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Kurzfassung

Die räumliche Verteilung der Kriminalität war Gegenstand einer der ersten wissenschaft-
lichen Studien in der Kriminologie. Heute bildet die Umweltkriminologie einen wichtigen
theoretischen Rahmen in der aktuellen kriminologischen Theorie. Der wesentliche Punkt
der Umweltkriminalität ist, dass die Kriminalität nicht zufällig in Raum und Zeit verteilt ist.
Die Einbeziehung von Raum und Zeit in die Kriminalitätsvorhersage hat sich als wertvolle
Erkenntnis für viele verschiedene Forschungsbereiche erwiesen. In den letzten 30 Jahren
haben Fortschritte in der Informationstechnologie, insbesondere geografische Information-
ssysteme, die Einführung von Kriminalitätsprognosen in den Polizeidienststellen erleichtert.
Die Verwendung von Prognoseinstrumenten durch die Polizei ist jedoch heute stark in die
Kritik geraten. Die Verwendung voreingenommener Variablen hat dazu geführt, dass bes-
timmte Bevölkerungsgruppen in den Vereinigten Staaten weiterhin zu Opfern werden. Die
größte Herausforderung, vor der die Strafverfolgungsbehörden heute stehen, ist jedoch die
effiziente und genaue Analyse der wachsenden Datenmengen. Daher werden Methoden
benötigt, die keine verzerrten Daten verwenden, Daten effizient nutzen und genaue Vorher-
sagen machen.

Eine Methode, die alle diese Anforderungen erfüllt, sind die Modelle des Space-Time
Auto-Regressive Moving Average (STARMA). Obwohl sie nachweislich Daten effizient nut-
zen und ähnliche Methoden übertreffen, sind sie im Bereich der Kriminalitätsvorhersage
noch nicht eingehend untersucht worden. Diese Studie zielt darauf ab, die Forschungslücke
im Bereich der Kriminalitätsvorhersage zu schließen, indem sie an frühere Studien anknüpft
und STARMA-Modelle mit ihrem nicht-räumlichen Gegenstück (ARIMA) in verschiedenen
Zeiträumen und Kriminalitätsarten vergleicht. Frei verfügbare Daten und Software wur-
den verwendet, um die Replikation dieser Analyse zu erleichtern, und der programmierte
R-Code wurde veröffentlicht.

In der Studie werden STARMA- und ARIMA-Modelle für drei Arten von Verbrechen
(alle, Gewalt- und Eigentumsdelikte) in fünf Zeiträumen (wöchentlich, monatlich, viertel-
jährlich, halbjährlich und jährlich) erstellt. Die Modelle werden dann mit ihren Fehler-
metriken (MSE, RMSE und R2), den abgebildeten Residuen des Modells und den LISA-
Karten der Modellresiduen verglichen.

Die wichtigsten Ergebnisse dieser Studie sind, dass STARMA-Modelle besser abschnei-
den, wenn die Straftaten im Untersuchungsgebiet mindestens ein Moran’s I von 0, 2 auf-
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weisen. Wenn die Straftaten jedoch zufällig im Raum verteilt sind, schneiden die ARIMA-
Modelle besser ab. Die besten STARMA-Modelle wurden für den vierteljährlichen Zeitraum
gefunden, und der wichtigste ist der autoregressive Parameter erster Ordnung.



Abstract

The spatial distribution of crime was the subject of one of the first scientific studies in
criminology. Today, environmental criminology forms an important theoretical framework
in current criminological theory. The essential point of environmental criminology is that
crime is not randomly distributed in space and time. The incorporation of space and time
into crime prediction has proven to be a valuable insight for many different areas of re-
search. Over the past 30 years, advances in information technology, particularly geographic
information systems, have facilitated the implementation of crime forecasting in police de-
partments. However, the use of forecasting tools by police today has come under severe
criticism. The use of biased variables has resulted in the continued victimization of certain
populations in the United States. However, the greatest challenge facing law enforcement
agencies today is how to efficiently and accurately analyze the growing volumes of data.
Therefore, methods are needed that do not use biased data, use data efficiently, and make
accurate predictions.

Space-Time Auto-Regressive Moving Average (STARMA) models are one method that
meets all of these requirements. Although they have been shown to use data efficiently
and outperform similar methods, they have not been studied in depth in the field of crime
prediction. This study aims to fill the research gap in crime forecasting by following up
on previous studies and comparing STARMA models with their non-spatial counterpart
(ARIMA) in different time periods and crime types. Freely available data and software
were used to facilitate replication of this analysis, and programmed R code was published.

The study builds STARMA and ARIMA models for three types of crimes (all, violent,
and property) in five time periods (weekly, monthly, quarterly, semiannual, and annual).
The models are then compared with their error metrics (MSE, RMSE, and R2), the mapped
residuals of the model, and the LISA maps of the model residuals.

The main findings of this study are that STARMA models perform better when the
crimes in the study area have at least a Moran’s I of 0.2. However, when the crimes are
randomly distributed in space, the ARIMA models perform better. The best STARMA
models were found for the quarterly period, and the most important is the first-order au-
toregressive parameter.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis. First, the background for the choice
of the topic of this thesis is presented. A brief historical overview is also given in the next
section. Then, a section explains the problem and the reason why the analysis conducted
is necessary. Then, the scope of the research is outlined. The scientific objectives and the
research questions that this thesis aims to answer are provided. In the same section, the
limitations of the research are also established. Finally, the related work in the context of
this thesis is presented.

1.1 Background

Geography has become progressively more relevant in law enforcement and crime prevention
(J. Cohen et al., 2007), although the histories of criminology and geography are closely
intertwined. The history of criminology dates back to the early 19th century in France,
where the first studies of the spatial distribution of criminals were conducted after the
French government published data on crime and the prison system (Burinsma & Johnson,
2018). Based on this data, André-Michel Guerry and Adriano Balbi created the first crime
map showing the relationship between education level and two types of crime: Violent and
property crimes (Hunt, 2019).

Today environmental criminology is a prominent theoretical framework in current crim-
inological theory (Andresen, 2020). While mainstream criminology is primarily concerned
with why a crime is committed, the spatial distribution of criminal events is the primary
concern of environmental criminology (Burinsma & Johnson, 2018). The Crime Pattern
Theory serves as a metatheory of environmental criminology (P. J. Brantingham & Bran-
tingham, 2008), summarizing the three major theories in the field:

• the Routine Activity Theory by L. E. Cohen and Felson (1979) addresses dif-
ferences or shifts in the social environment that are indicative of changes in crime
rates;

1



CHAPTER 1. INTRODUCTION 2

• the Geometry Of Crime by P. J. Brantingham and Brantingham (1981) deals with
the constructed environment and how it shapes the geographic pattern of crime;

• and the Rational Choice Theory by Cornish and Clarke (1986) looks at with
the cognitive environment that determines the decision-making processes of potential
criminals (Andresen, 2020).

These theories combined under the Crime Pattern Theory by P. J. Brantingham and
Brantingham (1984) give an explanation on why crimes occur in certain places at specific
times. Moreover, the theories lead to the notion that place, rather than people, is the
critical element of crime (Hunt, 2019). Therefore, it should be possible to predict crime
using space as a variable (P. J. Brantingham & Brantingham, 1981).

The theories of environmental criminology have been scientifically tested, and in the
last decade various research fields have made great strides in developing methods for spa-
tiotemporal prediction of crime (Kounadi et al., 2020). The integration of space and time
information in crime forecast can be used as valuable knowledge for many purposes (Sham-
suddin et al., 2017). For example, methods that incorporate space and time can help law
enforcement target persistent crime hotspots (Gorr & Harries, 2003). In addition, these
methods can assist policymakers plan for safer public spaces (Perry et al., 2013). Another
example would be to help researchers understand and explain the geography of risk (Li et al.,
2014). The spatial forecast of crime-related information is called spatial crime forecasting
(SCF) (Kounadi et al., 2020).

Perry et al. (2013) define three categories of predictive methods based on the context
and goals of predictive methods:

• Hot-spot analysis, statistical regression, near-repetition, and data mining methods
typically identify where a crime will occur over a given time period (when) and con-
sequently identify who is probably to be a victim.

• Temporal and spatial methods are used to determine when a crime is most likely to
occur. They also determine who will be victims because they take into account the
local population.

• Risk-terrain analysis addresses the spatial factors that lead to an increased risk of
crime and, therefore, where certain crimes might occur more frequently.

Most crime forecasting methods involve examining data on past crimes and victims,
whether from a tactical (short-term) or strategic (long-term) perspective (Perry et al.,
2013). Depending on the purpose for law enforcement, Gorr and Harries (2003) classifies
the duration of a forecast as short-term (tactical deployment), medium-term (resource allo-
cation), or long-term (strategic planning). The main challenge for law enforcement agencies
today is to efficiently and accurately analyze the growing amount of crime data (Malleson
et al., 2010).
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Advances in geographic information technologies in the 1990s facilitated the introduction
of crime forecasting into police departments (Gorr & Harries, 2003). Today, the use of
forecasting methods by police is known as predictive policing. Predictive policing is the
application of analytical techniques to identify likely targets for police action and prevent
crime through statistical prediction (Perry et al., 2013). In recent years, however, predictive
policing has come under heavy criticism for targeting certain groups in society (McGrory
& Bedi, 2020; Uberti, 2021).

The main objective of this thesis is to explore the potential of Space-Time Auto-
Regressive (STAR) models for long-term crime forecasting. The method is derived from
the STARIMA (Space-Time Auto-Regressive Integrated Moving Average) model proposed
by Pfeifer and Deutsch (1980). An autoregressive model predicts the variable of interest
using a linear combination of its past variables (Cesario et al., 2016). A space-time model
accounts for the linear dependence between time- and space-lagged variables (Giacomini &
Granger, 2004).

The main reason for the interest in the STAR methods are the findings of Shoesmith
(2013), which found that STAR models use data efficiently and outperform other similar
models. Yet, his study remains the only paper in the field of spatial crime forecasting, which
explored this method.

The study area of this work will be New York City, following the study of Rentzelos
(2020), as the city provides open data on criminal incidents and has a high crime rate.

The next section elaborates on some of the problems just described in the area of spatial
crime prediction.

1.2 Problem Statement

The main issue concerning the STAR method in SCF is that it has been little researched.
The work of Shoesmith (2013) is the only peer-reviewed work that examines the STAR
method for forecasting crimes. While STAR models are relatively unexplored in SCF, there
are other scientific fields where STAR models have been explored more extensively, such
as economics (Nurhayati et al., 2012; Pfeifer & Bodily, 1990), business (Borovkova et al.,
2008; Ohtsuka et al., 2010), disease (Gottwald et al., 1992; Reynolds & Madden, 1988), and
environmental (Deutsch & Pfeifer, 1981; Ip & Li, 2017).

As mentioned in the previous section, the biggest challenge for law enforcement agencies
is to efficiently and accurately analyze the increasing data. Because STAR models have been
shown to use data efficiently and often outperform other models (Shoesmith, 2013), they
have potential for implementation in law enforcement agencies.

With increasing urbanization bringing significant social and economic changes, city gov-
ernments face several challenges to ensure public safety (Catlett et al., 2019). As described
in the previous section, long-term forecasts are used for strategic planning. To assist city
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governments, further long-term SCF research is needed to facilitate strategic decisions for
the future.

Predictive policing has experienced a backlash in recent years (Uberti, 2021). For ex-
ample, McGrory and Bedi (2020) reported on an intelligence program developed by the
Pasco County Sheriff with the goal of preventing crimes before they occur. However, over
the years, a system was built that continuously monitored and harassed residents based on
arrest histories, unspecified information, and arbitrary decisions by police analysts. The
inclusion of biased information in predictive methods, as well as a general criticism of po-
lice after the murder of George Floyd, prompted several police departments in the United
States to ban predictive policing methods (Uberti, 2021). This recent criticism calls for
more research on effective methods that eliminate as many confounding variables as possi-
ble. Because STAR models use only spatial and temporal information about crimes, they
are of interest to the field of predictive policing.

The next section presents the research scope, scientific objectives, and research questions.

1.3 Research Scope

The aim of this paper is to make a further contribution to the field of SCF by investigat-
ing the little explored STAR method. Different temporal resolutions are investigated to
accommodate different application purposes, but the focus is on long-term forecasts.

Many studies have found variations in the spatial distribution between different types of
crimes (Balbi & Guerry, 1829; R. Harries, 2003; Shoesmith, 2013). For example, R. Harries
(2003) found that predictions of property crimes are generally more accurate than violent
crimes. Therefore, following the classification of Shoesmith (2013) and Rentzelos (2020),
crime data are divided into three categories: all, property, and violent crimes.

To verify the performance of a proposed method, a comparable baseline is needed (Lin
et al., 2018). The baseline method in this work will be the non-spatial counterpart of
STARIMA, the ARIMA models. Research in the field of crime prediction suggests that
ARIMA models have high predictive accuracy Cesario et al. (2016), Chen et al. (2008), and
Gorr et al. (2003). In addition, the forecast1 R package allows for quick and easy modeling
and prediction of ARIMA models. The comparison between the methods will help you
determine if the integration of the space is worth the extra effort.

The different methods are compared at a range of time steps and for differing crime
types. The comparison between the models is performed using different error metrics for
regressions as well as a visual inspection with maps of the model errors.

In the systematic review of SCF, Kounadi et al. (2020) notes that current studies often
lack reporting of study experiments, making them difficult to comprehend. Therefore, the
process from data preparation to implementation and evaluation of the models is written

1https://cran.r-project.org/web/packages/forecast/

https://cran.r-project.org/web/packages/forecast/
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in R, a programming environment for data manipulation, computation, and graphing that
many people use as a statistical system (Venables et al., 2021). The R code is published
in the appendix of the paper and on GitHub2. In addition, the analysis is performed using
freely available data and software.

1.3.1 Scientific Objectives and Research Questions

As mentioned earlier, there is a need in SCF for further research on STARIMA methods and
their ability to make long-term predictions compared to traditional forecasting methods.
This work is intended to help answer the following study objectives (SO) and research
questions:

SO 1: To explore the long-term forecasting performance using the STARMA method.

1.1 How does the performance of STARMA models vary with increasing levels of
time lags?

2.2 What is the effect of the model’s parametrization on the predictive results?

SO 2: To compare the STARMA method with its ARIMA counterpart.

2.1 What is the added value or limitations when using the STARMA method com-
pared to the ARIMA method?

2.2 Which models performs best and is this dependent on the time lag?

SO 3: To identify if the STARMA method’s performance differs between types of crime.

3.1 Are best performing time lags dependent on the crime type, and if yes which
time lags are more adequate for each crime type?

1.3.2 Research Boundaries

In this work, freely available data and software are used to be able to reproduce the analysis.
Therefore, there are restrictions on which data can be used. A detailed overview of the
available options and the selected data can be found in section 3.3. In addition, the R
packages are a strong limitation for the analyses performed, since the modeling is done
with the currently available packages. A detailed presentation of the software and packages
used can be found in section 3.1.

Since exploring different spatial scales (e.g., blocks, zip codes, police precincts) is not
part of the research questions, an appropriate spatial scale is chosen based on the selected
study area and data, but is not explored further. Also, the selected study area will be
treated as an isolated area due to the limitations in terms of harmony of data and time
constraints of the thesis.

2https://github.com/baccanazzo/ExploringCrimeForecastPerformance_STARM_ARIMA

https://github.com/baccanazzo/ExploringCrimeForecastPerformance_STARMA_ARIMA


CHAPTER 1. INTRODUCTION 6

1.4 Related work

STAR models are relatively unexplored in the field of SCF. While STAR models are rel-
atively unexplored in SCF, there are other scientific fields where STAR models have been
explored, such as economics (Nurhayati et al., 2012; Pfeifer & Bodily, 1990), business
(Borovkova et al., 2008; Ohtsuka et al., 2010), disease (Gottwald et al., 1992; Reynolds
& Madden, 1988), and environment (Deutsch & Pfeifer, 1981; Ip & Li, 2017).

Although STAR models are relatively unexplored in SCF, extensive literature on pre-
dicting crime in space and time uses regression models. Table 1.1, based on the table layout
of Kounadi et al. (2020), provides a quick comparison of the selected related scientific work.
Due to the limited length of the thesis, not every paper can be presented in detail, but three
of the most influential studies for this thesis are presented in the following subsections.

Most of the selected studies on crime have their study area in the U.S. at the city level.
With its extensive history in criminology and its vast, freely available data, it is generally
where most of the studies are conducted. Although most selected studies examine crime at
the city level, the spatial units vary in size and shape.

Another factor that varies widely across the selected studies is time. Some studies use
a sample period of 12 months, while others use 600 months. However, most studies use a
period between 60 and 100 months. The temporal unit also has a wide range: from days to
weeks to months to years, most temporal units in the selected studies range.

Regarding crime data, most of the selected studies distinguish between the different
types of crimes, mostly between property and violent crimes, due to the different nature of
these crimes. The sample size is often not specified but also varies from study to study.

In terms of prediction, most studies use regression-based methods, as regression-based
methods are also examined in this thesis. The conclusion of these methods, i.e., what the
methods predict, is usually the number of crimes.

In the following subsections, some of these studies are presented to examine what and
how the researchers conducted their studies.

1.4.1 Gorr, Olligschlaeger, and Thompson (2003)

Gorr et al. (2003) investigated whether it is possible to accurately predict crime in small
areas, such as police districts, one month in advance. They compared simple univariate
methods with simple naïve models commonly used by police.

Validation of the forecasting models was based on splitting the data samples into es-
timation and denial samples to measure out-of-sample forecast accuracy. A rolling time
horizon was used to produce 36 forecasts with one month lead time for each precinct during
1996-1998. For each monthly forecast, the immediately preceding 60-month period was
used to estimate the forecast model. The forecast was then compared to the actual closure
month to calculate the resulting error. Three different methods were used to measure fore-
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cast accuracy: mean absolute error (MAE), mean squared error (MSE) and mean absolute
percentage error (MAPE).

Gorr et al. (2003) found that the number of violations must be on the order of 30 or more
per spatial unit to achieve an absolute forecast error of 20% or less. A second important
finding was that virtually any model-based forecasting approach is far more accurate than
current police practice. Gorr et al. (2003) also point out that the length of the planning
horizon often classifies forecasting and decision problems. For example, short-term crime
forecasts are used for tactical crime control measures, medium-term forecasts are used for
resource allocation, and long-term forecasts are used for strategic planning. Therefore, the
use of medium- and long-term forecasts for police operations should be considered when
making spatial unit decisions for this study.

1.4.2 Shoesmith (2013)

Although STAR models were introduced over 30 years ago, the work of Shoesmith (2013)
is the only work published in SCF that explore STAR models. Shoesmith (2013) used the
STAR model to predict violent and property crime in the United States at the regional and
state levels. He then compared the results of univariate AR models, vector AR (VAR) and
Bayesian VAR, and two naïve models.

The regional crime rates for each year were calculated by summing the number of crimes
in each state in each region and dividing by the region’s total population in that year,
expressed as crimes per 100.000 population. The nine regional projections for each year were
then weighted by population to obtain the total national crime rate. The actual regional
populations for each year were then used in the forecast intervals to focus the analysis on the
predicted crime rates. The predicted national crime rates were then expressed in natural
logs and compared to the actual log values of the individual crime rates at each forecast
step. Therefore, the forecast errors are roughly equivalent to the percentage errors. The
measure of forecast accuracy was the root mean squared error (RMSE), which retains units
and can also be interpreted as the percent forecast error (Shoesmith, 2013).

The study concluded that STAR models outperformed five other aggregate forecasting
approaches in predicting violent crime, and particularly property crime. Shoesmith (2013)
concludes that the use of group estimates and spatial lags improves forecast accuracy at all
levels, from long-term crime forecasts at the national and state levels to one-month patrol
district forecasts aimed at crime prevention.

1.4.3 Rentzelos (2020)

Another academic study on STAR models is the master’s thesis by Rentzelos (2020). He
compared the space-time autoregressive moving average (STARMA) model with a kernel
density estimation (KDE) and a naïve model for property, violent, and total crime.
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Rentzelos (2020) experimented with the STARMA parameters to examine how account-
ing for space and time affects the model’s performance. The best experiment was compared
with the baseline and conventional methods, dividing the model results into two classes
(hotspots and non-hotspots) based on a threshold, and then using evaluation metrics for
spatial prediction accuracy.

The results showed that all three methods produce significant results, and each method
performed better for the different crime types studied (all, property, and violent). In par-
ticular, the naive baseline method performed better for the "all" crime type and the con-
ventional KDE method for the "property" crime type. In contrast, the proposed STARMA
method performed better on the "violent" crime type. Therefore, he concludes that the
current STAR models are pretty sensitive to spatial and temporal parameters. Moreover,
further research needs to be conducted to investigate how these models’ spatial and temporal
resolution could outperform the baseline methods (Rentzelos, 2020).

1.5 Structure of the thesis

This section outlines the structure of the thesis. After the brief introduction to the topic of
this paper, the theoretical framework of this is provided in chapter 2. First, a brief overview
of the history of crime forecasting and the role of cartography and GIS in the field is outlined.
Theories within environmental criminology and the factor of space in crime are reviewed in
section 2.2. Important measures to account for spatial correlation and how to represent a
neighborhood relationship in an equation are presented in section 2.3. Section 2.4 introduces
the different categories of prediction methods. Finally, the prediction methods studied in
this work are discussed in detail in section 2.5 and the performance metrics used to compare
the methods can be found in section 2.6.

Chapter 3 contains the methodology of the work. First, section 3.1 introduces the
software that was used to explore, transform, analyze, and map the data. The study area is
described in section 3.2. The crime data used for the analysis are presented in section 3.3,
along with the spatial resolution decisions, temporal resolution selection, and processing
steps required to transform the data for the models. The modeling workflow is then outlined
in Figure 3.1, from data exploration to the creation of spatial weights to finally model the
methods.

The results are presented and discussed in chapter 4. First, some general observations
are made. Then, the results are compared based on temporal resolution. Finally, the
research questions are answered.

The final chapter of this thesis summarizes the main findings and provides specific
answers to the research questions. It also highlights the limitations of the study and makes
suggestions for future work.

In the Appendix tables (Appendix A) that are too long to include in the main part and
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the final R Code (Appendix B) are attached.



Chapter 2

Theoretical Framework

The second chapter of this thesis presents the theoretical framework of this work. First, the
history from mapping crime to predicting crime is briefly reviewed. Then, the main theories
of environmental criminology are provided. Then, important metrics for measuring spatial
autocorrelation are introduced and methods to incorporate spatial dependencies into an
equation. Crime prediction methods are then explained, followed by the presentation of the
prediction methods used in this thesis. The last section of the second chapter presents the
performance metrics used to compare the analyzed methods.

2.1 From mapping crimes to forecasting them

This section introduces the three schools that have significantly influenced environmental
crime, and briefly traces the path from crime mapping to understanding criminal patterns
to predicting crime.

2.1.1 The Cartographic School

Nearly 200 years ago, the first formal study of crime and space began, led by social ecologists
André-Michel Guerry and Lambert-Adolphe Quetelet (Ferguson, 2011). Balbi and Guerry
(1829) produced one of the earliest crime maps (Figure 2.1) showing the relationship between
educational attainment (bottom map), violent crime (top left), and property crime (top
right) in France (Hunt, 2019). If we compare the three maps in Figure 2.1, we can see that
crimes against property are more frequent in regions with low education levels. In contrast,
crimes against persons are more frequent in regions with a high level of education.

Quetelet (1842), on the other hand, added statistics to his maps to show spatial differ-
ences in France and its social groups. He also noted that crimes against persons reach a
maximum in summer and crimes against property in winter (Quetelet, 1842). Guerry and
Quentelet are considered the founders of the Cartographic School (Chainey & Ratcliffe,
2013). With their followers, these early pioneers were the first document and map an em-

11
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Figure 2.1: Balbi and Guerry (1829): Distribution of education level and crime in France.

pirical regularity of crime. These early pioneers, along with their followers, were the first
to document and map an empirical regularity of crime (Ferguson, 2011).

2.1.2 The Chicago School

In the early 20th century, theChicago School added new ideas to the field of environmental
crime. The Chicago School refers to a particular group of sociologists at the University of
Chicago who focused on the city as a social laboratory in the first half of the 20th century
(Lutters & Ackerman, 1996).

Drawing on the human ecology theory, which views the city like the natural ecological
communities of animals and plants (Park & Burgess, 1925), Burgess (1925) developed the
concentric zone model (Figure 2.2). Burgess’ model assumes that the city is surrounded
by five concentric circles, each of which expresses a different degree of development of the
city (Chainey & Ratcliffe, 2013). As each person belongs to a particular community and
thus to a particular geographic area, relocation and dispersal occur until he or she finds a
place where he or she can shelter and contribute to the community (Park & Burgess, 1925).
In Transition Zone II, the zone with the highest mobility, the "ghetto" exists as a place
where social ties are strong and social disorganization is not the same as outside the ghetto,
resulting in areas of high crime (Jørgensen, 2010).
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Figure 2.2: Burgess (1925): Concentric model of Chicago.

Shaw and McKay (1931, 1942, 1969) extended human ecology theory and the concentric
zone model with the development of social disorganization theory. They mapped the
residences of juveniles facing court and found that the distribution of criminals in the city
conformed to a systemic pattern, with high crime rates concentrated in Zone II during the
transition period (Akers, 2012). Shaw and McKay also discovered that the spatial arrange-
ment of high-crime areas remained the same over time, although the overall ethnic and
racial makeup of residents changed (Kikuchi, 2010). Thus, they argued that the spatial
distribution of juvenile crime was due to environmental characteristics such as racial het-
erogeneity rather than the personal characteristics of individuals (Kikuchi, 2010). These
findings are very interesting given recent criticisms of predictive policing. The inclusion
of space, according to Shaw and McKay’s findings, is not a biased variable, but rather a
symptom of deeper socioeconomic inequalities (Uberti, 2021).

Shaw and McKay’s work formed the basis for much of U.S. criminology, but was not
applicable in Europe due to more extensive urban development (Chainey & Ratcliffe, 2013).

The complex link between urban ecosystems and social relations was the driving force
behind most of the sociological work of the Chicago School (Jørgensen, 2010). Their findings
inspired criminology and spawned new theories (section 2.2), which over time led to interest
in studying crime with newly developed GIS technologies (Ferguson, 2011).
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2.1.3 The GIS School

While theories explaining the relationship between criminal behavior and space took off in
the second half of the 20th century, crime forecasting itself was made possible by advances
in information technologies, particularly geographic information systems (GIS) (Gorr &
Harries, 2003). Although the first use of computers in crime mapping dates back to the
mid-1960s in St. Louis, it took until the late 1990s for computers to become affordable,
facilitating the entry of GIS into crime analysis (K. Harries, 1999). An example of early GIS
maps are the maps in Figure 2.3 of Schmid and Schmid (1972). These show the different
spatial distribution of home addresses of female (map 2.3a) and male (map 2.3b) arrestees
charged with drunkenness in Seattle between 1968 and 1970.

(a) Female arrestees. (b) Male arrestees.

Figure 2.3: Schmid and Schmid (1972): home address of arrestees charged with drunkenness
Seattle 1968-1970.

GIS made it possible to list reported crimes in a comprehensive database, allowing
law enforcement to examine historical and current crime patterns in any location at any
time (Ferguson, 2011). GIS has enabled environmental criminologists to explore the spatial
dimensions of crime in new and compelling ways, forming the GIS School (Chainey &
Ratcliffe, 2013).

The history of predictive policing shows us the importance of maps and GIS in this field.
Especially how maps can convey information in an accessible way and how GIS has opened
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up new possibilities in data analysis.

2.2 Theories of environmental criminology

Environmental criminology theories form the basis of the SCF. The following theories ex-
plain why offenders and victims concentrate in certain locations, forming spatial patterns.
These theories are an important reason why incorporating space into crime prediction is
important.

2.2.1 Routine Activity Theory

The Routine Activity Theory (RAT) of L. E. Cohen and Felson (1979) states that most
criminal acts require the spatial and temporal convergence of the following three elements:

• motivated offenders,

• appropriate targets,

• and the absence of capable guards.

The central premise of the theory is that crimes can be prevented if any of these three
elements do not spatially converge (L. E. Cohen & Felson, 1979). L. E. Cohen and Felson
(1979) also argues that we should be able to predict crime because of the consistency in our
routines.

Routine Activity Theory (RAT 1, Figure 2.4) has evolved since its initial introduction
(Eck & Madensen, 2015). Based on the work of Hirschi (1969), Felson (1986) further
developed the basic theory (RAT 2, Figure 2.4) and introduced another controller: the
handler. Handlers strive to keep potential offenders from getting into trouble through
emotional and social ties (Eck & Madensen, 2015).

Although both RAT 1 and 2 suggest that spatial proximity is required, the study of
Sherman et al. (1989) showed that location is an essential concept of the RAT. Their study
analyzed calls to police to locate hotspots in Minneapolis and found that 50% of calls were to
3% of all possible locations (Sherman et al., 1989). They provide, among other (Cromwell
et al., 1995; Kennedy & Forde, 1990; Messner & Tardiff, 1985), empirical validation of
Routine Activity Theory.

Because both offenders and victims have a controller, Eck (1994) suggested that persons
who own property or are authorized by the owner are place controllers. Finally, Madensen
(2007) proposed a theory of place management that shows how it works to prevent crime
and what factors influence place management, leading to RAT 3 (Figure 2.4).

Sampson et al. (2010) provided another and since today final extension of the theory
to answer the question of why crime occurs even in the presence of three controllers. They
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Figure 2.4: Adapted from Eck and Madensen (2015): The development of Routine Activity
Theory.

introduced supercontrollers (RAT 4, Figure 2.4): People, organizations, and institutions
that create incentives for controllers to prevent or facilitate crime (Sampson et al., 2010).

Rational choice theory and its complements show the complexity of a criminal event and
how offenders, targets, locations, and controllers interact. Before all the additions to the
RAT were proposed, other criminologists attempted to understand the spatial dimension of
crime and put their findings into a theoretical framework.

2.2.2 Geometry Of Crime

The Geometry Of Crime, introduced by P. L. Brantingham and Brantingham (1993)
and P. J. Brantingham and Brantingham (1981), seeks to understand the spatial dimension
of crime by considering the concepts of edges, activity nodes, and paths (Song et al., 2017).
Based on the work of Lynch (1960), who sought to understand the role and impact of urban
planning, the geometry of crime examines how the spatio-temporal dimension of a criminal
event interacts with the perpetrator and the target (Andresen, 2020).

P. L. Brantingham and Brantingham (1993) and P. J. Brantingham and Brantingham
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(1981) introduced the term environmental backcloth to refer to the movement and change
in our environment. For example, we may feel safer in a square that is busy during the day
than alone in the same square late at night. Thus, although the environment remains the
same, the environmental framework changes our perception when the temporal dimension
of the same place changes (Andresen, 2020). This change in the temporal dimension can
range from seconds in the case of hooligans leaving the stadium after a game to decades in
the case of the gentrification process of a city.

Figure 2.5: Hypothetical model adapted from Chainey and Ratcliffe (2013): Where offender
awareness space and opportunities overlap, areas of criminal occurrence are formed.

In our daily routine activities, such as walking from home to work, to school, or to the
grocery store, we create a cognitive map of paths, places, and even social and economic
infrastructures where we feel comfortable over time (Chainey & Ratcliffe, 2013). As a
result, these places (also called activity nodes) and the paths between them become our
awareness spaces (P. J. Brantingham & Brantingham, 1981). Criminals also develop spaces
of awareness in their environment, and some of them become spaces of opportunity because
of the absence of guards (Figure 2.5). One of the reasons why crime is concentrated in
certain places is that the nature of our built environment and the convergence of activity
spaces make up only a relatively small portion of a city’s land area (Song et al., 2017).

Another exciting concept introduced by the Brantinghams are edges: These can be
physical edges such as a river, a railroad line, or a change in land use, or they can be
subtle edges, changes that are felt even though no physical boundary is crossed (Andresen,
2020). Along these edges, P. L. Brantingham and Brantingham (1975, 1978) found, burglary
rates were far higher than in the interior of neighborhoods. Anonymity is present at both
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subtle and physical edges, allowing for situational assessment of criminal opportunity that
is helpful to crime (Song et al., 2017).

The Brantinghams have made an important contribution to explaining why space and
crime are intertwined. The next subsection presents the theory of the decision-making
process of criminals and why the decision to commit a crime is associated with space.

2.2.3 Rational Choice Theory

The Rational Choice Theory by Cornish and Clarke (1986) has at its core the ideas
of choice and decision-making and the centrality of the crime event to ongoing criminal
activity: while failure leads to a reduction or even discontinuation of crime, success in
committing crime drives the development of a criminal lifestyle (Cornish & Clarke, 2008).
The foundation of the theory lies in the expected utility principle in economic theory, which
states that someone makes rational decisions based on the expectation of minimizing costs
or losses and maximizing gains or benefits (Akers, 2012). The decision-making process of
the Rational Choice Theory consists of three fundamental choices when it comes to crime:

1. the decision to be committed to a crime,

2. the decisions required for particular criminal events,

3. and the decision to cease from crime (Andresen, 2020).

Figure 2.6: Adapted from Andresen (2020): Decision-making process of a burglary.
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It is the second point that is of greatest interest to environmental criminologists (An-
dresen, 2020). For example: a person has decided to commit a burglary (Figure 2.6). The
perpetrator then makes rational decisions about the area and house of interest. The ge-
ographic characteristics of the crime scene play an important role in his decision-making
process. Thus, if the crime scene was an excellent rational choice for the burglar, it might
also be an excellent rational choice for another burglar.

2.2.4 Crime Pattern Theory

The Crime Pattern Theory is a metatheory that combines the three main theoretical
perspectives on environmental crime (P. J. Brantingham & Brantingham, 2008) discussed
in the previous subsections:

• the Routine Activity Theory addresses differences or shifts in the social environment
that are indicative of changes in crime rates,

• the Geometry Of Crime deals with the constructed environment and how it shapes
the geographic pattern of crime,

• and the Rational Choice Theory looks at with the cognitive environment that deter-
mines the decision-making processes of potential criminals (Andresen, 2020).

Individually, each theory provides a solid understanding of crime, but taken together,
they can provide a meaningful account of the environment in which crime occurs within
the framework of the Crime Pattern Theory (Andresen, 2020). Thus, the theories of envi-
ronmental criminology provide us with a theoretical understanding of why crimes occur in
certain places and at certain times. Moreover, the theories lead to the notion that place,
rather than people, is the critical element of crime (Hunt, 2019). Therefore, it should be
possible to predict crime using space as a variable (P. J. Brantingham & Brantingham,
1981).

The following section examines how to identify and measure the patterns and how to
model the spatial component in an equation to predict crime.

2.3 Measuring spatial distribution

The history and theories in environmental criminology showed us that there are spatial
patterns in crime. But how can we measure the spatial distribution of crimes? And how
can model the spatial distribution into a equation? This section will shortly answer those
questions and present some key spatial statistics.
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2.3.1 Centrographic Statistics

Centrographic statistics are the most basic type of descriptors for spatial distribution of
crime incidents (Levine, 2015). The term centrographic represents the group of geographical
studies in the field of two-dimensional statistical analysis (Sviatlovsky & Eells, 1937). They
allow us to measure and assess a phenomenon’s average location, dispersion, movements,
and directional change over time (LeBeau, 1987). The field of centrographic statistics
(Ebdon, 1977; Furfey, 1927; Lefever, 1926; Neft, 1966) includes:

• Mean center

• Median center

• Center of minimum distance

• Standard deviation of X and Y coordinates

• Standard distance deviation

• Standard deviational ellipse

These statistics were applied to crime analysis, for example, by LeBeau (1987) who
found that different classes of sexual offenders have relatively different spatial distributions
and that the spatial distribution of offender classes is not uniform over time. Centrographic
statistics can be an excellent tool to quickly get a sense of the spatial distribution of the
data.

2.3.2 Spatial Autocorrelation

If the relative location of crimes can provide information about the variation in the spatial
pattern of the data, we can say that the data also shows spatial autocorrelation (Cliff
et al., 1975). Spatial autocorrelation is one of the most well-known concepts in spatial
statistics and implies the spatial dependence of the data set (Levine, 2015). For example,
if high crime values in one location are associated with high crime values in a neighboring
location (i.e., spatially clustered), there is positive spatial autocorrelation (Figure 2.7). In
contrast, if all values are randomly distributed, there is no spatial autocorrelation. And
when high and low crime values alternate, there is negative spatial autocorrelation. An
example of negative spatial autocorrelation is when the fluctuating values of nearby crime
locations become increasingly similar as the distance between crime locations increases
(Leitner et al., 2021).

Spatial autocorrelation can be measured with statistics like Moran’s I (Moran, 1950),
Geary’s c (Geary, 1954) or Getis-OrdG (Getis & Ord, 1992). These statistics provide a value
for the entire study area and are also referred to as global spatial autocorrelation indicators.
In contrast, the local indicators of spatial association (LISA) proposed by Anselin (1995),
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Figure 2.7: An illustration of the three types of spatial autocorrelation.

indicate variation in spatial autocorrelation within and across the study area (Leitner et al.,
2021). Since LISAs are adaptations of global spatial autocorrelation indicators that establish
a proportional relationship between the sum of local statistics and a corresponding global
statistic, there are as many corresponding LISAs as there are global indicators (Anselin,
2020).

2.3.3 Assessing spatial weights

The basis of spatial analysis is Tobler’s first law of geography: "everything is related to
everything else, but near things are more related than distant things" (Tobler, 1970). But
what is the distance of near things? Conversely, how distant are distant things? One of the
most important questions that arises with spatially dependent data is how to weight the
distance between neighbors.

Moran (1948) introduced the concept of the weighting (or weights) matrix. Spatial
weights are a crucial component in the specification of spatial variables in the models used
in this thesis (Anselin & Rey, 2014).

The weights represent the neighbor structure between the observations as a n×n matrix
W in which the elements wij of the matrix are the spatial weights (Anselin & Rey, 2014):

W =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

... . . . ...
wn1 wn2 . . . wnn

 (2.1)

If the spatial unit j is a neighbor of the unit i, the spatial weight wij 6= 0, otherwise,
when wij = 0 they are not neighbors (Kelejian & Piras, 2017). The matrix expresses the
neighbor relation in a binary form (1 or 0) in its most simplistic form. A row i represents
each spatial unit in the matrix and the possible neighbors by a column j.

Two of the most commonly used constructions of spatial weights are neighborhood re-
lations based on contiguity and distance measure (Anselin & Rey, 2014). Anselin and
Rey (2014) define contiguity as two spatial units that share a common border of non-zero
length. Additionally, named after the allowed moves of the named chess pieces, the conti-
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guity can be distinguished if the common border, vertex, or both are defined as neighbors
(Figure 2.8).

Figure 2.8: The different criteria of contiguity in a neighbor relation of area i, expressed in
binary form.

Since now, we have only considered direct neighbors, also called first-order neighbors,
but one can define k-neighbors. So, for example, a second order neighbor would be a first-
order neighbor to any observation that is already a first-order neighbor of i. To avoid
duplications, it is only applying to locations that are not already first-order neighbors.
Figure 2.9 illustrates the third order neighbor structure of i in a rook case.

Figure 2.9: First, second and third order neighbors of area i in rooks case.

While contiguity measures calculate the distance between polygons, distance measures
calculate the distance between points. Similar to the contiguity measures, there are different
methods to calculate the distance when assessing spatial weights. One of the most used
distance statistics is the nearest neighbor method developed by Cliff and Ord (1981). This
method considers wij = 1 if they are the nearest of the kth observations or if the observations
i and j are within a given distance defined by the researcher (dij ≤ α), or otherwise assign
wij = 0 (Militino et al., 2004). Another prominent practice to define weights is through an
inverse polynomial of the distance between each pair of observations (wij = 1/dij) (Kurt &
Tunay, 2015).
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Regardless of which method is used, if the weight matrix is not defined correctly, it can
lead to inconsistencies in the coefficient estimates and reduce the forecasting accuracy of the
models (Anselin, 1988). Therefore, spatial weights are selected before the implementation
of the models and should reflect the geographical features of the study area (Kurt & Tunay,
2015).

2.4 Predictive methods

In order to predict crime, two things had to happen: the establishment of theories within
environmental criminology and the advances of GIS, specifically the use of GIS to map
crime in police departments (Gorr & Harries, 2003). The following subsections present the
various categories of crime prediction techniques that have evolved to date.

2.4.1 Hot Spot Analysis

Hot Spot Methods are used to predict areas of increased crime risk based on past crime
data (Perry et al., 2013). Sherman (1995) defines hot spots "as small places in which the
occurrence of crime is so frequent that it is highly predictable, at least over a 1-year period."
Since no numerical threshold defines the number of crimes that make an area a hot spot,
they are relative to their study area (Chainey & Ratcliffe, 2013).

Figure 2.10 shows different hot spot maps of criminal activity in New York City (NYC)
during New Year’s Eve from 2006 to 2020. To compare the different techniques and set-
tings, crime counts of arrests are classified in the same way for all maps (except Map A).
Figure 2.10 shows the impact of the different settings on the size of the hot spots. Looking
at all maps in Figure 2.10, it is clear that the largest crime hot spot on New Year’s Eve
is downtown Manhattan. This high concentration of crime is related to the annual New
Year’s Eve celebration in Times Square, which is typically attended by 58.000 people (Ly
& Hanna, 2021). However, the size of the hotspot changes depending on the method and
settings. We will encounter the same problem later when we evaluate the spatial weighting
of the models under study.

The following points briefly explain the different methods for creating hot spot maps:

• Point maps are the most common methods to display geographic patterns of crime
(Jefferis, 1999). They are popular because they resemble the familiar and traditional
way of placing pins onto a wall map (Chainey & Ratcliffe, 2013). However, the
disadvantage of these maps can be seen in Map A in Figure 2.10: it is difficult to
identify the location, number, and shape of criminal hot spots when points overlap.

• Geographic boundary maps are maps where crime events are aggregated to ad-
ministrative or statistical boundaries like states, counties, or police precincts. The
counts of crimes then can be used to create thematic maps (also called choropleth
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Figure 2.10: Hot Spot Maps of criminal activity on December 31st from 2006 to 2020 in New
York City.
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maps - see Map B in Figure 2.10) that display the criminal distribution in the study
area (Eck et al., 2005).

The downside of this technique is that it can be misleading: naturally, the map reader
is drawn to extensive, heavily shaded areas (MacEachren, 1995; Monmonier, 1991).
Furthermore, the aggregation of points shades the whole area but often does not
represent the actual spatial pattern of the criminal events and gives the impression
that crime spreads over the whole area (Chainey & Ratcliffe, 2013). Although not done
by many crime mappers, the appropriate approach would be to divide the number of
crimes by some appropriate denominator, like the number of residents in the specific
area. Additionally, the researcher defines the breaks in the classification, which can
be subjective and modified to enforce its point.

• Grid maps can be used to overcome the downside of varying sizes and shapes of
geographic areas (see Map C and D in Figure 2.10). First, a quadratic grid gets laid
on top of the study area, and then the crime events get aggregated into the overlapping
grid cell. While grid maps tend to better represent the spatial pattern of crime, they
have similar problems as geographic boundary maps in terms of accurately assigning
hot spots. Map D, for example, has a "red" hot spot eight times larger than Map C’s
hot spot.

• Clustering Methods usually set a starting point and then find the point farthest
from the first point, so they are divided into two groups (K. Harries, 1999). After that,
the distances from each starting point to other points are calculated repeatedly, and
clusters are formed based on new starting points to minimize the sums of distances
within the clusters (K. Harries, 1999).

• Continuous surface smoothing methods like the kernel density estimation (KDE),
create a smooth continuous surface to express the density of crimes spread across the
study area (Chainey & Ratcliffe, 2013). The KDE method is explained by Eck et al.
(2005) in the following steps:

1. "A fine grid is generated over the point distribution [...];
2. A moving three-dimensional function of a specified radius visits each cell and

calculates weights for each point within the kernel’s radius. Points closer to the
center receive a higher weight and therefore contribute more to the cell’s total
density value.

3. Final grid cell values are calculated by summing the values of all circle surfaces
for each location."

Map E and F in Figure 2.10 show how different search radii (Map E 1 km, Map F
2 km) impact the results. Chainey et al. (2008) compared KDE with other hot spot
techniques and found that the KDE has the highest prediction accuracy index.
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Hot spot analysis methods provide a overview of the study area in the form of hot spot
maps, allowing professionals to read them easily and make quick decisions (Bachner, 2013).
However, hot spot techniques ignore the simultaneous interaction of space and time in crime
prevalence (Grubesic & Mack, 2008). Because traditional hot spot analysis is based on the
hypothesis that crime remains constant (Rentzelos, 2020), it has clear disadvantages for
making long-term predictions.

2.4.2 Regression Methods

For Young (2018), a: "regression equation describes how the mean value of a y-variable (also
called the response or dependent variable) relates to specific values of the x-variable(s) (also
called the predictor(s) or independent variable(s)) used to predict y. A regression model
also incorporates a measure of uncertainty or error." Contrary to the hot spot analysis,
regression models can incorporate various explanatory independent variables. The selection
of these independent variables can be made with different methods like:

• a manual selection of correlated variables;

• forward/stepwise regression that iteratively adds additional variables to build the
statistically "best" regression model;

• or mathematical optimization methods that place penalties on variables and
solve complicated optimization problems to fit the "best" overall model (Perry et al.,
2013).

While these methods often lead to accurate models, leading indicators of analytic polic-
ing enable the transition from reactive to proactive (Perry et al., 2013). A leading indicator
of crime can be a variable that indicates the direction in which crime will move in the fu-
ture. For example, Gorr and Olligschlaeger (2002) found that simple time series, regressions
that consider only the change in crime during a period outperform more complex regressive
methods.

2.4.3 Data Mining Techniques

Cleve and Lämmel (2020) define data mining as: "the extraction of knowledge from data."
A more precise definition can be found in the online dictionary Merriam-Webster (2021)
which defines data mining as: "the practice of searching through large amounts of com-
puterized data to find useful patterns or trends." Regression models are a subset of data
mining, as are the following methods:

• Classification methods predict a category for a result (e.g., "There is a 90% chance
of a burglary in this area next week"), rather than a continuous number, as in regres-
sion (e.g., "There is an average of 2.75 burglaries here next month");
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• Clustering methods divide crime records into groups of records that are similar
mathematically (e.g., "This neighborhood show similar attributes to the neighbor-
hoods labeled as high-crime");

• Ensemble methods combine several simple predictive methods to render a conclud-
ing overall prediction (Perry et al., 2013).

Depending on the definition, many methods can be considered as data mining tech-
niques. Overall, these techniques are widely used in crime pattern analysis thanks to the
development of computing power and the existence of a considerable amount of data.

2.4.4 Near-Repeat Methods

Near-Repeat Methods assume that some future crimes will be very close in time and
location to current crimes-that is, areas with recently higher crime rates are likely to expe-
rience higher crimes in the immediate future (Perry et al., 2013). For example, Bernasco
and Nieuwbeerta (2005) found that burglars always attack groups of nearby targets because
offenders are well aware of local vulnerabilities. Similarly, Tita and Ridgeway (2007) found
that a shooting committed by a gang can trigger waves of retaliatory violence in the local
area (territory) of the rival gang. These findings prompted Mohler et al. (2011) to investi-
gate a self-exciting process used in seismology to show that these methods are well suited
for criminological applications.

The Santa Cruz Police Department in California used a version of Mohler’s algorithm
for a six-month test run that began in July 2011, and after the algorithm proved successful,
it was adopted into operations (Thompson, 2011). Comparing crime statistics for the first
half of 2012 with statistics for the same period in 2011, the agency reports that property
thefts decreased by 19 percent without additional officers or shifts (Jonesi, 2012).

Another method for predicting burglaries is ProMap, which uses recent burglaries and a
simple mathematical model to determine which areas are at the highest risk for burglaries
(Johnson et al., 2009).

2.4.5 Risk Terrain Modelling

The Risk Terrain Modeling (RTM) developed by Caplan and Kennedy (2010) builds
on traditional hot spot techniques by incorporating measures that reflect the physical and
social environment of the study area (Marchment & Gill, 2021). RTM consist of techniques
that:

1. attempt to recognize geographic characteristics that add to crime risk (e.g., bars,
liquor stores, certain types of major roads), and

2. make predictions about crime risk based on the proximity of specific locations to these
risky features (Perry et al., 2013).
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While studies have shown that RTM is an effective forecasting method for identifying haz-
ardous locations and can be a valuable tool for targeting responses, the limitations of RTM
are that it does not account for temporal variations in crime locations and may identify
areas where crime never occurs (Marchment & Gill, 2021).

2.4.6 Spatio-Temporal Analysis

As we have learned in section 2.1 and 2.2, crime patterns change over time. So far, the
presented forecasting models have focused on the crime event, while Spatio-Temporal
Analysis examines the relationship between crime and the environment. According to
Wikle et al. (2019) there are two approaches in spatio-temporal statistical modeling:

• The descriptive approach attempts to characterize the spatio-temporal process in
terms of its mean and covariance functions. This approach is advantageous when
we do not fully understand the mechanism driving the modeled spatio-temporal phe-
nomenon or when we want to understand how the covariates in a regression affect the
phenomenon (Wikle et al., 2019).

• The dynamic approach assumes that knowing the past and then models how the
past statistically evolves into the present and predicts how it will look in the future
(Wikle et al., 2019).

Recalling the findings of (Quetelet, 1842) on seasonal crime patterns in subsection 2.1.1,
we note that none of the previous methods have considered this phenomenon. The theo-
retical basis for the seasonality of crime is provided by Routine Activity Theory, in which
L. E. Cohen and Felson (1979) found that changes in our routine activities affect crime
rates. Depending on the season, our routine activities change to some degree (Andresen &
Malleson, 2013). For example, people are more likely to spend time outdoors and leave their
homes unguarded during the summer months. Van Koppen and Jansen (1999) analyzed
daily, weekly, and seasonal variations in commercial robbery data in the Netherlands and
found that there were more commercial robberies during the winter months. In addition, J.
Cohen et al. (2003) analyzed quadratic grids across Pittsburgh, Pennsylvania, for different
types of violent and property crimes and found that seasonality varied significantly across
the city. Spatio-temporal analysis helps to include these seasonal effects in the regressions,
which is essential to eliminate known causes of change in crime patterns and lead to better
predictions (Perry et al., 2013).

The prediction methods compared in this paper are, at their core, regressive methods.
Due to the inclusion of space in ARIMA models, it can be argued that STARIMA mod-
els also belong to spatio-temporal analysis. In the following sections, both methods are
presented in detail.
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2.5 Predictive models explored in this thesis

As we have learned so far, space and time are critical factors in the analysis of crime patterns.
In addition, this paper examines methods that use no variables other than the crimes
themselves, space, and time. One method that combines all of these variables for prediction
is the Space-Time Autoregressive Integrated Moving Average (STARIMA) method
introduced by Cliff et al. (1975) and generalized by Pfeifer and Deutsch (1980). This
method is based on the Autoregressive Integrated Moving Average (ARIMA) method
introduced by Box and Jenkins (1970) and used for time series forecasting. The STARIMA
method combines the following methods to achieve better prediction accuracy:

• Autoregressive methods (AR) are regressions that predict the value of a variable
(i.e., crime) based on its own past values.

• Moving Average methods (MA) are used to smooth the data, so that single outliers
are balanced (Shumway & Stoffer, 2000).

• Integratedmethods (I) refer to a non-stationary trend component in the data (Shumway
& Stoffer, 2000).

• Space-Time methods (ST) are special time series methods that explicitly account
for the linear dependencies between the spatially and temporally lagged variables
(Giacomini & Granger, 2004).

The name of the model used reflects the individual components used in the model.
For example, STAR refers to a model that uses the space-time and autoregressive part,
STARMA adds the moving average, and STMA removes the autoregressive part in the
model. The following subsection describes in more detail the individual components that
can be used in a STARIMA model.

2.5.1 Autoregressive models

The idea of autoregressive models is that present value can be explained as a function
of its past values (Shumway & Stoffer, 2000). In the simplest form of regression, a linear
regression, the dependent variable yt is regressed on a vector of the independent variables
xt:

yt = xtβ + εt (2.2)

In the Equation 2.2, β contains a vector of parameters to be estimated, and εt are random
errors that are independent and identically distributed (i.i.d) (Kazar et al., 2004). Here,
the dependent variable is influenced only by the current value of the independent variable.
However, in the case of a time series, it is desirable that the dependent variable can be
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influenced by its own past values (Shumway & Stoffer, 2000). A time series is defined as a
sequence of observations that follow each other in time (Box et al., 2008).

Autoregressive models are based on the notion that the current value of the time series
yt can be explained as a function of p past values (yt−1, yt−2, . . . yt−p), where p indicates
the number of steps into the past required to predict the current value. An autoregressive
model of order p for a time series yt, abbreviated as AR(p), can be described as follows in
the case of first order AR(1):

yt = φ1yt−1 + · · ·+ φpyt−p + εt (2.3)

where the autoregressive coefficient φ is put |φ| < 1 to ensure stationarity (Cliff & Ord,
1981). The AR(p) process can also be written as:

φ(B)yt = εt (2.4)

2.5.2 Moving Average models

Moving Average models help to obtain a smoother time series. Unlike the AR represen-
tation, which assumes that the yt on the left side of the equation are linearly combined,
the moving average model of order q, abbreviated MA(q), assumes that the error term εt

on the right side of the defining equation is linearly combined to form the observed data
(Shumway & Stoffer, 2000). The MA model can be written as follows:

yt = εt + θ1εt−1 + · · ·+ θqεt−q (2.5)

where there are q lags (j = 1, . . . , q) in the moving average and θ1, θ2, . . . , θq are parameters
that determine the overall pattern of the process. The MA(q) process can also be written
as:

yt = θ(B)εt (2.6)

2.5.3 Integrated models

Many empirical time series (e.g., stock prices) behave as if they do not have a fixed mean,
which raises the need for models that describe such homogeneous non-stationary behavior
(Box et al., 2008). The Integrated model can be obtained by assuming some appropriate
differences of the stationary processes of AR and MA (Box et al., 2008).

2.5.4 Space-Time models

A Space-Time model is a special time series model that explicitly accounts for the linear
dependencies between the spatially and temporally lagged variables (Giacomini & Granger,
2004). In the case of spatial data, following the first law of geography (Tobler, 1970), the
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assumption that observations are i.i.d. can not be made when spatial autocorrelation is
present (Anselin, 1988). Leaving out spatial dependency between observations in a linear
regression would be mean that the εi are not independent of one another and lead to weak
models with low prediction accuracy (Shekhar et al., 2002).

When we combine the previously mentioned methods, we obtain an ARIMA model.
This model considers only the temporal component. To account for spatial dependence
in the data (subsection 2.3.3), we need to include coefficients of spatial dependence in the
autoregressive and moving average coefficients (Giacomini & Granger, 2004).

The integration of the spatial dependencies results in the STARIMA model, which is
expressed by Pfeifer and Deutsch (1980) as follows:

5d z(t) =
p∑

k=1

λk∑
l=1

φklW
(l) 5d z(t− k) + ε(t)−

q∑
k=1

mk∑
l=0

θklW
(l)ε(t− k) (2.7)

where:

• z(t) is the observation of the random variable at site i, i = 1, 2, . . . N , and time t
as a weighted linear combination of past observations and errors, which can be both
spatially and temporally lagged;

• 5 is the N ×N difference operator matrix;

• p is the autoregressive order;

• d is the number of differences;

• q is the moving average order;

• λk is the spatial order of the kth autoregressive term;

• mk is the spatial order of the kth moving average term;

• φkl is the autoregressive parameter at temporal lag k and spatial lag l;

• θkl is the moving average parameter at temporal lag k and spatial lag l;

• W (l) is the N ×N matrix of weights for spatial order l;

• and ε(t) is the random normally distributed error vector at time t.

Different parts of this equation can be set to 0 to remove one of the components: for
example, if d = 0 the STARIMA model becomes a STARMA model, if q = 0 only the
autoregressive term remains, leaving a STAR model, and so on. The magnitude of the
parameters is written in round brackets next to the name to get a quick overview of the
model’s parameters. For example, if a STARIMA model (p, q, d) does not use the integrated
part, it can be written as STARIMA(1, 1, 0) or as STARMA(1, 1).

In the next subsections the models used for comparison will be presented in detail.
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2.5.5 STARMA

In theory the comparison would be ideal between ARIMA and STARIMA. But since there is
only an R packages available for STARMA modeling, the integrated part has to be dropped
from the spatiotemporal models. This would result in the following adapted equation for
STARMA models by Kurt and Tunay (2015):

yt =
p∑
l=1

kl∑
s=0

φlsW
(s)yt−l −

q∑
l=1

ml∑
s=0

θlsW
(s)εt−l + εt (2.8)

where l symbolizes the time lag and s the spatial lag. Again W (s) is the spatial weight
matrix at the spatial lag s, φls is the autoregressive and θls the moving average parameter
at the respective time lag l and space lag s. A closer look at Equation 2.8 helps identifying
the structure of the equation: the first half revolves around the AR parameter φls and the
second part around the moving average parameter θls. In both half the spatial relationship
is represented by the weight matrix W (s).

STARMA models generally identify spatiotemporal dependence between different re-
gions and account for autocorrelation between variables (Zhuang et al., 2017). When the
data have not only temporal but also spatial dependencies, STARMA models prove to be
a very practical method (Kurt & Tunay, 2015). However, because STARMA models are
strongly influenced by the spatial time series data, the model seems to be too parsimonious
when there is a lack of many measurement locations (Kamarianakis & Prastacos, 2005).

2.5.6 ARIMA

The ARIMA method was first described by (Box & Jenkins, 1970). Since the previously
mentioned STARMA method has an advantage when the data have spatial autocorrelation
and there is an R package that allows automatic modeling of the ARIMA method, the
comparison is made with STARMA versus ARIMA. The inclusion of the integrated method
is sometimes needed when a time series requires a differencing transformation to stabilize
the mean of the time series and thus eliminate or reduce trend and seasonality (Cesario
et al., 2016).

Assuming a time series (yt : t = 1 . . . n), where yt is the value of the time series in the
time period t, an ARIMA(p, d, q) model is expressed as follows:

y
(d)
t = c+ φ1y

(d)
t−1 + · · ·+ φpy

(d)
t−p + θ1ε

(d)
t−1 + · · ·+ θqε

(d)
t−q + εt (2.9)

where:

• y
(d)
t is the dth-differenced series of yt;

• φ1, . . . , φp are the coefficients of the AR part;

• θ1, . . . , θq are the coefficients of the MA part;
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• εt−1, . . . , εt−q are lagged errors;

• εt is the white noise and takes the forecast error into account;

• c is a correcting factor (Cesario et al., 2016).

Since automatic forecasts of time series are often needed in business, there have been
several attempts to automate ARIMA modeling (Hyndman & Khandakar, 2008). In this
work, the auto.arima1 function of the R package forecast is used to automatically model
ARIMA models for each time period and crime type.

2.6 Performance metrics for regressions used in the thesis

Once the models have delivered their predictions, we need a way to measure their per-
formance. Among the essential means of evaluating model performance in environmental
sciences remain statistical comparisons of the model predictions (Pi; i = 1, 2, . . . , n) with
presumably reliable and pairwise matched observations (Oi; i = 1, 2, . . . , n) (Willmott &
Matsuura, 2005). The comparison between predictions Pi and observations Oi leads to an
error ei that can be expressed at the individual level as follows:

ei = Pi −Oi (2.10)

When assessing an error on the whole model, not just the individual predictions, there
are several metrics that can be used, with each of them having different strengths and
weaknesses. The most common metrics are presented in the following subsections.

2.6.1 Mean Absolute Error and Root Mean Square Error

Two popular metrics in evaluating regression results in the field of spatial crime forecasting
are the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE)
(Kounadi et al., 2020).

The MAE (Equation 2.11) is calculated by adding the absolute values of the model
errors ε to obtain a total error, and then dividing the total error by n, assuming all wi = 0
(Willmott & Matsuura, 2005).

MAE =
[
n−1

n∑
i=1
|ei|

]
(2.11)

While the MAE gives equal weight to all errors, the RMSE penalizes variance by giving
more weight to errors with larger absolute values than errors with smaller absolute values
(Chai & Draxler, 2014). This is because the RMSE (Equation 2.12) is calculated by sum-
ming the individual squared errors (not the absolute values) to get the total squared error,

1https://www.rdocumentation.org/packages/forecast/versions/8.13/topics/auto.arima

https://www.rdocumentation.org/packages/forecast/versions/8.13/topics/auto.arima
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then dividing the total squared error by n (obtaining the mean square error), and finally
taking the square root (Willmott & Matsuura, 2005).

RMSE =
[
n−1

n∑
i=1
|ei|2

]1/2

(2.12)

Absolute values are highly undesirable in many mathematical calculations, which is
a distinct advantage of RMSEs over MAEs (Chai & Draxler, 2014).On the other hand,
according to Willmott and Matsuura (2005), the RMSE metric does not describe the average
error of model performance well because it does not use the weighting of errors analogous to
each value. While RMSE is more appropriate for representing model performance when a
normal error distribution is assumed, a combination of metrics including, but by no means
limited to, RMSE and MAE is often required to evaluate model performance (Chai &
Draxler, 2014).

2.6.2 Coefficient of determination or R-squared

Although MAE and RMSE are helpful, they have a common drawback: since their values
can range from zero to infinity, a single value from them does not tell us much about the
performance of the regression in terms of the distribution of the ground truth elements
(Chicco et al., 2021). On the other hand, the R-squared (R2, see Equation 2.13) outputs a
value between −∞ (R2 < 0 indicating a worse fit than the average regression line) and one
(i.e., a perfect fit), generating a high score that allows better comparability between models
(Chicco et al., 2021). The R2 or coefficient of determination introduced by Wright (1921)
is obtained by dividing the squared difference between the predicted and average values by
the squared difference between the actual and average values:

R2 = 1−

n∑
i=1

(yi − ȳi)
n∑
i=1

(ŷi − ȳi)
(2.13)



Chapter 3

Methodology

The third chapter contains the methodology of the work. First, all the software used for the
analysis and for the presentation of the results is presented. The study area chosen for the
analysis is introduced in the following section, as well as its geography shortly described.
Next, the data that was used to model the methods under study are introduced. The
same section explains the spatial and temporal resolution decision and the processing steps
required to provide the data for the models. The data are then examined to gain insight into
the characteristics of the data. In the following section, various spatial weighting matrices
are analyzed with the data obtained from the processing steps to help select the appropriate
weighting matrix for the models. The modeling workflow of ARIMA and STARIMA is also
provided in this section. Finally, the metrics used to compare the models is explained.

To get a better overview of the methodology, the workflow of the analysis is shown in
Figure 3.1. The workflow is divided into four main steps: Data gathering, data processing,
implementation and comparison of the models.The R code produced as part of this work is
also divided into these categories, with the exception of the data gathering step, as this step
does not require automation. This subdivision should help further studies find the code for
the required step more quickly. All steps are described in detail in this chapter.

3.1 Software

To make the analysis repeatable, all software used in this work is freely available. Data
processing, implementation and comparison of the models are performed using RStudio.
Maps are created in QGIS to display informative results. GeoDa is used to explore the
spatial relationship of the data. Finally, a GitHub repository is created to review the code,
contribute, or replicate the workflow of the thesis.

35
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Figure 3.1: Procedure of the analysis part of the thesis.

3.1.1 R-Studio

R1 is a programming environment for data manipulation, calculation, and graphical repre-
sentation, which many people use as a statistical system (Venables et al., 2021). RStudio2

is an integrated development environment that provides an interface with many helpful
features and tools (Ismay & Kim, 2020).

The decision to use R as the primary programming language for data processing and
1https://www.r-project.org
2https://www.rstudio.com/products/rstudio/

https://www.r-project.org
https://www.rstudio.com/products/rstudio/
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model implementation is due to the available STARMA3 package and the variety of li-
braries in its environment that are needed to process the data. Moreover, once the code is
written, each step of the process can be reconstructed and replicated. Additionally, RStudio
was chosen because it is freely available and facilitates coding in R.

3.1.2 QGIS

QGIS4 is a free open-source GIS that provides standard functions and features found in
other GIS (the QGIS Development Team, 2021). GIS have proven to be fundamental tools
in crime prevention programs through their toolbox and map creation (Pawale et al., 2017).
QGIS is used to create the maps found in this thesis, with the exception of the residual
maps in chapter 4, which were created using the tmap5 package in R, and the LISA cluster
maps, which were created using GeoDa.

3.1.3 GeoDa

GeoDa6 is a free and open source software tool developed to gain new insights from data
analysis by examining spatial patterns, developed by Anselin (2017). GeoDa is used in this
thesis to study and analyze neighborhood relationships because it is a simple and easy-to-use
toolset for exploration. The workflow for exploring and selecting the best representation
of the neighborhood relationship is explained in subsection 3.5.1. As mentioned in the
previous subsection, GeoDa is used to create LISA cluster maps to facilitate comparison of
model outputs.

3.1.4 GitHub

GitHub7 is an open source version control system (VCS) called Git (GitHub, 2021). In
the systematic review of SCF, Kounadi et al. (2020) note that current studies often lack
reporting of study experiments, making them difficult to follow. For this reason, a GitHub
repository8 is created for this work. This repository contains all the R code to reproduce
the data processing, model implementation, and comparison. In addition, the repository
helps to understand the steps required to implement STARMA models and may enhance
further research in this area.

3https://cran.r-project.org/web/packages/starma/
4https://qgis.org
5https://cran.r-project.org/web/packages/tmap/
6https://geodacenter.github.io
7https://github.com
8https://github.com/baccanazzo/ExploringCrimeForecastPerformance_STARMA_ARIMA

https://cran.r-project.org/web/packages/starma/
https://qgis.org
https://cran.r-project.org/web/packages/tmap/
https://geodacenter.github.io
https://github.com
https://github.com/baccanazzo/ExploringCrimeForecastPerformance_STARMA_ARIMA
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3.2 Study area

The study area for this thesis is the New York City (NYC) metropolitan area. NYC is
located in New York State on the northeast coast of the United States of America. Since
the early nineteenth century, it has been the most populous and economically powerful city
in the United States (US) (Jacobs et al., 1999). With 8,8 million inhabitants, it is the
largest city in the US (the U.S. Census Bureau, 2020). With an area of 778km2, NYC
has a population density of about 11.300 inhabitants per km2, which also makes NYC the
densest city in the US (the U.S. Census Bureau, 2021).

Figure 3.2: Location of the study area and its boroughs.

NYC consists of five boroughs: Manhattan, Bronx, Queens, Brooklyn and Staten Island
(Figure 3.2). NYC is located at the mouth of the Hudson River, which separates Manhattan
from New Jersey. The East River separates Manhattan and the Bronx from Brooklyn and
Queens. Staten Island is also separated from New Jersey and the other boroughs by water.
NYC has a border with the U.S. mainland in the Bronx and the only other land border is
in Queens with New York State. The unique geography of New York City ensures that all
boroughs except Brooklyn and Queens are connected only by bridges or tunnels.

Although the crime rate in NYC has been declining since the 1990s, it is still high
enough to provide valuable results for the models studied (Levitt, 2004). Therefore, NYC is
the ideal study area for examining long-term spatial crime forecasting using freely available
crime data and administrative data.

For the purposes of this thesis, it is assumed that New York City is an isolated city with
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no outside influence.

3.3 Data

This section introduces the data used in this work. First, the criminal record dataset is
presented, then the spatial resolution of the study is clarified, and finally, the temporal
resolutions of the study are revealed.

3.3.1 Crime Records

To implement the models under study, we need to know three things: the type, location,
and time of the crimes. The New York Police Department (NYPD) publishes a variety of
datasets with incident-level data for NYC 9: arrest, summons, shooting, and complaint data,
both historically (updated annually) and for the current year (updated quarterly). These
datasets are reviewed by the Office of Management Analysis and Planning and published
annually on the NYC OpenData10 website (the City of New York, 2021b).

Although an arrest does not automatically mean that the crime occurred, the NYPD
Arrest Data (Historic)11 dataset was selected for this study because from the available
datasets it best represents the actual crime records. For the purposes of this thesis, the arrest
numbers are also considered actual crime numbers. The dataset contains approximately 5.15
million arrests with 19 variables from January 1, 2006 to December 31, 2020. All variables
and their descriptions can be found in the Appendix A - Table A.1.

The variables relevant for the analysis are:

• The exact date of arrest for the reported event (Arrest_Date);

• the description of the type of crime (OFNS_Desc);

• and the coordinates of the arrest (X_COORD_CD, Y_COORD_CD).

It should be noted that there is a variable called ARREST_PRECINCT that indicates
in which precinct the arrest occurred. When examining the data, it was discovered that
some arrests occur outside of the respective police precinct. Therefore, the coordinates of
the arrest are used to establish in which precinct the arrest took place.

The dataset contains 88 different types of crimes. In general, the forecasts for property
crimes are more precise than for violent crimes (R. Harries, 2003). To better distinguish
the different types of crimes, they are divided into three categories: Violent, property, and
all crimes. The classification of the different types of crimes into property and violent
crimes follows the classification of Rentzelos (2020), which was based on the formal crime
typologies of the National Criminal Justice Reference Service12. The "all crimes" category

9https://www1.nyc.gov/site/nypd/stats/crime-statistics/citywide-crime-stats.page
10https://opendata.cityofnewyork.us
11https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u
12https://www.ojp.gov/taxonomy/term/4426

https://www1.nyc.gov/site/nypd/stats/crime-statistics/citywide-crime-stats.page
https://opendata.cityofnewyork.us
https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u
https://www.ojp.gov/taxonomy/term/4426
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includes all records in the arrest dataset. The detailed classification can be found in the
GitHub repository or in the Appendix B - R Code.

Figure 3.3: Location of crime points in the dataset.

The dataset contains two coordinate pairs, one pair in a projected coordinate system
(PCS)13 and the other in a geographic coordinate system (GCS)14. In the PCS of the dataset,
distances are measured in feet, while in the GCS, distances are measured in degrees. Since
it is necessary to calculate distances between points, the PCS is chosen because distances in
feet are easier to handle than in degrees. It should be noted that these coordinates are not
the exact coordinates of the arrest, but the coordinates of the center of the nearest street
segment or intersection (Figure 3.3), whichever is closer to the actual point of arrest (the
City of New York, 2021a). It should also be noted that when crime points are aggregated
into police precincts, some of the actual arrests are aggregated in the wrong area. For
example, if a precinct’s boundary runs along a street and arrests are centered on that street
segment, arrests on one side of the street will be summarized in the wrong area, as shown
in Figure 3.3. Since the aggregation of points into spatial units is always fraught with
problems, this problem can be considered but not circumvented.

In the next subsection, the various available spatial resolutions of NYC are examined and
a decision is made as to which spatial resolution should be chosen as the study resolution.

3.3.2 Spatial Resolution

As shown in Figure 2.10, the spatial resolution of the boundaries to which the points are
aggregated directly affects the map’s message. Similarly, the spatial resolution chosen to

13https://epsg.io/2263
14https://epsg.io/4326

https://epsg.io/2263
https://epsg.io/4326
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Figure 3.4: Different administrative boundaries of NYC and the NYPD.
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aggregate the points for the models affects the results. The use of raster maps is employed
to compensate for the different shapes and sizes of administrative boundaries. However,
they also have a disadvantage. A raster cell has no connection to the real world, and if a
raster is placed over, i.e., NYC, some of the raster areas are over water or actual boundaries
such as the city limits. Since the goal of long-term forecasting in this thesis is to help policy
makers make strategic decisions, the use of administrative boundaries is preferred.

NYC has several administrative boundaries of varying sizes, the most important of which
are shown in Figure 3.4. The city boundaries (map A) and boroughs (map B) are not used
for the study because of their size and the resulting lack of information gain. Ideally, one
would think that the smaller the resolution, the more accurately one could determine the
high crime areas. However, there are some computational limitations to using STARMA
models. This limitation is due to the structure of the input tables: Each row represents a
crime data set, and each column represents a spatial unit. Using the census blocks (map
H) would show the blocks with high crime rates, but the high number of almost 39.000
polygons would make it impossible to compute the models due to the size of the input
table. Rentzelos (2020) also employed STARMA models in his study and used zip codes as
the spatial resolution. Map E of Figure 3.4 shows that NYC has "only" 263 zip codes, and
Rentzelos already reported computational problems. His findings leave only three options
for the spatial resolution of the study: police precincts (map C), NYPD sectors (map D),
and zip codes (map E).

Long-term crime forecasts are used for strategic planning (Perry et al., 2013). Hence,
the choice of spatial resolution should ideally fall on boundaries that are useful for police
enforcement. Consequently, the boundaries used by the NYPD seem to be the best choice.
The choice between police precincts and sectors falls on police precincts first, as sectors, with
their 302 areas, are likely to cause computational problems in the analysis. Furthermore, as
noted in section 1.4, Gorr et al. (2003) found that a crime count of 30 or more is needed to
achieve an absolute forecast error of 20% or less. After pre-processing the crime data, the
number of monthly violent and property arrests was below 30 in only a few police precincts,
further solidifying the selection because a lower resolution would result in a high number of
areas with no arrests.

3.3.3 Temporal Resolution

As Gorr and Harries (2003), and Perry et al. (2013) note, long-term forecasts are necessary
for strategic planning. But neither they nor other authors define what unit of time is
short- or long-term. As is well known, time is relative, even in crime forecasting. From the
extensive literature review, it can be concluded that most authors define the short term as
less than one month, while most long-term forecasts have a temporal resolution of up to
one year. In order to compare the models comprehensively, it is important to consider the
temporal resolution of all categories. This led to the selection of the following temporal
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resolutions, with the effects on the data shown graphically in Figure 3.5:

(a) Weekly arrest data. (b) Monthly arrest data.

(c) Quarterly arrest data. (d) semiannual arrest data.

(e) Yearly arrest data.

Figure 3.5: Effects of the temporal agglomeration on the data.

(a) One week: representing short-term predictions

(b) One month: representing medium-term predictions

(c) Quarterly (three months): representing long-term predictions

(d) Semiannual (six months): representing long-term predictions
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(e) One year: representing long-term predictions

Agglomeration directly affects forecasts because each method is modeled on the underly-
ing data. As the time lag increases, more individual observations are added to a single one,
reducing the variation and number of observations in the data. Because of this smoothing
with increasing time lag, the overall trend is easier to follow, but may hide some changes
in the data. An example of this phenomenon is the last year of data that was affected by
the COVID-19 pandemic. In Figure 3.5a, 3.5b, and 3.5c, the data show a rapid decline in
arrests at the beginning of 2020, followed by an increase in the later half of the year. This
trend is not evident in the semiannual and annual arrest data, as shown in Figure 3.5d and
3.5e. This phenomenon means that the model also does not "see" the trend and therefore
may produce less accurate forecasts.

3.3.4 Processing steps

In order to process the data using the models to be analyzed, the crime data must be
processed in a specific way (Figure 3.6b) so that the temporal observations are row-by-row
and each column corresponds to a location (Cheysson, 2016). In addition, the data must
be divided into the categories of violent and property crimes. In this subsection, all neces-
sary steps from the original datasets to the modelable data-set are explained. Figure 3.6
illustrates the difference between the input and the output data-set of all crimes after the
processing steps.

(a) Extract of original NYC Arrest Data.

(b) Extract of data-set ready for STARMA.

Figure 3.6: Difference between the original and the processed data set.
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There are nine processing steps required to transform the original datasets. All steps are
written in R to avoid manual processing errors and to facilitate replication of the analysis.
As mentioned earlier, the detailed R code can be found in the GitHub repository or in
Appendix B. The following is a brief overview and explanation of each step using the
monthly category as an example:

Step 1: Input data
In this step the original datasets (Arrest Data = 5.153.369 obs.; Police Precincts =
77) are loaded into the workspace.

Step 2: Select relevant attributes
The relevant variables (type of offense, date and location) for the analysis are
selected. Also, some data manipulations on the data types are required.

Step 3: Clear N.A. and strange data
Missing data or unclear crime descriptions (N.A. and F.C.A. P.I.N.O.S.) are deleted
(4.529.353 obs.).

Step 4: Spatial join of crime data & police precincts
The police precincts are joined to the arrest data. Since some entries were not
joined into police precincts, the variable ARREST_PRECINCT from the arrest
data was used to fill the missing values.

Step 5: Categorize arrest data into crime types
Depending on the offense description (71 unique offense descriptions, 16 in the
property offense category, 18 in the violent offense category), a binary code is
assigned in the appropriate column.

Step 6: Extract information about temporal resolution
The daily data is transformed into weekly, monthly, quarterly, semiannual and
annual data.

Step 7: Group & sum the data
Arrests for each individual police precinct and month are summed and arrests for
each crime type are then totaled (11,088 observations).

Step 8: Transpose data for the implementation into STARMA
In order to have "months" as rows and "police precincts" as columns (144 obs.).

Step 9: Replace geometry of polygons with their centroid point
To speed up the calculation when calculating neighborhood relationships.

Once processed, the data is ready for exploration and modeling of the methods to be
analyzed.
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3.4 Data exploration

In this section, we briefly discuss the data sets used for crime forecasting. First, we consider
the number of crimes in the entire study area. Using Figure 3.7, we can compare the
monthly arrest counts and annual averages for the crime types "all" (Figure 3.7a), "property"
(Figure 3.7b), and "violence" (Figure 3.7c). A comparison of the three charts shows that the
number of all crimes and that of violent crimes follow a similar trend. Both types of crime
increase slowly until the end of 2010 and then decline steadily until 2020. The number
of property crimes, on the other hand, rises steadily until it reaches a peak in October
2014 and then falls again. An interesting observation is that in all three annual averages,
there is a significant decline in 2015 and 2020. While the decline in 2020 is due to the
COVID-19 pandemic and subsequent restrictions in March 2020 (Francescani, 2020), the
decline in arrests in 2015 is due to the murder of two NYPD officers on December 20, 2014,
and officers’ resulting fear for their own safety (Bertrand, 2015). This underscores the fact
that the data used in this analysis are not the actual crimes themselves, but the arrests
recorded by the NYPD. While this is not perfect, it is the best representation of actual
crimes available for this study.

Looking at the monthly arrest counts in the three charts in Figure 3.7, we see that the
crime figures for the different types of crime develop differently over the year. While for
both violent and property crimes, the number of crimes is lowest at the end of the year,
the number of violent crimes is higher in the first six months of the year than in the last.
For property crimes, on the other hand, the number of crimes is highest at the beginning
and middle of the year. When looking at the monthly crime numbers for all crimes, it is
difficult to see a seasonal trend.

3.5 Modeling workflow

In this section, the modeling workflow is presented. First, the spatial weighting matrices
must be defined. To do this, several options must be considered and analyzed for how
accurately they represent the spatial relationships of the data. The spatial weighting ma-
trices can be used to model the STARMA models, using the three-step iterative procedure.
Finally, the workflow to automatically estimate the ARIMA models is described.

3.5.1 Creation of neighborhood relationships and spatial weights

Spatial weight matrices are an essential part of the STARMA method. As described in
subsection 2.3.3, when creating neighborhood relationships and spatial weights, there is
no one-size-fits-all solution. In this subsection, the initial selection of potential neighbor-
hood relations is presented and the process of selecting the final neighborhood relations is
described. Then, the process of creating the spatial weighting matrices is presented.
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(a) All monthly arrest counts and yearly means of NYC 2006-2020.

(b) Property monthly arrest counts and yearly means of NYC 2006-2020.

(c) Violent monthly arrest counts and yearly means of NYC 2006-2020.

Figure 3.7: Comparison of monthly arrest counts and yearly means per crime type in NYC
2006-2020.
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Using GeoDa and the datasets created in the processing steps, various neighborhood re-
lationships will be explored to determine which is the best representation for the underlying
study data. Since the boundaries of the police precincts are on land, precincts that are sepa-
rated by water but connected by a bridge would not be considered neighbors when using the
contiguity-based method. Therefore, police precincts that are connected by bridges in the
real world were also connected in the digital file using satellite imagery in QGIS. Then, three
different methods were used to create the neighborhood relationships and several different
settings. Table 3.1 provides an initial selection of potential neighborhood relationships, as
well as some statistics on the settings. This initial selection was made by looking at the
study area and trying to represent all possible real neighborhood relationships.

Table 3.1: Selection of potential neighborhood relationships

# Method Settings Number of neighbors % non zero

min max mean median

1 Distance based 27.783 ft 1 33 19,64 22 25,5%
2 30.000 ft 2 38 22 25 28,57%
3 40.000 ft 2 52 33,04 36 42,91%
4 k-nearest Neighbor 1 1 1 1 1 1,3%
5 2 2 2 2 2 2,6%
6 3 3 3 3 3 3,9%
7 4 4 4 4 4 5,19%
8 Contiguity based 1st order queen 1 7 4,7 5 6,11%
9 2nd order queen 4 22 12,73 13 16,53%
10 1st order rook 1 7 4,57 5 5,94%
11 2nd order rook 4 22 12,47 12 16,19%

The distance-based method uses the centroid of each precinct to calculate the distance
between them. Since each precinct must have at least one neighbor, the minimum distance
that can be used is the minimum distance between the two farthest centroids. In the
spatial dataset used in this work, the minimum distance between the two farthest centroids
is 27.783 feet and represents the distance between the centroids of police precincts 121 and
123 on Staten Island. Looking at the police precinct in Map C of Figure 3.4 or Moran’s I
values in Table 3.2, it is clear that a purely distance-based relationship is problematic in
this case. Because police districts have a high variance in terms of size, large districts have
a small number of neighbors while small districts have a large number of neighbors. Even
using the minimum distance, the average number of neighbors in the districts is almost
20. Also, the high number of neighbors negatively affects the spatial autocorrelation of the
distance-based relationship, as shown in Table 3.2. The distance-based methods have the
lowest Moran’s I value among all methods. This can be explained by the fact that the
high number of neighbors ensures that there are many observations with different values
that lower the Moran’s I value, which means that there is less (or no, if I = 0) spatial
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autocorrelation.

Table 3.2: Spatial autocorrelation of potential neighborhood relationships of each analyzed
dataset (all, property (p) and violent (v) crime) in the first week (w), first month (1m), first
quarter (3m), first half (6m) and the whole year (y) of 2011.

Case Moran’s I of method #

study 1 2 3 4 5 6 7 8 9 10 11

w all 0,079 0,086 0,042 0,189 0,203 0,201 0,201 0,195 0,123 0,202 0,128
w p 0,061 0,050 0,034 -0,101 0,045 0,021 0,026 0,022 0,010 0,026 0,008
w v 0,189 0,174 0,094 0,341 0,323 0,321 0,370 0,376 0,314 0,380 0,322
1 m all 0,078 0,089 0,039 0,243 0,262 0,255 0,248 0,246 0,145 0,252 0,113
1 m p 0,053 0,056 0,039 -0,039 0,092 0,060 0,085 0,081 0,028 0,087 0,026
1 m v 0,221 0,204 0,097 0,450 0,426 0,447 0,439 0,454 0,364 0,459 0,167
3 m all 0,090 0,100 0,041 0,261 0,278 0,277 0,260 0,260 0,162 0,264 0,366
3 m p 0,048 0,054 0,040 -0,046 0,093 0,062 0,083 0,081 0,027 0,083 0,027
3 m v 0,219 0,206 0,098 0,484 0,455 0,463 0,468 0,481 0,375 0,483 0,380
6 m all 0,075 0,085 0,030 0,288 0,287 0,278 0,264 0,260 0,154 0,265 0,161
6 m p 0,041 0,046 0,039 0,007 0,124 0,092 0,122 0,100 0,061 0,104 0,063
6 m v 0,216 0,204 0,094 0,490 0,460 0,463 0,469 0,473 0,366 0,477 0,370
y all 0,064 0,073 0,021 0,292 0,290 0,278 0,265 0,253 0,145 0,259 0,151
y p 0,040 0,046 0,037 -0,011 0,113 0,081 0,109 0,095 0,046 0,098 0,047
y v 0,199 0,188 0,081 0,477 0,440 0,443 0,450 0,448 0,340 0,451 0,344

A method that is also based on distance but restricts the number of selected neighbors
is the k-nearest neighbor method (# four to seven in Table 3.1 and 3.2). Given the chosen
number of neighbors (k), this method selects the k-nearest neighbors based on the distance
of the centroids. Table 3.2 shows that the k-nearest neighbor method is the one that has
the highest number of Moran’s I values closest to one (values highlighted in bold). The
setting with two nearest neighbors has the most highest Moran’s I values, followed by the
setting with one nearest neighbor. Interestingly, the nearest neighbor setting is the only
setting in the comparison that produces negative Moran’s I values, indicating a scattered
pattern. As learned in section 2.3, Moran’s I values near 0 are generally indicative of
spatial randomness. When the number of nearest neighbors is increased to three or more,
the spatial autocorrelation decreases, as can be seen in Table 3.2.

The contiguity-based method (# eight to eleven in Table 3.1 and 3.2) does not use
distance to determine neighbors, but whether they share a common boundary. As with the
previously used methods, the setting with more neighbors selected tends to result in lower
spatial autocorrelation values than the methods with a smaller number. The contiguity-
based method with the first-order tower setting yields the highest spatial autocorrelation
value in the violent crime category for the weekly and monthly time periods.

It is important to note that the Moran’s I values of Table 3.2 represent only one time
period of the entire time period. As mentioned earlier, the method with the highest Moran’s
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I values is the k-nearest neighbor method. The crime category with the highest spatial
autocorrelation is violent crime, while property crime has the lowest spatial autocorrelation.
In general, the spatial autocorrelation is weak across all different time periods and crime
types, especially for all crimes and property crimes, suggesting that the selection of police
districts as study areas may be too large. Since the Moran’s I calculated in Table 3.2
measures global spatial autocorrelation, the high variance in spatial autocorrelation between
study areas could be another reason for the low SA.

Since the 2−nearest neighbor method consistently yielded a high Moran’s I among all
neighborhood relationships studied, this method is selected as the neighborhood relationship
for this study. As mentioned in subsection 2.3.3, the neighbors must be weighted to create
a spatial weight matrix. For this study, all neighbors are weighted equally.All neighborhood
relations and weights studied in GeoDa are created with the spdep15 package in R and
used in the implementation of STARMA models. The package contains several functions for
creating spatial weights. The function dnearneigh creates a neighborhood relation based on
distance, while poly2nb creates a neighborhood relation based on contiguity. The knearneigh
function can be used to specify which k number of neighbors should be considered as
neighbors.

3.5.2 Modeling of STARMA

Up to this point, the data has been processed and the spatial weights created. Now a
STARMA model must be fitted for each crime type and time period. This is done using
the aforementioned three-step iterative model building process developed by Box and Jenk-
ins (1970) and extended to space-time modeling by Pfeifer and Deutsch (1980), using the
STARMA package by Cheysson (2016).

In order to apply the three-step iterative model building process for STARMA models,
the space-time series obtained after the processing steps must be centered and scaled so that
its mean is 0 and its standard error is 1. The space-time series must be centered because the
starma function does not estimate an intercept coefficient (Cheysson, 2016). The centering
and scaling is done with the function stcenter.

Then, the three-step iterative model-building process is repeated until the best-fit model
is found for each type of crime and time period:

1. Identification: Using the space-time autocorrelation function (stacf, for the AR pa-
rameter φ) and partial autocorrelation function (stpacf, for the MA parameter θ) to
identify the parameters to be estimated.

2. Estimation: The parameters are estimated with the starma function.

3. Diagnostic: The stacf, stpacf and stcor.test functions can be used to determine if
the residuals resemble white noise. The function stcor.test computes an expansion of

15https://cran.r-project.org/web/packages/spdep/

https://cran.r-project.org/web/packages/spdep/
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the Box-Pierce test statistic to accept or reject the non-correlation of the individual
observations Cheysson (2016).

These three steps are repeated until the residuals ideally resemble white noise, i.e., they
are no longer contiguous. The spatial weighting matrix best found in Table 3.1 is used to
model STARMA.

The STARMA package uses a Kalman filter algorithm by Cipra and Motyková (1987)
where the parameters are specified as the state vector of the state space system, which
results in the iteration of the algorithm directly estimating the parameters. This makes the
algorithm extremely efficient in terms of time and computational capacity, since no opti-
mization routine is required (Cheysson, 2016). Since AR and MA orders can be defined with
a binary matrix, the user can estimate parameters even at high temporal and spatial lags,
which is a strength of the estimation function (Cheysson, 2016). The following Figure 3.8
shows an example of a matrix used to define the AR parameters of the weekly STARMA
model of violent crimes. This matrix would indicate to the algorithm that the AR param-
eters at spatial lag zero (i.e., the area of prediction) would be of order one through ten
(except for order seven), and at spatial lag one (i.e., the neighboring areas of prediction) a
first-order AR parameter should be estimated.

Figure 3.8: Matrix of AR parameters to be estimated at spatial lags 0 (V1) and 1 (V2) and
temporal lags 1 to 14.

After estimating the parameters of the model, the error metrics of the obtained model
are calculated. The calculation of the error metrics is described in section 3.6, while the
next subsection presents the modeling process of ARIMA.
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3.5.3 Modeling of ARIMA

The modeling of ARIMA is performed with the auto.arima function of the R package fore-
cast16. This function fits the best ARIMA model to a univariate time series (Hyndman
& Khandakar, 2008). The algorithm uses the Akaike’s Information Criterion (AIC) or the
Bayesian information criterion (BIC) to determine which model is the best-fit model (Hyn-
dman et al., 2021). The AIC was developed by Akaike (1974), while the BIC was developed
by Schwarz (1978). Both criteria are an extension of maximum likelihood estimation, with
the difference between AIC and BIC being the multiplication of the dimension (Schwarz,
1978). By minimizing the BIC and AIC, the best parameter values are determined (Cesario
et al., 2016). The STARMA package also computes the BIC for each model. Stoica and
Selen (2004) found that the BIC is generally a better fit than the AIC.

Since the estimation of the parameters for the ARIMA models is done automatically,
it is much faster than the manual estimation of the parameters. To allow comparability,
the input data are centered and scaled like the input data of the STARMA models. Then
the space-time series is split into 77 time series, one time series for each study area. This
step is necessary because an ARIMA model is designed for time series. To allow further
comparability, the maximum order option of the auto.arima function is set to the maximum
order used in the corresponding STARMA model. In this way, 77 ARIMA models are
created and their residuals are collected in a table to obtain the same output table as the
STARMA model and make them comparable.

3.6 Comparison of the models

After the parameters of STARMA and ARIMA are estimated, the residuals or errors of the
model for each police precinct and time period are written to a table. This table has the
same layout as the input table with the observed values. When the residuals of the models
are added to the actual values, the predicted values are obtained. With these two tables
containing the actual and predicted values for each police precinct and time period, the
error metrics mentioned in section 2.6 can be calculated.

Before the final computation of the error metrics, some of the observed and predicted
values must be deleted, more precisely the first observations for which the model does not
have enough past data to compute them correctly. For example, if the highest AR parameter
of a model is of order ten (φ10), the first ten (temporal) observations are excluded from the
calculation of the error metrics. This ensures that the error of each model is based on the
selected parameters and not on the missing data. Since there may be different maximum
orders of the ARIMA models, the maximum order allowed in the auto.arima settings is
used to subtract the number of observations. This ensures that the final error metrics of
the STARMA and ARIMA models are calculated with the same number of observations.

16https://cran.r-project.org/web/packages/forecast/

https://cran.r-project.org/web/packages/forecast/
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Finally, the error rates and their standard deviations are calculated for each police
precinct, and the mean of the calculated metrics is written to a final table to compare the
models. Typically, the model that produces lower error metrics outperforms the other, but
it is also optimal if these errors are not clustered in space.

To further compare the models, the standard deviation (s.d.) of their residuals is
mapped. Since these maps can only be interpreted visually and could be subjective to the
interpreter, a LISA cluster map is also computed for each model analyzed. Spatial weights
are required to compute the LISA cluster map. Since the 2−nearest neighbor method was
chosen because it best represents the spatial dependencies in the data (subsection 3.3.2), it
is also chosen as the weighting matrix for the LISA cluster maps. The LISA cluster maps
are based on the local Moran value and were created using GeoDa.

All STARMA models are compared to the ARIMA model using three scoring methods:
the error metrics, the s.d. of residuals, and the LISA cluster maps. Each of these methods
counts as one point for the model that outperforms the others.



Chapter 4

Results and discussion

In this chapter, the results of the analysis of this thesis are presented and discussed. First,
a general observation will be given. Then, for a better overview, the chapter is divided into
sections representing the individual periods. Finally, the research questions are answered.

4.1 General observations after modeling

Estimating the parameters for the STARMA model proved to be more difficult than ex-
pected. The main challenge was to fit the residuals of all models to resemble white noise.
Because the overall trend of the data fluctuates throughout the study period, estimating
the STARMA parameters was very time consuming.

As seen in Figure 3.7 and explained in section 3.4, the general trend in the arrest
data in New York is upward in the early years of the study period, followed by a steady
decline and a significant drop in the trend in 2015 and 2020. In diagnosing the process
of the STARMA models, the residuals of each model showed a significant negative spatio-
temporal autocorrelation at a little bit over half of the time steps (values outside the dotted
blue line in Figure 4.1). This time step corresponds to the first significant decline in arrests
in 2015. It is important to remember that the models examined in this study are essentially
equations that attempt to best represent the underlying data. Therefore, high variance
in the data leads to high variance in the errors of the models. One solution would be to
cut the data set at certain points, such as at 2015, to get a more linear trend. However,
this solution would not be applicable to the longer time spans of six-month and annual
models because there would not be enough study data to make valuable forecasts. Since
the ARIMA models have the same problem in parameter estimation, it was decided to keep
the entire study data for all models.

To further improve the parameters of STARMA, the BIC of the model was used. In
general, the model with the lower BIC is preferred. In addition, the error metrics of ST-
ARMA were calculated and compared with the error metrics of the corresponding ARIMA
model. The goal was to estimate the parameters of STARMA until they had similar error

54
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Figure 4.1: Spatio-temporal autocorrelation function of STARMA 6m all residuals.

Figure 4.2: Monthly arrest counts of ten police precincts.

metrics. Because the ARIMA approach calculates a model for each police precinct, whereas
the STARMA approach creates a model for the entire study area, it was difficult to achieve
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the same or better error metrics with the STARMA models. When we look at the study
data in the different police precinct (Figure 4.2), we can observe different trends in the
precincts. This could be one reason why ARIMA models, since they fit a model to each
study area, might achieve better error metrics than the STARMA models.

In the next sections, the results of the analysis are considered in detail, broken down by
time period.

4.2 Weekly performance evaluation

The shortest time span in the analysis is one week. This time period represents short-term
forecasts. The study period of 2006-2020 includes 784 weekly observations. Due to the
large number of observations, the weekly time category has the most estimated parameters
of all time periods. Table 4.1 shows that 14 parameters were estimated for the total crime
category, of which nine are AR parameters and five are MA parameters. In contrast, the
property and violent crime categories have fewer total parameters, and only the violent
crime category has a parameter that represents the neighborhood relationship (φ11). All
three models also have the highest BIC values compared to the other time periods, with
the w-all model having the lowest value among the three weekly models.

Table 4.1: Selection of weekly STARMA parameters with the corresponding BIC

Case study Parameters BIC

w all φ10, φ20, φ30, φ40, φ50, φ70, φ80, φ100, φ130, θ10, θ20, θ40, θ80, θ130 36.244
w p φ10, φ20, φ30, φ40, φ50, φ60, φ80, φ100, φ110, θ10, θ40, θ80 64.227
w v φ10, φ11φ20, φ30, φ40, φ50, φ60, φ80, φ90, φ100, θ10, θ40, θ80 79.286

Table 4.2 shows the estimated parameters of the weekly STARMA models and the
corresponding significance code. The parameter with the highest value in all three models
is the 1st order AR parameter (φ10). This means that the crime scores from one week
earlier are weighted the most. An interesting difference emerges when looking at the second
highest AR parameters in Table 4.2. While for the "all" and "property" crime categories the
second highest AR parameter concerns crime values from four weeks ago (φ40), the second
highest parameter in the violent crime model φ20 concerns values from two weeks ago. The
parameters accounting for the neighboring values are all low except of the weekly all crime
model (φ11) Low values do not mean that they are not important to the overall model,
only that the data used to predict the values have less influence on the final result than
parameters with high values.

As for MA parameters, all except θ20 are negative values. The purpose of MA models, as
learned in subsection 2.5.2, is to create a smoother time series. The highest absolute values
are found at θ40 for the weekly all and property model. For the violence model, the highest
value is at θ10, while θ40 is not significant for this model. Nevertheless, the parameter was
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included because the error metrics were better with it than without it.

Table 4.2: Parameters of weekly STARMA models

Parameter w all w p w v

Estimate Signif. Estimate Signif. Estimate Signif.

φ10 0,544 ∗ ∗ ∗ 0,478 ∗ ∗ ∗ 0,629 ∗ ∗ ∗
φ11 -0,241 ∗ ∗ ∗ 0,012 ∗ ∗ ∗
φ20 0,049 ∗ ∗ ∗ 0,161 .

φ30 0,117 ∗ ∗ ∗ 0,038 ∗ ∗ ∗ 0,022 ∗ ∗ ∗
φ40 0,499 ∗ ∗ ∗ 0,368 ∗ ∗ ∗ 0,098 ∗
φ50 -0,048 ∗ ∗ ∗ -0,012 0,018 ∗
φ60 -0,020 ∗∗ -0,023 ∗ ∗ ∗ 0,028 ∗ ∗ ∗
φ70 0,020 ∗ ∗ ∗
φ80 0,042 ∗ 0,161 ∗ ∗ ∗ 0,216 ∗ ∗ ∗
φ90 -0,022 ∗ ∗ ∗ -0,022 ∗ ∗ ∗
φ100 -0,049 ∗ ∗ ∗ -0,037 ∗ ∗ ∗ -0,017 ∗ ∗ ∗
φ110 -0,008 .

φ130 0,132 ∗ ∗ ∗
θ10 -0,230 ∗ ∗ ∗ -0,293 ∗ ∗ ∗ -0,461 ∗ ∗ ∗
θ20 0,297 ∗ ∗ ∗
θ40 -0,340 ∗ ∗ ∗ -0,313 ∗ ∗ ∗ -0,039
θ80 -0,042 ∗ ∗ ∗ -0,142 ∗ ∗ ∗ -0,189 ∗ ∗ ∗
θ130 -0,113 ∗ ∗ ∗

A look at the error metrics in Table 4.3 shows that both STARMA and ARIMA models
have similar error metrics for the weekly period. Highlighted are the "best" values, i.e., the
lowest MSE, RMSE, and standard deviations, and the highest R2. It is interesting to note
that as R2 increases, both MSE and RMSE increase. In addition, the model with the lowest
BIC, w-all, has the lowest MSE and RMSE, but also the lowest R2. To gain a better insight
into the residuals of the models, they were mapped (Figure 4.3).

Table 4.3: Error metrics and their standard deviation for weekly models

Case STARMA ARIMA

study MSE s.d. RMSE s.d. R2 s.d. MSE s.d. RMSE s.d. R2 s.d.

w all 0,2246 0,0834 0,2965 0,1147 0,8924 0,0082 0,2246 0,0856 0,2967 0,1171 0,9005 0,0129
w p 0,2842 0,1126 0,3786 0,1542 0,9320 0,0244 0,2810 0,1130 0,3751 0,1533 0,9320 0,0336
w v 0,3346 0,1166 0,4306 0,1567 0,9379 0,0244 0,3317 0,1184 0,4266 0,1571 0,9470 0,0333

Figure 4.3 shows the standard deviation of the model residuals at the last observed
time step (week 784). The blue areas indicate overprediction, while the red areas indicate
underprediction. Comparing the 4.3a map with the 4.3b map, we see that the STARMA
residuals in the Queens police precincts exhibit overprediction of up to 2 s.d.. In contrast,
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(a) s.d. of w all STARMA residuals. (b) s.d. of w all ARIMA residuals.

(c) s.d. of w p STARMA residuals. (d) s.d. of w p ARIMA residuals.

(e) s.d. of w v STARMA residuals. (f) s.d. of w all ARIMA residuals.

Figure 4.3: Residuals of time period 784 of the weekly models
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the ARIMA residuals in the 4.3b map exhibit more extreme s.d. in both overprediction and
underprediction. Between the two maps, it is apparent that the STARMA model has less
extreme error, but the areas of significant s.d. are clustered. It appears that the STARMA
models smooth the errors to the neighborhoods of the police precincts that produce high
s.d. of the ARIMA residuals. This observation can also be made with the 4.3c and 4.3d
maps, as well as with the 4.3e and 4.3f maps. A look at the three maps of ARIMA residuals
shows a similar spatial distribution for the overall and violent crime categories, with cold
spots around the Bronx and hot spots in Brooklyn and the southern tip of Manhattan. In
contrast, the ARIMA models for property crime appear to be concentrated in Manhattan,
with alternating over- and underestimates.

To obtain a statistical evaluation of the remaining spatial autocorrelation of the residuals
of the models, they are mapped in Figure 4.4. In the "Weekly All" category, the ARIMA
model (Figure 4.4b) has one more police precinct in the "Not Significant" category than
the corresponding STARMA model (Figure 4.4a). This means that one more area is not
spatially autocorrelated. The differences in the LISA cluster map of the weekly all-crime
models are that the STARMA model generates two more areas in the "Low" category,
meaning that low-crime areas are correlated with neighboring low-crime areas. The weekly
ARIMA model, on the other hand, generates one more area in the High-High category,
meaning that high-crime areas are correlated with neighboring high-crime areas. Both
High-High and Low-Low categories indicate spatial clusters, while the High-Low and Low-
High categories indicate spatial outliers.

The STARMA (Figure 4.4c) and ARIMA (Figure 4.4d) weekly property crime models
yield the same number of clusters and outliers in the same location. As with the weekly
violent crime models, the errors in the STARMA model (Figure 4.4e) produce 2 areas of
spatial clusters and outliers, meaning that the residuals of the model produce fewer areas
of spatial autocorrelation than the corresponding ARIMA model (Figure 4.4f).

In general, the data sample of 784 weeks may not be ideal for modeling ARIMA and
STARMA due to the changing trend in the data. The error metrics of STARMA and
ARIMA were similar, but thanks to the mapping of the residuals of the model, the differences
between the two approaches can be seen. The comparison of the LISA cluster maps showed
that the residuals from both methods produced similar spatial clusters.
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(a) LISA of w all STARMA residuals. (b) LISA of w all ARIMA residuals.

(c) LISA of w p STARMA residuals. (d) LISA of w p ARIMA residuals.

(e) LISA of w v STARMA residuals. (f) LISA of w all ARIMA residuals.

Figure 4.4: LISA of time period 784 of the weekly models.
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4.3 Monthly performance evaluation

The monthly category consists of 180 temporal observations and represents medium-term
forecasts. Looking at the BIC of the STARMA parameters in Table 4.4, the selected param-
eters fit the data better than the weekly models. The most important change in parameter
selection is the absence of MA parameters in the all and violent crime categories, which
essentially makes them STAR models.

Table 4.4: Selection of monthly STARMA parameters with the corresponding BIC

Case study Parameters BIC

1 m all φ10, φ20, φ30, φ50, φ70, φ100, φ120 821
1 m p φ10, φ20, φ21, φ30, φ70, φ80, φ120, φ121, θ20 3.246
1 m v φ10, φ20, φ30, φ40, φ80, φ100, φ120, φ121 7.126

A closer look at the parameters of the monthly model (Table 4.5) mirrors the results of
the parameters of the weekly model in that the values one time period prior are the most
important values for predicting future arrests. Both the property and violent crime models
have the second highest second-order parameter (φ20), while for the overall model φ120,
the parameter for values twelve months ago, is the second highest. The model is the only
monthly model that has estimates for the neighbors, neither of which are significant, but
still improve the error metrics. The property model is also the only monthly model where
an MA parameter shows an improvement in the models.

Table 4.5: Parameters of monthly STARMA models

Parameter 1m all 1m p 1m v

Estimate Signif. Estimate Signif. Estimate Signif.

φ10 0,425 ∗ ∗ ∗ 0,395 ∗ ∗ ∗ 0,315 ∗ ∗ ∗
φ20 0,174 ∗ ∗ ∗ 0,375 ∗ ∗ ∗ 0,229 ∗ ∗ ∗
φ21 0,049
φ30 0,063 ∗ ∗ ∗ 0,057 ∗ ∗ ∗ 0,099 ∗ ∗ ∗
φ40 0,004
φ50 0,068 ∗ ∗ ∗
φ70 0,013 0,052 ∗ ∗ ∗
φ80 0,009 0,023 ∗∗
φ100 0,021 ∗ -0,022 ∗ ∗ ∗ 0,118 ∗ ∗ ∗
φ120 0,230 ∗ ∗ ∗ 0,098 ∗ ∗ ∗ 0,189 ∗ ∗ ∗
φ121 0,001 0,023 ∗ ∗ ∗
θ20 -0,196 ∗ ∗ ∗

The 1m-all STAR model has better overall error metrics than its ARIMA counterpart
Table 4.6. The same is true for the 1m-v STAR model, except for the lower R2. The 1-m-p
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STARMA model has slightly worse or equal error metrics, but better s.d. of the errors.

Table 4.6: Error metrics and their standard deviation for monthly models

Case STARMA ARIMA

study MSE s.d. RMSE s.d. R2 s.d. MSE s.d. RMSE s.d. R2 s.d.

1 m all 0,1500 0,0700 0,2083 0,0922 0,9076 0,0168 0,1632 0,0735 0,2131 0,0970 0,9002 0,0196
1 m p 0,1856 0,0820 0,2394 0,1063 0,8927 0,0143 0,1827 0,0818 0,2366 0,1069 0,8999 0,0315
1 m v 0,2090 0,0832 0,2668 0,1087 0,9009 0,0166 0,2108 0,0931 0,2692 0,1204 0,9142 0,0352

The good metrics of the monthly STAR models for all and violent crime are also evident
in the residual maps 4.5a and 4.5e compared to their ARIMA counterparts. Both models
overestimate or underestimate the prediction less than the ARIMA models. However, there
still seems to be improvements in the parameter estimation of violent crime, as there are
still some clusters. For the property category (maps 4.5c and 4.5d), the STARMA model
has less extreme prediction error in fewer police precincts. Overall, the STARMA models
produce prediction errors in fewer areas and also do not produce extreme errors. In addition,
the residuals are not as spatially clustered as in the ARIMA models.

To gain further insight into which police precincts are still spatially clustered or represent
outliers, the local Moran’s of the residuals is calculated and mapped in Figure 4.6. Both the
monthly ARIMA and STARMA models in the total and property crime category have the
same proportion of non-spatially clustered areas. The only difference between these models
is the location of the spatially clustered areas and the outliers. The weekly ARIMA model
for property crime (Figure 4.6d) produces one more area that is not spatially correlated and
therefore performs better than its STARIMA counterpart.

In the monthly category, the STARMA models performed better than the ARIMA
models for both all and violent crime categories. The mapped residuals of the STARMA
models also looked promising compared to the ARIMA models, but the LISA maps did not
show less spatially correlated areas.
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(a) s.d. of 1m all STARMA residuals. (b) s.d. of 1m all ARIMA residuals.

(c) s.d. of 1m p STARMA residuals. (d) s.d. of 1m p ARIMA residuals.

(e) s.d. of 1m v STARMA residuals. (f) s.d. of 1m v ARIMA residuals.

Figure 4.5: Residuals of time period 180 of the monthly models.
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(a) LISA of 1m all STARMA residuals. (b) LISA of 1m all ARIMA residuals.

(c) LISA of 1m p STARMA residuals. (d) LISA of 1m p ARIMA residuals.

(e) LISA of 1m v STARMA residuals. (f) LISA of 1mw all ARIMA residuals.

Figure 4.6: LISA of time period 180 of the monthly models.
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4.4 Quarterly performance evaluation

The quarterly category consists of 60 observations and represents one of the long-term
periods. A look at the parameters in Table 4.7 shows that the model for all and the model
for violent crime do not use MA parameters, as did the corresponding models in the monthly
category. In addition, the STARMA models in this temporal category have the smallest
BIC of all models.

Table 4.7: Selection of quarterly STARMA parameters with the corresponding BIC

Case study Parameters BIC

3 m all φ10, φ20, φ30, φ40 284
3 m p φ10, φ20, φ30, φ40 123
3 m v φ10, φ30, φ40, φ80, φ81 1.772

A closer look at the parameters thanks to Table 4.8 shows the importance of the last
period before the prediction. For all three models, the parameter with the highest values is
φ10. The parameter related to the values of the previous year (φ40) has the second highest
value. In addition, the monthly violence model has estimated parameters in the eighth
order, both from their own and neighbors’ values.

Table 4.8: Parameters of quarterly STARMA models

Parameter 3m all 3m p 3m v

Estimate Signif. Estimate Signif. Estimate Signif.

φ10 0,623 ∗ ∗ ∗ 0,673 ∗ ∗ ∗ 0,498 ∗ ∗ ∗
φ20 0,051 ∗ 0,091 ∗ ∗ ∗
φ30 0,034 0,099 ∗ ∗ ∗ 0,142 ∗ ∗ ∗
φ40 0,282 ∗ ∗ ∗ 0,117 ∗ ∗ ∗ 0,248 ∗ ∗ ∗
φ80 0,079 ∗ ∗ ∗
φ81 0,018 ∗

Looking at 4.9, the ARIMA models have the best MSE and RMSE. The STARMA all
and violent crime models have the best R2, but all error metrics and their s.d. are close.
Again, mapping the residuals will provide more insight into which model performs better.

Table 4.9: Error metrics and their standard deviation for quarterly models

Case STARMA ARIMA

study MSE s.d. RMSE s.d. R2 s.d. MSE s.d. RMSE s.d. R2 s.d.

3 m all 0,1456 0,0699 0,1855 0,0897 0,9137 0,0220 0,1390 0,0698 0,1775 0,0878 0,9084 0,0268
3 m p 0,1510 0,0738 0,1948 0,0972 0,8627 0,0268 0,1478 0,0787 0,1900 0,0987 0,8775 0,0360
3 m v 0,1597 0,0775 0,2039 0,0999 0,8977 0,0289 0,1531 0,0776 0,1965 0,1005 0,8927 0,0389
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Looking at the maps in Figure 4.7, the residuals of the STARMA models are less spa-
tially connected than their ARIMA counterpart. As with the monthly STARMA model,
the STARMA violent crime model has room for more parameters to account for the spa-
tial autocorrelation. Most of the residuals outside the first s.d. of the STARMA model
are under-predicted. All in all, the results of the quarterly STARMA models look very
promising.

The promising residuals of the STARMA models are also reflected in the LISA cluster
maps of the STARMA models for violent crime (Figure 4.8e) and for all crime (Figure 4.8a).
Both generate four more areas that do not resemble any kind of spatial autocorrelation. In
contrast, the monthly STARMA model for property crime (Figure 4.8c) performs worse
than its ARIMA counterpart (Figure 4.8f).
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(a) s.d. of 3m all STARMA residuals. (b) s.d. of 3m all ARIMA residuals.

(c) s.d. of 3m p STARMA residuals. (d) s.d. of 3m p ARIMA residuals.

(e) s.d. of 3m v STARMA residuals. (f) s.d. of 3m v ARIMA residuals.

Figure 4.7: Residuals of time period 60 of the quarterly models.
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(a) LISA of 3m all STARMA residuals. (b) LISA of 3m all ARIMA residuals.

(c) LISA of 3m p STARMA residuals. (d) LISA of 3m p ARIMA residuals.

(e) LISA of 3m v STARMA residuals. (f) LISA of 3m all ARIMA residuals.

Figure 4.8: LISA of time period 60 of the quarterly models.



CHAPTER 4. RESULTS AND DISCUSSION 69

4.5 Semiannual performance evaluation

The semiannual category consists of 30 observations and is the second of the three long-term
periods. Using Table 4.10, we can see that the property and violent crime model has no
MA parameters. Moreover, this is the only category in which all three STARMA models
have one or more parameters related to their neighbor. The BIC of the STARMA models
is higher compared to the BIC of the quarterly models, with the exception of the BIC of
the violent model.

Table 4.10: Selection of semiannual STARMA parameters with the corresponding BIC

Case study Parameters BIC

6 m all φ10, φ20, φ41, θ30, θ40, θ41 606
6 m p φ10, φ20, φ30φ41 377
6 m v φ10, φ11, φ20, φ21, φ40 1.159

Using Table 4.11, the most influential parameter of the semiannual month is again
φ10, followed by φ20. Interestingly, the STARMA model parameters have very small values
compared to the other two models. Both the violence and total crime models have significant
parameters that include neighborhood values. To see if the parameters have an effect on
the spatial distribution of the residuals, a close look at the maps is needed.

Table 4.11: Parameters of semiannual STARMA models

Parameter 6m all 6m p 6m v

Estimate Signif. Estimate Signif. Estimate Signif.

φ10 0,688 ∗ ∗ ∗ 0,087 ∗ ∗ ∗ 0,494 ∗ ∗ ∗
φ11 -0,079 ∗
φ20 0,275 ∗ ∗ ∗ 0,067 ∗ ∗ ∗ 0,401 ∗ ∗ ∗
φ21 0,102 ∗ ∗ ∗
φ30 -0,011 ∗ ∗ ∗
φ40 0,061 ∗
φ41 0,001 -9,122e-5
θ30 -0,056
θ40 0,177 ∗ ∗ ∗
θ41 0,105 ∗ ∗ ∗

The error metrics of the semiannual models in Table 4.12 are almost the same and follow
the same distribution as the error metrics of the quarterly models. The only difference is
that the standard deviation of R2 of the semiannual STARMA model is worse than that of
the ARIMA model. In general, the standard deviation of R2 is higher for all models than
for the quarterly counterpart.
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Table 4.12: Error metrics and their standard deviation for semiannual models

Case STARMA ARIMA

study MSE s.d. RMSE s.d. R2 s.d. MSE s.d. RMSE s.d. R2 s.d.

6 m all 0,1450 0,0632 0,1795 0,0775 0,9119 0,0475 0,1296 0,0615 0,1636 0,0788 0,9115 0,0321
6 m p 0,1470 0,0790 0,1879 0,1040 0,8482 0,0421 0,1432 0,0850 0,1806 0,1056 0,8856 0,0482
6 m v 0,1523 0,0816 0,1901 0,0997 0,8918 0,0296 0,1413 0,0844 0,1783 0,1030 0,8861 0,0465

The residuals of the semi-annual STARMA model look consistent compared to their
ARIMA counterparts in Figure 4.9. Again, almost all of the STARMA model residuals are
overestimates. In addition, the residuals in all STARMA models appear to resemble some
sort of spatial autocorrelation, but again, they look very promising compared to the errors
in the ARIMA models.

Compared to the LISA cluster maps for the quarterly models, the semiannual models
(Figure 4.10) yield fewer areas of nonsignificant spatial autocorrelation. The semiannual
ARIMA model (Figure 4.10b) for all crimes performs best overall, followed by the STARMA
model for property (Figure 4.10d) and violent crimes (Figure 4.10f).
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(a) s.d. of 6m all STARMA residuals. (b) s.d. of 6m all ARIMA residuals.

(c) s.d. of 6m p STARMA residuals. (d) s.d. of 6m p ARIMA residuals.

(e) s.d. of 6m v STARMA residuals. (f) s.d. of 6m v ARIMA residuals.

Figure 4.9: Residuals of time period 30 of the semiannual models.
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(a) LISA of 6m all STARMA residuals. (b) LISA of 6m all ARIMA residuals.

(c) LISA of 6m p STARMA residuals. (d) LISA of 6m p ARIMA residuals.

(e) LISA of 6m v STARMA residuals. (f) LISA of 6m all ARIMA residuals.

Figure 4.10: LISA of time period 30 of the semiannual models.
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4.6 Annual performance evaluation

The last temporal category of the study is annual with 15 observations. Due to the small
number of observations, the STARMA models in the annual category have the smallest
number of parameters (Table 4.13). Since all three models do not use an MA parameter,
all three models can also be considered STAR models. The BIC of the annual models also
increases compared to the semi-annual models.

Table 4.13: Selection of annual STARMA parameters with the corresponding BIC

Case study Parameters BIC

y all φ10, φ11 779
y p φ30 2.194
y v φ30 2.191

Because there are few parameters in the annual models, they all have high values except
φ11 (Table 4.14). The annual property and violent crime models are the first in which
the first-order AR parameter was not estimated because φ10 yielded higher BIC and error
metrics.

Table 4.14: Parameters of annual STARMA models

Parameter y all y p y v

Estimate Signif. Estimate Signif. Estimate Signif.

φ10 0,968 ∗ ∗ ∗
φ11 0,19 .

φ30 0,825 ∗ ∗ ∗ 0,864 ∗ ∗ ∗

Almost all error metrics favor the annual ARIMA model, with the exception of the R2

of the STARMA model for all and property crimes (Table 4.15). While in the previous
periods the error metrics were quite similar, this is not the case for the annual models.

Table 4.15: Error metrics and their standard deviation for annual models

Case STARMA ARIMA

study MSE s.d. RMSE s.d. R2 s.d. MSE s.d. RMSE s.d. R2 s.d.

y all 0,1646 0,0870 0,2031 0,1017 0,9315 0,0304 0,1420 0,0774 0,1795 0,0953 0,9080 0,3444
y p 0,3129 0,2618 0,3704 0,2965 0,9006 0,0470 0,1605 0,1153 0,1991 0,1406 0,8966 0,0737
y v 0,2552 0,1295 0,3026 0,1523 0,8757 0,0969 0,1425 0,0919 0,1797 0,1143 0,8813 0,0773

In mapping the residuals of the last period (Figure 4.11), the annual STARMA models
all overpredict a large number of areas. This general over-prediction could because the
last year in the data was 2020, which had a drastic drop in arrests due to the COVID-19



CHAPTER 4. RESULTS AND DISCUSSION 74

pandemic. For the ARIMA models, there are fewer areas outside the first s.d., but also
greater diversity in the areas that are outside.

The LISA cluster maps of the annual Figure 4.12 models yield similar amounts of spa-
tially nonautocorrelated areas. Interestingly, the location of areas with spatial clusters and
outliers varies greatly between the STARMA and ARIMAmodels of the property and violent
crime category. All in all, the STARMA model (Figure 4.12a) and the violent crime model
(Figure 4.12e) perform better than their ARIMA counterpart, and the ARIMA property
crime model (Figure 4.12d) performs better than its STARMA counterpart.
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(a) s.d. of y all STARMA residuals. (b) s.d. of y all ARIMA residuals.

(c) s.d. of y p STARMA residuals. (d) s.d. of y p ARIMA residuals.

(e) s.d. of y v STARMA residuals. (f) s.d. of y v ARIMA residuals.

Figure 4.11: Residuals of time period 15 of the annual models.
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(a) LISA of y all STARMA residuals. (b) LISA of y all ARIMA residuals.

(c) LISA of y p STARMA residuals. (d) LISA of y m p ARIMA residuals.

(e) LISA of y v STARMA residuals. (f) LISA of y all ARIMA residuals.

Figure 4.12: LISA of time period 15 of the annual models.
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4.7 Model evaluation

To get an overview of which model performs best on which performance metric, each ana-
lyzed model is evaluated against its counterpart. For each temporal and criminal category,
the performance metrics (error metrics, residual maps, and LISA cluster maps) of the
STARMA and ARIMA models are compared, and the model that outperforms the other
receives one point for each performance metric. If neither model outperforms the other, for
example because they have the same spatial distribution in the LISA maps or because it
cannot be attributed to a particular model to have better residual maps than the other, both
models receive half a point. When evaluating the error metrics, the standard deviations of
the errors are not counted whether one model performs better than the other. Interpre-
tation of the residual maps is purely visual, which can be subjective. The model whose
residuals yielded fewer errors outside the first s.d. or that had less variation between over-
and under-prediction was considered better. For the LISA cluster maps, the model that
yielded more nonsignificant spatially correlated regions than the other performed better.
How each model compared to each other per category can be seen in Table 4.16.

Table 4.16: Summary of the evaluation of the STARMA and ARIMA models for each case study.
The error metrics, residual map, and LISA map of the STARMA and ARIMA models for each
case study are compared. The method that performs best receives a 1. If both methods perform
similarly, they both receive 0,5.

Case STARMA ARIMA

study Error metrics Residuals LISA
∑

Error metrics Residuals LISA
∑

w all 1 1 − 2 − − 1 1
w p 1 − 0,5 1,5 − 1 0,5 1,5
w v − 1 1 2 1 − − 1
1 m all 1 1 0,5 2,5 − − 0,5 0,5
1 m p − 1 − 1 1 − 1 2
1 m v 1 1 0,5 2,5 − − 0,5 0,5
3 m all − 1 1 2 1 − − 1
3 m p − 1 − 1 1 − 1 2
3 m v 1 1 1 3 − − − 0
6 m all − 1 − 1 1 − 1 2
6 m p − 1 1 2 1 − − 1
6 m v 1 1 1 3 − − − 0
y all − 0,5 1 1,5 1 0,5 − 1,5
y p − 0,5 − 0,5 1 0,5 1 2,5
y v − 0,5 1 1,5 1 0,5 − 1,5∑

6 12,5 8,5 27 9 2,5 6,5 18

Overall, the STARMA methods performed better than the ARIMA method. The main
driver of this difference is found in the mapped residuals of the models. The STARMA
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model residuals consistently yielded fewer residuals outside of the first s.d.. However, it is
important to note that the mapped residuals are from the last temporal observation, not for
the total period. It could be that the ARIMA residuals from a different temporal observation
would perform better than the STARMA residuals. However, not every time period can
be analyzed due to time constraints. Moreover, the difference in the overall performance
of the residuals is measured in the error metrics of the models. Here, the ARIMA models
perform slightly better than their STARMA counterparts. The difference here lies in the
automatic estimation of the ARIMA parameters and in the fact that a separate ARIMA
model is estimated for each constituency. Estimating the STARMA parameters proved
to be an arduous task because there are many different parameter combinations possible.
Certainly, there are some undiscovered parameter combinations in the STARMA models.
Nevertheless, most STARMA models yielded similar error metrics as the ARIMA models.
When comparing the local spatial autocorrelation of the residuals, the STARMA models
slightly outperformed the ARIMA models.

The STARMA method outperformed the ARIMA method in every temporal category
except the annual one. This could be related to the small number of temporal observations
(15) in the annual category and some parameters of the STARMA models that were not
estimated. In particular, the monthly, quarterly, and semiannual STARMA models per-
formed very well. For the weekly models, the number of observations was definitely not
ideal, but still the weekly models yielded good performance metrics.

When looking at the crime categories, the STARMA and ARIMA methods performed
almost equally well. While the ARIMA models performed best in the property crime cate-
gory, the STARMA models performed best in the violent crime category. In the all crimes
category, both methods performed similarly, with a slight advantage for the STARMA
method. This is undoubtedly related to the measured spatial correlation of the different
crime types. If we recall Table 3.2, the property crime category yields the lowest values
of all categories, which are close to zero, i.e., spatially randomly distributed. For all crime
categories, Moran’s I values were around ≈ 0, 2, also not a good indicator of spatial auto-
correlation. The violent crime category had the highest Moran’s I values (≈ 0, 4), which is
why the STARMA method significantly outperforms the ARIMA method in this category.
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Conclusion

The main objective of this thesis is to further investigate the promising STARMA models in
the field of spatial crime forecasting. To determine if the objectives of the study were met,
the research questions posed at the beginning of the thesis are answered in this chapter.
There were several limitations during the study that are also reported in this chapter. At
the end of this chapter and thesis, future research directions are identified based on the
results of this thesis.

5.1 Answering the research question

1.1 How does the performance of STARMA models vary with increasing levels of time lags?

The performance of the STARMAmodels first increases up to a time lag of three months
(quarterly) and then decreases again. This variation can be attributed to the number of
temporal observations available to estimate the parameter. For example, for the annual
models, only 15 temporal observations were available for each county, which limits
the number of parameters that can be estimated. This resulted in more incorrectly
predicted areas. On the other hand, the weekly models had a large number of temporal
observations (784), which made it difficult to estimate parameters and therefore resulted
in weaker performance of the weekly models compared to the monthly, quarterly, and
semi-annual models.

2.2 What is the effect of the model’s parametrization on the predictive results?

The parameterization of the model has a great influence on the prediction result. In
this study, the most influential parameter was the first-order AR parameter (φ1), which
was estimated in all but two year models. Because this parameter considers the last
observation before the value to be predicted, it can be concluded that the number of
arrests is strongly influenced by the number of arrests in the previous period. But only
one parameter was not sufficient for the models. A variety of different AR parameters
were found to further improve the prediction results. In contrast, the spatially lagged

79



CHAPTER 5. CONCLUSION 80

parameters (e.g., φ11) did not have a large impact on the error metrics, but reduced
the spatial autocorrelation of the model residuals.

The MA parameters (θ) had a smaller impact on the prediction results than the AR
parameters. For most of the best performing STARMA models, estimating an MA
parameter decreased the performance of the model. Again, the inclusion of an MA
parameter for the neighbors had little to no effect on the prediction results.

2.1 What is the added value or limitations when using the STARMA method compared to
the ARIMA method?

The greatest added value of STARMA methods was found when the underlying data
exhibited spatial autocorrelation. In this study, the models estimated on data that had
a Moran’s I value of 0, 2 or more outperformed the ARIMA models. On the other hand,
the limitations of STARMA become apparent when the data are randomly distributed
in space. In this case, the ARIMA models generally perform better.

Another important limitation of the STARMA method is the lack of packages to predict
an estimated model or automatic estimation of the parameters. The implementation of
the ARIMA models was really fast and easy thanks to the automatic estimation of the
parameters. This makes them the first choice when the data have spatial randomness.

Because the STARMA models estimated one model for the entire study area, unlike
the 77 ARIMA models, the mapping errors of the STARMA models had less variation
and extreme standard deviations. This could be advantageous in predicting values for
many areas in a region because the errors of the models are similar and therefore can
be better managed than a high variation of error deviations.

2.2 Which models performs best and is this dependent on the time lag?

The best model is the quarterly STARMA model for violent crime, followed by the
semiannual STARMA model for violent crime, and the monthly STARMA model for
violent and all crime. All STARMA models with the best performance were estimated
with data that had spatial autocorrelation over the study area and had a number of
observations between 30 and 180. Therefore, it can be assumed that the performance
of the STARMA model depends more on the spatial autocorrelation and the number
of observations than on a specific time period.

3.1 Are best performing time lags dependent on the crime type, and if yes which time lags
are more adequate for each crime type?

The best-performing time delays do not depend on the type of crime. For the best
performing time delays, monthly, quarterly, and semiannual delays, the STARMAmodel
performs best in the all and violent crimes categories. The ARIMA model for property
crimes, on the other hand, performs best in these time lags. This shows that the type
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of crime has an effect on which models perform better than others, but does not affect
whether one time lag performs better than another. The number of observations could
have a greater impact on the performance of certain time lags.

5.2 Limitations of the study

There were several limitations in conducting this study. The first was the crime data used
for the models. As described in section 3.3, the data used for the crime counts were NYPD
arrest records. Upon examination of the data, it became apparent that the data may not
represent actual crimes, but rather police activity. In addition, the spatial autocorrelation
of the property crimes indicated spatial randomness, while the violent crimes had some
spatial clusters, which is inconsistent with findings in the criminology literature.

This raised the question of whether the spatial resolution of police precincts used was
ideal for property crime data. The choice was justified by reported computational problems
with approximately 300 different areas. In this study, modeling STARMA with the 77 police
precincts was not a computational problem.

Another limitation was the lack of predictive capability of the R package starma. This
package is a great help in creating STARMA models, but lacks the ability to predict values
with the model. Also, the package is no longer supported.

5.3 Future research directions

The limitations of this study open new possibilities for scientific work in the field of spatial
crime forecasting and the use of STARMA models:

1. The use of police arrest data has been found to be limited, since they are a reflection
of police activity. To address any bias in crime data, future research should examine
data not directly related to police activity. An example of such data are emergency
call locations. It would also be interesting to explore new ways to accurately locate
criminal events using new technologies such as the Internet of Things.

2. The effect of different spatial resolutions of the same data on STARMA models would
also be an interesting research topic. For example, which spatial resolutions per-
form better and how many observations per spatial resolution are ideal for STARMA
models could be investigated. In addition, methods for determining ideal spatial rep-
resentations for the data based on spatial autocorrelation identifiers should be further
investigated. Ways to automate the spatial resolution selection process or weighting
are also interesting research directions.

3. Future studies could also analyze the effect of different spatial scales on the compu-
tational effect of STARMA models. This study could help to further automate the
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STARMA process. For example, it could be analyzed at which dimensionality of the
input matrix the STARMA R package reaches its limits. This study could improve
the current or future R packages regarding the STARMA method.

4. Since this study used always the whole data set (2006-2020) the exploration of different
temporal resolutions with the same set of observations could be further investigated.
In this case, each case study would have the same number of temporal observations and
therefore would allow a further comparison between the different forecasting periods.

5. Due to the widespread use of ARIMA models, there have already been several suc-
cessful attempts to automate the parameter estimation process of ARIMA models.
Further research on the STARMA method may reveal the potential of the method.
An automated STARMA estimation process as well as a STARMA prediction tool
would further advance research on the STARMA method. Further automation pro-
cesses in determining the best spatial resolution or spatial weighting for each model
would further enhance the use of STARMA models. The main challenge is that the
definition of space is very different compared to time. While time is well defined
in terms of its length and intervals, defining the "right" spatial resolution is more
complex. But this challenge is also the reason why spatial studies are so fascinating.
Given the constant technological development, I am hopeful that one day it will be
as easy to create a STARMA model as an ARIMA model.
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Appendix A

Tables

Table A.1: Column info of NYPD Arrest Data (Historic)

Column Name Column Description

ARREST_KEY Randomly generated persistent ID for each arrest
ARREST_DATE Exact date of arrest for the reported event
PD_CD Three digit internal classification code (more granular than Key

Code)
PD_DESC Description of internal classification corresponding with PD

code (more granular than Offense Description)
KY_CD Three digit internal classification code (more general category

than PD code)
OFNS_DESC Description of internal classification corresponding with KY

code (more general category than PD description)
LAW_CODE Law code charges corresponding to the NYS Penal Law, VTL

and other various local laws
LAW_CAT_CD Level of offense: felony, misdemeanor, violation
ARREST_BORO Borough of arrest. B(Bronx), S(Staten Island), K(Brooklyn),

M(Manhattan), Q(Queens)
ARREST_PRECINCT Precinct where the arrest occurred
JURISDICTION_CODE Jurisdiction responsible for arrest. Jurisdiction codes 0(Patrol),

1(Transit) and 2(Housing) represent NYPD whilst codes 3 and
more represent non NYPD jurisdictions

AGE_GROUP Perpetrator’s age within a category
PERP_SEX Perpetrator’s sex description
PERP_RACE Perpetrator’s race description
X_COORD_CD Midblock X-coordinate for New York State Plane Coordinate

System, Long Island Zone, NAD 83, units feet (FIPS 3104)
Y_COORD_CD Midblock Y-coordinate for New York State Plane Coordinate

System, Long Island Zone, NAD 83, units feet (FIPS 3104)
Latitude Latitude coordinate for Global Coordinate System, WGS 1984,

decimal degrees (EPSG 4326)
Longitude Longitude coordinate for Global Coordinate System, WGS 1984,

decimal degrees (EPSG 4326)

I
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Table A.1: (continued)

Column Name Column Description

Lon_Lat Latitude and Longitude coordinate for Global Coordinate Sys-
tem, WGS 1984, decimal degrees (EPSG 4326)



Appendix B

R Code

B.1 R code for data processing

l ibrary ( here )
l ibrary ( t i dyv e r s e )
l ibrary ( readr )
l ibrary ( l ub r i d a t e )
l ibrary ( s f )
l ibrary ( sp )
l ibrary ( reshape2 )
l ibrary ( spdep )

# Step 1 : Input data
crime_data <− read_csv ( "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/

NYPD_Arre s t s_Data__Hi s t o r i c_. csv " ) # read data
admin_data <− read_s f ( "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/NY_

PP/nypp . shp " ) #the chosen f i l e shou ld be as shape f i l e ( " . shp " ) ,
t h i s r e f e r s to p r e c i n c t s as s tudy zones

# Step 2 : S e l e c t r e l e v an t a t t r i b u t e s
crime_data$DATE<− as . Date ( crime_data$ARREST_DATE, format = "%m/%d/%Y" )

#change ARREST_DATE from s t r i n g to date
cr_s e l <− crime_data %>%

dplyr : : s e l e c t (OFNS_DESC, ARREST_PRECINCT ,X_COORD_CD, Y_COORD_CD
, DATE)

pp <− admin_data [ , c ( 1 , 3 , 4 ) ]# s e l e c t i o n o f u s e f u l a t t r i b u t e s ( at l e a s t
p r e c i n c t id , area and t h e i r geometry )

pp_l i s t <− as . l i s t (pp$Prec inc t )

# Step X: S e l e c t i o n o f the s tudy per iod
#cr_s e l_s t a r t <− cr_s e l %>%

III
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f i l t e r ( cr_s e l $DATE >= "2006−01−01 " )
#cr_s e l_end <− cr_s e l_s t a r t %>%

f i l t e r ( cr_s e l_start$DATE <= "2006−12−31 " )

# Step 3 : Clear N.A. and s t range data
c l r_temp_1 <− cr_s e l #use cr_s e l_end i f a su b s e t o f date i s used
c l r_temp_2 <− c l r_temp_1 %>%

drop_na ( ) # de l e t e empty rows
cr_c l r <− c l r_temp_2 [ ( ! ( c l r_temp_2$OFNS_DESC=="F .C.A. ␣P. I .N.O. S . " ) ) , ] #

de l e t e s t range data

# Step 4 : S p a t i a l Join o f crime data & Po l i c e Prec inc t s
cr_s f <− cr_c l r %>%

st_as_s f ( coords=c ( "X_COORD_CD" , "Y_COORD_CD" ) , c r s =2263 , remove=
FALSE) #crea t e s f o b j e c t s f o r s p a t i a l j o i n

pp_s f <− pp %>%
st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)

cr_pp_s j <− s t_j o i n ( cr_s f , pp_s f , j o i n = s t_i n t e r s e c t s ) #s p a t i a l j o i n

cr_pp_s j $Prec inc t <− i f e l s e ( i s .na( cr_pp_s j $Prec inc t ) , c r_pp_s j $ARREST_
PRECINCT, cr_pp_s j $Prec inc t ) #rep l a c e not j o ined po in t wi th ARREST_
PRECINCT in f o

cr_pp_nc <− cr_pp_s j [ , c ( 1 , 5 , 7 ) ] #dropping coord ina t e s and geometry f o r
f a s t e r p roce s s ing

cr_pp_ng <− s t_drop_geometry ( cr_pp_nc )

# Step 5 : Categor i ze a r r e s t data in t o crime type s
div_temp <− cr_pp_ng
div_temp$a l l <− 1
s i z e <− nrow( div_temp)

for ( i in 1 : s i z e ) {
i f ( div_temp [ i ,1]== "ABORTION" ) {

div_temp$p [ i ]<−0 # proper ty = p
div_temp$v [ i ]<−0 # v i o l e n t = v

} else i f ( div_temp [ i ,1]== "ADMINISTRATIVE␣CODE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ADMINISTRATIVE␣CODES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "AGRICULTURE␣&␣MRKTS␣LAW−UNCLASSIFIED" ) {
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div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ALCOHOLIC␣BEVERAGE␣CONTROL␣LAW" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ANTICIPATORY␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ARSON" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ASSAULT␣3␣&␣RELATED␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "BURGLAR’ S␣TOOLS" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "BURGLARY" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "CHILD␣ABANDONMENT/NON␣SUPPORT" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "CHILD␣ABANDONMENT/NON␣SUPPORT␣1 " ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "CRIMINAL␣MISCHIEF␣&␣RELATED␣OF" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "CRIMINAL␣MISCHIEF␣&␣RELATED␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "CRIMINAL␣TRESPASS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "DANGEROUS␣DRUGS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "DANGEROUS␣WEAPONS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "DISORDERLY␣CONDUCT" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0



APPENDIX B. R CODE VI

} else i f ( div_temp [ i ,1]== "DISRUPTION␣OF␣A␣RELIGIOUS␣SERV" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "DISRUPTION␣OF␣A␣RELIGIOUS␣SERVICE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ENDAN␣WELFARE␣INCOMP" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "ESCAPE␣3 " ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "FELONY␣ASSAULT" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "FOR␣OTHER␣AUTHORITIES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "FORCIBLE␣TOUCHING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "FORGERY" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "FRAUDS" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "FRAUDULENT␣ACCOSTING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "GAMBLING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "GRAND␣LARCENY" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "GRAND␣LARCENY␣OF␣MOTOR␣VEHICLE" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "HARRASSMENT" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "HARRASSMENT␣2 " ) {
div_temp$p [ i ]<−0
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div_temp$v [ i ]<−1
} else i f ( div_temp [ i ,1]== "HOMICIDE−NEGLIGENT−VEHICLE" ) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "HOMICIDE−NEGLIGENT,UNCLASSIFIE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "HOMICIDE−NEGLIGENT,UNCLASSIFIED" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "INTOXICATED␣&␣IMPAIRED␣DRIVING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "INTOXICATED/IMPAIRED␣DRIVING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "JOSTLING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "KIDNAPPING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "KIDNAPPING␣&␣RELATED␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "KIDNAPPING␣AND␣RELATED␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "LOITERING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "LOITERING␣FOR␣DRUG␣PURPOSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "LOITERING,BEGGING" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "LOITERING/GAMBLING␣ (CARDS, ␣DIC" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "LOITERING/GAMBLING␣ (CARDS, ␣DICE, ␣ETC) " )
{

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0
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} else i f ( div_temp [ i ,1]== "MISCELLANEOUS␣PENAL␣LAW" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "MOVING␣INFRACTIONS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "MURDER␣&␣NON−NEGL. ␣MANSLAUGHTE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "MURDER␣&␣NON−NEGL. ␣MANSLAUGHTER" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "NEW␣YORK␣CITY␣HEALTH␣CODE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "NYS␣LAWS−UNCLASSIFIED␣FELONY" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "NYS␣LAWS−UNCLASSIFIED␣VIOLATION" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFF. ␣AGNST␣PUB␣ORD␣SENSBLTY␣&" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFF. ␣AGNST␣PUB␣ORD␣SENSBLTY␣&␣RGHTS␣TO␣
PRIV" ) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣AGAINST␣MARRIAGE␣UNCLASSIFIED"
) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣AGAINST␣PUBLIC␣ADMINI" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣AGAINST␣PUBLIC␣ADMINISTRATION"
) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣AGAINST␣PUBLIC␣SAFETY" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣AGAINST␣THE␣PERSON" ) {
div_temp$p [ i ]<−0
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div_temp$v [ i ]<−1
} else i f ( div_temp [ i ,1]== "OFFENSES␣INVOLVING␣FRAUD" ) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OFFENSES␣RELATED␣TO␣CHILDREN" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣OFFENSES␣RELATED␣TO␣THEF" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣OFFENSES␣RELATED␣TO␣THEFT" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣STATE␣LAWS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣STATE␣LAWS␣ (NON␣PENAL␣LA" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣STATE␣LAWS␣ (NON␣PENAL␣LAW) " ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "OTHER␣TRAFFIC␣INFRACTION" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "PARKING␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "PETIT␣LARCENY" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "POSSESSION␣OF␣STOLEN␣PROPERTY" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "POSSESSION␣OF␣STOLEN␣PROPERTY␣5 " ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "PROSTITUTION␣&␣RELATED␣OFFENSES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "RAPE" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "ROBBERY" ) {
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div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "SEX␣CRIMES" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−1

} else i f ( div_temp [ i ,1]== "THEFT␣OF␣SERVICES" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "THEFT−FRAUD" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "UNAUTHORIZED␣USE␣OF␣A␣VEHICLE" ) {
div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "UNAUTHORIZED␣USE␣OF␣A␣VEHICLE␣3␣ (UUV) " )
{

div_temp$p [ i ]<−1
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "UNDER␣THE␣INFLUENCE, ␣DRUGS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "UNLAWFUL␣POSS. ␣WEAP. ␣ON␣SCHOOL" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "UNLAWFUL␣POSS. ␣WEAP. ␣ON␣SCHOOL␣GROUNDS"
) {

div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

} else i f ( div_temp [ i ,1]== "VEHICLE␣AND␣TRAFFIC␣LAWS" ) {
div_temp$p [ i ]<−0
div_temp$v [ i ]<−0

}
}

cr_div <− div_temp

# Step 6 : Extrac t in format ion about temporal r e s o l u t i o n +
# Step 7 : group & sum the data +

# Step 8 : Transpose data f o r model implementat ion

# 1 week
cr_pp_w <− cr_div
cr_pp_w$tp <− floor_date ( cr_pp_w$DATE, un i t = "week " , 1)
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cr_pp_sum_w <− cr_pp_w %>%
group_by( tp , Prec inc t ) %>% # group by the unique code o f

p r e c i n c t s & t ime per iod
summarize ( sumal l = sum( a l l ) , sump = sum(p) , sumv = sum( v

) ) #sum the crime

cr_pp_al l_w <− cr_pp_sum_w[ , c ( 1 , 2 , 3 ) ]
c r_pp_p_w <− cr_pp_sum_w[ , c ( 1 , 2 , 4 ) ]
c r_pp_v_w <− cr_pp_sum_w[ , c ( 1 , 2 , 5 ) ]

c r_pp_s t s_w_al l <− dcast ( cr_pp_al l_w, tp~Prec inct , va lue . var = " sumal l " )
#transpose f o r crime type a l l

cr_pp_s t s_w_al l [ i s .na( cr_pp_s t s_w_al l ) ] <− 0 #rep l a c e NA with 0
cr_pp_s t s_w_p <− dcast ( cr_pp_p_w, tp~Prec inct , va lue . var = "sump" ) #

transpose f o r crime type p
cr_pp_s t s_w_p [ i s .na( cr_pp_s t s_w_p) ] <− 0
cr_pp_s t s_w_v <− dcast ( cr_pp_v_w, tp~Prec inct , va lue . var = "sumv" ) #

transpose f o r crime type v
cr_pp_s t s_w_v [ i s .na( cr_pp_s t s_w_v ) ] <− 0

# 1 month
cr_pp_1m<− cr_div
cr_pp_1m$tp <− floor_date ( cr_pp_1m$DATE, un i t = "month " )

cr_pp_sum_1m<− cr_pp_1m %>%
group_by( tp , Prec inc t ) %>% # group by the unique code o f

p r e c i n c t s & t ime per iod
summarize ( sumal l = sum( a l l ) , sump = sum(p) , sumv = sum( v

) ) #sum the crime

cr_pp_al l_1m<− cr_pp_sum_1m[ , c ( 1 , 2 , 3 ) ]
c r_pp_p_1m<− cr_pp_sum_1m[ , c ( 1 , 2 , 4 ) ]
c r_pp_v_1m<− cr_pp_sum_1m[ , c ( 1 , 2 , 5 ) ]

c r_pp_s t s_1m_al l <− dcast ( cr_pp_al l_1m, tp~Prec inct , va lue . var = " sumal l
" ) #transpose f o r crime type a l l

cr_pp_s t s_1m_p <− dcast ( cr_pp_p_1m, tp~Prec inct , va lue . var = "sump" ) #
transpose f o r crime type p

cr_pp_s t s_1m_v <− dcast ( cr_pp_v_1m, tp~Prec inct , va lue . var = "sumv" ) #
transpose f o r crime type v

# 3 months
cr_pp_3m<− cr_div
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cr_pp_3m$tp <− floor_date ( cr_pp_3m$DATE, un i t = " quarte r " )

cr_pp_sum_3m<− cr_pp_3m %>%
group_by( tp , Prec inc t ) %>% # group by the unique code o f

p r e c i n c t s & t ime per iod
summarize ( sumal l = sum( a l l ) , sump = sum(p) , sumv = sum( v

) ) #sum the crime

cr_pp_al l_3m<− cr_pp_sum_3m[ , c ( 1 , 2 , 3 ) ]
c r_pp_p_3m<− cr_pp_sum_3m[ , c ( 1 , 2 , 4 ) ]
c r_pp_v_3m<− cr_pp_sum_3m[ , c ( 1 , 2 , 5 ) ]

c r_pp_s t s_3m_al l <− dcast ( cr_pp_al l_3m, tp~Prec inct , va lue . var = " sumal l
" ) #transpose f o r crime type a l l

cr_pp_s t s_3m_p <− dcast ( cr_pp_p_3m, tp~Prec inct , va lue . var = "sump" ) #
transpose f o r crime type p

cr_pp_s t s_3m_v <− dcast ( cr_pp_v_3m, tp~Prec inct , va lue . var = "sumv" ) #
transpose f o r crime type v

# 6 months

cr_pp_6m<− cr_div
cr_pp_6m$tp <− floor_date ( cr_pp_6m$DATE, un i t = " ha l f y e a r " )

cr_pp_sum_6m<− cr_pp_6m %>%
group_by( tp , Prec inc t ) %>% # group by the unique code o f

p r e c i n c t s & t ime per iod
summarize ( sumal l = sum( a l l ) , sump = sum(p) , sumv = sum( v

) ) #sum the crime

cr_pp_al l_6m<− cr_pp_sum_6m[ , c ( 1 , 2 , 3 ) ]
c r_pp_p_6m<− cr_pp_sum_6m[ , c ( 1 , 2 , 4 ) ]
c r_pp_v_6m<− cr_pp_sum_6m[ , c ( 1 , 2 , 5 ) ]

c r_pp_s t s_6m_al l <− dcast ( cr_pp_al l_6m, tp~Prec inct , va lue . var = " sumal l
" ) #transpose f o r crime type a l l

cr_pp_s t s_6m_p <− dcast ( cr_pp_p_6m, tp~Prec inct , va lue . var = "sump" ) #
transpose f o r crime type p

cr_pp_s t s_6m_v <− dcast ( cr_pp_v_6m, tp~Prec inct , va lue . var = "sumv" ) #
transpose f o r crime type v

# 1 year
cr_pp_y <− cr_div
cr_pp_y$tp <− format ( as . Date ( cr_div$DATE, format="%Y−%m−%d" ) , "%Y" )
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cr_pp_sum_y <− cr_pp_y %>%
group_by( tp , Prec inc t ) %>% # group by the unique code o f

p r e c i n c t s & t ime per iod
summarize ( sumal l = sum( a l l ) , sump = sum(p) , sumv = sum( v

) ) #sum the crime

cr_pp_al l_y <− cr_pp_sum_y [ , c ( 1 , 2 , 3 ) ]
c r_pp_p_y <− cr_pp_sum_y [ , c ( 1 , 2 , 4 ) ]
c r_pp_v_y <− cr_pp_sum_y [ , c ( 1 , 2 , 5 ) ]

c r_pp_s t s_y_al l <− dcast ( cr_pp_al l_y , tp~Prec inct , va lue . var = " sumal l " )
#transpose f o r crime type a l l

cr_pp_s t s_y_p <− dcast ( cr_pp_p_y , tp~Prec inct , va lue . var = "sump" ) #
transpose f o r crime type p

cr_pp_s t s_y_v <− dcast ( cr_pp_v_y , tp~Prec inct , va lue . var = "sumv" ) #
transpose f o r crime type v

# Step 9 : Replace geometry o f po lygons wi th t h e i r c en t ro i d po in t
pp_cent r <− s t_c en t r o id (pp) #ge t c en t ro i d o f p o l i c e p r e c i n c t s
pp_geom<− pp_cent r [ , c ( 1 , 3 ) ]
pp_XY<− pp_cent r %>%

st_coo rd ina t e s ( ) %>% as . data . frame ( ) # ge t X and Y coord ina t e s
o f the c en t r o i d s o f p o l i c e p r e c i n c t s

pp_XY_mtx <− as .matrix (pp_XY)

cr_pp <− merge( cr_pp_sum, pp_geom , by=" Prec inc t " )
s t_write ( cr_pp , "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_Outputs/

cr_pp . shp " , append=FALSE)

B.2 R code for implementing the models

l ibrary ( spdep )
l ibrary ( starma )
l ibrary ( tmap)
l ibrary ( j a n i t o r )
l ibrary ( Metr ics )
l ibrary ( s t a t s )
l ibrary ( f o r e c a s t )

### Create the s p a t i a l we igh t matrix ###
# load shape o f p o l i c e p r e c i c t s wi th b r i d g e s
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admin_data_b <− read_s f ( "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/NY
_PP/nypp_br idge s . shp " )

pp_b_s f <− pp_b %>% st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)
pp_b <− admin_data_b [ , c ( 1 , 3 , 4 ) ]
names(pp_b) [names(pp_b) == ’POLY_ID ’ ] <− ’ Prec inc t ’

# transpose data f o r input in GeoDa (row−wise are prec inc t s , column time
)

cr_pp_al l_ts_y <− dcast ( cr_pp_al l_y , Prec inc t~tp , va lue . var = " sumal l " )
#transpose f o r crime type a l l

cr_pp_al l_ts_y$Prec inc t <− 1 :77
cr_pp_p_ts_y <− dcast ( cr_pp_p_y , Prec inc t~tp , va lue . var = "sump" ) #

transpose f o r crime type p
cr_pp_p_ts_y$Prec inc t <− 1 :77
cr_pp_v_ts_y <− dcast ( cr_pp_v_y , Prec inc t~tp , va lue . var = "sumv" ) #

transpose f o r crime type v
cr_pp_v_ts_y$Prec inc t <− 1 :77

# wr i t e output f i l e
cr_pp_poly <− merge( cr_pp_al l_ts_y , pp_b , by=" Prec inc t " )
cr_pp_poly <− merge( cr_pp_p_ts_y , pp_b , by=" Prec inc t " )
cr_pp_poly <− merge( cr_pp_v_ts_y , pp_b , by=" Prec inc t " )
s t_write ( cr_pp_poly , "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_

Outputs/GeoDa_Xplore/ cr_pp_w. shp " , append=FALSE)

k2_nb <− knearne igh (pp_XY_mtx , k=2)
k2_nb <− knn2nb ( k2_nb)
k2_nb <− nblag ( k2_nb , 2)
k2_l i s t <− l i s t ( order0=diag (77) , # the number corresponds to the amount

o f s tudy zones t ha t used
order1=nb2mat ( k2_nb [ [ 1 ] ] , z e ro . p o l i c y=TRUE) ,
order2=nb2mat ( k2_nb [ [ 2 ] ] , z e ro . p o l i c y=TRUE) )

### STARMA modeling ###

# The process i s repea ted f o r each crime type :

# Normalize the data
input_data_starma <− cr_pp_s t s_w_p [ , c ( 2 : 7 8 ) ] #pas te the t ranspose data

frame here , the date column w i l l be dropped
colnames ( input_data_starma ) <− c ( 1 : 7 7 ) #rename the p o l i c e p r e c i n c t s in t o

numbers from 1 to 77
cr_norm <− s t c e n t e r ( input_data_starma ) #s t c en t e r c en t e r s and s c a l e s the
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space−time s e r i e s data such t ha t i t s mean i s 0 and i t s s tandard
error 1 .

t imes teps <− nrow( input_data_starma )

# in s e r t s p a t i a l we i gh t s l i s t here
w l i s t <− k1_l i s t

# 1 I d e n t i f i c a t i o n : Using s t a c f and s tpac f , the user shou ld t r y to
i d e n t i f y which parameters shou ld be es t imated .

I_s t a c f <− s t a c f ( c r_norm , w l i s t )
I_s t pa c f <− s t pa c f ( cr_norm , w l i s t )

# 2 Est imat ion : Use starma to es t imate the parameters .
# s e t AR and MA parameters to 1 f o r the f i r s t run
ar <− 1
ma <− 1

# AR parameters
ar <− matrix (0 , 12 , 2) #row −th t l a g #co l −th s l a g
ar [ 1 , 1 ] <− 1 #se t AR parameter o f s p a t i a l l a g 0
ar [ 1 , 2 ] <− 1 #se t AR parameter o f s p a t i a l l a g 1

# MA parameters
ma <− matrix (0 , 12 , 2) #row −th t l a g #co l −th s l a g
ma[ 3 , 1 ] <−1 #se t MA parameter o f s p a t i a l l a g 0
ma[ 1 , 2 ] <− 1 #se t AR parameter o f s p a t i a l l a g 1

# Run the Kalman f i l t e r a l gor i thm
model <− starma ( cr_norm , w l i s t , ar , ma, i t e r a t e =5)
model
summary(model)
D_s t pa c f <− s t pa c f (model$residuals , w l i s t , t l a g .max = 53)

# 3 Diagnose the proces s . Go back i f the r e s i d u a l s show au t o c o r r e l a t i on
D_s t a c f <− s t a c f (model$residuals , w l i s t )
D_s t pa c f <− s t pa c f (model$residuals , w l i s t )
D_s t c o r_t e s t <− s t c o r . t e s t (model$residuals , w l i s t )

#Ca lcu l a t e error metr ic s

r e s_starma <− model$residuals
cr_a c t l <− t ( cr_norm)
cr_prdct <− r e s_starma + cr_norm
cr_prdct <− t ( cr_prdct )
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cr_a c t l <− cr_a c t l [ , c ( 5 : t imes teps ) ]
c r_prdct <− cr_prdct [ , c ( 5 : t imes teps ) ]
acc_starma <− data . frame (matrix (NA, ncol = 3) )
colnames ( acc_starma )<− c ( "RMSE" , "MAE" , "R2" )

#Function f o r R squared
r sq <− function (x , y ) cor (x , y ) ^ 2

for ( i in 1 :nrow( cr_prdct ) ) {
temp_a c t l <− cr_a c t l [ i , ]
temp_prdct <− cr_prdct [ i , ]
temp_RMSE<− rmse ( temp_ac t l , temp_prdct )
temp_MAE<− mae( temp_ac t l , temp_prdct )
temp_R2 <− r sq ( temp_ac t l , temp_prdct )
temp_t b l <− cbind ( temp_RMSE, temp_MAE, temp_R2)
colnames ( temp_t b l )<− c ( "RMSE" , "MAE" , "R2" )
acc_starma <− rbind ( acc_starma , temp_t b l )
rm( temp_ac t l , temp_prdct , temp_RMSE, temp_R2 , temp_t b l )

}
acc_starma <− acc_starma [ c ( 2 : 7 8 ) , ]
rownames( acc_starma ) <− 1 :77

acc_starma_sum <− data . frame (matrix (NA, ncol = 6) )
colnames ( acc_starma_sum)<− c ( "RMSE" , " sd_RMSE" , "MAE" , " sd_MAE" , "R2" , " sd_R2

" )
acc_starma_sum$RMSE<− mean( acc_starma [ , 1 ] )
acc_starma_sum$sd_RMSE<− sd ( acc_starma [ , 1 ] )
acc_starma_sum$MAE<− mean( acc_starma [ , 2 ] )
acc_starma_sum$sd_MAE<− sd ( acc_starma [ , 2 ] )
acc_starma_sum$R2 <− mean( acc_starma [ , 3 ] )
acc_starma_sum$sd_R2 <− sd ( acc_starma [ , 3 ] )

# Save model & data
STARMA_w_p <− model
AR_w_p <− ar
MA_w_p <− ma
s t a c f_w_p <− D_s t a c f
s t pa c f_w_p <− D_s t pa c f
s t c o r_t e s t_w_p <− D_s t c o r_t e s t
acc_starma_w_p <− acc_starma
acc_starma_sum_w_p <− acc_starma_sum

### ARIMA modeling ###
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input_data_arima <− cr_pp_s t s_y_v [ , c ( 2 : 7 8 ) ] #pas te the t ranspose data
frame here , the time column w i l l be dropped

colnames ( input_data_arima ) <− c ( 1 : 7 7 ) #rename the p o l i c e p r e c i n c t s in t o
numbers from 1 to 77

input_data_arima<− s t c e n t e r ( input_data_arima ) #s t c en t e r c en t e r s and
s c a l e s the space−time s e r i e s data such t ha t i t s mean i s 0 and i t s
s tandard error 1 .

t imes teps <− nrow( input_data_arima )

acc_arima <− data . frame (matrix (NA, ncol = 3) )# crea t e a data frame fo r
the c a l c u l a t e error metr ic s

colnames ( acc_arima )<− c ( "RMSE" , "MAE" , "R2" )
r e s_arima <− data . frame (matrix (NA, ncol = timesteps ) )

for ( i in 1 : ncol ( input_data_arima ) ) { #func t i on t ha t c a l c u l a t e s
an ARIMA model f o r a l l p o l i c e p r e c i n c t s and then c a l c u l a t e s the
error metr ic s

temp <− data . frame ( input_data_arima [ , i ] )
colnames ( temp) <− colnames ( input_data_arima ) [ i ]
temp <− ts ( temp , start = 1 , end = timesteps , frequency = 1)
temp_arima <− auto . arima ( temp , max. order= 3)
temp_r e s <− temp_arima$residuals
temp_prdct <− temp_arima$residuals + temp
temp_a c t l <− as . vector ( temp)
temp_prdct <− as . vector ( temp_prdct )
temp_a c t l <− temp_a c t l [ c ( 4 : t imes teps ) ]
temp_prdct <− temp_prdct [ c ( 4 : t imes teps ) ]
temp_RMSE<− rmse ( temp_ac t l , temp_prdct )
temp_MAE<− mae( temp_ac t l , temp_prdct )
temp_R2 <− r sq ( temp_ac t l , temp_prdct )
temp_t b l <− cbind ( temp_RMSE, temp_MAE, temp_R2)
colnames ( temp_t b l )<− c ( "RMSE" , "MAE" , "R2" )
acc_arima <− rbind ( acc_arima , temp_t b l )
r e s_arima <− rbind ( r e s_arima , temp_r e s )
rm( temp , temp_arima , temp_prdct , temp_RMSE, temp_R2 , temp_tb l , temp_

r e s )
}

# Ca lcu l a t e ARIMA error metr ic s
acc_arima <− acc_arima [ c ( 2 : 7 8 ) , ]
rownames( acc_arima ) <− 1 :77
r e s_arima <− r e s_arima [ c ( 2 : 7 8 ) , ]
rownames( r e s_arima ) <− 1 :77
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acc_arima_sum <− data . frame (matrix (NA, ncol = 6) )
colnames ( acc_arima_sum)<− c ( "RMSE" , " sd_RMSE" , "MAE" , " sd_MAE" , "R2" , " sd_R2"

)
acc_arima_sum$RMSE<− mean( acc_arima [ , 1 ] )
acc_arima_sum$sd_RMSE<− sd ( acc_arima [ , 1 ] )
acc_arima_sum$MAE<− mean( acc_arima [ , 2 ] )
acc_arima_sum$sd_MAE<− sd ( acc_arima [ , 2 ] )
acc_arima_sum$R2 <− mean( acc_arima [ , 3 ] )
acc_arima_sum$sd_R2 <− sd ( acc_arima [ , 3 ] )

# Save model & data
acc_arima_y_v <− acc_arima
acc_arima_sum_y_v <− acc_arima_sum
r e s_arima_y_v <− r e s_arima
view ( acc_arima_sum_y_v )

B.3 R code to visualize the results

l ibrary ( ggp lot2 )

### Code to c r ea t e Figure 4.2 ###
cr_al l <− cr_pp_al l
cr_al l $tp <− paste ( " 01 " , c r_al l $tp , sep = "/ " )
c r_al l $tp <− as . Date ( cr_al l $tp , format="%d/%Y/%m" )
count_pp <− unique ( cr_al l $Prec inc t )
count_pp_s <− c (10 ,20 ,41 ,50 ,52 ,66 ,69 ,109 ,114 ,121)
cr_max_pp_s <− f i l t e r ( cr_all , P rec inc t %in% count_pp_s )

cr_max_TSP <− ggp lot ( cr_max_pp_s ) +
geom_l i n e ( aes ( x = tp , y = sumal l ) , s i z e =.3) +
f a c e t_wrap (~Prec inct , ncol = 5) +
xlab ( " Year " ) +
ylab ( "Monthly␣ a r r e s t ␣ counts " ) +
theme_bw( ) +
theme (panel . spac ing = uni t (1 , " l i n e s " ) ) +
scale_x_date (date_labels = "%Y" , date_minor_breaks = " 1␣ year " ,date_

breaks = " 5␣ years " )

print ( cr_max_TSP)

### Code to c r ea t e Figure 3.7 ###
cr_max_1w <− cr_pp_sum_w
cr_max_agg_1w <− aggregate ( cr_max_1w[ " sumal l " ] , by=cr_max_1w[ " tp " ] , sum)
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cr_max_agg_1w$tp <− as . Date ( cr_max_agg_1w$tp , format="%Y−%m−%d" )

cr_max_1m<− cr_pp_sum_1m
cr_max_agg_1m<− aggregate ( cr_max_1m[ " sumal l " ] , by=cr_max_1m[ " tp " ] , sum)
cr_max_agg_1m$tp <− as . Date ( cr_max_agg_1m$tp , format="%Y−%m−%d" )

cr_max_3m<− cr_pp_sum_3m
cr_max_agg_3m<− aggregate ( cr_max_3m[ " sumal l " ] , by=cr_max_3m[ " tp " ] , sum)
cr_max_agg_3m$tp <− as . Date ( cr_max_agg_3m$tp , format="%Y−%m−%d" )

cr_max_6m<− cr_pp_sum_6m
cr_max_agg_6m<− aggregate ( cr_max_6m[ " sumal l " ] , by=cr_max_6m[ " tp " ] , sum)
cr_max_agg_6m$tp <− as . Date ( cr_max_agg_6m$tp , format="%Y−%m−%d" )

cr_max_y <− cr_pp_sum_y
cr_max_agg_y <− aggregate ( cr_max_y [ " sumal l " ] , by=cr_max_y [ " tp " ] , sum)
cr_max_agg_y$tp <− as . Date ( cr_max_agg_y$tp , format="%Y" )

cr_max_TSP_p1 <− ggp lot ( ) +
#geom_l i n e ( data=cr_max_agg_1w, aes ( x = tp , y = sumal l ) , c o l o r="grey30 " ,

s i z e =.3) +
#geom_l i n e ( data=cr_max_agg_1m, aes ( x = tp , y = sumal l ) , c o l o r="grey30 " ,

s i z e =.5) +
#geom_l i n e ( data=cr_max_agg_6m, aes ( x = tp , y = sumal l ) , c o l o r="grey30 " ,

s i z e =.5) +
#geom_l i n e ( data=cr_max_agg_3m, aes ( x = tp , y = sumal l ) , c o l o r="grey30 " ,

s i z e =.5) +
geom_l i n e (data=cr_max_agg_y , aes ( x = tp , y = sumal l ) , c o l o r=" grey30 " ,

s i z e =.5) +
xlab ( " Year " ) +
ylab ( " Al l ␣ a r r e s t ␣ counts " ) +
theme ( axis . t i t l e . y = element_text ( s i z e = 15) ) +
theme ( axis . t i t l e . x = element_text ( s i z e = 15) ) +
scale_x_date (date_labels = "%Y" ,date_minor_breaks = " 1␣month " , date_

breaks = " 1␣ year " )

print ( cr_max_TSP_p1 )

### Code to c r ea t e r e s i d u a l maps o f chapter 4 ###
pp_s f_poly <− mutate (pp , POLY_ID = row_number ( ) )

# STARMA
r e s_starma <− STARMA_y_al l $residuals
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starma_breaks <− scale ( r e s_starma )
starma_breaks <− as . data . frame ( t ( starma_breaks ) )
r e s_g <− mutate ( starma_breaks , POLY_ID = row_number ( ) )
r e s_g <− merge( y=r e s_g , x=pp_s f_poly , by="POLY_ID" )
r e s_s f <− r e s_g %>%

st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)
s t_write ( r e s_s f , "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_Outputs

/ r e s_s f . shp " , append=FALSE)
starma_max <− max( starma_breaks$V15)
starma_min <− min( starma_breaks$V15)
starma_breaks <− c ( starma_min,−2 ,−1 , starma_max)
mypal_starma <− c ( ’#2166ac ’ , ’#67a9c f ’ , ’#d1e5f0 ’ , ’#f 7 f 7 f 7 ’ , ’#fddbc7 ’ , ’#

ef8a62 ’ , ’#b2182b ’ )
mypal_starma <− c ( ’#67a9c f ’ , ’#d1e5f0 ’ , ’#f 7 f 7 f 7 ’ )

tm_shape ( r e s_s f ) +
tm_ f i l l ( "V15" , t i t l e = "SD␣OF␣STARMA_y_a l l ␣RES. " , s t y l e = " f i x ed " ,

breaks = starma_breaks , midpoint = 0 , palette = mypal_starma ) +
tm_borders ( alpha = 0 . 1 ) +
tm_scale_bar ( lwd = 0 . 5 , text . s i z e = 1) +
tm_layout ( legend . p o s i t i o n = c ( " l e f t " , " top " ) , legend . t i t l e . s i z e = 1 . 2 ,

legend . text . s i z e = 1)

tmap_save (tm_shape ( r e s_s f ) +
tm_ f i l l ( "V15" , t i t l e = "SD␣OF␣STARMA_y_a l l ␣RES. " , s t y l e = " f i x ed " ,

breaks = starma_breaks , midpoint = 0 , palette = mypal_starma ) +
tm_borders ( alpha = 0 . 1 ) +
tm_scale_bar ( lwd = 0 . 5 , text . s i z e = 1) +
tm_layout ( legend . p o s i t i o n = c ( " l e f t " , " top " ) , legend . t i t l e . s i z e = 1 . 2 ,

legend . text . s i z e = 1) ,
"/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_Outputs/Graphics/STARMA_

y_a l l . jpg " )

### ARIMA
arima_breaks <− scale ( r e s_arima_w_p)
arima_breaks <− as . data . frame ( arima_breaks )
r e s_g <− mutate ( arima_breaks , POLY_ID = row_number ( ) )
r e s_g <− merge( y=r e s_g , x=pp_s f_poly , by="POLY_ID" )
r e s_s f <− r e s_g %>%

st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)
arima_max <− max( arima_breaks$X15)
arima_min <− min( arima_breaks$X15)
arima_breaks <− c ( arima_min,−3 ,−2 ,−1 ,1 , arima_max)
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mypal_arima <− c ( ’#2166ac ’ , ’#67a9c f ’ , ’#d1e5f0 ’ , ’#f 7 f 7 f 7 ’ , ’#fddbc7 ’ , ’#
ef8a62 ’ , ’#b2182b ’ )

mypal_arima <− c ( ’#2166ac ’ , ’#67a9c f ’ , ’#d1e5f0 ’ , ’#f 7 f 7 f 7 ’ , ’#fddbc7 ’ )

tm_shape ( r e s_s f ) +
tm_ f i l l ( "X15" , t i t l e = "SD␣OF␣ARIMA_y_a l l ␣RES. " , s t y l e = " f i x ed " , breaks

= arima_breaks , midpoint = 0 , palette = mypal_arima ) +
tm_borders ( alpha = 0 . 1 ) +
tm_scale_bar ( lwd = 0 . 5 , text . s i z e = 1) +
tm_layout ( legend . p o s i t i o n = c ( " l e f t " , " top " ) , legend . t i t l e . s i z e = 1 . 2 ,

legend . text . s i z e = 1)

tmap_save (tm_shape ( r e s_s f ) +
tm_ f i l l ( "X15" , t i t l e = "SD␣OF␣ARIMA_y_a l l ␣RES. " , s t y l e = " f i x ed " , breaks

= arima_breaks , midpoint = 0 , palette = mypal_arima ) +
tm_borders ( alpha = 0 . 1 ) +
tm_scale_bar ( lwd = 0 . 5 , text . s i z e = 1) +
tm_layout ( legend . p o s i t i o n = c ( " l e f t " , " top " ) , legend . t i t l e . s i z e = 1 . 2 ,

legend . text . s i z e = 1) ,
"/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_Outputs/Graphics/ARIMA_y

_a l l . jpg " )

### STARMA re s i d u a l output to c r ea t e LISA c l u s t e r maps in GeoDa
r e s_starma <− STARMA_w_p$residuals
starma_breaks <− r e s_starma
starma_breaks <− as . data . frame ( t ( starma_breaks ) )
r e s_g_starma <− mutate ( starma_breaks , POLY_ID = row_number ( ) )
r e s_g_starma <− merge( y=r e s_g_starma , x=pp_s f_poly , by="POLY_ID" )
r e s_s f_starma <− r e s_g_starma %>%

st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)
s t_write ( r e s_s f_starma , "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_

Outputs/ r e s_s f_starma . shp " , append=FALSE)

### ARIMA re s i d u a l output to c r ea t e LISA c l u s t e r maps in GeoDa
arima_breaks <− r e s_arima_w_p
arima_breaks <− as . data . frame ( arima_breaks )
r e s_g_arima <− mutate ( arima_breaks , POLY_ID = row_number ( ) )
r e s_g_arima <− merge( y=r e s_g_arima , x=pp_s f_poly , by="POLY_ID" )
r e s_s f_arima <− r e s_g_arima %>%

st_as_s f (wkt=" geometry " , c r s =2263 , remove=FALSE)
s t_write ( r e s_s f_arima , "/Users/dn l r c/Documents/Uni/Masterarbe i t/Data/R_

Outputs/ r e s_s f_arima . shp " , append=FALSE)
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