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Abstract

LIGO uses kilometre long tunnels and freely suspended mirrors as a laser interferometer
to detect gravitational waves. This thesis discusses the consequences of placing the
interferometer on an elastic plate in a laboratory instead. The behaviour of the plate
under the influence of a gravitational wave is described by the relativistic theory of elasticity
as formulated by Beig and Schmidt [1]. For the limit of low gravitational wave frequencies
a polynomial solution can be found. To solve the equations of motion for the deformation
in general, a new spectral approach is developed. This considers the discontinuities at the
boundaries, which appear when using a Fourier series to express non-periodic functions
and taking their derivatives. The resulting series are approximated as finite sums and
the resulting linear system of equation is solved numerically on a computer. Then the
signal such an interferometer would measure is discussed and compared to the case of
and interferometer with free mirrors. There are resonance-frequencies, corresponding to
eigenmodes of the plate, for which the signal becomes very large.

Kurzfassung

LIGO nutzt kilometerlange Tunnel und frei aufgehängte Spiegel als Teil eines Interferomet-
ers um Gravitationswellen zu messen. Diese Masterarbeit untersucht, was passieren würde
wenn das Laserinterferometer stattdessen auf einer elastischen Platte in einem Labor
platziert wird. Das Verhalten der Platte unter dem Einfluss einer Gravitationswelle wird
durch die relativistische Elastizitätstheorie beschrieben. Die hier verwendete Formulierung
stammt von Beig und Schmidt [1]. Für den Grenzwert niedriger Gravitationswellenfre-
quenzen, kann eine Polynomiallösung gefunden werden. Um die Gleichungen für die
Deformation im Allgemeinen zu lösen, wird ein neuer Fourier-Ansatz entwickelt. Dieser
berücksichtigt die Unstetigkeiten an den Rändern, die auftreten, wenn eine Fourier-Reihe
verwendet wird, um nichtperiodische Funktionen zu beschreiben und ihre Ableitungen zu
bilden. Die auftretenden Reihen werden als endliche Summen genähert und das dabei
entstehendne linearen Gleichungssystem wird numerisch am Computer gelöst. Dann
wird das Signal, das ein solches Interferometer messen würde, berechnet und mit dem
Interferometer mit freien Spiegeln verglichen. Es treten Resonanzen auf, bei denen das
Signal sehr groß wird. Diese stimmen mit Eigenschwingungen der Platte überein.
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Chapter 1

Introduction

This work builds upon the bachelor’s thesis by Mario Hudelist [7]. Therein the equations
of motion, describing an elastic body under the influence of gravitational waves (GWs),
were derived by using a concrete matter model in the theory of relativistic elasticity. These
were then used to solve the simple one-dimensional problem of a stick in a GW-background.
This thesis aims to generalize this to a two-dimensional thin plate and then goes on to
calculate the signal, an Michelson-Interferometer placed on the plate, would measure.
The model considered here does not include any damping behaviour and we only search
for the steady-state solution, when a continuous GW hits the plate.

In a first attempt to solve the problem, we discovered a set of eigenmodes, i.e. solutions
for the in-plane vibrations of the plate without a gravitational wave. The next idea was
to express the solution as a Fourier series, plug it into the equations, and solve for the
Fourier coefficients. But for non-periodic functions, taking the derivative of the Fourier
series doesn’t result in the Fourier series of the derivative. To fix this, we go on to develop
a modified spectral approach which is then used to find a solution. The resulting series
are truncated, and the linear system of equations is then solved on the computer.

A brief outline of the structure is as follows: Chapter 2 briefly summarizes the theory
of relativistic elasticity. Chapter 3 starts by summarizing the description of gravitational
waves in TT-coordinates. Then it goes on to apply the formalism of relativistic elasticity
to the 2D plate to formulate a boundary value problem(BVP) and presents a symmetry
and polynomial solution for two special cases. In chapter 4 a set of solutions to the
problem without GWs is found. Chapter 5 develops a spectral approach to deal with
derivatives of Fourier Series of non-periodic functions. Then chapter 6 discusses solutions
to the BVP and how to convert them to physical displacement fields. And finally, in
chapter 7, the signal an interferometer mounted on the plate would measure is calculated.

1.1 Conventions

In this work the spacetime metric has signature (-,+,+,+). Uppercase latin indices belong
to the body manifold and take values A,B, ... = 1, 2, 3. Greek indices belong to the
spacetime and run from 0 to 3: µ, ν, ... = 0, 1, 2, 3. Lower case latin indices denote the
spatial part of spacetime indices and run run from 1 to 3: i, j, ... = 1, 2, 3. The Einstein
sum convention is used, i.e. repeated indices are summed over. Units are chosen in such
a way that c = 1.
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Chapter 2

Relativistic Elasticity

The Theory of Relativistic Elasticity as it is used in this work is due to Beig and Schmidt
[1]. The developement of the theory in this chapter follows closely along the lines of
[2] and [7]. For the historic development of the theory see [2], [13] or [1] and references
therein.

First the general setup is explained: The configuration describes how a body lies in
spacetime. Then a description of the particle number density follows. This is then used in
a Lagrangian formalism from which the equations of motion can be obtained. Next, those
are shown to be equivalent to the vanishing of the divergence of the energy-momentum
tensor. Subsequently a connection to classical elasticity theory is built by introducing the
Cauchy-stress(CS) tensor. Finally it is shown, that in the limit of small displacements
and flat spacetime the equations of motion are equivalent to the classical wave equation
for elastic waves in media.

2.1 Configuration

The Theory of Relativistic Elasticity describes the behaviour of elastic bodies in curved
spacetime. For this two manifolds are used: The 4-dimensional orientable spacetime
through which the body moves equipped with a metric (M, g) and coordinates xµ and the
3-dimensional body manifold B with coordinates denoted by XA, which can be thought
of as representing the body at rest. The central object is the configuration

fA :M ′ → B (2.1)

which is a set of three smooth functions which assign to each point of spacetime the point
("particle") of the body it contains. The domain is restricted to M ′ ⊆ M , the part of
spacetime through which the body moves. Writing the dependence on the spacetime
coordinates in the following way fA(t, xi) and keeping t constant, the fA become smooth
and invertible functions from the t = const hypersurface in M ′ to B. This, of course
depends on the chosen coordinate system for M . Looking at a point XA of the body and
taking the inverse for all t, one finds the worldline of the particle residing at XA. Since
the fA are scalar functions, the Lie derivative along any vector field ξµ, as well as the
covariant derivative are just the partial derivative:

Lξf
A = ξµ∂µf

A, ∇µf
A = ∂µf

A (2.2)

3



Chapter 2 Relativistic Elasticity

This leads to the definition of the configuration gradient (also called deformation gradient)

∂µf
A = fA,µ : TpM → TfA(p)B (2.3)

which maps vectors on M to vectors on B (or more precisely their corresponding tangent
spaces). It locally describes the deformation of the body, i.e. how a vector connecting
two nearby points of the body, is stretched or rotated. By the assumption that fA is
invertible on a suitable spatial hypersurface it follows that ∂µfA has rank 3. Therefore,
as it is a map from a 4D space to a 3D space, it has a null space of dimension 1. The
element vµ of this nullspace which satisfies

∂µf
A vµ = 0, vµvµ = −1, vµ future-pointing (2.4)

is called the 4-velocity of a particle of the body. The motivation for the name comes from
the interpretation of vµ∂µfA = 0 as the directional derivative of fA along the curve to
which vµ is the tangent vector. Since this directional derivative vanishes fA is constant
along that curve, or in other words, this curve is the worldline of the particle located at
XA = fA. Next, one can define the strain(deformation)

BAB := fA,µ f
B
,ν g

µν . (2.5)

This is a symmetric matrix, but not a tensor on B because it depends on the spacetime
coordinates. For a chosen coordinate system (t, xi) it can be thought of as a one parameter
family of tensors with parameter t. BAB is also positive definite, i.e. BABaAaB > 0 for
any (co)vector aA on B. To see this, the expression can be written as

BABaAaB = fA,µ f
B
,ν g

µνaAaB = (fA,µaA)(f
B
,νaB) g

µν . (2.6)

fA,µaA are spacelike since they are orthogonal to the timelike vector vµ:

vµfA,µaA = 0 (2.7)

and therefore the expression (2.6) is positive. BAB measures distances between points of
the body as it currently lies in spacetime and hence it can be thought of as a metric on
the body. Since fA,µ has rank 3 and gµν has a non-vanishing determinant, it follows that
BAB (as a product of matrices) has full rank and is therefore invertible. The inverse is
called the Cauchy-Green deformation tensor CAB . Since this is the inverse of a symmetric,
positive definite matrix it is also symmetric and positive definite. One can define the
corresponding spacetime tensor in two equivalent ways:

lµν := gµν + vµvν ≡ fAµf
B
νCAB. (2.8)

Proof. To check that both expressions are equivalent we show that their action on a
complete set of basis vectors {vµ, fAµ = gµνfAν} of TM gives the same result. This can

4



2.1 Configuration

be shown using the relations (2.4) defining vµ:

vµ : (gµν + vµvν)v
µ = vν + (vµvµ)vν = vν − vν = 0

fAµf
B
νCABv

µ = (fAµv
µ)fBνCAB = 0

fCµ : (gµν + vµvν)f
Cµ = (gµν + vµvν)g

µαfCα = δαν f
C
α + vνv

αfCα = fCν + 0 = fCν

fAµf
B
νCABf

Cµ = fAµf
B
νCABg

µαfCα = (fAµf
C
αg

µα)fBνCAB

= BACCABf
B
ν = δCBf

B
ν = fCν

In the last expression the definition of BAB , as well as the fact that CAB is its inverse, is
used. Since the action on all basis vectors is the same it follows, that the two definitions
are indeed equivalent.

The tensor lµν acts on vectors orthogonal to vµ (elements of the orthogonal complement
[v]⊥) as the metric. For such vectors it is equivalent to CAB and hence a positive definite
metric. Raising one index with the spacetime metric leads to a projection operator onto
[v]⊥

lµν = gµλlλν = δµν + vµ vν (2.9)

which annihilates vµ

lµνv
ν = δµν v

ν + vµ vνv
ν = vµ − vµ = 0. (2.10)

It can be easily checked, that lµν is indeed a projection

lµλl
λ
ν = lµλ(δ

λ
ν + vλ vν) = lµν + 0 = lµν . (2.11)

One can also find the inverse of lµν on [vµ]⊥ by raising both indices with the spacetime
metric:

lµν = gµαgνβlαβ. (2.12)

It’s straightforward to check that this indeed is the inverse on [vµ]⊥ i.e. lµν lνα = lµα which
is the identity on [vµ]⊥. Now, BAB can also be rewritten as

BAB = fA,µ f
B
,ν l

µν , (2.13)

which means, that fAµ is a one-to-one mapping between BAB on B and lµν on [vµ]⊥.
Therefore lµν can be interpreted as the spacetime version of the deformation tensor. It is
useful to calculate two derivatives here, which will be needed later:

∂BAB

∂gµν
=
∂BAB

∂lµν
= fAµf

B
ν (2.14)

∂BAB

∂fCλ

= δACδ
λ
µ f

B
,ν g

µν + fA,µ δ
B
C δ

λ
ν g

µν

= δAC fB,ν g
λν + fA,µ δ

B
C gµλ

= 2δ
(A
C fB)λ

(2.15)
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Chapter 2 Relativistic Elasticity

2.2 Particle Number Density and Matter Flow

In this section we want to develop an expression for a vector Jµ describing the matter
flow, and a scalar n describing the particle number density. We start with the assumption
that there exists a volume form ΩABC on B. As seen above, fAµ is an isomorphism
between [vµ]⊥ and B, so we can use it to pull-back the volume form Ω from B to M via
N = f∗Ω:

Nµνρ = fAµf
B
νf

C
ρΩABC . (2.16)

The Hodge operator ⋆ translates k-forms to (n-k) forms. So we can use it to define a
vector Jµ (after raising the index) from the 3-form Nµνρ on the 4-dimensional spacetime:
J = − ⋆ N . Or in coordinates:

Jµ =
1

3!
ϵµνλρNνλρ =

1

3!
ϵµνλρfAνf

B
λf

C
ρΩABC . (2.17)

This vector is orthogonal to the configuration gradient fA,µ which can be checked directly.

JµfDµ =
ΩABC

3!
ϵµνλρfAνf

B
λf

C
ρf

D
µ (2.18)

The expression ϵµνλρfAνf
B
λf

C
ρf

D
µ is the determinant of a 4 × 4 matrix formed out

of columns fAµ. But A,B,C,D = 1, 2, 3 so there are at least two equal columns, and
hence this determinant vanishes and JµfAµ = 0. As we also know that vµfAµ = 0 we
can conclude that Jµ ∝ vµ. Next we want to show that Jµ is conserved, i.e. ∇µJ

µ = 0.

Proof.

∇µJ
µ =

1

3!
ϵµνλρ∇µ

(︁
fAνf

B
λf

C
ρΩABC

)︁
(2.19)

The covariant derivative hitting the expression in the brackets using the product rule, has
three terms containing ∇µf

A
ν . But this is symmetric in µν since covariant derivatives

commute when acting on scalar functions:

∇µf
A
ν = ∇µ∂νf

A = ∇µ∇νf
A = ∇ν∇µf

A = ∇νf
A
µ. (2.20)

When contracting with the totally anti-symmetric tensor all these terms vanish, and what
remains is the fourth term, containing ∇µΩABC . The volume form is a function of the
coordinates XD = fD(xα) on the body manifold B. So the chain-rule has to be used
when taking the derivative with respect to the spacetime coordinates:

∇µΩABC(X
D) = ∂DΩABC(X

D)∇µf
D. (2.21)

This implies, when inserted into the expression for ∇µJ
µ, that

∇µJ
µ ∝ ϵµνλρfAνf

B
λf

C
ρf

D
µ = 0 (2.22)

as we have already seen that this is the determinant of a matrix with two identical
columns, and hence vanishes. So the proof that Jµ is conserved is complete.
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2.3 Lagrangian formalism and Energy-Momentum Tensor

Without loss of generality we can choose the orientation of ΩABC so that Jµ is future-
pointing, and then we can write Jµ = nvµ, with a scalar function n > 0, which represents
the particle number density. To get an explicit formula for n we take the square:

n2 = −JµJµ

= − 1

3!
ϵµνλρNνλρ

1

3!
ϵµαβγN

αβγ

=
1

3!
δ[να δ

λ
βδ

ρ]
γ NνλρN

αβγ (ϵµνλρϵµαβγ = −3! δ[να δ
λ
βδ

ρ]
γ , cf. [3])

=
1

3!
δναδ

λ
βδ

ρ
γN[νλρ]N

αβγ (move anti-symmetrization down)

=
1

3!
NνλρN

νλρ (Nνλρ is totally anti-symmetric)

= fAµf
B
νf

C
ρΩABCg

µµ′
gνν

′
gρρ

′
fA

′

µ′fB
′

ν′fC
′

ρ′ΩA′B′C′ (2.16)

=
1

3!
BAA′

BBB′
BCC′

ΩABCΩA′B′C′ (2.5)

In a specific coordinate system the components of Ω can be written using the totally
anti-symmetric symbol: ΩABC = ϵ̃ABCΩ123 = Ω(fA(xµ))ϵ̃ABC . Then we can use the
formula for the determinant of a matrix:

ϵ̃ABC det(BAB) = ϵ̃A′B′C′BAA′
BBB′

BCC′
. (2.23)

Inserting this back into the expression for n2 we get

1

3!
Ω(fA(xµ))2ϵ̃ABC ϵ̃

ABC det(BAB). (2.24)

Now using the fact that ϵ̃ABC ϵ̃
ABC = 3! it follows for the particle number density

n = Ω(fA(xµ))
√︂
det(BAB) =

Ω(fA(xµ))√︁
det(CAB)

(2.25)

where the relation for the determinant of the inverse matrix det(A−1) = det(A)−1 has
been used. So the particle number density depends only on the configuration fA and the
strain BAB:

n = n(fA, BAB). (2.26)

2.3 Lagrangian formalism and Energy-Momentum Tensor

We want to derive the equations of motion from an action principle. The action in
Relativistic Elasticity is given by

S[fA] =

∫︂
M ′
ρ
(︁
fA(xµ), ∂µf

A(xν); gµν
)︁√︁

−det g d4x (2.27)

and so the Lagrangian reads L = ρ
(︁
fA, ∂µf

A; gµν
)︁√

−det g. We use the notation
g = det g. Next, we calculate the derivatives appearing in the Euler-Lagrange equations

7



Chapter 2 Relativistic Elasticity

for this action:

∂

∂xµ
∂L
∂fAµ

=
∂

∂xµ

(︃√
−g ∂ρ

∂fAµ

)︃
=

√
−g∇µ

∂ρ

∂fAµ

. (2.28)

Here the identity for the divergence of a vector ∇µU
µ = 1√

−g
∂µ(

√
−gUµ) has been used.

The other derivative is
∂L
∂fA

=
√
−g ∂ρ

∂fA
. (2.29)

Putting this together the Euler-Lagrange equations ∂
∂xµ

∂L
∂fA

µ
− ∂L

∂fA = 0 become (as the
determinant of the metric is non-vanishing and can be cancelled out)

EA = ∇µ
∂ρ

∂fAµ

− ∂ρ

∂fA
= 0. (2.30)

The energy-momentum tensor can be derived by varying the action with respect to the
metric (see e.g. [3]):

Tµν = − 2√
−g

δS

δgµν
. (2.31)

Applying this to the Lagrangian L =
√
−gρ leads to

− 2√
−g

(︃
−1

2
√
−g

∂ det g

∂gµν
ρ+

√
−g ∂ρ

∂gµν

)︃
. (2.32)

The formula ∂ det(A)
∂Aij

= det(A)
(︁
A−1

)︁
ji

is used to evaluate the derivative of the determinant
(proof in Appendix of [2]). Following the sign convention used in [1] we choose the negative
root and therefore the energy-momentum tensor takes the form

Tµν = −ρgµν + 2
∂ρ

∂gµν
. (2.33)

To find an expression for ∂ρ
∂gµν we investigate the Lie Derivative of the total energy density.

As ρ is assumed to transform as a scalar we can, on the one hand, evaluate the Lie
Derivative directly:

Lξρ = ξµ∂µρ(f
A, ∂νf

A; gαβ) = ξµ
(︃
∂ρ

∂fA
∂µf

A +
∂ρ

∂fA,α

∂µf
A
,α +

∂ρ

∂gαβ
∂µg

αβ

)︃
. (2.34)

But on the other hand we can also use the chain rule for the Lie Derivative:

Lξρ =
∂ρ

∂fA
Lξf

A +
∂ρ

∂fA,α

Lξf
A
,α +

∂ρ

∂gαβ
Lξg

αβ

=
∂ρ

∂fA
ξµ∂µf

A +
∂ρ

∂fA,α

(︁
ξµ∂µf

A
,α + fA,µ∂αξ

µ
)︁ ∂ρ

∂gαβ
(︁
ξµ∂µg

αβ − gµβ∂µξ
α − gαµ∂µξ

β
)︁

8



2.3 Lagrangian formalism and Energy-Momentum Tensor

Since this two expressions should give the same result, we can subtract them from each
other and find (︃

∂ρ

∂fA,µ

fA,α − 2
∂ρ

∂gαβ
gβµ
)︃
∂µξ

α = 0 (2.35)

after renaming dummy indices and using that gµν is symmetric. Since this is true for
arbitrary ξα we obtain

gµν
∂ρ

∂fA,µ

fA,α = 2
∂ρ

∂gαν
(2.36)

where we have also multiplied by the metric gµν . This can now be put back into the
expression for the stress-energy tensor (2.33):

Tµν = −ρgµν + gµα
∂ρ

∂fA,α

fA,ν (2.37)

The version with one index pulled up using the metric is

Tµ
ν = −ρδµν +

∂ρ

∂fA,µ

fA,ν . (2.38)

From the fact that energy is conserved, it follows that this tensor is divergence-free, i.e.
∇µT

µ
ν . This condition is equivalent to the Euler-Lagrange equations being satisfied

EA = 0, which can be checked by calculating ∇µT
µ
ν using the chain rule for the covariant

derivative:

∇µT
µ
ν = −δµν∇µρ(f

A, fA,α; gαβ) +∇µ

(︃
∂ρ

∂fA,µ

fA,ν

)︃
= − ∂ρ

∂fA
∇νf

A − ∂ρ

∂fA,α

∇νf
A
,α − ∂ρ

∂gαβ
∇νg

αβ +

(︃
∇µ

∂ρ

∂fA,µ

)︃
fA,ν +

∂ρ

∂fA,µ

∇µf
A
,ν

The term containing the covariant derivative of the metric vanishes, since the Levi-Civita
connection is metric compatible. Moreover the second and the last term cancel each other,
since we have already seen that fA;µν = fA;νµ, the covariant derivative is symmetric
when acting on a scalar function. Then what remains is(︃

∂ρ

∂fA
−∇µ

∂ρ

∂fA,µ

)︃
fA,ν = EAfA,ν = 0 (2.39)

so that the Euler-Lagrange equations and the vanishing of the divergence of the EM-tensor
are indeed equivalent.

2.3.1 Stored Energy Function

In this section we look closer at the dependence of the energy density on its arguments
ρ = ρ(fA(xµ), ∂µf

A(xν); gµν). First notice, that the contraction of the derivative with
respect to the metric components, with the four-velocity vµ vanishes.

∂ρ

∂gµν
vµ =

1

2
gαν

∂ρ

∂fA,α

fA,µv
µ = 0 (2.40)

9



Chapter 2 Relativistic Elasticity

The relation (2.36) has been used for the first equality. The second equality follows
because the four-velocity is, by definition (2.4), orthogonal to the configuration gradient.
Now we add a term avµvν to the metric and see how ρ = ρ(fA(xµ), ∂µf

A(xν); gµν+avµvν)
changes with the parameter a:

dρ

da
=

∂ρ

∂gµν
vµvν = 0. (2.41)

That means ρ is independent of a and we can equate the cases a = 0 and a = 1

ρ(fA, ∂µf
A; gµν) = ρ(fA, ∂µf

A; gµν + vµvν) = ρ(fA, ∂µf
A; lµν) (2.42)

so that we find that the dependence of the energy density on gµν can be turned into a
dependence on lµν . But relation (2.13) tells us that lµν contains the same information as
the deformation BAB so that

ρ = σ
(︂
fA, ∂µf

A;BAB(fC,µ, g
αβ)
)︂

(2.43)

where σ has been used to indicate that the dependence on the deformation is different
than the dependence on the metric. Next we look at the dependence on the configuration
gradient by using the total derivative:

∂ρ

∂fA,ν

fA,µ =
dσ

dfA,ν

fA,µ =

(︃
∂σ

∂fA,ν

+
∂σ

∂BCD

∂BCD

∂fA,ν

)︃
fA,µ

=
∂σ

∂fA,ν

fA,µ +
∂σ

∂BCD
2δ

(C
A fD)νfA,µ (use equation (2.15))

=
∂σ

∂fA,ν

fA,µ +
∂σ

∂BCD
2fDνfC,µ

But we also have relation (2.36) so that we can write:

∂ρ

∂fA,ν

fA,µ = 2
∂ρ

∂gµβ
gβν = 2

∂σ

∂BCD

∂BCD

∂gµβ
gβν = 2

∂σ

∂BCD
fC,µf

D
,βg

βν (2.44)

where in the final equality relation (2.14) has been used. Subtracting these two expressions
from each other one obtains

∂σ

∂fA,ν

fA,µ = 0 (2.45)

and, since fA,µ has full rank, this is only true if

∂σ

∂fA,ν

= 0 (2.46)

which means that σ doesn’t depend on the deformation gradient explicitly, and hence the
total energy density can be written as

ρ = ρ(fA, BAB). (2.47)

10



2.4 Cauchy Stress Tensor

As we have seen in equation (2.26) the particle number density has the same arguments
and therefore we can write the energy density as a product

ρ = nw (2.48)

defining the energy per particle w = w(fA, BAB), also called stored energy function. A
relation between stresses and strains can be derived from w (as we will see in the next
section) so that the stored energy function contains the same information as the equation
of state.

2.4 Cauchy Stress Tensor

In equation (2.37) we have seen an expression for the energy-momentum tensor:

Tµν = −ρgµν + gµα
∂ρ

∂fA,α

fA,ν . (2.49)

We can contract it with the four-velocity vµ to find

Tµνv
ν = −ρgµνvν + gµα

∂ρ

∂fA,α

(fA,νv
ν) = ρvµ + 0 = ρvµ. (2.50)

Using this we can rewrite Tµν as the sum of a part along vµ and a part ’orthogonal’ to
vµ, which we call the Cauchy-stress tensor σµν :

Tµν = ρvµvν − σµν . (2.51)

The Cauchy-stress tensor has to satisfy σµνvν = 0 and is symmetric (since Tµν also was
symmetric). To find an explicit expression we use relation (2.8) to rewrite (2.33)

Tµν = −ρ(lµν − vµvν) + 2
∂ρ

∂gµν
(2.52)

and read off
σµν = ρlµν − 2

∂ρ

∂gµν
. (2.53)

For an interpretation we write the energy-momentum tensor in coordinates of the rest
frame of the particles, i.e. vµ = ∂t:

Tµν =

⎛⎜⎜⎝
ρ 0 0 0
0
0 −σij
0

⎞⎟⎟⎠ . (2.54)

This leads to think of ρ as the total energy density and σij as the internal stresses exerted
on a volume element by its surroundings. To get an expression for the Cauchy-stress

11



Chapter 2 Relativistic Elasticity

tensor in terms of the stored energy function we evaluate the derivative in (2.53) using
(2.48):

∂ρ

∂gµν
=

∂ρ

∂lµν
=
∂(nw)

∂lµν
=

∂n

∂lµν
w + n

∂w

∂lµν
. (2.55)

The first equality holds because of equation (2.42). For the derivative of n we use equation
(2.25), n = Ω(fA)

√︁
det(BAB).

∂n

∂lµν
=

Ω

2
√︁
det(BAB)

∂ det(BAB)

∂lµν

=
Ω2

2n

∂ det(BAB)

∂BCD

∂BCD

∂lµν

=
Ω2

2n
det(BAB)CCDf

C
µf

D
ν (used eq. (2.14))

=
n

2
lµν (eq. (2.8))

Now this can be plugged back into the previous relation to find:

∂ρ

∂gµν
=
n

2
lµνw + n

∂w

∂lµν
=
ρ

2
lµν + n

∂w

∂lµν
. (2.56)

With this the Cauchy-stress tensor (2.53) becomes

σµν = ρlµν − 2

(︃
ρ

2
lµν + n

∂w

∂lµν

)︃
= 2n

∂w

∂lµν
. (2.57)

Knowing this relation between stresses (σµν) and strain (lµν) is equivalent to knowing
the equation of state.

2.5 Classical Wave Equation for Small Displacements

In this section we want to derive the equations of motion for small displacements, and
compare it to the classical wave equation for elastic waves in media found in textbooks of
classical Elasticity Theory, e.g. [8]. We start with the assumption that in equilibrium
the coordinates of both manifolds (body and spacetime) coincide and the particles of the
body are at rest:

fA(xµ) = xA, vµ = (1, 0, 0, 0). (2.58)

Now we add a small displacement ϵuA, ϵ≪ 1, from equilibrium

fA(xµ) = xA − ϵuA(xµ). (2.59)

This also adds a small spatial velocity to the four-velocity of the particles

vµ = (1, ϵw⃗). (2.60)
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2.5 Classical Wave Equation for Small Displacements

Now we can check the orthogonality condition vµ∂µfA = 0:

0
!
= vµ(δAµ − ϵ∂µu

A) (2.61)

= ϵwA − ϵv0∂tu
A − ϵvi∂iu

A (2.62)

= ϵwA − ϵ∂tu
A − ϵ2wi∂iu

A (2.63)

Ignoring the O(ϵ2) term this leads to

wA = ∂tu
A (2.64)

and hence the four-velocity becomes

vµ = (1, ϵ∂tu
i) (2.65)

which is very intuitive since we would classically expect, that the velocity is the time-
derivative of the displacement. We have seen, that the equations of motion can be derived
from the condition that the energy-momentum Tensor

Tµν = ρvµvν − σµν (2.66)

is divergence-free. We use an linear approximation in ϵ for the Cauchy-stress tensor. The
constant term is set to zero because there are no stresses when the deformation vanishes.

σµν = ϵsµν (2.67)

Next we look at ρ = nw and expand both n and w in orders of ϵ.

n = n0 + ϵn1 (2.68)

w = m0 + ϵ2e (2.69)
ρ0 := n0m0 (2.70)

In analogy to Hook’s law, the linear term for w vanishes, which represents the fact that
stored energy function has a minimum in equilibrium (without deformation, i.e. ϵ = 0).
Then e can be interpreted as some parameter similar to a spring constant per atom. m0

is the rest mass and ρ0 the rest energy density. With this we can now calculate the
divergence of the EM tensor:

∇µT
µν = ∇µ(nwv

µvν)−∇µσ
µν (2.71)

= ∇µ(nv
µ)wvν + nvµ∇µ(wv

ν)−∇µσ
µν (2.72)

The first term now vanishes because of the continuity equation (2.22) as Jµ = nvµ. As
we are considering the classical case here, the spacetime metric becomes the Minkowski
metric of flat spacetime gµν = ηµν , which also means that the covariant derivatives can
be replaced by partials ∇µ → ∂µ. With this, the divergence of the EM-tensor becomes

∂µT
µν = nvµ∂µ(wv

ν)− ∂µσ
µν . (2.73)
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Chapter 2 Relativistic Elasticity

These are four equations, one for each value of ν. The time component and spatial
components are considered separately, as the Cauchy-stress tensor has only spatial
components. This can be seen as follows:

vµσµν = v0σ0ν + viσiν = σ0ν + ϵ∂tu
iϵsiν (2.74)

as σµν is introduced in (2.51) as the part of Tµν which is orthogonal to vµ we have
vµσµν = 0 and hence the expression above must vanish. But since the last term is O(ϵ2)
one obtains

σ0ν = 0 (2.75)

so that the Cauchy-stress tensor has only spatial components. As a consequence the
divergence of σµν in (2.73) can be restricted to spatial indices

∂µT
µν = nvµ∂µ(wv

ν)− ∂iσ
iν . (2.76)

We first consider the time component ν = 0 where only the first term remains as the
time-component of the Cauchy-stress tensor in the last term vanishes:

∂µT
µ0 = nvµ∂µ(wv

0) = nvµ∂µ(m0 + ϵ2e) = ϵ2nvµ∂µe = O(ϵ2). (2.77)

As we are working only up to order ϵ2 this is satisfied and we get no new condition. The
other components with ν = j = 1, 2, 3 are more interesting.

∂µT
µj = nvµ∂µ(wv

j)− ∂iσ
ij

= nvµ∂µ((m0 + ϵ2e)ϵ∂tu
j)− ∂iσ

ij

= (n0 + ϵn1)∂t(m0ϵ∂tu
j) + nϵ∂tu

i∂i(m0ϵ∂tu
j)− ∂iσ

ij

= ϵn0m0∂
2
t u

j − ∂iσ
ij

= ϵρ0∂
2
t u

j − ∂iσ
ij = 0

(2.78)

This is the desired equation of motion for the displacement ui. To turn it into the classical
wave equation we need to get an explicit expression for the Cauchy-stress tensor. For this
we introduce the Saint Venant-Kirchhoff model of a hyperelastic isotropic material with
the Cauchy-stress tensor

σij = λEδij + 2µEij (2.79)

and the Green-strain tensor
Eij =

1
2(Cij − γij) (2.80)

which describes the deformation relative to a reference deformation γij in the rest frame,
and its trace E = Ek

k . Here we have γij = δij . Cij is the Cauchy-Green deformation
tensor from section 2.1, where it was denoted CAB . We can find an explicit expression in
terms of the deformation ui by remembering, that it is the inverse of BAB.

BAB = ∂µf
A∂νf

Bηµν

= (δAµ − ϵ∂µu
A)(δBν − ϵ∂νu

B)ηµν

= ηAB − ϵ(ηAν∂νu
B + ηµB∂µu

A) +O(ϵ2)

= δAB − ϵ(∂AuB + ∂BuA) +O(ϵ2)

(2.81)
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2.5 Classical Wave Equation for Small Displacements

It is easy to check, that the inverse up to order O(ϵ2) is given by

CAB = δAB + ϵ(∂AuB + ∂BuA). (2.82)

Putting this back into the Green-strain tensor one obtains

EAB = 1
2ϵ(∂AuB + ∂BuA) (2.83)

with trace
E = Ek

k = ϵ∂ku
k. (2.84)

Finally this leads to the Cauchy-stress tensor in the following form:

σij = ϵ[λ∂ku
kδij + µ(∂iuj + ∂jui)]. (2.85)

As we saw in equation (2.78) the equations of motion contain the divergence of σij (indices
raised with the Minkowski metric) which can now calculated to be

∂iσ
ij = ϵ[λ∂i∂ku

kδij + µ(∂i∂
iuj + ∂i∂

jui)]

= ϵ[(λ+ µ)∂j∂iu
i + µ∆uj ]

so that finally the equations of motion read

ϵ[ρ0∂
2
t u

j − (λ+ µ)∂j∂iu
i − µ∆uj ] = 0. (2.86)

The part in the brackets is indeed equivalent to the wave equation of classical elasticity
theory.

15





Chapter 3

Setup of Plate and Gravitational Wave

In the previous chapter we derived the equations of motion of an elastic body in the case
of small displacements. Then we used the Minkowski metric to retrieve the classical limit.
In this chapter we want to consider how the equations of motion change, when we use a
metric describing a gravitational wave background.

Then we also look at the boundary conditions for a free quadratic plate of length L
lying in the x-y plane. We look at the concrete case where the gravitational wave travels
in z-direction, so it hits the plate at a right angle.

Next, two simplifications are discussed. First that the time dependence can be separated
off, so that the problem can be considered stationary. And second, that we can restrict
the size of the plate to a length of L = 1m, because all other cases can be obtained by a
simple scaling argument.

For the two special case of pure plus-polarization and pure cross-polarization the
boundary value problem exhibits a symmetry. These are discussed in sections 3.6 and 3.7.
The final two sections describe a polynomial solution for these two special cases, in the
limit of small frequencies.

3.1 Gravitatonal Waves and TT-Coordinates

Gravitational Waves belong to the most interesting phenomena predicted by Einstein’s
General Theory of Relativity. First predicted by Einstein himself in 1916, they were
long considered to have too weak effects to ever be measurable. The long history of how
scientists struggled to overcome the odds and measure them is related elsewhere, for
instance in [4]. Suffice it to say that it culminated in the first detection of GWs, created
by the merger of a binary black hole in 2015 by LIGO. The Nobel Prize in Physics 2017
was awarded for this achievement.

Far from the source, GWs are weak and therefore can be described using linearized
gravity. The metric has the form

gµν = ηµν + ϵhµν (3.1)

consisting of the Minkowski metric of flat spacetime ηµν plus some perturbation ϵhµν
with ϵ≪ 1. Typical values for ϵ are 10−20. Terms of order O(ϵ2) and smaller are ignored
from now on. The inverse is then given by

gµν = ηµν − ϵhµν . (3.2)
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Chapter 3 Setup of Plate and Gravitational Wave

It is convenient to work in the TT gauge, which is adapted to the gravitational wave such
that free particles remain at fixed coordinates.

The metric perturbation satisfies the linearized Einstein equations and has the form
hµν = ℜ(Aµνe

ikµxµ
) with constants Aµν , which in general can be complex. The wave

vector kµ is null kµkµ = 0 and for a wave traveling in z-Direction looks like

kµ = (ω, 0, 0, ω) (3.3)

where ω is the (angular) frequency of the gravitational wave. Moreover in the TT(transverse
traceless)-gauge it holds that

Aµνk
ν = 0, Aµ

µ = 0 (3.4)

so that

hij =

⎛⎝h+ h× 0
h× −h+ 0
0 0 0

⎞⎠ (3.5)

with h+ = A+ cos(ω(t− z)) and h× = A× cos(ω(t− z) + γ) where A+ and A× are real
constants and give the relative amplitudes of the two polarizations. The time origin can
be chosen such that A11 is real. In case of complex A12 = A×e

iγ , the phase shift between
the two polarizations is given by γ. The proof that gauge transformations which bring the
metric into this form exists can be found in many textbooks of GR (e.g. [5], [3] or [11])

3.2 Equations of Motion for a Quadratic Plate

In section 2.5 we have seen that the general equations of motion in the case of small
displacements are related to the vanishing of the energy-momentum tensor ∇µT

µν = 0.
Moreover we saw that for the case of flat spacetime this turns into the classical equations
for elastic waves in media (2.86). To describe the behaviour of an elastic plate in a
gravitational wave background this approach has to be slightly adjusted. This and the
next section is again based on the procedure in [7].

Instead of the Minkowski metric we now use the linearized metric from section 3.1.
The perturbation of the metric is of order O(ϵ) and so are its derivatives. The Christoffel
Symbols in the covariant Derivative contain first derivatives of the metric so they are also
of order O(ϵ). In the divergence of the EM-tensor (2.71) the covariant derivative acts only
on quantities which are themselves of order O(ϵ) so that it differs from the partial only
by terms of O(ϵ2). Therefore we can again replace the covariant Derivative by partials.

The second difference lies in the Cauchy-stress tensor. In contrast to before, where we
inserted the Minkowski metric in equation (2.81), we now use the spacetime metric gµν ,
so that the strain BAB becomes

BAB = ∂µf
A∂νf

Bgµν

= (δAµ − ϵ∂µu
A)(δBν − ϵ∂νu

B)(ηµν − ϵhµν)

= ηAB − ϵ
(︁
ηAν∂νu

B + ηµB∂µu
A + hAB

)︁
+O(ϵ2)

= δAB − ϵ
(︁
∂AuB + ∂BuA + hAB

)︁
+O(ϵ2).

(3.6)
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3.3 Boundary Conditions

The inverse of this (up to terms of order O(ϵ2)) is given by

CAB = δAB + ϵ (∂AuB + ∂BuA + hAB) (3.7)

which can then be inserted into the expression for the Cauchy-stress tensor, for which
one obtains

σij = ϵ[λ∂ku
kδij + µ(∂iuj + ∂jui + hij)]. (3.8)

In the equations of motion only the divergence of the CS-tensor ∂iσij appears. The
new term in this expression is ∂ihij . But this vanishes in the TT-gauge because of the
transversality condition. Therefore the equations of motion are unchanged:

∂2t u
j − λ+ µ

ρ0
∂j∂iu

i − µ

ρ0
∆uj = 0 (3.9)

We consider a quadratic plate lying in the x-y plane centered at the origin, i.e. (x, y) ∈[︁
−L

2 ,
L
2

]︁
×
[︁
−L

2 ,
L
2

]︁
=: P . The plate is assumed to be thin so that the deformation is

independent of the z-direction, i.e. ui = ui(x, y). Moreover, only the in-plane deformations
are considered, i.e. uz ≡ 0. Then the indices can be restricted to the values i, j... = 1, 2
or i, j... = x, y.

3.3 Boundary Conditions

To arrive at a well-posed boundary value problem we need, in addition to the equations of
motion (3.9), boundary conditions. These prescribe the forces Fi acting on the body, and
are given by the contraction of the outward pointing normal vector with the Cauchy-stress
tensor σijnj = Fi. We consider a free plate, with no forces acting on it, i.e. σijnj = 0 at
the boundary ∂P . The boundary can be split into two parts (see Figure 3.1):

• The ’right’ and ’left’ boundary ∂Px where x = ±L
2 and the normal vector is given

by n⃗ = (±1, 0). Hence the boundary condition there is σ1j = σxj = 0.

• The ’top’ and ’bottom’ boundary ∂Py where y = ±L
2 and the normal vector is given

by n⃗ = (0,±1). Hence the boundary condition there is σ2j = σyj = 0.

In general, one would also need to consider the forces acting on the z = const. surfaces.
There the normal vector is ni = (0, 0, 1), such that σijnj = σi3. Looking at the expression
for the CS-tensor (3.8) one can see, that the off-diagonal components vanish σ13 = σ23 = 0.
This is, because the deformation depends only on the coordinates in the plane, and has
vanishing z-component. Moreover, the GW has hi3 = 0. Then F (z)

3 = ϵλ ∇ · u⃗ is the force
needed to keep the plate flat, which can be calculated once we have solved the PDE and
satisfied the two boundary conditions above. But it is not itself part of the BVP. 1

1An alternative approach for thin plates is to set σzz to zero instead. Then uz would be determined by
the other two components. In that case the longitudinal wave speed would need to be modified, see
[8].
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Chapter 3 Setup of Plate and Gravitational Wave

Figure 3.1: Illustration of the boundary, which splits into two parts ∂Px and ∂Py, and
the outward-pointing normal vectors.

It turns out to be convenient to rewrite the boundary conditions in the following form:

σxx|∂Px = 0 =⇒ (2µ+ λ)∂xu
x + λ∂yu

y = −µh+
σyy|∂Py = 0 =⇒ (2µ+ λ)∂yu

y + λ∂xu
x = µh+

σxy|∂P = 0 =⇒ ∂xu
y + ∂yu

x = −h×
(3.10)

where we denote h+ = h11 = −h22 and h× = h12 = h21. It is interesting to note, that the
gravitational wave enters only through the boundary conditions and doesn’t appear in
the equations of motion. But, one has to keep in mind that this is coordinate dependent.

3.4 Separation of Time-Dependence

In analogy to a Harmonic oscillator, driven by a periodic force, we assume that the plate
is driven by the GW, and oscillates with its frequency ω. Therefore we make the ansatz
ui = cos(ωt) φi(x, y). Plugging this into the equation (3.9) yields an equation only for
φi(x, y):

ω2φi +
µ

ρ0
∆φi +

µ+ λ

ρ0
∂i∂kφ

k = 0. (3.11)

Remark: It is sufficient to solve the BVP for both pure polarization cases, i.e. once
with A× = 0 and once with A+ = 0. Since the equations and boundary conditions are
linear, the general solution is then a superposition of these two solutions. In case of a
complex A12 the cross-polarization picks up a phase-factor γ, i.e. cos(ωt+ γ).
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3.5 Scaling behaviour with L

The same factor can also be split off from the boundary conditions. They can then be
written as three equations:

σxx|∂Px = 0 =⇒ (2µ+ λ)∂xφ
x|∂Px + λ∂yφ

y|∂Px = −µA+

σyy|∂Py = 0 =⇒ (2µ+ λ)∂yφ
y|∂Py + λ∂xφ

x|∂Py = µA+

σxy|∂P = 0 =⇒ ∂xφ
y|∂P + ∂yφ

x|∂P = −A×

(3.12)

Remark: Is it justified to write the time-dependence as cos(ωt), i.e. shouldn’t be there
a phase shift α relative to the gravitational wave so that the time-dependence looks like
cos(ωt− α)? There are two answers to this:

• For the one-dimensional harmonic oscillator the phase shift depends on the damping
factor. In particular, there is no phase shift when there is no damping. As there is
no damping in our model, we expect that there is no phase shift. This analogy is
confirmed by the second argument.

• We consider the complex valued function ūi and take ui = ℜ(ūi) the physical solution
to be only the real part. The separation ansatz then looks like this: ūi = ei(ωt−α)φ̄i

with a phase-shift α. But the phase factor e−iα can also be included in the complex
spatial part so that we have ūi = eiωtφ̄i. With this modified ansatz we get the same
equation (3.11). Since there are no factors i in the equation and it is linear, it is
satisfied by the real and imaginary parts on their own. Looking at the boundary
conditions (3.10) we see that eiωt can be factored out of the Cauchy-stress tensor (3.8).
Aij is purely real, so that only the real part feels the influence of the gravitational
wave. The imaginary part satisfies the boundary conditions for eigenmodes and
hence it exists only for very specific GW-frequencies, namely the eigenfrequencies
so that the solution is in general again real and hence there is no phase shift. This
would change if damping is implemented.

3.5 Scaling behaviour with L

In this section we argue that it is enough to solve equation (3.11) for L = 1 and arbitrary
ω because the solution for all other L can be deduced from this. It is convenient to
introduce ’scaled’ coordinates x̄i = xi

L which implies for the derivatives ∂xi = 1
L∂x̄i . Using

this (and also dividing by ω2) equation (3.11) becomes

φi +
c22

ω2L2
∆φi +

c23
ω2L2

∂i∂kφ
k = 0 (3.13)

with the constants c21 =
2µ+λ
ρ0

, c22 =
µ
ρ0

and c23 = c21 − c22 =
µ+λ
ρ0

. In an abuse of notation
we denote the new coordinates again by xi (without the bar). Moreover, we define the
normalized wave-speeds cī = ci

ωL so that the PDE turns into

φi + c̄22∆φ
i + c̄23∂

i∂kφ
k = 0. (3.14)
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Chapter 3 Setup of Plate and Gravitational Wave

Using the new coordinates in the boundary conditions and multiplying by a factor of L
one obtains from equation (3.12)

(2µ+ λ)∂xφ
x|∂Px + λ∂yφ

y|∂Px = −µLA+

(2µ+ λ)∂yφ
y|∂Py + λ∂xφ

x|∂Py = µLA+

∂xφ
y|∂P + ∂yφ

x|∂P = −LA×

(3.15)

where only the right hand side has changed. Now we assume that we have the solution to
this BVP for some ω and L. Then we can scale the length by some factor a to aL and at
the same time change the frequency to ω

a . Since only the product ωL appears in (3.14)
this doesn’t change the solution. Moreover, the PDE is linear so that we can multiply the
solution by the constant a and still have a solution. If one then puts aφi into the left
side of the boundary conditions (3.15) (which are also linear) one obtains a times the old
right hand side, which is exactly what is needed to solve the new BVP.

3.6 Symmetry for pure plus-polarized Gravitational Wave

For the two special cases of pure plus or pure cross polarization the boundary value
problem exhibits certain symmetries which we explore in this and the next section.
Assuming that the problem is well-posed and hence the solution is unique (see [13]), this
also leads to a symmetry in the solution. The PDE (3.11) can be rewritten in matrix
form with the help of the differential operator D

D :=

(︃
ω2 + c21∂

2
x c22∂

2
y + c23∂x∂y

∂2x + c23∂x∂y ω2 + c21∂
2
y

)︃
(3.16)

as Dφ⃗(x, y) = 0. There are two sets of boundary conditions in equation (3.12), namely
σijn

j vanishing on the ∂Px boundary and σijnj vanishing on the ∂Py boundary. Writing
them in Matrix form gives:

B1φ⃗(x, y)|∂Px :=

(︃
(2µ+ λ)∂x λ∂y

∂y ∂x

)︃
φ⃗(x, y)|∂Px =

(︃
−µA+

−A×

)︃
=: C1 (3.17)

B2φ⃗(x, y)|∂Py :=

(︃
∂y ∂x
λ∂x (2µ+ λ)∂y

)︃
φ⃗(x, y)|∂Py =

(︃
−A×
µA+

)︃
=: C2 (3.18)

where the matrices B1 and B2 as well as the vectors C1 and C2 have been introduced.
The symmetry transformation for the plus-polarization case (i.e. A× = 0), which we
investigate here, is given by the matrix

S+ :=

(︃
0 −1
−1 0

)︃
. (3.19)

First we look at the action of the symmetry transformation on the differential operator:

S+DST
+ =

(︃
ω2 + c21∂

2
y ∂2x + c23∂x∂y

c22∂
2
y + c23∂x∂y ω2 + c21∂

2
x

)︃
(3.20)
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3.6 Symmetry for pure plus-polarized Gravitational Wave

This looks again very similar to the original operator, except that the names of the x-
and y variables have been exchanged. The unknown function turns, under this symmetry
transformation, into

S+φ⃗(x, y) =

(︃
−φy(x, y)
−φx(x, y)

)︃
. (3.21)

We now define a new vector φ⃗ ′(x, y) = −φ⃗(y, x) to deal with the renaming of variables.
The boundary conditions transform as follows:

S+B1ST
+ =

(︃
∂x ∂y
λ∂y (2µ+ λ)∂x

)︃
(3.22)

S+B2ST
+ =

(︃
(2µ+ λ)∂y λ∂x

∂x ∂y

)︃
(3.23)

S+C1 =
(︃

0
µA+

)︃
= C2 S+C2 =

(︃
−µA+

0

)︃
= C1 (3.24)

So under multiplication by S+ the boundary value problem gets transformed into it-
self(inserting ST

+S+ = S2
+ = I ):

Dφ⃗ = 0 −→ S+DST
+S+φ⃗ = Dφ⃗ ′ = 0

B1φ⃗ = C1 −→ S+B1ST
+S+φ⃗ = S+C1 ⇐⇒ B2φ⃗

′ = C2
B2φ⃗ = C2 −→ S+B2ST

+S+φ⃗
′ = S+C2 ⇐⇒ B1φ⃗

′ = C1

So we have a solution φ⃗ and a solution φ⃗ ′ to the same problem. But since the solution is
unique this means that φ⃗ = φ⃗ ′ and in particular

φy(x, y) = −φx(y, x). (3.25)

To see why this is true, think of the plate at times t = 0 and half a period later at t = T
2 .

Because the plate is quadratic, someone looking at the plate from the x-direction at t = 0
should see the same behaviour as someone looking from the y-direction at t = T

2 . The
effect of the GW relative to the observer is the same in both cases so the response of the
plate should be the same as well. The minus sign comes from the factor of cos(ωT2 ) = −1
in front of φ.

Now assume the x-component of the PDE (3.11) is satisfied:

ω2φx(x, y) + c21∂
2
1φ

x(x, y) + c22∂
2
2φ

x(x, y) + c23∂1∂2φ
y(x, y) = 0. (3.26)

Then the other component of the equation is

ω2φy(x, y) + c22∂
2
1φ

y(x, y) + c21∂
2
2φ

y(x, y) + c23∂1∂2φ
x)(x, y). (3.27)
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Chapter 3 Setup of Plate and Gravitational Wave

The partial derivatives can be related to the other component:

∂1φ
y(x, y) = −∂2φx(y, x) ∂21φ

y(x, y) = −∂22φx(y, x) (3.28)

∂2φ
y(x, y) = −∂1φx(y, x) ∂22φ

y(x, y) = −∂21φx(y, x) (3.29)
∂1∂2φ

x(x, y) = −∂2∂1φy(y, x). (3.30)

Using this, (3.27) becomes

−
[︁
ω2φx(y, x) + c22∂

2
2φ

x(y, x) + c21∂
2
1φ

x(y, x) + ∂2∂1φ
y(y, x)

]︁
= 0 (3.31)

which is satisfied automatically if (3.26) is already satisfied. What’s confusing about the
symmetry is, that the role of x and y is exchanged. The way to think about this is that
we have a function

φi : R2 → R (3.32)

which takes two arguments and returns a number. What we call these arguments doesn’t
really matter. If we take the derivative with respect to one of the arguments ∂iϕj we
again have a function with two arguments, and the name of these has no influence on the
derivatives.

One can also use this to simplify the boundary conditions.

σxx|∂Px = ϵ[(2µ+ λ)∂1φ
x(±1

2 , y) + λ∂2φ
y(±1

2 , y) + µA+]

= ϵ[(2µ+ λ)∂1φ
x(±1

2 , y)− λ∂1φ
x(y,±1

2) + µA+] = 0

σyy|∂Py = ϵ[(2µ+ λ)∂2φ
y(x,±1

2) + λ∂1φ
x(x,±1

2)− µA+]

= ϵ[−(2µ+ λ)∂1φ
x(±1

2 , x) + λ∂1φ
x(x,±1

2)− µA+] = 0

These two expressions are the same (up to a minus sign), only in the first case the
argument is called y, while in the second it’s called x. So, if the condition that σxx
vanishes on ∂Px is fulfilled, then automatically also the condition that σyy vanishes on
∂Py is satisfied. The condition of σxy vanishing on the whole boundary can be simplified
similarly (and for now we keep the A× term):

σxy|∂P = ϵµ[∂1φ
y(x, y) + ∂2φ

x(x, y) +A×)]

= ϵµ[−∂2φx(y, x) + ∂2φ
x(x, y) +A×)] = 0.

This can be evaluated once at x = ±1
2 and once at y = ±1

2 :

σxy(±1
2 , y) = ϵµ[−∂2φx(y,±1

2) + ∂2φ
x(±1

2 , y) +A×)] = 0

σxy(x,±1
2) = ϵµ[−∂2φx(±1

2 , x) + ∂2φ
x(x,±1

2) +A×)] = 0.

When these two cases are added to each other (with the same argument, x = y) the ∂2φx

terms cancel and what remains is 2ϵµA× = 0. This confirms that this symmetry only
describes the case for pure plus-polarization, i.e. A× = 0. This boundary condition then
becomes very simple:

∂2φ
x(±1

2 , s) = ∂2φ
x(s,±1

2) (3.33)

The partial derivative in y-Direction is symmetric in its arguments on the boundary.
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3.7 Symmetry for purely cross-Polarized Gravitational Wave

Summary:
BVP before:

Dφ⃗(x, y) = 0, B1φ⃗(x, y) = C1, B2φ⃗(x, y) = C2 (3.34)

Apply Symmetry S+ and rename x and y into each other.

S+ :=

(︃
0 −1
−1 0

)︃
, φ⃗ ′(x, y) = −φ⃗(y, x) (3.35)

BVP after:

Dφ⃗ ′(x, y) = 0, B1φ⃗
′(x, y) = C1, B2φ⃗

′(x, y) = C2 (3.36)

Due to the uniqueness of the solution φ⃗ ′(x, y) = φ⃗(x, y) and

φy(x, y) = −φx(y, x). (3.37)

So that the whole BVP is satisfied when

ω2φx(x, y) + c21∂
2
1φ

x(x, y) + c22∂
2
2φ

x(x, y)− c23∂1∂2φ
x(y, x) = 0. (3.38)

(2µ+ λ)∂1φ
x(±1

2 , y)− λ∂1φ
x(y,±1

2) + µA+ = 0 (3.39)

∂2φ
x(±1

2 , s) = ∂2φ
x(s,±1

2) (3.40)

are solved.

This symmetry is used in section 3.8 to find a solution for the low frequency limit. For the
general analysis in the following chapters it is not useful, because it describes only special
cases, and the simplifications it would bring, are not enough to do the whole analysis
twice.

3.7 Symmetry for purely cross-Polarized Gravitational Wave

In the case with a purely cross-polarized Gravitational Wave the symmetry looks similar,
except for the missing minus sign in front:

S× :=

(︃
0 1
1 0

)︃
. (3.41)

The matrices D,B1 and B2 transform in the same way as before, since the two factors of
−1 cancel each other. Only the transformed vectors look different:

φ⃗ ′(x, y) = S×φ⃗(y, x) =

(︃
φy(y, x)
φx(y, x)

)︃
(3.42)
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Chapter 3 Setup of Plate and Gravitational Wave

S×C1 =
(︃
−A×
0

)︃
= C2 S×C2 =

(︃
0

−A×

)︃
= C1 (3.43)

By the same argument as before (BVP gets transformed into itself and uniqueness of
solution) we again have φ⃗ = φ⃗ ′ and hence

φy(x, y) = φx(y, x). (3.44)

3.8 Small frequency limit for plus-Polarization

Based on the Symmetry of the previous section and the assumption that ε := ωL
c1

is small,
we want to find a approximate solution in form of a polynomial up to third degree. It is
important to note that this ε is different from the ϵ used to describe the strength of the
gravitational wave.

For an interpretation of ε we notice that Tc = L
c1

is the time it takes a sound wave
traveling with speed c1 to cross the plate. Then we express ω in terms of the gravitational
wave period ω = 2π

TGW
so that epsilon becomes ϵ = 2π Tc

TGW
the ratio of these two time

intervals and we call it period-ratio. Thus, the approximation applies as long as the
crossing time is small compared to the gravitation wave period. This can be the case for
a) small frequencies, b) large plates or c) very stiff materials, i.e. large c1.

We want the solution to be accurate to second order in the period-ratio so we ignore
terms O(ε3) and higher. The guess for the solution is

φx(x, y) = −Ax+Bxy2 + Cx3 (3.45)

where A,B and C are constants to be determined by the BVP. By using the symmetry
the other component is then given by

φy(x, y) = Ay −Bx2y − Cy3. (3.46)

The PDE given in a convenient form for this problem reads(when using the normalized
coordinates such that x, y ∈ [−1

2 ,
1
2 ])

ω2L2

c21
φx(x, y) + ∂21φ

x(x, y) +
c22
c21
∂22φ

x(x, y)− c23
c21
∂1∂2φ

x(y, x) = 0. (3.47)

To get the boundary conditions in terms of the same constants we divide them by ρ and
use that λ

ρ = c21 − 2c22. The condition σxx(±1
2 , y) = 0 then reads

c21∂1φ
x(±1

2 , y) + (c21 − 2c22)∂2φ
y(±1

2 , y) = (3.48)

=c21(−A+By2 + 3
4C) + (c21 − 2c22)(A− 1

4B − 3Cy2) = −Lc22A+. (3.49)
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3.8 Small frequency limit for plus-Polarization

Equating the coefficients in front of powers of y we find the following:

y2 : c21B − 3C(c21 − 2c22) = 0 =⇒ B = 3(1− 2
c22
c21
)C

y0 : −2c22A+ 3
4Cc

2
1 − (c21 − 2c22)

1
4B = −Lc22A+

−2c22A+
3

4
Cc21

(︂
1− (1− 2

c22
c21
)2
)︂
= −Lc22A+

−A+
3

8
C

c21
c22

(︂
4
c22
c21

− 4
c42
c41

)︂
= −L

2A+

A = L
2A+ + 3

2C
(︂
1− c22

c21

)︂
The other boundary condition σxy|∂P = 0 is satisfied because

σxy(x, y) = ϵµ (∂xφ
y + ∂yφ

x +A×) = ϵµ (−2Bxy + 2Bxy + 0) = 0. (3.50)

Now we go back to PDE (3.47) to find the last missing constant C:

ε2[−Ax+Bxy2 + Cx3] + 6Cx+
c22
c21
2Bx− c23

c21
2Bx = 0. (3.51)

Again we compare the coefficients:

x3 : ε2C = 0 =⇒ C ≤ O(ε)

xy2 : ε2B = 0 =⇒ B ≤ O(ε)

x : −Aε2 + 6C + 2B
c22−c23
c21

= 0

−L
2A+ε

2 + 3
2ε

2C
(︂
1− c22

c21

)︂
+ 6C + 6C(1− 2

c22
c21
)
2c22−c21

c21
= 0

6C
(︂
1− (1− 4

c22
c21

+ 4
c42
c41
)
)︂
= L

2A+ (Cε2 ≤ O(ε3))

C = L
48A+ε

2 c
2
1

c22

c21
c23

A+ is only the relative amplitude for the polarization of the GW so it is O(1). L is the
dimension of the plate which we also expect to be of O(1). The same goes for the ratio of
the wave speeds. Therefore C = O(ε2) and the condition C ≤ O(ε) are both satisfied. B
is related to C by B = 3(1− 2

c22
c21
)C. The factor between them is (in absolute value) less

than 3 so B ≤ O(ε) is also satisfied.
One can now insert all the constants into equation (3.45) to obtain the final form

φx(x, y) = L
2A+

(︂
−x+ 1

24ε
2 c

2
1

c22

c21
c23

[︂
−3

2x
(︂
1− c22

c21

)︂
+ 3

(︂
1− 2

c22
c21

)︂
xy2 + x3

]︂)︂
. (3.52)

It is very intuitive, that the solution is proportional to the amplitude of the GW A+.
Also the linear dependence on L seems reasonable, the larger the plate, the larger the
deformation. This also agrees with the scaling behaviour from section 3.5. The dominating
term is the linear behaviour −L

2A+x, and then there is a small correction term of order
O(ϵ2).
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Chapter 3 Setup of Plate and Gravitational Wave

3.9 Small frequency limit for cross-Polarization

After being successful in finding a polynomial solution for the limit of a small period-ratio
ε in the case of pure plus-polarization, we tried to do the same for a cross-polarized wave.
After a computer assisted exhaustive search for polynomials up to order 5 in x and y we
didn’t find any solution accurate up to third order in the period ration O(ε3).

There is only a very simple solution accurate up to order O(ε2):

φx = −A×
2 y (3.53)

φy = −A×
2 x (3.54)
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Chapter 4

Bulk Solutions and Eigenmodes

This chapter starts by trying to solve the BVP (3.11) and (3.12) using a finite sum of
exponential factors. This yields two sets of solutions, p-waves and s-waves, to the PDE.
It turns out that these can’t be used to satisfy the boundary conditions, which leads to a
modified spectral method as discussed in chapter 5.

In the case where there is no gravitational wave, one of the solutions can satisfy the
boundary conditions and this leads to s-wave eigenmodes, which will be described in the
last section of this chapter.

4.1 Bulk Solutions

The idea here is to write φ⃗ as a product of an amplitude vector and an exponential:

φj(x, y) = a⃗eik⃗·x⃗. (4.1)

For now, there are no restrictions on a⃗ or k⃗. Plugging this ansatz into (3.11) and this
leads to an algebraic relation for a⃗:(︃

k2
µ

ρ0
− ω2

)︃
aj +

µ+ λ

ρ0
kjkla

l = 0 (4.2)

where k = |k⃗|. This can also be expressed in matrix form:

Ba⃗ =

(︄
(k2 µ

ρ0
− ω2) + µ+λ

ρ0
k2x

µ+λ
ρ0
kxky

µ+λ
ρ0
kxky (k2 µ

ρ0
− ω2) + µ+λ

ρ0
k2y

)︄(︃
ax

ay

)︃
= 0 (4.3)

Since we want a solution which is not the trivial one a⃗ = 0, we require that the determinant
of B vanishes. There are two values of k, and the corresponding 0-Eigenvectors of B, for
which this is the case :

• p-waves: ω = c1κ with c21 = 2µ+λ
ρ0

. Here the wave vector is called κ⃗ to distinguish it
from the second case. The matrix then simplifies to

µ+ λ

ρ0

(︃
−κ2y κxκy
κxκy −κ2x

)︃(︃
ax

ay

)︃
= 0

and is solved by vectors a⃗ which are co-linear with κ⃗. This means that the oscillations
are in the direction of propagation of the wave.
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Chapter 4 Bulk Solutions and Eigenmodes

• s-waves: ω = c2k with c22 =
µ
ρ0

. In this case we call the amplitude bi instead of ai

to easier distinguish between the two cases. Here the matrix becomes

µ+ λ

ρ0

(︃
k2x kxky
kxky k2y

)︃(︃
bx

by

)︃
= 0

and is solved when b⃗ · k⃗ = 0, so b⃗ is normal to k⃗. The oscillations are then orthogonal
to the direction of propagation of the wave.

These two sets form solutions to the PDE, before considering the boundary (hence the
name bulk solutions). For a given gravitational wave frequency, the magnitude of the
wave vector is now restricted to possible values, given by either one of the two dispersion
relations. The direction of the wave vector, is still free to choose. One could imagine that
the general solution can be written as a "ring integral" over all possible directions. As it
is not clear how to deal with such an integral, we consider finite combinations of s-wave
and p-wave terms.

When one inserts these two into the boundary conditions (3.12), one quickly discovers
that they cannot be used to give the correct right hand side. The left hand side can be
made either zero, by choosing the k⃗-vectors so that the cosines and sines have a zero on
the boundary, or there remains some dependence on the position on the boundary. But
there is no way to get a nonzero constant value. This is explained further in section 4.3.
But first we look closer at the two types of waves and investigate their relation to the
Helmholtz Decomposition.

4.2 Relation to the Helmholtz Decomposition

According to a weak formulation of Helmholtz’s theorem, any square-integrable vector-field
u⃗ can be decomposed into a divergence-free (transverse) part ∇ · u⃗T = 0 and a curl-free
(longitudinal) part ∇× u⃗L = 0, see [6]. Moreover, the curl-free part may be written as
the gradient of a scalar field q and the divergence-free part as the curl of a vector field A⃗:

u⃗ = u⃗L + u⃗T = ∇q +∇× A⃗. (4.4)

By imposing boundary conditions on q and A⃗ the decomposition can be made unique.
Otherwise it is possible to add/subtract the gradient ∇ψ of a harmonic function ∆ψ = 0
to the longitudinal/transverse part without changing the vector field, while still preserving
their properties.

This decomposition can be used to rewrite the PDE (3.9).

−∂2t (uiL + uiT ) +
µ

ρ0
∆(uiL + uiT ) +

µ+ λ

ρ0
∂i∂k(u

k
L + ukT ) = 0 (4.5)

Now we can use the properties of uL and uT . Since uT is divergence-free in the last
term ∂ku

k
T vanishes. Moreover we write uiL = ∂iϕ and commute the partial derivatives as

follows:
µ

ρ
∂k∂

k∂iϕ+
µ+ λ

ρ
∂i∂k∂

kϕ =
2µ+ λ

ρ
∂k∂

kuiL = c21∂k∂
kuiL (4.6)
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4.3 Solutions without GW: Eigenmodes

Introducing the wave speeds c21 =
2µ+λ

ρ for p-waves and c22 =
µ
ρ for s-waves the equation

splits into the sum of two wave equations:[︁
−∂2t uiT + c22∆u

i
T

]︁
+
[︁
−∂2t uiL + c21∆u

i
L

]︁
= 0. (4.7)

Solutions to the wave equation have the form cos(ωt)a⃗eik⃗·x⃗ with ω2 = c2i k
2. Applying the

conditions of vanishing divergence and curl respectively, we recover the same conditions
we found in the previous section:

• p-wave: ω = c1κ

(∇× uiL)z = ∂xu
y
L − ∂yu

x
L = i cos(ωt)eiκ⃗·x⃗(κxa

y − κya
x) = 0

This is satisfied if a⃗ is collinear with κ⃗.

• s-wave: ω = c2k

∂iu
i
T = ∂i cos(ωt)b⃗e

ik⃗·x⃗ = ikib
iuiT = 0

So uT being divergence-free is equivalent to k⃗ · b⃗ = 0.

So p waves are curl-free while s-waves are divergence-free and hence volume preserving.

4.3 Solutions without GW: Eigenmodes

Without a GW (hij = 0), the differential equations we want to solve stay the same, but
the boundary conditions change to

σxx|∂Px = ϵ[(2µ+ λ)∂xu
x + λ∂yu

y] = 0

σyy|∂Py = ϵ[(2µ+ λ)∂yu
y + λ∂xu

x] = 0

σxy|∂P = ϵµ[∂xu
y + ∂yu

x)] = 0

(4.8)

We can again separate off the time dependence ui(t, x, y) = cos(ωt)φi(x, y), though now
ω is no longer the frequency of the GW. Instead it is connected to k or κ through the
dispersion relations ω = c1κ or ω = c2k. These belong to p-waves and s-waves respectively
and are considered separately in the following sections. The idea here is, that we choose
the wave vector k⃗ or κ⃗ freely, so as to satisfy the boundary conditions, instead of it being
restricted by the GW.

4.3.1 s-wave Eigenmodes

Here the solutions to the PDE have the form b⃗
k⃗
eik⃗·x⃗ with the condition that b⃗

k⃗
· k⃗ = 0.

This also means that φ⃗ is divergence-free. To make the solution real, we combine it with
the wave traveling in the opposite direction b⃗−k⃗

e−ik⃗·x⃗ and write the result as

φi = bi(A cos(k⃗ · x⃗) +B sin(k⃗ · x⃗)). (4.9)
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Chapter 4 Bulk Solutions and Eigenmodes

Thereby the k-space can be restricted to the right half-plane kx ≥ 0. The vector k⃗ and
the constants A and B are otherwise free to choose. The direction of b⃗ is fixed by the
condition b⃗ · k⃗ = 0 and its length is included in the constants A and B, i.e. b⃗ = (ky,−kx).
With the help of trigonometric identities the cosines and sines can be written as products:

cos(k⃗ · x⃗) = cos(kxx) cos(kyy)− sin(kxx) sin(kyy)

sin(k⃗ · x⃗) = sin(kxx) cos(kyy) + cos(kxx) sin(kyy).

It might be the case that a combination of more such solutions is needed to satisfy the
boundary conditions. For the separation of the time dependence to still work they all
need to have the same magnitude of k⃗ (and therefore also ω), while the direction is still
free. Which k⃗-vectors should we combine? Looking at one boundary, e.g. x = L

2 , we
have a linear combination of cos(kyy) and sin(kyy) which has to vanish. The only other k⃗
which can help to cancel these terms are the ones with the same ky. The same follows for
kx from the condition on the boundary y = L

2 . So only two k⃗ vectors can be combined
helpfully:

k⃗1 = (kx, ky) and k⃗2 = (kx,−ky). (4.10)

Putting this all together φi can be written as

φ⃗ =

(︃
ky
−kx

)︃(︂
Ã cos(k⃗1 · x⃗) + B̃ sin(k⃗1 · x⃗)

)︂
+

(︃
ky
kx

)︃(︂
C̃ cos(k⃗2 · x⃗) + D̃ sin(k⃗2 · x⃗)

)︂
(4.11)

and then, using trigonometric formulas and the notation cos(kxx) = cx and similar, this
becomes

φx = ky (Acxcy +Bsxsy + Csxcy +Dcxsy)

φy = kx (Bcxcy +Asxsy −Dsxcy − Ccxsy) .
(4.12)

Since φ⃗ is divergence free, the boundary conditions reduce to

σxx|∂Px = ϵ2µ∂xu
x = 0

σyy|∂Py = ϵ2µ∂yu
y = 0

σxy|∂P = ϵµ[∂xu
y + ∂yu

x] = 0.

(4.13)

Evaluating the first condition with the help of Mathematica for ∂Px at (±L
2 ,±y) and

adding the four terms with different sign combinations (+ + ++, + + −+, + − +−,
+−−−) gives four simpler, necessary but not sufficient conditions:

8Ckxkyµ cos

(︃
kxL

2

)︃
cos (kyy) = 0 (4.14)

8Bkxkyµ cos

(︃
kxL

2

)︃
sin (kyy) = 0 (4.15)
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4.3 Solutions without GW: Eigenmodes

8Akxkyµ sin

(︃
kxL

2

)︃
cos (kyy) = 0 (4.16)

8Dkxkyµ sin

(︃
kxL

2

)︃
sin (kyy) = 0. (4.17)

Doing something similiar with the other conditions/boundaries and trying to solve them
all, results in two possible eigenmode solutions:

A = B = C = 0, kx = ky =
2π

L
n

A = B = D = 0, kx = ky =
π

L
(2n+ 1).

(4.18)

Therefore the whole solution u⃗ can be written as:

’Quadratic’ s-wave Eigenmodes:

• For n even:
ux = cos(ωt) cos(

π

L
nx) sin(

π

L
ny)

uy = − cos(ωt) sin(
π

L
nx) cos(

π

L
ny).

(4.19)

• For n odd:
ux = − cos(ωt) sin(

π

L
nx) cos(

π

L
ny)

uy = cos(ωt) cos(
π

L
nx) sin(

π

L
ny).

(4.20)

Figure 4.1 shows the eigenmodes for n = 1 and n = 2. What’s special about these is, that
the corners always stay fixed.

4.3.2 p-wave Eigenmodes

Here we follow a similar procedure as we did above for the s-wave eigenmodes. The
difference is, that the solutions now have the form a⃗κ⃗ e

iκ⃗·x⃗ with a⃗κ⃗||κ⃗. Hence the solution
can be written as

φ⃗ =

(︃
κx
κy

)︃(︂
Ã cos(κ⃗1 · κ⃗) + B̃ sin(κ⃗1 · x⃗)

)︂
+

(︃
κx
−κy

)︃(︂
C̃ cos(κ⃗2 · x⃗) + D̃ sin(κ⃗2 · x⃗)

)︂
or

φx = κx (Acxcy +Bsxsy + Csxcy +Dcxsy)

φy = κy (−Bcxcy −Asxsy +Dsxcy + Ccxsy) .
(4.21)

Here the boundary conditions don’t simplify (since the divergence doesn’t vanish) but
can again be combined to simpler, necessary but not sufficient conditions as above. But
when one tries to solve them all, the only remaining solution is φx = φy = 0. This would
suggest, that there can’t be any pure p-wave eigenmodes.

33



Chapter 4 Bulk Solutions and Eigenmodes

Figure 4.1: Grid plots of the first two eigenmodes. The grey lines represent the undisturbed
plate, the black lines the deformed one. The deformation is not to scale.

4.3.3 Mixed Eigenmodes

So far we saw that there are s-wave eigenmodes, but no pure p-wave eigenmodes. The
next logical step is to ask whether a finite combination of both gives a solution. The
answer lies in the following theorem.

Theorem: Consider solutions φ⃗ made up of the building blocks b⃗
k⃗
eik⃗·x⃗, b⃗

k⃗
· k⃗ = 0

(s-waves) and a⃗κ⃗ eiκ⃗·x⃗ ,a⃗κ⃗||κ⃗ (p-waves). The magnitude of the wave vectors is given
by the dispersion relations ω = c1κ and ω = c2k while the direction is still free to
choose. Then there exists no finite sum of such terms which satisfies the boundary
conditions (4.8), except for pure s-wave eigenmodes (4.3.1).

Before proving this statement a comment about why it is enough to consider only one
frequency ω, i.e. the spatial part of solutions u⃗ = cos(ωt)φ⃗ with one fixed ω: Assume that
the spatial part of two such solutions φ⃗1 and φ⃗2 together satisfies the boundary conditions
at one time. Because they have different time dependence, they change differently so that
at other times they can’t cancel each other out anymore. Therefore, each one separately
has to satisfy the boundary conditions. But then we are back to the case, where we
consider only one frequency ω.

Proof. First note, that since c1 > c2 the relation κ < k for the magnitudes of the wave
vectors holds. Since we do not want a pure s-wave solution, φ⃗ contains at least one p-wave
term a⃗κ⃗ e

iκ⃗·x⃗. In the previous section (equation (4.21) ) we saw, that the most general
such term looks as follows

φx = κx (Acxcy +Bsxsy + Csxcy +Dcxsy)

φy = κy (−Bcxcy −Asxsy +Dsxcy + Ccxsy)
(4.22)
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for some constants A,B,C,D. This leads to a σxx component, evaluated at the x = 1
2

boundary which has the following form

σxx

(︃
L

2
, y

)︃
= E cos(κyy) + F sin(κyy) (4.23)

with some constants E and F. It doesn’t satisfy the boundary condition on its own, so we
need to add a s-wave term with the same y-component ky = κy. But the kx component
of the s-wave is then given by

kx = ±

√︄(︃
ω

c2

)︃2

− k2y. (4.24)

As k⃗ is longer than κ⃗ there is no other possible p-wave with the same κx component, so
that this term has to satisfy the boundary conditions on ∂Py on its own, in particular:

σyy

(︃
x,
L

2

)︃
± σyy

(︃
x,−L

2

)︃
= 0. (4.25)

The general form of such a s-wave then looks like (4.12) and if we insert the resulting
CS-tensor in the above relation two necessary conditions follow:

4kxkyµ cos

(︃
kyL

2

)︃
(A sin (kxx)− C cos (kxx)) = 0

4kxkyµ sin

(︃
kyL

2

)︃
(D sin (kxx)−B cos (kxx)) = 0.

This has to be true for all x. Since k⃗ is already fixed, only the constants A,B,C and
D can be used to satisfy these conditions. But in general the only possibility to do
this is A = B = C = D = 0. Therefore there is no s-wave and we are back at a pure
p-wave. But we already saw in the previous section that this doesn’t satisfy the boundary
conditions.

This concludes our investigation of eigenmode-solutions. In terms of finite sums there
are only the quadratic s-wave eigenmodes (4.3.1). To find more eigenmodes the whole
Fourier-Series would need to be used.
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Chapter 5

Delta Corrected Spectral Method

So far, we found out that the PDE (3.9) is solved by s-waves and p-waves. In section 4.3
we found one set of solutions which solved the boundary conditions for the case without a
gravitational wave, i.e. the right side of (3.15) vanishes. That was only possible, because
ω is not dictated by the GW and hence k⃗ can be chosen such, that a cosine or sine has a
zero at the boundary. But there is no way to do this with a constant value on the right
side of (3.15), i.e. with GW.

This leads to the idea to write the solution as a Fourier series. But in general the
solution won’t be periodic on the plate. Taking the derivative of a Fourier series of
a function, which is not periodic is problematic, especially at the boundary. This is
explained further in this chapter. First in the one-dimensional case, where it is easier
to grasp and visualize what is going on. Then it is generalized to two dimensions and
applied to the elastic plate.

5.1 Illustration of the Problem in 1D

We want to solve (3.14), which in 1D reduces to

φ+ c̄21∂
2
xφ = 0. (5.1)

and we want to solve it on
[︁
−1

2 ,
1
2

]︁
. We call the constant α2 = c̄21 =

c21
L2ω2 . Notice, that

this is the inverse of the period-ratio appearing in section 3.8. The equation now looks
like a simple harmonic oscillator for which we know the solution:

φ(x) = A cos( xα) +B sin( xα). (5.2)

Moreover, the boundary conditions now fix the value of the derivative at the boundary

σxx|x=± 1
2
= 0 =⇒ φ′|x=± 1

2
= −A+Lc

2
2

c21
= −β (5.3)

which defines the constant β =
A+Lc22

c21
. From this follows the solution for the boundary

value problem (cf. [7])
φ(x) = −α β sec( 1

2α) sin( xα). (5.4)
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Chapter 5 Delta Corrected Spectral Method

But we want to learn something about how to solve the problem using Fourier series so
we make the ansatz for the Fourier series, of φ:

F [φ](x) =

∞∑︂
n=0

an cos(2πnx) +

∞∑︂
n=1

bn sin(2πnx) (5.5)

with the Fourier coefficients given by the integrals

a0 =

∫︂ 1
2

− 1
2

dx φ(x)

an = 2

∫︂ 1
2

− 1
2

dx φ(x) cos(2πnx)

bn = 2

∫︂ 1
2

− 1
2

dx φ(x) sin(2πnx)

(5.6)

Ideally we would just substitute this ansatz into the equation we want to solve, calculating
the derivatives of the series term by term, and then require the coefficients of the sine
and cosine series to vanish. But the solution is not necessarily periodic on [−1

2 ,
1
2 ], so the

Fourier series represents the periodic continuation of the function, see Figure 5.1. The
periodic continuation in general has a jump at the boundary. At such points the Fourier
series F [φ] takes the average of both one-sided limits, which correspond to the values of
the original function. The size of the jump is denoted by d0 = φ(12)− φ(−1

2). Then the
correct function values can be recovered by the following relation:

φ(x) =

{︄
F [φ](x) x ∈ (−1

2 ,
1
2)

F [φ](12)±
d0
2 x = ±1

2

(5.7)

The first derivative is again not necessarily periodic, and therefore has a jump d1 =
φ′(12)− φ′(−1

2) at the boundary. It would be nice if the derivative of the Fourier series

corresponds to the Fourier series of the derivative: ∂xF [φ]
?
= F [φ′]. But we saw that the

Fourier series has a jump of size d0. When taking the derivative of a jump one obtains a
delta function, i.e. there is a delta function in ∂xF [φ]. To cancel this unwanted behaviour
we add another delta function multiplied by the jump size d0 and expect to get the correct
Fourier series:

F [φ′] = ∂xF [φ] + d0F [δ(x− 1
2)]. (5.8)

To recover the values of φ′(x) we need a similar relation as above:

φ′(x) =

{︄
F [φ′](x) x ∈ (−1

2 ,
1
2)

F [φ′](12)±
d1
2 x = ±1

2

. (5.9)

This procedure can be iterated again to gain expressions for the second derivative. The
jump which appears there is denoted by d2 = φ′′(12)− φ′′(−1

2). To correct the derivative
of the Fourier series we again add a delta term

F [φ′′] = ∂xF [φ
′] + d1F [δ(x− 1

2)] (5.10)
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5.1 Illustration of the Problem in 1D

Figure 5.1: Periodic continuation (black) and original function (dotted)

which is equivalent to

F [φ′′] = ∂2xF [φ] + d0F [δ
′(x− 1

2)] + d1F [δ(x− 1
2)] (5.11)

and the original function values are given by

φ′′(x) =

{︄
F [φ′′](x) x ∈ (−1

2 ,
1
2)

F [φ′′](12)±
d2
2 x = ±1

2

. (5.12)

Before doing explicit calculations, we need the Fourier series for δ(x− 1
2) and δ′(x− 1

2)
which are listed for reference below. They can be computed by using the integrals(5.6).

F [δ(x− 1
2)] = 1 + 2

∞∑︂
n=1

(−1)n cos(2πnx) (5.13)

F [δ′(x− 1
2)] = −4π

∞∑︂
n=1

n(−1)n sin(2πnx) = ∂xF [δ(x− 1
2)] (5.14)

Plugging this into the equation (5.1) results in

0 = F [φ] + α2F [f ′′] + α2d0δ
′(x− 1

2) + α2d1δ(x− 1
2) =

= (a0 + α2d1) +

∞∑︂
n=1

(an − anα
24π2n2 + 2α2d1(−1)n) cos(2πnx)+

+

∞∑︂
n=1

(bn − bnα
24π2n2 − α2d04πn(−1)n) sin(2πnx)

(5.15)
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The vanishing of all Fourier coefficients implies

a0 = −α2d1

an =
−2α2d1(−1)n

1− α24π2n2
=

2a0(−1)n

1− α24π2n2

bn =
d0α

24πn(−1)n

1− α24π2n2

(5.16)

So the Fourier series of the solution becomes:

F [φ] = a0

(︄
1 + 2

∞∑︂
n=1

(−1)n

1− α24π2n2
cos(2πnx)

)︄
+ d04πα

2
∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx).

If we expand the known solution (5.2) in Fourier series, this gives the same result (up to
some constants). The needed Fourier series of cosine and sine are listed below:

F [cos( xα)] = 2α sin( 1
2α)

(︄
1 + 2

∞∑︂
n=1

(−1)n

1− α24π2n2
cos(2πnx)

)︄
(5.17)

F [sin( xα)] = 8πα2 sin( 1
2α)

∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx) (5.18)

What remains is to solve the boundary conditions and thereby determine the constants
d0 and d1. For this we need the derivative of F [f ]:

∂xF [φ] = α2d14π

∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx) + d0 8π2α2

∞∑︂
n=1

(−1)nn2

1− α24π2n2
cos(2πnx)

Here again the correction term has to be used

F [φ′] = ∂xF [φ] + d0F [δ(x− 1

2
)]

= α2d14π

∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx)

+ d0

(︄
1 + 2

∞∑︂
n=1

[︃
n24π2α2

1− α24π2n2
+ 1

]︃
(−1)n cos(2πnx)

)︄

= α2d14π

∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx) + d0

(︄
1 + 2

∞∑︂
n=1

(−1)n

1− α24π2n2
cos(2πnx)

)︄
.

Then we also need to consider the jumps at the boundary (5.1):

F [φ′]
(︁
±1

2

)︁
± d1

2
= −β (5.19)
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5.2 Finite vs. Infinite Sums

The Fourier series evaluated at both boundary points gives the same value. Subtracting
the expression for x = 1

2 from the one for x = −1
2 gives

d1 = 0 (5.20)

Then the rest can be solved for d0:

d0 = −β

(︄
1 + 2

∞∑︂
n=1

1

1− α24π2n2

)︄−1

(5.21)

Using the expression for the Fourier series of cos( xα) at x = 1
2 we can even evaluate the

series:

d0 = −β2α
sin( 1

2α)

cos( 1
2α)

(5.22)

Then the final solution becomes

F [φ] = −β8πα3 sin(
1
2α)

cos( 1
2α)

∞∑︂
n=1

(−1)nn

1− α24π2n2
sin(2πnx) (5.23)

and comparing it with the Fourier series of sin( xα)

φ(x) = −βα sec( 1
2α) sin(

x
α) (5.24)

which is the same result as found in (5.4).

5.2 Finite vs. Infinite Sums

In section 4.1 we found two possible solutions to the PDE (3.11): p-waves a⃗ eiκ⃗·x⃗ with
κ = ω

c1
and a⃗||κ⃗ or s-waves b⃗ eik⃗·x⃗ with k = ω

c2
and a⃗ · k⃗ = 0. We tried to find a finite

linear combination of such terms(with the same ω), which together satisfies the boundary
conditions. This was successful in the case without a gravitational wave and lead to the
’quadratic’ eigenmodes (see Section 4.3.1) but does not yield any solution to the case with
a gravitational wave.
It still might be possible to sum terms, which on their own don’t solve the PDE, but
their sum does. That this is possible can be seen for the one dimensional case in equation
(5.23). The sin(2πnx) terms are no solutions for the given frequency ω, but the whole
series is. It should be noted however, that this is only possible with an infinite number of
terms. Otherwise a sum of the form

N∑︂
n=1

bn(1− 4π2α2) sin(2πnx) = 0 (5.25)

remains after plugging it into the equation. Since the sines are linearly independent, the
sum only vanishes when the coefficients bn are all zero. In section 5.3 we aim to find such
a infinite series for the two dimensional case.
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5.3 Fourier Series with δ’s in 2D

In two dimensions we write the Fourier series of an arbitrary function f(x, y) on the
square [−1

2 ,
1
2 ]× [−1

2 ,
1
2 ] in terms of exponentials

F [f ](x, y) =

∞∑︂
n,m=−∞

Cnme
ik⃗·x⃗, k⃗ = 2π

(︃
n
m

)︃
. (5.26)

Once again the function is in general not periodic and so the Fourier series only agrees

Figure 5.2: Relation between function at its Fourier series

with the function inside the square (see Figure 5.2). At the boundaries it takes the average
of the left and right or top and bottom function values. The corners form a special case
which will be described later. Instead of a constant describing the jump size there are now
two jump functions, one along ∂Px (denoted by d) and one along ∂Py (denoted by e).

d0(y) = f(12 , y)− f(−1
2 , y) (5.27)

e0(x) = f(x, 12)− f(x,−1
2) (5.28)

To get the correct Fourier series for the partial derivatives of f we need, similar to the 1D
case, to add a Dirac δ-function to the partial derivative of the Fourier series. For ∂xf
this means:

F [∂xf(x, y)] = ∂xF [f(x, y)] + F [d0(y)δ(x− 1
2)] (5.29)
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5.3 Fourier Series with δ’s in 2D

The difference to the 1D case now is, that the jump is represented by a function, instead
of a constant. To get back the correct values of the derivatives at the boundaries we again
need jump functions:

dx(y) = ∂xf(
1
2 , y)− ∂xf(−1

2 , y) (5.30)
ex(x) = ∂xf(x,

1
2)− ∂xf(x,−1

2) (5.31)

The subscript denotes the derivative to which the jump function belongs, e.g. dx for the
jump in ∂xf . The relation between the function values and the Fourier series is then
given by

∂xf(x, y) =

⎧⎪⎨⎪⎩
F [∂xf(x, y)] −1

2 < x, y < 1
2

F [∂xf(x, y)]± 1
2dx(y) x = ±1

2 ,−
1
2 < y < 1

2

F [∂xf(x, y)]± 1
2ex(x) y = ±1

2 ,−
1
2 < x < 1

2 .

(5.32)

To get the second derivatives we treat the first derivative as the function f and use what
we already know:

F [∂2xf(x, y)] = ∂xF [∂xf(x, y)] + F [dx(y)δ(x− 1
2)]

= ∂x
(︁
∂xF [f(x, y)] + F [d0(y)δ(x− 1

2)]
)︁
+ F [dx(y)δ(x− 1

2)]

= ∂2xF [f(x, y)] + F [d0(y)δ
′(x− 1

2)] + F [dx(y)δ(x− 1
2)]

(5.33)

The second y-derivative looks very similar to the expression in the 1D case, but the mixed
derivative is more interesting, because the second derivative now also acts on the jump
function.
F [∂x∂yf(x, y)] = ∂xF [∂yf(x, y)] + F [dy(y)δ(x− 1

2)]

= ∂x
(︁
∂yF [f(x, y)] + F [e0(x)δ(y − 1

2)]
)︁
+ F [dy(y)δ(x− 1

2)]

= ∂x∂yF [f(x, y)] + ∂xF [e0(x)]F [δ(y − 1
2)] + F [dy(y)δ(x− 1

2)]

(5.34)

But this has to be equivalent to the expression when taking the partial derivatives in the
other order:

F [∂y∂xf ] = ∂y∂xF [f ] + ∂yF [d0(y)]F [δ(x− 1
2)] + F [ex(x)δ(y − 1

2)] (5.35)

To see that these two expressions agree we have to investigate the jump functions further.
Using the definitions we can see that there is a relation between the tangential derivatives
along the edges and the jump function on these edges:

∂yd0(y) = ∂y
[︁
f(12 , y)− f(−1

2 , y)
]︁
= ∂yf(

1
2 , y)− ∂yf(−1

2 , y) = dy(y) (5.36)

and similarly also
∂xe0(x) = ex(x). (5.37)

For the normal derivatives there is no such relation, therefore dx and ey are completely
new and independent functions. Now this relation can be used to find a relation between
the Fourier series of the jump functions and their derivatives

F [dy(x)] = ∂yF [d0(y)] +
[︁
d0(

1
2)− d0(−1

2)
]︁
F [δ(y − 1

2)] (5.38)
F [ex(x)] = ∂xF [e0(x)] +

[︁
e0(

1
2)− e0(−1

2)
]︁
F [δ(x− 1

2)]. (5.39)
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Chapter 5 Delta Corrected Spectral Method

Next, using the definition of the jump function d0, the constant ∆ is defined as the jump
in the jump functions:

∆ := d0(
1
2)− d0(−1

2) = f(12 ,
1
2)− f(−1

2 ,
1
2)− f(12 ,−

1
2) + f(−1

2 ,−
1
2) = e0(

1
2)− e0(−1

2).

With the help of this the mixed derivatives get a nice and symmetric form:

F [∂x∂yf ] = ∂x∂yF [f ] + ∂xF [e0(x)]F [δ(y − 1
2 )] + ∂yF [d0(y)]F [δ(x− 1

2 )] + ∆ F [δ(x− 1
2 )δ(y −

1
2 )]

F [∂y∂xf ] = ∂y∂xF [f ] + ∂yF [d0(y)]F [δ(x− 1
2 )] + ∂xF [e0(x)]F [δ(y − 1

2 )] + ∆ F [δ(x− 1
2 )δ(y −

1
2 )]

The goal now is to use this to find a solution to the equation (3.14) with the boundary
conditions (3.15) which are rewritten below for reference.

φi + c̄22∆φ
i + c̄23∂

i∂kφ
k = 0.

(2µ+ λ)∂xφ
x|∂Px + λ∂yφ

y|∂Px = −µLA+

(2µ+ λ)∂yφ
y|∂Py + λ∂xφ

x|∂Py = µLA+

∂xφ
y|∂P + ∂yφ

x|∂P = −LA×

The desired function has an x- and y-component and is now called φ instead of f. Therefore
all Fourier-Coefficients and jump functions also get an index. It is useful to first look
at the boundary conditions expressed in terms of the Fourier series. For instance the
expression for σxy at x = ±1

2 reads

F [∂xφ
y(±1

2 , y)]±
1
2d

y
x(y) + F [∂yφ

x(±1
2 , y)]±

1
2d

x
y(y) +A× = 0. (5.40)

The Fourier series at x = 1
2 has the same value as the one at x = −1

2 so when both cases
are subtracted from one another what remains is the simple relation

dyx(y) + dxy(y) = 0 (5.41)

Similar relations can be found when looking at σxx on ∂Px, σyy on ∂Py and σxy on ∂Py

respectively:

(2µ+ λ)dxx(y) + λdyy(y) = 0 (5.42)

λexx(x) + (2µ+ λ)eyy(x) = 0 (5.43)

eyx(x) + exy(x) = 0 (5.44)

Using these, all equations can be expressed in terms of di0 and ei0 only, e.g.

dxx = − λ
2µ+λd

y
y = − λ

2µ+λ∂yd
y
0. (5.45)

For the second x- and y-derivatives this means

F [∂2xφ
x] = ∂2xF [φ

x] + F [dx0(y)δ
′(x− 1

2)]−
λ

2µ+λF [δ(x− 1
2)]
(︁
∂yF [d

y
0(y)] + ∆ F [δ(y − 1

2)]
)︁

F [∂2yφ
x] = ∂2yF [φ

x] + F [ex0(y)δ
′(x− 1

2)]− ∂xF [e
y
0(x)]F [δ

(︁
x− 1

2

)︁
]−∆ F [δ(x− 1

2)δ(y −
1
2)]
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5.3 Fourier Series with δ’s in 2D

Before plugging all this into equation (3.14), we rewrite it by grouping equal derivatives.
For the x-component this leads to

φx + c̄21∂
2
xφ

x + c̄22∂
2
yφ

x + c̄23∂x∂yφ
y = 0. (5.46)

The Fourier series for each of the three derivatives includes one term containing the factor
F [δ(x− 1

2)δ(y −
1
2)]. Looking only at their prefactors, one finds

∆

(︃
−c21

λ

2µ+ λ
− c22 + c23

)︃
= ∆

(︃
−2µ+ λ

ρ0

λ

2µ+ λ
− µ

ρ0
+
λ+ µ

ρ0

)︃
= 0. (5.47)

These terms now cancel each other out in the Fourier series of (5.46) and its Fourier series
becomes

F [φx] + c̄21

(︂
∂2xF [φ

x] + F [dx0(y)δ
′(x− 1

2)]−
λ

2µ+λ∂yF [d
y
0(y)]F [δ(x− 1

2)]
)︂

+ c̄22
(︁
∂2yF [φ

x] + F [ex0(x)δ
′(y − 1

2)]− ∂xF [e
y
0(x)]F [δ

(︁
y − 1

2

)︁
]
)︁

+ c̄23
(︁
∂x∂yF [φ

y] + ∂xF [e
y
0(x)]F [δ(y − 1

2)] + ∂yF [d
y
0(y)]F [δ(x− 1

2)]
)︁
= 0.

(5.48)

By combining equal terms this can be rewritten as

F [φx] + c̄21
(︁
∂2xF [φ

x] + F [dx0(y)δ
′(x− 1

2)]
)︁
+ λ

ρ0ω2L2∂xF [e
y
0(x)]F [δ(y − 1

2)]

+ c̄23∂x∂yF [φ
y] + c̄22

(︁
∂2yF [φ

x] + F [ex0(x)δ
′(y − 1

2)] + ∂yF [d
y
0(y)]F [δ(x− 1

2)]
)︁
= 0.

Following a similar derivation the y-component of the equation takes the form

F [φy] + c̄22
(︁
∂2xF [φ

y] + F [dy0(y)δ
′(x− 1

2)]
)︁
+ c̄21

(︁
∂2yF [φ

y] + F [ey0(x)δ
′(y − 1

2)]
)︁

+ c̄23∂x∂yF [φ
x] + c̄22∂xF [e

x
0(x)]F [δ(y − 1

2)] +
λ

ρ0ω2L2∂yF [d
x
0(y)]F [δ(x− 1

2)] = 0.

These can now be turned into equations for the Fourier coefficients Ci
nm of the function

and the jumps cm(di0) and cn(ei0). The Fourier series for δ(x− 1
2) and δ′(x− 1

2) are given
by

F [δ(x− 1
2)] =

∞∑︂
n=−∞

(−1)nei2πnx (5.49)

F [δ′(x− 1
2)] =

∞∑︂
n=−∞

2πin(−1)nei2πnx. (5.50)

We also use that the Fourier series of a product is the product of the Fourier series and
the relation λ

ρω2L2 = c̄21− 2c̄22 which can be easily checked by expanding c1 and c2 in terms
of µ and λ.

Cx
nm(1− 4π2(c̄21n

2 + c̄22m
2))− Cy

nm4π2nmc̄23 + 2iπ[c̄21cm(dx0)n(−1)n+

+ c̄22cn(e
x
0)m(−1)m + (c̄21 − 2c̄22)ncn(e

y
0)(−1)m + c̄22mcm(dy0)(−1)n] = 0

(5.51)
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Cy
nm(1− 4π2(c̄22n

2 + c̄21m
2))− Cx

nm4π2nmc̄23 + 2iπ[c̄22cm(dy0)n(−1)n+

+ c̄21cn(e
y
0)m(−1)m + c̄22ncn(e

x
0)(−1)m + (c̄21 − 2c̄22)mcm(dx0)(−1)n] = 0

(5.52)

Next come the boundary conditions. There the gravitational wave Aij is also rewritten in
terms of a (very simple) Fourier series:

Aij =

∞∑︂
m,n=−∞

Aijδn0δm0e
i2π(nx+my). (5.53)

If we set x = ±1
2 the 2 dimensional Fourier series turns into a one-dimensional Fourier

series with an extra factor e±i2π
n
2 = (−1)n. We then require the new Fourier Coefficients

of this to vanish. σxx(±1
2 , y) = 0 then leads to the expression

∞∑︂
n=−∞

(-1)n[c21(2πinC
x
nm+cm(dx0)(-1)

n)+(c21−2c22)(2πimC
y
nm+cn(e

y
0)(-1)

m)] = -c22LA+δm0.

Here the corrected expression for the derivative of a Fourier series has once again been
used. From the condition σxy(±1

2 , y) = 0 then follows

∞∑︂
n=−∞

(−1)n[2πimCx
nm + cn(e

x
0)(−1)m + 2πinCy

nm + cm(dy0)(−1)n] = −LA×δm0.

The other two boundary conditions σyy(x,±1
2) = 0 and σxy(x,±1

2) = 0 give similar
conditions, except that now a sum over m remains, instead of one over n.

∞∑︂
m=−∞

(-1)m[(c21−2c22)(2πinC
x
nm+cm(dx0)(-1)

n)+c21(2πimC
y
nm+cn(e

y
0)(-1)

m)] = c22LA+δm0.

∞∑︂
m=−∞

(−1)m[2πimCx
nm + cn(e

x
0)(−1)m + 2πinCy

nm + cm(dy0)(−1)n] = −LA×δm0.

So we now have 6 relations (for each n and m) which contain the same information as the
original BVP, but now expressed in Fourier Coefficients. These are summarized in the
following box.

In terms of Fourier coefficients Cj
nm for the functions φj and cn(e

j
0), cm(dj0) for the

jump functions the BVP looks as follows:
PDE:

Cx
nm(1− 4π2(c̄21n

2 + c̄22m
2))− Cy

nm4π2nmc̄23 + 2iπ[c̄21cm(dx0)n(−1)n+

+ c̄22cn(e
x
0)m(−1)m + (c̄21 − 2c̄22)ncn(e

y
0)(−1)m + c̄22mcm(dy0)(−1)n] = 0

Cy
nm(1− 4π2(c̄22n

2 + c̄21m
2))− Cx

nm4π2nmc̄23 + 2iπ[c̄22cm(dy0)n(−1)n+

+ c̄21cn(e
y
0)m(−1)m + c̄22ncn(e

x
0)(−1)m + (c̄21 − 2c̄22)mcm(dx0)(−1)n] = 0

(5.54)

46



5.4 Motion in TT-coordinates

Boundary conditions:

∞∑︂
n=−∞

(-1)n[c21(2πinC
x
nm + cm(dx0)(-1)

n) + (c21 − 2c22)(2πimC
y
nm + cn(e

y
0)(-1)

m)] = -c22LA+δm0

∞∑︂
n=−∞

(−1)n[2πimCx
nm + cn(e

x
0)(−1)m + 2πinCy

nm + cm(dy0)(−1)n] = −LA×δm0

∞∑︂
m=−∞

(-1)m[(c21 − 2c22)(2πinC
x
nm + cm(dx0)(-1)

n) + c21(2πimC
y
nm + cn(e

y
0)(-1)

m)] = c22LA+δm0

∞∑︂
m=−∞

(−1)m[2πimCx
nm + cn(e

x
0)(−1)m + 2πinCy

nm + cm(dy0)(−1)n] = −LA×δm0

5.3.1 Values at the corners

At the corners of the square the Fourier series gives the average of the function values at
the four corners:

F [f ](±1
2 ,±

1
2) =

1
4

(︁
f(12 ,

1
2) + f(12 ,−

1
2) + f(−1

2 ,
1
2) + f(−1

2 ,−
1
2)
)︁
. (5.55)

This can be motivated by first developing the x-dependence into a Fourier series while
keeping y fixed. Then the Fourier coefficients are functions of y which again can be
developed as a Fourier series. In each step the Fourier series at the border ±1

2 takes the
average of the two values. This leads to the average of the average which is the same as
the average of the values at the 4 corners.
To get back the correct function values we have to add correction terms consisting of the
jump functions d0 and e0 ,but here they are more complicated than at the edges:

f( sx2 ,
sy
2 ) = F [f ](12 ,

1
2) +

3
8(sxd0(

sy
2 ) + sye0(

sx
2 )) +

1
8(sxd0(

−sy
2 ) + sye0(

−sx
2 )) (5.56)

where sx = ±1 ,sy = ±1 give the corner which is considered.

5.4 Motion in TT-coordinates

The six sets of equations written in the box at the end of section 5.3 describe the BVP.
The first two equations can be solved for Cx

nm and Cy
nm in terms of the coefficients of

the jump functions. Then the infinite sums in the boundary conditions can be truncated
at some value M and the resulting linear system of 4 ∗ (2 ∗M + 1) equations in the
4 ∗ (2 ∗M + 1) variables cm(di0) and cn(ei0) are solved on the computer. As the number
of equations and variables is equal, we expect that a solution exists. Here we chose
M = 70 to get a good compromise of accuracy of the solution and runtime. Once the
jump coefficients are known, they can be used to calculate the Fourier coefficients of the
solution and these can then be used to calculate the solutions themselves.

The solution obviously depends on the chosen material, represented by the speeds of
sound c1 and c2 in the medium, and the gravitational wave frequency ω. The dimension
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Chapter 5 Delta Corrected Spectral Method

of the plate is chosen to be L = 1m as we have shown in section 3.5 that all other cases
can be obtained by a scaling argument.

As an exemplary case, we show here two solutions for a plate with wave-speeds
c1 = 1950m

s , c2 = 540m
s which could be made of polyethylene [9]. Once for purely plus-

polarized wave A+ = 1, A× = 0 and once for a purely cross-polarized wave A+ = 0, A× = 1.
Since the equations are linear, the solution for an arbitrary polarization can be constructed
as a superposition of these two special cases (where the time-dependence of the cross
polarization solution gets a phase shift, when its amplitude is complex). Keep in mind,
that φj(x, y) represents only the spatial part of the solution, to get the full solution one
needs to multiply by cos(ωt) so that uj(t, x, y) = cos(ωt)φj(x, y). Moreover these results
are in TT-coordinates and hence don’t directly describe the physical motion of the plate.

5.4.1 Purely plus-polarized GW

Figure 5.3: Surface plot of φx and φy for purely plus-polarized GW.

In the first representation, shown in Figure 5.3, the components of φ⃗ are plotted as a
function of x and y. The linear behaviour dominates the solution, a fact which fits nicely
with the low frequency limit in section 3.8. Figure 5.4 gives a better intuition of what
happens to the plate. It is compressed in one direction, and stretched in the other. The
farther the point is away from the origin, the larger the deformation, which is exactly
the linear behaviour. But this is only the representation in TT-coordinates, so it doesn’t
show the actual physical behaviour, which is discussed in chapter 6.

The whole plate looks like it’s uniformly stretched in one direction and compressed in
the other. That looks very similar to the quadrupole motion of a ring of free particles
under the influence of a GW. But actually it is the exact opposite motion, so that when
we transform it to local Lorentz coordinates there is no motion, i.e. the plate prevents
the motion.

The uniformity is explained by the following intuitive argument: The time it takes for
elastic waves/information traveling at the speed of sound c2 = 540m

s or c1 > c2 through
the plate is t = L

c2
≈ 2ms. On the other hand the period of the gravitational wave is

T = 2π
ω ≈ 63ms. So t << T , or if we consider c1 instead of c2 this means that the period
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5.4 Motion in TT-coordinates

Figure 5.4: Deformation of the quadratic plate under a plus-polarized GW of frequency
ω = 1001

s . Grey lines represent the original plate, black lines the deformed
plate. The Amplitude is scaled up for better visibility.

(a) surface plot (b) grid plot

Figure 5.5: Plots for purely plus-polarized wave with ω = 104 1s .

ratio ε from section 3.8 is small. Hence the spread of elastic waves/information in the
plate is much faster than the change of the GW, which acts in TT-coordinates only on
the boundary. Therefore the whole plate can react as one.

By this argument, that should no longer be the case for higher frequencies and indeed
Figure 5.5 confirms this for ω = 104 1s . Different parts of the plate move differently since
changes have no longer enough time to propagate through the plate and ’equilibrate’.

One interesting thing to consider is, how the deformation, especially its amplitude,
changes with the GW-frequency. To get a first impression we plot the maximum value

49



Chapter 5 Delta Corrected Spectral Method

of φ⃗ relative to L as a function of ωL in Figure 5.6. One can see, that there are certain
resonance frequencies where the deformation gets very large. At these resonances our
model no longer makes sense as we haven’t implemented any damping behaviour.

Figure 5.6: Max of φ⃗ relative to L in units of ϵ as a function of ωL.

5.4.2 Purely cross-polarized GW

(a) Surface Plot (b) Grid plot

Figure 5.7: Surface and Grid plot for a purely cross-polarized GW of frequency ω = 1001
s .

At a first glance the result in Figure 5.7 looks very similar to the plus-polarized case
except, that they are rotated by 90°. What this implies can be better seen in the grid
plot. The stretching and compressing now happens along the diagonals, in contrast to
along the axes as it was the case for the plus-polarized wave and is again the opposite
motion of a ring of free particles.
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Chapter 6

Physical Distances

In the last chapter we obtained a procedure to numerically solve the BVP describing
the motion of an elastic quadratic plate under the influence of a gravitational wave.
But this solution was obtained in TT-coordinates so it doesn’t directly describe the
behaviour of the plate. We start this chapter by introducing a coordinate transformation
to local Lorentz coordinates and then discuss the results in more detail, before going on to
calculate the signal, an interferometer mounted on the plate would measure, in the next
chapter. Throughout this and the next chapter we assume that, except were explicitly
stated otherwise, the plate has length L = 1m.

6.1 Coordinate Transformation to Local Lorentz Coordinates

We want to mount an interferometer on the plate to measure gravitational waves. To
calculate the signal it would measure we need to calculate the physical path lengths of
the two interferometer arms. This is done using local Lorentz coordinates [12], given by
the transformation

x̄ = x(1− A+

2 ϵ cos(ωt))

ȳ = y(1 + A+

2 ϵ cos(ωt))
(6.1)

for the case of a purely plus-polarized GW (A+ = 1, A× = 0). The coordinates with
bar denote the TT-coordinates, the ones without a bar are Local Lorentz coordinates,
i.e. physical distances are given by the difference in coordinates. For small ϵ, this
transformation can be inverted:

x =
x̄

1− A+

2 ϵ cos(ωt)
≈ x̄(1 + A+

2 ϵ cos(ωt))

y =
ȳ

1 + A+

2 ϵ cos(ωt)
≈ ȳ(1− A+

2 ϵ cos(ωt)).
(6.2)

In matrix form this can be written as(︃
x
y

)︃
=

(︄
1 + A+

2 ϵ cos(ωt) 0

0 1− A+

2 ϵ cos(ωt)

)︄(︃
x̄
ȳ

)︃
. (6.3)
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To get the transformation rule for the cross-polarization we employ a rotation of 45° in
the x-y plane. The coordinates in the rotated frames are denoted by x′, y′ and x̄′, ȳ′ and
related to the original coordinates by the transformation R via(︃

x′

y′

)︃
= R

(︃
x
y

)︃
= 1√

2

(︃
1 1
−1 1

)︃(︃
x
y

)︃
. (6.4)

Now notice, that a purely plus-polarized wave in the unprimed frame, turns into a purely
cross-polarized wave in the primed frame:

R
(︃

0 A×
A× 0

)︃
RT =

(︃
A× 0
0 −A×

)︃
. (6.5)

So, to obtain the local Lorentz coordinates under a cross-polarized wave, we first rotate
the coordinates, apply the transformation for the plus-polarized wave and then rotate
them back. (︃

x
y

)︃
= R−1

(︄
1 + A×

2 ϵ cos(ωt) 0

0 1− A×
2 ϵ cos(ωt)

)︄
R
(︃
x̄
ȳ

)︃

=

(︄
1 A×

2 ϵ cos(ωt)
A×
2 ϵ cos(ωt) 1

)︄(︃
x̄
ȳ

)︃

So the Local Lorentz coordinates are given by

x = x̄+ ȳA×
2 ϵ cos(ωt)

y = ȳ + x̄A×
2 ϵ cos(ωt).

(6.6)

Combining both cases gives the transformation for an arbitrary polarized wave:

x = x̄+ x̄A+

2 ϵ cos(ωt) + ȳA×
2 ϵ cos(ωt)

y = ȳ − ȳA+

2 ϵ cos(ωt) + x̄A×
2 ϵ cos(ωt).

(6.7)

The TT-coordinates are related to the deformation by

x̄i = Xi + ϵui (6.8)

where the upper case coordinates are the body coordinates Xi = f i. Putting this all
together and ignoring ϵ2 terms we get

x = X(1 + A+

2 ϵ cos(ωt)) + Y A×
2 ϵ cos(ωt) + ϵux

y = Y (1− A+

2 ϵ cos(ωt)) +X A×
2 ϵ cos(ωt) + ϵuy.

(6.9)
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6.2 Physical Displacement Field

Figure 6.1: Maximum of the physical displacement field in units of ϵ as a function of ωL
for the response to a purely plus-polarized GW.

6.2 Physical Displacement Field

We can use the coordinate transformation (6.9) to translate the displacement fields ui or
their spatial part φi into the physical displacement fields ũi or φ̃i.

φ̃x = φx +X A+

2 + Y A×
2

φ̃y = φy − Y A+

2 +X A×
2

(6.10)

This is used to translate the results from section 5.4 where the plate has parameters
c1 = 1950m

s and c2 = 540m
s . First we investigate the response to a purely plus-polarized

wave, then to a purely cross-polarized wave. All other cases can be constructed from
these two.

6.2.1 Purely plus-polarized GW

For small ω, the solution φi is almost linear, such that the transformation cancels the
result almost completely. Figure 6.1 confirms this by showing, that the maximum of the
physical displacement field is very small for small ωL. This also fits nicely with the low
frequency limit where we have φx ≈ −A+

2 x and φy ≈ A+

2 y.
The resonances stay at the same frequencies as in the TT-gauge. The frequencies of

the first four are ω1 ≈ 24001
s , ω2 ≈ 32001

s , ω3 ≈ 59401
s and ω4 ≈ 72201

s . At the first
resonance a few interesting things happen:

• The amplitude grows very large.
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(a) ω = 2350 (b) ω = 2450

Figure 6.2: Surface plot of φx shortly before (a) and shortly after (b) the first resonance.

• The sign of the solution flips. This can be seen in Figure 6.2. Before the resonance
(a) the solution is bulging upward near x = −0.5 after the resonance (b) φ̃x is
bulging downward. This is related to the phase shift of forced oscillations relative
to the driving force, cf. the damped driven oscillator in Appendix B. When there
is no damping the phase shift happens jumps from 0 to π at the resonance, which
manifests here as a minus sign.

• At the corners nodes appear, around which the plate rotates locally, but they
themselves don’t move. We call them rotation centers. This is in addition to the
node at the center which is always present and due to the fact that the center of
mass doesn’t move. Figure 6.3 shows this behaviour at ω = 27001

s , so a bit after
the resonance. The rotation centers can be seen as eddies which appear at the four
corners and move inward.

The first Resonance looks like the n = 1 eigenmode from section 4.3.1. These have wave
vectors kx = ky = n π

L . With the dispersion relation for s-waves ω = c2|k⃗| we predict a
eigenfrequency Lω1 = 540m

s

√
2 π
1m ≈ 23991

s for the first eigenmode. This agrees very well
with the first Resonance frequency, which is what is to be expected in a model without
damping. A damping term would shift the resonance frequencies, see 1D analogy in
appendix B.

At the second resonance, 4 additional nodes appear, but this time at the middle of the
four edges. Also, they are shear fixed points, similar to the node at the center, i.e. they
are compressed along one direction and stretched along the other, while they themselves
don’t move. The sign flip again occurs and leads to the rotation centers changing direction.
For this resonance we didn’t find any eigenmode with the correct frequency or motion
pattern, which is an indication that there are more eigenmodes than the ones we found in
section 4.3.

What about the next eigenmode from section 4.3.1 with n = 2? We would expect to
find it at the frequency ω ≈ 48001

s , but there is no corresponding resonance in Figure
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6.2 Physical Displacement Field

(a) Vector plot (b) Grid Plot

Figure 6.3: Vector plot (a) and grid plot (b) of the physical displacement field at ω = 27001
s

shortly after the first resonance near ω1 ≈ 24001
s .

6.1. To understand why it doesn’t appear, we again look at a simpler analogy, this time a
clamped string. All higher harmonics have nodes, i.e. points of the string which don’t
move. If we want to drive the string to oscillate at one of these harmonics, by applying a
periodic force, we not only need to hit the right frequency, but also apply the force at the
correct position. For example it is impossible to excite the 2nd harmonic, which has a
node at the center, by applying the force in the middle. Applying this analogy to our
plate, the force applied by the GW has to match the pattern of the eigenmode for it to
be excitable. Looking at motion pattern of the n = 2 quadratic eigenmode we see that
along the edges one half is bulging inward, the other outward. This is incompatible with
the plus-polarized GW, which acts symmetric around the middle of the edges (think of
free particles lying in a circle around the origin). Therefore this motion is incompatible
with the GW and hence there exists no corresponding spike in the resonance curve.

Following this argument further, the next eigenmode with n = 3 is at ω = 72001
s and

indeed there is a corresponding spike in the resonance curve Figure 6.1. This suggests,
that only the odd-numbered eigenmodes are compatible with the plus-polarized GW.
The reason being that these are symmetric under reflections around the axes, as is the
GW, but the even-numbered eigenmodes are not. Section 6.2.3 discusses the relation of
excitability to the mass quadrupole moment and confirms this pattern.

What about the other Resonances in Figure 6.1, e.g. those at ω2 ≈ 32001
s and

ω2 ≈ 60001
s? They don’t correspond to any of the known quadratic eigenmodes from

section 4.3. They also don’t appear to belong to one family of eigenmodes following a
pattern ωn = nω0. But maybe they are just the fundamental frequencies of two separate
such series of eigenmodes.

The behaviour of the nodes with higher frequencies no longer follows a clear cut pattern.
It seems like they vanish and reappear. But there is no longer any clear connection to

55



Chapter 6 Physical Distances

the resonances. See for example Figure 6.4, which shows the solution at ωL = 7000m
s

in-between the third and fourth resonance. There don’t appear to be any fixed-points
but the whole middle part doesn’t move much.

(a) Vector Plot (b) Grid plot

Figure 6.4: Vector plot (a) and Grid plot (b) of the physical displacement field for
ω = 70001

s and L = 1 in response to a purely plus-polarized GW.

6.2.2 Purely cross-polarized GW

For the case of a purely cross-polarized gravitational wave, the resonance curve is shown
in Figure 6.5. The resonance frequencies for the shown peaks are now approximately
ω1 = 21501

s , ω2 = 50501
s , ω3 = 69501

s , ω4 = 84001
s and ω5 = 93001

s . They are distinct
from the ones for the plus-polarized wave. This is not surprising as we have already
mentioned that the motion-pattern of the eigenmode, which can be excited has to fit to
the ’force’ applied by the GW. This if obviously the case for different eigenmodes, when
the polarization is different. Moreover, none of the eigenmodes we found in section 4.3.1
belong to one of these frequencies.

In contrast to the plus-polarization, no nodes appear at the first resonance, see Figure
6.6 (a). The first four rotation centers appear near ω = 40001

s at the middle of the edges
as can be seen in 6.6 (b). So here there is no connection between the nodes and the
resonance frequencies. Going to higher frequencies one can also see four shear-centers,
which appear at the corners of the square formed by the four rotation-centers. While not
visible in the vector plot for ω = 40001

s , they are clearly visible in the vector plot at the
second resonance. A catalogue of the motion patterns of all resonances up to ω = 100001

s
for both polarizations can be found in Appendix A
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6.2 Physical Displacement Field

Figure 6.5: Maximum of the physical displacement field as a function of ωL for a cross-
polarized GW.

(a) ω = 2150 1
s

(b) ω = 4000 1
s

Figure 6.6: Vector plots of the physical displacement field at the first resonance (a) and
in-between the first and the second (b). In (b) the appearance of rotation
centers at the middle of the edges can be seen.
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6.2.3 Relation to Quadrupole Moment

According to Einsteins famous quadrupole formula (see e.g. [5]) gravitational waves are
related to the second time-derivative of the mass quadrupole moment. In electrodynamics
a receiver needs a changing electric dipole moment to be sensitive to electromagnetic
dipole radiation. In analogy one expects that a receiver needs a changing mass quadrupole
moment to be sensitive to gravitational quadrupole radiation. The (traceless) quadrupole
moment can be calculated by the integral

ITij =

∫︂
d3rρ(r⃗)

[︁
rirj − 1

3r
2δij
]︁

(6.11)

where ρ(r⃗) is the mass density and the integral goes over the whole elastic body. This
formula can be used to calculate the quadrupole moment of the eigenmodes from section
4.3.1. For the two dimensional plate the integral goes over the undisturbed square
[−1

2 ,
1
2 ] × [−1

2 ,
1
2 ] but the positions are given by ri = xi + ϵui. The density is constant

throughout the plate ρ(x⃗) = ρ0. Ignoring terms of order O(ϵ2) we first find an expression
for r2:

r2 = (r⃗ + u⃗)2 = x2 + y2 + 2ϵ(xux + yuy). (6.12)

This can be used in formula (6.11), starting with the I11 component.

I11 = ρ0

∫︂ 0.5

−0.5
dxdy

[︁
x2 + 2ϵxux − 1

3r
2
]︁

=
ρ0
3

∫︂ 0.5

−0.5
dxdy

[︁
2x2 − y2 + 2ϵ cos(ωt)(2xφx − yφy)

]︁
=
ρ0
3

[︃
1

12
+ 2ϵ cos(ωt)

∫︂ 0.5

−0.5
dxdy(2xφx − yφy)

]︃ (6.13)

The first term in the brackets is constant in time so that we are only interested in the
second term. The integral can be evaluated separately for even and odd numbered
eigenmodes.

• n even:

=

∫︂ 0.5

−0.5
dxdy [2x cos(nπx) sin(nπx) + y sin(nπx) cos(nπy)]

=

∫︂ 0.5

−0.5
2x cos(nπx)dx

∫︂ 0.5

−0.5
sin(nπy)dy +

∫︂ 0.5

−0.5
sin(nπx)dx

∫︂ 0.5

−0.5
y cos(nπy)dy = 0

Each of these vanishes as they integrate an odd function over a symmetric interval.
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• n odd:

= −
∫︂ 0.5

−0.5
dxdy [2x sin(nπx) cos(nπx) + y cos(nπx) sin(nπy)]

= −2

∫︂ 0.5

−0.5
x sin(nπx)dx

∫︂ 0.5

−0.5
cos(nπy)dy −

∫︂ 0.5

−0.5
cos(nπx)dx

∫︂ 0.5

−0.5
y sin(nπy)dy

= −6
sin(nπ

2 )

n2π2
=

6(−1)
n−1
2

n2π2
̸= 0

Since this is the traceless quadrupole tensor, we can easily find the other diagonal
component I22 = −I11. Both of them are constant for even numbered eigenmodes. Only
the odd numbered eigenmodes have a part which changes with time. This agrees with
the results above, where we found that the gravitational wave only excites odd numbered
eigenmodes.

Now we look at the other independent component I12 = I21:

I12 = ρ0

∫︂ 0.5

−0.5
dxdy (x+ ϵux)(y + ϵuy)

= ρ0

∫︂ 0.5

−0.5
dxdy (xy + ϵ(uxy + xuy))

= ρ0ϵ cos(ωt)

∫︂ 0.5

−0.5
(φxy + xφy)

(6.14)

The integral for even and odd numbered cases are again considered separately:

• n even:∫︂ 0.5

−0.5
cos(nπx)dx

∫︂ 0.5

−0.5
y sin(nπy)dy −

∫︂ 0.5

−0.5
x sin(nπx)dx

∫︂ 0.5

−0.5
cos(nπy)dy = 0

• n odd:

−
∫︂ 0.5

−0.5
sin(nπx)dx

∫︂ 0.5

−0.5
y cos(nπy)dy +

∫︂ 0.5

−0.5
x cos(nπx)dx

∫︂ 0.5

−0.5
sin(nπy)dy = 0

So this component vanishes identically. As the quadrupole tensor has the same symmetries
as the gravitational wave we expect the I11 component to be related to a plus-polarized
GW and the I12 component to a cross-polarized GW. Therefore, this result nicely agrees
with the fact that the plus-polarized wave can excite the odd-numbered eigenmodes (as
they have a non-constant I11 component), but a cross-polarized wave can excite none of
the eigenmodes since none have a changing I12 component.
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Chapter 7

Interferometer

This chapter describes the setup of how an interferometer is placed on the plate. We
assume, that the instruments are rigid and move as the plate, they are mounted on, does.
Then we will find an expression for the signal of the interferometer and look at how this
behaves for different gravitational wave frequencies. So far we have only looked at the
resonances of the maximum of φ⃗. These do not necessarily correspond to the frequencies
at which the interferometer gives the strongest signal, as it might be possible, that the
deformations along the path of the laser cancel each other out.

7.1 Interferometer Setup and Assumptions

We consider a standard Michelson-Interferometer consisting of a laser, a beam-splitter,
two mirrors and a detector. For the placement of beam-splitter and mirrors see Figure
7.1 and the explanation below. The light enters the apparatus from the left and divides
into two at the beam splitter, moving along both orthogonal arms. At the mirrors the
light is reflected back to the beam-splitter where it is recombined. Assuming that there
is a difference between the time it takes the light to travel along both arms, the laser
interferes with itself. This leads to a change in intensity which can be measured in the
detector. In a more realistic setting, a Fabry-Pérot-Interferometer would be used, where
the laser effectively bounces back and forth multiple times.

For simplicity it is assumed that the plate doesn’t change while the light crosses the
instrument. Is this a good assumption? The light takes about Tl = 2L

c ≈ 10−7s for
a 15m large plate. The upper limit of frequencies of gravitational waves from known
physical phenomena we want to detect is 10 kHz, which corresponds to a period of
TGW = 10−4s. For this values their ratio is 10−3, so that the assumption of a static plate
during the photon flight is justified. This ratio stays constant as long as the product
ωL is constant. Thus, for smaller plates, larger frequencies can be considered, and the
other way around. Once the plate is large enough for the light to take more than half
a gravitational wave period to cross, the deformations change their sign and the effects
start to cancel each other out. This gives also an upper limit on the effective path length
of an Fabry-Pérot-Interferometer.

We have three different periods or time intervals: The light-crossing time Tl, the
gravitational wave period TGW and the sound-crossing time Tc = L

c1
. Their ratios

determine the behaviour of the plate. As long as the first is far smaller than the second
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Figure 7.1: Sketch of a Interferometer on a plate consisting of a laser, a beamsplitter, two
mirrors and a detector.

one, Tl ≪ TGW , the assumption of a stationary plate is valid. When the second one is
also large compared to the third one Tc ≪ TGW , the low-frequency limit (see section 3.8)
can be applied.

The positions of the mirrors A = (−X0, Y0) and C = (X0,−Y0) and the beam-splitter
B = (−X0,−Y0) (see Figure 7.1) in Local Lorentz coordinates are given by

(xA, yA) =
(︂
−X0(1 +

h+

2 ) + Y0
h×
2 + ϵux|A , Y0(1− h+

2 )−X0
h×
2 + ϵuy|A

)︂
(xB, yB) =

(︂
−X0(1 +

h+

2 )− Y0
h×
2 + ϵux|B ,−Y0(1− h+

2 )−X0
h×
2 + ϵuy|B

)︂
(xC , yC) =

(︂
X0(1 +

h+

2 )− Y0
h×
2 + ϵux|C ,−Y0(1− h+

2 ) +X0
h×
2 + ϵuy|C

)︂ (7.1)

where X0 and Y0 denote the coordinates of the instruments on the body manifold. Later
X0 = Y0 = 0.4L is chosen for the calculations. This is to avoid the error due to the finite
number of terms in the Fourier series approximation. Looking at Figure 7.2 one can
see this behaviour near the borders. The points x = y = 0.4L are far enough from the
border to still avoid this artifact. In an experimental setting one would probably set the
instruments at the border to maximize the signal.

7.2 Calculation of Signal

In this section we calculate the phase difference between the laser going along the two
different interferometer arms. The calculations are similar to those for the case of free
mirrors, found for example in [12] or [10] . We start with the case of pure plus-polarization,
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Figure 7.2: Surface plot of φx and φy for purely cross-polarized GW.

A+ = 1, A× = 0. Looking at the metric in the local Lorentz frame as given in [12]

gµν = ηµν −
2

c2

⎛⎜⎜⎝
Φ 0 0 Φ
0 0 0 0
0 0 0 0
Φ 0 0 Φ

⎞⎟⎟⎠ (7.2)

with Φ given by

Φ = −1

4
ḧ(t)

(︁
x2 − y2

)︁
=
ϵω2

4
cos(ωt)

(︁
x2 − y2

)︁
. (7.3)

one can see, that the g00 component is different from the flat-space metric. As it is
dependent on the position on the plate, clocks run at different rates depending on where
they are. Combining this with the motion of the mirrors there are two effects which
change the time it takes light to travel along the two interferometer arms:

• A difference in time elapsed because one path is longer than the other.

• A difference due to clocks running at different speeds along both paths, and hence
the light traveling at different coordinate speeds.

We calculate the elapsed time along null geodesics (which are still straight lines) taken
by the photons. First we look at the photon moving along the lower interferometer arm
from point B to C. For the four-velocity of the photons uµ we have

0 = gµνu
µuν = (ηtt − 2

c2
Φ)(ut)2 + ηxx(u

x)2 = −(1 + ϵω2

2c2
cos(ωt)

(︁
x2 − y2

)︁
)(ut)2 + (ux)2.

Using ut = dt
dλ and ux = dx

dλ for a path parameterized by λ this can be rearranged to an
expression for the coordinate speed of light

dx

dt
=
ux

ut
=

√︂
1 + ϵω2

2c2
cos(ωt) (x2 − y2) ≈ 1 + ϵω2

4c2
cos(ωt)

(︁
x2 − y2

)︁
. (7.4)
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We again use the assumption, that the plate is stationary during one light crossing, i.e.
the cosine is approximately constant and we take it to be 1. This results in the maximum
possible amplitude of the effect. To obtain the result for other times, one would need
to bring this factor back. Then one can rearrange the terms into a form one can easily
integrate along the path.

cdt =
(︂
1 + ϵω2

4c2
cos(ωt)

(︁
x2 − y2

)︁)︂−1
dx ≈

(︂
1− ϵω2

4c2
cos(ωt)

(︁
x2 − y2

)︁)︂
dx (7.5)

The path along which we integrate goes from xB = −0.4L + ϵφ̃x(−0.4L,−0.4L) to
xC = 0.4L+ ϵφ̃x(0.4L,−0.4L) and y = −0.4L.

c∆tBC =

∫︂ xC

xB

dx
(︂
1− ϵω2

4c2

(︁
x2 − y2

)︁)︂
(7.6)

= xC − xB − ϵω2

4c2

(︂
x3
C−x3

B
3 − y2(xC − xB)

)︂
(7.7)

= 0.8L+ ϵ [φ̃x(0.4L,−0.4L)− φ̃x(−0.4L,−0.4L)]− ϵ ω2

4c2
(0.4L)3(23 − 2) (7.8)

The first term is the time it would take the laser to cross the path without any GW. The
second term is due to the motion of the mirrors and the last term is the correction due to
the different rates at which time passes.

Now this is only for the trip from the beam-splitter to the mirror. To consider the
return path, we have to integrate from C to B and, since we go along the path in the other
direction, also change dx to −dx. Thus, instead of doing the integral, we can interchange
the limits of integration and have again the same expression as above, so that the total
elapsed time is

c∆tBCB = 1.6L+ 2ϵ [φ̃x(0.4L,−0.4L)− φ̃x(−0.4L,−0.4L)] + ϵ2 ω2

3c2
(0.4L)3. (7.9)

Next the elapsed time along the other interferometer arm is needed. We can arrive at the
result by interchanging x and y, which changes the component of φ̃i and flips the sign in
the (x2 − y2) term so that we arrive at

c∆tBAB = 1.6L+ 2ϵ [φ̃y(−0.4L, 0.4L)− φ̃y(−0.4L,−0.4L)]− ϵ2ω
2

3c2
(0.4L)3. (7.10)

The difference in the two elapsed times is what generates the phase difference and comes
out as

c∆t = ∆tBAB −∆tBCB = ∆l − ϵ4ω
2

3c2
(0.4L)3 (7.11)

where ∆l is the difference in path lengths given by

∆l = 2ϵ cos(ωt)(φ̃y|A − φ̃y|B − φ̃x|C + φ̃x|B). (7.12)

The two effects are additive and can be considered separately. Is the second effect relevant?
We will later see, that ∆l is of magnitude 1ϵ. The correction term is proportional to
ω2

c2
L3 ≈ 10−9L3 for ω = 100001

s . ∆l on the other hand is proportional to φ̃i, which scales
linearly with L. So for them to be of the same magnitude 10−9L2 would need to be
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approximately 1. That is the case if the plate would be more than 30 kilometers long. So
for realistic plate sizes the time-effect is not relevant. This agrees with the statement in
the conclusion of [10] where this effect was said to be much smaller than the other effect
(though there the mirrors where considered to be free).

Thus the relevant part of the signal results from the difference in lengths along the two
interferometer arms l1 and l2: ∆l = 2(l1 − l2). The factor 2 is due to the laser going back
and forth across the lengths. The two lengths can now be easily calculated for the case of
general polarizations:

l1 =
√︁
(xA − xB)2 + (yA − yB)2

= yA − yB +O(ϵ2) = Y0(2− h+) + ϵ(uy|A − uy|B)
l2 = xC − xB = X0(2 + h+) + ϵ(ux|C − ux|B)

(7.13)

Then the difference of the length of the laser paths is given by

∆l = 2l1 − 2l2 = 4(Y0 −X0)− 2h+(Y0 +X0) + 2ϵ(uy|A − uy|B − ux|C + ux|B). (7.14)

The first term vanishes since X0 = Y0. Inserting the expressions for the gravitational
wave and separating off the time dependence of the displacement ui it turns back into
equation 7.12. Looking more closely at this , we notice that a purely cross-polarized wave
has no effect. To see this, first note that the last term vanishes because A+ = 0. In the
other terms we use the symmetry for a cross-polarized GW 3.44:

∆l ∝ φy|A − φy|B − φx|C + φx|B (7.15)
= φy(−X0, Y0)− φy(−X0,−Y0)− φx(X0,−Y0) + φx(−X0,−Y0) (7.16)
= φy(−X0, Y0)− φy(−X0,−Y0)− φy(−Y0, X0) + φy(−Y0,−X0) = 0. (7.17)

In the last equality X0 = Y0 was used. Looking at one of the pictures of the result this is
not too surprising. The displacement is symmetric across the diagonal, so that both arms
of the interferometer undergo the same change and hence there is no difference in path
lengths. In fact both path lengths stay constant.

7.3 Results

From the discussion above we conclude, that only the plus-polarized wave gives a signal,
so we look at a purely plus-polarized wave. To look at a concrete example, we choose
again c1 = 1950m

s and c2 = 540m
s .

The resulting difference in path lengths for different frequencies are shown in Figure
7.3. Also, for comparison, the resulting signal for an interferometer with freely suspended
mirrors (like LIGO, φ̃i = 0) of the same size is plotted. One can see, that there are
long ranges (for instance from ωL = 3000m

s to almost 6000m
s ) where the signal from the

interferometer on the plate is larger. So this is not only the case near the resonances.
Keeping the scaling argument from section 3.5 in mind we can choose the size of the

plate L so that the frequency range, where known interesting phenomena happen coincides
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Figure 7.3: Difference in path lengths ∆l in units of ϵ for the interferometer on the plate
and the freely suspended mirrors.

with the range where the signal is largest. Say for instance an interesting event happens
at a frequency of ω = 4001

s . Then we could choose a plate of length L = 10m to shift the
region in Figure 7.3 near ωL = 4000m

s to the frequency we are interested in. In addition,
the signal scales linearly with the size of the plate so that we also get a 10 times stronger
signal.

For small gravitational wave frequencies ω the signal goes to zero. This fits nicely with
the fact that the physical displacement field also goes to zero for small ω. Physically
the explanation for this is, that the oscillations of the wave are slow enough for the
material in the plate to resist deformation. There is enough time for the elastic waves to
spread throughout the body and the atoms can realign themselves. When the frequencies
of the GW is larger, and hence the period smaller this is no longer the case. The
signal starts to increase noticeable at approximately ω = 10001

s which corresponds to
a period T = 2π

ω = 6ms. Comparing this to the time a s-wave needs to cross the plate
τ = 1

c2
= 2ms one sees that this is a considerable fraction of the period of the GW, or in

other words, the period ration becomes almost one.
In section 3.8 we found an approximate polynomial solution for the case of small period

ratio ε = ωL
c1

and pure plus-polarization. This can be used to explore the small frequency
case (small compared to c1

L ). We first need to convert it to local Lorentz coordinates
using (6.10):

φ̃x = L
48A+ε

2 c
2
1

c22

c21
c23

[︂
−3

2x
(︂
1− c22

c21

)︂
+ 3

(︂
1− 2

c22
c21

)︂
xy2 + x3

]︂
. (7.18)

Note, that this is of order ε2 and hence very small. This confirms that the signal here
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will also be very small. First we rewrite the expression for the path length difference
(7.12) using the symmetry for the pure plus-polarization (A+ = 1) and then insert the
polynomial solution.

∆l = 2ϵ cos(ωt) [φ̃y(−X0, Y0)− φ̃y(−X0,−Y0)− φ̃x(X0,−Y0) + φ̃x(−X0,−Y0)]
= 2ϵ cos(ωt) [−φ̃x(Y0,−X0) + φ̃x(−Y0,−X0)− φ̃x(X0,−Y0) + φ̃x(−X0,−Y0)]
= 4ϵ cos(ωt) [φ̃x(−Y0,−X0)− φ̃x(X0,−Y0)]

= L
12ε

2 c41
c22c

2
3
ϵ cos(ωt)

[︂
3
2(Y0 +X0)

(︂
1− c22

c21

)︂
− 3

(︂
1− 2

c22
c21

)︂
(Y0X

2
0 +X0Y

2
0 )− (Y 3

0 +X3
0 )
]︂

= ϵL3 cos(ωt)ω22.03× 10−7

The approximation is valid up to at most ω = 1001
s and if we insert this value, we find

∆l = ϵ cos(ωt)2.03× 10−3. This confirms that the signal indeed almost vanishes for low
frequencies. Figure 7.4 shows a plot of the signal for the polynomial solution and the
numerical approach. It can be seen, that the two curves start to diverge at approximately
ωL = 800, which is to be expected since the low frequency limit no longer applies there.
Also, for very small frequencies the agreement is not perfect. This is because the numerical
approach becomes ill-conditioned. Overall, the two curves become closer, if the series in
the numerical approach are truncated at larger values M .

Figure 7.4: Comparison of polynomial solution in the low frequency limit and numerical
solution from the corrected spectral method.
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Chapter 8

Conclusion

In this work we were able to find a numerical solution describing the behaviour of a
quadratic elastic plate under the influence of a gravitational wave. This was done by
developing a spectral approach which deals with the derivatives of Fourier series of
non-periodic functions. Correction terms were introduced to get a relation between the
derivative of the Fourier series and the Fourier series of the derivative of the function.
For low frequency limit a polynomial solution was found and used to check the validity of
the numerical approach.

This solution was then used to calculate the signal a laser interferometer placed on this
plate would see. It was discovered, that for broad frequency ranges, the signal is larger
than the one a interferometer consisting of freely suspended mirrors and of the same size,
would measure. Of course, the advantage of interferometers with free mirrors, like LIGO,
is that they can use kilometer-long tunnels to get a larger signal. Plates are restricted to
far smaller sizes. But it is still an interesting and surprising effect. One would intuitively
expect, that the material would oppose the motion of the mirrors. And since the effect of
the GW is weak there should be almost no signal. It turns out, that this is only true for
low gravitational wave frequencies.

The behaviour of the plate is determined by two period-ratios: First, the ratio of the
time it takes light to cross the plate and the gravitational wave period. As long, as this is
small, the plate can be assumed to be stationary during the light crossing. If this gets too
large, the signal gets weaker. Second, the ratio of the time it takes sound waves to cross
the plate to the gravitational wave period. This ratio is called ε and when it is small, the
low frequency solution can be used.

The signal is especially large near certain resonance frequencies. Looking at the motion
pattern of the plate near the resonances, we discovered that some of them corresponds to
the eigenmode solutions from section 4.3.1. The amplitude of the signal is of the order of
ϵL ≈ 10−20L. This can be improved by using longer (effective) path lengths, i.e. either a
Fabry-Pérot-Interferometer to bounce the laser back and forth multiple times, or make
the plate larger. Though there are limits to these improvements, as the effects will start to
cancel once the plate undergoes more than half of its oscillation during the light-crossing.
This result has to be compared to the wavelength of the laser which is of order 10−7m. As
this is far larger, the phase difference and hence the interference effect will be very small.
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Chapter 8 Conclusion

8.1 Outlook

During the work on this thesis a lot of points which require further investigation were
discovered:

• It would be interesting to investigate the convergence behaviour of the series
representing the boundary conditions in box 5.3. How fast does the error decrease,
when increasing M, the limit in the sums? One starting point could be to solve
the problem for different M and look at how the resonance frequencies change.
For instance, the first resonance in the plus-polarization corresponds to the first
eigenmode which has a frequency ωL = 2399m

s . If the problem is solved with
M = 40,M = 70 and M = 100 the resonance appears at ωL = 2410m

s , ωL = 2406m
s

and ωL = 2404m
s respectively. So the numerical solution appears to approach the

correct value, though not very fast.

• The resulting deformations of the plate are very small, of the order of 10−20m. To
examine how realistic it is to ever detect such small changes, one should compare it
to thermal noise and seismic disturbances of the plate.

• One could investigate the computational complexity of using the delta corrected spec-
tral method developed in this thesis and compare it to other numerical approaches.
For instance, would it be faster to solve the BVP directly using a finite-difference
scheme? Though it is not straightforward to implement the boundary conditions in
that case. Another approach might be to use the Finite-Elements method.

• The model used in this work doesn’t consider any damping behaviour. We expect,
that a few things would change if this is done. The amplitude at the resonances
should stay finite and the resonance-frequencies should be shifted. In general the
signal would probably be smaller. In the literature one approach, called structural
damping, is to express the material parameters in terms of Young’s Modulus E and
then let it be complex Ē = E(1 + iη) where η represents the damping.

• In this work, the solution was only discussed for one set of material parameter,
i.e. wave speeds. For different materials, the resonances would appear at different
frequencies. As the ratio of the wave speeds changes, some of the eigenmodes will
change order, as they scale differently. The s-wave eigenmodes for instance have
eigenfrequencies proportional only to c2, while others will depend on a combination
of c1 and c2. It might also be possible that not all eigenmodes will be available for
all materials.

• Here only the steady-state solution of the plate under the influence of a continuous
plane gravitational wave was considered. In reality one would have a plate at rest,
which is then set into motion when it is hit by a GW-pulse. Depending on the
duration of the pulse and the damping, this behaviour will settle down to the
steady-state solution.
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Appendix A

Motion Pattern Catalogue

For reference a catalogue of motion patterns/grid plots at all eigenfrequencies and
resonance-frequencies up to ωL = 10000m

s is included in this appendix.

Figure A.1: Comparison of resonance frequencies of the two polarizations and eigenfre-
quencies.
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Appendix A Motion Pattern Catalogue

(a) ωL = 2399m
s

(b) ωL = 4798m
s

(c) ωL = 7197m
s

(d) ωL = 9597m
s

Figure A.2: Grid plot of the first four eigenmodes with given frequencies.
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(a) ωL = 2406m
s

(b) ωL = 3192m
s

(c) ωL = 5936m
s

(d) ωL = 7218m
s

(e) ωL = 9122m
s

(f) ωL = 9438m
s

Figure A.3: Grid plot of the first six resonances for a plus-polarized gravitational wave.
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Appendix A Motion Pattern Catalogue

(a) ωL = 2150m
s

(b) ωL = 5030m
s

(c) ωL = 6930m
s

(d) ωL = 8400m
s

(e) ωL = 9300m
s

Figure A.4: Grid plot of the first five resonances for a cross-polarized gravitational wave.
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Appendix B

Damped Driven Oscillator

The equation governing a damped driven oscillator in the unknown x is

mẍ+ bẋ+ kx = F0m cos(ωt) (B.1)

where m represents the mass, b describes the damping, k is the spring constant and F0

the amplitude per unit mass of the driving force. For simplicity we divide by the mass
m and introduce the resonance frequency of the undamped oscillator ω2

0 = k
m and the

damping factor γ = b
m .

ẍ+ γẋ+ ω2
0x = F0 cos(ωt) (B.2)

We make the ansatz
x = Aeiωt (B.3)

for the steady-state solution with complex amplitude A and at the end take the real part.
Moreover the driving force is also rewritten as F0e

iωt. Inserting this into the equation
and canceling the exponential factor we find

A
(︁
−ω2 + iωγ + ω2

0

)︁
= F0. (B.4)

This can be rearranged to an expression for A:

A =
F0

ω2
0 − ω2 + iωγ

= F0
ω2
0 − ω2 − iωγ

(ω2
0 − ω2)2 + γ2ω2

. (B.5)

From that expression the magnitude |A| and phase φ of the complex amplitude A can be
calculated.

|A| = F0√︁
(ω2

0 − ω2)2 + γ2ω2

tan(φ) = − ωγ

(ω2
0 − ω2)

The final solution then looks like

x(t) =
F0 cos(ωt+ φ)√︁
(ω2

0 − ω2)2 + γ2ω2
. (B.6)
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Appendix B Damped Driven Oscillator

Figure B.1: Amplitude and phase-shift of a damped driven oscillator for different values
of damping γ.

The amplitude and phase-shift are plotted below for different values of ω. The amplitude
becomes very large near the resonance frequency and has its maximum at

ωr =

√︂
ω2
0 −

γ2

2 . (B.7)

The larger the damping, the smaller the maximum amplitude. Once we reach γ = 1(ω0)
the peak vanishes completely. For small frequencies the amplitude always corresponds to
the amplitude of the driving force, for very large frequencies the amplitude vanishes.

The phase shift vanishes for small frequencies, i.e. the oscillator moves in sync with the
driving force. Then it increases in absolute value until it reaches π

2 at ω = ω0. For very
high frequencies it approaches φ = π. The smaller the damping, the steeper the curve.
For the case of no damping, it turns into a step function, which corresponds to a sign-flip
at ω = ω0.
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