
DISSERTATION / DOCTORAL THESIS

Titel der Dissertation /Title of the Doctoral Thesis

„Swimming in Murky Waters: Exploring Protocols, Security
Features And Practices On The Internet“

verfasst von / submitted by

Olamide Omolola

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2021 / Vienna 2021

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

UA 786 880

Dissertationsgebiet  lt. Studienblatt /
field of study as it appears on the student record sheet:

Informatik

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl





Acknowledgements

My most profound appreciation goes to God, the author of everything and the One who
stood by me and comforted me during the entirety of my doctorate journey. I cannot
begin to describe everything He did for me, but one thing is sure, I could not have made
it this far without Him.

Further, I am grateful to my current Advisor Prof. Edgar Weippl for his support at
the end of this thesis. I am also thankful to my first advisor, Peter Lipp, who believed
in me and helped me steer my initial research direction. Thank you for granting me
the autonomy to explore and design my thesis. In addition, I want to thank my first
colleagues i.e., Georg Wagner, Sebastian Ramacher, and Stefan More. Thank you for
helping me settle into the position at Graz and the fruitful collaboration that led to the
success of LIGHTest.

Also, I would like to say a big thank you to Prof. Kévin Huguenin, Prof Alan Mislove,
Ass. Prof. Tobias Fiebig, Assoc. Prof Bertil Chapuis for collaborating with me and
helping me shape my research direction during this thesis. I want to specially acknowledge
Ass. Prof. Tobias Fiebig for going beyond and above the call of duty to help me by not
just collaborating but taking an interest in my well-being as well. Thank you, Tobias!

Sometimes we are fortunate, and we meet friends that become family. I am lucky
that I met Sem Shabani, Lisette Shabani, Stanley, Deji Ademola, Henintsoa, Njara, and
Benedict Oguah. Thank you for your prayers, support, and always being present to listen.
You have all shaped me in different ways, which has helped me become who I am today.

The past year has been challenging with a lot of uncertainty. That period was one of
the toughest in my life. However, there was a reason I kept standing up every day, and
that was to work with Rob Prokop, Mike Laplume, and Kevin Galasinski. Thank you for
teaching me how to build but far more importantly, for showing me what it means to
have character. Thank you! I cannot forget to mention Mary Prokop as well. Thank you
for your wise words.

Additionally, I am deeply grateful to Rev Niyi and Debbie Dahunsi. You took me under
your wing, taught me, and always cared for me. Thank you for the spiritual leadership
and training you gave me. You prepared me ahead of time.

Space would limit the effort to acknowledge everyone who helped me, prayed for me,
stood by me in one way or the other. But even if I could not mention your name here, it
does not diminish your impact on my life and how grateful I am for that.

Finally, I am incredibly grateful to my parents, Adekunle and Mary Omolola. You
have always been there, and I do not take that for granted. I cannot thank my parents
without thanking my brother Adewale Omolola. Bro Wale, you set the pace, and you are
a blessing to me. Thank you

i





Abstract

Today, the Internet is essential for many aspects of life– academia, relationships, business,
governmental administration, and much more. Many of these activities require secure
communication protocols. However, as security was not a priority when the Internet was
initially designed, several core protocols used today suffer from security challenges. Still,
not only the old foundations of the Internet are affected by this. Also, newly designed
protocols regularly suffer from security issues. Take Transport Layer Security (TLS),
which arrived in its 5th iteration with TLS 1.3. The predecessors, SSLv2, SSLv3, TLS
1.0, and TLS 1.2, are now considered obsolete due to inherent security issues in these
protocols.

In this thesis, we investigate current protocols and discover that some lack privacy
guarantees. Primarily, we focus on a major component of the web ecosystem–(1). HTTP
(HyperText Transfer Protocol) which encompasses TLS (including its certificate transpar-
ency extension) and Sub-resource Integrity.

We enhance these non-privacy preserving protocols to become privacy-preserving. Meth-
odologically, we also utilize large-scale Internet measurements to analyze and audit the
practical implementation of these protocols on the Internet. We present and analyze how
these protocols changed over time and utilize measurements to gain a deeper understand-
ing of how the technical specification process of protocols influences their adoption and
security.

Overall, our results document–and contribute to–the constant improvement of the TLS
ecosystem and how it moves to user-centric design.
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Kurzfassung

Das Internet ist heute für viele Bereiche des Lebens unverzichtbar - für die Wissenschaft,
für Beziehungen, für die Wirtschaft, für die staatliche Verwaltung und für vieles mehr.
Für viele dieser Aktivitäten sind sichere Kommunikationsprotokolle erforderlich. Da
jedoch bei der Entwicklung des Internets die Sicherheit nicht im Vordergrund stand,
leiden mehrere der heute verwendeten Kernprotokolle unter Sicherheitsmängeln. Doch
nicht nur die alten Grundlagen des Internets sind davon betroffen. Auch neu entwickelte
Protokolle haben regelmäßig mit Sicherheitsproblemen zu kämpfen. Nehmen wir die
Transport Layer Security (TLS), die mit TLS 1.3 in ihrer fünften Iteration angekommen
ist, als Beispiel. Die Vorgänger, SSLv2, SSLv3, TLS 1.0 und TLS 1.2, gelten aufgrund
inhärenter Sicherheitsprobleme in diesen Protokollen inzwischen als veraltet.

In dieser Arbeit untersuchen wir die aktuellen Protokolle und stellen fest, dass einige
keine Datenschutzgarantien bieten. In erster Linie konzentrieren wir uns auf eine wichtige
Komponente des Web-Ökosystems -(1). HTTP (HyperText Transfer Protocol), das TLS
(einschließlich seiner Zertifikattransparenz-Erweiterung) und Sub-Ressourcen-Integrität
umfasst.

Wir verbessern diese Protokolle, die die Privatsphäre nicht schützen, so dass sie die
Privatsphäre schützen. Methodisch nutzen wir auch groß angelegte Internet-Messungen,
um die praktische Umsetzung dieser Protokolle im Internet zu analysieren und zu über-
prüfen. Wir stellen dar und analysieren, wie sich diese Protokolle im Laufe der Zeit
verändert haben, und nutzen Messungen, um ein tieferes Verständnis dafür zu gewinnen,
wie der technische Spezifikationsprozess von Protokollen ihre Annahme und Sicherheit
beeinflusst.

Insgesamt dokumentieren unsere Ergebnisse - und tragen dazu bei - die ständige
Verbesserung des TLS-Ökosystems und seine Entwicklung hin zu einem benutzerzentrierten
Design.
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1. Introduction

As of 2016, the United Nations reported that more than 3 billion people use the Internet1.
Many of these users carry out private or sensitive activities on the Internet. Therefore
they require secure services and protocols to enable their activities.

However, security was not a priority when the Internet and many of its vital services
such as emails [51] and protocols such as HyperText Transfer Protocol (HTTP) [34],
Border Gateway Protocol (BGP) [47], Domain Name System (DNS) [50], and Teletype
Network (Telnet) [57] were designed. Communication using email, DNS, HTTP, and
Telnet are unencrypted and vulnerable to eavesdropping and man-in-the-middle attacks.
BGP is at the same time vulnerable to BGP hijacking2.

Nowadays, the industry and academia are revisiting insecure protocols, improving them,
and creating features to enhance their security guarantees. Some security extensions are
proposed for protocols that cannot be changed without bringing down the internet while
others are abandoned, and replacements are designed from scratch.

Services like emails are now secured with a myriad of protocols [39, 4, 59], HTTP is
now secured with TLS [59], DNS Security Extensions (DNSSEC) [6] ensures the integrity
of DNS responses. Telnet is no longer recommended for use and was replaced by Secure
Shell (SSH) [69] while BGP is undergoing security evaluation, and new versions are in
use [46].

1.1. Problem Statement

The following section outlines the research problem and clarifies its domain and context.
It also defines the core research questions to be answered in the course of the research.

1.1.1. Problem Domain and Context

In recent years, many activities that were often carried out on paper or in person
have evolved to being internet-based, thereby creating a need for secure communication
than ever before. Furthermore, the exploitation of inherent weaknesses in the existing
communication protocols is a major source of concern for the stakeholders on the internet.
In this thesis, we narrow down the problem space and focus on analyzing security protocols
and features and proposing possible improvements. Our work spans the trust management
spectrum between collaborating entities on the internet with a specific focus on the HTTP
ecosystem.

1https://news.un.org/en/story/2016/09/539112-nearly-47-cent-global-population-now-online-un-
report

2BGP hijacking is when the Internet traffic is maliciously rerouted
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1. Introduction

HTTP is a protocol for transmitting hypermedia documents such as HTML and more.
Within a HTML page, more documents such as scripts, pictures and files can be linked.
This possibility comes at a cost since there is a likelihood that the linked document has
been compromised. SRI (Subresource integrity) is a new HTTP security feature that
allows users to verify that the linked document has not been modified from the original
that was included.

Furthermore, within the HTTP ecosystem, TLS enables the authentication of commu-
nicating parties using certificates signed by designated Certificate Authorities (CAs). The
certificate is a signed attestation to the identity of an entity from a CA. CAs are usually
third-parties that the communicating parties trust.

In recent times, some CAs were compromised and behaved maliciously by issuing
certificates for different entities without the request from those entities. These misissued
certificates were used to steal private data or decrypt information flow thereby causing a
loss of privacy. As a result of the unrestricted ability for CAs to issue certificates, counter-
measures such as Certificate Transparency (CT), Certificate Authority Authorization
(CAA) were created.

1.1.2. Research Questions

This thesis aims to answer the following questions based on the problem domain and
context in the Subsection 1.1.1: We aim to answer the following research questions in
this Ph.D.

1. RQ1 How does the technical specification of protocols and complexity of usage
influence their adoption?

2. RQ2 Do protocol enhancements fulfill their security guarantees in practice without
causing other vulnerabilities?

1.2. Contributions

We provide short descriptions of our contributions in this section.
We enhance the security guarantees of Certificate Transparency (CT) in the first

contribution of this thesis [37], having discovered that though CT prevents mis-issuance
of certificates in the ecosystem, it could lead to leakage of private data. Our contribution
therefore protects users against tracking activities in CT by preventing eavesdropping of
the online activities of the user

Our next contribution to the field of TLS was to understand how automated re-issuance
of certificates has affected the TLS ecosystem [55]. Previously, certificates were expensive
costing $50 and above. Furthermore, services such as revocation and re-issuance came
at a premium. Although the TLS protocol provided security guarantees, it was not well
adopted as a result of the cost. The cost of certificates affected reissues and revocations
and caused several bugs relating to certificates go unchecked for a long time. As a result,
the security guarantee of the TLS ecosystem was weak since it wasn’t well adopted. The

2



1.3. Organization of Thesis

advent of Let’s Encrypt changed this narrative with free valid certificates and automatic
certificate management. In this work, we show that the security guarantees of the TLS
ecosystem have improved because of better adoption and better certificate management
techniques.

In the third contribution of this thesis, we study a privacy enhancing PKI implement-
ation and discovered that it does not fulfil its privacy guarantees. We redesigned the
protocol to improve its privacy guarantees and implemented a proof of concept [56].

Another contribution is the analysis of Sub-resource Integrity (SRI) [14]. SRI is a recent
W3C recommendation that creates a digest of sub-resources included in a webpage. SRI
can protect against the corruption of sub-resources. We perform the first empirical study
analyzing SRI and its usage. We also find in a survey that the technical specification of
the recommendation is confusing to developers and the lack of automation that prevents
faster adoption.

1.2.1. Internet Measurements

Internet measurements play a role in my contributions. Internet measurements help
security researchers and protocol designers understand how security tools are deployed in
the wild. Many insights have been gained into this field such as the discovery of invalid
certificates and ability to track devices using invalid certificates [16]; the discovery that CAs
do not honor Certificate Authority Authorization (CAA) and many certificates were found
to be mis-issued [61]; wide-spread mismanagement of the DNSSEC infrastructure [18];
the insecure practice of CDNs controlling the secret keys of client’s certificates [13] and
many more.

These insights have exposed the many weaknesses in security deployments and usage.
It can be argued that a useful security feature is useless when improperly deployed or
mismanaged. Therefore, Internet measurement is a critical security specialization.

1.3. Organization of Thesis

The rest of this proposal is structured as follows: Chapter 2 describes our work on
certificate transparency, Chapter 3 outlines the analysis and improvement made to a
blockchain PKI and Chapter 4 describes our work on subresource integrity. Chapter 5
outlines the analysis of automated certificate reissuance while Chapter 6 gives a summary
and conclusion of the thesis. Note that the introduction and conclusion are concise to
avoid repetition in subsequent chapters.

3





2. Revisiting User Privacy for Certificate
Transparency

The subsequent paper has been published as follows:
Daniel Kales, Olamide Omolola and Sebastian Ramacher. “Revisiting User Privacy for

Certificate Transparency”. In: 4th IEEE European Symposium on Security and Privacy.
2019

In this paper, we devise a privacy-preserving approach for auditors (browsers) to verify
Signed Certificate Timestamps (SCTs). Our approach leverages Private Information
Retrieval (PIR) to retrieve membership proofs.
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Abstract. Public key infrastructure (PKI) based on certificate author-
ities is one of the cornerstones of secure communication over the inter-
net. Certificates issued as part of this PKI provide authentication of web
servers among others. Yet, the PKI ecosystem is susceptible to certificate
misissuance and misuse attacks. To prevent those attacks, Certificate
Transparency (CT) facilitates auditing of issued certificates and detect-
ing certificates issued without authorization. Users that want to verify
inclusion of certificates on CT log servers contact the CT server directly
to retrieve inclusion proofs. This direct contact with the log server creates
a privacy problem since the users’ browsing activities could be recorded
by the log server owner.

Lueks and Goldberg (FC 2015) suggested the use of Private Informa-
tion Retrieval (PIR) in order to protect the users’ privacy in the CT
ecosystem. With the immense amount of certificates included on CT log
servers, their approach runs into performance issues, however. Neverthe-
less, we build on this approach and extend it using multi-tier Merkle
trees, and render it practical using multi-server PIR protocols based on
distributed point functions (DPFs). Our approach leads to a scalable
design suitable to handle the increasing number of certificates and is, in
addition, generic allowing instantiations using secure accumulators and
PIRs.

We implement and test this mechanism for privacy-preserving member-
ship proof retrieval and show that it can be integrated without disrupt-
ing existing CT infrastructure. Most importantly, even for larger CT logs
containing 231certificates, our approach using sub-accumulators can pro-
vide privacy with a performance overhead of less than 9 milliseconds in
total.

Keywords: Certificate Transparency · User Privacy · Private Informa-
tion Retrieval

1 Introduction

Nowadays Transport Layer Security (TLS) [Res18] is the de-factor stan-
dard for secure communication over the internet. In general, TLS enables
two parties—a client and a server—to agree on a shared secret key which
can then be used to encrypt payload data. During the handshake that is
responsible to perform the key agreement, the client most commonly ver-
ifies the server’s identity based on the server’s X.509 certificate [CSF+08]
issued by some trusted certificate authority (CA). However, in the stan-
dard certificate ecosystem, there is still room for misuse, as multiple cer-
tificates may be issued for the same domain name. The most prominent



examples of such incidents include CAs like Comodo1 or DigiNotar2 is-
suing certificates for, among others, subdomains of google.com. In the
latter case of DigiNotar, these fraudulent certificates were used for man-
in-the-middle attacks against users.

To this end, countermeasures like Certificate Transparency (CT) [Lau14,
LLK13, DGHS16] have received a lot of attention recently. In CT, all
issued TLS certificates are publicly logged. Its goal is to allow any party to
audit the public log and find suspicious certificates or check the integrity
of the log itself. The ultimate goal of CT is to eventually have clients
refuse connections for certificates that are not included in a public log.
Google began enforcing this policy for certificates issued after April 20183

in its browser. Also, other big browser vendors such as Apple and Mozilla
are in the process of enforcing this policy.

In a logging system, web clients need to ensure that log servers do not
hand out promises of certificate inclusion in the log without actually do-
ing so. To combat misbehaving log servers, web clients act as auditors,
verifying that any certificates they received are actually publicly logged.
Although this is an important role, it has negative privacy implications
for clients performing such an auditing role, as verifying the inclusion of
a certificate reveals the browsing behavior of the client to the log server.

1.1 Overview of the Certificate Transparency Ecosystem

Certificate Transparency is a large ecosystem with many participants.
First, there are so-called submitters, who submit certificates or precer-
tificates4 to the log server and receive a Signed Certificate Timestamp
(SCT). An SCT is a log server’s promise that the certificate it was issued
for will be included in the log server after a particular time period called
Maximum Merge Delay (MMD). This SCT is then either directly included
in the certificate or exchanged with a web client during the TLS hand-
shake. Submitters are usually CAs, but, in general, anyone can submit
certificates to the log server.

1 https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
2 https://security.googleblog.com/2011/08/update-on-attempted-man-in-

middle.html
3 https://www.section.io/blog/chrome-ct-compliance/
4 Precertificates are certificates provided to the log before the issuance of the actual

certificate. They contain a special critical poison extension that renders the certifi-
cate unusable in TLS connections.



Log servers receive certificate chains and issue SCTs for them. They add
those chains (together with the respective SCTs) to a data structure which
allows to store elements and to later produce succinct witnesses to attest
the membership of certain values within this data structure. Conceptu-
ally, such a data structure realizes what is formalized by cryptographic
accumulators (see [DHS15] for an overview). Technically, it is realized
using Merkle trees [Mer89].

The role of monitors is to watch the log servers and audit their behavior
by verifying the validity and consistency of the accumulator over time.
Monitors also can check for misissued certificates and alert domain owners
when they detect a potentially malicious certificate in the log.

Finally, there are so-called auditors, who verify the SCTs’ signature and
check that the accompanying certificate is present in the log by requesting
a witness attesting their membership in the accumulator and verifying
it against the current accumulator value. They additionally can request
a proof of consistency with respect to changes in the accumulator over
time. An auditor is an essential part of a TLS client, but it could also
be a secondary function of a monitor. Auditors built into TLS clients do
not necessarily perform this inclusion checks in real time when visiting a
website; usually, only the SCT signatures are verified against the public
keys of trusted log servers. The Merkle-tree inclusion proofs are then
retrieved asynchronously at a later time to audit if the log server is well-
behaved. Chromium-based browsers already have a built-in component
that validate SCTs by sending them to a Google resolver that validates
inclusion proofs. A misbehaving log server, issuing SCTs for certificates
that are not logged by the server, will then get reported to big browser
vendors and will subsequently be removed from the list of trusted log
servers.

Current State of the Certificate Transparency Ecosystem Due to
the efforts of big browser vendors, especially Google, the CT ecosystem
is growing rapidly. As of August 2018, several of the big CT log servers
(e.g., Google Argon) have more than 250 million certificates in their log.
Even the smaller log servers have more than 10 million active certificates,
with a certificate issuance rate of ≈ 53000 new certificates per hour.
Two months later (October, 2018), the certificate issuance rate jumped
to ≈ 105000 new certificates per hour and several of the big CT log servers
(e.g., Google Argon) have more than 400 million certificates in their log



servers. Cloudflare’s CT statistics website5 publishes live statistics about
the current state of CT log servers.

A big factor in these numbers is the growing popularity of Let’s Encrypt,6

a free, automated certificate authority that accounts for more than 72%
of all certificates in CT logs (cf. Table 1) This huge number of certificates
makes the use of simple privacy-preserving techniques, such as simply
downloading the full log, impossible in practice.

Root CA Certificates Percentage

DigiCert 64,226,041 5%
Let’s Encrypt 941,016,262 72%
Sectigo 246,484,842 19%
Other 62,114,615 5%

Table 1. Number of certificates per CAs tracked as part of CT. Numbers are based
on data from https://merkle.town as of April 8th, 2019.

1.2 Privacy Challenges with CT

The auditors’ role in CT is essential because they verify that a log server
did not issue an SCT for a certificate that is not included in the public
log after the MMD. However, this vital process of auditing SCTs in CT
can violate a user’s privacy if the auditor is, e.g., a TLS client.

The CT auditor checks that the corresponding certificate of each valid
SCT is included in the log server. This is done by requesting a membership
proof for the certificate hash from the log server and verifying it against
the accumulator value (the Signed Tree Hash (STH)) of the log server. The
downside to this approach is that it reveals the browsing behavior of the
specific auditor (which is usually a TLS client) to the log server because
having a particular SCT means that the auditor visited this website. A
malicious log server can choose to record this browsing behavior and sell
this browsing history to interested third parties, like advertising agencies.

On the other hand, the privacy problem stated above can also weaken
the integrity of the CT ecosystem, since TLS clients are discouraged to
audit sites which they may not want to be associated with, e.g., sites

5 https://merkle.town/
6 https://letsencrypt.org/



of political, religious or sexual nature. In turn, if no-one is auditing the
validity of SCTs for these certificates, they can more likely become targets
for adversaries, as they could convince a malicious log server to issue an
SCT for a malicious certificate and not include it into its log. If a potential
victim of a man-in-the-middle attack using this malicious certificate is not
likely to audit the SCT because he does not want his browsing behavior
known, this attack is much more likely to succeed unnoticed.

Furthermore, the privacy problem is transferred to applications or proto-
cols that use CT as a basis or follow the same architectural design. One
such application is DECIM [YRC18], which aims to detect the compro-
mise of endpoints in messaging scenarios. DECIM provides a key manage-
ment protocol based on CT and enables users to refresh and manage keys
in a transparent manner. Users of this system query keys from log servers
and can thereby leak their communication partners. Thus, the authors of
DECIM suggest the use of spoof queries over an anonymous channel such
as Tor to hide the actual user queries from the log servers. Our proposed
solutions can also be directly applied to DECIM.

1.3 Our Contribution

In this work, we tackle the privacy issues within the Certificate Trans-
parency ecosystem. Our contributions are as follows:

– We build on top of Lueks and Goldberg’s approach [LG15] for privacy-
preserving retrieval of inclusion proofs from CT log servers. To achieve
privacy there, clients fetch inclusion proofs using a multi-server private
information retrieval (PIR) protocol. We, however, present a more
scalable design for logging a huge number of certificates, which allows
us to include small static partial inclusion proofs in an SCT, a server’s
certificate or as a TLS extension. The client can then check the inclu-
sion based on the partial proof and by fetching the missing parts of
the proof using a PIR-based approach.

– We verify the practicality of our approach by extending Google’s CT
log server implementation and performing experiments on realistic
log server sizes. Even without using the approach of sub-trees, we re-
port practical performance numbers and improve both runtime and
communication compared to previous approaches. For our multi-tier
approach, we report a client runtime overhead of less than a millisec-
ond in total, a server runtime overhead of less than 9 milliseconds,
and total communication overhead of around 7 KB for 231 certificates



when using hourly sub-trees, and even below 1 milliseconds for clients
and servers for sub-trees accumulating certificates per minute.

Specifically, our goal is to tackle the privacy issue without any changes
to the TLS server side to ease the possibility of a fast deployment. In our
approach, we split the Merkle tree containing all certificates into multiple
tiers of smaller Merkle trees where the trees at the bottom contain cer-
tificates. This split can, for example, be based on a parameterizable time
interval or a maximum number of certificates. The sub-trees, respectively
their roots, are then combined into the larger tree containing all certifi-
cates. This separation of the certificates into smaller sub-trees then allows
us to embed membership proofs concerning the sub-trees in an extension
field of the SCT or as an X.509v3 extension [CSF+08] into the certificate
itself. As the height of the larger tree is now considerably smaller than
a single tree containing all certificates, the approach by Lueks and Gold-
berg [LG15] using PIR to fetch the membership proofs, becomes practical
again.

We formalize our approach in more general terms using accumulators and
sub-accumulators, where we consider the smaller sub-trees as accumula-
tors and then the full tree as an accumulator of accumulators. Using this
abstraction, we discuss different types of accumulators including Merkle-
tree accumulators as well as RSA and bilinear pairing based ones in terms
of their performance characteristics as well as their consequences on the
security on the CT ecosystem.

Additionally, we use a different two-server PIR solution as an alternative
to the PIR scheme used by Lueks and Goldberg. We make use of the
work on distributed point functions by Gilboa and Ishai [GI14] to build
an efficient two-party computationally secure PIR system and present a
highly performant implementation. For this, the client needs to know the
index i of the item it wants to retrieve in the database. At the moment,
there no such index exists in the SCTs that are returned by the log server.
Therefore, we propose to include such an index in the CtExtensions

field of an SCT. Alternatively, this static piece of information can also be
included in a TLS extension.

Finally, our approach is general and can also be applied to other systems
based on CT-like architectures. In particular, it could be used to replace
the spoof queries over Tor as proposed in DECIM for hiding a user’s
communication partners.



1.4 Related Work

Different approaches have been proposed to solve various privacy issues
in the context of CT, and we discuss some of them below as well as known
privacy-preserving techniques.

Tor [DMS04] and AN.ON [BFK00], two open and privacy-enhancing net-
works can provide the needed infrastructure to solve the privacy problem
in CT. In both networks, the client requesting an inclusion proof is anony-
mous through a series of complex routing mechanisms. However, Tor suf-
fers from unpredictable performance and AN.ON has limited bandwidth
and has no load balancing mechanisms [WHF07].

Another suggestion allows the clients to receive the inclusion proofs using
special DNS records through their DNS resolvers [Lau16]. In this case,
the log server operates DNS name servers which serve authoritative an-
swers to special queries from web clients. One of the pitfalls [Mes17] of
this approach is that the browsing history is still observable since DNS
requests are mostly sent in plaintext over UDP.

The draft of version 2 of the CT RFC [LLK+18] discusses the privacy
issues in CT and presents three mechanisms to retrieve the Merkle in-
clusion proofs in a privacy-preserving way. The first mechanism involves
a new TLS extension where the TLS servers send the inclusion proofs
and SCTs in the process of communication with the client. The inclu-
sion proofs and the SCTs can be updated on the fly in this case. This
approach puts additional load on the server, i.e., the server has to contin-
ually update the inclusion proofs it has in storage. The second mechanism
involves the Online Certificate Status Protocol (OCSP) [SMA+13]. A user
contacts the OCSP service of a certificate authority to check whether a
certificate was revoked, thus leaking the browsing behavior to the CA.
The OCSP can also be used in this manner to deliver inclusion proofs to
the client. However, OCSP does not solve the privacy problem but sim-
ply shifts the information leakage to a certificate authority. OCSP sta-
pling [III11], which was initially designed to offload computational costs
to the servers, also helps to address privacy issues, since the client no
longer needs to contact the CA themselves, but verifies the time-stamped
OCSP response appended by the server to the initial TLS handshake.
The OCSP stapling approach also adds additional load on the server be-
cause the time-stamped OCSP response has to be continuously changed
and updated. The final mechanism involves adding the inclusion proofs
and the SCTs directly as an X509v3 certificate extension. This extension



can not regularly be updated, and while it provides privacy, it quickly
de-synchronizes with the log servers.

Lueks and Goldberg [LG15] propose to store membership proofs in a PIR
database optimized for multi-user queries. The database stores a record
containing the membership proof for each certificate; thus for storing 2`

certificates, the database is required to store ` · 2` hashes. For log servers
storing a million of certificates, the performance is reasonable; however,
current CT log servers contain a hundred times more certificates than
assumed by Lueks and Goldberg, rendering their approach impracticable.

Eskandarian et al. [EMBB17] address another privacy issue, which is not
the focus of this work. In case a misbehaving log server is identified, an au-
ditor is required to publish the offending SCT to indicate the log server’s
misbehavior. Naturally, the incident together with the SCT would then
be reported to browser vendors managing the list of trusted log servers.
However, this again leaks the client’s browsing behavior to a third party.
Eskandarian et al. tackle this issue by constructing zero-knowledge proofs
of exclusion, proving that an SCT has been excluded from a log whereas
the verifier only learns that an entry has been excluded. Their techniques
fundamentally rely on efficient proofs of knowledge of signatures together
with suitable signature schemes for signing timestamps.

A recent proposal [NGR18] addresses the issues related to gossiping in
Certificate Transparency. Gossiping is the sharing of information about
log servers between clients. The authors propose three protocols for gos-
siping SCTs and Signed Tree Heads (STHs) amongst web clients. The
protocols necessitate the exchange of sensitive information that can be
used to aggregate network activities of different clients or track clients
across different origins. The authors proposed measures to ensure that the
possibility of such a privacy breach is minimal. However, the protocols
and the privacy measures of this draft focus primarily on the gossiping
protocols and do not address the privacy concerns that come with the
fetching of inclusion proofs.

Demmler et al. [DRRT18] use a PIR based on distributed point func-
tions (DPF) to construct a multi-server private set-intersection protocol
optimized for unbalanced set sizes. In addition to a performant imple-
mentation, they also touch on deployment considerations, which we also
discuss in Section 5.4.

Splinter [WYG+17], a system built on Function Secret Sharing and DPFs,
provides privacy for users querying a public database. The query from a



user is split and sent to multiple servers that have a copy of the same
data. Splinter cannot only retrieve data in a PIR-like fashion but also
enables a user to compute functions such as MAX or TOPK over ranges
of the public data without non-colluding servers learning any information
about the query.

A different approach to PIR is called oblivious RAM (ORAM), where a
client can read and write to a database stored on a server without the
server learning about the location or content of the reads and writes. The
original work of Goldreich [Gol87] has spawned an extensive line of work
for different ORAM constructions and improvements, a recent example
being [SvDS+18]. However, while ORAM is a more powerful primitive
than PIR, it is not well suited for the scenario of CT, since the database
is read-only and public, with many different clients wanting to retrieve
data.

A different line of work investigates privacy-preserving key directories,
which are similar to the logging infrastructure used in CT but addition-
ally hide the contents of the key directory. Examples of such systems
include CONIKS [MBB+15], EthIKS [Bon16], Catena [TD17], and the
generalization of Verifiable Key Directories by Chase et al. [CDG18].

2 Preliminaries

In this section, we introduce cryptographic primitives and constructions
that we subsequently use as building blocks. Notation-wise, let [n] :=
{1, . . . , n} for n ∈ N. For an algorithm A, we write A(· · · ; r) to make the
random coins explicit. We say that an algorithm is efficient, if it runs in
probabilistic polynomial time (PPT).

2.1 Accumulators

We rely on the formalization of accumulators by Derler et al. [DHS15].
Based on this formalization, we then state the Merkle tree, the RSA,
and the bilinear accumulators within this framework. We start with the
definition of a static accumulator.

Definition 1 (Static Accumulator). A static accumulator is a tuple
of efficient algorithms (Gen,Eval,WitCreate,Verify) which are defined as
follows:



Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter
t. If t 6= ∞, then t is an upper bound on the number of elements
to be accumulated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if
no trapdoor exists. We assume that the accumulator public key pkΛ

implicitly defines the accumulation domain DΛ.

Eval((skΛ, pkΛ),X ) : This algorithm takes a key pair (skΛ, pkΛ) and a set
X to be accumulated and returns an accumulator ΛX together with
some auxiliary information aux.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (skΛ,
pkΛ), an accumulator ΛX , auxiliary information aux and a value xi.
It returns ⊥, if xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accu-
mulator ΛX , a witness witxi and a value xi. It returns 1 if witxi is a
witness for xi ∈ X and 0 otherwise.

We now define a dynamic accumulator, but adapt it to our use-case. We
only allow additions of elements to the accumulator.

Definition 2 (Dynamic Accumulator). A dynamic accumulator is a
static accumulator with an additional tuple of efficient algorithms (Add,WitUpdate)
which are defined as follows:

Add((skΛ, pkΛ),ΛX , aux, x) : This deterministic algorithm takes a key pair
(skΛ, pkΛ), an accumulator ΛX , auxiliary information aux, as well as
an element x to be added. If x ∈ X , it returns ⊥. Otherwise, it returns
the updated accumulator ΛX ′ with X ′ ← X∪{x} and updated auxiliary
information aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : This algorithm takes a key pair (skΛ,
pkΛ), a witness witxi to be updated, auxiliary information aux and an
x which was added to the accumulator. It returns an updated witness
wit′xi on success and ⊥ otherwise.

Note that the formalization of accumulators by Derler et al. gives access
to a trapdoor if it exists. Giving those algorithms access to the trapdoor
can often be beneficial performance-wise, but requires additional trust as-
sumptions. We will discuss the consequences for instantiating our schemes
in Section 3.3.

Finally, we recall the notion of collision freeness:



Definition 3 (Collision Freeness). A cryptographic accumulator is
collision-free, if for all PPT adversaries A there is a negligible function
ε(·) such that:

Pr

[
(skΛ, pkΛ)← Gen(1κ, t),
(wit?xi , x

?
i ,X ?)← AO(pkΛ)

:
Verify(pkΛ,Λ

?,wit?xi , x
?
i) = 1

∧ x?i /∈ X ?

]
≤ ε(κ),

where Λ? ← Evalr?((skΛ, pkΛ),X ?) and the adversary gets access to the
oracles

O = {Eval((skΛ, pkΛ), ·),WitCreate((skΛ, pkΛ), ·, ·, ·)}

and, if the accumulator is dynamic, additionally to

{Add((skΛ, pkΛ), ·, ·, ·),WitUpdate((skΛ, pkΛ), ·, ·, ·)}.

2.2 Merkle-tree Accumulator

In Scheme 1, we cast the Merkle-tree accumulator in the framework
of [DHS15]. Correctness can easily be verified. We restate the well-known
fact that this accumulator is collision free.

Lemma 1. If {Hk}k∈Kκ is a family of collision resistant hash functions,
the static accumulator in Scheme 1 is collision free.

In the current CT log server implementation, Hk is instantiated using
SHA-256. Also, in practical instantiation, the requirement that Eval only
works on sets of a size that is a power of 2 can be dropped. It is always
possible to repeat the last element until the tree is of the correct size.

2.3 Dynamic Public-Key Accumulators

Besides hash based-based constructions, major lines of work investigated
accumulators in the hidden order groups, i.e. RSA-based, and the known
order groups, i.e. discrete logarithm-based, setting. The first collision-
free RSA-based accumulator is due to Barić and Pfitzmann [BP97]. The
accumulator in this construction consists of a generator raised to the
product of all elements of the set. Then witnesses essentially consist of
the same value skipping the respective elements in the product. Thereby,
the witness can easily be verified by raising the power of the witness to



Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k←R Kκ and return (skΛ, pkΛ)← (∅, Hk).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as Hk and X as (x0, . . . , xn−1). If @ k ∈ N so that n = 2k

return ⊥. Otherwise, let `u,v refer to the u-th leaf (the leftmost leaf is indexed by
0) in the v-th layer (the root is indexed by 0) of a perfect binary tree. Return
ΛX ← `0,0 and aux← ((`u,v)u∈[n/2k−v ])v∈[k], where

`u,v ←
{
Hk(`2u,v+1||`2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : Parse aux as ((`u,v)u∈[n/2k−v ])v∈[k] and return witxi
where

witxi ← (`bi/2vc+η,k−v)0≤v≤k, where η =

{
1 if bi/2vc (mod 2) = 0
−1 otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : Parse pkΛ as Hk, ΛX as `0,0, set `i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

`bi/2v+1c,k−(v+1) =

{
Hk(`bi/2vc,k−v||`bi/2vc+1,k−v) if bi/2vc (mod 2) = 0
Hk(`bi/2vc−1,k−v||`bi/2vc,k−v) otherwise.

Scheme 1: Merkle-tree accumulator.

the element and checking if result matches the accumulator. We recall
the RSA-based accumulator in Scheme 2. Note however, that we define
WitCreate in a way that does not require the factorization of N , i.e. no
secret key is required. Correctness can easily verified, and collision freeness
follows from the strong RSA assumption:

Lemma 2 ([BP97]). If the strong RSA assumption holds, Scheme 2 is
collision-free.

Additionally, we recall the t-SDH-based accumulator from Nguyen [Ngu05].
The idea here is to encode the accumulated elements in a polynomial. This
polynomial is then evaluated for a fixed element and the result is random-
ized to obtain the accumulator. Similar to the RSA-based accumulator, a
witness consists of the evaluation of the same polynomial with the term
corresponding to the respective element cancelled out. For verification a
pairing is used to check whether the polynomial encoded in the witness is
a factor of the one encoded in the accumulator. The scheme is depicted in
Scheme 3. Again we define the accumulator in a way that no secret key,
i.e. s, is required. Correctness is again obvious, whereas collision freeness
follows from the t-SDH assumption:



Gen(1κ, t) : Fix a hash functions H with H : {0, 1}∗ → P. Choose an RSA modulus
N = p · q with two large safe primes p, q, and let g be a random quadratic residue
mod N . Set skΛ ← ∅ and pkΛ ← (N, g,H)

Eval((skΛ, pkΛ),X ) : Parse pkΛ as (N, g,H). Return ΛX ← g
∏
x∈X H(x) mod N and

aux← X .
WitCreate((skΛ, pkΛ),ΛX , aux, x) : Return witx ← g

∏
x′∈X\{x}H(x′) mod N .

Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (N, g,H). If wit
H(x)
x = ΛX mod N holds, return

1, otherwise return 0.
Add((skΛ, pkΛ),ΛX , aux, x) : Parse pkΛ as (N, g,H) and aux as X . Set X ′ ← X ∪ {x},

aux′ ← X ′, and ΛX ′ ← Λ
H(x)
X mod N . Return ΛX ′ and aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse pkΛ as (N, g,H). Return wit
H(x)
xi mod N .

Scheme 2: RSA-based accumulator.

Gen(1κ, t) : Let G be a prime order group p generated by g with a bilinear map e :

G×G→ GT . Choose s ∈ Z∗p and return skΛ ← ∅ and pkΛ ← (G, e, (gs
i

)ti=0).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as (G, e, (gs
i

)ti=0) and X as subset of Zp. Expand

the polynomial
∏
x∈X (x + X) =

∑n
i=0 aiX

i, choose r←R Z∗p and return ΛX ←
(
∏n
i=0 g

si)ai)r and aux← (r,X ).
WitCreate((skΛ, pkΛ),ΛX , aux, x) : Parse aux as (r,X ), run (witx, . . .) ←

Eval((skΛ, pkΛ),X \ {x}; r), and return witx.

Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (G, e, (gs
i

)ti=0). If e(ΛX , g) = e(witx, g
x ·gs) holds,

return 1, otherwise return 0.
Add((skΛ, pkΛ),ΛX , aux, x) : Parse pkΛ and aux as (r,X ). Set X ′ ← X ∪{x} and return

Eval((skΛ, pkΛ),X ′; r).
WitUpdate((skΛ, pkΛ),witxi , aux, x) : Return ΛXwitx−xixi .

Scheme 3: t-SDH-based accumulator.

Lemma 3 ([Ngu05]). If the t-SDH assumption holds, Scheme 3 is collision-
free.

2.4 Distributed Point Functions

Distributed Point Functions (DPFs) were introduced by Gilboa and Ishai [GI14]
and later generalized and improved by Boyle, Gilboa, and Ishai [BGI15,
BGI16] in a concept called Function Secret Sharing (FSS). A point func-
tion Px,y is a function defined for x, y ∈ {0, 1}∗, so that

Px,y(x
′) =

{
y if x′ = x

0|y| otherwise.

A DPF is a keyed function family Fk, where given x, y we can generate
n keyshares (k0, k1, . . . , kn) so that

∑n
i=0 Fki = Px,y and Fki completely



hides x and y. We focus on the case of two parties because efficient DPF
constructions exist for n = 2, where the sizes of the key-shares ki are
logarithmic in the domain of the DPF input, whereas the best generic
multi-party construction of DPFs have key-share sizes in the order of the
square root of the domain.

The interface of a DPF is given as a tuple of functions (DPF.Gen,DPF.Eval)
in [BGI16], and is defined for general y, however for our use, we restrict
it to y = 1. We also fix the number of parties to two, and then use AES
as an efficiently computable PRF, as suggested by [BGI16]. In the follow-
ing, N refers to the domain of the DPF. We describe the interface in the
following:

DPF.Gen(x) : Given an index x ∈ [N ], this algorithm returns a key pair
(k0, k1).

DPF.Eval(kb) : Given a key kb, which is the result of a previous call to
DPF.Gen(x), this algorithm produces a keystream Kb of length N .
Given K0 = DPF.Eval(k0) and K1 = DPF.Eval(k1),

(K0 ⊕K1)[x
′] =

{
1 if x′ = x

0 otherwise.

2.5 Private Information Retrieval

Private Information Retrieval (PIR) is a primitive originally introduced
by Chor et al. [CKGS98], that allows a client to retrieve an item from
a server database without the server learning anything about the item
requested. The server’s privacy is not a concern in PIR schemes, and the
database may even be public, only the client’s query is considered private.

Computational PIR is a flavor of PIR where the client’s query is hidden
from a polynomially bounded server. Such PIR schemes can, for exam-
ple, be built from fully homomorphic encryption (FHE). Information-
theoretic PIR protects the client’s query even against a computationally
unbounded server. Such schemes usually rely on multiple non-colluding
servers to provide such strong privacy guarantees and usually offer more
performance than single-server PIR schemes. Since the introduction of
PIR in the 1990s by Chor et al. many works have improved the com-
munication and computational complexity of PIR schemes, for example
[DHS14, ACLS18, GCM+16, MBFK16, Gol07, DGH12, BS07, LG15].

An efficient 2-server computational PIR scheme can be constructed from
DPFs in a straight-forward way as shown in [GI14]. Before we discuss the



instantiation, we recall their definition of a private information retrieval
(PIR) protocol:

Definition 4 (2-server PIR). A 2-server PIR protocol involving two
servers S0, S1 holding the same n−bit database z and a user consists of
three algorithms (Q,A,M) with query domain DQ and answer domain
DA and are defined as follows:

Q(n, i) : On input of an index i, client returns queries (q0, q1) ∈ D2
Q.

A(z, q) : On input of a query q and a database z, server b returns an
answer ab.

M(i, a0, a1) : In input of an index i and two answers a0, a1, recovers and
returns the i-th database entry zi.

We note that [GI14, Definition 2] explicitly handless random coins, but
we simply omit them for the sake of brevity.

Definition 5 (Correctness). A 2-server PIR scheme is correct if for
every n ∈ N, every z ∈ {0, 1}n and every i ∈ [n], it holds that

Pr
[
(q0, q1)← Q(n, i) : M(i, (A(j, z, qj))j∈{0,1}) = zi

]
= 1.

Definition 6 (Computational Secrecy). Let Db,dlogne,i, b ∈ 0, 1, n ∈
N and i ∈ [n] denote the probability distribution on qb induced by Q. A
2-server PIR scheme provides computational secrecy if there exists a PPT
algorithm Sim such that the following two distributions

{Sim(b, dlog ne)}b∈{0,1},n∈N and {Db,dlogne,i}b∈{0,1},n∈N,i∈[n]

are computationally indistinguishable.

We now give a short intuition of a 2-server PIR construction from a DPF.
There, the client calls (k0, k1) ← DPF.Gen(q) and sends k0 to server 0
and k1 to server 1. Both servers 0 and 1 call Ki ← DPF.Eval(ki) and per-
form an inner product between the expanded keystream and the database
items, Xi =

⊕N
l=0Ki[l] · DB[l]. The servers finally return X0 and X1 to

the client who can recover the requested item xq = X0 ⊕ X1. The cor-
rectness of this PIR scheme follows from the correctness of the used DPF
scheme. The privacy of the PIR scheme follows from the privacy of the
used DPF scheme ([GI14, Theorem 2]), but requires that the two servers
do not collude.



3 Modeling Append-Only Logs and Membership Proofs
for CT

In this section, we give a model of the append-only7 log functionality that
is used in the CT ecosystem. We then extend the append-only log by also
allowing for privacy-preserving membership proofs.

3.1 Append-Only Logs

An append-only log has to provide several functionalities: (i) adding new
items, (ii) proving membership of a item in the log, (iii) proving consis-
tency of the append-only property between two versions of the log. We
closely model append-only logs on the definition of accumulators, but take
care of the interactive nature. In the following, we define the syntax of the
append-only log protocol between a client and a server closely resembling
the CT protocol.

Definition 7 (Append-Only Log). An append-only log is an interac-
tive protocol of a global Setup algorithm, a client with algorithms VerifyMember
and a server with algorithms (Append,GetAcc,ProveMember) which are
defined as follows:

Setup(1κ, t) : This algorithm takes a security parameter κ and a parameter
t. If t 6=∞, then t is an upper bound on the number of elements to be
accumulated in the log. It returns public parameters pp.8

Append(xi) : This algorithm takes new item xi and appends it to the log.

GetAcc() : This algorithm returns the current log accumulator value ΛX
to the client.

ProveMember(xi) : This algorithm value xi. It returns ⊥, if xi /∈ X , and
a witness witxi for xi otherwise.

VerifyMember(ΛX ,witxi , xi) : This algorithm takes an accumulator ΛX , a
witness witxi and a value xi. It returns 1 if witxi is a witness for
xi ∈ X and 0 otherwise.

7 Although the generalized functionality might be more accurately called “add-only”,
since the order of the elements is not preserved in general, we choose to go with
“append-only”, since it is consistent with the terminology used, e.g., by the Certifi-
cate Transparency RFC [LLK13].

8 We assume that these public parameters are available implicitly in all algorithms.



The server starts off with an initially empty log. Optionally, a server can
provide an additional algorithm Gen and the client an additional algorithm
VerifyAcc defined as follows:

Gen() : This algorithm generates a secret signing key sk and a verification
key pk.

VerifyAcc(pk,ΛX , σ) : This algorithm takes the server public key pk, an
accumulator ΛX , a signature on the accumulator σ. It returns 1 if σ
is valid, and 0 otherwise.

It these two algorithms are available, GetAcc additionally returns a sig-
nature on the accumulator.

The additional algorithms Gen and VerifyAcc provide the functionality of
signed tree head, i.e., Gen creates the signing key material on the server
side and VerifyAcc verifies the signature on the accumulator.

For correctness of the log, we require that for every κ ∈ N, pp← Setup(1κ, t),
that for every x appended to the log using Append(x), for all Λ← GetAcc(),
it holds that

VerifyMember(Λ,ProveMember(x), x) = 1.

This essentially captures that the membership proof for every element
added to the log can be verified. If the append-only log also provides the
optional algorithms Gen and VerifyAcc, then we additionally require for
correctness, that for all (sk, pk) ← Gen() and all (Λ, σ) ← GetAcc(), it
also holds that

VerifyAcc(pk,Λ, σ) = 1.

A variant of the append-only log is one with privacy-preserving mem-
bership proofs, which allow a client to retrieve a membership proof for
a certain item without the server learning the item for which the proof
was requested. This property is useful in many applications such as CT,
where it allows a client to hide its browsing behavior from the log server.

Definition 8 (Append-Only Log with Privacy-Preserving Mem-
bership Proofs). The append-only log with privacy-preserving member-
ship proofs additionally extends Definition 7 with algorithms (PMQuery,PMReconstruct)
for the client the server with PMAnswer algorithm which are defined as
follows:



PMQuery(xi, i, n) : This algorithm takes an item xi with its corresponding
index i and returns queries (qj)j∈[n] for n servers.

PMAnswer(j, qj) : This algorithm takes a query qj for the j-th servers and
returns an answer aj.

PMReconstruct(i, (aj)j∈[n]) : Given answers (aj)j∈[n] for index i, it recon-
structs the witness witxi.

The client may use n servers to request membership proofs.

The proof returned by PMReconstruct can be verified as normal using
VerifyMember. While the algorithms in this definition are closely modeled
after those of PIR protocols, we note that this does not necessarily restrict
instantiations to PIR based ones.

For correctness, we require first of all, that it satisfies the correctness of
append-only logs. Additionally, we require that for all items x append
to the log with their corresponding index i and n servers, for all Λ ←
GetAcc(), it holds that

VerifyMember(Λ,PMReconstruct(i, (aj)j∈[n])) = 1

where

aj ← PMAnswer(j,PMQuery(xi, i, n)) for j ∈ [n].

Thereby we ensure that reconstructed witness verify. This definition al-
lows the clients to contact multiple servers to obtain the membership
proof. In the following, we will focus on the case n = 2.

Finally, we discuss the security notions. However, since our main concern
are privacy issues, we only discuss the first two properties briefly. Inspired
by an accumulator’s collision freeness, the append-only log is collision-
free if servers can only produce witnesses for elements that were included
in the accumulator. Secondly, we require that adversaries cannot forge
signatures on accumulators, i.e. that the append-only log is unforgeable.
The third notion is geared towards the client’s privacy when requesting
proofs for logged elements and ensures that the queries do not leak any
information on the queried elements. More formally, we define it in the
same vein as computational secrecy of PIRs (cf. Definition 6):

Definition 9 (Computational Secrecy). Let Db,dlogNe,i, b ∈ {0, 1}, n ∈
N and i ∈ [n] denote the probability distribution on qb induced by PMQuery.



An append-only log scheme provides computational secrecy if there exists
a PPT algorithm Sim such that the following two distributions

{Sim(b, dlog ne)}b∈{0,1},n∈N and {Db,dlogne,i}b∈{0,1},n∈N,i∈[n]

are computationally indistinguishable.

3.2 CT as Append-Only Log

We now show that the existing CT logging ecosystem implements an
append-only log according to Definition 7. It also provides the optional
algorithms based on signature schemes, which we formally recall in Ap-
pendix B. We note that Scheme 4 uses a yet undefined algorithm of the

Let MT be a Merkle-tree accumulator, Σ be a signature scheme, and let X ← ∅ be
the initially empty log on the server.

Setup(1κ, t) : Call (skΛ, pkΛ)← MT.Gen(1κ, t), set pp← (1κ, t, pkΛ), and return pp.
Gen() : Return (skΣ , pkΣ)← Σ.Gen(1κ).
Append(xi) : Set X ← X ∪ {xi}, and update the internal state of the accumulator

(Λ, aux) ← MT.Add((∅, pkΛ),Λ, aux, xi) or (Λ, aux) ← MT.Eval((∅, pkΛ),Λ, aux, xi)
if xi is the first element appended.

GetAcc() : Set σ = Σ.Sign(skΣ ,Λ) and return (Λ, σ).
VerifyAcc(pkΣ ,Λ, σ) : : Return Σ.Verify(pkΣ ,Λ, σ).
ProveMember(xi) : Return MT.WitCreate((∅, pkΛ),Λ, aux, xi).
VerifyMember(Λ,witxi , xi) : Return MT.Verify(pkΛ,Λ,witxi , xi).

Scheme 4: Certificate Transparency Logging as append-only log.

Merkle-tree, namely MT.Add, yet no function to update witnesses is used.
Especially if UpdateWitness is not defined to achieve a dynamic accumu-
lator, Add is easily implemented by simply recomputing the accumulator
value.

As the correctness, collision freeness and unforgeability are straight-forward
to check for Scheme 4, we only give a sketch of the proof:

Lemma 4. Scheme 4 is correct. Additionally, if the accumulator is collision-
free and the signature scheme Σ is unforgeable, Scheme 4 is collision-free
and unforgeable, respectively, as well.

Proof (Sketch of proof). Correctness follows easily from the correctness of
the accumulator and the signature scheme. Collision freeness follows with



a straightforward reduction to the collision freeness of the accumulator,
and unforgeability follows from the EUF-CMA security of the signature
scheme.

The existing CT ecosystem does not implement an append-only log with
privacy-preserving membership proofs according to Definition 8. Thus
we extend the existing CT system with privacy-preserving membership
proofs using PIR in Scheme 5.

Let PIR be a private information retrieval scheme where the witnesses are stored in the
PIR databases.

PMQuery(xi, i, n) : For each Merkle-tree level v ∈ [k] run (q
(v)
j )j∈[n] ←

PIR.Q(n, b1/2vc + η) where η = 1 if b1/2vc = 0 (mod 2) and η = −1 otherwise.

Return ((q
(v)
j )v∈[k])j∈[n].

PMAnswer(j, qj) : Parse qj as (q
(v)
j ) and run a

(v)
j ← PIR.A(j, q

(v)
j ) for each Merkle-tree

level v ∈ [k]. Return (a
(v)
j )v∈[k].

PMReconstruct(i, (aj)j∈[n]) : Parse (aj)j∈[n] as (a
(v)
j )v∈[k] and run witxi [v] ←

PIR.M(i, (a
(v)
j )j∈[n]) for each v ∈ [k]. Return witxi .

Scheme 5: CT log with privacy-preserving membership proofs.

For the case with n = 2, i.e. two servers, we specialise in Scheme 6 the
scheme using the DPF-based PIR from Section 2.5. For both schemes,
the client traverses each level of the tree and calculates the index of the
element he needs to retrieve for the Merkle-tree witness, with the server
input to the PIR functionality being the hashes in the current tree level.
The privacy guarantees of Scheme 6 follow from the privacy guarantees
of the used PIR scheme.

Theorem 1. If PIR is computationally secret, then Scheme 5 is compu-
tationally secret too.

Proof. Indeed, the k-fold application of PIR’s Sim algorithm induces a
simulation algorithm on the combined distribution of successive queries.

For the DPF-based instantiation, this means that the scheme provides
secrecy if the two servers do not collude.

Remark 1 (Database Representation). While this scheme as presented
has the advantage that the structure of the PIR database closely resem-



Client Server j

Input: index i, Merkle-tree size N Input: Merkle-tree ` with size N

PMQuery(∅, i, 2) :

for v = 0 to dlog2Ne:
η ← 1− 2 · (bi/2vc (mod 2))

kv1 , k
v
2 ← DPF.Gen(bi/2vc+ η)

q1 ← (kv1)v∈[dlog2 Ne]

q2 ← (kv2)v∈[dlog2 Ne]

return (q1, q2)

for j = 1 to 2:

PMAnswer(j, qj) :
qj

Parse qj as
(
k0j , k

1
j , . . . , k

dlog2 Ne
j

)

for v = 0 to dlog2Ne:
K ← DPF.Eval(kvj )

avj =

bN/2vc⊕

k=0

`k,v ·K[k]

aj ←
(
avj
)
v∈[dlog2 Ne]aj

return aj

PMReconstruct(2, {a1, a2}) :

return (av1 ⊕ av2)v∈[dlog2 Ne]

Scheme 6: Privacy-Preserving Retrieval of Membership Proofs instanti-
ated with DPF-based PIR.

bles the Merkle-tree and does not induce much storage-overhead, we also
now discuss a possible alternative representation as used by Lueks and
Goldberg [LG15], where they precompute the full Merkle-tree proof for
each item and store it in a separate database. This reduces the amount
of PIR queries to 1, which can improve performance if the PIR scheme is
the performance bottleneck. However, such a representation has the dis-
advantage that updates to the Merkle-tree accumulator are much more
costly, since the precomputed proofs need to be updated if the accumula-
tor changes, increasing the cost of updates to O(n), where n is the number
of total items in the accumulator. Furthermore, for our DPF-based PIR
implementation, the actual cost of the PIR is composed of (i) the DPF
evaluation and (ii) the inner product of the database items. Our highly



performant DPF implementation results in the inner product dominating
this time (see Section 5.2). If we perform one PIR per tree level, we cal-
culate an inner product with a database containing a single hash value
per item, whereas, for the separate database of full proofs, we perform
the inner product with a database containing k hash values per item,
where k is the tree height. This results in the total time spent on the
inner product being longer in the case of the separate database since in
the tree-based PIR approach the number of items in the PIR database
is halved each level. Therefore, and due to the costly updates and more
substantial memory requirements, we use the tree-based PIR approach
over the separate database of precomputed proofs. In Section 5.3, we give
a comparison between these two approaches and give evidence that the
tree-based database structure is superior.

3.3 Using Public-Key Accumulators

Scheme 4 only requires that the underlying accumulator’s Eval and WitCreate
algorithms only rely on public keys and public parameters. Scheme 6 does
not require any special properties. While the latter is defined to efficiently
fetch the witnesses of a Merkle-tree accumulator, for any other accumu-
lator it can be defined by retrieving witnesses stored in a database using
a PIR protocol. Hence it is also possible to instantiate the append-only
log using public-key accumulators, e.g., with Scheme 2 and Scheme 3. We
discuss the performance characteristics of instantiations using different
kinds of accumulators in Section 5.2.

However, if Scheme 4 would allow one to use accumulators where servers
also have access to the accumulator’s secret key, servers could produce wit-
nesses for elements that were not added to the accumulator (c.f. [DHS15,
Section 3]). In Appendix A we discuss this fact for the RSA accumu-
lator (Scheme 2). A similar fact can also be observed for the bilinear
accumulator presented in Scheme 3. In that case, knowledge of the expo-
nent s would allow the server to fabricate witnesses for non-accumulated
elements. Thus, when using public-key accumulators to instantiate the
append-only log, it is essential that the accumulator is set up by a trusted
third party.

4 Sub-Accumulators in CT-Logs

Using private information retrieval (PIR) to retrieve CT log membership
proofs comes with increased computation and communication complexity,



especially for the log server. In this section, we explore options that can
reduce this complexity and make privacy-preserving membership queries
more practical.

In the current CT logging ecosystem, adding new certificates to the log
server does not happen instantly. Instead, the submitting parties get a
signed promise of inclusion into the log, and all submitted certificates
are only appended to the log at certain time intervals. The length of
these intervals is not specified by the standard, but a certificate must be
included in the log after the maximum merge delay (MMD) set by the
log operator (usually 24 hours). This process allows us to restructure the
Merkle-tree to reduce the overall depth of the tree that has to be traversed
during the PIR protocol.

In Section 1.4 we discussed some of the methods outlined by the designers
to increase the user’s privacy when requesting membership proofs from
the log server. One of the proposed solutions is to embed the proof in a
certificate extension; however, such a proof would quickly get out of sync
with the current accumulator value of the log. We, therefore, suggest
using a hybrid approach of static and dynamic accumulators instead. A
static accumulator requires the whole set of elements X to be accumulated
to be available when building the accumulator, with no further updates
permitted. Even though the CT ecosystem continually receives updates
for new certificate chains, we can still make use of static accumulators.
We collect all new certificates for a specified time interval into a set Xt
and build a static accumulator ΛXt . Since the accumulator for this small
set Xt is static, we can generate a witness witxi for each xi ∈ Xt, proving
membership of xi in ΛXt , and attach this witness to the SCT or embed it
in the certificate, since we do not require any updates to the witness in
the future.

These small static accumulators for a given time interval are then in turn
accumulated in a dynamic accumulator, which as a whole can be seen as
the equivalent of the current CT log. This process helps to reduce the
size of the dynamic accumulator, which in turn reduces the complexity
of the PIR approach. A client only needs to fetch the inclusion proof
for the dynamic accumulator using PIR and verifies the membership of
the certificate in the sub-accumulator and the membership of the sub-
accumulator in the dynamic accumulator.

Example 1 (New sub-tree every hour). The largest CT log servers, e.g.,
Google Argon, have an average throughput of ≈ 60000 certificates per



hour. Thus building a sub-tree per hour means that we need to accumulate
about 216 elements in the static sub-accumulators. In turn, if we assume a
runtime of 3 years, this would result in a total of 24 ·365 ·3 = 26280 items
in the dynamic accumulator. If we instantiate this dynamic accumulator
using a Merkle-tree accumulator, we have a tree depth of 15, which is
very feasible to retrieve using multi-server PIR.

For the choice of static sub-accumulators, we consider two possibilities:
using static Merkle-tree accumulators or using public-key based static
accumulators.

Merkle-Tree Sub-Accumulators A straight-forward implementation
is to also use Merkle-tree accumulators to instantiate the sub-accumulators.
This essentially amounts to a conceptual categorization of some sub-tree
of the original accumulator as static sub-accumulators, with the only
change to the original accumulator being the guarantee that a sub-tree is
static and does not accept any additional values.

Public-Key Sub-Accumulators An alternative to using static Merkle-
tree accumulators the leaves of our big Merkle-tree would be to use static
public-key based accumulators instead. These public-key accumulators
have different trade-offs compared to Merkle-tree accumulators. They
usually offer a constant-size membership proof and accumulation value,
compared to the logarithmic proof size of Merkle-tree accumulators. How-
ever, both the generation and verification algorithms of public-key accu-
mulators usually require more computationally expensive public-key op-
erations. Furthermore, public-key accumulators require a trusted setup
phase as we discussed in Section 3.3.

From a web server point of view, the constant size proofs of public-key ac-
cumulators are beneficial in theory, as the required communication only
grows by a small, fixed amount. Furthermore, the web server does not
actually have to perform any public-key operations but only relays the
witness to the client, which then performs the verification algorithm. How-
ever, we are considering sub-accumulator sizes, where the combined size of
the membership proof and accumulator value are very similar for Merkle-
tree accumulators, RSA accumulators, and bilinear accumulators. This
fact, combined with the setup requirements and the lower performance,
makes the use of public-key accumulators less attractive in our setting.

We now discuss our approach more formally and show that the so obtained
append-only log still provides secrecy. The sub-accumulator approach can



be interpreted as an accumulator of accumulators. We cast our approach
in into the accumulator framework in Scheme 7 where we use the second
argument of the Gen algorithm to define the size of the sub-accumulators.

Let OA and IA be accumulators.

Gen(1κ, T ) : Let (ski, pki)← IA.Gen(1κ, T ) and (sko, pko)← OA.Gen(1κ,∞). Set skΛ ←
∅ and pkΛ ← (pki, pko, T ). Return (skΛ, pkΛ).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as (pki, pko, T ). Partition X into T -sized subsets
X1, . . . , X` with X` having potentitally less than T elements. For j ∈ [`] com-
pute (Λj , auxj)← IA.Eval((∅, pki),Xj) and (ΛX , aux)← OA.Eval((∅, pki), (Λj)j∈[`]).
Set auxX ← ((Xj ,Λj , auxj)j∈[`], aux) and return ΛX , auxX .

WitCreate((skΛ, pkΛ),ΛX , auxX , x) : Parse pkΛ as (pki, pko, T ) and auxX
as ((Xj ,Λj , auxj)j∈[`], aux). Find j ∈ [`] such that x ∈ Xj . Now
compute witi ← IA.WitCreate((∅, pki),ΛXj , auxj , x) and wito ←
OA.WitCreate((∅, pko),ΛX , aux,ΛXj ). Return (witi,Λi,wito).

Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (pki, pko, T ) and witx as (witi,Λi,wito). If both
IA.Verify(pki,Λi,witi) = 1 and OI.Verify(pko,ΛX ,wito) = 1, return 1, otherwise
return 0.

Scheme 7: Sub-Accumulator based Accumulator.

Lemma 5. If both IA and OA are collision-free, then Scheme 7 provides
collision freeness.

Proof (Sketch of Proof). Assume that witx = (witi,Λi,wito) is a verifiying
witness for x 6∈ X . Then either x 6∈ Xj for all j ∈ [`] and hence (x,witi)
breaks collision freeness of IA, or Λi was not accumulated in ΛX , thus
(Λi,wito) breaks collision freeness of OA.

Making this accumulator dynamic or at least providing an Add algorithm
is more involved, though. If one adds one element at a time, it is necessary
to add to X` and update its accumulator until the X` is also of size
T . However, then, one has to remove the old accumulator value from
the outer accumulator and add the new one. Hence it is more efficient
to gather T elements and then add them at once. In that case, it is
sufficient to add one accumulator to the outer accumulator. Alternatively,
one could also add sets with less than T elements with one additional sub-
accumulator without touching any of the old accumulator values at the
cost of a larger outer accumulator.



Integration into the append-log scheme with privacy-preserving member-
ship proof using this approach of adding T elements together is straight-
forward provided that the outer accumulator is a Merkle-tree or provides
an Add algorithm. Consequently, we obtain such a scheme providing com-
putational secrecy with non-colluding servers.

Corollary 1. Scheme 6 instantiated with Scheme 7 provides computa-
tional secrecy if the PIR servers are non-colluding and all sub-accumulator
witnesses have the same size.

Proof. This follows from Theorem 1. If the sub-accumulator witnesses do
not have the same size, it is possible to distinguish queries for witnesses
which do not have the same size.

For improved efficiency in the context of certificate transparency, we make
use of the fact that we can include parts of the proof into extension fields
of the SCT or the certificate. Note that, throughout its lifetime, witi and
Λi stay constant, and only wito needs to be updated after adding new ele-
ments to the append-only log. Hence we add witi and Λi to CtExtensions.
Then only wito needs to be retrieved using the PIR protocol, thus greatly
reducing its cost. With this approach, we can always avoid the restriction
of requiring equal-sized sub-accumulator witnesses.

4.1 Additional Considerations

As discussed in Section 3.3, public-key accumulators usually require a
setup phase involving a trusted third party. Otherwise, the party holding
the accumulator might have access to the secret trapdoor information,
allowing the creation of witnesses for elements that are not actually con-
tained in the accumulator. A popular alternative to a trusted third party
is the use of multi-party computation to compute the public parameters.
One prominent example of such an approach is the “ceremony” of the
cryptocurrency Zcash based on [BCG+14], where a multi-party compu-
tation was performed including hundreds of participants in a scalable
multi-party protocol to generate the public parameters for the used proof
system [BGM17].

We leverage the non-collusion property of the servers to generate the
parameters for the used public-key accumulator using multi-party com-
putation protocols. In recent years, more and more efficient solutions for
distributed parameter generation have emerged, e.g., for distributed RSA



key generation [FLOP18], where the authors report a time of 134 seconds
on a single core per party to generate a distributed RSA key pair, or
for distributed ECDSA key generation [Lin17]. Similar techniques can be
employed to generate public parameters for a bilinear accumulator in a
distributed fashion.

5 Implementation & Evaluation

In this section, we describe our implementation of the DPF-based PIR
to retrieve Merkle-tree inclusion proofs. We integrate our implementation
into the existing CT log server infrastructure provided by Google and
then evaluate its performance.

Using the DPF construction of Boyle et al. [BGI15] and its extensions [BGI16],
we can efficiently generate and evaluate the DPF using only AES, which
is very performant when using the AES-NI instructions in modern x86-64
CPUs. Like Wang et al. [WYG+17], we use the Matyas-Meyer-Oseas one-
way compression function [MMO85], defined as H(x) = Ek0(x)⊕ x. The
fixed-key property of this construction allows us to benefit from the fact
we only have to perform the AES key schedule once for maximum per-
formance. Furthermore, we use the full-domain evaluation algorithm pro-
posed by [BGI16] to avoid calculating intermediate results multiple times
and optimize the implementation with respect to AES and vector pipelin-
ing. Additionally, the inner product of the expanded DPF keystream and
the 256-bit long SHA-256 hash values in the Merkle-tree can be efficiently
calculated using AVX vector operations, making our multi-server PIR
suitable for large log sizes. For experiments using public-key accumula-
tors, we base our implementation on the work of Tremel9. We report mi-
crobenchmarks on the performance of our implementations in Section 5.2.

5.1 Integration into existing CT log server infrastructure

The Google CT team provides two open-source implementations of a CT
log server. The original prototype implementation10 written in C++, and
their new CT log server11 written in Go, using Trillian12, a scalable im-
plementation of a Merkle-tree accumulator with separate data storage
layers, as a backend.

9 https://github.com/etremel/crypto-accumulators/
10 https://github.com/google/certificate-transparency
11 https://github.com/google/certificate-transparency-go
12 https://github.com/google/trillian



To show the practicality of our solution, we integrate a prototype into the
C++ implementation13 and provide libraries for DPF-based PIR for both,
C++14 and Go.15 We added new HTTP endpoints for retrieving proofs
using DPF, given the index of the hashes in the SCTs, and extended the
existing client software to verify retrieved SCTs against two servers. This
new API was then used to verify the inclusion of several certificates in the
log. We believe that the integration of the DPF-based PIR into the C++
log server is easily adaptable to the Go CT log server. We refer to the
microbenchmarks in the following section for the performance overhead
compared to the existing approach.

5.2 Performance Evaluation

To show the practicality of our solution, we evaluated both a DPF-based
PIR on a standard Merkle-tree as currently used in CT logs, as well as
DPF-based PIR on a Merkle-tree with hourly sub-accumulators to reduce
the tree depth and complexity of the PIR query. We consider multiple
different log server sizes based on existing log servers, more concretely,
we perform benchmarks on log servers with N ∈ {220, 222, 224, 226, 228}
certificates.16 All experiments are performed on a desktop PC equipped
with an Intel R© CoreTM i7-4790 CPU @ 3.60GHz and 16 GB of RAM. We
perform microbenchmarks on the different parts of the protocol. All tests
are performed using a single-threaded implementation only; however, we
remark that the server-side operations, the DPF.Eval algorithm and the
inner product calculation, are trivially and perfectly parallelize-able, e.g.,
when using 4 threads, we observe a speedup of ≈ 4x.

In Table 2, we present the microbenchmarks when using DPF-based PIR
to retrieve the Merkle-tree inclusion proof. We observe that even for a
server with 228 (≈ 270 million) certificates, the total work for the server is
just 1.067 seconds, whereas the client workload is less than 1 millisecond.
The total communication between the parties is less than 6 KB. The inner
product of the SHA-256 hashes is dominating the runtime. One possible
future optimization to further speed up this inner product step would be
the use of AVX512 instructions to process two hash values at once.

Table 3 shows the performance of our sub-tree approach. We observe
that the total execution of the DPF-based PIR with a reduced tree size
13 https://github.com/dkales/certificate-transparency
14 https://github.com/dkales/dpf-cpp
15 https://github.com/dkales/dpf-go/tree/master/dpf
16 For larger log server sizes, the data no longer fits in the RAM.



N
Client Server Client Communication

DPF.Gen DPF.Eval Inner Prod. Verification C→ Si C← Si

220 0.05 0.32 4.28 < 0.01 2298 640
222 0.07 1.23 16.72 < 0.01 2886 704
224 0.08 4.78 64.49 < 0.01 3546 768
226 0.09 19.22 251.32 < 0.01 4278 832
228 0.11 78.41 988.93 < 0.01 5082 896

Table 2. Performance of DPF-based PIR when retrieving privacy-preserving mem-
bership proofs from a standard Merkle-tree based log server containing N certificates.
Time in milliseconds, communication in bytes per server. Merkle-trees for larger log
servers no longer fit into the main memory of our test machine.

of 15 levels results in a total runtime of 130 µs. The client verification
time is slower when using PK accumulators in sub-trees, but still in the
order of milliseconds. We also list the additional communication of the
sub-accumulator and the corresponding witness in the “extra” column,
as the web server needs to send this information included in the SCT.
This approach is very performant, even for logs containing a total of 231

certificates.

While the client verification times for the used public-key accumulators
are very fast, a problem manifests on the server side. Since we set up the
public-key accumulators on public-parameters only, we cannot use the
secret trapdoor information to speed up accumulation and witness gener-
ation for the RSA and bilinear accumulators. This results in much worse
performance for these two operations, especially generating witnesses for
each element. Table 4 shows the performance of these two operations
for 210 and 216 elements, which roughly correspond to creating one sub-
accumulator per minute and hour on larger log servers respectively. We
observe that for the public-key accumulators we evaluated (using a se-
curity level of 128 bits), the only realistic parameter set is using bilinear
accumulators for sub-trees of size 210, which roughly corresponds to one
sub-tree per minute. For the other options, accumulating all elements and
generating the witnesses would take longer than the intended time-frame
of one hour for 216 elements or one minute for 210 elements. A possible
solution would be to retain the secret parameters and keep them split
into shares, with servers engaging in a multi-party computation protocol
to compute witnesses using the shares of the secret trapdoor information.
The design and implementation of an efficient protocol for this task is an
interesting avenue for future work. However, for our current system and
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implementation, we recommend using Merkle-tree accumulators for the
sub-accumulators.

Accumulator Nsub Accumulation Witness gen.

RSA
216 63.47 ≈ 1000000
210 1.06 264.15

Bilinear
216 2.99 95672.12
210 0.12 24.43

Merkle
216 0.03 0.09
210 < 0.01 < 0.01

Table 4. Performance of one-time server-side sub-accumulator operations (without
trapdoor information). Time in seconds.

5.3 Comparison to Lueks and Goldberg [LG15]

The only previous work aiming to improve the privacy of retrieving CT
log membership proofs is by Lueks and Goldberg [LG15], where the au-
thors optimize the PIR scheme of Goldberg [Gol07, DGH12] to allow for
efficient batching of multiple queries. The PIR scheme used in [LG15]
provides information-theoretic security and it is robust, meaning it can
be extended so that some servers are allowed to misbehave, while still
allowing the client to recover the item. Furthermore, it can be scaled up
to more than two servers. In comparison, the DPF-based PIR we use
only provides computational security and does not provide robustness,
but can be instantiated very efficiently for two servers. We argue that the
robustness property is not critical in the case of retrieving Merkle-tree
inclusion proofs, since the validity of the retrieved item is later verified
against the Merkle-tree head, allowing for detection of wrong results. We
therefore compare to the scheme of Lueks and Goldberg in its simplest
form, using two servers and providing robustness against 0 misbehaving
servers. In Table 5, we give concrete performance numbers for both our
implementation and the implementation of [LG15], which has been in-
tegrated into Percy++.17 Since both implementations could benefit from
our sub-accumulator approach, we only benchmark performance of re-
trieving standard membership proofs. For [LG15], we perform 28 queries
in parallel to make use of their proposed optimizations. We give num-
bers for both, the precalculated database of membership proofs and the

17 http://percy.sourceforge.net/



tree-based approach we discuss in Remark 1. For [LG15], we follow the
recommendation of the authors and arrange the database in square-root
sized blocks to minimize communication.

Our DPF based implementation outperforms the PIR scheme of Lueks
and Goldberg in both runtime and communication in all tested configu-
rations, where we can especially notice the logarithmic communication of
the DPF-based PIR. Furthermore, we observe that using our approach of
arranging the database to make use of the tree structure of the Merkle-
tree does also improve the runtime and communication considerably when
using the PIR scheme of Lueks and Goldberg, mostly due to the re-
duced overall size of the database. This also means we can keep the whole
database for the tree-based representation in memory, resulting in much
better performance. We can observe the jump in runtime from N = 224

to N = 226 when using a database of precomputed proofs for the DPF-
based PIR, which is due to the fact that the database no longer fits into
the available RAM.

N Protocol DB structure Time/Query Comm.

222
DPF

Tree 0.02 3.5
Precomputed 0.28 0.98

[LG15]
Tree 0.08 77.6

Precomputed 0.59 108.7

224
DPF

Tree 0.06 4.2
Precomputed 1.23 1.08

[LG15]
Tree 0.24 155.0

Precomputed 3.54 222.4

226
DPF

Tree 0.25 4.99
Precomputed 82.61 1.17

[LG15]
Tree 0.78 312.0

Precomputed − −

228
DPF

Tree 1.03 5.8
Precomputed 450.51 1.28

[LG15]
Tree 3.57 625.5

Precomputed − −
Table 5. Comparison of different PIR protocols when retrieving a membership proof
from a log of N certificates. Time in seconds, Communication in KiB per server. A
value of − indicates the implementation ran out of memory.



Remark 2 (Batch processing of client queries). The main contribution of
Lueks and Goldberg [LG15] was the optimized batch processing of queries,
where a server can process multiple queries at an asymptotically lower cost
than processing each query individually. Their approach even manages to
batch queries from different clients together, which is beneficial in systems
such as CT. For our DPF-based PIR, we cannot batch queries for different
clients, but can still optimize multiple queries from the same client. This
scenario is realistic due to two factors. First, when a client connects to
a website, he usually does not only retrieve one certificate, but instead
connects to multiple different web servers hosting stylesheets, Javascript
files, images, or other resources, verifying each certificate. Second, the
auditor in each TLS client can collect multiple certificates to audit them in
batches at a later time. Demmler et al. [DRRT18] use a binning approach
for queries in their PIR-PSI protocol, which can also be applied to our
use-case. The main idea is to partition the database into β bins of N/β
items each. When the indices of queries are uniformly distributed, the
maximum number of items per bin can be bounded probabilistically. All
bins are then padded to the maximum number of items, and multiple
smaller queries are performed for each bin. The overall runtime is expected
to decrease, with a slight increase in communication, depending on the
choice of β. We refer to [DRRT18] for a more detailed discussion.

5.4 Deployment Considerations

With the enforcement of CT logging by big browser vendors in early
2018, the CT infrastructure has grown considerably and logged hundreds
of millions of certificates. Any changes to the ecosystem should, therefore,
be critically analyzed, as these changes may require widespread updates
to server and client software. Our log with privacy-preserving membership
proofs has the advantage that it can co-exist alongside existing log servers
and does not require significant changes. Embedding proofs for the sub-
accumulators in an extension field of the SCT means that a web server
does not require any changes to support our proposed changes, as his job
is to provide the SCTs to the client. For the client, the auditor code has
to be extended to distinguish a log with privacy-preserving membership
proofs from a standard log, and to use the new API endpoint to retrieve
the proof from the two servers. The log server obviously requires more
substantial changes, but its API is still compatible to a standard log
server and both servers answering DPF-based PIR queries can still answer
membership queries in a standard way if no privacy is required.



In addition to these considerations regarding the disruption of the ex-
isting ecosystem, we also require a non-collusion assumption between the
two servers participating in the PIR query. This non-collusion assumption
can be solved by hosting the second server on a cloud platform potentially
run by a competitor of the first log server provider, as was also proposed
by [DRRT18]. To maintain their reputation, the cloud providers have
a significant incentive not to collude. The second server could also be
hosted by privacy-conscious organizations and advocacy groups such as
the European Digital Rights (EDRi) or the Electronic Frontier Founda-
tion (EFF). Furthermore, the system is not strictly limited to two parties.
Several such non-colluding servers could exist, and an auditor-client could
pick any two of them to perform a privacy-preserving membership proof.

Remark 3 (Cloning Existing Log Servers). We now describe another ap-
proach to facilitate better integration into the existing CT logging ecosys-
tem. Instead of setting up a new log server and accepting the submission
of new certificates, we rely on the CT ecosystem and clone the data of an
already existing log server. In addition to monitoring the cloned log server
for consistency, we can now restructure the certificates contained in the
cloned log server in sub-trees. Furthermore, other monitors can verify the
consistency of our new log servers against the cloned one. The new sub-
accumulator based log servers then hand out their own SCTs (including
PIR index i and sub-accumulator witness witi) to existing domain own-
ers that want to provide privacy to their users. These SCTs can then be
delivered to clients by the web server, and clients can choose to perform a
privacy-preserving membership proof against the new log servers instead
of a regular one.

6 Conclusion

In this work, we have reiterated potential privacy problems for the CT
ecosystem and presented a solution based on two-server PIR that of-
fers competitive performance for real-world parameters. Furthermore, we
present an approach using sub-accumulators that reduces the complexity
of the PIR queries to a point where a single server could handle multiple
thousands of requests per second, and show how such an approach can be
set up by mirroring existing log servers, providing a privacy-preserving
alternative for auditors. We have shown the practicality of our solution
by integrating it into the existing CT log server implementation and per-
formed a performance evaluation for several different parameter sets. We



believe our approach could offer privacy-conscious users an alternative
and further strengthen the existing CT ecosystem.
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A Membership Witnesses for Non-Accumulated
Elements

We consider Scheme 2 with pkΛ = (N, g,H) and skΛ = (p, q) where N =
p ·q. Let X be some set and x 6∈ X such that H(x) is invertible mod (p−



1) · (q−1). Now, the accumulator for X is computed as ΛX = g
∏
x′∈X H(x′)

mod N . Yet, as the factorization of N is known, the server can compute

witx = Λ
H(x)−1

X mod N . Although x is not member of X , wit
H(x)
x = ΛX

(mod N) holds and thus the verification succeeds.

Assuming that p and q are κ bit primes p − 1 and q − 1 have at most
≈ κ−1/log(κ−1) prime factors and if the have a large prime factor, upper
bound is a lot smaller. H(x) is invertible if H(x) is not one of the prime
factors of M . Hence, the chance of a random element x with H(x) being
non-invertible mod M is approximately

2 κ−1
log(κ−1)
22κ

2κ

=
κ(κ− 1)

4κ−1 log(κ− 1)
≤ κ(κ− 1)2

4κ−1(κ− 2)
.

This gives the server opportunity to produce membership witnesses for
non-accumulated elements with high probability.

B Signature Schemes

In this section, we shortly recall the standard definition of signature
schemes.

Definition 10 (Signature Scheme). A signature scheme Σ is a triple
(Gen,Sign,Verify) of PPT algorithms, which are defined as follows:

Gen(1κ) : On input of a security parameter, this algorithm outputs a key
pair (sk, pk) consisting of a secret signing key sk and a public verifi-
cation key pk.18

Sign(sk,m) : On input of a secret key sk and a message m, this algorithm
outputs a signature σ.

Verify(pk,m, σ) : On input of a public key pk, a message m and a signature
σ, this algorithm outputs a bit b.

For correctness, we require that for all security parameters κ ∈ N, for all
key pairs (sk, pk)← KeyGen(1κ), for all messages m ∈M, it holds that

Pr [Verify(pk,m,Sign(sk,m)) = 1] = 1.

Additionally, we require them to be EUF-CMA-secure.

18 We assume that pk implicitly defines the message space M.



Definition 11 (EUF-CMA). The advantage AdvAEUF-CMA(·) of an adver-
sary A in the EUF-CMA experiment is defined as

Pr

[
(sk, pk)← Gen(1κ), (m∗, σ∗)← AS(sk,·)(pk) :
m∗ /∈ QS ∧ Verify(pk,m∗, σ∗) = 1

]
,

where the environment maintains an initially empty list QS and the ora-
cles are defined as follows:

S(sk,m) : Set QS ← QS ∪ {m} and return σ ← Sign(sk,m).

A signature scheme is existentially unforgeable under random message
attacks, if for every PPT adversary A, AdvAEUF-CMA(·) is bounded by a
negligible function in the security parameter κ.



3. Revisiting Privacy-aware Blockchain
Public Key Infrastructure

The subsequent paper has been published as follows:
Paul Plessing and Olamide Omolola. “Revisiting Privacy-aware Blockchain Public Key

Infrastructure”. In: ICISSP. SCITEPRESS, 2020, pp. 415–423
In this paper, we devise a privacy-aware approach for PKI on the blockchain. We

analyse the privacy guarantees of PB-PKI, a proposed privacy-aware PKI and discover
that it leaks private data. Our proposed privacy-aware PKI on the blockchain leverages
ring signature for key authentication and verfication.
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Abstract. Privacy-aware Blockchain Public Key Infrastructure (PB-PKI) is a
recent proposal by Louise Axon (2017) to create a privacy-preserving Public
Key Infrastructure on the Blockchain. However, PB-PKI suffers from operational
problems. We found that the most important change, i.e., the key update process
proposed in PB-PKI for privacy is broken. Other issues include authenticating
a user during key update and ensuring proper key revocation. In this paper, we
provide solutions to the problems of PB-PKI. We suggest generating fresh keys
during key update. Furthermore, we use ring signatures for authenticating the
user requesting key updates and use Asynchronous accumulators to handle the
deletion of revoked keys. We show that the approach is feasible and implement a
proof of concept.

Keywords: Blockchain, Public Key Infrastructure, Privacy, RSA.

1 Introduction

Nowadays, Public Key Infrastructure (PKI) plays a major role in ensuring secure
communication. PKI works on the principle that a trusted third-party organiza-
tion called Certificate Authority (CA) can sign certificates and vouch for the
authenticity of the link between the public key and the subject name contained
within the certificate. The trusted third-party verifies a client’s identity and con-
firms the client’s identity before signing. This third-party signs a certificate with
its private key1. The certificate of the trusted third-party is assumed to be widely
known, and another entity can verify the signed client certificate by verifying the
signature of the trusted third-party organization affixed to it.

However, PKI is a centralized infrastructure and attacks like those carried
out on Comodo2 or DigiNotar3 compromises the CAs, and that can compromise
the integrity of the certificates issued thereby compromising the whole infras-
tructure.

Phil Zimmerman proposed the Web of Trust (WoT) in 1992 [15] as a de-
centralized alternative to PKIs. The initial processes leading to trust in WoT
is different from that in PKI. For example, if Alice knows the public key of
Bob and trusts him, and Bob knows the public key of Claire, then Alice can
ask Bob for Claire’s key and trust that it is indeed Claire’s key. Alice and Bob
exchange their keys initially in person. This exchange event is called a “Key
Signing Party”, where people exchange their keys with each other in person.
However, this personal exchange poses two problems. The first problem is an

1 The public key is included in the certificate
2 https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html(last accessed on

20/03/2019)
3 https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html(last

accessed on 20/03/2019)
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efficiency problem as only a few keys can be exchanged initially in a particular
time frame. The second problem is a trust chain problem as it is possible that
Alice is unable to find a trust chain that connects with Claire, thereby giving rise
to isolated trust communities.

Researchers are continually trying to improve the two mechanisms above in
different ways. Blockchain has recently come to the center stage of the research
community [10], and many researchers have proposed using the Blockchain to
solve some of the PKI and WoT problems. One of such proposals is the Privacy-
aware Blockchain-based PKI (PB-PKI) [1]. PB-PKI4 aims to use the Blockchain
to solve the problems of WoT and also ensure privacy.

However, some of the goals were not achieved, and we discovered some
problems with the key update process and the key revocation in the proposal.

Our contributions in this paper include the following:

1. We show that the key update process in PB-PKI [1] does not ensure
privacy.

2. We propose the use of ring signatures to solve the problem of authenti-
cating registered members of the blockchain during key update to en-
sure that only registered members can perform key updates.

3. We propose a revocation mechanism that involves key deletion from the
blockchain for PB-PKI.

4. We implement a PoC and show that it is feasible in practice.

The rest of the paper is structured as follows: Section 2 gives a short overview
of previous research; Section 3 gives a short introduction into Asynchronous
accumulators and Ring Signatures; Section 4 describes the privacy notions in
PB-PKI; Section 5 describes PB-PKI; Section 6 discusses the problems of PB-
PKI and provides our solutions to them; we evaluate our ideas in Section 7;
Section 8 discusses the implications of our changes to PB-PKI and we conclude
in Section 9.

2 Related Work

Blockchain became popular in 2009 with the introduction of Bitcoin [10]. Blockchains
are decentralized and store transactions between parties. All the transactions are
publicly auditable by all participants, and once a transaction is recorded and con-
firmed, it is practically immutable. These characteristics have led researchers to
propose implementing PKIs and WoT on the Blockchain [4, 6–8, 13, 14]. One
example of such a proposal is Certcoin [4]. Certcoin is a blockchain variant built
upon Namecoin5 that also functions as a WoT.

4 PB-PKI is actually an implementation of WoT on the Blockchain
5 Namecoin is a fork of Bitcoin
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The simplest version of Certcoin uses Namecoin as a bulletin board where
blockchain posts and blockchain traversals support its functionalities. Data struc-
tures such as Asynchronous Accumulators [11] and Kademlia Distributed Hash
Table (DHT) [9] were introduced in successive versions so that Certcoin is time-
and space-efficient. However, Certcoin was not built with privacy taken into con-
sideration.

Certcoin transactions store information about public key events. The public
key events are registration, update, revocation, and verification. Certcoin man-
dates every entity to register two key pairs. The entity uses the first key pair
called online key pair for communication and uses the second key pair called
offline key pair for security purposes such as key revocation6 and update. The
offline key pair is stored offline to protect it.

The authors of Certcoin provide an incomplete implementation of Certcoin
in the language Go. The implementation uses RSA keys and the Asynchronous
Accumulator for key verification. PB-PKI builds on the foundation of Certcoin.

3 Preliminaries

This section briefly describes the algorithms that are used in the rest of the paper

3.1 Asynchronous Accumulator

Reyzin and Yakoubov proposed the Asynchronous accumulator(AA) [11]. AA
is the dynamic form of the accumulator called Merkle tree [5], and it provides
algorithms for adding or deleting elements from the original set. AA (see fig-
ure 1) is a container of several Merkle roots, i.e., an array of Merkle roots. Every
index of the AA can contain only the root of one Merkle tree at a particular time.

AA preserves efficiency in an environment, where modifications of a Merkle
tree happen often due to frequent addition of leaves. Recalculating the whole
tree after a modification requires logn time, therefore, it is desirable to optimize
this process. AA works similar to a Merkle tree regarding verification.

1. Initially, the AA is empty
2. To add a message m1, m1 is hashed to H1 and put into the first slot of the

AA at index 0.
3. Suppose a second message m2 needs to be added. Since index 0 is occupied

by H1, H1 and H2
7 are concatenated and hashed to H12. The hash H12 is put

at index 1 of the AA. Simultaneously, H1 gets removed from index 0. To

6 The offline key pair can revoke the online key by signing a revoke-event
7 H2 is the hash of message m2
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Fig. 1. Illustration of an Asynchronous Accumulator with its empty (”-”) and filled (”H****”)
Merkle roots and their corresponding Merkle trees.
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verify that message m1 is part of the AA, the prover has to remember m1

and H2. With this knowledge, he can reconstruct the Merkle root at index 1.
4. When a third message m3 arrives, it is hashed to H3 and placed at index 0

since index 0 is empty.
5. The next message m4 is also hashed to H4. However, index 0 contains H3.

Therefore, H3 and H4 are concatenated and hashed into H34. H34 should be
placed at index 1, but it is occupied by H12. Thus, H12 and H34 are concate-
nated and hashed into H1234. H1234 is then placed at index 2. To verify the
existence of message m1, only message m1, H2 and H34 need to be remem-
bered. Simultaneously, H3 and H12 are removed from index 0 and index 1.

The worst case scenario for an addition to AA is logn operations (concate-
nating and hashing), with n leaves of the biggest tree. In the best case, the addi-
tion can be done after one hash if index 0 is free. The trade-off of faster additions
is that more space is needed for storing an AA compared to one Merkle root.
The storage requirement of AA for n leaves is logn.

3.2 Ring Signatures

Ring signatures allow a user to sign a message and specify a set of possible
signers without revealing which member actually signed the message [12]. The
user can choose any set of possible signers that includes himself and sign by
using his secret key and the other’s public keys without getting their approval
or assistance. A ring signature does not need any set-up, and the ring signature
scheme is defined by two procedures:

1. Sign(m,P1, . . . ,Pr,Ss) which produces a ring signature σ for the message
m, given the public keys P1,P2, . . . ,Pr of the r ring members, together with
the secret key Ss of the s-th member (who is the actual signer).

2. Verify(m,σ) which accepts a message m and a signature σ (the signature
includes the public keys of all the possible signers), and outputs either true
or false

4 Privacy Concerns

Users sometimes assume that public blockchains are anonymous. This assump-
tion is true to the extent that personal information is not connected to the ac-
counts of the blockchain user. An account is the hash of the public key of a
user’s key pair on the blockchain. Two possibilities for tracking users exist. For
example, it is possible to find out the IP-address of a blockchain address by ob-
serving the blockchain network. A user can prevent this possibility by masking
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his IP-address using anonymizing technologies like Tor. The second violation
of privacy happens by design because the public can audit Blockchains. There-
fore, the public knows what data is in a blockchain address’ wallet, the meta
information of the data such as its origin and more. A naive solution would be
to use a new public key for each transaction. However, this has no real privacy
gain since the mapping between the public key and the account is available for
the public.

In terms of blockchain based PKIs, this violation of privacy would translate
to linking any public key and its transactions even when the public key has been
updated. At the moment a public key is used in any service, an adversary could
track its activities across services. PB-PKI provides unlinkability between an
updated public key and its identity without compromising the ability to verify
that a specific public key is authorized to take an action.

5 PB-PKI

In this section, we give a short introduction into the original PB-PKI [1].
PB-PKI modifies part of Certcoin to achieve privacy. Registering, revoking

and verifying a key in PB-PKI is the same as that of Certcoin. An entity regis-
ters its identity by posting its public key on the blockchain. The main difference
between Certcoin and PB-PKI is the key update process. The unique key update
procedure in PB-PKI aims to provide untrackability and provide a way to dis-
close the link between an identity and its key by the entity at a later point. This
user-controlled disclosure enables the entity to prove that a message is signed
with its unlinkable key which is connected to the certified key. PB-PKI hides the
link between an identity represented by its current public key and its previous
actions as well as keys, while still retaining the authenticity of the key.

Since the PB-PKI Key update process is the main improvement over Cert-
coin, we will focus on it in the rest of this paper. The PB-PKI Key update process
(RSA keys) involves two steps:

1. Generate a new offline key pair, pkfn and skfn (offline public key at time n
and offline secret key at time n), where:

2. Compute the new online key pair pknn and sknn (online public key at time
n, and online secret key at time n) in the following manner:
With this formula, the new keys are a valid RSA key pair, where:

pknn · sknn = 1 (mod Nn)

The two steps form a chain of keys as shown in figure 2 after every update.
When a user wishes to disclose the public keys, the user has to publish all offline
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pkn1
Posted online:

Online keys: (pkn1,skn1)

skf1
Stored offline:

Offline keys: (pkf1,skf1)

f1

pkn2

(pkn2,skn2)

skf2

(pkf2,skf2)

f2

pkn3

(pkn3,skn3)

skf3

(pkf3,skf3)

Fig. 2. Key update procedure to facilitate user-controlled disclosure.

public keys. With that knowledge, anyone can recompute the chain of public
keys and verify that a specific key leads back to a particular identity.

Regarding the key update transaction, it must be guaranteed that this new
unlinkable public key is from a registered member. Louise Axon [1] proposed
that the identity that wants to update must provide a signature signed with the
current key. However, this would mean a public linkage of all keys. Therefore,
the author proposed that the link is disguised by encrypting the signature with
the public keys of a randomly chosen subset of the network members. These
network members are then included in the verification process because they can
decrypt the signature and verify that it is indeed from a key that was already
on the network. This of course still enables the verifiers to track that two keys
belong to the same person. However, since the subset is chosen randomly for
every key update, a verifier can only track the identity link between two keys.

Furthermore, the changed usage of the offline key pair means that it cannot
be used the same way as in Certcoin. In Certcoin, the offline key provided a
way to revoke compromised keys. In case of online key theft, a user can still
prevent the malicious usage of the stolen online key by revoking it with the
offline key. However, the user stores the offline keys securely after its generation
in PB-PKI and only publishes them to disclose its identity. To obtain the same
revocation abilities as Certcoin, PB-PKI introduces the so-called “Master Key”.
The Master key functions the same way as offline keys in Certcoin, i.e., it can
revoke a current compromised online key.

6 Enhancements to PB-PKI

This section describes the problems encountered in the implementation of PB-
PKI and the solutions to these problems8. Some of the problems required a total

8 We refer to our improved version of PB-PKI as Enhanced PB-PKI.
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change of procedure while the others needed some modifications to the existing
procedures. The issues and their solutions are given below:

6.1 Creation of new Keys

In PB-PKI [1] new keys are generated with the novel update procedure described
in section 5. This update procedure should ensure unlinkable keys while allow-
ing user-controlled disclosure at the same time. However, this novel procedure
has a side effect - it uses the same modulus for every updated key pair. An at-
tack where encrypted messages can be decrypted when two public keys have
the same modulus was documented by Dan Boneh [2]. We present equations
below that involves two different public keys e1,e2, and two cipher texts of the
same message encrypted by the two public keys A,B. The equations show that
the message can be decrypted even without the private keys.
Given:

A=Me1 (mod n)

B=Me2 (mod n)

If maths f gcd(e1,e2) = 1 ,there exists some x,y such that xe1+ye2 = 1
Therefore:

Ax ·By =Me1x ·Me2y

=Mxe1 ·Mye2

=Mxe1+ye2

=M1

=M

The attacker could also trick the user to sign sensitive information twice
with a past and current key. The attacker can then decrypt the message using the
process we described. Furthermore, an adversary can scan the blockchain for
public keys with equal modulus, and be sure that these keys belong to the same
user. Instead of user-controlled disclosure, the novel update process actually
ensures linkability by design.

Solution As the proposed update procedure could not disguise links between
keys, we sought another mechanism. We found that the key update mechanism
in PB-PKI is not critical to ensuring privacy. The mechanism helps in disclosure
since a user can provide the link between his keys to a verifier. However, there
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Table 1. Comparison of PB-PKI with NOOB-PKI regarding key operations.

PB-PKI Enhanced PB-PKI

Setup Phase User U generates an online, offline and
master RSA key pair.9

Setup Phase User U generates an online and offline
RSA key pair.

Key Registration: U posts a registration transaction
with

– his identity
– a timestamp
– the public part of the generated online key
– a signature of the generated online public key
– a signature of the master key

It has to be verified that the identity and the online
key have not been registered previously and that the
signature of the online key is valid.

Key Registration: U posts a registration transaction
with

– his identity
– a timestamp
– the public part of the generated online key

(registration key)
– a signature of the online public key
– the witness of the online public key
– the public part of the generated offline key
– a signature of the offline public key

It has to be verified that the identity and the public
online key have not been registered previously. The
signatures of the online and offline keys and the
witness are also validated.

Key Update: User U generates a new offline RSA
key pair with public part pkf and private part skf. To
generate the new online key with public part pkn and
private part skn, U calculates:

pknn = pknn−1 · skfn(ModNn)

sknn = sknn−1÷ skfn(ModNn)

U then posts an update transaction with

– a timestamp
– the public part of the newly calculated online

key
– a signature of the online public key
– a signature of the previous online public key to

ensure that U is already part of the network.
This signature is encrypted with the public keys
of a subset of network members. The subset is
chosen randomly at each update and has to
verify the signature of U’s previous online key.

U secret shares the new offline public key between a
majority of the network members.
It has to be verified that the online public key has not
been registered previously, that the first signature is
valid, and that the second signature is valid and done
with a currently valid public key on the network.

Key Update: User U generates a new online and
offline RSA key pair and posts an update transaction
with:

– a timestamp
– the public part of the new online key
– a signature of the new online public key
– the witness of the new online public key
– the public part of the new offline key
– a signature of the new offline public key
– a ring signature by use of a randomly selected

subset of registration keys and U’s registration
key

– all registration keys used for the ring signature

The network members verify that the online public
key has not been registered previously, the signatures
of the online and offline keys are valid, and the
witness is valid. Additionally, the network verifies
that the ring signature is valid and that all used
registration keys exist.

Key Revocation: User U posts a revocation
transaction with

– a timestamp
– the public part of the to be revoked public key
– a signature of the public key

Key revocation can be executed either by the key
holder.

Key Revocation: User U posts a revocation
transaction with

– a timestamp
– the public part of the to be revoked key
– a signature of the public key
– the witness of the public key
– the new ancestors of the revoked public key

The network members verify that the revoked key is
indeed part of the network and that the signature, the
witness, the ancestors are valid. The ancestors of a
given message are all its parent nodes in a Merkle
tree. The revoked key is replaced with ”⊥” in the
Merkle tree, and the ancestors of ”⊥” have to be
posted so that other users can update their witnesses
accordingly.
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are other ways that one can use to prove the ownership of a key without linking
one’s keys. One such method is by signing the public key.

We propose generating a new random key pair at each update event. A user
can still disclose that a specific key belongs to him. He does it by providing a
signature with the key to be disclosed and his registration key. Thus, a verifier
can be sure of the ownership of the disclosed key.

6.2 Key Deletion

In previous papers about Certcoin [4] and PB-PKI [1], fast key verification is
achieved with the Merkle root of a Merkle tree containing all valid public keys.
Specifically, many Merkle roots are involved because Certcoin and PB-PKI use
the AA as explained in Subsection 3.1. To quickly verify whether a key is valid,
a verifier takes the key as well as its witness and computes its Merkle root. Then
the verifier takes the Merkle roots of the latest block and checks whether one of
them match the computed one. This process is quick because it needs at most
logn operations (for n number of keys in the Merkle tree) to calculate the Merkle
root. In addition, it is space efficient, because the verifier only needs to store the
latest blockheader plus the public key and the witness10.

Adding keys is very efficient as well because of the Asynchronous Accu-
mulator. The maximum of operations needed per addition of a key is logn (for n
number of all keys in the Merkle tree). Consequently, the Merkle tree does not
need to be fully recalculated but it is merged with other trees of the same size,
i.e., concatenating the roots and hashing them.

This works very well when one adds keys only. However, the event of a key
deletion in case of key revocation was not discussed intensively by the authors of
Certcoin and PB-PKI. Even though in both papers it is mentioned that deletion
is possible, only Certcoin gives a short explanation of how deletions can be
implemented using a Merkle tree. To make the term clear: deleting a key from a
Merkle tree means to modify an entry of a Merkle tree. The entry to be deleted
gets replaced with an entry that indicates that the former public key is deleted.

Solution In the Enhanced version of PB-PKI, we use the sign ”⊥” for deleted
entries. With such a modification, we have to recalculate logn parents of the
Merkle tree. Therefore, while adding keys takes at worst case logn operations,
deletion of keys always takes logn operations.

Furthermore, the time required for key holders to update their witness needs
to be considered as well. Every witness in this Merkle tree has to be updated.

10 Witnesses are the missing hashes needed by a verifier to construct a Merkle root
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The number of operations for witness update is in the worst case in direct corre-
lation to the number of operations needed to update the AA. In the best case, a
key holder only has to do one operation to bring his witness up to date. Therefore
for both addition and deletion, a key holder needs to do at most logn operations.

6.3 Space Efficiency

The second issue regarding entry deletion from Merkle trees is space efficiency.
If there are additions to the AA only, the only information that is needed to
update any witness are the resulting Merkle roots after every addition. However,
in the case of deletion, one needs to know the former witness of the deleted
element in order to update the other witnesses of a Merkle tree. This means that
the witness of every revoked and deleted key has to be stored and published.
The result of this is more storage is used.

Solution The AA changes with every transaction, but only the final accumulator
after all transactions in a block are taken into account gets shown. This means
that for key additions it is mandatory to publish the witness of each added key
as well. The result is the publication of every change of the AA.

As a result of the changes made in the preceding paragraphs, a prover with
an old witness has to go back to the last block where his public key plus witness
was valid. Then he traverses all transactions of all blocks leading to the most
current block, and he adjusts his witness according to the occurred key events.
Finally, he has a witness that provides proof when using the latest accumulator.

6.4 User Authentication

The third challenge was the authentication of a pending key update. At key
update, it should be ensured that the user requesting the key update already
owns a key on the network while securing his identity. In the proposed PB-PKI
this is done through a signature of the current key. However, this would enable a
linking of the keys. Therefore, the signature is encrypted. It is encrypted with a
subset of total public keys available on the network. These members then have
to decrypt the signature and verify that it is indeed done with a registered key.

This practice sounds nice in theory but is hard to implement. The first set
of challenges arise: how can the subset of network members announce their
verification of the signature? Post it on the blockchain? How can one trust that
they are telling the truth? Moreover, how can one guarantee that they actually
verify the signature and have not been offline for two years?

This set of questions remains unanswered but even if there were answers
to them, another question arises: How to find out a subset of current public
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keys? This would either require global storage of n public keys (for n network
members), like the AA, but instead of a few Merkle roots we needed to record all
valid keys, millions of it in every block. This would be fast but space intensive
(totally unusable). Alternatively, we traverse the blockchain looking for valid
keys, which would be space friendly but time intensive. Additionally, we cannot
find out which public keys that were posted onto the blockchain are still valid
and which are not, because no keys are linked to each other.

Solution We decided to find another way of solving the authentication prob-
lem. We chose to use ring signatures. Ring signatures are explained in Sub-
section 3.2. In the Enhanced PB-PKI, a ring signature is crafted and posted in
the update transaction. The public keys are randomly selected out of the pub-
lic keys published at registration event. The user’s public key that was created
during registration is added to the set of keys. With these selected keys, he per-
forms the ring signature and puts it onto the transaction. That way, anyone can
verify that this transaction must be from one of the already registered holders
of the used public keys. However, nobody knows who it was from this group
of keys. Moreover, by carefully selecting different large sets at each update, an
attacker cannot tell which key belongs to which identity. We used a ring size of
6 possible signers for the proof of concept because having a higher ring size is
space inefficient.

7 Evaluation

For the proof of concept, we used an Asus Laptop with 4GB RAM and an Intel
Core processor i5 of the 5th generation. The installed operating system was
Ubuntu 16.04. The PoC was written in the programming language Go, and the
database we used to store the blocks was LevelDB.

With this setup, we measured how long it takes to execute the different op-
erations:

– Register a Key: ∼80 milliseconds
– Update a Key: ∼120 milliseconds
– Revoke a Key: ∼10 milliseconds
– Verify a Key: ∼15 microseconds
– Update a Witness: ∼90 milliseconds

Verifying a key is the most critical activity because users often have to ver-
ify whether a key is valid. In Enhanced PB-PKI, verifying a key is the fastest
operation, because it only involves hashing and concatenation without any write
operation. The bottleneck of posting transactions is the need to mine new blocks
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and verify them. Setting the mining time or process is beyond the scope of this
paper. The Enhanced PB-PKI is a full blockchain and it was deployed locally
on the laptop for the experiments.

8 Discussion

In this section, we consider the possible cases of key compromise and the op-
tions that the Enhanced PB-PKI provides to the victim. Key compromise hap-
pens when an adversary gets access to or steals the private part of the online or
the offline key. Getting access to a key means an adversary knows a key while
the victim still has access to the key too. Stealing a key means an adversary
takes the key away from the victim so that the adversary knows the key while
the victim does not.

8.1 Security Model

We consider a model where PB-PKI is accessible to the public. In this model,
we assume that an adversary has access to the blockchain. The adversary is also
part of every operation involving registration, key update and key revocation
and able to tamper with any of these operations.

The security goals of the system are as follows:

1. The adversary cannot link a key to the owner.
2. Only the owner of a public online key can prove the ownership.

Depending on which private keys were stolen or accessed, we consider six
different cases:

1. Online secret key accessed only: The adversary can take part in the net-
work by using the accessed online key. The victim can revoke his online key
and update it. The update creates a new online key he can safely use again.

2. Online and offline secret keys accessed: The adversary can take part in the
network by using the accessed online key. The adversary can also perform
key update, but this is not useful because when the user revokes the online
key and performs key update, then the adversary can no longer impersonate
the victim. After key update, the adversary does not have any knowledge of
either the new online or offline key.

3. Online secret key stolen only: The adversary can take part in the network
by using the stolen online key. To recover from this case, it requires that the
victim stored the previous online key. With this previous online key and the
current offline key, he can recalculate the stolen online key. Then he revokes
and updates the stolen key.
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4. Online and offline secret keys stolen: The adversary can take part in the
network by using the stolen online key. In this case, the victim can do noth-
ing against the adversary. However, the victim can update the previous on-
line key, and stay part of the network. The possibilities for the adversary are
limited to the use of the stolen online key only. To mitigate this scenario, the
introduction of an expiration date of public keys would limit the key abuse
of the adversary to a certain time frame.

As long as keys are not stolen and key compromise is detected early, an
adversary can be kept under control. To avoid key theft, keys should always be
copied to a safe location.

9 Conclusion

In this paper, we have shown that the initial proposal of PB-PKI is fraught with
challenges. Some of the problems include authentication during key update, how
revoked keys can be deleted successfully and the key update mechanism is not
as secure as earlier expected. Enhanced PB-PKI simplifies the update process
by requiring the user to generate fresh keys without using the key updates mech-
anism by Louise Axon et al. [1]. The new key update mechanism removed the
privacy problem that was introduced by PB-PKI . The Enhanced PB-PKI solved
the problem of user authentication by introducing ring signatures to PB-PKI.
We also adapt the use of AA in order to aid key deletion and ensure that storage
space is maximized after deletion of a revoked key. The Certcoin usage of offline
keys for key revocation was retained instead of using it for key updates as in the
initial PB-PKI construction. We developed the proof of concept using the Go
programming language and show that the solutions we proposed are feasible.

In the future, we plan to implement optimizations to the ring signature
scheme. New ring signature schemes such as forward-secure linkable ring sig-
natures [3] will also be investigated as this supports forward security and the
blockchain user can prove ownership of a ring signature using this scheme.
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4. An Empirical Study of the Use of
Integrity Verification Mechanisms for
Web Subresources

The subsequent paper has been published as follows:
Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert and Kévin

Huguenin. “An Empirical Study of the Use of Integrity Verification Mechanisms for Web
Subresources”. In: WWW. ACM / IW3C2, 2020, pp. 34–45

In this paper, we perform the first empirical study of the use of Subresource Integrity
(SRI) for web subresources. We conduct a large-scale measurement as well as a user study
to understand the use of SRI in the wild.
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Abstract. Web developers can (and do) include subresources such as
scripts, stylesheets and images in their webpages. Such subresources
might be stored on content delivery networks (CDNs). This practice cre-
ates security and privacy risks, should a subresource be corrupted. The
subresource integrity (SRI) recommendation, released in mid-2016 by the
W3C, enables developers to include digests in their webpages in order for
web browsers to verify the integrity of subresources before loading them.
In this paper, we conduct the first large-scale longitudinal study of the
use of SRI on the Web by analyzing massive crawls (≈3B URLs) of the
Web over the last 3.5 years. Our results show that the adoption of SRI is
modest (approx. 3.40%), but grows at an increasing rate and is highly in-
fluenced by the practices of popular library developers (e.g., Bootstrap)
and CDN operators (e.g., jsDelivr). We complement our analysis about
SRI with a survey of web developers (N=227):It shows that a substantial
proportion of developers know SRI and understand its basic functioning,
but most of them ignore important aspects of the recommendation. The
results of the survey also show that the integration of SRI by developers
is mostly manual – hence not scalable and error prone. This calls for a
better integration of SRI in build tools.

Keywords: web security; subresource integrity; common crawl

1 Introduction

The Web is a set of interlinked resources identified by their URLs. A
significant portion of these resources consists of HTML webpages that
include navigable links and subresources, such as scripts, stylesheets, im-
ages or videos. A change in a subresource can affect the webpage that
includes it.

With the advent of content delivery networks (CDNs), an increas-
ing number of subresources are hosted by third-party providers (in this
paper, we will refer to these as external subresources, also called cross-
domain subresources). The advantages provided by such platforms include
reduced costs and latency as well as increased reliability. However, their
usage comes at a security price: A subresource can be altered (accidentally
or not) upon transmission from these third-party providers or directly on
them, as it was the case for the British Airways in 2018 Eden (2018). The
consequences can be dramatic, including the theft of user credentials (i.e.,
on login pages) and credit card data (i.e., on payment pages), malware
injection, and website defacement (i.e., modification of the content). In
general, when an external subresource is included in a webpage, there is
no guarantee that its content will remain the same.

4. An Empirical Study of the Use of Integrity Verification Mechanisms for Web Subresources

62



The subresource integrity (SRI) recommendation W3C (2016), re-
leased in mid-2016 by the W3C, addresses this issue by enabling web de-
velopers/webmasters to include digests in order for web browsers to verify
the integrity of subresources before loading them. SRI is implemented in
the vast majority of desktop and mobile browsers. Unfortunately, no in-
depth analysis about the adoption and the understanding of SRI (by web
developers) has been performed so far. Most existing works Shah and Patil
(2018); Kumar et al. (2017) focus on modest-size datasets of webpages,
focus on one snapshot only, and only look at the basic statistics, e.g.,
they do not study the main factors behind the adoption/usage of SRI.
Our work fills this gap (i) by conducting the first large-scale longitudinal
study on the adoption/usage of SRI on the Web, and (ii) by surveying
web developers regarding their understanding and usage of SRI.

Contributions. By relying on a massive dataset of about 3B URLs, we
first thoroughly analyze the use of the SRI recommendation on the Web
over the last 3.5 years. We began our analysis in May 2016, right before
the official release of the SRI recommendation and took a snapshot ap-
proximately every six months. Our analysis of the 3B webpages shows
the following: first, we measure the extent of the most typical threat, i.e.,
the use of external subresources, and we find that more than 80% of the
webpages include at least one external subresource; second, we study the
adoption and usage of SRI over time and observe an increasing, but still
modest usage, from less than 1% in October 2017 to 3.40% in September
2019. We observe that the use of SRI is linked to a number of popu-
lar libraries and CDN operators, including Bootstrap and jsDelivr, that
provide snippets of code that use SRI for including their subresources.

Given the results of our large-scale analysis of SRI adoption and re-
lated security mechanisms, we evaluated the extent of knowledge of web
developers about SRI. To do so, we conducted an online survey with 227
respondents asking if web developers are aware of the risks, are aware
of SRI, to what extent they understand the implementation of SRI, and
what their current practices are when using SRI. Particular care was
put in the survey instrument that was designed and tested iteratively
before deployment. Panelists were recruited among the Wordpress and
NPM package repository contributors. Our results show that about two
thirds of the respondents could identify the main threats in subresource
usage, such as malicious code injection or cross-site scripting, but most
of them ignore some important aspects of SRI implementation, e.g., the
cases where the digests used in SRI are malformed or multiple. They also
show that the integration of SRI by developers is mostly manual – hence
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not scalable and error prone. This calls for a better integration of SRI in
build tools.

2 System and Threat Model

We consider a webpage hosted on a given server (www.server.com). The
webpage includes a number of subresources such as scripts (JavaScript,
through a script element), stylesheets (CSS, through a link), and im-
ages (through an img). The inclusion is done by reference, i.e., the subre-
sources are not copied in the webpage. The subresources can be internal
(stored on the same server as the webpage, possibly in a different volume
or folder, e.g., scripts/) or external/cross-domain (stored on a differ-
ent server, e.g., www.otherserver.com). Typical external subresources
include subresources found on another website or hosted on a mirror or
content delivery network for reliability and performance reasons (e.g., the
jQuery library). This last case opens the door to cross-domain script in-
clusion risks. When a user visits the webpage, the browser first fetches
the webpage from the server and then it fetches its subresources. Finally,
it renders the webpage to the user.

We consider the threat where the content of the subresource is al-
tered, meaning that it did not correspond to the initial content of the
subresource when it was included in the webpage (i.e., what the web de-
veloper intended to include). Such a situation can occur in multiple cases:
(i) because the communication channel between the client and the server
was compromised by an adversary (e.g., an Internet service provider), (ii)
because the storage of the server was compromised by an adversary (e.g.,
a hacker who broke into the server or a malicious mirror operator), or (iii)
simply because the subresource was changed by its maintainer. A subre-
source integrity threat can have important consequences. For instance,
a corrupted script can – among other things – compromise the visitors’
devices (e.g., by redirecting them to a malicious website), steal their pri-
vate data (e.g., passwords and credit card information), track them, or
shock them (and compromise the reputation of the author) by changing
the content of the webpage (i.e., defacing). Figure 1 depicts the system
and threat model for subresource integrity.

3 The W3C SRI Recommendation

SRI W3C (2016) enables web developers to specify an integrity attribute
for some types of subresources they include in their webpages, in such a
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http(s)://www.server.com/ http(s)://www.otherserver.com/

<script src=“https://www.server.com/scripts/script.js” />
<link src=“https://www.otherserver.com/style.css” />
<img src=“https://www.otherserver.com/image.png” />

Welcome
(2) Fetch subresources

!
- style.css
- image.png

+ scripts/
  - script.js
- index.html

(1) Fetch webpage

" "

"

Webpage

Fig. 1. System and threat model for subresource integrity.

way that the user agent can verify their integrity before loading them.
This guarantees that the content of the subresources corresponds to what
the developers intended to include, specifically that it has not changed.
As of September 2019, SRI covers script (i.e., JavaScript) and link

(i.e., CSS) elements and it is fully supported by Chrome, Firefox, Opera,
Safari, and partially by Edge. A typical use of SRI is as follows (in the
head section of the HTML page):

<script src="https :// www.server.com/script.js"

integrity="sha256 -47D... sha512 -8HB..." />

An integrity attribute contains one or multiple space-separated hash ex-
pressions. Each hash expression is composed of the name of a hashing
algorithm (i.e., sha256, sha384 or sha512) and a base64-encoded digest
generated with the corresponding algorithm. The content of a subresource
is said to match a hash expression if the digest of the subresource is equal
to the digest specified in the expression. When rendering the HTML snip-
pet above, the browser first fetches the subresource (i.e., script.js). The
browser tries to match the content of the subresource to the different hash
expressions specified in the integrity attribute and loads the subresource
according to the following rules: (1) When the attribute contains a single
hash expression, the subresource is loaded if it matches it; (2) when the
attribute contains multiple expressions generated with the same hash al-
gorithm, the subresource is loaded if it matches one of them; and (3) when
the attribute contains multiple expressions generated with different hash
algorithms, the subresource is loaded if it matches one of the hash ex-
pressions with the strongest digest (sha512 ¿ sha384 ¿ sha256). If the
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integrity attribute is empty or malformed, the subresource is loaded nev-
ertheless. Note that since SRI “fixes” the content of the subresources, it
is not appropriate for subresources that can change (e.g., latest version
of a library).

Content Security Policy (CSP) directives (specified in HTML meta ele-
ments or HTTP headers, e.g., Content-Security-Policy: require-sri-for

script;) can be used to force web developers to specify a valid integrity
attribute for each subresource. In this case, subresources without an in-
tegrity attribute or with a malformed one are not loaded. Such a mech-
anism enables the separation of concerns between web developers and
system administrators. More recently, these directives are being aban-
doned by Web browsers and their removal from the recommendation is
scheduled Braun (2019).

4 Large-Scale Analysis

In this section, we report on the large-scale analysis of the use of SRI on
the Web. We describe our data sources and methodology and then report
on the results.

4.1 Data sources

We rely on two main data sources: large-scale crawls of the web and a
popularity-based ranking of domains.

Web Crawl: Common Crawl. The Common Crawl (CC ) dataset is
a collection of snapshots of the Web Common Crawl (2019a). It con-
tains one snapshot per month, since 2011-01. Each snapshot is avail-
able in the WARC format, which contains the raw data of the web-
pages (HTTP headers and HTML content but not the content of the
subresources). The latest snapshot of Common Crawl (2019-09) contains
2,954,836,069 URLs Common Crawl (2019b). Note that the number of
URLs for a given website does not necessarily reflect its number of web-
pages, rather it depends on its architecture (i.e., single page vs. multi-page
applications Mikowski and Powell (2013)). Each snapshot (in each of the
format) is divided into multiple archives so as to enable parallel and dis-
tributed processing of the dataset. The CC dataset is publicly available
on Amazon S3, where it can be processed and analyzed using Amazon EMR.

Domain Name Ranking: Cisco Umbrella 1 Million (Top1m). The Cisco
Umbrella 1 Million dataset (Top1m) ranks popular domain names based
on statistics on DNS queries (≈100 billion requests/day) and client IPs
(≈65 million unique users) across 165 countries Hubbard (2019).
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4.2 Methodology

To study the use of SRI, we parse the HTML content of the webpages
and identify the subresources included in webpages. Parsing the content
of all the webpages contained in a snapshot of CC is time consuming. As
our analysis focuses mainly on the use of SRI, we rely on a simple filter
to detect webpages that include subresources with an integrity attribute.
More specifically, we keep only the webpages that contain the string “in-
tegrity=”. Note that this filtering is done on the static (i.e., returned by
the server, without any client-side manipulation such as JavaScript exe-
cution) raw (i.e., in the binary format, that is before decoding) content of
the webpages; this can lead to false negatives (i.e., filtering out webpages
that do include subresources with an integrity attribute). We further de-
tect the encoding of the webpages and parse them by using the Python
beautifulsoup library (v4.7.1) with the lxml parser (v4.3.3). This en-
ables us to extract the subresources of the webpages (and their attributes)
and to filter out the webpages that do not include any subresource with an
integrity attribute. Indeed, some webpages might not have been filtered
out because they do contain the string “integrity=”, but somewhere else in
the webpage, e.g., in the text of the webpage on SRI on the W3C website.
This constitutes the set of webpages on which we conduct our analysis,
specifically the “webpages that contain at least one SRI” set (CC-SRI ).
For each webpage in the CC-SRI dataset, we extract its URL, content se-
curity policy (CSP) (from the HTTP header) and all its link and script

elements/subresources. In order to study not only the current use of SRI
but also its evolution over time, we process a total of 13 CC snapshots
from 2016-05 (i.e., before the release of the SRI specification in late June
2016) to 2019-09 (more specifically 2016-05, 2016-10, 2017-02, 2017-05,
2017-08, 2017-11, 2018-02, 2018-05, 2018-08, 2018-11, 2019-03, 2019-06,
2019-09). In order to study the use of subresources on the web in general
(not only for pages that do use SRI), we also extract a sample (CC-all-
1% ) that contains 1% of the latest snapshot (2019-09) of the CC dataset.
For reproducibility purposes, the source code of our analysis scripts is
available online at https://github.com/isplab-unil/cc-sri.

4.3 Results

We now present the results of our analysis of the use of SRI, based on the
CC dataset.
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Fig. 2. Evolution of the proportion of webpages served over HTTPS (in CC ).

HTTPS Adoption The TLS protocol used in HTTPS provides, in addi-
tion to authentication, channel integrity. As such, it is related and some-
times complementary to SRI that provides channel and storage integrity
(i.e., it also protects against adversaries who tamper with the content
stored on the external server). Therefore, we start by measuring the adop-
tion of TLS/HTTPS, in the CC dataset. We identify the protocol used
(i.e., HTTP vs. HTTPS) based on the URL of the webpage.

Fig. 2 depicts the evolution of the proportion of webpages served over
HTTPS for the CC dataset and its subset (Top1m). It also features the
important milestones in the development and deployment of HTTPS, in-
cluding the release of Let’s encrypt and of the ACME protocols v1 and
v2 (which respectively automate the generation/distribution of certifi-
cates and the deployment of PKIs) as well as the introduction of security
warnings for non-HTTPS webpages in major web browsers.

In the latest CC snapshot (2019-09), 58.82% of the webpages are
served over HTTPS. The use of HTTPS is substantially higher among
the most popular webpages (87.43% in Top1m).

Extent of the Threat We measure the extent of the most typical threat
to subresource integrity: the case where a webpage includes an exter-
nal subresource. To do so, we compute the proportion of webpages that
include at least one external subresource, in the CC-all-1% dataset. A
subresource is called external if the host that serves it (in terms of its
fully qualified domain name, e.g., www.otherserver.com) is different than
the host that serves the webpage. Note that this is a heuristic: A same
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hostname can point to different servers (e.g., reverse proxy) and different
hostnames can point to the same server. We found that 82.76% of web-
pages include at least one link or script external subresource1 and that
these webpages include on average 8.24 ± 14.71 such subresources. All
these webpages are potentially exposed to threats to subresource integrity
and can benefit from SRI (some do, as explained below). For images (i.e.,
img elements), which are common subresources but not covered by SRI,
the proportion of webpages including an external image is 54.37%.

SRI Adoption We measure the adoption of SRI by counting the propor-
tion of webpages that include at least one subresource with an integrity
attribute (i.e., the size of the CC-SRI dataset). We further distinguish
between the types of subresources: link and script, which are the only
covered by SRI. Figure 3 depicts the evolution over time of the propor-
tion of webpages containing at least one element (link, script or any) with
an integrity attribute. It also features some important milestones in the
development and adoption of SRI; in particular, we include the dates at
which some popular libraries (e.g., Bootstrap) began to include integrity
attributes in the code snippets provided on their webpages, typically in
the “Quick Start” section. Note that CDNs hosting popular libraries (e.g.,
jsDelivr) also include such snippets.

1 We focus our analysis mainly on link and script elements as these are the only covered
by the SRI recommendation at the moment. We discuss this in Sections 5 and 7.
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It can be observed that some websites began to use SRI before the
recommendation was officially released. This can be explained by the fact
that the draft of the recommendation was available before its release and,
more importantly, some libraries (e.g., Bootstrap) included integrity at-
tributes in their code snippets as early as in late 2015 (see Table 1).
Additionally, SRI was implemented in some web browsers before its re-
lease, as early as 2015-09 for Chrome (v45) and 2015-12 for Firefox (v43),
because developers from both Google and Mozilla were involved in the
edition of the SRI recommendation.

We find that the overall adoption of SRI is modest, with only 3.40%
of all webpages in CC , but it grows at an increasing rate (the increase in
2018 is twice as large as in 2017). The adoption of SRI is highly influenced
by the inclusion of the integrity attribute in code snippets provided by
library developers on their websites. Another factor that could accelerate
the adoption of SRI is the automatic inclusion of integrity attributes by
build tools; we discuss this in Section 7. Although this cannot be directly
concluded from Fig. 3, it becomes clear when analyzing the targets of the
subresources with an integrity attribute (as explained below). As hosting
subresources on third-party servers comes with risks that major websites
are probably reluctant to take, the adoption of the SRI recommendation
by the Top1m websites is faster than for the rest of the Web. As mentioned
above, the adoption of SRI is influenced by library developers and CDN
operators (this is confirmed by the results of our survey of web developers,
as a large fraction of developers report including integrity attributes by
copy-pasting snippets; see Section 5). In order to better understand this
point, we analyze (1) the main subresources (i.e., libraries, add-ons) used
on the web and whether the corresponding websites promote SRI and
(2) the main domains hosting subresources for which SRI is used.

Subresources. We compute the list of the most popular subresources
in the CC-all-1% dataset and check whether they include code snippets
and – if yes – whether these snippets use SRI (i.e., include an integrity at-
tribute). For snippets that use SRI, we determine the date at which they
began to do so by relying on the Wayback Machine, an online archive of
the Web Internet Archive (2019). As the same subresources (e.g., JQuery)
can be hosted on multiple domains with different URL formats, we devised
a heuristic to identify them. The URL of the subresource is contained in
the target attribute of the element. We grouped the subresources by do-
mains and selected the top-100 domains (in terms of number of URLs); the
top-100 covers 62.71% of the subresources present in CC-all-1% . For these
domains, we manually identify patterns and build regular expressions
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Rank Prop. Name Resources Type Snippet SRI Adoption

1 11.72% Google Syndication JS Add-on 3
2 6.39% jQuery JS/CSS Library 3 3 Mar.16
3 5.04% Wordpress JS/CSS Platform
4 2.62% Google APIs JS Add-on 3
5 2.40% Blogger JS/CSS Platform
6 2.21% FontAwesome CSS Library 3 3 Mar. 18
7 1.41% TripAdvisor CDN JS/CSS Platform
8 1.38% Twitter JS/CSS Add-on 3
9 1.29% SmugMug JS/CSS Platform
10 1.21% Squarespace JS/CSS Platform
11 1.21% Bootstrap JS/CSS Library 3 3 Oct.15
12 1.19% WIX JS/CSS Platform
13 1.13% Google Ad Services JS Add-on 3
14 0.94% Google Tag Services JS Add-on 3
15 0.94% jQueryUI JS/CSS Library 3 3 Mar.16

Table 1. Most popular subresources (in CC-all-1% ).

to extract the names of the subresources from the URLs (e.g., “https:
//cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js”).

Table 1 lists the top-15 subresources (in terms of number of inclusions)
found with our heuristic. It can be observed that a few subresources ac-
count for a substantial portion of the subresources in CC-all-1% , e.g.,
11.72% for Google Syndication and 6.39% for jQuery. Note that some
popular subresources, such as those of the Facebook ad network, do not
appear in our results. This is because these subresources are loaded asyn-
chronously using JavaScript. We observe that only a few subresources
include snippets with SRI. In particular, add-ons do not use SRI; this is
because the corresponding subresources are often transparently updated
(i.e., without changing the URL: http://pagead2.googlesyndication.
com/pagead/js/adsbygoogle.js) by the providers, as noted by Lauinger
et al. (2017). SRI is not well suited for such subresources.

Domains. We compute, in each snapshot of the CC-SRI dataset, the
popularity of domains in terms of the number of subresources with an
integrity attribute that are hosted on the considered domain (e.g., based
on the URL in the target attribute). Figure 4 depicts the evolution over
time of the top-10 domains found in the CC-SRI dataset. The top-10
domains cover 94.23% of all the subresources with an integrity attribute
in CC-SRI . All the domains, except Shopify, provide snippets with SRI
on their websites. Shopify does not because it is a platform, not a library
included in other websites; but it uses SRI for its platform, which is very
popular.

SRI Usage We analyze the current practices of web developers when
they use SRI.
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Number of Subresources. Even though a webpage uses SRI for some
of its subresources, it does not necessarily use SRI for all of them. We
compute the number of resources with and without an integrity attribute
in the snapshots of the CC-SRI dataset. Fig. 5 depicts the number (mean
and standard deviation) of subresources per webpage with the integrity
attribute and the total number of subresources per webpage (w/ or w/o an
integrity attribute). In the latest snapshot, webpages contain an average
of 41.61 subresources and the number of subresources varies highly across
webpages. The average number of subresources per webpage with the
integrity attribute is much lower at 1.79.

Hash Algorithms. We compute the distribution of the hash algorithms
(e.g., sha384) and of the number of hash expressions (i.e., digests) used
in integrity attributes (for link and scripts elements, without distinc-
tions), in the latest snapshot. To do so, we parse all the integrity at-
tributes according to the format specified in the SRI recommendation. If
the parsing fails, the attribute is considered malformed. In our analysis,
we distinguish between malformed and empty attributes even though in
practice, both are loaded by the browser (unless a CSP directive specifies
otherwise). For the well-formed attributes, we extract the hash algorithm
and label the attribute accordingly. When an integrity attribute contains
multiple digests, e.g., sha256 and sha384, we label it with the different
algorithms sorted by increasing strength (e.g., “sha256+384”): We use
different labels for the different combinations of hash algorithms. Be-
cause a large proportion of web developers simply copy-paste snippets
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Fig. 5. Mean and standard deviation of the number of subresources (all or with an
integrity attribute) per webpage (in CC-SRI ) that contains at least one subresource
w/ an integrity attribute.

from websites (e.g., libraries and CDNs), the observations on the usage
of SRI apply to a large extent to the developers of the included libraries
and to the operators of the CDNs.

Figure 6 depicts the distribution of the hash algorithms across all the
subresources with an integrity attribute. Most integrity attributes contain
a single digest, and the most popular algorithms are sha384, sha256 and
sha512 (in that order). Only 1.16% of the integrity attributes contain more
than one digest with different hash algorithm. Note that, as browsers
consider only the digests generated with the strongest hash algorithms
and as the browsers that support SRI all support all the hash algorithms,
such a practice does not make sense in practice. A possible explanation is
that some web developers misunderstood how the case of multiple digests
is handled by browsers (this is confirmed by the results of our survey; see
Section 5): They might have (erroneously) thought that having more than
one digest increases the security of the integrity verification. We observed
even fewer (0.0004%; they are part of the “other” bar of the histogram)
integrity attributes that contain more than one digest with the same hash
algorithm (e.g., two sha256 digests). Such a practice enables developers to
support multiple versions of a subresource by including the digest of each
version (with the same hash algorithm); though convenient, this practice
is very marginal.

For the malformed integrity attributes (1.41%), we manually investi-
gate them; the causes include: missing hash algorithms, unsupported hash
algorithms (i.e., “md5”), mistyped hash algorithms (e.g., “ha256”), and
(possibly failed) injection through templates (e.g. “{{CHECKSUM}}”).
This last example might be valid if the value of the attribute is correct
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and indeed inserted at the client before the verification is made by the
browser. Yet, we manually tested these templates and none of them was
properly rendered.

Finally, we looked at the distribution of hash algorithms for two pop-
ular libraries for which the snippets of code provided on their websites
use different hash algorithms: sha-256 for JQuery and sha-384 for Boot-
strap. In the CC-SRI dataset, 86.21% of the integrity attributes for the
jQuery library (hosted on the jQuery CDN) use sha-256 and 98.14% of
the integrity attributes for the Bootstrap library (hosted on the bootstrap
CDN) use sha-384. This suggests that the snippets of code are often sim-
ply copy-pasted.

Protocols and Paths. Webpages that include subresources can be ex-
posed to different adversaries and associated threats. More specifically
there are four possible threats: Alteration of the webpage/subresource on
the server/communication channel (see Section 2). Depending on the con-
sidered setting and adversary, SRI and TLS (i.e., HTTPS) can offer pro-
tection to the security of the webpage. We categorize the different settings
using three criteria: whether the webpage is served using TLS (i.e., HTTP
vs. HTTPS), whether the subresource is served using TLS, and whether
the path to the subresource is local or external (i.e., “scripts/script.js” vs.
“https://www.cdn.com/script.js”). Note that the protocol is sometimes
omitted (e.g., “//server.com/script.js”), thus inherited: If TLS is used for
serving the webpage, it is used for serving the subresource, otherwise,
it is not used either for the subresource. We build the complete path of
the subresources (by combining the URL of the webpage with that of
the target of the subresource by using urljoin from Python’s standard
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library) and analyze the breakdown between the different aforementioned
settings, in the latest snapshot of CC-SRI . We also observed that protocol
inheritance (i.e., //) is substantially used, especially in webpages served
over TLS: 27.61% of the subresources served over TLS and included in
webpages served over TLS are specified with protocol inheritance.

We observed that most of the subresources use absolute URLs (i.e.,
http://, https://, and //) for specifying the path in the target attribute,
which are usually used for external subresources. Figure 7 depicts the
breakdown in the form of a tree; the levels of the tree correspond to the
following criteria: (1) webpage protocol, (2) subresource protocol, and
(3) locality. The typical use case (i.e., HTTPS/HTTPS/external) is the
most frequent. SRI is particularly meaningful when the webpage is served
over TLS as the integrity attribute of its subresources is protected upon
transmission. This represents 85.84% of the settings. In this setting, it
makes even more sense when subresources are served without TLS, as
SRI protects against corruption on the server and on the channel (i.e.,
0.01% of the settings). Yet, such a practice (i.e., including a subresource
served without TLS in a webpage served with TLS) is not allowed by
browsers (i.e., mixed content error) – for valid security reasons – and the
subresource will therefore not be loaded. Yet, this is marginal. When the
webpage is served without TLS (14.16% of the settings), the integrity at-
tributes of the subresources are not protected upon transmission and the
security of the webpage is not guaranteed. Yet, assuming that the host
and the channel for serving the webpage are not compromised, SRI pro-
vides protection against corruption on the server and/or channel serving
the subresources.

Although SRI is meant primarily for securing the integrity of external
subresources, its use for local subresources still makes sense (i.e., if the
subresource is hosted on another server through a reverse proxy or if
only some files on the server could be corrupted by the adversary) and
should not be interpreted as erroneous or meaningless (Salvador et al.
(2018) discuss this point in detail). It could be the result of build tools
that automatically compute and insert integrity attributes even for local
subresources.

Use of the require-sri-for Directive We compute, in the latest snap-
shot of CC-SRI , the proportion of webpages for which the require-sri-for
CSP directive is specified in their HTTP headers: It is the case for only
0.02% of the webpages. We manually tested a small sample of webpages
with this directive hosted on different domains: 8% of the subresources
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Fig. 7. Categorization of subresources w/ an integrity attribute (in latest snapshot
of CC-SRI ) per webpage protocol (HTTP or HTTPS), subresource protocol (HTTP
or HTTPS) and host locality (local, external). Frequent settings are framed. Secure
settings are depicted with solid green lines; partially secure settings with dashed orange
lines and problematic settings with red dotted lines.

were blocked. It is marginal and its (scheduled) removal from the SRI rec-
ommendation will affect only a tiny fraction of the Web. Yet, we believe
it should be maintained as it enables system administrators to enforce
security policies.

5 Web Developer Experience

Given the results reported in the previous section, we decided to study the
level of awareness and understanding of web developers regarding the SRI
recommendation. Therefore, we posed the following research questions:

– RQ1. Are the web developers aware of the risks associated with
(external) subresources?

– RQ2. Are web developers aware of SRI?
– RQ3. To what extent do web developers understand the implemen-

tation of SRI (general and specific behaviors)?
– RQ4. What are the current practices of developers when using SRI?

(i.e., are they coherent with the recommendation?)

To answer these questions, we conducted an online survey of web develop-
ers. We adapted our methodology from similar surveys Acar et al. (2016);
Balebako et al. (2014). The panelists were recruited via e-mail then went
through quality controls. Panelists that completed the survey participated
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in a raffle for USD 100 Amazon vouchers. Next, we describe the method
used to design the survey instrument, recruit participants, analyze the
data as well as the deployment strategies we adopted to distribute the
survey. The study was approved by our IRB.

5.1 Design of the Survey Instrument

The questionnaire contained 32 items, organized into four sections.2 (i) The
first section contained two screening questions to make sure the respon-
dent was comfortable reading and writing in English (the language of
the questionnaire) and that the respondent was indeed an active web de-
veloper. (ii) The second section focused on the respondent’s awareness
of the threat model described in this paper (providing data for RQ1)
and the SRI recommendation (cf. RQ2). This section had a skip logic:
Respondents with no knowledge of SRI were brought to the fourth sec-
tion. (iii) The third section contained 4 quiz questions designed to assess
the respondent’s understanding of the SRI recommendation (cf. RQ3)
(note that all major browsers – i.e., Chrome/Firefox/Safari/Opera/Edge
– strictly follow the recommendation for these quiz questions) and ques-
tions to understand how they used SRI in their work (cf. RQ4). (iv) The
last section contained questions about the company the respondent works
for and their demographic information.

On the last page of the questionnaire, we asked the respondents whether
they wanted to receive a summary of the results of the research; 85.4%
of respondents opted in to receive a follow-up, thus revealing the general
interest in this topic. Furthermore, we clarified the goal of the research
and provided a reference to the SRI recommendation, in case respondents
were interested to learn more. It took about 10 minutes to complete the
questionnaire.

To eliminate possible presentation effects, the answer options of multiple-
choice questions were randomized. Before deploying the questionnaire, we
conducted four pre-tests that involved individuals at our institution (in-
cluding some native English speakers). One of the authors sat with the
participants and, for each question, asked the participant to re-state, in
their own words, what the question asked and how they would answer.
Feedback provided at this stage was used to adjust wording and provide
additional context.

2 The full questionnaire is available online: https://osf.io/yshrx/.
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5.2 Data Reliability and Coding Process

To ensure high data reliability, several quality-assurance (QA) processes
were followed when administering the survey instrument: speeders and
straightliners were removed before the analysis. One of the authors went
through the open-ended responses and removed respondents that pro-
vided answers to open-ended questions that were nonsensical. For open-
ended questions, we opted for collaborative coding on the qualitative re-
sponses Saldaña (2015). For each question, a codebook was developed
iteratively by a lead coder who analyzed an initial set of answers (i.e.,
≈100). For the next step, a second coder independently coded the data
again using the same codebook. Cohen’s kappa (or κ) was used to mea-
sure inter-coder agreement to each open-ended question. The average κ
value was 0.83 (std 0.18), which was judged sufficient to proceed further
with the analysis. Next, the cases of disagreement between the two coders
were resolved through discussion MacQueen et al. (1998).

5.3 Deployment Strategies

To reach to the web development community, the questionnaire was dis-
seminated to e-mail addresses obtained as follows:

1. Wordpress plugin/theme authors. Wordpress is a web content man-
agement system (CMS) based on PHP, JavaScript, HTML and CSS.
Any developer can create plugins/themes for Wordpress. The “readme”
file of Wordpress plugins/themes often contains the e-mail of the au-
thors. We considered a sample of N≈9500 e-mails from Wordpress.

2. NPM package authors. NPM is a repository for JavaScript packages.
These packages were developed to be used in web applications or
websites. Each package contains a package.json file that optionally
provides the e-mail of the package developer. We considered a sample
of N≈19,000 e-mails from NPM.

Selected web developers were sent an e-mail invitation to fill out the
survey. The e-mail contained the following information: the academic re-
search goal of the questionnaire (described as “understanding web devel-
opment practices” in order to not prime the respondents towards secu-
rity), the conditions for participation, the incentive, information about
data management and anonymity of the responses, contact information
of the researchers, and the link to the survey. As our e-mails were unso-
licited, we gave them the opportunity to opt out, and we did not send any
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form of reminders. We did not collect any respondent personal identifiable
information and did not link their responses to their e-mail. We sent a
total of 28,500 e-mails (in 2 batches) and received a total of 477 responses
in Sep. 2019. After applying the QA processes described in Section 5.2
and removing incomplete answers, we were left with 227 valid responses.
The results reported in the rest of the paper are based only on the valid
responses.

5.4 Demographics and General Statistics

We received answers from professionals in various age ranges: 17.6% of
respondents (or 40) were between 18 and 24 years old; the majority, or
42.3% (or 96) were between 25 and 34; 27.8% (or 63) between 35 and 44;
and 11.9% (or 27) were older than 44 years. One respondent preferred
not to disclose their age. Most respondents were employed full-time (i.e.,
141 or 62.1%). 26% of respondents (or 59) were independent contractors,
freelancers, or self-employed. The remaining respondents worked part-
time (5.7% or 13), were unemployed (2.2% or 5), were retired (0.9% or 2)
or had other work arrangements (3.1% or 7). Of the 213 respondents in
the workforce, 46% worked for small companies, either startups or indi-
vidually owned companies (or 98). A fourth worked for SMEs (24.4% or
52) and finally 29.6% (or 63) worked for large corporations. This shows
that the sample was well balanced across different types of companies.
About half of the sample declared to possess prior education on IT secu-
rity (44.9% or 102). The remaining respondents did not have any prior
education in IT security (48.5% or 110) and 6.6% (15) answered ‘Other’,
which is worrisome given that we advertised among Wordpress and NPM
plug-in developers, who produce popular software.

5.5 Results

RQ1. Are the web developers aware of risks associated with (external)
subresources? In the second section of the survey, we asked respondents to
discuss potential threats that could affect a website if some subresources
(e.g., scripts, stylesheets, images, videos) were hosted in a server separate
from the server where the main website was hosted. In the rest of this
section, we will refer to the described configuration as the scenario. The
majority of respondents could identify the main threats of the scenario
we provided, namely malicious code injection, cross-site scripting, etc.
(56.8% or 129). A smaller group of participants (13.2% or 30) described
secondary effects that could be produced if the main attacks could be
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Fig. 8. Response statistics for the questions related to the functioning and implemen-
tation of SRI.

completed: compromised users’ privacy, key-logging, redirection to fake
websites, DDoS attacks, etc. Finally, about a third of participants (30%
or 68) provided generic answers, non-applicable responses, or simply had
no idea about possible risks.

RQ2. Are web developers aware of SRI? In a follow-up question, we
asked the respondents to list possible solutions to protect the website, in
the considered scenario, against the threats they reported. The respon-
dents could list multiple solutions. More than half of the respondents
(50.7% or 115) provided answers that were not applicable, or described
solutions that would introduce additional problems without providing a
definitive solution to the threat (e.g., “do not use CDNs”). The other
large portion of respondents (30.8%, or 70) provided the right answers,
essentially naming SRI or using a descriptive explanation in case they
were not familiar with the name of the recommendation (e.g., “content
validation with MD5 checksum”). Finally, 18.5% (or 42) of the respon-
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dents described a technique or technology that would not ensure protec-
tion from the attacks (e.g., “https”, “two factor authentication”). When
we asked whether respondents had knowledge of the SRI recommendation
(i.e., recognition over recall), we found that 41% (or 93) of the respon-
dents had basic knowledge, and 24.6% (or 56) used SRI as part of their
web development practices. About a third of the respondents (34.4% or
78) had no knowledge about SRI. Therefore, comparing the results to
these two questions, we conclude that although two thirds of respondents
declared to know or use SRI, only about 31% of the respondents could
match the scenario with the solution provided with SRI. Hence, the dif-
ference (i.e., ≈ 30%) could be due to respondents who heard the acronym
(or saw a snippet of code referring to SRI) but had no concrete idea of
its purpose.

RQ3. To what extent do web developers understand the implementa-
tion of SRI? To those respondents who reported knowing or using SRI
(149 or 65.6%), we asked them to describe in their own words how SRI
could be used on a website and for what purpose. Most respondents de-
scribed correctly the purpose and implementation of SRI (88.6% or 132).
However, 11.4% (or 17) respondents could not. Next, we asked respon-
dents 4 questions designed to assess the actual level of understanding
of the recommendation. We manually investigated the “Other (please
specify)” responses and edited them to the closest option whenever ap-
propriate (otherwise we kept them as “Other” and considered them as
incorrect). In total, we edited 3 responses, all for the second question
and for the same reason (detailed below). The raw results are depicted in
Fig. 8.

The first question looked at whether it was meaningful to use SRI
in combination with HTTPS (for subresources). For this question, 86.5%
(or 129) answered ’Yes’ (i.e., the rest answered ‘No’ or ‘Not Sure’). Then,
we asked respondents what would happen if the integrity attribute would
contain multiple (i.e., >1) valid hash values generated with different algo-
rithms. Unfortunately, only 21.5% (or 32) identified the correct response,
specifically that the browser would load the resource only if the digest cre-
ated with the strongest hashing algorithm matches that of the resource.
Three participants selected “Other” and specified that it is in fact the
strongest algorithm supported by the browser. This is a valid point; but in
practice, both responses are equivalent, as all browsers support all hash-
ing algorithms. We edited them to the correct responses. The following
question was similar to the previous, but this time the two hash values
were created with the same algorithm. Slightly more respondents found
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Fig. 9. Number of correct responses for each of the 4 questions testing the respondents’
understanding of SRI.

the correct answer (28.2% or 42), namely that the browser would load the
resource only if any digest in the list matches that of the resource. For
the following question, we asked respondents what would happen if the
digest in an integrity attribute would be malformed. To this question only
6.7% (or 10) of respondents found the correct answer. This shows that the
recommendation is somewhat counterintuitive, assuming that the respon-
dents did not know the recommendation on this particular point and tried
to answer this question based on common sense. This choice was probably
in line with the best-effort strategy implemented in browsers for render-
ing webpages. We believe that the default behavior should be to not load
resources with malformed integrity attribute. It should be noted that for
the last three questions, the proportion of respondents who were not sure
is substantial; it is worrisome to observe that many web developers doubt
about the behavior of browsers regarding some security features they use.

Figure 9 presents the number of correct responses identified by the
respondents. Only 0.7% (or 1) of respondents correctly answered all the
4 questions, thus revealing the small proportion of web developers who
have a deep understanding of SRI implementation. We observe that the
respondents who reported using SRI (i.e., 24.6% or 56) have a slightly
better understanding than the average.

RQ4. What are the current practices of developers when using SRI?
We asked respondents to select from a list of options about how they
typically include SRI in their development practices. We wrote the list
of options based on a number of practices we identified while performing
the literature review and speculated from the result of the CommonCrawl
analysis. We provided respondents the ability to select multiple practices
from the list and to specify additional practices via a free text field. Most
respondents reported to copy-paste snippets with examples of code using
SRI from official documentations (45%, or 67). This strategy is not opti-
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mal because it might work for popular libraries but might not be available
for all external subresources (e.g., specialized or custom libraries). Also,
it is not automated (i.e., it requires human intervention) and it is thus not
scalable and error prone (e.g., miss the last or first digits upon copy-paste
as we observed in our CC analysis). The second most frequent option re-
ported by the respondents was to configure the build tools to compute
and to include the checksums automatically (38.9%, or 58). This is the
most secure and scalable approach to implement the SRI recommenda-
tion. The third largest group of respondents reported to compute the
checksums of the subresources themselves and include these manually in
the code (19.5% or 29). This strategy is secure but, again, not automated
hence not scalable and error prone. Every time the external subresources
are updated, the developers must download the updated version of the
files, compute the new digests and update the code on their website. A
fourth group of respondents declared to copy-paste snippets from online
communities (10.1%, or 15). This is the most dangerous strategy because
developers basically trust other random contributors. A community devel-
oper could be malicious and publish code crafted to create harm. Finally,
the remaining respondents were either not sure (9.4%, or 14) or had not
used SRI yet (12.1%, or 18).

To the participants who had knowledge or used SRI, we asked whether
they thought SRI should be extended to additional types of subresources
(beyond stylesheets and scripts). Majority of developers (66.4% or 99) an-
swered “Yes”. In the follow-up questions, the respondents selected the fol-
lowing types from a pre-defined list: images (83.8% or 83), videos (79.8%
or 79), sounds (73.7% or 73), and downloads (i.e., <a> elements pointing
to a file not rendered in the browser)–as suggested by Cherubini et al.
(2018)–(67.7% or 67).

6 Related Work

Our work relates to the literature on the use of web security mechanisms,
including SRI and its alternatives, and on web developer security prac-
tices.

Analysis of the use of security mechanisms on the web. A large body of
work focuses on the use of HTTPS on the Web and on the effect on users of
browser warnings Modic and Anderson (2014); Reeder et al. (2018); Egel-
man and Schechter (2013); Egelman et al. (2008); Jenkins et al. (2016);
Akhawe and Felt (2013); Felt et al. (2015). Felt et al. (2017) study the
adoption of HTTPS from a browser perspective. Lavrenovs and Melón
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(2018) study the HTTP security headers of the 1M most popular websites.
In particular, they analyze the prevalence of the most important response
headers related to web security aspects, such as Content-Security-Policy.
They notably show that HTTPS websites are more inclined to implement
web security policies. Stark et al. (2019) study the adoption of the certifi-
cate transparency (CT), which fixes several structural flaws in the TLS
certificate system and measure the error rates users experience. They
show that CT has been widely adopted with minimal amount of warn-
ing displayed to the users. Another body of work focuses on the issues
related to the inclusion of third-party subresources and trackers in web-
pages Roesner et al. (2012); Nikiforakis et al. (2012); Bielova (2013);
Somé et al. (2017); Arshad et al. (2016); Musch et al. (2019). Arshad
et al. (2018) perform the first large-scale analysis of scriptless CSS injec-
tion. They show that around 9% of 10k most popular websites contain
at least one vulnerable page, out of which more than one third can be
exploited. Anis et al. (2018) argue that many web applications contain
vulnerabilities and promote various security mechanisms, including SRI.
Van Acker et al. (2017) assess the security of 50k+ login webpages and
show that very few of them deploy security measures; e.g., only 98 use
SRI.

Closer to our work, Shah and Patil (2017) present existing attacks and
describe how SRI improves the current situation. In a follow-up work,
they perform a preliminary analysis of the use of SRI in the 1M most
popular websites in 2017 Shah and Patil (2018). Their analysis shows
that only 7k websites (i.e., 0.7%) implement SRI, and that less than 1%
of those enforce SRI on all external subresources. This is consistent with
our results. Kumar et al. (2017) also study security issues in the 1M most
popular websites and find that less than 1% rely on SRI, which corrob-
orates the findings of Shah and Patil (2018) and ours. Lauinger et al.
(2017) conduct a large-scale study on client-side JavaScript library over
133k websites and show that 37% include at least one library with a known
vulnerability. They mention SRI as one possible solution but stress the
fact that SRI is misaligned with the objective of libraries to be transpar-
ently updated by third-party storage providers such as CDNs. Soni et al.
(2015) argue (prior to the publication of SRI) that SRI applies only to
websites that remain mostly static and evaluate, on the 500 most popular
websites, the proportion of those that rely on static or changing scripts.
Based on their 3-month longitudinal study, they identify 33k scripts, of
which about 2300 change over time, which implies that SRI could be
applied to 93% of the scripts without affecting website usability. How-
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ever, they also find that only 69 out of 500 websites have all their scripts
that remain static. They develop a multi-layered solution for whitelisting
scripts that can tolerate changes without sacrificing security. Recently, a
scanner for monitoring and alerting on accidental/intentional modifica-
tions to external subresources has been developed and open-sourced by
CISCO Cisco CSIRT (2019).

Unlike in prior studies, in this work, we consider a much larger set
of webpages (≈3B URLs/snapshot), we study the evolution of the use of
SRI over time (for more than three years), and we perform an in-depth
analysis of how SRI is used. In addition, we study the main factors behind
the development, adoption and usage of SRI.

Another, less related, body of works studies the limitations of integrity
verification mechanisms (including SRI) and proposes solutions and al-
ternatives. Salvador et al. (2018) highlight the risks when the server that
hosts the webpages is compromised. They address this issue by developing
wraudit, a tool that transparently monitors the integrity of the published
code based on a trusted and user-input baseline. Cap and Leiding (2018)
address this issue with openly accessible code reviews of static code files
combined with blockchain technology. West (2017) addresses the restric-
tion of SRI to static content by enabling SRI to validate the integrity
of subresources based a public key signatures instead of digests, thus en-
abling the inclusion of changing scripts published by the same (trusted)
entity. Yet, this would open the door to downgrade attacks, i.e., replacing
a recent version of a library with an old one with known and exploitable
vulnerabilities. Kerschbaumer (2016) proposes to enforce content secu-
rity by default. In the background, he mentions SRI as one important
specification for ensuring content security. Cherubini et al. (2018) study
the use of checksums for verifying the integrity of web downloads and,
via a 40-participant in situ experiment, show that checksums suffer seri-
ous usability issues that negatively impact their effectiveness as a security
mechanism. They develop a Chrome extension for automatically verifying
checksums of downloaded files, whenever available.

Analysis of developer practices on (Web) security mechanisms. Although
security practices of (web) developers have been extensively studied, to
the best of our knowledge, there are no such studies related to SRI.
Krombholz et al. (2019) present a qualitative study of the mental models
associated with HTTPS and highlight knowledge gaps that affect experts.
By interviewing 18 end-users and 12 experienced administrators, they
find that “non-experts” underestimate the protection offered by HTTPS
and that even “experts” have very little knowledge of how HTTPS works.
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Acar et al. (2016) systematically study how the use of various information
sources affects the security of mobile applications. By surveying 295 de-
velopers with apps listed in the Google Play Store, they observe that most
developers use search engines and Stack Overflow to find write security-
related code. Their lab study with 54 Android developers shows that
developers who use Stack Overflow are more likely to write functionally
correct code, but less likely to come up with a secure solution. In order
to better understand the context in which developers produce security-
relevant code, Tahaei and Vaniea (2019) survey 49 research papers at
the intersection between usable security and software development. They
provide an overview of existing works on developer-centered security and
show that security is often being ignored because it is considered a sec-
ondary requirement. Balebako et al. (2014) study the security-related de-
cision of app developers with a two-phase approach. First, they conduct
interviews with 13 developers to better understand what decisions they
make and what resource they use to make them. Second, they perform an
online survey with 228 developers. They find that many developers lack
awareness about security measures.

7 Discussion and Conclusion

In this article, we have provided the first comprehensive study on the use
of the SRI recommendation. Our study, based on a longitudinal analysis
of the CommonCrawl datasets over the last 3.5 years sheds light on the
current adoption and usage of SRI: The adoption rate is modest (currently
at ≈3.40%) but growing, and it is influenced by library developers and
CDN providers who make code snippets that include integrity attributes
available to developers. As pointed out in prior work Soni et al. (2015),
the fact that SRI is suited only for subresources that do not change might
impede its adoption. Our complementary survey of web developers has
shown a good awareness and knowledge of SRI among developers but
also some worrisome misunderstandings regarding its functioning in some
situations. It has also revealed that the use of SRI by developers is mostly
manual hence is not scalable and error prone, thus calling for a better
integration of SRI by build tools.

Our study has some limitations, mainly due to our data sources.
CommonCrawl might not be representative of the entire web. Also, it
gives substantially more weight to multiple-page websites (counted as
distinct URLs) compared to single page websites (counted as a single
URL) Mikowski and Powell (2013). Finally, the webpages consist of raw
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HTML code (i.e., not rendered), before the execution of scripts at the
client side. Our questionnaire data is of modest size (i.e., 227 valid answers
in total, 149 for the quiz) and the respondents might not be representative
of web developers in general (i.e., “power developers”, English-speaking,
from specific ecosystems–i.e., NPM and WordPress). In addition, our re-
sults are based on self-reported behaviors, which might differ from actual
(observed) behaviors.

The recent advances in the web development community are quite
encouraging: More and more major libraries and CDN providers provide
snippets with SRI (Bootstrap, jsdelivr). And major build tools, including
Ruby on Rails Peek (2019), Webpack Scheid (2019), and Grunt Hernandez
(2019), now integrate SRI, mostly through plug-ins. The native integra-
tion of SRI in build tools, but also in CMS such as WordPress and Drupal,
would substantially increase the adoption of SRI. Note that plug-ins are
available for WordPress and the integration of SRI in Drupal (core) is
being discussed. Finally, the extension of SRI to signature-based verifica-
tion (i.e., with a public key as integrity attribute) West (2017) instead of
digest-based verification, discussed in the WebAppSec group, would make
SRI more suitable for subresources that are transparently updated, thus
increasing its adoption.

We intend to improve the awareness and understanding of SRI and to
promote its use through a dedicated website that would contain a brief de-
scription and illustration of SRI, including its functioning in specific sce-
narios that are not well understood by developers, as well as the statistics
provided in this article, updated periodically based on the CommonCrawl
datasets. We intend to investigate the adoption of SRI in different cat-
egories of websites (e.g., popular, banking, e-commerce). We also intend
to push (or participate in) the revision of the recommandation to ex-
tend it to other resources such as images and videos, because this would
thwart the risks of media-based web defacement (a majority of developers
reported being interested in such an extension). Extending SRI to down-
loads would also favorably replace checksums displayed in webpages, as
they suffer from serious usability issues. Finally, we also intend to extend
our survey to a larger population of web developers, but also to further
study developers’ perception of SRI – through interviews – in order to
gain a deeper understanding of their mental models on SRI, as recently
done by Krombholz et al. (2019) for HTTPS or by Acar et al. (2016) for
the security of mobile apps.
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A Survey about Security on the Web

Introductory Text Block
The ISPLab (https://www.isplab.unil.ch) at the University of Lausanne
(Switzerland) is currently researching web development practices. By fill-
ing this survey, you will contribute to the research and can enter a raffle
draw to win a $100 Amazon voucher. This survey takes approximately
5-10 minutes to complete. The answers you provide will be treated anony-
mously and will not be linked to your identity. The data we collect will
be used solely for academic research (non-profit). If you have questions
about this research, feel free to e-mail us at isplab-survey@unil.ch. The
survey will run until 15th September 2019, and the questionnaire is best
viewed with Mozilla Firefox and Google Chrome.

Note:

1. The survey is meant for web developers that are 18 years old or older.

2. Participants younger than 18 years old or who do not disclose their
age group will not be able to participate in the raffle draw.

3. Data from participants younger than 18 years or who do not disclose
their age will be deleted and not analyzed.

Coding rules (not visible to respondents):

– Questionnaire does not allow to go back to previous questions

– Unless specified, one question per page

– All questions mandatory, unless specified as optional

A.1 Screening Block

1. The questionnaire is in English. Are you comfortable reading/writing
in English?

© Yes, I am comfortable taking the questionnaire in English

© No, I can read, but I am not comfortable writing in English [ter-
minate]

© No, I am not comfortable taking the questionnaire in English [ter-
minate]

2. Are you an active web developer?

© Yes, I do web development on my free time

© Yes, I work as a web developer

© No, I am not directly involved with web development [terminate]
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A.2 Awareness of SRI

Introductory text.
For the following question let’s imagine there are some resources (such as
stylesheets, scripts, etc.) that are used by a website and that are stored
in a server separate from the server where the main site is hosted.

1. Please describe possible security threats caused by external resources
included in a website, given the hypothetical situation described above.
[free text]

2. If you described security threats in the previous question, please ex-
plain possible ways in which the website in the hypothetical scenario
could be protected against these threats. [free text]

3. Please rate how much you know about the subresource integrity (SRI)
recommendation of the W3C
Example:
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i..."> </script>

© No knowledge [skip to demographic section]

© Little knowledge (I heard the term)

© Some knowledge (I know the basics)

© Moderate knowledge (I used SRI)

© Extensive knowledge (I use it often)

A.3 Knowledge of SRI

1. Please describe in your own words how you can use subresource in-
tegrity (SRI) on a website as well as the purpose of SRI. [free text]

2. In your opinion, is it meaningful to use subresource integrity (SRI) if
the target is served through HTTPS?

Example:
Source: https://www.website.com
Target: https://cdn.com/js/page.js
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i...> </script>

© Yes

© No

© I am not sure

3. Please explain why you answered Yes/No to this question. [subques-
tion appears only if Yes/No is selected in previous question]
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4. In your opinion, is it meaningful to use subresource integrity (SRI) if
the website uses HTTP?

Example:
Source: http://www.website.com
Target: https://cdn.com/js/page.js
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i..."></script>

© Yes
© No
© I am not sure

5. Please explain why you answered Yes/No to this question. [subques-
tion appears only if “Yes”/“No” is selected in previous question]

6. In your opinion, what happens when an integrity attribute has 2 or
more valid hash values (i.e., digests) created with different algorithms?

Example:
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i... sha256-ivzZrY..."> </script>

© The user-agent loads the resource only if the digest created with
the strongest hashing algorithm matches that of the resource

© The user-agent loads the resource only if the first digest in the list
matches that of the resource

© The user-agent loads the resource only if any digest in the list
matches that of the resource

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
© I am not sure
© Other (please specify)

7. In your opinion, what happens when an integrity attribute has 2 or
more valid digests generated with the same algorithm?

Example:
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i... sha384-eYWSGB..."> </script>

© The user-agent loads the resource only if the first digest in the list
matches that of the resource

© The user-agent loads the resource only if any digest in the list
matches that of the resource

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
© I am not sure
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© Other (please specify)
8. In your opinion, what happens if the digest in an integrity attribute is

malformed (i.e., generated with an unsupported algorithm, composed
of non-base64 characters, etc.)? Example:
<script src="https://cdn.com/js/page.js"

integrity="malformed!"> </script>

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
© I am not sure
© Other (please specify)

9. How do you typically include Subresource Integrity (SRI) in develop-
ment? (Select all that apply)

� Copy-paste snippets from the official documentation
� Copy-paste snippets from online communities
� Compute the checksums of the subresources and include them my-

self
� Configure my build tool to compute and include the checksums

automatically
� I am not sure
� Other (please specify)

10. Do you think the SRI recommendation should be extended to subre-
sources other than the stylesheets <link> and the scripts <script>?
© Yes
© No
© I am not sure

11. Which of the following subresources would you like to see the SRI
recommendation extended to? (select all that apply)
[subquestion appears only if Yes is selected in previous question]

� Images <img>

� Videos <video>

� Sounds <audio>

� Downloads <a>

� Other (please specify)

A.4 Demographics

1. What is your age group?
© Under 18 [terminate and delete data]
© 18 - 24
© 25 - 34
© 35 - 44
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© 45 - 54

© 55 - 64

© 65+

© Prefer not to disclose

2. Which statement best describes your current employment status?

© Employed full-time

© Employed part-time

© Independent contractor, freelancer, or self-employed

© Not employed, but looking for work

© Not employed, and not looking for work

© Retired

© Other (please specify):

3. What is the size of your company where you work (or own)?
[only showed if respondent is working]

© Individually owned company

© Startup

© Small and medium-sized enterprises (SME)

© Large corporation

© Other (please specify)

4. Do you have an IT security background?

© Yes, I have a diploma in IT security

© Yes, I studied IT security in a college/university without earning
a degree

© Yes, I took some courses in IT security but did not specialise in it

© Yes, I have a university degree or equivalent in IT security

© Yes, I had some training sponsored by the company where I work

© No, I do not have any IT security background

© Other (please specify)

A.5 Communication

1. Do you wish to participate in the raffle draw for a $100 Amazon gift
card?

© Yes

© No

2. Do you wish to receive the cumulative results of the survey?

© Yes

© No

3. Please provide your e-mail address. [free text]
[only showed if answered “Yes” to one of the two questions above]
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A.6 Last page

Your answers have been recorded. Thanks for your help.
This questionnaire focused on Subresource Integrity, a standard defined
by W3C that defines a mechanism by which user agents may verify that
a fetched resource has been delivered without unexpected manipulation. If
you want to know more, you can visit this page: https://www.w3.org/TR/SRI/.
If you have questions about this research feel free to email us at isplab-
survey@unil.ch.
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5. Measurement and Analysis of
Automated Certificate Reissuance

The subsequent paper has been published as follows:
Olamide Omolola, Richard Roberts, Md. Ishtiaq Ashiq, Taejoong Chung, Dave Levin

and Alan Mislove. “Measurement and Analysis of Automated Certificate Reissuance”. In:
Lecture Notes in Computer Science 12671 (2021), pp. 161–174

In this paper, we measure and analyse the adoption of automation in certificate
reissuance since the advent of free, automated CAs like Let’s Encrypt. We use publicly
available data from Certificate Transparency (CT) logs for this measurement.
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Abstract. The Transport Layer Security (TLS) Public Key Infrastruc-
ture (PKI) is essential to the security and privacy of users on the Inter-
net. Despite its importance, prior work from the mid-2010s has shown
that mismanagement of the TLS PKI often led to weakened security
guarantees, such as compromised certificates going unrevoked and many
internet devices generating self-signed certificates. Many of these prob-
lems can be traced to manual processes that were the only option at
the time. However, in the intervening years, the TLS PKI has undergone
several changes: once-expensive TLS certificates are now freely available,
and they can be obtained and reissued via automated programs.

In this paper, we examine whether these changes to the TLS PKI have
led to improvements in the PKI’s management. We collect data on all
certificates issued by Let’s Encrypt (now the largest certificate author-
ity by far) over the past four years. Our analysis focuses on two key
questions: First, are administrators making proper use of the automa-
tion that modern CAs provide for certificate reissuance? We find that
for certificates with a sufficiently long history of being reissued, 80% of
them did reissue their certificates on a predictable schedule, suggesting
that the remaining 20% may use manual processes to reissue, despite nu-
merous automated tools for doing so. Second, do administrators that use
automated CAs react to large-scale compromises more responsibly? To
answer this, we use a recent Let’s Encrypt misissuance bug as a natural
experiment, and find that a significantly larger fraction of administrators
reissued their certificates in a timely fashion compared to previous bugs.

1 Introduction

The Transport Layer Security (TLS) public key infrastructure (PKI) is an
essential component of the modern Internet: it allows users to communi-
cate over the Internet in a trusted and confidential manner. However, pre-
vious work [8,21,13,2,3] has demonstrated that despite its importance, the
management of the TLS PKI is often not compliant with recommended se-
curity practices. For example, systems administrators often fail to revoke
or even reissue certificates when private keys are compromised [20], many
internet-of-things devices generate self-signed certificates (sometimes even
with identical keys) [13], and domains sometimes share private keys with
third parties due to limitations in the PKI itself [2].

Many of these management issues can be traced to inadequate tools for
system administrators. For example, in the wake of the Heartbleed [11]
bug in 2014, a significant fraction of web servers potentially had their
private keys exposed; as a result, administrators should have revoked
their old certificates and reissue new ones. At the time, doing so was a
largely manual process: because certificates were typically valid for up
to 5 years, many administrators presumably eschewed automating the
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infrequent process of obtaining and installing new certificates. As a result,
it took over a week before even 10% of the vulnerable web servers had
reissued their certificates [21]. Similarly, in the DNSSEC PKI, it has been
observed that inadequate tools—in the case of DNSSEC, a manual process
of uploading DS records—has lead to poor adoption of secure protocols [4].

However, the TLS PKI has changed dramatically since 2014. While
previously expensive, TLS certificates are now free with the advent of
certificate authorities such as Let’s Encrypt [14] (which is now, by far,
the most popular CA [16]). More importantly, these free CAs often have
much shorter certificate lifetimes (90 days for Let’s Encrypt), encouraging
the automation of the process of certificate reissuance and installation (as
it happens every three months, rather than every five years). Open-source
protocols (e.g., ACME) and tools (e.g., certbot, acme.sh, cPanel) now
allow administrators to automate the entire process.

In this paper, we examine whether the presence of these tools and
services has led to better TLS certificate reissuance. To understand the
effects of automated tools in certificate reissuance, we focus on certifi-
cates issued by Let’s Encrypt. We chose Let’s Encrypt as it is by far the
largest ACME-based CA [16], and it has the longest history of operation
(and hence, the highest likelihood of having domain sets that have a long
history of reissues). We use Certificate Transparency (CT) [12] logs to ob-
tain a list of all 1.03B certificates Let’s Encrypt issued over the past four
years. We group certificates in this list by the set of domains they contain
(similar to prior work [21], we refer to this as a domain set), enabling us
to measure how often certificates are reissued.

We also use a recent bug discovered by Let’s Encrypt as a natural
experiment. In brief, in early 2020, Let’s Encrypt discovered that over
3M certificates had been issued improperly, as they had failed to check
for Certificate Authority Authorization (CAA) [19] records properly be-
fore issuance [5]. Because they were improperly issued, Let’s Encrypt
announced that they planned to revoke the certificates one week later,
informing all system administrators that they needed to reissue their cer-
tificates. This serves as a natural experiment, as we can examine whether
administrators took the necessarily manual action of reissuing their cer-
tificates, rather than simply relying on their automated reissuance.

Our paper makes two contributions: First, we examine the behavior of
system administrators reissuing TLS certificates with the advent of free
CAs such as Let’s Encrypt. We find that approximately 80% of domain
sets with a sufficiently long history of being reissued, did reissue their
certificates on a predictable schedule. In addition, 60% of all domain sets
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show a median reissuance period of 60 days (the default recommended by
Let’s Encrypt [14] and used by many ACME tools [23,6] for automated
certificate reissuance).

Second, we use the Let’s Encrypt bug mentioned above to explore
whether system administrators now respond more quickly and completely
when manual intervention is required. We focus on the subset of the 2M
domain sets with a misissued certificate, and identify 98,652 domain sets
that show a regular period of reissuance with at least one new certificate
issued after the bug was discovered on February 29, 2020.1 We demon-
strate that, of these domain sets, at least 28% appear to have taken
the manual steps necessary to reissue their certificates within a week,
suggesting that, indeed, system administrators are better able to reissue
certificates securely today when compared to previous incidents requiring
certificate reissuance.

2 Background

We begin with an overview of the TLS certificate ecosystem and related
work.

2.1 Certificates

TLS is based on certificates, which are bindings between identities (typi-
cally domain names) and public keys. Certificates are signed by certificate
authorities (CAs), who verify the identity of the requestor. Certificates
have a well-defined validity period, which is expressed as NotBefore and
NotAfter fields in the certificate; clients will refuse to accept certificates
outside of their validity period. As a result, certificate owners have to
periodically reissue their certificate by contacting their CA (or another
CA) and obtaining a new certificate.

While certificates originally only contained a single identity (domain
name), this often made the administration difficult for web servers that
served multiple domains. Today, certificates can carry multiple identities
(domain names) via a Subject Alternate Names list. In essence, the
owner of the certificate’s public key has been verified by the CA to control
all of the identities (domains).

Finally, domain owners may wish to limit the set of CAs who are
authorized to issue certificates for a given domain. They can now do so by

1 Because of the way the bug manifested itself, the misissued certificates are not a
random sample of all certificates. We explore this in Section 3.
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publishing Certificate Authority Authorization (CAA) records, which are
DNS records that specify a list of CAs that are/are not allowed to issue
certificates (if no such record exist, all CAs are implicitly authorized).
CAs today are required to check for the CAA records for domains before
issuing certificates.

2.2 Let’s Encrypt

For a long time, TLS certificates were relatively expensive to obtain (typ-
ically $50 or more) and were valid for multiple years (typically 3–5) [13].
The cost and extended validity ended up having two effects: the overall
adoption of HTTPS was relatively low (as administrators had to spend
significant money to obtain the necessary certificates), and the system
administrators who did purchase certificates were not incentivized to au-
tomate the infrequent reissuance process. Additionally, the certificate is-
suance and renewal processes were manual, administratively burdensome,
and technically cumbersome.

In 2015, Let’s Encrypt disrupted the TLS certificate business model
by offering free certificates that were valid for 90 days. Other free CAs
have also been created such as ZeroSSL2 and Buypass3, and the TLS
ecosystem has since changed dramatically: the fraction of web connec-
tions using HTTPS has increased from ∼27% in early 2014 to ∼85% in
2020 [16], and Let’s Encrypt is now the largest CA, with over 1B certifi-
cates issued and over 35% of the Alexa top 1M sites using Let’s Encrypt
certificates [1]. Importantly, while prior CAs often required certificates to
be requested/reissued via web forms, Let’s Encrypt is entirely automated
via the ACME protocol; several popular ACME clients exist, including
certbot, acme4j, and acme.sh.

In February 2020, Let’s Encrypt announced that they discovered a
bug in the Boulder software they used to issue certificates [5]. Specifi-
cally, the software failed to properly check for CAA records in requested
certificates if (a) a certificate was requested for multiple domains, and
(b) Let’s Encrypt had previously checked the domain control validations
(DCV) for these domains in the preceeding 30 days. While Let’s Encrypt
was supposed to re-check the CAA record for all domain names included
in the certificate within 8 hours of issuing the certificate, under these
circumstances, it only picked one domain name among the multiple do-
mains in the certificate and ran the CAA check n times (equivalent to the

2 https://zerossl.com/features/certificates/
3 https://www.buypass.com/ssl/products/acme
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number of domains in the certificate). Let’s Encrypt originally announced
on February 29, 2020 that it planned to revoke all these certificates on
March 5, 2020, and it emailed all affected domain administrators. On
March 5, 2020, Let’s Encrypt reversed their decision and decided to not
revoke en-masse [15].

2.3 Related work

Improvements in the ability to scan the Internet [10] in 2013 have led to
a better understanding of the entire TLS ecosystem [9]. Researchers have
unfortunately found that TLS clients and servers are often incorrectly
managed [13], leading to reduced security for internet users. In the after-
math of the Heartbleed bug, it became evident that manual revocation
and reissuance of certificates is a major security problem: most admin-
istrators failed to revoke or even reissue, and those that did sometimes
reissued using the same key pair [21,8]. Similar behavior had been ob-
served years prior when a bug in Debian caused many domains the need
to reissue certificates [20]. Some domains have chosen to outsource cer-
tificate management to third-parties such as content delivery networks
(CDNs); while this improves certificate management, it often requires
sharing private keys [2].

To the best of our knowledge, there has not been significant study
of automated certificate reissuance in the TLS PKI. Previous work by
Matsumoto et al. proposed a decentralized audit-based system: Instant
Karma PKI (IPK) to promote automation among HTTPS domains [18].
The recent development of CAA records also provides a useful tool for
automation as the domain name holders or DNS operators can use CAA
records to control which CAs that they would like to get a certificate from
[19].

3 Methodology

We now describe the datasets we collected and our methodology to de-
termine a set of certificates that have been reissued.

3.1 Certificates

Our goal is to see how certificates have been (re)issued by the system
administrators. We focus on Let’s Encrypt as it is the largest free CA,
and it has the longest history of operation. To this end, we obtain all
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certificates issued by Let’s Encrypt by leveraging the Certificate Trans-
parency (CT) logs; when issuing a certificate, Let’s Encrypt publishes the
certificate to one of the CT logs managed by Google.4 Thus, to obtain a
nearly complete view of the certificates issued by Let’s Encrypt, we first
fetch all certificates from all of the CT log servers managed by Google,5

obtaining 5.3B certificates in total from September 9, 2014 to May 18,
2020. We then identify the certificates issued by Let’s Encrypt according
to their Issuer field, which leaves us with 1.03B certificates.6

3.2 Let’s Encrypt CAA bug list

On February 29th, 2020, Let’s Encrypt announced the CAA issuance bug
in their certificate issuance process (see § 2.2). Let’s Encrypt publicly re-
leased a list of the certificates impacted by this bug [5] containing serial
numbers of 3,048,289 certificates, some of which were potentially misis-
sued (i.e., the CAA records for some of domains in the certificate may
have not permitted Let’s Encrypt to issue a certificate, even though they
did). We use this list to study how the impacted certificates have been
reissued by administrators.

3.3 Defining Certificate Reissuances

While it is easy to identify when certificates are issued, there is a bit of
subtlety to determining when they are reissued. In particular, we face two
challenges: First, CT logs do not contain any identifier of the client such
as IP address that sent a Certificate Signing Request (CSR), thus making
it hard to identify if the certificate has been reissued from the same client;
thus, we first link the certificates that share the same Subject Alternate

Name (SAN) list.7 We refer to this set of domains in the SAN list as the
domain set. Second, we do not know when the client has replaced the old
certificate with the new one; thus, we use the logging timestamp on the
CT log server as a proxy.

4 In order for a certificate to be “CT qualified” in modern browsers such as Chrome,
it has to be logged on multiple CT log servers and one of them has to be from a
Google log [7].

5 aviator, icarus, argon2018∼2023, xenon2019∼2023, pilot, rocketeer, skydiver
6 We intentionally exclude pre-certificates from the analysis (which Let’s Encrypt has

published as well since 2018 [17]) as they do not guarantee the issuance of their
actual (final) certificates.

7 Thus, if the same client adds or removes one domain, it changes the SAN list.
Therefore, ACME processes it as a separate certificate request, not a reissuance,
thereby supporting our methodology of grouping by domain sets
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In summary, we group certificates by their domain set and order them
based on their timestamp on the CT logs; we refer to any certificates
other than the first as reissued certificates. Using this, methodology we
obtain 188M unique domain sets and 1.03B corresponding certificates
issued during our measurement period. Out of the 188M domain sets,
we find that 67M (35.7%) domain sets have no reissued certificates, 23M
(12.2%) domain sets have reissued once and, 14M (7.8%) domain sets
have reissued twice. One limitation of relying on CT logs alone worth
noting is that we are unable to quantify how domain sets change, as we
would need a way to “link” domain sets which is unavailable to us [2].
In these cases, the modified domain set would be considered a separate
domain set in our analysis.

4 Results

We analyze the reissuance behaviors of certificates issued by Let’s En-
crypt. We aim to understand reissuance behavior of two types: reissuance
that is likely done automatically (e.g., via a cron job) and reissuance that
is likely done manually (e.g., directly invoked by a system administrator).
We begin by describing how we distinguish these two cases.

4.1 Automated Reissuance

One of Let’s Encrypt’s key principles is that it makes it possible to au-
tomate obtaining and reissuing certificates. A new user of Let’s Encrypt
need only set up the first certificate issuing process with any ACME
client of choice, then they can create a cron job to continually check if
the certificate is still valid and request a new certificate once the current
certificate nears expiry.

We first need to identify when we believe a certificate has been reissued
via an automated process. As discussed previously we are not privy to
Let’s Encrypt’s internal logs, so we can only rely on publicly available
data from the CT logs. To do so, we group all Let’s Encrypt certificates
by the domain set present in them, and then sort these lists by the time in
the CT log timestamp. We then examine the amount of time that passes
between each pair of successive reissues.

In Figure 1, we plot the cumulative distribution of the median of
these reissue time lists in the line labeled “all LE certs.” We immediately
observe a large “spike” around 60 days, and observe that over 55% of
domain sets have a median reissue time between 55 and 65 days. This
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Fig. 1. Distribution of median reissuance period per domain set for all Let’s Encrypt
certificates with or without lifetimes and misissued certificates. For comparison, we
also include the median reissuance period per domain set for a few other CAs: Sectigo,
cPanel, and other top 10 CAs (we plot cPanel and Sectigo separately as they show
different behavior than the others).

lines up with the reissuance policy recommended by Let’s Encrypt, which
recommends reissuing certificates that are within 30 days of their expiry
(i.e., are at least 60 days old) [14]. Moreover, this timing lines up well as
the default policies of many ACME clients: cerbot [6] and acme.sh [23]
both default to renewing within 30 days of expiry. We also observe that
the “spike” does not happen entirely at the 60 day mark; this is likely
because the renewal occurs the first time the cron job runs after reaching
the mark. Finally, we observe a much smaller spike around 30 days, which
is likely the behavior of a different ACME client or a system administrator
who manually changed their client’s behavior.

Next, we examine whether this median reissue period of 60 days is
only present in domain sets that have a long history of being reissued
(i.e., that have been around a long time) or if it is also present in newer
domain sets. To do so, we divide the “all LE certs” line into those first
issued greater than two years ago, and those first issued within the past
two years; these are both plotted in Figure 1. We can observe the shapes
of these curves are quite similar, suggesting that the behavior is relatively
consistent between these two groups.

We also discover that roughly 10% of Let’s Encrypt domain sets in
all categories had a median re-issuance period of greater than 90 days,
meaning the certificates were more often than not renewed after expiry.
This behavior could occur if the administrator did not set up a cron job,
incorrectly set up a cron job to run very infrequently, or if the system
was not always online. We leave a deeper exploration of these domain sets
to future work.
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Finally, we also briefly compare the Let’s Encrypt domain set behavior
to that of other CAs. To do so, we extract the domain sets in the same
manner from the CT logs for the top 10 CAs (other than Let’s Encrypt),
and compute the median reissuance periods in the same manner per CA.
We plot these as well in Figure 1 under the lines “cPanel”, “Sectigo”, and
“Other CAs”; we separate out cPanel and Sectigo as they show different
behavior than the others. In brief, we see that most of the other top CAs
show very long median reissuance periods, while cPanel shows a “spike”
at 75 days and Sectigo at 60, 90, and 120 days.

Coefficient of Variation (CoV) While the median of the reissue time pe-
riods being so clearly at 60 days is suggestive that the administrators use
automated software to reissue their certificates, it is not entirely defini-
tive. Thus, we look for further evidence of automation by looking at how
similar the reissuance periods of a given domain set are to each other.
In other words, if a given domain set was using an automated process
to reissue certificates, we would expect that the period between reissues
would be highly consistent.

To do so, we calculate the coefficient of variation (CoV)—which is sim-
ply the standard deviation of a distribution over its mean—of the amounts
of time between each successive reissuance. Automated reissuance would
often lead to a consistent period between reissues, meaning that the CoV
would be low i.e., 0.1 or smaller. We choose the CoV threshold of 0.1 as a
cut-off as would allow, for example, a domain set with a mean reissuance
time of 60 days to be classified as automated if the variance is less than
6 days (roughly one week). For this analysis, we only keep the domain
sets where we have a sufficient reissue history of at least five reissues.
Figure 2 plots the distribution of CoVs for the reissue time periods for
each domain set under the “all LE certs” line. We can observe that many
domain sets do show evidence of automation: 30.3% of domain sets have
a CoV of less than 0.1.

We were concerned that particular domains with unusual patterns of
reissuance may end up artificially shaping this curve, as our analysis is at
the domain set level, rather than at the system administrator level. Thus,
we additionally perform an aggregation to the second-level domain to see
whether particular domains are skewing the results.

We aggregate domain sets into second-level domain through a weighted
average: for each second-level domain S, we compute the average CoV for
all domain sets that have at least one domain name from S. For domain
sets that include domains from multiple second-level domains, we simply
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Fig. 2. Distribution of coefficient of variation (CoV) for all Let’s Encrypt domain sets,
second level domains, and the misissued certificates.

weigh the domain set’s CoV by the fraction of domains that belong to
S. The resulting cumulative distribution is also shown in Figure 2, and
we can observe that the distribution is quite similar to the analysis at
the domain set level. Thus, we have some confidence that the (poten-
tially odd) behavior of a small number of second-level domain sets is not
dramatically altering the results.

Noticing that many domain sets tend to have a high CoVs, we next ex-
amine how well the CoV methodology identifies domain sets with regular
reissuance patterns. We do so by dividing up domain sets by their CoV,
and plotting the cumulative distribution of their median reissuance time
in Figure 3. We can immediately observed that the median reissuance
time of certificates varies dramatically by CoV: we find that the median
reissuance period of domain sets with a very low CoV (0.1 or smaller)
is 60 days, while domain sets with a CoV greater than 1 are much less
predictable. Further, Figure 3 reveals that over 88% of domain sets with
highly automated reissuance (CoV < 0.001) have a median reissue period
of between 59 and 61 days (consistent with the reissue occurring during
the first cron job to run after the 60 day period).

Initial renewal setup Moving on, we hypothesize that the initial setup
and use of ACME clients may result in multiple, irregular requests, which
would affect our CoV calculation. To understand the effects, we focus on
certificates that have at least five reissues, and make the assumption that
most administrators would be comfortable with operating ACME clients
after a year. Out of 188M unique domain sets, only 60M unique domain
certificates have at least five reissues; these form the basis of the following
analysis.

Roughly 48.2% of domain sets with at least five reissues have a CoV
less than 0.1. However, if we also look at subsequences of reissues, ignor-
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ing the first set of reissues as long as at least five reissues remain, we can
identify an additional 29.9% domain sets that have a subsequence of reis-
sues with a CoV less than 0.1. In other words, 78% of domain sets with a
subsequence of at least five reissues have a regular reissue cycle that be-
gins at some point in their lifetimes. Thus, we have identified a limitation
of the CoV metric, as it may be too conservative in cases where admin-
istrators have an irregular initial reissunce cycle before fully debugging
their ACME client setup.

4.2 Manual Reissuance

Having a good understanding on domain sets with likely automated reis-
suance infrastructure, we now turn to examine what happens for these
domains when manual intervention is required. To do so, we use the Let’s
Encrypt misissuance bug as a natural experiment: because all of these
certificates need to be reissued, we have a collection of domain sets where
we can study whether the system administrator did, in fact, reissue their
certificate.

We first need to examine the set of certificates affected by the bug,
which was announced on February 29, 2020. Let’s Encrypt reported that
over 3M certificates were affected; we collected all of these certificates and
plotted their issue time in Figure 4. We can see that these certificates went
as far back as December 2, 2019, which would be expected given Let’s
Encrypt 90-day certificate lifetime. Importantly, the certificates appear
to have been issued uniformly throughout the prior 90 days.

However, there are multiple reasons why these misissued certificates
are not a random sample of all Let’s Encrypt certificates. First, the bug
only affected certificates with multiple domains in them, meaning any

5. Measurement and Analysis of Automated Certificate Reissuance

112



 0

 0.2

 0.4

 0.6

 0.8

 1

12/2019 01/2020 02/2020 03/2020
C

D
F

Issuance time

Affected Certificates

Fig. 4. Distribution of when the misissued certificates were issued.

certificates with a single domain were not misissued. Second, and more
importantly, it only affected domains where the CAA record had been ver-
ified within the past 30 days. As we observed previously, most certificates
are reissued after 60 days, this means that the only certificates that were
affected were ones that were either (a) not on a regular schedule to begin
with, or (b) were on a regular schedule, but happened to be reissued in
late 2019/early 2020 for another reason. This observation explains why
the misissued certificates behave quite differently from all Let’s Encrypt
certificates in Figures 1 and 2: due to the nature of the bug, domain sets
that had regular, 60-day reissue periods were much less likely affected.
In fact, such domain sets would only have been affected if one of the
domains in the domain set happened to be in another domain set whose
certificate was reissued in the previous 30-day time period, or where the
administrator had manually reissued that domain set during that period.

Nevertheless, we need to identify when we believe a certificate was
manually reissued from among the misissued certificates. Recall that we
do not have access to Let’s Encrypt’s logs, so we can only rely on the
timestamps public CT logs. We want to see how certificates affected by
the bug were automatically reissued before the bug, but manually issued
a new certificate in response to the bug. We therefore focus on those
domain sets that (a) were affected by the Let’s Encrypt bug, (b) were
on a regular cycle prior to February 29, 2020, and (c) had at least one
new certificate issued after February 29, 2020 (to see if the regular cycle
continued). To see if a domain set was on a regular reissue cycle prior to
February 29, 2020, we see if the five certificate reissues prior to the bug
date had a CoV less than 0.1. In total, 98,652 domain sets satisfy these
three criteria.

Next, we calculate the CoV of the five reissues before the bug date and
the first reissue after the bug date. If the CoV including the new certificate
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Fig. 5. Graph showing how long certificates “survived” after Let’s Encrypt bug was
announced. We plot (a) the 33,099 certificates that we inferred were manually reis-
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can see the manually reissued certificates we largely reissued quickly after the bug
announcement.

is high, then the first certificate after the Let’s Encrypt bug could not have
been automatically reissued; some form of manual intervention disrupted
the issue cycle and caused the previously low CoV to increase. If the CoV
including the new certificate remains low (<0.1), then the new certificate
was likely issued on its expected regular schedule. It is also possible,
though unlikely, that a new certificate was manually issued at the same
time we would expect the next automatically reissued certificate. Of the
98,652 domain sets, 33,099 saw a significant CoV increase (i.e., likely had
manual intervention) in the first reissue after the Let’s Encrypt bug, and
65,553 likely did not.

We now examine how quickly these 33,099 certificates were manually
reissued after Let’s Encrypt announced the bug, and emailed all admin-
istrators to tell them to reissue their certificates manually. Figure 5 plots
the number of these certificates that survive in the line labeled “bug,
manual reissue”. We can observe that most certificates that are manu-
ally reissued are reissued quite quickly: within a week, over 84% of all
certificates that we believe are manually reissued have been reissued. For
comparison, we plot the same graph for the 66,553 certificates that were
reissued close to their next reissue in the line labeled “bug, auto reissue”.
This group shows less-prompt reissuing than the manual reissues, as only
42% of likely-automatic reissues occurred in the 7 days following the bug
announcement.

Recall from Section 2 that Let’s Encrypt rescinded its decision to
revoke certificates on March 5, 2020 (five days after the initial email
stating they would be revoking certificates on March 5, 2020). Thus, there
may be system administrators who intended to reissue but who delayed
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announcement of the Let’s Encrypt bug.

reissuing their certificates, only to decide it was no longer necessary after
receiving the second message. While we cannot measure how large this
group is, we believe it is likely small as Let’s Encrypt decided sent out the
second message on the day they originally announced as the deadline to
reissue. Regardless, our results still serve as a lower bound on the number
of system administrators who did take action.

Finally, we plot the same data as in Figure 5, but do so as a fraction of
all misissued domain sets with a CoV less than 0.1 before the bug date.
This graph is presented in Figure 6, and it shows that among all the
domain sets with a CoV less than 0.1 (those on a regular schedule before
Feb. 29, 2020), at least 28% had reissued their certificate manually within
a week of the bug announcement. This result is a significant improvement
over prior incidents; with the Heartbleed bug, after a week, barely 10%
of affected certificates had been reissued (and even fewer revoked) [22].
Even though circumstances between the two bugs differ significantly (such
as notification of revocation), they both provide opportunities for natural
experiments to see how the PKI is evolving over time, and the comparison
suggests that system administrators may now be better managing the
PKI.

5 Concluding discussion

Over the past five years, the TLS PKI ecosystem has changed dramati-
cally: largely due to new CAs such as Let’s Encrypt, we have moved from
primarily expensive, long-lived certificates to primarily free, short-lived
certificates. In this paper, we examined whether this change in the na-
ture of the certificate ecosystem has also improved the management of the
TLS PKI, as it has been previously been observed that system adminis-
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trators often fail to properly manage their certificates. Though we find
significant evidence that most clients of Let’s Encrypt have indeed set up
automated processes for reissuing and installing their certificates using
over four years of CT logs, a surprising fraction (20%) of clients with a
sufficiently long history of being reissued still appear to use manual pro-
cesses. Moreover, we find evidence that even when manual intervention
is required, system administrators are more prompt in doing so when
compared to studies from the 2014 Heartbleed bug and the 2009 Debian
PRNG bug. Taken together, our results underscore the importance of re-
ducing the burden of management of the TLS PKI, and how changes in
the infrastructure and tools available to system administrators can lead
to significant management improvements.
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In this thesis, we focused on analyzing security protocols and features on the internet.
A significant part of the analysis in our work focused on how stakeholders, i.e. end-users,
developers e.t.c utilized these protocols and features. Each paper in this thesis addressed
one or more of the research questions outlined in Chapter 1. We discuss the answers to
the research questions from our work below.

6.1. RQ1 - How does the technical specification of protocols
and complexity of usage influence their adoption and
security?

Protocols or security features are usually specified in documents such as Request For
Comments (RFCs) to guide their implementation and usage. Regardless of how secure
a protocol or feature is in theory, if the technical specification is unclear or ambiguous,
it could lead to misinterpretation. Misinterpretation, in this case, could affect the
implementation quality of the tool. Misinterpretation of the specification could also result
in the usage of the tool in a manner that defeats its purpose.

Section 4 specifically answers this question. SRI was a recent security feature introduced
to prevent the manipulation of external subresources included in web pages. SRI ensures
that a subresource is only loaded if its hash matches the hash included by the website
developer. In the work of Section 4, we performed an empirical study of Subresource
Integrity. Our study included a longitudinal study as well as a developer study, and it
revealed that the SRI recommendation was ambiguous on specific points, causing the
developers to misinterpret its behaviour. This misinterpretation could lead to the wrong
usage, leaving the developers’ webpage open to attacks. Furthermore, we discovered that
more developers adopted SRI in environments where platforms automated its use.

Our work in Section 5 tried to understand how recent changes to the TLS-PKI have
influenced its adoption. The TLS-PKI has been known to be very complex. A significant
component of the TLS-PKI is the certificate. Certificates are a signed attestation from a
third party. Due to the complexity of the TLS-PKI and the effort involved in managing
certificates, developers have been known to adopt insecure practices such as using a
certificate past its due date, reusing a revoked certificate, or even the continual usage
of insecure certificates. Recently, there has been a move towards the automation of
certificate management led by Let’s Encrypt. Let’s Encrypt provides free certificates
and also an automated system for managing these certificates without the intervention
of system administrators or users. In this research, we explicitly studied the adoption
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of automated certificate reissuance and discovered that over 80% of users had adopted
automated certificate reissuance.

From our work on SRI [14] and the TLS-PKI [55], we discovered that the clarity of
the technical specification and the availability of automated tools ease the adoption of
complex security protocols or features.

6.2. RQ2 Do protocols enhancements fulfill their security
guarantees in practice without causing other
vulnerabilities?

Security protocols or features are often introduced to resolve vulnerabilities or to combat
specific threats. However, sometimes these new protocols or features present security
threats of their own or weaken certain security guarantees such as privacy, while improving
others.

Certificate Transparency is an example of the latter. The creators of Certificate
Transparency weakened the privacy guarantee of the entire TLS-PKI while combating
the threat of certificate misissuance. Certificate Transparency is a system for logging
all certificates. The goal is to mandate all CAs to log all the certificates they issue to a
public append-only log for auditing by users and browsers. For browsers to verify that
this certificate is logged, they have to validate information, i.e., a Signed Certificate
Timestamp (SCT) provided by the entity presenting the certificate. The process of
validating this information reveals the users’ browsing habits, thereby weakening their
privacy on the internet. Our work in Section 2 proposed a novel solution using Private
Information Retrieval (PIR), Multi-tier Merkle trees and Distributed Point Functions
(DPFs) to protect users’ privacy without losing the benefit of public certificate audits.

Additionally, we analyzed a novel PKI implementation called PB-PKI in Section 3 of
this thesis. PB-PKI is a novel PKI implementation based on the blockchain. Its goal is to
create a privacy-aware PKI implementation with all the stakeholders on the blockchain.
We analyzed the PB-PKI and found that the PB-PKI proposal introduced multiple
security weaknesses that would render it unusable. We then proposed improvements to
this protocol and implemented a proof-of-concept to demonstrate its usage.

From our work on Certificate Transparency [37] and blockchain PKI [56], we discovered
that the creation of a protocol should be iterative with multiple layers of feedback to
catch the possible introduction of new security weaknesses.

6.3. Future Work

This thesis focused on the HTTPS ecosystem and its components. In the future, we
wish to analyze more complex protocols and provide solutions to the weaknesses we find.
Further, we aim to raise more awareness in the professional community about automation
and how it aids in adopting security protocols. Finally, our goal is to understand how the
complexity of email protocols affects their usage.
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A. Appendix

We include other activities that we were involved in during this PhD below

LIGHTest Project The author of this thesis led a workpackage in the successful LIGHT-
est project. LIGHTest is an EU funded project that aims to enable cross-border verification
of electronic transactions. The author was responsible for the timely deployment of the
project software components. He also made the following presentations in the context of
the project.

1. Cross-Border Verification in LIGHTest presented at OIX Economics of Iden-
tity, London (8th November 2018).

2. Cross-Border Verification in LIGHTest presented at Consumer Identity World,
Singapore (22nd November 2018).

3. Workpackage Updates presented at multiple LIGHTest meeting over the course
of 3 years.

Research Activities The author has presented multiple papers at different conferences.
He also had research internships at University of Lausanne, Switzerland and Northeastern
University.

Supervised Student Theses

1. Paul Plessing: Privacy Aware PKI on Blockchain (Bsc/Completed)

2. Roman Markus Holler: PKI on Blockchain (BSc/Completed)
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