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Abstract

This thesis studies the resummation of logarithmic corrections in differential cross sections in the
presence of QCD jets with massive quarks, using effective field theory methods based on factorization
and renormalization group running, and parton shower algorithms. The main focus is on how the
mass of a heavy quark affects the resummation properties and how on the other hand the resummation
using parton shower algorithms affects the quark mass measurements in collider experiments. The
thesis consists of two parts.

The first part presents two different ways of systematically including quark mass effects in the re-
summation of differential distributions in the jet limit in hadronic collisions, where large logarithmic
contributions of ratios of different energy scales spoil the fixed-order perturbative expansion and need
to be resummed to all orders. We call these two frameworks, that are based on slightly different
approaches but are shown to give consistent results, the universal factorization (UF) scheme and
the mass mode factorization (MMF) scheme. We study the Drell-Yan process, where we focus on
the transverse momentum of the produced lepton pair and beam thrust as two observables that ex-
hibit different resummation properties, and deep-inelastic scattering in the endpoint region. Within
the UF and the MMF frameworks, factorization theorems based on Soft-Collinear Effective Theory
(SCET) are constructed that provide variable flavor number schemes that are capable of correctly
resumming all mass related logarithms for any given hierarchy of the quark mass with respect to
the other physical scales in the process. The contributions from massive flavors to the beam and
soft functions required for NNLL′ resummation (combining evolution with next-to-next-to-leading
logarithmic accuracy (NNLL) with next-to-next-to-leading order (NNLO) boundary conditions) are
calculated and the effects of the quark mass on the resummation concerning renormalization group
(RG) evolution in both virtuality and rapidity are discussed.

The second part studies the interpretation of the top quark mass parameter in an angular order
parton shower based on the coherent branching formalism. Parton showers as part of multipurpose
Monte Carlo (MC) event generators are an essential tool in modern collider physics. The most precise
measurements of the top quark mass, based on direct reconstruction, rely on the comparison of MC
predictions to the experimental data. However, as of today the exact relation of the mass parameter
in the MC event generator, generically called the “Monte Carlo mass”, to a well defined mass scheme
is still unclear. This results in uncertainties on how to interpret the top quark mass extracted in these
measurements that are of the same order as current experimental uncertainties, which are about 0.5
GeV. We study the effect of the parton shower cutoff on the mass parameter for the angular ordered
parton shower as implemented in the Herwig 7 MC event generator. For this we compare analytic
calculations for the 2-jettiness distribution in the peak region in e+e− collisions in the coherent
branching formalism with a transverse momentum cutoff, with results from the QCD factorization
theorem based on SCET and boosted Heavy Quark Effective theory (bHQET). We show that in the
presence of a shower cutoff the quark mass parameter cannot be interpreted as the pole mass. The
main result of this work is to establish instead a cutoff dependent coherent branching mass as the
mass scheme that is effectively implemented in the parton shower. All findings are directly compared
to the Herwig 7 event generator, where a very good agreement with our predictions is found.
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Zusammenfassung

Diese Dissertation behandelt die Resummierung logarithmischer Korrekturen zu differentiellen Wir-
kungsquerschnitten für Prozesse in denen QCD Jets mit massiven Quarks auftreten. Dazu werden Me-
thoden der effektiven Feldtheorien sowie Parton Shower Algorithmen benutzt. Der Fokus liegt dabei
einerseits darauf zu untersuchen wie die Masse eines schweren Quarks die Eigenschaften der Resum-
mierung der logarithmischen Korrekturen ändert, und andererseits wie die Resummierung mithilfe von
Parton Shower Algorithmen die Messungen der Quarkmasse an Teilchenbeschleunigern beeinflusst.
Diese Dissertation besteht aus zwei Teilen.

Im ersten Teil werden zwei Methoden vorgestellt, wie man auf eine systematische Art und Weise
die Masseneffekte eines schweren Quarks in die Resummierung differentieller Wirkungsquerschnitte
in hadronischen Kollisionen inkludieren kann. Dabei beschränken wir uns auf den Fall von Jets im
Endzustand. In diesem Fall treten große Logarithmen von Verhältnissen der verschiedenen Energies-
kalen in dem Prozess auf, welche zu allen Ordnungen der Störungstheorie resummiert werden müssen.
Wir nennen diese beiden Methoden, welche auf leicht unterschiedlichen Prinzipien beruhen allerdings
konsistente Resultate geben, das universal factorization (UF) Schema und das mass mode factoriza-
tion (MMF) Schema. Wir erklären diese Methoden am Beispiel des Drell-Yan Prozesses, wobei als
Observablen der Transversalimpuls des produzierten Leptonpaares sowie Beamthrust gewählt werden,
da diese beiden Observablen unterschiedliche Eigenschaften bezüglich der Resummierung aufweisen.
Als ein weiteres Beispiel wird tief-inelastische Streuung in der Endpunkt Region besprochen. Mit
dem UF und dem MMF Schema können im Rahmen der Soft-Collinear Effective Theory (SCET)
Faktorisierungstheoreme mit variabler Anzahl der aktiven Quarkflavors (variable flavor number sche-
me) konstruiert werden, welche es erlauben, alle Logarithmen, welche von der Quarkmasse abhängen,
zu resummieren, und zwar für jedes beliebige Verhältnis der Quarkmasse zu den anderen Energies-
kalen in dem Prozess. Die Beiträge eines massiven Quarkflavors zu den Soft- und Beamfunctions,
welche für eine NNLL′ Resummierung (d.h. Evolution mit “next-to-next-to-leading” logarithmischer
(NNLL) Genauigkeit und Anfangsbedingungen bis zur “next-to-next-to-leading” Ordnung (NNLO))
nötig sind, werden berechnet. Außerdem wird der Einfluss der Quarkmasse auf die Evolution der
Renormierungsgruppe sowohl in Virtualität als auch in Rapidität untersucht.

Der zweite Teil der Dissertation beschäftigt sich mit der Interpretation des Parameters der Top-Quark
Masse in einem winkelgeordneten Parton Shower, welcher auf dem coherent branching Formalismus
beruht. Parton Shower sind Teil von Monte Carlo (MC) Event Generatoren und damit wichtige
Werkzeuge für die Beschreibung der Physik an Teilchenbeschleunigern. Die genauesten Messungen
der Top-Quark Masse aus der Rekonstruktion der Zerfallsprodukte des Top-Quarks basieren auf
dem Vergleich von experimentellen Daten mit Vorhersagen, die mit einem MC Event Generator
gemacht wurden. Allerdings ist bis heute das exakte Verhältnis des Massenparameters von MC Event
Generatoren - oft generisch als “Monte Carlo Masse” bezeichnet - zu feldtheoretisch wohldefinierten,
renormierten Massendefinitionen unklar. Dies führt zu zusätzlichen Unsicherheiten in den Messungen
der Top-Quark Masse, welche von der selben Größenordnung wie die derzeitigen experimentellen
Messunsicherheiten sind, welche ungefähr 0.5 GeV betragen. In dieser Arbeit wird der Effekt eines
Parton Shower Cutoffs auf den Massenparameter in einem winekelgeordneten Parton Shower, wie er
im Herwig 7 MC Event Generator implementiert ist, untersucht. Dazu berechnen wir analytisch die 2-
Jettiness Verteilung in der Peak-Region für e+e−-Kollisionen im coherent branching Formalismus mit
einem Cutoff, der auf den Transversalimpuls wirkt. Die Ergebnisse werden verglichen mit analogen
Berechnungen im Rahmen von SCET und boosted Heavy Quark Effective Theory (bHQET). Es wird
gezeigt, dass im Falle eines endlichen Shower Cutoffs der Massenparameter des Quarks nicht als die
Pol-Masse interpretiert werden kann. Das wichtigste Resultat dieser Arbeit ist die Identifizierung
einer Cutoff-abhängigen coherent branching Masse als jenes Massenschema, das durch den Parton
Shower effektiv implementiert wird. Alle Resultate werden direkt mit dem Herwig 7 Event Generator
verglichen, wobei wir eine sehr gute Übereinstimmung mit unseren Vorhersagen finden.
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Preface and Outline

In the era of precision measurements at hadron colliders a precise understanding of strong interactions
in a collider environment is crucial for the measurement of fundamental parameters of the Standard
Model from experimental data. Many different theoretical tools are used with the aim to provide
theoretical predictions at the same level of accuracy as the experimental results, that are nowadays
often at the percent level or below. This can be a challenging task. In regions of phase space where
initial or final state particles are collimated into jets, large logarithmic corrections to the cross sections
frequently spoil the perturbative expansion and thus need to be resummed to all orders in perturbation
theory. This requires to disentangle the physics at the very different energy scales that are involved
in a typical process at a hadron collider like the Large Hadron Collider (LHC), a task that can be
tackled through the use of effective field theory (EFT) methods. Factorized cross sections, where
each term depends only on a single energy scale, can then be resummed by using renormalization
group running between them. Another widely used tool, essential for a wide range of studies at the
LHC, are multipurpose Monte Carlo (MC) event generators, that are used to simulate the physics
from the hard partonic interactions to the hadronization of the observable final state particles. An
essential part of these MC event generators are parton showers, simulating the perturbative radiation
of collinear and soft particles from a boosted progenitor, from the hard scale down to an infrared
shower cutoff where the emissions would become non-pertrurbative. At this stage the parton shower
terminates and the particles produced up to this point are handed over to a hadronization model.
Both these methods, resummation based on EFT methods on the one side, and parton showers on
the other, will be extensively used and studied in this thesis.

While these methods are often well understood for a variety of different observables involving mass-
less quarks, the systematic generalization to also account for massive quark effects for computing
resummed cross sections is usually not as clear. Not only are results for fixed-order calculations in
the massive case usually only available at lower orders in perturbation theory compared to the mass-
less case, because the calculations become much harder, but also the factorization and resummation
setup can become more complex with the mass providing an additional energy scale in the problem,
which can lead to new structures in the factorization theorems. Correctly including the effects of
massive quarks in the resummed cross sections and on the other hand understanding effects that
might affect the measurements of the quark masses themselves, especially when using tools like par-
ton showers that are not so easily accessible analytically, is becoming increasingly important to keep
up with better statistics and more precise measurements by the experimental collaborations. This
thesis consists of two parts that both deal with massive quarks in QCD jets, but focus on different
questions.

Part I is called Variable Flavor Number Schemes for Jet Processes at Hadron Colliders. This part
deals with massive quark effects for initial and final state radiation in differential cross sections for
Drell-Yan and deep-inelastic scattering in the regime where the hadronic final state is collimated into
jets. It deals with both “primary” mass effects, where the heavy flavor is directly entering the hard
interaction, and “secondary” mass effects, where light quarks enter the hard interaction and heavy
quarks appear via virtual or real radiation from gluon splitting. Our analyses are based on Soft-
Collinear Effective Theory and provide variable flavor number schemes, i.e. factorization theorems
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involving flavor number dependent matching functions and matrix elements and also flavor number
dependent RG evolution, for all possible hierarchies of the quark mass with respect to the other
scales. Also the previously unknown massive quark corrections necessary for resummation up to
NNLL′ accuracy for the observables studied here are calculated. Part of the content presented in this
part of the thesis is published in Refs. [1] and [2].

Part II has the the title On the Cutoff Dependence of the Quark Mass Parameter in Angular Ordered
Parton Showers. It studies the effects of an infrared transverse momentum cutoff in the coherent
branching formalism, that is the basis of the angular ordered parton shower as implemented in the
Herwig 7 event generator, and the QCD factorization theorem based on Soft-Collinear Effective
Theory, on the thrust distribution in e+e− collisions for boosted stable top quarks. In this analysis it
is shown that by introducing the infrared cutoff, the mass scheme that is effectively implemented by
the parton shower is not the pole mass scheme, but instead a cutoff dependent short-distance mass
scheme, called the “coherent branching mass”. This is an important step for a better understanding of
the so-called “Monte Carlo mass” that is measured in the most precise top quark mass measurements
at the LHC, based on direct reconstruction of the top decay products. This part of the thesis is also
published in Ref. [3].

Several appendices are provided that contain a collection of known results that were used in the
body of the thesis, new results obtained for massive quark corrections and corrections arising from
introducing a transverse momentum cutoff and details of some of the calculations.
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Variable Flavor Number Schemes for
Jet Processes at Hadron Colliders
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Chapter 1

Introduction

For many high-precision studies at the LHC a thorough understanding of quark mass effects is nec-
essary to achieve an accuracy in the theoretical predictions that matches experimental uncertainties.
Often predictions for processes involving heavy flavors are known to lower precision than the corre-
sponding predictions for massless quarks. Besides driving the calculations to higher orders in fixed-
order perturbation theory and in the logarithmic counting for resummed predictions, it is therefore
also necessary to provide results for massive quark effects to sufficiently high order and to understand
how to correctly include them when resumming logarithmic terms to all orders in perturbation theory.
Mass effects from charm and bottom quarks have been discussed extensively for inclusive heavy quark
induced cross sections, leading to the development of several variable flavor number schemes (VFNS)
(see e.g. Refs. [4–10]). On the other hand, heavy quark mass effects have received less attention
so far in the context of resummed exclusive (differential) cross sections, i.e. where the measurement
of additional observables restricts the QCD radiation into the soft-collinear regime, requiring the
resummation of the associated logarithms.

When the mass of the heavy flavor is well below any physical dynamical scale µX , i.e. m ≪ µX ,
that is associated with the measurement of the differential observable at hadron collisions, which can
be for example the transverse momentum of the electroweak boson µX ∼ qT in the Drell-Yan (DY)
process or the invariant mass of the hadronic final state µX ∼ Q

√
1− x for deep-inelastic scattering

(DIS), the mass effects in the distributions are simply encoded by the matching between the parton
distribution functions (PDF) across a flavor threshold (e.g. matching four-flavor PDFs onto five-flavor
PDFs including a b-quark PDF at the scale mb, for mb ≪ µX). In the partonic cross section (which
only involves dynamical scales much larger than the quark mass) the heavy quark can then be treated
as an additional massless flavor. But this description it not suitable for µX ∼ m or µX ≪ m, because
the expansion in m2/µ2X , that is performed when treating the heavy flavor as a massless degree of
freedom in the partonic cross section, is breaking down. In this case the mass effects have to be
included in the resummed partonic cross section in a way that keeps the relevant (power) corrections
associated with the mass, but also allows for resummation of massive quark contributions in the limits
where the mass is widely separated from other relevant dynamical scales.

In general, one can distinguish two types of mass effects, illustrated in Fig. 1.1, which have different
characteristics: Contributions where the heavy quark enters the hard interaction process, see Fig. 1.1a,
are called primary mass effects. Contributions from a gluon splitting into a massive quark-antiquark
pair with light quarks entering the hard interaction, see Fig. 1.1b, are called secondary. The systematic
description of secondary mass corrections for differential spectra in the various relevant hierarchies
between the mass and other physical scales has been established for final state jets in the context
of event shapes in e+e− collisions in Refs. [11, 12]. Here we will extend this approach to differential
distributions in hadron collisions for jets from initial and final state radiation. We will focus on the
DY process, a typical benchmark process for measurements at hadron-hadron colliders, and DIS at
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Figure 1.1: Primary (a) and secondary (b) heavy-quark mass effects for Z-boson production. Dia-
grams for mass effects in gluon-initiated processes are not shown.

hadron-electron colliders. Both processes are studied in the exclusive region where the measured
observable is constrained in such a way that the hadronic final state is restricted to soft and collinear
particle kinematic, i.e. the final state involves the formation of jets. For DY we will consider two
different observables to restrict the final state to the exclusive region, the transverse momentum of the
produced lepton pair qT and beam thrust T [13]. The variable flavor number schemes presented here
are based on factorization theorems in Soft-Collinear Effective Theory (SCET) [14–17] and include
both secondary and primary massive quark corrections for initial state radiation, and only secondary
massive quark correction to final state jets. Primary mass effects in final state jets will not be discussed
in this work. In DIS in the endpoint region one would encounter this scenario only when considering
intrinsic (non-perturbative) heavy flavors in the proton, because flavor mixing in the evolution of
the PDFs is suppressed in this kinematic region. In e+e− → jets, primary mass effects can play
a role and one may encounter a region that requires also boosted Heavy Quark Effective Theory
(bHQET) [18,19], but this is beyond the scope of the work presented in this part.

We will provide two different frameworks for constructing variable flavor number schemes for re-
summed differential cross sections for different observables for an arbitrary scaling of the quark mass
with respect to the other scales (always assuming that the quark mass can be treated as a pertur-
bative scale). The universal factorization (UF) scheme was first described in Refs. [11, 12] and is
discussed in detail also in Ref. [20]. The basic idea is that by applying appropriate renormalization
conditions for the contributions from a heavy flavor, which means including it as an active degree
of freedom in the renormalization group running above the mass scale and excluding it below, the
mass related logarithms can be resummed while at the same time it is ensured that all functions in
the factorization theorem have the correct massless and decoupling limits. Because the heavy flavor
is never literally integrated out from the theory and all mass corrections are kept in the calculations,
this results in a smooth transition between the different hierarchies that can arise between the mass
and the other physical scales.

Another way of setting up the factorization theorems for the VFNS is what we will refer to as the
mass mode factorizatoin (MMF) scheme. It strictly follows the EFT philosophy to always impose an
expansion whenever there is a large scale hierarchy. In this way one can separate and identify all the
relevant EFT modes that appear for a given scaling of the mass of the heavy flavor with respect to
the other scales in the process. In regimes where the mass is parametrically smaller than the other
typical scales involved in a collinear or soft sector of the theory, the heavy quark is strictly treated
like an additional massless flavor. When crossing the flavor threshold the heavy flavor is integrated
out from the theory. In this way one can identify certain building blocks in the factorization theorems
that arise from integrating out the heavy flavor in the different collinear and soft sectors, that provide
a systematic way of resumming rapidity logarithms related to secondary massive quark effects, that
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can be shown to be universal for the different observables and processes studied here.

One of the results of this work is to explain how these two approach are related to each other, showing
that they give equivalent results for the resummation of logarithms associated with massive quark
corrections. The work presented here provides results that can be used in phenomenological studies
at the LHC that rely on a precise understanding of differential distributions in the endpoint, where
resummation of large logarithmic corrections and including charm and bottom mass effects can both
be of importance.

The outline of this part of the thesis is as follows. In chapter 2 we will discuss the factorization
and resummation for massive quark effects in exclusive Drell-Yan. We discuss in detail the effective
field theory setup for the different parametric regimes in the MMF approach for the case of qT in
Sec. 2.1. Here, we elaborate on the relevant mode setup in SCET, the resulting factorization formulae,
and all-order consistency relations between the factorization ingredients in the different regimes. In
Sec. 2.1.7, we discuss the consequences of the secondary mass effects on the rapidity evolution for the
qT distribution in the regime qT ∼ mb. As an outlook we provide in Sec. 2.1.8 an estimate of the
potential size of the bottom quark effects for low-qT Drell-Yan measurements. We proceed in Sec. 2.2
by discussing the mode setup, the factorization theorems and resummation properties in all possible
different regimes for massive quark effects in DY for beam thrust T , using again the MMF approach.
In chapter 3 we discuss the factorization and resummation of secondary massive quark effects DIS
in the endpoint region in a similar manner as for the case of DY. The UF scheme is reviewed and
discussed in chapter 4. A short summary of the UF scheme and how it is implemented for the various
functions in the factorization theorems is given in Sec. 4.1, and in Sec. 4.2 we compare the universal
factorization and the mass mode factorization approach for the example of DIS in the endpoint region.
In chapter 5 we conclude this part of the thesis. In appendix A we give a brief summary of how the
factorization theorems in the different hierarchies based on the mass mode factorization theorem look
like for thrust in e+e− → 2 jets. In appendices B and C we give a collection of all massless and
massive results relevant for including mass effects at NNLL′ order for the various functions in the
factorization theorems. Further details on all calculations are provided in appendix D. In appendix E
we also give the analytic fixed-order results for the massive quark effects for DY in the qT and T
distributions in the singular limit qT , T ≪ Q at O(α2

s).
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Chapter 2

Variable Flavor Number Scheme for
Exclusive Drell-Yan

Differential cross sections for the production of color-singlet states (e.g. electroweak vector bosons
or the Higgs boson) in pp collisions represent benchmark observables at the LHC. For the Drell-
Yan process, the measurements of the transverse momentum (qT ) spectrum of the vector boson
have reached uncertainties below the percent level [21–26], allowing for stringent tests of theoretical
predictions from both analytic resummed calculations and parton-shower Monte-Carlo programs. An
accurate description of the qT spectrum is also a key ingredient for a precise measurement of the
W -boson mass at the LHC, which requires a thorough understanding of the W -boson and Z-boson
spectra and in particular their ratio [27–30]. The associated uncertainties are one of the dominant
theoretical uncertainties in the recent mW determination by the ATLAS collaboration [31].

This chapter deals with the treatment of primary and secondary massive quark effects in the resummed
cross sections for Drell-Yan in the exclusive region where the hadronic final state is restricted into two
beam jets plus additional soft radiation, using the scheme for including massive quark effects that
we refer to as the mass mode factorization (MMF) approach. We will consider two different types
of observables that resolve the QCD radiation and are used to constrain the process to the exclusive
region, namely the transverse momentum qT of the gauge boson and beam thrust T [13]. Constraining
the process to the exclusive region as mentioned above corresponds to the limits qT , T e|Y | ≪ Q,
where Q and Y are the invariant mass and rapidity of the color-singlet state. These two observables
restrict the allowed QCD radiation into the collinear and soft regime in different ways, leading to
different effective-theory setups with distinct factorization and resummation properties in the small
qT and T limits, which are well-known in the massless limit up to high orders in the logarithmic
counting (see e.g. Refs. [32–42] and Refs. [13, 43, 44]). These two cases provide simple prototypical
examples, which cover the essential features of the factorization with massive quarks that will also be
relevant for including massive quark effects for other more complicated jet resolution variables whose
factorization is known in the massless limit. Throughout this chapter we always consider the limit
ΛQCD ≪ qT , T allowing for a perturbative description of the physics at these kinematic scales. For
the qT spectrum, earlier treatments of the heavy-quark initiated primary contributions for m ≲ qT
have been given in Refs. [45–47], essentially combining the ACOT scheme [4,5] with the standard CSS
qT resummation [34]. Here we give the complete treatment for primary and secondary massive quarks
contributions over the whole range of possible hierarchies between the heavy-quark mass m and the
kinematic scales, both for qT and T , using the framework of SCET and the mass mode factorization
approach for including the massive quark effects in the factorization theorems.

We give results for all required ingredients for incorporatingmb effects at NNLL
′ order, which combines

NNLL evolution with the full NNLO singular boundary conditions (hard, beam, and soft functions).
For Z-boson production at NNLL′, primary effects contribute via O(αs)×O(αs) (i.e. one real radi-
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Figure 2.1: Schematic picture of the Drell-Yan process.

ation at O(αs) in each incoming beam) heavy-quark initiated contributions, illustrated in Fig. 1.1a.
Secondary effects contribute as O(α2

s) corrections to light-quark initiated hard interactions, illustrated
in Fig. 1.1b. Due to the strong CKM suppression primary mb-effects do not play any significant role
for W -production, which represents a key difference to Z-boson production. Primary mc-effects enter
W -production in the cs-channel, where they start already at NLL′ via O(αs)×O(1) corrections (i.e.
one real radiation of a charm quark in one beam, and a non-perturbative (intrinsic) strange quark
from the proton in the other beam). For this case, our explicit results for the regime qT ∼ mc allows
for up to NNLL resummation. (Here, the resummation at NNLL′ would require the O(α2

s) primary
massive contributions.)

Large parts of this chapter of the thesis and corresponding appendices were taken from Ref. [1]. Some
remarks for further clarifications on the role of the csoft matrix elements and their relation to zero-bin
subtractions have been added following the discussion after Eq. (2.76), and section 2.2.6 was added
to discuss the implications of large rapidities for the massive factorization theorems for beam thrust.
Smaller changes have been made throughout the rest of the text, clarifying some smaller issues and
relating to other chapters of the thesis.

Before we set up the variable flavor number schemes for qT and T in Secs. 2.1 and 2.2 , we will
first briefly discuss the kinematics of the Drell-Yan process and set up the notation for the kinematic
variables. The Drell-Yan process is sketched in Fig. 2.1, where two incoming protons with momenta
Pa and Pb collide, and in a hard collision-process between two partons a color-singlet state is formed
that will then decay into two leptons. We denote the momenta of the partons when they couple to
the color-singlet as pa and pb, such that the momentum of the color-singlet is q = pa+pb. Throughout
this chapter we will use the decomposition of a four-momentum pµ into its light-cone components and
transverse momentum components with respect to the beam axis as

pµ = na ·p
nµb
2

+ nb ·p
nµa
2

+ pµ⊥ ≡ (na ·p, nb ·p, p⊥) ≡ (p+, p−, p⊥) , (2.1)

where na and nb are light-like four vectors along the beam axis

na = (1, 0, 0.− 1) , nb = (1, 0, 0, 1) . (2.2)

and na · p⊥ = nb · p⊥ = 0, such that the momenta of the incoming protons in the lab frame can be

10



written as (using the approximation of a massless proton)

Pµ
a = Ecm

nµa
2
, Pµ

b = Ecm
nµb
2
. (2.3)

The four-momentum of the color-singlet state that is produced, which we will denote as qµ, is the
sum of the momenta of the colliding partons

qµ = pµa + pµb = ωa
nµa
2

+ ωb
nµb
2

+ qµ⊥ . (2.4)

The invariant mass Q of the color-singlet and its rapidity Y can be written as

Q =
√
q2 =

√
ωaωb − q2T , (2.5)

Y =
1

2
ln
(nb · q
na · q

)
=

1

2
ln
(ωa

ωb

)
, (2.6)

with q2T = −q2⊥ > 0. If the transverse momentum is much smaller than the invariant mass, i.e.
qT ≪ Q, we can perform the expansion

Q ≈ √ωaωb ×
(
1 +O

( q2T
Q2

))
(2.7)

such that we can define the kinematic variables as

ωa ≈ QeY , ωb ≈ Qe−Y , xa,b =
ωa,b

Ecm
. (2.8)

This is the approximation that we will use in the rest of the chapter. The expansion in qT /Q will
always be justified when restricting the final state to exclusive region according to the two different
observables transverse momentum qT and beam thrust T . This is clear in the case of qT , where the
exclusive region is just defined by the condition that qT ≪ Q, and also holds the case of beam thrust
T , where the exclusive region is defined by T ≪ Qe−|Y |, as will be explained in the beginning of
Sec. 2.2.1.

In the case where (1− xa,b)≪ 1 one would encounter large logarithms of the form ∼ ln(1− xa,b). In
this chapter we will not deal with the resummation of these logarithms, so to ensure that (1−xa,b) ∼ 1
we restrict ourselves to the kinematic region Q ≪ Ecm e−|Y |, in addition to any restrictions coming
from constraining the final state to the exclusive region defined by the observables qT and T .

2.1 Variable flavor number scheme for the qT spectrum in Drell-Yan

The first observable we consider for the Drell-Yan process is the transverse momentum qT of the
gauge boson

qT = |q⃗T | = |p⃗Tℓ + p⃗T ℓ̄| =
∣∣∣
∑

i

p⃗T i

∣∣∣ . (2.9)

Here pi are all hadronic final-state momenta (i.e. excluding the color-singlet final state). Due to
transverse momentum conservation qT measures the total transverse momentum of the final state
hadronic radiation. The exclusive regime we are interested in corresponds to qT ≪ Q, where Q =

√
q2

is the dilepton invariant mass that sets the hard scale of the process. We always assume ΛQCD ≪ qT
allowing for a perturbative description of the physics at this kinematic scale. The factorization and
resummation properties of this observable are well known in the massless case up to high orders in
the logarithmic counting, see e.g. Refs [32–42].
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2.1.1 Factorization for massless quarks

Before discussing the massive quark corrections, we first briefly summarize the EFT setup and fac-
torization for massless quarks. The relevant modes for the measurement of qT in the limit qT ≪ Q
are na-collinear, nb-collinear, and soft modes with the scaling1

na-collinear: pµna
∼
(q2T
Q
,Q, qT

)
,

nb-collinear: pµnb
∼
(
Q,

q2T
Q
, qT

)
,

soft: pµs ∼ (qT , qT , qT ) , (2.10)

which we have written in terms of light-cone coordinates along the beam axis as in Eqs (2.1) and (2.2).
Besides these perturbative modes there are also nonperturbative collinear modes with the scaling
(Λ2

QCD/Q,Q,ΛQCD) and (Q,Λ2
QCD/Q,ΛQCD), which describe the initial-state protons at the scale

µ ∼ ΛQCD, and which are unrelated to the specific jet resolution measurement. The typical invariant
mass of the soft modes is parametrically the same as for the collinear modes, p2na

∼ p2nb
∼ p2s ∼ q2T ,

which is the characteristic feature of a SCETII theory. The soft and collinear modes are only sepa-
rated in rapidity leading to the emergence of rapidity divergences and associated rapidity logarithms.
The traditional approach for their resummation in QCD relies on the work by Collins, Soper, and
Sterman [32–34]. In SCET the factorization and resummation were devised in Refs. [39–42].

Here we will use the rapidity renormalization approach of Refs. [40,41], where the rapidity divergences
are regularized by a symmetric regulator and are renormalized by appropriate counterterms (by a MS-
type subtraction). We will refer to this regulator as the symmetric η-regulator, and it will be used
throughout the whole part of this thesis. It acts on the Wilson lines as

Sn =
∑

perms

exp
[ −g
n · P n ·As

]
→

∑

perms

exp
[ −g
n · P

νη/2

|2P3|η/2
n ·As

]
, (2.11)

where P3 denotes the third component of the momentum operator and the light-like vector n can
stand for either vector na or nb. In Eq. (2.11) it is shown for the example of a soft Wilson line Sn
as it appears in the soft function, but the replacement is analogous for the collinear Wilson lines,
where one can further make the expansion |2P3| = |na · P + nb · P| → |nb · P| for the collinear
scaling nb · P ≫ na · P in the na-direction (and analogous for the collinear scaling in the nb direction
with a ↔ b). The dimension-1 “rapidity” scale ν takes a similar role as the dimension-1 scale µ in
dimensional regularization. The rapidity logarithms are then resummed by solving the associated
rapidity renormalization group equations in ν. Within this framework the factorized differential cross
section with nf massless quarks reads2

dσ

dq2T dQ2 dY
=

∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
d2pTa d

2pTb d
2pTs δ(q

2
T − |p⃗Ta + p⃗Tb + p⃗Ts|2) (2.12)

×B(nf )
i

(
p⃗Ta, xa, µ,

ν

ωa

)
B

(nf )
j

(
p⃗Tb, xb, µ,

ν

ωb

)
S(nf )(p⃗Ts, µ, ν)

[
1 +O

(qT
Q

)]
,

where ωa,b and xa,b are defined as in Eq. (2.8) and are functions of Q, Y and the fixed Ecm. Here
the RG evolution factors for the various functions to run them from their respective natural scale

1If the color-singlet state has a large boost along the beam axis, i.e. for example ωb ∼ Qe−Y ≪ Q ≪ ωa ∼ QeY ,
also these modes would be boosted with rapidity Y . But since the transverse momentum qT is invariant under boosts
along the beam axis, we can always boost back to the partonic center of mass frame, where the modes exhibit the
symmetric scaling shown in Eq. (2.10). This means that the factorization theorem based on the scaling of the modes as
in Eq. (2.10) can be used also for larger rapidities Y ̸≈ 0, as long as we are not in the region where (1− xa,b) ≪ 1.

2In principle there is also a corresponding contribution for a gluon initiated hard interaction. However, these contri-
butions vanish for real Z-boson production gg → Z due to the Landau-Yang theorem [48, 49], and are also subleading
for off-shell Z-bosons in gg → Z∗ → ℓ̄ℓ, as discussed in App. F.
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to the common renormalization scale µ are not shown explicitly for simplicity, but always implied.
The same for the evolution factors in rapidity. Note that the particular form of the factorization
theorem in Eq. (2.12), where the beam functions Bi and Bj for the two incoming beam jets take the
same form, only arises when a rapidity regulator that is symmetric under p+ ↔ p− is applied. Other
choices of regulating the rapidity divergences that arise in the beam and soft functions can lead to
two beam functions that do not take the same form in the a- and b-direction (and also change the
results for the soft function). The full convolution of both beam and the soft function is, however,
always independent of the rapidity regulator.

The superscript (nf ) on all functions indicates that the associated EFT operators and the strong
coupling constant in these functions are renormalized with nf active quark flavors. Hij denotes the
process-dependent (but measurement-independent) hard function. It encodes the tree-level result
and hard virtual corrections of the partonic process ij → Z/W/γ∗ at the scale µ ∼ Q and can be
calculated as the square of the Wilson coefficent of the matching of the full QCD to the SCET current.
The transverse-momentum dependent (TMD) beam functions Bi [39,50–53] can be written as proton
matrix elements of SCET operators

Bi

(
p⃗T , x =

ω

P− , µ,
ν

ω

)
= ⟨pn(P−)|θ(ω)Oi(p⃗T , ω, µ,

ν

ω
)|pn(P−)⟩ (2.13)

where the light-like vector n is either na or nb, depending on whether we deal with the na- or nb-
collinear beam function, and n̄ is then the respective other light-like vector. The state |pn(P−) > is
the incoming proton state with momentum Pµ = P− nµ

2 and Oi a renormalized operator of collinear
SCET jet fields

Obare
i (p⃗T , ω) = χ̄(i)

n (0)δ(2)(p⃗T − P⊥)
/̄n

2

[
δ(ω − n̄ · P)χ(i)

n (0)
]

(2.14)

with the momentum operator P acting always to the right. The renormalized TMD beam functions
Bi can be matched onto PDFs as

B
(nf )
i

(
p⃗T , x, µ,

ν

ω

)
=
∑

k

I(nf )
ik (p⃗T , x, µ,

ν

ω
)⊗x f

(nf )
k (x, µ)

[
1 +O

(
Λ2
QCD

|p⃗T |2
)]

, (2.15)

where the Mellin-type convolution denoted by ⊗x is defined as

g(x)⊗x h(x) =

∫ 1

x

dz

z
g
(x
z

)
h(z) . (2.16)

We will use this notation throughout the rest of this work. The perturbative matching coefficients
Iik describe the collinear initial-state radiation at the invariant mass scale µ ∼ qT and rapidity scale
ν ∼ ω, and the nonperturbative parton distribution functions (PDFs) are denoted by fk. Finally, the
soft function S (see Eq. (D.36) for the definiton in terms of a vacuum matrix element of soft Wilson
lines) describes the wide-angle soft radiation at the invariant mass and rapidity scale µ ∼ ν ∼ qT .
The matching coefficients Iik and the soft function are process-independent and have been computed
to O(α2

s) in Refs. [54–57], and togehter with the three-loop noncusp anomalous dimension [58–60]
allow for a full N3LL analysis of Drell-Yan for massless quarks [61–64]. The results for the massless
hard, beam and soft functions at order O(αs) and O(α2

sCFTF ) are collected in appendix B for the
convenience of the reader. These are the only terms relevant for NNLL′ that will depend on the mass
of the heavy flavor once we go to the massive quark case, while all other color structures at O(α2

s)
are contributions from diagrams with only massless quarks (remember that primary massive quark
effects enter only via two separate O(αs) real radiation contributions in the beam functions in the
two beams as O(αs) × O(αs), while the secondary massive quark corrections from the splitting of a
radiated gluon contribute to the O(α2

sCFTF ) terms in the hard, beam and soft function).
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In Eq. (2.12), the logarithms of qT /Q are resummed by evaluating all functions at their characteristic
renormalization scales and evolving them to common final scales µ and ν by solving the set of coupled
evolution equations

µ
d

dµ
H

(nf )
ij (Q,µ) = γ

(nf )
H (Q,µ)H

(nf )
ij (Q,µ) ,

µ
d

dµ
B

(nf )
i

(
p⃗T , x, µ,

ν

ω

)
= γ

(nf )
B

(
µ,
ν

ω

)
B

(nf )
i

(
p⃗T , x, µ,

ν

ω

)
,

µ
d

dµ
S(nf )(p⃗T , µ, ν) = γ

(nf )
S (µ, ν)S(nf )(p⃗T , µ, ν) ,

µ
d

dµ
f
(nf )
i (x, µ) =

∑

k

γ
(nf )
f,ik (x, µ)⊗x f

(nf )
k (x, µ) ,

ν
d

dν
B

(nf )
i

(
p⃗T , x, µ,

ν

ω

)
=

∫
d2kT γ

(nf )
ν,B (p⃗T − k⃗T , µ)B(nf )

i

(
k⃗T , x, µ,

ν

ω

)
,

ν
d

dν
S(nf )(p⃗T , µ, ν) =

∫
d2kT γ

(nf )
ν,S (p⃗T − k⃗T , µ)S(nf )(k⃗T , µ, ν) . (2.17)

The massless results for the anomalous dimension at order O(αs) and O(α2
sCFTF ), that will be

relevant when discussing the massive quark case at NNLL′ (all other color structures at that order
are left unchanged with respect to the purely massless case), are given in appendix B. Only the
evolution of the PDF leads to flavor mixing. Consistency of RG running implies that

γ
(nf )
H (Q,µ) + γ

(nf )
B

(
µ,

ν

ωa

)
+ γ

(nf )
B

(
µ,

ν

ωb

)
+ γ

(nf )
S (µ, ν) = 0 ,

2γ
(nf )
ν,B (p⃗T , µ) + γ

(nf )
ν,S (p⃗T , µ) = 0 ,

µ
d

dµ
γ
(nf )
ν,S (p⃗T , µ) = ν

d

dν
γ
(nf )
S (µ, ν) δ(2)(p⃗T ) = −4Γ(nf )

cusp[αs(µ)] δ
(2)(p⃗T ) . (2.18)

Note that in practice, the evolution is usually performed in Fourier space after performing a two-
dimensional Fourier transform defined as

g̃(⃗bT ) =

∫
d2pT ei b⃗T ·p⃗T g(p⃗T ) (2.19)

for a generic function g(p⃗T ), such that one actually resums the conjugate logarithms ln(bµ) where
b = |⃗bT | ∼ 1/qT is the Fourier-conjugate variable to qT . The qT spectrum is then obtained as the
inverse Fourier transform of the resummed b-spectrum. The exact solution and evolution in qT space,
which directly resums the (distributional) logarithms in qT , has been recently discussed in [65] (see
also Ref. [66]).

In the following subsections, we discuss how the mode and factorization setup changes when massive
quark flavors are involved, using the mass mode factorization approach. Including massive quarks
leads to the appearance of additional modes related to fluctuations around the mass shell of the
heavy flavor as discussed extensively in Refs. [11, 12]. For the different hierarchies between the mass
scale m and the scales Q and qT the relevant modes are illustrated in Fig. 2.2. In the first case,
qT ≪ m ∼ Q, the massive flavor is integrated out at the hard scale. This leads to the case with nl
massless flavors in the beam and soft functions and mass corrections only in the hard function, as
discussed in Sec. 2.1.2. The second case, qT ≪ m ≪ Q, where the quark mass is larger than the
jet resolution variable but smaller than the hard scale Q, is analogous to the corresponding case for
thrust in e+e− → dijets in Refs. [11, 12] and DIS in the x→ 1 limit [2]. We refer to these papers for
details and only summarize briefly the main features for this regime in Sec. 2.1.3. Our main focus is
on the hierarchies qT ∼ m≪ Q and m≪ qT ≪ Q, which are important for bottom and charm quark
mass effects at the LHC, and which are discussed in Secs. 2.1.4 and 2.1.5.
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Figure 2.2: Effective theory modes for the qT spectrum with massive quarks for qT ≪ Q and m ≫
ΛQCD.

2.1.2 Quark mass effects for m ∼ Q

If the quark mass represents a large scale ∼ Q (which concerns the top quark at the LHC), this quark
flavor does not play a dynamic role in the low-energy effective theory and is integrated out at the
hard scale in the matching from QCD to SCET. The relevant modes are shown in Fig. 2.2a. The
massive quark only contributes via mass-dependent contributions to the hard function. This yields
the factorization theorem

dσ

dq2T dQ2 dY
=

∑

i,j∈{q,q̄}

Hij(Q,m, µ)

∫
d2pTa d

2pTb d
2pTs δ(q

2
T − |p⃗Ta + p⃗Tb + p⃗Ts|2) (2.20)

×B(nl)
i

(
p⃗Ta, xa, µ,

ν

ωa

)
B

(nl)
j

(
p⃗Tb, xb, µ,

ν

ωb

)
S(nl)(p⃗Ts, µ, ν)

[
1 +O

( q2T
m2

,
qT
Q

)]
,

which is essentially equivalent to the massless case in the previous subsection with nl massless flavors.
The hard function Hij(Q,m, µ) can be evaluated either in the (nf = nl) or the (nf = nl + 1) flavor
scheme for αs, where nl is the number of light (massless) quark flavors. The contributions from
the heavy flavor at O(α2

sCFTF ) are given in Sec. C.1.1. In general both primary and secondary
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massive quark corrections contribute for initial (massless) quarks, shown in the virtual diagrams in
Fig. 1.1a and Fig. 1.1b, repsectivley, at O(α2

s). Using the (nl) flavor scheme for αs these vanish as
O(Q2/m2) in the decoupling limit m ≫ Q for the conserved vector current. For the axial-vector
current, contributing to Z-boson production, there are in addition also anomaly corrections starting
at O(α2

s) from the massive quark triangle in Fig. 1.1a that do not decouple [67–69].3 Since the massive
quark does not appear as a dynamic flavor in the EFT below the hard scale Q, the entire RG evolution
to sum the logarithms of qT is performed with nl massless flavors as in Eq. (2.12).

2.1.3 Quark mass effects for qT ≪ m≪ Q

Next, we consider the hierarchies where the quark mass is parametrically smaller than the hard scale,
m≪ Q. These require a different factorization setup than m ∼ Q since fluctuations around the mass-
shell are now parametrically separated from hard fluctuations, which would lead to large unresummed
logarithms inside the hard function Hij(Q,m, µ). In this subsection, we start with the case where
the transverse momentum is much smaller than the mass, qT ≪ m ≪ Q, while qT ∼ m ≪ Q and
m≪ qT ≪ Q are considered in the following subsections.

In a first step the QCD current is matched onto the SCET current with nl +1 dynamic quark flavors
at the scale µ ∼ Q. Since m≪ Q this matching can be performed (at leading order in the expansion
parameter m/Q) only with massless quarks (i.e. treating the heavy flavor as an additional massless

quark), leading to the hard function with nl + 1 massless flavors, H
(nl+1)
ij as in Eq. (2.12) with

nf = nl + 1, where also the strong coupling is renormalized with nl + 1 flavors.

At this point SCET contains not only the nl massless collinear and soft modes, but also na-collinear,
nb-collinear, and soft mass modes (that could be treated like massless modes in the matching of QCD
onto SCET at the scale µ ∼ Q≫ m) with the scaling

na-collinear MM: pµm,na
∼
(m2

Q
,Q,m

)
,

nb-collinear MM: pµm,nb
∼
(
Q,

m2

Q
,m
)
,

soft MM: pµm,s ∼ (m,m,m) , (2.21)

as illustrated in Fig. 2.2b. These mass-shell fluctuations arise here purely from secondary virtual
contributions.

In a second step at the scale µ ∼ m, the mass modes are integrated out and SCET with nl massless
and one massive flavor is matched onto SCET with nl massless flavors with the usual scaling as in
the massless case in Eq. (2.10). Since the soft and collinear mass modes have the same invariant
mass set by the quark mass and are only separated in rapidity, there are rapidity divergences in their
(unrenormalized) collinear and soft contributions. Their renormalization and the resummation of the
associated logarithms can be again handled using the rapidity RG approach in Refs. [40, 41], which
has been explicitly carried out in Ref. [70].4 In addition, all renormalized parameters like the strong
coupling constant are matched at the mass scale from nl + 1 to nl flavors taking into account that
the massive flavor is removed as a dynamic degree of freedom.

After these steps, the factorization at the low scale ∼ qT proceeds as in the massless case with all

3Instead, for m ≫ Q the heavy quark can be integrated out around its mass scale and the axial current can be
evolved between m and Q to resum the associated logarithms ln(m/Q).

4The matching in Ref. [70] was performed with massive primary quarks yielding the matching functions denoted as
Hm,n, Hm,n̄ and Hm,s there. However, this does not affect the structure of the rapidity logarithms arising from the
secondary mass effects, which are independent of the primary quarks being massive or massless.
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operator matrix elements depending on the nl massless flavors, which yields the factorization theorem

dσ

dq2T dQ2 dY
=

∑

i,j∈{q,q̄}

H
(nl+1)
ij (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

×
∫

d2pTa d
2pTb d

2pTs δ(q
2
T − |p⃗Ta + p⃗Tb + p⃗Ts|2)B(nl)

i

(
p⃗Ta, xa, µ,

ν

ωa

)

×B(nl)
j

(
p⃗Tb, xb, µ,

ν

ωb

)
S(nl)(p⃗Ts, µ, ν)

[
1 +O

(qT
Q
,
q2T
m2

,
m2

Q2

)]
. (2.22)

Here Hc and Hs denote the mass mode matching functions that arise from the matching at the mass
scale µ ∼ m. Their exact form depends on the choice of the rapidity regulator, only the product
of all three of them is independent of the choice of the regulator. The form given here, with the
matching function for the two different collinear directions being identical and denoted here as Hc,
arises when using the symmetric η-regulator. In this case their natural rapidity scales are ν ∼ ωa,b

for the collinear contributions and ν ∼ m for the soft ones. They can be evaluated in either the (nl)
or (nl + 1) scheme for αs. We will give their expressions at O(α2

s) in Sec. C.1.3. The resummation
of all logarithms of ratios of qT , m, and Q is achieved by performing the evolution in µ and ν of all
functions appearing in Eq. (2.22) from their natural scales.

In principle, the µ evolution can be performed by evolving all functions with their respective number
of quark flavors without switching the flavor scheme, i.e. with nl + 1 flavors for H, nl flavors for B
and S and an additional evolution for the collinear and soft matching functions Hc and Hs. The
consistency of RG running for the factorization theorems in Eqs. (2.22) and (2.20), and Eq. (2.18)
with nl massless flavors, implies that the µ-dependence of the product of the mass mode matching
functions Hc and Hs is precisely given by the difference between nl and nl +1 active quark flavors in
the evolution of the hard function Hij ,

γHc

(
m,µ,

ν

ωa

)
+ γHc

(
m,µ,

ν

ωb

)
+ γHs(m,µ, ν) = γ

(nl)
H (Q,µ)− γ(nl+1)

H (Q,µ) , (2.23)

where γ
(nf )
H is defined in Eq. (2.17), and γHc and γHs are defined analogously. At two loops this

relation can be checked explicitly using the results in Eqs. (C.9), (C.11) and (B.3). As a result, the
µ evolution for the hard, beam and soft functions can be conveniently implemented as illustrated in
Fig. 2.3a, by carrying out the µ evolution with nl active quark flavors below the matching scale µm ∼ m
and with nl + 1 flavors above µm, providing in this sense a “variable-flavor number scheme” [2, 12].
(This effectively corresponds to using operator running for the hard scattering current, which is
renormalized with nl + 1 flavors above the mass scale and with nl flavors below the mass scale.) If,
for example, the global renormalization scale µglobal, to which all functions are evolved to, is chosen
to be at qT < µglobal < m, as in Fig. 2.3a, the hard function is evolved from µH ∼ Q to µm ∼ m
with nl+1 active flavors, and from µm down to µglobal with nl active flavors, while the beam and soft
functions are both evolved with nl active flavors from µB ∼ qT up to µglobal. In addition there is also
a rapidity evolution (vertical), which is carried out at µm ∼ m, i.e. at the border between the (nl+1)
and (nl)-flavor theories (see Ref. [70]), which is governed by the mass-dependent rapidity anomalous
dimensions for Hs and Hc,

γν,Hs(m,µ) = −2γν,Hc(m,µ) =
d

d ln ν
lnHs(m,µ, ν) . (2.24)

2.1.4 Quark mass effects for qT ∼ m≪ Q

If the qT scale is of the order of the quark mass, qT ∼ m, the massive quark becomes a dynamic
degree of freedom, which contributes to the qT spectrum via real radiation effects. The mass modes
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Figure 2.3: Illustration of the renormalization group evolution for qT of the hard, beam, soft, and
parton distribution functions in virtuality µ (vertical) and rapidity ν (horizontal). The anomalous
dimensions for each evolution step involve the displayed number of active quark flavors. The label m
indicates that the corresponding evolution is mass dependent. Here the global renormalization scale
µglobal, to which all functions are evolved, was chosen to be between the scales Q and qT . Any other
choice of µglobal is possible and does not lead to different results, due to consistency of RG running
of the various functions.

in Eq. (2.21) now coincide with the usual massless SCETII modes for the qT measurement in Eq. (2.10),
since they have the same parametrically scaling for qT ∼ m, as illustrated in Fig. 2.2c. In this case,
there is only a single matching at the hard scale µ ∼ Q from QCD onto SCET with these common soft
and collinear modes. This hard matching gives again rise to the (mass-independent) hard function

H
(nl+1)
ij for nl + 1 massless flavors. The SCET operator matrix elements at the scale µ ∼ qT , i.e. the

beam and soft functions, now encode the effects of the massive quark. They are now renormalized
with nl+1 quark flavors and contain an explicit dependence on the quark mass. When integrating out
the modes with the virtuality qT also the massive quark is integrated out and the collinear matching
functions Iik between the beam functions and the PDFs thus also contain the effect from changing
from nl + 1 to nl flavors, i.e.

B
(nl+1)
i

(
p⃗T ,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,g}

Iik
(
p⃗T ,m, x, µ,

ν

ω

)
⊗x f

(nl)
k (x, µ)

[
1 +O

(Λ2
QCD

m2
,
Λ2
QCD

q2T

)]
.

(2.25)

Written out explicitly, the factorization theorem reads

dσ

dq2T dQ2 dY
=

∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
d2pTa d

2pTb d
2pTs δ(q

2
T − |p⃗Ta + p⃗Tb + p⃗Ts|2)

×
[ ∑

k∈{q,q̄,g}

Iik
(
p⃗Ta,m, xa, µ,

ν

ωa

)
⊗x f

(nl)
k (xa, µ)

]

×
[ ∑

k∈{q,q̄,g}

Ijk
(
p⃗Tb,m, xb, µ,

ν

ωb

)
⊗x f

(nl)
k (xb, µ)

]

× S(nl+1)(p⃗Ts,m, µ, ν)

[
1 +O

(qT
Q
,
m2

Q2
,
Λ2
QCD

m2
,
Λ2
QCD

q2T

)]
, (2.26)

where i, j = Q, Q̄ denotes the massive quark flavor in the sum over flavors. We stress that the
renormalization of the bare soft and beam function with nl massless and one massive flavor is carried
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out in the nl+1 flavor scheme for αs, while the strong coupling in the PDFs (which are defined in the
lower theory with nl massless flavors) is renormalized with nl flavors. The renormalized soft function
and beam function coefficients Iik can then be expressed in terms of either the (nl + 1) or the (nl)
flavor scheme for αs without introducing large logarithms.

In this hierarchy quark mass effects enter in Eq. (2.26) at O(α2
s) in two ways: There are secondary

radiation effects appearing in the two-loop soft function S(2) and the flavor-diagonal beam function

matching coefficients I(2)qq . In addition, there are primary mass effects arising from a massive-quark
initiated hard process. For Z/γ∗ production, this requires the production of the massive quarks via
gluon splitting in both collinear sectors, which manifests itself in two one-loop collinear matching

coefficients I(1)Qg ×I
(1)

Q̄g
. For W -boson production, primary charm quark effects enter already at O(αs)

from a single I(1)Qg with Q = c. We have for the first time calculated these previoulsy unkown contri-
butions from massive quarks to the TMD beam and soft functions, some details on the calculations
can be found in appendix D. The primary massive quark beam function matching coefficient IQg at
O(αs) and the secondary massive quark corrections to Iqq at O(α2

sCFTF ) are given in Sec. C.2.1, the
secondary massive quark corrections to S in Sec. C.4.1.

The resummation of logarithms ln(qT /Q) and ln(m/Q) is again obtained by performing the RG
evolution for Eq. (2.26), which is illustrated in Fig. 2.3b. While the evolution of the PDFs proceeds
in nl flavors, the µ-evolution for the hard, beam, and soft functions above the scale m is now carried
out purely with nl + 1 flavors, and with nl flavors below the scale m. If the global renormalization
scale is chosen to be above the mass scale as in Fig. 2.3b, the beam, soft and hard functions are
always evolved with nl + 1 active flavors. Consistency of RG running for Eq. (2.25) implies that the
matching coefficients Iik satisfy the RG equality

µ
d

dµ
Iik
(
p⃗T ,m, z, µ,

ν

ω

)
=
[
γ
(nl+1)
Bi

× Iik
](
p⃗T ,m, z, µ,

ν

ω

)
−
∑

j∈q,q̄,g

[
Iij ⊗z γ

(nl)
f,jk

](
p⃗T ,m, z, µ,

ν

ω

)
.

(2.27)

Here γ
(nl+1)
Bi

and γ
(nl)
f,jk are the massless µ-anomalous dimensions of the beam function and the PDF

as in Eq. (2.17), with nl + 1 and nl massless flavors, respectively.

Since the renormalization of the beam functions does not involve parton mixing, the one-loop primary

mass contributions to I(1)Qg cannot give rise to rapidity divergences and associated logarithms. On the
other hand, the secondary mass effects change the rapidity evolution. In particular, the beam and
soft ν-anomalous dimensions become mass dependent5,

ν
d

dν
B

(nl+1)
i

(
p⃗T ,m, µ,

ν

ω

)
=

∫
d2kT γ

(nl+1)
ν,B (p⃗T − k⃗T ,m, µ)B(nl+1)

i

(
k⃗T ,m, µ,

ν

ω

)
,

ν
d

dν
S(nl+1)(p⃗T ,m, µ, ν) =

∫
d2kT γ

(nl+1)
ν,S (p⃗T − k⃗T ,m, µ)S(nl+1)(k⃗T ,m, µ, ν) . (2.28)

The mass dependent ν-anomalous dimensions at O(α2
sCFTF ) are given in Eqs. (C.18) and (C.31) .

We discuss the implications of the mass dependence for the rapidity evolution in Sec. 2.1.7.

2.1.5 Quark mass effects for m≪ qT ≪ Q

If qT is much larger than the mass, the fluctuations around the mass-shell take place at a much
lower scale than the jet resolution measurement. There are no relevant soft fluctuations scaling like
pµm,s ∼ (m,m,m), since the measurement of qT is IR safe and is thus insensitive to the scale m≪ qT .
This means that the heavy flavor contributes in the soft sector just like another massless flavor, i.e.

5The fact that quark masses can affect the evolution was already pointed out in Ref. [34].
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the soft modes are described by a soft function with nl + 1 massless flavors at the scale µ ∼ qT .
Due to the collinear sensitivity of the initial-state radiation there are still relevant collinear mass
modes scaling like pµm,na ∼ (m2/Q,Q,m) and pµm,nb ∼ (Q,m2/Q,m), as illustrated in Fig. 2.2d. Thus
there are collinear modes in SCET at different invariant mass scales, which can be disentangled by
a multistage matching. First, the beam functions are matched onto the PDFs with nl + 1 massless
flavors, i.e. the heavy flavor treated as massless at tha scale µB ∼ qT ≫ m. This gives just the
matching coefficients Iik for nl + 1 massless flavors,

B
(nl+1)
i

(
p⃗T ,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,Q,Q̄,g}

I(nl+1)
ik

(
p⃗T , x, µ,

ν

ω

)
⊗x f

(nl+1)
k (x,m, µ)

[
1 +O

(m2

q2T

)]
.

(2.29)

In a second step, at the mass scale µm ∼ m, the PDFs including the massive quark effects are matched
onto PDFs with nl massless quarks, and with αs in the (nl) flavor scheme,

f
(nl+1)
i (x,m, µ) =

∑

k∈{q,q̄,g}

Mik(x,m, µ)⊗x f
(nl)
k (x, µ)

[
1 +O

(Λ2
QCD

m2

)]
. (2.30)

The PDF matching functions Mik can be expressed in either the (nl) or the (nl + 1) flavor scheme
for αs, the results forMik at O(αs) and O(α2

sCFTF ) are given in Sec. C.2.3.

In total, the factorization theorem reads

dσ

dq2T dQ2 dY
=

∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
d2pTa d

2pTb d
2pTs δ(q

2
T − |p⃗Ta + p⃗Tb + p⃗Ts|2)

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik

(
p⃗Ta, xa, µ,

ν

ωa

)
⊗xMkl(xa,m, µ)⊗x f

(nl)
l (xa, µ)

]

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk

(
p⃗Tb, xb, µ,

ν

ωb

)
⊗xMkl(xb,m, µ)⊗x f

(nl)
l (xb, µ)

]

× S(nl+1)(p⃗Ts, µ, ν)

[
1 +O

(qT
Q
,
m2

q2T
,
Λ2
QCD

m2

)]
. (2.31)

As in Sec. 2.1.4, massive quark corrections can arise at O(α2
s) either via primary mass effects involving

the product of two one-loop PDF matching correctionsM(1)
Qg (for Z/γ∗) generating a massive quark-

antiquark pair that initiates the hard interaction, or via secondary mass effects involving one two-loop

contributionM(2)
qq . Note that also the running of the light quark and gluon PDFs above µm generates

an effective massive quark PDF via flavor mixing, i.e. in the evolution factors U
(nl+1)
f,Qk (µB, µm), which

for large hierarchies m≪ qT can give O(1) contributions.
The evolution of the hard, beam, and soft functions can be performed purely with nl + 1 massless
flavors as long as the renormalization scale is above m, while the PDFs are evolved with nl flavor
below µm ∼ m and with nl + 1 flavors above µm ∼ m, see Fig. 2.3c, as usual in any variable-flavor
number scheme. The µm dependence is canceled order-by-order by the matching factorsMij , which
satisfy the consistency relation

µ
d

dµm
Mik(m, z, µm) =

∑

j∈{q,q̄,Q,Q̄,g}

[
γ
(nl+1)
f,ij ⊗zMjk

]
(m, z, µm)−

∑

j∈{q,q̄,g}

[
Mij ⊗z γ

(nl)
f,jk

]
(m, z, µm) .

(2.32)

The absence of soft mass modes in this regime implies there is no rapidity evolution at the mass
scale (and no associated rapidity divergences), while the rapidity evolution between beam and soft
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functions is the same as for nl + 1 massless flavors. In this regime, the mass dependence is thus fully
contained in the collinear sectors and is treated as in standard variable-flavor number schemes for
PDFs [4–10].

2.1.6 Relations between hierarchies

After having discussed all hierarchies separately, we now show how the ingredients in each of the
associated factorization theorems are related to each other. These relation may be used to combine
mass-dependent power corrections that are kept in one hierarchy but are dropped in another with
the resummation of logarithms to obtain a systematic inclusion of the mass effects smoothly over the
whole qT spectrum. A straightforward way of doing that is presented in Sec. 4.2.1 for the example
of DIS in the endpoint region (see also chapter 3), but it can be done for the factorization theorems
for exclusive Drell-Yan in an analogous way. An alternative approach of constructing variable flavor
number schemes, where these corrections are never dropped but included directly in all the structures
in the factorization theorems, based on the “universal factorization” approach [2,12,71] where different
renormalization schemes for the massive quark contributions to the EFT operators above and below
the mass scale are applied, will be presented in chapter 4. We stress that different specific ways of how
to incorporate the various power corrections are formally equivalent as long as the correct fixed-order
expansion and the correct resummation is reproduced in each limit. Any differences then amount to
resummation effects at the power-suppressed level and are thus beyond the formal (leading-power)
resummation accuracy. A particular scheme (called “S-ACOT”) to merge the m ≪ qT and qT ∼ m
regimes was discussed in Ref. [45] for the primary massive quark corrections. In practice, for the
numerical study of b-quark mass effects at low qT ≪ mb ≪ Q the effective b-quark PDF at the scale
qT is still quite small, so that one may effectively count fb(µB) ∼ O(αs), where µB is the scale where
the matching between the PDFs and the beam functions takes place. In particular, this counting
facilitates the seamless combination with the nonsingular corrections for m ∼ qT encoded in the
beam function matching coefficients in Eq. (2.26). This was discussed in Ref. [10] in the context of
the inclusive bb̄H production cross section, and the analogous discussion applies here as well.

In this section we will discuss the massive power corrections, that arise in the MMF approach of
deriving the variable flavor number schemes when completely integrating out the heavy flavor from
the theory at its mass scale, and their numerical impact. The relations between the modes and their
contributions between the different regimes are summarized in Fig. 2.4.

We will first set up the notation for the coefficients in the perturbation series that we will use for the
rest of this part of the thesis. For any generic function F we define the coefficients F (n) at a given
order in perturbation theory as

F =

∞∑

n=0

(
α
(nf )
s (µ)

4π

)n

F (n) (2.33)

where α
(nf )
s is the strong coupling renormalized with nf active flavors. When F does not receive

mass dependent contributions, i.e. there is no heavy flavor contributing (when the heavy flavor is
decoupled for µ ≪ m) or the heavy flavor is treated as massless (when m ≪ µ), this is equal to the
total number of active flavors contributing in that function, i.e. nf = nl for µ≪ m and nf = nl + 1
for m ≪ µ. For a matching function at the scale µ ∼ m, when the full mass dependence is kept in
F (m), the expansion in Eq (2.33) can in principle be done in either the (nl) or the (nl + 1) flavor
scheme for αs. For definiteness we will use the convention that for such a case we will always use the
(nl + 1) flavor scheme when giving explicit results at a given order in perturbation theory, such that

nf = nl + 1 in Eq (2.33), i.e. doing an expansion in α
(nl+1)
s . The expansion in terms of α

(nl)
s can be
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Figure 2.4: Relevant modes for the qT spectrum with qT ≪ Q for different hierarchies between the
quark mass m and the scales qT and Q. The directions of the arrows indicate how a particular mode
contribution is separated when the expansion of another hierarchy is used.

easily obtained from this by using the matching relation for αs

α(nl+1)
s (µ) = α(nl)

s (µ)

[
1 +

α
(nl)
s (µ)TF

4π

4

3

(
Γ(ϵ)

(µ2eγE
m2

)ϵ
− 1

ϵ

)
+O(α2

s)

]

= α(nl)
s (µ)

[
1− α

(nl)
s (µ)TF

4π

4

3
Lm +O(α2

s) +O(ϵ)
]
, (2.34)

where here and in the following we abbreviate

Lm ≡ ln
m2

µ2
. (2.35)

We write the O(α2
s) coefficients F (2) as

F (2) = TFnlF
(2,l) + . . . ,

F (2)(m) = TFnlF
(2,l) + TFF

(2,h)(m) + . . . , (2.36)

for the case where all quarks are treated as massless and the case with mass dependent corrections,
respectively, such that F (2,h) contains all mass dependent two-loop corrections and F (2,l) the associ-
ated contributions from massless flavors. The ellipsis stands for all other color structures, which we
omit here because they do not get contributions from massive quarks. We are considering primary
massive quark effects only to O(αs), which means that all mass dependent corrections at two-loop are
from secondary massive quarks, which are of the form O(α2

sTFCF ). These superscripts introduced
above should not be confused with the superscripts of the form F (nl+1) or F (nl), which indicate how
many flavors contribute to F . That means that for example F (2,l) stands only for a coefficient in the
expansion of F in the strong coupling, in this case the coefficient at order O(α2

sTF ), while F
(nl) is

the full function, the superscript (nl) only telling us that it depends on nl massless flavors.

The mass mode matching functions Hc and Hs appearing in the hierarchy qT ≪ m≪ Q in Eq. (2.22)
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in Sec. 2.1.3 are related to the hard function for qT ≪ m ∼ Q in Sec. 2.1.2 as follows6

Hij(Q,m, µ)
m≪Q
= H

(nl+1)
ij (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

[
1 +O

(m2

Q2

)]
. (2.37)

In the product of functions on the right-hand side, which appear in Eq. (2.22), the logarithms ln(m/Q)
can be resummed to all orders. One can construct a smooth description of the cross section for
qT ≪ m that resums these logarithms and also includes the associated mass-dependent O(m2/Q2)
power corrections by simply adding the power corrections to the hard function H(nl+1)(Q,µ) at the
scale µ ∼ Q.

The fixed-order contributions to the operator matrix elements appearing in the hierarchy qT ≪ m
in are already encoded in the ones for qT ∼ m in Sec. 2.1.4. The mass-dependent beam function
matching coefficients for qT ∼ m are related to those for qT ≪ m and the collinear mass-mode
function Hc by

Iik
(
p⃗T , x,m, µ,

ν

ω

)
pT≪m
= Hc

(
m,µ,

ν

ω

)
I(nl)
ik

(
p⃗T , x, µ,

ν

ω

)[
1 +O

( p2T
m2

)]
. (2.38)

Similarly, the mass-dependent soft function for qT ∼ m is related to the one for qT ≪ m and the soft
mass-mode function Hs by

S(nl+1)(p⃗T ,m, µ, ν)
pT≪m
= Hs(m,µ, ν)S

(nl)(p⃗T , µ, ν)

[
1 +O

( p2T
m2

)]
. (2.39)

In the products on the right-hand side, which appear in Eq. (2.22), logarithms ln(qT /m) can be
resummed to all orders in the limit qT ≪ m. One can include the associated O(q2T /m2) power
corrections that are important for qT ∼ m, by obtaining them from the fixed-order expansions of
Eqs. (2.38) and (2.39) and adding them to the (nl)-flavor beam function coefficients and soft function
at the scale µ ∼ qT .
Finally, the fixed-order contributions for the operator matrix elements appearing in the hierarchy
m≪ qT are also encoded already in the corresponding ones for qT ∼ m. Hence, the mass-dependent
beam function matching coefficients are related to those for m≪ qT and the PDF matching functions
by

Iik
(
p⃗T ,m, x, µ,

ν

ω

)
m≪pT=

∑

j=q,q̄,g

I(nl+1)
ij

(
p⃗T , x, µ,

ν

ω

)
⊗xMjk(m,x, µ)

[
1 +O

(m2

p2T

)]
. (2.40)

Similarly, the mass-dependent and massless soft function are related by

S(nl+1)(p⃗T ,m, µ, ν)
m≪pT= S(nl+1)(p⃗T , µ, ν)

[
1 +O

(m2

p2T

)]
, (2.41)

since there are no relevant soft IR fluctuations below the mass scale. In the functions on the right-
hand sides, which appear in Eq. (2.31), logarithms ln(m/qT ) can be resummed to all orders in the
limit m ≪ qT . This can be combined with the associated O(m2/q2T ) power corrections relevant for
qT ∼ m, by obtaining them from the fixed-order expansions of Eqs. (2.40) and (2.41) and adding
them to the (nl +1)-flavor beam function matching coefficients and soft function at the scale µ ∼ qT .
In the following we will verify the relations between the different hierarchies discussed above for the
beam and soft functions up to O(α2

s). We also scrutinize the numerical impact of the power corrections

6Here and in the following it is implied that at a specific fixed order the functions on both sides have to be expanded
in the same renormalization scheme for αs. Since H

(nl+1)
ij is generically written with nl + 1 (massless) flavors, the

(nl + 1)-flavor scheme is most convenient here and also to extract the O(m2/Q2) power corrections on the right-hand
side of Eq. (2.37) from its fixed-order expansion.
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Figure 2.5: Massive b-quark beam function (left panel) and its cumulant (right panel) together with
its m→ 0 limit. The input parameters are described in the text.

for these functions. We focus in particular on the O(m2/q2T ) corrections for the qT spectrum for b
quarks, which are contained in the factorization theorem Eq. (2.26) for qT ∼ m but not in the massless
limit for m ≪ qT in Eq. (2.31), as these are phenomenologically important hierarchies for b-quark
mass effects at the LHC.

For the numerical results we use the MMHT2014 NNLO PDFs [72] and evaluate the contributions
for µ = mb = 4.8 GeV, ω = mZ , and Ecm = 13 TeV. The main qualitative features of the results do
not depend on these specific input parameters. We also do not explicitly specify the renormalization
scheme for the quark mass, since all differences are beyond the order we are working here.

We first consider the primary mass effects at one loop, which are encoded in the TMD beam function

matching coefficient I(1)Qg in Eq. (C.13). In the limit pT ≪ m the primary massive quarks decouple,
which is manifest in the result,

I(1)Qg (p⃗T ,m, z)
pT≪m
= O

( p2T
m2

)
. (2.42)

On the other hand, in the opposite limit m≪ pT it becomes

I(1)Qg (p⃗T ,m, z)

m≪pT= TF θ(1− z)θ(z)
{
2Pqg(z)L0(p⃗T , µ) + δ(2)(p⃗T )

[
−2Pqg(z)Lm + 4z(1− z)

]
+O

(m2

p2T

)}

= I(1)qg (p⃗T , z, µ) + δ(2)(p⃗T )M(1)
Qg(m, z, µ) +O

(m2

p2T

)
, (2.43)

confirming that the relation in Eq. (2.40) is satisfied at O(αs). The massless one-loop matching

coefficient I(1)qg can be found in Eq. (B.4) and the PDF matching coefficient M(1)
Qg in Eq. (C.24).

To account for the correct distributive structure in p⃗T that emerges in the massless limit, one can
integrate the expressions with massive quarks and identify the distributions at the cumulant level.

In Fig. 2.5 we show the result for the massive quark beam function B
(1)
Q = I(1)Qg ⊗x fg at O(αs) as

function of pT using the full massive matching coefficient I(1)Qg (solid orange) and its small mass limit
in Eq. (2.43) (dashed blue). In the right panel we show the corresponding results for the cumulant

BQ(p
cut
T ,m) ≡

∫

|p⃗T |<pcutT

d2pT BQ(p⃗T ,m) , (2.44)

which also includes the δ(2)(p⃗T ) constant contribution. We can see that in both cases the small mass

limit is correctly approached for p
(cut)
T ≫ mb, while for p

(cut)
T ≪ mb the primary mass effects decouple
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Figure 2.6: Convolution of two massive b-quark beam functions together with the result in the m→ 0
limit differential in the total pT ≡ |p⃗T | (left panel) and the corresponding cumulant (right panel).
This is proportional to the primary massive quark correction to the Z-boson spectrum at O(α2

s).

with the result going to zero. The corrections to the small mass limit become sizeable for pT ∼ mb

and vanish quite fast for larger pT .

In Fig. 2.6 we show the result for the convolution between two massive quark beam functions,

(
B

(1)
Q ⊗B

(1)
Q

)
(p⃗T ,m) ≡

∫
d2p′T B

(1)
Q (p⃗T − p⃗ ′

T ,m)B
(1)
Q (p⃗ ′

T ,m) , (2.45)

which enters the result for Z-boson production at O(α2
sT

2
F ) and NNLL′. The analytic expression for

the convolution between the two one-loop mass-dependent coefficients is given in Eq. (E.6). We see
that now the corrections to the small-mass limit remain nonnegligible even for larger values of pT .
This is due to the fact that the p⃗T -convolution generates a logarithmic dependence in the spectrum,
such that the power corrections of O(m2

b/p
2
T ) become enhanced by logarithms ln(p2T /m

2
b). This can

be seen directly by convoluting two one-loop primary massive beam function matching coefficients

I(1)Qg given in Eq. (C.13), and expanding for p2T ≫ m2
b .

Next, we consider the secondary massive quark corrections at O(α2
sCFTF ). The result for the sec-

ondary massive quark contributions to the massless quark TMD beam function coefficient I(2,h)qq (p⃗T ,m, z)
is given in Eq. (C.15). In the decoupling limit pT ≪ m all its terms without distributions in p⃗T give
O(p2T /m2) power-suppressed contributions. Combining its remaining distributional terms with the
contributions arising from changing the αs scheme from nl+1 (which is our default scheme for writing

I(2,h)qq ) to nl flavors yields

TFI(2,h)qq

(
p⃗T ,m, z, µ,

ν

ω

)
− 4

3
TFLmI(1)qq

(
p⃗T , z, µ,

ν

ω

)
pT≪m
= δ(2)(p⃗T ) δ(1− z)H(2)

c

(
m,µ,

ν

ω

)
+O

( p2T
m2

)
,

(2.46)

confirming the relation in Eq. (2.38) at this order. The massless one-loop coefficient I(1)qq and the

collinear mass-mode function H
(2)
c can be found in Eqs. (B.5) and (C.10), respectively. On the other

hand, in the limit m≪ pT we get

TFI(2,h)qq

(
p⃗T ,m, z, µ,

ν

ω

)
m≪pT= TFI(2,l)qq

(
p⃗T , z, µ,

ν

ω

)
+ δ(2)(p⃗T )M(2)

qq (m, z, µ) +O
(m2

p2T

)
, (2.47)

consistent with the fact that all infrared mass dependence is given by the PDF matching, as required
by the relation in Eq. (2.40). The results for the massless coefficient and the PDF matching coefficient
are given in eqs. (B.7) and (C.25), respectively.
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Figure 2.7: Secondary massive quark corrections to Compton-type gluon initiated Drell-Yan.

There are also secondary massive quark corrections at O(α2
sT

2
F ) to the Compton-type gluon initiated

process shown in Fig. 2.7, encoded in the coefficient I(2,h)qg (p⃗T ,m, z). Since they arise only from
virtual corrections to an external gluon line, the limiting behavior for this coefficient is trivial, since
it vanishes identically in the (nl)-flavor scheme for αs, and in the (nl + 1)-flavor scheme for αs it is
exactly

TF I(2,h)qg (p⃗T ,m, z, µ) = I(1)qg (p⃗T , z, µ)⊗zM(1)
gg (m, z, µ) . (2.48)

The contribution from secondary massive quarks to the TMD soft function is given in Eq. (C.30). In
the limit pT ≪ m all terms without distributions in p⃗T become O(p2T /m2) power suppressed, just as
for the beam function. Combining its remaining distributional terms with the contributions arising
from changing the scheme of the strong coupling from nl + 1 to nl flavors yields

TFS
(2,h)(p⃗T ,m, µ, ν)−

4

3
TFLmS

(1)(p⃗T , µ, ν)
pT≪m
= δ(2)(p⃗T )H

(2)
s (m,µ, ν) +O

( p2T
m2

)
, (2.49)

confirming the relation in Eq. (2.39). The massless one-loop TMD soft function S(1) and the softmass-

mode function H
(2)
s are given in Eqs. (B.13) and (C.8), respectively. Since the soft function is free of

IR singularities, the limit m≪ pT just yields the massless soft function in Eq. (B.14),

S(2,h)(p⃗T ,m, µ, ν)
m≪pT= S(2,l)(p⃗T , µ, ν) +O

(m2

p2T

)
. (2.50)

We now discuss the numerical impact of the O(m2/p2T ) terms from secondary mass effects. Since the
individual results for the beam and soft functions depend on the specific regularization scheme, we
consider the combination7

B̃q(p⃗T ,m, ω, x, µ) =

∫
d2p′T Bq

(
p⃗T − p⃗ ′

T ,m, x, µ,
ν

ω

)√
S(p⃗ ′

T ,m, µ, ν) , (2.51)

which is independent of ν. Here the root is defined as
∫

d2p′T

√
S(p⃗T − p⃗ ′

T ,m, µ, ν)
√
S(p⃗ ′

T ,m, µ, ν) = S(p⃗T ,m, µ, ν) . (2.52)

The O(α2
sCFTF ) corrections explicitly depend on µ and the flavor-number scheme, but the difference

between the full result and the small mass limits given in Eqs. (2.47) and (2.50) do not. In Fig. 2.8

7This combination is sometimes used as definition of a TMD PDF. B̃q contains large rapidity logarithms, which are
resummed once the soft and beam functions are evaluated at their natural rapidity scales and evolved to a common
scale ν. For demonstrating the size of the power corrections here, we evaluate it at fixed order.
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Figure 2.8: Secondary massive bottom quark corrections to the u-quark beam function (left panel)
and its cumulant (right panel) at O(α2

sCFTF ) (including the square-root of the soft function here)
for µ = mb as a function of qT .

we show the result for the O(α2
sCFTF ) corrections (with αs = α

(nl+1)
s ) to the u-quark beam function,

both differential in pT and the corresponding cumulant. We see that the full mass dependent results
correctly reproduce the small and large mass limits. The difference between the full mass dependent
results and the massless case is much larger for secondary massive quarks in Fig. 2.8 than for the

primary massive effects in Fig. 2.6. In particular, they are still of O(100%) for p
(cut)
T ∼ 10 GeV.

This clearly indicates that for secondary radiation involving two massive quarks in the final state the
corrections are rather of O(4m2/p2T ), as one might expect.

2.1.7 Rapidity evolution

Here, we discuss the solutions of the rapidity RGEs in Eq. (2.24), or equivalently Eqs. (2.92) and
(2.100), and in particular the rapidity evolution for the mass-dependent soft function in Eq. (2.28)
for qT ∼ m, where the massive quark corrections give rise to a different running than for massless
flavors. Our primary aim here is to highlight the different features with respect to the massless case,
while leaving the practical implementation for future work.

The rapidity evolution for the mass-mode matching functions Hs and Hc according to Eq. (2.24)
has been discussed in Ref. [70]. The evolution for the beam thrust beam function and collinear-soft
function that will be discussed in Sec.2.2 is completely analogous (see Eqs. (2.92) and (2.100)). For
example, the ν-evolved soft matching function Hs is given by

Hs(m,µ, ν) = V (m,µ, ν, ν0)Hs(m,µ, ν0) , (2.53)

V (m,µ, ν, ν0) = exp

[
γν,Hs(m,µ) ln

ν

ν0

]
,

where γν,Hs(m,µ) is the ν-anomalous dimension of Hs defined in Eq. (2.24) and is given at O(α2
s)

in Eq. (C.9). To satisfy path independence in the µ-ν-space, potentially large logarithms of µ need
to be resummed in the anomalous dimension γν,Hs(m,µ), which can be done by solving its RGE in
virtuality [41]

µ
d

dµ
γν,Hs(m,µ) = −4

(
Γ(nl+1)
cusp [α(nl+1)

s (µ)]− Γ(nl)
cusp[α

(nl)
s (µ)]

)
, (2.54)

which leads to the resummed form

γν,Hs(m,µ) = 4η
(nl)
Γ (µ0(m), µ)− 4η

(nl+1)
Γ (µ0(m), µ) + γν,Hs(m,µ0(m)) , (2.55)
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where the evolution function ηΓ is defined by

η
(nf )
Γ (µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γ
(nf )
cusp[α

(nf )
s (µ′)] . (2.56)

With the canonical scale choice

µ0(m) = m, (2.57)

all logarithmic terms in γν,Hs(m,µ0(m)) are minimized.

The solution of the rapidity RGE for the soft function is more involved due to its two-dimensional con-
volution structure on p⃗T . The formal solution of the rapidity RGE for massless quarks in Eq. (2.17) is
most conveniently found in Fourier space using the two-dimensional Fourier transform as in Eq. (2.19),
where the rapidity RGE becomes multiplicative

ν
d

dν
S̃(nf )(b, µ, ν) = γ̃

(nf )
ν,S (b, µ) S̃(nf )(b, µ, ν) . (2.58)

where the impact parameter b = |⃗bT | is Fourier conjugate variable of the transverse momentum.
The consistency (path independence) between µ and ν evolution requires the rapidity anomalous
dimension in Fourier space to satisfy the RGE in virtuality

µ
d

dµ
γ̃
(nf )
ν,S (b, µ) = −4Γ(nf )

cusp[α
(nf )
s (µ)] . (2.59)

Its solution is given by

γ̃
(nf )
ν,S (b, µ) = −4η(nf )

Γ (µ0(b), µ) + γ̃
(nf )
ν,S (b, µ0(b)) . (2.60)

This equation can be used to chose an appropriate scale µ0(b) where there are no large logarithms
in the second term on the RHS, and evolve the rapidity anomalous dimension to the scale µ where
the rapidity resummation is carried out. The canonical scale choice to eliminate the logarithms of
ln(µ b eγE/2) in the second term on the RHS of Eq. (2.60) is

µ
(l)
0 (b) =

2 e−γE

b
. (2.61)

The superscript (l) should indicate that this is the scale choice for light (massless) quarks. Then the
ν evolution of the soft function in Fourier space at any given scale µ is given by

S̃(b, µ, ν) = S̃(b, µ, ν0) exp

[
γ̃
(nf )
ν,S (b, µ) ln

ν

ν0

]
. (2.62)

As is well known, the rapidity evolution kernel becomes intrinsically nonperturbative at 1/b ≪
ΛQCD [32–34]. This nonperturbative sensitivity appears through the resummed rapidity anoma-
lous dimension, which with the canonical scale choice in Eq. (2.61) gets evaluated at αs(1/b). It is
important to note that this is not an artefact of performing the evolution in Fourier space. Rather
this is a physical effect, which also happens when the ν evolution is consistently performed in mo-
mentum space. As shown in Ref. [65], in this case the appropriate resummed result for γν,S(p⃗T , µ)
explicitly depends on αs(pT ), which means it becomes nonperturbative for pT ≲ ΛQCD, introducing
nonperturbative effects in the convolution between the soft function an the rapidity evolution kernel
even when qT ≫ ΛQCD.

For the ν anomalous dimension including secondary massive quark corrections in the regime qT ∼ m
the µ dependence of the full rapidity anomalous dimension is the same as for nl + 1 massless quarks,
i.e. Eq. (2.59) with nf = nl + 1. This implies that

γ̃
(h)
ν,S(b,m, µ) = 4η

(nl)
Γ (µ0(b,m), µ)− 4η

(nl+1)
Γ (µ0(b,m), µ) + γ̃

(h)
ν,S(b,m, µ0(b,m)) , (2.63)
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where γ̃
(h)
ν,S denotes only the contributions from the massive flavor to the full anomalous dimension.

The explicit mass dependence here arises in the boundary contribution, which depends on both b and
m. From the relations in Eqs. (2.41) and (2.39) we can directly infer the limiting behavior to the
anomalous dimension,

γ̃ν,S(b,m, µ) = γ̃
(nl+1)
ν,S (b, µ) +O(m2b2) ,

γ̃ν,S(b,m, µ) = γ̃
(nl)
ν,S (b, µ) + γν,Hs(m,µ) +O

( 1

m2b2

)
. (2.64)

This means that the massive quark corrections γ̃
(h)
ν,S are the same as for a massless flavor in the limit

m ≪ 1/b and are the same as the rapidity anomalous dimension of the soft mass mode matching
function Hs in the limit 1/b ≪ m, provided one uses the (nl + 1) and (nl)-flavor scheme for αs,

respectively. To eliminate the logarithms inside γ̃
(h)
ν,S , the canonical scale choice µ0(b,m) should

behave like the massless case for m≪ 1/b and like the choice for the mass-mode matching functions
for m≫ 1/b,

µ
(h)
0 (b,m) ∼ µ(l)0 (b) =

2 e−γE

b
for 1/b→∞ ,

µ
(h)
0 (b,m) ∼ m for 1/b→ 0 . (2.65)

Since µ
(h)
0 (b,m) freezes out naturally at the perturbative mass scale for 1/b→ 0, the nonperturbative

sensitivity in the ν evolution gets regulated by the quark mass for the massive quark contributions.

We first illustrate this behavior in a simple one-loop toy example: We consider the radiation of
a massive gluon (with mass M) having the same couplings as a (massless) gluon in QCD, which
exhibits the main features of the full results for secondary massive quarks. The associated corrections
are obtained in the calculations of Sec. D.4.1 as intermediate results for the O(α2

sCFTF ) massive
contributions. In b-space the one-loop rapidity anomalous dimensions for massless and massive gluons
are given by

γ̃
(1)
ν,S(b, µ) = −CF 8Lb ,

γ̃
(1)
ν,S(b,M, µ) = CF

[
8LM + 16K0(bM)

]
, (2.66)

where K0 denotes the modified Bessel function of the second kind and

Lb ≡ ln
b2µ2e2γE

4
, LM ≡ ln

M2

µ2
. (2.67)

The mass-dependent result has the limiting behavior

γ̃
(1)
ν,S(b,M, µ) = −CF 8Lb +O(M2b2) ,

γ̃
(1)
ν,S(b,M, µ) = CF 8LM +O

( 1

M2b2

)
, (2.68)

in close analogy to Eq. (2.64). A natural choice to eliminate any large terms in Eq. (2.66) in both
limits is

µ
(h)
0 (b,M) =M eK0(bM) . (2.69)

for which γ̃
(1)
ν,S(b,M, µ

(h)
0 (b,M)) just vanishes. The behavior of this choice as a function of b compared

to the massless result is shown in Fig. 2.9.
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for the massless case (blue, dashed) with M = 5 GeV.

For the secondary massive quark corrections at O(α2
s) the Fourier transform of Eq. (C.31) reads

(expanded in terms of α
(nl+1)
s as in Eq. (2.33))

γ̃
(2,h)
ν,S (b,m, µ) = CF

{
−32

3
LbLm −

16

3
L2
m −

160

9
Lm −

448

27

+
8
√
π

3

[
2G 3,0

1,3

(
3
2

0,0,0

∣∣∣m2b2
)
+G 3,0

1,3

(
5
2

0,0,1

∣∣∣m2b2
)]}

, (2.70)

where G denotes a Meijer G function. This result has the limiting behavior

γ̃
(2,h)
ν,S (b,m, µ) = CF

(
16

3
L2
b +

160

9
Lb +

448

27

)
+O(m2b2) ,

γ̃
(2,h)
ν,S (b,m, µ)− 4

3
Lmγ̃

(1)
ν,S(b, µ) = CF

(
−16

3
L2
m −

160

9
Lm −

448

27

)
+O

( 1

m2b2

)
, (2.71)

in the small and large mass limit, respectively. Hence, the correct massless limit is recovered (Fourier
transform of the last line of Eq. (B.15)), while in the large-mass limit one obtains the ν-anomalous
dimension of Hs in Eq. (C.9). Note that in Eq. (2.71) one needs to perform a change for the strong
coupling between the nl + 1 and nl flavor schemes to obtain both limits correctly. To minimize the
logarithms for any regime one should thus adopt a canonical scale choice that satisfies Eq. (2.65), as
for example in Eq. (2.69).

2.1.8 Outlook: Phenomenological impact for Drell-Yan

Our results can be applied to properly take into account bottom quark mass effects for the Drell-Yan
qT spectrum at NNLL′. While a full resummation analysis is beyond the scope of this work, we can
estimate the potential size of the quark-mass effects by looking at the fixed-order qT spectrum. The
full results for the mass dependent singular contributions to the qT spectrum at fixed order at O(α2

s)
for secondary massive quarks and O(αs) × O(αs) for primary massive quarks, that can be inferred
from our calculations of the mass effects to the beam and soft functions, are given in Sec. E.1.

In Fig. 2.10, we show separately the contributions from primary and secondary massive quarks to
the singular cross section at O(α2

s), normalized to the O(αs) spectrum dσ(1) including all flavors
(treating the charm as a massless flavor). We utilize the MMHT2014 NNLO PDFs [72] and evaluate
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Figure 2.10: Primary (left panel) and secondary (right panel) massive bottom quark contributions
for the Z-boson qT spectrum at fixed O(α2

sT
2
F ) and O(α2

sCFTF ), respectively. The results are given
relative to the full O(αs) result including all flavors.

the contributions for µ = mb = 4.8 GeV, Q = mZ , Y = 0, and Ecm = 13 TeV. As can be seen, the
relative contribution of the (primary) bb̄-initiated channel in the left panel of Fig. 2.10 grows with
larger qT , while the impact of the secondary contributions in the right panel including the full mass
dependence is at the sub-percent level throughout the spectrum. As expected, the difference between
the full mass dependent results and the massless limit (called mass-nonsingular in the plot) are very
small for mb ≪ qT , but can reach the order of percent for qT ∼ mb, which roughly corresponds to the
peak region of the distribution where the cross section is largest.

The same can also be seen in Fig. 2.11, where we show the mass-nonsingular corrections at fixed
order (as difference between full mass dependence and massless limit) for primary and secondary
contributions as well as their sum. They are shown for µ = mb in the left panel and for µ = qT in the
right panel. Comparing the two plots we see that these corrections are indeed only weakly dependent
on the choice of µ (for qT ≳ 2 GeV). At qT ∼ 5 GeV, where the peak of the Z-boson qT -spectrum is
located, the bottom quark mass can have a relevant effect for high precision prediction at the order
of percent. Below the peak of the distribution the fixed-order result is of course not expected to
give a reliable quantitative result, and furthermore nonperturbative effects become important in this
regime. Nevertheless, we expect the qualitative features like the sign and order of magnitude of the
mass effects to provide an indication for the behavior of the full resummed result.

For W production sizable corrections from bottom quark effects arise only through secondary con-
tributions (due to the strong CKM suppression of the primary contributions), which have a similar
impact as for Z-production. On the other hand, charm-initiated production plays an important role
and enters already at O(αs). Estimating the nonsingular mass corrections for qT ∼ mc is more subtle,
since higher-order corrections in the strong coupling and nonperturbative effects are likely to domi-
nate the effect from the known beam function at O(αs) at these low scales. Thus, we do not attempt
to determine their characteristic size here and leave this to future work. An analysis based on the
leading-order matrix element and its potential impact on the determination of mW can be found in
Ref. [46].
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Figure 2.11: Different types of mass nonsingular corrections for Z-boson production at µ = mb (left
panel) and µ = qT (right panel).

2.2 Variable flavor number scheme for beam thrust in Drell-Yan

As a second observable that restricts the final state in a different way and therefore leads to different
structures of the resulting factorization theorems, we consider beam thrust8 [13], using the definition
in the hadronic center of mass frame as in Ref. [44]

T =
∑

i

min{na ·pi, nb ·pi} =
∑

i

e−|yi|
√
|p⃗⊥,i|2 +m2

i . (2.72)

Here, pi are all hadronic final-state momenta (i.e. excluding the color-singlet final state), nµa,b = (1,±ẑ)
are lightlike vectors along the beam axes, p⃗⊥,i and yi the transverse momentum with respect to the
beam axis and the rapidity of the hadronic final state particles, and mi their masses. This definition
of beam thrust, with all momenta and rapidities defined in the hadronic center of mass frame, is
often referred to as “hadronic beam thrust”. We will also briefly discuss the factorization theorems
for “partonic beam thrust” in Sec. 2.2.6.

The exclusive regime we are interested in corresponds to T ≪ Qe−|Y |, where Q =
√
q2 is the invariant

mass and Y the rapidity of the color-singlet state produced in th hard interaction. We always assume
ΛQCD ≪ T allowing for a perturbative description of the physics at this kinematic scale. The
factorization and resummation properties of this observable are well known in the massless case, see
e.g. Refs [13,43,44].

2.2.1 Factorization for massless quarks

For the measurement of beam thrust with T ≪ Qe−|Y | the relevant EFT modes are na-collinear,
nb–collinear and usoft modes with the scaling

na-collinear: pµna
∼ (T , ωa,

√
ωaT ) ,

nb-collinear: pµnb
∼ (ωb, T ,

√
ωbT ) ,

usoft: pµus ∼ (T , T , T ) , (2.73)

with ωa,b = Qe±Y as in Eq. (2.8). The scaling of the larger of the transverse momentum components
of the collinear modes sets the scaling of the transverse momentum of the dilepton pair

q2T ∼ QT e|Y | , (2.74)

8Sometimes beam thrust is defined with an additional factor of 1/Q, i.e. τB = T /Q.
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which implies that the condition T ≪ Qe−|Y | ensures that all contributions that are leading in the
SCET power counting also respect the scaling qT ≪ Q, that was assumed to perform the expansion
in Eq. (2.7).

The usoft and collinear modes are now separated in invariant mass, p2us ≪ p2na/b
, which is the character-

istic feature of a SCETI theory. In this case, there are no rapidity logarithms and the renormalization
and evolution is solely in invariant mass. The resulting factorization formula for massless quarks
reads [13]

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtbB

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T e|Y |

Q

)]
, (2.75)

with ωa,b and xa,b as in Eq. (2.8) and Y the rapidity of color-singlet state. This as well as the
expressions including mass effects in the subsequent subsections are valid for the primary hard scat-
tering, and do not account for spectator forward (multiparton) scattering effects, since the Glauber
Lagrangian of Ref. [73] has been neglected. (There are also corrections from perturbative Glauber
effects starting at O(α4

s) [74, 75], which are well beyond the order we are interested in, but can be
calculated and included using the Glauber operator framework of Ref. [73].) This is sufficient for
our purposes for discussing the mass effects in a prototypical SCETI scenario. Our results are also
directly relevant to include massive quark effects in the Geneva Monte-Carlo program [76,77], which
employs T as the jet resolution variable for the primary interaction and where multiparton effects are
included [78] via the combination with Pythia8 and its MPI model [79–81].

In contrast to the factorization theorems for the qT spectrum discussed in Sec. 2.1, where there
was always only one beam scale µB ∼ qT independent of the rapidity of the color-singlet state,
the factorization theorem in Eq. (2.75) introduces two separate beam scales µBa,b

=
√
ωa,bT , that

coincide only in the case ωa ∼ ωb ∼ Q, i.e. when eY ∼ 1. It is valid as long as both beam scales
are clearly separated from the hard scale, i.e. µBa,b

≪ Q. This implies that T e|Y | ≪ Q. This means
that in the case of a large rapidity of the color-singlet state, i.e. when the leptonic center of mass
frame is strongly boosted with respect to the hadronic center of mass frame, power corrections to the
factorization theorem are increasing. The resulting separation of the two beam scales when e|Y | ≫ 1
does not change the structure and the resummation properties of the factorization theorem in the
massless case, as long as both are still much smaller than the hard scale, but can lead to different
scalings of the mass of a heavy flavor with respect to the left and the right beam in the massive case.
To avoid these kind of complications, we will for the moment constrain ourselves to more central
rapidities and consider only the case ωa ∼ ωb ∼ Q in the following sections, such that there is only
one global beam scale µB =

√
QT . We will discuss the implications of a large hierarchy between the

two beam scales and the differences with respect of using the definition of beam thrust in the partonic
instead of the hadronic center of mass frame, where these asymmetries do not arise, in Sec 2.2.6.

The hard function Hij in Eq. (2.75) is measurement independent and the same as in Eq. (2.12).
The beam and soft functions depend on the measurement and are different from those in Eq. (2.12).
The soft function at the scale µ ∼ T is equivalent to the thrust soft function [82], which is known
to O(α2

s) [83, 84]. The virtuality-dependent beam functions Bi can be factorized into perturbative
matching coefficients Iik at the scale µ ∼ t ∼ √QT and the standard nonperturbative PDFs [13,85]

B
(nf )
i (t, x, µ) =

∑

k

I(nf )
ik (t, x, µ)⊗x f

(nf )
k (x, µ)

[
1 +O

(
Λ2
QCD

t

)]
. (2.76)

The symbol ⊗x denotes the Mellin-type convolution defined in Eq. (2.16). The matching coefficients
Iik have been calculated to O(α2

s) [86,87]. The noncusp anomalous dimensions required at N3LL are
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available from existing results [85]. The results for the massless beam and soft functions at order
O(αs) and O(α2

sCFTF ) are collected in appendix B. In Eq. (2.76) the beam function B is understood
to be defined with zero-bin subtractions [88] to eliminate any overlap with regions of lower virtuality.

We will now discuss the meaning of the zero-bin subtraction and compare it to an alternative approach
where this overlap is eliminated by a matching on so-called collinear-soft matrix elements, as shown
below. We denote with B the unsubtracted collinear matrix element

Bi

(
t, x =

ω

P− , µ
)
= ⟨pn(P−)|θ(ω)Oi(t, ω, µ)|pn(P−)⟩ (2.77)

where the light-like vector n is either na or nb, depending on whether we deal with the na- or nb-
collinear beam function, and n̄ is then the respective other light-like vector. The state |pn(P−) > is
the incoming proton state with momentum Pµ = P− nµ

2 and Oi a renormalized operator of collinear
SCET jet fields

Obare
i (|ω|b+, ω) = 1

ω
χ̄(i)
n (0)δ(b+ − n · P) /̄n

2

[
δ(ω − n̄ · P)χ(i)

n (0)
]

(2.78)

with momentum operator P acting always to the right (see Ref. [85] for details of the derivation and
notation). Then the beam function in Eq. (2.76) is defined as

B
(nf )
i (t, x, µ) = B

(nf )
i (t, x, µ)− zero-bin . (2.79)

These zero-bins are all scaleless in the massless case (i.e. zero in dimensional regularization), but are
conceptually necessary to render the full beam function matching coefficient IR finite, by exchanging
IR for UV divergences through the scaleless integrals. The matching of the beam function onto the
PDF in Eq. (2.76) cancels any IR divergences coming from collinear regions of lower virtuality, but
the zero-bin subtractions are still necessary to take care of the remaining IR divergences coming from
soft regions, such that the matching coefficient Iij(t, x, µ) is IR finite.

An alternative way, that makes these cancellations of IR divergences in the soft region more explicit,
is to match the unsubtracted collinear matrix elements B on a theory with all the hard-collinear
modes integrated out. In this effective theory below the matching scale we do not only have the
collinear modes at a lower virtuality, i.e. the PDFs as in Eq. (2.76), but also “collinear-soft” (csoft)
modes, that encode contributions from fluctuations from virtualities between the collinear and the
usoft scale. The scaling of the momenta of the collinear-soft modes is

na-csoft: pµcs ∼
(
T , k2/T ,

√
k2
)
,

nb-csoft: pµcs ∼
(
k2/T , T ,

√
k2
)
, (2.80)

where k2 is some virtuality between the collinear and the usoft scale, i.e. T 2 < k2 < QT . We refer to
these intermediate modes as collinear-soft, because they are boosted but are softer than the standard
collinear modes, thus coupling to the latter via Wilson lines and leading to a SCET+ theory [89]. This
type of intermediate SCET+ modes have appeared in various contexts [89–92]. Note that also the
scaling of the PDFs is collinear with a lower virtuality than the hard-collinear modes, with momenta
pµ ∼ (Q,Λ2

QCD/Q,ΛQCD), but with the large light-cone component having the same scaling as the one
of the beam function ∼ Q, while the collinear-soft modes are less boosted. Their momentum scaling
in Eq. (2.80) is defined such that they can in principle contribute to the beam thrust measurement
via their smaller light-cone component that is of order ∼ T . The matching relation between the two
theories when integrating out the hard-collinear modes at the beam scale is

B
(nf )
i (t, x, µ) =

∑

k

∫
dℓ I(nf )

ik (t− ωℓ, x, µ)⊗x f
(nf )
k (x, µ)S

(nf )
c (ℓ, µ)

[
1 +O

(
Λ2
QCD

t

)]
. (2.81)
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The csoft matrix elements Sc are defined as

Sc(ℓ, µ) =
1

Nc
tr
〈
0
∣∣∣T
[
X†

n(0)Vn(0)
]
δ(ℓ− n · P)T

[
V †
n (0)Xn(0)

]∣∣∣0
〉
, (2.82)

with the csoft Wilson lines given by (see e.g. Refs. [89, 90])

Xn =
∑

perms

exp

[
− g

n · P
νη/2

(n̄ · P)η/2 n ·Acs

]
, Vn =

∑

perms

exp

[
− g

n̄ · P
νη/2

(n̄ · P)η/2 n̄ ·Acs

]
, (2.83)

where the light-like vector n can again stand for either na or nb for the na and nb-collinear-soft
matrix element, respectively, and n̄ for the respective other light-like vector. The gluon fields Acs in
the Wilson lines are collinear-soft fields with the momentum scaling defined in Eq. (2.80). Here we
have used again the η regulator on the Wilson lines to regulate rapidity divergences, and have already
performed an expansion according to the collinear-soft scaling n̄ · P ≫ n · P. The rapidity regulator
is not necessary in the purely massless theory, where in fact all contributions to the csoft matrix
elements beyond tree-level are scaleless, but we already introduced it here since it will be important
once dealing with massive quark effects in the csoft matrix elements. Note that for the symmetric
η regulator the csoft matrix elements are symmetric under changing the directions na ↔ nb, which
will in general not be the case for a different choice for the rapidity regulator. The collinear matrix
elements Bi are the same as in Eq. (2.79) and fk are the standard PDFs. The beam function matching
coefficient Iik is a Wilson coefficient of a matching of two effective theories and is therefore always
IR finite because the IR divergences are the same in both theories.

For massless quarks the csoft matrix elements only lead to scaleless integrals beyond tree-level and
thereby convert exactly the same IR to UV divergences as the zero-bins of the collinear matrix
element. Because they appear on the right-hand side of the matching equation Eq. (2.81), they are
also subtracted from the partonic beam function matrix element B when calculating the matching
coefficient I, and therefore lead to the same results as using the beam function defined with zero-
bin subtractions. The massless csoft modes do not manifest themselves in any non-trivial matching
function between the beam and the soft scale, since there is no perturbative scale that would give
rise to non-scaleless integrals. Therefore these modes eventually contribute only to the soft-function
when their virtuality reaches k2 ∼ T 2, where they become identical to the soft modes. This is also the
reason why they need to be subtracted from the collinear matrix elements in order to avoid double
counting. The beam functions Bi how they appear in the factorization theorem are then defined
via the collinear matrix elements after subtracting the overlap with the soft region (given by the
collinear-soft matrix elements)

B
(nf )
i (t, x, µ) =

∫
dℓB

(nf )
i (t− ωℓ, x, µ)

(
S

(nf )
c (ℓ, µ)

)−1

=
∑

k∈{q,q̄,g}

I(nf )
ik (t, x, µ)⊗x f

(nf )
k (x, µ) . (2.84)

Since the scaleless collinear-soft matrix elements cancel the same IR divergences as the zero-bin
subtraction in B, the definitions of the beam function B in Eq. (2.84) and in Eq. (2.79) are equivalent
in the massless case. In the factorization theorem we are then left only with the soft function S, that
already contains the massless csoft modes, and the beam function as in Eq. (2.84).

The definition of the beam function in Eq. (2.84) provides an alternative way of defining the subtrac-
tion of the soft region from collinear matrix elements, compared to the definition with zero-bins in
Eq. (2.79), as a subtraction of collinear-soft matrix elements. The idea to associate the subtractions
of soft regions from collinear functions like the beam function to collinear-soft matrix elements was
already discussed in different contexts in Refs. [93, 94]. It was used in Ref. [1] to define infrared
finite matching coefficients for virtuality-dependent beam functions and recently also discussed in
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more detail in the context of the SCET quark jet function in Ref. [71]. This way of defining the
subtractions from regions of lower virtuality in the beam function as a csoft matrix element will be of
particular importance when dealing with massive quark effects in Sec. 2.2.3, where the virtuality of
the csoft modes related to the heavy flavor is fixed to k2 ∼ m2 and the corresponding massive csoft
matrix element gives non-trivial contributions at two-loops, leading to a so called csoft function as
an additional structure in the factorization theorem when integrating out the massive flavor.

The resummation of logarithms ln(T /Q) is performed by evaluating all functions at their characteristic
scales and evolving them to a common final scale µ using the solutions of the RGEs

µ
d

dµ
B

(nf )
i (t, x, µ) =

∫
dt′ γ

(nf )
B (t− t′, µ)B(nf )

i (t′, x, µ) ,

µ
d

dµ
S(nf )(ℓ, µ) =

∫
dℓ′ γ

(nf )
S (ℓ− ℓ′, µ)S(nf )(ℓ′, µ) . (2.85)

In contrast to Eq. (2.12), there is no rapidity evolution in SCETI for massless quarks. Consistency
of the RG evolution implies that

ωaγ
(nf )
B (ωaℓ, µ) + ωbγ

(nf )
B (ωbℓ, µ) + γ

(nf )
S (ℓ, µ) = γ

(nf )
H (Q,µ) δ(ℓ) . (2.86)

Here and in the following, when we talk about RG evolution of the beam function, it will always be
that of the subtracted beam function B, as it appears in the factorization theorem as Bi = Bi⊗S −1

c =∑
k Iik ⊗x fk as in Eq. (2.84). The anomalous dimension governing this evolution is given by

γ
(nf )
B (t, µ) = γ

(nf )
B (t, µ)− 1

ω
γ
(nf )
Sc

(t/ω, µ) , (2.87)

where by γB and γSc we denote the anomalous dimensions of the collinear operator in Eq.(2.78) and
the csoft matrix elements in Eq. (2.82), respectively. We do not provide the individual results for
γB and γSc as they are not infrared finite, in contrast to γB where the infrared divergences cancel
between the collinear and the csoft anomalous dimension. The massless contributions at O(αs) and
O(α2

sCFTF ) to γB and γS are given in App. B. In general when we use the term “beam function” we
will refer to the subtracted beam function Bi = Bi⊗S −1

c , not to be confused with the unsubtracted
matrix element Bi.

For beam thrust the number of possible scale hierarchies with a massive quark is larger due to the
fact that the (massless) collinear and soft modes have different invariant mass scales. The discussion
for the hierarchies with

√
QT ≪ m where the massive quark cannot be produced via real emissions,

is completely identical to qT ≪ m, since the quark mass effects in these cases are independent of the
low-energy measurement. For m ∼ Q, all mass effects are encoded by using the mass-dependent hard
function from Sec. 2.1.2 in Eq. (2.75) together with setting nf = nl in the rest of the factorization
theorem. Similarly, the case

√
QT ≪ m ≪ Q is described by using Eq. (2.75) with nf = nl, and

replacing the hard function by the product of massless (nl + 1)-flavor hard function and the soft and
collinear mass-mode functions Hs and Hc, as for the case qT ≪ m≪ Q in Sec. 2.1.3, i.e.

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄}

H
(nl+1)
ij (Q,µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

×
∫

dta dtbB
(nl)
i (ta, xa, µ)B

(nl)
j (tb, xb, µ)S

(nl)
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T
Q
,
m2

Q2
,
QT
m2

)]
.

(2.88)

We therefore proceed directly to the hierarchies m ≲
√
QT , where the massive quark can be produced

in collinear and/or soft real radiation. The four possible hierarchies and the relevant EFT modes in
the p+p−-plane are illustrated in Fig. 2.12, and are discussed in the following subsections.
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Figure 2.12: Effective theory modes for the beam thrust spectrum with massive quarks for m2/Q ≲
T ≪ Q and m≫ ΛQCD.

2.2.2 Quark mass effects for
√
QT ∼ m≪ Q

For
√
QT ∼ m ≪ Q massive quarks can be produced via collinear initial-state radiation, but not

via soft real radiation. After the hard matching, carried out with nl + 1 massless quark flavors as
discussed in Sec. 2.1.3, the degrees of freedom in the EFT are collinear and soft modes with the
scaling

na-collinear + MM: pµna
∼ (T , Q,

√
QT ) ∼

(m2

Q
,Q,m

)
,

nb-collinear + MM: pµnb
∼ (Q, T ,

√
QT ) ∼

(
Q,

m2

Q
,m
)
,

soft MM: pµs ∼ (m,m,m) ,

usoft: pµus ∼ (T , T , T ) , (2.89)

as illustrated in Fig. 2.12a. While the usual usoft modes live at a lower virtuality scale than the
collinear modes, the soft mass-modes are separated from the collinear modes only in rapidity, leading
to a mix of SCETI and SCETII features. In particular, there will be mass-related rapidity divergences.
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At the scale µ ∼ √QT ∼ m this theory with nl+1 dynamical quark flavors is matched onto a theory
with nl flavors, integrating out at the same time the massive flavor and also fluctuations related
to initial-state collinear radiation of massless particles, which corresponds to standard matching of
the (massless) beam functions onto the PDFs. The matching in the collinear sectors leads to mass-
dependent beam function coefficients Iik,

B
(nl+1)
i

(
t,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,g}

∫
dℓ Iik

(
t− ωℓ,m, x, µ, ν

ω

)
⊗x f

(nl)
k (x, µ)

×S (nl)
c (ℓ, µ)

[
1 +O

(Λ2
QCD

m2
,
Λ2
QCD

t

)]
, (2.90)

Note that both the PDF and the csoft matrix elements are evaluated with only nl massless quarks.
This leads to only scaleless integrals in the csoft matrix elements, which corresponds to subtracting
the zero-bins for the massless quarks.

The beam function that then appears in the factorization theorem is given by

B
(nl+1)
i

(
t,m, x, µ,

ν

ω

)
=

∫
dℓB

(nl+1)
i

(
t− ωℓ,m, x, µ, ν

ω

)(
S (nl)

c (ℓ, µ)
)−1

=
∑

k∈{q,q̄,g}

Iik
(
t,m, x, µ,

ν

ω

)
⊗x f

(nl)
k (x, µ)

[
1 +O

(Λ2
QCD

m2
,
Λ2
QCD

t

)]
, (2.91)

where Iik(t,m, x, µ, νω ) is defined by the matching relation in Eq. (2.90). Note that here the subtraction
of collinear-soft modes (as well as that of the PDFs) is performed with only nl massless flavors, while
the full collinear matrix element B is calculated with nl + 1 flavors. This still leads to an IR finite
matching coefficient because the contributions of a massive quark to B do not introduce additional
IR divergences because for m ∼ √QT the mass is kept finite. We have for the first time calculated
the previoulsy unkown contributions from massive quarks to the virtuality dependent beam functions,
some details on the calculations can be found in appendix D. The results at O(αs) and O(α2

sCFTF )
for the mass dependent Iik are given in Sec. C.2.2. Since the massive flavor is integrated out at
this scale it is absent in the lower energy effective theory and does therefore not contribute to the
subtractions. In principle it would also be possible to not fully integrate out the heavy flavor and
include it also in the subtractions, which corresponds to the definition of the beam function in the
UF scheme. This approach and its relation to the MMF scheme presented in this chapter, where
the heavy flavor is always completely integrated out at its respective mass scale, will be discussed in
chapter 4.

The dependence on the rapidity scale ν here arises due to virtual secondary massive quark corrections
and is the same as for the collinear mass-mode matching function Hc already given in Eq. (2.22), i.e.,

ν
d

dν
B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
= γν,Hc(m,µ)B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
. (2.92)

In the soft sector the soft mass modes are integrated out, leaving only the usoft modes. This gives
exactly the soft mass-mode matching function Hs already given in Eq. (2.22), which encodes the
effects of virtual secondary massive quark radiation. As usual, also the strong coupling constant has
to be matched from nl + 1 to nl flavors. The remaining contributions at the lower scales, the soft
function and the PDFs, are given in terms of nl massless flavors and in the (nl)-scheme for αs. The
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resulting factorized cross section reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)

∫
dta dtb

×
[ ∑

k∈{q,q̄,g}

Iik
(
ta,m, xa, µ,

ν

ωa

)
⊗x f

(nl)
k (xa, µ)

]

×
[ ∑

k∈{q,q̄,g}

Ijk
(
tb,m, xb, µ,

ν

ωa

)
⊗x f

(nl)
k (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T
Q
,
m2

Q2
,
T 2

m2
,
Λ2
QCD

QT
)]
. (2.93)

The resummation of logarithms in Eq. (2.93) is obtained by evolving all functions from their natural
scales, as illustrated in Fig. 2.13a. The mass-dependent ν evolution, which resums the rapidity
logarithms ln(Q/m), is identical to the one for the hard functions Hc and Hs in Sec. 2.1.3. The
µ evolution can be conveniently carried out by evolving the hard, beam, and soft functions with
nl + 1 active flavors above the mass scale and with nl active flavors below the mass scale, which
automatically takes into account the µ dependence of Hs. To see this, the consistency of RG running
for Eq. (2.93) together with the consistency relation for nl + 1 massless quarks in Eq. (2.86) implies

ωaγ
(nl+1)
B,m

(
ωaℓ,m, µ,

ν

ωa

)
+ ωbγ

(nl+1)
B,m

(
ωbℓ,m, µ,

ν

ωb

)
+ γ

(nl)
S (ℓ, µ) + γHs,µ(m,µ, ν) δ(ℓ)

= ωaγ
(nl+1)
B (ωaℓ, µ) + ωbγ

(nl+1)
B (ωbℓ, µ) + γ

(nl+1)
S (ℓ, µ) , (2.94)

where γ
(nl)
S , γ

(nl+1)
S , γ

(nl+1)
B are the anomalous dimensions for the soft and beam functions with nl and

nl + 1 massless flavors as defined in Eq. (2.85), and γ
(nl+1)
B,m (t,m, µ, ν/ω) is the anomalous dimension

of the mass-dependent beam function,

µ
d

dµ
B

(nl+1)
i

(
t,m, x, µ,

ν

ω

)
=

∫
dt′ γ

(nl+1)
B,m

(
t− t′,m, µ, ν

ω

)
B

(nl+1)
i

(
t′,m, x, µ,

ν

ω

)
. (2.95)

The consistency relation in Eq. (2.94) can be confirmed explicitly at two loops with the expressions in

eqs. (B.11), (B.18), (C.9), and (C.23). Note that this relation does not imply that γ
(nl+1)
B,m (t,m, µ, ν/ω)

and γ
(nl+1)
B (t, µ) are the same, which is indeed not the case for the massive quark corrections as is

shown explicitly in Sec. C.2. The reason is that the presence of the quark mass leads to a SCETII-type
theory, in which the required rapidity regularization redistributes the µ anomalous dimension between
soft and collinear corrections with individually regularization scheme dependent pieces. Only their
sum, as given on the left-hand side of Eq. (2.94), is independent of the regularization scheme and
yields the combined running for beam and soft functions with nl + 1 massless flavors above µm ∼ m,
as given on the right-hand side of Eq. (2.94).

2.2.3 Quark mass effects for T ≪ m≪ √QT

When the beam scale becomes larger than the mass scale, but the soft scale is still smaller than the
mass, which happens for m2/Q ≪ T ≪ m, the beam function matching coefficients Iik encode only
fluctuations related to initial-state collinear radiation with nl + 1 massless quarks, i.e. the heavy
flavor is treated as an additional massless quark in that matching. The EFT below

√
QT contains

the usual collinear and soft mass modes scaling as pµm,na ∼ (m2/Q,Q,m), pµm,nb ∼ (Q,m2/Q,m)
and pµm,s ∼ (m,m,m) that can not contribute to the beam thrust measurement in this hierarchy.
Integrating out these modes leads to the PDF matching coefficients Mij and the soft mass mode
matching function Hs, respectively.
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Figure 2.13: Illustration of the renormalization group evolution for beam thrust of the hard, beam,
soft, and parton distribution function in virtuality µ (vertical) and rapidity ν (horizontal). The
anomalous dimensions for each evolution step involve the displayed number of active quark flavors.
The label m indicates that the corresponding evolution is mass dependent.

However, besides these there are also the collinear-soft modes as described in Eq. (2.80). They were
defined as collinear modes at an invariant mass scale k2 smaller than the beam scale and the scaling
of their momentum components determined by the condition that they can have a dynamic impact
on the T spectrum, as illustrated also in Fig. 2.12b. For massive modes their invariant mass is set by
the on-shell constraint k2 ∼ m2, yielding the scaling for the collinear-soft mass modes

na-csoft MM: pµcs,na
∼
(
T , m

2

T ,m
)
,

nb-csoft MM: pµcs,nb
∼
(m2

T , T ,m
)
. (2.96)

The matching in the collinear sector can be performed in two steps as in Eqs. (2.29) and (2.30). After
integrating out all of the mass modes, the PDF and the soft function are still given in a (nl)-flavor
theory. Thus the factorization formula reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)

∫
dka dkb Sc(ka,m, µ, ν)Sc(kb,m, µ, ν)

×
∫
dta

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ)⊗xMkl(xa,m, µ)⊗x f

(nl)
l (xa, µ)

]

×
∫
dtb

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk (tb, xb, µ)⊗xMkl(xb,m, µ)⊗x f

(nl)
l (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
− ka − kb, µ

)[
1 +O

(T
Q
,
m2

QT ,
T 2

m2
,
Λ2
QCD

m2

)]
. (2.97)

The beam function matching coefficient I(nl+1)(t, x, µ) arises from integrating out hard-collinear
modes in the (nl + 1)-flavor theory at the scale µ ∼ √QT ≫ m. Since the matching scale is
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much larger than the mass scale, all quarks can be considered massless

B
(nl+1)
i (t, x, µ) =

∫
dℓB

(nl+1)
i (t− ωℓ, x, µ)

(
S (nl+1)

c (ℓ, µ)
)−1

=
∑

k∈{q,q̄,Q,Q̄,g}

I(nl+1)
ik (t, x, µ)⊗x f

(nl+1)
k (x, µ)

[
1 +O

(Λ2
QCD

t

)]
. (2.98)

Since all quarks are treated as massless, all contributions in S
(nl+1)
c are in fact again scaleless and

only render the matching coefficient IR finite by converting IR to UV divergences through the scaleless
integrals.

The functions Sc in Eq. (2.97) are the csoft matching functions encoding the interactions of the
collinear-soft radiation at the invariant mass scale µ ∼ m and the rapidity scale ν ∼ m2/T . They
arise from integrating out collinear-soft fluctuations of the heavy flavor at the mass scale and are
defined as the matching coefficient of the collinear-soft matrix elements between the theories with
and without the heavy flavor

S (nl+1)
c (ℓ,m, µ, ν) =

∫
dℓ′ Sc(ℓ− ℓ′,m, µ, ν)S (nl)

c (ℓ′, µ) . (2.99)

At the matching scale µ ∼ m the full mass dependence is kept in the (nl + 1)-flavor theory, such

that the collinear-soft matrix elements including the heavy flavor S
(nl+1)
c now give non-vanishing

contributions, in contrast to Eq. (2.98) where all quarks were treated as massless. The previously
unknown csoft function Sc at O(α2

s) is calculated in Sec. D.5, the results are summarized in Sec. C.4.2.

The Mij correspond to the well-known PDF matching correction incorporating the effect of the
collinear mass modes, as in Eq. (2.31), with the results at O(αs) and O(α2

sCFTF ) given in Sec. C.2.3.
The virtual soft massive quark corrections are still described by the function Hs at the rapidity scale
ν ∼ m as in the factorization theorem for m ∼ √QT in Eq. (2.93).

The RG evolution for Eq. (2.97) is illustrated in Fig. 2.13b. The csoft function satisfies the same
rapidity RGE as the collinear mass-mode functions Hc appearing in the factorization theorem for√
QT ≪ m≪ Q in Eq. (2.88) and the massive beam functions for m ∼ √QT in Eq. (2.92), i.e.,

ν
d

dν
Sc(k,m, µ, ν) = γν,Hc(m,µ)Sc(k,m, µ, ν) . (2.100)

The only difference with respect to the rapidity evolution in the factorization theorem for m ∼ √QT
in Eq. (2.93) is that it now happens between Hs with ν ∼ m and Sc with νSc ∼ m2/T rather than
between Hs and the beam functions with νB ∼ Q, such that now the rapidity logarithms ln(m/T )
are resummed. The µ evolution can be performed with nl + 1 flavors for the hard function Hij , the
beam and soft function above the mass scale and with nl flavors below. This automatically accounts
for the µ dependence of Sc and Hs above µm ∼ m, which precisely gives the difference between the
evolution of the soft function with nl +1 and nl flavors, as implied by the consistency of RG running
for Eq. (2.97) and the relation in Eq. (2.86) with nl + 1 massless quarks,

γ
(nl)
S (ℓ, µ) + 2γSc(ℓ,m, µ, ν) + δ(ℓ) γHs(m,µ, ν) = γ

(nl+1)
S (ℓ, µ) , (2.101)

where

µ
d

dµ
Sc(k,m, µ, ν) =

∫
dk′ γSc(k − k′,m, µ, ν)Sc(k,m, µ, ν) . (2.102)

At two loops, the consistency relation Eq. (2.101) can be confirmed with the explicit expressions given
in Eqs. (B.18), (C.33), and (C.9).
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2.2.4 Quark mass effects for T ∼ m and m≪ T

For T ∼ m the csoft and soft mass modes in the previous section merge with the usual usoft modes,

usoft: pµs ∼ (T , T , T ) ∼
(
T , m

2

T ,m
)
∼ (m,m,m) . (2.103)

In this hierarchy massive quarks can be also produced in soft real radiation leading to a soft function
at the scale µ ∼ T that depends on the quark mass. In addition, there are the massless collinear
modes as well as the collinear mass modes, as illustrated in Fig. 2.12c. Since we still have m≪ √QT ,
the matching in the collinear sectors is the same as for the case T ≪ m ≪ √QT discussed in the
previous subsection. The factorization formula reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)

∫
dta dtb

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ)⊗xMkl(xa,m, µ)⊗x f

(nl)
l (xa, µ)

]

×
[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
jk (tb, xb, µ)⊗xMkl(xb,m, µ)⊗x f

(nl)
l (xb, µ)

]

× S(nl+1)
(
T − ta

ωa
− tb
ωb
,m, µ

)[
1 +O

(T
Q
,
m2

QT ,
Λ2
QCD

m2

)]
. (2.104)

Now all rapidity divergences cancel within the soft function and do not leave behind any potentially
large rapidity logarithms. The RG evolution for this case is illustrated in Fig. 2.13c. The massive
quark corrections at O(α2

sCFTF ) to the soft function S(T ,m, µ) are given in Sec. C.4.3.

Finally for m ≪ T , if expressed in terms of the nl + 1-flavor scheme for αs, the massless limit can
be taken in the soft funciton S(nl+1)(T ,m, µ) without encountering any IR singularities. Otherwise,
Eq. (2.104) remains unchanged, such that now the only dependence on the mass scale arises in the
PDF matching correctionsMij . The hard, beam, and soft functions can now be always evolved with
nl+1 massless flavors and only the evolution of the PDF changes, when crossing the flavor threshold.

2.2.5 Relations between hierarchies

We now discuss how the functions appearing in the different factorization formulae are related to
each other. The relations between the modes and their contributions are illustrated in Fig. 2.14 for
the different possible hierarchies. As in Sec. 2.1.6, these relations show how one can combine the
resummation of logarithms relevant in one regime with the power-suppressed fixed-order content that
becomes important in the neighboring regimes, enabling a systematic inclusion of mass corrections
across the entire T spectrum. For a specific way of implementing these power corrections, discussed
for the example of DIS in the endpoint region, we refer to Sec. 4.2.1. Here and in the following we
will use the notation of Eqs. (2.33) and (2.36) when giving explicit results at one and two-loops.

Similar to Eq. (2.38) for the TMD beam functions, the mass-dependent beam function coefficients
appearing for

√
QT ∼ m (incorporating massive quark fluctuation as discussed in Sec. 2.2.2) are

related to those for
√
QT ≪ m with nl massless quarks and the collinear mass-mode function Hc by

Iik
(
t,m, x, µ,

ν

ω

)
t≪m2

= Hc

(
m,µ,

ν

ω

)
I(nl)
ik (t, x, µ)

[
1 +O

( t

m2

)]
. (2.105)

At the same time, the mass-dependent beam function also encodes information about the fixed-order
content for T ≪ m≪ √QT . Comparing Eqs. (2.93) and (2.97), they are related to those with nl +1
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massless flavors, the PDF matching functions, and the csoft function Sc by

Iik
(
t,m, x, µ,

ν

ω

)
m2≪t
=

∑

j={q,q̄,Q,Q̄,g}

∫
dℓ I(nl+1)

ij (t−Qℓ, x, µ)⊗xMjk(x,m, µ)Sc(ℓ,m, µ, ν)

×
[
1 +O

(m2

t

)]
. (2.106)

The mass-dependent soft function for T ∼ m in Eq. (2.104) contains massive quark fluctuations that
for T ≪ m get split into the massless soft function with nl flavors, the soft mass mode function Hs,
and the csoft function Sc in Eq. (2.97) as

S(nl+1)(ℓ,m, µ)
ℓ≪m
= Hs(m,µ, ν)

∫
dℓ′ S(nl)(ℓ− ℓ′, µ)Sc(ℓ′,m, µ, ν)

[
1 +O

( ℓ2
m2

)]
. (2.107)

Finally, as already mentioned below Eq. (2.104), the soft function approaches its massless limit for
m≪ T ,

S(nl+1)(ℓ,m, µ)
m≪ℓ
= S(nl+1)(ℓ, µ)

[
1 +O

(m2

ℓ2

)]
. (2.108)

In the following we will verify the relations betweent the different hiearchies discussed above for
the beam and soft functions up to O(α2

s). We also scrutinize the numerical impact of the power
corrections for these functions. We focus in particular on the O(m2/QT ) corrections the T spectrum
for b quarks, which are contained in the factorization theorem Eq. (2.93) for

√
QT ∼ m but not in

the small mass limit for m≪ √QT in Eqs. (2.97) and (2.104).

For the numerical results we use the MMHT2014 NNLO PDFs [72] and evaluate the contributions
for µ = mb = 4.8 GeV, ω = mZ , and Ecm = 13 TeV. The main qualitative features of the results do
not depend on these specific input parameters.
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The virtuality-dependent massive quark beam function coefficient at one loop is given in Eq. (C.19).
In the limit t≪ m2 the primary massive quarks correctly decouple,

I(1)Qg (t,m, z)
t≪m2

= O
( t

m2

)
. (2.109)

In the opposite limit m2 ≪ t we get

I(1)Qg (t,m, z)
m2≪t
= TF θ(1− z)θ(z)

{
2Pqg(z)

1

µ2
L0
( t

µ2

)
+ δ(t)

[
2Pqg(z)

(
−Lm + ln

1− z
z

)

+ 4z(1− z)
]}

+O
(
m2

t

)

= I(1)qg (t, z, µ) + δ(t)M(1)
Qg(m, z, µ) +O

(m2

t

)
, (2.110)

as required by the relation (2.106). The massless one-loop matching coefficient I(1)qg and the PDF

matching coefficientM(1)
Qg are given in Eqs. (B.9) and (C.24), respectively.

The secondary massive quark corrections to the virtuality-dependent quark beam function I(2,h)qq (t,m, z)
are given in Eq. (C.20). In the decoupling limit t≪ m2 all its nondistributional terms becomeO(t/m2)
power suppressed. Combining the remaining distributional terms in t with the contributions arising
from changing the scheme of the strong coupling from nl + 1 to nl flavors according to Eq. (2.34),
yields9

TFI(2,h)qq

(
t,m, z, µ,

ν

ω

)
− 4

3
TFLmI(1)qq (t, z, µ)

t≪m2

= δ(t)δ(1− z)H(2)
c

(
m,µ,

ν

ω

)
+O

( t

m2

)
, (2.111)

in agreement with Eq. (2.105). The massless result for I(1)qq and the collinear mass-mode function

H
(2)
c are given in Eqs. (B.9) and (C.10), respectively. In the limit m2 ≪ t we get

TFI(2,h)qq

(
t,m, z, µ,

ν

ω

)

m2≪t
= TFI(2,l)qq (t, z, µ) + δ(t)M(2)

qq (m, z, µ) + δ(1− z) 1
ω
S(2)c

( t
ω
,m, µ, ν

)
+O

(m2

t

)
. (2.112)

All infrared mass dependence is contained in the PDF matching coefficient and the csoft function, as
required by Eq. (2.106). The functions on the right-hand side are given in eqs. (B.10), (C.25), and
(C.32), respectively.

There are also secondary massive quark corrections at O(α2
sT

2
F ) to the Compton-type gluon initiated

process shown in Fig. 2.7, encoded in the coefficient I(2,h)qg (t,m, z). Since they arise only from virtual
corrections to an external gluon line, the limiting behavior for this coefficient is trivial, since it vanishes
identically in the (nl)-flavor scheme for αs, and in the (nl + 1)-flavor scheme for αs it is exactly

TF I(2,h)qg (t,m, z, µ) = I(1)qg (t, z, µ)⊗zM(1)
gg (m, z, µ) . (2.113)

The mass-dependent O(α2
s) corrections to the (beam) thrust soft function are given in Eq. (C.34).

In the limit ℓ ≪ m all its nondistributional ℓ-dependent terms become O(ℓ2/m2) power suppressed.
Combining the remaining distributional terms with the contributions arising from changing the scheme
of the strong coupling from nl + 1 to nl flavors yields

TFS
(2,h)(ℓ,m, µ)− 4

3
TFLmS

(1)(ℓ, µ)
ℓ≪m
= δ(ℓ)H(2)

s (m,µ, ν) + S(2)c (ℓ,m, µ, ν) +O
( ℓ2
m2

)
, (2.114)

9We remind the reader that this scheme change of αs to the nl flavor scheme is necessary to recover the decoupling
limit, while for the massless limit we need αs in the nl + 1 flavor scheme.
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Figure 2.15: Massive b-quark beam function (left panel) and the convolution between two of these
(right panel) together with the m→ 0 limit as a function of

√
t ∼ √QT .
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Figure 2.16: Secondary massive b-quark corrections to the u-quark beam function for Y = 0 (left
panel) and the soft function (right panel) at O(α2

sCFTF ) for µ = mb as functions of
√
t ∼ √QT and

ℓ ∼ T , respectively.
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Figure 2.17: EFT modes for the massless factorization theorem for hadronic beam thrust for
ωa ∼ ωb ∼ Q (left) and ωb ≪ Q≪ ωa (right).

in agreement with Eq. (2.107). The massless one-loop thrust soft function S(1), the soft mass-mode

function H
(2)
s , and the csoft function S(2)c can be found in eqs. (B.16), (C.8), and (C.32), respectively.

For m≪ ℓ the correct massless result is recovered,

S(2,h)(ℓ,m, µ)
m≪ℓ
= S(2,l)(ℓ, µ) +O

(m2

ℓ2

)
, (2.115)

which was already checked in Ref. [95].

In Fig. 2.15, we show the numerical results for the one-loop massive beam function and the con-
volution between two of these (which is the leading order correction from primary massive quarks
for the Z-boson production) as a function of

√
t ∼ √QT . The mass effects become relevant for√

t ∼ mb ∼ 5 GeV (corresponding to T ≲ 1 GeV for Q = mZ). In Fig. 2.16, we show the result for
the secondary O(α2

sCFTF ) corrections to the beam and soft function. The corrections to the massless
limit for the beam function remain sizable even for

√
t ≳ 2mb. For the soft function, the mass effects

are important for T ∼ ℓ ∼ mb and become small for ℓ > 10GeV ∼ 2mb.

2.2.6 Factorization theorems for large rapidities and partonic beam thrust

In the previous subsections we always assumed the scaling ωa ∼ ωb ∼ Q, such that one needs to
consider only one beam scale µB = µBa = µBb

∼ √QT . The form of the massive factorization
theorems for beam thrust in the previous sections are therefore only valid for the case of not too large
rapidities of the color-singlet state, i.e. eY ∼ 1. But the massless factorization theorem in Eq. (2.75)
is in principle valid also for e|Y | ≫ 1, as long as the condition T e|Y | ≪ Q is fulfilled. In the following
we will extend the massive factorization theorems to the more general case of rapidities in the range
1≪ e|Y | ≪ Q/T 10. We will also explain that the issue of large rapidities does not show up when using
a different definition of beam thrust. These issues when dealing with larger rapidities in the massive
case were not discussed in Ref. [1] where eY ∼ 1 was always assumed implicitly. The content of the

10As before we will always assume that e|Y | ≪ Ecm/Q in order to avoid large threshold logarithms.
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following section of this thesis is new and provides a framework capable of dealing with situations
where Y is not small.

The scaling of the light-cone components of the momenta of the relevant collinear and ultra-soft modes
of SCET and the hard fluctuations that are integrated out is determined by the momentum entering
the hard interaction, which sets the larger light-cone components of the collinear modes to ωa and
ωb, and the beam thrust measurement that fixes the small light-cone components to T . Combining
these conditions with the typical collinear and ultra-soft scaling of the SCET modes gives

hard: pµh ∼ (ωb, ωa,
√
ωaωb) ,

na-collinear: pµna
∼ (T , ωa,

√
ωaT ) ,

nb-collinear: pµnb
∼ (ωb, T ,

√
ωbT ) ,

usoft: pµus ∼ (T , T , T ) , (2.116)

as shown in Fig. 2.17. This implies that in principle one effectively introduces two separate beam
scales in the factorization theorems

µBa ∼
√
ωaT ∼ µB eY/2 , µBb

∼
√
ωbT ∼ µB e−Y/2 . (2.117)

For the rest of this section we will always assume that Y > 0, such that µBb
< µBa . In the case of a

rapidity Y < 0 one can just swap the two beam directions a ↔ b. Only in the case of not too large
rapidities the two beam scales are of the same order and can be replaced by one global beam scale
µB. If Y is becoming larger, a large hierarchy is introduced between the two beam scales, µBb

≪ µBa ,
see Fig. 2.17b. While this does not affect the structure of the massless factorization theorem, as long
as both of them are still clearly separated from the hard scale Q, this can be different in the massive
case, where the scaling of the mass of the heavy flavor with respect to the other kinematic scales is
of importance.

In the cases of m≪ √QT e−Y/2 or m≫ √QT eY/2, i.e. the mass being much smaller than the smaller
beam scale or much greater than the larger beam scale, the structure of the factorization theorems
is unaffected. For m ≪ √QT e−Y/2 the mass effects are encoded in the csoft or the soft function,
and both beam functions (as well as the hard function) are the ones for nl + 1 massless flavors.
For m ≫ √QT eY/2 the mass effects are contained in the hard or the current mass mode matching
functions, and both beam functions (as well as the soft function) are the ones for nl massless flavors.

But if the mass is in the range
√
QT e−Y/2 ≲ m ≲

√
QT eY/2, it has a different scaling with respect

to one beam scale than with respect to the other one, leading to asymmetric factorization theorems,
for which we need to consider three different possible hierarchies. Since the mass in these three
hierarchies is always much smaller than the hard scale and much greater than the soft scale, we can
always write the hard function with nl + 1 massless flavors and the soft function with nl massless
flavors. Additionally there is the soft current mass mode matching function Hs from integrating
out the heavy flavor in the soft sector. But in the collinear sector the structure of the factorization
theorems varies for the three different possible hierarchies.

Factorization theorem for
√
QT e−Y/2 ≪ m ∼ √QT eY/2

In this hierarchy the mass is of order of the large beam scale and therefore - because here we are
always assuming µBb

≪ µBa - much larger than the second beam scale, µBb
≪ µBa ∼ m. This means

that when integrating out the heavy flavor at the mass scale, it happens at the same scale where hard
collinear radiation is integrated out when matching the beam function for beam a on the PDF, which
results in a mass dependent matching coefficient Iik. On the other hand, in beam b the mass scale is
still much greater than the beam scale, which means that the heavy flavor is integrated out in the full
SCET current, leading to a collinear current mass mode matching function Hc. The beam function
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for beam b is then the same as in the massless case with nl massless flavors. The full factorization
theorem for this hierarchy reads

dσ

dQ2 dY dT =
∑

i∈{q,q̄,Q,Q̄}
j∈{q,q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)Hc

(
m,µ,

ν

ωb

)∫
dta dtb

×
[ ∑

k∈{q,q̄,g}

Iik
(
ta,m, xa, µ,

ν

ωa

)
⊗x f

(nl)
k (xa, µ)

]

×
[ ∑

k∈{q,q̄,g}

I(nl)
jk (tb, xb, µ)⊗x f

(nl)
k (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T e|Y |

Q
,
m2

Q2
,
QT e−|Y |

m2
,
Λ2
QCDe

|Y |

QT
)]
. (2.118)

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with nl
massless flavors below and with nl+1 massless flavors above the mass scale. The rapidity logarithms
can be resummed in rapidity evolution of the current matching functions Hc and Hs and the mass-
dependent beam function matching coefficient.

In neutral current Drell-Yan, mass effects of the heavy flavor are relevant in the factorization theorem
only for secondary radiation, as in Fig. 1.1b. In the beam function with µBa ∼

√
QT eY/2 ∼ m, primary

massive quark effects can in principle be relevant, leading to heavy quark matching coefficients of the

form I(1)Qg at O(αs). But in the second beam function, at the scale µBb
∼ √QT e−Y/2 ≪ m, effects of

heavy flavor production are suppressed as µ2Bb
/m2 and the heavy flavor is therefore already integrated

out as an active degree of freedom above the beam scale µBb
. In this beam the mass effects of the

heavy flavor are contributing at leading order in the power counting only via virtual effects in the
current matching function Hc. Therefore there is no corresponding real heavy (anti-)quark as an
active degree of freedom in that beam to enter the hard interaction, such that there are no primary
massive quark effects as in Fig. 1.1a in the case of neutral current Drell-Yan in this hierarchy. In
charged current Drell-Yan, however, primary mc-effects start to contribute already at order O(αs),
because the light strange quark can be generated non-perturbatively in the proton, which allows for
primary massive quark effects also in this hierarchy, with the heavy flavor (in this case a charm quark)
produced only in one of the beams. We emphasize again that in the case of charged current Drell-Yan
our results currently only allow for NNLL resummation, as compared to NNLL′ resummation in the
case of neutral current Drell-Yan, because of unknown O(α2

s) primary massive contributions.

Factorization theorem for
√
QT e−Y/2 ≪ m≪ √QT eY/2

In this hierarchy the mass lies between the two beam scales, such that it is parametrically separated
from both, µBb

≪ m ≪ µBa . In beam b, the beam scale is much smaller than the mass scale. Here,
when the heavy flavor is integrated out at the mass scale, this still happens in the SCET current,
leading to a collinear current matching function Hc. Since the heavy flavor is then already integrated
out at the beam scale, the beam function is just the same as in the massless case with nl massless
flavors. In beam a the mass is much smaller than the beam scale. This means that when matching the
beam function on the PDF in this beam, the heavy flavor can still be treated as massless, leading to
a massless beam function matching coefficient with nl+1 flavors. The heavy flavor is then integrated
out at a lower scale, leading to a PDF matching coefficientM and csoft function Sc. The factorization
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theorem for this hierarchy reads

dσ

dQ2 dY dT =
∑

i∈{q,q̄,Q,Q̄}
j∈{q,q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)Hc

(
m,µ,

ν

ωb

)∫
dka Sc(ka,m, µ, ν)

×
∫

dta

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ, )⊗xMkl(xa,m, µ)⊗ f (nl)

l (xa, µ)

]

×
∫

dtb

[ ∑

k∈{q,q̄,g}

I(nl)
jk (tb, xb, µ)⊗x f

(nl)
k (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
, µ
)[

1 +O
(T e|Y |

Q
,
m2e−|Y |

QT ,
QT e−|Y |

m2
,
Λ2
QCDe

|Y |

QT
)]
. (2.119)

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with nl
massless flavors below and with nl+1 massless flavors above the mass scale. The rapidity logarithms
can be resummed in rapidity evolution of the current matching functions Hc and Hs and the csoft
function Sc.
Also in this hierarchy primary massive quark effects are included only for charged current Drell-Yan,
because the heavy flavor is already integrated out as an active degree of freedom in one of the beam
functions.

Factorization theorem for m ∼ √QT e−Y/2 ≪ √QT eY/2

In this hierarchy the mass is of order of the smaller beam scale (beam b) and therefore much smaller
than the scale of beam a, i.e. m ∼ µBb

≪ µBa . In beam b, where the beam scale is of order of the
mass scale, the heavy flavor is integrated out at the same scale where the beam function is matched
on the PDF, giving a mass dependent beam function matching coefficient Ijk. In beam a, the heavy
flavor can still be treated massless when performing the matching on the PDF, giving a beam function
matching coefficient with nl + 1 massless flavors. Integrating out the heavy flavor at a lower scale
leads to a PDF matching coefficient M and a csoft function Sc. The factorization theorem for this
hierarchy reads

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄,Q,Q̄}

H
(nl+1)
ij (Q,µ)Hs(m,µ, ν)

∫
dka Sc(ka,m, µ, ν)

×
∫
dta

[ ∑

k∈{q,q̄,Q,Q̄,g}

∑

l∈{q,q̄,g}

I(nl+1)
ik (ta, xa, µ)⊗xMkl(xa,m, µ)⊗x f

(nl)
l (xa, µ)

]

×
∫
dtb

[ ∑

k∈{q,q̄,g}

Ijk
(
tb,m, xb, µ,

ν

ωb

)
⊗x f

(nl)
k (xb, µ)

]

× S(nl)
(
T − ta

ωa
− tb
ωb
− ka − kb, µ

)[
1 +O

(T e|Y |

Q
,
m2e−|Y |

QT ,
T 2

m2
,
Λ2
QCDe

|Y |

QT ,
Λ2
QCD

m2

)]
.

(2.120)

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with nl
massless flavors below and with nl+1 massless flavors above the mass scale. The rapidity logarithms
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can be resummed in rapidity evolution of the current matching functions Hs, the mass-dependent
beam function matching coefficient and the csoft function Sc.
In this hierarchy primary heavy quarks can be produced at leading order in the power counting in
both beams, so there are primary massive contributions also to neutral current Drell-Yan.

Factorization theorems for partonic beam thrust

So far we have always considered the definition of beam thrust in the hadronic center of mass frame as
given in Eq. (2.72). It is the sum of the projections of the momenta of all hadronic final-state particles
on one of the two light-like vectors na and nb, depending on which hemisphere the particle is in. The
hemispheres are defined as perpendicular to the beam axis in the lab frame (the hadronic center of
mass frame), such that particles with rapidity y > 0 are assigned to hemisphere a and particles with
rapidity y < 0 to hemisphere b. The above definition uses the momenta of the final-state particles
and the hemispheres perpendicular to the beam axis in the hadronic center of mass frame. Therefore
this observable is referred to as hadronic beam thrust T .
A similar definition of beam thrust, that is in fact the original definition in Ref. [13], is in the partonic
center of mass frame. Here partonic center of mass frame refers to the frame that is related to the
hadronic center of mass frame by a boost along the beam axis such that the rapidity of the color
singlet state becomes zero, i.e. it is not the exact partonic center of mass frame because the color
singlet state could still have transverse momentum. Then all momenta of the hadronic final-state
particles in the partonic center of mass frame are projected on the two light-like vectors na and nb,
with the two hemispheres being perpendicular to the beam axis in the partonic center of mass frame.
That observable is called partonic beam thrust T̂

T̂ =
∑

i

min{na ·p̂i, nb ·p̂i} =
∑

i

e−|ŷi|
√
|p⃗⊥,i|2 +m2

i , (2.121)

where p̂i and ŷi are now the momenta of the hadronic final-state particles and their rapidities in the
partonic center of mass frame. Boosting back to the hadronic center of mass frame, the definition of
partonic beam thrust becomes

T̂ =
∑

i

min{eY na ·pi, e−Y nb ·pi} =
∑

i

e−|yi−Y |
√
|p⃗⊥,i|2 +m2

i , (2.122)

where Y is again the rapidity of the color-singlet state, that defines the boost between the partonic
and the hadronic center of mass frames. This means that the momenta of particles in hemisphere a/b
are weighted by an additional factor of e±Y , but also that the definition of the hemispheres in the lab
frame is changed. Particles are now assigned to the hemispheres according to the condition y > Y for
hemisphere a and y < Y or hemisphere b. This means that for Y ̸= 0 the hemispheres are no longer
symmetric with respect to the beam axis. Using the definition of partonic beam thrust provides an
observable that is invariant under boost along the beam axis, and always ensures a symmetry between
the two beam scales in the factorization theorem as we will see below.

To derive the massless factorization theorem for partonic beam thrust in the lab frame, we first start
with its counter part for hadronic beam thrust in Eq. (2.75). It can be written in the form

dσ

dQ2 dY dT =
∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtb dk

+
a dk−b B

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
hemi(k

+
a , k

−
b , µ |0) δ

(
T − k+a − k−b −

ta
ωa
− tb
ωb

)[
1 +O

( T
Qe−|Y |

)]
. (2.123)

Here Shemi(k
+
a , k

−
b , µ |Y) is the hemisphere soft function. It measures the light-cone components

k+a = na · ka and k−b = nb · kb of momenta of the soft radiation in the hemispheres a and b, defined
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such that particles with rapidity y > Y belong to hemisphere a and particles with rapidity y < Y to
hemisphere b. The hemisphere soft function Shemi is related to the thrust soft function S used before
by

S(k, µ) =

∫
dk+a dk

−
b Shemi(k

+
a , k

−
b , µ |0) δ(k − k+a − k−b ) . (2.124)

To change the observable from T to T̂ , one can now start from the factorization theorem in Eq. (2.123)
and, according to the differences between partonic and hadronic beam thrust, change the definition
of the hemispheres in the hemisphere soft function (the beam functions are independent of the hemi-
sphere definition), and weight all momenta in hemisphere a by a factor eY and all momenta in
hemisphere b by e−Y in the measurement δ-function that relates the measured momenta to the beam
thrust observable

dσ

dQ2 dY dT̂
=

∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtb dk

+
a dk−b B

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
hemi(k

+
a , k

−
b , µ |Y ) δ

(
T̂ − eY k+a − e−Y k−b −

eY ta
ωa
− e−Y tb

ωb

)[
1 +O

( T̂
Q

)]

=
∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtb dk

+
a dk−b B

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
hemi(e

−Y k+a , e
Y k−b , µ |Y ) δ

(
T̂ − k+a − k−b −

ta
Q
− tb
Q

)[
1 +O

( T̂
Q

)]
, (2.125)

Using the property of the transformation of the hemisphere soft function under a boost along the
beam axis

Shemi(e
−Y k+a , e

Y k−b , µ |Y ) = Shemi(k
+
a , k

−
b , µ |0) , (2.126)

and Eq. (2.124) to express everything again in terms of the thrust soft function, we arrive at

dσ

dQ2 dY dT̂
=

∑

i,j∈{q,q̄}

H
(nf )
ij (Q,µ)

∫
dta dtbB

(nf )
i (ta, xa, µ)B

(nf )
j (tb, xb, µ)

× S(nf )
(
T̂ − ta

Q
− tb
Q
,µ
)[

1 +O
( T̂
Q

)]
. (2.127)

This is the massless factorization theorem for partonic beam thrust also derived in Ref. [13]. It is
very similar to the one for hadronic beam thrust, but with the difference that it is symmetric in the

two beam directions, giving only one global beam scale µB =

√
QT̂ , independent of the rapidity Y .

Exactly the same steps to derive the factorization theorems of partonic beam thrust from those
of hadronic beam thrust also apply in the massive case, with the only complication arising in the
hierarchy T ≪ m≪ √QT in Eq. (2.97), which is the hierarchy where the csoft functions Sc appear as
an additional structure in the factorization theorem. Like the beam functions also the csoft functions
are independent of the definition of the hemispheres, but they are not invariant under a boost along
the beam axis, but have the rescaling property

e∓Y Sc
(
e∓Y k±a,b,m, µ, ν

)
= Sc

(
k±a,b,m, µ, νe

∓Y
)
. (2.128)

Here the rescaling of the rapidity scale as ν → νe∓Y for the csoft function in the a/b direction only
holds in case of using the symmetric Wilson line regulator η as rapidity regulator. For other choices
of regulators this can in general be different. This rescaling of the rapidity scale ν by a factor e±Y in
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fact cancels between the two csoft functions for the two different hemispheres. This can be checked
by solving the rapidity RGE of the csoft function in Eq. (2.100), to get the evolution equation

Sc(k,m, µ, ν1) = exp
[
γν,Sc(m,µ) ln

(ν1
ν0

)]
Sc(k,m, µ, ν0) . (2.129)

In the special case of ν0 = ν and ν1 = νe±Y the evolution equation simply becomes

Sc
(
k,m, µ, νe±Y

)
= exp

[
±Y γν,Sc(m,µ)

]
Sc(k,m, µ, ν) , (2.130)

and it is easy to see from Eq. (2.130) that this implies a cancellation of the Y -dependent terms in the
case of two csoft functions in different hemispheres

Sc
(
ka,m, µ, νe

−Y
)
Sc
(
kb,m, µ, νe

Y
)
= Sc(ka,m, µ, ν)Sc(kb,m, µ, ν) . (2.131)

The same also holds for the virtuality-dependent beam functions with secondary massive quark cor-
rections and the mass mode matching functions Hc, since they all follow the same rapidity evolution
equation as the csoft function in Eq. (2.129), such that

Bi

(
ta,m, xa, µ,

ν

ωa

)
Bj

(
tb,m, xb, µ,

ν

ωb

)
= Bi

(
ta,m, xa, µ,

ν

Q

)
Bj

(
tb,m, xb, µ,

ν

Q

)
, (2.132)

Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
= Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
. (2.133)

With this we can give a simple “recipe” for translating all the factorization theorems for hadronic beam
thrust T in Secs. 2.2.1 – 2.2.4 to partonic beam thrust T̂ , by simply replacing ωa,b → Q everywhere in
the factorization theorem. Note that this only applies for the factorization theorems for T assuming
ωa ∼ ωb ∼ Q as in Secs. 2.2.1 – 2.2.4, but not for the asymmetric factorization theorems presented
in the beginning of this section in Eqs. (2.118) – (2.120), since the factorization theorems in T̂ are
by construction always symmetric in the two beam scales. There are no corresponding factorization
theorems in T̂ to the ones in Eqs. (2.118) – (2.120), because the situation of a different scaling of
the mass with respect to the two beam scales is not possible for partonic beam thrust. With this
recipe one can construct variable flavor number schemes for partonic beam thrust in Drell-Yan for
any scaling of the mass of the heavy flavor with respect to the other scales, where the structure of
the factorization theorems is unaffected by large rapidities of the lepton pair.
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Chapter 3

Variable Flavor Number Scheme for
DIS in the Endpoint Region

Deep inelastic scattering (DIS), the high energetic scattering of a lepton on a hadron, is a benchmark
process for the extraction of PDFs. For this reason a precise understanding of quark mass effects is
of importance in order to provide a theoretical framework suitable for PDF fits with better control
over theoretical uncertainties.

In this chapter we will investigate effects of secondary massive quarks on the factorization and resum-
mation properties in DIS in the kinematic endpoint (1−x)≪ 1. In this region the hadronic final state
is collimated in one high energetic jet with additional soft radiation. This leads to a large separation
of the kinematic scales, namely the partonic center of mass energy, that sets the hard scattering scale
of the process, and the invariant mass of the final state jet, which makes the resummation of loga-
rithms of ratios of these scales necessary. We will again use the framework of soft-collinear effective
theory to factorize and resum the cross section in this region, which has been done for the process of
DIS in the endpoint region in the massless case already several times [96–101].

The QCD current relevant for DIS is related to DY by crossing symmetry, by going from time-like to
space-like momentum transfer of the virtual gauge boson and changing an incoming for an outgoing
quark. Therefore many features of the factorization theorems are similar, especially those related to
the hard function (that is just the square of the Wilson coefficient of the current matching from QCD
to SCET) and the inclusion of mass effects in the evolution of the current. But since one incoming jet
is now replaced by an outgoing jet, new features arise like the appearance of a jet function describing
the dynamics of the final state jet instead of a beam function that covered the physics of the initial
state radiation. Additionally the restriction of the phase space to the region (1 − x) ≪ 1 also has
effects on the evolution of the PDFs and also leads to large rapidity logarithms ∼ ln(1 − x) in the
PDF threshold matching coefficients when including heavy flavors that need to be resummed.

Including mass effects of heavy quarks introduces a new scale, that leads to additional logarithms
of the ratio of the quark mass and the other scales of the process. To resum also these quark mass
related logarithms, including also the additional rapidity logarithms that arise due to secondary
massive quark effects, a VFNS scheme can be constructed that correctly includes the relevant number
of active flavors in the RG evolution of the different structures in the factorization theorem. Different
schemes have been developed to achieve this in the OPE region (1−x) ∼ O(1), see e.g. Ref. [102] for
an overview.

In this chapter we will set up a VFNS valid in the endpoint region (1 − x) ≪ 1 that is capable of
resumming all secondary quark mass related logarithms and is valid for any hierarchy of the quark
mass with respect to the kinematic scales, using the MMF approach discussed in the previous chapter
for DY. The MMF approach for factorization and resummation of massive quark effects in DIS in the
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endpoint was not discussed Ref. [1] and is done here for the first time in this thesis. In Refs. [2, 20]
a VFNS for secondary massive quarks for DIS in the endpoint based on the UF approach introduced
in Refs. [11, 12] was constructed. This framework allows for resummation logarithms including all
massive power corrections, by using different renormalization schemes for the functions appearing in
the factorization theorem below and above the mass scale, introducing so-called threshold corrections
when switching between the renormalization schemes. Because of the universality of the threshold
corrections and consistency relations between them, this allowed for the extraction of the O(α3

s)
coefficient of a single rapidity logarithm for all threshold corrections in the factorization theorem from
known results. But since a VFNS for secondary massive quarks for DIS in the endpoint based on the
MMF approach, analogous to the massive factorization setup for Drell-Yan presented in chapter 2,
has never been discussed in literature, we consider it worthwhile to first set up the VFNS based on
the MMF approach for the various hierarchies of the mass with respect to the other scales in this
chapter, and postpone the discussion of the universal factorization approach to chapter 4, where we
will also analyze the relation of the two factorization approaches for massive quarks for the example
of DIS in the endpoint region.

We will only deal with secondary massive quark effects for DIS in this chapter, because effects of
primary massive quarks are suppressed for x → 1 because all flavor mixing terms in the DGLAP
evolution of the PDFs are suppressed in this limit. Many of the mass mode matching coefficients
arising from integrating out the heavy flavor will be identical to those encountered in DY, demon-
strating the universality of these functions. With the results presented in this thesis one can achieve
a resummation of logarithms related to quark mass effects up NNLL′ in the logarithmic counting, i.e.
NNLL resummation with NNLO order boundary conditions.

3.1 Factorization for massless quarks

Before discussing quark mass effects we briefly describe the kinematic setup and the factorization
theorem for DIS in the endpoint region 1− x≪ 1 for massless quarks. Here we display the mode
setup, highlight the relevant steps for its derivation specifically for the hierarchy 1− x≫ ΛQCD/Q
and show that it can be readily combined with the commonly considered scaling 1− x ∼ ΛQCD/Q.
This section of the thesis is partly taken from Sec. II of Ref. [2].

In the following we consider the scattering of an electron off a proton via photon exchange. We
denote the proton momentum by Pµ, the momentum of the incoming (outgoing) electron by kµ

(k′µ), the incoming momentum of the virtual photon by qµ = kµ − k′µ with spacelike invariant mass
q2 = −Q2 < 0 and the momentum of the outgoing hadronic final state X by Pµ

X . The Lorentz
invariant Bjorken scaling variable x is defined by

x = − q2

2P · q =
Q2

2P · q (3.1)

with the kinematic constraint 0 ≤ x ≤ 1. We will work in the Breit frame, where qµ does not have an
energy component and the initial state proton is n̄-collinear. Neglecting the proton mass the relevant
momenta in the Breit frame in terms of lightcone coordinates read

qµ =
Q

2
nµ − Q

2
n̄µ , Pµ =

Q

2x
n̄µ,

Pµ
X =

Q

2
nµ +

Q(1− x)
2x

n̄µ . (3.2)

In the endpoint region the hadronic final state is an n-collinear jet with an invariant mass P 2
X ≈

Q2(1− x)≪ Q2.
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The differential cross section for DIS can be decomposed in terms of a leptonic and a hadronic tensor.
The latter is defined by

Wµν(P, q) =
1

2π
Im

[
i

∫
d4z eiqz⟨P |T [Jµ†(z)Jν(0)] |P ⟩

]
, (3.3)

with |P ⟩ denoting the initial proton state and the current Jµ(z) =
∑

qi
e2qi q̄iγ

µqi(z) summed over
all quark flavors qi with corresponding electric charges eqi . We will just deal with unpolarized DIS,
so that a spin average is always implied. Using current conservation, which implies qµWµν = 0, one
can decompose the hadronic tensor for the parity conserving vector current into the two structure
functions F1(x,Q

2) and F2(x,Q
2),

Wµν(P, q) = −
(
gµν −

qµqν

q2

)
F1(x,Q) +

1

P · q

(
Pµ +

qµ

2x

)(
P ν +

qν

2x

)
F2(x,Q)

= −gµν⊥ F1(x,Q) +
1

2x

(
nµ

2
+
n̄µ

2

)(
nν

2
+
n̄ν

2

)
FL(x,Q) . (3.4)

with gµν⊥ = gµν − 1/2(nµn̄ν + n̄µnν). Here the longitudinal structure function FL(x,Q) reads

FL(x,Q) = F2(x,Q)− 2xF1(x,Q) , (3.5)

in terms of F1(x,Q) and F2(x,Q). These structure functions contain physics at different invariant
mass scales and thus require to be factorized to resum the corresponding large logarithms.

In this section we briefly discuss the factorization theorem for inclusive DIS for massless quarks in
the endpoint region 1 − x ≪ 1 in the framework of SCET. The factorization can be performed in a
multi-step matching procedure and has been carried out already a number of times [96–101]. The
only relevant scales in the process are the scale of the hard interaction Q, the invariant mass of the
final state jet Q

√
1− x and the non-perturbative scale ΛQCD. In the massive case the mass m of

the heavy flavor will give an additional scale in the process. Note that there is no physics related to
the scale Q(1 − x), which means that the scaling of Q(1 − x) with respect to ΛQCD or the mass of
a heavy flavor has no relevance. This already implies that the factorization theorems are the same
for all the possible hierarchies that these scales can have with respect to Q(1 − x), especially that
they adopt the same form in the two cases ΛQCD ∼ Q(1 − x) and ΛQCD ≪ Q(1 − x), a statement
that has already been made e.g. in Refs. [97, 103]. However, Ref. [97] uses a different mode setup
including non-perturbative modes at a scale ΛQCD

√
1− x ≪ ΛQCD, while Ref. [103] never explicitly

displays the scaling of the modes, such that we think it is worthwhile to sketch the derivation of the
factorization theorem using our mode setup with collinear-soft modes of virtuality ΛQCD in the case
where ΛQCD ≪ Q(1− x).
The relevant modes are

n-collinear: pµn ∼
(
Q(1− x), Q,Q

√
1− x

)
,

n̄-collinear: pµn̄ ∼
(
Q,Λ2

QCD/Q,ΛQCD

)
,

n̄-collinear-soft: pµc̄s ∼
(
Q(1− x),Λ2

QCD/
(
Q(1− x)

)
,ΛQCD

)
, (3.6)

where we have used the decomposition

pµ ∼ (n · p, n̄ · p, p⊥) . (3.7)

These modes are also displayed in Fig. 3.1. The non-perturbative n̄-collinear modes describing the
initial state proton in the Breit frame have always the same scaling pµn̄ = (n · pn̄, n̄ · pn̄, p⊥n̄ ) ∼
(Q,Λ2

QCD/Q,ΛQCD). The final state is strongly collimated for x→ 1 with a large momentumQ and an
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Figure 3.1: Relevant modes for inclusive DIS in the endpoint region x→ 1 with 1− x≫ ΛQCD/Q in
the p+p−-plane, with p+ = n · p and p− = n̄ · p.

invariant mass Q
√
1− x and is thus described by n-collinear modes scaling as pµn ∼ Q(1−x, 1,

√
1− x).

The kinematics in the Breit frame prohibits the appearance of a final n̄-collinear state, as can be
seen from Eq. (3.2). This has the important consequence that the n̄-collinear sector just enters the
factorization theorem via a component which is local both in label space as well as in the residual
coordinate, as has been also pointed out in Ref. [101]. The remaining relevant low-energy modes
contribute to the measurement of x or equivalently to the squared invariant mass ∼ Q2(1 − x) via
a component n · p ∼ Q(1 − x) (i.e. they have to lie on the vertical line below the n-coll. modes in
Fig. 3.1). In fact all such modes give vanishing contributions in perturbation theory in the massless
case, since no physical scale is associated with the other momentum components which results in
scaleless integrals. This holds in particular also for ultrasoft modes scaling as Q(1 − x, 1 − x, 1 − x)
as stated e.g. in Refs. [96, 97, 103]. Thus any additional relevant modes can only be nonperturbative
and scale like pµcs ∼ (Q(1 − x),Λ2

QCD/Q(1 − x),ΛQCD). These modes are also boosted in the Breit
frame if ΛQCD ≪ Q(1− x), and therefore referred to as collinear-soft modes. The momenta of theses
modes have a collinear scaling but with a softer virtuality than the n-coll. modes. Compared to the
non-perturbative n̄-coll. modes they have the same virtuality but are less boosted by a factor (1−x).
In the special case where Q(1− x) ∼ ΛQCD the csoft modes become soft modes with the momentum
scaling ΛQCD(1, 1, 1).

To derive the factorization theorem we employ a multistep matching procedure. First the QCD
current is matched to the SCET current in the standard way at the scale Q2. The Wilson coefficient
of this matching is related to the one in DY encountered in the previous chapter because of crossing
symmetry by analytic continuationQ2 → −Q2−i0. The square of the Wilson coefficient gives the hard
function Ĥ, describing the physics of the hard scattering process at the scale µH ∼ Q. The virtuality
of the collinear and soft modes in SCET can then be lowered without any non-trivial matching to
the scale µJ ∼ Q

√
1− x. This is the scale at which the final state jet, with invariant mass Q

√
1− x,

is started to be resolved and the corresponding n-collinear modes need to be integrated out. The
vacuum correlator of the collinear SCET fields is

J (Qr+n , µ) ≡
−1

2πNcQ
Im

[
i

∫
d4z eirn·z⟨0|T

{
χ̄n,Q(0)

/̄n

2
χn(z)

}
|0⟩
]
, (3.8)
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with momenta of the collinear SCET fields χn exhibiting the scaling

n-coll.: pµn ∼ Q
(
1− x, 1,

√
1− x

)
. (3.9)

All color and spin indices are traced implicitly. This is matched onto a theory where the collinear
modes with virtuality Q(1− x) in the n-direction are integrated out and only n-collinear-soft modes
are remaining

J (nf )(s, µ) =

∫
dℓ J (nf )(s−Qℓ, µ)S (nf )

c (ℓ, µ) . (3.10)

The superscript nf indicates the number of flavors. Here J is the matching coefficient, the jet function
as it will appear in the factorization theorem, and Sc are the matrix elements of collinear-soft (csoft)
Wilson lines

Sc(ℓ, µ) =
1

Nc
tr
〈
0
∣∣∣T
[
X†

n(0)Vn(0)
]
δ(ℓ− n · p̂)T

[
V †
n (0)Xn(0)

]∣∣∣0
〉
, (3.11)

where the collinear-soft Wilson lines are

Xn =
∑

perms

exp

[
− g

n · P
νη/2

(n̄ · P)η/2 n ·Acs

]
, Vn =

∑

perms

exp

[
− g

n̄ · P
νη/2

(n̄ · P)η/2 n̄ ·Acs

]
, (3.12)

and P is the momentum operator. Here the η-regulator [40, 41] has been expanded using the n-
collinear-soft scaling n̄ · P ≫ n · P. These are the same collinear-soft matrix elements and Wilson
lines already discussed for the case of beam thrust in DY1 in Sec. 2.2, written down here another time
for the convenience of the reader.

The matching coefficient J(s, µ) is the jet function that appears in the final factorization theorem. It is
infrared finite since all IR divergences cancel between the hard collinear and the collinear-soft matrix
elements on both sides of the matching equation, and it describes the dynamics of the outgoing jet with
invariant mass µJ ∼ Q

√
1− x. The collinear-soft matrix elements only give scaleless contributions in

the massless case, i.e. their only effect is to cancel the corresponding IR divergences in the collinear
matrix element, but give rise to non-trivial contributions once effects of secondary massive quarks
are included. This definition of the jet function as a matching coefficient gives equivalent results as
defining the jet function only as the hard collinear vacuum correlator in Eq. (3.8), but defined with the
necessary zero-bin subtraction to avoid double counting with the soft region, see also the discussion
after Eq. (2.76).

The modes of lower virtuality than the jet scale, that remain after integrating out the n-collinear
modes, encode fluctuations that contribute to the measurement of the invariant mass of the final
state ∼ Q

√
1− x but arise from lower virtualities than the collinear scale. Thus the scaling of their

momenta is

n-csoft: pµcs ∼
(
Q(1− x), k2

Q(1− x) ,
√
k2
)
, (3.13)

where k2 is some virtuality below the jet scale, i.e. k2 ≪ Q2(1 − x). In the discussion about the

n-collinear-soft matrix element above we implicitly assumed k2 ≫
(
Q(1 − x)

)2
, which led to these

modes being boosted in the n-direction, such that they were still separated from the soft modes.
But this restriction has no physical relevance, since the scale µ ∼ Q(1 − x) is not a physical scale
of the process. Because there is no other perturbative scale associated with the process below the
jet scale µ ∼ Q

√
1− x, the virtuality of the n-collinear-soft, soft and n̄-collinear modes that are left

1Changing one incoming to an outgoing Wilson line when going from Drell-Yan to DIS does not change the csoft
matrix elements at two-loops, which is the order we are working here. See also Ref. [82] where this was discussed for
hemisphere soft functions.
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after integrating out the n-collinear modes as in Eq. (3.10) at the scale µ ∼ Q
√
1− x, can be lowered

further without non-trivial matching. At the scale µ ∼ Q(1−x) the collinear-soft and the soft modes
are not separated any more by rapidity and become identical. This results in the n-csoft Wilson lines
Xn,Vn of csoft gluon fields Acs in Eq. (3.12) being replaced by Wilson lines Sn,Sn̄ of soft gluon fields
As

Sn =
∑

perms

exp

[
− g

n · P
νη/2

|2P3|η/2
n ·As

]
, (3.14)

where and P3 is the third component of the momentum operator. Because the soft modes have the
scaling n · P ∼ n̄ · P, this cannot be expanded as in the case of the n-collinear modes, where we used
that n̄ · P ≫ n · P. If Q(1 − x) ∼ ΛQCD this already corresponds to the lowest scale in the process.
In that case the non-perturbative matrix element of the soft and n̄-coll. fields with the proton initial
state is the PDF in endpoint region x→ 1

ϕq(ℓ, µ) = ⟨P |χ̄n̄S
†
n̄Sn

/n

2
δ(ℓ− n · P)S†

nSn̄χn̄,Q|P ⟩ . (3.15)

The PDF in the endpoint can also be factorized as

ϕq(1− z, µ) = Q

∫
dℓ gq(Q(1− z)− ℓ, µ)S (ℓ, µ) , (3.16)

where gq(ℓ, µ) denotes a local collinear matrix element

gq(ℓ, µ) = ⟨P |χ̄n̄(0)
/n

2
χn̄,Q(0)|P ⟩ δ(ℓ) , (3.17)

and S is a matrix element of soft Wilson lines

S (ℓ, µ) =
1

Nc
tr
〈
0
∣∣∣T
[
S†
n(0)Sn̄(0)

]
δ(ℓ− n · p̂)T

[
S†
n̄(0)Sn(0)

]∣∣∣0
〉
. (3.18)

In the case where ΛQCD ≪ Q(1 − x) the virtuality of the soft and n̄-coll. modes can be lowered
further below the scale Q(1 − x). As doing so, the soft modes become boosted in the n̄-direction,
because their n · p light-cone component is fixed to ∼ Q(1− x) in order to give leading contributions
to the measurement2. In this way they become the n̄-collinear-soft modes described in the beginning
of this section. This means that the soft Wilson lines get replaced by Wilson lines X̄n,V̄n of n̄-csoft
gluon fields Ac̄s

X̄n =
∑

perms

exp

[
− g

n · P
νη/2

(n · P)η/2 n ·Ac̄s

]
, V̄n =

∑

perms

exp

[
− g

n̄ · P
νη/2

(n · P)η/2 n̄ ·Ac̄s

]
. (3.19)

Here the η-regulator has been expanded using the n̄-collinear-soft scaling n · P ≫ n̄ · P. The only
other scale in the process that sets the virtuality of the n̄-collinear-soft and the n̄-coll. modes is the
non-perturbative scale ΛQCD. In this way we arrive at the mode setup shown in Fig. 3.1. The only
change compared to the case where Q(1−x) ∼ ΛQCD is that the soft matrix element S in Eq. (3.16)
gets replaced by the matrix element Sc̄ of Wilson lines of n̄-csoft gluon fields

Sc̄(ℓ, µ) =
1

Nc
tr
〈
0
∣∣∣T
[
X̄†

n(0)V̄n(0)
]
δ(ℓ− n · p̂)T

[
V̄ †
n (0)X̄n(0)

]∣∣∣0
〉
, (3.20)

with the Wilson lines as in Eq. (3.19). Note that also in the case of measuring beam thrust in DY
in Sec. 2.2 we had two collinear-soft matrix elements, one for collinear-soft modes boosted in the na

2We do not consider ultrasoft modes modes of virtuality < ΛQCD since they do not contribute to the measurement
as stated before.
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and one for collinear-soft modes boosted in the nb direction. But in each of them the measurement
function δ(ℓ−na,b · p̂) was measuring the smaller light-cone component, such that they gave identical
results when using the symmetric η-regulator, which is the reason why we denoted both as Sc, not
distinguishing from which collinear-soft sector they were arising. In other words the two collinear-soft
matrix elements were simply related by renaming na ↔ nb, which does not change any result. The
n-collinear-soft modes contributing to the matrix element in Eq. (3.11) are boosted in the n-direction
and the measurement function δ(ℓ − n · p̂) measures their smaller light-cone component n · p, which
means these matrix elements Sc are indeed the same as in the case of beam thrust in DY. But the n̄-
collinear-soft modes in Eq. (3.20) are boosted in the n̄-direction (the direction of the incoming proton),
while still the, now larger, light-component n · p̂ is measured. This matrix element of collinear-soft
fields is therefore in principle different from the one encountered above, and therefore denoted as Sc̄.
So while we had two collinear-soft matrix elements from modes being boosted in different directions
in the case of beam thrust in DY that gave identical results and therefore both denoted as Sc, we
distinguish the n-collinear-soft and n̄-collinear-soft matrix elements for DIS, denoting them as Sc and
Sc̄, respectively, depending on whether the smaller or larger light-cone component is measured. But
in fact the difference between them arises only by the special choice of the rapidity regulator η, as
discussed below.

The different soft, n-collinear-soft and n̄-collinear-soft Wilson lines in Eqs. (3.14), (3.12) and (3.19)
have the same structure apart of the different expansion of the rapidity regulator. In the massless
case, where all the soft, n-csoft and n̄-csoft matrix elements give in fact only scaleless contributions
in pure dimensional regularization, the rapidity regulator does not matter and can as well be set to
zero. Without this additional rapidity regulator that breaks the boost invariance, all these matrix
elements, that are related only by a simple boost of the gluon fields Acs → As → Ac̄s, are in fact
equivalent. This is the reason why the factorization theorem takes the same form in the two cases
ΛQCD ∼ Q(1− x) and ΛQCD ≪ Q(1− x), because the simple replacement of the soft gluon fields by
n̄-collinear-soft gluons fields does not change the structure of the massless (c)soft matrix elements.

The full massless factorization theorem reads (to all orders in αs and at leading order in 1− x)

F1(x,Q) =
1

2x
F2(x,Q) =

1

2

∑

i=q,q̄

Ĥ
(nf )
i (Q,µ)

∫
ds J (nf ) (s, µ) ϕ

(nf )
i

(
1− x− s

Q2
, µ

)
, (3.21)

where the superscript (nf ) indicates the number of active quark flavors relevant for the RG evolution
of all renormalized structures including in particular also the strong coupling constant. Note that the
hadronic tensor becomes transverse in the limit x→ 1, such that FL(x,Q) = 0 and the Callan-Gross
relation F2(x,Q) = 2xF1(x,Q) is satisfied to all orders in αs. The massless fixed-order hard and
jet functions, Ĥ(nf )(Q,µH) and J (nf )(s, µJ), are known up to O(α2

s) and O(α3
s), respectively, the

anomalous dimensions up to O(α3
s). Results can be found e.g. in Ref. [97], the contributions at O(αs)

and O(α2
sCFTF ) are given in Eqs (B.2) and (B.19).

The factorization theorem of Eq. (3.21) is written with all its components at the common renormal-
ization scale µ, which can be chosen independently from the respective characteristic scales µH ∼ Q
for the hard function, µJ ∼ Q

√
1− x for the jet function and µϕ ∼ ΛQCD for the PDF. Since the

choice of µ necessarily differs widely from at least two of the characteristic scales, it is mandatory to
sum large logarithmic terms. The corresponding RG equations are

µ
d

dµ
Ĥ

(nf )
i (Q,µ) = γ

(nf )
H (Q,µ) Ĥ

(nf )
i (Q,µ) ,

µ
d

dµ
J (nf )(s, µ) =

∫
ds′ γ

(nf )
J (s− s′, µ) J (nf )(s′, µ) ,

µ
d

dµ
ϕ
(nf )
i (1− z, µ) =

∫
dz′ γ

(nf )
ϕ (1− z − z′, µ)ϕ(nf )

i (z′, µ) . (3.22)

The anomalous dimensions γ at O(αs) and O(α2
sCFTF ) are given in Eqs. (B.3), (B.20) and (B.12).
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Note that the convolutional structure of the RG equation for the PDF in the limit x → 1 (denoted
as ϕi(1 − x, µ)) in the third line of Eq. (3.22) is different from the DGLAP equation for the full
PDF (denoted as fi(x, µ)) in Eq. (2.17). To see how the standard DGLAP evolution for the PDF
fi(x, µ) in Eq. (2.17), involving a Mellin-type convolution as in the first line of Eq. (3.23) below, can
be expanded in the endpoint region x→ 1 to become the evolution equation shown in the third line
of Eq. (3.22), valid for the PDF in the endpoint, we first write out the RG evolution equation for the
full PDF

µ
dfi(x, µ)

dµ
=
∑

j

∫ 1

x

dz

z
γf,ij

(x
z
, µ
)
fj(z, µ)

=
∑

j

∫ 1−x

0

dz

1− z γf,ij
(1− (1− x)

1− z , µ
)
fj(1− z, µ)

=
∑

j

∫ 1−x

0
dz γf,ij(x+ z, µ)fj(1− z, µ)×

[
1 +O(1− x)

]
, (3.23)

where in the last line we expanded simultaneously in (1 − x) ∼ z ≪ 1. Defining the PDF and its
anomalous dimension in the endpoint as an expansion in x → 1 of the full PDF and anomalous
dimension, keeping only the leading order terms

ϕi(1− x, µ) = fi(x, µ)×
[
1 +O(1− x)

]
,

γϕ,ij(1− x, µ) = γf,ij(x, µ)×
[
1 +O(1− x)

]
, (3.24)

this can be written as

µ
dϕi(1− x, µ)

dµ
=
∑

j

∫ 1−x

0
dz γϕ,ij(1− x− z, µ)ϕj(z, µ) . (3.25)

We can further use the fact that all off-diagonal anomalous dimensions, i.e. γϕ,qg and γϕ,gq, are
suppressed by O(1− x) with respect to the diagonal terms γϕ,qq and γϕ,gg, such that to leading order
in 1 − x no flavor mixing takes place in the evolution of the PDFs. Due to Furry’s theorem gluon
initiated processes do not contribute to the hard function for the electromagnetic vector current,
and are therefore not included. This means we only need the quark PDFs in the endpoint, and by
replacing γϕ,ij = δijγϕ, where γϕ is an abbreviation for the quark-quark anomalous dimension γϕ,qq,
this reduces to the evolution equation for the quark PDFs in the endpoint without flavor mixing
shown in Eq. (3.22).

3.2 Variable flavor number scheme for secondary massive quarks

In the following sections we will set up a variable flavor number scheme for secondary massive quark
effects in DIS in the endpoint region, using the mass mode factorization approach. Since the massless
factorization theorem has a SCETI type structure where the soft and the collinear scale are different,
this will involve similar structures as in the case of beam thrust in DY. The only new structure
compared to DY is the jet function, that replaces the beam functions in the collinear sector. We
will always assume m ≫ ΛQCD such that the mass can always be treated as a perturbative scale.
This discussion of secondary massive quark effects for DIS in the endpoint region following the MMF
approach as presented in this section of the thesis is new and has not been published before, because
Ref. [1] was only studying the DY process and Ref. [2] was using the UF approach for DIS.
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m
m

Figure 3.2: Exemplary diagrams for secondary massive quark contributions in DIS at O(α2
sCFTF ).

An important feature of the factorization theorem in Eq. (3.21) is that there are no flavor mixing
terms between quarks and gluons in any of the EFT contributions in the hard current matching,
the jet function, the PDF and their evolution factors, due to the power suppression of off-diagonal
terms in the PDF evolution in the limit (1 − x) ≪ 1. This means that at leading order in (1 − x)
the parton extracted out of the PDF at the low scale ∼ ΛQCD is also the one interacting with
the hard photon and entering the final state jet. Since we assume m ≫ ΛQCD, so that the heavy
quarks are not produced nonperturbatively out of the proton, this has the consequence that massive
quarks enter the EFT components of the factorization theorem only via secondary corrections, i.e. via
contributions which are initiated by massless quarks and where massive quarks are produced through
the radiation of virtual gluons that split into a massive quark-antiquark pair, see Fig. 3.2. In the case
were Q

√
1− x≪ m, i.e. when the heavy quark cannot be produced via real emission, the changes in

the factorization theorem are identical to the case of Drell-Yan in that hierarchy.

For m ∼ Q the mass effects are completely encoded in the massive hard function Ĥ as in Sec. 2.1.2,
and the massless jet function and PDFs with nl flavors are used

F1(x,m,Q) =
1

2

∑

i=q,q̄

Ĥi(Q,m, µ)

∫
ds J (nl) (s, µ)ϕ

(nl)
i

(
1− x− s

Q2
, µ

)[
1 +O

(
1− x, Q

2(1− x)
m2

)]
.

(3.26)

Note that the mass corrections to the hard function Ĥ for DIS differ from the ones to the hard
function H for DY because of the analytic continuation Q2 → −Q2 − i0 in the current. The results
for DIS are given in Eq. (C.6).

The case Q
√
1− x ≪ m ≪ Q is described by using the massless nl + 1 flavor hard function, the

massless nl flavor jet function and PDFs and additionally the mass mode current matching functions
Hc and Hs as in Sec. 2.1.3.

F1(x,m,Q) =
1

2

∑

i=q,q̄

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

×
∫

ds J (nl) (s, µ) ϕ
(nl)
i

(
1− x− s

Q2
, µ

)[
1 +O

(
1− x, m

2

Q2
,
Q2(1− x)

m2

)]
.

(3.27)

As already mentioned when discussing massive quark effects in DY in chapter 2, the two collinear
mass mode matching functions Hc in the n and n̄ sector are identical only when using a symmetric
Wilson-line rapidity regulator as we always do here, but can in general be different from each other
when using other rapidity regulators. The results for our choice of the symmetric η-regulator at O(α2

s)
are given in Sec. C.1.3.
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Figure 3.3: Effective theory modes with massive quarks for ΛQCD ≪ m ≲ Q
√
1− x≪ Q.

3.2.1 Quark mass effects for Q
√
1− x ∼ m≪ Q

If the quark mass is of the order of the jet scale, i.e. Q
√
1− x ∼ m, the heavy flavor becomes a

dynamical degree of freedom in the theory. Since the mass modes as well as the other modes in SCET
have a scaling parametrically much smaller than the hard scale µ ∼ Q, the matching from QCD to
SCET at the hard scale happens for all the modes simultaneously and leads to the massless hard
function nl + 1 flavors. In the soft and n̄-collinear (i.e. collinear to the incoming proton) sector the
mass modes are widely separated from the other (non-perturbative) modes in these sectors because
we always assume ΛQCD ≪ Q

√
1− x. This means that integrating out the soft and n̄-collinear mass

modes at the mass scale leads to the same matching coefficients Hs and Hc as in the hierarchy
Q
√
1− x≪ m, given in Eqs. (C.8) and (C.10), respectively.

The n-collinear mass modes now have the same virtuality as the other n-collinear modes in SCET, as
illustrated in Fig 3.3a. Integrating out all these collinear fluctuations leads to a matching of a theory
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with nl + 1 hard collinear modes onto a theory with nl collinear-soft modes only.

J (nl+1)
(
s,m, µ,

ν

Q

)
=

∫
dℓ J

(
s−Qℓ,m, µ, ν

Q

)
S (nl)

c (ℓ, µ) . (3.28)

Here J (nl+1) are the collinear matrix elements of light quark fields as in Eq. (3.8), with corrections

from the heavy flavor via real and virtual secondary massive quark effects, and S
(nl)
c the collinear-

soft matrix elements as in Eq. (3.11) with nl massless flavors. The matching coefficient J is the now
explicitly mass-dependent jet function (called mass mode jet function, to distinguish from the mass
dependent jet function as it will appear in the UF approach in chapter 4). The contributions from
secondary massive quarks at O(α2

sCFTF ) are given in Eq. (C.27). We remind the reader that due to
the suppression of flavor mixing in the DGLAP evolution of the PDFs in the endpoint region x→ 1
we do not need to consider primary massive quarks (for the primary massive quark jet function see
Ref. [19]). Note that in Eq. (3.28) the subtraction of collinear-soft modes is performed with only
nl massless flavors, while the full collinear matrix element J is calculated with nl + 1 flavors. This
still leads to an IR finite matching coefficient because the contributions of a massive quark to J do
not introduce additional IR divergences as long as the mass is kept finite. Since the massive flavor
is integrated out at this scale it is absent in the lower energy effective theory and does therefore not
contribute to the subtractions. In principle it would also be possible not to fully integrate out the
heavy flavor and include it also in the subtractions, which corresponds to the definition of the jet
function in the universal factorization scheme [71]. This approach and its relation to the mass mode
factorization scheme presented in this chapter, where the heavy flavor is always completely integrated
out at its respective mass scale, will be discussed in chapter 4.

The mass mode jet function’s anomalous dimension for evolution in the energy scale µ is the same as
for the virtuality-dependent beam function in Sec. 2.2.2

µ
d

dµ
J
(
s,m, µ,

ν

Q

)
=

∫
ds′ γJ,m

(
s− s′,m, µ, ν

Q

)
J
(
s′,m, µ,

ν

Q

)
, (3.29)

with the contributions of the massive flavor at O(α2
sCFTF ) given in Eq. (C.29). We emphasize once

again that these contributions are not the same as for an additional massless flavor.

The dependence of the mass mode jet function on the rapidity scale ν is the same as for the collinear
mass-mode matching function Hc and the virtuality-dependent beam function

ν
d

dν
J
(
s,m, µ,

ν

Q

)
= γν,Hc(m,µ)J

(
s,m, µ,

ν

Q

)
, (3.30)

with the rapidity anomalous dimension given in Eq. (C.11).

In the soft and the n̄-collinear sector no measurement takes place at this scale, such that the soft
and n̄-collinear mass modes are integrated out in the current which leads to the same mass mode
matching functions Hs and Hc as before. The full factorization theorem for this hierarchy reads

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

∫
ds J

(
s,m, µ,

ν

Q

)

× ϕ(nl)
i

(
1− x− s

Q2
, µ
)[

1 +O
(
1− x, m

2

Q2
,
Λ2
QCD

m2

)]
. (3.31)

The µ evolution can be carried out by evolving the hard and jet functions and the PDF with their
massless anomalous dimensions with nl active flavors below the mass scale and nl + 1 active flavors
above the mass scale, as indicated by the vertical arrows in Fig. 3.4a, which automatically takes into
account the µ dependence of the mass mode matching functions Hs and Hc, because of the relation

Q2γJ,m

(
Q2(1− z),m, µ, ν

Q

)
+ γ

(nl)
ϕ (1− z, µ) + δ(1− z)γHs(m,µ, ν) + δ(1− z)γHc

(
m,µ,

ν

Q

)

= Q2γ
(nl+1)
J (Q2(1− z), µ) + γ

(nl+1)
ϕ (1− z, µ) . (3.32)
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Figure 3.4: Illustration of the renormalization group evolution of the hard and jet functions and the
parton distribution function in the limit x→ 1 in virtuality µ (vertical) and rapidity ν (horizontal).
The anomalous dimensions for each evolution step involve the displayed number of active quark
flavors. The label m indicates that the corresponding evolution is mass dependent.

This can be checked explicitly at two-loops with the results given in Eqs (B.20), (B.12), (C.9), (C.11)
and (C.29). The rapidity evolution is carried out between the massive jet function and the current
matching function Hc at the rapidity scale ν ∼ Q and the soft current matching function Hs at the
rapidity scale ν ∼ m, as indicated by the horizontal arrows in Fig. 3.4a. It is identical to the one
involving only the hard functions Hs and Hc in Sec.2.1.3

3.2.2 Quark mass effects for m≪ Q
√
1− x

If the jet scale becomes much larger than the mass scale, i.e m ≪ Q
√
1− x, the heavy flavor can

be considered massless up to power corrections of order ∼ m2/
(
Q2(1− x)

)
when integrating out the

n-collinear modes at the jet scale, leading to the standard nl + 1 flavor massless jet function. The
analogous statement also holds for the hard function. Integrating out the mass modes at the mass
scale, that is now much smaller than the jet scale (but still much larger than the non-perturbative
scale ΛQCD), leads to a larger number of matching functions compared to Eq. (3.31) above.

After integrating out the n-collinear modes as in Eq. (3.10) with nf = nl + 1, where all flavors are
treated as massless, such that it gives the massless nl+1 flavor jet function as a matching coefficient,
we are left with a theory with nl + 1 n-collinear-soft, soft and n̄-collinear modes. The virtuality of
these modes can be lowered down to the mass scale, where the heavy flavor is integrated out. The
matching at the mass scale can involve different mass modes (n-collinear-soft, soft, n̄-collinear-soft),
depending on how the mass m scales with respect to Q(1 − x), because this is the scale where the
collinear-soft modes become soft (compare Fig. 3.3b and 3.3c). This matching procedure, however,
always leads to identical results for the combination of all relevant matching coefficients. This is
clear from the fact that the only physical scales in the process besides the mass are the hard scale
Q, the jet scale Q

√
1− x and the non-perturbative scale ΛQCD, so that it is obvious that only the
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relative scaling of the mass with respect to these scales can have an effect, but not the scaling with
respect to the non-dynamical scale Q(1 − x). So whether one does the matching of the nl + 1 to
the nl flavor theory when integrating out the heavy flavor in the scenario where m≪ Q

√
1− x with

(a) n-collinear-soft mass modes (corresponding to the case where m ≫ Q(1 − x)), or (b) soft mass
modes (corresponding to the case m ∼ Q(1− x)), or (c) n̄-collinear-soft mass modes (corresponding
to the case m ≪ Q(1 − x)), is just a technicality changing some details of the calculations and the
mode-setup, depending on the choice of the rapidity regulator, but is not changing any of the final
analytical results when combing all matching coefficients that arise, as will be discussed below.

If m≫ Q(1− x), the mass modes have the momentum scaling

n̄-coll. MM: pµc̄ ∼
(
Q,

m2

Q
,m
)
,

soft MM: pµs ∼ (m,m,m) ,

n-csoft MM: pµcs ∼
(
Q(1− x), m2

Q(1− x) ,m
)
, (3.33)

as also indicated in Fig. 3.3b. When integrating out the heavy flavor, this leads to separate matching
coefficients in each of the three sectors. In the n̄-coll. and the soft sector, the mass modes can not
contribute to the measurement and are therefore integrated out in the SCET current, leading to the
mass mode matching functions Hs and Hc as before, with the result at two-loops given in Eqs. (C.8)
and (C.10).

The momentum scaling of the n-collinear-soft mass modes in Eq. (3.33) is determined by the on-
shell condition and that the component n · p coincides with the respective dynamical momentum
component of the collinear modes, i.e. n · p ∼ Q(1 − x). In this way the collinear-soft mass modes
can contribute the measurement of the invariant mass of the final state P 2

X ∼ Q2(1− x). Integrating
out the heavy flavor in the n-collinear-soft sector therefore leads to the matching relation between
non-local collinear-soft matrix elements in the nl + 1 and nl flavor theories

S (nl+1)
c (ℓ,m, µ, ν) =

∫
dℓ′ Sc(ℓ− ℓ′,m, µ, ν)S (nl)

c (ℓ′, µ, ν) , (3.34)

with the collinear-soft matrix elements Sc defined in Eq. (3.11). This gives the matching coefficient
Sc, the csoft function, with the contributions up to O(α2

s) given in Eq. (C.32). The csoft function is
the same that also appeared in the factorization theorem for beam thrust in Drell-Yan in Sec. 2.2.3.
The virtuality of the remaining nl massless modes can then be lowered without any further matching
down to the non-perturbative scale, where they contribute to the PDF as in the massless case in
Eq. (3.15).

The factorization theorem, consisting of the nl+1 flavor massless hard and jet functions, the nl flavor
PDF and the mass mode matching functions Hs, Hc and Sc, reads

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

∫
ds dℓ J (nl+1)(s, µ)Sc(ℓ,m, µ, ν)

× ϕ(nl)
i

(
1− x− s

Q2
− ℓ

Q
, µ
)[

1 +O
(
1− x, m2

Q2(1− x) ,
Λ2
QCD

m2

)]
. (3.35)

The µ evolution can be carried out by evolving the hard and jet functions and the PDF with their
massless anomalous dimensions with nl active flavors below the mass scale and nl + 1 active fla-
vors above the mass scale, as indicated in Fig. 3.4b, which automatically takes into account the µ
dependence of the mass mode matching functions Hs, Hc and Sc, because of the relation

QγSc

(
Q(1− z),m, µ, ν) + δ(1− z)γHs(m,µ, ν) + δ(1− z)γHc

(
m,µ,

ν

Q

)
+ γ

(nl)
ϕ (1− z, µ)

= γ
(nl+1)
ϕ (1− z, µ) . (3.36)
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This can be checked explicitly at two-loops with the results given in Eqs (B.12), (C.9), (C.11)
and (C.33).

The rapidity evolution is carried out between the collinear-soft function at the rapidity scale ν ∼
m2/(Q(1 − x)) and the collinear current matching function Hc at the rapidity scale ν ∼ Q and
the soft current matching function Hs at the rapidity scale ν ∼ m, as indicated in Fig. 3.4b. The
anomalous dimensions and the structure of the solutions of the rapidity RGE are the same as for the
case involving only the hard functions Hs and Hc in Sec.2.1.3

The factorization theorem in Eq. (3.35) was derived assuming the scaling Q(1−x)≪ m≪ Q
√
1− x,

such that the n-collinear-soft and soft mass modes in Eq. (3.33) are clearly separated. This led to the
two matching coefficients Sc and Hs in the csoft and the soft sector, respectively. If the mass is of
order m ∼ Q(1−x), the momentum scaling of the n-collinear-soft mass modes in Eq. (3.33) coincides
with that of the soft mass modes. In that situation, when integrating out the mass modes at the
mass scale, there is only a n̄-collinear and a soft sector, see Fig. 3.3c. In the n̄-collinear sector nothing
has changed compared to the situation where Q(1 − x) ≪ m, i.e. the heavy flavor is integrated
out in the collinear SCET current, giving the same mass mode matching coefficient Hc as before.
But now the soft mass modes can contribute to the measurement via their momentum component
n · p ∼ m ∼ Q(1 − x). While in the situation where Q(1 − x) ≪ m they could contribute only
via virtual effects and integrating out the heavy flavor in the soft SCET current only gave a local
matching coefficient Hs, in the situation where m ∼ Q(1− x) the matching takes place between soft
matrix elements with a non-local measurement function

S (nl+1)(ℓ,m, µ, ν) =

∫
dℓ′ S(ℓ− ℓ′,m, µ, ν)S (nl)(ℓ′, µ, ν) , (3.37)

where the soft matrix elements S are defined in Eq. (3.18). This matching relation has the same
form as the one in the csoft case in Eq. (3.34), but with the csoft matrix elements replaced by soft
matrix elements, and the matching coefficient is therefore the new soft function S. In this way when
going from the scenario Q

√
1− x≫ m≫ Q(1−x) to m ∼ Q(1−x), the matching coefficients arising

from integrating out the heavy flavor in the factorization theorem in Eq. (3.35), are changed from
Hc ×Hs × Sc to Hc × S. As we will discuss below the two expressions are in fact identical.

In the case where m ≪ Q(1 − x) (but still as always assumed here much larger than ΛQCD), the
virtuality of the soft modes gets lowered even further, such that they become n̄-collinear-soft when
they reach the mass scale where the heavy flavor is integrated out. Their momentum scaling is

pµc̄s ∼
(
Q(1− x), m2

Q2(1− x) ,m
)
, (3.38)

which implies that they are boosted in the n̄-direction because m ≪ Q(1 − x), in contrast to the
n-collinear-soft modes in Eq. (3.33) for m ≫ Q(1 − x). This implies that the soft matrix elements
in Eq. (3.37) get replaced by n̄-collinear-soft matrix elements, leading to a matching relation for
integrating out the heavy flavor of the form

S
(nl+1)
c̄ (ℓ,m, µ, ν) =

∫
dℓ′ Sc̄(ℓ− ℓ′,m, µ, ν)S

(nl)
c̄ (ℓ′, µ, ν) , (3.39)

with the n̄-collinear-soft matrix elements Sc̄ defined in Eq. (3.20). Nothing is changed in the n̄-
collinear sector compared to the case m ∼ Q(1 − x), i.e. integrating out the heavy flavor in the
collinear SCET current leads to same the mass mode matching function Hc, such that the only
change in the factorization theorem when the mass becomes much smaller than Q(1 − x) is the
replacement of the soft function S by the n̄-collinear-soft function Sc̄, that is defined by the matching
relation in Eq. (3.39).

Since we know that the only physical scales in the process besides the mass m of the heavy flavor
are the hard scale Q, the invariant mass of the hadronic final state Q

√
1− x and the hadronic scale
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ΛQCD, the factorization theorem cannot depend on the scaling of the mass with respect to the non-
dynamical scale Q(1−x). This implies that all results for the matching coefficients for the three cases
m≫ Q(1− x), m ∼ Q(1− x) and m≪ Q(1− x) have to agree, leading to the relation

Hs(m,µ, ν)Sc(ℓ,m, µ, ν) = S(ℓ,m, µ, ν) = Sc̄(ℓ,m, µ, ν) , (3.40)

between the various mass mode matching coefficients in the n-collinear-soft, soft and n̄-collinear-
soft sectors. These relations are independent of the choice of the rapidity regulator, though the
results for the individual functions depend on which rapidity regulator is employed. In this thesis
all contributions are always calculated with the symmetric η Wilson-line regulator [40], the results
for Hs and Sc at O(α2

s) are given in Eqs. (C.8) and (C.32). The soft and n̄-collinear-soft matching
functions S and Sc̄ with the η-regulator have been calculated in Sec. V of Ref. [2]. With these results
Eq. (3.40) can be checked to two-loop order. We remark that the distinction between Sc, S and
Sc̄ is only introduced by the choice of a rapidity regulator (here the η-regulator with its action on
n-collinear-soft, soft and n̄-collinear-soft Wilson lines given in Eqs. (3.12), (3.14) and (3.19)) that
distinguishes between different boosts of the gluon momenta, and is for example absent when using

instead the regulator 1
k− → 1

k−

(
ν
k−

)α
for the gluon loop momentum suggested in Ref. [104]. This

regulator does not distinguish between different boosts of the gluon momentum, such that the matrix
elements Sc, S and Sc̄ are identical already at the integrand level3. All corrections beyond tree
level to the local soft current mass mode matching function Hs are scaleless when using this regulator
and therefore vanish, such that Eq. (3.40) trivially holds. We emphasize again that when using this
regulator the results for the collinear current mass mode matching functions Hc are not anymore
identical for the n- and the n̄-direction.

In the following we will adopt the form of the factorization theorem in Eq. (3.35) with the current
matching function Hs and the n-collinear-soft function Sc as for Q(1 − x) ≪ m, regardless of the
relation of m and Q(1 − x). This may seem an unnecessary complication compared to writing it
with only S or Sc̄ because instead of having just one mass mode matching function it is split into
two separate functions, but it will turn out to be more convenient when comparing with the other
factorization theorems for beam thrust in Drell-Yan discussed in Sec. 2.2 and thrust in e+e− → jets
discussed in appendix A, and also when incorporating the mass related power corrections in Sec. 4.2.1.
In this way the matching functions are completely universal, such that in the factorization theorems
for all three processes discussed here - beam thrust in DY, DIS in the endpoint and thrust in e+e− →
jets - the mass mode matching functions are always the sameHs, Hc and Sc. This also implies that the
rapidity evolution related to secondary massive quark effects is universal for all three observables, an
important result that was not directly clear from Refs. [1,2,12], where the resummation of secondary
massive quark effects in DY, DIS and e+e− → jets were discussed separately.

3.2.3 Relations between hierarchies

We will now discuss how the ingredients in the different factorization theorems for the different hier-
archies presented in the previous sections are related with each other, in analogy to the presentation
in Secs. 2.1.6 and 2.2.5 for the case of DY. Here we only give a collection of the various relations
existing between the mass dependent hard and jet functions and their massless counterparts in the
nl and nl + 1 flavor schemes and provide the equations to check them with our results up to O(α2

s),
without discussing them further. But in Sec. 4.2.1 theses relations between the various functions in
the massless and the decoupling limit form the basis of the UF approach which is a variable flavor
number scheme where the mass dependent power corrections that are omitted in the MMF approach
are included for any scale hierarchy, so that it is applicable for an arbitrary scaling of the mass relative

3When using the η-regulator the soft function S and the n̄-collinear-soft function Sc̄ are still identical, but the
individual virtual and real radiation diagrams are not. Only the sum of all diagrams is identical, see Sec. V of Ref. [2]
for details of the calculation.
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to the other scales. The relations between the modes for DIS in the endpoint in the different regimes
are summarized in Fig. 3.5.

The massless results at O(αs) and O(α2
sCFTF ) are collected in appendix B, the contributions from

secondary massive quarks at O(α2
s) in appendix C. The relations between the hard and the jet

functions in the different hierarchies given here can be checked explicitly up to O(α2
s) with the results

there.

The hard functions of DIS in the hierarchies m ∼ Q and m≪ Q have the same relation as the hard
functions for Drell-Yan shown in Eq. (2.37)

Ĥ(Q,m, µ)
m≪Q
= Ĥ(nl+1)(Q,µ)Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν) +O

(m2

Q2

)
. (3.41)

The mass dependent hard function used for m ∼ Q also shows the correct decoupling behavior in the
limit Q≪ m, i.e.

Ĥ(Q,m, µ)
Q≪m
= Ĥ(nl)(Q,µ) +O

(Q2

m2

)
. (3.42)

The mass mode jet function in the hierarchy m ∼ Q
√
1− x is related to the massless jet function

with nl flavors and the collinear mass mode matching function Hc by

J
(
s,m, µ,

ν

Q

)
s≪m2

= Hc

(
m,µ,

ν

Q

)
J (nl)(s, µ)×

(
1 +O

( s

m2

))
, (3.43)

which is the same relation that also holds in the same limit for the mass dependent beam func-
tion matching coefficients, both the qT and the virtuality dependent ones, expressed in Eqs. (2.38)
and (2.105), respectively. In the small mass limit the mass mode jet function is related to the massless
jet function with nl + 1 flavors and the csoft function by

J
(
s,m, µ,

ν

Q

)
m2≪s
=

∫
dℓ J (nl+1)(s−Qℓ, µ)Sc(ℓ,m, µ, ν)×

(
1 +O

(m2

s

))
. (3.44)

With our results we can check these relations at O(α2
s). We will use the notation of Eqs. (2.33)

and (2.36) and remind the reader once again that to get the correct limiting behavior the appropriate
flavor scheme for the strong coupling has to be used, i.e. the nl + 1 flavor scheme for the small mass
limit and the nl flavor scheme for the heavy mass limit. The small mass limit of the mass dependent
hard function expressed in Eq. (3.41) can be checked with the results in Eqs. (C.6), (B.2), (C.8)
and (C.10)

TF Ĥ
(2,h)(Q,m, µ)

m≪Q
= TF Ĥ

(2,l)(Q,µ) +H(2)
c

(
m,µ,

ν

Q

)
+H

(2)
c̄

(
m,µ,

ν

Q

)
+H(2)

s (m,µ, ν) +O
(m2

Q2

)
.

(3.45)

The decoupling limit at O(α2
s) in Eq. (3.42) can be seen from Eq. (C.6)

Ĥ(2,h)(Q,m, µ)− 4

3
LmĤ

(1)(Q,µ)
Q≪m
= O

(Q2

m2

)
. (3.46)

The heavy mass limit of the mass mode jet function in Eq. (3.43) at O(α2
s) can be checked with the

result in Eqs. (C.27), (B.19) and (C.10)

TFJ
(2,h)

(
s,m, µ,

ν

Q

)
− 4

3
TFLmJ

(1)(s, µ)
s≪m2

= H(2)
c

(
m,µ,

ν

Q

)
δ(s) +O

( s

m2

)
, (3.47)

and the small mass limit of the mass mode jet function in Eq. (3.44) with Eqs. (C.27), (B.19)
and (C.32)

TFJ
(2,h)

(
s,m, µ,

ν

Q

)
m2≪s
= TFJ

(2,l)(s, µ) +
1

Q
S(2)c

( s
Q
,m, µ, ν

)
+O

(m2

s

)
. (3.48)
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Figure 3.5: Relevant modes DIS in the endpoint (1 − x) ≪ 1 for different hierarchies between the
quark mass m and the scales Q

√
1− x and Q. The directions of the arrows indicate how a particular

mode contribution is separated when the expansion of another hierarchy is used.
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Chapter 4

An Alternative Way of Constructing
the Variable Flavor Number Schemes

In this section we will present an alternative approach on how to construct a VFNS called universal
factorization (UF) approach, and compare it to the MMF approach that was used in the previous
sections. The resulting factorization theorems have an equivalent content to the ones in the MMF
approach for all possible hierarchies (see Sec. 4.2). The UF approach provides a different setup on
how to include the mass effects, leading to factorization theorems for the different hierarchies that
correctly resum all logarithms but in addition also show a smooth transition from one to the other
when the scaling of the mass relative to the other scales is changed, i.e. no strict separation of the
scales needs to be assumed and all mass related power correction are automatically included.

The idea of the UF approach is to have the same structures that appear in the massless factorization
theorems, e.g. the jet function, the soft function etc., as the universal building blocks. The goal is to
have a definition of these functions containing all contributions from massive quarks that allows for

a) a smooth transition between all different hierarchies that the mass can have with respect to the
other kinematic scales, i.e. a description that does not specifically rely on a large separation of the
mass scale from other scales and does not contain any expansions in the mass,

b) resummation of all rapidity logarithms within those functions themselves, such that each function
can be defined as an already resummed building block that can then be inserted in any factorization
theorem for a practical implementation.

In this way this approach differs from the MMF approach, where always a fixed scaling of the mass with
respect to other scales was assumed and all subleading contributions were always strictly expanded
away, leading to a framework where the resulting structures in the factorization theorems are in general
valid only in one strict hierarchy, and rapidity logarithms are always resummed in an evolution in
rapidity between the different functions in the factorization theorems.

The UF framework was first developed in Refs. [11,12] for thrust in the peak region in e+e−-collisions
(see also appendix A for the corresponding setup in the mass mode factorization approach), and then
applied to DIS in the endpoint region in Ref. [2]. It is also discussed in great detail in Ref. [20], and
we will therefore only give a short summary on how the UF scheme is implemented for the various
functions in the factorization schemes in Sec. 4.1. In Sec. 4.2 we will compare the UF and the MMF
approach for secondary massive quarks, show how they are equivalent and discuss where they differ.
A similar comparison for the primary massive quark jet functions in the MMF and the UF approach
was given in Ref. [71].
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4.1 The universal factorization scheme

The basic idea to get functions in the factorization theorems that keep the full mass dependence and
are therefore applicable over the full range of possible hierarchies, is to not integrate out the heavy
flavor at its mass scale, but use different renormalization schemes for the massive contributions,
depending on whether the mass is above or below the natural kinematic scale of the function. This
idea follows and extends the treatment of mass corrections in inclusive heavy flavor production (e.g.
in the calculation of quark mass effects in the hadronic R-ratio), where an appropriate choice of the
renormalization scheme of the coupling, either in a scheme with nl active flavors in the RG evolution
(when contributions from the heavy flavor are renormalized with a low-momentum subtraction) when
the scale is below the quark threshold or in a scheme with nl + 1 active flavors (when contributions
from the heavy flavor are renormalized in the MS scheme) when the scale is above the quark threshold,
leads to the correct massless and decoupling limits for the heavy flavor [105–107].

This concept can be extended to factorized differential cross sections, involving different gauge invari-
ant functions that describe the physics at the various energy scales involved in the process [11, 12].
To achieve a setup that allows for resummation of logarithms that contain the quark mass as a
scale, while keeping the full mass dependence in all functions in the factorization theorem with the
correct massless and decoupling limit, the strategy of changing between the mass independent MS
renormalization scheme and a low-momentum subtraction scheme has to be applied not only to the
renormalization of the coupling, but to the renormalization of each of the UV divergent structures in
the factorization theorem. Since all of the SCET matrix elements involved in the matching relations
defining the hard, jet, beam and (c)soft functions in the previous chapters are UV divergent, they
require an additional renormalization (beyond that associated to the strong coupling) where the UV
divergences are absorbed into a counterterm. As always there is the freedom of which finite terms
are additionally absorbed into the counterterm, leading to different renormalization schemes. One
scheme that will be used in the construction of the different functions in the factorization theorems
in the UF approach is the standard MS scheme, where only the 1

ϵ -divergences are absorbed into the
counterterm. The other renormalization scheme that will be used corresponds to a low-momentum
subtraction scheme, where all contributions from the heavy flavor that do not automatically decouple
in the limit m → ∞ are absorbed into the counterterm. Those are typically the mass-dependent
distributional terms appearing in the functions, while contributions related to real production of the
heavy quarks will have the correct decoupling limit due to kinematic thresholds and are therefore not
absorbed into the counterterm. Motivated by the on-shell renormalization scheme we will refer to this
low-momentum subtractions with respect to the massive quark also as “on-shell” (OS) subtractions.

We will discuss the UF scheme for a generic function F (y, µ), where F can stand for any hard, beam,
jet or soft function or PDF as they appear in the factorization schemes discussed in the previous
chapters. The variable y stands for the kinematic variable that this function depends on, like e.g. the
center of mass energy Q in the case of the hard function or the virtuality t in case of the virtuality
dependent beam function. We denote the natural kinematic scale, i.e. the scale that minimizes the
logarithms in F (y, µ) in the massless case, as µF (e.g. for the hard function µF ∼ Q), and the mass
scale as µm ∼ m.

Then the rule to get the mass-dependent function F (y,m, µ) as it is implemented in the universal
factorization scheme is as follows: If µF < µm, the massive quark corrections to F are renormalized
in the OS scheme that was described above. Also the contributions from the massive flavor to the
strong coupling are renormalized with the OS subtraction, such that a scheme of nl active flavors
for the strong coupling is implemented. In this way the heavy flavor does not contribute to the
RG evolution of F and automatically decouples in the heavy quark limit m → ∞. If µm < µF
the massive quark corrections in F are renormalized the MS scheme, and the same is also done for
massive quark contributions to the running of αs, i.e. a nl + 1 flavor scheme is used for the strong
coupling. In this way the massive quark constitutes an additional active flavor in the RG evolution.

72



In this renormalization scheme the function F reduces to the correct massless function with one extra
massless flavor in the limit m → 0. Contributions from massless quarks are always renormalized in
the MS scheme. The distinction between MS and OS subtractions is thus only to be made for effects
of the massive flavor, including its contributions to the running of the coupling. We will denote
the function F renormalized with the MS and OS subtractions by FMS and FOS, respectively, and
emphasize again that this does not only refer to the renormalization with respect to the massive
quark of F itself, but also to the renormalization scheme used with respect to the massive quark in
the strong coupling.1

Written out explicitly this means that when the contributions from the massive flavor are renormalized
with the MS subtraction, they contribute to the running of the MS renormalized F as an active flavor
the same way as the massless quarks do

µ
d

dµ
FMS(y,m, µ) = γ

(nl+1)
F (y, µ)⊗ FMS(y,m, µ) , (4.1)

where γ
(nl+1)
F is the anomalous dimension of F for nl +1 massless flavors. Here the symbol ⊗ should

be understood as either a simple product or as a convolution in y, depending on whether the evolution
of the function F is local or not. When the contributions from the massive flavor are renormalized in
the OS scheme, they do not contribute to the running of the OS renormalized F

µ
d

dµ
FOS(y,m, µ) = γ

(nl)
F (y, µ)⊗ FOS(y,m, µ) , (4.2)

where γ
(nl)
F is the anomalous dimension of F for nl massless flavors.

With the MS subtraction the massive contributions reduce to those of an extra massless flavor in the
limit m→ 0

FMS(y,m, µ) = F (nl+1)(y, µ)×
(
1 +O

(m2

y

))
. (4.3)

But the MS scheme does not exhibit a decoupling behavior in the heavy quark limit.

With the OS subtraction all effects of massive quarks that do not decouple in the heavy quark limit are
absorbed into the counter term for F, which means that FOS automatically has the correct decoupling
limit

FOS(y,m, µ) = F (nl)(y, µ)×
(
1 +O

( y

m2

))
. (4.4)

On the other hand those terms that are absorbed in the counter term are now missing to cancel other
terms that are divergent in the limit m→ 0, such that the massless limit is not feasible with the OS
subtraction. Therefore it is import to always keep the contributions of the massive flavor renormalized
in the OS scheme when the mass scale is above the natural scale of F and in the MS scheme when
the mass is below the natural scale, such that both limits can be reached smoothly and correctly.

It is important to note again that in the definition of F no expansion in the mass with respect to any
other scale is made, which means that F contains the full mass dependence and does not only exhibit
the correct limiting behavior in the small and large mass limit as indicated in Eqs. (4.3) and (4.4),
but is also correct when m2 ∼ y. This is one of the differences of how the various functions in the
factorization theorems are defined in the UF approach compared to the MMF approach. In the latter
these functions are always valid only in a certain scaling of the mass with respect to the kinematic

1This notation with the superscripts MS and OS differs from the notation used in Refs. [2, 12], where instead the
superscripts (nl + 1) and (nl) where used to indicate when a function is renormalized with MS subtractions (i.e. with
nl + 1 active flavors in the RG running) or with OS subtractions (i.e. with nl active flavors in the RG running).
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scale that is assumed in defining them, and the missing power corrections of O(y/m2) and O(m2/y)
have to be implemented by a dedicated additional procedure, as discussed in Sec. 4.2.1.

Since we want to have F to be renormalized with the OS subtraction when its dynamical scale is
below and with the MS subtraction when it is above the mass scale, the renormalization scheme needs
to be changed when the mass scale is crossed in the evolution of F . This is done by the insertion of so
called threshold corrections, that are analogous to the matching conditions that arise when relating
the strong coupling in the nl + 1 and the nl flavor scheme. The threshold corrections M±

F are just
the ratio of F with the OS and the MS subtractions

M+
F (y,m, µm) = FMS(y,m, µm)⊗

(
FOS(y,m, µm)

)−1
,

M−
F (y,m, µm) = FOS(y,m, µm)⊗

(
FMS(y,m, µm)

)−1
, (4.5)

and therefore take F from one scheme to the other. M+
F is used when the mass scale is crossed from

below in the evolution (which means that the heavy flavor is added as an active flavor in the RG
evolution), and M−

F when the mass scale is crossed from above (when the heavy flavor is removed
from the RG evolution as an active flavor). To avoid large logarithms in the threshold corrections the
matching has to be done at the mass scale µm ∼ m. In this way the µ-dependence of the threshold
correction is by construction exactly the difference of the running of F in the (nl + 1) and the (nl)
flavor scheme

µ
d

dµ
M±

F (y,m, µ) = ±
[
γ
(nl+1)
F (y, µ)− γ(nl)

F (y, µ)
]
⊗M±

F (y,m, µ) , (4.6)

such that the renormalized F is effectively always evolved with nl flavors below the mass scale (where

FOS must be used) and with nl + 1 flavors above the mass scale (where FMS must be used).

To resum logarithms in F in the massless case, the function is first evaluated at its natural scale µF
where all logarithms are small, and then evolved in a RG evolution to the common renormalization
scale µ of the factorizaton theorem. This is done in a convolution with an evolution kernel UF , such
that

F (y, µ, µF ) = U
(nf )
F (y, µ, µF )⊗ F (y, µF ) . (4.7)

The superscript (nf ) indicates that the evolution is carried out for nf massless flavors. It is these
resummed functions F (y, µ, µF ) that then finally appear in the factorization theorems, when they are
not evaluated at fixed order but are used to resum large logarithms.

In the massive case there are in total four different possibilities how the function F is implemented in
the factorization theorem, depending on how the global renormalization scale µ, the mass scale µm
and the natural scale of the function µF lie with respect to each other.

µF < µm < µ :

F (y,m, µ, µm, µF ) = U
(nl+1)
F (y, µ, µm)⊗M+

F (y,m, µm)⊗ U (nl)
F (y, µm, µF )⊗ FOS(y,m, µF ) . (4.8)

Here F is evaluated with the OS subtraction for the massive quark contributions at its natural scale
µF , then evolved with nl active flavors to the mass scale µm, where the scheme switch from the OS
to the MS subtractions is done. From there it is evolved with nl + 1 active flavors to the global
renormalization scale µ.

µ < µm < µF :

F (y,m, µ, µm, µF ) = U
(nl)
F (y, µ, µm)⊗M−

F (y,m, µm)⊗ U (nl+1)
F (y, µm, µF )⊗ FMS(y,m, µF ) . (4.9)

Here F is evaluated with the MS subtraction for the massive quark contributions at its natural scale
µF , then evolved with nl + 1 active flavors to the mass scale µm, where the scheme switch from the
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MS to the OS subtractions is done. From there it is evolved with nl active flavors to the global
renormalization scale µ.

µm < µ, µF : F (y,m, µ, µm, µF ) = U
(nl+1)
F (y, µ, µF )⊗ FMS(y,m, µF ) . (4.10)

Here F is evaluated with the MS subtraction for the massive quark contributions and then evolved
to the global renormalization scale µ with nl + 1 active flavors. The mass scale is never crossed.

µ, µF < µm : F (y,m, µ, µm, µF ) = U
(nl)
F (y, µ, µF )⊗ FOS(y,m, µF ) . (4.11)

Here F is evaluated with with the OS subtraction for the massive quark contributions and then
evolved to the global renormalization scale µ with nl active flavors. The mass scale is never crossed.

The factorization theorems for the various processes including the full mass dependence in the resum-
mation then take the same form as in the massless case, but each hard, jet, beam and soft function
that had the form F (y, µ, µF ) as in Eq. (4.7) in the massless case, being replaced by its massive form
F (y,m, µ, µm, µF ) as in Eqs. (4.8)-(4.11).

In general all rapidity logarithms that can become large if the scales µF and µm are widely separated
and therefore need to be resummed are contained the threshold corrections MF . In Refs. [11, 12]
it was shown that these logarithms can be resummed by factorizing the threshold corrections into
contributions arising from different modes or from radiation into different hemispheres, as we will
discuss below.

In the following sections we will briefly sketch how the UF scheme is implemented for treatment of
massive quark effects in the jet, beam, soft and hard functions and the PDF in the endpoint. Except
for the beam functions this is discussed in more detail in Refs. [2, 11,12,20]. We will not write down
the explicit results for the various functions in the different renormalization schemes and the threshold
corrections here, but show how they can be constructed from the ingredients of the MMF approach
in Sec. 4.2.2.

4.1.1 Jet function

We will first discuss how the UF scheme is implemented for the hemisphere jet function. We will again
consider only secondary massive quark effects here, a similar discussion also for the primary massive
quark jet function in the UF and the MMF approach can be found in Ref. [71]. As explained above,
the massive flavor is never integrated out, such that the massive jet function is always a matching
coefficient between a theory with nl + 1 hard-collinear modes and a theory with nl + 1 collinear-soft
modes that remain after the hard-collinear modes have been integrated out from the theory. This
differs from its definition in the previous sections in the MMF scheme, where we either had only
massless flavors in the matching or, in the case where the mass was of order of the jet scale, the
matching was between nl + 1 hard-collinear and only nl collinear-soft modes, since the heavy quark
got integrated out completely at that scale. In the UF approach the relative scaling of the mass scale
to the jet scale only changes the renormalization scheme, such that we have two different definitions
of the renormalized jet function, either with OS or MS subtractions for the massiv quark

J OS(s,m, µ) =

∫
dℓ JOS(s−Qℓ,m, µ)S OS

c (ℓ,m, µ) ,

JMS
(
s,m, µ,

ν

Q

)
=

∫
dℓ JMS(s−Qℓ,m, µ)S MS

c (ℓ,m, µ, ν) . (4.12)

Here J and Sc are the collinear and collinear-soft matrix elements defined in Eqs. (3.8) and (3.11),
respectively, with nl massless and one massive flavor, and the matching coefficient J is the jet function
that appears in the factorization theorem. Again the superscripts OS and MS only indicate which
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subtraction scheme is used for the contributions from the massive quark, and contributions from
massless quarks are always renormalized with MS subtractions. Since the massive contributions
to the collinear-soft matrix element Sc are purely distributional and do not exhibit any kinematic
threshold and therefore do not decouple in the heavy quark limit, they are completely absorbed into
the on-shell counterterm, such that the OS renormalized csoft matrix element is equal to the csoft

matrix element with only nl massless flavors, i.e. S OS
c (ℓ,m, µ) = S

(nl)
c (ℓ, µ). In this way the UF jet

function in the MS scheme has the correct massless limit, while the UF jet function in the OS scheme
exhibits the correct decoupling limit. Note that even though the matrix elements in the MS scheme
have a dependence on the rapidity scale ν, the resulting jet function is independent of ν since the ν
dependence completely cancels between the collinear and the collinear-soft matrix elements. The jet
function defined in this way does also not contain any large rapidity logarithms.

The threshold correctionMJ for the jet function, defined as in Eq. (4.5), contains rapidity logarithms
of the form ln(s/m2), that can be resummed by factorizing the threshold correction into contributions
coming from the collinear matrix element J and the csoft matrix element Sc

M+
J

(
s,m, µm,

ν

Q

)
=

∫
ds′ JMS

(
s− s′,m, µm,

ν

Q

)(
J OS(s′,m, µm)

)−1
, (4.13)

M+
Sc

(ℓ,m, µm, ν) =

∫
dℓ′ S MS

c (ℓ− ℓ′,m, µm, ν)
(
S OS

c (ℓ′,m, µm)
)−1

(4.14)

such that

M±
J (s,m, µm) =

∫
dℓM±

J

(
s−Qℓ,m, µm,

ν

Q

)(
M±

Sc
(ℓ,m, µm, ν)

)−1
. (4.15)

The result forMJ in terms of the mass mode matching functions of the MMF approach is given in
Eq. (4.52).

Each of the separate threshold corrections MJ and MSc now has a dependence on the rapidity
renormalization scale ν, which can be used to resum the logarithms by evaluating them both at their
respective natural rapidity scale that minimizes the logarithms and then run them to a common
rapidity renormalization scale in a rapidity RG evolution. How this is related to the resummation of
rapidity logarithms in the MMF scheme is discussed in Sec. 4.2.2. To further avoid large logarithms
in virtuality the threshold correction should be evaluated at a scale µm ∼ m.

In Refs. [2,11,12] the jet function was not defined as a matching coefficient onto a theory containing
collinear-soft modes only, but only as the collinear matrix element with the relevant subtractions
from lower virtualities made as a zero-bin subtraction, see also the discussion after Eq. (3.10) and
Eq. (2.76). We will now briefly discuss how the jet function in the UF approach can be defined
also in that way. To avoid double counting and make sure that the massive jet function has the
correct massless limit in the MS scheme, any non-vanishing regions in the integrals contributing to
the jet function from virtualities lower than the jet scale must be subtracted. In the MMF scheme
the massive quark was integrated out at the jet scale when its mass was of the order of the jet scale,
such that it did not contribute to the soft function that then contained only purely massless quarks.
Therefore also the zero-bin subtractions in the jet function, that should remove any double counting
with the soft function, had to be done only for the nl massless quarks in the jet function. But in
the UF scheme also the massive flavor contributes to the soft function because it is never integrated
out, such that in this case the subtractions in the jet function must also account for the contributions
from the massive quark.

The collinear matrix element is evaluated with the normal collinear scaling

k+ ∼ s/Q , k− ∼ Q , k2⊥ ∼ k+k− ∼ s , (4.16)
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and the only region with lower virtuality that does not lead to scaleless or power suppressed integrals
is2

k+ ∼ s/Q , k− ≪ Q , k2⊥ ∼ k+k− ≪ s . (4.17)

Because we want to keep the full mass dependence, regardless of the scaling of the mass with respect
to the other scales, we never do an expansion in the mass m in the integrands, i.e. in the calculation
we always treat the mass as if it had the scaling m2 ∼ k2, even if we are in a scenario where m2 ≫ s or
m2 ≪ s, such that no expansion in m is done. While expanding the integrands in the loop momenta
using the scaling in Eq. (4.17) leads only to scaleless integrals in the massless case, which corresponds
to the standard zero-bin subtractions, in the massive case this is no longer true and and we get
non-trivial contributions that need to be subtracted to get a jet function that correctly includes the
full mass dependence. When doing this with the massive quark contributions renormalized either in
the MS or OS scheme, this leads to the same jet functions as the definition in Eq. (4.12), because
the subtraction terms arising when expanding for the scaling in Eq. (4.17) in the massive case are
identical to the collinear-soft matrix element.

In order to resum rapidity logarithms in the threshold correctionMJ , it needs to be factorized into
two separate parts that get contributions from different regions in rapidity. In the definition of the
jet function as in Eq. (4.12) those were coming from the collinear and collinear-soft matrix elements
in Eqs. (3.8) and (3.11), leading to the factorized form of MJ as in Eq. (4.15). These are each by
themselves matrix elements of gauge invariant operators, that get renormalized separately and can
then be evolved in a RG running. In the case where the jet function is defined as the collinear matrix
element with the subtractions from lower momentum regions as a zero-bin subtraction as discussed
above, the threshold corrections can be factorized into contributions coming from the naive collinear
matrix element and contributions coming from the subtractions. In order to do so both contributions
must be renormalized separately, with the rapidity divergences, that cancel only in combination of
contributions from the massive flavor, absorbed into two separate counterterms. One counterterm for
the contributions coming from the pure collinear matrix element in Eq. (3.8) without subtractions,
and one counterterm for the contributions coming from the subtraction when using the scaling in
Eq. (4.17). In this way one does not renormalize two separate gauge-invariant operators, but rather
assigns an individual counterterm to the contributions coming from a specific region in an integral.
In this way one can define rapidity anomalous dimensions for the unsubtracted matrix element and
the zero-bin subtractions and the rapidity logarithms can be resummed in a rapidity RG evolution,
analogous to the definition with the collinear-soft matrix elements in Eq. (4.15). Because the results
of the zero-bin subtractions for massive quarks are the same as for the csoft matrix elements for
massive quarks, this results in the same form of the resummed threshold correctionMJ .

4.1.2 Virtuality-dependent beam function

The discussion of the virtuality-dependent beam function is similar to that of the jet function in the
previous section. The difference in the definition of the beam function matching coefficient I with
massive quarks compared to the MMF case in Eq. (2.90) is again that the massive flavor is never

2In Ref. [11] the subtraction was made using the scaling

k+ ∼ m, k− ∼ m, k2
⊥ ∼ k+k− ∼ m2 ,

what was called a soft mass mode bin subtraction, with the additional change in the scaling of the invariant mass of the
jet to s ∼ mQ. This leads to exactly the same integrals after doing the expansion and therefore also the same result for
the jet function, but conceptually is not the correct region to subtract. This should instead be the collinear-soft region
at a lower virtuality as in Eq. (4.17). Indeed, without the somewhat artificial change of the scaling of the jet invariant
mass s, the soft mass mode bin subtraction does not give non-vanishing contributions and is therefore considered not
relevant in the light of our discussion here.
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integrated out, i.e. also the csoft matrix elements and the PDFs contain the full nl + 1 flavors, and
only the renormalization scheme for the heavy flavor is changed

BOS
i (t,m, x, µ) =

∑

k∈{q,q̄,g}

∫
dℓ IOS

ik (t− ωℓ,m, x, µ)⊗x f
OS
k (x,m, µ)

×S OS
c (ℓ,m, µ) ,

BMS
i

(
t,m, x, µ,

ν

ω

)
=

∑

k∈{q,q̄,g}

∫
dℓ IMS

ik (t− ωℓ,m, x, µ)⊗x f
MS
k (x,m, µ)

×S MS
c (ℓ,m, µ, ν) . (4.18)

The dependence on the rapidity renormalization scale ν cancels between the collinear and the collinear-
soft matrix elements such that I is independent of ν for both the OS and the MS subtraction schemes
for the massive quark. The matching coefficients I defined in this way have the correct massless limit
when using the MS subtractions and the correct decoupling limit when using the OS subtractions for
the massive flavor. In both cases they are free of rapidity logarithms.

Remember that the csoft modes eventually only manifest themselves as part of the soft function, such
that the RG running in the collinear sector is caused only by the matching coefficients I and the
PDFs f . The relevant threshold correction, that encodes the change of the renormalization scheme
in the functions that contribute to the running in the collinear sector, that one needs to calculate
is therefore that of the beam function with subtraction from csoft contributions already made, i.e.
B = B ⊗ S −1

c = I ⊗x f , which is also the function that appears in the factorization theorem.
The threshold correction to the light quark beam function MB contains rapidity logarithms from
secondary massive quarks of the form ln(t/m2) that can be resummed in a similar manner as for
the jet function threshold correction by splitting it into contributions coming from only the purely
collinear matrix element and from the csoft matrix element

M+
B

(
t,m, x, µm,

ν

ω

)
=

∫
dt′ BMS

(
t− t′,m, x, µm,

ν

ω

)(
BOS(t′,m, x, µm)

)−1
, (4.19)

such that

M±
B(t,m, x, µm) =

∫
dℓM±

B

(
t− ωℓ,m, x, µm,

ν

ω

)(
M±

Sc
(ℓ,m, µm, ν)

)−1
, (4.20)

withMSc as in Eq. (4.14). The result forMB in terms of the mass mode matching functions of the
MMF approach is given in Eq. (4.52). The logarithms are resummed in an rapidity RG evolution of the
threshold correctionsMB andMSc , each from its natural rapidity scale to a common renormalization
scale.

Also for the beam function one can define the matching coefficient Iik and the threshold corrections
M±

B with zero-bin subtractions in the spirit of the calculations in Refs. [2,11,12] instead of a matching
on collinear-soft modes, see also the discussion after Eq. (2.76). The definition that leads to the
identical matching coefficients Iik then reads

BOS
i (t,m, x, µ) =

∑

k∈{q,q̄,g}

IOS
ik (t,m, x, µ)⊗x f

OS
k (x,m, µ) ,

BMS
i (t,m, x, µ) =

∑

k∈{q,q̄,g}

IMS
ik (t,m, x, µ)⊗x f

MS
k (x,m, µ) , (4.21)

with B defined with subtractions to avoid double counting with the soft region.

The beam function without subtractions with partonic initial states is evaluated with the normal
collinear scaling

k+ ∼ t/ω , k− ∼ ω , k2⊥ ∼ k+k− ∼ t , (4.22)
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where we keep again the full mass dependence in the calculation, irregardless of the scaling of the
mass with respect to the loop momentum, i.e. effectively always treating the mass as m2 ∼ k2.
For primary massive quarks at one-loop, i.e. BQ, the only other region that does not lead to vanishing
or power suppressed contributions is

k+ ≪ t/ω , k− ∼ ω , k2⊥ ∼ k+k− ≪ t . (4.23)

This corresponds to the collinear region of lower virtuality that is already covered by the PDF and
must therefore not be subtracted again, because it is already subtracted from the matching coefficient
when matching the full beam function onto the PDF, such that no double counting takes place.

For secondary massive quarks at two-loops, i.e. corrections from the heavy flavor to the light quark
beam function Bq, one can identify different regions of lower virtuality that lead to non-vanishing and
non-suppressed contributions

k+ ≪ t/ω , k− ∼ ω , k2⊥ ∼ k+k− ≪ t ,

k+ ∼ t/ω , k− ≪ ω , k2⊥ ∼ k+k− ≪ t . (4.24)

The first corresponds again to collinear fluctuations covered already by the PDF and does not need to
be subtracted again. The second corresponds to regions that have an overlap with the soft region and
must be subtracted to avoid double counting between the beam and the soft function. Subtracting this
region from the beam function leads to identical beam function matching coefficients Iik in Eqs. (4.18)
and (4.21) and also to the same threshold correctionsM±

B. In the massless case these contributions
are scaleless and correspond to the standard zero-bin subtractions.

The resummation of rapidity logarithms in the threshold correction to the light quark beam function
MB defined with these subtraction can again be achieved by renormalizing and evolving the subtrac-
tions from the soft regions in the integrals separately, as it was the case also for the jet function in
the previous section.

4.1.3 Hard function

The hard function in the UF scheme is always the matching coefficient for a matching between the
QCD and the SCET currents with all nl + 1 flavors, in contrast to the MMF scheme where the
numbers of flavors on the two sides of the matching relation depended on the relative scaling of the
quark mass and the hard scale µH ∼ Q. In the UF scheme only the renormalization scheme for the
massive quark is changed between the OS and MS subtractions, depending on whether m > µH or
m < µH

JQCD(Q,m, µ) = COS(Q,m, µ)× JOS
SCET(Q,m, µ) ,

JQCD(Q,m, µ) = CMS(Q,m, µ)× JMS
SCET(Q,m, µ) , (4.25)

with H(Q,m, µ) = |C(Q,m, µ)|2. The full QCD vector current form factor JQCD is UV finite and
does not require an additional counterterm.

Since the SCET current gets correction only from purely virtual contributions that do not vanish in
the heavy quark limit, all contributions from the massive flavor are absorbed into the counterterm

when using the OS subtraction scheme, i.e. JOS
SCET(Q,m, µ) = J

(nl)
SCET(Q,µ). We recall that the

contributions from massless flavors are always renormalized in the MS scheme. The two resulting
hard functions HOS(Q,m, µ) and HMS(Q,m, µ) are then independent of any rapidity renormalization
scale and free of rapidity logarithms and have the correct decoupling and massless limit respectively.
They are related by the threshold correction MH , defined as the ratio of the hard function in the
two different renormalization schemes. In fact the QCD current cancels in that ratio, such that the
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threshold correction for the hard function is just the ratio of the SCET current in the OS and the
MS scheme

M+
H(Q,m, µm) =

∣∣∣∣∣
JOS
SCET(Q,m, µm)

JMS
SCET(Q,m, µm)

∣∣∣∣∣

2

, (4.26)

and as always M−
H = (M+

H)−1. The result for MH in terms of the mass mode matching functions
of the MMF approach is given in Eq. (4.52). It contains rapidity logarithms of the form ln(m2/Q2)
that become large and need to be resummed to all orders when m ≪ Q. They can be resummed
by factorizing the threshold correction into three factors by splitting the full SCET current into
contributions coming from the different collinear and soft sectors JSCET = JSCET,n×JSCET,n̄×JSCET,s,
such that the threshold correctionM±

H can be written as

M±
H(Q,m, µm) =M±

Hc

(
Q,m, µm,

ν

Q

)
×M±

Hc

(
Q,m, µm,

ν

Q

)
×M±

Hs
(Q,m, µm, ν) , (4.27)

where eachMHi is a current threshold correction as in Eq. (4.26), but only with contributions from
one single collinear or soft sector.3 Each of these threshold corrections in the different sectors now
has an explicit dependence on the rapidity renormalization scale ν that cancels only in the sum of
all three of them, such that the full threshold correction for the hard function is independent of ν.
The rapidity logarithms can then be resummed in an rapidity RG evolution of these three separate
threshold corrections.

4.1.4 PDF in the endpoint

The PDF is a non-perturbative object that cannot be calculated in perturbation theory, but since
its dependence on the renormalization scale can be determined perturbatively, also its threshold
correction in the endpoint regionMϕ, that encodes the scheme change from renormalizing the heavy
flavor in the PDF in the limit x→ 1 with OS and MS subtractions, can be calculated perturbatively
by evaluating the PDF operator in Eq. (3.15) with partonic initial states. The resulting threshold
correction contains rapidity logarithms of the form ln(1− x) that need to be resummed to all orders
because we are assuming the limit (1− x)≪ 1.

The resummation of these logarithms has been achieved in Ref. [2]. The full threshold correction can
be split into two parts that get contributions from different rapidity scales by separating the PDF
into a collinear and a soft matrix element (or likewise a n̄-csoft matrix element, see the discussion
after Eq. (3.40)) as in Eq. (3.16). The individual threshold corrections for these two functions are
then defined as

M+
g

(
ℓ,m, µm,

ν

Q

)
=

∫
dℓ′ gMS

q/q

(
ℓ− ℓ′,m, µm,

ν

Q

)(
gOS
q/q(ℓ

′,m, µm)
)−1

,

M+
S (ℓ,m, µm, ν) =

∫
dℓ′ S MS(ℓ− ℓ′,m, µm, ν)

(
S OS(ℓ′,m, µm)

)−1
, (4.28)

with the collinear and the soft matrix elements defined in Eqs. (3.17) and (3.18), respectively, such
that

M±
ϕ (1− z,m, µm) = Q

∫
dℓM±

g

(
Q(1− z)− ℓ,m, µm,

ν

Q

)
M±

S (ℓ,m, µm, ν) . (4.29)

The result for Mϕ in terms of the mass mode matching functions of the MMF approach is given
in Eq. (4.52). The collinear and the soft threshold corrections Mg and MS can then both be first
evaluated at their natural rapidity scale that minimizes the logarithms and then evolved to a common
rapidity renormalization scale.

3We remind the reader the fact that the threshold corrections for n- and the n̄-collinear sector take the form only
holds for the case of a symmetric rapidity regulator.
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4.1.5 Thrust soft function

The (beam) thrust soft function with the massive quark corrections renormalized in either the OS or
MS scheme automatically encodes all mass corrections. It has the correct decoupling limit in the OS
scheme and the correct massless limit in the MS scheme, without any further matching because the
soft function is already free of IR divergences. The threshold correctionMS , defined as in Eq. (4.5),
contains rapidity logarithms of the form ln(ℓ/m), that become large and need to be resummed when
the mass scale is much larger then the soft scale. In Ref. [11, 12] this resummation was achieved
by splitting the full soft function into different contributions coming from virtual radiation and real
radiation in the two different hemispheres4. Then the threshold corrections of these, defined in the
usual way as the ratio of the OS and MS contributions, can be calculated separately such the threshold
correction for the full soft function can be written as

MS(ℓ,m, µm) =

∫
dℓadℓbMSra

(ℓa,m, µm, ν)MSrb
(ℓb,m, µm, ν)MSv(ℓ− ℓa − ℓb,m, µm, ν) . (4.30)

The result forMS in terms of the mass mode matching functions of the MMF approach is given in
Eq. (4.52).

The threshold corrections from the real radiation in the two hemispheresMSra
(from real radiation

contributions where both heavy quarks are radiated into hemisphere a) andMSrb
(from real radiation

contributions where both heavy quarks are radiated into hemisphere b) and the threshold correction
coming from the purely virtual contributions MSv have different natural rapidity scales ν, such
that an incomplete cancellation of these logarithms when evaluated at fixed order leads to a rapidity
logarithms of the form ln(ℓ/m) in the full soft function threshold correctionMS . When each threshold
correction is first evaluated at its natural rapidity scale that minimizes the logarithms and then
evolved to a common rapidity renormalization scale, these logarithms are resummed in the rapidity
RG running.

This means that in the UF approach different real and virtual corrections to the soft function need to
be renormalized separately and then evolved with their own anomalous dimension in rapidity. That
is in contrast to the MMF approach where all the mass mode matching functions that are evolved in
rapidity are defined as matching coefficients between matrix elements of well-defined gauge invariant
operators.

4.1.6 TMD beam and soft functions

We will now discuss how the transverse momentum dependent functions, the beam and the soft
function, are implemented in an UF setup. Also for these SCETII type functions the UF scheme
can provide a convenient way for getting the full mass dependence without any additional massive
power corrections by switching between the OS and MS subtractions. Since the TMD functions are
rapidity divergent already in the massless case, the dependence on the rapidity renormalization scale
ν is intrinsic to them and not only a feature of the secondary massive quark corrections. Also the
threshold corrections Mi for the TMD functions show this explicit ν-dependence. It is, however,
possible to construct an object as a combination of both the TMD soft and beam function that is
free of rapidity divergences and for which also the threshold correction is independent of the rapidity
scale, see below. In this way the resummation of rapidity logarithms related only to the secondary
massive quark effects can be performed in the threshold correction, in a similar way as for the SCETI

type functions discussed before.

4There are also virtual-real contributions, but they are purely massless at two-loops and therefore cancel in the
threshold correction, because contributions from massless quark are always renormalized in the MS scheme. There are
further contributions from secondary massive quarks where the two quarks go into different hemispheres, but also these
cancel in the threshold correction because these real radiation effects of massive particles automatically decouple in the
heavy quark limit, which means they are equivalent, both when using the OS and MS subtractions.
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For the TMD beam function the definitions of the matching coefficient I with the different subtraction
schemes for contributions form massive quarks are

BOS
i

(
p⃗T ,m, x, µ,

ν

Q

)
=

∑

k∈{q,q̄,g}

IOS
ik

(
p⃗T ,m, x, µ,

ν

Q

)
⊗x f

OS
k (x,m, µ) ,

BMS
i

(
p⃗T ,m, x, µ,

ν

Q

)
=

∑

k∈{q,q̄,g}

IMS
ik

(
p⃗T ,m, x, µ,

ν

Q

)
⊗x f

MS
k (x,m, µ) . (4.31)

The matching coefficients I then have the correct massless limit when using the MS subtractions and
the correct decoupling limit when using the OS subtractions.

Since this is a SCETII setup there is no soft scale of lower virtuality that could inflict some double
counting with the beam function as we found it for the virtuality-dependent beam function. Therefore
no subtractions from these regions need to be made. This is also visible by expanding the integrals
that contribute to the massive beam function. The only momentum region other than the normal
collinear one that gives non-scaleless and non-suppressed integrals is

k+ ≪ pT /ω , k− ∼ ω , k2⊥ ∼ k+k− ≪ p2T , (4.32)

in both the primary and the secondary massive beam function. This corresponds to the collinear
region of lower virtuality that is already covered by the PDF, such that no additional subtraction
needs to be made since no double counting is made in I.
The threshold correction for the beam function MB, defined as in Eq. (4.5), contains an explicit
dependence on the rapidity renormalization scale ν coming from secondary massive quark contri-
butions, because in contrast to the virtuality-dependent beam function (after subtraction of the
collinear-soft contributions) the TMD beam function has an explicit ν-dependence that does not ex-
actly cancel between the OS and the MS scheme. This leaves a threshold correction of the form

MB

(
p⃗T ,m, x, µm,

ν
ω

)
, where the ν-dependence cancels only against the threshold correction of the

soft function MS(p⃗T ,m, µm, ν). The results for MB and MS in terms of the mass mode matching
functions of the MMF approach are given in Eq. (4.52).

The threshold corrections of the TMD beam and soft functionsMB andMS have different natural
rapidity scales, which means that the ν dependence in the logarithms cancels when the two are
combined but the cancellation of the rapidity logarithms is not complete and leaves logarithms of
the form ln(m2/Q2), that need to be resummed when m2 ≪ Q2. These can be resummed by first
evaluating each threshold correction at its natural rapidity scale and then evolving both to a common
rapidity renormalization scale. In this way one gets a resummed threshold correction when combining
them, that is by consistency of RG running just the same as the one for the hard functionMH . But
because of the explicit ν-dependence it is not possible to have a resummed threshold correction for
the individual beam or soft functions, what has been a feature of the UF scheme for the SCETI type
functions so far.

But it is possible to construct what is called the TMDPDF5

fTMD
i (p⃗T ,m, x, ω, µ) =

∫
d2p ′

T Bi

(
p⃗T − p⃗ ′

T ,m, x, µ,
ν

ω

)√
S(p⃗ ′

T ,m, µ, ν) , (4.33)

where the root is defined in the sense that
∫

d2p ′
T

√
S(p⃗T − p⃗ ′

T ,m, µ, ν)
√
S(p⃗ ′

T ,m, µ, ν) = S(p⃗T ,m, µ, ν) , (4.34)

5In literature sometimes also the collinear matrix element Bi is referred to as the TMDPDF and the distinction
between Bi and fTMD

i is not always clearly made. We use the language following e.g. Ref. [57] and strictly call Bi the
TMD beam function and only fTMD

i defined as in Eq. (4.33) the TMDPDF.
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which leads to a single function that is free of rapidity divergences and independent of the rapidity
scale ν. The threshold correction of this TMDPDF is then also independent of ν, and the rapidity
logarithms it contains can be resummed between the different contributions from the beam and the
soft function. In this way one can achieve to have one universal function that is resummed in rapidity
in the UF scheme, analogous to the SCETI cases.

4.2 Relation between the two approaches

We will now compare the MMF approach in Sec. 3.2 and the UF approach for DIS in the endpoint
region and discuss where they differ and in which sense they are equivalent. Here we will only discuss
the relation between the two approaches for DIS in the endpoint region as an example, but the
situation is similar for exclusive Drell-Yan (see chapter 2) and thrust in e+e− → 2 jets in the peak
region (see appendix A).

4.2.1 Power corrections in the mass mode factorization scheme

So far, in the MMF approach for Drell-Yan in chapter 2 and for DIS in Sec. 3.2, we only kept the
full mass dependence in the various functions in the factorization theorems in the case that m ∼ µi,
where µi is the natural scale of that function, i.e. the scale that minimizes all logarithms. Otherwise
we always neglected power corrections of the form m2/µ2i whenever we assumed the hierarchy m≪ µi
and corrections of the form µ2i /m

2 for µi ≪ m, by always using the massless hard, beam, jet or soft
function in either the nl +1 or nl flavor scheme. This approach does not provide a smooth transition
from one hierarchy to another, because each of those factorization theorems is only valid in the strict
hierarchy of the scales it was derived for. This is one of the differences of the MMF approach as
presented above compared to the UF, where we were able to always keep the full mass dependence.

In this section we discuss how to include these massive power corrections in the MMF approach and
thereby keep the full mass dependence and achieve a smooth transition between all hierarchies for
the example of DIS in the endpoint region as discussed in Sec. 3.2. It is straightforward to do the
same for the factorization theorems for Drell-Yan discussed in Secs. 2.1 and 2.2, and the results will
be presented at the end of this section.

For convenience of the reader we write down again the factorization theorems including the secondary
mass effects (remember that we do not deal with primary mass effects for DIS) for the different
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hierarchies for DIS in the endpoint region

Q≪ m :

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl)
i (Q,µ)

∫
ds J (nl)(s, µ)ϕ

(nl)
i

(
1− x− s

Q2
, µ
)
, (4.35)

m ∼ Q :

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥi(Q,m, µ)

∫
ds J (nl)(s, µ)ϕ

(nl)
i

(
1− x− s

Q2
, µ
)
, (4.36)

Q
√
1− x≪ m≪ Q :

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

×
∫

ds J (nl)(s, µ)ϕ
(nl)
i

(
1− x− s

Q2
, µ
)
, (4.37)

m ∼ Q
√
1− x :

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

×
∫

ds J
(
s,m, µ,

ν

Q

)
ϕ
(nl)
i

(
1− x− s

Q2
, µ
)
, (4.38)

m≪ Q
√
1− x :

F1(x,m,Q) =
1

2

∑

i∈{q,q̄}

Ĥ
(nl+1)
i (Q,µ)Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

×
∫

ds dℓ J (nl+1)(s, µ)Sc(ℓ,m, µ, ν)ϕ(nl)
i

(
1− x− s

Q2
− ℓ

Q
, µ
)
. (4.39)

The factorization theorems in Eqs. (4.35), (4.37) and (4.39), valid whenever the mass scale is clearly
separated from all the other scales, resum all logarithms between the mass and the other scales that
need to be considered large in these hierarchies with widely separated scales. But they only use the
massless hard and jet functions, either in the nl or the nl +1 scheme depending on whether the mass
is above or below the hard or jet scale, and therefore do not include power corrections of the form

O
(Q2

m2 ,
Q2

√
1−x

m2

)
when the mass becomes larger than the hard or the jet scale, and terms of the form

O
(
m2

Q2 ,
m2

Q2
√
1−x

)
when the mass becomes small. Therefore these factorization theorems can only be

used in the strict hierarchies for which they were derived.

On the other hand as was shown in Sec. 3.2, the factorization theorems in Eqs. (4.36) and (4.38)
do include all these terms correctly for the hard function when m ∼ Q and the jet function when
m ∼ Q

√
1− x, respectively. But they can not resum logarithms of the form log

(
Q2/m2

)
in the case

of Eq. (4.36) and logarithms of the form log
(
Q2(1 − x)/m2

)
in the case of Eq. (4.38), that become

large if the mass scale is widely separated from the hard or the jet scale. Consequently also those
factorization theorems can only be applied in the strict hierarchy for which they were derived.

One can construct factorization theorems that smoothly connect those different hierarchies and are
valid regardless of whether the mass is close to one of the other scales µi – which makes it suitable to
keep the full mass dependence not neglecting terms of the form O

(
µ2i /m

2
)
or O

(
m2/µ2i

)
– or whether
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there is a large hierarchy between the mass and the other scale – which makes it necessary to resum
logarithms of the form log

(
µ2i /m

2
)
– that are therefore more in the spirit of the UF approach discussed

in Sec. 4.1, but still keeping the advantage of the MMF approach, i.e. that all the threshold matching
functions in the factorization theorem are matching coefficients between matrix elements containing
quantum fluctuations at a single scale and (rapidity) logarithms are only resummed between several
of these matching coefficients. To achieve this one simply has to add back the full mass dependence
that is encoded in hard and jet functions appearing in the factorization theorems in Eq. (4.36) and
(4.38) to the factorization theorems in Eqs. (4.35), (4.37) and (4.39).

To identify the missing power corrections one can look at the small and large mass limits of the
massive hard and mass mode jet functions (for primary massless quarks), that were already discussed
in Sec. 3.2.3. For example from Eq. (3.44) it can be seen that the mass mode jet function can be
written in the form

J
(
s,m, µ,

ν

Q

)
=

∫
ds′ dℓ J (nl+1)(s− s′ −Qℓ, µ)Sc(ℓ,m, µ, ν)PJm<Q

√
1−x

(s′,m, µ) , (4.40)

where PJm<Q
√
1−x

stands for the power corrections that vanish in the limit m→ 0. In order to write
down a factorization theorem that resums all the logarithms and includes all the mass related power
corrections, one can add the appropriate power corrections to the massless functions. We define the
new hard and jet functions including the power corrections from secondary massive quarks as

Ĥm>Q(Q,m, µ) = Ĥ(nl)(Q,µ)× PHm>Q
(Q,m, µ) ,

Ĥm<Q(Q,m, µ) = Ĥ(nl+1)(Q,µ)× PHm<Q
(Q,m, µ) ,

Jm>Q
√
1−x(s,m, µ) =

∫
ds′ J (nl)(s− s′, µ)PJm>Q

√
1−x

(s′,m, µ)

Jm<Q
√
1−x(s,m, µ) =

∫
ds′ J (nl+1)(s− s′, µ)PJm<Q

√
1−x

(s′,m, µ) , (4.41)

where the P -functions are defined to contain only the power corrections in the respective limits

PHm>Q
(Q,m, µ) = 1 +O

(Q2

m2

)
,

PHm<Q
(Q,m, µ) = 1 +O

(m2

Q2

)
,

PJm>Q
√
1−x

(s,m, µ) = δ(s)
[
1 +O

( s

m2

)]
,

PJm<Q
√
1−x

(s,m, µ) = δ(s)
[
1 +O

(m2

s

)]
. (4.42)

Using Eqs. (3.42), (3.41), (3.43) and (3.44), where the large and small mass limits are discussed for
the hard and jet functions, one finds the following solutions

Ĥm>Q(Q,m, µ) = Ĥ(Q,m, µ) ,

Ĥm<Q(Q,m, µ) = Ĥ(Q,m, µ)H−1
c

(
m,µ,

ν

Q

)
H−1

c

(
m,µ,

ν

Q

)
H−1

s (m,µ, ν) ,

Jm>Q
√
1−x(s,m, µ) = J

(
s,m, µ,

ν

Q

)
H−1

c

(
m,µ,

ν

Q

)
,

Jm<Q
√
1−x(s,m, µ) =

∫
dℓ J

(
s−Qℓ,m, µ, ν

Q

)
S−1
c (ℓ,m, µ, ν) , (4.43)

where the contributions from secondary massive quarks at order O(α2
s) to the hard and jet functions

Ĥ and J that appear on the right-hand sides are given in Eqs. (C.6) and (C.27) and Hs, Hc and Sc in
Eqs. (C.8), (C.10) and (C.32). The ν dependence of the functions on the right side of the equations
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cancels. The massive hard and jet functions defined in this way have the same anomalous dimensions
as their massless counterparts, with either nl or nl + 1 flavors, depending on whether the function
below or above the mass scale is used

µ
d

dµ
Ĥm>Q(Q,m, µ) = γ

(nl)
H (Q,µ) Ĥm>Q(Q,m, µ) ,

µ
d

dµ
Ĥm<Q(Q,m, µ) = γ

(nl+1)
H (Q,µ) Ĥm<Q(Q,m, µ) ,

µ
d

dµ
Jm>Q

√
1−x(s,m, µ) =

∫
ds′ γ

(nl)
J (s− s′, µ) Jm>Q

√
1−x(s

′,m, µ) ,

µ
d

dµ
Jm<Q

√
1−x(s,m, µ) =

∫
ds′ γ

(nl+1)
J (s− s′, µ) Jm<Q

√
1−x(s

′,m, µ) . (4.44)

Here γH and γJ are the anomalous dimensions of the massless hard and the jet functions, with the
contributions at order O(αs) and O(α2

sCFTF ) given in Eqs (B.3) and (B.20). All these functions have
the correct limiting behavior in the small and large mass limit

Ĥm>Q(Q,m, µ) = Ĥ(nl)(Q,µ) +O
(Q2

m2

)
,

Ĥm<Q(Q,m, µ) = Ĥ(nl+1)(Q,µ) +O
(m2

Q2

)
,

Jm>Q
√
1−x(s,m, µ) = J (nl)(s, µ)×

(
1 +O

( s

m2

))
,

Jm<Q
√
1−x(s,m, µ) = J (nl+1)(s, µ)×

(
1 +O

(m2

s

))
, (4.45)

and do not contain any large logarithms when evaluated at their respective natural scale

µH ∼ Q , µJ ∼ Q
√
1− x . (4.46)

In this way we do not need to treat the situations where the mass scale is widely separated from one
of the kinematic scales, like m ≪ µi, separately from the case where the mass becomes of the same
order of that scale m ≲ µi, but only need to distinguish three scenarios:

Scenario I: Q < m:

F1(x,Q) =
1

2

∑

i∈{q,q̄}

Ĥi,m>Q(Q,m, µ)×
∫

ds Jm>Q
√
1−x(s,m, µ)ϕ

(nl)
i

(
1− x− s

Q2
, µ
)

(4.47)

The functions Ĥm>Q and Jm>Q
√
1−x have the same anomalous dimensions as the massless hard and

jet functions for nl dynamical flavors. The same holds for the PDF.

Scenario II: Q
√
1− x < m < Q:

F1(x,Q) =
1

2

∑

i∈{q,q̄}

Ĥi,m<Q(Q,m, µ)Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)

×
∫

ds Jm>Q
√
1−x(s,m, µ)ϕ

(nl)
i

(
1− x− s

Q2
, µ
)

(4.48)

The functions Ĥm<Q and Jm>Q
√
1−x have the same anomalous dimensions as the massless hard and

jet functions with nl + 1 and nl dynamical flavors, respectively. Again the effects of the µ-running of
the mass mode matching functions Hs and Hc are most conveniently taken into account by running
only the hard and jet functions and the PDF, but with nl +1 active flavors above and with nl active
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flavors below the mass scale (see Eq. (2.23)). The rapidity logarithms are resummed in the rapidity
RG running of the matching functions Hs and Hc.

Scenario III: m < Q
√
1− x:

F1(x,Q) =
1

2

∑

i∈{q,q̄}

Ĥ i,m<Q(Q,m, µ)Hs(m,µ, ν)Hc

(
m,µ,

ν

Q

)

×
∫

dsdℓ Jm<Q
√
1−x(s,m, µ)Sc(ℓ,m, µ, ν)ϕ

(nl)
i

(
1− x− s

Q2
− ℓ

Q
, µ
)

(4.49)

The functions Ĥm<Q and Jm<Q
√
1−x have the same anomalous dimensions as the massless hard and

jet functions with nl flavors. Again the effects of the µ-running of the mass mode matching functions
Hs, Hc and Sc are most conveniently taken into account by running only the hard and jet functions
and the PDF, but with nl + 1 active flavors above and with nl active flavors below the mass scale
(see Eq. (3.36)). The rapidity logarithms are resummed in the rapidity RG running of the matching
functions Hs, Hc and Sc.
Using Eq. (4.45) it is easy to see that the factorization theorems in Eqs. (4.47)-(4.49) reduce to the
ones in Eqs. (4.35) - (4.39) in the hierarchies m ∼ Q, Q

√
1− x ≪ m ≪ Q, m ∼ Q

√
1− x and

m ≪ Q
√
1− x, for which the original factorization theorems where derived, plus power corrections

that are formally small in these strict hierarchies (but can be non-negligible). In the factorization
theorems in Eqs. (4.47)-(4.49) the same logarithmic terms are resummed since all functions have the
same anomalous dimensions as before, but the massive hard and jet functions Hm≶Q and Jm≶Q

√
1−x

have a smooth transition between the small and large mass limit and can therefore be used for an
arbitrary scaling of the mass with respect to the other scales. In this way one can formulate the
factorization theorem for the three different scenarios Q < m, Q

√
1− x < m < Q and m < Q

√
1− x

with all mass related power corrections in the hard and jet functions included, such that no large
hierarchies between the mass and the kinematic scales needs to be assumed.

In close analogy one can also define the soft and beam functions including the full mass dependence
using the relation between the various function in the different hierarchies given in Sec. 2.1.6 and
2.2.5

Sm>T (ℓ,m, µ) = H−1
s (m,µ, ν)

∫
dℓ′dℓ′′ S(ℓ− ℓ′ − ℓ′′,m, µ)S−1

c (ℓ′,m, µ, ν)S−1
c (ℓ′′,m, µ, ν) ,

Sm<T (ℓ,m, µ) = S(ℓ,m, µ) ,

Sm>pT (p⃗T ,m, µ, ν) = S(p⃗T ,m, µ, ν)H
−1
s (m,µ, ν) ,

Sm<pT (p⃗T ,m, µ, ν) = S(p⃗T ,m, µ, ν) ,

Iik,m>
√
QT (t,m, x, µ) = Iik

(
t,m, x, µ,

ν

Q

)
H−1

c

(
m,µ,

ν

Q

)
,

Iik,m<
√
QT (t,m, x, µ) =

∫
dℓ Iij

(
t−Qℓ,m, x, µ, ν

Q

)
S−1
c (ℓ,m, µ, ν)⊗xM−1

jk (x,m, µ) ,

Iik,m>pT

(
p⃗T ,m, x, µ,

ν

Q

)
= Iik

(
p⃗T ,m, x, µ,

ν

Q

)
H−1

c

(
m,µ,

ν

Q

)
,

Iik,m<pT

(
p⃗T ,m, x, µ,

ν

Q

)
= Iij

(
p⃗T ,m, x, µ,

ν

Q

)
⊗xM−1

jk (x,m, µ) . (4.50)

4.2.2 Consistency between universal factorization and mass mode factorization

In the previous section we have derived factorization theorems for the various scenarios for DIS in
the endpoint region that used generalizations of the ingredients of the MMF scheme that allow for
a smooth transition between all scenarios, which was one of the key points of the UF approach. We
shall now compare these two schemes directly, as it will turn out that they are in fact equivalent.
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Comparing the results from the previous section with the results in Refs. [2, 12] we directly see that
the hard and jet functions with the OS and the MS subtractions for secondary massive quarks in the
UF approach and the hard and jet functions of the mass mode factorization for secondary massive
quarks including the mass related power corrections derived in Sec. 4.2.1, are in fact equivalent, i.e.

Ĥm>Q(Q,m, µ) = ĤOS(Q,m, µ) ,

Ĥm<Q(Q,m, µ) = ĤMS(Q,m, µ) ,

Jm>Q
√
1−x(s,m, µ) = JOS(s,m, µ) ,

Jm<Q
√
1−x(s,m, µ) = JMS(s,m, µ) . (4.51)

The analogous relations hold also for the beam and soft functions. The remaining functions in
the factorization theorems are the matching functions, the threshold corrections Mi in the case of
the universal factorization approach, and Hc, Hs and Sc for the mass mode factorization approach.
Comparing Eqs. (C.8), (C.10) and (C.32) with the results from Refs. [2,12] we see that the threshold
matching coefficientsM±

i that appear in the universal factorization approach can be written in terms
of the matching functions from the mass mode factorization as6

M−
H(Q,m, µ) = Hc

(
m,µ,

ν

Q

)
Hc

(
m,µ,

ν

Q

)
Hs(m,µ, ν) ,

M−
J (s,m, µ) =

1

Q
H−1

c

(
m,µ,

ν

Q

)
Sc
( s
Q
,m, µ, ν

)
,

M+
ϕ (1− z,m, µ) = QHc

(
m,µ,

ν

Q

)
Hs(m,µ, ν)Sc

(
Q(1− z),m, µ, ν

)
,

M+
S (ℓ,m, µ) = Hs(m,µ, ν)

∫
dℓ′ Sc(ℓ− ℓ′,m, µ, ν)Sc(ℓ′,m, µ, ν) ,

M−
B(t, x,m, µ) = δ(1− x) 1

ω
H−1

c

(
m,µ,

ν

ω

)
Sc
( t
ω
,m, µ, ν

)
,

M+
B

(
p⃗T ,m, x, µ,

ν

ω

)
= δ(1− x)δ(2)(p⃗T )Hc

(
m,µ,

ν

ω

)
,

M+
S (p⃗T ,m, µ, ν) = δ(2)(p⃗T )Hs(m,µ, ν) , (4.52)

which tells us that all the factorization theorems for all the different scenarios derived in the UF
approach and those in the MMF approach are equivalent, once the latter are supplemented by power
corrections as described in Sec. 4.2.1.

After simply stating the fact of equivalence of the two approaches once the power corrections are
included by comparing to the results from literature, we will now take a closer look on how the defini-
tions of the different mass dependent structures in the factorization theorems in the two approaches
differ and what their relation is. We will do this for the example of the hemisphere jet function and
will again focus only on the secondary massive quark corrections to the primary massless jet function,
i.e. the case where the quark entering the hard interaction and initiating the jet is massless and
the heavy flavor only contributes via virtual effects or a gluon splitting into a heavy QQ̄ pair. The
discussion is analogous for all other functions appearing in the factorization theorems. A similar com-
parison between the definitions of the jet function in the MMF and the UF approach, also including
primary massive quark effects, was done in Ref. [71]. One of the results found there was that the
relation between the jet function defined in the UF and the MFF approach is not affected by primary
massive quark effects, which is due to the fact that the csoft matrix elements are independent of the
primary quark’s mass.

6The threshold correction for the virtuality-dependent beam function is the same as for the jet function by consistency
with the hard function and the thrust soft function that are the same in the factorization theorems for thrust in the
peak region in e+e− → jets and beam thrust in DY. The threshold corrections for the TMD beam and soft functions
can be inferred from consistency with the hard function.
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In the following we will use the subscripts “uf” and “mm” to distinguish the jet functions defined
in the UF scheme and in the MMF scheme, respectively. In the universal factorization approach in
Sec. 4.1 we defined the jet function Juf for m ≲ Q

√
1− x ∼ µJ as the collinear matrix element J

in Eq. (3.8) renormalized with MS subtractions for all flavors, thereby always including the massive
quark as an active flavor, with a subtraction of the collinear-soft region for all nl + 1 quarks (either
as a zero-bin or a csoft matrix elements defined in Eq (3.11))

JMS
uf = J (nl+1),MS ⊗

(
S (nl+1),MS

c

)−1
. (4.53)

The subtraction of modes of lower virtuality for all nl +1 flavors ensures that the jet function JMS
uf is

IR finite, because all IR divergences cancel between the collinear and the collinear-soft contributions.
This is true both in the case of only massless quarks and in the case of massive quarks, such that
the jet function defined in that way has the correct, IR finite, massless limit. This is the reason why
the jet function in the UF scheme can be used for any m ≲ µJ , because the full mass dependence,
relevant for m ∼ µJ is kept, while at the same time the correct massless limit, relevant for m≪ µJ ,
can be reached, which is one of the main ideas behind the UF approach.

In the MMF approach the renormalized jet function for m ∼ µJ is defined as (in the MMF scheme
contributions from all flavors, massless and massive, always get renormalized in the MS scheme)

Jmm = J (nl+1),MS ⊗
(
S (nl),MS

c

)−1
. (4.54)

Here the csoft matrix elements contain only nl flavors, because in contrast to the UF scheme the
heavy flavor is completely integrated out from the theory at its mass scale. This is the reason why
the MM jet function does not recover the correct massless limit, because the IR subtractions from
the csoft matrix elements are missing for that flavor to cancel those of the collinear matrix element,
such that Jmm is not free of IR singularities in the massless limit. The MM jet function also does
not show the correct decoupling limit, because all contributions are renormalized in the MS scheme,
which is a mass-independent renormalization scheme and does not allow for a decoupling behavior of
heavy quarks.

Comparing Eqs. (4.53) and (4.54) one can establish the relation

JMS
uf = Jmm ⊗S (nl),MS

c ⊗
(
S (nl+1),MS

c

)−1
= Jmm ⊗ S−1

c , (4.55)

where we have used the definition of the csoft function Sc in Eq. (3.34).

In the case m ≳ Q
√
1− x ∼ µJ the jet function in the UF scheme was defined with all contributions

from the heavy quark renormalized with OS subtractions

JOS
uf = J (nl+1),OS ⊗

(
S (nl+1),OS

c

)−1
. (4.56)

Renormalizing with OS subtractions for the massive quark means that all terms that do not vanish
as m → ∞ are absorbed into the counter terms. This is the reason why the UF jet function with
OS subtractions for the massive flavor can be used for any m ≳ µJ and gives the correct decoupling
limit. In the collinear matrix element this leaves only contributions from real production of a heavy
quark pair. In the csoft matrix element, that is purely distributional, all contributions from the heavy
flavor are absorbed into the counter term, such that Eq. (4.56) can be written as

JOS
uf = J (nl),MS

virt ⊗ J (nl+1)
real ⊗

(
S (nl),MS

c

)−1
. (4.57)

Comparing with Eq. (4.54) one finds the relation

JOS
uf = Jmm ⊗ J (nl),MS

virt ⊗
(
J (nl+1),MS
virt

)−1
= Jmm ×H−1

c . (4.58)
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Here we have used the fact that the purely virtual contributions Jvirt in the collinear matrix element
are just the same as for the collinear SCET current, since they are not sensitive to any measurement.

Eqs. (4.55) and (4.58) just express the equivalence of the UF jet function and the MMF jet function
after the inclusion of the power corrections as in Eq. (4.43). The UF scheme provides a method of
directly including the full mass dependence over the whole range of possible hierarchies, while the
MMF scheme first strictly separates all hierarchies and then achieves a smooth transition only when
supplementing it with of the massive power corrections. It can be seen as a pure matter of taste
which way is preferred, since both approaches agree exactly with each other.

The two approaches differ in how the resummation of rapidity logarithms is organized. In the MMF
scheme (with the power corrections included) the only basic structures that need to be evolved to
achieve rapidity resummation related to secondary massive quarks are the three matching functions
Hs, Hc and Sc. They appear in different combinations, depending on the process and on the specific
scale hierarchy, but are completely universal in the sense that all corrections resulting from integrating
out the massive quark as an active flavor and therefore also all resummation of rapidity logarithms
related to secondary massive quark effects can be expressed with only these three functions for all
the processes and all the hierarchies discussed here. This also makes the universality of the structure
of the rapidity logarithms from secondary massive quark effects manifest.

In the UF scheme each function (beam, jet, soft, ...) in the factorization theorem requires its own
threshold correctionMi, of which each then has to be resummed in rapidity. This procedure gives the
same results and resums the same logarithms, but it makes it not explicit that the rapidity evolution
related to secondary massive quarks has in fact always the same structure in all the factorization
theorems for the different processes discussed here and in all the scale hierarchies, always related
to the three mass mode matching functions Hs, Hc and Sc (see Eq. (4.52) for the relation of the
threshold correctionsMi to the matching function of the MMF scheme).

We will consider the example of DIS in the endpoint to discuss how the rapidity resummation in the
UF scheme can be carried out with the help of the mass mode matching functions defined in the MMF
scheme. When the mass is between the jet and the hard scale, in the UF scheme the three threshold
corrections M−

H (for an evolution below the mass scale) and M+
J and M+

ϕ (for an evolution above
the mass scale) are needed. By consistency of RG running they fulfill the relation

δ(1− z)M−
H(Q,m, µm) =

∫
dsM+

J (s,m, µm)M+
ϕ

(
1− z − s

Q2
,m, µm

)
. (4.59)

Using the relations given in Eq. (4.52) this can be rewritten as

δ(1− z)Hc

(
m,µm,

ν

Q

)
×Hc

(
m,µm,

ν

Q

)
×Hs(m,µm, ν)

︸ ︷︷ ︸
M−

H(Q,m,µm)

=

∫
ds

1

Q
Hc ×

(
m,µm,

ν

Q

)(
Sc
( s
Q
,m, µm, ν

))−1

︸ ︷︷ ︸
M+

J (s,m,µm)

×QSc
(
Q(1− z)− s

Q
,m, µm, ν

)
×Hs(m,µm, ν)×Hc

(
m,µm,

ν

Q

)

︸ ︷︷ ︸
M+

ϕ

(
1−z− s

Q2 ,m,µm

)
. (4.60)

On the RHS of Eq. (4.60) we have inserted a csoft function Sc and its inverse S−1
c such that

∫
ds
(
Sc
( s
Q
,m, µm, ν

))−1
Sc
(
Q(1− z)− s

Q
,m, µm, ν

)
= δ(1− z) (4.61)
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The rapidity evolution factors Vi(m,µ, ν, ν0), that evolve one function from one rapidity scale ν0 to
another scale ν, fulfill the consistency relation

V
− 1

2
Hc

= V
− 1

2
Sc

= VHs = V , (4.62)

with V given in Eq. (2.53). The resummed threshold corrections then read

M−
H(Q,m, µm, νQ, νm) = Hc

(
m,µm,

νQ
Q

)
×Hc

(
m,µm,

νQ
Q

)

×
[
V (m,µm, νQ, νm)×Hs(m,µm, νm)

]
, (4.63)

M+
J (s,m, µm, νQ, νSc) =

1

Q
Hc

(
m,µm,

νQ
Q

)
×
[
V

1
2 (m,µm, νQ, νSc)× S−1

c

( s
Q
,m, µm, νSc

)]
, (4.64)

M+
ϕ (1− z,m, µm, νQ, νSc , νm) = QHc

(
m,µm,

νQ
Q

)
×
[
V (m,µm, νQ, νm)×Hs(m,µm, νm)

]

×
[
V − 1

2 (m,µm, νQ, νSc)× Sc(Q(1− z),m, µm, νSc)
]
, (4.65)

where we have chosen the rapidity scale νQ of the collinear mass mode current matching function as the
common global rapidity renormalization scale. To make sure that all remaining rapidity logarithms
are small the scaling

νQ ∼ Q , νm ∼ µm , νSc ∼
µ2m

Q(1− x) , (4.66)

is implied. To further minimize also the virtuality logarithms the scaling µm ∼ m is used.

If the global renormalization scale is chosen below the mass scale, µ < m, only the threshold correc-
tions for the hard functionM−

H in Eq. (4.63), taking the hard function from the (nl + 1) to the (nl)
flavor scheme, appears in the factorization theorem. In this case the rapidity resummation is carried
out in the same ways as it would have been done in the pure MMF scheme, between the hard matching
functions Hc and Hs, and therefore between the rapidity scales νQ ∼ Q and νm ∼ m. If the global
renormalization scale is instead chosen to be above the mass scale, µ > m, then according to the UF
the threshold correctionsM+

J andM+
ϕ in Eqs. (4.64) and (4.65) have to be implemented, taking the

jet function and the PDF from the nl to the nl + 1 flavor scheme. Here the rapidity evolution takes
place between the scales νSc > Q and νm ∼ m, i.e. over a wider range. But the evolution between
the scales νQ and νSc , that appears in bothM+

J andM+
ϕ , exactly cancels between the two threshold

corrections. This is due to including one time the csoft function and one time its inverse in Eq. (4.60).
In the scenario m < Q

√
1− x there is a similar cancellation of a factor Hc between M−

H and M−
J

when the global renormalization scale is chosen to be below the mass. In this sense the MMF scheme
is more efficient, such that the rapidity evolution when resumming all rapidity logarithms related
to secondary massive quarks is carried out with the minimal set of mass mode matching functions,
without any cancellations between them taking place.

The UF and the MMF approach discussed in the previous chapters were derived in different ways and
led to different definitions of the various structures and combinations of those. The MMF approach
led to an efficient and clear way of performing the rapidity resummation related to secondary massive
quark effects, reducing everything to three universal matching functions and one evolution kernel. In
the UF approach it might be seen as less obvious how to arrange the rapidity resummation, but it has
the advantage that each function in the factorization theorem like the jet function, the soft function
etc. can be defined as one single universal object for which a closed resummed form can be written
down, that then only needs to be inserted in the factorization theorem as a universal building block.
Using the MMF scheme to write down the universal rapidity evolution and using the UF scheme as a
guideline on how to combine the different building blocks in a convenient way as in Eqs. (4.63)-(4.65)
may be the most practical combination of the advantages of both approaches.
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Chapter 5

Conclusion

In this part of the thesis we have discussed how to set up VFNS, based on the SCET factorization
framework, to systematically incorporate massive quark correction into exclusive differential cross
sections for hadronic collisions. We focused on the Drell-Yan process, where we studied the qT and the
beam thrust spectrum in the limit of two (beam-)jets as prototypical examples for SCETII and SCETI

factorization theorems, and DIS and the endpoint region x → 1. We have established two different
approaches, the MMF and the UF approach, for how to achieve the resummation of all logarithms
related to the mass of a heavy flavor in the process for any possible (perturbative) hierarchy of the
quark mass with respect to the other kinematic scales, and showed that the two approaches lead to
equivalent results. We showed how the quark mass affects the resummation of rapidity logarithms in
the qT spectrum for DY. We furthermore established the universality of rapidity logarithms associated
with secondary massive quarks for beam thrust in the exclusive region in DY, DIS in the endpoint and
thrust in e+e− → 2 jets, where the resummation of these rapidity logarithms can always be carried
out in a rapidity RG evolution of three universal matching functions (here called Hc, Hs and Sc).
We also calculated all the missing ingredients for NNLL′ resummation of massive quark effects in
neutral current DY for small qT /T , namely the mass-dependent TMD and virtuality beam function
matching coefficients for primary massive quarks at O(αs) and for secondary massive quarks at O(α2

s),
as well as the TMD soft function and the csoft function with secondary massive quarks at O(α2

s).
Several of our results are also immediately relevant for other processes at the LHC besides Drell-Yan.
The primary massive quark beam functions are relevant for any heavy-quark initiated process, for
example exclusive bb̄H-production. The mass-dependent TMD soft function and rapidity anomalous
dimension at O(α2

s) satisfy Casimir scaling and can be therefore also utilized for the description of
gluon-fusion processes, e.g. the Higgs qT -spectrum. Our results for the beam thrust spectrum also
allow for a systematic inclusion of massive quark effects into the Geneva Monte-Carlo program [76,77]
at NNLL′+NNLO in its underlying jet resolution variable.

This work focused on the conceptual part of how to consistently set up the VNFS for all the different
hierarchies and resum the mass-dependent logarithms in rapidity and virtuality, and on calculat-
ing the mass-dependent one- and two-loop functions relevant for NNLL′ resummation, while full
phenomenological analyses with our results are still missing and postponed to future work. An im-
portant application of our framework will be the precise theoretical description of the Drell-Yan qT
spectrum. Especially in the ratio of theW - and Z-boson spectra, which is important for the precision
measurement of the W -boson mass at the LHC, bottom and charm mass effects are expected to be
relevant because they enter at different order in perturbation theory in W - and Z-boson production.
Our results are, however, not limited to this particular application and can be relevant for many
measurements at hadron colliders, where bottom and charm mass effects are often neglected in the
resummation when calculating differential cross sections to high order in the logarithmic counting,
but can be expected to become relevant with increasing precision.
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Part II

On the Cutoff Dependence of the
Quark Mass Parameter in Angular

Ordered Parton Showers
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Chapter 6

Introduction

Large sections of this part of the thesis and corresponding appendices were taken from Ref. [3]. Some
theoretical discussions of the cutoff dependence of NLO matched showers, that were not directly part
of the work of the author of this thesis, are omitted here. They can be found in Sec. 7.7 of Ref. [3].
Some additional calculations for the unreleased contributions to the soft and jet functions with an
angular cut, not contained in Ref. [3], are provided in appendix H.

6.1 Prelude and review

A precise determination of the top quark massmt represents one of the most important measurements
in the context of studies of the Standard Model (SM) as well as of new physics, in particular in the
context of electroweak symmetry breaking. The most precise top mass measurements are obtained
from template and matrix element fits which are based on the idea of accessing mt by directly recon-
structing the kinematic properties of a top quark “particle”. These types of measurements naturally
yield a very high sensitivity to the top quark mass because they involve endpoints, thresholds or
resonant structures in kinematic distributions which substantially reduces the impact of uncertainties
that affect poperties such as their normalization. The most recent reconstruction measurements are
mMC

t = 172.44(49) GeV (CMS) [108], mMC
t = 172.69(48) GeV (ATLAS) [109] and mMC

t = 174.34(64)
GeV (Tevatron) [110].

The characteristic property of these measurements, however, is that the observables employed for the
reconstruction analyses are too complicated to be calculated in a systematically improvable way and,
in addition, involve sizeable perturbative and non-perturbative corrections due to soft gluon emission
which, in the vicinity of kinematic endpoints or thresholds, are not power-suppressed. The theoretical
computations used for these measurements are therefore based on multi-purpose Monte Carlo (MC)
event generators since they can produce predictions for essentially any conceivable observable. As a
consequence, in these direct mass measurements the top mass parameter mMC

t of the MC generator
employed in the analyses is determined. The experimental collaborations provide estimates of the
theoretical uncertainty in the extracted value of mMC

t concerning the quality of the modelling of
non-perturbative effects, e.g. by using different tunes or MC generators, or concerning theoretical
uncertainties, e.g. by variations of theory parameters. The improvement of the theoretical basis of
MC event generators and of methods to estimate their uncertainties is an ongoing effort [111–113].

However, the intrinsic, i.e. quantum field theoretic meaning of mMC
t has up to now not been rigorously

specified. Since this matter goes beyond the task of properly estimating or reducing MC modelling
uncertainties and is also tied to the constructive elements incorporated to the MC’s perturbative and
non-perturbative components, it is much harder to quantify. Issues one has to consider do not only
involve the truncations of perturbative QCD expansions, but also MC specific implementations such
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as the cut on the parton shower (PS) evolution or even modifications that are formally subleading
but play numerically important roles in reaching better agreement with data or are part of the
implementation of the hadronization model. It should also be remembered that the level of theoretical
rigor of MC event generators depends on the observable. Since the theoretical description of thresholds
and endpoints in general involves the resummation of QCD radiation to all orders, the perturbative
aspect of how to interpret mMC

t thus significantly depends on the implementation of the parton
showers that are used in the MC generators and to the extent that NLO fixed-order QCD corrections
have been systematically implemented for the observables that are relevant for the reconstruction
analyses. Apart from that, the interface between the perturbative components and the hadronization
models, which involves the structure of the infrared cut of the shower evolution, Q0 ∼ 1 GeV, or
the treatment of the top quarks finite width, Γt ∼ 1.4 GeV, and other finite lifetime effects can
play essential roles. Finally, it should also be mentioned that mMC

t may also be affected by non-
perturbative MC modelling effects as a consequence of the tuning process partly compensating for
approximations and model-like features implemented into the MC perturbative components.

So, although mMC
t is by construction closely related to the concept of a kinematic top quark mass,

the identification to a particular kinematic mass scheme is far from obvious - also because there are
several options for kinematic masses including schemes such the pole mass mpole

t or short-distance
threshold masses as they are employed for the top pair threshold cross section at a future Linear
Collider [114–116] or in the context of massive quark initiated jets [117,118]. As shown in Ref. [119],
these kinematic mass schemes can differ by more than 1 GeV. Given that the reconstruction analyses
have reached uncertainties at the level of 0.5 GeV it appears evident that systematic and quantitative
examinations on the field theoretic meaning of the MC top mass mMC

t are compulsory. This scrutiny
may involve examinations of different MC generators, as well as the respective interplay of their
perturbative and non-perturbative components.

So far, only a limited number of theoretical considerations dedicated to this issue exist in the literature.
In Ref. [120], based on the analogy of the MC components to the QCD factorization for boosted
top quark initiated jet masses in the peak region derived in the factorization framework of Soft-
Collinear-Effective Theory (SCET) and boosted Heavy-Quark-Effective-Theory (bHQET) [18, 19],

it was conjectured that the relation between mMC
t and the pole mass is given by mpole

t − mMC
t =

Rsc(αs/π), where the scale Rsc should be closely related to the shower cut Q0. The conjecture was
based on general considerations how an infrared cut affects perturbative calculations but did not
provide a precise quantitative relation. It was, however, argued that the uncertainty in the relation
is unlikely to exceed the level of 1 GeV. A similar conclusion was drawn in Ref. [121] where it was
argued that mMC

t , due to the effects of the hadronization models, may have properties analogous to
the mass of a top (heavy-light) meson. Based on the concepts of heavy quark symmetry [122,123] the
relation mMC

t = mMSR
t (R) +∆t,MC(R) was conjectured, where m

MSR
t is the MSR mass [124,125], the

term ∆t,MC contains perturbative as well as non-perturbative corrections and R = 1 GeV represents
a factorization scale separating perturbative and non-perturbative effects. From a comparison of B
meson and bottom quark masses, and using heavy quark symmetry, it was concluded that ∆t,MC

could in principle be at the level of 1 GeV. We also refer to Ref. [126] for a related discussion.

In Ref. [118] the concrete numerical relation mMC
t = mMSR

t (1GeV)+ (0.18± 0.22) GeV was obtained
from fitting NNLL (next-to-next-to-leading logarithmic) and O(αs) matched factorized hadron level
predictions for the 2-jettiness distribution in the peak region for boosted top production in e+e−

annihilation [18, 19] to corresponding pseudo-data samples obtained by PYTHIA 8.2 [127] with the
default Monash tune [128] correctly accounting for the dominant top quark width effects in the factor-
ized calculation. Here the quoted error is the theoretical uncertainty of the factorized NNLL+O(αs)
prediction and also includes an estimate for the intrinsic uncertainty of the PYTHIA 8.2 calculation.
Using the pole mass scheme in the factorized NNLL+O(αs) prediction, the corresponding analysis

yielded mMC
t = mpole

t + (0.57± 0.28) GeV. While this analysis provided a concrete numerical result,
it can only be generalized to LHC measurements if one makes the additional assumption that the

98



MC top mass has a universal meaning covering in particular also the LHC environment and the
substantially more complicated observables included in the direct mass measurements, for which cur-
rently no first principle calculations exist. In addition, systematic uncertainties in the modelling of
non-perturbative effects at hadron colliders, such as multi parton interactions, or the description of
the pile-up effects are much harder to control. An analogous analysis for the LHC environment was
subsequently carried out in Ref. [129] using factorized NLL soft-drop groomed [130,131] hadron level
jet mass distributions showing results that are compatible with, but less precise than those of [118].
We also refer to Ref. [132] for a related analysis.

Aside from the previously mentioned examinations, recently, a number of complementary studies
were conducted focusing on various sources of uncertainties in the perturbative description of top
production and decay and the non-perturbative modelling of final states involved in top mass mea-
surements. While these studies mainly aimed at examining the potential size of uncertainties in top
mass determinations from reconstruction as well as from alternative methods (see Refs. [133–135] and
references therein), some of their findings may also be relevant for addressing the question how mMC

t

obtained from reconstruction should be interpreted field theoretically.

In Ref. [136] the sensitivity of mMC
t determinations from exclusive hadronic variables such as the

B-meson energy EB [137], the B-lepton invariant mass mBℓ [138] or the transverse mass variables
mT2 [139–142] to variations of the parameters of the MC hadronization models in PYTHIA 8 and
Herwig 6 was studied. They found that for top mass determinations based on these distributions
to be competitive with direct reconstruction methods these hadronization parameters would have to
be constrained significantly more precisely than what is possible from usual multi-purpose tuning. In
addition, they made the observation that the top mass dependent endpoints of these distributions are,
compared to the overall shape of the distributions, largely insensitive to variations of the hadronization
parameters, indicating that these kinematic endpoints only depend on global and inclusive properties
of the final state dynamics.

In Ref. [143] top mass determinations from distributions such as the b-jet and lepton invariant mass
mbjℓ and the variable mT2 [139] were analyzed within fixed-order perturbation theory comparing the
full NLO QCD result for W+W−bb̄ production with different approximations in the narrow width
approximation (NWA) concerning NLO QCD corrections in the production and the decay of the top
quarks as well as using the parton shower from SHERPA [144] after top production. Using pseudo-
data fits they found that the extracted top mass can depend significantly (at the level of 1 GeV
or even more) on the approximation used, indicating that incomplete descriptions of finite-lifetime
effects can lead to systematic deviations in the value of the extracted top mass of order Γt.

In Ref. [145] the NLO-PS matched POWHEG [146,147] top production generators hvq [148], tt̄dec [149]
and bb̄4ℓ [150] interfaced to PYTHIA 8.2 [127] and Herwig 7.1 [151,152] were studied comparatively
examining the peak position of the particle level b-jet and W invariant mass mbjW , the peak of the
b-jet energy Ebj [137] and moments of various lepton observables [153] in view of an extraction of the
top quark mass. They found that the mbjW peak is largely insensitive to variations of the generators
and the shower MC as well as to input quantities such as the strong coupling and the PDFs or the
b-jet definition, and concluded that changes in the top mass due to these variations do not exceed
200 MeV in the absence of experimental resolution effects. They also indicated that the good agree-
ment between the three POWHEG generators may imply that mbjW is not sensitive to additional
finite lifetime effects. Once the smearing due to experimental resolution effects is accounted for, how-
ever, they found an increased sensitivity to the differences in the parton showers of PYTHIA 8.2 and
Herwig 7.1 that correspond to variations in the extracted top mass at the level of 1 GeV or more.
For Ebj the dependence of the extracted top mass on the shower type and on the b-jet definition is
in general at the level of 1 GeV. For the leptonic observables variations of this size arise from PDF
uncertainties and from changing the shower type.
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6.2 About this work

The aim of this work is to initiate dedicated individual examinations of the different components
of MC event generators with the aim to gain insights concerning the field theoretic meaning and
potential limitations of the MC top mass parameter mMC

t from first principles. We start with an
examination of the parton shower evolution with respect to the dependence on the infrared shower
cut Q0.

Apart from the perturbative hard interaction matrix elements that encode the basic hard process
that can be described by MC generators, the parton shower describes the parton branching for
energies below the hard interaction scale and represents the perturbative component of MC generators
responsible for the low energy dynamics in MC predictions. While common analytic calculations in
perturbative QCD are carried out in the limit of a vanishing infrared regulator, event generators
based on parton showers rely on the existence of an infrared cut in order to prevent infinite parton
multiplicities and to ensure that the parton shower description does not leave the realm of perturbation
theory.

From the field theoretic point of view, Q0 represents a factorization scale that separates the pertur-
bative components of MC event generators and their hadronization models. While it is generally
accepted that a finite value for Q0 restricts the amount of real radiation and multiplicity generated
by the shower evolution, it is not per se obvious to which extend it may also affect the meaning of
QCD parameters such as the MC quark mass parameters. Due to the unitarization property of the
shower evolution which is responsible for the coherent summation of real as well as infrared virtual
radiative corrections for scales above Q0, it is also plausible that the MC top mass parameter mMC

t

should acquire a dependence on the value of Q0 unless one makes the additional assumption the Q0

effects are negligible. In this work we examine this dependence and find that is is not negligible.
We emphasize that in the discussions of this work we ignore all issues related to (the shower cut
dependence of) hadronization because the primary aim is to concentrate on the perturbative aspects
of the relation between mMC

t and field theoretic mass schemes. We are aware that the properties of
the hadronization modelling in MC event generators may have a significant impact on the interpre-
tation of mMC

t , but we believe that examining perturbative and non-perturbative MC components
separately in this respect is essential to gain full conceptual insight.

Because the top quark has color charge its mass is - following the principles of heavy quark symmetry
- linearly affected by the momenta of ultra-collinear gluons [18,19], which are the gluons that are soft
in the top quark rest frame. The role of these ultra-collinear gluons turns out to be essential for our
conceptual considerations concerning the shower cut dependence of the top quark mass. Compared
to the radiation pattern of massless quarks the additional effects coming from the ultra-collinear
gluons is for example responsible for the dead cone effect [154, 155] which is generally considered as
coming from the top mass regulating the emergence of collinear singularities in the quasi-collinear
limit. The radiation in the dead-cone region, however, is still non-zero and to the extent that it is
unresolved becomes part of the energy (i.e. mass) of the measured top quark state. It is this quantum
mechanical feature that goes beyond the classic picture of an unambiguous top quark “particle” whose
total energy could be determined in the direct mass measurements. Since the parton showers in all
state-of-the-art MC generators account for the dead cone effect [156], it appears obvious that the
meaning of mMC

t should naturally have a linear dependence on the shower cut Q0 restricting the
ultra-collinear radiation – unless there is a mechanism that leads to a power suppressed effect of order
Q2

0 or higher which we may then safely neglect for the case of the top quark. Therefore, to examine
the intrinsic field theoretical meaning of the MC top quark mass parameter mMC

t it is essential to
start with a careful examination of the production of the top quarks and the ultra-collinear gluons.
From this point of view, studies of the top decay and the treatment of the observable final states are
important to quantify to which extent the ultra-collinear gluons are unresolved and how they enter a
particular observable.

100



In this work we aim to focus primarily on the production aspect, and we are therefore studying an
observable that is maximally insensitive on details of the final state dynamics and its theoretical
modeling. This observable is the peak (i.e. resonance) position of hemisphere jet masses in e+e−

annihilation, explained in more detail in Sec. 7.1. The basic outcome of our considerations concerning
the field theoretic meaning ofmMC

t , however, should be general and shall be systematically extended to
other types of observables and to the LHC environment in subsequent work. As a further simplification
we consider the narrow width approximation (NWA), i.e. the case of quasi-stable top quarks which
allows to rigorously factorize top production and decay, the case of boosted (i.e. large-pT ) top quarks
and the coherent branching formalism which is related to angular ordered showers, see Refs. [157–159]
for massless and Refs. [160] for massive quarks, and also Refs. [161, 162]. Since the limit of stable
and quasi-collinear heavy quarks is the theoretical basis of all parton shower formulations for top
(and other heavy) quarks, it is natural to investigate the physics in this limit first to avoid that the
conclusions are affected by the additional approximations that need to be made in the attempt to
account for the effects of slow and unstable top quarks. Our current focus on angular ordered showers
is, on the other hand, of purely practical nature: Our considerations here require explicit analytic
solutions of the shower evolution, and angular ordered showers based on the coherent branching
formalism can be more easily tackled by well known analytic methods [163] applicable to global event
shapes. So our current results are directly relevant for the Herwig MC generator which employs an
angular ordered PS. Generalizations to other MC generators shall be treated elsewhere.

In this context our work is structured around the following three questions:

(A) Can state-of-the-art partons showers in principle describe the single top resonance mass and
related thresholds with NLO precision?

(B) What is the impact of the shower cut Q0 on the resonance value of the jet masses?

(C) Does the shower cut imply that the MC top quark mass parameter mMC
t is a low-scale threshold

short-distance mass, and how can this be proven from first principles at the field theoretic level?

Question A is relevant because, only if parton showers can describe the threshold or resonance mass
with NLO precision, the question of which mass scheme is employed can be addressed systematically
in a meaningful way. In the course of our examination we show that this is indeed the case as long as
NLL order logarithmic terms are resummed, and we also show that the additional NLO corrections
implemented by NLO matched parton showers do not further increase the precision. Question B
concerns the dependence of the resonance value of the jet mass on Q0. We show that the jet mass
at the resonance peak depends linearly on Q0 which means that for the field theoretic meaning of
mMC

t the finite shower cut is essential and cannot be neglected. Finally, question C addresses to
which extent the linear dependence on Q0 must be interpreted as a Q0-dependence of the MC top
quark mass. As we will show, only a part of the linear Q0-dependence of the peak jet mass is related
to ultra-collinear radiation and thus to the top quark mass. Overall, the shower cut also restricts
the radiation of large angle soft gluons unrelated to the top quark and the ultra-collinear radiation.
Only the latter is related to the top quark mass, and its dominant linear Q0-dependence caused by
the shower cut can be shown to automatically imply a mass redefinition which differs from the pole
mass by a term proportional to αs(Q0)Q0. This result implies that mMC

t is equivalent to the top
quark pole mass, in the limit Q0 = 0 which is however practically inaccessible for parton showers.
In the formal limit mt → 0 the effects of the ultra-collinear radiation and its Q0-dependence vanish
and only the cutoff dependence on the soft radiation remains. This cutoff dependence represents the
factorization interface between perturbative soft radiation and hadronization effects governed by the
MC hadronization models. Since in this context the understanding of the shower cut dependence of
the soft radiation is a prerequisite to the examination of the ultra-collinear radiation, we also analyze
carefully the case of massless quark production in parallel to our discussions on the top quark.
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6.3 Outline

The outline of this part is as follows: In Sec. 7.1 we set up our theoretical framework by explaining the
hemisphere mass observable τ and reviewing the corresponding NLL and hadron level factorized QCD
predictions in the resonance region for massless as well as massive quark production. We also provide
details on the hadronization model shape function which is important for the numerical analyses
carried out in the subsequent sections. In this section we also prove, using the factorized predictions,
that NLL resummation of logarithms is sufficient to achieve NLO precision for the position of the
peak in the τ distribution.

In Sec. 7.2 we review the coherent branching formalism, provide the analytic evolution equation for
the jet mass distribution for massless and massive quark production at NLL order and give some
details on the practical implementation of the angular order parton shower based on the coherent
branching formalism in the Herwig 7 event generator.

In Sec. 7.3 we show – in the absence of any infrared cutoff and in the context of strict perturbative
computations – that the NLL predictions for the hemisphere mass τ distribution in the resonance
region obtained from the coherent branching formalism are fully equivalent to the NLL factorized
QCD predictions for massless quark production as well as for massive quark production in the pole
mass scheme. This result proves, that in the context of strict perturbative computations for massive
quarks in the limit Q0 = 0 the MC generator mass is equivalent to the pole mass. This conclusion,
however, does not apply for MC event generators because their parton shower algorithm strictly
requires a finite shower cut Q0 in order to terminate and to avoid infinite multiplicities.

The impact of the shower cut Q0 is then analyzed in detail in Sec. 8.1, which represents the core of
this work. Here we analyze the power counting of the relevant modes entering the hemisphere mass in
the resonance region in the massless and massive quark case and we focus on a coherent view of the
factorized QCD and the coherent branching approach. We calculate analytically the NLO corrections
caused by the shower cut Q0 in comparison with the results without any cut in the coherent branching
formalism and the factorized QCD approach focusing on the dominant effects linear in Q0. We show
that the results obtained for the linear Q0 contributions in coherent branching and factorized QCD
are compatible, and we use the direct connection of the factorized QCD computation to field theory to
unambiguously distinguish shower cut effects related to soft hadronization corrections and the quark
mass parameter. By coherently examining massless and massive quark production we prove that using
a finite shower cut Q0 in the coherent branching formalism – and thus also in angular ordered parton
showers – automatically implies that one employs a short-distance mass scheme different from the
pole mass, called the coherent branching (CB) mass, mCB(Q0). We explicitly calculate the relation
of the coherent branching mass to the pole mass at NLO, i.e. O(αs).

In Sec. 8.2 the conceptual results obtained in the previous sections are summarized coherently to set up
the numerical examinations we carry out in Sec. 9. In Sec. 9 we compare the results obtained in Sec. 8.1
with analytic methods and conceptual considerations with numerical results running simulations for
the hemisphere mass variable τ in Herwig 7 using different values of the shower cut Q0. Focusing
mostly on the peak position of τ we show that the simulations are in full agreement with our conceptual
results. We also show explicitly that NLO corrections added in the context of NLO matched parton
showers have extremely small effects in the resonance location and do not modify any of the previous
results, confirming that NLL accurate parton showers are already NLO accurate as far as the resonance
region is concerned. Furthermore, we also demonstrate that the results we have obtained in the context
the hemisphere mass variable τ are also compatible with numerical simulations for the more exclusive
kinematic variables mbjℓ and mbjW supporting the view that our results are universal.

Finally, Sec. 10 contains our conclusions and an outlook for some of the remaining questions that
should be addressed in the future. There we also provide a brief numerical analysis how mCB(Q0)
is related to other mass renormalization schemes. We also provide appendices containing some sup-
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plemental material relevant for our work. In App. G we provide details on the computations of the
effects of the shower cut Q0 in the context of the factorized QCD predictions. In App. H we present
anaologous calculations with an additional angular cut and in App. I we collect results for loop inte-
grals in the presence of the shower cut Q0. Finally, in App. K we give information on the Herwig 7
settings we have employed for our simulation studies.
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Chapter 7

Resummation and the Coherent
Branching Formalism

7.1 The observable: squared hemisphere mass sum

The observable we consider in this work is the sum of the squared hemisphere masses defined with
respect to the thrust axis in e+e−-collisions normalized to the square of the c.m. energy Q,

τ ≡ M2
1 +M2

2

Q2
. (7.1)

In the lower endpoint region the τ distribution has a resonance peak which is dominated by back-to-
back 2-jet configurations which arise from LO quark-antiquark production, and it is the location of
the resonance, τpeak, which we focus on mostly in our study. For massless quarks this resonance region
is located close to τ = 0 and represents the threshold region for dijet production. Non-perturbative
effects shift the observable peak towards positive τ values by an mount of O(Λ/Q), where Λ is a scale
of around 1 GeV. For massive quark production the resonance region and the peak are located close
to τ = 2m2

Q/Q
2, and for the case of the top quark for Q≫ mt is dominated by boosted back-to-back

top quark initiated jets. As for the case of massless quark production non-perturbative effects shift
the observable peak towards positive τ values by an mount of O(Λ/Q). The scale of Λ ≈ 1 GeV
is generated from non-perturbative effects, but its value is numerically larger than ΛQCD because it
accounts for the cumulative hadronization effect from both hemispheres [164]. In the peak region, τ
is closely related to the classic thrust variable [165] in the case of massless quark production [163],
and to 2-Jettiness [166] for massive quarks [18]. To be concrete, concerning the structure of large
logarithms and of terms singular in the τ → τmin limit, which dominate the shape and position of the
peak, the hemisphere mass variable τ , thrust and 2-jettiness are equivalent for large Q. We therefore
frequently refer to τ simply as ”thrust” in this work.

For our examinations for top quarks we also consider the rescaled thrust variable

Mτ ≡
Q2τ

2mQ
. (7.2)

The variable Mτ is peaked close to Mτ = mQ and allows for a more transparent interpretation of the
shower cut Q0-dependence from the point of view of the top quark mass than τ . Note that the scheme
dependence of the quark mass parameter mQ appearing in the definition (7.2) represents an effect
that is O(α2

s)-suppressed in the context of our examinations and therefore irrelevant at the order we
are working.

An essential aspect of the examinations in this work is that for boosted top quarks events related
to top decay products being radiated outside the parent top quark’s hemisphere are (mt/Q)2 power
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suppressed [18]. So, because thrust depends on the sum of momenta in each hemisphere, effects of the
top quark decay in the thrust distribution are power suppressed as well, and the situation of a finite
top quark width is smoothly connected to the NWA and the stable top quark limit. This is compatible
with the factorized treatment of top production and decay used in contemporary parton showers and
also allows us to carry out analytic QCD calculations for stable top quarks which are essential for the
chain of arguments we use. In this way thrust is an ideal observable for the examinations made in this
work since it allows to study the mass of the top quark accounting in particular for the contribution
of the unresolved ultra-collinear gluon cloud around it.

However, in thrust the effects of large angle soft radiation are maximized, and the impact of the
shower cut Q0 on the meaning of the top quark mass parameter interferes with that Q0 has on large
angle soft radiation. Since the latter is not related to the top quark mass, but represents the interface
to hadronization effects [163, 167], it is important that both effects are disentangled unambiguously.
As we will show, for thrust in the peak region this can be carried out in a straightforward way owing
to soft-collinear factorization [168,169]. Since the structure of large angle soft radiation is equivalent
for the production of massless quarks and boosted massive quarks [18, 19], we discuss the case of
massless quark production before we examine boosted top quarks.

Since our discussion requires the analytic comparison of the thrust distribution determined from the
parton shower evolution based on the coherent branching formalism at NLL order (where we follow
the approach of [163,170]) and of corresponding resummed QCD calculations based on soft-collinear
factorization, we briefly review the latter in the following two subsections for massless and massive
quark production.

7.1.1 Factorized QCD cross section: massless quarks

Resummed calculations for the thrust distribution in the peak region require the summation of terms
that are logarithmically enhanced and singular in the limit τ → τmin = 0, where the partonic thresh-
old is located. In the context of conventional perturbative QCD, factorized calculations for massless
quarks have been carried out in Ref. [169] at NLL order. In the context of SCET the correspond-
ing results have been obtained at NLL+O(αs) in Ref. [171] and were extended to N3LL+O(α3

s) in
Ref. [164,172]. Using the notations from Ref. [164] the observable hadron level thrust distribution in
the peak region can be written in the form

dσ

dτ
(τ,Q) =

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q
)
Smod(ℓ) (7.3)

where dσ̂s/dτ contains the factorized resummed singular partonic QCD corrections (containing δ-
function terms of the form αn

s δ(τ) and plus-distributions of the form αn
s [ln

k(τ)/τ ]+) and Smod(ℓ) is
the soft model shape function that describes the non-perturbative effects. It has support for positive
values of ℓ, exhibits a peaked behavior for ℓ values around 1 GeV and is strongly falling for larger
values. We further assume that it vanishs at zero momentum, Smod(0) = 0.1 Due to the smearing
caused by the non-perturbative function the visible peak of the thrust distribution is shifted to positive
values by an amount of order (1 GeV)/Q. The dominant perturbative corrections to the factorized
cross section in Eq. (7.3) are coming from so-called non-singular contributions containing terms of the
form αn

s ln
k(τ). For our considerations in the resonance region these corrections are power-suppressed

by a additional factor of order (1 GeV)/Q, i.e. they cause a shift in the peak position by an amount
(1 GeV)2/Q2 which we can safely neglect.

1The typical scale of the non-perturbative function Smod is about twice the typical hadronization scale
ΛQCD <∼ 0.5 GeV as it accounts for non-perturbative from both hemispheres [164]. The property Smod(0) = 0 is
assumed for all shape functions treated in the literature and physically motivated from the hadronization gap.
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The resummed factorized singular partonic QCD cross section has the form

1

σ0

dσ̂s
dτ

(τ,Q) = QHQ(Q,µH)

Q2τ∫

0

ds

s∫

0

ds′ UJ(s
′, µH , µJ) J

(τ)(s− s′, µJ) (7.4)

×
Qτ−s/Q∫

0

dk US(k, µH , µS)S
(τ)
(
Qτ − s

Q
− k, µS

)

where σ0 is the total partonic e+e− tree-level cross section. The term HQ is the hard function
describing effects at the production scale Q, J (τ) is the jet function describing the distribution of
the squared invariant mass s due to collinear radiation coming from both2 jets and S(τ) is the soft
function containing the effects of large angle soft radiation. They depend on the renormalizations
scales µH ∼ Q, µJ ∼ Q

√
τ and µS ∼ Qτ , which are chosen such that no large logs appear in hard,

jet and soft functions respectively. Large logarithmic contributions are resummed in the different U
factors which are evolved from the corresponding renormalization scale µH , µJ or µS to a common
renormalization scale. Since it most closely resembles the analytic form of the resummation formulae
obtained in the coherent branching formalism, we have set in Eq. (7.4) the common renormalization
scale equal to the hard scale µH , so that there is no evolution factor UH for the hard function. So,
UJ sums logarithms between the jet scale µJ and the hard scale µH , and US sum logarithms between
the soft scale µS and the hard scale. For our discussions we need the expressions for the U factors at
NLL and the hard, soft and jet function at O(αs).

The O(αs) the hard, jet and soft functions appearing in the dominant singular partonic contributions
of the 2-jettiness factorization theorem obtained in SCET for massless quarks have the form [171]
(see also Refs. [164,172])

HQ(Q,µ) = 1 +
αs(µ)CF

4π

(
−2 ln2 Q

2

µ2
+ 6 ln

Q2

µ2
− 16 +

7π2

3

)
+O(α2

s) , (7.5)

J (τ)(s, µ) = δ(s) +
αs(µ)CF

4π

(
8

µ2

[
µ2 ln s

µ2

s

]

+

− 6

µ2

[
µ2

s

]

+

+ (14− 2π2)δ(s)

)
+O(α2

s) , (7.6)

S(τ)(k, µ) = δ(k) +
αs(µ)CF

4π

(
−16

µ

[
µ ln k

µ

k

]

+

+
π2

3
δ(k)

)
+O(α2

s) , (7.7)

with the plus distributions defined in App. J.

Their respective anomalous dimensions can (to all orders) be written in the form

µ
d

dµ
UH(Q,µH , µ) =

(
ΓH [αs(µ)] ln

( µ2
Q2

)
+ γH [αs(µ)]

)
UH(Q,µH , µ) , (7.8)

µ
d

dµ
UJ(s, µ, µJ) =

∫
ds′
(
− ΓJ(τ) [αs(µ)]

µ2

[µ2θ(s− s′)
s− s′

]
+
+ γJ(τ) [αs(µ)]δ(s− s′)

)

× UJ(s− s′, µ, µJ) , (7.9)

µ
d

dµ
US(k, µ, µJ) =

∫
dk′
(
− 2ΓS [αs(µ)]

µ

[µθ(k − k′)
k − k′

]
+ γS [αs(µ)]+δ(k − k′)

)
(7.10)

× US(k − k′, µ, µS) ,

where the coeffients at NLL precision needed for discussions are given in Eqs. (7.17), (7.18) and (7.34).
These results have been obtained using dimensional regularization to regulate ultraviolet as well as

2Note that here the thrust jet function J(τ) is accounting for the collinear radiation in both jets (the same is true
for the bHQET jet function JB), whereas in the first part of the thesis we defined the single hemisphere jet function J
describing only one jet, i.e. J(τ) = J ⊗ J (see also Eq. (B.21)).

107



infrared divergences and do not account for any other infrared cutoff. Ultraviolet renormalization has
been carried out in the MS scheme.

Expanded to first order in the strong coupling and setting µH = µJ = µS = µ in Eq. (7.4) we obtain
the well-known O(αs) singular fixed-order thrust distribution

1

σ0

dσ̂s
dτ

(τ,Q) = δ(τ) +
αsCF

4π

{
−8
[
θ(τ) ln τ

τ

]

+

− 6

[
θ(τ)

τ

]

+

+
(2π2

3
− 2
)
δ(τ)

}
+O(α2

s) . (7.11)

Transforming the partonic massless quark thrust distribution of Eq. (7.4) to Laplace space with the
convention

σ̃(ν,Q) =

∞∫

0

dτ e−ντ 1

σ0

dσ̂s
dτ

(τ,Q) (7.12)

the NLL thrust distribution can be written in the condensed form

σ̃(ν,Q) = exp

[
K(ΓJ(τ) , µH,ν , µJ,ν) +K(ΓS , µH,ν , µS,ν)

+
1

2

(
ω(γJ(τ) , µH,ν , µJ,ν) + ω(γS , µH,ν , µS,ν)

)]
, (7.13)

where evolution functions K and ω have the form

K(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dαs

β[αs]
Γ[αs]

∫ αs

αs(µ0)

dα′
s

β[α′
s]
, (7.14)

ω(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dαs

β[αs]
Γ[αs] . (7.15)

The QCD beta function is defined as

µ
dαs(µ)

dµ
= β[αs(µ)] = −2αs(µ)

∑

n=0

βn

(αs(µ)

4π

)n+1
(7.16)

with β0 = 11− 2
3nf and β1 = 102− 38

3 nf , and the cusp and non-cusp anomalous dimensions read

ΓJ(τ) [αs] = −2ΓS [αs] = 4Γcusp[αs] ,

γJ(τ) [αs] = 12CF

(αs

4π

)
,

γS [αs] = 0 (7.17)

with

Γcusp[αs] = Γcusp
0

(αs

4π

)
+ Γcusp

1

(αs

4π

)2
,

Γcusp
0 = 4CF ,

Γcusp
1 = CF

[
CA

(268
9
− 4π2

3

)
− 80

9
TFnf

]
, (7.18)

The scales µH,ν , µJ,ν and µS,ν are given by

µH,ν = Q , µJ,ν = Q(ν eγE )−1/2 , µS,ν = Q(ν eγE )−1 . (7.19)

These scales are fixed to the expressions shown and arise from the combination of the renormalization
scale dependent NLL U evolution factors and the Laplace transformed O(αs) corrections in the hard,
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jet and soft functions shown in Eqs. (7.5), (7.6) and (7.7) that are logarithmic or plus-distributions.
Dropping a π2 term arising in the Laplace transform of the (ln τ/τ)+ distributions, in this combination
the dependence on the renormalization scales µH , µJ and µS cancels and the result shown in Eq. (7.13)
with the physical scales given in Eqs. (7.19) emerges. Since the structure of these O(αs) corrections
is already unambiguously known from the NLL renormalization properties, we consider them part of
the NLL logarithmic contributions. (We refer to Ref. [173] for an extensive discussion on this issue.)
Using in Eq. (7.13) the renormalization scales µi instead of the scales µi,ν (i = H,J, S) one recovers
the renormalization scale dependent results coming from the U evolution factors alone.

As we show in Sec. 7.3.1 all terms displayed in Eq. (7.13) are also precisely obtained by the coherent
branching formalism at NLL order.

7.1.2 Factorized QCD cross section: massive quarks

In the case of boosted massive quark production the thrust distribution has been determined at
NNLL+O(αs) in Refs. [18, 19, 118]. Adopting the pole mass scheme, the τ distribution as defined in
Eq. (7.1) has its partonic threshold at

τpolemin =
2(mpole)2

Q2
. (7.20)

The observable thrust distribution in the resonance region for τ >∼ τpolemin , can be written in a form
analogous to the case of massless quarks and has the form

dσ

dτ
(τ,Q,mpole) =

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,mpole

)
Smod(ℓ) , (7.21)

where dσ̂s/dτ is the resummed singular massive quark partonic QCD cross section, which contains

terms of the form αn
s δ(τ − τpolemin ) and α

n
s [ln

k(τ − τpolemin )/(τ − τ
pole
min )]+). The non-singular corrections to

the factorized cross section in Eq. (7.21) are coming from terms of the form αn
s ln

k(τ − τpolemin ). In the
resonance region these corrections are power-suppressed by a additional factor of order (1 GeV)/Q or
(1 GeV)/m and can, in analogy to the case of massless quark production, be safely neglected for top
quark production. In an arbitrary mass scheme m with δm = mpole −m we can write the observable
thrust distribution in the form

dσ

dτ
(τ,Q,m, δm) =

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,m, δm

)
Smod(ℓ) , (7.22)

where the additional argument δm indicates the dependence on the mass scheme changing contribu-
tions in the perturbation series for the partonic cross section.

For the rescaled thrust variable defined in Eq. (7.2) the relation analogous to Eq. (7.21) reads

dσ

dMτ
(Mτ , Q,m

pole) =

2mpoleMτ/Q∫

0

dℓ
dσ̂s
dMτ

(
Mτ −

Qℓ

2mpole
, Q,mpole

)
Smod(ℓ) , (7.23)

where

dσ̂s
dMτ

(Mτ , Q,m
pole) ≡ 2mpole

Q2

dσ̂s
dτ

(2mpoleMτ

Q2
, Q,mpole

)
. (7.24)

The generalization of Eqs. (7.23) and (7.24) to an arbitrary mass scheme is straightforward.
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The singular partonic cross section in the resonance region can be written in the factorized form

dσ̂s
dτ

(τ,Q,mpole) = σ0QHQ(Q,µH)UH(Q,µH , µm)Hm(Q,mpole, µm)Um

( Q

mpole
, µm, µH

)

×
Q2(τ−τmin

pole)∫

0

ds

s/m∫

0

dŝ′ UJB (ŝ
′, µH , µJB ) JB

( s

mpole
− ŝ′,mpole, δm = 0, µJB

)

×
Q(τ−τmin

pole)−s/Q∫

0

dk US(k, µH , µS)S
(τ)
(
Q(τ − τpolemin )−

s

Q
− k, µS

)
, (7.25)

where σ0 is again the total partonic e+e− tree-level cross section. The hard function HQ, the soft
function S(τ) and the soft evolution factor US , as well as the soft model function Smod in Eq. (7.25)
are identical to the case of massless quarks [18, 19]. Their effects are universal for massless and
boosted massive quarks, because large angle soft radiation cannot distinguish between the color flow
associated to massless and boosted massive quarks. The relation of the soft function renormalization
scale to τ is, however, modified to the form µS ∼ Q(τ − τmin) because the quark mass shifts the τ
threshold from zero to τmin. For the other components of the factorization formula the quark mass

represents an additional intermediate scale which leads to modifications. The term J
(τ)
B (ŝ) is the

bHQET jet function [18, 19] which describes the linearized distribution of the invariant mass of both
jets with respect to the partonic threshold,

ŝ =
s− (2mpole)2

mpole
, (7.26)

due to ultra-collinear gluon radiation in the region where ŝ is much smaller than the mass, ŝ≪ m. It
depends on the renormalization scale µJB ∼ QµS/m ∼ Q2(τ − τmin)/m, and its expression at O(αs)

in an arbitrary mass scheme m, J
(τ)
B (ŝ,m, δm, µJB ), with δm = mpole−m ̸= 0 is shown in Eq. (7.28).

At NLL+O(αs) the bHQET jet function completely controls the quark mass scheme dependence of
the singular partonic cross section. So at this order the singular partonic cross section in an arbitrary
mass scheme, dσ̂s

dτ (τ,Q,m, δm), is obtained from Eq. (7.25), by employing the bHQET jet function

J
(τ)
B (ŝ,m, δm, µJB ) and setting mpole → m everywhere else. This is because J

(τ)
B has mass sensitivity

already at tree level through the dependence on τmin, see Eq. (7.20). Physically the ultra-collinear
radiation is, owing to heavy quark symmetry, related to the soft radiation governing the mass of
heavy-light mesons. The mass mode factor Hm contains fluctuations at the scale of the quark mass
µm ∼ m coming from the massive quark field fluctuations that are off-shell in the resonance region
and integrated out. Its expression at O(αs) is shown in Eq. (7.27) and a detailed discussion on its
definition and properties can be found in Ref. [19]. The factor UJB sums logarithms between the
ultra-collinear jet scale µJB and the hard scale µH , US sums logarithms between the soft scale µS and
the hard scale, and Um sum logarithms between the quark mass scale µm and the hard scale.

The O(αs) results for the mass mode and the bHQET jet functions read [19]

Hm(m,µ) = 1 +
αs(µ)CF

4π

(
2 ln2

m2

µ2
− 2 ln

m2

µ2
+ 8 +

π2

3

)
+O(α2

s) , (7.27)

mJB(ŝ,m, δm, µ) = δ(ŝ)− 4 δm δ′(ŝ) +
αs(µ)CF

4π

(
16

µ

[
µ ln ŝ

µ

ŝ

]

+

− 8

µ

[
µ

ŝ

]

+

+ (8− π2)δ(ŝ)
)
+O(α2

s) , (7.28)

where the result for the bHQET jet function has been displayed for a general quark mass renormal-
ization scheme m which is related to the pole mass scheme by the relation δm = mpole − m. So
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in Eq. (7.28) we have ŝ = (s − m2)/m. Also here the bHQET jets function already accounts for
the ultra-collinear radiation in both hemispheres. Their respective anomalous dimensions can (to all
orders) be written in the form

µ
d

dµ
Um

(Q
m
,µm, µ

)
=
(
Γm[αs(µ)] ln

(m2

Q2

)
+ γm[αs(µ)]

)
Um

(Q
m
,µm, µ

)
(7.29)

µ
d

dµ
UJB (ŝ, µ, µJB ) =

∫
dŝ′
(
− ΓJB [αs(µ)]

µ

[µθ(ŝ− ŝ′)
ŝ− ŝ′

]
+
+ γJB [αs(µ)]δ(ŝ− ŝ′)

)
(7.30)

× UJB (ŝ− ŝ′, µ, µJB ) ,

where the coeffients at NLL precision are given in Eqs. (7.34), see also Eqs. (7.17) and (7.18). These
results have been obtained using dimensional regularization to regulate ultraviolet as well as infrared
divergences and do not account for any other infrared cutoff. Ultraviolet renormalization has been
carried out in the MS scheme.

From a physical point of view it appears more appropriate to evolve the factors UJB , US and Um

to the quark mass scale µm (at which point the factor Um could be dropped) rather than the hard
scale. This is because the logarithms resummed in UJB and Um physically arise from scales below the
quark mass. The form we have adopted here is equivalent due to renormalization group consistency
conditions [19] and matches better to the form of the log resummations obtained from the coherent
branching formalism as discussed in Sec. 7.3.2. For our examinations we need the expressions for
the U factors at NLL and the hard, mass matching, soft and the bHQET jet functions at O(αs).
Expanding to first order in the strong coupling and setting µH = µJB = µS = µ we obtain the O(αs)

singular fixed-order massive quark thrust distribution in the pole mass scheme (Lm = ln (mpole)2

Q2 ):

1

σ0

dσ̂s
dτ

(τ,Q,mpole) =δ(τ − τpolemin ) +
αsCF

4π

{
−8(1 + Lm)

[
θ
(
τ − τpolemin

)

τ − τpolemin

]

+

+ (4L2
m + 2Lm + 2π2)δ

(
τ − τpolemin

)}
+O(α2

s) . (7.31)

In Eq. (7.31), changing to another mass schemem leads to the additional term δ′(τ−τpolemin ) 4mδm/Q2

on the RHS, and this term has to be counted as a NLL contributions as well.

We note that in Eq. (7.31) the dead cone effect [154,155] is manifest as a τ → τmin behavior that is less
singular than the τ → 0 limit for massless quark production displayed in Eq. (7.11). However, one can
see from the form of the bHQET jet function in Eq. (7.28), that ultra-collinear radiation still involves
soft-collinear double-logarithmic singularities which arise from the coherent effect of ultra-collinear
gluons physically originating from the associated top quark and its opposite hemisphere [18, 19]. So,
in the context of QCD factorization based on SCET and bHQET the deadcone effect arises from a
cancellation of double logarithmic singularities between the ultra-collinear and the large-angle soft
radiation (radiated in the collinear direction and called collinear-soft radiation in the following). This
can be seen from the expression for the partonic soft function S(τ) given in Eq. (7.7) which exhibits
the same double-logarithmic singularity as the bHQET jet function, but with the opposite sign. So
the origin of the deadcone effect from the perspective of QCD factorization, which is manifestly gauge
invariant, is due to a cancellation of ultra-collinear and collinear-soft radiation. This is somewhat
different (but not contradictory) to the conventional and gauge-dependent view that the deadcone
originates from the suppression of collinear radiation off the boosted top quarks due to the finite top
quark mass. The relation between these two views is subtle because in the canonical SCET/bHQET
approach (ultra-)collinear jet functions are defined with a zero-bin subtraction [88] to avoid a double
counting between (ultra-)collinear and collinear-soft radiation.
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Transforming the partonic massive quark thrust distribution to Laplace space with the convention

σ̃(ν,Q,mpole) =

∞∫

τpolemin

dτ e−ντ 1

σ0

dσ̂s
dτ

(τ,Q,mpole) (7.32)

the NLL thrust distribution can be written in the condensed form

σ̃(ν,Q,mpole) = exp

[
−K(ΓHm , µH,ν , µm,ν) +K(ΓJB , µH,ν , µJB ,ν) +K(ΓS , µH,ν , µS,ν)

]

× exp

[
1

2

(
ω(γHm − γHQ

, µH,ν , µm,ν) + ω(γJB , µH,ν , µJB ,ν) + ω(γS , µH,ν , µS,ν)
)]

(7.33)

where the evolution functions K and ω have been given in Eqs. (7.14) and the cusp and non-cusp
anomalous dimensions not already displayed in Eqs. (7.17) and (7.18) read

ΓJB [αs] = −ΓHm [αs] = −ΓHQ
[αs] = 2Γcusp[αs] ,

γH [αs] = −12CF

(αs

4π

)
,

γHm [αs] = −8CF

(αs

4π

)
,

γJB [αs] = 8CF

(αs

4π

)
(7.34)

and the scales µH , µm, µJB ,ν and µS,ν are given by

µH,ν = Q , µm,ν = mpole , µJB ,ν =
Q2

mpole
(ν eγE )−1 , µS,ν = Q(ν eγE )−1 . (7.35)

As for the case of massless quark production these scales are fixed to the expressions shown and
arise from the combination of the renormalization scale dependent NLL U evolution factors and the
Laplace transformed O(αs) corrections in the hard, mass mode, bHQET jet and soft functions, shown
in Eqs. (7.5), (7.27), (7.28) and (7.7) respectively, which are logarithmic and plus-distributions. In
this combination the dependence on the renormalization scales µH , µm, µJB and µS cancels and the
result shown in Eq. (7.33) with the physical scales given in Eqs. (7.35) emerges. Like in the case of
massless quarks, since the structure of these O(αs) corrections is already unambiguously known from
the NLL renormalization properties, we consider them part of the NLL logarithmic contributions.
Using in Eq. (7.33) the renormalization scales µi instead of the scales µi,ν (i = H,m, JB, S) one
recovers the renormalization scale dependent results coming from the U evolution factors alone. The
mass dependence of the scales in Eq. (7.35) and in the rescaled thrust variableMτ defined in Eq. (7.2)
is subleading and does not generate NLL contributions when the quark mass scheme is changed.

As we show in Sec. 7.3.2 all terms shown in Eq. (7.33) are also precisely obtained by the coherent
branching formalism at NLL order.

We finally note that all functions and U factors that appear in Eqs. (7.4) and (7.25) have been
determined using dimensional regularization to regularize infrared and ultraviolet divergences and
the MS renormalization scheme. At this point the partonic soft function S(τ)(k) does not contain any
gap subtraction [174] to remove its O(ΛQCD) renormalon ambiguity related to the partonic threshold
at k = 0.

7.1.3 Importance of the shape function

The soft model shape function Smod appearing in Eqs. (7.3) and (7.21) represents an essential part
of the thrust factorization theorems since it accounts for the hadronization effects that affect the ob-
servable thrust distribution. The shape function leads to a smearing of the parton level contributions
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and an additional shift of the peak position since the hadronization effects increase the hemisphere
masses by non-perturbative contributions. It is also essential as far as the shape of the distribution
in the resonance region is concerned where the thrust distribution is peaked.

Since in this work we are mainly interested in the Q0-dependence of the partonic contributions, one
may conclude that one should better drop the effects of the shape function Smod in our analysis
such that it does not interfere with the perturbative effects. However, this is not possible since
analyzing the singular partonic corrections of the thrust distribution (and their Q0 dependence)
alone without any smearing does not allow for a correct interpretation of their contributions to the
observable distribution. This can be easily seen for example from the O(αs) fixed-order parton level
results for the massless and massive quark thrust distributions shown in Eqs. (7.11) and (7.31). Here
the partonic contributions to the observable distribution contained in the δ-functions and in the
regularized singularity structures of the plus distributions at the partonic thresholds at τ = 0 and
τ = τmin, respectively, remain invisible if one simply studies the partonic contributions at a function
of τ . One may in particular conclude wrongly, that the observable peak position is independent of
Q0 simply because the partonic threshold always remains at τ = 0 and τ = τmin for massless and
massive quarks, respectively. The essential point is that the complete set of singular structures in the
(infinitesimal) vicinity of the threshold contributes in the resonance region and non-trivially affect
the observable peak location. Thus, the partonic thresholds alone do not govern the observable peak
position and some smearing is crucial to fully resolve the effects of all parton level contributions.

As a consequence, in our analysis of the partonic effects coming from the shower cut Q0, it is still
important that we account for the hadronic smearing of the shape function Smod. For the analysis
of the partonic effects coming from the shower cut Q0 we therefore include a shape function that is
Q0-independent. It has the simple form

Smod(ℓ) =
128 ℓ3

3Λ4
m

exp
(
− 4ℓ

Λm

)
, (7.36)

and the important properties
∫ ∞

0
dℓ Smod(ℓ) = 1 and

∫ ∞

0
dℓ ℓ Smod(ℓ) = Λm , (7.37)

where we consider Λm values between 1 and 5 GeV for our conceptual discussions. (See also our
comment after Eq. (7.3).) We use this shape function for our analytic calculations as well as for the
parton level numerical results we obtain from the Herwig event generator. This way we can ensure
that the smearing is precisely equivalent for both types of results. We note that the exact form of
Smod and the size of the smearing scale Λm affect the form and the absolute value of peak location
of the distribution in the resonance region. However, for our analysis only the relative dependence
of the peak position on the cut value Q0 is essential, for which the exact form of the shape function
turns out to be irrelevant. We further note that for our numerical studies for top quark production
we use the smearing due to Smod to also mimic effects of the top quark width even though the form
of Smod does not provide a fully consistent description.

As we show in Sec. 8.1, for making physical predictions the soft model function has to compensate for
the dependence of the parton level large angle soft radiation on the Q0 cut. This is because for large
angle soft radiation the shower cut represents a factorization scale that separates the parton level and
non-perturbative regions. The point of our examination, however, is not to make physical predictions,
but to conceptually quantify the dependence on Q0 with the aim to disentangle it unambiguously
from the effect Q0 has on the mass parameter. Along the same lines, we also do not account for
the possible effects of a finite experimental resolution. The latter results in an additional smearing
of the resonance distribution that, particularly in the context of hadron colliders, may by far exceed
the smearing caused by the hadronization effects. While the overall norm still remains irrelevant for
the peak position, properties of the theoretical distribution far away from the resonance region could
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then affect the experimentally observed peak position in a non-negligible way. In such a case the
non-singular corrections may have to be included for a reliable description. This is straightforward,
but beyond the scope of this work.

7.1.4 NLO precision for the resonance location

Within quantum field theory a consistent discussion of a quark mass (renormalization) scheme is only
meaningful if the theoretical description of the observable of interest has all or at least the dominant
O(αs) corrections implemented. In the factorization theorems of Eqs. (7.3) and (7.21) we can neglect
the nonsingular corrections since they are power-suppressed in the resonance region. To be concrete,
they lead to negligible shifts in the peak position of order (1 GeV)2/Q2 and (1 GeV)2/m2, respectively,
upon including the smearing effects coming from the soft model shape function Smod. It is now obvious
to ask the question if, apart from the summation of logarithms at NLL order, also the full set of O(αs)
non-logarithmic fixed-order corrections contained in the hard, mass mode, jet and soft functions are
needed to achieve O(αs) precision in the resonance region. These corrections are either constant
(originating from the functions HQ and Hm, see Eqs. (7.5) and (7.27), respectively) or proportional

to the delta-function (coming from the functions J (τ), J
(τ)
B and S(τ), see Eqs. (7.6),(7.28) and (7.7),

respectively), and their sum is displayed in Eqs. (7.11) and (7.31). If one considers all aspects of
the thrust distribution in the resonance region, obviously both, NLL resummation and the full set of
O(αs) fixed-order corrections are needed. For example, the one-loop corrections in the hard function
lead to O(αs) corrections in the norm of the thrust distributions. This in general favors the so-called
”primed” counting scheme [164] where NLL′ order refers to the resummation of logarithms at NLL
order combined with all additional fixed-order corrections at O(αs).

However, the mass sensitivity of the thrust distribution in the peak region mainly comes from the
location of the resonance peak, τpeak, and properties such as the overall norm of the distribution are
less important. For most practical considerations of such kinematic distributions, the norm is even
eliminated on purpose by considering distributions that are normalized to a restricted interval in the
kinematic variable. Therefore, in our analysis we mainly focus on the resonance peak position of the
thrust distribution and do not consider the overall norm. Interestingly, as we show in the following,
when discussing the peak position with NLO (i.e. O(αs)) precision, we only have to account for the
NLL resummed cross section, and we can neglect the O(αs) non-logarithmic corrections. The reason
why these non-logarithmic O(αs) corrections do not contribute to the peak position τpeak at NLO is
that they are represent corrections proportional to the LL cross section.

To see this more explicitly let us rewrite the NLL+O(αs) thrust distributions of Eqs. (7.3) and (7.21)
in the generic form

fNLL+αs(τ) =

∫ τ

0
dτ̄ f̂NLL+αs(τ̄) S̄mod(τ − τ̄) , (7.38)

where f and f̂ stand for the hadron and parton level thrust distributions, respectively, and S̄mod for the
hadronization shape function after variable rescaling. The NLL+O(αs) partonic thrust distribution
can then be written in the form

f̂NLL+αs(τ) = f̂LL(τ) + αs

(
∆f̂NLL(τ) + cf̂LL(τ)

)
(7.39)

where f̂LL represents the LL cross section (which provides the complete leading order approximation),
the term αs∆fNLL contains all NLL corrections in the NLL resummed cross section, and αsc stands for
the non-logarithmic O(αs) corrections mentioned above. The latter corrections are related to the LL

tower of logarithms associated to the term (2π2/3− 2)δ(τ) in Eq. (7.11) and the term 2π2δ(τ − τpolemin )
in Eq. (7.31). Note that corrections arising from a change in the quark mass scheme are proportional

to derivatives of δ(τ − τpolemin ) and therefore always contained in the term αs∆fNLL.
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The LL peak position τ0peak is determined from the equality

0
!
= f ′LL(τ

0
peak) =

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄

′
mod(τ

0
peak − τ̄) . (7.40)

At the NLL level, writing the O(αs) correction to the peak position as δτpeak, the corresponding
equality reads

0
!
= f ′NLL+αs

(τ0peak + δτpeak) (7.41)

=

∫ τ0peak+δτpeak

0
dτ̄
[
f̂LL(τ̄) + αs

(
∆f̂NLL(τ̄) + cf̂LL(τ̄)

)]
S̄′
mod(τ

0
peak + δτpeak − τ̄)

= δτpeak

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄

′′
mod(τ

0
peak − τ̄)

+ αs

∫ τ0peak

0
dτ̄
[
∆f̂NLL(τ̄) + cf̂LL(τ̄)

]
S̄′
mod(τ

0
peak − τ̄) + O(α2

s)

= δτpeak

∫ τ0peak

0
dτ̄ f̂LL(τ̄) S̄

′′
mod(τ

0
peak − τ̄)

+ αs

∫ τ0peak

0
dτ̄ ∆f̂NLL(τ̄) S̄

′
mod(τ

0
peak − τ̄) + O(α2

s) ,

where in the third line we have dropped terms of O(α2
s) and in the fourth we used the LL constraint

of Eq. (7.40) for the non-logarithmic O(αs) fixed-order corrections with are proportional to the LL
cross section.

The outcome is that the non-logarithmic O(αs) fixed-order corrections contained in the hard, jet
and soft function are not relevant for discussing the peak position τpeak as far as O(αs) precision
is concerned and would only enter when O(α2

s) corrections are considered. Since the peak position
represents the dominant characteristics of the thrust distribution entering the mass determination, we
can therefore conclude that the resummation of logarithmic correction at the NLL level is sufficient
to achieve O(αs) precision for a mass determination based on the resonance peak position. Going
along the line of arguments we use in the subsequent sections this important result also means that
to the extent that parton showers systematically and correctly sum all NLL logarithmic terms, the
peak position of the thrust distribution generated by their evolution is already O(αs) precise, even
without including any additional NLO fixed-order corrections by an NLO matching prescription.

7.2 Coherent branching formalism

The coherent branching formalism has proven to be a very powerful tool for analytic resummation of
a large number of observables. Besides the analytic use, it forms the core rationale behind coherent
parton shower algorithms, notably the angular ordered algorithms of the Herwig family [151,152,175]
of event generators. Following earlier work of Ref. [163, 167] we use this framework to calculate the
parton level jet mass distributions J (s,Q2) for massless quarks and J (s,Q2,m2) for massive quarks
originating from successive gluon radiation off the progenitor quark and anti-quark pair generated by
the hard interaction at c.m. energy Q. Here the variable s = M2

jet stands for the resulting squared
jet invariant mass. This determines the partonic thrust distribution in the peak region as defined in
Eq. (7.1) as

dσ̂cb

dτ
(τ,Q) =σ0

∫
ds1 ds2 δ

(
τ − s1 + s2

Q2

)
J (s1, Q2)J (s2, Q2) ,

dσ̂cb

dτ
(τ,Q,m) =σ0

∫
ds1 ds2 δ

(
τ − s1 + s2

Q2

)
J (s1, Q2,m2)J (s2, Q2,m2) , (7.42)
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for massless and massive quark cases, respectively. The jet mass distributions obtained in the context
of coherent branching incorporate coherently the dynamic effects of soft as well as (ultra-)collinear

radiation and are UV-finite quantities. Thus they differ from the jet functions J (τ) and J
(τ)
B in the

QCD factorization approach which describe the factorized collinear and ultra-collinear gluon effects,
respectively, and are determined from UV-divergent effective theory matrix elements that need to be
renormalized. In order to obtain the observable hadron level thrust distribution, the contributions of
the non-perturbative effects are accounted for in exactly the same way as for the QCD factorization
approach by an additional convolution with a soft model shape function, as shown in Eqs. (7.3) and
(7.21), see Refs. [163,167,176].

We note that in Eqs. (7.42) we have used the superscript ’cb’ to indicate the cross sections obtained
in the coherent branching formalism. We use this notation throughout this work, when suitable, to
distinguish results based on the coherent branching formalism from those obtained in the factorization
approach.

While an analytic treatment of the coherent branching formalism in the strict context of perturbation
theory does not rely on the presence of any infrared cutoff,3 it is, however, required within the realm
of an event generator for several reasons. These include the Landau pole singularity of the strong
coupling, which emerges because its renormalization scale is tied to shower evolution variables, and
that the particle multiplicities diverge when the shower evolves to infrared scales. In addition, in
the limit of small scales the perturbative treatment of the parton splitting breaks down anyway, and
it is therefore mandatory to terminate the shower at a low scale where the perturbative descrip-
tion is still valid and hand over the partonic ensemble generated through the shower emissions to a
phenomenological model of hadronization.

The variables we consider in the following of this section are used both to derive analytic results, but
we also stress that they precisely correspond to the variables employed in the angular ordered parton
shower of the Herwig 7 event generator. The results obtained from the Herwig 7 event generator
only differ from the analytic framework by the implementation of exact momentum conservation with
respect to the momenta of all final state particles that emerge when the shower has terminated at
its infrared cutoff Q0. This implementation of momentum conservation shall not change the jet mass
distribution and is explained in more detail in Sec. 7.2.3. There we also briefly discuss some Herwig 7
(version 7.1.2) specific implementations in its default setting that go beyond the coherent branching
formalism and that we do not use in the context of the conceptual studies carried out in this work.

7.2.1 Massless case

Starting from an initial, color-connected qq̄-pair with momenta p and p̄, the momenta of the partons
emerging from the shower evolution of the quark carrying the momentum p are parametrized based
on

kµi = αi p
µ + βi n̄

µ + kµi,⊥ , (7.43)

where ki is the quarks momentum after the i-th emission. In the massless case we use n̄ = p̄ as the
reference direction to specify the collinear limit, with ki,⊥ · p = ki,⊥ · n = 0, k2i,⊥ < 0 and βi being

determined by the virtualities ki · ki = kµi kiµ = k2i as

βi =
−k2i,⊥ + k2i
2αi(p · n̄)

. (7.44)

3We refer to strict perturbation theory as expanding in αs at a constant renormalization scale such that the evolution
is described by higher powers of αs and logarithms only, and that virtual loop and real radiation phase space integrals
can be carried out down to zero momenta.
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p⊥
z

1 − z

Figure 7.1: A gluon branching off a back-to-back quark/anti-quark system. The radiated gluon is
assumed to carry a fraction 1−z of the parent’s momentum and is emitted at a transverse momentum
which equals the one acquired by, in this case, the anti-quark after the emission.

The radiation off the anti-quark with momentum p̄ is described similarly with a reference direction
n = p. Expressing kµi in terms of the momentum of the emitter before the i-th branching we find

kµi = zi k
µ
i−1 +

z2i k
2
i−1,⊥ − k2i,⊥ + k2i − z2i k2i−1

2zi(ki−1 · n̄)
n̄µ + qµi,⊥ (7.45)

where the physical splitting variables relative to the quark’s momentum ki−1 before the i-th emission
relate to the global light-cone decomposition Eq. (7.43) as

zi =
αi

αi−1
, (7.46)

qµi,⊥ = kµi,⊥ − zik
µ
i−1,⊥ , (7.47)

where α0 = 1 as well as qµ0,⊥ = 0 are understood. This means that for the first emission the physical
branching variables coincide with the global parametrization. We have depicted the variables of one
branching in Fig. 7.1. Soft gluon coherence is encoded through ordering emissions in an angular
variable [159],

q̃2i =
p2i,⊥

z2i (1− zi)2
, (7.48)

where p2i,⊥ = −q2i,⊥ is the magnitude of the transverse momentum, which is purely spacelike and
perpendicular to the emitter axis in the centre-of-mass system of the momenta ki and n̄. The explicit
restrictions of decreasing opening angle of subsequent emissions following a branching at scale q̃i from
the evolving quark or anti-quark at scale q̃2i+1, and the radiated gluon at scale k̃2i are imposed by the
conditions

q̃2i+1 < z2i q̃
2
i and k̃2i < (1− zi)2 q̃2i . (7.49)

In the context of these variables, the Altarelli-Parisi splitting functions explicitly show the full Eikonal
radiation pattern and the correct collinear limit, see e.g. Ref. [177] for an overview and comparison
to dipole-type parton showers. The formalism is appropriate to resum higher order logarithmic
corrections for observables that are inclusive concerning the collinear radiation in the same jet and
in the sense that the information that large-angle soft gluon radiation originates from a particular
collinear parton is unresolved and can hence be described to originate from the net collinear color
charge of the whole jet. Momentum conservation in the branching i− 1→ i implies

k2i−1 =
k2i
zi

+
q2i

1− zi
+ zi(1− zi)q̃2i , (7.50)

where q2i is the virtuality of the emitted gluon, the momentum of which is parametrized in a decom-
position similar to Eq. (7.43).
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= + −s

q2

k′2
s

Figure 7.2: Graphical representation of the evolution equation Eq. 7.51: Grey blobs denote the quark
and gluon jet function at a given jet mass, a single line implies a δ-function at mass zero, while the
black dot represents a factor of one and implies an unconstrained integration over the gluon’s emission
scale and momentum fraction.

We follow Ref. [163] and start with an analytic approach for which the evolution equation for the jet
mass distribution starting at a hard scale q̃2 = Q2 has the form

J (s,Q2) = δ(s) +

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs

(
z(1− z)q̃

)
, z
]

(7.51)

×
[∫ ∞

0
dk′2

∫ ∞

0
dq2δ

(
s− k′2

z
− q2

1− z − z(1− z)q̃
2
)
J (k′2, z2q̃2)Jg(q2, (1− z)2q̃2)

− J (s, q̃2)
]
,

where Jg(s,Q2) is the gluon jet mass distribution defined in analogy to the jet mass distribution
J (s,Q2) for the quarks. We have illustrated the evolution schematically in Fig. 7.2. The splitting
function is given by

Pqq

[
αs, z

]
=

αsCF

2π

1 + z2

1− z =
αsCF

2π

[ 2

1− z − (1 + z)
]

(7.52)

where the second equality makes the cusp and non-cusp terms explicit, which stem from soft (z → 1)
and hard collinear emissions, respectively.

We note that the evolution equation for the jet mass distribution shown in Eq. (7.51) can be rendered
NLL precise by correctly implementing the analytic form of the two-loop cusp term in quark splitting
function Pqq. By using the relative transverse momentum of the splitting,

p2⊥ = z2(1− z)2q̃2 , (7.53)

as the renormalization scale for the strong coupling the leading ln(1− z)/(1− z) behavior of the cusp
term in the two-loop splitting function is reproduced exactly. The remaining non-logarithmic term
from the two-loop cusp anomalous dimension and can be incorporated by either scaling

αs → αs

(
1 +Kg

αs

2π

)
, (7.54)

or, equivalently, (up to terms of O(α3
s)) by adopting a change in renormalization scheme through the

rescaling

ΛMS → ΛMC = ΛMS exp

(
Kg

β0

)
(7.55)

The constant Kg commonly used in this context relates to the two-loop cusp anomalous dimension as
Γcusp
1 = 8CFKg shown in Eqs. (7.18). This approach to implement NLL precision in parton showers

is called the CMW (”Catani-Marchesini-Webber”) or Monte Carlo scheme [159]. We note that in
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the Herwig event generator, the transverse momentum argument (7.53) is used as the scale of the
strong coupling, but that in the default settings the CMW scheme of Eqs. (7.54) and (7.55) is not
used explicitly. Instead the precise value of αs is obtained from tuning to LEP data along with the
parameters of the hadronization model and the shower cut Q0. The result, however, numerically
resembles the CMW factor in the relation between ΛMS and ΛMC. Indeed, for example for a one-loop
running the CMW correction implies that

αMC
s (MZ) =

αMS
S (MZ)

1− αMS
S (MZ)

Kg

2π

= 0.126 at αMS
S (MZ) = 0.118 , nf = 5 , (7.56)

and the larger value is exactly is the tuned value, with a similar converted value for αMS
s (MZ) for the

two loop running actually employed in the Herwig shower. For our numerical analyses in Secs. 9.4
and 9.5, where we compare analytic calculations and Herwig results concerning the shower cut Q0

dependence of the thrust peak position, we therefore use the strong coupling as implemented in
Herwig.

The evolution equation for the jet mass distribution given in Eq. (7.51) is an explicit representation of
the coherent branching algorithm. Consider the distribution of the first emitter’s virtuality k20 ≡ k2

and one iteration of the branching algorithm, where one choses q̃2 ≡ q̃21, z ≡ z1, as well as k′2 ≡ k21 and
the gluon’s virtuality is denoted by q2 ≡ q21 as displayed in Fig. 7.2. There is a contribution without
any branching or virtual effects, encoded in the first δ-function term in Eq. (7.51). It describes a
vanishing jet mass that corresponds to the tree-level contribution and also constitutes the initial
condition for the shower evolution at q̃2 = Q2. In addition, we need to take into account a resolvable
branching at a scale q̃2 below the hard scale Q2, which gives rise to a subsequent evolution of the quark
and gluon jet mass distributions at the scales imposed by the angular ordering criterion of Eq. (7.49).
This contribution is itself constrained by the momentum conservation criterion of Eq. (7.50). The
last contribution originates from an unresolved emission, which gives rise to an evolution of the quark
mass distribution starting at scale q̃2 but being unconstrained otherwise. Notice that the momentum
conservation constraint links the evolution scale to the specific kinematics that is considered. No
further constraints to the integration over the momenta involved in the emission are present.

As already mentioned, in the context of an event generator the evolution has to be terminated by
imposing infrared cutoff Q0. This is typically done by a requiring a minimum transverse momentum
for the emissions with respect to the momentum direction of the emitter. This restricts the integral
over q̃2 and z to a region where

p2⊥ = q̃2 z2(1− z)2 > Q2
0 . (7.57)

We note that also other choices are in principle possible and have been discussed in the context
of radiation within the ’dead cone’ for massive quarks [160]. In principle any prescription that
simultaneously cuts off both the collinear q̃ → 0 and soft z → 1 (as well as z → 0 for a gluon
branching) limits, and also avoids low transverse momenta appearing in the argument of the strong
coupling, is appropriate.

We also note that an analogous evolution equation holds for the gluon jet mass distribution Jg(s,Q2).
The evolution of the gluon jet is governed by the gluon splitting function, and also describes gluon
branching into a quark/anti-quark pair. However, as far as the jet mass distributions in the resonance
region is are concerned, the contribution of the gluon jet mass to the quark jet mass is at least at
NLL precision suppressed due to the angular ordering constraint, see e.g. Ref. [163]. Therefore, at
NLL several simplifying approximations are in principle possible to solve the evolution equation for
the quark jet mass distribution, which are particularly useful for analytic calculations of the jet mass
distribution: (i) we can neglect the contribution to the jet mass due to the branching of emitted gluons
by the replacement Jg((1− z)q̃2)→ δ(q2) for the gluon jet mass distribution and (ii) we can can take
the limit z → 1 for some terms that do not acquire an enhancement in the soft limit. Interestingly, this
also includes that, once prescription (i) is applied, we can remove the remaining, strict angular ordering
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constraint in the quark jet mass distribution through modifying the starting scale of the subsequent
emission contained in the quark jet mass distribution by the replacement J (k′2, z2q̃2) → J (k′2, q̃2).
In Sec. 9.3 we explicitly verify these simplifications from numerical simulations using the Herwig 7
event generator.

7.2.2 Massive case

Moving on to radiation off massive quarks, we consider the generalizations of coherent branching
developed in Ref. [160], based on splitting functions and factorization in the quasi-collinear limit for
which the emitted parton’s transverse momenta is restricted from above by the mass of the emitting
quark and furthermore small compared to the scale of the previous emission, p2i,⊥ ≲ m2

i ≪ 2(ki−1 · n̄).
In this case we consider a system of a massive quark and anti-quark, p2 = p̄2 = m2. However we
still use light-like backward directions n̄ and n in the momentum parametrization such as (7.43),
with three-momenta pointing along the direction of the massive momenta, i.e. n̄ = (|p⃗|,−p⃗) and
n = (|p⃗|, p⃗). This modifies the form of the βi variables to take into account the mass effect,

βi =
−k2i,⊥ + k2i − α2

i m
2

2αi(p · n̄)
, (7.58)

while the parametrization of the momenta from the massless case given in Eq. (7.43) and the relation
to the branching variables in Eqs. (7.46) and (7.47) remain unchanged. Following Ref. [160] the
evolution variable is generalized to the expression

q̃2i =
p2i,⊥ + (1− zi)2m2

z2i (1− zi)2
. (7.59)

Consequently, the generalization of Eq. (7.50) also adopts a mass term and reads

k2i−1 =
k2i − (1− zi)m2

zi
+

q2i
1− zi

+ zi(1− zi)q̃2i . (7.60)

The arguments we discussed for the massless quark case concerning the mass of the gluon jet apply in
the analogous way in the massive quark case. Therefore we do not have to consider the fully general
formalism for our analytic calculations at NLL order and can restrict ourselves to the case of gluon
emission from a massive quark. We note that gluon splitting into massive quarks is also a negligible
effect for the jet mass distribution in the resonance region since the corresponding splitting function
is suppressed with respect to the gluon emission case due to a lack of soft enhancement (even in the
absence of angular ordering). The variables considered here are precisely those used in the Herwig 7
angular ordered shower, which, in its current version is not relying on a finite Qg parameter as quoted
in [160], but is instead using a cutoff on the transverse momentum.

The evolution equation of the massive quark jet mass distribution then has the form

J (s,Q2,m2) = δ(s−m2) +

∫ Q̃2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs(µ

2
R(q̃

2, z)), z,
m2

q̃2

]
(7.61)

×
[∫ ∞

0
dk′2

∫ ∞

0
dq2δ

(
s− k′2 − (1− z)m2

z
− q2

1− z − z(1− z)q̃
2
)

× J (k′2, z2q̃2,m2)Jg(q2, (1− z)2q̃2)

− J (s, q̃2,m2)

]
.
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The initial hard scale of the evolution in q̃2 is chosen as

Q̃2 =
1

2
Q2

(
1 +

√
1− 4m2

Q2

)
(7.62)

which amounts to the ’symmetric’ phase space choice for the QQ̄ system as suggested in Sec. 3.2 of
Ref. [160], so that the shower evolution off the progenitors Q and Q̄ only cover physically distinct
phase space regions. For the situation of boosted quarks (m2/Q2 ≪ 1) we consider in this work,
however, we can safely replace Q̃2 → Q2 for all analytic calculations. The shower cutoff condition in
the massive quark case reads

p2⊥ = z2(1− z)2q̃2 − (1− z)2m2 > Q2
0 , (7.63)

and the splitting function in the quasi-collinear limit generalizes to

PQQ

[
αs, z,

m2

q̃2

]
=

αsCF

2π

[
1 + z2

1− z −
2m2

z(1− z)q̃2

]
. (7.64)

In contrast to the massless quark case where the coherent branching formalism has a solid conceptual
basis related to the different kinematics of soft and collinear phase space regions, the corresponding
formalism for massive quarks has in its present form higher order ambiguities, which makes e.g. the
determination O(α2

s) corrections to the quasi-collinear splitting functions ambiguous. This is related
to the more complicated structure of collinear, ultra-collinear, mass mode and soft dynamics and
phase space regions that emerge in the presence of the quark mass and which (as we show explicitly
in Sec. 7.3.2) depends in addition on the relation between the jet invariant mass

√
s and the quark

mass m. This is manifest in the fact that, in contrast to the massless quark case, there is no unique
choice of the renormalization scale of αs as a function of z, q̃ and the quark mass m. As such, different
choices for µ2R(q̃

2, z) which reduce to Eq. (7.53) in the massless limit may be considered. The default
choice is the generalized transverse momentum, µ2R(q̃

2, z) = q̃2z2(1 − z)2, which adds an additional
mass-dependent contribution relative to the physical transverse momentum given in Eq. (7.63). We
demonstrate in Sec. 7.3.2 that this choice is fully consistent with the QCD factorization approach
for massive quarks at NLL order. (See also the power counting shown in Tab. 8.2: In the soft gluon
region the m2 term is suppressed and irrelevant, and in the ultra-collinear region the q̃2 and the m2

terms are of the same order.)

7.2.3 Coherent branching in the Herwig 7 event generator

The coherent branching formalism and its variables outlined in the previous two subsections form the
core of the angular ordered parton shower in the Herwig 7 event generator [151, 152, 175], covering
the massless and the massive quark cases as discussed in Secs. 7.2.1 and 7.2.2, respectively. In the
Herwig 7 parton shower algorithm, a sequence of random values for the variables q̃ and z is generated,
distributed according to the Sudakov form factor that depends on the splitting function. This provides
a solution to the evolution of the jet mass distribution accounting for the branching and no-branching
probabilities in terms of explicit events.

A major difference to a purely analytic computation of the jet mass distributions encoded in the
evolution equations (7.51) and (7.61), however, is related to the virtualities, i.e. the off-shell invariant
masses of the branching partons. While an analytic calculation of the jet mass distribution just
focuses on the description of the overall invariant mass of the final state particles produced by the
emissions from the progenitor parton originating from the hard process, event generators have to
face an additional constraint: they have to evolve the progenitor parton to a final state consisting
of partons on their physical mass shell consistent with overall energy-momentum conservation at the
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point when the shower terminates. This procedure is called ’kinematic reconstruction’. It is the
kinematic reconstruction procedure that fixes the virtualities to the partons before showering (which
are, however, approximated as on-shell in the splitting function). The kinematic reconstruction
is based on the information of the entire evolution tree, the momentum decomposition based on
Eq. (7.43), four-momentum conservation at each vertex, and the knowledge of the q̃ and z values of
each branching to determine explicit particle momenta and to relate the kinematics of the subsequent
emissions to the associated off-shell invariant masses.

In this context an additional important issue the kinematic reconstruction procedure has to deal with
is that the sizes of the physical virtualities are kinematically limited by the available phase space.
However, this phase space constraint is not imposed by the parton shower evolution itself, such that
physically inaccessible (i.e. too large) invariant masses can be generated. Given the decomposition
of the momenta based on Eq. (7.43), and a sequence of q̃ and z values, the kinematic reconstruction
algorithms are designed such that one single solution for the final state momenta is obtained. However,
physically, the final state momenta cannot be determined uniquely such that ambiguities arise in the
way how overall energy-momentum conservation is restored in the event.

To illustrate the kinematic reconstruction procedure more concretely, consider the production of a
quark/anti-quark progenitor pair produced in e+e− annihilation carrying on-shell momenta

p =
(√

p2 +m2,p
)

and p̄ =
(√

p2 +m2,−p
)
, (7.65)

respectively, with the initial tree-level process constraint Q = 2
√

p2 +m2 at the starting point of the
parton shower evolution. At the end of the parton shower evolution their showered counterparts will
have gained virtualities M2 ≥ m2 and M̄2 ≥ m2 with momenta

P =
(√

M2 +P2,P
)

P̄ =
(√

M̄2 + P̄2, P̄
)

(7.66)

and an overall restoration of energy-momentum conservation is mandatory. The strategy in this
case (and similarly its generalizations to more final and initial state partons) is to transform the
reconstructed momenta of the children coming from the now off-mass-shell shower progenitors into
their common centre-of-mass frame where three-momentum conservation is guaranteed. Their spatial
momentum components will then be re-scaled by a common parameter such that the overall invariant
mass is consistent with energy-momentum conservation, (P + P̄ )2 = Q2. This procedure is equivalent
to specific boosts along the P and the P̄ directions, respectively, for the progenitor quark and anti-
quark sides. In cases that the shower evolution, which – as we have mentioned before has no notion
of global energy-momentum conservation – has generated virtualities which are inconsistent with the
available centre-of-mass energy Q, the procedure just outlined is not possible.

Different choices for re-interpreting the branching variables when setting up the full kinematics, with
the aim of reducing the occurrence of unphysically large virtualities have been implemented in Her-
wig 7. The default setting in the released version of Herwig 7, set ShowerHandler:ReconstructionOption
OffShell5, imposes an additional constraint in the intermediate evolution by explicitly altering the
intermediate splitting variables q̃ and z (which are originally obtained in the approximation the par-
tons after the splitting are on-shell). This scheme absorbs the invariant mass of the children of the
branching parton [178] into a redefinition of the splitting variables to preserve the originally generated
virtuality of the splitting parton. This approach, however, intrinsically changes the original form of
the coherent branching algorithm as outlined in the previous two subsections, and we therefore do not
consider this default option in the numerical analyses carried out in Sec. 9. Instead, the setting set

ShowerHandler:ReconstructionOption CutOff is used. It directly uses the variables generated for
the splittings, and does not redefine the variables used to set up the full kinematics. Events with
unphysically large virtualities are discarded.

An additional difference of the Herwig 7 parton shower to the analytic computation of the jet
mass distributions encoded in Eqs. (7.51) and (7.61), is that its default (cluster-type) hadronization
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model [179], imposes, in addition, constituent mass on-shell conditions for all partons that emerge
when the shower is switched off. This includes in particular a constituent mass for the gluons of
around 1 GeV. These parton constituent masses represent tunable parameters of the hadronization
model and are thus part of the hadronization model even though they enter the Herwig 7 parton level
output. In particular, the constituent mass allows for a splitting into quark/anti-quark pairs such that
the primary non-perturbative clusters can be formed. Within our parton level examination concerning
the dependence on the shower cut Q0, parton constituent masses would represent additional infrared
cutoff scales that non-trivially interfere with Q0 and in addition may cause gauge-invariance issues in
higher order perturbative QCD calculations. Since we anyway do not use the Herwig 7 hadronization
model in our numerical analyses of Sec. 9, as already explained in Sec. 7.1.3, we do not account for
these constituent masses in our analytic calculations and when generating parton level results from
Herwig 7. We set all quark constituent masses to mc

q = 0.01 MeV, and the gluon mass parameter
to mc

g = 2mc
q, which is the lower bound dictated by constraints from the cluster hadronization

model. This effectively eliminates any effect coming from the constituent masses. We note that string
hadronization models do not require to assign a mass to the gluons produced by the shower.

7.3 Hemisphere mass distribution from coherent branching without
cut

In this section we show that – in the context of strict perturbative computations – the coherent
branching formalism and the factorized QCD predictions provide identical results concerning the
NLL resummation of logarithmic corrections for the thrust distribution in the absence of any infrared
cut, i.e. for Q0 = 0. In the context of our discussions in Sec. 7.1.4, this equivalence means that
for the thrust distribution the coherent branching formalism with NLL log resummation is already
O(αs) precise as far as the peak position is concerned. For the thrust distribution for massive quarks
this allows us to identify at O(αs) the coherent branching (CB) mass parameter and the pole mass
mpole as long as we consider the resonance peak location as the observable. We phrase this restricted
equivalence by the relation

mCB(Q0 = 0)
peak
= mpole +O(α2

s) . (7.67)

We stress that an exact solution for the jet mass distributions in Eqs. (7.51) and (7.61) (i.e. a solution
that does not rely on any perturbative expansion or rearrangement of the expressions) is impossible
without imposing any infrared cut because of the singularities in the soft and collinear regions of the
(z, q̃) plane caused by the Landau pole of the strong coupling. So applying the coherent branching
formalism without any infrared cut implies (and requires) that the running of the strong coupling is
treated strictly perturbatively (see also footnote 2). The equivalence relation (7.67) must therefore
be understood strictly in the perturbative sense. From the point of view of an exact solution of the
coherent branching formalism the limit Q0 → 0 is impossible to reach. This illustrates the well-known
problem of the pole mass being a purely perturbative concept that, however, cannot be associated
directly to any physical process at the exact, non-perturbative level.

In the following two subsections we calculate the jet mass distribution in Eqs. (7.51) and (7.61)
obtained from the coherent branching formalism analytically at NLL order for massless and massive
quark, respectively, and show that the results agree identically with those obtained from the factorized
QCD calculations for thrust reviewed in Secs. 7.1.1 and 7.1.2. For the case of massless quarks this
equivalence is well known and has already been studied thoroughly in the literature, see e.g. Refs. [173,
180]. We nevertheless lay out the analysis for massless quarks in some detail because it sets the stage
for the more complicated discussion for massive quarks in the resonance region, where – to the best
of our knowledge – such a study has never been carried out before. Moreover, the manipulations are
setting the stage for Sec. 8.1.2 where we examine the impact of the infrared shower cut Q0 on the
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resonance location τpeak. The reader not interested in these computational details may safely skip
these two subsection and continue reading with Sec. 8.1.

For simplicity we carry out the bulk of the calculations in Laplace space and define the Laplace
transform of the jet mass distributions as

J̃ (ν̄, Q) =

∫ ∞

0
ds e−ν̄s J (s,Q) ,

J̃ (ν̄, Q,m) =

∫ ∞

m2

ds e−ν̄(s−m2) J (s,Q,m) , (7.68)

such that the Laplace space thrust distributions as defined in Eqs. (7.12) and (7.32) adopt the simple
form

σ̃cb(ν,Q) =
[
J̃
( ν

Q2
, Q
)]2

,

σ̃cb(ν,Q,m) =
[
J̃
( ν

Q2
, Q,m

)]2
. (7.69)

To keep our notation simple we write the heavy quark mass paramter simply asm instead ofmCB(Q0 =
0) in the rest of Sec. 7.3.

7.3.1 NLL resummation for massless quarks

To analytically determine the NLL jet mass distribution for massless quarks in the peak region from
Eq. (7.51) we follow Ref. [163] and replace z by 1 in all functions that are slowly varying in the limit
z → 1, except in the splitting function. As already discussed at the end of Sec. 7.2.1, this means that
the angular ordering constraint can be dropped in the peak region, giving

J̃ (ν̄, Q) = 1 +

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs

(
(1− z)q̃

)
, z
](

e−ν̄(1−z)q̃2 − 1
)
J̃ (ν, q̃) , (7.70)

for the Laplace space integral equation for the jet mass distribution. From this we find the differential
equation

dJ̃ (ν̄, Q)

J̃ (ν̄, Q)
=

dQ2

Q2

∫ 1

0
dz Pqq

[
αs

(
(1− z)Q

)
, z
](

e−ν̄(1−z)Q2 − 1
)
, (7.71)

with the solution

ln J̃ (ν̄, Q) =

∫ Q2

0

dq̃2

q̃2

∫ 1

0
dz Pqq

[
αs

(
(1− z)q̃

)
, z
](

e−ν̄(1−z)q̃2 − 1
)
. (7.72)

With the substitutions

q̃2 =
q2

1− z and z = 1− q′2

q2
(7.73)

and using the explicit form of the NLL splitting function in terms of the cusp anomalous dimension
of Eq. (7.18) and a subleading non-cusp term,

Pqq[αs, z] =
Γcusp[αs]

1− z −
(CFαs

2π

)
(1 + z) , (7.74)

we arrive at

ln J̃ (ν̄, Q) =

∫ Q2

0

dq2

q2

(
e−ν̄q2 − 1

)∫ q2

(q2)2

Q2

dq′2

q′2

[
Γcusp[αs(q

′)]−
(CFαs(q

′)

2π

)(
2− q′2

q2

)q′2
q2

]
. (7.75)
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For the second non-cusp term we rewrite αs(q
′) in terms of αs(q) and powers of ln(q′2/q2) and notice

that at NLL precision we only have to keep terms that are proportional to αn+1
s (q) lnn(q2/Q2) after

the q′ integration. Here only a single term for n = 0 has to be kept,

−
∫ q2

(q2)2

Q2

dq′2

q′2

(CFαs(q
′)

2π

)(
2− q′2

q2

)q′2
q2

NLL
= −3CF

(αs(q)

4π

)
= −1

4
γJ(τ) [αs(q)] , (7.76)

which we have, anticipating the form of the final result, identified with the non-cusp anomalous
dimension of the jet function in the factorized QCD cross section. Rewriting in the remaining integral
αs(q) in terms of αs(Q) and powers of ln(q2/Q2), we can further simplify the integral by noticing,
that for obtaining all NLL logarithmic terms correctly, we can use the replacement

e−ν̄q2 − 1
NLL
= −θ(q2 − w) with w = (eγE ν̄)−1 = Q2(eγEν)−1 . (7.77)

This replacement technically acts like an infrared cutoff for the q integration. It is, however, not
a physical cutoff because it is derived in the context of a strict perturbative expansion (where no
infrared Landau Pole singularity arises) and is furthermore not correct beyond NLL order. One
should therefore better think of the replacement simply as an algebraic relation that simplifies the
perturbative analytic NLL resummation calculation.

For the remaining double integral with the cusp-anomalous dimension we can now switch the order
of integration,

−
∫ w

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

w

dq′2

q′2
−
∫ Q2

w

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

q2

dq′2

q′2
, (7.78)

and reshuffle the q′ integrations,
∫ qQ

w

dq′2

q′2
=

1

2

∫ q2

w2

Q2

dq′2

q′2
,

∫ qQ

q2

dq′2

q′2
= −

∫ q2

w

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (7.79)

to obtain

−1

2

∫ Q2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

Q2

dq′2

q′2
+

∫ Q2

w

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w

dq′2

q′2
. (7.80)

Noticing the scale identifications

Q2 = µ2H,ν , w = µ2J,ν , w2/Q2 = µ2S,ν (7.81)

according to Eqs. (7.19) and (7.77), we see that at this point we have separated the collinear and soft
evolution to the hard scale. The non-cusp term

1

4

∫ Q2

w

dq2

q2
γJ(τ) [αs(q)] , (7.82)

on the other hand, describes only a collinear evolution to the hard scale consistent with our assignment
in Eq. (7.76). Accounting for Eq. (7.16) for the QCD beta function and Eq. (7.69), we then arrive at
the following form of the NLL Laplace space thrust distribution,

ln σ̃cb(ν,Q) = 8

∫ αs(Q)

αs(µJ,ν)

dαs

β[αs]
Γcusp[αs]

∫ αs

αs(µJ,ν)

dα′
s

β[α′
s]

− 4

∫ αs(Q)

αs(µS,ν)

dαs

β[αs]
Γcusp[αs]

∫ αs

αs(µS,ν)

dα′
s

β[α′
s]

+

∫ αs(Q)

αs(µJ,ν)

dαs

β[αs]
γJ(τ) [αs] . (7.83)
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In terms of the K and ω evolution factors defined in Eq. (7.14) this can be rewritten as

σ̃cb(ν,Q) = exp

[
4K(Γcusp, µH,ν , µJ,ν)− 2K(Γcusp, µH,ν , µS,ν) +

1

2
ω(γJ(τ) , µH,ν , µJ,ν)

]

= exp

[
K(ΓJ(τ) , µH,ν , µJ,ν) +K(ΓS , µH,ν , µS,ν) +

1

2
ω(γJ(τ) , µH,ν , µJ,ν)

]
, (7.84)

where in the last line we have used the cusp and non-cusp identities of Eqs. (7.17). This agrees
identically with the factorized QCD cross section for massless quarks of Eq. (7.13).

7.3.2 NLL resummation for massive quarks

To analytically determine the NLL jet mass distribution for massive quarks in the peak region from
Eq. (7.61) we initially proceed in the same way as for the massless quark case. Taking the large z
approximation of Ref. [163] and in addition the limit of large boost (Q2 ≫ m2), the Laplace space
integral equation for the jet mass distribution adopts the form

J̃ (ν̄, Q,m) = 1 +

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs

(
(1− z)q̃

)
, z,

m2

q̃2

](
e−ν̄(1−z)q̃2 − 1

)
J̃ (ν, q̃) , (7.85)

with

PQQ

[
αs, z,

m2

q̃2

]
=

Γcusp[αs]

1− z −
(CFαs

2π

)
(1 + z)−

(CFαs

π

) m2

(1− z)q̃2 , (7.86)

where we have dropped a factor 1/z from the mass correction term for a consistent expansion in the
z → 1 limit, see also Sec. 7.2. Its solution reads

ln J̃ (ν̄, Q,m) =

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz PQQ

[
αs

(
(1− z)q̃

)
, q̃,m, z

](
e−ν̄(1−z)q̃2 − 1

)
, (7.87)

and with the substitutions of Eq. (7.73) we arrive at

ln J̃ (ν̄, Q,m) =

∫ Q2

w

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2

[
−Γcusp[αs(q

′)]

+
(CFαs(q

′)

2π

)(
2− q′2

q2

)q′2
q2

+
(CFαs(q

′)

π

)m2q′2

(q2)2

]
θ(q2 − q′m) (7.88)

for the NLL resummed Lapace space thrust distribution. We have already implemented the NLL
relation of Eq.(7.77) to simplify the q2 integration, since it is also valid in the context of massive
quarks.

It it easy to see that the massive quark constraint q2 > q′m is irrelevant for w = µ2J,ν > m2, which
refers to the situation where the hemisphere jet masses are larger than the mass of the quark. In this
kinematic situation the mass correction in the splitting function represents the only modification due
to the quark mass, but the struture of the log resummation is otherwise in complete analogy to the
massless quark case. In the context of the factorized QCD calculations, one can then employ usual
SCET factorization where the collinear sector of the effective Lagrangian is extended trivially by just
accounting for the finite quark mass [18, 19]. In this work, however, we are interested in the peak
region where the hemisphere jet masses are close to the quark mass, i.e. where w < m2. Here the
ultra-collinear sector emerges and the QCD factorization requires that the off-shell fluctuations of the
massive quark field are integrated out [18,19]. So the quark mass effects are much more complicated
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and lead to a substantial rearrangement the structure of the resummed logarithms. The physical
meaning of w is also modified and the scale identifications read

Q2 = µ2H,ν , m2 = µ2m,ν , w2/m2 = µ2B,ν , w2/Q2 = µ2S,ν (7.89)

Let us now have a closer look at the calculation for the cusp term. Reversing the order of integration
we have to distinguish three integration regions and find

−
∫ w2

m2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ qQ

w

dq′2

q′2
−
∫ m2

w2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ Qq

mq

dq′2

q′2

−
∫ Q2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ Qq

q2

dq′2

q′2
. (7.90)

The q′ integrations can be reshuffled using

∫ qQ

w

dq′2

q′2
=

1

2

∫ q2

w2

Q2

dq′2

q′2
, (7.91)

∫ Qq

mq

dq′2

q′2
= −1

2

∫ q2

w2

m2

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (7.92)

∫ Qq

q2

dq′2

q′2
= −1

2

∫ q2

m2

dq′2

q′2
− 1

2

∫ q2

w2

m2

dq′2

q′2
+

1

2

∫ q2

w2

Q2

dq′2

q′2
, (7.93)

such that we get

1

2

∫ Q2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

m2

dq′2

q′2
+

1

2

∫ Q2

w2

m2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

m2

dq′2

q′2

− 1

2

∫ Q2

w2

Q2

dq2

q2
Γcusp[αs(q

2)]

∫ q2

w2

Q2

dq′2

q′2

= K(Γcusp, µH,ν , µm,ν) +K(Γcusp, µH,ν , µJB ,ν)−K(Γcusp, µH,ν , µS,ν) . (7.94)

At this point we have separated mass-dependent, ultra-collinear and soft evolution to the hard scale
and have rewritten the result using the evolution function K of Eq. (7.14) and the scale identifications
of Eq. (7.89).

For the non-cusp term, rewriting the constraint q2 > q′m in terms of integration limits,

∫ Q2

w

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2
θ(q2 − q′m) =

∫ m2

w

dq2

q2

∫ (q2)2

m2

(q2)2

Q2

dq′2

q′2
+

∫ Q2

m2

dq2

q2

∫ q2

(q2)2

Q2

dq′2

q′2
(7.95)

we can use the considerations already applied in the massless quark case and find that only the second
integration contributes at NLL order. This gives

∫ Q2

m2

dq2

q2

[
3CF

(αs(q)

4π

)]
=

1

4

∫ Q2

m2

dq2

q2

[
−γH [αs(q)] + γJB [αs(q)] + γHm [αs(q)]

]
, (7.96)

where we have written the expression in terms of the the non-cusp anomalous dimensions of the hard,
the mass mode and the bHQET jet functions, anticipating already the form of the final result.
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For the mass correction term in the splitting function we reverse integration order in analogy to our
manipulation for the cusp term in Eq. (7.90),

∫ w2

m2

w2

Q2

dq2

q2

(CFαs(q
′)

π

)∫ qQ

w

dq′2

q′2
m2q2

(q2′)2
+

∫ m2

w2

m2

dq2

q2

(CFαs(q
′)

π

)∫ Qq

mq

dq′2

q′2
m2q2

(q2′)2

+

∫ Q2

m2

dq2

q2

(CFαs(q
′)

π

)∫ Qq

q2

dq′2

q′2
m2q2

(q2′)2
. (7.97)

In the limit of a boosted massive quark (Q2 ≫ m2) only the second term can contribute NLL
logarithms. Using

∫ Qq

mq

dq′2

q′2
m2q2

(q2′)2
=

1

2
+O

(m2

Q2

)
, (7.98)

the contribution from the mass correction term at NLL accuracy then reads

∫ m2

w2

m2

dq2

q2

[
2CF

(αs(q)

4π

)]
=

1

4

∫ Q2

w2

m2

dq2

q2
γJB [αs(q)] −

1

4

∫ Q2

m2

dq2

q2
γJB [αs(q)] (7.99)

Taking the sum of the NLL contributions from the non-cusp term in Eq. (7.96) and the mass correc-
tions term in Eq. (7.99) we obtain

1

4

∫ Q2

m2

dq2

q2

[
−γH [αs(q)] + γHm [αs(q)]

]
+

1

4

∫ Q2

w2

m2

dq2

q2
γJB [αs(q)]

=
1

4

(
ω(γHm − γHQ

, µH,ν , µm,ν) + ω(γB, µH,ν , µJB ,ν) + ω(γS , µH,ν , µS,ν)
)

(7.100)

where in the second line we have rewritten the result in using the evolution function ω of Eq. (7.14)
using the scale identities of Eq. (7.89) and that γS [αs] = 0 at NLL. Combining Eqs. (7.94) and (7.100)
and using (7.69) we arrive at the final form for the NLL Laplace space thrust distribution

σ̃cb(ν,Q,mpole) = exp

[
−K(ΓHm , µH,ν , µm,ν) +K(ΓJB , µH,ν , µJB ,ν) +K(ΓS , µH,ν , µS,ν)

]

× exp

[
1

2

(
ω(γHm − γHQ

, µH,ν , µm,ν) + ω(γJB , µH,ν , µJB ,ν) + ω(γS , µH,ν , µS,ν)
)]
, (7.101)

which agrees identically with the factorized QCD cross section for massive quarks of Eq. (7.33).
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Chapter 8

Cutoff Dependence of Jet Observables

8.1 Hemisphere mass distribution with shower cut Q0

In this section we study analytically the impact of the shower evolution cut Q0 on the thrust distri-
bution in the resonance regions for massless and massive quark production. The main focus is on
the effects that cause a dependence of the hemisphere masses that is linear on Q0. The Q0 cut is
defined as the restriction p2⊥ > Q2

0 on the transverse momentum of the emission with respect to the
momentum of the emitter. In the context of the coherent branching formalism the dependence of the
transverse momentum on the shower evolution variables q̃ and z for the massless and the massive
quark cases are given in Eqs. (7.48) and (7.59), respectively, leading to the constraints in Eqs. (7.57)
and (7.63).

Since in the framework of strict perturbative calculations the Q0 cut represents an artificial restriction
of the radiation generated by the shower, we call the emissions that are allowed by the Q0 cut released
and the emissions that is not allowed by the Q0 cut unreleased. As we will show, the dominant (linear
in Q0) effect of removing the unreleased radiation from the calculation in the resonance region must
be reinterpreted as a redefinition of parameters in a perturbative calculation without Q0 cut.

To elucidate this we compare the effects of the unreleased radiation in the context of the coherent
branching formalism for the jet mass distributions as described in Secs. 7.2.1 and 7.2.2, and in the
context of QCD factorization using the SCET approach for the thrust distribution as described
in Secs. 7.1.1 and 7.1.2. This comparison, together with the facts that in the absence of the Q0

cut coherent branching and QCD factorization provide equivalent results at NLL order and both
are O(αs) precise for the resonance peak mass, allows us to relate the quark mass parameter of the
coherent branching formalism with Q0 cut (and thus of angular ordered parton showers) to an explicit
field theoretic mass renormalization scheme at O(αs).

In subsection 8.1.1 we outline the collinear and soft phase space regions and QCD modes relevant
for the thrust distribution in the resonance region in the context of coherent branching and QCD
factorization, respectively, and we show where a linear Q0 dependence can possibly emerge. In
subsections 8.1.3 to 8.1.2 we calculate the effects of the unreleased radiation each for massless and
massive quarks for QCD factorization and coherent branching and analyze in detail the effects linear
in Q0.

8.1.1 Phase space regions with and without Q0 cut

To initiate the analytic examinations it is illustrative to first discuss the structure of the phase
space and the QCD modes relevant for the resonance region. To define our counting variable we
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ℓ

Smod(ℓ)

Figure 8.1: Generic form of the soft model shape function Smod(ℓ) in arbitray units for illustration.
The original soft model shape function Smod(ℓ) is represented by the solid red line and the soft model
shape function with a gap shift, Smod(ℓ−∆) for the case 0 < ∆ < Λ, by the dashed red line.

start from the hadron level thrust distributions given in Eqs. (7.3) and (7.21), where the partonic
thrust distribution is convoluted with the soft model shape function Smod(ℓ). The parameters of the
shape function may be either determined from fits to experimental data or from non-perturbative
methods. The shape function has support for positive ℓ values and exhibits a peak for ℓ ≈ Λ, where
Λ parametrizes the overall energy the non-perturbative effects add to the parton level hemisphere
masses. For larger ℓ values the shape function falls quickly and one usually assumes an exponential
behavior. A typical generic form for Smod is displayed in Fig. 8.1. The effect of the shape function
on the hadron level prediction is twofold: it smears out the distributive and singular structures of
the partonic cross section, and it leads to a shift of the observable resonance peak position in the
thrust distribution towards larger values with respect to the partonic thresholds, τmin = 0 for massless
quarks and τmin = 2m2/Q2 for massive quarks:

τpeak − τmin ∼
Λ

Q
≪ 1 . (8.1)

It is therefore natural to adopt Λ/Q as the counting parameter in the resonance region.

In Fig. 8.2a we show the generic form of the (z, q̃) phase space populated by coherent branching for
the jet mass distribution for massless quarks, see Eq. (7.51). The gray area represents the phase space
without Q0 cut and the hatched area the phase space with Q0 cut. In the peak region the thrust
distribution is dominated by soft and collinear gluon radiation, which are also indicated. In QCD
factorization the soft and the collinear modes are separated at the operator level by imposing power-
counting contraints on the momentum fluctuations these operators can generate. These constraints
are most efficiently formulated in the light cone basis where

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ (8.2)

where n and n̄ are back-to-back light-like vectors than can be directed along the momenta of the pro-
genitor quark-antiquark pair produced by the primary hard scattering. The momentum components
in this basis are then denoted by pµ = (p+, p−, p⊥) = (n · p, n̄ · p, p⊥) where the momentum square
reads p2 = p+p−− p2⊥, see also Secs. 7.2.1 and 7.2.2. The Λ counting of the collinear and soft regions
formulated in the coherent branching and in the QCD factorization approaches can be connected by
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(a) (b)

Figure 8.2: (z, q̃) phase space for coherent branching in the (a) massless and (b) massive case, with
indication of the relevant soft, collinear and ultra-collinear regions. The hatched area corresponds to
the phase space populated in the presence of a shower cut Q0. The soft, collinear and ultra-collinear
phase space regions are indicated.

the relation

(p+, p−, p⊥) = Q(1− z)
( q̃2
Q2

, 1,
q̃

Q

)
(8.3)

for soft and n-collinear modes. For the n̄ collinear modes, the plus and the minus components on the
RHS have to be swapped. The momentum power counting for both approaches for massless quark
production is summarized in Tab. 8.1.

phase space regions for τpeak ∼
Λ

Q
≪ 1, m = 0

coherent branching QCD factorization

n-collinear

z ∼ (1− z) ∼ 1

qµ ∼ (Λ, Q, (QΛ)
1
2 )q̃ ∼ (QΛ)

1
2

q⊥ ∼ (QΛ)
1
2

soft

1− z ∼ Λ

Q
, z ∼ 1

qµ ∼ (Λ,Λ,Λ)q̃ ∼ Q
q⊥ ∼ Λ

Table 8.1: Power counting for coherent branching and QCD factorization for masseless quarks.

Imposing the Q0 cut, one has to note that it represents a cut on the transverse momentum of the
emission with respect to the momentum of the emitter and not with respect to the momenta of
the progenitor quarks. In the coherent branching approach this is automatically taken care of in
the definition of the transverse momentum variable qµi,⊥ of Eq. (7.47) which parametrizes the i-th
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branching. In QCD factorization, on the other hand, the constraint has a more complicated structure,
because the momenta of all radiated partons are usually formulated in one common frame based on
Eq. (8.2). Fortunately at NLL+O(αs) precision, the order we consider in this work, only the first
emission has to be calculated in the QCD factorization approach to determine the effects linear in
Q0. At this level the transverse momentum variable in coherent branching defined in Eq. (7.47) and
the transverse momentum in QCD factorization defined in Eq. (8.2) agree and can be identified. So
at NLL+O(αs) precision we can implement the shower cut constraint in the factorized calculation by
simply imposing a cut on the transverse momentum in Eq. (8.2) without further complications. For
the rest of this work we therefore identify the transverse momenta in both apporaches to keep the
presentation simple, and we frequently refer to the shower cut Q0 also as the cut on the transverse
momentum p⊥ without further specification.

From a conceptual point of view the numerical value for Q0 should be chosen such that it is unresolved,
i.e. it should be smaller than the typical values p⊥ can adopt for the observable of interest. From
Tab. 8.1 we can see that soft radiation imposes the strongest constraint and requires that Q0 should
in principle be smaller than Λ ∼ 1 GeV. This is the hierarchy we assume for some of the arguments
presented below. For practical parton showers, however, this constraint cannot be satisfied in terms
of a strong hierarchy (if at all) due to computational reasons and the proximity to the Landau pole of
the strong coupling. As we show in our numerical analysis in Sec. 9 using the approximation Q0 ≪ Λ
in our analytic calculations does very well, even for cases where the both scales are similar in size. In
any case, since Q0 represents the smallest scale for the strong coupling, integrations over its Landau
pole are prevented as long as Q0 is chosen larger than ΛQCD, and, moreover, for finite Q0 there are
no renormalon ambiguities in perturbative calculations.

In the context of QCD factorization we can see already at the level of the factorization theorem (7.4)
that a linear dependence on the p⊥ cut Q0 can only arise in the partonic soft function S because it is
linear in the light cone momentum ℓ. In the jet function J , however, we expect a quadratic behavior
for simple dimensional reasons. This consideration can be confirmed explicitly applying the soft and
collinear (z, q̃) counting shown Tab. 8.1 to the quark jet mass distribution defined in Eq. (7.51): In
the collinear region z ∼ (1 − z) ∼ 1 and the cut-dependence arises where q̃2 ∼ Q2

0. This leads to
changes proportional to Q2

0 on the invariant mass s due to the δ function constraint. In the soft region
we have q̃ ∼ Q and z ∼ 1, and the cut dependence arises where (1− z) ∼ Q0/Q. This then leads to
changes in s proportional to QQ0 due to the δ function constraint. This simple counting is confirmed
by the explicit calculations carried out in Secs. 8.1.2 and 8.1.3.

In Fig. 8.2b we show the generic form of the (z, q̃) phase space populated by coherent branching
for the jet mass distribution in the resonance region for a massive quark, see Eq. (7.61), where the
coloring is the same as for the massless quark case. Again the gray region represents the allowed phase
space without Q0 cut and the hatched region when the Q0 cut is imposed. We see that the allowed
phase space is considerably different from the massless quark case and overall confined to the region
of large z. This is particular to the resonance region, where s −m2 ≪ m2. Here the massive quark
thrust distribution is dominated by soft and ultra-collinear gluon radiation, which are also indicated.
While the soft region is equivalent to the case of massless quarks, the ultra-collinear region differs
substantially from the collinear region for massless quarks because it is related to gluon radiation that
is soft in the massive quark rest frame and only becomes collinear due to the massive quark boost.
As such the ultra-collinear radiation originating from a boosted massive quark with a given energy is
substantially less energetic than the typical collinear radiation originating from a massless quark with
the same energy. The resulting power counting is shown in Tab. 8.2, where we see e.g. that ultra-
collinear gluons have a typical energy of order Q2Λ/m2, compared to collinear gluons which have a
typical energy of order Q. Note that if we would consider the situation s − m2 ≫ m2 the allowed
phase space would look similar to the massless case and we would recover the collinear counting. It is
a remarkable fact that, despite its limitations, the coherent branching formalism for massive quarks is
capable of describing both limits correctly and provides a smooth connection between them. We also
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note that, since (p2⊥ + (1− z)2m2)1/2 is the renormalization scale of the strong coupling, integrations
over its Landau pole are strictly prevented as long as Q0 is chosen larger than ΛQCD. Therefore there
are no renormalon ambiguities in perturbative calculations in the presence of the p⊥ cut Q0.

phase space regions for τpeak − τmin ∼
Λ

Q
≪ 1, m ̸= 0

coherent branching QCD factorization

n-ultra-collinear

1− z ∼ QΛ

m2
, z ∼ 1

qµ ∼ (Λ,
Q2

m2
Λ,
Q

m
Λ)q̃ ∼ m

q⊥ ∼
Q

m
Λ

soft

1− z ∼ Λ

Q
, z ∼ 1

qµ ∼ (Λ,Λ,Λ)q̃ ∼ Q
q⊥ ∼ Λ

Table 8.2: Power counting for coherent branching and QCD factorization for massive quarks.

To conclude this section let us also discuss in which sectors we should expect a linear dependence
on Q0 for the case of massive quark production. In the context of QCD factorization, inspecting the
factorization theorem (7.25), we see that a linear dependence on the p⊥ cut Q0 can arise not only in
the partonic soft function S but also in the bHQET jet function JB because it has, in contrast to the
massless quark jet function, a linear kinematic dependence on the reduced invariant mass variable ŝ,
see Eq (7.26). This simple dimensional argument can again be confirmed applying the ultra-collinear
momentum counting shown in Tab. 8.2 to the quark jet mass distribution defined in Eq. (7.61): We
have z ∼ 1, q̃ ∼ m and the cut-dependence arises where (1 − z) ∼ Q0/m. This leads to changes in
the squared invariant mass relative to the threshold of order s−m2 ∼ mQ0. This simple counting is
confirmed by the explicit calculations carried out in Secs. 8.1.2 and 8.1.4.

8.1.2 Unreleased radiation: coherent branching

To calculate the effects of the p⊥ cut Q0 on the thrust distribution in the peak region in the context of
the coherent branching formalism we can start from the corresponding Laplace space expressions given
in Eq. (7.72) for massless quarks and Eq. (7.87) for massive quarks. In contrast to the calculations
we carried out for our examinations concerning the summation of logarithms in Secs. 7.3.1 and 7.3.2,
where the finite quark mass represented a non-trivial modification, we can treat the massless and the
massive quark case within the same computation because Q0 < m. We can therefore begin from the
Laplace space thrust distribution

ln σ̃cb(ν,Q,m,Q0) = 2

∫ Q2

m2

dq̃2

q̃2

∫ 1

0
dz θ

(
q̃2 −m2 − Q2

0

(1− z)2
)

× PQQ

[
αs

(
q̃2(1− z)2

)
, z,

m2

q̃2

](
e−νq̃2(1−z)/Q2 − 1

)

=

∫ Q2

Q2
0

dq2⊥

∫ 1− q⊥
Q

0
dz

1

q2⊥ +m2(1− z)2

× PQQ

[
αs

(
q2⊥ +m2(1− z)2

)
, z,

m2(1− z)2
q2⊥ +m2(1− z)2

]

×
(
e−ν(q2⊥+m2(1−z)2)/Q2(1−z) − 1

)
, (8.4)
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where we have implemented the p⊥ cut Q0 according to Eqs. (7.57) and (7.63). In the second line we
changed the integration variable from q̃ to q⊥ and used that m2/Q2 ≪ 1. From the second line one
can see that we can write the Laplace space thrust distribution with Q0 cut as

σ̃cb(ν,Q,m,Q0) = e−I(ν,Q,m,Q0) × σ̃cb(ν,Q,m) , (8.5)

where σ̃cb(ν,Q,m) is the distribution without Q0 cut and the function

I(ν,Q,m,Q0) = 2

∫ Q2
0

0
dq2⊥

∫ 1− q⊥
Q

0
dz

1

q2⊥ +m2(1− z)2

× PQQ

[
αs

(
q2⊥ +m2(1− z)2

)
, z,

m2(1− z)2
q2⊥ +m2(1− z)2

]

×
(
e−ν(q2⊥+m2(1−z)2)/Q2(1−z) − 1

)
(8.6)

describes the contributions of the unreleased radiation. Since we are interested in the dominant
contribution linear in Q0 we can expand to linear order in ν and change variables to q2 = p2⊥+m2(1−
z)2 to obtain

I(ν,Q,m,Q0) = − 4CF ν

πQ2

{
(Q− 2m)

∫ Q0

0
dq αs(q) (8.7)

+ m

∫ m

Q0

dq αs(q)

(
q −

√
q2 −Q2

0

)2

q
√
q2 −Q2

0

}
+ O

(
ν2, Q2

0,
m2Q0

Q3

)
.

where we have dropped terms which are down by additional powers of Q0/m and m/Q. In addition,
to linear order in Q0 we can extend the upper limit of the second integral up to infinity. From this
we obtain at O(αs) the final result

I(ν,Q,m,Q0) = −
[
16
Q0

Q
− 8π

Q0m

Q2

] CFαs(Q0)

4π
ν + O(ν2, Q2

0,
m2Q0

Q3
, α2

s) , (8.8)

for the unreleased radiation, where we can fix the scale of the strong coupling to Q0 because it
represents the only scale the integral depends. For the case of massless quark production the term
proportional to m is zero. A similar calculation for the massless quark case (relevant for an analysis
in the effective coupling model) was carried out in Ref. [170].

For the thrust distributions obtained from the coherent branching formalism the relations (8.5) and
(8.8) in connection with Laplace space identities imply that up to terms quadratic in Q0, the strong
coupling and m/Q the effect of the p⊥ cut is a simple shift in τ with respect to the thrust distribution
without p⊥ cut:

dσcb

dτ
(τ,Q,Q0) =

dσcb

dτ

(
τ + 16

Q0

Q

CFαs(Q0)

4π
,Q,Q0 = 0

)
(8.9)

dσcb

dτ
(τ,Q,m,Q0) =

dσcb

dτ

(
τ +

[
16
Q0

Q
− 8π

Q0m

Q2

] CFαs(Q0)

4π
,Q,m,Q0 = 0

)
(8.10)

These shifts are valid for the parton level distributions and through the convolutions of Eqs. (7.3)
and (7.21) also for the hadron level distributions. Numerically, these shifts are far from negligible for
Q0 ∼ 1 GeV, which is the typical size of the shower cut values used in state-of-the-art Monte-Carlo
event generators.

Within the coherent branching formalism it is, however, not possible to systematically address the
question if these shifts should be interpreted as modifications of QCD parameters such as the mass.
This is because the coherent branching formalism provides a convenient computational method to
sum cross section contributions that are singular in the soft and collinear limits, but does not provide
a field theoretic background where this issue can be discussed conceptually from first principles. We
will therefore examine the effects of p⊥ cut Q0 again in the next two subsections in the framework of
the factorization theorems (7.4) and (7.25) for massless and massive quarks, respectively.
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Figure 8.3: SCET jet function for massless quarks (a) and soft function (b) without cut (solid red),
unreleased (dotted green) and with cut (dashed blue) for µ = Q0.

8.1.3 Unreleased radiation for massless quarks: QCD factorization

In the context of QCD factorization the hard, soft and collinear effects are separated at the operator
level and the modifications caused the by the p⊥ cut Q0 can be determined in each sector individually.
Possible cross terms and exponentiation effects are automatically taken care of by the multiplicative
structure of the factorization theorem (7.4). It is then straightforward to see that there is no change
in the U factors which sum the large logarithms, since the p⊥ cut acts in the infrared and does not
lead to any new types of UV-divergences. As far as the hard function HQ is concerned, the p⊥ cut
contributes only through terms of order Q2

0/Q
2, which are strongly power-suppresed and negligible

at the order we are working. So we only have to analyze the jet function J (τ) and the soft function
S(τ) as they describe radiation where the p⊥ cut Q0 can leave a non-trivial impact.

We write the jet function J (τ) and the soft function S(τ) in the presence of the p⊥ cut Q0 in the form

J (τ)(s, µJ , Q0) = J (τ)(s, µJ) − J (τ)
ur (s,Q0) , (8.11)

S(τ)(k, µS , Q0) =S(τ)(k, µS) − S(τ)
ur (k,Q0) (8.12)

where J (τ)(s, µJ) and S(τ)(k, µS , Q0) are the renormalization scale dependent jet and soft functions
from Eq. (7.4) determined using dimensional regularization for the momentum integrations and de-
fined in the MS renormalization scheme. Their expressions at O(αs) are displayed in Eqs. (7.6) and

(7.7), respectively. The functions J
(τ)
ur (s,Q0) and S

(τ)
ur (k,Q0) represent the unreleased radiation com-

ing from regions below the p⊥ cut Q0, i.e. they describes the perturbative radiation that is prevented

if Q0 is finite. Since the p⊥ cut does not lead to any genuine UV divergences, J
(τ)
ur and S

(τ)
ur are

renormalization group invariant, which we have indicated by dropping the renormalization scale de-

pendence from their arguments. The calculations for S
(τ)
ur and J

(τ)
ur at O(αs) are straightforward and

described in detail in App. G.1 and App. G.4, respectively.

The result for the unreleased jet function has the form [s′ = s/Q2
0, w(z) = (1− 4/z)1/2]

J (τ)
ur (s,Q0) =

αs(Q0)CF

4π

{(
12− 4π2

3

)
δ(s)

+ θ(4Q2
0 − s)

(
− 6

Q2
0

[θ(s′)
s′

]
+
+

8

Q2
0

[θ(s′) ln s′
s′

]
+

)
(8.13)

+ θ(s− 4Q2
0)
1

s

[
6(w(s′)− 1)− 8

(
ln
(1 + w(s′)

1− w(s′)
)
− ln s′

)]}
+O(α2

s) .
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In Fig. 8.3a the O(αs) corrections for jet function without p⊥ cut, J (τ)(s, µJ) (solid red line), the

unreleased jet function J
(τ)
ur (s,Q0) (dotted green), and the full jet function with p⊥ cut, J (τ)(s, µJ , Q0)

(dashed blue line) are shown for µJ = Q0 using arbitrary units. For this scale choice the p⊥ cut
completely eliminates the plus distributions for s < 4Q2

0 in J (τ)(s, µJ , Q0) and slightly reduces the
collinear jet mass distribution for s larger than 4Q2

0. As already argued in Sec. 8.1.1, the unreleased
radiation in the collinear sector depends quadratially on Q0 except for the δ-function term, which
is however, not affecting the peak location τpeak at O(αs), see the discussion of Sec. 7.1.4. The
contributions from s < 4Q2

0 as well as from s > 4Q2
0 lead to effects of order Q2

0 in the observable
thrust distribution upon integration over the soft model shape function, which corresponds to a
smearing in s over an interval of order QΛ which is much larger than Q2

0, see Eq. (7.3). Since we are
interested in effects that are linear in Q0, the unreleased radiation in the collinear sector can thus be
ignored in our discussion.

The result for the unreleased soft function reads [k′ = k/Q0]

S(τ)
ur (k,Q0) =

αs(Q0)CF

4π
16 θ(Q0 − k)

{
− 1

Q0

[θ(k̃) ln k̃
k̃

]
+

}
+O(α2

s) . (8.14)

In Fig. 8.3b the O(αs) corrections to the soft function without p⊥ cut, S(τ)(k, µS) (solid red line), the

unreleased jet function S
(τ)
ur (k,Q0) (dotted green), and the full jet function with p⊥ cut, S(τ)(s, µS , Q0)

(dashed blue line) are shown for µS = Q0 for arbitrary units. Similar to the case of the jet function,
for this scale choice, the p⊥ cut just eliminates the plus distributions for k < Q0 in S(τ)(k, µS , Q0),
and but has no effects for k > Q0. As already anticipated on general grounds in Sec. 8.1.1, the p⊥
cut indeed leads to a linear dependence on Q0.

As can be seen from the factorization formula (7.3), the soft model shape function causes a smearing
in k over an interval of order Λ which we assume to be larger than Q0. Since the unreleased soft
function has support only for light cone momenta k < Q0, we can therefore quantify its effect more
transparently in terms of a multipole expansion,

S(τ)
ur (k,Q0) = −∆soft(Q0) δ

′(k) + O(Q2
0) , (8.15)

where the term ∆soft(Q0) is the first moment of the unreleased soft function,

∆soft(Q0) =

∫
dk′ k′ S(τ)

ur (k
′, Q0) = 16Q0

αs(Q0)CF

4π
. (8.16)

Mathematically, this multipole term appears to cause a shift of the partonic soft function threshold
by −∆soft(Q0) since it can absorbed into the tree level soft function, δ(k) + ∆soft(Q0) δ

′(k) ≈ δ(k +
∆soft(Q0))+O(α2

s). In the context of the thrust factorization theorem (7.3) we thus see that this shift
agrees identically with the result which we determined from the coherent branching formalism given
in Eq. (8.9). However, as we have already mentioned before, in the coherent branching formalism
there was no rigorous field theoretical background that strictly enforced this view in the context
of perturbation theory because a perturbative modification of the threshold of a kinematic variable
can only be implemented by a renormalization scheme change of a dimensionful parameter. Such a
parameter does also not exists for the soft function because is arises from the dynamics of massless
gluons and only depends on a light-cone momentum. In the context of the factorization formula (7.3)
the correct view is that the linear effect caused by the p⊥ cut Q0 can be reinterpreted as a shift of the
soft model shape function Smod [163,167,176], called “gap” in Ref. [174]. Following the presentation
of Ref. [174] we can write the convolution of the partonic soft function and the non-perturbative shape
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function as
∫

dℓ S(τ)(k − ℓ, µS , Q0)Smod(ℓ) =

∫
dℓ
[
S(τ)(k − ℓ, µS) − S(τ)

ur (k − ℓ,Q0)
]
Smod(ℓ) ,

=

∫
dℓ S(τ)

(
k − ℓ+∆soft(Q0), µS

)
Smod(ℓ) + O(α2

s, αsQ
2
0)

=

∫
dℓ S(τ)(k − ℓ, µS)Smod

(
ℓ+∆soft(Q0)

)
+ O(α2

s, αsQ
2
0) . (8.17)

This relation shows that the dominant effect of the p⊥ cut Q0 is to modify the interface between
perturbation theory and non-perturbative physics and – from the point of view of a partonic com-
putation carried out without Q0 cut – acts as a modification of the hadronization contribution from
Smod(ℓ) to Smod

(
ℓ+∆soft(Q0)

)
as shown in the last line of Eq. (8.17). As long as the scale Q0 is in

the perturbative regime, this scheme change can be described perturbatively. This shows that the
correct way to deal with a change in Q0 when making physical predictions – from the point of view of
a partonic computation with a Q0 cut – is to modify the non-perturbative effects by a corresponding
change of the shape function gap in order to leave the physical prediction unchanged.

One of the motivations of discussing ”gapped” soft functions in Ref. [174] was to devise a way consis-
tent with QCD factorization and field theory to eliminate the O(ΛQCD) renormalon from the partonic
soft function. This O(ΛQCD) renormalon arises from large factorially growing coefficients in its per-
turbation series and renders, from the non-perturbative, i.e. beyond perturbation theory point of
view, the partonic threshold ambiguous to an amount of order of ΛQCD. While for a massive particle
threshold this can be achieved by a modification of the mass scheme, there is no such parameter for
gluonic thresholds. Our argumentation that the effects linear in the p⊥ cut Q0 should be interpreted
as a soft function gap are therefore further supported, if the p⊥ cut eliminates the O(ΛQCD) renor-
malon behavior of the partonic soft function. To examine this we restrict our discussion to the effects
of dressing the gluon propagator with massless fermion bubble chains using the replacement [181]

1

q2 + iϵ
−→ 4π

αs(µ)β0

(e5/3
µ2

)−u −1
(−q2 − iϵ)1+u

, (8.18)

to compute the Borel transform, using the convention β[αs] = −2β0(α2
s/4π) + . . . for defining the

coefficients of the β-function (see also Eq. (7.16)), and focusing on poles in the Borel variable u
located a u = 1/2. The term e5/3 is related to using the usual MS renormalization scheme for the
strong coupling. In passing we note that using the bubble chain method does not represent a strict
all order proof that the p⊥ cut eliminates the O(ΛQCD) renormalon. However, it is sufficient for our
discussion that focuses on angular ordered showers which have NLL order precision.

As was shown in Ref. [174], the Laurent expansion of the Borel transform of the partonic soft function
S(τ)(k, µS) around u = 1/2 reads

B
[
S(τ)(k, µ)

](
u ≈ 1

2

)
=

16CF e
−5/6

πβ0

µ

u− 1
2

δ′(k) . (8.19)

The O(ΛQCD) renormalon is canceled by the p⊥ cut, if the unreleased soft function S
(τ)
ur exhibits also

a Borel pole at u = 1/2 and if the residue agrees with the one shown in Eq. (8.19). Some details on
the calculation of the Borel transform of the unreleased soft function can be found in App. G.1. The
result reads

B
[
S(τ)
ur (k,Q0)

](
u ≈ 1

2

)
=

16CF e
−5/6

πβ0

µ

u− 1
2

δ′(k) , (8.20)

and is identical to Eq. (8.19) when, consistently, the same scale choice is adopted for the strong
coupling. The agreement shows that in the presence of the p⊥ cut Q0 the O(ΛQCD) renormalon
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is indeed removed from the partonic soft function due to Eq. (8.12). Thus the p⊥ cut eliminates
the O(ΛQCD) renormalon and leads to a more convergent large-order behavior of the partonic soft
function. This analysis also reconfirms the view that soft gluon radiation in (at least angular ordered)
parton showers used in MC event generators does not suffer from O(ΛQCD) renormalon ambiguities,
in contrast to perturbative calculations without finite infrared cuts.

8.1.4 Unreleased radiation for massive quarks: QCD factorization

For the massive quark thrust distribution factorization theorem (7.4) we proceed in a way analogous
to the massless quark case. The p⊥ cut does not lead to any modifications for the U factors that
sum large logarithms since it does not lead to any new types of UV-divergences. The hard function
HQ is the same as for massless quarks, and the p⊥ cut contributes terms of order Q2

0/Q
2. The

mass mode factor Hm, which arises from off-shell massive quark fluctuations, obtains modifications of
order Q2

0/m
2. Both effects are strongly power-suppressed and negligible at the order we are working.

Since the massive and massless quark factorization theorems contain the same partonic soft function
S(τ) and the same non-perturbative model shape function Smod, the effects of the p⊥ cut we have
discussed for them in the massless quark case also apply for massive quarks: the p⊥ cut leads to a
linear sensitivity to Q0 can can be associated to a gapped soft function, as shown in Eqs. (8.16) and
(8.17). This takes care of the m-independent shift contribution shown in Eq. (8.10).

What remains to be examined is the bHQET jet function J
(τ)
B which contains the dynamics of the

ultra-collinear radiation and which, as we have argued in Sec. 8.1.1, can also have a linear sensitivity
to the p⊥ cut Q0. The aim is to show from the field theory perspective that we can associate the
m-dependent term in Eq. (8.10) to a modification of the quark mass scheme different from the pole
mass. This examination of the bHQET jet function represents the central part of our discussion
because at NLL+O(αs) order the bHQET jet function completely controls the quark mass scheme.
We note that the bHQET jet function dominates the mass dependence also at higher orders, while
the mass dependence coming from other parts of the factorization formula is subleading.

We write the bHQET jet function J
(τ)
B in the presence of the p⊥ cut Q0 in the form

J
(τ)
B (ŝ,mpole, µB, Q0) = J

(τ)
B (ŝ,mpole, δm = 0, µB) − J

(τ)
B,ur(ŝ, Q0) , (8.21)

where J
(τ)
B (ŝ,mpole, δm = 0, µB) is the renormalization scale dependent bHQET jet from Eq. (7.25)

in the pole mass scheme determined using dimensional regularization for the momentum integrations
and defined in the MS renormalization scheme. Its expression at O(αs) is displayed in Eqs. (7.28).

The function J
(τ)
B,ur(ŝ, Q0) describes the unreleased radiation coming from regions below the p⊥ cut Q0.

The p⊥ cut does not lead to any genuine UV divergences, so J
(τ)
B,ur is renormalization group invariant,

which we have indicated by dropping the renormalization scale dependence from its arguments. The

calculation of J
(τ)
B,ur is described in detail in App. G.3.

The result for the unreleased bHQET jet function reads [s̃ = ŝ/Q0, w(z) = (1− 4/z)1/2]

mpoleJ
(τ)
B,ur(ŝ, Q0) =

αs(Q0)CF

4π

{
−8πQ0δ

′(ŝ) + 2
(
4− π2

3

)
δ(ŝ)

+ θ(2Q0 − ŝ)
(
− 8

Q0

[θ(s̃)
s̃

]
+
+

16

Q0

[θ(s̃) ln s̃
s̃

]
+

)
(8.22)

+ θ(ŝ− 2Q0)
8

ŝ

[
(w(s̃2)− 1)−

(
ln
(1 + w(s̃2)

1− w(s̃2)
)
− 2 ln s̃

)]}
+O(α2

s)

In Fig. 8.4 the O(αs) corrections to the bHQET jet function without p⊥ cut, J
(τ)
B (ŝ, µB) (solid red

line), the unreleased jet function J
(τ)
B,ur(ŝ, Q0) (dotted green), and the full jet function with the p⊥
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2Q0
ŝ

JB
(τ)
(ŝ)

bHQET Jet Function, μ=Q0

Figure 8.4: bHQET jet function without cut (solid red), unreleased (dotted green) and with cut
(dashed blue) for µ = Q0.

cut, J
(τ)
B (ŝ, µB, Q0) (dashed blue line) are shown for µB = Q0 for arbitrary units. We see that the

effect of the p⊥ cut has features common to the massless quark jet function: the p⊥ cut eliminates
the plus distributions for ŝ < 2Q0 and slightly reduces the ultra-collinear jet mass distributions for
ŝ larger than 2Q0, compare to Fig. 8.3a. However, the difference is that the overall dependence on
Q0 is linear, as anticipated in Sec. 8.1.1, and the singular structure at ŝ = 0 is more complicated due
to the appearance of the term proportional to the derivative of the delta function, δ′(ŝ). This term
arises from the on-shell cuts of the self-energy diagram of the heavy quark with the p⊥ cut Q0, see
App. G.3 for details.

To understand the result for the unreleased bHQET jet function in Eq. (8.22), it is important to
recall that for the soft function the interpretation of the effects of the p⊥ cut is related to the interface
between partonic cross section and the non-perturbative shape function that describes hadronization
effects and that there is no partonic parameter involved in the argumentation. This differs from the
bHQET jet function which contains the quark mass as a partonic parameter that depends on an
explicit decision about its renormalization condition. In the expression for the O(αs) corrections to
the bHQET jet function in Eq. (7.28) this dependence is manifest in the term − 4δm

mpole δ
′(ŝ), where

δm = mpole − m is the difference of the employed mass renormalization scheme to the pole mass.
From the structure of the convolutions in the factorization formulae (7.21) and (7.25), due to the
combination ŝ m/Q− k appearing in the partonic soft function S(τ), it is also evident that the effects
linear in Q0 contained in Eq. (8.22) cannot be associated to a universal (i.e.m/Q-independent) change
of the soft function model gap. It is therefore mandatory to interpret these contributions from the
point of a perturbative mass change alone.

In the absence of the p⊥ cut, i.e. when only dimensional regularization is used to regularize infrared
and ultraviolet divergences, the bHQET on-shell heavy quark self energy is a scaleless integral and
vanishes to all orders. So in bHQET the quark mass renormalization scheme is automatically the
pole mass when we set δm = 0. A change to another scheme is realized by explicitly adopting a
finite expressions for δm (which is a series that starts at O(αs)). In the presence of the p⊥ cut Q0,
however, the on-shell self-energy depends on the scale Q0 and does not vanish any more, see App. G.3
for details of this calculation. This is the origin of the δ′(ŝ) term in Eq. (8.22), and it means that
in the presence of the p⊥ cut Q0 the pole mass mpole, as defined in perturbation theory without any
infrared cut, does not any more represent the pole position of the heavy quark propagator.1 Rather,

1At this point one may object that in the calculation of the unreleased bHQET jet function one can decide whether
one applies the p⊥ cut Q0 in the on-shell self-energy diagram or not. However, this corresponds to using different
infrared regulators for virtual and real radiation corrections which is inconsistent. In fact, dropping the p⊥ cut Q0 in

139



the pole is located at the Q0-dependent mass

mCB(Q0) = mpole − δmCB(Q0) , (8.23)

with

δmCB(Q0) =
αs(Q0)CF

4π
2πQ0 + O(α2

s)

=
2

3
αs(Q0)Q0 + O(α2

s) . (8.24)

We stress that this means that the pole of the heavy quark propagator is not physical and implicitly
depends on the infrared regularization scheme employed. The pole of the heavy quark propagatpr
is unique only in the limit of vanishing infrared regulators. We call mCB(Q0) the scale-dependent
coherent branching (CB) mass. It is possible to absorb the δ′(ŝ) correction term into the mass scheme
(of the tree-level bHQET jet function) which changes it from mpole to the coherent branching mass
mCB(Q0). The essential point is that this scheme change is implicitly carried out within the coherent
branching formalism (and in angular ordered parton showers) because there the δ′(ŝ) term never arises.
This means that the mass parameter in the coherent branching formalism in the presence of the p⊥
cut Q0 agrees with the pole of the heavy quark propagator which is the CB mass mCB(Q0). As we
show in the following, only within this context we find that the result of Eq. (8.22) is compatible
with the mass-dependent shift in Eq. (8.10) obtained from the coherent branching formalism in the
presence of the p⊥ cut, recalling the definitions of the thrust variable τ and the linearized invariant
mass variable ŝ given in Eqs. (7.1) and (7.26), respectively.

The subtle issue to fully understand (and appreciate) our conclusion is that all the terms shown in
Eq. (8.22) are required to allow the interpretation that the effects of the p⊥ cut that are linear in Q0

represent a modification of the mass scheme. The crucial consistency requirement for this interpre-
tation is that the sum of all modifications due to the contributions linear in the cutoff scale Q0 given
in Eq. (8.22) vanish. This is because a change of the quark mass scheme (and of the renormalization
scheme of any QCD parameter) leaves the theoretical prediction invariant and essentially represents a
mutual exchange of perturbative corrections between the mass parameter and the dynamical matrix
elements. It is therefore mandatory that the contributions linear in Q0 of the remaining corrections
(other than the δ′(ŝ) term) in the unreleased bHQET jet function given in Eq. (8.22) have the same
magnitude but the opposite sign as the contribution coming from the δ′(ŝ) term. Since the soft model
in the factorization theorem (7.21) causes a smearing in ŝ of order QΛ/m≫ Q0, we can - in analogy
to our discussion on the unreleased soft function in Sec. 8.1.3 - use again the multipole expansion to
proceed. In contrast to our discussion on the soft function, we do not have to argue about the validity
of the multipole expansion because for boosted top quarks we have Q/m ≫ 1 so that the multipole
expansion is well applicable even if Q0 and Λ are similar in size. The outcome is that we need to show
that the total integral (i.e. the zeroth moment) as well as the first moment of the unreleased bHQET
jet function vanish identially. If these conditions are satisfied, we can interpret all effects of the p⊥
cut that are linear in Q0 as a change in the quark mass renormalization scheme.

It is straightforward to check from the result in Eq. (8.22) that these properties are indeed satisfied:

∫
dŝ J

(τ)
B,ur(ŝ, Q0) = 0 , (8.25)

∫
dŝ ŝ J

(τ)
B,ur(ŝ, Q0) =

[αs(Q0)CF

4π
8πQ0

]
δ′
−
[αs(Q0)CF

4π
8πQ0

]
non−δ′

=
[
4δmCB(Q0)

]
δ′
−
[
4δmCB(Q0)

]
non−δ′

= 0 , (8.26)

the on-shell self-energy diagram only and keeping it in the rest of the calculation is just equivalent to switching from
the pole mass scheme to mCB(Q0).
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where for the first moment we have indicated by subscripts the contributions from the δ′(ŝ) term
and the rest. Given the complicated structure of the result for the unreleased bHQET jet function
in Eq. (8.22), the results appear highly non-trivial. From the physical point of view, however, the
vanishing zeroth moment is related to the fact that the total (e+e− hadronic) cross section is not
linearly sensitive to infrared momenta, which is well known. The vanishing of the first moment
expresses that, physically, the mass-dependent kinematics threshold generated by the ultra-collinear
radiation is not linearly sensitive to infrared momenta either. Linear sensitivity to infrared moments
is only introduced by hand when one imposes the pole scheme for the heavy quark mass (defined in
the common way by the one-particle irreducible on-shell self energy diagrams in the absence of any
infrared regulator)2. This feature is well known since a long time see e.g. Ref. [182]. We can therefore
expect that the zeroth and the first moments of the unreleased bHQET jet function vanish to all
orders in perturbation theory.

At this point our prove is complete and we have field theoretically shown that – if one always employs
a mass scheme that agrees with the pole of the perturbative heavy quark propagator – all effects of
the p⊥ cut that are linear in Q0 not only can, but rather must be interpreted as a change of the quark
mass scheme from the pole mass to the coherent branching mass:

J
(τ)
B (ŝ,mpole, µB, Q0) = J

(τ)
B (ŝ,mpole, δm = 0, µB) − J

(τ)
B,ur(ŝ, Q0)

= J
(τ)
B

(
ŝ,mCB(Q0), δm

CB(Q0), µB

)
+ O(Q2

0) , (8.27)

where at O(αs), keeping in mind Eq. (8.21) and the form of Eq. (7.28), the term δmCB(Q0) in the 2nd
line of Eq. (8.27) is generated by the non-δ′ terms in the unreleased bHQET jet function of Eq. (8.22).
Recalling the definitions of the thrust variable τ and the linearized invariant mass variable ŝ given in
Eqs. (7.1), (7.2) and (7.26), we see that the mass dependent τ shift in Eq. (8.10) agrees with the τ
shift generated by δmCB(Q0) in the 2nd line of Eq. (8.27). This implies that the mass parameter in
the coherent branching formalism (as well as in angular ordered parton showers) in the presence of
the p⊥ cut Q0 is the CB mass mCB(Q0). The result of Eq. (8.27) gives us full control over the quark
mass scheme in the presence of the p⊥ cut Q0 since, with the help of relation (8.23), we can relate
the coherent branching mass mCB(Q0) to any other scheme at O(αs).

It is now natural to ask if the change from the pole mass to the scale-dependent CB mass cures the
O(ΛQCD) renormalon problem of the thrust distribution in the pole mass scheme. We address this
question using again the dressed gluon propagator approach of Eq. (8.18) to determine the Borel
transform in the region around u = 1/2. As was shown in Refs. [183, 184], the Laurent expansion of
the Borel transform of the perturbative series in αs(µ) for the pole mass in terms of the MS mass
around u = 1/2 reads

B
[
mpole −m(µ)

](
u ≈ 1

2

)
= −2CF e

−5/6

β0

µ

u− 1
2

. (8.28)

The corresponding result for the perturbative series in αs(µ) for the pole mass in terms of the CB
mass is calculated in App. G.3 and reads

B
[
mpole −mCB(Q0)

](
u ≈ 1

2

)
= −2CF e

−5/6

β0

µ

u− 1
2

. (8.29)

We see that the result is identical to Eq. (8.28). This shows that the scale-dependent CB mass
mCB(Q0) is a low-scale short-distance mass. This is not unexpected, of course, because the CB mass
is defined from the bHQET on-shell massive quark self-energy with a transverse momentum infrared

2In this work we define the pole mass scheme mpole strictly in the generally accepted canonical way, namely in the
context of perturbation theory in the limit of vanishing infrared regularization.
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cut which prevents the low-virtuality contributions from the evolution of the strong coupling that are
responsible for the emergence of infrared renormalons. It is also straightforward to check that the
Borel ambiguities coming from the δ′(ŝ) self-energy term and the other contributions in the unreleased
jet function (calculated from the perturbative series in αs(µ)) cancel exactly:

B
[
J
(τ)
B,ur(ŝ, Q0)

](
u ≈ 1

2

)
=
[8CF e

−5/6

β0

µ

u− 1
2

δ′(ŝ)
]
δ′
−
[8CF e

−5/6

β0

µ

u− 1
2

δ′(ŝ)
]
non−δ′

= 0 . (8.30)

This reconfirms the relation (8.27) also beyond the NLO precision level (at least in the large-β0
approximation). As a consequence, imposing the p⊥ cut Q0 in the massive quark thrust distributions
implies that one uses the CB mass scheme of Eq. (8.23) and that all O(ΛQCD) infrared renormalon
issues are removed.

8.2 Summary of all theoretical considerations

In this section we summarize all theoretical and conceptual results we have obtained in the previous
sections in the context of the massless and massive quark thrust distributions (see Eq. (7.1) and
(7.2) in Sec. 7.1) obtained in the coherent branching formalism and the QCD factorization approach.
These findings provide the basis of the field theoretic reinterpretation of the effects of the p⊥ cut
Q0 that are linear in Q0 as a modification of hadronization contributions and a redefinition of the
heavy quark mass scheme, valid for boosted massive quarks in the narrow width approximation. We
also discuss the meaning of these results in the context of angular ordered parton showers, which are
based on the coherent branching formalism and for which a p⊥ cut on the parton shower evolution is
mandatory. These considerations set the stage for the numerical studies we carry out in Sec. 9 using
the Herwig 7 event generator [151,152,175].

Since the QCD factorization approach provides the closest relation to field theory and allows to sys-
tematically address issues concerning the interpretation of partonic and non-perturbative parameters,
the examinations in the previous sections were built around establishing a one-to-one correspondence
between the factorized cross sections for thrust and the corresponding results obtained from the co-
herent branching formalism. For massive quarks the latter is known to be valid for quasi-collinear
and the former for boosted massive quarks, which here correspond to equivalent kinematic situations.
Because the peak resonance region of the thrust distribution, and in particular the peak position,
provide the strongest and cleanest top mass sensitivity we have focused our considerations on the
thrust resonance peak position.

In Sec. 7.1.4 we have shown that, for the factorized predictions, resummed results at full NLL order
(where the dynamical logarithmic terms in the fixed-order matrix elements of the factorized predic-
tions are understood to be part of full NLL) are sufficient to describe the peak position with NLO
precision, i.e. up to higher order terms that enter only at O(α2

s) and beyond. In Secs. 7.3.1 and 7.3.2
we then established for massless and massive quarks, respectively, that in the absence of any infrared
cut the NLL resummed results provided by the coherent branching formalism and by the usual fac-
torized approach are equivalent. Since the massive quark results in the factorized approach we were
using for the comparison were determined in the strict pole mass scheme mpole, we could prove that
in the coherent branching formalism with NLL resummation of logarithms and in the absence of an
infrared cut (i.e. for Q0 = 0) the quark mass parameter is equivalent to the pole mass mpole at O(αs):

mCB(Q0 = 0)
peak
= mpole +O(α2

s) , (8.31)

where mCB is the quark mass parameter in the coherent branching formalism and called the coherent
branching (CB) mass.
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This relation, however, is only valid in the context of strict QCD perturbation theory, i.e. in calcu-
lations based on expanding in αs at a constant renormalization scale such that evolution effects are
encoded entirely in powers of logarithms and virtual loop and real radiation phase space integrals
can be carried out down to zero momenta. Such a strict perturbative approach, however, cannot be
applied for angular ordered parton shower algorithms implemented in state-of-the-art MC event gen-
erators, so that it is not possible to use them without an infrared cut on the parton shower evolution.
There are two main reasons for that. The first is related to the fact that for the parton showers
implemented in multi-purpose MC event generators the renormalization scale of the strong coupling
is a function of kinematic variables that decrease in the course of the shower evolution. In this way
parton showers can account for important subleading NLL information. Without an infrared cut the
strong coupling would therefore run into its Landau pole once the evolution reached virtualities and
momenta close to ΛQCD. The second reason is that in the absence of the infrared cut the particle
multiplicities generated by the shower became infinite and made event generation impossible for pure
computational reasons. Thus, relation (8.31) does not apply for parton showers that are used in MC
event generators.

In Sec. 8.1 we then analyzed the impact of the transverse momentum p⊥ cut Q0 that is imposed
on angular ordered parton showers. In the evolution described by the coherent branching formalism
this cut is paraphrased in the conditions (7.57) and (7.63) for the massless and massive quark case,
respectively. In the factorization approach it represents, at NLL+O(αs), a simple cut on the transverse
momentum of (virtual or real) gluons with respect to the thrust axis in the hard, soft and jet functions.
In the presence of the cut Q0 the descriptions provided by angular ordered parton showers, based on
the coherent branching formalism and the one provided by the factorized approach are all equivalent,
and we were thus able to unambiguously track the field theoretic meaning and interpretation of
the dominant contributions linear in the p⊥ cut Q0 through the results obtained in the factorized
approach. At this point we emphasize that our conclusions related to the meaning and reinterpretation
of QCD parameters in the context of computations with the finite p⊥ cut are made from the perspective
of computations without any infrared cut, since the canonical way how perturbative calculations and
the renormalization procedure are carried out in collider physics applications is in the limit of zero
infrared cutoff. Based on our examinations in Secs. 8.1.2, 8.1.3 and 8.1.4 we proved the following two
statements valid in the peak region of the thrust distribution:

(1) For massless quark production the dominant linear effects of the shower cut Q0 represent a fac-
torization scale3 at the interface of perturbative and non-perturbative large angle soft radiation,
and changes in Q0 can be reinterpreted as a modification of the non-perturbative contributions
in the resonance peak region. In the coherent branching formalism and in the QCD factorization
approach this modification is related to a shift in the non-perturbative model shape function,
called “gap” in Ref. [174]4, that can be computed perturbatively. For the thrust distribution in
the peak region obtained in QCD factorization this is expressed quantitatively by the relation

dσ

dτ
(τ,Q,Q0) =

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,Q0

)
Smod(ℓ) (8.32)

=

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,Q0 = 0

)
Smod(ℓ+∆soft(Q0)) + O(α2

s, Q
2
0)

where dσ̂/dτ stands for the partonic and dσ/dτ for the hadron level distribution, Smod is the
soft model shape function incorporating the hadronization effects (see Sec. 7.1.3), and having Q0

3We adopt the canonical approach of factorization where the factorization scale that separates perturbative and
non-perturbative effects is chosen small, but also sufficiently large such that the interface can be described within
perturbative QCD.

4The name “gap” is motivated by the hadronization gap of the hadron mass spectrum.
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in the argument of a function refers to a calculation with the Q0 cut imposed. Here, ∆soft(Q0)
is the Q0-dependent gap that has the form

∆soft(Q0) = 16Q0
αs(Q0)CF

4π
+ O(α2

sQ0) . (8.33)

The gap function ∆soft(Q0) satisfies the renormalization group equation

R
d

dR
∆soft(R) = 16R

αs(R)CF

4π
+ O(α2

sR) , (8.34)

which, due to the appearance of the scale R on the RHS, describes evolution that is linear in the
renormalization scale and is called R-evolution [124,125,185,186]. R-evolution differs from usual
renormalization group equations such as for the strong coupling, which describe logarithmic
evolution. In the context of multi-purpose MC event generators, where an angular ordered
parton shower is combined with a hadronization model, the relation means that a change of the
shower cut Q0 needs to be compensated by a retuning of the hadronization model parameters in
order to keep physical predictions effectively unchanged. At the level of the hadron level thrust
factorization theorem valid in the peak region, which involves the convolution of the partonic
distribution dσ̂

dτ with the soft model shape function, this feature is quantitatively encoded in the
relation

dσ

dτ
(τ,Q,Q0) =

Qτ∫

0

dℓ
dσ̂

dτ

(
τ − ℓ

Q
,Q,Q′

0

)
Smod(ℓ+∆soft(Q0)−∆soft(Q

′
0)) , (8.35)

where the difference of the gap functions at the scales Q0 and Q′
0 is

∆soft(Q0)−∆soft(Q
′
0) = 16

Q0∫

Q′
0

dR
[ αs(R)CF

4π
+ O(α2

s)
]
, (8.36)

which is manifestly infrared insensitive. Relation (8.35) states that the dominant linear effects
of a change of the shower cut form Q′

0 to Q0 can be compensated, to keep the prediction
unchanged, by a modification of the soft model shape function of the form

Smod(ℓ)→ S̄mod(ℓ) = Smod

(
ℓ−∆soft(Q0) + ∆soft(Q

′
0)
)
. (8.37)

We note that relations (8.32) and (8.35) also have the important implication that the size of
hadronization corrections for event-shape distributions that are encoded in MC event generators
(i.e. the difference between parton and hadron level output) depends the value of the shower
cut. A discussion of the feature is, however, beyond the scope of this work. We also remark that
in practice a change in the shower cut Q0 may not be entirely compensated by a modification
of the gap function alone because of additional non-linear dependence on the shower cut.

(2) For massive quark production, the dominant linear effects of the shower cut Q0 on the thrust
distribution at the resonance peak can be interpreted, from the perspective of a computation in
QCD factorization without infrared cutoff in the pole mass scheme mpole, as a modification of
the non-perturbative contribution from large angle soft radiation and a change of the quark mass
scheme from mpole to the scale-dependent coherent branching (CB) mass scheme mCB(Q0). The
modification concerning the non-perturbative effects from large angle soft radiation is universal
and the same as for massless quark production. The modification concerning the quark mass
scheme originates from the restriction the shower cut Q0 imposes on the ultra-collinear radiation,
which corresponds to soft radiation in the massive quark rest frame and which has to be partly
considered as an unresolved contribution to the observable top quark state. The shower cut Q0
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changes the position of the pole of the massive quark propagator to mCB(Q0) and also provides
the associated scheme change corrections. Starting from a QCD factorization computation of
the thrust distribution in the pole mass scheme, this is expressed quantitatively by the relation

dσ

dτ
(τ,Q,mpole, Q0) =

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,mpole, Q0

)
Smod(ℓ) (8.38)

=

Qτ∫

0

dℓ
dσ̂s
dτ

(
τ − ℓ

Q
,Q,mCB(Q0), δm

CB(Q0), Q0 = 0
)
Smod(ℓ+∆soft(Q0))

+ O(α2
s, Q

2
0)

where dσ̂s/dτ stands for the parton level and dσ/dτ for the hadron level distribution, Smod is the
soft model shape function incorporating the hadronization effects, having Q0 in the argument
of a function refers to a calculation with the Q0 cut imposed coherently in virtual and real
radiation calculations, and the argument δmCB(Q0) in dσ̂s/dτ indicates the modification of the
perturbative series due to the scheme change from mpole to mCB(Q0). The soft function gap
∆soft(Q0) is given in Eq. (8.33) and the scale-dependent CB (coherent branching) mass scheme
is defined by

mCB(Q0) = mpole − δmCB(Q0) , (8.39)

with

δmCB(Q0) =
2

3
αs(Q0)Q0 + O(α2

sQ0) . (8.40)

The scale-dependent CB mass mCB(Q0) is a short-distance mass and thus does not suffer from
the O(ΛQCD) renormalon ambiguity inherent to the pole mass mpole. It satisfies the R-evolution
equation [124,125,186]

R
d

dR
mCB(R) = − 2

3
Rαs(R) + O(α2

sR) , (8.41)

and evolves linearly in R in the same way as the soft function gap ∆soft(R). The difference of
the CB masses for the cutoff scales Q′

0 and Q0 can then be expressed by solving the R-evolution
equation

mCB(Q0)−mCB(Q′
0) = − 2

3

Q0∫

Q′
0

dR
[
αs(R) + O(α2

s)
]
, (8.42)

which is manifestly infrared insensitive. In the context of angular ordered partons showers
with a transverse momentum cut Q0 the result implies – because the parton shower quark
mass parameter is implicitly identified with the pole of the quark propagator – that the parton
shower quark mass parameter is the scale-dependent CB massmCB(Q0). In the context of multi-
purpose Monte-Carlo event generators, where an angular ordered parton shower is combined
with a hadronization model this means that a change of the shower cut from Q′

0 to Q0 needs to
be compensated by a retuning of the hadronization model parameters compatible with Eq. (8.37)
and a change of the value of the CB mass from mCB(Q′

0) to m
CB(Q0) according to Eq. (8.42)

in order to keep physical predictions unchanged. This puts a stringent field theoretic constraint
on properties of the hadronization models, since it is forbidden that they modify by themselves
the mass scheme through the retuning procedure.
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Statements (1) and (2) can be cross checked numerically from the side of MC event generators by
the analysis of the thrust peak position τpeak as a function of the shower cut Q0 when leaving the
hadronization model as well as the numerical value of the generator mass unchanged. In that case the
sizable linear effects in the p⊥ cut Q0 remain uncompensated and are directly visible in a characteristic
dependence of the thrust peak position, τpeak(Q0), on Q0. The resulting Q0-dependence of τpeak(Q0)
can be directly read off Eqs. (8.32), (8.33), (8.38) and (8.40) giving the relation

τpeak(Q0) = τpeak(Q
′
0)−

1

Q

[
16− 8π

m

Q

] Q0∫

Q′
0

dR
CF αs(R)

4π
, (8.43)

where m is the generator mass and Q′
0 is some reference cutoff scale. Here it is understood that

only cutoff values Q0 ≪ m are employed, and we also remind the reader that the results have been
derived in the limit of boosted massive quarks where m ≪ Q. For the rescaled thrust variable Mτ ,
see Eq. (7.2), which is suitable for an analysis for top quarks, the analogous relation reads

Mτ, peak(Q0) = Mτ, peak(Q
′
0)−

[
8
Q

m
− 4π

] Q0∫

Q′
0

dR
CF αs(R)

4π
. (8.44)

We note that in relations (8.43) and (8.44) the cutoff dependence coming from the large angle soft
and the ultra-collinear radiation have an opposite sign. This is a characteristic property of these two
different types of effects, which may be used to differentiate between them in the context of quark
mass sensitive observables which are more exclusive concerning the soft radiation. In the next section
we confront these relations numerically with parton-level simulations carried out with the Herwig 7
event generator [151,152,175].
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Chapter 9

Event generation with Herwig 7

In this section we confront the conceptual and theoretical considerations summarized in Sec. 8.2 and
in particular our predictions for the shower cutoff dependence of the peak position of the thrust
distributions given in Eqs. (8.43) and (8.44) and our main conclusion that the presence of a shower
cutoff Q0 implies that the top quark mass parameter used in an angular ordered parton shower is
the scale-dependent CB mass given in Eq.(8.39) with numerical simulations for e+e− collisions using
the Herwig 7 event generator [151, 152, 175] in version 7.1.2. The angular ordered parton shower
algorithm of Herwig 7 implements the coherent branching algorithm outlined in Secs. 7.2.1 and
7.2.2, for massless and massive quarks, respectively. Since the treatment of the top quark decay goes
beyond the coherent branching formalism outlined in these sections, we provide some more details
of event generation in Herwig 7 for top quarks in Sec. 9.1. In Sec. 9.2 we explain a number of
special setting we use for our Herwig 7 simulations such that they are precisely in accordance to
the coherent branching formalism. In Sec. 9.3, using simulations results obtained with Herwig 7, we
reconfirm some approximations used in our analytic calculations in Secs. 7.3.1, 7.3.2 and 8.1.2 within
the coherent branching formalism, and the insensitivity of thrust to the cut governing the parton
shower evolution of the top decay products. Our predictions for the shower cutoff dependence of the
thrust peak position for the massless quark and top quark case are then confronted with Herwig 7 in
Secs. 9.4 and 9.5, respectively. Here we demonstrate that our conceptual predictions for the shower
cut dependence of the peak position of the thrust distributions given in Eqs. (8.43) and (8.44) are
indeed reproduced by the Herwig 7 simulations. In Sec. 9.6 we address the universality of our
findings for thrust by discussing the reconstructed (b-jet and W boson) top quark invariant mass
mbjW and the endpoint region of the b-jet and lepton invariant mass mbjℓ. Finally, in Sec. 9.7 we
comment on the (ir)relevance of NLO-matched simulations with respect to the cutoff dependence of
the thrust distribution in the resonance region and the kinematic mass sensitivity of the reconstructed
observables mbjW and mbjℓ.

9.1 Event generation for top quark production

Within Herwig 7 events with top quarks account for the top quark decay in a factorized narrow width
approach: The top quarks are considered stable at the stage of their production, with momenta pµ

which satisfy the on-shell condition p2 = m2
t , where mt is the Herwig top mass parameter. In

the default setting for the LEP-Matchbox.in simulation setup, no smearing with any Breit-Wigner-
type distribution is applied, so that off-shell effects coming from the finite top quark width are
absent. This default setting is mainly rooted in considerations related to NLO matched predictions,
where the smearing disrupts the cancellation of virtual and real infrared cancellations. The angular
ordered parton shower then attaches radiation to the production process terminated by the p⊥ cutoff
Q0, including radiation off the top quarks (and possibly other colored partons involved in the hard
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scattering). After the kinematic reconstruction following the production stage parton shower, the final
state top quarks have definite momenta p′µ which satisfy the on-shell condition p′2 = m2

t , and the
progenitor top quarks, which initiated the showering, have acquired a virtual mass, see the discussion
in Sec. 7.2.3. At this point the top quarks decay, where we for simplicity only consider leptonic decays
of the W bosons coming from the top decays assuming perfect neutrino identification. This is not
a restriction for the thrust distributions we examine, but simplifies their numerical analyses. The
partons originating from the top decays, t → b W+ and t̄ → b̄ W−, then radiate according to the
decay parton shower algorithm from Refs. [160] and [187] which is terminated by the p⊥ cutoff Q0,b.
The radiation from the decay stage parton shower exactly preserves the 4-momenta of the decaying
top and antitop quarks, respectively, and hence their mass shell condition, in a separate kinematic
reconstruction procedure. Within this procedure the b-quark shower progenitor that initiates the b-jet
is allowed to acquire a virtuality according to the decay stage parton shower.

In the conceptual considerations of the preceding sections we were discussing the effects of the produc-
tion stage parton shower cutoff Q0. The thrust variable is by construction independent of details of
the top decay and therefore also insensitive to the value of the decay state parton shower cutoff Q0,b.
In Herwig 7 the values of Q0 and Q0,b can be chosen independently, which allows us to explicitly
check the insensitivity of thrust to variations of Q0,b. This check is carried out in Sec. 9.3.

9.2 Settings for MC simulations

To compare the predictions obtained from analytic examinations of the preceding sections with the
Herwig predictions, which are based on the previously described algorithms and methods, we use a
number of special settings. These settings are used to eliminate default features in Herwig 7 which go
beyond the coherent branching formalism as described in Sec. 7.2 or interfere with the Q0 dependence
of the parton level predictions we aim to analyze. We emphasize that the purpose of these settings is
to allow for a direct comparison of Herwig simulations with our analytic results at the parton level
in a conceptually clean and controlled setup. So these special settings may serve as the starting point
of further examinations, also accounting for the effects and properties of hadronization models, where
the impact of default settings used in Herwig (or other MC event generators) can be studied in more
detail, or for upcoming releases. We emphasize, however, that these special Herwig 7 settings should
be taken with some care since they are not appropriate to carry out full hadron level simulations.

As already explained in Sec. 7.2.3 we set the (constituent) masses of all quarks and the mass of the
gluons that have emerged after the parton showers have terminated to very small values to effectively
remove their effects in the parton level results.1 Zero constituent quark and gluon masses are required
to allow a comparison with our analytic QCD calculations; they are, however, not compatible with
the default Herwig 7 cluster hadronization model. Furthermore, in our Herwig simulations we do
not include any QED radiation or any matrix element corrections, except in our discussion of NLO
matching carried out in Sec. 9.7. As already discussed in Sec. 7.2.3 we also choose the CutOff option
for the kinematic reconstruction as this does not alter the correspondence to the underlying coherent
branching algorithm as described in in Secs. 7.2.1 and 7.2.2. Finally we note that most analyses we
have developed are based on Rivet [188], except those focusing on particle multiplicities for which
an entirely in-house analysis code is used. In App. K we give the complete set of input file changes
required to reproduce the parton level results within our special settings, both for the massless and
massive case.

1We note that in Herwig all light quarks (i.e. up, down and strange quarks) and gluons are treated as exactly
massless during the shower evolution and that constituent quark mass and gluon mass conditions are only imposed
kinematically for the partons that emerge after shower terminations. The constituent quark and gluon masses have to
be considered as part of the hadronization model.

148



gluon slpitting, angular ordering

no gluon splitting, angular ordering

no gluon splitting, no angular ordering

0.00 0.01 0.02 0.03 0.04 0.05

0.0

0.2

0.4

0.6

0.8

1.0

τ

Q=91 GeV, Λ=1 GeV

(a) (b)

Figure 9.1: Thrust at the parton level in the peak region generated by Herwig 7 for (a) massless
quarks at c.m. energy Q = 91 GeV and (b) top quarks with massmt = 173 GeV at Q = 700 GeV. The
Herwig 7 parton level results are smeared with a soft model shape function with smearing parameter
Λ = 1 GeV, see Sec. 7.1.3. Displayed are simulation results for shower cuts Q0 = 1 GeV (right set
of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves) and with gluon
splitting and angular ordering both turned on (solid red curves), with gluon splitting turned off, but
angular ordering turned on (dashed blue curves) and with gluon splitting and angular ordering both
turned off (dotted green curves).

9.3 Monte Carlo tests of approximations for analytic thrust calcu-
lations

In our analytic calculations of the parton level massless and massive quark jet mass distributions
at NLL order in Secs. 7.3.1, 7.3.2 and 8.1.2 within the coherent branching formalism we used two
approximations which were crucial to allow for an analytic all order exponentiation of the computation,
see e.g. Eqs. (7.70) to (7.72). In the integral equations for the jet mass distributions shown in
Eqs. (7.51) and (7.61) these approximations involve (i) neglecting the parton branching of the gluon
(i.e. switching off the g → gg and g → qq̄ branchings) and (ii) using the z → 1 limit in the parts
which are slowly varying in the soft limit. These approximations were already discussed (and used for
analytic calculations) in the seminal coherent branching papers for massless quarks, see e.g. Ref. [163,
167]. The former approximation is – for the thrust distribution in the peak region – related to the
fact that due to angular ordering the showered gluons originating from the progenitor quarks can
themselves not radiate to pick up any significant virtuality. The latter approximation implies – again
for the thrust distribution in the peak region – that once gluon splitting is turned off, also strict angular
ordering can be dropped from the calculations. For simplicity reasons we therefore refer to the latter
approximation as ”angular ordering switched off” in the following discussion.

Adopting the settings discussed in Sec. 9.2, these two approximations can be explicitly verified nu-
merically using Herwig 7 to generate the parton level thrust distribution for massless and massive
quark production. In Fig. 9.1a the parton level thrust distribution, defined in Eq. (7.1), obtained from
Herwig 7 for massless quarks at c.m. energy Q = 91 GeV is displayed for shower cuts Q0 = 1 GeV
(right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves) with
gluon splitting and angular ordering both turned on (solid red curves), with gluon splitting turned off,
but angular ordering turned on (dashed blue curves) and with gluon splitting and angular ordering
both turned off (dotted green curves). All curves are normalized such that at their respective maxi-
mum they evaluate to unity, which is particularly suitable to discuss the peak region. We also remind
the reader that all curves are produced by convolution of the Herwig 7 parton level results with
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Figure 9.2: Laplace space parton level thrust distribution over 1/ν in the peak region for Q = 91 GeV
and Q0 = 1.25 GeV shown for the final state parton multiplicities n = 1, 2, 3, 4. Displayed are the
analytic results (dashed black curves) and simulation results with gluon splitting and angular ordering
both turned on (red curves), with gluon splitting turned off, but angular ordering turned on (blue
curves) and with gluon splitting and angular ordering both turned off (green curves).

the soft model shape function of Eq. (7.36) for Λm = Λ with Λ = 1 GeV according to Eq. (7.3). As
discussed in Sec. 7.1.3, this is essential to obtain a smooth distribution in the peak region that can be
interpreted properly. In Fig. 9.1b the parton level rescaled thrust distribution, as defined in Eq. (7.2),
obtained from Herwig 7 for top quarks at c.m. energy Q = 700 GeV and with the generator mass
set to mt = 173 GeV is displayed in the same way and for the same choices for the shower cut Q0 and
concerning gluon splitting and angular ordering. For the top quark case we employed a convolution
over the same shape function according to Eq. (7.23) with Λm = Λ+4mtΓt/Q and Γt = 1.5 GeV. For
the top quark case the smearing parameter is larger than for the massless quarks in order to simulate
the additional smearing effects of the top quark width. Note, however, that this does not represent a
systematic treatment of width effects for the top quark.

From the results in Figs. 9.1a and 9.1b we clearly see that the impact of the gluon splitting is very
small in the peak region and, furthermore, that once gluon splitting is turned off the numerical effects
of angular ordering are very small as well. For the rescaled thrust distribution in the case of top
production these three settings lead to variations in the peak position of less than ∆τpeak ∼ 10−3

in the massless case and less than ∆Mτ,peak ∼ 100 MeV in the massive case for Q0 between 1 and
2 GeV. In any case, these variation are considerably smaller than the variations caused by changes in
the shower cut Q0 which we focus on in our subsequent examinations. While the validity of the two
approximations concerning gluon splitting and angular ordering for thrust for massless quarks has
already been known since Ref. [163], our analysis shows that they are also applicable for the massive
quark case, which is new. We note that in our analysis of the dependence of the thrust peak position
on the shower cut Q0 in Secs. 9.4 and 9.5, we consider Herwig 7 simulations using all three options:
(i) full simulation, (i) simulations with gluon branchings switched off and (iii) simulations with gluon
branchings and angular ordering both switched off. The differences of the Herwig 7 results obtained
from these three options should be viewed as an illustration of possible subleading effects even though
they should not be overinterpreted as a systematic error estimate.

In the context of these results an obvious question to ask is whether the suppression of effects coming
from the gluon branching in the thrust peak region is only a cumulative effect visible in the distribution
upon accounting for the sum of all emissions, or whether the suppression takes place literally at the
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Figure 9.3: Parton level rescaled thrust for top quarks with mt = 173 GeV and Q = 700 GeV in the
peak region generated by Herwig 7 and smeared with a soft model shape function with smearing
parameter Λ = 1 GeV, see Sec. 7.1.3. Displayed are simulation results for production stage shower
cuts Q0 = 1 GeV (right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set
of curves) and decay stage shower cuts Q0,b = 1 GeV (solid red curves), Q0,b = 1.5 GeV (dashed blue
curves) and Q0,b = 2 GeV (dotted green curves).

level of the individual parton multiplicities. To answer this question we can analyze the parton level
massless quark thrust distribution for a fixed number of final state parton multiplicity, where we
define the multiplicity n as the total number of partons emitted from the progenitor quark-antiquark
pair. Interestingly, for the Laplace space parton level distribution (7.12) for massless quarks the
contribution for a given multiplicity n can be determined analytically, in the approximation that
gluon splitting and angular ordering are switched off, simply from Eq. (7.84) by taking the n-th
term in the Taylor expansion of the exponential function. In Fig. 9.2 the Laplace space parton level
thrust distribution for massless quarks at Q = 91 GeV with shower cut Q0 = 1.25 GeV is shown
as a function of 1/ν in the peak region 1/ν ∼ τpeak ≪ 1 for multiplicities n = 1, 2, 3, 4. Shown are
the Herwig 7 full simulation results with gluon splitting and angular ordering both turned on (solid
red curves), with gluon splitting turned off, but angular ordering turned on (solid blue curves) and
with gluon splitting and angular ordering both turned off (solid green curves) and the analytic result
from Eq. (7.84), which is calculated in the approximation with gluon splitting and angular ordering
both turned off (dashed black curves). The curves do not include any smearing effects from the shape
function because the Laplace integral of Eq. (7.12) already provides a sufficient amount of smearing.
We see that Herwig 7 and the analytic results in the various approximations agree very well. The
outcome shows that that the approximations we used in our analytic calculations are also appropriate
at the level of fixed parton multiplicities and may therefore have a more general validity.

At this point we emphasize that the examination of the effects of gluon splitting and angular ordering
we have just carried out solely serves as a cross check for the approximations we used in our analytic
calculation for thrust using the coherent branching formalism in Sec. 7.3 and 8.1.2 and that these
approximation are not a viable option for general phenomenological studies. These approximations
do also not in any way constitute conceptual guidelines for predictions based on QCD factorization
(or SCET). In addition, the consistent use of these approximations for thrust involves that the effects
angular ordering are only small once the gluon branchings are already switched off. Indeed, the
converse, a simulation with gluon branchings but strict angular ordering switched off leads to a
dramatic increase of parton radiation and multiplicities and to physically meaningless outcomes.

As already elaborated in Sec. 9.1, for event generation involving top quarksHerwig 7 uses a factorized
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treatment of production and decay stage parton shower evolution. As we argued in Sec. 7.1 the thrust
variable is by construction independent of details of the top decay and should therefore be insensitive
to the value of the decay state parton shower cutoff Q0,b. In Fig. 9.3a the parton level distribution
of the rescaled thrust Mτ in the peak region obtained from Herwig 7 is shown for the c.m. energy
Q = 700 GeV and generator mass mt = 173 GeV with production stage shower cuts Q0 = 1 GeV
(right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves), and
decay state shower cuts of Q0,b = 1 GeV (solid red curves), Q0,b = 1.5 GeV (dashed blue curves)
and Q0,b = 2 GeV (dotted green curves). In Fig 9.3b a ratio plot for the curves for the three choices
of Q0,b is shown for Q0 = 1 GeV. For all curves a shape function smearing with Λ = 1 GeV has
been included following the prescription given above. The results confirm that the dependence of the
thrust distribution on the decay stage shower cut Q0,b is extremely weak and in particular significantly
smaller than the corresponding dependence on the production stage shower cut Q0. In the resonance
region variations due to changes of Q0,b are at the percent level and negligible as far as the peak
position is concerned. The results confirm that the thrust variable is ideal to study the production
stage shower cutoff dependence and essentially insensitive to differential details of the top quark decay.
For our studies of the shower cutoff dependence of the thrust peak position in Secs. 9.4 and 9.5 we
set Q0,b = Q0, which is the default Herwig 7 setting.

9.4 Thrust peak position for massless quarks

In this section we confront our analytic parton level prediction for the Q0 dependence of the thrust
peak position for massless quarks,

τpeak(Q0) = τpeak(Q
′
0)−

16

Q

Q0∫

Q′
0

dR
CF αs(R)

4π
, (9.1)

with parton level simulations in Herwig 7 using the specific settings discussed in Sec. 9.2. To
determine the distribution for a given c.m. energy Q and shower cut Q0 we generated 109 events.
The resulting binned distribution (with bin size ∆τ = 2× 10−4) was numerically convoluted using a
discretized version of Eq. (7.3) with the soft model shape function Smod given in Eq. (7.36) for a given
smearing parameter Λm. The peak position was then determined from fitting a quadratic function
to the bin values in the peak region with heights that differ from the maximum by at most 1 per
mille. This leads to statistical uncertainties in the peak position well below 10−3 which is an order of
magnitude smaller than the size of the Q0 variations we obtain in our analysis. The results can thus
be considered exact for all practical purposes and we refrain from quoting any statistical uncertainties
in the results we obtain in the simulations.

In Fig. 9.4 the peak position τpeak obtained from Herwig 7 is shown as a function of the shower
cut Q0 for Q = 91 GeV (upper panels) and Q = 300 GeV (lower panels) for the smearing parameter
Λm = 1 GeV (left panels) and Λm = 3 GeV (right panels). The (center of the) colored squares show
the corresponding results from the full simulation, i.e. with gluon splitting and angular ordering both
turned on (red squares), with gluon splitting turned off, but angular ordering turned on (blue squares)
and with gluon splitting and angular ordering both turned off (green squares). The solid blue line
represents the analytic prediction of Eq. (9.1) with Q′

0 = 1.25 GeV as the reference peak position
taken form the Herwig 7 simulation and using the strong coupling employed by the Herwig 7 parton
shower to calculate τpeak for Q0 different from Q′

0. We have shown the results for shower cut values in
the range between (0.5 GeV) < Q0 < (2.0 GeV) even though the perturbative treatment is expected
to break down for scales below 1 GeV. Nevertheless, Herwig 7 can carry out simulations for values
of Q0 even below 0.5 GeV since for scales below 1 GeV the strong coupling used in its parton shower
is frozen to the value at 1 GeV. The choice of Q0 in the simulations is in practice limited from below
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Figure 9.4: Peak position τpeak at the parton level obtained from Herwig 7 as a function of of the
shower cut Q0 and including a smearing with Λ = 1 GeV (left panels) and Λ = 3 GeV (right panels)
for massless quarks and Q = 91 GeV (upper panels) and Q = 300 GeV (lower panels). Displayed
are the results from the full simulation (red squares), with gluon splitting turned off, but angular
ordering turned on (blue squares) and with gluon splitting and angular ordering both turned off
(green squares). The blue solid line is the analytic prediction of Eq. (9.1) taking the Herwig 7 result
for Q′

0 = 1.25 GeV as the reference.
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Figure 9.5: Peak position τpeak at the parton level obtained from Herwig 7 for the parameters used
in Fig. 9.4, but including the soft function gap calculated analytically to achieve results that eliminate
the linear dependence on the shower cut Q0 taking Q′

0 = 1.25 GeV as the reference. The blue solid
line represents the corresponding analytic prediction.

only by computation time since the parton mulplicities strongly increase for decreasing shower cut.
For theoretical considerations, however, only shower cut values of 1 GeV and larger can be considered
seriously, because Q0 conceptually represents a factorization scale and should be located well within
the regime of perturbation theory. In fact, indications of a breakdown of the perturbative description
for Q0 < 1 GeV are visible in Figs. 9.4 (and also in Figs. 9.5 and the corresponding results for top
quarks in the following subsection) as the increased spread in the Herwig 7 results arising from the
different choices concerning gluon branching and angular ordering.

Overall we see quite good agreement between the Herwig 7 simulations and the analytic prediction
for τpeak for Λm = 1 GeV and excellent agreement for Λm = 3 GeV. While Λm = 1 GeV corresponds
to the actual size of hadronization effects compatible with experimental data, the choice Λm = 3 GeV
is motivated by the possible size of additional experimental resolution effects. That we find a much
better agreement for larger smearing scale is related to the fact that the evolution equation (9.1)
only accounts for the dominant linear dependence on Q0 which was in our analytic calculations in
Secs. 8.1.2, 8.1.3 and 8.1.4 derived by employing the multipole expansion for the contributions of
the unreleased radiation, i.e. the radiation originating from below the shower cut. This expansion is
formally an expansion in Q0/Λm, and we see from the agreement between simulation and analytic
prediction in Fig. 9.4 that this expansion works already well forQ0 ∼ Λm and even better for Λm > Q0.
Since in realistic simulations and actual experimental measurements there are additional resolution
effects that always lead to a smearing scale that is effectively larger than 1 GeV, we can conclude that
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the linear dependence on the shower cut Q0 expressed by Eq. (9.1) represents the dominant effects in
all cases and that effects quadratic in Q0 or of even higher power are small in practice.

At this point it is also illustrative to explicitly show the quality of relation (8.35) which states that
the observed peak position can be rendered shower cut independent, if the gap of the soft model
function used in the convolution is modified as described in Eq. (8.37). In Fig. 9.5 the thrust peak
positions obtained from the Herwig 7 simulations already shown in Fig. 9.4 are displayed once again
as a function of Q0, however, with the corresponding modification of the soft function gap for the
reference shower cut value Q′

0 = 1.25 GeV. As expected, we see that the shower cut dependence is
substantially reduced for the smearing scale Λm = 1 GeV and almost vanishes for the smearing scale
Λm = 3 GeV in the region Q0 ≥ 1 GeV, i.e. where perturbation theory can be employed.

9.5 Thrust peak position for top quarks

In this section we finally confront our analytic prediction for the Q0 dependence of the rescaled thrust
peak position for top quarks

Mτ, peak(Q0) = Mτ, peak(Q
′
0)−

[
8
Q

mt
− 4π

] Q0∫

Q′
0

dR
CF αs(R)

4π
. (9.2)

with simulations in Herwig 7. We again used the specific settings discussed in Sec. 9.2 and generated
109 events for a given c.m. energy Q and shower cut Q0. For the convolution with the soft model
shape function Smod given in Eq. (7.36) we employed the discretized version of Eq. (7.23) with
Λm = Λ + 4mtΓt/Q with Γt = 1.5 GeV for the soft function smearing parameter. It effectively
accounts for the additional smearing caused by the top quark width. Since the resonance region in
τ is substantially more narrow compared to the massless case we used a bin size that corresponds to
∆τ = 8× 10−6 and used the same method to determine the peak position as for the massless quark
case.

In Fig. 9.6 the peak position Mτ, peak obtained from Herwig 7 with the top quark generator mass
mt = 173 GeV is shown as a function of the shower cut Q0 for Q = 700 GeV (upper panel) and
Q = 1 TeV (lower panel) for the smearing parameter Λ = 1 GeV (left column) and Λ = 3 GeV (right
column). The (center of the) colored squares show the corresponding results from the full simulation,
i.e. with gluon splitting and angular ordering both turned on (red squares), with gluon splitting turned
off, but angular ordering turned on (blue squares) and with gluon splitting and angular ordering both
turned off (green squares). The solid blue line represents the analytic prediction of Eq. (9.2) with
Q′

0 = 1.25 GeV as the reference peak position taken form the Herwig 7 simulation and using the
strong coupling employed by Herwig 7 parton shower to calculate Mτ, peak for Q0 different from Q′

0.
The dashed blue line represents the analytic prediction of Eq. (9.2), but only accounting for the large
angle soft radiation contributions which are multiplied with the Q/mt factor, in order to visualize the
size of the Q0 dependence coming from the ultra-collinear radiation that affects the interpretation
of the mass scheme alone. As in the massless quark case we have shown the results for shower cut
values in the range between (0.5 GeV) < Q0 < (2.0 GeV) and remind the reader that the results for
Q0 below 1 GeV are only shown for illustration, as already explained in Sec. 9.4.

We observe that the agreement between the Herwig 7 simulations and the analytic prediction for
Mτ, peak is very good for Λm = 1 GeV as well as for Λm = 3 GeV. This shows that for the top quark
case, where the width provides an additional irreducible smearing effect, the linear dependence on the
shower cut Q0, which we have determined in our analytic calculations, fully captures the complete Q0

dependence and that contributions proportional to higher powers of Q0 are negligible for all practical
purposes.
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Figure 9.6: Peak position Mτ,peak at the parton level obtained from Herwig 7 for the top quark
generator mass mt = 173 GeV as a function of the shower cut Q0 for Q = 700 GeV (upper panels)
and Q = 1 TeV (lower panels) for smearing Λ = 1 GeV (left panels) and Λ = 3 GeV (right panels).
Displayed are the results from the full simulation (red squares), with gluon splitting turned off, but
angular ordering turned on (blue squares) and with gluon splitting and angular ordering both turned
off (green squares). The blue solid line is the analytic prediction of Eq. (9.2) taking the Herwig
7 result for Q′

0 = 1.25 GeV as the reference. The dashed blue line is the analytic prediction of
Eq. (9.2), but only accounting for the large angle soft radiation contributions which are multiplied
with the Q/mt factor.
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Figure 9.7: Peak position Mτ,peak at the parton level obtained from Herwig 7 for the top quark
generator massmt = 173 GeV as a function of the shower cut Q0 for Q = 700 GeV (upper panels) and
Q = 1 TeV (lower panels) for smearing with Λ = 3 GeV. Left panels: In addition to the results shown
in Fig. 9.6 we have included the soft function gap calculated analytically to remove the shower cut
dependence due to the large angle soft radiation. Right panels: In addition to the results of the left
panels we have set the generator mass to mCB(Q0) such that the peak position becomes independent
of the shower cut Q0. The blue solid line represents the corresponding analytic prediction for the
remaining cutoff scale dependence. For all results we used Q′

0 = 1.25 GeV as the reference scale.

It is now illustrative to explicitly demonstrate that the observed peak position can be rendered shower
cut independent, if - taking Q′

0 = 1.25 GeV as the reference - the gap of the soft model function used
in the convolution is modified according to Eqs. (8.36) and (8.37) and if the generator mass mt is
modified by

mt → mt +mCB
t (Q0)−mCB

t (Q′
0) (9.3)

according to Eq. (8.42). In Fig. 9.7 the rescaled thrust peak positions obtained from the Herwig 7
simulations for Q = 700 GeV (upper panel) and Q = 1 TeV (lower panel) are displayed once again as a
function of Q0 for Λ = 3 GeV. In the left panels we have in addition to the corresponding curves shown
in Fig. 9.6 included the corresponding modification of the soft function gap for the reference shower
cut value Q′

0 = 1.25 GeV. This removes the shower cut dependence coming from the large angle soft
radiation such that the remaining Q0 dependence explicitly illustrates the shower cut dependence of
the generator mass alone.2 Compared to the results shown in Fig. 9.6 we see that the slope in Q0

2The rescaled thrust variable Mτ defined in Eq. (7.2) is normalized such that the Q0 slope shown in the left panels
of Fig. 9.7 is minus twice the one of the generator mass.
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has an opposite sign which means that the Q0 dependent CB mass scheme that has to be employed
to keep the physical prediction unchanged is decreasing with Q0 as expressed by the renormalization
group equation (8.41). In the right panels we have then also modified, in addition to the figures in the
left column, the generator mass according to Eq. (9.3) and taking mCB(Q′

0 = 1.25GeV) = 173 GeV
as the reference top quark mass. We see that once both modifications are implemented, the shower
cut dependence has essentially disappeared.

In Ref. [189] our numerical checks on the cutoff dependence of the thrust peak position were repeated
for a Nagy-Soper dipole shower with p⊥ as evolution variable [190, 191] (similar to Herwig’s dipole
shower [177,192] that is also implemented in the event generator as a second option besides its default
angular orderd shower) and compared to our analytic results in Eqs. (9.1) and (9.2). They found
a very good agreement with our results for the peak shift as a function of the cutoff also for that
type of parton shower, which indicates that our results may be more universal and not restricted only
to angular ordered parton showers. However, a clear theoretical understanding of how to correctly
interpret that cutoff dependence in terms of consistently implementing a short-distance mass scheme,
as summarized in Sec. 8.2 for the coherent branching formalism, is missing for the dipole shower,
because it is hardly accessible analytically and the connection to the QCD factorization theorem at
NLL, as established in our work here for coherent branching, has not been made.

It is interesting to also analyze to which extent the shower cut dependent modifications of the soft
function gap and the generator mass we have just discussed for the thrust peak position also holds
for the whole distribution function in the resonance region. This is shown in Figs. 9.8 were the
rescaled thrust distributions in the peak region are shown for Q = 700 GeV for Q0 = 1 GeV (dotted
green curves), Q0 = 1.5 GeV (solid red curves) and Q0 = 2 GeV (dashed blue curves) obtained from
the full simulation. The left panels show the distributions in the peak region for fixed generators
mass mt = 173 GeV with smearing parameter Λ = 1 GeV (upper left panel) and Λ = 3 GeV
(lower left panel). The corresponding right panels show, using Q′

0 = 1.5 GeV as the reference scale,
the distributions including the Q0 dependent soft function gap according to Eq (8.37) and the Q0

dependent generator mass according to Eq. (9.3) to keep the peak position cutoff independent. We
see that the resonance distribution tends to be narrower for increasing cutoff Q0, but that this effect is
weaker for a larger smearing. This behavior can be explained from the fact that for increasing cutoff
Q0 the no-branching probability (which describes production stage multiplicity n = 0 events and
contributes to the coefficient of the tree-level δ-function located at the partonic threshold) is becoming
bigger and, correspondingly, the weight of events with branching (which correspond to production
stage multiplicities n > 0 and lead to jet masses above the partonic threshold) is becoming smaller.
For a larger smearing this width effects is washed out and therefore less pronounced for Λ = 3 GeV.
Thus depending on the size of the experimental resolution the effects that a variation of the shower
cut Q0 has on the whole peak distribution may be more complicated than a simple modification of
the soft function gap and the generator mass. Since the contributions from ultra-collinear radiation
in this context are mt/Q-suppressed, see Eq. (9.2), these width effects mostly originate from large
angle soft radiation. One can therefore conclude that these effects may be properly taken into account
during the retuning procedure which has to be carried out upon a change of the shower cut Q0 in
MC event generators used for experimental analyses, and which is substantially more involved than
an a simple modification of the soft function gap.

9.6 Reconstructed observables and universality

After our analysis of the Q0 shower cut dependence of the MC generator top mass for angular ordered
parton showers using the thrust distribution in the resonance region there is one obvious question to
be asked: Is our main conclusion concerning the equivalence the MC generator top quark mass and the
shower cut dependent CB mass defined in Eq. (8.39) only valid for thrust (or very similar event shape
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Figure 9.8: Parton level rescaled thrust distribution in the peak region obtained from Herwig 7
full simulations for Q = 700 GeV and smearing with Λ = 1 GeV (upper panels) and Λ = 3 GeV
(lower panels) for shower cut values Q0 = 1 GeV (dotted green curves), Q0 = 1.5 GeV (solid red
curves) and Q0 = 2 GeV (dashed blue curves). Left panels: Simulations with generator input mass
mt = 173 GeV and using the same soft model shape function for all shower cut values. Right
panels: Same distributions, but using a Q0-dependent soft function gap to eliminate the shower
cut dependence due to large angle soft radiation and using mCB(Q0 = 1.0) = 173.22 GeV (green),
mCB(Q0 = 1.5) = 173 GeV (red) and mCB(Q0 = 2) = 172.86 GeV (blue) as the generator masses,
according to Eq. (8.42), to render the peak location independent of the shower cut Q0.
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type observables), or is it universal? Clearly, examinations at the same level of depth as we carried
out for thrust, where we employed analytic calculations within the coherent branching formalism
and the QCD factorization approach together with numerical MC simulations, will be difficult for
most other observables with strong kinematic quark mass dependence – most notably because hadron
level first principles and factorized predictions (which would allow directly for conclusions at the field
theoretic level) are not available for them. The question of universality is also made difficult by the
fact that the shower cut dependence not only affects the meaning of the generator mass for heavy
quarks (or potentially other QCD parameters), but also modifies the description of non-perturbative
effects through its effects on large angle soft radiation (or other types of long-range gluon effects), so
that the issue may not be resolved completely restricting the considerations only to partonic cross
sections.

At this point one may also have to define general criteria to prove universality systematically. Al-
though we hope to address this issue in forthcoming work, at this time such a systematic and universal
approach is lacking. However – if universality applies – the dependence of MC parton level predictions
on the shower cut Q0, which was one of the main instrument of our thrust examinations, should be
visible in a predictable, simple and universal way also for other observables and furthermore allow for
non-trivial consistency checks. While consistency concerning the Q0 dependence among thrust and
other kinematic observables represents only a necessary condition for claiming universality, it still
provides some evidence that universality indeed applies. Furthermore, computing the shower cut Q0

dependence analytically for general observables and carrying out the corresponding MC simulations
as a cross check is a relatively straightforward and easy task and may even be testable in consistency
checks confronting MC generators with experimental data or in the context of pseudo-data analyses.
In this section we therefore examine exemplarily two completely different observables with very strong
kinematic top mass dependence and which are based on a jet clustering procedure acting on the full set
of partons after production and decay stage parton showers have terminated. In this work we restrict
our examinations to a numerical analysis of the shower cut dependence of these observables, and we
demonstrate that it can be easily predicted and interpreted. Interestingly, we find that the results are
compatible with our examinations for the thrust distribution. A more coherent test of consistency
in the context of pseudo-data analyses which specifically addresses the shower cut dependence of the
generator mass shall be addressed elsewhere.

The first observable is the b-jet and lepton invariant mass mbjℓ and the second the reconstructed b-jet
and W invariant mass mbjW . Both types of observables have been studied intensely in the context of
top quark mass measurements at the LHC. The kinematic sensitivity of mbjℓ to the top quark mass
mt arises from the upper endpoint of its distribution, which is, for stable W bosons and at tree-level,
located at (m2

t − m2
W )1/2 neglecting the mass effects of the b-jet. But also the bulk of the mbjℓ

distribution has kinematic top mass sensitivity because the region where mbjℓ is maximal depends on
the boost of the W boson in the top rest frame which depends kinematically on the top quark mass.
The direct kinematic sensitivity of mbjW to the top mass arises simply from the kinematic location
of the resonance which is tied to mt in a way very similar to thrust, see Eqs. (7.1). In the following
we refer to the top mass sentivities of the endpoint location for mbjℓ and the peak location for mbjW

simply as ’the kinematic top mass dependence’ of these two variables. Typical results for the mbjℓ

and mbjW distributions using the b-jet clustering described below and generated with Herwig 7 are
displayed in Fig. 9.9 for Q = 700 GeV and top quark masses 172, 173 and 174 GeV. Overall, we see
that mbjW has a somewhat stronger top mass dependence than mbjℓ.

We consider the production of boosted top quarks at Q = 700 GeV in e+e− annihilation and use
Herwig 7.1.2 with the same settings as for the thrust analyses discussed in the previous sections (see
Sec. 9.2). For simplicity we again generate only leptonically decaying W bosons and assume perfect
neutrino identification. Furthermore we neglect any combinatorial background, i.e. we assume perfect
b-jet lepton pairing and perfectly reconstructed top or antitop quarks. While these simplications
are not fully realistic, they are, however, fully adequate for our examination of the shower cut Q0
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Figure 9.9: The mbjℓ (left panel) and mbjW distributions (right panel) generated by Herwig 7
for top masses between mt = 172 (dotted green), 173 (solid red) mt = 174 GeV (dashed blue) for
Q = 700 GeV, jet radius R = 0.5 and Cambridge-Aachen-type b-jet clustering.

dependence. For the b-jet clustering we use the FastJet package [193] and employ the generalized kt
algorithm for e+e− collisions in the inclusive mode with the inter-particle and inclusive jet distance
measures

dij = min(E2p
i , E

2p
j )

1− cos θij
1− cosR

, (9.4)

diB = E2p
i ,

where Ei refers to energy, R is the jet radius3, and θij is the relative angle between two momenta. The
exponent p = 1 corresponds to the kt-type generalized clustering algorithm, p = 0 to the Cambridge-
Aachen, and p = −1 to the anti-kt-type variant, and we consider all three types of algorithms in
our analysis. In Fig. 9.9a and 9.9b we show the mbjℓ distribution and the mbjW distribution in the
peak region, respectively, generated by Herwig 7 at the parton level with jet radius R = 0.5 and
Cambridge-Aachen-type jet clustering for generator masses mt = 172 GeV (green dashed curves),
mt = 173 GeV (solid red curves) and mt = 174 GeV (dashed blue curves). For mbjW we have
smeared the distribution according to Eq. (7.23) using smearing parameter Λ = 1 GeV as described
in Sec. 9.5. Since the mbjℓ distribution is already smooth by itself at the parton level we did not
account for any additional smearing. For both distributions we see that the top mass dependence is
essentially linear and particularly strong in the endpoint region for mbjℓ and in the peak region for
mbjW .

The interesting conceptual aspect of the reconstructed observables mbjℓ and mbjW is that, due to the
b-jet clustering, they are more exclusive than the hemisphere masses entering the thrust variable of
Eq. (7.1). In particular, mbjℓ and mbjW depend on the b-jet radius R. For large R ∼ π/2 we can
expect their shower cut dependence to be very similar to the one for thrust since the ultra-collinear
as well as major portions of large angle soft radiation are clustered into the b-jet. On the other
hand, due to the boosted top kinematics which confines the top decay products as well as the ultra-
collinear radiation inside a cone with angle ∼ mt/Q with respect to the top momentum direction, the
clustering should always retain most of the ultra-collinear radiation that is soft in the top rest frame
and thus inherently tied to the physical top quark state. Thus for small R ∼ mt/Q we can expect

3We note that we use the variable R also for the R-evolution equations (8.34) and (8.41) and the corresponding
relations in Eqs. (8.36), (8.42)-(8.44), (9.1), (9.2), (9.5) and (9.6). Since jet radius and R-evolution are different
concepts, the meaning of R should be clear from the context.
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Figure 9.10: Fitted top quark mass as a function of the shower cut Q0 = Q0,b for Q = 700 GeV
obtained from the mbjℓ endpoint (stars) and the mbjW resonance region (triangles) using the kt-type-
type algorithm (green), the Cambridge-Aachen-type algorithm (blue) and the anti-kt-type algorithm
(red) for b-jet clustering. Displayed are the results for b-jet radii R = 0.25, 0.5, 1.0 and 1.5. The
solid blue line in the lower right panel corresponds to Eq. (9.5) and the one in the upper left panel
corresponds to Eq. (9.6) using Q′

0 = 1.5 as the reference scale.

that the majority of the ultra-collinear radiation is still clustered into the b-jet while the majority
of the large-angle soft radiation is removed. As a consequence we can expect that the shower cut
dependence coming from the large-angle soft radiation is reduced when R is lowered, while the one
from ultra-collinear radiation is kept.

To quantify the dependence of mbjℓ and mbjW generated from Herwig 7 on the shower cut we use
the following procedure: For a given jet radius R and clustering algorithm (as well as matching
scheme for the analysis in Sec. 9.7) we take the results for Q0 = Q0,b = 1.5 GeV as the default and
generate mbjℓ and mbjW distributions for different generator masses mt in the range between 172 and
174 GeV, which we subsequently use to fit the top quark mass from the distributions generated for
mt = 173 GeV but with different choices of Q0 or Q0,b. The shower cut dependence of the parts of
the mbjℓ and mbjW distributions used for the fits are then directly transferred into deviations of the
fitted top masses with respect to the default mass mt = 173 GeV (for Q0 = Q0,b = 1.5 GeV), which
can then be compared with our theoretical expectations. Due to the high number of events we use,
statistical uncertainties are negligible and therefore not specified in the following. We emphasize that
the shower cut dependence of the fitted top mass we obtain in this analysis is a representation of the
shower cut dependence of mbjℓ andmbjW themselves and not equivalent to the shower cut dependence
of the generator mass.
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In Figs. 9.10 the dependence of the fitted top mass on the shower cut is shown, where production stage
and decay stage shower cuts are identified, using for Q0,b = Q0 the values 1.0, 1.5 and 2.0 GeV for jet
radii R = 0.25 (upper left panel), R = 0.5 (upper right panel), R = 1.0 (lower left panel) and R = 1.5
(lower right panel). The top masses obtained from the mbjℓ endpoint region are shown as colored
stars and have been obtained from fits in the mbjℓ interval [150, 155] GeV. The top masses obtained
from the mbjW resonance region are shown as colored triangles and have been obtained from fits using
the highest 20% of the distribution around to the peak. To allow for an easier visual identification
we have slightly displaced the stars and the triangles horizontally. We have carried out the analyses
for all three jet clustering algorithm where we use green color for the kt-type algorithm (p = 1), blue
color for the Cambridge-Aachen-type algorithm (p = 0) and red color for the anti-kt-type algorithm
(p = −1). We see that for large hemisphere-type b-jet cones the fitted top mass decreases with the
shower cut. This means that the mass of the reconstructed top quark state, to which mbjℓ and mbjW

are kinematically sensitive (and which for hemisphere-type b-jets includes the effects of large angle
soft radiation), decreases when Q0 is increased. So the behavior indeed follows the one of thrust we
have observed in Sec. 9.5. Analytically, the expected Q0 dependence for ideal hemisphere-type b-jets
has the form

m
R=π/2
t, fit (Q0) = m

R=π/2
t, fit (Q′

0)−
[
4
Q

mt
− 2π

] Q0∫

Q′
0

dR
CF αs(R)

4π
(9.5)

and is ploted in the lower right panel of Fig. 9.10 as the blue solid line using Q′
0 = 1.5 GeV as the

reference scale. The RHS of Eq. (9.5) is a factor two smaller than the one for the rescaled thrust
Mτ, peak in Eq. (8.44) since the reconstructed top mass is linear in the top mass while the rescaled
thrust variableMτ, peak is quadratic in the top mass, see Eqs. (7.1) and (7.2). We see that the expected
behavior agrees very well with the results obtained from the fit. The actual fit results for all clustering
algorithms except for anti-kt tend to have a slightly smaller slope than Eq. (9.5), which is mainly
due to the fact that even for R = π/2 the b-jets are typically not full hemisphere jets because they
are in general not exactly back-to-back and compete with each other in the clustering process. For
decreasing jet radius R, on the other hand, we see that the slope in Q0 of the fitted top mass increases
continuously and becomes positive for R <∼ 0.5. This confirms the expectation that the shower cut
dependence originating from large-angle soft radiation (which is the contribution proportional to Q/m
in Eq. (9.5)) becomes suppressed when R is reduced, while the shower cut-dependence associated to
the ultra-collinear radiation is kept. For visualization we have plotted in upper left panel Fig. 9.10
the relation

m
R∼mt/Q
t,fit (Q0) = m

R∼mt/Q
t, fit (Q′

0) + 2π

Q0∫

Q′
0

dR
CF αs(R)

4π
(9.6)

with Q′
0 = 1.5 GeV as the reference scale as the blue solid line. This is just Eq. (9.5) but with the

Q/mt term dropped, that originates from large angle soft radiation. Again we see good agreement
between the expected shower cut dependence and the actual fit results. It is also conspicuous that the
shower cut dependence of the fitted top quark masses we obtain from mbjℓ and mbjW for the different
jet radii and jet algorithms are essentially equivalent and do not exhibit any systematic difference.
This analysis thus supports universality concerning the equivalence of the MC generator top quark
mass and the shower cut dependent CB mass defined in Eq. (8.39).

However, in the absence of a systematic factorized analytic approach to the kinematic top mass
dependence of the mbjℓ and mbjW this universality cannot be strictly proven because, in contrast to
thrust, mbjℓ and mbjW are affected substantially by the MC modelling and the dynamics of the final
state and, in particular, by the choice of the decay stage shower cut Q0,b. This makes the conceptual
background to be examined more involved. In particular, for our parton-level studies a strict proof
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Figure 9.11: Fitted top quark mass as a function of the production stage shower cut Q0 with decay
stage shower cut fixed to Q0,b = 1.5 GeV for Q = 700 GeV obtained from the mbjℓ endpoint (stars)
and thembjW resonance region (triangles) using the kt-type algorithm (green), the Cambridge-Aachen
algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. Displayed are the results
for b-jet radii R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel corresponds to
Eq. (9.5) using Q′

0 = 1.5 as the reference scale.
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would require that we could analytically track the role played by the decay stage shower cut Q0,b for
the interpretation of the generator top quark mass in a systematic manner.

To visualize the relevance of the decay stage shower cut Q0,b for small b-jet radii we show in Figs. 9.11
again the dependence of the fitted top mass on the production stage shower cut Q0 for the same cases
displayed in Figs. 9.10, but using a fixed decay stage shower cut Q0,b = 1.5 GeV. We see that for a
large hemisphere-type b-jet radius R = 1.5 the results are equivalent to the corresponding ones for
Q0,b = Q0 shown in lower right panel of Figs. 9.10. For decreasing jet radii we see that the dependence
of the fitted top mass on Q0 decreases continuously remains essentially flat for R < 0.5 in contrast to
Figs. 9.10 where a positive slope in Q0 was emerging. This shows that for small jet radii the shower
cut dependence of the kinematic top mass sensitivity of mbjℓ and mbjW arises from the decay stage
shower cut Q0,b. Even though it appears hard to believe that the good agreement we observed for
small b-jet radii and Q0,b = Q0 between the fit results and the naive expectations is purely accidental,
the case of small jet radii is strictly speaking not covered by the conceptual considerations we have
carried out for thrust. A first approach to calculate the dependence on the production stage shower
cut Q0 as a function of the jet radius R is given in appendix H, where we find a cancellation to leading
order in R for small jet radii between the effects of ultra-collinear and the remaining soft radiation
that was not accounted for in Eq. (9.6), which could explain why the dependence on the production
stage shower cut esentially vanishes for small R ∼ mt/Q.

To conclude the question of universality, at the present stage, we can say that the shower cut de-
pendence we observe for the kinematic top mass dependence of mbjℓ and mbjW is compatible with
the one we have proven for thrust and thus supports universality. This is quite encouraging and
motivates further systematic and more general consistency studies that may be carried out with MC
simulations and relatively simple analytical computations alone. However, a strict conceptual proof
would also involve a precise quantification of the role of the decay stage shower cut Q0,b (and maybe
other issues relevant for exclusive observables with strong kinematic top sensitivity), preferably in the
context of a factorized approach where the types of radiation relevant for the interpretation of the
top quark mass can be ambiguously separated from other types of radiation and discussed at the field
theoretic level. This strongly motivates the development of factorized predictions for reconstructed
and exclusive observables such as mbjℓ and mbjW .

At this point we would also like to remind the reader that all our examinations above have been carried
out for boosted top quarks. The direct reconstruction top mass measurements at the LHC are, on
the other hand, based on top quarks with pT values in the range of 50 to 100 GeV, which corresponds
predominantly to unboosted top quarks. We stress that for unboosted top quarks a classification
of the radiation modes relevant for a systematic discussion of the meaning of the generator mass is
currently lacking and that, in particular, the concepts of large angle soft and ultra-collinear radiation
do not apply. Therefore, none of the above considerations or argumentations are applicable for the
reconstructed observables mbjℓ and mbjW for unboosted top quarks.

9.7 Impact of NLO matching

A crucial precondition of our examinations on the shower cut dependence was that NLL precise
angular ordered parton showers, based on the coherent branching formalism described in Secs. 7.2.1
and 7.2.2, are already NLO precise as far as the dominant linear shower cut dependence of the thrust
peak position is concerned, see Sec. 7.1.4. This means in turn that the O(αs) QCD corrections added
to simulations in NLO matched MC setups (see [146,192,194–196] for initial development concerning
multi-purpose event generators as well as a general review), should show very small or even negligible
effects in the numerical studies that we have carried out in Secs. 9.3, 9.4 and 9.5. It is the purpose
of this section to demonstrate this explicitly by comparing Herwig 7 simulations with and without
NLO matching.
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Figure 9.12: Thrust at the parton level in the peak region generated with Herwig 7 full simulations
for (a) massless quarks at c.m. energy Q = 91 GeV and (b) top quarks with mass mt = 173 GeV at
Q = 700 GeV. The parton level results are smeared with a soft model shape function with smearing
parameter Λ = 1 GeV, see Sec. 7.1.3. Displayed are simulation results for shower cuts Q0 = 1.0 GeV
(right set of curves), Q0 = 1.5 GeV (middle set of curves) and Q0 = 2 GeV (left set of curves) at
LO (i.e. without any NLO matching, solid red curves), with MC@NLO-type matching (dashed blue
curves) and POWHEG-type matching (dotted green curves).

For a theoretical discussion of the effect of NLO matching on the cutoff dependence we refer to Sec. 7.7
of Ref. [3]. The bottom line is that in NLO matched partons showers the contributions leading to a
linear cutoff dependence are still present and do not modify the principle precision with respect to
the unmatched NLL parton showers in the resonance region.

Let us now compare numerical results obtained withHerwig 7 without NLO matching – referred to as
’LO’ (’leading-order’) for the rest of this section – (which is the setup we have used for our simulation
studies in Secs. 9.3, 9.4, 9.5 and 9.6) and with NLO matching using the MC@NLO-type [194] and the
POWHEG-type [146] matching within the Herwig 7 event generator’s Matchbox module [192]. In
Figs. 9.12 we show the thrust distribution for massless quark production at Q = 91 GeV (left panel)
and the rescaled thrust distribution for top quark production with mt = 173 GeV at Q = 700 GeV
(right panel) for Q0 = Q0,b = 1.0 GeV (right set of curves), 1.5 GeV (middle set of curves) and
2.0 GeV (left set of curves) at LO (solid red), with MC@NLO-type matching (dashed blue curves)
and with POWHEG-type matching (dotted green curves). All curves are normalized to unity at
the peak position. We hardly see any difference between the LO and NLO matched simulations in
the resonance regions. Visible effects arise only in the tails away from the resonances, which can be
understood from the fact that the hardest gluon emission, which is improved to full NLO precision
by the matching procedure, only obtains sizable NLO corrections away from the singular resonance
region. In the resonance region, however, the NLL splitting function approach already provides a
fully adequate description and the genuine non-singular NLO corrections are very small. For the
cases shown in Figs. 9.12 the peak shifts due to NLO effects are typically less than ∆τpeak ∼ 10−4 in
the massless case and less than ∆Mτ,peak ∼ 100 MeV in the massive case which is considerably smaller
than the effects of the shower cut dependence we consider. We have checked that this property is
generic and valid for all energies and shower cut values we have examined in our earlier studies. The
results confirm that NLO matched parton shower simulations do not add more precision in the thrust
resonance region and, in particular, do not modify the shower cut dependence of the simulations
without NLO matching.

At this point it is also instructive to examine the impact of NLO matching to the reconstructed
observables mbjℓ and mbjW , which we have already examined at LO in Sec. 9.6. Within Herwig 7,
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Figure 9.13: The mbjℓ (left panel) and mbjW distributions (right panel) generated with Herwig 7
full simulations for mt = 173 GeV for Q = 700 GeV, jet radius R = 0.5 and Cambridge-Aachen-type
b-jet clustering. Show are results at LO (solid red curves), with MC@NLO-type matching (dashed
blue curves) and POWHEG-type matching (dotted green curves).

concerning the description of top quarks, the MC@NLO-type matching provides only NLO improved
simulations concerning the production of the top quarks while the POWHEG-type matching provides
NLO improved simulations concerning the production and the decay of the top quarks, where we refer
to Ref. [187] for more details. In our LO examination in Sec. 9.6 we have already seen that mbjℓ and
mbjW are quite sensitive to the modeling of the decay for b-jet clustering for small jet radii as they are
used in experimental reconstruction analyses. At the same time, for small jet radii mbjℓ and mbjW

are by construction insensitive to details of the top quark production. We can therefore expect that
the LO and MC@NLO-type simulation results are very similar, while the POWHEG-type results may
receive notable NLO corrections. This is shown in Figs. 9.13 where the mbjℓ (left panel) and the mbjW

distributions are displayed for Q = 700 GeV, mt = 173 GeV, R = 0.5 and Q0 = Q0,b = 1.5 GeV at LO
(solid red curve), with MC@NLO-type matching (dashed blue curve) and POWHEG-type matching
(dotted green curve). As expected, we see that the MC@NLO-type matching for top production has
essentially no impact, while we find visible effects in the distribution for POWHEG-type matching.
However, in the top mass sensitive regions these are substantially smaller for mbjW than for mbjℓ,
which is particularly conspicuous when comparing the curves in Figs. 9.13 to the corresponding ones
shown in Figs. 9.9, where the dependence on the top quark mass was illustrated.

Focusing on the shower cut dependence of the kinematic top mass sensitivity of mbjℓ and mbjW we
again use the approach of Sec. 9.6 by fits of the top quark mass with respect to the default shower
cut setting Q0 = Q0,b = 1.5 GeV (see the paragraph prior to Eq. (9.5) in Sec. 9.6 for the description
of the fitting approach). In Figs. 9.14 and Figs. 9.15 the dependence of the fitted top mass obtained
from the mbjℓ endpoint region (stars) and from the mbjW resonance region (triangles), respectively,
is displayed at LO and with NLO matching using the same settings as in Figs. 9.10 where we only
displayed the LO results. We again show the results for shower cuts Q0,b = Q0 = 1.0, 1.5 and 2.0 GeV
for jet radii R = 0.25 (upper left panels), R = 0.5 (upper right panels), R = 1.0 (lower left panels)
and R = 1.5 (lower right panels), and we have carried out the analyses for b-jet clustering using the
kt-type algorithm (green symbols), the Cambridge-Aachen-type algorithm (blue symbols) and the
anti-kt-type algorithm (red symbols). To allow for an easier visual identification of the results we
have slightly displaced the symbols horizontally, where for each Q0 value the respective left set of
symbols come from the LO simulations (already displayed in Figs. 9.10), the respective middle set of
symbols come from simulations with MC@NLO-type matching and the respective right set of symbols
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Figure 9.14: Fitted top quark mass obtained from the mbjℓ endpoint region for shower cut values
Q0 = Q0,b = 1.0, 1.5 and 2.0 GeV for Q = 700 GeV using the kt-type algorithm (green), the
Cambridge-Aachen algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. For
each Q0 value the respective left set of symbols come from the LO simulations, the respective middle
set of symbols come from simulations with MC@NLO-type matching and the respective right set of
symbols from simulations with POWHEG-type matching. Displayed are the results for b-jet radii
R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel corresponds to Eq. (9.5) and
the one in the upper left panel corresponds to Eq. (9.6) using Q′

0 = 1.5 as the reference scale.

from simulations with POWHEG-type matching.

We see that the NLO matching has essentially no impact on the fitted top mass for large jet radii and
the cutoff dependence agrees again very well with Eq. (9.5), which is displayed in the lower right panel
(R = 1.5) as the solid blue line with Q′

0 = 1.5 GeV as the reference scale. This is expected since mbjℓ

and mbjW with large b-jet clustering radius are by construction neither sensitive to the top production
mechanism and nor to details of the top quark decay. It is conspicuous, however, that there is also
very good agreement between the LO and NLO fitted top masses for small jet radii. For comparison
we have displayed again Eq. (9.6) with Q′

0 = 1.5 GeV as the reference scale in the upper left panel
(R = 0.25). We recall that Eq. (9.6) describes the expected shower cut dependence for R ∼ mt/Q
with the contributions coming from large angle soft radiation being removed while those from the
ultra-collinear radiation being kept. So we see that, even though the POWHEG-type matching has
sizable nominal effects on the distributions for the reconstructed observables, particularly for mbjℓ,
the relative shower cut dependence itself it essentially unchanged.

This outcome again fully supports the idea of universality of the shower cut dependence and its
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Figure 9.15: Fitted top quark mass obtained from the mbjW resonance region for shower cut values
Q0 = Q0,b = 1.0, 1.5 and 2.0 GeV for Q = 700 GeV using the kt-type algorithm (green), the
Cambridge-Aachen algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. For
each Q0 value the respective left set of symbols come from the LO simulations, the respective middle
set of symbols come from simulations with MC@NLO-type matching and the respective right set of
symbols from simulations with POWHEG-type matching. Displayed are the results for b-jet radii
R = 0.25, 0.5, 1.0 and 1.5. The solid blue line in the lower right panel corresponds to Eq. (9.5) and
the one in the upper left panel corresponds to Eq. (9.6) using Q′

0 = 1.5 as the reference scale.
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independence concerning NLO matched predictions, and it is precisely what is to be expected if the
equivalence of the MC generator top mass and the shower cut dependent CB mass of Eq. (8.39) is
universal. However, as already noted in Sec. 9.6, a strict proof would require a a thorough quantitative
(and preferably analytic) understanding of the b-jet clustering for exclusive observables such as mbjℓ

and mbjW to unambiguously track the shower cut dependence. We emphasize again, that such
quantitative understanding should at best be achieved in the context of a QCD factorization approach
as it allows for a direct, clean and unambiguous field theoretical association of the different types of
radiation concerning dynamical physical effects and contributions affecting the interpretation of QCD
parameters such as the top quark mass.
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Chapter 10

Conclusion

The emergence of infrared divergences and their proper treatment to achieve meaningful physics
predictions represents one of the major conceptual and technical issues in modern applications of per-
turbative QCD in the context of collider physics. These divergences emerge in partonic computations
in the (unphysical) limit of infinitesimally small resolution concerning infrared energies and momenta
and are resolved by treating partonic configurations below the resolution scale as contributions to
the same observable configuration. Within this approach, infrared cuts used to regulate the infrared
divergences at the intermediate steps of the perturbative calculations, can then be sent to zero, where
the limit of this procedure typically defines what is commonly perceived as the perturbative compo-
nent of cross section predictions. In the context of multi-purpose MC event generators, where the
parton showers are responsible for the description of the parton dynamics below the hard interaction
scale, the same principles are applied. However, the infrared shower cut Q0 which terminates the par-
ton shower evolution is finite, typically in the range of 1 GeV, and leads to a power-like dependence
of the parton-level predictions on Q0 depending on the mass dimension and the infrared sensitivity
of the observable. As we have discussed in this work for observables with kinematic top mass sen-
sitivity this dependence on the shower cut Q0 turns out to be linear and non-negligible given that
the current experimental precision in top quark mass determinations based on direct reconstruction
methods already reached the level of 0.5 GeV.

In this work we analyzed in detail the role of the shower cut Q0 in angular ordered parton showers
based on the coherent branching formalism for quasi-collinear, i.e. boosted, massive quarks at NLL.
We have demonstrated, using an eventshape-type observable based on hemisphere masses and closely
related to thrust (see Eqs. (7.1) and (7.2)) in the resonance region where the highest kinematic top
mass sensitivity is located, that the finite shower cut automatically implies that the generator top
quark mass is the Q0-dependent coherent branching (CB) mass, mMC

t = mCB
t (Q0), even though the

underlying analytic expressions that go into the formulation of the parton shower are derived in
the pole mass scheme. The CB mass is a low-scale short-distance mass and free of an O(ΛQCD)

renormalon ambiguity. At O(αs) its relation to the pole mass mpole
t reads

mCB
t (Q0)−mpole

t = −2

3
αs(Q0)Q0 + O(α2

sQ0) . (10.1)

The inclusion of NLO corrections in the context of NLO-matched parton showers does not add more
precision to this relation as the additional NLO information improves the perturbative description
of configurations that are located outside the resonance region, i.e. outside the region where the
main kinematic top mass sensitivity arises. In Sec. 8.2 we have provided a detailed summary of
all our theoretical findings and in Sec. 9 we have confronted them with parton-level simulations
carried out using the Herwig 7 event generator. The simulation results fully confirm our conceptual
conclusions concerning the equivalence of the generator top mass and the shower-cut-dependent CB
mass, and we also gathered evidence that the equivalence is universal and also applies for other
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more exclusive observables such as the b-jet and lepton invariant mass mbjℓ and the reconstructed
top invariant mass mbjW in the limit of boosted top quarks. In the course of our examinations we
also analyzed in detail the shower cut dependence coming from large-angle soft radiation which is
universal for the production of massless quarks and boosted top quarks and which represents an
interface to the hadronization model used in the MC event generator. These results have implications
for the hadronization corrections in event-shape distribution and the extraction of αs which we have,
however, not addressed in this work and will be discussed elsewhere.

To conclude this part of thesis we address two important questions which have not been addressed
in the main body of this work. The first is about the remaining conceptual issues that have to
be resolved to universally explore the meaning of the MC generator top quark mass in the context
of state-of-the-art MC event generators that are used in the experimental analyses. The second is
about how to best convert mCB

t (Q0) to other top quark mass schemes. This issue gains particular
importance if one assumes that the MC top quark mass mMC

t determined in direct reconstruction
methods at hadron colliders is indeed equal to the coherent branching mass mCB

t (Q0).

Before we address these issues we would like to emphasize that the proper field theoretic specification
of the generator top quark mass mMC

t as a particular mass renormalization scheme does not touch in
any way the important questions how MC modeling uncertainties such as for the description of multi
parton interactions or relevant for the event selection and the description of hadronization effects in
the final states such as color reconnection affect the top mass measurements. These uncertainties are
and shall continue to be under scrutiny, and their study may lead to improved MC generators in the
future. The focus of the present work, on the other hand, is that the principle field theoretic meaning
of the cutoff-dependence of the generator top quark mass can be studied and resolved independently
of these issues and thus deserves particular attention by itself. Associated dedicated studies cover
subtle effects that are, however, already relevant in view of the current experimental uncertainties
in top quark mass determinations and may in a complementary way contribute to improved MC
generators.

Let us now address the first issue. The basic simplifications for the examinations carried out in this
work were that we used (i) parton level studies, (ii) the narrow width approximation, (iii) boosted
(quasi-collinear) top quark kinematics and (iv) hemiphere masses in e+e− collisions closely related to
the thrust/2-jettiness event-shape. In the context of hemisphere mass studies, the extension to MC
hadron level studies is straightforward and shall be carried out in forthcoming works. Here the main
question to be addressed is how well the MC hadronization models are compatible with the parton-
hadron level factorization of Eqs. (7.3) and (7.21), which is an intrinsic property of QCD. The main
point then to be clarified is, whether MC hadronization models have the capability to retune the top
quark mass – a property that would make the MC top quark generator mass a hadronization parameter
und mean that there are additional MC dependent non-perturbative contributions that have to be
accounted for in the relation between the MC generator top mass mMC

t and the coherent branching
mass mCB

t (Q0). Concerning the narrow width approximation, we note that state-of-the-art parton
showers for massive quarks do not have the capability to describe unstable particle effects from first
principles. These unstable particle effects include the top quark intrinsic Breit-Wigner smearing of its
invariant mass as well as interference effects connecting top and non-top processes through equivalent
top decay final states. Accounting for unstable particle effects may be possible in the context of
MC generators matched to calculations including the full top production and decay process or in
the context of new MC generators which incorporate unstable particle effects in terms of systematic
expansions that are more general than the narrow width approximation. Such studies are in reach and
may be addressed in the near future. Concerning the approximation of boosted top quark kinematics,
imagining systematic studies for slow top quarks comparable to the examinations carried out in this
work, the prospects are far less clear. This is because the existing parton shower formalisms for
massive quarks are by construction designed to be valid in the quasi-collinear limit - even though the
bulk of the top quarks entering current experimental analyses have relatively low transverse momenta
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between 50 and 100 GeV and cannot be considered to be quasi-collinear. So progressing into this
direction involves general studies of the MC modeling for top quarks that in principle go beyond the
problem of the MC top quark generator mass. Finally, concerning the extension of examinations at the
level of those carried out in this work to other types of observables covering also hadronic collisions at
the LHC, such studies require the development of new types of factorization theorems. For groomed
fat jet masses for boosted top quark production at the LHC a factorization approach was recently
developed [129], but factorization theorems for more exclusive variables such as mbjℓ or mbjW , which
are currently absent, are desirable as well. Furthermore, pushing the existing factorization approach
for thrust and the description of the shower cut dependence to one higher order would be useful as
well since it would allow for an explicit check of the O(α2

s) corrections to relation (10.1).

Let us now address the second issue. Assuming that the currently most precise top quark mass
measurements of mMC

t can be identified with a measurement of the CB mass mCB
t (Q0) defined in

relation (10.1), how well can it be converted to other mass schemes? Given that most theoretical
predictions for top quark physics at the LHC are carried out in the pole mass scheme, one may
simply convert the CB mass to the pole mass using Eq. (10.1). The Herwig 7 event generator uses
Q0 = 1.25 GeV as the default value for the shower cut, and using the MS scheme for the strong

coupling with α
MS,(nf=5)
s (MZ) = 0.118 we obtain mpole

t −mCB
t (Q0 = 1.25 GeV) = 330 MeV, where

we have evaluated the strong coupling in the 3-flavor scheme using α
(nf=5)
s (MZ) = 0.118 as the input.

On the other hand, using the Monte Carlo (MC) scheme for αs, which accounts for the two-loop
cusp anomalous dimension contained in the NLL quark splitting function and which is effectively
used in Herwig 7 (see Eq. (7.56) in Sec. 7.2.1 on the MC scheme for the strong coupling), we obtain

mpole
t −mCB

t (Q0 = 1.25 GeV) = 520 MeV. The difference of about 200 MeV between both conversions
can be viewed as an illustration of the currently unknown O(α2

s) corrections and indicates that the
convergence is not particularly good. This is, however, expected since the pole mass has an O(ΛQCD)
renormalon ambiguity. From the analysis of Ref. [186], where a determination of the pole mass from
a short-distance mass at the scale 1.3 GeV was studied in detail, we can expect that O(α2

s) and
O(α3

s) corrections are also needed to determine the pole mass value and that at O(α3
s) there is a

remaining irreducible uncertainty of around 250 MeV due to the O(ΛQCD) renormalon ambiguity
of the pole mass (see also [197] for an alternative view on the size of the renormalon ambiguity of
the pole mass). Thus the determination of the currently unknown O(α2

s) and O(α3
s) corrections to

Eq. (10.1) is important to reliably determine the pole mass. To determine the O(α2
s) corrections in

the factorization approach the effects of the shower cut need to be implemented into the bHQET
jet function at O(α2

s). To determine the O(α2
s) corrections in the context of coherent branching

formalism (or angular ordered parton showers) the effects of the shower cut have to be analyzed in
the context of a fully consistent next-to-next-to-leading order evolution. The overall conclusion is
that the difference between the pole mass and the CB mass, mpole

t −mCB
t (Q0 = 1.25 GeV), is likely at

least as large as the current uncertainties in top quark mass measurements from direct reconstruction
of around 500 MeV (see Sec. 6.1) and requires the determination of two and three-loop corrections.
Even when these corrections become available, there will be is an irreducible uncertainty of 250 MeV.
So, for a reliable determination of the pole mass the unknown higher order corrections to Eq. (10.1)
are very important, and the ultimate uncertainty in the pole mass is at the same level as the precision
of 200 MeV that may be achieved for measurements of mMC

t in the future high-luminosity run of the
LHC [198,199].

Alternatively, since physical observables are not tied conceptually to the pole mass scheme in any
way and its O(ΛQCD) ambiguity is a pure artefact of the pole mass definition, one can as well
parametrize calculations using suitable short-distance top quark mass schemes. In this approach the
sizeable corrections and the renormalon ambiguity associated to the pole mass scheme – as well as any
controversial discussion on the actual size of this ambiguity – can be avoided entirely. To illustrate this
approach let us consider a determination of the MSR mass mMSR

t (Q0) from a given value of the CB
mass mCB

t (Q0). At O(αs) the relation between the scale-dependent MSR mass [124,125] and the pole
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mass reads mMSR
t (Q0)−mpole

t = −4αs(Q0)Q0/(3π). For the strong coupling in the MS scheme this
givesmMSR

t (Q0)−mCB
t (Q0 = 1.25 GeV) = 120 MeV compared to 190 MeV in the Monte Carlo scheme.

As expected from the fact that the difference of MSR and CB masses does not contain any O(ΛQCD)
renormalon ambiguity, the scheme corrections to obtain the MSR mass are small, and one can also
expect that they exhibit good convergence because MSR and CB masses are both short-distance
mass schemes. The difference of 70 MeV can be viewed as an illustration of the currently unknown
O(α2

s) corrections and indicates that the knowledge of the two-loop corrections in Eq. (10.1) may be
sufficient to convert the CB mass to the MSR with a precision of better than 50 MeV. Compared
to the current uncertainties in top quark mass measurements from direct reconstruction of around
500 MeV these corrections are small and the knowledge of these two-loop corrections is not required.
Furthermore, as was shown in Ref. [125], one can convert the MSR mass to all other commonly
used short-distance mass schemes, such as the 1S [200–202], the PS [203] or the MS schemes, with
a precision of 10 MeV (see also the REvolver library [204] for automated running and matching).
The overall conclusion is that, when using only short-distance mass schemes, the achievable precision
in converting the MC/CB mass to other mass schemes is already at this stage substantially higher
than the current experimental uncertainties and also than extrapolations concerning the future high-
luminosity run of the LHC which indicate that a precision of 200 MeV [198,199] for a determination
of the top quark mass can be reached.
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Appendix A

Variable Flavor Number Scheme for
Thrust in the Peak Region in e+e−
Collisions

For completeness we also write down a VFNS for secondary massive quarks following the mass mode
factorization approach for thrust [165]

τ = 1−max
n⃗

∑

i

|n⃗ · p⃗i|
Q

, (A.1)

in the process e+e− to jets in the peak region τ ≪ 1, which is the third process that is related to
Drell-Yan and DIS by crossing symmetry. A VFNS for secondary massive quarks for thrust in the
peak region following the universal factorization approach was discussed in Refs. [11, 12]. Here we
will discuss the same in the MMF approach.

The massless SCET factorization theorem [171] in the dijet region τ ≪ 1 reads

dσ

dτ
= σ0H(Q,µ)

∫
dsadsb J(sa, µ)J(sb, µ)S

(
Qτ − sa

Q
− sb
Q
,µ
)
, (A.2)

with the hard function H and the soft function S the same as for beam thrust in Drell-Yan in Sec. 2.2,
and the hemisphere jet function J the same in Sec. 3. The natural scales of the functions that minimize
the logarithms are

µH ∼ Q , µJ ∼ Q
√
τ , µS ∼ Qτ , (A.3)

which gives a typical SCET I scenario with µS ≪ µJ . It is therefore similar to the factorization
theorem for beam thrust discussed in Sec. 2.2, with the beam function replaced by the hemisphere
jet function.

We will briefly discuss the massive factorization theorems for the different hierarchies for secondary
massive quarks, i.e. virtual and real radiation contributions that arise form a gluon splitting into a
massive quark pair. These factorization theorems will have a structure very similar to the ones for
beam thrust in Sec. 2.2. We will ignore any effects of primary massive quarks here. They would lead
to new structures in the factorization theorems because one encounters also a region where boosted
Heavy Quark Effective Theory is needed to correctly resum all massive logarithms, see Refs. [18,19].
This is beyond the scope of this work and we will only discuss the effects of secondary massive quarks
that can be treated in analogy to the previous sections.

We give the form of the factorization theorems already including the massive power corrections in
the notation of Sec. 4.2.1. All the mass mode matching functions that appear in the following
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factorization theorems have already been introduced in the previous sections, which demonstrates
again the universality of this method that is providing single building blocks that, once calculated,
can be reused in various different factorization theorems including massive quarks. Since also the
massive hard, jet and soft functions have been discussed before, no additional calculation is needed
at all to provide all relevant functions for the factorization theorem for thrust with secondary massive
quarks at NNLL′.

Again all of the hard, jet and soft functions are evolved with nl + 1 active flavor above and with nl
active flavors below the mass scale with the standard massless anomalous dimensions, the mass mode
matching functions Hs, Hc and Sc are then only evolved in rapidity.

Scenario I: Q < m:

Hm>Q(Q,m, µ)×
∫

dsadsb Jm>Q
√
τ (sa,m, µ)Jm>Q

√
τ (sb,m, µ)Sm>Qτ

(
Qτ − sa

Q
− sb
Q
,m, µ

)
(A.4)

The massive flavor is integrated out at the hard scale and is therefore no dynamic degree of freedom
in SCET. There are no large rapidity logarithms to be resummed. In the limit m ≫ Q this reduces
to the massless factorization theorem in Eq. (A.2) with nl massless flavors.

Scenario II: Q
√
τ < m < Q:

Hm<Q(Q,m, µ)Hc

(
m,µ,

ν

ωa

)
Hc

(
m,µ,

ν

ωb

)
Hs(m,µ, ν)

×
∫

dsadsb Jm>Q
√
τ (sa,m, µ)Jm>Q

√
τ (sb,m, µ)Sm>Qτ

(
Qτ − sa

Q
− sb
Q
,m, µ

)
(A.5)

The massive flavor is integrated out between the hard and the jet scale. The rapidity logarithms are
resummed in the rapidity RG evolution of the matching functions Hc and Hs.

Scenario III: Qτ < m < Q
√
τ :

Hm<Q(Q,m, µ)Hs(m,µ, ν)

×
∫

dsadsbdℓadℓb Jm<Q
√
τ (sa,m, µ)Jm<Q

√
τ (sb,m, µ)

× Sc(ℓa,m, µ, ν)Sc(ℓb,m, µ, ν)Sm>Qτ

(
Qτ − sa

Q
− sb
Q
− ℓa − ℓb, µ

)
(A.6)

The massive flavor is integrated out between the jet and the soft scale. The rapidity logarithms are
resummed in the rapidity RG evolution of the matching functions Hs and Sc.

Scenario IV: m < Qτ :

Hm<Q(Q,m, µ)

∫
dsadsb Jm<Q

√
τ (sa,m, µ)Jm<Q

√
τ (sb,m, µ)Sm<Qτ

(
Qτ − sa

Q
− sb
Q
,m, µ

)
(A.7)

The mass is below the soft scale and therefore the massive flavor is a dynamic degree of freedom in
all the components of the SCET factorization theorem. There are no large rapidity logarithms to be
resummed. In the limit m≪ Qτ this reduces to the massless factorization theorem in Eq. (A.2) with
nl + 1 massless flavors.

All the hard, jet and soft functions have the correct limiting behavior in the small and large mass
limit and give a smooth transition between the different scenarios. Theses results are equivalent to
the universal factorization approach for thrust in the peak region presented in Refs. [11, 12].
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Appendix B

Results for massless quarks

Here we summarize the relevant results with massless quarks for the hard, beam, jet and soft functions
used in part I. We will use the notation of Eqs. (2.33) and (2.36) to give the explicit results at O(αs)
and O(α2

sCFTF ) (the terms that are relevant for massive quark effects at NNLL′).

The notation of Eqs. (2.33) and (2.36) is used. The plus-distributions Ln(p⃗T , µ) and Ln(x) are defined
in appendix J.

B.1 Hard function

The massless quark hard function is directly related to the QCD form factor and has been computed
at O(α2

s) in Ref. [205]. The loop-corrections entering the two hard functions for DIS and DY are
related by analytic continuation Q2 → −Q2 − i0 in the SCET current Wilson coefficient C, where
H = |C|2. The O(αs) and O(α2

sCFTF ) corrections to the hard function in Drell-Yan and e+e− →
jets read (with LQ = ln(Q2/µ2))

H
(1)
ij (Q,µ) = H

(0)
ij (Q)CF

(
−2L2

Q + 6LQ − 16 +
7π2

3

)
, (B.1)

H
(2,l)
ij (Q,µ) = H

(0)
ij (Q)CF

[
−8

9
L3
Q +

76

9
L2
Q −

(836
27
− 16π2

9

)
LQ +

4085

81
− 182π2

27
+

8ζ3
9

]
,

where H
(0)
ij is the tree-level contribution. Note that for a single quark flavor there is in addition

a nonvanishing correction to the axial current contribution relevant for Z-boson production, which
cancels within an isospin doublet for massless quarks.

The hard function for neutral current DIS reads (with LQ = ln(Q2/µ2))

Ĥ
(1)
i (Q,µ) = Ĥ

(0)
i (Q)CF

(
−2L2

Q + 6LQ − 16 +
π2

3

)
, (B.2)

Ĥ
(2,l)
i (Q,µ) = Ĥ

(0)
i (Q)CF

[
−8

9
L3
Q +

76

9
L2
Q −

(836
27

+
8π2

9

)
LQ +

4085

81
+

46π2

27
+

8ζ3
9

]
.

The corresponding anomalous dimensions are the same for the DY and DIS hard functions and read

γ
(1)
H (Q,µ) = CF (8LQ − 12) ,

γ
(2,l)
H (Q,µ) = CF

(
−160

9
LQ +

520

27
+

8π2

3

)
. (B.3)
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B.2 Beam functions and PDF

B.2.1 TMD beam function

The matching coefficients entering the TMD beam function have been computed at O(α2
s) in various

schemes [54–56,206] and are obtained for the symmetric η-regulator in Ref. [57]. The results at O(αs)
are

I(1)qg (p⃗T , z, µ) = θ(z)θ(1− z)TF
[
2Pqg(z)L0(p⃗T , µ) + 4z(1− z)δ(2)(p⃗T )

]
, (B.4)

I(1)qq

(
p⃗T , z, µ,

ν

ω

)
= θ(z)CF

{
L0(p⃗T , µ)

[
−
(
4 ln

ν

ω
+ 3
)
δ(1− z) + 2Pqq(z)

]

+ 2δ(2)(p⃗T ) θ(1− z)(1− z)
}
, (B.5)

The splitting functions are

Pqg(z) = z2 + (1− z)2 , Pqq(z) = 2L0(1− z) +
3

2
δ(1− z)− θ(1− z)(1 + z) . (B.6)

At O(α2
sCFTF ) the massless matching coefficient is given by

I(2,l)qq

(
p⃗T , z, µ,

ν

ω

)
= θ(z)CF

{
L1(p⃗T , µ)

[
16

3
L0(1− z)−

16

3
ln
ν

ω
δ(1− z)− 8

3
θ(1− z)(1 + z)

]

+ L0(p⃗T , µ)
[
−80

9
L0(1− z) +

80

9
ln
ν

ω
δ(1− z)

+ θ(1− z)
(
−8

3

1 + z2

1− z ln z +
16

9
+

64z

9

)]

+ δ(2)(p⃗T )

[
224

27
L0(1− z)−

224

27
ln
ν

ω
δ(1− z)

+ θ(1− z)
(
2

3

1 + z2

1− z ln2 z +
20

9

1 + z2

1− z ln z − 148

27
− 76z

27

)]}
. (B.7)

The anomalous dimensions of the massless quark TMD beam function, as defined in Eq. (2.17), are
given at O(αs) and O(α2

sCFTF ) by

γ
(1)
B

( ν
ω

)
= CF

(
8 ln

ν

ω
+ 6
)
,

γ
(2,l)
B

( ν
ω

)
= CF

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
,

γ
(1)
ν,B(p⃗T , µ) = −CF 4L0(p⃗T , µ) ,

γ
(2,l)
ν,B (p⃗T , µ) = CF

[
−16

3
L1(p⃗T , µ) +

80

9
L0(p⃗T , µ)−

224

27
δ(2)(p⃗T )

]
. (B.8)
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B.2.2 Virtuality-dependent beam function

The virtuality-dependent beam functions for massless quarks are known to two loop order [86, 87].
The matching coefficients at O(αs) read

I(1)qg (t, z, µ) = θ(z)θ(1− z)TF
{
2Pqg(z)

1

µ2
L0
( t

µ2

)
+ δ(t)

[
2Pqg(z) ln

1− z
z

+ 4z(1− z)
]}

,

I(1)qq (t, z, µ) = θ(z)CF

{
4

µ2
L1
( t

µ2

)
δ(1− z) + 1

µ2
L0
( t

µ2

)[
2Pqq(z)− 3δ(1− z)

]

+ δ(t)

[
4L1(1− z)−

π2

3
δ(1− z)

+ θ(1− z)
[
2(1− z − 2(1 + z) ln(1− z)− 2

1 + z2

1− z ln z
]]}

. (B.9)

The massless matching coefficient at order O(α2
sCFTF ) for one quark flavor reads

I(2,l)qq (t, z, µ) (B.10)

= θ(z)CF

{
8

3

1

µ2
L2
( t

µ2

)
δ(1− z)

+
1

µ2
L1
( t

µ2

)[16
3
L0(1− z)−

80

9
δ(1− z)− 8

3
θ(1− z)(1 + z)

]

+
1

µ2
L0
( t

µ2

)[16
3
L1(1− z)−

80

9
L0(1− z) + δ(1− z)

(224
27
− 8π2

9

)

+ θ(1− z)
(
−8

3
(1 + z) ln(1− z)− 16(1 + z2)

3(1− z) ln z +
16

9
+

64z

9

)]

+ δ(t)

[
8

3
L2(1− z)−

80

9
L1(1− z) + L0(1− z)

(224
27
− 8π2

9

)

+ δ(1− z)
(
−656

81
+

10π2

9
+

40ζ3
9

)
+ θ(1− z)

(
−8(1 + z2)

3(1− z) Li2(1− z)

− 4

3
(1 + z) ln2(1− z)− 16(1 + z2)

3(1− z) ln(1− z) ln z + 10
(
1 + z2

)

3(1− z) ln2 z

+
(16
9

+
64z

9

)
ln(1− z) + 4(5− 2z + 7z2)

3(1− z) ln z − 148

27
− 76z

27
+

4π2

9
(1 + z)

)]}
.

The anomalous dimension of the massless quark beam function at order O(αs) and O(α2
sCFTF ) are

given by

γ
(1)
B (t, µ) = CF

[
− 8

µ2
L0
( t

µ2

)
+ 6δ(t)

]
,

γ
(2,l)
B (t, µ) = CF

[
160

9

1

µ2
L0
( t

µ2

)
+ δ(t)

(
−484

27
− 8π2

9

)]
. (B.11)

B.2.3 PDF

The anomalous dimensions of the PDFs are known to three-loops [207, 208], and partially known to
four-loops [209]. The anomalous dimension of the quark PDF in the limit z → 1 at order O(αs) and
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O(α2
sCFTF ) needed here is

γ
(1)
ϕ (1− z, µ) =CF

[
8L0(1− z) + 6δ(1− z)

]
,

γ
(2,l)
ϕ (1− z, µ) =CF

[
−160

9
L0(1− z)−

(4
3
+

16π2

9

)
δ(1− z)

]
. (B.12)

B.3 Soft functions

B.3.1 TMD soft function

The TMD soft function for massless quarks with the symmetric η-regulator has been computed at
two loops in Ref. [57]. At O(αs) and O(α2

sCFTF ) it is given by

S(1)(p⃗T , µ, ν) = CF

[
−4L1(p⃗T , µ) + 8 ln

ν

µ
L0(p⃗T , µ)−

π2

3
δ(2)(p⃗T )

]
, (B.13)

S(2,l)(p⃗T , µ, ν) = CF

[
−16

3
L2(p⃗T , µ) + L1(p⃗T , µ)

(32
3

ln
ν

µ
+

80

9

)
− L0(p⃗T , µ)

(160
9

ln
ν

µ
+

8π2

9

)

+ δ(2)(p⃗T )
(448
27

ln
ν

µ
− 656

81
+

10π2

9
− 8ζ3

9

)]
. (B.14)

The corresponding anomalous dimensions are

γ
(1)
S (µ, ν) = −CF 16 ln

ν

µ
,

γ
(2,l)
S (µ, ν) = CF

(
320

9
ln
ν

µ
− 448

27
+

8π2

9

)
,

γ
(1)
ν,S(p⃗T , µ) = CF 8L0(p⃗T , µ) ,

γ
(2,l)
ν,S (p⃗T , µ) = CF

[
32

3
L1(p⃗T , µ)−

160

9
L0(p⃗T , µ) +

448

27
δ(2)(p⃗T )

]
. (B.15)

B.3.2 Thrust soft function

The thrust soft function is known to two loops [83,84]. At O(αs) and O(α2
sCFTF ) it is given by

S(1)(ℓ, µ) = CF

[
−16 1

µ
L1
( ℓ
µ

)
+
π2

3
δ(ℓ)

]
, (B.16)

S(2,l)(ℓ, µ) = CF

[
−64

3

1

µ
L2
( ℓ
µ

)
+

320

9

1

µ
L1
( ℓ
µ

)
+

1

µ
L0
( ℓ
µ

)(
−448

27
+

16π2

9

)

+ δ(ℓ)
(80
81

+
74π2

27
− 232

9
ζ3

)]
. (B.17)

The corresponding µ anomalous dimension is given by

γ
(1)
S (ℓ, µ) = 16CF

1

µ
L0
( ℓ
µ

)
,

γ
(2,l)
S (ℓ, µ) = CF

[
−320

9

1

µ
L0
( ℓ
µ

)
+ δ(ℓ)

(448
27
− 8π2

9

)]
. (B.18)
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B.4 Jet function

The massless quark jet function is known to three loop order [210, 211]. The terms relevant here at
O(αs) and O(α2

sCFTF ) are

J (1)(s, µ) = CF

[
4
1

µ2
L1
( s
µ2

)
− 3

1

µ2
L0
( s
µ2

)
+ δ(s)

(
7− π2

)]
, (B.19)

J (2,l)(s, µ) = CF

[
8

3

1

µ2
L2
( s
µ2

)
− 116

9

1

µ2
L1
( s
µ2

)
+

1

µ2
L0
( s
µ2

)(494
27
− 8π2

9

)

+ δ(s)
(
−4057

162
+

68π2

27
+

16

9
ζ3

)]
.

The corresponding µ anomalous dimension is the same as for the virtuality-dependent beam function
in Eq. (B.11).

γ
(1)
J (s, µ) = CF

[
− 8

µ2
L0
( s
µ2

)
+ 6δ(s)

]
,

γ
(2,l)
J (s, µ) = CF

[
160

9

1

µ2
L0
( s
µ2

)
+ δ(s)

(
−484

27
− 8π2

9

)]
. (B.20)

Note that in the second part of the thesis a different notation is used where we defined the thrust jet
function J (τ) as

J (τ)(s, µ) =

∫
ds′ J(s− s′, µ)J(s′, µ) , (B.21)

accounting already for both hemispheres, whereas in the first part of the thesis the function J(s, µ)
always stands for the single hemisphere jet function.
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Appendix C

Results for massive quarks

In this section we present our results for the contributions from primary massive quarks at O(αs)
and from secondary massive quarks at O(α2

s) to all components of the various factorization theorems
discussed in part I. The results in this section are only given for a single massive quark flavor and with
the rapidity divergences regularized by the symmetric Wilson line regulator introduced in Refs. [40,41].
The actual computations of the primary and secondary massive quark corrections to the beam, jet
and soft functions are carried out in some detail in App. D.

We will use the notation of Eqs. (2.33) and (2.36) (which use the convention the expansion is always

done in terms of the strong coupling in the nl + 1 flavor scheme α
(nl+1)
s ) to give the explicit results

at O(αs) and O(α2
sCFTF ). The plus-distributions Ln(p⃗T , µ) and Ln(x) are defined in appendix J.

C.1 Hard matching functions

All the hard matching functions are insensitive to the measurement performed at a lower scale. The
hard functions for qT and T measurements are therefore the same, by crossing symmetry also the hard
function for thrust in e+e− → 2 jets in Refs. [12,70]. The DIS hard function is related to the others by
crossing symmetry via the analytic continuation Q2 → −Q2 − i0 in the current matching coefficient.
The hard mass mode matching functions Hs and Hc are also insensitive to the measurement and
additionally not sensitive to the scale Q2, and are therefore identical for all processes discussed here.

C.1.1 Massive quark corrections to the DY hard function

The secondary massive quark corrections to the hard function in Eq. (2.20) read

H(2,h)(Q,m, µ) = H(0)(Q)CFhvirt

(m2

Q2

)
+

4

3
LmH

(1)(Q,µ) , (C.1)

where H(0) denotes the tree-level normalization and H(1) the massless one-loop contribution given in
Eq. (B.1). The function hvirt contains the O(α2

sCFTF ) virtual massive quark bubble correction in full
QCD shown in Fig. 1.1. It has been calculated in Refs. [212,213] and is given by

hvirt(x) =
(
16x2 − 8

3

)[
−4Li3

(r − 1

r + 1

)
− 1

3
ln3

r − 1

r + 1
+

2π2

3
ln
r − 1

r + 1
+ 4ζ3

]

+ r
(184

9
x+

76

9

)[
4Li2

(r − 1

r + 1

)
+ ln2

r − 1

r + 1
− 2π2

3

]
+
(880

9
x+

1060

27

)
lnx

+
1904

9
x+

6710

81
, (C.2)
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with r =
√
1 + 4x. For m → ∞ the decoupling of the massive quark is encoded in the fact that

hvirt(x)→ 0 for x→∞.

For Z-boson production there is an additional primary massive quark contribution to the axial vector
current, namely the massive quark triangle correction in Fig. 1.1, which we denote by ∆haxial. Using
the narrow width approximation comes with the same prefactor H(0)(Q) as for hvirt. It has been
computed in Refs. [67–69] and is given by

∆haxial(Q,m, µ) =
8aqaQ
v2q + a2q

[
3 ln

Q2

µ2
− 9 +

π2

3
+ θ(Q2 − 4m2)G1

(m2

Q2

)

+ θ(4m2 −Q2)G2

(m2

Q2

)]
, (C.3)

where the vector and axial vector couplings for up- and down-type quarks are proportional to vu =
1 − 8/3 sin2 θW , vd = −1 + 4/3 sin2 θW , au = 1, ad = −1. The functions G1 and G2 are given in
Eqs. (2.8) and (2.9) of Ref. [68]. In the small mass limit m ≪ Q the function G1(m

2/Q2) vanishes,
such that ∆haxial gives the same result as for a massless flavor in the loop,

∆haxial(Q,m, µ) =
8aqaQ
v2q + a2q

[
3 ln

Q2

µ2
− 9 +

π2

3
+O

(m2

Q2

)]
. (C.4)

For a massless isospin partner this correction is thus canceled within the SU(2)L doublet, while for
different masses (as for mb ≪ mt) there is a (µ-independent) remainder. Note that for Q ≪ m the
function ∆haxial gives a nonvanishing contribution

∆haxial(Q,m, µ) =
8aqaQ
v2q + a2q

[
3 ln

m2

µ2
+

3

2
+O

(Q2

m2

)]
. (C.5)

In this case one would integrate out the heavy quark at the scale µm ∼ m and evolve the axial current
to µH ∼ Q to resum logarithms ln(m2/Q2).

C.1.2 Massive quark corrections to the DIS hard function

The two-loop contributions of a massive flavor to the DIS hard function are

Ĥ(2,h)(Q,m, µ) = Ĥ(0)(Q)CF ĥvirt

(m2

Q2

)
+

4

3
Lm Ĥ

(1)(Q,µ) , (C.6)

where Ĥ(0) denotes the tree-level normalization and Ĥ(1) the massless one-loop contribution given in
Eq. (B.2). Also the function ĥvirt can be inferred from the results in Refs. [67–69] and reads

ĥvirt(x) =
(
16x2 − 8

3

)[
−2Li3

( r̂ − 1

r̂ + 1

)
− 2Li3

( r̂ + 1

r̂ − 1

)
+ 4ζ3

]

+ r̂
(184

9
x− 76

9

)[
−2Li2

( r̂ − 1

r̂ + 1

)
+ 2Li2

( r̂ + 1

r̂ − 1

)]
−
(880

9
x− 1060

27

)
lnx

− 1904

9
x+

6710

81
, (C.7)

with r̂ =
√
1− 4x. For m → ∞ the decoupling of the massive quark is encoded in the fact that

hvirt(x)→ 0 for x→∞.
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C.1.3 Soft and collinear mass-mode matching functions

The contributions to the mass-mode matching functions originate only from secondary radiation. The
soft mass-mode function Hs appearing in Eqs. (2.22), (2.93), and (2.97) has been computed at two
loops with the symmetric η-regulator in Ref. [70]. It is given by

Hs(m,µ, ν) = 1 +
α2
sCFTF
16π2

[
−
(16
3
L2
m +

160

9
Lm +

448

27

)
ln
ν

µ
+

8

9
L3
m +

40

9
L2
m

+
(448
27
− 4π2

9

)
Lm +

656

27
− 10π2

27
− 56ζ3

9

]
+O(α3

s) . (C.8)

Since there are no O(αs) corrections, the flavor scheme for αs does not affect the results at O(α2
s).

Its anomalous dimensions are

γHs(m,µ, ν) =
α2
sCFTF
16π2

[(64
3
Lm +

320

9

)
ln
ν

µ
− 448

27
+

8π2

9

]
+O(α3

s) ,

γν,Hs(m,µ) =
α2
sCFTF
16π2

[
−16

3
L2
m −

160

9
Lm −

448

27

]
+O(α3

s) . (C.9)

The rapidity anomalous dimension is even known at O(α3
s), see Ref. [2].

The result for the collinear mass-mode function Hc in Eq. (2.22) can be inferred at O(α2
s) from the

computations in Refs. [12, 70] and reads

Hc

(
m,µ,

ν

ω

)
= 1 +

α2
sCFTF
16π2

[(
8

3
L2
m +

80

9
Lm +

224

27

)
ln
ν

ω

+ 2L2
m +

(2
3
+

8π2

9

)
Lm +

73

18
+

20π2

27
− 8ζ3

3

]
+O(α3

s) . (C.10)

Its anomalous dimensions are

γHc

(
m,µ,

ν

ω

)
=
α2
sCFTF
16π2

[
−
(32
3
Lm +

160

9

)
ln
ν

ω
− 8Lm −

4

3
− 16π2

9

]
+O(α3

s) ,

γν,Hc(m,µ) =
α2
sCFTF
16π2

(
8

3
L2
m +

80

9
Lm +

224

27

)
+O(α3

s) . (C.11)

One can easily verify that the relation in Eq. (2.37) between the massive hard function in Eq. (C.1),
the hard function contribution for a massless flavor in Eq. (B.1), and the two mass mode matching
functions Hs and Hc in Eqs. (C.8) and (C.10), respectively, is satisfied,

H(2,h)(Q,m, µ) = H(2,l)(Q,µ) +H(2)
c

(
m,µ,

ν

ωa

)
+H(2)

c

(
m,µ,

ν

ωb

)
+H(2)

s (m,µ, ν) +O
(m2

Q2

)
.

(C.12)

The same relation also holds for the DIS hard function Ĥ with the massive and massless results given
in Eqs. (C.6) and (B.2).

C.2 Beam functions

Here we give our results for the massive quark beam function coefficient IQg at O(αs) and the
secondary massive quark corrections to the light-quark coefficients Iqq at O(α2

s), which appear in
Eqs. (2.26) and (2.93) for the qT and beam thrust measurement. We also give the massive quark
contributions to the beam function anomalous dimensions. We also give the well-known results for the
corresponding PDF matching coefficientsMQg at O(αs) andMqq at O(α2

s) appearing in Eqs. (2.31),
(2.97) and (2.104).
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m

Figure C.1: Feynman diagram for the massive quark beam function at one loop.

m

(a)

m

(b)

m

(c)

Figure C.2: Secondary massive quark corrections for the light-quark beam function at O(α2
s). In

addition, also the wave-function renormalization correction and the mirror diagrams for (b) and (c)
have to be included.

C.2.1 TMD beam function coefficients

The matching coefficient IQg generating a massive beam function from a gluon splitting is calculated
at O(αs) in Sec. D.1 and corresponds to the diagram shown in Fig. C.1. The result reads (p2T = |p⃗T |2)

IQg(p⃗T ,m, z) = IQ̄g(p⃗T ,m, z) =
αsTF
4π2

θ(z) θ(1− z) 2

p2T +m2

[
Pqg(z) +

2m2z(1− z)
p2T +m2

]
+O(α2

s) ,

(C.13)

with the splitting function

Pqg(z) = z2 + (1− z)2 . (C.14)

This result is equivalent to the Fourier transform of the mass-dependent matching functions Ch/G in
Ref. [45]. After performing an appropriate crossing it also agrees with the massive final-state splitting
functions [214,215] or fragmenting jet function [216].

The contributions from secondary massive quarks to the matching coefficient Iqq are computed in
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Sec. D.3 at O(α2
s). The corresponding diagrams are shown in Fig. C.2. The result is given by

I(2,h)qq

(
p⃗T ,m, z, µ,

ν

ω

)

= θ(z)CF

{
δ(2)(p⃗T ) δ(1− z)

[(8
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8π2

9
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+
73

18
+

20π2

27
− 8ζ3

3

]

+
16

9πp2T

[
L0(1− z)− δ(1− z) ln

ν

ω

][
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]

+
16

9πp2T
θ(1− z)

[
3

2d(1− z)
[
(1 + z2)(1 + 2m̂2z) + 4m̂4z2(−5 + 6z − 5z2)

]
ln
d+ 1

d− 1

− 3c(1− 2m̂2)

1− z ln
c+ 1

c− 1
+ 1 + 4z + 3m̂2(−4 + z − 5z2)

]}

+
4

3
Lm I(1)qq

(
p⃗T , z, µ,

ν

ω

)
, (C.15)

where

m̂ ≡ m

pT
, c =

√
1 + 4m̂2 , d =

√
1 + 4m̂2z , (C.16)

and the one-loop term I(1)qq is given in Eq. (B.5).

In the (nl + 1)-flavor scheme for αs there is also a correction from a virtual massive quark loop

to the flavor-nondiagonal matching coefficient I(2)qg . This contribution is trivial, since it factorizes
into a vacuum polarization correction corresponding to the matching of αs between the (nl) and
(nl + 1)-flavor schemes, and the one-loop contribution, such that

I(2,h)qg (p⃗T ,m, z, µ) =
4

3
Lm I(1)qg (p⃗T , z, µ) , (C.17)

with I(1)qg given in Eq. (B.4). In the (nl)-flavor scheme for αs the I(2,h)qg contribution vanishes.

The contributions from a massive flavor to the beam function anomalous dimensions are

γ
(2,h)
B

( ν
ω

)
= CF

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
,

γ
(2,h)
ν,B (p⃗T ,m, µ) = CF

{
−16

3
LmL0(p⃗T , µ) + δ(2)(p⃗T )

(8
3
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9
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224

27

)

+
16

9πp2T

[
5− 12m̂2 − 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (C.18)

The L0(p⃗T , µ) distribution is defined in appendix J. The µ anomalous dimension here is the same

as for a massless quark flavor, γ
(2,h)
B = γ

(2,l)
B [see Eq. (B.8)]. The rapidity anomalous dimension is

explicitly mass dependent and only reproduces the result for a massless flavor in the limit m≪ pT .

C.2.2 Virtuality-dependent beam function coefficients

The massive quark-gluon virtuality beam function matching coefficient at O(αs) shown in Fig. C.1 is
given by

IQg(t,m, z) =
αsTF
4π

θ(t) θ(z) θ

[
t(1− z)

z
−m2

]
2

t

[
Pqg(z) +

2m2z2

t

]
+O(α2

s) . (C.19)
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The contributions from secondary massive quarks to the light-quark coefficient at O(α2
s) as shown in

Fig. C.2 are given by

I(2,h)qq

(
t,m, z, µ,
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ω

)

= θ(z)CF

{
δ(t) δ(1− z)

[(8
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+
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]
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ln
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1− z m̂2
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]]}
+
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3
Lm I(1)qq (t, z, µ) , (C.20)

with

m̂t =
m√
t

u =
√
1− 4m̂2

t z , v =

√
1− 4m̂2

t z

1− z , (C.21)

and the one-loop term I(1)qq is given in Eq. (B.9).

In the (nl + 1)-flavor scheme for αs there is also the analogous contribution to Eq. (C.17) to the
flavor-nondiagonal coefficient

I(2,h)qg (t,m, z, µ) =
4

3
Lm I(1)qg (t, z, µ) , (C.22)

with I(1)qg given in Eq. (B.9). In the (nl)-flavor scheme for αs the I(2,h)qg contribution vanishes.

The contribution from the massive flavor to the µ anomalous dimension at O(α2
s) is given by

γ
(2,h)
B,m

(
t,
ν

ω

)
= CF δ(t)

(
−160

9
ln
ν

ω
− 4

3
− 16π2

9

)
. (C.23)

We emphasize that the massive quark contribution to the µ anomalous dimension is not the same
as for a massless flavor, but is in fact the same as for the TMD beam function in Eq. (C.18). This
is required by consistency with the large mass limit

√
QT , qT ≪ m, where the massive flavor can

only contribute to the (local) running of the common current operators, which are independent of the
measurement. Only in combination with the soft mass-mode function Hs and the soft function, the
combined µ evolution above the mass scale is the same as for nl + 1 massless flavors as discussed in
Eq. (2.94).

The secondary massive quarks introduce rapidity divergences and associated logarithms also in the
virtuality-dependent beam function. The ν anomalous dimension induced by the secondary massive
effects is the same as for the collinear mass-mode function, see Eq. (2.92), given in Eq. (C.11).

C.2.3 PDF matching coefficients

The matching coefficients relating the PDFs in the (nl+1) and the (nl)-flavor scheme are all known at
two loops [217] and partially beyond (see e.g. Refs. [218–220] and references therein). The matching
coefficient for a primary massive quark originating from an initial-state gluon at O(αs) is

MQg(m, z, µ) = −
αsTF
4π

θ(1− z)θ(z) 2Pqg(z)Lm +O(α2
s) . (C.24)
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The matching coefficient coming from secondary massive quark corrections to the light-quark PDFs
reads up to O(α2

s)

Mqq(m, z, µ) = 1 +
α2
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16π2
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]}
+O(α3

s) . (C.25)

Because there are no corrections at O(αs), the specification of the flavor scheme of αs is not relevant
at order O(α2

s).

The matching coefficient between the gluon PDF in the (nl) and (nl + 1)-flavor schemes at O(αs),
which is also required for Drell-Yan at O(α2

s), is equivalent to the matching relation for αs

Mgg(m, z, µ) = δ(1− z) + αsTF
4π

δ(1− z) 4
3
Lm +O(α2

s) . (C.26)

Note that taking into account the nondiagonal evolution of the PDFs the known O(α2
s) corrections

for all matching factorsMij become relevant at NNLL′.

C.3 Hemisphere jet function

The secondary massive quark corrections to the primary massless quark hemisphere jet function in
the mass mode scheme (i.e. without subtractions concerning the massive flavor) was calculated at
two-loops in Ref. [71] and are
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(1)(s, µ) , (C.27)

with

b =

√
1− 4m2

s
, (C.28)

and the massless one-loop contribution J (1) given in Eq. (B.19). The contribution from the massive
flavor to the µ anomalous dimension at O(α2

s) is the same as for the virtuality-dependent beam
function in the mass mode scheme in Eq. (C.23).

γ
(2,h)
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)
= CF δ(s)

(
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− 16π2

9
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. (C.29)
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(a)

m

(b)

Figure C.3: Corrections from secondary massive quarks to the (c)soft function. Also the mirror
diagrams need to be included.

We emphasize that it is not the same as for a massless flavor.

The secondary massive quarks introduce rapidity divergences and associated logarithms also in the
jet function. The ν anomalous dimension induced by the secondary massive effects is the same as for
the collinear mass-mode current matching function Hc given in Eq. (C.11).

C.4 Soft and collinear-soft functions

Here we give all massive quark corrections at O(α2
s) to the soft and csoft functions. They arise

exclusively from secondary radiation. Note that the soft functions satisfy Casimir scaling at this
order and can be thus applied also to color-singlet production in gluon-fusion by replacing an overall
CF → CA.

C.4.1 TMD soft function

The contributions from secondary massive quarks to the TMD soft function, which appears in
Eq. (2.26) for qT ∼ m, are calculated in App. D.4 at O(α2

s) and correspond to the diagrams shown
in Fig. C.3. The result reads
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where m̂ = m/pT and c =
√
1 + 4m̂2 as in Eq. (C.16) and the one-loop soft function S(1) given in

Eq. (B.13).
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The massive quark contributions to the anomalous dimensions of the soft function are

γ
(2,h)
S (p⃗T , µ, ν) = CF

(
320

9
ln
ν

µ
− 448

27
+

8π2

9

)
,

γ
(2,h)
ν,S (p⃗T ,m, µ) = CF

{
32

3
LmL0(p⃗T , µ) + δ(2)(p⃗T )

(
−16

3
L2
m −

160

9
Lm −

448

27

)

+
32

9πp2T

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (C.31)

The µ anomalous dimension here is the same as for an additional massless flavor, γ
(2,h)
S = γ

(2,l)
S [see

Eq. (B.15)]. The rapidity anomalous dimension is explicitly mass dependent and only reduces to the
result for a massless flavor in the limit m≪ pT .

C.4.2 Csoft function

The csoft function is a matching coefficient between an eikonal matrix element defined in Eq. (2.82)
in the nl + 1 and nl flavor theories as in Eq. (D.50). The relevant diagrams at O(α2

s) are shown in
Fig. C.3 and are calculated in Sec. D.5. The result is given by

Sc(ℓ,m, µ, ν) = δ(ℓ) +
α2
sCFTF
16π2

{
ν

µ2
L0
(ℓ ν
µ2

)(8
3
L2
m +

80

9
Lm +

224

27

)
(C.32)

+ δ(ℓ)

[
−8

9
L3
m −

40

9
L2
m +

(
−448

27
+

4π2

9

)
Lm −

656

27
+

10π2

27
+

56ζ3
9

]}
+O(α3

s).

Because there are no corrections at O(αs), the specification of the flavor scheme of αs is not relevant
at order O(α2

s). We can see that with the scale choices µ ∼ m and ν ∼ µ2/ℓ ∼ m2/T all large
logarithms (including the implicit one inside the plus distribution) are minimized. The µ anomalous
dimensions of the csoft matching function is given by

γSc(ℓ,m, µ, ν) =
α2
sCFTF
16π2

[
− ν

µ2
L0
(ℓ ν
µ2

)(32
3
Lm +

160

9

)
+ δ(ℓ)

(448
27
− 8π2

9

)]
+O(α3

s) . (C.33)

The ν anomalous dimension is the same as for the collinear mass mode function in Eq. (C.11),
γν,Sc = γν,Hc .

C.4.3 (Beam) thrust soft function

The secondary massive quark corrections to the (beam) thrust soft function at O(α2
s) were calculated

in Ref. [95] and are given by

S(2,h)(ℓ,m, µ) = CF

{
1

µ
L0
( ℓ
µ

)(16

3
L2
m +

160

9
Lm +

448

27

)

+ δ(ℓ)

[
−8

9
L3
m −

40

9
L2
m +

(
−448

27
+

4π2

9

)
Lm −

656

27
+

10π2

27
+

56

9
ζ3

]

+ θ(ℓ− 2m)
1

ℓ

[
64

3
Li2

(w − 1

w + 1

)
+

16

3
ln2

1− w
1 + w

− 64

3
ln

1− w
1 + w

ln m̂ℓ

− 160

9
ln

1− w
1 + w

− w
(896
27

+
256

27
m̂2

ℓ

)
+

16π2

9

]}

+∆Sτ (ℓ,m) +
4

3
Lm S

(1)(ℓ, µ) , (C.34)

193



where

m̂ℓ ≡
m

ℓ
, w =

√
1− 4m̂2

ℓ , (C.35)

and the one-loop soft function S(1) is given in Eq. (B.16). The term ∆Sτ (ℓ,m) contains the correction
from two real final-state emissions entering two opposite hemispheres, which vanishes both for ℓ≪ m
and m ≪ ℓ and is currently only known numerically. The integral expression for this numerically
small contribution is given in Eq. (61) of Ref. [95], and a precise parametrization can be found in
Ref. [12].

The massive quark contribution to the anomalous dimension is the same as for a massless flavor,

γ
(2,h)
S (ℓ, µ) = γ

(2,l)
S (ℓ, µ), given in Eq. (B.18).
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Appendix D

Calculations of massive quark
corrections

We calculate the quark mass dependent beam and soft functions for primary and secondary contri-
butions at one and two loops, respectively. The final renormalized results are given and discussed in
Sec. C. For the computation of the massive quark corrections we use the Feynman rules determined
from the massive quark SCET Lagrangian [18,221,222]. First, we calculate the massive quark beam
function in Sec. D.1, before discussing the computation of the secondary massive quark corrections
for the massless quark beam and soft functions in secs. D.2 – D.5. All computations are carried out
in Feynman gauge.

D.1 Massive quark beam function at O(αs)

The massive quark beam function operator for a measurement functionM is defined as (see e.g. Refs. [13,
41,85,223])

OQ({M}, ω,m) = χn,m(0)M(Pµ, p̂+)
/̄n

2

[
δ(ω − Pn)χn,m(0)

]
, (D.1)

where χn,m indicates a massive collinear quark field, Pµ is the label momentum operator, and p̂+

extracts the residual momentum component n · k. For the transverse momentum dependent (TMD),
virtuality dependent, and fully differential case the measurement functions are

M⊥ = δ(2)(p⃗T − P⃗⊥) , Mp+ = δ(t− ωp̂+) , M⊥,p+ = δ(2)(p⃗T − P⃗⊥) δ(t− ωp̂+) . (D.2)

For convenience we discuss also the fully differential case here, from which the other two cases can be
obtained by an integration over the respective other variable. The beam functions are proton matrix
elements of the operators OQ. To compute the (perturbative) matching coefficients onto the PDFs,
we take matrix elements with partonic states, denoting e.g.

BQg

(
{M},m, z = ω

p−

)
≡ ⟨gn(p)|OQ({M}, ω,m)|gn(p)⟩ , (D.3)

for an initial collinear gluon state with momentum pµ = p−nµ/2.

At O(αs) the only contribution to the massive quark beam function originates from an initial collinear
gluon splitting into a heavy quark-antiquark pair. The corresponding diagram is given in Fig. D.1.
The kinematics of the on-shell final state is fully constrained at one loop, so that the diagram can be
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ω, −b+, −pT

k
p

Figure D.1: One-loop diagram contributing to the massive quark beam function.

evaluated without performing any integration. For the fully differential case we obtain

BQg(t, p⃗T ,m, z)
∣∣∣
O(αs)

= 8παsTF θ(ω) θ(t)

∫
d4k

(2π)4
|⃗k⊥|2

[
(p−)2 − 2(p− − k−)k−

]
+m2(p−)2

(p−)2(k+)2k−

× δ(ω − p− + k−) δ(b+ − k+) δ(2)(p⃗T − k⃗⊥) 2πδ(k2 −m2)

=
αsTF
4π2

θ(z) θ(t) δ
(
p2T −

t(1− z)
z

+m2
)2
t

(
Pqg(z) +

2m2z2

t

)

=
αs

4π
I(1)Qg (t, p⃗T ,m, z) , (D.4)

where Pqg(z) = z2 + (1− z)2 is the leading-order gluon-quark splitting function. The correction BQg

at O(αs) is UV and IR finite. It corresponds directly to the matching coefficient I(1)Qg , given as the
one-loop coefficient in an expansion in terms of αs as in Eq. (2.33). The matching coefficients for the
TMD and virtuality-dependent beam functions can be obtained here by a trivial integration of this
result,

I(1)Qg (p⃗T ,m, z) =

∫
dt I(1)Qg (t, p⃗T ,m, z) , I(1)Qg (t,m, z) =

∫
d2pT I(1)Qg (t, p⃗T ,m, z) , (D.5)

which yields the results in Eqs. (C.13) and (C.19). Note that in general, this integration has to be
performed for the bare result with the full dependence on the UV and rapidity regulator. However,
in this case all matrix elements are finite and do not require any renormalization at this order.

D.2 Dispersive technique for secondary massive quark corrections

For observables where only the sum over the final-state hadronic momenta enters the measurement,
one can use dispersion relations to obtain the results for secondary massive quark radiation at O(α2

s)
from the corresponding results for “massive gluon” radiation at O(αs). This has been discussed in
detail in Ref. [12]. The key relation is that the insertion of a vacuum polarization function for massive
quarks Πµν(m

2, p2) between two gluon propagators can be written as

− i gµρ
p2 + iϵ

Πρσ(m
2, p2)

− i gσν
p2 + iϵ

=
1

π

∫
dM2

M2

− i
(
gµν − pµpν

p2

)

p2 −M2 + iϵ
Im
[
Π(m2,M2)

]

−
− i
(
gµν − pµpν

p2

)

p2 + iϵ
Π(m2, 0) . (D.6)
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Figure D.2: Light-quark beam function diagrams for massive gluon radiation at one loop. In addition,
also the wave function renormalization correction and the mirror diagrams for (b) and (c) have to be
included in the calculation.

The first term contains a gluon propagator with effective mass M and the absorptive part of the
vacuum polarization function, which reads in d = 4− 2ϵ dimensions

Im
[
Π(m2, p2)

]
= θ(p2 − 4m2)

αsTF
4π

(4µ2eγE )ϵπ3/2

Γ(52 − ϵ)
(
1− ϵ+ 2m2

p2

)
(p2)−ϵ

(
1− 4m2

p2

)1/2−ϵ
. (D.7)

To obtain the first term on the right-hand side in Eq. (D.6) the vacuum polarization function (and
thus the strong coupling) was renormalized in the on-shell scheme with respect to the massive quark,
i.e., with nl active quark flavors. The second term in Eq. (D.6) translates back to an unrenormalized
strong coupling and consists of a massless gluon propagator and the O(αs) vacuum polarization
function at zero momentum transfer, which is given by

Π(m2, 0) =
αsTF
4π

4

3
Γ(ϵ)

(
µ2eγE

m2

)ϵ

≡ αsTF
4π

Π(1)(m2, 0) . (D.8)

In the following we will first carry out the computation of the beam and soft functions at O(αs) for
the radiation of a “massive gluon” and in a second step use the relation in Eq. (D.6) to obtain the
associated results for massive quarks at O(α2

sCFTF ). In our calculations we drop the contributions
from the terms proportional to pµpν , which vanish in total due to gauge invariance.

D.3 Secondary mass effects in light-quark beam functions

We compute the massive quark corrections to the TMD and virtuality-dependent light-quark beam
function at O(α2

sCFTF ) starting with the massive gluon case at O(αs). Only the contributions to the
matching coefficient Iqq are nontrivial, so we consider only diagrams with a quark in the initial state.

D.3.1 Quark beam function with a massive gluon at O(αs)

Contributions to the fully-differential beam function As in Sec. D.1 we start also here with
the computation of the corrections for the fully-differential beam function. The contributing one-loop
diagrams to the matrix element Bqq with massless quarks in the initial state, defined in analogy to
Eq. (D.3), are displayed in Fig. D.2. They consist of a purely virtual and a real-radiation part,

B(1,bare)
qq (t, p⃗T ,M, ω, z) = δ(1− z) δ(t) δ(2)(p⃗T )B(1,bare)

qq,virt (M,ω) +B
(1,bare)
qq,real (t, p⃗T ,M, ω, z) . (D.9)
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The virtual massive gluon contributions in Fig. D.2c are the same as for other collinear quark operators
like the current or the PDF and have been computed e.g. in Ref. [41]. Including the wave function
renormalization diagrams the d-dimensional result reads [2]

B
(1,bare)
qq,virt (M,ω) = CF

(µ2eγE
M2

)ϵ
Γ(ϵ)

{
4

η
+ 4 ln

ν

ω
+ 4H1−ϵ −

2(1− ϵ)
2− ϵ +O(η)

}
, (D.10)

where Hα = ψ(1+α)+γE is the Harmonic number. Here the rapidity divergences have been regulated
using the symmetric η regulator acting on the Wilson lines [40,41], while UV divergences are regulated
with dimensional regularization as usual. Furthermore, the gluon mass provides an IR cutoff.

The real radiation contributions in Figs. D.2a and D.2b can be easily evaluated, since all momentum
components are fully determined by the measurement. For the first diagram we get

B(a) = 8παsCF p
−θ(ω) θ(t)

∫
d4k

(2π)4
|⃗k⊥|2[

(p− k)2 + iϵ
]2 δ(ω − p− + k−) δ(t− ωk+)

× δ(2)(p⃗T − k⃗⊥) 2πδ(k2 −M2)

=
αsCF

4π2
θ(z) θ(t) δ

(
p2T −

t(1− z)
z

+M2
) 2
(
t(1− z)− zM2

)

(t− zM2)2
. (D.11)

Since UV divergences do not appear for the real radiation corrections and the gluon mass regulates
all IR divergences we do not need to employ dimensional regularization here. The second diagram in
Fig. D.2b yields

B(b) = −8παsCF p
−θ(ω) θ(t)

∫
d4k

(2π)4
(p− − k−)

(p− k)2 + iϵ

νη

(k−)1+η
δ(ω − p− + k−) δ(t− ωk+)

× δ(2)(p⃗T − k⃗⊥) 2πδ(k2 −M2)

=
αsCF

4π2
θ(z) θ(t) δ

(
p2T −

t(1− z)
z

+M2
)( ν

ω

)η 2z1−η

(t− zM2)(1− z)η . (D.12)

While the fully-differential quark beam function itself does not contain any rapidity divergences, we
have included here the η regulator, since we will use this result to obtain the TMD beam function by
integrating over the virtuality, which results in rapidity divergences for this real radiation correction.
The full real radiation contributions at one loop yield

αs

4π
B

(1,bare)
qq,real (t, p⃗T ,M, ω, z) = B(a) + 2B(b)

=
αsCF

4π

1

π
θ(z) θ(t) δ

(
p2T −

t(1− z)
z

+M2
)

× 2

t− zM2

[( ν
ω

)η 2z1−η

(1− z)η +
t(1− z)− zM2

t− zM2

]
. (D.13)

For both virtual and real radiation corrections all soft-bin subtractions are parametrically power
suppressed or scaleless and therefore do not contribute.

Contributions to the TMD beam function The corrections for the TMD beam function with
a massive gluon can be obtained by integrating the fully-differential beam function in Eq. (D.9) over
the virtuality t. We write them again as

B(1,bare)
qq (p⃗T ,M, z) = δ(1− z) δ(2)(p⃗T )B(1,bare)

qq,virt (M,ω) +B
(1,bare)
qq,real (p⃗T ,M, ω, z) , (D.14)
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where B
(1,bare)
qq,virt is given in Eq. (D.10) and

B
(1,bare)
qq,real (p⃗T ,M, ω, z) =

∫
dtB

(1,bare)
qq,real (t, p⃗T ,M, z) (D.15)

= CF θ(z) θ(1− z)
1

π

2

p2T + zM2

[
p2T (1− z)
p2T + zM2

+
2z1−η

(1− z)1+η

( ν
ω

)η]
.

Here it is necessary to keep a nonvanishing value for η in the second term to regularize the rapidity
divergence for z → 1. Expanding for η → 0 we get

B
(1,bare)
qq,real (p⃗T ,M, ω, z) = CF θ(z)

1

π

{
4

p2T +M2

[
−δ(1− z)

(1
η
+ ln

ν

ω

)
+ L0(1− z)

]

+ θ(1− z) 2p2T
p2T + zM2

[ 1− z
p2T + zM2

− 2

p2T +M2

]}
+O(η) . (D.16)

Contributions to the virtuality-dependent beam function The virtuality-dependent beam
function with a massive gluon can be obtained by integrating the results for the fully-differential beam
function over p⃗T . We decompose the corrections again into a virtual and real radiation part,

B(1,bare)
qq (t,M, z) = δ(1− z) δ(t)B(1,bare)

qq,virt (M,ω) +B
(1,bare)
qq,real (t,M, z) , (D.17)

where B
(1,bare)
qq,virt is given in Eq. (D.10) and

B
(1)
qq,real(t,M, z) =

∫
d2p⃗T B

(1,bare)
qq,real (t, p⃗T ,M, ω, z) (D.18)

= CF θ(z) θ(t) θ
( t(1− z)

z
−M2

) 2

t− zM2

( 2z

1− z +
t(1− z)− zM2

t− zM2

)
,

with the fully-differential real radiation contributions in Eq. (D.13). Here the η regulator has already
been dropped, since for the virtuality-dependent beam function no rapidity divergences arise from
the real radiation contributions.

D.3.2 Secondary massive quark effects in the TMD beam function

To obtain the secondary massive quark corrections from the one-loop results with a massive gluon,
we first convolve the one-loop results with the imaginary part of the vacuum polarization function
according to Eq. (D.6) and define

αsTF
4π

B
(2,h,bare)
qq,virt (m,ω) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1,bare)

qq,virt (M,ω) ,

αsTF
4π

B
(2,h,bare)
qq,real (p⃗T ,m, ω, z) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1,bare)

qq,real (p⃗T ,M, ω, z) . (D.19)
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The results from these dispersion integrations are

B
(2,h,bare)
qq,virt (m,ω) = CF

{(1
η
+ ln

ν

ω

)[ 8

3ϵ2
− 1

ϵ

(16
3
Lm +

40

9

)
+

16

3
L2
m +

80

9
Lm +

224

27

+
4π2

9
+O(ϵ)

]
+

2

ϵ2
− 1

ϵ

(
4Lm +

1

3
+

4π2

9

)
+ 4L2

m +
(2
3
+

8π2

9

)
Lm

+
73

18
+

29π2

27
− 8ζ3

3

}
, (D.20)

B
(2,h,bare)
qq,real (p⃗T ,m, ω, z) = CF

1

πp2T

{
16

9η
δ(1− z)

[
5− 12m̂2 − 3c(1− 2m̂2) ln

(c+ 1

c− 1

)]

+ bqTreal

(m2

p2T
, z,

ν

ω

)}
, (D.21)

with

bqTreal

(
m̂2, z,

ν

ω

)
= θ(z)

16

9

{[
5− 12m̂2 − 3c(1− 2m̂2) ln

(c+ 1

c− 1

)]

×
(
δ(1− z) ln ν

ω
− L0(1− z)

)

+ θ(1− z)
[

3

2d(1− z)
[
1 + z2 + 2m̂2z(1 + z2) + 4m̂4z2(−5 + 6z − 5z2)

]
ln
(d+ 1

d− 1

)

− 3c(1− 2m̂2)

1− z ln
(c+ 1

c− 1

)
+ 1 + 4z + 3m̂2(−4 + z − 5z2)

]}
, (D.22)

and m̂, c, d defined in Eq. (C.16). Using Eq. (D.19) entails that the massive quark corrections to the

strong coupling are renormalized in the on-shell scheme, i.e., the expansion is in terms of αs = α
(nl)
s .

Since the beam function matrix element has to be renormalized entirely in the nl + 1 flavor theory,
we need to account for the second term in Eq. (D.6) (which switches back to an unrenormalized αs)
and renormalize the massive quark corrections to the strong coupling in the MS scheme, such that

the expansion is in terms of αs = α
(nl+1)
s . The beam function operator is renormalized according to

O(bare)
q (p⃗T ,m, ω) =

∫
d2p′T ZB

(
p⃗T − p⃗ ′

T ,m, µ,
ν

ω

)
Oq(p⃗

′
T ,m, ω, µ, ν) , (D.23)

where the counterterm encodes also the rapidity divergences. This yields for the renormalized matrix

element with initial state quarks at O(α2
sCFTF ) in terms of αs = α

(nl+1)
s

B(2,h)
qq

(
p⃗T ,m, z, µ,

ν

ω

)
= δ(2)(p⃗T ) δ(1− z)B(2,h,bare)

qq,virt (m,ω) +B
(2,h,bare)
qq,real (p⃗T ,m, ω, z) (D.24)

−
(
Π(1)(m2, 0)− 4

3ϵ

)
B(1,bare)

qq (p⃗T , ω, z)︸ ︷︷ ︸
= B

(1)
qq (p⃗T , z, µ, ν

ω
) + Z

(1)
B (p⃗T , µ, ν

ω
) δ(1− z)

−δ(1− z)Z(2,h)
B

(
p⃗T ,m, µ,

ν

ω

)
.

where the (bare) vacuum polarization function Π(1)(m2, 0) is given in Eq. (D.8). The one-loop coun-
terterm reads

Z
(1)
B

(
p⃗T , µ,

ν

ω

)
= CF

{
δ(2)(p⃗T )

[
1

η

(4
ϵ
+O(ϵ)

)
+

1

ϵ

(
3 + 4 ln

ν

ω

)]
− 1

η

(
4 +O(ϵ)

)
L0(p⃗T , µ)

}
. (D.25)
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The two-loop counterterm Z
(2)
B absorbs all remaining UV and rapidity divergences in Eq. (D.24) and

is given by

Z
(2,h)
B

(
p⃗T ,m, µ,

ν

ω

)
= CF

{
δ(2)(p⃗T )

[
1

η

( 8

3ϵ2
− 40

9ϵ
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ϵ)

)

+
1

ϵ2

(
2 +

8

3
ln
ν

ω

)
− 1

ϵ

(1
3
+

4π2

9
+

40

9
ln
ν

ω

)]
− 1

η

(16
3
Lm +O(ϵ)

)
L0(p⃗T , µ)

+
1

η

16

9πp2T

[
5− 12m̂2 − 3c(1− 2m̂2) ln

c+ 1

c− 1

]}
. (D.26)

This yields the anomalous dimensions in Eq. (C.18). The renormalized one-loop partonic beam

function B
(1)
qq still contains IR divergences, so its exact form depends on the choice of the IR regulator.

The beam function matching coefficient Iqq as defined in (2.25) can be now easily obtained. Note

that the PDFs are renormalized in an nl-flavor theory with αs = α
(nl)
s in contrast to the beam

function. Thus, there is a contribution coming from the scheme change of αs to nl + 1 flavors for the
(renormalized) one-loop PDF correction, i.e.

I(2,h)qq

(
p⃗T ,m, z, µ,

ν

ω

)
= B(2,h)

qq

(
p⃗T ,m, z, µ,

ν

ω

)
− δ(2)(p⃗T )

4

3
Lmf

(1)
qq (z, µ)

= δ(2)(p⃗T ) δ(1− z)B(2,h,bare)
qq,virt (m,ω) +B

(2,h,bare)
qq,real (p⃗T ,m, ω, z)

− δ(1− z)
[(

Π(1)(m2, 0)− 4

3ϵ

)
Z

(1)
B

(
p⃗T , µ,

ν

ω

)
+ Z

(2,h)
B

(
p⃗T ,m, µ,

ν

ω

)]

+
4

3
Lm

(
B(1)

qq

(
p⃗T , z, µ,

ν

ω

)
− δ(2)(p⃗T )f (1)qq (z, µ)

)

︸ ︷︷ ︸
= I(1)

qq (p⃗T ,z,µ, ν
ω
)

. (D.27)

Here the IR divergences cancel between the one-loop beam function and the PDF to give the finite

one-loop matching coefficient I(1)qq , which is given in Eq. (B.5). Using Eqs. (D.20), (D.21), (D.25)
and (D.26) we obtain the full result for the secondary massive quark corrections to the beam function
matching coefficient given in Eq. (C.15).

D.3.3 Secondary massive quark effects in the virtuality-dependent beam function

We proceed with the virtuality-dependent beam function. While the virtual contributions are the
same as for the TMD beam function given in Eq. (D.20), the dispersion integration for the real
radiation terms yields

αsTF
4π

B
(2,h)
qq,real(t,m, z) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×B(1)

qq,real(t,M, z)

=
αsTF
4π

CF

t
bTreal

(m2

t
, z
)
, (D.28)

with

bTreal(m̂
2, z) = θ(z) θ(v)

8

9(1− z)

{
−3

u
ln
u− v
u+ v

[
1 + z2 − 2m̂2

t z(1 + z2)− 4m̂4
t z

2(2− 3z + 5z2)

]

− 2v

[
4− 3z + 4z2 +

z(11− 21z + 29z2 − 15z3)

1− z m̂2
t

]}
, (D.29)

and m̂t, u, v as in Eq. (C.21).
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To obtain the quark mass dependent matching coefficient I(2,h)qq we carry out our calculation using
a gluon mass Λ ≪ √QT ∼ m as IR regulator. While the theory with nl + 1 flavors (i.e. above the
mass scale) contains collinear modes, the theory with nl flavors (i.e. below the mass scale) contains
collinear and csoft modes like in the mode setup of Sec. 2.2.3. The matching relation reads

B(nl+1)
qq

(
t,m, z, µ,

ν

ω

)
=

∫
dℓ Iqq

(
t− ωℓ,m, z, µ, ν

ω

)
⊗z f

(nl)
qq (z, µ)S (nl)

c (ℓ, µ, ν) , (D.30)

where B
(nl+1)
qq corresponds to the pure collinear matrix element and S

(nl)
c represents the csoft matrix

element.

In close analogy to Eq. (D.24) the renormalized collinear matrix element B
(nl+1)
qq is given atO(α2

sCFTF )
by

B(2,h)
qq

(
t,m, z, µ,

ν

ω

)
= δ(t) δ(1− z)B(2,h,bare)

qq,virt (m,ω) +B
(2,h)
qq,real(t,m, z) (D.31)

−
(
Π(1)(m2, 0)− 4

3ϵ

)
B(1,bare)

qq (t, z)
︸ ︷︷ ︸

= B
(1)
qq (t, z, µ, ν

ω
) + Z

(1)
B (t, µ, ν

ω
) δ(1− z)

− δ(1− z)Z(2,h)
B

(
t,m, µ,

ν

ω

)
.

To separate UV, rapidity, and IR divergences properly from each other, we also employ an IR regulator
(here a gluon mass Λ) for the one-loop expressions, and at this stage the renormalized matrix elements
and the counterterms still depend on this IR regulator. The matching coefficient Iqq can now be

calculated as (in an expansion in terms of α
(nl+1)
s )

I(2,h)qq

(
t,m, z, µ,

ν

ω

)
= B(2,h)

qq

(
t,m, z, µ,

ν

ω

)
− 4

3
Lm

[
δ(t)f (1)qq (z, µ) + δ(1− z) 1

ω
S (1)

c

( t
ω
, µ, ν

)]

= δ(t)δ(1− z)B(2,h,bare)
qq,virt (m,ω) +B

(2,h)
qq,real(t,m, z)− Z

(2,h)
B

(
t,m, µ,

ν

ω

)
δ(1− z)

−
(
Π(1)(m2, 0)− 4

3ϵ

)
Z

(1)
B

(
t, µ,

ν

ω

)
δ(1− z)

+
4

3
Lm

[
B(1)

qq (t, z, µ)− δ(t)f (1)qq (z, µ)− δ(1− z) 1
ω

S (1)
c

( t
ω
, µ, ν

)]

︸ ︷︷ ︸
=I(1)

qq (t,z,µ)

. (D.32)

Here the IR divergences cancel between the one-loop beam function, the PDF, and the csoft matrix

element and yield the finite one-loop matching coefficient I(1)qq given in Eq. (B.9). The counterterm
ZB is defined via

B(bare)
qq (t,m, z) =

∫
dt′ Z

(nl+1)
B

(
t− t′,m, µ, ν

ω

)
B(nl+1)

qq

(
t′,m, z, µ,

ν

ω

)
. (D.33)

Using the results in Eqs. (D.17) and (D.10) for a massive gluon gives the associated expression for

Z
(1)
B (expanded in η and ϵ)

Z
(1)
B

(
t, µ,

ν

ω

)
= CF δ(t)

{
4

η

[
1

ϵ
− ln

Λ2

µ2
+O(ϵ)

]
+

1

ϵ

[
4 ln

ν

ω
+ 3

]}
. (D.34)

The two-loop counterterm Z
(2,h)
B cancels all divergences in Eq. (D.32) and reads1

Z
(2,h)
B

(
t,m, µ,

ν

ω

)
= CF δ(t)

{
1

η

( 8

3ϵ2
− 40

9ϵ
− 16

3
Lm ln

Λ2

µ2
+

8

3
L2
m +

80

9
Lm +

224

27
+O(ϵ)

)

+
1

ϵ2

(8
3
ln
ν

ω
+ 2
)
− 1

ϵ

(40
9

ln
ν

ω
+

1

3
+

4π2

9

)}
. (D.35)

1While the 1/η-divergences in the counterterm of the beam function matrix element still contain IR sensitivity, this
also happens for the counterterm of the csoft matrix element in Eq. (D.30), such that the resulting rapidity anomalous
dimension for the running at the boundary between the nl + 1 and nl theory is IR finite.
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Figure D.3: Soft function corrections for a massive gluon at one-loop. The associated mirror diagrams
need to be included in addition.

Using Eqs. (D.10), (D.28), (D.34), (D.35) and (B.9) in Eq. (D.32) we obtain the full two-loop result
for the matching coefficient in Eq. (C.20).

D.4 Secondary mass effects in the TMD soft function

The TMD soft function is defined as

S(p⃗T ) =
1

Nc
tr
〈
0
∣∣∣T
[
S†
n(0)Sn̄(0)

]
δ(2)(p⃗T − P⃗⊥)T

[
S†
n̄(0)Sn(0)

]∣∣∣0
〉
, (D.36)

with the soft Wilson line Sn given by [41]

Sn =
∑

perms

exp

[
− g

n · P
νη/2

|2P3|η/2
n ·As

]
, (D.37)

and in analogy for the others. Again we will first calculate the one-loop corrections to the soft function
with a massive gluon, which is used in a second step to obtain the corrections from secondary massive
quarks at O(α2

sCFTF ).

D.4.1 TMD soft function with a massive gluon at O(αs)

We decompose the soft function with a massive gluon at one loop in terms of virtual and real radiation
corrections,

S(1)(p⃗T ,M, µ, ν) = δ(2)(p⃗T )S
(1)
virt(M,µ, ν) + S

(1)
real(p⃗T ,M, ν) . (D.38)

The virtual contributions from the diagram in Fig. D.3a (and its mirror diagram) are the same as for
the Sudakov form factor computed in Ref. [41] and yield

S
(1,bare)
virt (M) = CF

(µ2eγE
M2

)ϵ
Γ(ϵ)

[
−8

η
− 8 ln

ν

M
− 4Hϵ−1

]
+O(η) . (D.39)
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The UV-finite and IR-finite real radiation diagram in Fig. D.3b gives

S(b) = 8παsCF

∫
d4k

(2π)4
1

k+k−
νη

|k+ − k−|η δ
(2)(p⃗T − k⃗⊥) 2πδ(k2 −M2)

=
αsCF

4π

2Γ(η2 )Γ(
1−η
2 )

π
3
2 (p2T +M2)

(
ν

2
√
p2T +M2

)η

. (D.40)

After expanding in η and adding the mirror diagram, the real radiation contribution to the TMD soft
function at one loop then reads

αs

4π
S
(1,bare)
real (p⃗T ,M) = 2S(b) =

αsCF

4π

4

π(p2T +M2)

[
2

η
+ ln

( ν2

p2T +M2

)]
+O(η) . (D.41)

D.4.2 Secondary corrections at O(α2
sCFTF )

To obtain the secondary massive quark corrections from the one-loop results with a massive gluon,
we first convolve the one-loop results with the imaginary part of the vacuum polarization function,

αsTF
4π

S
(2,h,bare)
virt (m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
× S(1,bare)

virt (M) ,

αsTF
4π

S
(2,h,bare)
real (p⃗T ,m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
× S(1,bare)

real (p⃗T ,M) . (D.42)

The results from these dispersion integrations are

S
(2,h,bare)
virt (m) = CF

{[
− 16

3ϵ2
+

1

ϵ

(32
3
Lm +

80

9

)
− 32

3
L2
m −

160

9
Lm −

448

27
− 8π2

9
+O(ϵ)

]

×
(1
η
+ ln

ν

µ

)
+

4

ϵ3
− 1

ϵ2

(16
3
Lm +

20

9

)
+

1

ϵ

(8
3
L2
m −

112

27
+

2π2

3

)
+

40

9
L2
m

+
(448
27
− 8π2

9

)
Lm +

656

27
− 10π2

27
− 8ζ3

}
, (D.43)

S
(2,h,bare)
real (p⃗T ,m) =

CF

πp2T

{
32

9η

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
+ sqTreal

(m2

p2T
,
ν

m

)}
, (D.44)

with

sqTreal

(
m̂2,

ν

m

)
=

16

9

{
2

[
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

]
ln
ν

m

+ 3c(1− 2m̂2)

[
Li2

(
(c− 1)2

(c+ 1)2

)
+ 2 ln

c+ 1

c− 1

(
ln
c+ 1

2c
+ ln m̂

)
− π2

6

]

+ 8m̂2 + c(5− 16m̂2) ln
c+ 1

c− 1

}
, (D.45)

and m̂ and c as in Eq. (C.16). Using Eq. (D.42) entails that the massive quark corrections to the

strong coupling are renormalized in the on-shell scheme, i.e., the expansion is in terms of αs = α
(nl)
s .

Since the soft function matrix element has to be renormalized entirely in the nl + 1 flavor theory, we
need to account for the second term in Eq. (D.6) (which switches back to an unrenormalized αs) and
renormalize the massive quark corrections to the strong coupling in the MS scheme, such that the

expansion is in terms of αs = α
(nl+1)
s . The soft function is renormalized according to

S(bare)(p⃗T ,m) =

∫
d2p′T ZS

(
p⃗T − p⃗ ′

T ,m, µ, ν
)
S(p⃗ ′

T ,m, µ, ν) . (D.46)
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This yields for the renormalized matrix element with initial state quarks at O(α2
sCFTF ) in terms of

αs = α
(nl+1)
s

S(2,h)(p⃗T ,m, µ, ν) = δ(2)(p⃗T )S
(2,h,bare)
virt (m) + S

(2,h,bare)
real (p⃗T ,m) (D.47)

−
(
Π(1)(m2, 0)− 4

3ϵ

)
S(1,bare)(p⃗T , µ, ν)︸ ︷︷ ︸

= S(1)(p⃗T , µ, ν) + Z
(1)
S (p⃗T , µ, ν)

−δ(1− z)Z(2,h)
S (p⃗T ,m, µ, ν) ,

where the (bare) vacuum polarization function Π(1)(m2, 0) is given in Eq. (D.8) and the renormalized
one-loop soft function S(1) is given in Eq. (B.13). The one-loop counterterm reads

Z
(1)
S (p⃗T , µ, ν) = CF

{
δ(2)(p⃗T )

[
1

η

(
−8

ϵ
+O(ϵ)

)
+

4

ϵ2
− 8

ϵ
ln
ν

µ

]
+

1

η

(
8 +O(ϵ)

)
L0(p⃗T , µ)

}
, (D.48)

The two-loop counterterm Z
(2)
S absorbs all remaining UV and IR divergences in Eq. (D.47) and is

given by

Z
(2,h)
S (p⃗T ,m, µ, ν) = CF

{
δ(2)(p⃗T )

[
1

η

(
− 16

3ϵ2
+

80

9ϵ
− 16

3
L2
m −

160

9
Lm −

448

27
+O(ϵ)

)

+
4

ϵ3
− 1

ϵ2

(20
9

+
16

3
ln
ν

µ

)
+

1

ϵ

(
−112

27
+

2π2

9
+

80

9
ln
ν

µ

)]
+

1

η

(32
3
Lm +O(ϵ)

)
L0(p⃗T , µ)

+
1

η

32

9πp2T

(
−5 + 12m̂2 + 3c(1− 2m̂2) ln

c+ 1

c− 1

)}
. (D.49)

This yields the anomalous dimensions in Eq. (C.31). Using Eqs. (D.43), (D.44), (D.48), and (D.49)
we obtain the full result for the secondary massive quark corrections to the TMD soft function in
Eq. (C.30).

D.5 Csoft function at two loops

We compute the csoft function Sc for beam thrust appearing in the hierarchy T ≪ m ≪ √QT for
DY and m ≪ Q

√
1− x for DIS. As in the computation for the beam function matching coefficient

in App. D.3.3 we carry out the calculation using a gluon mass Λ ≪ m as an IR regulator. In this
context the csoft function is the matching coefficient between the csoft matrix elements in the nl + 1
and nl flavor theories,

S (nl+1)
c (ℓ,m, µ, ν) =

∫
dℓ′ Sc(ℓ− ℓ′,m, µ, ν)S (nl)

c (ℓ′, µ, ν) . (D.50)

The csoft matrix elements are defined for any direction n as

Sc(ℓ, µ) =
1

Nc
tr
〈
0
∣∣∣T
[
X†

n(0)Vn(0)
]
δ(ℓ− n · p̂)T

[
V †
n (0)Xn(0)

]∣∣∣0
〉
, (D.51)

with the csoft Wilson lines given by (see e.g. Refs. [89, 90])

Xn =
∑

perms

exp

[
− g

n · P
νη/2

(n̄ · P)η/2 n ·Acs

]
, Vn =

∑

perms

exp

[
− g

n̄ · P
νη/2

(n̄ · P)η/2 n̄ ·Acs

]
, (D.52)

Here we have also expanded out he η regulator according to the n-collinear soft scaling n̄ · P ≫ n · P.
Changing one or two Wilson lines from incoming to outgoing when describing the differnet processes
DY, DIS and e+e− → leads to identical results at two-loops (see also Ref. [82]), which is the order at
which we are working here.
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D.5.1 Csoft function with a massive gluon at O(αs)

We will first calculate the one-loop corrections to the csoft matrix elements Sc with a massive gluon,
that can then be used to obtain the two-loop corrections with secondary massive quarks using the
dispersion technique described in Sec. D.2. The one-loop results for the csoft matrix elements can be
written as

S (1,bare)
c (ℓ,M) = δ(ℓ)S

(1,bare)
c,virt (M) + S

(1,bare)
c,real (ℓ,M) . (D.53)

The relevant contributions at one loop are displayed in the diagrams in Fig. D.3, with the soft Wilson
lines Sn and Sn̄ replaced by the csoft Wilson lines Xn and Vn. With the choice of regularization in

Eq. (2.83) the virtual diagram leads to a scaleless integral, such that S
(1,bare)
c,virt = 0. The real radiation

diagram corresponding to Fig. D.3b yields

S (b)
c = 8παsCF µ̃

2ϵ

∫
ddk

(2π)d
1

k−k+

( ν

k−

)η
δ(ℓ− k+) 2πδ(k2 −M2)

=
αsCF

4π

2Γ(ϵ+ η)

Γ(1 + η)

(µ2eγE
M2

)ϵ( ν

M2

)η θ(ℓ)
ℓ1−η

. (D.54)

Including also the mirror diagram and expanding in η the total real radiation contribution to the
csoft matrix element with a massive gluon is

αs

4π
S

(1,bare)
c,real (ℓ,M) = 2S (b)

c (D.55)

=
αsCF

4π

(µ2eγE
M2

)ϵ
Γ(ϵ)

[
δ(ℓ)

(1
η
− ln

M2

µ2
+Hϵ−1

)
+

ν

µ2
L0
(ℓ ν
µ2

)
+O(η)

]
.

D.5.2 Csoft function at O(α2
s)

We convolve the one-loop results with the imaginary part of the vacuum polarization function, which
yields for the nonvanishing contributions

αsTF
4π

S
(2,h,bare)
c,real (ℓ,m) =

1

π

∫
dM2

M2
Im
[
Π(m2,M2)

]
×S

(1,bare)
c,real (ℓ,M) . (D.56)

The result of this dispersion integral is

S
(2,h,bare)
c,real (ℓ,m) = CF

{[
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3ϵ2
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ϵ

(16
3
Lm +

40
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16
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80

9
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224
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]

×
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η
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ν
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L0
(ℓ ν
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+ δ(ℓ)

[
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ϵ3
+
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ϵ2

(16
3
Lm +
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)

+
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ϵ

(
−8

3
L2
m +
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27
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)
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L2
m +

(
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27
+

8π2

9

)
Lm

− 656

27
+

10π2

27
+ 8ζ3

]}
. (D.57)

Using Eq. (D.56) entails that the massive quark corrections to the strong coupling are renormalized

in the on-shell scheme, i.e., the expansion is in terms of αs = α
(nl)
s . To obtain the csoft function Sc

we need to switch to α
(nl+1)
s and furthermore subtract the correction S

(2,nl)
c (with a strong coupling

in the nl flavor scheme) according to Eq. (D.50). All purely massless contributions cancel each other
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and we obtain for the O(α2
s) corrections in an expansion in terms of α

(nl+1)
s

S(2)c (ℓ,m, µ, ν) = S (2,h)
c (ℓ,m, µ, ν)− 4

3
LmS (1)

c (ℓ, µ, ν) (D.58)

= S
(2,h,bare)
c,real (ℓ,m)−

(
Π(1)(m2, 0)− 4

3ϵ

)
S (1,bare)

c (ℓ)

− Z(2,h)
Sc

(ℓ,m, µ, ν)− 4

3
LmS (1)

c (ℓ, µ, ν)

= S
(2,h,bare)
c,real (ℓ,m)−

(
Π(1)(m2, 0)− 4

3ϵ

)
Z

(1)
Sc

(ℓ, µ, ν)− Z(2,h)
Sc

(ℓ,m, µ, ν) .

Here the counterterm is defined via

S (bare)
c (ℓ,m) =

∫
dℓ′ Z

(nl+1)
Sc

(ℓ− ℓ′,m, µ, ν)S (nl+1)
c (ℓ′,m, µ, ν) . (D.59)

Employing a gluon mass the associated expression for Z
(1)
Sc

can be read off from Eq. (D.55) and is
given by (expanded in η and ϵ)

Z
(1)
Sc

(ℓ, µ, ν) = 4CF

{
δ(ℓ)

[
1

η

(1
ϵ
− ln

Λ2

µ2
+O(ϵ)

)
− 1

ϵ2

]
+

ν
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L0
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µ2

)1
ϵ

}
. (D.60)

The counterterm Z
(2,h)
Sc

absorbs all divergences and is given by2

Z
(2,h)
Sc

(ℓ,m, µ, ν) = CF

{
δ(ℓ)

[
1

η
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3
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27
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+
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)[ 8

3ϵ2
− 40

9ϵ

]}
. (D.61)

Using Eqs. (D.57), (D.60) and (D.61) in Eq. (D.58) we obtain the full result for the renormalized
csoft function at two loops in Eq. (C.32).

2The anomalous dimension for the csoft function Sc can be obtained from the ratio of Z
(nl+1)
Sc

and Z
(nl)
Sc

, upon which
the IR sensitivity cancels.
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Appendix E

Massive quark effects in DY at fixed
order

The factorization formulae in the Secs. 2.1 and 2.2 contain together all information about the singular
massive quark corrections to the differential cross sections in QCD at fixed order (for any given
hierarchy between the mass and qT /T ). Here we provide the results at O(α2

s) for Drell-Yan for both
primary and secondary corrections. We write for each of these contributions (e = q2T , T )

dσ

de dQ2 dY
(e,Q,m, xa, xb) =

∑

i,j=q,q̄,g

∫
dza
za

dzb
zb

dσ̂ij
de dQ2 dY

(e,Q,m, za, zb, µ) fi

(xa
za
, µ
)
fj

(xb
zb
, µ
)
,

(E.1)

and expand the partonic result in the nl-flavor scheme for αs as

dσ̂ij
de dQ2 dY

=
dσ̂

(0)
ij

dQ2 dY
δ(q2T ) +

α
(nl)
s (µ)

4π

dσ̂
(1)
ij

dedQ2 dY

+

(
α
(nl)
s (µ)

4π

)2[
TFnl

dσ̂
(2,l)
ij

de dQ2 dY
+ TF

dσ̂
(2,h)
ij

de dQ2 dY
+ . . .

]
+O(α3

s) , (E.2)

where dσ
(0)
qq̄ /(dQ

2dY ) denotes the Born cross section for the corresponding Drell-Yan process qq̄ →
Z/γ∗ → ℓℓ̄. In this context dσ

(0)

QQ̄
/(dQ2dY ) indicates the Born cross section for a massless quark q

with the same charge and isospin as the heavy quark Q.

E.1 Fixed-order result for the qT spectrum

The singular fixed-order corrections for the qT -spectrum (i.e. for qT ≪ Q) at O(α2
sCFTF ) consist of

the virtual (full QCD) contributions encoded in Eqs. (C.2) and (C.3) and the secondary collinear
and soft real radiation corrections contained in Eqs. (C.15) and (C.30). Setting common scales
µ = µH = µB = µS and ν = νB = νS yields for the corrections to virtual photon production

dσ̂
(2,h)
qq̄

dq2T dQ2 dY
=

dσ̂
(0)
qq̄

dQ2 dY
CF

{
hvirt

(m2

Q2

)
δ(q2T ) δ(1− za) δ(1− zb)

+
1

q2T
bqTreal

(m2

q2T
, za,

ν

ωa

)
δ(1− zb) +

1

q2T
bqTreal

(m2

q2T
, zb,

ν

ωb

)
δ(1− za)

+
1

q2T
sqTreal

(m2

q2T
,
ν

m

)
δ(1− za) δ(1− zb) +O

(qT
Q

)}
, (E.3)
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where hvirt, b
qT
real and sqTreal are given in Eqs. (C.2), (D.22) and (D.45). For Z-boson production one

has to include in addition the anomalous axial current correction in Eq. (C.3) as contribution to the
δ(q2T )-term (which gives in conjunction with the isospin partner a µ-independent result). Writing out
the nontrivial terms in the spectrum explicitly we get

dσ̂
(2,h)
qq̄

dq2T dQ2 dY
(q2T , Q,m, za, zb) =

dσ̂
(0)
qq̄

dQ2 dY
θ(za) θ(zb)CF

{
hvirt

(m2

Q2

)
δ(q2T ) δ(1− za) δ(1− zb)

+
δ(1− zb)

q2T

[(
−80

9
+

64

3
m̂2 +

16

3
(1− 2m̂2) ln

c+ 1

c− 1

)(
L0(1− za) + δ(1− za) ln

Q

m

)

+ θ(1− za)
(

8

3da(1− za)
[
1 + z2a + 2m̂2za(1 + z2a) + 4m̂4z2a(−5 + 6za − 5z2a)

]
ln
da + 1

da − 1

− 16c(1− 2m̂2)

3(1− za)
ln
c+ 1

c− 1
+

16

9
+

64

9
za +

16

3
m̂2(−4 + za − 5z2a)

)

+ δ(1− za)
(
8

3
c(1− 2m̂2)

[
Li2

((c− 1)2

(c+ 1)2

)
+ 2 ln

c+ 1

c− 1
ln
m̂(c+ 1)

2c
− π2

6

]

+
8

9
c(5− 16m̂2) ln

c+ 1

c− 1
+

64

9
m̂2

)]

+
δ(1− za)

q2T

[
(za ↔ zb)

]
+O

(qT
Q

)}
, (E.4)

where

m̂ =
m

qT
, c =

√
1 + 4m̂2 , da =

√
1 + 4m̂2za . (E.5)

The singular fixed-order corrections for the qT spectrum at O(α2
sT

2
F ) consist of the primary collinear

real radiation corrections in Eq. (C.13) for both beam directions,

dσ̂
(2,h)
gg

dq2T dQ2 dY
(q2T , Q,m, za, zb) = 2

dσ̂
(0)

QQ̄

dQ2 dY
× π

TF

∫
d2pT I(1)Qg (q⃗T − p⃗T ,m, za) I

(1)
Qg (p⃗T ,m, zb)

=
dσ̂

(0)

QQ̄

dQ2 dY
θ(za) θ(zb) θ(1− za) θ(1− zb)

8TF
q2T c

4

{
2(1− za − zb + 2zazb)(za + zb − 2zazb)

+ 8m̂2[za(1− za) + zb(1− zb)− 3zazb(1− za − zb + zazb)]− 16m̂4zazb(1− za − zb + zazb)

+
1

c
ln

(
1 + c+ 2m̂2(2 + c) + 2m̂4

2m̂4

)[
(1− 2za + 2z2a)(1− 2zb + 2z2b )

+ 2m̂2
(
4− 7za(1− za)− 7zb(1− zb) + 12zazb(1− za − zb + zazb)

)

+ 8m̂4
(
2− 3za(1− za)− 3zb(1− zb) + 6zazb(1− za − zb + zazb)

)

+ 16m̂6zazb(1− za)(1− zb)
]
+O

(qT
Q

)}
. (E.6)

Depending on the hierarchy between m and qT and Q some of the contributions in Eqs. (E.4) and
(E.6) are power-suppressed and therefore only appear via nonsingular corrections in the factorization
formula for the associated parametric regime in Sec. 2.1. Note also that virtual corrections are
reshuffled among the components of the factorization theorem, which are in addition evaluated with
αs in different flavor number schemes. This essentially allows for a consistent factorization and the
resummation of logarithms at higher orders.
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E.2 Fixed-order result for the beam thrust spectrum

The singular fixed-order corrections for the T spectrum (i.e. for T ≪ Q) at O(α2
sCFTF ) consist of

the virtual (full QCD) contributions encoded in Eqs. (C.2) and (C.3) and the secondary collinear
and soft real radiation corrections contained in Eqs. (C.20) and (C.34). Setting common scales
µ = µH = µB = µS yields for the corrections to virtual photon production

dσ̂
(2,h)
qq̄

dT dQ2 dY
=

dσ̂
(0)
qq̄

dQ2 dY
CF

{
hvirt

(m2

Q2

)
δ(T ) δ(1− za) δ(1− zb)

+
1

T bTreal

( m2

ωaT
, za

)
δ(1− zb) +

1

T bTreal

( m2

ωbT
, zb

)
δ(1− za)

+
1

T sTreal

(m2

T 2

)
δ(1− za) δ(1− zb) +O

(T
Q

)}
, (E.7)

where hvirt and b
T
real are given in Eqs. (C.2) and (D.29), respectively, and sTreal is given implicitly by

the nondistributive terms in Eq. (C.34). Again, for Z-boson production the anomalous axial current
correction in Eq. (C.3) has to be included in the δ(T ) term. Writing out the nontrivial terms in the
spectrum we get

dσ̂
(2,h)
qq̄

dT dQ2 dY
(T , Q,m, za, zb) =

dσ̂
(0)
qq̄

dQ2 dY
θ(za) θ(zb)CF

{
δ(T ) δ(1− za) δ(1− zb)hvirt

(m2

Q2

)

+
δ(1− zb)
T

[
θ(va)

1− za

(
−16

9
va

[
4− 3za + 4z2a +

za(11− 21za + 29z2a − 15z3a)

1− za
m̂2

a

]

− 8

3ua

[
1 + z2a − 2m̂2

aza(1 + z2a)− 4m̂4
az

2
a(2− 3za + 5z2a)

]
ln
ua − va
ua + va

)

+ δ(1− za)
(
θ(T − 2m)

[
32

3
Li2

(w − 1

w + 1

)
+

8

3
ln2

1− w
1 + w

− 32

3
ln

1− w
1 + w

ln m̂T

− 80

9
ln

1− w
1 + w

− w
(448
27

+
128

27
m̂2

T

)
+

8π2

9

]
+
T ∆Sτ,m(T ,m)

2

)]

+
δ(1− za)
T

[
(za, ωa ↔ zb, ωb)

]
+O

(T
Q

)}
, (E.8)

where

m̂a =
m√
ωaT

, m̂T =
m

T , ua =
√
1− 4m̂aza , va =

√
1− 4m̂2

aza
1− za

, w =
√
1− 4m̂2

T . (E.9)

The singular fixed-order corrections for the T spectrum at O(α2
sT

2
F ) consist of the collinear real
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radiation corrections in Eq. (C.19) for both beam directions,

dσ̂
(2,h)
gg

dT dQ2 dY
(T , Q,m, za, zb) = 2

dσ
(0)

QQ̄

dQ2 dY
× Q2

TF

∫
dT ′ I(1)Qg (ωa(T − T ′),m, za) I(1)Qg (ωbT ′,m, zb)

=
dσ

(0)

QQ̄

dQ2 dY
θ(za) θ(zb) θ

(
T − m2za

ωa(1− za)
− m2zb
ωb(1− zb)

) 8TF
T

×
{

2

(1− za − m̂2
aza)(1− zb − m̂2

bzb)

[
(1− za)(1− zb)− m̂2

aza(1− zb)− m̂2
bzb(1− za)

]

×
[
(1− za − zb + 2zazb)(za + zb − 2zazb)− m̂2

az
2
a(1− 2zb)

2 − m̂2
bz

2
b (1− 2za)

2 − 4m̂2
am̂

2
bz

2
az

2
b

]

+

(
ln

1− za − m̂2
aza

zam̂2
a

+ ln
1− zb − m̂2

bzb
zbm̂

2
b

)[
(1− 2za + 2z2a)(1− 2zb + 2z2b )

+ 2m̂2
az

2
a(1− 2zb + 2z2b ) + 2m̂2

bz
2
b (1− 2za + 2z2a) + 8m̂2

am̂
2
bz

2
az

2
b

]}
. (E.10)

Depending on the hierarchy between m and T and Q some of the contributions in Eqs. (E.8) and
(E.10) are power-suppressed and therefore only appear via nonsingular corrections in the factorization
formula for the associated parametric regime in Sec. 2.1.
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Appendix F

The diagram gg → Z∗→ ℓ̄ℓ

Z∗

p2

p1

k1

k2

q

ℓ

ℓ̄

+ p1 ↔ p2

Figure F.1: Feynman diagram for gg → Z∗ → ℓ̄ℓ at leading order in the strong and the electroweak
coupling. There is a second diagram that results from crossing the incoming gluon lines.

When discussing the massive quark effects in Drell-Yan in chapter 2, we ignored the gluon initiated
subprocess shown in Fig. F.1. In principle this diagram would lead to massive quark corrections to
the cross section at O(α2

s), but it turns out that it vanishes for on-shell Z-boson production due to
the Landau-Yang theorem [48,49], and also for off-shell Z-bosons it is strongly suppressed, as we will
now discuss. In fact both statements do not rely on the mass of the quark in the loop, and therefore
apply to massive as well as massless quarks.

The amplitude for the diagram in Fig. F.1 is

M(gg → Z∗ → ℓ̄ℓ) = ϵµ(p1, λ1)ϵ
ν(p2, λ2)Γ

V V A
µνρ

i
(
−gρσ + qρqσ

m2
Z

)

q2 −m2
Z + imZΓ

Lσ(k1, k2) , (F.1)

where we are not showing color indices and the leptonic tensor is defined as

Lσ(k1, k2) =
−ie

cosθW sinθW
ū(k1)γσ

(
gV + gAγ5

)
v(k2) , (F.2)

with the vector and axial-vector couplings

gV =
T 3
ℓ

2
−Qℓ sin

2θW , gA = −T
3
ℓ

2
, (F.3)

where T 3
ℓ and Qℓ are the third component of weak isospin and electric charge of the produced lepton,

respectively. The on-shell conditions for the external particles and four-momentum conservation gives

q = p1 + p2 = k1 + k2 , p21 = p22 = 0 , k21 = k22 = m2
ℓ . (F.4)

213



The factor ΓV V A
µνρ stands for the quark loop (including the diagram with inversed momentum flow in the

loop when crossing the gluon lines), coupled to the bosons via two vector couplings for the gluons and
an axial-vector coupling to the Z-boson. The corresponding contribution with three vector couplings
ΓV V V
µνρ vanishes identically due to Furry’s theorem, which implies that there are no contributions from

virtual photons.

As a next step we split the the tensor structure of the propagator in an ”on-shell“ part and a purely
longitudinal term

(
−gρσ +

qρqσ

m2
Z

)
=
(
−gρσ +

qρqσ

q2

)
+

(q2 −m2
Z)q

ρqσ

q2m2
Z

=
∑

λ3

ϵ∗ρQ (q, λ3)ϵ
σ
Q(q, λ3) +

(q2 −m2
Z)q

ρqσ

q2m2
Z

. (F.5)

In the last line the ϵQ are polarization vectors of a fictive on-shell spin-1 particle with momentum q

and mass Q =
√
q2. When plugging this back into the expression for the full amplitude in Eq. (F.1),

we find a term that is proportional to the amplitude for the process of two gluons going to this fictive
spin-1 particle with mass Q, let us denote it as ZQ

ϵµ(p1, λ1)ϵ
ν(p2, λ2)Γ

V V A
µνρ ϵ∗ρQ (q, λ3) ∼M(gg → ZQ) = 0 . (F.6)

This amplitude vanishes due to the Landau-Yang theorem. The Landau-Yang theorem of QED states
that no spin-1 particle can decay to two photons. When replacing the photons by gluons1 and reversing
the process, it tells us that two on-shell gluons cannot produce a spin-1 particle. Thus the amplitude
for two external gluons going to the fictive ZQ particleM(gg → ZQ) has to vanish.

Therefore only the second term in the second line of Eq. (F.5) contributes, and when using this
together with the relation

qσLσ(k1, k2) =
−2imℓgA

cosθW sinθW
[ū(k1)γ5v(k2)] , (F.7)

the result for the full amplitude is

M(gg → Z∗ → ℓ̄ℓ) =
2mℓegA(q

2 −m2
Z)

cosθW sinθW q2m2
Z(q

2 −m2
Z + imZΓ)

ϵµ(p1, λ1)ϵ
ν(p2, λ2)q

ρΓV V A
µνρ [ū(k1)γ5v(k2)] .

(F.8)

We first note that this is proportional to (q2−m2
Z), which is exactly the statement of the Landau-Yang

theorem that we applied above, that the amplitude vanishes for on-shell Z-bosons. We therefore have
to consider this diagram only for off-shell Z-bosons, but also in this case the amplitude is strongly
suppressed with respect to other diagrams, because it is proportional to the lepton mass mℓ. Thus
this diagram will lead only to corrections to the cross section that are of order O

(
m2

ℓ/Q
2
)
, which we

can safely neglect in our analysis.

1The Landau-Yang theorem can be violated in QCD, but it still holds for color-singlet states like the Z-boson [224,225].
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Appendix G

Jet and soft functions in SCET and
bHQET with a p⊥ cut at O(αs)

G.1 Unreleased soft function for thrust

In this section we provide details on the calculation of the unreleased thrust soft function S
(τ)
ur at

O(αs). The unreleased soft function describes large angle soft radiation originating from below the
p⊥ cut Q0. We carry out the calculation using the dressed gluon propagator of Eq. (8.18) which is
suitable to obtain the soft function in Borel space (accounting for fermion bubble resummation to
all orders). From this we can easily identify the O(ΛQCD) renormalon pole located at u = 1/2. To
obtain the usual one-loop result one can take the limit u→ 0 in the end and multiply back the factor
(αsβ0)/(4π) effectively removed by the dressed gluon propagator in this limit. We note that at O(αs)
all integrations can be readily carried out in 4 dimensions because the unreleased radiation does not
result in any ultraviolet divergences. However, in contrast to the calculations without any p⊥ cut we
also have to consider the contributions from the virtual diagrams, because the scale Q0 constitutes
an additional scale such that the virtual diagrams may lead to finite contributions. Interestingly, as
we show below, the virtual diagrams lead to vanishing results even for finite Q0.

The Borel space contribution from the real radiation diagrams (including the mirror diagram) shown

(a) (b)

Figure G.1: Diagrams relevant for computation of the partonic soft function at O(αs).
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in Fig. G.1a reads

B
[
S(τ,real)
ur (k,Q0)

]
=
4CF

β0

(
µ2e−c

)u
θ(k)

∫
dq+dq−

q+(q−)1+α

×
(
θ(q− − q+)δ(k − q+) + θ(q+ − q−)δ(k − q−)

)

× 1

π
Im

[∫ Q2
0

0
dq2⊥

1
(
q2⊥ − (q+q− + i0)

)1+u

]
, (G.1)

with c = 5/3 in the MS renormalization scheme for the strong coupling. In Eq. (G.1) we introduced
the rapidity regulator α on the q− light-cone component. This is regulator is useful because the
upper bound for the transverse momentum integration leads to intermediate 1/α rapidity divergences,
which, however, cancel when summing the contributions from the two hemispheres (defined by the
contributions associated to the two θ step functions). So, overall there are no rapidity divergences in
the O(αs) thrust soft function with an upper p⊥ cutoff. Doing the trivial delta function integrations
gives

4CF

β0

(
µ2e−c

)u θ(k)
k

∫ ∞

k

dq

q

(
q−α + k−α

)
× 1

π
Im

[∫ Q2
0

0
dq2⊥

1
(
q2⊥ − (qk + i0)

)1+u

]
. (G.2)

Next we can calculate the q⊥ integral and take the imaginary part employing the relation

1

π
Im

[∫ Q2
0

0
dq2⊥

1
(
q2⊥ − (qk + i0)

)1+u

]
=

1

uπ
Im
[
(−qk− i0)−u − (Q2

0 − qk− i0)−u
]

=
1

Γ(1− u)Γ(1 + u)

(
(qk)−u − θ(qk −Q2

0)(qk −Q2
0)

−u
)
, (G.3)

where in the last line we have used the fact that qk > 0. This leaves us with the sum of three integrals

4CF

β0

(
µ2e−c

)u

Γ(1− u)Γ(1 + u)

1

k1+u

[
2

∫ ∞

k

dq

q1+u
− 2 θ(k −Q0)

∫ ∞

k

dq

q

(
q − Q2

0

k

)−u

− θ(Q0 − k)
∫ ∞

Q2
0
k

dq

q

(
q − Q2

0

k

)−u(
q−α + k−α

)]
(G.4)

=
2CF

β0

(
µ2e−c

)u

Γ(1− u)Γ(1 + u)

[
2

u k1+2u
− θ(k −Q0)

2Q−2u
0

k
B
[Q2

0

k2
; u, 1− u

]

− θ(Q0 − k)Q−2u−α
0 Γ(1− u)

(Qα
0Γ(u)

k1+α
+
Q−α

0 Γ(u+ α)

Γ(1 + α) k1−α

)]
,

where we have already taken the limit α → 0 in the first two terms since they are finite for α → 0,
and B[z; a,b] is the incomplete beta function. For the third term the α → 0 limit has to be taken
more carefully, using

Q±α
0

k1±α
= ∓ 1

α
δ(k) +

1

Q0

[θ(k/Q0)

k/Q0

]
+
+O(α) . (G.5)

With this we finally arive at

B
[
S(τ)
ur (k,Q0)

]
= B

[
S(τ,real)
ur (k,Q0)

]

=
8CF

β0

(
µ2e−c

Q2
0

)u

Γ(1− u)Γ(1 + u)

[
Q2u

0

u k1+2u
− θ(k −Q0)

1

k
B
[Q2

0

k2
,u, 1− u

]
(G.6)

− θ(Q0 − k)Γ(u)Γ(1− u)
(
δ(k)

Hu−1

2
+

1

Q0

[θ(k/Q0)

k/Q0

]
+

)]
,
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where Hn = ψ(n + 1) + γE is the harmonic number function and B
[
z; a,b

]
the incomplete Beta

function. As already discussed before, there are no rapidity divergences in the thrust soft function
and all 1

α poles cancel in the final result. Since the virtual diagrams turn out to vanish (see below),
this represents already the full result for the unreleased thrust soft function.

To identify the leading renormalon pole we Laurent expand Eq. (G.6) around u = 1/2. Using the
relation

µ2u

k1+2u
=

µ

2(u− 1
2)
δ′(k) +O

(
(u− 1

2
)0
)
, (G.7)

we find the pole contribution

B
[
S(τ)
ur (k,Q0)

](
u ≈ 1

2

)
=

16CF e
− c

2

πβ0

µ

u− 1
2

δ′(k) . (G.8)

To obtain the O(αs) unreleased soft function one has to take the limit u→ 0 of Eq. (G.6) and include
back again the factor (αsβ0)/(4π). The result is

S(τ)
ur (k,Q0) =

αsCF

4π
16 θ(Q0 − k)

{
− 1

Q0

[θ(k̃) ln k̃
k̃

]
+

}
, (G.9)

with k̃ = k/Q0.

We will now show that the virtual contributions to unreleased soft function vanish even in the presence
of a p⊥ cut. The Borel space contribution from the sum of the virtual diagrams shown in Fig. G.1b
reads

B
[
S(τ,virt)
ur (k,Q0)

]
=
i 64CFπ

2

β0

(
µ2e−c

)u
δ(k)

∫
d4q

(2π)4
θ(Q0 − q⊥)

(−q2)1+u(n · q)(n̄ · q)1+α
, (G.10)

where we have again introduced the α regulator and used n2 = n̄2 = 0 and n · n̄ = 2. This integral is
most conveniently solved by using Feynman parameters of the form

1

aαbβcγ
=

Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

∫ ∞

0
dλ1dλ2

λβ−1
1 λγ−1

2

(a+ λ1b+ λ2c)α+β+γ
, (G.11)

such that one finds

−i 64CF

β0

(
µ2e−c

)u Γ(3 + u+ α)

Γ(1 + u)Γ(1 + α)
(−1)u+αδ(k)

×
∫ ∞

0
dλ1 dλ2 λ

α
2

∫
d4q

(2π)4
θ(Q0 − q⊥)

(q2 − λ1λ2)3+u+α
. (G.12)

The q integral is solved by using Eq. (I.6) and leads to

B
[
S(virt)
ur (k,Q0)

]
=
−4CF

β0

(
µ2e−c

)u Γ(1 + u+ α)

Γ(1 + u)Γ(1 + α)
δ(k)

×
∫ ∞

0
dλ2 λ

α
2

∫ ∞

0
dλ1

(
(λ1λ2)

−1−u−α − (Q2
0 + λ1λ2)

−1−u−α
)

=
4CF

β0

(µ2e−c

Q2
0

)u Γ(u+ α)

Γ(1 + u)Γ(1 + α)
δ(k)Q−2α

0

∫ ∞

0
dλ2 λ

−1+α
2

= 0 . (G.13)

The integral is scaleless and thus vanishes. Thus virtual diagrams do not contribute to the unreleased
soft function at O(αs).
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G.2 Unreleased soft function for angularities and C-parameter

It is straightforward to determine soft functions for other event shape variables using the method
described in Sec. G.1. In the following we provide the corresponding results for the angularities τα
and the C-parameter for future use.

For the angularities the measurement function shown in the second line of Eq. (G.1) for thrust reads

θ(q− − q+)δ
(
k − (q+)1−

a
2 (q−)

a
2

)
+
[
q− ↔ q+

]
. (G.14)

and the resulting unreleased soft function at O(αs) has the form

S(τa)
ur (k,Q0) =

αs(Q0)CF

4π

16 θ(Q0 − k)
1− a

{
− 1

Q0

[θ(k̃) ln k̃
k̃

]
+

}
. (G.15)

The pole of the Borel transform at u = 1/2 reads

B
[
S(τa)
ur (k,Q0)

](
u ≈ 1

2

)
=

16CF e
− c

2

πβ0(1− a)
µ

u− 1
2

δ′(k) , (G.16)

and the first moment has the form
∫

dk k S(τa)
ur (k,Q0) =

αs(Q0)CF

4π

16Q0

1− a . (G.17)

For the C-parameter the measurement function shown in the second line of Eq. (G.1) for thrust reads

δ
(
k − q−q+

q− + q+

)
(G.18)

and the resulting unreleased soft function at O(αs) has the form [w(z) = (1− 4/z)1/2]

S(C)
ur (k,Q0) =

αs(Q0)CF

4π
16 θ

(Q0

2
− k
){
− 1

Q0

[θ(k̃) ln k̃
k̃

]
+
+
π2

24
δ(k) +

ln
(
1+w(1/k̃2)

2

)

k

}
. (G.19)

The pole of the Borel transform at u = 1/2 reads

B
[
S(C)
ur (k,Q0)

](
u ≈ 1

2

)
=

4CF e
− c

2

β0

µ

u− 1
2

δ′(k) . (G.20)

and the first moment has the form
∫

dℓ ℓ S(C)
ur (ℓ,Q0) =

αs(Q0)CF

4π
4πQ0 . (G.21)

For all results we have c = 5/3 in the MS scheme and k̃ ≡ k/Q0.

G.3 Unreleased bHQET jet function

In this section we calculate the unreleased bHQET jet function at O(αs). The unreleased bHQET
jet function arises from ultra-collinear radiation off the massive quark coming from below the p⊥
cut Q0. As for the unreleased soft function we carry out the calculation using the dressed gluon
propagator of Eq. (8.18), which is suitable to obtain the Borel transform accounting for fermion
bubble resummation to all orders and to obtain the usual O(αs) result from the limit u → 0 and
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(a) (b)

Figure G.2: Diagrams relevant for computation of the bHQET jet function at O(αs).

accounting for the additional factor (αsβ0)/(4π). All integrals can again be carried out in 4 dimensions
since in the presence of the p⊥ cut they are ultraviolet finite. In contrast to the calculation for the
soft function, there are no rapidity divergences at intermediate steps of the calculation. We note
that in the following we determine the O(αs) corrections to the unreleased bHQET jet function

matrix element J (τ)
B,ur(ŝ, Q0) with and ŝ = ŝ+ i0 following the conventions from Ref. [19]. The actual

unreleased bHQET jet function JB,ur(ŝ, Q0) appearing in the factorization theorem of Eq. (7.25) is
then obtained by taking the imaginary part:

J
(τ)
B,ur(ŝ, Q0) = Im

[
J (τ)
B,ur(ŝ+ i0, Q0)

]
. (G.22)

The self energy diagram Fig. G.2a in Borel space reads (already including a factor two because the
jet function in the factorization theorem Eq. (7.25) accounts for both hemispheres)

B
[
J (a)
B,ur(ŝ, Q0)

]
=
i 64π CF

mŝ2β0

(
µ2e−c

)u
θ(ŝ)

∫
d4q

(2π)4
θ(Q0 − q⊥)

(−q2)1+u(−v · q − ŝ
2)
, (G.23)

with v2 = 1 and c = 5/3 in the MS renormalization scheme. The integral is evaluated in 4 dimensions
because in the unreleased contributions there are no divergences that need to be regularized by
dimensional regularization. It can be calculated by using Feynman paramters of the form

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ ∞

0
dλ

λβ−1

(a+ λb)α+β
, (G.24)

such that

B
[
J (a)
B,ur(ŝ, Q0)

]
=
i 64π CF

mŝ2β0

(
µ2e−c

)u
(1 + u)(−1)uθ(ŝ)

×
∫ ∞

0
dλ

∫
d4q

(2π)4
θ(Q0 − q⊥)(

q2 − λ
2 (

λ
2 − ŝ)

)2+u . (G.25)

The q integral is solved by using Eq. (I.6) and leads to (after doing the additional substitution
λ→ 2Q0λ and s̃ = ŝ/Q0)

B
[
J (a)
B,ur(ŝ, Q0)

]
=
−8CF Q0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞

0
dλ
[(
λ(λ− s̃)

)−u −
(
1 + λ(λ− s̃)

)−u
]
. (G.26)

Let us first look at the on-shell (os) self-energy contribution of this diagram. Due to the cutoff Q0

it does not vanish and is therefore relevant for the mass renormalization scheme. It is obtained by
setting ŝ→ 0 under the integral. This yields

B
[
J (a,os)
B,ur (ŝ, Q0)

]
=
−8CF Q0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞

0
dλ
[
λ−2u − (1 + λ2)−u

]

=
4CFQ0

mŝ2πβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

√
π Γ
(
u− 1

2

)

Γ(1 + u)
. (G.27)
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The first term under the integral in the first line is scaleless and can be dropped. To identify the
leading renormalon pole we expand Eq. (G.27) for u→ 1/2 to obtain

B
[
J (a,os)
B,ur (ŝ, Q0)

](
u ≈ 1

2

)
=

8CF e
− c

2

mŝ2πβ0
θ(ŝ)

µ

u− 1
2

. (G.28)

To get the one-loop result one has to take the limit u→ 0 of Eq. (G.27) and include again the factor
(αsβ0)/(4π):

J (a,os)
B,ur (ŝ, Q0) = −

1

m

αsCF

4π

θ(ŝ)

πŝ2
8πQ0 . (G.29)

To get the result of the integral in Eq. (G.26) for finite ŝ we first note that this does not give a pole
for u→ 1/2. This can be seen by setting u = 1/2 and investigating the behavior of the integrand for
small and large values of λ:

λ−
1
2 for λ→ 0 , (G.30)

λ−3 for λ→∞ . (G.31)

This implies that the integral converges and that there is no renormalon pole at u = 1/2 in the
off-shell case. To get the corresponding one-loop result we take the limit u → 0 and multiply back
the factor (αsβ0)/(4π) and get [w(z) = (1− 4/z)1/2]

J (a)
B,ur(ŝ, Q0) =

1

m

αsCF

4π

θ(ŝ)

πŝ2
8Q0

∫ ∞

0
dλ ln

(
λ(λ− s̃)

1 + λ(λ− s̃)

)
(G.32)

=
1

m

αsCF

4π

θ(ŝ)

πŝ
8

[
θ(2Q0 − ŝ)

(
−
w(16

s̃2
)
(
2Tan−1

(
s̃

2w( 16
s̃2

)

)
+ π

)

s̃
+ ln(−s̃)

)

+ θ(ŝ− 2Q0)

(
iπ(w(s̃2)− 1) + ln s̃− w(s̃2)

2
ln
(1 + w(s̃2)

1− w(s̃2)
)
)

)]
.

The diagram in Fig. G.2b in Borel space reads (including a factor two to account for both hemispheres
and a factor two for the mirror diagram)

B
[
J (b)
B,ur(ŝ, Q0)

]
=
−i 64π CF

mŝβ0

(
µ2e−c

)u
θ(ŝ)

Q

m
(G.33)

×
∫

d4q

(2π)4

[
θ(Q0 − q⊥)

(−q2)1+u(−v · q − ŝ
2)(−n · q)

− θ(Q0 − q⊥)
(−q2)1+u(− Q

2m n̄ · q − ŝ
2)(−n · q)

]
,

with v2 = 1, n2 = n̄2 = 0, n · n̄ = 2 and n · v = Q/m. Again the prescription ŝ = ŝ + i0 is
implied. The second term under the integral is the 0-bin that needs to be subratcted to avoid a
double counting between the soft and the collinear regions. We can again use Feynman parameters
of the form Eq. (G.11) to obtain

B
[
J (b)
B,ur(ŝ, Q0)

]
=
i 64π CF

mŝβ0

(
µ2e−c

)u (−1)uΓ(3 + u)

Γ(1 + u)
θ(ŝ)

Q

m
(G.34)

×
∫ ∞

0
dλ1dλ2

∫
d4q

(2π)4

[
θ(Q0 − q⊥)(

q2 − λ1
2 (λ1

2 + Qλ2

m − ŝ)
)3+u −

θ(Q0 − q⊥)(
q2 − λ1

2 (Qλ2

m − ŝ)
)3+u

]
.
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The q integral is solved by using Eq. (I.6) and leads to (after doing the additional substitution
λ1 → 2Q0λ1, λ2 → Q0mλ2/Q and s̃ = ŝ/Q0)

B
[
J (b)
B,ur(ŝ, Q0)

]
=

8CF

mŝπβ0

(µ2e−c

Q2
0

)u
θ(ŝ) (G.35)

×
∫ ∞

0
dλ1dλ2

[(
λ1(λ1 + λ2 − ŝ)

)−1−u −
(
1 + λ1(λ1 + λ2 − ŝ)

)−1−u

−
(
λ1(λ2 − ŝ)

)−1−u
+
(
1 + λ1(λ2 − ŝ))

)−1−u
]

=
8CF

mŝπβ0

(µ2e−c

Q2
0

)u
θ(ŝ)

1

u

∫ ∞

0

dλ1
λ1

[(
λ1(λ1 − ŝ)

)−u −
(
1 + λ1(λ1 − ŝ)

)−u

−
(
−λ1ŝ

)−u
+
(
1− λ1ŝ)

)−u
]
.

We note that the integral does not lead to a pole at u = 1/2, because the λ integral is finite. This
can be seen by investigating the behavior of the integrand for the small and larger λ:

λ−
1
2 for λ→ 0 , (G.36)

λ−
3
2 for λ→∞ . (G.37)

To get the one-loop result we take the limit u→ 0 and multiply back the factor (αsβ0)/(4π) to obtain
[w(z) = (1− 4/z)1/2]

J (b)
B,ur(ŝ, Q0) = −

1

m

αsCF

4π

θ(ŝ)

πŝ
8

∫ ∞

0

dλ1
λ1

ln

(−(λ1 − ŝ)(1− λ1ŝ)
ŝ
(
1 + λ1(λ1 − ŝ)

)
)

(G.38)

=
1

m

αsCF

4π

θ(ŝ)

πŝ
8

[
θ(2Q0 − ŝ)

(
− ln2(−s̃)− π2

4
−
(
Tan−1

( s̃

2w(16
s̃2
)

)
+ π

)
Tan−1

( s̃

2w(16
s̃2
)

))

+ θ(ŝ− 2Q0)

(
iπ
(
2 ln s̃− ln

(1 + w(s̃2)

1− w(s̃2)
))
− ln

(1 + w(s̃2)

2

)
ln
(1− w(s̃2)

2

))]
.

The complete sum of all off-shell O(αs) corrections, defined as the sum of all contributions for finite
ŝ minus the on-shell diagram of Eq. (G.29), reads

J (off)
B,ur (ŝ, Q0) =J (a)

B,ur(ŝ, Q0) + J (b)
B,ur(ŝ, Q0)− J (a,os)

B,ur (ŝ, Q0)

=
1

m

αsCF

4π

1

πŝ

{
θ(2Q0 − ŝ)

[
−8 ln2(−s̃) + 8 ln(−s̃) + 8π(1− w(16

s̃2
))

s̃

−
16w(16

s̃2
)Tan−1

(
s̃

2w( 16
s̃2

)

)

s̃
− 8Tan−1

( s̃

2w(16
s̃2
)

)(
Tan−1

( s̃

2w(16
s̃2
)

)
+ π

)
− 2π2

]

+ θ(ŝ− 2Q0)

[
iπ
(
8w(s̃2)− 8 + 16 ln s̃− 8 ln

(1 + w(s̃2)

1− w(s̃2)
))

+ 8 ln s̃

− 4w(s̃2) ln
(1 + w(s̃2)

1− w(s̃2)
)
− 8 ln

(1− w(s̃2)
2

)
ln
(1 + w(s̃2)

2

)
+

8π

s̃

]}
, (G.39)

and the corresponding Borel space result at the pole at u = 1/2 has the form

B
[
J (off)
B,ur (ŝ, Q0)

](
u ≈ 1

2

)
=
−8CF e

− c
2

mŝ2πβ0
θ(ŝ)

µ

u− 1
2

. (G.40)
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To obtain the O(αs) results for the bHQET jet function we take the imaginary part of Eqs. (G.29)
and (G.39) following Eq. (G.22). Writing the jet function as a sum of the on-shell (os) self-energy
contribution and the remaining off-shell contributions (off)

J
(τ)
B,ur(ŝ, Q0) = J

(os)
B,ur(ŝ, Q0) + J

(off)
B,ur(ŝ, Q0) (G.41)

we obtain [w(z) = (1− 4/z)1/2, s̃ = ŝ/Q0]

J
(os)
B,ur(ŝ, Q0) =

1

m

αsCF

4π

(
−8πQ0 δ

′(ŝ)
)
, (G.42)

J
(off)
B,ur(ŝ, Q0) =

1

m

αsCF

4π

{
2
(
4− π2

3

)
δ(ŝ) (G.43)

+ θ(2Q0 − ŝ)
(
− 8

Q0

[θ(s̃)
s̃

]
+
+

16

Q0

[θ(s̃) ln s̃
s̃

]
+

)

+ θ(ŝ− 2Q0)
8

ŝ

[(
w(s̃2)− 1

)
−
(
ln
(1 + w(s̃2)

1− w(s̃2)
)
− 2 ln s̃

)]}
.

The corresponding Borel space result at the pole at u = 1/2 are obtained by taking the imaginary
parts of Eqs. (G.28) and (G.40) giving

B
[
J
(os)
B,ur(ŝ, Q0)

](
u ≈ 1

2

)
=

8CF e
− c

2

mβ0

µ

u− 1
2

δ′(ŝ) , (G.44)

B
[
J
(off)
B,ur(ŝ, Q0)

](
u ≈ 1

2

)
=
−8CF e

− c
2

mβ0

µ

u− 1
2

δ′(ŝ) . (G.45)

G.4 Unreleased SCET jet function

The calculation for the unreleased SCET thrust jet function for massless quark production can be
carried out in close analogy to Sec. G.3. The full result (accounting for the contributions arising from
two hemispheres, which leads to a different factor of 2 compared to the single hemisphere jet function
that was used in the first part of the thesis) at O(αs) reads [s

′ = s/Q2
0, w(z) = (1− 4/z)1/2]

J (τ)
ur (s,Q0) =

αs(Q0)CF

4π

{(
12− 4π2

3

)
δ(s) + θ(4Q2

0 − s)
(
− 6

Q2
0

[θ(s′)
s′

]
+
+

8

Q2
0

[θ(s′) ln s′
s′

]
+

)

+ θ(s− 4Q2
0)
1

s

[
6(w(s′)− 1)− 8

(
ln
(1 + w(s′)

1− w(s′)
)
− ln s′

)]}
. (G.46)

For future reference we also provide some useful intermediate results the SCET jet function in Feyn-
man gauge. The self-energy diagrams yields

αs(µ)CF

4π

{
−δ(s) + 1

µ2

[θ(s/µ2)
s/µ2

]
+

}
(G.47)

without any cut and

αs(Q0)CF

4π

{
−2δ(s) + θ(4Q2

0 − s)
1

Q2
0

[θ(s/Q2
0)

s/Q2
0

]
+
+
θ(s− 4Q2

0)

s

(
1− w(s/Q2

0)
)}

(G.48)

for the unreleased contribution. The Wilson-line diagrams (containing the Eikonal propagator) yield

αs(µ)CF

4π

{(
4− π2

2

)
δ(s)− 2

µ2

[θ(s/µ2)
s/µ2

]
+
+

2

µ2

[θ(s/µ2) ln s/µ2
s/µ2

]
+

}
(G.49)
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without any cut and

αs(Q0)CF

4π

{(
4− π2

3

)
δ(s) + θ(4Q2

0 − s)
(
− 2

Q2
0

[θ(s/Q2
0)

s/Q2
0

]
+
+

2

Q2
0

[θ(s/Q2
0) ln s/Q

2
0

s/Q2
0

]
+

)

+ θ(s− 4Q2
0)
2

s

[
w(s/Q2

0)− 1 + ln
s

Q2
0

− ln
(1 + w(s/Q2

0)

1− w(s/Q2
0)

)]}
(G.50)

for the unreleased contribution.
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Appendix H

Unreleased contributions with an
angular cut

In this section we present the calculation for the unreleased contributions (i.e. the contributions
coming from below the shower cut Q0) at O(αs) with an additional constraint on the angle of the
emitted gluon. The results for the shower cut dependence of the fitted top quark mass from mbjℓ and
mbjW (see Sec. 9.6) as function of the angular cut are compared to the Herwig 7 event generator in
Sec. H.4. These results were not contained in Ref. [3].

The angle θ under which a gluon with four momentum qµ is emitted from the quark can be written
in terms of its light-cone components as

cos θ =
q3

q0
=
q− − q+
q− + q+

. (H.1)

The constraint that the gluon has to be emitted with an angle smaller than some maximum jet
opening angle R is then given by

q− > q+x2 , with x =

√
1 + cosR

1− cosR
= cot

(R
2

)
. (H.2)

For R = π/2 we get back the full hemisphere q− > q+.

H.1 Unreleased soft function with an angular cut

To calculate the unreleased (i.e. q⊥ < Q0) soft function with the additional constraint θ < R we start
from Eq. (G.1). Because we are only interested in the one-loop contribution we can set u = 0 and
include again the factor (αsβ0)/(4π). We are only looking at radiation in one hemisphere q− > q+

and calculate only contributions for k > 0 such that we can drop the α-regulator.

S(τ,real)
ur (k,Q0, R) =

αsCF

π
θ(k)

∫
dq−dq+

q−q+
θ(q− − q+x2)δ(k − q+) 1

π
Im
[∫ Q2

0

0
dq2⊥

1

q2⊥ − q−q+ − i0

]
,

(H.3)

where the theta function θ(q− − q+) restricting the radiation to one hemisphere was replaced by
θ(q−− q+x2) to now restrict it inside the cone with opening angle R. After doing the q⊥ integral and
taking the imaginary part

1

π
Im
[∫ Q2

0

0
dq2⊥

1

q2⊥ − q−q+ − i0

]
= θ(q−q+)θ(Q2

0 − q−q+) , (H.4)
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and doing the trivial q+ integration we get

S(τ,real)
ur (k,Q0, R) =

αsCF

π

θ(k)

k

∫
dq−

q−
θ(q− − kx2)θ

(Q2
0

k
− q−

)

=
αsCF

4π
θ
(Q0

x
− k
)(
−8

k
ln
kx

Q0

)
. (H.5)

For R = π/2 we recover our result from Eq. (G.9) (note the additional factor of 1/2 because we are
only considering one hemisphere here).

The first moment of the unreleased soft function with an angular cut R is
∫

dk k S(τ,real)
ur (k,Q0, R) =

αsCF

4π
Q08 tan

(R
2

)

=
αsCF

4π
Q0

(
4R+O(R3)

)
. (H.6)

H.2 Unreleased bHQET jet function with an angular cut

To calculate the unreleased bHQET jet function with an angular cut we have to recalculate the
unreleased contributions to the diagrams in Fig. G.2 with the additional constraint of Eq. (H.2) on
the momentum of the radiated gluon. Since this cut only affects the real radiation, i.e. ŝ > 0,
the calculation becomes easier when taking the imaginary part (see Eq. (G.22)) prior to doing the
integrals by replacing each of the propagators in the integral by its on-shell condition

i

k2 + i0
→ 2πδ(k2)θ(k0) . (H.7)

The unreleased contributions to the self-energy diagram in Fig. G.2a with an angular cut are

J
(a,real)
B,ur (ŝ, Q0, R) =

−4αsCF

mŝ2

∫
d4q

(2π)4
2πδ(q2)θ(q0) 2πδ

(
v · q − ŝ

2

)
θ(Q2

0 − q2⊥)θ(q0 cosR− q3)

= − 1

m

αsCF

4π

4

ŝ2

∫
dq−dq+dq2⊥ θ(q

2
⊥)θ(q

−)δ(q+q− − q2⊥)δ
( Q
2m

q+ +
m

2Q
q− − ŝ

2

)

× θ(Q2
0 − q2⊥)θ(q− − x2q+) , (H.8)

where the last two theta-functions restrain the radiation of the gluon into the unreleased region and
within the jet cone with x defined in Eq. (H.2). After doing the trivial q+ and q⊥ integrations using
the delta-functions and a simple rescaling q− → Q

mq
− one arrives at

J
(a,real)
B,ur (ŝ, Q0, R) = −

1

m

αsCF

4π

4

ŝ2

∫ ∞

0
dq− θ(ŝ− q−)θ(Q2

0 − ŝq− + (q−)2)θ
(
q− − ŝy

1 + y2

)
, (H.9)

where we introduced the variable

y =
m

Q
cot
(R
2

)
. (H.10)

This integral is solved to [w(z) = (1− z2)1/2, s̃ = ŝ/Q0]

J
(a,real)
B,ur (ŝ, Q0, R) =

1

m

αsCF

4π

4

ŝ

{
θ
(Q0(1 + y2)

y
− ŝ
) −1
1 + y2

+ θ
(
ŝ− Q0(1 + y2)

y

)1
2

(
w
(2
s̃

)
− 1
)

+ θ(1− y)θ(ŝ− 2Q0)θ
(Q0(1 + y2)

y
− ŝ
)
w
(2
s̃

)
}
. (H.11)
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The contribution from real radiation to the second diagram in Fig. G.2b (also including the mirror
diagram but again with a missing factor of 2 with respect to the previous sections because we only
consider one hemisphere) is

J
(b,real)
B,ur (ŝ, Q0, R) =

4QαsCF

m2ŝ

∫
d4q

(2π)4
1

q−
2πδ(q2)θ(q0) 2πδ

(
v · q − ŝ

2

)
θ(Q2

0 − q2⊥)θ(q0 cosR− q3)

− zero-bin

=
Q

m2

αsCF

4π

2

ŝ

∫
dq−dq+dq2⊥

1

q−
θ(q2⊥)θ(q

−)δ(q+q− − q2⊥)

×
[
δ
( Q
2m

q+ +
m

2Q
q− − ŝ

2

)
− δ
( Q
2m

q+ − ŝ

2

)]
θ(Q2

0 − q2⊥)θ(q− − x2q+) ,
(H.12)

where the last two theta-functions restrain the radiation of the gluon into the unreleased region and
within the jet cone with x defined in Eq. (H.2). After doing the trivial q+ and q⊥ integrations using
the delta-functions and a simple rescaling q− → Q

mq
− one arrives at

J
(b,real)
B,ur (ŝ, Q0, R) =

1

m

αsCF

4π

4

ŝ

∫ ∞

0

dq−

q−

[
θ(ŝ− q−)θ(Q2

0 − ŝq− + (q−)2)θ
(
q− − ŝy

1 + y2

)

− θ(Q2
0 − ŝq−)θ(q− − ŝy2)

]
, (H.13)

This integral is solved to

J
(b,real)
B,ur (ŝ, Q0, R) =

1

m

αsCF

4π

4

ŝ

{
θ
(Q0(1 + y2)

y
− ŝ
)
ln
(1 + y2

y2

)

+ θ
(
ŝ− Q0(1 + y2)

y

)
ln
( 2

1 + w
(
2
s̃

)
)
+ θ
(Q0

y
− ŝ
)
2 ln
( ŝy
Q0

)

+ θ(1− y)θ
(Q0(1 + y2)

y
− ŝ
)
θ(ŝ− 2Q0) ln

(1− w
(
2
s̃

)

1 + w
(
2
s̃

)
)}

. (H.14)

Adding up all diagrams the unreleased bHQET jet function with an angular cut R for ŝ > 0 is
[w(z) = (1− z2)1/2, s̃ = ŝ/Q0].

J
(real)
B,ur (ŝ, Q0, R) =

1

m

αsCF

4π

4

ŝ

{
θ
(Q0

y
− ŝ
)[

2 ln s̃+ ln(1 + y2)− 1

1 + y2

]

+ θ
(
ŝ− Q0

y

)
θ
(Q0(1 + y2)

y
− ŝ
)[

ln
(1 + y2

y2

)
− 1

1 + y2

]

+ θ
(
ŝ− Q0(1 + y2)

y

)[
ln
( 2

1 + w
(
2
s̃

)
)
+

1

2

(
w
(2
s̃

)
− 1
)]

+ θ(1− y)θ(ŝ− 2Q0)θ
(Q0(1 + y2)

y
− ŝ
)[
w
(2
s̃

)
− ln

(1 + w
(
2
s̃

)

1− w
(
2
s̃

)
)]}

, (H.15)

with y defined in Eq. (H.10).

The first moment of the unreleased bHQET jet function with an angular cut R is

∫
dŝ ŝ mJ

(real)
B,ur (ŝ, Q0, R) =

αsCF

4π
(−4Q0π)

[
1− 2

π
tan−1

(
m

Q
cot
(R
2

))]
. (H.16)
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For R = π or in the limit of infinite boost m/Q → 0 we exactly recover our result in Eq. (8.26) for
the real radiation terms, i.e. the terms without the δ′-distribution (note the additional factor of 1/2
because we are considering only one hemisphere jet function here). For R = π/2 we do so up to terms
suppressed by m/Q.

The result can be expanded to simplify to

∫
dŝ ŝ mJ

(real)
B,ur (ŝ, Q0, R) =

αsCF

4π
(−4Q0π)

[
1− 2

π
tan−1

( 2m
QR

)
+O

(mR
Q

)]
. (H.17)

For R≪ m
Q we find a linear dependence on R

∫
dŝ ŝ mJ

(real)
B,ur (ŝ, Q0, R) =

αsCF

4π
Q0

(
−4Q

m
R+O

(Q3R3

m3

))
. (H.18)

Comparing the first moment with Eq. (H.6) we see that

∫
dŝ ŝ mJ

(real)
B,ur (ŝ, Q0, R) = −

Q

m

∫
dk k S(τ,real)

ur (k,Q0, R) +O
(Q3R3

m3

)
, (H.19)

which implies a cancellation of the leading contributions to the cutoff induced peak shift from soft
and ultra-collinear radiation for small jet radii R.

H.3 Coherent branching with an angular cut

To calculate the unreleased contributions in coherent branching with a constraint on the angle of
the gluon emission θ < R, we start from Eq. (8.6), with and additional factor of 1/2 because we are
only looking at one hemisphere. The light-cone components of the gluon momentum after the first
emission can be expressed in terms of the variables of coherent branching as

q− = Q(1− z) +O
(m2

Q2

)
,

q+ =
q2⊥

Q(1− z)2 +O
(m2

Q2

)
, (H.20)

where we have neglected terms that are quadratic in the mass because we are only interested in the
term linear in the mass that gives the leading contribution to the peak shift. With these relations
the angular constraint in Eq. (H.2) can be expressed as

z < 1− q⊥x

Q
. (H.21)

For R = π/2 we recover again the integration limit z < 1− q⊥/Q as it is already present in Eq. (8.6).
For R < π/2 we can distinguish two cases for the resulting integration limits on q⊥ and z

for R > 2 cot−1
( Q
Q0

)
∼ 2Q0

Q
: 0 < q⊥ < Q0 , 0 < z < 1− q⊥x

Q

for R < 2 cot−1
( Q
Q0

)
∼ 2Q0

Q
: 0 < q⊥ <

Q

x
, 0 < z < 1− q⊥x

Q
(H.22)

The latter one is relevant only for unrealistically small R ≲ Q0/Q, and furthermore these contributions
can be shown to scale like Q2

0 and are therefore neglected. Expanding the exponential function
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keeping only terms linear in ν and changing the integration variable q2⊥ → q2 −m2(1 − z)2 we get

[v =
√

1 + m2x2

Q2 ]

I(ν,Q,m,Q0, R) = − ν

Q2

∫ Q2
0

0
dq2⊥

∫ 1− q⊥x

Q

0
dz PQQ

[
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(
q2⊥ +m2(1− z)2

)
, z,

m2(1− z)2
q2⊥ +m2(1− z)2

]

= − 2ν

Q2

{∫ Q0v

0
dq q
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q2

]
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√
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αs(q), z,

m2(1− z)2
q2

]}

= − 2CF ν

πQ2

{[Qv
x

+m
(mx
Qv
− 2
)] ∫ Q0v

0
dq αs(q)

+m

∫ m

Q0v
dq αs(q)

(
q −

√
q2 −Q2

0

)2

q
√
q2 −Q2

0

}
, (H.23)

dropping terms of order Q0/m and m/Q. Keeping only terms linear in Q0 we can extend the upper
limit of the second integral to infinity, which leads to the result

I(ν,Q,m,Q0, R) = −
{
8
Q0

Q
tan
(R
2

)
− 4π

Q0m

Q2

[
1− 2

π
tan−1

(m
Q

cot
(R
2

))]} CFαs(Q̃0)

4π
ν , (H.24)

in perfect agreement with Eqs. (H.6) and (H.16). In the presence of the angular cut the scale of the
strong coupling is changed from Q0 to

Q̃0 = Q0

√
1 +

m2

Q2
cot2

(R
2

)
≈ Q0

2m

QR

[
1 +O

(Q3R3

m3

)]
. (H.25)

In the limit of the full hemisphere R = π/2 (and multiplying a factor of 2 for accounting for both
hemispheres) we recover the result of Eq. (8.8).

H.4 Comparison with MC runs

In the previous sections we have calculated how the shower cut dependent unreleased contributions
of a top quark jet are affected by an additional constraint on the momentum of the radiated gluon.
The constraint was that the gluon has to be emitted with an angle with respect to the top quark
smaller than some jet radius R. Under the assumption that the jet axis is aligned with the direction
of the original top quark, this corresponds to the condition that any gluon radiated from that top
must fulfill in order to get clustered into that jet when applying the Cambridge-Aachen-type jet
algorithms defined with the distance measures in Eq. (9.4) with p = 0. Since we now know how the
cutoff dependence of these contributions depends itself on the jet radius R, we can use this to argue
how the cutoff dependence of the mass fitted from b-jet+lepton and b-jet+W spectra, as described
in Sec. 9.6, should depend on R. This is, however, not a real derivation, since we are still using
the factorization setup valid for the decay insensitive thrust observable. An actual calculation of
how the choice of the jet radius affects the cutoff dependence of the b-jet+lepton/W would require a
factorization theorem designed specifically for those observables, which is still missing today. But if
we assume that at least the part of that factorization theorem related to the top quark will have a
similar form consisting of a bHQET jet function and a soft function of Wilson line along the direction
of the top quark momentum, we can try to make some conclusions about the dependence on the

229



production stage shower. This means we consider only variations in the shower cutoff for radiation
off the top quark before its decay, but leave the cutoff on radiation from the bottom quark fixed.
Furthermore we are assuming that the b-jet axis is aligned with the direction of the top quark, which
is a good approximation only for very large boosts.

The conclusions presented here should thus rather be seen as an educated guess, and even though the
analytic calculations agree very well with the results obtained from actual MC runs as shown below,
one should be cautious as this might still be only coincidence.

Assuming that the dependence on the production stage shower cut of the mass parameter fitted from
b-jet+lepton/W spectra can be estimated from the cutoff dependence of the coherent branching top
jet function with an angular cut in Eq. (H.24) (or likewise from the soft and jet functions in Eqs. (H.6)
and (H.16)), we find from the cutoff induced shift in the distributions that the relation between the
fitted mass for two different cutoffs is

mR
t,fit(Q0) = mR

t,fit(Q
′
0)−

{
4
Q

mt
tan
(R
2

)
− 2π

[
1− 2

π
tan−1

(mt

Q
cot
(R
2

))]}

×
∫ Q0

Q′
0

dR′
CFαs

(
R′
√
1 +

m2
t

Q2 cot2
(
R
2

))

4π
. (H.26)

We can now compare this with the results from fitting the massmt,fit from the invariant mass spectrum
of the b-jet-lepton and the b-jet-W invariant as in Sec. 9.6. In Fig. H.1 we show the mass values
obtained from runs with different Q0 fitted to reference runs with Q0 = 1.5 GeV, while the decay
stage cut Q0,b is held fixed at Q0,b = 1.5 GeV. Otherwise we use the same settings and parameters as
in Sec. 9.6. The results are shown for different values of the angular cut 0.25 < R < 1.5. The dashed
gray line is the prediction of the dependence of the fitted mass on the production shower cut Q0 in
Eq.(H.26), with mR

t,fit(Q
′
0 = 1.5GeV) = 173 GeV.

We see a very good agreement over the full range of tested values of R, reaching from the limit of
R ∼ mt/Q, where we see the cancellation of the cutoff induced shifts from soft and ultra-collinear
radiation leading to a cutoff independent result for the fitted mass, to R ∼ π/2 where Eq. (H.26)
reduces to Eq. (9.5). But it should be emphasized once more that this is no theoretically sound
derivation and no proof that the dependence on the production stage shower cut of those observables
can really be computed in this simply way.
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Figure H.1: Fitted top quark mass as a function of the production state shower cut Q0 for Q = 700
GeV and a fixed decay stage shower cut Q0,b = 1.5 GeV, obtained from the mbjℓ endpoint (stars) and
the mbjW resonance region (triangles) using the kt-type algorithm (green), the Cambridge-Aachen-
type algorithm (blue) and the anti-kt-type algorithm (red) for b-jet clustering. The dashed line
corresponds to Eq. (H.26).
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Appendix I

Integrals in d-dimensions with p⊥ cut

For the calculation of the jet and soft functions with and without a q⊥-cut we need to solve d-
dimensional integrals of the form

∫
ddq

(2π)d
fQ0(q⊥)

(q2 +∆)n
, (I.1)

for the cases fQ0(q⊥) = 1 (no cut), fQ0(q⊥) = θ(q⊥−Q0) (only above cut) and fQ0(q⊥) = θ(Q0− q⊥)
(unreleased). After a Wick-rotation and doing the energy and angular integrals that are not affected
by the cutoff, one arrives at

2i(−1)n

(4π)
d
2 (n− 1)Γ

(
d
2 − 1

)
∫ ∞

0
dq⊥ fQ0(q⊥)

qd−3
⊥

(q2⊥ −∆)n−1
. (I.2)

This can be solved for the three different cases and gives

∫
ddq

(2π)d
1

(q2 +∆)n
=
i(−1)n Γ

(
n− d

2

)

(4π)
d
2Γ(n)

(−∆)
d
2
−n , (I.3)

∫
ddq

(2π)d
θ(q⊥ −Q0)

(q2 +∆)n
=
i(−1)nB

(
∆
Q2

0
, n− d

2 , 2− n
)

(4π)
d
2 (n− 1)Γ

(
d
2 − 1

) (∆)
d
2
−n , (I.4)

∫
ddq

(2π)d
θ(Q0 − q⊥)
(q2 +∆)n

=
i(−1)n 2F1

(
d
2 − 1, n− 1, d2 ,

Q2
0

∆

)

(4π)
d
2 (n− 1)Γ(d2)

(Q2
0)

d
2
−1(−∆)1−n (I.5)

−−−→
d→4

i(−1)n
16π2(n− 1)(n− 2)

(
(−∆)2−n − (Q2

0 −∆)2−n
)
, (I.6)

where in the last line we took the limit d → 4 since there are no divergences in the unreleased
contributions that need to be regularized by dimensional regularization.
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Appendix J

Plus distributions

The standard plus distribution for some dimensionless function g(x) is defined as

[θ(x)g(x)]+ = lim
β→0

d

dx
[θ(x− β)G(x)] with G(x) =

∫ x

1
dx′ g(x′) . (J.1)

The special case used in this thesis is

Ln(x) =
[
θ(x) lnn x

x

]

+

, (J.2)

such that

∫ ∆

0
dxLn(x) =

lnn+1∆

n+ 1
. (J.3)

The 2-dimensional plus distributions that appear in the TMD beam and soft functions are defined as

Ln(p⃗T , µ) =
1

πµ2
Ln
( |p⃗T |2

µ2

)
, (J.4)

such that

∫

|p⃗T |<∆
d2p⃗T Ln(p⃗T , µ) =

lnn+1
(
∆2

µ2

)

n+ 1
. (J.5)

For the Fourier transform we use the convention

f̃ (⃗b) =

∫
d2p⃗T ei b⃗·p⃗T f(p⃗T ) . (J.6)

The Fourier transforms of the 2-dimensional distributions required here are

δ(2)(p⃗T ) ←→ 1 ,

L0(p⃗T , µ) ←→ −Lb ,

L1(p⃗T , µ) ←→
L2
b

2
,

L2(p⃗T , µ) ←→ −1

4

(
L3
b + 4ζ3

)
, (J.7)

with Lb defined in Eq. (2.67).
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Appendix K

Simulation settings for Herwig 7

In this appendix we document the changes relative to the default settings inHerwig version 7.1.2 [226]
with which these studies have been carried out. All of the results are parton level simulations, with
special settings to make contact with the analytic approach and are not advocated to be used in a
full simulation. All simulation is based on the default LEP-Matchbox.in input file, which is prepared
to generate both leading order and next-to-leading order matched simulations.

K.1 Common settings

In all of the simulations we consider, we use light quarks u, d, s, c, b by setting their nominal mass to
zero, and their consitutent masses, as well as the gluon’s constituent mass to be effectively zero,

set /Herwig/Particles/x:NominalMass 0*GeV

set /Herwig/Particles/x:ConstituentMass 0.00001*GeV

set /Herwig/Particles/g:ConstituentMass 0.000021*GeV

where x = u,d,s,c,b. We also switch off QED initial state radiation,

set /Herwig/Particles/e+:PDF /Herwig/Partons/NoPDF

set /Herwig/Particles/e-:PDF /Herwig/Partons/NoPDF

and do consider the kinematic reconstruction option employed in earlier Herwig versions,

set /Herwig/Shower/ShowerHandler:ReconstructionOption CutOff

We always consider parton level results

read Matchbox/PQCDLevel.in

The parton shower cutoff is changed via

set /Herwig/Shower/QtoQGSudakov:pTmin X*GeV

set /Herwig/Shower/GtoGGSudakov:pTmin X*GeV

set /Herwig/Shower/GtoQQbarSudakov:pTmin X*GeV

where X=Q0/GeV. If gluon branchings are desired to be switched off, we use
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cd /Herwig/Shower

do SplittingGenerator:DeleteFinalSplitting g->g,g; GtoGGSudakov

do SplittingGenerator:DeleteFinalSplitting g->x,xbar; GtoQQbarSudakov

where x again runs over the different quark flavors. We always switch off g → tt̄ branchings by an
according statement. If additionally we qant to quantify the remaining impact of angular ordering,
we choose

cd /Herwig/Shower

set QtoQGSplitFn:AngularOrdered No

set GtoGGSplitFn:AngularOrdered No

set QtoQGSplitFn:ScaleChoice pT

set GtoGGSplitFn:ScaleChoice pT

As far as the calculation of the production process is concerned, we either use the leading order,
subtractive or multiplicative matched simulation,

read Matchbox/MCatLO-DefaultShower.in

read Matchbox/MCatNLO-DefaultShower.in

read Matchbox/Powheg-DefaultShower.in

respectively. The Matchbox build-in matrix elements for e+e− → jets at leading and next-to-leading
order are employed in our simulation. Unless stated otherwise, matrix elment corrections are switched
off,

set /Herwig/Shower/ShowerHandler:HardEmission None

K.2 Massless case

In the massless case we generate two-jet events using light flavours only

set Factory:OrderInAlphaS 0

set Factory:OrderInAlphaEW 2

do Factory:Process e+ e- -> j j

No other special settings are applied.

K.3 Massive case

In the massive case, we produce top quark pairs on-shell,

read Matchbox/OnShellTopProduction.in

set Factory:OrderInAlphaS 0

set Factory:OrderInAlphaEW 2

do Factory:Process e+ e- -> t tbar

We exclusively select leptonic decays,
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do /Herwig/Particles/t:SelectDecayModes t->nu_mu,mu+,b; t->nu_e,e+,b;

do /Herwig/Particles/tbar:SelectDecayModes tbar->nu_mubar,mu-,bbar; \

tbar->nu_ebar,e-,bbar;

If an independent cutoff on the top quark shower is desired, we use

cd /Herwig/Shower

do SplittingGenerator:DeleteFinalSplitting t->t,g; QtoQGSudakov

cp QtoQGSudakov TtoTGSudakov

do SplittingGenerator:AddFinalSplitting t->t,g; TtoTGSudakov

set /Herwig/Shower/TtoTGSudakov:pTmin X*GeV
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