repository.

6.3. Performance Assessment of VaDE

Since VaDE [3] forms the main building block in this thesis, the first objective is the
reconstruction of experiments and the replication of performance results presented in the
original paper. Therefore, we re-implemented VaDE using PyTorch [59]. For the sake of
comparison, we evaluate the re-implemented VaDE on MNIST, Reuters-10K, and HHAR.

The VaDE model can be organized into three stages:

1. The pre-training procedure

2. The GMM, whose resulting weights are used to initialize VaDE

3. The training procedure of VaDE

The authors distinguish the parameters of the pre-training and training stages. The
notations and their corresponding descriptions for the parameter settings used in VaDE
are summarized in Table 6.4. These notations are consistent across all experiments. To

Notation Description
D Input data dimension
L Latent dimension of set function encoding
Lr Loss function for the reconstruction term
Tp Number of pre-training epochs
αp Learning rate during pre-training
Tl Number of training epochs
αl Learning rate during training

Decay Decay for the learning rate scheduler
Step size Step size for the learning rate scheduler

λl Regularization parameter for the cluster loss during training

Table 6.4.: List of notations and their corresponding descriptions used in VaDE.

replicate the performance of VaDE, we adopt the parameter settings from [3].
Pre-training Procedure [3] explain that VaDE is pre-trained using an SAE because

the model suffers from a weak reconstruction. While the authors claim that a few epochs
of SAE training provide a good initialization of VaDE, we experienced several difficulties
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because of the high volatility in performance given multiple runs of pre-training. For this
reason, we think that the pre-training procedure is crucial for the resulting performance
of VaDE.

Therefore, we examine different pre-training models, including the SAE, VAE, and AE.
For each model and data set, we perform 50 runs, where we set the number of epochs
for the AE and VAE to 50. As for the SAE model, each layer is pre-trained for 25,000
iterations and fine-tuned for another 100,000 iterations. The learning rate is set to 0.001,
and Adam [71] is used to optimize the loss function. These settings are constant across
all three data sets.

GMM After the pre-training procedure, a GMM is applied to the encoded input data.
The resulting weights, means, and variances are used to initialize VaDE’s parameters,
i.e., the cluster probability π, the cluster mean µc, and the cluster variance σ2

c . The
Reuters-10K data set is considered an exception because in the original implementation,
the k-means algorithm is used to initialize π for this data set. Although this choice is not
reasoned in [3], we use this same approach for our experiment.

Also, opposed to the original implementation where the number of restarts for the
GMM and k-means is set to one, we use 100 initializations for each applied GMM, where
the best output in terms of inertia is taken [72]. With this setting we aim to minimize
the variations in GMM performance.

So, we apply a GMM using 100 restarts on top of each of the 50 pre-trained models
for each data set and then pick the ten best performing pre-trainings according to the
obtained ACC score for further training with VaDE. With this setting, we aim to decrease
the high volatility between VaDE runs and leave this issue for future work.

Training procedure of VaDE Finally, VaDE’s network and parameters are initialized
using the pre-trained weights and the GMM results, and the actual training stage starts.
Following [3], the decoder network architecture is defined as 10-2000-500-500-D, where D

specifies the input dimension. The architecture of the encoder network has a mirrored
structure. All layers are fully connected and activated with the ReLU [73] activation
function. The loss function is optimized using Adam [71]. The number of classes in each
data set represents the number of clusters used for the model training. As the authors
distinguish the training parameters of the three data sets, Table 6.5 serves as an overview
of the chosen settings.

Evaluation We compare the reported performance results of the original VaDE with
our re-implemented version. In particular, we examine five different models, which differ
mainly in their pre-training procedure. For simplicity and easier reading, we name the
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Parameters MNIST Reuters-10K HHAR
Network D - 500 - 500 - 2000 - 10

Lr BCE MSE MSE
Tp 50 50 50
αp 0.001 0.001 0.001
Tl 300 15 120
αl 0.002 0.002 0.002

Decay 0.9 0.5 0.9
Step size 10 5 10

Batch size 100 100 100

Table 6.5.: Parameter settings of VaDE for MNIST, Reuters-10K and HHAR adopted
from [3].

different VaDE models with the chosen pre-training model as a prefix: pre-trained model
+ VaDE. We use a basic Autoencoder as pre-training step for the first model, (1) AE +
VaDE. The second model, (2) VAE + VaDE, is pre-trained with a Variational Autoencoder.
Because VaDE is based on a VAE and both models optimize the KL-divergence loss, we
want to determine if using a VAE leads to a more suitable initialization for VaDE. To
efficiently replicate results, we also explore the SAE as a pre-training method in (3) SAE
+ VaDE.

Contrary to [3], where the maximum ACC score is reported, we average the performance
of ten VaDE runs. With this setting, we show that VaDE is not sufficiently robust when
comparing several runs.

The experimental setup of these three methods can be summarized as follows:

1. We perform 50 runs of pre-training for each data set using three different models,
i.e., the SAE, VAE and AE.

2. For each pre-trained model, a GMM using 100 restarts is applied on the encoded
input data.

3. Next, we pick the ten best out of 50 pre-trainings with the highest ACC score for
each model (SAE, VAE and AE).

4. These pre-trainings and their corresponding GMM results are used to initialize
VaDE’s network and parameters, respectively, for further training.

As for the last model, (4) SAE (pretr.) + VaDE, we use the pre-trained weights 2 from
the original implementation. Since only the weights of one single run are published, we

2Pre-trained weights available at: https://github.com/slim1017/VaDE
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use the same pre-trained weights for ten runs of VaDE. By this means, we can determine
if the volatility of VaDE’s clustering scores is high given the same weights initializations.
Last but not least, (5) Original VaDE reports the published scores from [3], where the
authors state the maximum ACC score.

Results Table 6.6 compares the performance results of the five methods and reports
the average ACC and NMI scores across ten runs. We see that VaDE’s performance varies
depending on the chosen pre-training model. However, none of the pre-training models
seems to be significantly better than the other. Furthermore, we observe substantial
variances in the resulting ACC and NMI scores. The standard deviations of each method
AE + VaDE, VAE + VaDE and SAE + VaDE are high for all three data sets. As for
(4) SAE (pretr.) + VaDE, we have lower variations in results because each VaDE run
uses the same pre-trained weights. Because of these observations, we found that VaDE’s
performance depends on the pre-training step and the initialization of parameters.

MNIST REUTERS-10K HHAR

Methods ACC NMI ACC NMI ACC NMI

AE + VaDE 77.36(±2.84) 78.30(±1.54) 64.15(±3.19) 28.87(±3.79) 69.23(±7.27) 68.05(±5.10)

VAE + VaDE 81.27(±3.40) 79.33(±2.27) 56.55(±8.70) 27.39(±6.75) 56.01(±4.54) 64.86(±2.82)

SAE + VaDE 80.44(±4.05) 77.30(±2.32) 65.56(±5.08) 39.19(±4.91) 53.49(±2.97) 45.55(±2.50)

SAE (pretr.) + VaDE 79.04(±0.13) 78.69(±0.19) 69.52(±1.04) 38.67(±1.23) 61.31(±2.08) 65.24(±0.96)

Original VaDE1 94.46 79.83 84.46

1 Maximum performance

Table 6.6.: Evaluation of VaDE on MNIST, Reuters-10K and HHAR. Comparison of
average ACC (%) and NMI (%) scores, where we performed 50 runs of pre-
training and chose the best ten for further training with VaDE.

Since the difference in reporting style makes a fair comparison more difficult, Table 6.7,
6.8, and 6.9 serve as a more detailed summary of the performance statistics. We include
the minimum, maximum, and mean ACC scores and the obtained standard deviation
across ten runs for each data set. The performance statistics show that the range between
the minimum and the maximum scores across ten runs is extensive. This inconsistency
could be challenging when dealing with an unsupervised learning task. We can replicate
similar results for the MNIST and HHAR data set. However, the maximum ACC scores
for Reuters-10K are relatively poor compared to [3].
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Methods Min Max Mean Std
AE + VaDE 72.81 82.77 77.36 2.84

VAE + VaDE 77.24 89.34 81.27 3.40
SAE + VaDE 74.97 91.11 80.44 4.05

SAE (pretr.) + VaDE 78.87 79.25 79.04 0.13
Original Vade - 94.46 - -

Table 6.7.: Evaluation of VaDE on MNIST. Overview of ACC (%) performance statistics,
including max, min, mean and std across ten runs of VaDE.

Methods Min Max Mean Std
AE + VaDE 59.00 68.20 64.15 3.19

VAE + VaDE 39.40 69.30 56.55 8.70
SAE + VaDE 50.70 69.20 65.56 5.08

SAE (pretr.) + VaDE 67.60 70.90 69.52 1.04
Original Vade - 79.83 - -

Table 6.8.: Evaluation of VaDE on Reuters-10K. Overview of ACC (%) performance
statistics, including max, min, mean and std across ten runs of VaDE.

Methods Min Max Mean Std
AE + VaDE 60.97 83.40 69.23 7.27

VAE + VaDE 49.93 65.05 56.01 4.54
SAE + VaDE 47.36 58.54 53.49 2.97

SAE (pretr.) + VaDE 58.16 65.44 61.31 2.08
Original Vade - 84.46 - -

Table 6.9.: Evaluation of VaDE on HHAR. Overview of ACC (%) performance statistics,
including max, min, mean and std across ten runs of VaDE.

6.4. Evaluation of MV-VaDE

We want to take advantage of additional information and extend VaDE’s architecture by a
second network to process multi-view data. We aim to investigate how MV-VaDE handles
an additional data view and determine if multi-view data can improve the generative
model and clustering result. Further, we examine two basic fusion techniques to create
a common embedded space of both data views, i.e., fusion by addition and fusion by
multiplication. A more detailed explanation on the MV-VaDE architecture and the fusion
techniques was given in Section 5. We evaluate MV-VaDE on four multi-view data sets,
including MV-MNIST, WIKI, HW, and BDGP and compare it to two baseline models,
AE + GMM and VAE + GMM, as well as four multi-view clustering models, including
MvSN [4], DCCA [39], DMSC [40], and DAMC [24].
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6.4.1. Fusion Technique Examination

In the first part of this section, we want to examine the two discussed fusion techniques,
i.e., fusion by addition and fusion by multiplication. As mentioned in Section 5.2, these two
methods are somewhat naive approaches for dealing with two data views in probabilistic
clustering. While surely more suitable methods exist for creating a unified distribution, we
still aim to determine if one of these two basic approaches fits the purpose of MV-VaDE.
For this reason, we compare two MV-VaDE models, MV-VaDE (Add), where we create
a shared space for two data views using the additive approach and MV-VaDE (Mul)
integrating the multiplicative technique. We evaluate both models on four multi-view
data sets, namely MV-MNIST, WIKI, HW, and BDGP.

Training Procedure Since we could not determine a clear preference in pre-training
models for VaDE in Section 6.3, we performed a few runs to decide on the most suitable
option for each data set. We use a simple AE in the pre-training stage for MV-MNIST,
HW, and BDGP. Pre-training a VAE combined with the MSE Loss for the reconstruction
term proved to be the better alternative for the WIKI data set.

The fusion techniques require a unified dimension for both input modalities. Hence,
both views have the same embedding size, which we chose according to the number of
classes. Table 6.10 gives a more detailed summary of the parameters used for each data
set.

MV-MNIST WIKI HW BDGP

Network (1) D-500-500-2000-10 D-500-500-200-10 D-500-500-2000-10 D-500-500-2000-5

Network (2) D-15-10 D-500-500-200-10 D-500-500-2000-10 D-500-500-2000-5

Lr BCE MSE BCE BCE

Tp 50 50 50 50

αp 0.001 0.001 0.001 0.001

λp - 0.0001 - -

Tl 300 100 100 100

αl 0.001 0.0001 0.0001 0.0001

λl - 0.0001 0.001 0.0011

Batch size 256 128 128 128
1 Used only for Partial MV-VaDE.

Table 6.10.: Parameter settings of MV-VaDE for MV-MNIST, WIKI, HW, and BDGP.

As it was done in Section 6.3, we perform 50 runs of pre-training for each model,
MV-VaDE (Add) and MV-VaDE (Mul), on each data set. Subsequently, we apply a
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GMM and pick the ten pre-trained models with the highest ACC score for further training
with MV-VaDE. Again, with this setting, we aim to decrease the high volatility between
MV-VaDE runs.

MV-VaDE (Add) MV-VaDE (Mul)

MV-MNIST
ACC 99.11(±0.10) 98.81(±3.04)

NMI 97.62(±0.27) 99.11(±0.99)

WIKI
ACC 58.27(±0.62) 56.58(±1.58)

NMI 52.02(±0.77) 51.89(±0.78)

HW
ACC 85.25(±3.40) 73.85(±4.82)

NMI 80.50(±3.04) 71.53(±5.51)

BDGP
ACC 81.30(±3.29) 76.96(±9.06)

NMI 71.02(±5.79) 66.64(±8.51)

Table 6.11.: Comparison of two fusion techniques for MV-VaDE, evaluated on MV-MNIST,
WIKI, UCI-mf, and BDGP. We report the average ACC (%) and NMI (%)
scores, where we performed 50 runs of pre-training, and chose the ten best
for further training with MV-VaDE.

Evaluation and Results We evaluate the ten runs of MV-VaDE (Add) and MV-VaDE
(Mul) on the MV-MNIST, WIKI, HW, and BDGP and report the average ACC and NMI
scores in Table 6.11.

Considering the results for MV-MNIST, we can see an increase in performance compared
to VaDE trained on the single-view MNIST images. By combining the images with the
categorical features, we can increase the average ACC score from 77.36% to 99.11%
when comparing the results of AE+VaDE, which uses the same pre-training model as
MV-VaDE.

Also, the performance scores show that MV-VaDE (Add) outperforms MV-VaDE (Mul).
Regarding the standard deviation across the performed runs, creating a shared distribution
using the additive approach seems the more robust method, while fusion by multiplication
reveals more inconsistencies in the results. For this reason, we decide to use the additive
approach for all following experiments with multiple modalities. From now on, we refer
to this method simply as MV-VaDE.

44



6. Experiments

6.4.2. Comparison to Baseline Methods

In this second part, we compare the clustering performance of MV-VaDE to two baseline
methods, AE+GMM and VAE+GMM, and four state-of-the-art deep clustering algorithms
for multi-view data. The considered comparison methods are MvSN [4], DCCA [39],
DMSC [40], and DAMC [24]. A more detailed description of these methods can be found
in Section 4.3. Also, we want to investigate the Partial MV-VaDE, here using a complete
view of data.

Training Procedure For reporting the MV-VaDE results, we re-use the already
trained models from MV-VaDE (Add). The Partial MV-VaDE is trained according to the
same procedure as MV-VaDE. The only difference is that we increase the weight of the
reconstruction term of the first HW data view (76-D Fourier coefficients) by ten. Also, we
use a parameter to regularize the KL-divergence for this setting. These two measures are
taken to improve the performance results of Partial MV-VaDE given the more complex
architecture. However, we disregard these parameters for MV-VaDE, because we observed
a decrease in performance.

As for the comparison methods, we do not perform an independent training, but report
the published scores. More specifically, we take the ACC and NMI scores of MvSN from
[4], where the mean results of 30 conducted runs are reported. The authors evaluate
MvSN on the WIKI, and HW data set. For the remaining methods, DCCA, DMSC, and
DAMC, we use the performance results from [24]. All three algorithms were evaluated
on HW and BDGP. Since DMSC was initially intended for clustering image data, [24]
implements zero-padding to use it on HW and BDGP. Also, the authors explain that this
approach lowers the algorithm’s performance. As we did not find nearer information on
the experimental setting, we assume the authors reported the scores of their best runs.

While we re-use the state-of-the-art algorithms’ published results, the baseline models
are implemented with the same experimental setting as MV-VaDE and Partial MV-VaDE.
More specifically, we pre-train 50 AEs and VAEs for each data set and use them for all
following methods. For the AE+GMM method, we apply a GMM on each pre-trained AE.
Then, we pick the best ten models with the highest ACC score and fine-tune the AE for
another 100 epochs. At the end of the training procedure, a second GMM is applied, which
returns the final clustering result. The same approach is employed for VAE+GMM using
a VAE model. The methods AE+GMM* and VAE+GMM* show the GMM clustering
results, which are obtained after the pre-training stage. Also, we use an additional GMM
after the MV-VaDE training and refer to this method as MV-VaDE+GMM.

Evaluation and Results We evaluate each method on the same test sets and report
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the ACC and NMI scores of the best run in Table 6.12. The results show that the
fine-tuning for AE+GMM and VAE+GMM did not necessarily increase the performance
compared to AE+GMM* and VAE+GMM*, respectively. Particularly for BDGP, the
model’s performance profoundly decreases. A possible reason for this adverse effect could
be that the model gets stuck in a local minimum. The scores for MV-VaDE lie in a
similar range as the baseline models. The GMM on top of MV-VaDE slightly improves
the clustering result for the HW data set. While the clustering with Partial MV-VaDE on
the HW data set is suboptimal, the obtained performance on WIKI is at least comparable
to MV-VaDE and MV-VaDE+GMM. The regularization term λl in Partial MV-VaDE
shows a positive effect on the model’s performance on the BDGP data set.

WIKI HW BDGP
ACC NMI ACC NMI ACC NMI

MvSN 92.21 87.32 95.44 96.65 - -
DCCA - - 81.40 78.10 57.80 40.90
DMSC - - 91.60 85.50 68.10 50.60
DAMC - - 96.50 93.20 98.20 94.60
VAE + GMM* 59.02 53.01 92.50 89.03 78.80 65.85
VAE + GMM 59.60 53.31 89.50 84.41 54.40 35.35
AE + GMM* 59.02 54.40 93.00 89.47 79.20 68.14
AE + GMM 59.74 54.06 90.00 84.39 72.80 62.86
MV-VaDE 59.45 53.26 90.50 85.60 87.60 81.84
MV-VaDE + GMM 59.31 53.06 92.50 88.68 86.00 78.23
Partial MV-VADE 57.86 50.41 71.00 69.14 94.80 88.23

Table 6.12.: Comparison of MV-VaDE with several (baseline) models on WIKI, HW and
BDGP. We report the best run’s ACC (%) and NMI (%) score for MV-VaDE
and the baseline models. The results of the state-of-the-art models are taken
from [4] and [5].

6.5. Evaluation of Partial (MV-)VaDE

Finally, in this section, we assess the Partial VAE component of the Partial MV-VaDE
and aim to learn how well missing data can be handled. First, we evaluate the Partial
MV-VaDE on three multi-view data sets for which we generate missing data samples. We
compare the Partial MV-VaDE to one baseline model as well as DCCA and DAMC. It is
essential to note that both models were not initially designed to handle missingness in
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data. However, we want to determine if Partial VaDE can benefit from the Partial VAE
+ PNP architecture and effectively deal with missing data samples. Next, we disregard
the multi-view setting and focus solely on the ability to handle missingness. We evaluate
Partial VaDE using various stages of missingness and observe the model’s changes in
cluster probabilities with an increasing number of observed data samples.

6.5.1. Comparison to Baseline Methods

This first experiment evaluates Partial MV-VaDE on WIKI, HW, and BDGP, for which
we forge missingness. We compare Partial MV-VaDE to a baseline model, DCCA and
DAMC.

Training Procedure Therefore, we integrate a dropout rate ranging from 0% to 50%
during the model (pre-)training. This dropout rate defines the number of missing values
in data patches. We create so-called missingness masks for each epoch and data batch,
which indicate missing data samples with value 0 and observed data samples with value
1. Hence, multiplying the generated mask with the input data results into new data
samples implicating missingness. For example, given a normalized MNIST image, where
white pixels describe the digit and black pixels the background with values 1 and 0, we
indicate missing values by masking white pixels with 0. A more detailed illustration of
the generated missingness masks is given in Section 6.5.3.

For each data set, we perform 50 runs of pre-training and apply a GMM subsequently.
We then pick ten pre-trained models with the highest ACC score for further training
with Partial MV-VaDE. As done for MV-VaDE, we pre-train the BDGP and HW data
set using an AE and WIKI on a VAE. Also, we use the same parameters as defined for
MV-VaDE, which were described in Table 6.10. Additionally, to these chosen parameters,
the PNP [8] in Partial MV-VaDE requires to define the latent dimension L of the set
function encoding (see Section 3.3.1), which we set to 20 for all data sets.

For the training procedure of DCCA 3 and DAMC 4, we use existing implementations
and perform ten runs of each model on each data set. We set the same parameters used
for Partial MV-VaDE, including the network architecture, learning rate, batch size and
epochs, except for DAMC, where we adopt the number of epochs from the original paper
and use 30 epochs for each training step. As DCCA requires further clustering, we use
k-means on top of the trained model. To generate missingness, we use the same approach
as for Partial MV-VaDE. The difference here is that the architecture of DCCA and

3Implementation used from: https://github.com/Michaelvll/DeepCCA
4Source code available at: https://github.com/IMKBLE/DAMC
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DAMC was not initially designed for dealing with missingness, so it does not integrate a
set function encoding [8] as in Partial VaDE. For this reason, we use a zero imputation
method, where input samples and corresponding masks are multiplicated and fed to the
network as one input.

Evaluation To assess the performance of Partial MV-VaDE and determine the volatility
of results when dealing with randomly missing data samples, we pick the best model
according to the ACC score and evaluate its performance on ten sets of missingness masks
for the test set. More specifically, we generate ten random masks with a dropout rate of
precisely 50%. The choice of which values are missing or observed is made randomly. By
generating ten masks, we intend to ensure enough randomness among missing data values.
So, we evaluate the best run of Partial MV-VaDE on these ten test set + missingness
masks combinations generated for each data set. Each comparison method’s best run is
evaluated on the same sets.

Besides DCCA and DAMC, we compare the results of Partial MV-VaDE to Partial
(V)AE + GMM, which can be considered the pre-training procedure of the Partial MV-
VaDE model and Partial MV-VaDE + GMM, where we apply an additional GMM on
top of the trained model. We refer to this comparison model as Partial (V)AE + GMM,
because for pre-training on the WIKI data set, we used the VAE, which slightly improved
the clustering results. However, the pre-training on the HW and BDGP data set is yield
by using an AE. By this means, we intend to learn if the model training stopped at an
inconvenient point where the cluster representation of Partial MV-VaDE is weak.

Results Table 6.13 summarizes the average ACC and NMI scores for each data set,
where each model’s best run was evaluated on ten test sets. We see that the methods with
the Partial VAE + PNP architecture handle missing data samples more effectively than
deep clustering algorithms with a more traditional architecture that was not designed
for missing data. The results achieved for the WIKI data results are generally poor,
including the Partial MV-VaDE which shows somewhat difficulties with this data set.
Noticeable is that DAMC achieves a better clustering performance on WIKI data. Still,
we see that in comparison the Partial MV-VaDE model achieves higher results for HW.
The Partial MV-VaDE + GMM can slightly improve the ACC score of Partial MV-VaDE.
However, an additional GMM on top of Partial MV-VaDE does not significantly improve
the clustering results. Interestingly enough, the NMI score obtained on BDGP with AE
+ GMM is considerably higher than after the Partial MV-VaDE training.
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WIKI HW BDGP

ACC NMI ACC NMI ACC NMI

DCCA 23.25(±1.31) 10.85(±1.68) 28.25(±3.04) 23.91(±3.52) 49.96(±8.55) 34.98(±7.42)

DAMC 33.12(±2.11) 26.97(±2.13) 23.35(±0.90) 23.90(±1.92) 33.20(±1.74) 9.49(±2.66)

Partial (V)AE + GMM1 25.56(±1.11) 15.33(±1.40) 42.80(±2.24) 44.07(±2.37) 53.04(±2.39) 47.33(±2.98)

Partial MV-VADE 25.95(±1.64) 15.09(±0.80) 53.33(±2.68) 53.13(±2.52) 56.36(±1.85) 38.39(±2.33)

Partial MV-VaDE+GMM 25.87(±1.28) 15.89(±0.68) 50.31(±1.45) 49.25(±1.62) 57.24(±1.90) 38.22(±3.30)

1 VAE is solely used for WIKI.

Table 6.13.: Comparison of Partial MV-VaDE with DCCA, DAMC and one baseline
model on WIKI, HW and BDGP. We report the average ACC (%) and NMI
(%) scores for each method, where we picked the best model out of ten and
evaluated this run using the same ten test sets.

6.5.2. Evaluation of Partial VaDE on Higher Missingness

We examine Partial VaDE’s ability in handling missing data points in more detail. In
particular, we are interested in the model’s clustering performance given different amounts
of missingness.

Training Procedure We integrate a random dropout rate ranging from 0% to 100%
for the (pre-)training process. More specifically, we create a mask for each epoch and data
batch, which indicates missing data points with the value 0 and observed data points with
the value 1. Each mask denotes a randomly chosen number of random data samples as
missing (or unobserved), where the number can range between 0%, which implies a fully
observed set of samples, and 100% indicating an entirely unobserved set of data samples.

We train Partial VaDE using this setting on the MNIST images and the MNIST features,
considered as two separate data sets for this experiment. Since here, we want to focus
on assessing the effectiveness of the Partial VAE [8] component of Partial MV-VaDE,
we disregard the multi-view setting and train two single-view Partial VaDE models
independently on the MNIST images and features. We refer to these models as Partial
VaDE (M), where (M) indicates the (pre-)training with missing data samples.

We compare Partial VaDE (M) with another Partial VaDE model, only that in this
setting, the model sees a complete view of data during the (pre-)training process. Hence,
to this model, we refer to as Partial VaDE (F), where (F) indicates the (pre-)training
on fully observed data samples. Analogous to Partial VaDE (M), Partial VaDE (F)
(pre-)training is performed separately on the MNIST images and features.

The parameter settings for both data sets are summarized in Table 6.14 and are the
same for both models Partial VaDE (M) and Partial VaDE (F). Equivalent to the previous
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MNIST Images MNIST Features
Batch size 256 256

L 20 20
Network L-500-500-2000-10 L-500-500-200-10

Lr BCE BCE
Tp 50 10
αp 0.001 0.001
λp - -
Tl 300 50
αl 0.0001 0.0001
λl - -

Table 6.14.: Parameter settings of Partial VaDE (M) and Partial VaDE (F) for MNIST
images and features.

experiments, we performed 50 pre-trainings for each model and on each data set. For each
pre-training, we subsequently applied a GMM and picked ten pre-trained models with the
highest ACC score for further training with Partial VaDE. So, we have ten models of each
method for both data sets. Since we encountered some difficulties in pre-training MNIST
features on the AE, we chose the VAE for this scenario. However, the pre-training of the
MNIST images is based on the AE as it was done before.

Evaluation As we are interested in the models clustering performance based on the
amount of missingness in the data sets, we evaluate both models on several missingness-
masks masking the same test set, where for each mask, we define a different degree of
missing data samples. As for the MNIST images, we generate 14 masks, where for each
mask, we increase the number of observed data points (pixels) in a step-wise manner. The
choice of which data points are observed or unobserved is made entirely random. So, the
first mask indicates an entirely unobserved test set, meaning zero pixels are observed. We
increase the number of observations (pixels) by a step-size of 56 for each other generated
mask so that the final mask shows a fully observed test set.

To ensure enough randomness in missing data samples, we create ten different masks for
each step size, e.g., ten masks, where 280 randomly chosen pixels are denoted as missing.
By this setting, we want to determine the volatility in results obtained by Partial VaDE
given different missing data samples.

The same mask generation process is used for the MNIST features, only that here,
given ten dimensions, we use a step size of 1. This results in ten differently masked test
sets for ten missingness stages, wherein one more randomly chosen feature is observed in
each stage.
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(a) MNIST images (b) Categorical MNIST features

Figure 6.1.: Visualization of the ACC score of the Partial VaDE models given an increasing
number of observed values, demonstrated on the MNIST image data set and
the categorical MNIST features data set. Partial VaDE (F) was trained with
the complete data view, while Partial VaDE (M) was trained on the same
data set but using a dropout range between 0-100%.

Results We evaluate the ten trained models of each method on the same generated
test + masks sets for each missingness stage and visualize the obtained ACC scores in
Figure 6.1. While Figure 6.1a shows both models’ results for the MNIST images, Figure
6.1b reveals both models’ scores for MNIST features. The curves indicate the averaged
ACC score and volatility across ten runs, each evaluated on ten masks of the test set for
each missingness stage (number of pixels/features).

We see that Partial VaDE (M) can handle missing data samples more effectively while
Partial VaDE (F) encounters difficulties given only a few observed pixels. Especially
regarding the performance on MNIST images, we notice that Partial VaDE (M) achieves
a similar ACC score as Partial VaDE (F) with less than half of the observed pixels.
Also, the evaluation of the MNIST features shows that Partial VaDE (F) requires more
observations to obtain a higher clustering ACC.

6.5.3. Changes in Cluster Probability Given Missing Data

The previous experiment showed that Partial VaDE (M) trained on randomly missing
data samples performs similarly well to Partial VaDE (F) given fewer observations, thus

51



6. Experiments

can handle missingness more effectively. However, we are not only interested in the
clustering scores of the models but want to investigate their changes of probability for
a cluster, i.e., describing the digit 4, in more detail using a similar setting. The cluster
probability defines the probability of a data sample belonging to the same distribution.
In the following experiment, we examine how the cluster probability of Partial VaDE
(M) changes given the same missingness stages discussed in the previous section. By this
means, we compare Partial VaDE (M) to Partial VaDE (F) using the same models trained
on MNIST images and features from earlier (see previous Section 6.5.2).

Evaluation In this experiment, we differentiate between random and systematic
missingness. We aim to learn differences in the models’ changes of cluster probabilities
when data are missing at random or in the form of systematic patches. Therefore, we
evaluate the models in two settings: (1) In the first setting, we use the earlier generated
sets of masks containing randomly missing data samples. (2) Additionally, we create
masks for the same missingness stages but data patches are missing in a sequential order.
Figure 6.2 illustrates the two types of missingness for each stage on the example of MNIST
images.

(a) Random missingness (b) Sequential missingness

Figure 6.2.: Illustration of the two missingness settings.

Since we are dealing with an unsupervised model, the resulting cluster labels can differ
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from the ground-truth labeling. For this reason, we use a confusion matrix and match
the true labels to our obtained cluster labels. Thus, we pick the best performing run
of Partial VaDE (M) and Partial VaDE (F) measured by the ACC score and test it on
the fully observed data set of MNIST images and features such that we can create a
confusion matrix matching the obtained cluster labels with the MNIST ground-truth
labels. Figure 6.3 visualizes the resulting mapping for each model and data set. Regarding
the MNIST features, we obtain a distinct mapping between cluster and true labels by
both models. However, the labels obtained by the models trained on the MNIST images
are not distinctly matched. Thus, we pick the top two represented ground-truth labels
found in the same cluster. We use these mappings later to visualize each model’s changes
in cluster probabilities.

We observe the change in the models’ cluster probabilities given only images or features
as input with the ground-truth label 4. Therefore, we randomly sampled 500 data points
with the ground-truth label 4 from the MNIST image and feature test set. We test each
model, the Partial VaDE (M) and the Partial VaDE (F), on each data set, MNIST images
and features along with the ten generated masks per missingness stage and compute
the models’ cluster probabilities for each step. As previously explained, we use two
settings, where first we test the models using random missingness and secondly sequential
missingness. As for the second setting, we do not expect as much variations since the
order of sequential missingness always stays the same. Still, also here, we perform ten
runs with the sequential missingness mask.

Results Figure 6.4 and 6.5 visualize the cluster probability, according to the increasing
number of observed pixels/features for each model Partial VaDE (F) and Partial VaDE
(M), respectively. The cluster probability is computed based on the input data samples
with the ground-truth label 4. For both figures, the two left plots show the probabilities
obtained by the first setting using random missingness, whereas the plots on the right
correspond to the second setting of sequential missingness.

In Figure 6.4c, we can see that the cluster label 6 obtained by Partial VaDE (F)
is primarily represented by the ground-truth labels 4 and 9. More precisely, 96% of
data points belonging to the ground-truth label 4 find themselves in cluster label 6. As
expected, the probability of this cluster increases with the number of observed pixels.
Comparing this result to Figure 6.4b, we see that more pixel observations are needed
for the sequential missingness setting to obtain a higher probability certainty for cluster
label 6. However, this could be explained by Figure 6.2b, which has shown that adding
pixels sequentially to an entirely unobserved MNIST image leads to no information gain
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(a) Partial VaDE (F)
on MNIST images

(b) Partial VaDE (M)
on MNIST images

(c) Partial VaDE (F)
on MNIST features

(d) Partial VaDE (M)
on MNIST features

Figure 6.3.: Mapping of true labels and cluster labels for Partial VaDE (F) and Partial
VaDE (M) demonstrated on the MNIST images data set and the MNIST
features data set.

for the second and third missingness stage because the first 112 pixels denote the black
background only.

On the other hand, Figures 6.4c and 6.4d summarize the cluster probabilities obtained
on the MNIST features. We can see a distinct mapping between cluster label 4 and
ground-truth label 4, and that the probability for this label increases with the number
of observed features. However, a comparison of the random versus sequential setting is
complex for these features because of their ordering, which was shown in Table 6.2. Here,
the feature parity is the first to be observed. Yet, several other digits share the same
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characteristic. In contrast, the min one curve feature is not true for digit 4 and only two
others. Seeing this information first, the model may have a lower probability certainty for
all other ground-truth labels but 1, 4, and 7 from the beginning. While these are only
assumptions, cluster probabilities in Figure 6.4d may still be affected by the ordering of
features. Furthermore, it is essential to note that each MNIST image of digit 4 can look

(a) Images and random missingness (b) Images and sequential missingness

(c) Features and random missingness (d) Features and sequential missingness

Figure 6.4.: The change of cluster probability of Partial VaDE (F) given an increasing
number of observed values, demonstrated on the MNIST images and the
categorical MNIST features. The models were trained with a random dropout
rate 0-100% during training and evaluated in two settings: (1) random
missingness, and (2) systematic missingness.
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different, while the generated features describe the target always in the same way.

Moreover, the cluster probabilities obtained by Partial VaDE (F) are evenly distributed
given unobserved data samples only. In contrast, the cluster probabilities obtained by
Partial VaDE (M) show utterly different behaviours. As shown in Figure 6.5, high cluster
probabilities are assigned while zero information is fed to the model. For example, in
Figure 6.5a, we see that the probability of cluster 7 represented by the true labels 4 and
9 starts with high certainty, whereas all remaining cluster probabilities are similarly low.

A similar result can be observed for the MNIST feature evaluation in Figures 6.5c and
6.5d, where the random and sequential settings show matching results. In both cases,
the model assigns a probability of nearly 100% to the ground-truth label 2, given only
unobserved features as input. By increasing the number of observations (features) by one,
we see a rapid increase in the probability of ground-truth label 4.

Overall, the results show that Partial VaDE (M) can reach high certainty for the correct
cluster given only little information and therefore seems to handle missing data samples
effectively.
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(a) Images and random missingness (b) Images and sequential missingness

(c) Features and random missingness (d) Features and sequential missingness

Figure 6.5.: The change of cluster probabilities of Partial VaDE (M) given an increasing
number of observed data points, demonstrated on the MNIST images and
the categorical MNIST features. The models were trained with a random
dropout rate 0-100% during training and evaluated in two settings: (1)
random missingness, and (2) systematic missingness.
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In this thesis, we studied the task of deep probabilistic clustering for multi-view and
missing data. We gave a systematic overview of existing deep clustering methods for
single-view and multi-view data, including discriminative and generative approaches. By
this means, we reviewed and compared various models and discussed their strengths and
weaknesses. Furthermore, we described how current deep clustering methods are built
and how they differ in their network architecture, network layer, objective functions or
learning setting. Also, we examined several existing methods to predict missing data
points.

We raised the awareness for new deep clustering methods targeting multi-view and
missing data as this research problem is relatively undiscovered and offers potential for
new use cases. Further, we have motivated this challenge and proposed the Partial
MV-VaDE, a method targeting this challenge by combining the existing deep probabilistic
clustering model VaDE [3], which was initially designed for single-view data sets, with a
novel method to predict missing data points, the Partial VAE with the PNP setting from
[8]. We implemented the model in Python using the deep learning library PyTorch [59],
conducted extensive experiments to assess the model’s performance, and compared the
results to several baseline methods.

The evaluation of Partial MV-VaDE shows that the model can handle two views of
data and cope with missing data points only to a certain extend and does not necessarily
outperform simpler baseline methods. Also, the model shows weak performance results
and high variances across multiple runs. This issue of inconsistency in clustering scores
can also be observed for the traditional VaDE model. We think that the clustering result
depends on a good network and parameter initialization.

Whereas Partial MV-VaDE comprises some discrepancies that need to be resolved, it
also offers potential research questions worth investigating. Therefore, a possibility for
future work is to examine methods, which could achieve a more robust model training
and consistent clustering results.

Another possibility for improving the clustering result of two data views is to investigate
more suitable fusion techniques designed explicitly for merging data distributions. Gener-
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ally, the network architecture can be further extended to enable clustering with more than
two data views. By this means, another remaining challenge of deep multi-view clustering
is that numerous existing methods use an individual network to extract modality-specific
features. This could impact the computational costs when the number of views increases.

Moreover, we tried to ensure a flexible architecture so that single components can be
exchanged for future work. For example, different pre-training models, e.g., a denoising
model, can be incorporated, or an additional cluster regularizer can be introduced. Also,
comparing Partial MV-VaDE’s ability to impute missingness to other baseline approaches
such as ZI [28] would be worth studying.

Finally, more robust approaches can be similarly extended to serve the purpose of
multi-view and missing data clustering. Instead of using VaDE as the main building
block, generative clustering methods based on a GAN, such as ClusterGAN [31], could
serve as another promising basis.
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A. Abstract

A.1. Abstract

In this thesis, we aim to raise the importance of deep clustering methods for multi-view and
missing data. We combine two state-of-the-art methods, the Variational Deep Embedding
(VaDE) initially designed for deep probabilistic clustering of single-view data and the
Partial Variational Autoencoder (VAE) with the Pointnet Plus (PNP) structure, a method
to predict missing data points. More precisely, we extend VaDE by an additional VAE
and examine two fusion techniques for creating a shared distribution between two data
views. To handle missingness in both views, we integrate the Partial VAE with PNP,
which enables the definition of a partial clustering objective that depends on observed
data samples only. As a result, we propose the Partial Multi-View Variational Deep
Embedding (Partial MV-VaDE), a deep probabilistic clustering model targeting multi-view
and missing data. We evaluate the model’s performance in extensive experiments with
numerous multi-view data sets for which we generate different amounts of missingness.
We observe the model’s changes in cluster probabilities in more detail and compare the
clustering results to several baseline methods.
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A. Abstract

A.2. Kurzfassung

In dieser Arbeit heben wir die Bedeutung von Deep Clustering Methoden für multimodale
und unvollständige Datensätze hervor. Dabei kombinieren wir zwei bestehende Methoden,
das probabilistische Deep Clustering Modell für unimodale Daten, Variational Deep
Embedding (VaDE), sowie den Partial Variational Autoencoder (VAE) mit der Pointnet
Plus (PNP) Struktur, welcher erlaubt auch unvollständige Daten zu berücksichtigen.
Wir erweitern die Architektur von VaDE um einen weiteren VAE und untersuchen zwei
Methoden um multimodale Datensätze zu verknüpfen. Um mit fehlenden Datenpunkten
in beiden Datenmodalitäten umgehen zu können, integrieren wir den Partial VAE mit
dem PNP. Mit dieser Vorgehensweise definieren wir ein partielles Clustering-Ziel, welches
ausschließlich von beobachteten Datenpunkten abhängt und stellen das Partial Multi-
View Variational Deep Embedding (Partial MV-VaDE) Modell vor. Die Performance des
Modells wird anhand von umfangreichen Experimenten an multimodalen Datensätzen,
für welche fehlende Datenpunkte generiert werden, evaluiert. Außerdem schauen wir
uns die Cluster-Wahrscheinlichkeiten im Detail an und vergleichen die Resultate mit
verschiedenen Baseline-Methoden.
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B. Glossary

B.1. Notation and Symbols

|N| Number of variables in a vector

|M| Number of variables in a second vector

x Set of random variables

x(1) Set of random variables denoting the first data view describing instance x

x(2) Set of random variables denoting a second data view describing instance x

x
(1)
O Subset of x(1) being observed

x
(2)
Q Subset of x(2) being observed

x
(1)
U Subset of x(1) being unobserved

x
(2)
V Subset of x(2) being unobserved

z Latent variables

c Cluster

µ Mean of a probabilistic distribution, e.g., Gaussian

σ2 Variance of a probabilistic distribution, e.g., Gaussian

x̂i Reconstruction of data sample xi

xi Data sample

|K| Number of variables in a vector

D(xi) The discriminator’s probability estimate of xi

Exi Expected value over all true data distributions
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G(zi) Data samples generated by the GAN’s generator

Ezi Expected value given all generated data samples

rj Centroid of jth cluster

|C| Number of clusters

q(xi) Approximated distribution of data sample xi

p(xi) True distribution of data sample xi

ki Set of k-nearest neighbors of a data sample xi

A Similarity measure

Lnet Network loss

Lcluster Cluster loss

λ Regularization parameter defining the trade-off between Lnet and Lcluster

p(z) Probability distribution of latent variables z

p(x|z) Likelihood of data samples x given latent variables z

p(z|x) True probability distribution of latent variables z given data samples x

p(x) Probability distribution of data samples x

q(z|x) Approximated probability distribution of latent variables z given data samples x

ϵ Noise variable following a Gaussian distribution N (0, 1)

p(c) Probability distribution of cluster c

p(z|c) Probability distribution of latent variables z given cluster c

π Prior cluster probability for cluster c

Cat(π) Categorical distribution of the prior cluster probability for cluster c

µc Mean of probability distribution corresponding to cluster c

σ2
c Variance of probability distribution corresponding to cluster c

I Identity matrix
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f(z;θ) Probabilistic decoder network

µx Mean of probability distribution of data samples x

σ2
x Variance of probability distribution of data samples x

p(z, c|x) True posterior distribution

q(z, c|x) Approximated posterior distribution

g(x;ϕ) Probabilistic encoder network

ej Unknown embedding in PNP [8] optimized during training

d Resulting encoding of the PNP set function [8]

L Dimension of latent space

yi Ground-truth label of data sample xi

ci Cluster assignment

m Possible mapping between cluster and label
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Acronyms

B.2. Acronyms

DNN Deep Neural Network

VaDE Variational Deep Embedding

VAE Variational Autoencoder

PNP Pointnet Plus

AE Autoencoder

SAE Stacked Autoencoder

GAN Generative Adversarial Network

KL Kullback Leibler

ELBO Evidence Lower Bound

GMM Gaussian Mixture Model
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