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Abstract

Two-echelon distribution systems are attractive from an economical standpoint and
help to keep large vehicles out of densely populated city centers. Large trucks can be used
to deliver goods to intermediate facilities in accessible locations, whereas smaller vehicles
allow to reach the final customers. This two-tiered setup comes of course at a cost of
higher planning complexity. This thesis is composed of the publications Breunig et al.
(2016, 2017, 2019) and studies large neighbourhood based metaheuristics for the classic
two-echelon vehicle routing problem, the classic two-echelon location routing problem,
and introduces a new problem variant, which is called the electric two-echelon vehicle
routing problem.

For the first two variants we can show that our developed metaheuristic outperforms
the ones from previous literature. The latter takes into account specific characteristics of
battery-powered vehicles to be used for the second echelon, reducing noise and pollution
in city centers. We designed representative sets of new benchmark instances simulating
realistic metropolitan areas. In particular, we observe that the detour miles due to
recharging decrease proportionally to 1/ρx with x ≈ 5/4 as a function of the charging
stations density ρ; e.g., in a scenario where the density of charging stations is doubled,
recharging detours are reduced by 58%. Finally, we evaluate the trade-off between battery
capacity and detour miles. This estimate is critical for strategic fleet-acquisition decisions,
in a context where large batteries are generally more costly and less environment-friendly.

German Abstract

Zweistufige Transportsysteme können ökonomisch vorteilhaft sein, auch kann man
damit in Stadtzentren mit hoher Bevölkerungsdichte große Fahrzeuge vermeiden. Die
großen Fahrzeuge transportieren die Güter nur bis zu Zwischenlagern am Stadtrand, ab
dort übernehmen kleinere Fahrzeuge die letzten Kilometer bis zum Endkunden. Solche
zweistufigen Systeme bringen natürlich Kosten mit sich: Die kostensparende Planung der
Routen ist komplexer und aufwändiger. Diese Dissertation setzt sich aus den Publika-
tionen von Breunig et al. (2016, 2017, 2019) zusammen. Die Metaheuristiken wurden
für das klassische two-echelon vehicle routing problem und das klassische two-echelon
location routing problem entwickelt und zeigen bessere Leistungen als zuvor veröffentlichte
Lösungsmethoden. Weiters wurde ein neues Problem eingeführt: das electric two-echelon
vehicle routing problem. Bei diesem werden im Stadtinneren elektrische Fahrzeuge ver-
wendet, deren spezielle Eigenschaften berücksichtigt werden müssen. Wir haben anhand
neu entwickelter, repräsentativer Testinstanzen untersucht, welche Auswirkungen die Re-
ichweite der Batterie auf die Kosten für Umwege zu Ladestationen hat. Diese Schätzungen
helfen bei strategischen Entscheidungen bei der Auswahl von Fahrzeugflotten.

IV



Contents

Table of Contents V

List of Figures VI

List of Tables VI

List of Algorithms VII

1 Introduction 1

2 A large neighbourhood-based heuristic for two-echelon routing problems 1
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Destroy operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Repair operator, randomisation and initial solution . . . . . . . . . . . 10
2.5.3 Reconstruction of the first level . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.1 Benchmark Instances for the two-echelon vehicle routing problem . . . 11
2.6.2 Benchmark Instances for the two-echelon location routing problem . . . 14
2.6.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.5 Graphical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 Nomenclature of Set 3 instances . . . . . . . . . . . . . . . . . . . . . . 30
2.8.2 Definition of boxplots in Figure 2 . . . . . . . . . . . . . . . . . . . . . 31
2.8.3 Two-echelon location routing problem with single depot (2ELRPSD)

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 The electric two-echelon vehicle routing problem 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Solving the electric two-echelon vehicle routing problem (E2EVRP) to Optimality 37
3.5 Large Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Destroy operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Repair operator and initial solution construction . . . . . . . . . . . . . 41
3.5.3 Local search with systematic charging stations relocations . . . . . . . 42

3.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.1 Method performance and benefits of integrated planning . . . . . . . . 43

V



3.6.2 Sensitivity analysis – Density of charging stations and battery capacity 50
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8.1 Example of Labelling Algorithm . . . . . . . . . . . . . . . . . . . . . . 54

4 Recent publications in this area of research 55

5 Conclusion 56

List of Figures

1 Subproblems related to the 2EVRP and different solutions depending on which
intermediate facilities are used . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Boxplots of solution quality for instances grouped by number of customers/satellites
and distribution characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Different Solutions of Instance 38 from Set 4, depending on satellite openings
and v2s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Illustration of the multigraph H̄. Non-dominated choices of charging stations
visits are represented by parallel arcs. . . . . . . . . . . . . . . . . . . . . . . . 42

5 Impact of the number of available charging stations on the detour costs due to
recharging and the number of visits to stations. . . . . . . . . . . . . . . . . . 51

6 Impact of the vehicle range (i.e., battery capacity) on the detour costs due to
recharging and the number of visits to stations. . . . . . . . . . . . . . . . . . 52

7 Illustration of the labelling algorithm . . . . . . . . . . . . . . . . . . . . . . . 55

List of Tables

1 Characteristics and Sources of Instance Sets . . . . . . . . . . . . . . . . . . . 14
2 Parameter values obtained by meta-calibration . . . . . . . . . . . . . . . . . . 15
3 Results for Set 2 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Results for Set 3 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Results for Set 4a Instances (with constraint on the number of city freighters

per satellite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Results for Set 4b Instances (v2s = v2) . . . . . . . . . . . . . . . . . . . . . . . 20
7 Results for Set 5 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8 Results for Set 6a Instances (no handling costs) . . . . . . . . . . . . . . . . . 21
9 Results for Set 6b Instances (hs ̸= 0) . . . . . . . . . . . . . . . . . . . . . . . 22
10 Results for 2ELRPSD Instances Set Nguyen . . . . . . . . . . . . . . . . . . . 23
11 Results for 2ELRPSD Instances Set Prodhon . . . . . . . . . . . . . . . . . . . 24
12 Sensitivity Analysis and contribution of individual components . . . . . . . . . 29
13 Set 3 instances with 50 customers: identical except for depot coordinates . . . 30
14 Distance Matrix Calculation for the 2ELRPSD . . . . . . . . . . . . . . . . . . 31
15 Range of parameters used during meta-calibration, and final values found . . . 44
16 Performance analysis on small instances of Set 2 and 3 . . . . . . . . . . . . . 47

VI



17 Performance analysis on medium-scale instances of Set 2, 3 and 6a . . . . . . 48
18 Performance analysis on the large-scale instances of Set 5 – Evaluation of the

benefits of an integrated routing and charging-stations optimization . . . . . . 49
19 Sensitivity analysis on the contribution of each operator. . . . . . . . . . . . . 50

List of Algorithms

1 LNS-2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 LNS-E2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

VII



1 Introduction

Transportation of goods has an increasing significance in our society. Digitalisation, cheap
transport and people’s convenience lead to more and more goods being shipped to end-
customers. But also stores need their products physically available - for customers, who don’t
want to shop online.

On the other hand trucks are still a nuisance, especially within city limits. They emit noise
and pollution, and may cause congestions; parking space is scarce.

This dissertation deals with ways to plan truck routes efficiently; mostly in terms of City
Logistic schemes, where different types of vehicles are used. The basic idea is to use large
trucks for longer distances outside of cities, and re-load the goods to a different vehicle type in
small facilities outside the cities. These are preferably smaller and more suitable for inner city
deliveries, and in some cases even battery electric vehicles - with their idiosyncratic restrictions.

The work is structured as follows: first, we present the first part and publication, dealing
with the classic two-echelon vehicle routing problem (2EVRP) and two-echelon location routing
problem (2ELRP). The second part was published in another paper and extends these classic
problems by introducing battery electric vehicles on the second echelon. Afterwards, we will
give an overview of the more recent publications from the literature; an update to what has
happened in the scientific literature since the before mentioned papers were published.

2 A large neighbourhood-based heuristic for two-echelon

routing problems

This part was published as Breunig et al. (2016).

2.1 Introduction

The traffic of vehicles is a major nuisance in densely populated areas. Trucks disturb peoples’
well-being by emitting noise and air pollution. As the amount of goods in transit increases, a
proper planning of road networks and facility locations becomes critical to mitigate congestion.
To face these challenges, algorithmic tools have been developed to optimise city logistics at
several levels: considering traffic regulation, itineraries and network design choices. Boosting
the efficiency of goods transportation from suppliers to customers presents important challenges
for different planning horizons. On the operational level, efficient itineraries must be found
for the available vehicles from day to day, e.g., reducing the travelled distance. On a tactical
level, the overall fleet size, vehicle dimensions, capacities and characteristics are of interest.
Larger trucks are more efficient in terms of cost per shipped quantity, whereas smaller vehicles
are more desirable in city centres: they emit less noise, and only need smaller parking spots.
Finally, the clever selection of locations for production sites, warehouses, and freight terminals
is a typical strategic decision.

In this article, we consider the problem of jointly determining good routes to deliver goods
to customers, and at which intermediate facilities a switch from larger trucks to smaller city
freighters should happen. This problem is challenging, due to the combination of these two
families of combinatorial decisions.
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To address this problem, we propose a simple metaheuristic, which combines local and
large neighbourhood search with the ruin and recreate principle. The method is conceptually
simple and fast, exploiting a limited subset of neighbourhoods in combination with a simple
strategy for closing and opening intermediate facilities. We conduct extensive computational
experiments on 2EVRP and 2ELRPSD instances to investigate the contribution of these
operators, and measure the performance of the method on both problem classes. For the
2EVRP, this algorithm is able to reach or outperform 95% of the best known solutions. In
general, for both problems, high-quality solutions are attained in short computing times. As
such, this algorithm will serve as a good basis for future developments on more complex and
realistic two-tiered delivery problems.

The paper is organised as follows. The problems are described in Section 2.2 and an
overview of the related literature is given in Section 2.3. Mathematical formulations are
presented in Section 2.4. Section 2.5 describes the proposed algorithm. Section 2.6 reviews
current available benchmark instances and examines the performance of the proposed method.
Section 2.7 concludes.

2.2 Problem description

Vehicle routing problems (VRPs) are a class of combinatorial optimisation problems, which
aim to find good itineraries to service a number of customers with a fleet of vehicles. The
2EVRP is a variant of a VRP, which exploits the different advantages of small and large
vehicles in an integrated delivery system. The goal is to design an efficient distribution chain,
organised in two levels: trucks operate on the first level between a central depot and several
selected intermediate distribution facilities, called satellites. The second level also includes the
satellites – because both levels are interconnected there – as well as the end-customers. Small
city freighters are operated between satellites and customers. The depot supplies sufficient
quantities to satisfy all customer demands. The products are directly transferred from trucks
to city freighters at satellite locations. These city freighters will perform the deliveries to the
final customers. Any shipment or part of shipment has to transit through exactly one satellite,
and the final delivery to the customer is done in one block. As such, split deliveries are not
allowed for city freighters. The quantity (“demand”) of goods shipped to a satellite is not
explicitly given, but evaluated as the sum of all customer demands served with city freighters
originating from this satellite. Depending on the second level itineraries, split deliveries can
occur on the first level since the total quantity needed at one satellite can exceed the capacity
of one truck.

Finding good combined decisions for routing and intermediate facility openings is signif-
icantly more difficult than in well-studied settings such as the capacitated vehicle routing
problem (CVRP). The special case of a 2EVRP with only one satellite can be seen as a
VRP (Cuda et al., 2015; Perboli et al., 2011). The first level of the 2EVRP reduces to a
CVRP with split deliveries. The structure of the second level is a multi-depot vehicle routing
problem (MDVRP), where the depots correspond to the satellite locations (Jepsen et al., 2012).
Those two levels have to be synchronised with each other. The 2EVRP is a generalisation of
the classical VRP and is thus NP-hard.

Figure 1 shows different set-ups for goods distribution. The depot is represented by a
triangle, satellites by squares, and customers by circles. Figures 1a and 1b show graphical
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representations of a split delivery vehicle routing problem (SDVRP) and a MDVRP respectively.
Figures 1c–1e represent feasible solutions for the 2EVRP: with split deliveries occurring at
one of the satellites, without split deliveries, and in Figure 1e a solution where only a subset of
satellites is used.

(a) SDVRP / first level of
2EVRP

(b) MDVRP / second
level of 2EVRP

(c) 2EVRP I (d) 2EVRP II (e) 2EVRP III

Figure 1: Subproblems related to the 2EVRP and different solutions depending on which
intermediate facilities are used

The proposed algorithm has primarily been designed for the 2EVRP, and then tested
on the 2ELRPSD, which includes additional tactical decisions. The basic structure of the
2ELRPSD is very similar to the 2EVRP. The main difference is that it corresponds to a more
tactical planning since only potential locations for depots or satellites are known and the
use of any location results in opening costs. In contrast with the 2EVRP, the fleet size is
unbounded, but fixed costs are counted for the use of each vehicle. The classical benchmark
sets from the literature include different costs per mile for large first level trucks and small
city freighters, unlike in 2EVRP benchmark instances, where mileage costs are identical for all
vehicles. Finally, split deliveries are not allowed at both levels. We thus applied our algorithm
to 2ELRPSD instances, where location decisions have to be taken at the secondary facilities.
Following the notations of Boccia et al. (2011) we focus on 3/T/T problems.

2.3 Literature Review

Jacobsen and Madsen (1980) were amongst the first to introduce a two-echelon distribution
optimisation problem. They proposed a three stage heuristic to solve the daily distribution of
newspapers in Denmark, but no mathematical model was designed. Several possible transfer
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points were considered to transfer newspapers from one vehicle to another. The solution to
this problem consists of three layers of decisions: the number and location of transfer points,
the tours from the printing office and the tours from the transfer points to the retailers. An
improved solution algorithm for the same problem can be found in Madsen (1983). Following
the nomenclature of the authors and the classification in the recent survey on two-echelon
routing problems by Cuda et al. (2015), the problem includes location decisions. Nevertheless,
from today’s point of view, it cannot be categorised as a 2ELRP as there are no opening
costs associated with the use of intermediate facilities and retailers can also be served directly
from the printing office without using intermediate nodes. In addition, the problem cannot be
categorised as a 2EVRP since first-level split deliveries are not allowed.

Two-echelon vehicle routing problem Crainic et al. (2004) used data from Rome to
study an integrated urban freight management system. As large trucks cannot pass through
the narrow streets in the city centre, they used intermediate facilities to redistribute loads from
large trucks to smaller vehicles. The city was divided into several commercial and external
zones, and a mathematical location-allocation formulation was proposed and solved using a
commercial solver. A comparison between solutions for delivering goods lead to the conclusion
that intermediate facilities reduce the use of large trucks significantly, and more work is done
by smaller city freighters.

Crainic et al. (2009) formulated a time dependent version of the problem, including
time windows at the customers. To our knowledge, there are no test instances or solution
approaches for this variant so far. Crainic et al. (2010) studied the impact of different two-tiered
transportation set-ups on total cost. According to their results, the 2EVRP can yield better
solutions than the VRP if the depot is not located within the customer area but externally.
Perboli et al. (2011) introduced a flow-based mathematical formulation and generated three sets
of instances for the 2EVRP with a maximum of 50 customers and four satellites, based on VRP
instances. Their branch-and-cut approach is able to solve instances with up to 21 customers
to optimality. Perboli et al. (2010) solved additional instances and reduced the optimality gap
on others by means of new cutting rules.

Crainic et al. (2011) solved the 2EVRP with a multi-start heuristic. The method first
assigns customers to satellites heuristically, and then solves the remaining VRPs with an exact
method. In a perturbation step, the assignment of customers to satellites is changed, then the
problem is solved again, until a number of iterations is reached.

Jepsen et al. (2012) presented a branch-and-cut method, solving 47 out of 93 test instances
to optimality, 34 of them for the first time. The authors have been the first to consider a
constraint on the number of vehicles per satellite, although it was already specified before in
the existing data set. This additional constraint had not been taken into account by previous
publications.

Hemmelmayr et al. (2012) developed a metaheuristic based on adaptive large neighborhood
search (ALNS) with a variety of twelve destroy and repair operators. This approach tends to
privilege accuracy (high quality solutions) over simplicity and flexibility (Cordeau et al., 2002).
The authors also introduced new larger test instances with up to 200 customers and five to ten
satellites. Note that the results of ALNS on the problem instances with 50 customers cannot
be compared with the proven optimal solutions by Jepsen et al. (2012), since the algorithm
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does not consider a limit on the number of vehicles per satellite, but rather a constraint on the
total number of vehicles. For most problem instances, this algorithm found the current best
known solution or improved it.

Santos et al. (2015) implemented a branch-and-cut-and-price algorithm, which relies on
a reformulation of the problem to overcome symmetry issues. They also introduced several
classes of valid inequalities. The algorithm performs well in comparison to other exact methods,
and they reported solutions for instances with up to 50 customers.

Baldacci et al. (2013) presented a promising exact method to solve the 2EVRP. They
decomposed the problem into a limited set of MDVRPs with side constraints. Detailed results
and comparisons with previous publications were provided, as they considered both variants
on the instances with 50 customers: with and without the constraint on vehicles per satellite.
They also introduced a new set of instances with up to 100 customers.

Recently Zeng et al. (2014) published a greedy randomized adaptive search procedure,
combined with a route-first cluster-second splitting algorithm and a variable neighbourhood
descent. They also provide a mathematical formulation. They provide quite good results,
although unfortunately their algorithm was tested only with instances comprising up to 50
customers.

Two-echelon location routing problem The capacitated 2ELRP is by far the most
studied version of the 2ELRP. Many papers consider location decisions only at the second
stage, either because the use of depots is an outcome of the first level routing optimisation, or
they consider problems with only one single depot location which is known a priori (2ELRPSD).

Laporte (1988) presented a general analysis of location routing problems and multi-layered
problem variants. They compared several mathematical formulations and their computational
performance. In a slightly different context, Laporte and Nobert (1988) formulated a vehicle flow
model for the 2ELRP. The locations of the depots are assumed to be fixed and unchangeable,
such that the location decisions only occur for the satellites. Following the notation by Boccia
et al. (2011) they analysed 3/R/R, 3/R/T , 3/T/R, and 3/T/T problem settings.

Boccia et al. (2011) provided three mathematical formulations for the 2ELRP using one-,
two-, and three indexed variables inspired from VRP and MDVRP formulations. A commercial
solver was used to solve some instances generated by the authors, comparing two of the
formulations in terms of speed and quality.

Nguyen et al. (2012a) introduced two new sets of instances for the 2ELRPSD. They
implemented a GRASP with path relinking and a learning process and provided detailed
results. In Nguyen et al. (2012b) the authors improved their findings on the same instances by
using a multi-start iterated local search.

Contardo et al. (2012) proposed a branch-and-cut algorithm, which is based on a two-
indexed vehicle flow formulation, as well as an ALNS heuristic. Both solution approaches were
applied to one set of 2ELRP instances, and two sets of 2ELRPSD instances, outperforming
previous heuristics.

Schwengerer et al. (2012) extended a variable neighborhood search (VNS) solution approach
for the location routing problem from Pirkwieser and Raidl (2010) and applied it to several
instance sets, including the two aforementioned ones with a single depot.
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For further details on both problem classes, we refer to the recent survey by Cuda et al.
(2015). The previous literature review shows that, on the side of exact methods, the best
approaches still cannot consistently solve (in practicable time) 2EVRP instances with more
than 50 customers to optimality. On the side of heuristics, only few methods have been
designed and tested to deal with instances with more than 50 delivery locations. To the
best of our knowledge, only one heuristic has reported, to this date, computational results
on larger 2EVRP instances (Hemmelmayr et al., 2012). Hence, there is a need for a more
fine-grained study of solution methods for larger problems, as well as for simpler approaches
able to efficiently deal with the two families of decisions related to routing and intermediate
facilities selection. The proposed method has been designed to cope with these challenges. We
developed a technique which performs very well on the classic benchmark instances and, in
the meantime, uses fewer and simpler neighbourhood structures than previously published
algorithms. During our research, we finally found inconsistencies regarding different benchmark
instances used in previous papers. Some slightly different instances have also been referenced
with the same name. Thus we collected the different versions and make them available online
with unique names in a uniform file format, as described in Section 2.6.1.

2.4 Mathematical model

Different mathematical formulations have been proposed for the 2EVRP (Perboli et al., 2011;
Jepsen et al., 2012; Baldacci et al., 2013; Santos et al., 2013, 2015) and for the 2ELRP (Boccia
et al., 2011; Contardo et al., 2012). In this section, we display compact formulations based on
the model of Cuda et al. (2015).

The 2EVRP can be defined on a weighted undirected graph G = (N,E), where the set of
vertices N consists of the depot {0}, the set of possible satellite locations S = {1, . . . , |S|} and
the set of customers C = {|S|+1, . . . , |S|+ |C|}. The set of edges E is divided into two subsets,
representing the first and second echelon respectively. Set E1 = {(i, j) : i < j, i, j ∈ {0} ∪ S}
represents the edges which can be traversed by first-level vehicles: those connecting the
depot to the satellites, and those interconnecting satellites with each other. The set of edges
E2 = {(i, j) : i < j, i, j ∈ S ∪ C, (i, j) /∈ S × S} is used for the second level, and corresponds
to possible trips between satellite and customers or pairs of customers.

A fleet of v1 homogeneous trucks with capacity Q1 is located at the depot. A total of v2

homogeneous city freighters are available, each with a given capacity of Q2. They can be
located at any satellite s ∈ S. Still, the number of city freighters at one satellite is limited to
v2s .

The set R1 contains all possible routes starting from the depot and delivering a given
sequence of customers, then returning to the depot again. Similarly each route r in the set
of secondary routes R2 starts at a satellite s ∈ S, visits one or several customers in C, and
returns again to satellite s. Each customer c ∈ C has a demand of dc units. Each unit of
freight shipped through a satellite induces a handling cost hs.

Given a secondary route r ∈ R2 and a customer c ∈ C, the parameter βrc ∈ {0, 1} is equal
to 1 if and only if customer c is visited in route r, and 0 otherwise. Let dr =

∑
c∈C:c∈r dc ≤ Q2

denote the total demand of customers visited in route r, and pr represents the cost of each
route r ∈ R1 ∪R2. The binary variables xr ∈ {0, 1} with r ∈ R1 ∪R2 take the value 1 if and
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only if route r is in the solution. Finally, each decision variable qrs ≥ 0 with r ∈ R1, s ∈ S ∩ r,
gives the load on the truck on route r that has to be delivered to satellite s.

min
∑

r∈R1∪R2

prxr +
∑
s∈S

hs

∑
r∈R1

qrs (1)

s.t. ∑
r∈R1

xr ≤ v1 (2)∑
r∈R2

xr ≤ v2 (3)∑
r∈R2:s∈r

xr ≤ v2s s ∈ S (4)∑
s∈S∩r

qrs ≤ Q1xr r ∈ R1 (5)∑
r∈R1

qrs =
∑

r∈R2:s∈r

drxr s ∈ S (6)∑
r∈R2

βrcxr = 1 c ∈ C (7)

xr ∈ {0, 1} r ∈ R1 ∪R2 (8)

qrs ≥ 0 r ∈ R1, s ∈ S ∩ r (9)

The objective function (1) sums up routing costs for all routes on both levels and handling
costs per unit moved through each satellite. Constraints (2) and (3) set the number of available
vehicles for trucks and city freighters, respectively. The number of city freighters per satellite
is constrained by Constraint (4). Constraints (5) ensure that the maximum capacity of the
trucks is not exceeded. Constraints (6) link the quantities of goods between the first and
the second level. They guarantee that the incoming goods equal the outgoing goods at the
satellites. As there are no split deliveries allowed on the second level, Constraints (7) ensure
that each customer is visited exactly once. The domains of the decision variables are defined
by Constraints (8) and (9).

The mathematical model for the 2ELRPSD is similar to the previous model, but needs
some adjustments. Each satellite s ∈ S has a given opening cost fs and a capacity of ks units
of freight. There is an unbounded number of vehicles available at both levels. Therefore,
Constraints (2) to (4) are not needed. The routing of a vehicle incurs fixed costs of f 1 for
each truck, and f 2 for each used city freighter. Each binary parameter αrs is equal to 1 if and
only if satellite s is visited on route r, and 0 otherwise. If satellite s is opened in the solution,
binary variable ys takes value 1, and 0 otherwise.

Using Constraints (5) to (9), the objective function needs to be changed to min
∑

r∈R1(f 1 +
pr)xr +

∑
r∈R2(f 2 + pr)xr +

∑
s∈S fsys to consider fixed and mileage-based vehicle costs for

both levels separately, as well as opening costs for satellites. The capacity limit at the satellites
is imposed by

∑
r∈R1 qrs ≤ ksys for all s ∈ S. If a satellite s has been selected to be open, then

the delivery by exactly one truck is guaranteed by Constraints
∑

r∈R1 αrsxr = ys for all s ∈ S.

7



2.5 Solution method

The proposed metaheuristic follows the basic structure of a large neighborhood search (LNS),
which was first introduced by Shaw (1998). An initial feasible solution is iteratively destroyed
and repaired in order to gradually improve the solution. Such a ruin and recreate approach
(Schrimpf et al., 2000) has been successfully applied to multiple variants of vehicle routing
problems in the past (see, e.g., Pisinger and Ropke 2010). The destruction of parts of a previous
solution (ruin) gives freedom to create a new and better solution (recreate). Algorithm 1 shows
the basic structure of the proposed method.

Algorithm 1: LNS-2E

1 Sbest ← S ← localSearch(repair(instance)) /* initial solution */
2 g ← 0
3 repeat
4 for i← 0 to imax do
5 Stemp ← localSearch(repair(destroy(S, g)))
6 if Satellite was opened/closed during previous destroy phase then
7 g ← 0 /* reset grace period */

8 if cost(Stemp) < cost(S) then
9 S ← Stemp /* accept better solution */

10 i← 0 /* reset re-start period */

11 g ← g + 1

12 if cost(S) < cost(Sbest) then
13 Sbest ← S /* store best solution */

14 else
15 S ← localSearch(repair(instance)) /* re-start: new solution */

16 until time > timemax

17 return Sbest

At each iteration of the proposed method, 1) a partial solution destruction is performed
on the routes of the second level; 2) then the second level is repaired and improved by means
of local search, and finally 3) the first level is reconstructed with a simple heuristic. As such,
the first level is constructed from scratch in every iteration, but since the number of nodes in
the first-level sub-problem is relatively small, this simple heuristic already finds an optimal or
near-optimal solution.

Each of the destroy phases performs all the destroy operators sequentially as they are
described in Section 2.5.1. One single repair mechanism is used for solution reconstruction and
also to obtain an initial solution (Line 1 and 5). This procedure is described in Section 2.5.2.
Afterwards, as needed quantities at the satellites are known, the first level is reconstructed as
described in Section 2.5.3.

The choices of intermediate facilities may change as a consequence of the repair operator, or
through dedicated destroy operators which temporarily close or re-open some possible locations
for intermediate facilities. If a change in open or closed satellites has recently taken place, the
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status of another satellite will not be changed (Line 5) for a number of iterations that we call
grace period (g is reset to 0 in Line 7).

We then put emphasis on a strong local search phase, exploiting well-known procedures like
2-opt (Croes, 1958), 2-opt*, or simple relocate and swap moves. Relocate shifts a node before
or after one of the closest neighbours, if costs are improved. Swap explores the exchange of
one node with one of the neighbour nodes, as well as exchanging one node with two successive
neighbour nodes. This local search phase is applied after the destroy and repair operators. In
order to reduce the complexity, moves are only attempted between close customers, as done
in the granular search by Toth and Vigo (2003). Further information on these moves can be
found in the survey by Vidal et al. (2013).

If a better solution is obtained, it is accepted as the new incumbent solution (Line 9). If
no improvement can be found for a large number of iterations, then the algorithm will restart
from a new initial solution, even if the objective value is worse (Line 15).

In general, our algorithm requires less local and large neighbourhood operators than the
ALNS proposed by Hemmelmayr et al. (2012). The destruction operator parameters are
also selected randomly, since the method performed equally well, during our computational
experiments, without need for a more advanced adaptive scoring system. In the following, we
describe the sets of destroy and repair operators, as well as the management of the decisions
related to the first level.

2.5.1 Destroy operators

Our algorithm relies on different destroy operators which are all invoked at each iteration in
sequential order. They are applied only to the second level. All of them, except the open all
satellites neighbourhood, select nodes which are removed from the current solution.

The first four destroy operators are used at each iteration. The last two ones, which change
the status of a satellite to closed or open again, are only invoked if g in Line 5 of Algorithm 1
has exceeded the grace period gmax (i.e. no change in open/closed satellites has taken place
recently). The destroy operators are now described, in their order of use. When applicable, all
random samples are uniformly distributed within their given interval.

Related node removal A seed customer is randomly chosen. A random number of its
Euclidean closest customers as well as the seed customer are removed from the current solution
and added to the list of nodes to re-insert. This operator receives a parameter p1, which
denotes the maximum percentage of nodes to remove. At most ⌈p1 · |C|⌉ nodes are removed,
with |C| being the overall number of customers.

Biased node removal First, the removal cost of each customer is computed: the savings
associated to a removal of node j, located between i and k, is given by δj = cik − cij − cjk,
where cij denotes the travel cost from node i to node j. The probability of selection of a
node for removal is then linearly correlated with the delta evaluation value. The higher the
gain after removal, the more likely it will be selected and removed. In every destroy phase, a
random percentage of customers from the interval [0, p2] is removed.
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Random route removal Randomly selects routes and removes all containing customers,
adding them to the list of nodes to re-insert. This operator randomly selects a number of

routes in the interval [0, ⌈p3 ·
∑
c∈C

dc
Q2
⌉].

Remove single node routes This operator removes all routes which contain only one single
customer. In the case of the 2EVRP there is a limited number of overall vehicles available,
and thus removing the short routes allows to use a vehicle originating from a different satellite
in the next repair phase. This operator is used with a probability of p̂4.

The last two destroy operators can be used at most at each gmax iterations. During this
grace period after satellite selection has been actively altered, none of these two operators will
be executed.

Close satellite Chooses a random satellite. If the satellite can be closed and the remaining
open ones still can provide sufficient capacity for a feasible solution, the chosen satellite is
closed temporarily. All the customers, which are assigned to it, are removed and added to the
list of nodes to re-insert. The satellite stays closed until it is opened again in a later phase.
This operation is chosen with a probability of p̂5, given variable g has already exceeded the
grace period. If this operator has been executed, g is reset to 0.

Open all satellites This neighbourhood makes all previously closed satellites available
again. It comes into effect with a probability p̂5

|S| , and thus it depends on the same parameter
as the close satellite operator and the number of satellites. This operator can only be executed
if g > gmax, i.e. outside the grace period. Its execution resets g to 0.

2.5.2 Repair operator, randomisation and initial solution

At each repair phase, the insertion of the nodes is done in random order. This repair mechanism
can sometimes fail, if one customer remains with a higher demand than the largest free capacity
available on any vehicle. In this exceptional case, the repair process is restarted, and the nodes
are ordered by decreasing demands and then inserted to preserve feasibility.

Repair is achieved with a simplified cheapest insertion heuristic. All nodes are sequentially
inserted at their cheapest possible position in the solution. The main difference with the classic
cheapest insertion heuristic is that the method does not aim to insert the node with the lowest
increase in total costs, but just takes the next candidate from the list and inserts it, in order
to reduce complexity and enhance solution diversity. It is a simple and greedy heuristic.

Both the initial solution and every partial solution are always repaired by the same operator.
The initial solution can be seen as a “completely destroyed” solution.

After the second level has been repaired, the local search procedure is performed: 2-opt on
each of the routes, 2-opt* on all routes originating at the same satellite. The algorithm then
tries to relocate single nodes, swap one node with another and to swap two nodes with one other,
within a limited neighbourhood of the τ closest nodes, again accepting only improvements.
This procedure stops when no improving move exists in the entire neighbourhood. After this
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procedure, the delivery quantity of each of the satellites is known, and the first level can be
constructed using the same insertion heuristic as for the second level and performing local
search.

2.5.3 Reconstruction of the first level

For the 2EVRP, it is essential to allow satellites to be delivered by several trucks. In particular,
if the demanded quantity at a satellite is larger than a full truckload and no other satellite
is available, then there would be no feasible solution. To reconstruct a first level solution,
we propose a very simple preprocessing step. Any satellite with a demand larger than a full
truckload is virtually duplicated into nodes with demands equal to a truckload, until the
remaining demand is smaller than Q1. The same insertion procedure as the repair operator
is used to generate a first level solution. This creates back-and-forth trips to the virtual
nodes with demands equal to a full truckload, and completes the solution analogously for the
remaining nodes.

Usually there are few nodes associated with the SDVRP on the first level. The largest
benchmark instances from literature so far contain only ten satellites at most. This very simple
policy enabled to find nearly-optimal first level solutions for most considered instances with
limited computational effort. Finally, note that in the considered 2ELRPSD instances, the
capacity of a satellite is never larger than the trucks’ capacity. Therefore, split deliveries are
not generated during reconstruction.

2.6 Computational Experiments

This section describes the currently available sets of instances for the 2EVRP (in Section 2.6.1)
and the used instances for the 2ELRPSD (Section 2.6.2) and attempts to resolve some
inconsistencies. The calibration of the method is described in Section 2.6.3. The compu-
tational results and the comparisons with other state-of-the-art algorithms are discussed in
Sections 2.6.4 and 2.6.5. Finally, Section 2.6.6 analyses the sensitivity of the method with
respect to several key parameters and design choices.

2.6.1 Benchmark Instances for the two-echelon vehicle routing problem

When looking at the literature, it may appear that there are six unique sets of benchmark
instances. However, due to inconsistencies with respect to constraints, nomenclature or
locations, we identified in fact several different subsets. In what follows, we explain the
differences and provide high quality solutions for them. We consider five different sets of
benchmark instances from literature. Sets 2 and 3 were proposed by Perboli et al. (2011)
and have been generated based on the instances for the CVRP by Christofides and Eilon.
Different customers were chosen and converted into satellites. They also proposed the small
Set 1 instances, with just twelve customers and two satellites, which we did not consider. Set 4
was proposed by Crainic et al. (2010); all of them were downloaded from OR-Library (Beasley,
2014).
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The instance Sets 2 to 5 as used in Hemmelmayr et al. (2012) were also communicated to
us by email (Hemmelmayr, 2013). We noticed a few key differences with the ones available
from Beasley (2014).

Set 6 instances were provided from the authors (Baldacci, 2013).
All distances are Euclidean, and computed with double precision. Note that handling costs

are set to 0 for all sets except 6b. We will now explain the characteristics of these instance
sets in detail, and propose unique names for the sets to overcome existing inconsistencies:

Set 2 There are two different versions in circulation: Please note that the instances with 50
customers in the OR-Library contain a mistake1. This can be resolved by exchanging Q1 and
Q2 capacity values, which is also the way we treated them, like previous authors did.

The names of the instances downloaded from Beasley (2014) and used by Hemmelmayr
et al. (2012) were the same, but the instances with 50 customers included different locations
for the satellites. For future reference we provide both versions, and we rename the instances
with less than 50 customers to Set 2a, the Hemmelmayr (2013) version of 50 customer Set 2
instance files to Set 2b, and the OR-Library version will be called Set 2c. Table 3 shows the
characteristics of all Set 2 instances.

Instance names used by Baldacci et al. (2013) have the satellite numbers incremented by
one. Apart from that, they are identical with what we received from Hemmelmayr (2013).
For example, Set 2a instance named E-n51-k5-s2-17 (Satellites 2 and 17) corresponds to
E-n51-k5-s3-18 in the result tables of Baldacci et al. (2013).

We provide both versions (OR-Library with corrected capacities as well as the ones re-
ceived by Hemmelmayr) with distinguishable names at https://www.univie.ac.at/prolog/
research/TwoEVRP.

Set 3 There are also two different versions of the Set 3 instances in circulation. We collected
and solved all of them and distinguished between different versions and identified inconsistencies.
Again, the sources Beasley (2014) and Hemmelmayr (2013) were identical for instances with
21 and 32 customers, but different for instances with 50 customers. In the case of Set 3, the
filenames for the different instances were also different, so there is no need to introduce new
distinguishable names.

The only difference between Set 3 instances with 50 customers from the two sources is
the location of the depot. The locations of satellites and customers, as well as the vehicles
and demands are identical. All Set 3 instances from Hemmelmayr (2013) place the depot at
coordinates (0,0), whereas the files of Beasley (2014) have the depot located at (30,40). Table
13 shows which instances correspond to each other, apart from satellite location.

Please also note that like in Set 2, the Set 3 instances with 50 customers from the OR Library
also have the capacities of the two vehicle types interchanged (see Footnote 1). This has been
corrected in the files which we provide online.

1First level vehicles have a capacity of Q1 = 160 units, and second level vehicles, which by design are
supposed to be smaller than level 1 trucks, have a capacity of Q2 = 400 units. For instances with two satellites
for example, there are 3 trucks available. They can ship a maximum of 3 ∗ 160 = 480 units. Overall customers’
demand

∑
c∈C dc is larger than 480 units, so there is per se no feasible solution for those instances.
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For easier referencing, we also divide the instances in three parts. Set 3a includes all
instances with less than 50 customers, Set 3b the larger instances which have been used
by Hemmelmayr et al. (2012), and Set 3c the larger instances as they are available at the
OR-Library, and have been used by Baldacci et al. (2013), among others.

Set 4 These instances have been treated differently in literature, either with a limit on the
number of second level vehicles allowed per satellite or only considering a total number of
vehicles, with no limitations on the distribution amongst satellites. As proposed in Baldacci
et al. (2013), we solved both versions and follow their nomenclature: Set 4a with the limit per
satellite, and Set 4b when the constraint of vehicles per satellite is relaxed.

Set 5 This set of instances has been proposed by Hemmelmayr et al. (2012). To the best of
our knowledge they were the only ones to report solutions on all instances of that set. Baldacci
et al. (2013) were able to find solutions on the small instances with only five satellites.

Set 6 To the best of our knowledge, solutions on these instances have only been reported
in Baldacci et al. (2013). Set 6 includes two subsets: Set 6a, with hs = 0, and Set 6b, which
considers different handling costs per freight unit at each of the satellites.

Table 1 displays an overview of the characteristics of the individual sets. It lists the number
of instances in the according set and subset with number of customers (C), satellites (S), trucks
(T), city freighters (CF) and available city freighters per satellite v2s . Column hC shows if the
handling costs are non-zero. The source of the instance sets is also provided (Hemmelmayr,
2013; Beasley, 2014; Baldacci, 2013).
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Table 1: Characteristics and Sources of Instance Sets

Set Subset Inst. C S T CF hC v2s HCC OR-Library Baldacci

2 a 6 21 2 3 4 - • •
6 32 2 3 4 - • •

b 6 50 2 3 5 - •
3 50 4 4 5 - •

c 6 50 2 3 5 - •
3 50 4 4 5 - •

3 a 6 21 2 3 4 - • •
6 32 2 3 4 - • •

b 6 50 2 3 5 - •
c 6 50 2 3 5 - •

4 a 18 50 2 3 6 4 •
18 50 3 3 6 3 •
18 50 5 3 6 2 •

b 18 50 2 3 6 - •
18 50 3 3 6 - •
18 50 5 3 6 - •

5 6 100 5 5 [15,32] - •
6 200 10 5 [17,35] - •
6 200 10 5 [30,63] - •

6 a 9 50 [4,6] 2 50 - •
9 75 [4,6] 3 75 - •
9 100 [4,6] 4 100 - •

b 9 50 [4,6] 2 50 • - •
9 75 [4,6] 3 75 • - •
9 100 [4,6] 4 100 • - •

2.6.2 Benchmark Instances for the two-echelon location routing problem

The proposed algorithm was originally designed for the 2EVRP, nevertheless we also tested it
on benchmark instances for the 2ELRPSD. Two sets, called “Nguyen” and “Prodhon” are
available at http://prodhonc.free.fr/Instances/instances0_us.htm. They present some
small errors or unclear descriptions, which are documented in Appendix 2.8.3.

2.6.3 Parameters

The parameters of the proposed method have been calibrated using meta-calibration: the
problem of finding good parameters is assimilated to a black-box optimisation problem, in which
the method parameters are the decision variables, and the objective function is simulated by
running the method on a set of training instances, containing five randomly selected instances,
for each set. To perform a fast optimisation we rely on the covariance matrix adaptation
evolution strategy (CMA-ES) by Hansen (2006). The source code (in Java) is available at
https://www.lri.fr/~hansen/cmaes_inmatlab.html.

The performance of our algorithm is rather insensitive to changes in parameters for the
small instances, but the rules for closing and opening satellites have to be adjusted to the
number of overall available satellites. Our calibration experiments have been conduced for
each instance set, independently, and then we searched for one compromise setting for the
parameters that yields satisfying results for all different benchmark instances. The calibration
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results are displayed in Table 2, as well as the average value, standard deviation, and the
compromise value which was used for the runs reported in Section 2.6.4.

The size of the limited neighbourhood for the local search relocate and swap moves was
also determined by CMA-ES. This parameter always converged to τ = 25 already in early
stages of the tuning process, and thus relocate and swap moves are attempted only for nodes
within the radius including the 25 Euclidean closest nodes.

Table 2: Parameter values obtained by meta-calibration

2EVRP 2ELRPSD

Set 2 Set 3 Set 4a Set 4b Set 5 Set 6a Set 6b Nguyen Prodhon Mean Std. Dev. compromise

p1 0.35 0.39 0.32 0.31 0.29 0.33 0.26 0.14 0.34 0.30 0.07 0.20
p2 0.18 0.20 0.12 0.07 0.80 0.52 0.78 0.50 0.19 0.37 0.27 0.35
p3 0.09 0.07 0.14 0.16 0.14 0.21 0.19 0.28 0.17 0.16 0.06 0.25
p̂4 0.33 0.73 0.19 0.09 0.32 0.21 0.41 0.37 0.57 0.36 0.18 0.50
p̂5 0.06 0.01 0.29 0.24 0.14 0.28 0.26 0.21 0.20 0.19 0.09 0.20

2.6.4 Computational Results

As done in previous literature, we performed five independent runs on each of the 2EVRP
benchmark instances and 20 runs on the 2ELRPSD instances. The code is written in Java
with JDK 1.7.0 51 and tested on an Intel E5-2670v2 CPU at 2.5 GHz with 3 GB RAM. The
code was executed single threaded on one core. We compare the performance of our method
on the 2EVRP instances with the hybrid GRASP +VND by Zeng et al. (2014) and the ALNS
by Hemmelmayr et al. (2012), when applicable; as well as the currently best known solutions
for each instance from the literature. We also show the results of the algorithm on the 2ELRP
with single depot and compare with the VNS of Schwengerer et al. (2012). We describe the
data of the following tables in general and discuss results in detail on each of the instance sets
separately.

Tables 3 to 11 show the characteristics and detailed results for each instance. The columns
C, S, T and CF display the main characteristics of the instance, where C is the number of
customers, S is the number of satellites, T and CF the number of available trucks and city
freighters, respectively. The last two columns are not applicable for Tables 10 to 11, as they
correspond to 2ELRPSD instances with unbounded fleet size.

The next columns display the results of the proposed method (LNS-2E), and methods by
Hemmelmayr et al. (2012) (HCC), Zeng et al. (2014) (ZXXS) for the 2EVRP when applicable,
and Schwengerer et al. (2012) (SPR) for the 2ELRPSD. The average objective value of five
runs is given in column Avg. 5. Column Best 5 shows the best solution found within these
five runs, and Best gives the best objective value found during all experiments, including
parameter calibration. Following the work of Schwengerer et al. (2012), we also used average
and best of 20 for the 2ELRPSD for better comparison.

Column t reports the average overall runtime of the algorithms in seconds, and t* the
average time when the best solution was found. For easier comparison we chose a simple time
limit for termination of our algorithm: 60 seconds for instances with up to 50 customers, and
900 seconds for larger ones. Our time measure corresponds to the wall-clock time of the whole
execution of the program, including input and output, computation of the distance matrix,
and other pre-processing tasks. Hemmelmayr et al. (2012) and Schwengerer et al. (2012) report
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CPU times (which may be slightly smaller than wall clock times). Zeng et al. (2014) only
report the time when the best solution was found, but no overall runtime of the algorithm.

BKS refers to the best known solution of that instance. Best known solutions are highlighted
in boldface when found by the algorithm, and new BKS are also underlined. We highlight an
instance with an asterisk after BKS if the best known solution of the instance is known to be
optimal from previous literature.

Tables 3 and 4 provide detailed results on the instances of Set 2 and Set 3. HCC, ZXXS
and our algorithm find the best known solutions at every run. The solutions have been proven
to be optimal for all the instances except Set 2c and Set 3b. To the best of our knowledge, we
are the first ones to report solutions on the 2c instances obtained from Beasley (2014). For
Set 3c, the optimal objective values are derived from Baldacci et al. (2013) and Jepsen et al.
(2012), but no results from HCC or ZXXS are available. Summarising Tables 3 and 4, we can
conclude that Sets 2 and 3 are easy in the sense that all runs of all algorithms always found
the optimal or best known solution.

The instances of Set 4 have been addressed in various ways in the literature. Jepsen et al.
(2012) considered a limit on the number of city freighters available at each satellite, HCC and
ZXXS did not impose this limit, and instead considered the limit on the total number of city
freighters only. Baldacci et al. (2013) addressed both variants of the instances to compare
their results to both previous results, introducing a new nomenclature: Set 4a for the instances
including the limit of vehicles per satellite, and Set 4b when this limit is relaxed.

Tables 5 and 6 display the results on Set 4a and 4b instances. 102 out of the 108 instances
have been solved to optimality by Baldacci et al. (2013). Nevertheless we observed small
differences of objective values with our solutions (up to a 0.006% difference). This could
be explained by a different rounding convention (we use double precision), or by the small
optimality gap of Cplex. As a consequence, bold fonts were used for BKS within 0.006%
precision. In all these cases the underlying solution is identical, just the objective value is
marginally different. We can see from Tables 5 and 6 that in all cases our best solution
corresponds to the optimal or best known solution. Only in 3 and 2 instances of Set 4a and
4b, respectively, some of the runs gave slightly worse solutions. On average, in instance Set 4b
our results are slightly better than those of the other heuristics.

To the best of our knowledge, Hemmelmayr et al. (2012) were the only authors who
published results on the large Set 5 instances with 10 satellites to this date. Baldacci et al.
(2013) report solutions on the small Set 5 instances (100 customers/5 satellites), improving
three out of six instances to optimality. The algorithm of Hemmelmayr et al. (2012) was
evaluated with a limit of 500 iterations. We compare our results in Table 7 and were able to
improve the best known solutions on 9 of the 18 instances, depicted with an underlined BKS
value. Known optimal solutions are retrieved at least once within the five performed test runs.

Tables 8 and 9 report the results for the instances of Set 6a and b. From the 54 instances,
all except 13 solutions have been proven to be optimal, and on nine of those remaining LNS-2E
was able to find better solutions. Best solutions were found typically after less than three
minutes.
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Table 3: Results for Set 2 Instances

HCC ZXXS LNS-2E

Instance C S T CF Avg. 5 t(s) t*(s) Avg. 5 t*(s) Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 2a1,2

E-n22-k4-s6-17 21 2 3 4 417.07 37 0 417.07 0 417.07 417.07 417.07 60 1 417.07*
E-n22-k4-s8-14 21 2 3 4 384.96 34 0 384.96 0 384.96 384.96 384.96 60 1 384.96*
E-n22-k4-s9-19 21 2 3 4 470.60 35 0 470.60 0 470.60 470.60 470.60 60 1 470.60*
E-n22-k4-s10-14 21 2 3 4 371.50 37 0 371.50 0 371.50 371.50 371.50 60 2 371.50*
E-n22-k4-s11-12 21 2 3 4 427.22 31 0 427.22 0 427.22 427.22 427.22 60 2 427.22*
E-n22-k4-s12-16 21 2 3 4 392.78 36 0 392.78 0 392.78 392.78 392.78 60 1 392.78*
E-n33-k4-s14-22 32 2 3 4 779.05 85 0 730.16 0 779.05 779.05 779.05 60 1 779.05*
E-n33-k4-s1-9 32 2 3 4 730.16 74 0 714.63 0 730.16 730.16 730.16 60 1 730.16*
E-n33-k4-s2-13 32 2 3 4 714.63 64 0 707.48 0 714.63 714.63 714.63 60 1 714.63*
E-n33-k4-s3-17 32 2 3 4 707.48 58 0 778.74 1 707.48 707.48 707.48 60 1 707.48*
E-n33-k4-s4-5 32 2 3 4 778.74 77 3 756.85 0 778.74 778.74 778.74 60 1 778.74*
E-n33-k4-s7-25 32 2 3 4 756.85 53 0 779.05 0 756.85 756.85 756.85 60 1 756.85*

Avg. 577.59 51 0 577.59 0 577.59 577.59 577.59 60 1 577.59

Set 2b1

E-n51-k5-s11-19 50 2 3 5 581.64 182 6 597.49 1 581.64 581.64 581.64 60 1 581.64*
E-n51-k5-s11-19-27-47 50 4 4 5 527.63 147 1 530.76 0 527.63 527.63 527.63 60 4 527.63*
E-n51-k5-s2-17 50 2 3 5 597.49 100 7 554.81 1 597.49 597.49 597.49 60 3 597.49*
E-n51-k5-s2-4-17-46 50 4 4 5 530.76 154 1 581.64 4 530.76 530.76 530.76 60 3 530.76*
E-n51-k5-s27-47 50 2 3 5 538.22 136 1 538.22 1 538.22 538.22 538.22 60 1 538.22*
E-n51-k5-s32-37 50 2 3 5 552.28 141 1 552.28 1 552.28 552.28 552.28 60 2 552.28*
E-n51-k5-s4-46 50 2 3 5 530.76 173 0 530.76 1 530.76 530.76 530.76 60 3 530.76*
E-n51-k5-s6-12 50 2 3 5 554.81 149 2 531.92 1 554.81 554.81 554.81 60 4 554.81*
E-n51-k5-s6-12-32-37 50 4 4 5 531.92 150 0 527.63 1 531.92 531.92 531.92 60 2 531.92*

Avg. 549.50 148 2 549.50 1 549.50 549.50 549.50 60 2 549.50

Set 2c2

E-n51-k5-s11-19 50 2 3 5 617.42 617.42 617.42 60 3 617.42
E-n51-k5-s11-19-27-47 50 4 4 5 530.76 530.76 530.76 60 1 530.76
E-n51-k5-s2-17 50 2 3 5 601.39 601.39 601.39 60 3 601.39
E-n51-k5-s2-4-17-46 50 4 4 5 601.39 601.39 601.39 60 4 601.39
E-n51-k5-s27-47 50 2 3 5 530.76 530.76 530.76 60 3 530.76
E-n51-k5-s32-37 50 2 3 5 752.59 752.59 752.59 60 5 752.59
E-n51-k5-s4-46 50 2 3 5 702.33 702.33 702.33 60 4 702.33
E-n51-k5-s6-12 50 2 3 5 567.42 567.42 567.42 60 5 567.42
E-n51-k5-s6-12-32-37 50 4 4 5 567.42 567.42 567.42 60 6 567.42

Avg. 607.94 607.94 607.94 60 4 607.94

1 included in Hemmelmayr (2013)
2 included in Beasley (2014)
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Table 4: Results for Set 3 Instances

HCC ZXXS LNS-2E

Instance C S T CF Avg. 5 t(s) t*(s) Avg. 5 t*(s) Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 3a1,2

E-n22-k4-s13-14 21 2 3 4 526.15 43 0 526.15 0 526.15 526.15 526.15 60 2 526.15*
E-n22-k4-s13-16 21 2 3 4 521.09 44 0 521.09 0 521.09 521.09 521.09 60 2 521.09*
E-n22-k4-s13-17 21 2 3 4 496.38 49 0 496.38 0 496.38 496.38 496.38 60 1 496.38*
E-n22-k4-s14-19 21 2 3 4 498.80 43 0 498.80 0 498.80 498.80 498.80 60 1 498.80*
E-n22-k4-s17-19 21 2 3 4 512.81 26 0 512.81 0 512.80 512.80 512.80 60 4 512.80*
E-n22-k4-s19-21 21 2 3 4 520.42 34 0 520.42 0 520.42 520.42 520.42 60 2 520.42*
E-n33-k4-s16-22 32 2 3 4 672.17 76 3 672.17 0 672.17 672.17 672.17 60 4 672.17*
E-n33-k4-s16-24 32 2 3 4 666.02 77 0 666.02 0 666.02 666.02 666.02 60 1 666.02*
E-n33-k4-s19-26 32 2 3 4 680.36 84 0 680.36 0 680.36 680.36 680.36 60 1 680.36*
E-n33-k4-s22-26 32 2 3 4 680.37 77 0 680.37 0 680.36 680.36 680.36 60 1 680.36*
E-n33-k4-s24-28 32 2 3 4 670.43 88 0 670.43 0 670.43 670.43 670.43 60 2 670.43*
E-n33-k4-s25-28 32 2 3 4 650.58 63 0 650.58 0 650.58 650.58 650.58 60 1 650.58*

Avg. 591.30 59 0 591.30 0 591.30 591.30 591.30 60 2 591.30

Set 3b1

E-n51-k5-s12-18 50 2 3 5 690.59 147 4 690.59 1 690.59 690.59 690.59 60 8 690.59
E-n51-k5-s12-41 50 2 3 5 683.05 133 38 683.05 1 683.05 683.05 683.05 60 11 683.05
E-n51-k5-s12-43 50 2 3 5 710.41 217 1 710.41 1 710.41 710.41 710.41 60 5 710.41
E-n51-k5-s39-41 50 2 3 5 728.54 155 18 728.54 4 728.54 728.54 728.54 60 7 728.54
E-n51-k5-s40-41 50 2 3 5 723.75 154 17 723.75 3 723.75 723.75 723.75 60 5 723.75
E-n51-k5-s40-43 50 2 3 5 752.15 158 15 752.15 9 752.15 752.15 752.15 60 12 752.15

Avg. 714.75 161 16 714.75 3 714.75 714.75 714.75 60 8 714.75

Set 3c2

E-n51-k5-s13-19 50 2 3 5 560.73 560.73 560.73 60 10 560.73*
E-n51-k5-s13-42 50 2 3 5 564.45 564.45 564.45 60 3 564.45*
E-n51-k5-s13-44 50 2 3 5 564.45 564.45 564.45 60 2 564.45*
E-n51-k5-s40-42 50 2 3 5 746.31 746.31 746.31 60 5 746.31*
E-n51-k5-s41-42 50 2 3 5 771.56 771.56 771.56 60 15 771.56*
E-n51-k5-s41-44 50 2 3 5 802.91 802.91 802.91 60 16 802.91*

Avg. 668.40 668.40 668.40 60 9 668.40

1 included in Hemmelmayr (2013)
2 included in Beasley (2014)
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Table 5: Results for Set 4a Instances (with constraint
on the number of city freighters per satellite)

LNS-2E

Inst. C S T CF Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 4a
1 50 2 3 6 1569.42 1569.42 1569.42 60 4 1569.42*
2 50 2 3 6 1438.32 1438.32 1438.32 60 16 1438.33*
3 50 2 3 6 1570.43 1570.43 1570.43 60 8 1570.43*
4 50 2 3 6 1424.04 1424.04 1424.04 60 7 1424.04*
5 50 2 3 6 2193.52 2193.52 2193.52 60 10 2193.52*
6 50 2 3 6 1279.89 1279.89 1279.89 60 0 1279.87*
7 50 2 3 6 1458.60 1458.60 1458.60 60 2 1458.63*
8 50 2 3 6 1363.76 1363.76 1363.76 60 29 1363.74*
9 50 2 3 6 1450.25 1450.25 1450.25 60 5 1450.27*
10 50 2 3 6 1407.65 1407.65 1407.65 60 6 1407.64*
11 50 2 3 6 2052.21 2047.43 2047.43 60 3 2047.46*
12 50 2 3 6 1209.46 1209.46 1209.46 60 8 1209.42*
13 50 2 3 6 1481.80 1481.80 1481.80 60 7 1481.83*
14 50 2 3 6 1393.64 1393.64 1393.64 60 1 1393.61*
15 50 2 3 6 1489.92 1489.92 1489.92 60 16 1489.94*
16 50 2 3 6 1389.20 1389.20 1389.20 60 2 1389.17*
17 50 2 3 6 2088.48 2088.48 2088.48 60 15 2088.49*
18 50 2 3 6 1227.68 1227.68 1227.68 60 1 1227.61*
19 50 3 3 6 1564.66 1564.66 1564.66 60 3 1564.66*
20 50 3 3 6 1272.98 1272.98 1272.98 60 25 1272.97*
21 50 3 3 6 1577.82 1577.82 1577.82 60 2 1577.82*
22 50 3 3 6 1281.83 1281.83 1281.83 60 3 1281.83*
23 50 3 3 6 1807.35 1807.35 1807.35 60 8 1807.35*
24 50 3 3 6 1282.69 1282.69 1282.69 60 0 1282.68*
25 50 3 3 6 1522.40 1522.40 1522.40 60 4 1522.42*
26 50 3 3 6 1167.47 1167.47 1167.47 60 1 1167.46*
27 50 3 3 6 1481.56 1481.56 1481.56 60 42 1481.57*
28 50 3 3 6 1210.46 1210.46 1210.46 60 3 1210.44*
29 50 3 3 6 1722.06 1722.00 1722.00 60 31 1722.04
30 50 3 3 6 1211.63 1211.63 1211.63 60 12 1211.59*
31 50 3 3 6 1490.32 1490.32 1490.32 60 7 1490.34
32 50 3 3 6 1199.05 1199.05 1199.05 60 24 1199.00*
33 50 3 3 6 1508.32 1508.32 1508.32 60 14 1508.30
34 50 3 3 6 1233.96 1233.96 1233.96 60 7 1233.92*
35 50 3 3 6 1718.42 1718.42 1718.42 60 41 1718.41
36 50 3 3 6 1228.95 1228.95 1228.95 60 0 1228.89*
37 50 5 3 6 1528.73 1528.73 1528.73 60 25 1528.73*
38 50 5 3 6 1169.20 1169.20 1169.20 60 15 1169.20*
39 50 5 3 6 1520.92 1520.92 1520.92 60 17 1520.92*
40 50 5 3 6 1199.42 1199.42 1199.42 60 2 1199.42*
41 50 5 3 6 1667.96 1667.96 1667.96 60 9 1667.96*
42 50 5 3 6 1194.54 1194.54 1194.54 60 19 1194.54*
43 50 5 3 6 1439.67 1439.67 1439.67 60 14 1439.67*
44 50 5 3 6 1045.14 1045.14 1045.14 60 24 1045.13*
45 50 5 3 6 1451.48 1450.95 1450.95 60 3 1450.96*
46 50 5 3 6 1088.79 1088.79 1088.79 60 2 1088.77*
47 50 5 3 6 1587.29 1587.29 1587.29 60 15 1587.29*
48 50 5 3 6 1082.21 1082.21 1082.21 60 23 1082.20*
49 50 5 3 6 1434.88 1434.88 1434.88 60 14 1434.88*
50 50 5 3 6 1083.16 1083.16 1083.16 60 23 1083.12*
51 50 5 3 6 1398.03 1398.03 1398.03 60 21 1398.05*
52 50 5 3 6 1125.69 1125.69 1125.69 60 6 1125.67*
53 50 5 3 6 1567.79 1567.79 1567.79 60 21 1567.77*
54 50 5 3 6 1127.66 1127.66 1127.66 60 15 1127.61*

Avg. 1420.05 1419.95 1419.95 60 12 1419.94
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Table 6: Results for Set 4b Instances (v2s = v2)

HCC ZXXS LNS-2E

Inst. C S T CF Avg. 5 Best t(s) t*(s) Avg. 5 Best t*(s) Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 4b
1 50 2 3 6 1569.42 1569.42 235 6 1569.42 1569.42 1 1569.42 1569.42 1569.42 60 15 1569.42*
2 50 2 3 6 1441.02 1438.33 155 43 1438.33 1438.33 40 1438.32 1438.32 1438.32 60 6 1438.33*
3 50 2 3 6 1570.43 1570.43 183 3 1570.43 1570.43 1 1570.43 1570.43 1570.43 60 7 1570.43*
4 50 2 3 6 1424.04 1424.04 130 11 1429.04 1424.04 73 1424.04 1424.04 1424.04 60 7 1424.04*
5 50 2 3 6 2194.11 2194.11 614 63 2193.52 2193.52 34 2193.52 2193.52 2193.52 60 18 2193.52*
6 50 2 3 6 1279.87 1279.87 99 2 1279.87 1279.87 1 1279.89 1279.89 1279.89 60 0 1279.87*
7 50 2 3 6 1458.63 1458.63 169 6 1408.57 1408.57 16 1408.58 1408.58 1408.58 60 17 1408.57*
8 50 2 3 6 1360.32 1360.32 205 5 1360.32 1360.32 4 1360.32 1360.32 1360.32 60 8 1360.32*
9 50 2 3 6 1450.27 1450.27 204 46 1403.53 1403.53 4 1403.53 1403.53 1403.53 60 11 1403.53*
10 50 2 3 6 1360.56 1360.56 174 1 1360.56 1360.56 1 1360.54 1360.54 1360.54 60 1 1360.56*
11 50 2 3 6 2059.88 2059.88 648 101 2059.41 2059.41 4 2054.60 2047.43 2047.43 60 2 2047.46*
12 50 2 3 6 1209.42 1209.42 205 44 1209.42 1209.42 6 1209.46 1209.46 1209.46 60 20 1209.42*
13 50 2 3 6 1481.83 1481.83 220 25 1450.93 1450.93 2 1450.95 1450.94 1450.94 60 10 1450.93*
14 50 2 3 6 1393.61 1393.61 189 6 1393.61 1393.61 1 1393.64 1393.64 1393.64 60 3 1393.61*
15 50 2 3 6 1489.94 1489.94 173 9 1466.83 1466.83 1 1466.84 1466.84 1466.84 60 2 1466.83*
16 50 2 3 6 1387.83 1387.83 147 6 1387.83 1387.83 6 1387.85 1387.85 1387.85 60 12 1387.83*
17 50 2 3 6 2088.49 2088.49 625 165 2088.49 2088.49 27 2088.48 2088.48 2088.48 60 13 2088.49*
18 50 2 3 6 1227.61 1227.61 94 3 1227.61 1227.61 1 1227.68 1227.68 1227.68 60 5 1227.61*
19 50 3 3 6 1546.28 1546.28 171 25 1546.28 1546.28 25 1546.28 1546.28 1546.28 60 34 1546.28*
20 50 3 3 6 1272.97 1272.97 99 12 1272.97 1272.97 57 1272.98 1272.98 1272.98 60 11 1272.97*
21 50 3 3 6 1577.82 1577.82 155 61 1577.82 1577.82 19 1577.82 1577.82 1577.82 60 16 1577.82*
22 50 3 3 6 1281.83 1281.83 127 2 1281.83 1281.83 28 1281.83 1281.83 1281.83 60 4 1281.83*
23 50 3 3 6 1652.98 1652.98 175 5 1652.98 1652.98 3 1652.98 1652.98 1652.98 60 4 1652.98*
24 50 3 3 6 1282.68 1282.68 110 2 1282.68 1282.68 1 1282.69 1282.69 1282.69 60 1 1282.68*
25 50 3 3 6 1440.84 1440.68 154 53 1408.57 1408.57 17 1408.58 1408.58 1408.58 60 20 1408.57*
26 50 3 3 6 1167.46 1167.46 96 0 1167.46 1167.46 7 1167.47 1167.47 1167.47 60 16 1167.46*
27 50 3 3 6 1447.79 1444.50 163 12 1454.63 1444.51 39 1444.49 1444.49 1444.49 60 20 1444.50*
28 50 3 3 6 1210.44 1210.44 143 7 1210.44 1210.44 2 1210.46 1210.46 1210.46 60 6 1210.44*
29 50 3 3 6 1561.81 1559.82 178 102 1555.56 1552.66 30 1552.66 1552.66 1552.66 60 39 1552.66*
30 50 3 3 6 1211.59 1211.59 132 5 1211.59 1211.59 1 1211.63 1211.63 1211.63 60 5 1211.59*
31 50 3 3 6 1440.86 1440.86 144 37 1441.07 1440.86 29 1440.85 1440.85 1440.85 60 15 1440.86*
32 50 3 3 6 1199.00 1199.00 102 11 1199.00 1199.00 10 1199.05 1199.05 1199.05 60 21 1199.00*
33 50 3 3 6 1478.86 1478.86 159 16 1478.86 1478.86 14 1478.87 1478.87 1478.87 60 15 1478.86*
34 50 3 3 6 1233.92 1233.92 93 4 1233.92 1233.92 11 1233.96 1233.96 1233.96 60 11 1233.92*
35 50 3 3 6 1570.80 1570.72 182 116 1570.72 1570.72 4 1570.73 1570.73 1570.73 60 10 1570.72*
36 50 3 3 6 1228.89 1228.89 123 6 1228.89 1228.89 2 1228.95 1228.95 1228.95 60 6 1228.89*
37 50 5 3 6 1528.81 1528.73 143 55 1528.98 1528.73 43 1528.73 1528.73 1528.73 60 27 1528.73
38 50 5 3 6 1163.07 1163.07 88 15 1163.07 1163.07 1 1163.07 1163.07 1163.07 60 17 1163.07*
39 50 5 3 6 1520.92 1520.92 158 33 1520.92 1520.92 16 1520.92 1520.92 1520.92 60 25 1520.92*
40 50 5 3 6 1165.24 1163.04 84 20 1163.04 1163.04 7 1163.04 1163.04 1163.04 60 5 1163.04*
41 50 5 3 6 1652.98 1652.98 150 12 1652.98 1652.98 9 1652.98 1652.98 1652.98 60 14 1652.98*
42 50 5 3 6 1190.17 1190.17 95 31 1190.17 1190.17 71 1190.17 1190.17 1190.17 60 9 1190.17*
43 50 5 3 6 1408.95 1406.11 151 60 1406.11 1406.11 24 1407.09 1406.10 1406.10 60 13 1406.11*
44 50 5 3 6 1035.32 1035.03 109 30 1035.03 1035.03 7 1035.05 1035.05 1035.05 60 42 1035.03*
45 50 5 3 6 1406.43 1403.10 144 104 1402.03 1402.03 27 1401.87 1401.87 1401.87 60 21 1401.87*
46 50 5 3 6 1058.97 1058.11 74 17 1058.11 1058.11 7 1058.10 1058.10 1058.10 60 16 1058.11*
47 50 5 3 6 1564.41 1559.82 185 103 1557.04 1552.66 25 1552.66 1552.66 1552.66 60 24 1552.66*
48 50 5 3 6 1074.50 1074.50 83 2 1074.50 1074.50 1 1074.51 1074.51 1074.51 60 4 1074.50*
49 50 5 3 6 1435.28 1434.88 140 81 1434.88 1434.88 38 1434.88 1434.88 1434.88 60 9 1434.88
50 50 5 3 6 1065.25 1065.25 92 16 1065.25 1065.25 2 1065.30 1065.30 1065.30 60 33 1065.25*
51 50 5 3 6 1387.72 1387.51 138 46 1387.51 1387.51 3 1387.51 1387.51 1387.51 60 19 1387.51*
52 50 5 3 6 1103.76 1103.42 102 47 1103.42 1103.42 22 1103.47 1103.47 1103.47 60 17 1103.42*
53 50 5 3 6 1545.73 1545.73 148 37 1545.73 1545.73 4 1545.76 1545.76 1545.76 60 21 1545.73*
54 50 5 3 6 1113.62 1113.62 90 2 1113.62 1113.62 12 1113.66 1113.66 1113.66 60 5 1113.62*

Avg. 1401.39 1400.96 169 32 1397.69 1397.27 16 1397.21 1397.06 1397.06 60 14 1397.04
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Table 7: Results for Set 5 Instances

HCC LNS-2E

Instance C S T CF Avg. 5 Best t(s) t*(s) Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 5
100-5-1 100 5 5 32 1588.73 1565.45 353 116 1566.87 1564.46 1564.46 900 201 1564.46*
100-5-1b 100 5 5 15 1126.93 1111.34 397 45 1111.93 1108.62 1108.62 900 176 1108.62
100-5-2 100 5 5 32 1022.29 1016.32 406 117 1017.94 1016.32 1016.32 900 75 1016.32*
100-5-2b 100 5 5 15 789.05 782.25 340 170 783.07 782.25 782.25 900 152 782.25
100-5-3 100 5 5 30 1046.67 1045.29 352 80 1045.29 1045.29 1045.29 900 131 1045.29*
100-5-3b 100 5 5 16 828.99 828.99 391 127 828.54 828.54 828.54 900 62 828.54
100-10-1 100 10 5 35 1137.00 1130.23 429 136 1132.11 1125.53 1124.93 900 567 1124.93
100-10-1b 100 10 5 18 928.01 916.48 476 262 922.85 916.25 916.25 900 424 916.25
100-10-2 100 10 5 33 1009.49 990.58 356 232 1014.61 1012.14 1002.15 900 471 990.58
100-10-2b 100 10 5 18 773.58 768.61 432 157 786.64 781.27 774.11 900 416 768.61
100-10-3 100 10 5 32 1055.28 1043.25 415 209 1053.55 1049.77 1048.53 900 105 1043.25
100-10-3b 100 10 5 17 861.88 850.92 418 29 858.72 854.90 854.90 900 175 850.92
200-10-1 200 10 5 62 1626.83 1574.12 888 207 1598.46 1580.34 1556.79 900 730 1556.79
200-10-1b 200 10 5 30 1239.79 1201.75 692 374 1217.23 1191.59 1187.62 900 588 1187.62
200-10-2 200 10 5 63 1416.87 1374.74 1072 496 1406.16 1366.36 1365.74 900 534 1365.74
200-10-2b 200 10 5 30 1018.57 1003.75 1058 221 1016.05 1008.46 1002.85 900 721 1002.85
200-10-3 200 10 5 63 1808.24 1787.73 916 305 1809.44 1797.80 1793.99 900 675 1787.73
200-10-3b 200 10 5 30 1208.38 1200.74 1217 478 1206.85 1202.21 1197.90 900 523 1197.90

Avg. 1138.14 1121.81 589 209 1132.02 1124.01 1120.62 900 374 1118.81

Table 8: Results for Set 6a Instances (no handling costs)

LNS-2E

Instance C S T CF Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 6a
A-n51-4 50 4 2 50 652.00 652.00 652.00 60 19 652.00*
A-n51-5 50 5 2 50 663.41 663.41 663.41 60 37 663.41*
A-n51-6 50 6 2 50 662.51 662.51 662.51 60 23 662.51*
A-n76-4 75 4 3 75 985.98 985.95 985.95 900 128 985.95*
A-n76-5 75 5 3 75 981.19 979.15 979.15 900 286 979.15*
A-n76-6 75 6 3 75 971.65 970.20 970.20 900 233 970.20*
A-n101-4 100 4 4 100 1194.38 1194.17 1194.17 900 267 1194.17*
A-n101-5 100 5 4 100 1215.89 1211.40 1211.40 900 414 1211.38*
A-n101-6 100 6 4 100 1161.91 1158.97 1155.96 900 154 1155.96
B-n51-4 50 4 2 50 563.98 563.98 563.98 60 6 563.98*
B-n51-5 50 5 2 50 549.23 549.23 549.23 60 55 549.23*
B-n51-6 50 6 2 50 556.32 556.32 556.32 60 39 556.32*
B-n76-4 75 4 3 75 793.97 792.73 792.73 900 320 792.73*
B-n76-5 75 5 3 75 784.27 784.19 784.19 900 190 783.93*
B-n76-6 75 6 3 75 775.75 774.24 774.17 900 160 774.17*
B-n101-4 100 4 4 100 939.79 939.21 939.21 900 377 939.21*
B-n101-5 100 5 4 100 971.27 969.13 969.13 900 161 967.82*
B-n101-6 100 6 4 100 961.91 960.29 960.29 900 88 960.29*
C-n51-4 50 4 2 50 689.18 689.18 689.18 60 13 689.18*
C-n51-5 50 5 2 50 723.12 723.12 723.12 60 19 723.12*
C-n51-6 50 6 2 50 697.00 697.00 697.00 60 46 697.00*
C-n76-4 75 4 3 75 1055.61 1054.89 1054.89 900 339 1054.89*
C-n76-5 75 5 3 75 1115.32 1115.32 1115.32 900 113 1115.32*
C-n76-6 75 6 3 75 1066.88 1060.52 1060.52 900 474 1060.52
C-n101-4 100 4 4 100 1305.94 1302.16 1302.16 900 236 1302.16
C-n101-5 100 5 4 100 1307.24 1306.27 1305.82 900 141 1305.82
C-n101-6 100 6 4 100 1292.10 1284.48 1284.48 900 446 1284.48

Avg. 912.51 911.11 910.98 620 177 910.92

21



Table 9: Results for Set 6b Instances (hs ̸= 0)

LNS-2E

Instance C S T CF Avg. 5 Best 5 Best t(s) t*(s) BKS

Set 6b
A-n51-4 50 4 2 50 744.24 744.24 744.24 60 17 744.24*
A-n51-5 50 5 2 50 811.51 811.51 811.51 60 49 811.52*
A-n51-6 50 6 2 50 930.11 930.11 930.11 60 31 930.11*
A-n76-4 75 4 3 75 1385.51 1385.51 1385.51 900 26 1385.51*
A-n76-5 75 5 3 75 1519.86 1519.86 1519.86 900 71 1519.86*
A-n76-6 75 6 3 75 1666.28 1666.06 1666.06 900 533 1666.06*
A-n101-4 100 4 4 100 1884.48 1883.79 1883.79 900 283 1881.44*
A-n101-5 100 5 4 100 1723.06 1714.58 1711.95 900 318 1709.06
A-n101-6 100 6 4 100 1795.36 1793.76 1791.44 900 100 1777.69
B-n51-4 50 4 2 50 653.09 653.09 653.09 60 21 653.09*
B-n51-5 50 5 2 50 672.10 672.10 672.10 60 51 672.10*
B-n51-6 50 6 2 50 767.13 767.13 767.13 60 58 767.13*
B-n76-4 75 4 3 75 1094.52 1094.52 1094.52 900 44 1094.52*
B-n76-5 75 5 3 75 1218.12 1218.12 1218.12 900 19 1218.13*
B-n76-6 75 6 3 75 1328.90 1328.90 1326.76 900 329 1326.76*
B-n101-4 100 4 4 100 1500.80 1500.55 1500.55 900 82 1500.55
B-n101-5 100 5 4 100 1398.05 1398.05 1395.32 900 317 1395.32
B-n101-6 100 6 4 100 1455.05 1453.54 1453.54 900 460 1450.39
C-n51-4 50 4 2 50 866.58 866.58 866.58 60 22 866.58*
C-n51-5 50 5 2 50 943.12 943.12 943.12 60 12 943.12*
C-n51-6 50 6 2 50 1050.42 1050.42 1050.42 60 18 1050.42*
C-n76-4 75 4 3 75 1439.39 1438.96 1438.96 900 84 1438.96*
C-n76-5 75 5 3 75 1745.49 1745.39 1745.39 900 281 1745.39*
C-n76-6 75 6 3 75 1759.40 1756.54 1756.54 900 358 1756.54*
C-n101-4 100 4 4 100 2076.36 2073.84 2064.86 900 378 2064.86
C-n101-5 100 5 4 100 1974.39 1967.51 1964.63 900 285 1964.63
C-n101-6 100 6 4 100 1867.45 1861.50 1861.50 900 401 1861.50

Avg. 1343.36 1342.20 1341.39 620 172 1340.57

To test the robustness of our algorithm we applied it also to the 2ELRPSD instances
without any further changing of operators or tuning. The results can be seen in Tables 10 and
11. BKS are derived from Schwengerer et al. (2012); Nguyen et al. (2012a,b); Contardo et al.
(2012). LNS-2E is competitive on this problem class, too, with solutions being on average
within 0.6% of the solutions found by the state-of-the-art VNS by Schwengerer et al. (2012)
(SPR).
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Table 10: Results for 2ELRPSD Instances Set Nguyen

SPR LNS-2E

Instance C S Avg. 20 Best 20 t(s) t*(s) Avg. 20 Best 20 Best t(s) t*(s) BKS

Set Nguyen
25-5N 25 5 80370.00 80370 76 3 80370.00 80370 80370 60 5 80370
25-5Nb 25 5 64562.00 64562 91 0 64562.00 64562 64562 60 16 64562
25-5MN 25 5 78947.00 78947 61 1 78947.00 78947 78947 60 6 78947
25-5MNb 25 5 64438.00 64438 89 0 64438.00 64438 64438 60 4 64438
50-5N 50 5 137815.00 137815 116 35 137815.00 137815 137815 60 25 137815
50-5Nb 50 5 110204.40 110094 132 51 110981.85 110094 110094 60 22 110094
50-5MN 50 5 123484.00 123484 125 41 123484.00 123484 123484 60 4 123484
50-5MNb 50 5 105687.00 105401 202 48 105783.45 105401 105401 60 16 105401
50-10N 50 10 115725.00 115725 143 24 117325.55 115725 115725 60 20 115725
50-10Nb 50 10 87345.00 87315 176 66 88212.00 87520 87315 60 23 87315
50-10MN 50 10 135519.00 135519 144 10 138241.35 135519 135519 60 14 135519
50-10MNb 50 10 110613.00 110613 218 13 111520.80 110613 110613 60 22 110613
100-5N 100 5 200685.05 193228 168 101 193806.85 193229 193229 900 239 193228
100-5Nb 100 5 164508.10 158927 258 144 159064.10 158927 158927 900 315 158927
100-5MN 100 5 206567.40 204682 184 159 204876.10 204682 204682 900 105 204682
100-5MNb 100 5 166357.35 165744 315 247 165795.35 165744 165744 900 252 165744
100-10N 100 10 214585.60 209952 223 167 216265.50 210799 209952 900 344 209952
100-10Nb 100 10 155790.60 155489 352 251 161273.30 155489 155489 900 442 155489
100-10MN 100 10 203798.05 201275 229 163 204396.15 201275 201275 900 324 201275
100-10MNb 100 10 170791.25 170625 347 283 172202.45 170625 170625 900 268 170625
200-10N 200 10 349584.15 345267 641 525 359948.65 350680 350680 900 758 345267
200-10Nb 200 10 264228.90 256171 907 791 260698.20 257191 257191 900 748 256171
200-10MN 200 10 332207.50 323801 453 441 329486.45 324279 324279 900 777 323801
200-10MNb 200 10 292036.65 287076 944 843 297857.50 293339 290702 900 778 287076

Avg. 163993.75 161938 275 184 164472.98 162531 162377 480 230 161938
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Table 11: Results for 2ELRPSD Instances Set Prodhon

SPR LNS-2E

Instance C S Avg. 20 Best 20 t(s) t*(s) Avg. 20 Best 20 Best t(s) t*(s) BKS

Set Prodhon
20-5-1 20 5 89075.00 89075 63 2 89075.00 89075 89075 60 4 89075
20-5-1b 20 5 61863.00 61863 83 0 61863.00 61863 61863 60 2 61863
20-5-2 20 5 84489.50 84478 62 11 84478.00 84478 84478 60 19 84478
20-5-2b 20 5 61033.80 60838 125 0 60838.00 60838 60838 60 5 60838
50-5-1 50 5 130859.30 130843 80 16 131454.00 131085 130843 60 24 130843
50-5-1b 50 5 101548.00 101530 128 35 101669.20 101530 101530 60 14 101530
50-5-2 50 5 131825.00 131825 97 11 131827.00 131825 131825 60 16 131825
50-5-2b 50 5 110332.00 110332 198 12 110332.00 110332 110332 60 14 110332
50-5-2BIS 50 5 122599.00 122599 112 91 122599.00 122599 122599 60 3 122599
50-5-2bBIS 50 5 105935.50 105696 198 155 105707.85 105696 105696 60 18 105696
50-5-3 50 5 128436.00 128379 80 9 128614.50 128379 128379 60 10 128379
50-5-3b 50 5 104006.00 104006 131 6 104006.00 104006 104006 60 7 104006
100-5-1 100 5 318667.00 318225 226 153 319268.60 318399 318399 900 303 318134
100-5-1b 100 5 257436.35 256991 301 220 257686.40 256991 256888 900 268 256878
100-5-2 100 5 231340.00 231305 204 131 231488.85 231305 231305 900 229 231305
100-5-2b 100 5 194812.70 194763 240 202 194800.35 194763 194729 900 176 194728
100-5-3 100 5 245334.90 244470 174 124 245178.75 244071 244071 900 377 244071
100-5-3b 100 5 195586.20 195381 180 111 195123.20 194110 194110 900 327 194110
100-10-1 100 10 357381.40 352694 233 167 362648.70 354525 352122 900 401 351243
100-10-1b 100 10 300239.15 298186 299 194 312451.60 299758 298298 900 540 297167
100-10-2 100 10 304931.20 304507 248 194 307937.60 304909 304438 900 520 304438
100-10-2b 100 10 264592.00 264092 307 208 265814.85 264173 263876 900 310 263873
100-10-3 100 10 312701.25 311447 227 141 318952.10 311699 310930 900 512 310200
100-10-3b 100 10 261577.90 260516 303 218 265442.40 262932 261566 900 437 260328
200-10-1 200 10 552488.90 548730 1009 748 564159.80 550672 550672 900 725 548703
200-10-1b 200 10 448095.45 445791 635 576 456952.40 448188 447113 900 692 445301
200-10-2 200 10 513673.40 497451 1158 832 499499.45 498486 498397 900 656 497451
200-10-2b 200 10 432687.00 422668 730 696 428912.35 422967 422877 900 601 422668
200-10-3 200 10 529578.00 527162 970 903 568539.15 534271 533174 900 668 527162
200-10-3b 200 10 404431.25 402117 592 557 425078.20 417686 417429 900 700 401672

Avg. 245251.87 243599 313 224 248413.28 244720 244395 564 286 243363

Finding high-quality solutions is increasingly difficult as the problem size grows, and
different instance characteristics influence solution quality. Figure 2 displays boxplots of
2EVRP instances grouped together by number of customers (2a), or number of satellites (2b),
similar customer distribution (2c) and similar satellite distribution (2d) using gaps of the
average value of five runs to BKS.

Problem difficulty quickly grows with the number of satellites, as well as with the number
of customers, as plotted in the upper part of Figure 2. The number of samples for the different
classes varies a lot: There are only 18 instances with 75 customers, but 165 instances with
50 customers, which explains the large number of outliers for those instances. Crainic et al.
(2010) provide a detailed overview on the distribution of customers and satellites in instances
of Set 4. There are three distribution patterns for customers: random, with equally distributed
nodes; centroids, where more customers are located in six centroids in a central zone, and some
customers closer together in four outer areas, representing suburbs. In the quadrant pattern
customers are arranged in conglomerations of higher density in each of the four quadrants. The
three patterns for satellites are: random, where satellites are randomly placed on a ring around
the customers; sliced, with the satellites distributed more evenly on the ring around customers;
and forbidden zone: a random angle on the ring was chosen where no satellites could be used,
to simulate various conditions like cities located near lakes or mountains. Figure 2c shows
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(c) Set 4: Customer distribution
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(d) Set 4: Satellite distribution

Figure 2: Boxplots of solution quality for instances grouped by number of customers/satellites
and distribution characteristics

The hinges depict approximately the first and third quartile of the solutions. The whiskers extend to±1.58Q3−Q1√
n

.

(The R Foundation for Statistical Computing, 2014). See the Appendix 2.8.2 for a detailed definition.
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that instances with customers located in centroids are harder to solve. On the other hand, the
distribution pattern of the satellites doesn’t have a large impact on solution quality.

2.6.5 Graphical Example

Several structurally different 2EVRP solutions can have similar objective values. We discuss
and visualise this with the help of a demonstrative graphical example. Also, the solution
differences for an instance with or without constraining the number of city freighters per
satellite are pointed out.

The selection of the correct subset of satellites to use is crucial. A graphical representation
of different solutions of the Set 4 instance 38 is provided in Figure 3. The locations of the
depot (square), satellites (triangles) and customers (circles) is the same for each solution.
Nevertheless, the obtained vehicle routes are substantially different given different subsets of
open satellites.

Figure 3a represents the optimal solution to the Set 4a instance 38. A maximum of v2s = 2
city freighters per satellite are available. The total demand of all customers sums up to 20206
units of freight. The capacity Q2 of a city freighter is 5000 units. Any feasible solution needs
at least ⌈20206

5000
⌉ = 5 city freighters, and thus at least ⌈5/2⌉ = 3 satellites have to be used. Two

city freighter routes are located on the left of the figure, and three city freighter routes on the
right hand side, where two city freighters leave from the same satellite, and a third one from a
close by satellite.

Considering the instance as in Set 4b, with a global number of city freighters available
but no constraints on the distribution amongst satellites (v2s = v2), the optimal solution is
displayed in Figure 3b. Three city freighters can leave the same satellite, as is the case on the
left hand side. Only two of the five satellites have to be used.

LNS-2E starts with the construction of routes at the second level. In early stages of the
optimisation process, all customers are likely assigned to their closest satellites. Without
neighbourhoods that impact the selection of satellites, the algorithm would likely be trapped
in a local optimum such as the one of Figure 3c. If partial routes originating at the bottom
right satellite exist, customers may be sequentially inserted in those routes and the bottom
left satellite may not be opened. The solution displayed in Figure 3d is often obtained. It has
the best cost considering only the second level, but long truck routes on the first level set off
this gain, leading to a worse solution overall.

Figure 3e shows the best found solution, if only the top right satellite is open. The
cost differences from one solution to the next one are small, although the solution itself is
fundamentally different. If the two satellites at the bottom are both selected for closure at the
same time, then the algorithm finds the optimal solution within seconds.

We tried different strategies to evaluate the chances of a satellite to be included in the best
solution: taking into account a delta evaluation on the truck route, or combining this value
with the total units shipped through this satellite; or the absolute distance from the depot.
We observed that closing satellites randomly is a straightforward and very simple approach,
which performs quite well on average over all the different benchmark instances, whereas other
techniques present advantages and disadvantages in several special cases.

For further research, we suggest to shift the cost structure towards more realistic scenarios.
In the classic 2EVRP as we considered it, the cost of large trucks and small city freighters is
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(a) max. 2 CF/Sat, 1169.20*, opti-
mal for Set 4a

(b) 2 Satellites used, 1163.07*, op-
timal for Set 4b

(c) 3 Satellites used, 1210.81

(d) 4 Satellites used, 1226.43 (e) 1 Satellite used, 1255.98

Figure 3: Different Solutions of Instance 38 from Set 4, depending on satellite openings and v2s
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the same. For instance Sets 2 to 4, the capacity of a truck is 2.5 times higher than of a city
freighter. For Set 5 instances this ratio gets up to more than 14, so one can safely assume that
the operating cost of a truck will be higher than of a city freighter in more realistic set-ups.
This has not yet been taken into account in previous publications on the 2EVRP, and would
lead to large differences between the solution costs of Figure 3.

2.6.6 Sensitivity Analysis

Sensitivity analyses were conducted to evaluate the impact of major parameters and components
of the method. In particular, we evaluate the impact of disabling single destroy operators or
local search procedures at a time and provide the average objective value over five runs of all
benchmark instances. Table 12 shows the average objective values for instances of each class
and its average deviation (Gap (%)) when disabling elements of the algorithm.

The elimination of the open all satellites (no open) neighbourhood has a strong impact on
solution quality. As closed satellites are only opened again in a re-start phase, the algorithm is
likely to be trapped in a local optimum.

If no satellites are forced to be closed, there is no need to open up any satellite again. In
this case, solution quality deteriorates by 1.15% on average (no close). For some instances,
satellites located very far away from the depot will not be used in the best solution, but on the
second level it seems to be beneficial to use them for customers close by. The impact on the
2ELRPSD, especially the instance Set Prodhon is quite strong, as the fixed costs of a satellite
are not taken into account on the second level. If a satellite with high opening costs is located
close to many customers, it will very likely be used, although it would pay off to use a cheaper
one further away. A similar behaviour was discussed in Section 2.6.5 and Figure 3.

Some techniques work better on smaller instances, while others perform better on the larger
instances. For some cases we even observed small improvements when an operator was not
used. Not using biased node removal for example is needed to robustly find optimal solutions
on the smaller instance sets (2-4) but yields improvements on the larger sets.

For local search techniques, we also observe differences on methods for small or large
instance sets respectively. Removing classic 2-opt has a small impact. The repair mechanism
finds already high quality single routes in terms of 2-optimality. Eliminating the inter-tour
operator 2-opt* has a stronger effect on larger Set 5 and Set 6 instances, which contain more
routes than the smaller instances. The relocate neighbourhood is essential for instances with
more than 50 customers, whereas exchanging two nodes against one can have a negative effect
on those larger instances. We still decided to keep it in the design of the algorithm, as this
local search is needed to find optimal solutions for smaller instances. Of course the algorithm
could be fine-tuned for specific applications or instance sizes.
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Table 12: Sensitivity Analysis and contribution of individual com-
ponents

Sensitivity Analysis
Set base no related no biased no route no single no close no open

2 578.27 0.21% 0.02% 0.17% 0.02% 0.07% 2.07%
3 641.44 0.31% 0.06% 0.27% 0.06% 0.07% 1.66%
4a 1420.05 0.25% 0.02% 0.10% 0.04% 0.53% 1.37%
4b 1397.21 0.16% -0.01% 0.18% 0.05% 1.14% 1.39%
5 1132.02 0.69% -0.07% 0.31% 0.35% 0.39% 2.35%
6a 912.51 0.25% -0.03% 0.07% -0.01% 1.20% 1.36%
6b 1343.36 0.15% 0.04% 0.06% 0.01% 1.15% 0.97%

Prodhon 248413.28 0.95% -0.31% -0.55% -0.36% 4.65% 3.58%
Nguyen 164492.82 0.61% 0.05% 0.28% 0.19% 1.13% 1.38%

Avg. 46703.44 0.40% -0.03% 0.10% 0.04% 1.15% 1.79%

Set base no restart no 2opt no 2opt* no relocate no swap no swap 2

2 578.27 0.08% 0.04% 0.10% 0.00% 0.00% 0.00%
3 641.44 0.13% 0.05% 0.09% 0.06% 0.08% 0.18%
4a 1420.05 0.11% 0.05% 0.03% -0.01% 0.01% -0.01%
4b 1397.21 0.10% 0.03% 0.27% 0.04% 0.02% 0.03%
5 1132.02 0.06% 0.31% 0.53% 0.47% 0.29% 0.09%
6a 912.51 0.11% 0.02% 0.15% 0.24% -0.03% 0.02%
6b 1343.36 0.07% 0.05% 0.17% 0.12% 0.05% -0.01%

Prodhon 248413.28 0.43% -0.29% 0.30% 0.56% -0.51% 0.00%
Nguyen 164492.82 -0.08% -0.20% 0.21% 0.40% 0.22% 0.03%

Avg. 46703.44 0.11% 0.01% 0.21% 0.21% 0.01% 0.04%

2.7 Conclusion

We presented a very simple and fast LNS heuristic for the 2EVRP and 2ELRPSD. LNS-2E
makes use of one repair operator and only a few destroy operators. The proposed method
finds solutions of higher quality than existing algorithms, while being fast and conceptually
simpler. The impact of various parameters and design choices was highlighted. Meta-calibration
techniques were used to set the parameters to good values, which were subsequently verified
during sensitivity analyses. Different techniques were attempted to open or close satellites,
and thus explore various combinations of design choices. At the end, a simple randomised
approach for fixing satellites, assorted with a minimum number of iterations without change of
this decision led to good and robust results on a wide range of benchmark instances. LNS-2E
was able to improve 18 best known solutions on the 49 2EVRP instances for which no proven
optimal solution exists so far. Having resolved the inconsistencies on the different sets of
benchmark instances used in literature paves the way for future research on this topic, which
will focus on solving rich city logistics problems, and shifting the cost structure to a more
realistic scenario. It will be interesting to examine the implications of using higher operating
costs for larger trucks than for smaller city freighters, approaching more realistic and real-life
transportation problems.
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Online Resources

All necessary data can be found in the online section at https://www.univie.ac.at/prolog/
research/TwoEVRP. All instances have been transformed into a uniform format and can be
downloaded. Set 4 instances used to have negative and real x/y coordinates (with a maximum
of two positions after decimal space). We added a fixed factor to shift them only to be positive
and multiplied them by 100 to be able to use positive integers. This does not change the
solution, but note that the objective should be adjusted by a factor 100. We also provide
detailed results on the new found best known solutions, both in human readable text and a
graphical representation.
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2.8 Appendix

2.8.1 Nomenclature of Set 3 instances

Table 13: Set 3 instances with 50 cus-
tomers: identical except for depot co-
ordinates

Set 3b1 Set 3c2

depot at (0,0) depot at (30,40)

E-n51-k5- 12-18 E-n51-k5- 13-19
12-41 13-42
12-43 13-44
39-41 40-42
40-41 41-42
40-43 41-44

1 included in Hemmelmayr (2013)
2 included in Beasley (2014)

Hemmelmayr et al. (2012) report a best solution with total costs of 690.59 for instance
E-n51-k5-s12-18, which corresponds exactly to the solution found by our algorithm. On the
other hand Jepsen et al. (2012) report an objective value of 560.73 for an instance of that
name. This corresponds exactly to the objective value found by our algorithm for the instance
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E-n51-k5-s13-19 from Beasley (2014). So we assume Jepsen et al. (2012) used the same
instances as are provided from Beasley (2014), but the IDs of satellites in the names have to
be increased by one. Both versions exist in literature, as we described in Section 2.6.1. The
only difference between Sets 3b and 3c is the location of the depot. Table 13 shows, which
instances correspond to each other, apart from depot coordinates.

2.8.2 Definition of boxplots in Figure 2

The two hinges are versions of the first (Q1) and third quartile (Q3), i.e., close to quantile
(x, c(1,3)/4). The hinges equal the quartiles for odd n (where n ← length(x)) and differ
for even n. Whereas the quartiles only equal observations for n = (1 mod 4), the hinges
do so additionally for n = (2 mod 4), and are in the middle of two observations otherwise.
They are based on asymptotic normality of the median and roughly equal sample sizes for
the two medians being compared, and are said to be rather insensitive to the underlying
distributions of the samples. The notches extend to ± 1.58 IQR√

n
, where Interquartile Range

IQR = Q3−Q1. This gives roughly a 95% confidence interval for the difference in two medians.
(The R Foundation for Statistical Computing, 2014)

2.8.3 2ELRPSD instances

The instances for the 2ELRPSD were downloaded at the homepage of Caroline Prodhon: http:
//prodhonc.free.fr/Instances/instances0_us.htm. If the description file is renamed to
“.doc” it can be opened in human readable format by Word. We found some small typos in the
description: At the end of the Prodhon files first the fixed cost of a second level vehicle (F2) is
given, then the fixed cost of a truck on first level (F1).

The description of the cost structure also seems to contain an error: According to the
description, second level vehicles operate at higher cost per distance than first level trucks,
which should be the other way round, obviously. This is also the way we treated the instances,
and we believe previous authors did, too. The cost linking point A to point B was calculated
as shown in Table 14. Please note that first level vehicles do not operate at exactly twice the
Euclidean distance, due to the use of the ceil function after multiplication by factor 2.

Table 14: Distance Matrix Calculation for the 2ELRPSD

Instance set

Prodhon Nguyen

first level ⌈
√

(xA − xB)2 + (yA − yB)2 ∗ 100 ∗ 2⌉ ⌈
√

(xA − xB)2 + (yA − yB)2 ∗ 10 ∗ 2⌉
second level ⌈

√
(xA − xB)2 + (yA − yB)2 ∗ 100⌉ ⌈

√
(xA − xB)2 + (yA − yB)2 ∗ 10⌉

In the instance file 200-10-3b, the capacity of first level vehicles is missing, and thus we
used 5000 (as this is the value used for all the other Prodhon instance files). Some customers
in the 2ELRPSD instances have a demand of 0. This case was not explicitly dealt with in the
papers: our algorithm still plans an itinerary for a city freighter which will visit the customer,
but does not deliver any quantity of goods.
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3 The electric two-echelon vehicle routing problem

This part is partially based on Breunig et al. (2017) and published as Breunig et al. (2019).

3.1 Introduction

Nowadays, as technology for electric mobility progresses, multi-tier delivery schemes are
naturally destined to make use of electric vehicles, and multiple companies have, in practice,
already operated this transition (Foltyński, 2014). Yet, electric vehicles also pose specific
challenges, due to their limited autonomy, smaller capacity, and the possible need of planned
visits to charging stations. Moreover, whereas early charging technologies required several
hours for a full recharge, recent developments of fast-charging or battery-swap stations (Yang
and Sun, 2015; Hof et al., 2017; Keskin and Çatay, 2018) allow energy replenishment in half
an hour. The growing adoption of these technologies allows en-route recharging (e.g., during
lunch breaks) in metropolitan distribution systems, as well as the use of cheaper lightweight
vehicles (Perboli et al., 2018a; Perboli and Rosano, 2018) with smaller batteries. Last but
not the least, the study on battery-powered distribution is not limited to terrestrial vehicles,
but also meets critical applications in last-mile distribution using aerial vehicles (i.e., drones –
Poikonen et al. 2017 and Wang et al. 2017b), which typically have a smaller autonomy.

To focus on these challenges, we introduce the E2EVRP as a prototypical problem. It is
a natural extension of the 2EVRP in which electric vehicles are used on the second echelon.
Given a geographically-dispersed set of customers demanding an amount of a single commodity,
a set of satellites (intermediate facilities), a set of charging stations, and a central depot
where the commodity is kept, the E2EVRP seeks least-cost delivery routes to transport the
commodity from the depot to the satellites with conventional vehicles (first-level), and from
the satellites to the customers using an electric fleet (second-level). Some additional rules must
be satisfied with respect to the basic 2EVRP:
• Electric vehicles have a limited driving range, which can be fully replenished at a charging
station;

• Each second-level route originates at a satellite, visits a sequence of customers and possibly
some recharging stations, and returns to the same satellite;

• Each satellite also hosts a charging station at its location;
• Charging stations can be used multiple times, but a consecutive visit to two charging stations
in a second-level route is prohibited.

The cost of the solution, to be minimized, includes a fixed cost for each vehicle in use, as well
as driving costs proportional to the distance traveled.

To solve this problem, we introduce a LNS-based metaheuristic which combines a restricted
set of destruction and reconstruction operators, a local search procedure, and a fast labeling
algorithm to optimize the visits to charging locations. We also propose an exact mathematical
programming algorithm, which uses a decomposition technique to enumerate promising first-
level solutions along with bounding functions and route enumeration for the second level, using
problem-tailored pricing algorithms. These two methods can be viewed as extensions of the
approaches of Breunig et al. (2016) and Baldacci et al. (2013) for the classical 2EVRP, in
which specialized route evaluation techniques, labeling algorithms and dominance strategies
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have been integrated to efficiently manage the selection of recharging stations for the electric
vehicles.

Not only do these algorithms allow to find optimal or near-optimal solutions for the E2EVRP,
and thus respond to the need of advanced algorithms for future city-logistics planning, but
they also open the way to an analysis of several defining features of optimized battery-powered
city-distribution networks. To that end, we created new datasets which simulate the general
characteristics of a metropolitan area, and examine the impact of the density of the charging
station network and the capacity of the vehicles’ batteries on the cost-efficiency of the optimal
solutions of the problem.

The remainder of this paper is organized as follows. Section 3.2 reviews the related
literature and Section 3.3 formally describes the problem. Then, Sections 3.4 and 3.5 describe,
respectively, the proposed exact and heuristic algorithms. Section 3.6 reports our computational
experiments and sensitivity analyses, and Section 3.7 concludes.

3.2 Literature Review

We review the existing solution algorithms for the 2EVRPs, discuss the recent studies dedi-
cated to routing optimization for vehicles with alternative fuels, and finally examine the use of
en-route recharging in recent studies and applications.

Two-echelon vehicle routing problems. Several early studies focused on mathematical
programming solution techniques for the 2EVRP. Gonzalez-Feliu et al. (2008) were the first
to describe a branch-and-cut algorithm based on a commodity flow formulation that solved
instances with up to 32 customers and 2 satellites. The method of Gonzalez-Feliu et al. (2008)
was improved by Perboli et al. (2010) and Perboli et al. (2011) by adding valid inequalities
in a cutting plane fashion. Optimal solutions for instances with up to 32 customers and 2
satellites were found by the method of Perboli et al. (2011). Jepsen et al. (2012) described
a branch-and-cut algorithm based on a new mathematical formulation and different valid
inequalities. Exact algorithms were also designed by Baldacci et al. (2013) and by Santos et al.
(2015). Santos et al. described a branch-and-cut-and-price algorithm for the 2EVRP that relies
on a reformulation based on the q-routes relaxation proposed for the CVRP by Christofides
et al. (1981). Baldacci et al. proposed an exact method for solving the 2EVRP based on a
set partitioning formulation with side constraints. They described a bounding procedure that
is used by the exact algorithm to decompose the problem into a limited set of multi-depot
capacitated vehicle routing problems (MDCVRPs) with side constraints. The optimal 2EVRP
solution is obtained by solving the set of MDCVRPs generated. The method was tested on
207 instances, taken both from the literature and newly generated, with up to 100 customers
and 6 satellites. The results obtained by Baldacci et al. (2013) show that their exact algorithm
outperforms the existing methods from the papers described above. Finally, Perboli et al.
(2018b) recently found new valid inequalities for the 2EVRP. Using these inequalities within a
branch-and-cut algorithm allowed to solve several new instances with up to 50 customers.

The number of heuristics, metaheuristics and case studies focused on multi-echelon vehicle
routing problems has also rapidly grown in the last decade. The surveys by Cuda et al. (2015)
and Schiffer et al. (2019) capture well the breadth of this line of research. The former covers
different two-echelon structured transportation problems: 2ELRPs, 2EVRPs and truck and
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trailer routing problems (TTRPs). The latter focuses on vehicle routing problems and location
routing problems with intermediate stops, dedicated to replenishment, refueling or idling.
Among the most recent contributions in this domain, Zeng et al. (2014) proposed a greedy
randomized adaptive search procedure with a route-first cluster-second splitting algorithm
and a variable neighbourhood descent for the 2EVRP. Their results are promising, but the
algorithm was only tested on the smaller benchmark instances with up to 50 delivery points.
Breunig et al. (2016) introduced a LNS for 2EVRPs and the 2ELRPSD. The method uses six
destroy and one repair operator as well as some well-known local search procedures. It finds or
improves 95% of the best known solutions for the classical benchmark instances. Given the
efficiency and the effectiveness of this method, the same general structure has been used for
the heuristic proposed in this paper, in addition with multiple improvements and adaptations
to account for the specificities of electric vehicles. Later on, Wang et al. (2017a) studied an
extension of the 2EVRP with stochastic demands, described as a stochastic program with
recourse. A genetic algorithm was proposed, and the results on the problem with stochastic
demands were compared to the best known deterministic solutions.

Electric vehicle routing, en-route recharging and battery swaps. Over the last decade,
research has also rapidly progressed on VRPs with alternative propulsion modes: electric or
hybrid. As generally reflected in the surveys of Montoya (2016); Pelletier et al. (2016) and
Schiffer et al. (2019), many of these studies consider possible en-route recharging or battery
swaps to overcome the range limitations of electric vehicles.

Conrad and Figliozzi (2011) were amongst the first to consider optimization techniques for
electric vehicles and possible recharging stops. In the proposed recharging VRP, batteries can
be charged at customer locations subject to additional costs. Other studies were focused on
VRPs considering different aspects of environment-friendly transport. In particular, Erdogan
and Miller-Hooks (2012) proposed the green vehicle routing problem (GVRP), involving
battery-powered vehicles with possible en-route recharging at dedicated stations, and evaluated
the implications of refueling-stations availability and dispersion.

After these seminal works, the literature progressed towards more intricate problem variants
and solution methods. Schneider et al. (2014) introduced additional time-window constraints for
customer deliveries as well as recharging delays. New benchmark instances were introduced, and
solved by means of a hybrid heuristic combining VNS and tabu search (TS). Desaulniers et al.
(2016) developed an exact method based on branch-price-and-cut, and presented computational
results for the same benchmark instances.

Moreover, to progress towards real applications and improve the accuracy of the studies,
other important characteristics of real delivery networks have been considered. Heterogeneous
fleets with different propulsion modes were studied in Felipe et al. (2014), jointly with a
heterogeneous set of recharging stations with different cost and recharging time. Goeke and
Schneider (2015) considered a mix of conventional and electric vehicles, evaluating the energy
consumption of an electric vehicle as a function of speed, gradient and cargo load distribution.
Hiermann et al. (2016) proposed the electric fleet size and mix problem with fixed costs
and time windows (EFSMFTW), in which the deliveries can be performed with a mix of
vehicle types, differing in their acquisition cost, freight capacity, and battery size. Experiments
were conducted with a branch-and-price algorithm and a hybrid heuristic. This research was
extended in Hiermann et al. (2019) to study the impact of additional plug-in hybrid vehicles.
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Keskin and Çatay (2016) introduced an ALNS for a problem variant in which partial recharging
is allowed.

In a recent case study, Wang et al. (2017c) stressed several interesting facts regarding the
use of large battery powered commercial vehicles. They show that in the real-world transit
network based in Davis, California, range anxiety can be mitigated by adopting good recharging
strategies, and that several companies adapt much stricter range limits than the theoretical
ones (typically half of the range) to extend battery life cycles. Finally, they indicate a list
of case studies in which battery swapping has been applied to electric bus transit systems, a
strategy which is justified by the fact that fast charging techniques can significantly extend
vehicle ranges within only five to ten minutes of charging. Other recent works have proposed to
optimize fast or partial charging strategies. In particular, Schiffer and Walther (2017a) intro-
duced the electric location routing problem with time windows and possible partial recharging
stops, whereas Keskin and Çatay (2018) extended the electric vehicle routing problem with
time windows (EVRPTW) with different types of stations (super-fast, fast, and normal ones)
for en-route recharging.

Real-world applications of en-route recharging. As early as 2008, electric buses were
installed for the Beijing Olympic Games. Each bus, of a capacity of 50 seats, can undergo
battery swapping up to three times a day (EV World, 2008). Similarly, fully electric public
transit buses have been operating in Vienna, Austria for several years now. These buses stop
for approximately 15 minutes at the end of their route to traverse the inner city and recharge
the batteries with an overhead system multiple times a day (Wr. Linien, 2013). Schiffer et al.
(2016) also recently established a case study of “TEDi Logistik GmbH & Co. KG”, which
provides freight transportation services and relies on two electric vehicles. They concluded
that the operations would be significantly improved if fast-charging stations were additionally
available at a few customers locations for en-route recharging, therefore allowing to reach
locations located further than 70km from the depot. Finally, JD.com, one of China’s biggest
e-commerce companies, is replacing its existing fleet with fully electric vehicles (John, 2017).
Seeing the need for it, they recently launched a contest for optimization algorithms capable of
routing vehicles with en-route recharging (JD.com, 2018).

Our study shares the same objectives as many aforementioned papers: bridging the gap
between academic electric VRPs and real problem attributes. The current literature on electric
vehicles has only considered simplistic delivery networks with a single depot and a single
echelon, but it is well known that city logistics usually involve richer configurations, with
interconnected echelons and transportation modes. Moreover, the restricted range of the
electric vehicles and their possible need for en-route recharging bring new challenges which
have to be considered when selecting intermediate facilities (i.e., satellite) locations. We
therefore propose to study the impact of electrical fleets in second-level routes, in a two-echelon
delivery setting, where electric vehicles are likely to be needed.

3.3 Problem Description

The E2EVRP addressed in this paper can be formally described as follows.
A mixed graph G = (N,E,A) is given, where the vertex set N is partitioned as N =

{0}∪NS ∪NC ∪NR. Vertex 0 represents the depot, NS = {1, 2, . . . , ns} represents ns satellites,
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NC = {ns + 1, . . . , ns + nc} represents nc customers, and NR = {ns + nc + 1, . . . , ns + nc + nr}
represents nr charging stations. The edge set E is defined as E = {{0, j} : j ∈ NS} ∪ {{i, j} :
i, j ∈ NS, i < j} and the arc set A as A = {(i, j) : i, j ∈ NS ∪NC ∪NR, i ̸= j} \ {(i, j) : i, j ∈
NS} \ {(i, j) : i, j ∈ NR}. A travel or routing cost dij is associated with each edge {i, j} ∈ E
and with each arc (i, j) ∈ A.

Each customer i ∈ NC requires a supply of qi units of goods to be delivered from the depot
using the following two types of vehicles. A fleet of m1 vehicles of capacity Q1 located at depot
0 and a fleet of mk vehicles of capacity Q2 < Q1 located at satellite k ∈ NS. Moreover, at
most m2 ≤

∑
k∈NS

mk second-level vehicles can be used.
A 1st-level vehicle route is a simple cycle in G passing through the depot and a subset of

satellites such that the total demand delivered is less than or equal to Q1. A satellite k ∈ NS

can be visited by more than one 1st-level route and has a capacity Bk that limits the demand
that can be delivered to it.

A 2nd-level route is a circuit in G passing through a satellite and a subset of customers and
charging stations and such that the total demand of the visited customers does not exceed
the vehicle capacity Q2 and the following charging station constraints are respected. Each
vehicle on the 2nd-level has a maximum battery capacity L, and a battery consumption cij is
associated with each arc (i, j) ∈ A; the maximum battery consumption of a vehicle without a
visit to a charging station is therefore equal to L. Charging stations can be visited right after
or before a satellite, or in between customers, and, whenever a charging station is visited, a
vehicle is fully charged up to level L. In the scope of this short-haul problem, we prohibit a
consecutive visit to two charging stations.

Fixed costs U1 and U2 are also associated with the use of 1st-level and 2nd-level vehicles,
respectively. The cost of a route (1st-level or 2nd-level) is equal to the sum of the costs of the
traversed edges or arcs plus the fixed cost.

The problem asks to design both 1st-level and 2nd-level routes so that the quantity delivered
from each satellite is equal to the quantity received from the depot, each customer is visited
exactly once, and the total cost of the routes is minimized.

Multigraph reformulation. The E2EVRP can be reformulated as a routing problem on
a multigraph G′ = (N ′, E ′, A′), where N ′ = {0} ∪ NS ∪ NC is the vertex set, E ′ = {{0, j} :
j ∈ NS} ∪ {{i, j} : i, j ∈ NS, i < j} is the edge set and A′ is the arc set. Arc set A′ is used to
represent 2nd-level routes and is defined as A′ = {(i, j) : i, j ∈ NS ∪NC , i ̸= j} \ {(i, j) : i, j ∈
NS}. The arc set A′ also contains the following set of arcs:

• With each arc (i, j) ∈ A′ are associated h(i, j) arcs representing the different paths that
a 2nd-level vehicle can take to go from vertex i to vertex j with at most one charging
station visited in between vertices i and j.

• A cost d(i, j, p), a consumption c(i, j, p) and a charging station s(i, j, p) ∈ NR are
associated with each arc (i, j, p), p = 1, . . . , h(i, j), ∀(i, j) ∈ A′. We assume that
s(i, j, p) = 0 if arc (i, j, p) represents the direct path (i, j) without any charging station
visited in between i and j.
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• The cost d(i, j, p) and the consumption c(i, j, p) of arc (i, j, p) are defined as follows:{
d(i, j, p) = dij, c(i, j, p) = cij, if s(i, j, p) = 0

d(i, j, p) = dik + dkj, c(i, j, p) = ckj, if k = s(i, j, p) ̸= 0.

Multigraph G′ does not contain any arc (i, j, p) such that s(i, j, p) = 0 and cij > L, or
k = s(i, j, p) ̸= 0 and cik > L or ckj > L. Notice that for arc (i, j, p) with s(i, j, p) ̸= 0 value
L − c(i, j, p) represents the battery level of the vehicle after arriving at vertex j whereas if
s(i, j, p) = 0, i.e., no charging station is visited in between i and j, the battery level at vertex
j is equal to b− c(i, j, p), where b is the battery level at vertex i.

A 2nd-level route for satellite k ∈ NS in graph G′ is a simple circuit in G′ passing through a
satellite and a subset of customers and such that (i) the total demand of the visited customers
does not exceed the vehicle capacity Q2 and (ii) the vehicle leaves satellite k with a consumption
equal to 0 (or, equivalently, the vehicle is fully charged) and its consumption at each visited
vertex does not exceed the maximum battery capacity L.

The following proposition holds.

Proposition 1 There is a one-to-one correspondence between 2nd-level routes in G and 2nd-
level routes in G′.

Moreover, the set of arcs A′ can be reduced by means of the following dominance rule.

Proposition 2 An optimal E2EVRP solution cannot contain an arc (i, j, r1) if there exists
another arc (i, j, r2), r1 ̸= r2, such that:

1. i ∈ NS: d(i, j, r1) ≥ d(i, j, r2) and c(i, j, r1) ≥ c(i, j, r2);
2. i ∈ NC: d(i, j, r1) ≥ d(i, j, r2) and c(i, j, r1) ≥ c(i, j, r2), and cik1 ≥ cik2, k1 = s(i, j, r1),

k1 ̸= 0, and k2 = s(i, j, r2), k2 ̸= 0.

3.4 Solving the E2EVRP to Optimality

The method used to solve the E2EVRP to optimality is based on the exact method proposed
by Baldacci et al. (2013) for the 2EVRP. More precisely, we tailored the method described
by Baldacci et al. to handle the multigraph G′ described in Section 3.3. The exact method
consists of the following two main steps.

1. The set of all 1st-level routes is generated and a lower bound LB0 on the E2EVRP is
computed. The computation of LB0 is based on a integer relaxation that results in a
multiple-choice knapsack problem. In computing lower bound LB0, we extended the
ng-routes relaxation used in Baldacci et al. to the case of our multigraph G′ (see below).

2. The set of all possible subsets of 1st-level routes that could be used in any optimal
E2EVRP solution is generated. For each subset of 1st-level routes the following steps are
executed:

(i) Lower bound LB0 is computed by fixing the selected set of 1st-level routes in the
solution. If the resulting lower bound is greater than or equal to the cost of the
best incumbent E2EVRP solution, then the current subset is rejected, otherwise
the next step is executed;
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(ii) The E2EVRP problem obtained by considering only the selected set of 1st-level
routes is solved to optimality. The resulting problem is a MDCVRP, that is
solved using the method proposed by Baldacci and Mingozzi (2009). The optimal
solution cost of the E2EVRP corresponds to the minimum solution cost of such
MDCVRPs. In solving problem MDCVRP, we extended the procedure used to
generate elementary routes described in Baldacci and Mingozzi (2009) to the case
of our multigraph G′.

The procedure is initialized with the best upper bound computed by the heuristic algorithm
described in Section 3.5. In the computational results of Section 3.6, we will denote with LB1
(LB2) the minimum of the lower bounds computed at Step 2-(i) (Step 2-(ii)) over the set of
subsets of 1st-level routes. Lower bound LB2 is computed using the lower bounds provided by
the method of Baldacci and Mingozzi (2009).

In the following, we describe how we extended the ng-routes relaxation to graph G′ and,
for the sake of space, we omit the details of the procedure used to generate elementary routes,
which is indeed a straightforward adaptation of the procedure used by Baldacci and Mingozzi
(2009).

Pricing ng-routes. The computation of the lower bounds at steps 1, 2-(i) and 2-(ii) and the
procedure used to generate elementary routes rely on the use of the ng-routes relaxation. In
this section, we describe the extension of the relaxation described in Baldacci et al. (2011)
to multigraph G′. We describe the relaxation for a generic satellite k ∈ NS that, for sake of
notation, is denoted with the index 0 in the description reported below.

Let Ω(w, j, i, p) be the subset of battery consumption values from vertex j to arrive at
vertex i with a consumption equal to w, with w ≤ L, when j is visited immediately before i
using arc of index p of arc (j, i) ∈ A′. Set Ω(w, j, i, p) is defined as follows:

Ω(w, j, i, p) =


{w − cji} if s(j, i, p) = 0 and cji ≤ w

{w′ : 0 ≤ w′ + cjk ≤ L} if s(j, i, p) = k ̸= 0 and cki = w

∅ otherwise.

(10)

Let Ni ⊆ NC be a set of selected customers for vertex i such that Ni ∋ i and |Ni| ≤ ∆(Ni)
(∆(Ni) is an a priori defined parameter). The sets Ni allow us to associate with each
forward path P = (0, i1, . . . , ik) in G′ the subset Π(P ) ⊆ V (P ), V (P ) = {0, i1, . . . , ik−1, ik},
containing customer ik and every customer ir, r = 1, .., k − 1, of P that belongs to all sets
Nir+1 , . . . , Nik associated with the customers ir+1, . . . , ik visited after ir. The set Π(P ) is

defined as: Π(P ) = {ir : ir ∈
⋂k

s=r+1Nis , r = 1, . . . , k − 1} ∪ {ik}.
An ng-path (NG, q, w, i) is a non-necessarily elementary path P = (0, i1, . . . , ik−1, ik = i)

starting from the satellite 0 with an initial consumption equal to 0, visiting a subset of customers
(even more than once) of total demand equal to q such that NG = Π(P ), ending at customer i
with a total consumption equal to w, and such that i /∈ Π(P ′), where P ′ = (0, i1, . . . , ik−1) is
an ng-path. We denote by f(NG, q, w, i) the cost of the least cost ng-path (NG, q, w, i). An
(NG, q, w, i)-route is an (NG, q, w, 0)-path where i is the last customer visited before arriving
at the satellite.

Functions f(NG, q, w, i) can be computed using dynamic programming (DP). The
state space graph H = (E ,Ψ) is defined as follows: E = {(NG, q, w, i) : qi ≤

38



q ≤ Q2,∀NG ⊆ Ni s.t. NG ∋ i,
∑

j∈NG qj ≤ Q2,∀i ∈ {0} ∪ NC ,∀w, 0 ≤ w ≤
L}, Ψ = {((NG′, q′, w′, j), (NG, q, w, i))p : ∀(NG′, q′, w′, j) ∈ Ψ−1(NG, q, w, j, i, p), p =
1, . . . , h(j, i), ∀(j, i) ∈ A′,∀(NG, q, w, i) ∈ E }, where Ψ−1(NG, q, w, j, i, p) = {(NG′, q −
qi, w

′, j) : ∀NG′ ⊆ Nj s.t. NG′ ∋ j and NG′ ∩Ni = NG \ {i}, ∀w′ ∈ Ω(w, j, i, p)}.
The DP recursion for computing f(NG, q, w, i) is:

f(NG, q, w, i) = min
(j,i)∈A′, 1≤p≤h(j,i)

(NG′,q′,w′,j)∈Ψ−1(NG,q,w,j,i,p)

{f(NG′, q′, w′, j) + d(j, i, p)} ,∀(NG, q, w, i) ∈ E , (11)

using as initial state f({0}, 0, 0, 0) = 0 and f({0}, q, w, 0) =∞ for q > 0 and w > 0. In the
computational experiments (Section 3.6), we set ∆(Ni) = 12, ∀i ∈ NC , and Ni contains i and
the 11 nearest customers to i.

From the experimental analysis presented in Section 3.6, we observed that this mathematical
programming algorithm can solve small and medium size instances to optimality and provide
good lower bounds otherwise. Yet, this method requires a good initial upper bound to be
truly effective, especially when the problem size grows. To produce these upper bounds, the
following section introduces a metaheuristic based on large neighborhood search.

3.5 Large Neighborhood Search

Our metaheuristic, called LNS-E2E, follows the basic principles of ruin and recreate (Shaw,
1998). At each iteration, some parts of the solution are destroyed by a selected destroy operator
(Section 3.5.1), and then repaired again (Section 3.5.2) with a three-steps repair operator which
reconstructs, in turn, the 2nd-level routes, the 1st-level routes, and completes the reconstruction
with an optimal insertion of visits to charging stations. Subsequently, a sophisticated local
search (Section 3.5.3) is applied to improve the resulting solution. During the local search, the
labeling algorithm is used in combination with the moves to evaluate their impact.

The general structure of the method is presented in Algorithm 2. The sequence of
destruction, reconstructions and local search is repeated until imax iterations have been
performed without improvement of the incumbent solution (Lines 4–8). Once this termination
criterion is attained, the best solution is stored (Lines 9–10) and the method performs a restart
from a new random initial solution. This process repeats until a maximum time Tmax is
attained (Lines 2–10).

In contrast with the adaptive large neighborhood search of Pisinger and Ropke (2007),
LNS-E2E makes uses of a very limited number of destroy operators, and a single repair operator.
Moreover, the probabilities of use of each operator are fixed, i.e., the method does not rely on
adaptive mechanisms. This design is in line with the study of Breunig et al. (2016), where it
was observed that the algorithm with a simple fixed probability selection equaled its adaptive
counterpart on the 2EVRP. The following subsections now describe each component of the
method in deeper details.

3.5.1 Destroy operators

At each iteration, one out of three destroy operators is selected with equal probability:
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Algorithm 2: LNS-E2E

1 Sbest ← ∅
2 while CPU time < Tmax do

3 S ← LocalSearch(Repair(∅)) /* (re-)start: new solution */

4 for i← 0 to imax do

5 Stemp ← LocalSearch(Repair(Destroy(S)))
6 if Cost(Stemp) < Cost(S) then
7 S ← Stemp /* accept better solution */

8 i← 0

9 if Cost(S) < Cost(Sbest) then

10 Sbest ← S /* store best solution */

11 return Sbest

• A) Related nodes removal. A seed customer is randomly chosen. A random number of
its Euclidean closest customers as well as the seed customer are removed from the current
solution and added to the list of nodes to re-insert. This operator receives a parameter p1,
which denotes the maximum percentage of nodes to remove. At most ⌈p1 · nc⌉ nodes are
removed.

• B) Random routes removal. Randomly selects routes and removes the associated
customers visited, adding them to the list of nodes to re-insert. This operator randomly
selects a number of routes in the interval [0, ⌈p2 · qtotQ2

⌉]. The last term gives a lower bound
on the number of routes needed to serve all customers.

• C) Close satellite. Chooses a random satellite. If the satellite can be closed and the
remaining open ones still can provide sufficient capacity for a feasible solution, the chosen
satellite is closed temporarily. All customers that are assigned to it are removed and added to
the list of nodes to re-insert. The satellite stays closed until it is opened again in a later phase.

Moreover, the following two other operators may be applied right after one of the destroy
operators described above:
• D) Open all satellites. With a probability of p̂3, all currently closed satellites are set to
be available again in future repair phases.

• E) Remove single customer routes. This operator removes all routes which contain
only one single customer. Typically, a complete solution does not often contain any route
matching this criterion, but this can happen after a partial destruction. Therefore, with
a probability of p̂4, all those customers which remain on a single node route after the
destruction phase are also added to the list to re-insert. As there is a limit on the number of
vehicles available, removing short routes also allows to use a vehicle originating from another
satellite in the next repair phase.
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3.5.2 Repair operator and initial solution construction

We propose a repair operator based on three steps, which first reinserts customer-visits in
2nd-level routes, then reconstructs 1st-level routes, and finally completes the solution with
recharging stations visits. Note also that the creation of the initial solution can be seen as a
totally destroyed or empty solution (∅), and therefore follows the same principle.

Reinsertion of customer visits. The classic cheapest insertion calculates every possible
insertion position for every node to insert and selects the least-cost one. LNS-E2E uses a
simplified version of this greedy heuristic with lower complexity, which iteratively inserts the
first node from the insertion list in its cheapest position, until all nodes have been inserted. As
a consequence, the outcome of the reconstruction depends on the order of the nodes in the list,
favouring diversification.

The order of nodes in the list is randomly shuffled prior to insertions. In the exceptional
case where this method fails to generate a feasible solution, another construction is attempted,
this time ordering the nodes in the list by decreasing demand quantity. Such an ordering
has a better chance to result in a feasible solution with respect to the capacity (i.e., packing)
constraints, since no split deliveries are allowed on the second level. Overall, this first phase of
the 2nd-level routes reconstruction respects all constraints of the problem except those related
to charging levels and recharging station visits.

Construction of first level tours. After itineraries for the 2nd-level routes have been found,
the quantities needed at the satellites are known. With this information, the 1st-level routes
can be reconstructed. We opted for a complete reconstruction, as the number of satellites
is usually small and the 2nd-level routes can very significantly change from one iteration to
another. On the first level, split deliveries are not only allowed, but sometimes also necessary
to find a feasible solution. Depending on the customers associated to a satellite, it can occur
that the requested quantity at the satellite is larger than a full truckload. Therefore, we use a
simple preprocessing step: for any satellite with a demand larger than a full truckload, we
create a back-and-forth trip from the depot, until the remaining demand is smaller than
a truck’s capacity. The simplified cheapest insertion is then used to complete the 1st-level
solution. In practical settings with up to 10 or 20 satellite facilities, this method finds optimal
1st-level routes in a majority of cases in a very limited computational effort.

Optimal insertion of charging stations visits. At this point, the algorithm has re-
constructed a solution which is feasible in terms of load capacities but usually infeasible in
terms of battery capacities. To restore feasibility, it uses a DP algorithm which finds the
optimal charging stations positions for each 2nd-level route. The problem of inserting charging
station visits in a route σ = (σ0, σ1, . . . , σK) can be reduced to a shortest path problem
with resource constraints (SPPRC) in a directed acyclic multigraph H̄ = (N̄ , Ā), such that
N̄ = {0} ∪ {1, . . . , K − 1} ∪ {K}. The nodes 0 and K correspond to depot visits (such that
σ0 = σK = 0), while the other nodes represent customer visits. Each arc (i, i + 1, rk) ∈ Ā
corresponds to a non-dominated arc between σi and σi+1, with the same characteristics as
(σi, σi+1, rk) ∈ A′ defined in Section 3.3 and possible en-route recharging. This multigraph is
illustrated in Figure 4. You can find a numerical example in the Appendix in Section 3.8.1.
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No charging station visit 

σ1 σ2 σ0 σk-2 σk-1 σk  

 

Intermediate stop at a charging station

……
……

(0,1,r5) 

(0,1,r1) 

Figure 4: Illustration of the multigraph H̄. Non-dominated choices of charging stations visits
are represented by parallel arcs.

Solving this SPPRC can be simply done using Bellman’s algorithm in the topological
order (0, 1, . . . , K). Using the same notations as in previous sections, the state space graph
H̄ = (Ē , Ψ̄) is defined as Ē = {(w, i) : ∀w, 0 ≤ w ≤ L,∀i ∈ N̄} and Ψ̄ = {((w′, i− 1), (w, i))p :
∀(w′, i− 1), w′ ∈ Ω(w, σi−1, σi, p), p = 1, . . . , h(σi−1, σi),∀(w, i) ∈ Ē }. Defining f(w, i) as the
minimum cost of a path starting from 0 and reaching node i with battery consumption w, the
DP recursion can be expressed as:

f(w, i) = min
1≤p≤h(σi−1,σi)

w′∈Ω(w,σi−1,σi,p)

{f(w′, i− 1) + d(σi−1, σi, p)},∀(w, i) ∈ Ē , (12)

and the initial state is set as f(0, 0) = 0 and f(w, 0) =∞ for w > 0.
In the rare case where no feasible path can be found at the end of the DP recursion, a second

execution of the DP algorithm is done, with a minor modification of the label propagation
function allowing to use and penalize battery capacity excesses. In this case, any consumption
over the battery level w > L is converted into a proportional penalty of M × (w−L), where M
is a large constant. Therefore, the method seeks a route with the smallest penalty in priority,
and then the shortest distance. Due to its large impact on the objective, this infeasibility will
generally be resolved in the next steps of the method: the local search or the next destroy and
repair phase.

3.5.3 Local search with systematic charging stations relocations

After solution reconstruction, LNS-E2E applies a local search procedure on the 2nd-level routes
based on 2-opt, 2-opt*, Relocate, Swap and Swap2-1 moves (see, e.g., Vidal
et al., 2013, for a detailed description of these neighbourhoods). The 2-opt* moves are only
tested between routes originated from the same satellite. Moreover, when testing moves that
involve routes from different satellites, the algorithm checks that enough capacity is available
in the satellites and the associated 1st-level routes. The moves are tested in random order and
a first-improvement acceptance policy is used, i.e., any move which results in an improvement
in terms of cost is directly applied, until no more improvement can be found. Similarly to the
granular search by Toth and Vigo (2003), the moves are limited to node pairs (i, j) such that
j belongs to one of the Γ closest vertices from i.

Most modifications of the sequence of customer visits or their assignment to vehicles induce
some necessary changes in the planning of charging stations visits. Ideally, one would like
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to apply the labeling algorithm described in Section 3.5.2 to obtain the exact cost of each
move, with an optimal placement of recharging stations in each newly-created route. Such an
evaluation would be, however, prohibitive in terms of computational effort. To speed up the
method with only a minimal impact on solution quality, we propose some heuristic move filters,
which are quite similar in principle to the techniques used by Taillard et al. (1997) for the
VRP with soft time windows. We first evaluate each move without the labeling algorithm to
obtain an approximation of its impact on the total distance. When doing this calculation, the
current locations of the charging stations are unchanged. Any move which is feasible in terms
of load capacity and does not deteriorate the total distance by more than 3% is then evaluated
exactly in combination with the labeling algorithm, so as to find better charging stations
locations which may lead to an improvement. After this exact evaluation, any improving move
is applied.

3.6 Computational Experiments

We conducted extensive experimental analyses with two aims. Firstly, we evaluate the
performance of the proposed algorithms for different types of instances, and measure the
benefit of integrated routing and recharging-stations planning (Section 3.6.1). For this analysis,
we extend classical 2EVRP instances into E2EVRP instances in order to obtain diverse and
challenging datasets and allow possible comparisons with previous algorithms. Secondly, we
analyze the impact of two defining features of electric-fueled city-distribution networks: the
density of charging stations in a city, and the vehicles’ battery capacities (Section 3.6.2). For
this analysis, we produced a new set of medium-scale instances which simulates a realistic
delivery scenario in a metropolitan area, using battery specifications from recent electric
vehicles.

The mathematical programming algorithm was coded in Fortran 77, and run on a sin-
gle thread of a 3.6 GHz Intel i7-4790 CPU with 32GB of RAM. It relies on CPLEX 12.5.1
for the resolution of the linear programs and some integer subproblems. The metaheuris-
tic was coded in Java (JRE 1.8.0–151), and run on a single thread of a 3.4 GHz Intel
i7-3770 CPU. All benchmark instances used in this paper are available for download at
https://www.univie.ac.at/prolog/research/electric2EVRP and https://w1.cirrelt.

ca/~vidalt/en/VRP-resources.html.

3.6.1 Method performance and benefits of integrated planning

Our benchmark instances for this first analysis are natural extensions of the 2EVRP instances
known as Set 2 and 3 by Perboli et al. (2011), Set 5 by Hemmelmayr et al. (2012), and Set 6
by Baldacci et al. (2013). The depot, satellite and customers locations remain unchanged. The
new information is associated to the electric vehicles (maximum charging level and energy
consumption) and to the charging stations (coordinates).

The selection of charging stations follows the guidelines of Schneider et al. (2014)
(instances of the electric vehicle routing problem with time windows and recharging
stations (EVRPTWRS)) and Desaulniers et al. (2016). The ratio between charging stations
and customers is chosen between 1/10 and 1/5. Firstly, every depot and satellite location
provides charging abilities to vehicles. To pick the remaining locations, we defined a grid of
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100 × 100 candidate locations based upon the range of x- and y-axis coordinates from the
existing 2EVRP instances. For each location, we counted the number of customers in “close
proximity”, defined as half the average tour length in the best known 2EVRP solution. The
more customers one candidate location has in proximity, the more likely it is to be selected
as a charging station. This was achieved by a roulette wheel selection of the remaining
charging stations among those 10,000 locations. Finally, all distances are calculated as
Euclidean and rounded to the nearest integer value. To reduce the effect of rounding, all x-
and y-coordinates from the classical 2EVRP instances have been multiplied by a factor ten.
For each instance, the battery capacity has been defined as L = max{0.6 γ1, 2.0 γ2}, where
γ1 represents the average route length of all second-level routes in the best-known 2EVRP
solution, and γ2 is the largest distance of a customer to its closest recharging station. For the
sake of simplicity, the energy consumption per distance unit is always set to 1 (dij = cij). As
highlighted in our computational experiments, this approach leads to feasible solutions for all
the instances, whereas the best-known 2EVRP solutions are generally not feasible for the
corresponding E2EVRP instances.

Parameters calibration. To produce suitable values for the new parameters of the LNS,
we used a preliminary meta-calibration based on the CMA-ES of Hansen (2006). During
meta-calibration, the parameters are considered to be the decision variables, and the associated
objective corresponds to the average solution quality of LNS-E2E over ten runs on a set of
training instances. This training set includes six larger-scale instances from Set 5: {100-5-1,
100-5-2b, 100-10-1, 100-10-2b, 200-10-1, 200-10-2b}. Table 15 lists the method parameters, the
allowed range for each parameter, and the final values found by the meta-calibration process.
These values will be used for the rest of the experiments.

After calibration, we evaluated the proposed mathematical programming algorithm and
the metaheuristic on the complete set of benchmark instances. The termination criterion of
LNS-E2E has been set to Tmax = 150 seconds for the small instances of Sets 2, 3 and 6a, and
900 seconds for the large-scale instances of Set 5.

Table 15: Range of parameters used during meta-calibration, and final values found

Parameter Search interval Final value

p1 Related removal (%) 0–100 11
p2 Random route removal (%) 0–100 37
p̂3 Open all satellites (%) 0–100 12
p̂4 Remove single customer routes (%) 0–100 18
τ Granularity threshold for move evaluations 0–40 25

imax Number of non-improving iterations before restart 0–1000 385

Results on small instances. Table 16 reports the results on the smaller instances of Set 2
and Set 3 with 21 customers. The leftmost group of columns reports the characteristics
of the instances: number of customers nc, satellites ns, trucks m1, (electric) second level
vehicles m2 and charging stations nr. The next group of columns shows the performance of
the mathematical programming algorithm. The column UB reports the best upper bound at
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the end of the algorithm, and the solutions marked with an asterisk are proven optimal. The
lower bounds obtained at different steps of the exact method are also displayed along with the
associated CPU time values, using the same notations as described in Section 3.4. The next
group of columns reports the performance of LNS-E2E: the average (Avg) and best (Best)
solution quality over five runs, the average computational time per run (T(s)), and the average
time per run needed to reach the final solution of the run (T*(s)). The overall best known
solution (BKS) found during all experiments (including calibration and testing) is reported in
the rightmost column.

The exact algorithm produced optimal solutions (marked with an asterisk) for all instances
except one. A notable improvement is visible when comparing LB2, obtained by repeated
resolutions of MDCVRP with side constraints, with LB0 and LB1. The CPU time of the
method remains below one minute for 4/12 instances, but can rise up to six hours in other
cases, illustrating the difficulty of the E2EVRP, as the presence of the battery capacity
constraints significantly increases the time needed for route enumeration. For these instances,
the metaheuristic always found the optimal solutions in at least one run out of five. Still,
we observe some variance in the results of different independent runs. This is due to the
combination of multiple classes of decision variables (two-echelon routing, satellite selection
and charging stations selection), which make the problem very intricate and favors the creation
of many local minima. The LNS-E2E remains nonetheless accurate, with an average gap of
1.18% from the optimal or best known solutions. The time taken to attain the final solution of
the run varies from 2 to 132 seconds, depending on the instance.

Results on medium instances. Table 17 displays the results on the medium instances
of Sets 2, 3 and 6a, containing between 32 to 75 customers. The same convention as the
previous table is used. For this scale of instances, the mathematical programming algorithm
does not generate proven optimal solutions in the allotted time and was stopped after the
computation of bound LB1. The average optimality gap between the best solution found by
LNS-E2E and the bound LB1, for this group of instances, amounts to 3.57%, demonstrating
the good accuracy of both approaches. As usual when comparing exact algorithms with
metaheuristics, the difference of CPU time between the two methods becomes more marked
for larger instances. For some instances with 75 customers, the time needed to compute LB1
grows as high as 25 hours, whereas the termination of the heuristic is guaranteed after 150
seconds.

Results on large instances, and impact of integrated routing and recharging stations
optimization. The larger instances of Set 5 contain 100 or 200 customer visits. To the best
of our knowledge, only 3/18 instances have been solved to proven optimality for the classical
2EVRP (without considering electric vehicles and recharging stations). The E2EVRP appears
to be even harder to solve, and our exact approach could not produce optimal solutions or
good lower bounds in reasonable time. For this set of instances, we therefore concentrate our
analysis on the results of the metaheuristic, with the aim of assessing the performance of the
algorithm and the impact of an integrated optimization of routing and recharging stations
decisions. To that end, we compared four algorithms. The first two algorithms solve the
2EVRP without electric vehicles:
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• LNS-2E: the algorithm presented in Breunig et al. (2016) (LNS-2E), which produces the
current state-of-the-art results for that problem;

• LNS-E2E ∞: the proposed algorithm, in which the range of the electric vehicles is set to
∞ to make recharging-stations visits unnecessary.

The two other solution methods are designed for the problem with electric vehicles:
• LNS-2E post: resolution of the classical 2EVRP (disregarding battery constraints) with
LNS-2E, followed by a post-optimization using the labeling algorithm to insert charging-
stations visits;

• LNS-E2E: the proposed algorithm, with integrated routing and planning of charging
stations.

Each method was run until a time limit of 15 minutes, and the same rounding convention
(integer distances) have been adopted to allow direct solution comparisons. Table 18 reports
the average (Avg) and best (Best) solution quality of each method over ten runs, as well as
the average CPU time to reach the final solution of each run (T*(s)). For future reference, the
BKS found on Set 5 for the LNS-E2E during preliminary calibration and testing are also listed
in the rightmost column.

Firstly, these results highlight the good accuracy of the proposed LNS-E2E, even for the
particular case of the 2EVRP without electric vehicles. In comparison with the current state-
of-the-art algorithm LNS-2E, better average quality solutions are found on all 200-customer
instances, with improvements rising up to 2.41%, while solutions of slightly lower quality are
obtained on the 100-customer test cases.

Secondly, we observe the large benefits of an integrated routing and charging stations visits
planning. Even when starting with good 2EVRP solutions, a post-ex insertion of charging
stations results in solutions of poor quality for the E2EVRP in comparison with the integrated
LNS-E2E approach. The average gain related to an integrated optimization in comparison to
post-optimization amounts to 3.28%, and can reach as high as 7.93% for instance 100-10-2b.
Finally, in terms of computational effort, we observe that the proposed LNS-E2E approach
finds solutions in a similar time as LNS-2E, despite the joint optimization of charging stations.
This is essentially due to the heuristic move filters described in Section 3.5.3, allowing to
evaluate and discard a large proportion of non-promising local search moves without a call
to the labeling algorithm. The next section will study the impact of some of these method
components in deeper detail.
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Table 17: Performance analysis on medium-scale instances of Set 2, 3 and 6a

Characteristics Lower Bounds LNS-E2E

Instance nc ns m1 m2 nr UB %LB0 LB0 TLB0(s) %LB1 LB1 TLB1(s) Avg Best BKS T(s) T*(s)

Set 2

n33-k4-s1-9 32 2 3 4 5 7617 98.46% 7499.4 73.3 98.46% 7499.4 149.4 7751.0 7617 7617 150 75.3

n33-k4-s2-13 32 2 3 4 5 7925 94.81% 7513.4 44.7 94.81% 7513.4 112.7 8025.0 7925 7925 150 103.3

n33-k4-s3-17 32 2 3 4 5 8090 92.88% 7514.2 69.7 92.88% 7514.2 181.3 8280.2 8090 8090 150 107.0

n33-k4-s4-5 32 2 3 4 5 8870 93.84% 8323.8 79.2 93.84% 8323.8 257.1 8925.2 8870 8870 150 91.0

n33-k4-s7-25 32 2 3 4 5 8318 95.51% 7944.1 77.0 95.74% 7963.3 168.9 8374.8 8318 8318 150 92.7

n33-k4-s14-22 32 2 3 4 5 8621 98.42% 8484.4 218.5 98.42% 8484.4 529.5 8680.4 8621 8621 150 90.2

Average 8240.2 95.65% 7879.9 93.7 95.69% 7883.1 233.1 8339.4 8240.2 8240.2 150 93.3

Set 3

n33-k4-s16-22 32 2 3 4 6 7561 91.60% 6926.2 89.4 91.60% 6926.2 328.4 7656.2 7561 7561 150 94.5

n33-k4-s16-24 32 2 3 4 6 7501 94.77% 7108.5 168.4 94.77% 7108.8 607.1 7520.0 7501 7501 150 102.7

n33-k4-s19-26 32 2 3 4 6 7212 94.42% 6809.5 98.6 94.42% 6809.5 253.4 7223.2 7212 7212 150 47.3

n33-k4-s22-26 32 2 3 4 6 7334 95.81% 7027.0 290.5 96.85% 7103.1 738.5 7498.4 7334 7334 150 131.3

n33-k4-s24-28 32 2 3 4 6 7443 95.40% 7100.5 234.2 96.80% 7204.6 569.9 7371.6 7443 7443 150 116.2

n33-k4-s25-28 32 2 3 4 6 7429 93.68% 6959.7 258.4 93.68% 6959.7 579.8 7490.4 7429 7429 150 108.3

Average 7413.3 94.28% 6988.6 189.9 94.69% 7018.6 512.9 7460.0 7413.3 7413.3 150 100.0

Set 6a

A-n51-4 50 4 2 50 5 7663 95.27% 7300.8 121.9 98.76% 7568.0 762.9 7879.4 7663 7663 150 109.4

A-n51-5 50 5 2 50 6 8268 95.77% 7918.0 98.4 98.16% 8116.0 2783.6 8386.4 8268 8268 150 64.5

A-n51-6 50 6 2 50 7 7795 93.08% 7255.9 117.1 98.18% 7653.4 15723.7 7943.8 7795 7795 150 106.0

A-n76-4 75 4 3 75 7 10599 95.40% 10111.7 214.9 97.23% 10305.4 6463.9 10692.0 10599 10599 150 97.0

A-n76-5 75 5 3 75 7 11178 95.18% 10638.9 175.5 98.17% 10973.6 16406.4 11242.4 11178 11178 150 88.8

A-n76-6 75 6 3 75 7 10156 95.60% 9709.2 242.2 98.92% 10046.1 85538.4 10250.0 10156 10156 150 110.7

B-n51-4 50 4 2 50 5 6589 97.20% 6404.4 163.2 97.96% 6454.8 342.4 6791.2 6589 6589 150 111.6

B-n51-5 50 5 2 50 6 7252 94.73% 6869.8 116.3 95.53% 6928.0 1859.6 7446.4 7252 7240 150 90.8

B-n51-6 50 6 2 50 7 6583 95.02% 6255.0 256.0 97.51% 6419.3 3054.1 6787.6 6583 6583 150 61.4

B-n76-4 75 4 3 75 7 9945 95.99% 9546.7 198.4 98.02% 9748.0 2184.4 9995.8 9945 9943 150 99.5

B-n76-5 75 5 3 75 7 9139 94.70% 8655.1 210.4 98.26% 8980.0 9903.7 9209.2 9139 9139 150 71.9

B-n76-6 75 6 3 75 7 8238 94.44% 7780.1 427.0 97.80% 8056.5 79962.3 8287.6 8238 8238 150 82.4

C-n51-4 50 4 2 50 5 8407 94.57% 7950.2 137.0 95.74% 8048.5 888.4 8596.2 8407 8407 150 80.4

C-n51-5 50 5 2 50 6 8810 94.99% 8368.3 261.1 95.77% 8437.3 1346.5 9276.0 8810 8810 150 82.4

C-n51-6 50 6 2 50 7 8160 93.73% 7648.6 180.3 95.83% 7819.7 7092.7 8390.6 8160 8160 150 72.9

C-n76-4 75 4 3 75 7 12162 94.61% 11506.7 199.0 98.30% 11955.7 3996.1 12381.2 12162 12147 150 99.3

C-n76-5 75 5 3 75 7 13033 92.00% 11990.5 402.2 93.33% 12163.4 38723.3 13247.0 13033 13033 150 79.3

C-n76-6 75 6 3 75 7 11808 93.28% 11014.5 285.0 97.11% 11466.6 93643.4 12129.8 11808 11806 150 92.8

Average 9210.3 94.75% 8718.0 211.4 97.25% 8952.2 20593.1 9385.1 9210.3 9208.6 150 88.9
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Impact of the main LNS components. We conducted additional experiments to measure
the contribution of each operator of the LNS-E2E. Starting from the current algorithm (baseline
configuration), we deactivated one separate destroy operator listed in Section 3.5.1, in turn, and
measured the solution quality of resulting algorithm. In the specific case of the configuration
“No open”, all candidate satellites are made available again (re-opened) at each restart, instead
of using this component as a destroy operator. These experiments were conducted on the
18 large instances of Set 5, using 10 independent runs and a time limit Tmax = 15 minutes.
The solution quality is reported as an average percentage gap from the baseline. Table 19
summarizes the results.

Table 19: Sensitivity analysis on the contribution of each operator.

Baseline A) No related B) No route C) No close D) No open E) No single

11829.8 2.70% 2.44% 1.52% 3.10% 1.61%

From these results, we first observe that the “open all satellites” operator (D) is essential
for the performance of the method, as it allows to control the frequency of the exploration of
different satellite configurations. Without the explicit use of a dedicated operator to re-open
satellites, the solutions are 3.10% worse on average. The operator “closes satellite” (C) has
a smaller but still very significant impact on the overall solution quality, with a deviation of
1.52% from the baseline when deactivated. Therefore, forcing the elimination of some satellite
choices at different phases of the method is essential to evaluate structurally different solutions
which would not be attained otherwise by the cheapest insertion repair heuristic.

No related measures the deterioration due to the deactivation of the related nodes destruction
operator (A), which destroys specific areas around a seed customer. Analogously, no route
measures the performance deterioration when the operator targeting random routes (B) is
deactivated, and column no single shows the impact of not using the destruction operator
which removes single-customer routes (E). All these operators appear to contribute significantly
to the performance of the method, and the deactivation of any of these elements leads to an
overall drop of method performance.

We finally tested a version of the method without a restart process after each imax iterations
without improvement. In this configuration, the loop of Algorithm 1, Line 4–8 is executed until
reaching a maximum time of Tmax. We observed a deterioration of solution quality of 1.90%
with respect to the baseline, demonstrating again the importance of diversification components,
in this case the restarts mechanism, for the E2E-VRP.

3.6.2 Sensitivity analysis – Density of charging stations and battery capacity

Our second set of experiments focuses on the impact of two defining features of battery-powered
distribution networks: the density of the charging stations, and the range of the vehicles. To
that extent, we created two additional sets of instances with nc = 50 customers and ns = 4
satellites each, approximating as closely as possible real delivery conditions in a metropolitan
area while pertaining to the E2EVRPs class. Set 7 contains 10 groups of 20 instances with a
number of charging stations nr ∈ {2, 3, 5, 10, 15, 20, 25, 30, 40, 50} (in addition to the satellites)
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and a battery capacity L = 1000, whereas Set 8 contains 10 groups of 20 instances with nr = 20
charging stations and a battery capacity L ∈ {800, 900, 1000, . . . , 1700}. When varying the
number of charging stations or the battery capacity, all other instance characteristics (satellite
locations, customer locations and demands as well as the existing charging station locations)
are kept identical.

In each instance, 40 customers have been located randomly (with uniform probability) in
an ellipse X1 centered in (1000,500), with x-axis of dimension 800 and y-axis of dimension 400,
and 10 additional customers have been located randomly in an ellipse X2 with the same center,
an x-axis of dimension 1000 and y-axis of dimension 500. The locations of the satellites are
picked randomly in the area formed by X2 −X1, and the depot is fixed in position (300,0).
Moreover, 80% of the charging stations are randomly located in X1, and 20% in X2. The
demand quantity of each customer is randomly selected in [1,25]. Six 1st-level vehicles with
capacity Q1 = 250 are available, and ten 2nd-level electric vehicle with capacity Q2 = 125 are
available at each satellite.

Considering that one distance unit in each instance corresponds to 0.1km on a map, the
area considered for the location of customers and charging stations covers 15708 km2, a size
similar in magnitude with the metropolitan area of Paris. We set a baseline of L = 1000 for
the battery capacity, equivalent to a range of 100km. This value matches the specifications of
the Renault Kangoo Zoe and Nissan Leaf 2015/2016 minus a safety range of 30km. Varying
this parameter allows to evaluate the impact of the battery capacity.

Figure 5 depicts the evolution of the operational costs as a function of the number of
charging stations nr, and Figure 6 shows the impact of the battery capacity L. The results
are expressed as percentage gaps between the cost of the LNS-E2E solution with and without
battery restrictions (i.e. percentage detour miles due to recharging), and averaged over all 20
instances of each class. The average number of visits to charging stations in the solutions is
also represented on each graph.
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Figure 5: Impact of the number of available charging stations on the detour costs due to
recharging and the number of visits to stations.
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These experiments highlight the significant impact of the charging stations density and
vehicles batteries capacities in the instances under study. As the number of charging stations
grows, the detour costs due to recharging stations visits rapidly decreases: e.g., from 5.45% in
average when nr = 5 to 1.53% when nr = 15. Conducting a power-law regression of the form
f(nr) = α/nβ

r (least-squares regression of an affine function on the log-log graph), the extra
detours due to recharging diminish proportionally to 1/ρ1.24. In these conditions, doubling the
number of charging stations allows to reduce extra recharging costs by approximately 58%.

Interestingly, the number of visits to charging stations slightly increases with nr: from 9.5
in average when nr = 2 to 11.75 when nr = 50. Indeed, when the recharging station network
is sparse, most detour options to recharging stations involve significant extra costs, and the
vehicle routing algorithm tends to reduce to a strict minimum the number of such detours.
In contrast, in the presence of a dense recharging stations network, the solutions converge
more closely towards the 2E-VRP cost (disregarding battery constraints) as there are always
multiple options of charging stations on the way.
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Figure 6: Impact of the vehicle range (i.e., battery capacity) on the detour costs due to
recharging and the number of visits to stations.

The vehicles’ range (i.e., battery capacity), has an even larger impact (see Figure 6). For
most of the considered instances, a range below 700 distance units (= 70km) would lead to an
infeasible problem, as it becomes impossible to travel between some pairs of customers and find
adequate recharging locations en-route. Therefore, adequate battery technology is a key factor
for the viability of battery-powered delivery networks. The extra costs due to recharging and
number of visits to recharging stations tend to be high when considering vehicles’ ranges close
to the feasible limit (L = 800). These values then rapidly decrease to become close to zero
when the range L exceeds 1500 (i.e., 150km), a value which may be soon attained by lightweight
electric trucks. Once this regime is attained, the battery capacity becomes sufficient to do
most tours without en-route recharging visits. Still, manufacturing the current best-performing
batteries on a global scale requires a large supply of minerals (e.g., nickel and cobalt) which
are only accessible in limited quantities in the environment. As illustrated in Figure 5, the
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development of good fast-charging infrastructures is another strategic development path to
obtain operational efficiency, which may turn out, in the long run, to be more sustainable and
economical than a race towards heavier and more robust batteries.

3.7 Conclusions

In this paper, we have formulated the E2EVRP, an extension of the 2EVRP involving electric
vehicles for second-echelon deliveries, battery capacity constraints, and possible visits to
charging stations, and used it as a prototypical problem for the study of multi-echelon battery-
powered supply chains. We introduced an efficient exact algorithm, based on the enumeration
of candidate solutions for the first echelon and on bounding functions and route enumeration
for the second echelon, along with a problem-tailored large neighborhood search metaheuristic
(LNS-E2E). A comparison of the solutions found by the LNS-E2E with lower bounds and
optimal solutions produced by the mathematical programming algorithm demonstrates the
excellent performance of both algorithms. In particular, all known optimal solutions for
small instances were retrieved by the LNS-E2E, and an average optimality gap of 3.57%
between the best known upper and lower bounds was obtained on medium-scale instances. The
metaheuristic was also evaluated on the classical 2EVRP (without electric vehicles), producing
new state-of-the-art solutions on large-scale instances with 200 customers. Finally, thanks
to the use of efficient heuristic move filters in the local search and labeling algorithms, the
computational effort of LNS-E2E remains comparable with that of previous metaheuristics for
the classical 2EVRP.

Beyond the usefulness of these optimization algorithms for the operational planning of
electric fleets, this paper brought new managerial insights related to the incorporation of
electric vehicles into two-echelon delivery networks and to the recharging-stations infrastructure
required for an efficient supply chain. For this additional study, we created 400 additional test
instances simulating typical requests patterns and delivery infrastructures in a metropolitan
area with varying density of charging stations vehicles’ battery capacities. We observed that
the detour miles due to recharging decrease in O(1/ρx) with x ≈ 5/4 as a function of the
number of charging stations. Moreover, the range of the electric vehicles has an even bigger
impact: an increase of battery capacity to a range of 150km helps performing the majority of
suburban delivery tours without need for en-route recharging, but a battery capacity below
80km render electric deliveries unviable in our setting. Between these two extremes, the extra
costs due to recharging quickly decrease as a function of the battery capacity.

The future research perspectives are multiple. Firstly, we recommend to pursue the study
of exact methods and metaheuristics for multi-echelon electric VRPs. These optimization
problems involve a large number of decision classes, related to satellite choices, recharging
stations choices, and vehicle routing at two levels, posing a formidable challenge for exact
and heuristic algorithms alike. With the rapid development of battery-powered vehicles and
green supply chains, efficient algorithms for large scale problems are critically needed, but the
current methods still need to be improved in terms of accuracy, scalability, and generality,
e.g., considering possible extensions to multi-echelon electric delivery schemes arising in city
logistics (Cattaruzza et al., 2017), other vehicle routing attributes (Vidal et al., 2013) and
stochastic settings.
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Secondly, our sensitivity analyses on electric vehicles characteristics and other strategic
decisions (number and placement of charging stations) could be extended further. One
limitation of the current study relates to the placement of the charging stations, which is
randomized in a fixed area. However, during urban planning, recharging stations are placed
in strategic locations to meet the needs of the population, or based on competitive location
approaches. Solving this strategic location optimization problem may be necessary for a more
accurate sensitivity analysis. Yet, it is an intricate problem, which can be viewed as a variant of
location routing problems (Schiffer and Walther, 2017a,b), or modeled as a bilevel optimization
problem and congestion game (Xiong et al., 2015). To this date, the optimization of charging
stations locations has never been considered in the context of a multi-echelon delivery network,
forming a promising research avenue.

3.8 Appendix

3.8.1 Example of Labelling Algorithm

The following example and illustration is adapted from Breunig et al. (2017).
Figure 7 shows the process of labelling. The depicted labels show the cost, as well as the

current charging level. We assume a battery capacity of ten units. For simplicity, driving one
unit of distance increases the driving distance by one unit and depletes the battery level by one
unit. Starting from the home satellite S (red square), the vehicle can go to the first customer
I directly, or via one of three charging stations (green pentagons C1-C3 ), shown in Figure 7a.
Label a at node I stores the driving cost of eight (S to C1 : 3 + C1 to I : 5) and a battery
level of five. Starting at full capacity at S, the charging station can be reached at a level of
seven; the vehicle then fully charges up to ten again and after going five more units reaches
customer I at a level of five. The next label corresponds to the route S-C2-I, below is label c
for going directly from S to I without recharging. If the vehicle travels through C3 it arrives
at I with a cost of seven and a charging level of eight (Label d).

Dominated labels can now be eliminated. Label a is dominated by c as the vehicle can
reach customer I at the same charging level but at a lower cost. Label b is dominated by d
as I can be reached at the same cost of six, but at a higher charging level. The remaining
labels are then extended to the next node on the route: customer II in Figure 7b. The vehicle
can travel from I to II directly, or via charging station C4. The two upper labels at node II
evaluate these options starting from label c, the lower two labels work in a similar way when
extending label d. Again, some labels can then be eliminated: g and h are both dominated by
e.
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Figure 7: Illustration of the labelling algorithm

4 Recent publications in this area of research

We will cover the recent works from scientific literature which also dealt with the before
mentioned two-echelon problems or similar ones.

Amarouche et al. (2018) developed a hybrid heuristic for the classic 2EVRP. In a first
phase, a neighbourhood search (destroy, repair and local search) generates promising routes.
Those routes are then recombined in a set covering problem. Their algorithm was able to
slightly improve seven best known solutions on instances of the large Set 5, and also performs
slightly better than the LNS from Breunig et al. (2016). Over all benchmark instance sets,
which were used in Breunig et al. (2016) they were able to close the gaps from 0.18% (LNS)
to 0.10% (hybrid heuristic) for the average solution runs, respectively from 0.09% to 0.04%
for the best found solutions. The calculation of their runtimes is not entirely clear. Although
they state that they set the stopping criterion to 60s for smaller instances, and to 900s for
larger instances - as done in Breunig et al. (2016, 2019), they report way shorter CPU times in
the tables - where we can only guess, that this might be the time when the best solution was
found. Unfortunately a request to clarify this issue was not responded to.

Dellaert et al. (2019) introduced new instances with time windows at customers. They
developed an exact method and were able to solve their instances with up to 100 customers
to optimality; unfortunately they did not apply their algorithm to existing instances without
time windows for comparison to previous literature.

Jie et al. (2019) built upon Breunig et al. (2016) and extended the 2EVRP to another
electric variant, using battery swapping stations, and electric vehicles on both echelons. They
also tested their hybrid algorithm, combining column generation and an ALNS, on the classic
2EVRP instances. Their algorithm generated solutions not necessarily better, but similar to
the results in Breunig et al. (2016).

Marques et al. (2020) developed a branch-price-and-cut technique, and were able to improve
three of the best known solutions from Breunig et al. (2016) of Set 6 instances with 100
customers, on average by 0.07%.
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Hof and Schneider (2021) introduced the vehicle routing problem with time-windows and
mobile depots, which is very similar to 2EVRP, but all vehicles start from the same depot,
and small vehicles meet the large vehicles again on their routes - which they call intraroute
resource replenishments.

Mhamedi et al. (2021) applied their branch-price-and-cut method to the two-echelon vehicle
routing problem with time windows (2EVRPTW), improving the results of Dellaert et al.
(2019) and solving some more instances to optimality.

Anderluh et al. (2021) extended the problem by several objective functions. They consider
economic, environmental and social objectives and transform the problem to a multi-objective
one, which consecutively they solve with a sophisticated LNS, embedded in a heuristic
rectangle/cuboid splitting framework to deal with the different objectives.

An extensive survey over different two-echelon related problems was just published online
by Sluijk et al. (2022).

5 Conclusion

Working on variants of two-echelon routing problems we could show the specific strengths
of this set-up for the delivery (or pickup) of goods in current city logistics. Using different
vehicles for different purposes can have advantages on daily life in urban areas: keeping large
vehicles outside the city’s boundaries but being able to ship larger quantities at once, and
using smaller, potentially battery powered vehicles in densely populated areas.

The proposed solution techniques for different problem settings were proven to be effective
and generate high quality solutions within very reasonable time. There are definitely more
opportunities for research and to shift those problem settings even closer to real world
applications, as is already done by the introduction of time windows at customers, shifting even
first-level vehicles to battery powered ones, or taking a multi-objective approach considering
several different impacts of transport.
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