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Abstract

The goal of this thesis is to compare the relative complexity of di�erent equivalence rela-
tions. This is done by so-called strong reduction functions in which, instead of reducing
a pair of elements from one equivalence relation to another, the reduction is performed
on each element individually. This notion of reduction is more appropriate than polyno-
mial time reduction when, for example, comparing the computational complexity of the
isomorphism problem for di�erent classes of structures.

The �rst chapter provides a rough introduction to some basics of model theory and com-
plexity theory. Furthermore it o�ers some examples of classes of structures which will be
used to establish our framework throughout the thesis.

In the second chapter we introduce the notions of strong isomorphism reducibility and
potential reducibility and use the concepts of invariantization and canonization to gain
some insight into the structure of strong isomorphism degrees. We will see that there
is a rich structure, in fact we will show that the structure of strong isomorphism de-
grees below the relation LOP contains a copy of the countable atomless boolean algebra.
Further, we investigate whether the notion of strong isomorphism redction ≤iso and the
notion of potential reducibility ≤pot are distinct and can only answer this by making
some complexity theoretical assumption. At the end of this section we look at strong
reduction functions that allows us to compare arbitrary equivalence relations. We use
this concept to show that one can separate the complexity classes P and #P assuming
that ≤iso and ≤pot are distinct.

Chapter 3 focuses on four elementary problems: The recognition problem, the invari-
ant problem, the canonization problem and the �rst member problem. We show that
those problems are of strictly increasing complexity and that it is not possible in general
to reduce one of these problems to an earlier one even with the help of an oracle.

Finally, in chapter 4 the benchmark relations id, Eλ and Eσ are introduced. We show
that the reducibility hierarchy, even when considering only equivalence relations apart
from isomorphism relations, has a rich structure and compare it to our established hierar-
chy of strong isomorphism degrees. In the last section of this chapter we look at �nitary
equivalence relations, which are equivalence relations with only �nitely many non trivial
equivalence classes, i.e. only �nitely many equivalence classes consist of more than one
element.
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Kurzfassung

Das Ziel dieser Arbeit ist es, die relative Komplexität verschiedener Äquivalenzrelationen
zu vergleichen. Dies geschieht durch so genannte starke Reduktionsfunktionen, bei de-
nen nicht ein Tupel von einer Äquivalenzrelation auf eine andere reduziert wird, sondern
die Reduktion für jedes Element einzeln angewandt wird. Diese Art von Reduktion ist
besser geeignet um die Komplexität verschiedener Isomorphieprobleme zu vergleichen als
die gewöhnliche Polynomzeit-Reduktion.

Das erste Kapitel bietet eine kurze Einführung in einige Grundlagen der Modelltheorie
und der Komplexitätstheorie. Darüber hinaus bietet es einige Beispiele für Klassen von
Strukturen, die im Laufe der Arbeit zur Entwicklung unserer Theorie verwendet werden.

Im zweiten Kapitel führen wir die Begri�e der starken Isomorphie-Reduzierbarkeit und
der potenziellen Reduzierbarkeit ein und verwenden die Konzepte der Invariantisierung
und Kanonisierung, um einen Einblick in die Struktur der starken Isomorphie-Grade zu
gewinnen. Wir werden sehen, dass es eine reichhaltige Struktur gibt. Tatsächlich wer-
den wir zeigen, dass die Struktur der starken Isomorphiegrade unterhalb der Relation
LOP eine Kopie der abzählbaren atomfreien booleschen Algebra enthält. Ferner unter-
suchen wir, ob der Begri� der starken Isomorphie-Reduzierbarkeit ≤iso und der Begri�
der potentiellen Reduzierbarkeit ≤pot unterschiedlich sind, und können dies nur beant-
worten, indem wir einige komplexitätstheoretische Annahmen tre�en. Am Ende dieses
Abschnitts betrachten wir starke Reduktionsfunktionen, die es uns ermöglichen, beliebige
Äquivalenzrelationen zu vergleichen. Wir verwenden dieses Konzept, um zu zeigen, dass
man die Komplexitätsklassen P und #P seperieren kann, wenn man annimmt dass ≤iso
und ≤pot verschieden sind.

Kapitel 3 konzentriert sich auf vier elementare Probleme: Das Erkennungsproblem, das
Invariantenproblem, das Kanonisierungsproblem und das Problem des ersten Mitglieds.
Wir zeigen, dass diese Probleme von streng zunehmender Komplexität sind und dass es
im Allgemeinen nicht möglich ist eines dieser Probleme auf ein früheres zu reduzieren,
selbst mit Hilfe eines Orakels.

Schlieÿlich, in Kapitel 4 werden die Benchmark-Relationen id, Eλ und Eσ eingeführt. Wir
zeigen, dass die Reduzierbarkeitshierarchie auch ohne Isomorphierelationen eine reich-
haltige Struktur hat, und vergleichen sie mit der Hierarchie der starken Isomorphiegrade.
Im letzten Abschnitt dieses Kapitels betrachten wir pseudo-endliche Äquivalenzrelatio-
nen, d.h. Äquivalenzrelationen mit nur endlich vielen nicht trivialen Äquivalenzklassen.
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1 Introduction

In order for the thesis to be self-contained, several basic concepts and results will be
introduced to facilitate a better understanding of the thesis. At �rst, we give some basic
de�nitions.

1.1 Notation and convention

A natural number is a number in the set N = {0, 1, 2, . . .}. We use N∗ to denote the
set N \ {0}. If n ≥ 1, then we denote by [n] the set {1, . . . , n} and understand that
[0] = ∅. For a positive real number x, we denote by bxc the largest n ∈ N such that
n ≤ x. We denote by log x the logarithm of x to the base 2. By N[x] we denote the
set {p(x) | p(x) = Σn

k=0akx
k for some n ≥ 0 and ak ∈ N for 0 ≤ k ≤ n} and call it's

elements polynomials. The degree of a polynomial, denoted by deg(p), is the largest n
such that an 6= 0. Finally, we say that a condition holds for a large enough n if it holds
for every n ≥ N for some N ∈ N.

Alphabet and strings

Throughout the thesis Σ denotes the set {0, 1} and is called the (binary) alphabet and its
elements are called bits. The set of strings of length exactly n over Σ is denoted by Σn.
Σ≤n :=

⋃n
k=0 Σk, and Σ∗ is used to denote the set of all �nite strings, i.e. Σ∗ =

⋃
n∈N Σn.

Note that there is a unique string ε of length 0 called �empty string�. The length of a
string is denoted by absolute value, that is |x| = n if and only if x ∈ Σn. For x, y ∈ Σ∗,
we denote by xay the string of length |x|+ |y|, where the last bit of x is followed by the
�rst bit of y. If it is clear from the context we write xy instead of xay. By 1n (0n) we
denote the string 11 . . . 1 (00 . . . 0) of length n. For x ∈ Σ∗ and k ≤ |x|, we denote by
x � k the string that consists of the �rst k bits of x and call a string y an initial segment

of x if y = x � k for some k < |x|. A subset L ⊆ Σ∗ is called a language. The complement
of L is denoted L = Σ∗ \ L.

Tuples

Let x, y ∈ Σ∗, where x = x1 . . . xk, y = y1 . . . yl with x1, . . . , xk, y1, . . . , yl ∈ Σ. We
code an ordered pair of string by an easily computable, invertible bijective pairing func-
tion 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ that maps (x, y) 7→ x1x1 . . . xkxk01y1y1 . . . ylyl. For n−tuples
(x(1), . . . , x(n)) the iteration is performed as follows: 〈(x(1), . . . , x(n))〉 = 〈x(1), 〈x(2), . . . , x(n)〉〉.

Equivalence relation

A set E ⊆ Σ∗×Σ∗ is an equivalence relation on Σ∗ if the following three properties hold:

3



CHAPTER 1. INTRODUCTION

� (re�exivity) For all x ∈ Σ∗, (x, x) ∈ E.

� (symmetry) For all x, y ∈ Σ∗, (x, y) ∈ E implies (y, x) ∈ E.

� (transitivity) For all x, y, z ∈ Σ∗, if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E.

An equivalence relation E can be encoded as a language by taking tuples of each pair
in E. In this way we can study the computational complexity of classes of languages
which represent equivalence relations. We will write (x, y) ∈ E or simply xEy instead of
〈x, y〉 ∈ LE , where LE is the language on Σ induced by E.
The equivalence classes of x with respect to E is the set {y ∈ Σ∗ | (xEy}. It is denoted
[x]E , of it the context is clear, simply [x].

Lexicographic order <lex

For two strings x, y ∈ Σ∗ we denote by <lex the length-lexicographical order on Σ∗, i.e.
x <lex y if either |x| < |y| or |x| = |y| and if the i-th bit is the leftmost bit where x is
di�erent from y then xi < yi.

1.2 Background from Complexity Theory

We assume some basic knowledge of complexity theory but give the following de�nitions
as a reminder. For more details we refer the reader to [8], [5], as well as [10].

De�nition 1.2.1 (Big O Notation)
For two functions f, g : N→ N, we say that

(i) f = O(g) if there is a constant c such that f(n) ≤ c · g(n) for large enough n,

(ii) f = Ω(g) if g = O(f), and

(iii) f = Θ(g) if f = O(g) and f = Ω(g).

De�nition 1.2.2 (Decision problem)
A decision problem Q for a language L is: given x ∈ Σ∗, decide whether or not x ∈ L

We will use the terms 'language' and 'problem' interchangeably, since it is common
practice in complexity theory.

Complexity Classes

Our standard model of computation is that of deterministic and nondeterministic Turing
machines, usually denoted M. We make no further mentions of the model except where
it is relevant.
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1.2. BACKGROUND FROM COMPLEXITY THEORY

De�nition 1.2.3 (Time bounded Turing machines)
We call a Turing machine M, with t : N → N t-time bounded if for every x ∈ Σ∗ there
exists a complete run of M on input x that has a length at most t(|x|). By DTIME(t)
(NTIME(t)) we denote the class of problems Q such that there is some c ∈ N and some
(c · t+ c)-time bounded M that decides Q.

De�nition 1.2.4 (P,NP and co-NP)
The classes

P :=
⋃
k∈N

DTIME(nk) and NP :=
⋃
k∈N

NTIME(nk)

are called deterministic (and nondeterministic) polynomial time. The class co-NP is
de�ned as the class of languages whose complements are in NP, i.e.

co-NP = {L | L ∈ NP}.

Remark 1.2.5 (P versus NP)
The biggest open problem in complexity theory is whether P = NP or not. It is strongly
believed that this is not the case. For the rest of this thesis we will always assume that
P 6= NP unless stated otherwise.

De�nition 1.2.6 (Polynomial time reduction)
Let Q,Q′ be problems. A function f : Σ∗ → Σ∗ is a polynomial time reduction from Q
to Q′ if f is computable in polynomial time and for all x ∈ Σ∗

x ∈ Q ⇐⇒ f(x) ∈ Q′.

We say Q is polynomial time reducible to Q′ and write Q ≤p Q′ if such a f exists. If
both Q ≤p Q′ and Q′ ≤p Q we write Q ≡p Q′ and say Q and Q′ are polynomial time

equivalent.

If is easy to see that ≤p is transitive and that ≡p is an equivalence relation.

De�nition 1.2.7 (Hard and complete problems)
Let CC be a complexity class and let Q,Q′ be problems.

(i) We say a problem Q′ is CC-hard if Q ≤p Q′ for every Q ∈ CC.

(ii) If additionally Q′ ∈ CC, then Q′ is called CC-complete.

We give a quick reminder of the polynomial hierarchy, for more details see e.g. [13].

De�nition 1.2.8 (Polynomial hierarchy)
For every k ≥ 1, a language L is in ΣP

k if there is a (deterministic) Turing machine M
running in time polynomial in the �rst input, such that

x ∈ L ⇐⇒ ∃y1 ∀y2 . . . QkykM(x, y1, . . . , yk) = 1

5



CHAPTER 1. INTRODUCTION

where Qk = ∀ of k is even, and Qk = ∃ if k is odd.

We say L is in ΠP
k if there is a (deterministic) Turing machine M running in time poly-

nomial in the �rst input, such that

x ∈ L ⇐⇒ ∀y1 ∃y2 . . . QkykM(x, y1, . . . , yk) = 1

where Qk = ∃ of k is even, and Qk = ∀ if k is odd.

Finally for the polynomial hierarchy we write PH :=
⋃
k∈N ΣP

k

It is well known that:

Theorem 1.2.9 If P = NP, then the polynomial hierarchy collapses, i.e. P = PH.

1.3 Background from Model Theory

A vocabulary τ is a �nite set of constant symbols, function symbols and relation symbols.
A τ−structure is a pair A = (A, (sA)s∈τ ) where A is a non-empty set called the universe
of A, sA ∈ A if s is a constant, sA : An → A is s is an n−ary function symbol, and
sA ⊆ Am is s is an m−ary relation symbol. For s ∈ τ we call sA the A−interpretation
of s.
All structures in this thesis are assumed to be �nite and have [n] as their universe for
some n ∈ N.
Therefore, we can identify a structure A with its encoding, that is a nonempty string
pAq ∈ Σ∗. We assume that the mappings A 7→ pAq and pAq 7→ A are computable in
polynomial time and that for every vocabulary τ there is a polynomial qτ ∈ N[x] such
that |A| ≤ |pAq| ≤ qτ (|A|) for every τ−structure A.

A class C of τ−structures is closed under isomorphism is for all structures A and B

A ∈ C and A ∼= B imply B ∈ C.

From now on we will only consider classes C (and D) which are in P, are closed under
isomorphism and contain arbitrary large �nite structures. Moreover, in a �xed class all
structures will have the same vocabulary.

The following examples will be helpful in the next chapter.

Example 1.3.1

(i) The classes SET (sets), BOOLE (boolean algebras), FIELD (�elds), GROUP
(groups), ABELIAN (abelian groups) and CYCLIC (cyclic groups) with vocab-
ularies τSET = ∅, τBOOLE = {∩,∪}, τFIELD = {+,×}, τGROUP = τABELIAN =
τCYCLIC = {◦} respectively. Here ∩,∪,+,×, ◦ are the usual binary function sym-
bols of the corresponding structures.
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1.3. BACKGROUND FROM MODEL THEORY

(ii) The class GRAPH of (simple and undirected) graphs, τGRAPH = {E} where E is
a binary relation symbol.

(iii) The class ORD of linear orders (τORD = {<}) with a binary relation symbol <.

(iv) The class LOP of linear orders with a distinguished point and the class LOU of linear
orders with a unary relation. Let τLOP := τORD∪{c} with a constant symbol c and
τLOU := τORD ∪ {U} with a unary relation symbol U .

Remark 1.3.2

There is a one-to-one correspondence between strings in Σ∗ and structures in LOU. A
string x1 . . . xn = x ∈ Σn corresponds to a structure A ∈ LOU with universe A = [n]
and where <A is interpreted as the natural ordering on [n] and UA := {i ∈ [n] | xi = 1}.

For a vocabulary τ let STR[τ ] denote the class of all τ -structures and O[τ ] denote the
class of all ordered τ -structures. A structure A is said to be ordered if the reduct
A � τORD ∈ ORD.

7





2 The isomorphism relation

In mathematics it is a natural question to ask whether two structures (e.g. graphs or
groups) are isomorphic. The isomorphism problem (for two structures of the same class)
is de�ned as follows:

Iso(C)
Instance: A,B ∈ C
Problem: Is A ∼= B?

One main technique for determining the complexity of a problem is showing how the
di�culty of the problem relates to the di�culty of other known problems. The rel-
ative di�culty of computational problems are often compared using polynomial time
(many-one) reductions, a function by which an instance of one problem gets transformed
(encoded) as an instance of the other problem.
The set

Iso(C) := {(A,B) | A,B ∈ CandA ∼= B}

is the set of positive instances of the isomorphism problem of a class C, i.e. the set of
pairs of isomorphic structures in C.
A polynomial time reduction from Iso(C) to Iso(D) is a function f : C × C → D ×D
computable in polynomial time such that for all A,B ∈ C

(A,B) ∈ Iso(C) ⇐⇒ f(A,B) ∈ Iso(D).

The function computing this reduction has access to both structures (in an instance) of
the problem. However it would be more natural to reduce each structure individually
when comparing the complexity of the isomorphism problem of di�erent classes. This
motivates the notion of strong isomorphism reduction. Here, the contents are mainly
taken from [3].

2.1 Strong Isomorphism Reduction ≤iso

De�nition 2.1.1 (Strong isomorpphism reduction)
Let C and D be classes. We say that C is strongly isomorphism reducible to D if there
is a function f : C→ D computible in polynomial time such that for all A,B ∈ C

A ∼= B ⇐⇒ f(A) ∼= f(B).

We then write f : C ≤iso D. If C and D have the same strong isomoprhism degree, i.e.
C ≤iso D and D ≤iso C, we write C ≡iso D.

9



CHAPTER 2. THE ISOMORPHISM RELATION

It is easy to see that ≤iso is a partial order (i.e., re�exive, transitive and antisymmetric)
and ≡iso is an equivalence relation.

Example 2.1.2

(i) Since the multiplicative group of a �nite �eld is cyclic, we get FIELD ≤iso CYCLIC
by sending a �eld to its multiplicative group.

(ii) If C ⊆ D then idC : C ≤iso D, e.g. CYCLIC ≤iso ABELIAN ≤iso GROUP.

(iii) ORD ≡iso SET ≡iso CYCLIC

We can reduce the notation of strong isomorphism reduction to the notion of general
polynomial time reduction.

Remark 2.1.3 A function f : C → D induces a function f̂ : C × C → D ×D with

f̂(A,B) := (f(A), f(B)) . (2.1)

Then
f : C ≤iso D ⇐⇒ f̂ : Iso(C) ≤p Iso(D).

It is possible to construct polynomial time reductions from Iso(C) to Iso(D) that are
not of the form 2.1. We will later present classes C, D such that

Iso(C) ≤p Iso(D) but C 6≤iso D.

Our goal is to get a better understanding of the relation ≤iso. First we see, that there is
a maximum element.

Proposition 2.1.4 (Maximum element of ≤iso)
GRAPH is a maximum element of ≤iso, i.e. C ≤iso GRAPH for all classes C.

Proof. The encoding of an arbitrary τ -structure A ∈ STR[τ ] as an undirected simple
graph yields a strong isomorphism reduction from STR[τ ] to GRAPH. In particular the
restriction to a subclass C ⊆ STR[τ ] shows that C ≤iso GRAPH. �

The class GRAPH is not the only maximal element as we will see in the next lemma.

Lemma 2.1.5 Let BIP be the class of bipartite graphs, then GRAPH ≡iso BIP.

Proof. We only show that there exists a strong isomorphism reduction f : GRAPH ≤iso
BIP, f : G 7→ G∗. The other direction follows directly from Proposition 2.1.4. Given
a �nite graph G = (V,E) we construct G∗ = (V ∗, E∗) as follows: Let V ∗ = V ∪ E
and E∗ = {(v, e) | v ∈ V, e ∈ E, and v is incident to e in G}. The constructed G∗ is
clearly bipartite because {V,E} is a partition of its vertices such that every edge in G∗ is
between a vertex in V and a vertex in E. Now suppose that G1, G2 ∈ GRAPH. It is easy
to see that, if G1

∼= G2, then G∗1 ∼= G∗2. In fact any isomorphism ϕ : G1 7→ G2 induces an
isomorphism ψ : G∗1 7→ G∗2 by the de�nition of G∗. For the converse, �rst note that G is

10



2.1. STRONG ISOMORPHISM REDUCTION ≤ISO

connected if and only if G∗ is connected. Without loss of generality we assume that G1

and G2 are connected. Otherwise, we look at each connected component individually.
Suppose that ψ is the isomorphism that maps G∗1 to G∗2 Then ψ maps V1 either to V2 or
E2, since both graphs are bipartite. In the case where ψ(V1) = V2 and ψ(E1) = E2, ψ
induces an isomorphism between G1 and G2. In the other case, i.e. where ψ(V1) = E2

and ψ(E1) = V2 every vertex in E1 in G∗1 has degree 2, thus it must happen that each
vertex in V2 in G∗2 has also degree 2, and therefore each vertex in V1 in G∗1 has degree 2.
This means that all vertices of the two graphs have degree 2 and G∗1 must be a simple
cycle (with an even number of vertices). The same holds for G∗2. This simply implies
that both G1 and G2 are simply cycles, and both have the same length, thus G1

∼= G2.
This concludes the proof. �

To further investigate the structure of strong isomorphism degrees, we will describe the
isomorphism types of a structure with the help of an invariant and the related notion of
canonization.

De�nition 2.1.6 (Invariantization)
A function Inv : C → Σ∗ is an invariantization for a class C if it is computable in
polynomial time and for all A,B ∈ C

A ∼= B ⇐⇒ Inv(A) = Inv(B).

Lemma 2.1.7 Let C,D be a classes, C ≤iso D and D has an invariantization, then also
C has an invariantization.

Proof. Let InvD be an invariantization for D and f : C ≤iso D. We get an invariantization
of C by setting InvC := InvD ◦ f . Let A,B ∈ C then

A ∼= B ⇐⇒ f(A) ∼= f(B)⇐⇒ Inv (f(A)) = Inv (f(B)) .

�

Of all classes with an invariantization LOU is a maximum element. More precise, we
have:

Proposition 2.1.8 For a class C the following are equivalent:

(i) C has an invariantization.

(ii) C ≤iso LOU.

(iii) There is a class D of ordered structures such that C ≤iso D

Proof.

(i) ⇒ (ii) Follows immediately from Remark 1.3.2 .
(ii) ⇒ (iii) is trivial.
(iii)⇒ (i) The only automorphism of an ordered structures is the identity, thus for every
structure A ∈ D there is a unique structure A′ such that A ∼= A′ and <A′ is interpreted
as the natural linear ordering of the universe of A′. Thus the mapping A 7→ pA′q is an
invariantization of D. Applying Lemma 2.1.7 yields an invariantization of C. �

11



CHAPTER 2. THE ISOMORPHISM RELATION

The concept of an invariantization is deeply linked with one of the biggest open question
in descriptive complexity. Even though it is well known that on ordered structures least-
�x-point logic captures polynomial time (Immerman-Vardi theorem), it is still an open
question whether there is a logic capturing P on all �nite structures. If the class GRAPH
has an invariantization, then there is a logic capturing P on all �nite structures.
Another useful tool is the so called canonization:

De�nition 2.1.9 (Canonization)
A canonization for a class C is a polynomial time computable function Can : C → C
such that the following conditions hold:

(i) For all A,B ∈ C
A ∼= B ⇐⇒ Can(A) = Can(B).

(ii) For all A ∈ C
A ∼= Can(A).

It is easy to see that every canonization yields an invariantization.

Lemma 2.1.10 Let C be a class and Can : C → C a canonization for C. Then the
mapping A 7→ pCan(A)q is an invariantization for C.

Proof. Plugging in the de�nitions, yield

A ∼= B ⇐⇒ Can(A) = Can(B) ⇐⇒ pCan(A)q︸ ︷︷ ︸
Inv(A)

= pCan(B)q︸ ︷︷ ︸
Inv(B)

.

�

The natural question arises wether the converse is also true, i.e. given an invariantization,
can we construct a canonization. In many ares of mathematics we can indeed do this.
For example if we consider the class FIELD. For every K ∈ FIELD the pair (pK, nK),
where pK is the characteristic of K and nK is the dimension over the prime �eld, is an
invariantization for K. Since for a pair (p, n) we can construct the canonical galois �eld1

Fpn , the mapping K 7→ FpnKK is an canonization for the class FIELD.
This canonization has a further property, namely it is a canonization with polynomial
time enumeration.

De�nition 2.1.11 (Canonization with polytime enumeration)
Let Can be the canonization of a class C. The enumeration induced by Can is a sequence
of structures

A1,A2, . . .

where eachAk ∈ Im (Can) and i < j i� pAiq <lex pAjq. We say that C has a canonization
with polytime enumeration if the mappings An 7→ 1n and 1n 7→ An are computable in
polynomial time.
1This is possible since all �elds of order pk (where p is a prime and k is a positive integer) are isomorphic.

12



2.2. POTENTIAL REDUCTION ≤POT

Remark 2.1.12 It is worth pointing out that the following are equivalent:

(i) The mapping An 7→ 1n is computable in polynomial time.

(ii) We get an invariantization Inv of C be setting

Inv(A) := 1n ⇐⇒ Can(A) = An.

Recall that 1n is the unary encoding of the natural number n. So by An 7→ 1n and
1n 7→ An we mean that given a structure (i.e. an element in the sequence) we can
compute it's index and vice versa.
Many classes of structures that we presented so far have canonizations with polynomial
time enumerations, e.g. SET,ORD,LOP,ABELIAN,CYCLIC and FIELD. We also saw
classes of structures that do not have canonizations with polynomial time enumeration,
for example

(i) the class BOOLE since the mapping 1n 7→ An will not be computable in polynomial
time because the number of non-isomorphic structures is �too low�. (see Example
2.2.2)

(ii) the class LOU has the opposite problem since there are up to isomorphism �too
many� structures.

Theorem 2.1.13 Let C,D be classes that have canonizations with polynomial time
enumerations. Then C ≡iso D.

Proof. Let CanC,CanD be canonizations with polynomial time enumerations of the
classes C,D respectively. We get a strong isomorphism reduction f : C → D by set-
ting

f(A) := B ⇐⇒ CanC(A) = An,

where An is the n-th element in the enumeration. By symmetry we also get D ≤iso C
and therefore C ≡iso D. �

Remark 2.1.14 A close look at the previous proof shows that we already obtain C ≤iso D
if the mappings An 7→ 1n and 1n 7→ Bn are computable in polynomial time. By this
observation we get, for example, BOOLE ≤iso CYCLIC.

Corollary 2.1.15 The classes SET,FIELD,ABELIAN,CYCLIC,ORD and LOP all have
the same strong isomorphism degree.

2.2 Potential Reduction ≤pot

In this section we introduce a notion of reduction that purely relies on the number of
isomorphism types.

13
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De�nition 2.2.1 (Number of equivalence classes)
For a class C, let C(n) be the subclass which contains all structures of cardinality at
most n and #C(n) denotes the number of isomoprhism types of C(n), i.e.

C(n) := {A ∈ C | |A| ≤ n} and #C(n) := |C(n)/∼=|.

Example 2.2.2

(i) #BOOLE(n) = blognc

(ii) #CYCLIC(n) = n.

(iii) #SET(n) = #ORD(n) = n+ 1.

(iv) #LOP(n) =
∑n

i=1 i = (n+1)·n
2 and #LOU(n) =

∑n
i=0 2i = 2n+1 − 1.

(v) For every vocabulary τ there is a polynomial qτ such that for every C ⊆ STR[τ ]
we have #C(n) ≤ 2qτ (n).

(vi) #GROUP(n) ≤ nO(log2n) (This has been proven in [12])

De�nition 2.2.3 (Potential reduction)
Let C,D be classes. We say that C is potential reducible to D (denoted by C ≤pot D), if
there is a polynomial p ∈ N[x] such that #C(n) ≤ #D(p(n)), for all n ∈ N. If C ≤pot D
and D ≤pot C, denoted by C ≡pot D, then C and D have the same potential reducibility
degree.

The importance of the reduction de�ned above is due to the next lemma.

Lemma 2.2.4 Let C,D be classes. If C ≤iso D, then C ≤pot D.

Proof. Let f : C ≤iso D. There there exists a polynomial p ∈ N[x] such that for all A ∈ C
the cardinality of the image is bounded by this polynomial, i.e. |f(A)| ≤ p(|A|), where
f(A) denotes the universe of f(A). As f strongly preserves isomorphisms, it induces a
one-to-one map from {A ∈ C | |A| ≤ n}/∼= to {B ∈ D | |B| ≤ p(n)}/∼=. �

We will mainly use the contrapositive of the statement above to show that two classes
have not the same strong-isomorphism-degree.

Corollary 2.2.5 Let C,D be classes. If C 6≤pot D, then C 6≤iso D.

We immediately can state some simple consequences.

Proposition 2.2.6

(i) CYCLIC 6≤iso BOOLE and LOU 6≤iso LOP.

(ii) For all classes C we have C ≤pot LOU and LOU ≡pot GRAPH.

(iii) LOP �pot GROUP �pot LOU.

14
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(iv) LOP �iso GROUP �iso GRAPH.

Proof. Using the Corollary 2.2.5, we get

(i) follows from Example 2.2.2.

(ii) holds by Example 2.2.2 and Proposition 2.1.4.

(iii) is a direct consequence of Example 2.2.2.

(iv) GROUP ≤iso GRAPH follows from Proposition 2.1.4 and

LOP ≤iso CYCLIC ≤iso GROUP

holds by Corolarry 2.1.15 and Example 2.1.2. The fact that

GRAPH, 6≤iso GROUP and GROUP 6≤iso LOP

follows from (3) and the fact that LOP ≡pot GRAPH.
�

In Figure 2.1 we use the convention that
C 99K D if C ≤iso D but it is not known whether D ≤iso C or not,
C 7→ D if C ≤iso D but D 6≤iso C, and
C↔ D if C ≡iso D.

BOOLE

ORD LOP

LOU

SET ABELIAN CYCLIC FIELD

GROUP

GRAPH BIP

Figure 2.1: Structure of Strong Isomorphism Degrees

We will later see that LOU 6≤iso GROUP.
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2.3 Structure of ≤iso below LOP

Before we can show the main result of this section, Theorem 2.3.18, we need to do some
preliminary work.

2.3.1 Boolean Algebras

In this section we introduce the concept of Boolean algebras and show that, up to iso-
morphism, there is only one countable atomless Boolean algebra. Here, the contents will
be taken from [7].

De�nition 2.3.1 (Lattice)
A lattice (L,∧,∨) is a nonempty set L with two binary operations ∧ and ∨ that are
commutative, associative and satisfy the absorption laws, i.e.

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

for all x, y ∈ L.

Alternatively a lattice can be viewed as a partially ordered set.

De�nition 2.3.2 (Alternative de�nition of a lattice)
A partially ordered set (L,≤) is a lattice if for all x, y ∈ L

x ≤ y ⇐⇒ x ∧ y = x, (2.2)

where ∧ is the binary operation from the de�nition above.

Note that (2.2), together with the absorption laws is equivalent to

x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y.

De�nition 2.3.3 (Distributive lattice)
A lattice (L,∧,∨) is distributive if the following holds:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z),

for all x, y, z ∈ L.

De�nition 2.3.4 (Boolean algebras)
A Boolean algebra (B,∧,∨, 0, 1,¬) is a distributive lattice (B.∧,∨) with a least element
0 and greatest element 1 and with an additional unary operator ¬ that satis�es

¬x ∧ x = 0

¬x ∨ x = 1

for all x ∈ B.
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De�nition 2.3.5 (Atom)
Let (P,≤) be a poset with a least element 0. An atom is a nonzero element a ∈ P such
that there is no x ∈ P with 0 < x < a.

Observe that an atomless Boolean algebra cannot be �nite. Since we are interested in
atomless Boolean algebras the next theorem will be useful.

Theorem 2.3.6 (Countable atomless Boolean algebras are isomorphic)
The �rst order theory of countable atomless Boolean algebras is ω−categorical, i.e. any
two countable atomless Boolean algebras are isomorphic.

We will show this using the back-and-forth method, common in model theory showing
isomorphisms between countably in�nite structures.

Proof. Let (A,∧,∨, 0, 1,¬) and (B,∧,∨, 0, 1,¬) be countable atomless Boolean algebras.
We will successively construct bigger �nite subalgebras

{0, 1} = A0 ⊂ A1 ⊂ A2 ⊂ . . . and {0, 1} = B0 ⊂ B1,⊂ B2 ⊂ . . .

such that ⋃
i∈N

Ai = A and
⋃
i∈N

Bi = B,

and isomorphisms f0 : A0 → B0, f1 : A1 → B1, f2 : A2 → B2, . . . with

f0 ⊂ f1 ⊂ f2 ⊂ . . . .

Then f :=
⋃
i∈N fi will be the isomoprhism that witnesses A ∼= B. We start by enumer-

ating the Elements of A and B as

A = {a0, a1, a2, . . .} and B = {b0, b1, b2, . . .}.

Trivially f0 is given by f0(0) = 0, f0(1) = 1.
Now suppose that n is even and we have already constructed An, Bn and fn. Since An is
generated by its atoms p0, p1, . . . pk (k ≤ n) we know thatBn has atoms fn(p0), fn(p1), . . . , fn(pk).
Let x be the �rst element in our enumeration a0, a1, a2, . . . that is not in An, then An+1

is generated by An and x. Using the discjunction normal form, every element of An+1

can be written as a disjunction of elements of

X = {p0 ∧ x, p0 ∧ ¬x, . . . , pk ∧ x, pk ∧ ¬x}.

Hence An+1 is �nite and its atoms are the nonzero elements of X.
Now de�ne xi := pi ∧ x for i = 0, . . . , k and pick yi ∈ B according to the following rules:

yi = 0 if xi = 0

yi = fn(pi) if xi = pi

0 < yi < fn(pi) if 0 < xi < pi

17
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which is always possible because B is atomless.
De�ne y =

∨k
i=0 yi and let Bn+1 ⊂ B generated by Bn and y. Like before every element

of Bn+1 can be written as a conjunction of elements in

Y = {fn(p0) ∧ y, fn(p0) ∧ ¬y, . . . , fn(pk) ∧ y, fn(pk) ∧ ¬y}.

Hence Bn+1 is also �nite and its atoms are the nonzero elements of Y . Therefore we can
de�ne fn+1 such that fn+1(x) = y and fn+1 � An = fn. This induces a bijection from
the atoms of An+1 to the atoms of Bn+1, and therefore fn+1 is well-de�ned.
If n is odd we switch the roles of A and B, i.e. x will then be the �rst element of
b0, b1, b2, . . . that is not in Bn and so on. By this construction we make sure that⋃

i∈N
Ai = A and

⋃
i∈N

Bi = B

and since in every step fi : Ai → Bi is an isormorphism it follows that
⋃
i∈N fi = f :

A→ B is an isomorphism. �

2.3.2 Embedding the partial order of the countable atomless Boolean algebra into
the structure of ≤iso

As mentioned earlier the structure of ≤iso between LOU and GRAPH is linked with
open questions in descriptive complexity theory. We are now in a position to show that
the structure of ≤iso, even below LOP is quite rich. In fact the partial ordering of the
countable atomless Boolean algebra is embeddable into the partial ordering induced by
≤iso on the degrees of strong isomorphism reducibility below LOP. For this section we
again will mainly follow [3].

De�nition 2.3.7 (Value-polynomial)
A function f : N → N is called value-polynomial if it is strictly increasing and f(n) can
be computed in

⋃
k∈NDTIME

(
f(n)k

)
. We will denote that class of all value-polynomial

functions by VP .

Remark 2.3.8 Note that f(n) does not need to be computable in time polynomial in
n.

For f ∈ VP, we de�ne a subclass of LOU as follows:

Cf := {A ∈ LOP | |A| ∈ Im(f)}.

Note that
#Cf (n) =

∑
k∈N

f(k)≤n

f(k),

since there are exactly f(k) pairwise non-isomorphic structures of cardinality f(k) in
LOP.

18
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Proposition 2.3.9 Let f ∈ VP and assume that for every polynomial p ∈ N[x] there is
an n ∈ N such that ∑

k∈N
f(2k)≤n

f(2k) >
∑
k∈N

f(2k+1)≤p(n)

f(2k + 1). (2.3)

Then Cg0 6≤pot Cg1 , where g0, g1 : N → N are de�ned by g0(n) := f(2n), g1(n) :=
f(2n+ 1).

Proof. We will prove this by contradiction. Assume that Cg0 ≤pot Cg1 . Then there is
a polynomial p ∈ N[x] such that #Cg0(n) ≤ #Cg1(p(n)), ∀n ∈ N. Choose n such that
(2.3) holds. Then

#Cg0(n) =
∑
k∈N

f(2k)≤n

f(2k) >
∑
k∈N

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n))

is a contradiction and therefore Cg0 6≤pot Cg1 . �

We will now construct a countable atomless boolean algebra which we will use later in
the proof of Theorem 2.3.18.

Lemma 2.3.10 (Construction of a countable Boolean algebra)
The set

V = {Im(f) | f ∈ VP} ∪ {A ⊆ N | A is �nite} (2.4)

are the elements of a countable Boolean algebra V = (V,∩,∪).
Let ≡ be the equivalence relation de�ned on V, where for b, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is �nite, (2.5)

then the factor algebra V/ ≡ is a countable atomless Boolean algebra.

Remark 2.3.11 Note that co�nite sets are contained in V since they are of the form
Im(f) for some f ∈ VP, i.e. for a �nite set A, let f : N→ N\A be the strictly increasing
enumeration of the set N \A. It is easy to �nd a polynomial p ∈ N[x] such that f(k) can
be computed in DTIME(p(f(k)) for all k ∈ N.

Proof. We need to verify that for f, g ∈ VP, the sets

N \ Im(f), Im(f) ∩ Im(g), and Im(f) ∪ Im(g)

are images of value-polynomial functions if they are in�nite. We don't need to worry
about �nite sets since they are elements of V by de�nition.
Assume that N \ im(f) is in�nite. Since f is a value-polynomial, we can choose an
algorithm A and a polynomial p ∈ N[x] such that for every n ∈ N the algorithm computes
f(n) in DTIME(p(f(n))). Let h : N→ (N\im(f)) be the function enumerating N\im(f).
Clearly h is increasing and surjective. We will show that h is a value-polynomial too.
We de�ne an algorithm B that inductively computes pairs (h(0),m0), (h(1),m1), . . . with

f(mn) < h(n) < f(mn + 1) ∀n ∈ N.
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Note that if f(0) > 0 and hence h(0) = 0, we set (h(0),m0) = (0,−1). For n ≥ 1 the
algorithm B gets (h(n),mn) from (h(n − 1),mn−1) by performing the following list of
instructions:

(1) Set k := h(n− 1) + 1 and l := mn−1.

(2) Simulate A with input l + 1 for at most p(k) steps.

(3a.) If A does not halt or if it outputs f(l+1) with f(l+1) > k, then (h(n),mn) = (k, l).

(3b.) Otherwise, i.e. if f(l + 1) = k, set k := k + 1 and l := l + 1 and goto (2).

It is easy to see that B computes all pairs (h(k),mk), 0 ≤ k ≤ n in DTIME(p(h(n))).
Now assume that im(f)∩im(g) is in�nite and let p, q ∈ N[x] be polynomials such that p, q
compute f(n), g(n) in DTIME(p(f(n))), DTIME(q(g(n))) respectively. We construct an
algorithm A that outputs pairs (n, h(n)) such that Im(h) = Im(f)∩Im(g) in the following
way:

(1) Set k, cf , cg := 0.

(2) Set l := f(cf ).

(3) Compute g(cg).

(4a) If l = g(cg) output (k, f(k)) and let k := k + 1, cf := cf + 1, cg := cg + 1 and goto
(2).

(4b) If l < g(cg) set cf := cf + 1 and goto (2).

(4c) Otherwise, i.e. if l > g(cg) let cg := cg + 1 and goto (3).

It is easy to see that h(n) can be computed in DTIME((p+ q)(h(n))) and therefore h is
a value-polynomial-function.
To see that im(f) ∪ im(g) is the image of a value-polynomial-function you just need to
slightly modify the algorithm described above. �

De�nition 2.3.12 (Stretching function)
We recursively de�ne a �stretching functions� ϕ : N→ N as follows:

ϕ(n) :=


0, for n = 0

1, for n = 1

(ϕ(0) + . . . ϕ(n− 1))n−1 , for n ≥ 2

Remark 2.3.13 This stretching function ϕ has the following properties:

(i) ϕ ∈ VP, and

(ii) if ϕ−1(m) < ϕ−1(n+ 1), then ϕ−1(m) ≤ ϕ−1(n).
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For the rest of the section ϕ will always be this stretching function.

We introduce the notation ⊆∗ as it will be usefull later. For f, g ∈ VP, we de�ne

f ⊆∗ g ⇐⇒ im(f) \ im(g) is �nite.

De�nition 2.3.14 (Inverse of an increasing function)
For an increasing2 function f : N→ N we de�ne the inverse f−1 : N→ N as follows:

f−1(n) := max{k | f(k) ≤ n},

and max ∅ := 0.

Lemma 2.3.15 Let f, g : N→ N be increasing.

(i) f−1 is non-decreasing, f−1 ≤ idN, f−1 ◦ f = idN, and f(f−1(n)) ≤ n for all
n ≥ f(0).

(ii) (f ◦ g)−1 = g−1 ◦ f−1.

(iii) If f ∈ V P , then f−1 is computable in polynomial time.

Proof.

(i) Let n < m, then f(n) < f(m) and by de�nition f−1(n) ≤ f−1(m). Since idN :
n 7→ n is the slowest increasing function from N → N and id−1

N = idN, it follows
that for all other increasing functions f : N → N; f−1(n) ≤ idN. The remaining
two claims follow by our de�nition of inverse functions.

(ii) Using the fact that f, g are increasing and the de�nition of inverse functions we get

(f ◦ g)−1(n) = max{k | f(g(k)) ≤ n} = g−1(max{k | f(k) ≤ n}) = g−1 ◦ f−1(n).

(iii) Follows from the de�nition of functions in VP, i.e. the fact that f(n) is computable
in
⋃
k∈NDTIME(f(n)k) .

�

We introduce another notation. Let f : N→ N, then fΣ : N→ N is de�ned by

fΣ(n) :=
∑
k≤n

f(k).

Lemma 2.3.16 Let f, g : N→ N be functions and g be increasing. Then (f◦g)Σ ≤ fΣ◦g.

Proof. Using the de�nition we get

(f ◦ g)Σ(n) =
∑
k≤n

f(g(k)) =
∑

k≤g(n)
k∈im(g)

f(k) ≤
∑

k≤g(n)

f(k) = fΣ ◦ g(n).

The second equality uses the fact that g is increasing. �
2If we speak of increasing, we mean strictly increasing, i.e. for n < m we have that f(n) < f(m).
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Lemma 2.3.17 If f ∈ VP, then #Cf (n) = (fΣ ◦ f−1)(n) for all n ∈ N.

Proof.

#Cf (n) =
∑
k∈N

f(k)≤n

f(k) =
∑
k∈N

k≤f−1(n)

f(k) = (fΣ ◦ f−1)(n).

�

All the preparation we did so far was to prove the following theorem.

Theorem 2.3.18 (Embedding a countable p.o. below LOU)
The mapping f 7→ Cϕ◦f ; (VP,⊆∗)→ (C ⊆ LOU,≤iso) is one-to-one. For all f, g ∈ VP:

(i) if f ⊆∗ g and g 6⊆∗ f , then Cϕ◦f ≤iso Cϕ◦g,

(ii) if Cϕ◦f ≤iso Cϕ◦g, then f ⊆∗ g.

Proof. First we show that the mapping f 7→ Cϕ◦f is injective. Therefore we assume that
Im(ϕ ◦ f) = Im(ϕ ◦ g). Since ϕ is injective and f and g are increasing it follows that
Im(f) = Im(g).

(i) The set Im(ϕ ◦ f) \ Im(ϕ ◦ g) is �nite because by assumption the set Im(f) \ Im(g)
is �nite. Since ϕ is injective and the set Im(ϕ ◦ g) \ Im(ϕ ◦ f) is in�nite since
Im(g) \ Im(f) is in�nite. Therefore we get Cϕ◦f ≤iso Cϕ◦g by de�ning a function
that sends the �nitely many structures of Cϕ◦f \Cϕ◦g to Cϕ◦g \Cϕ◦f and which is
the identity on all other structures of Cϕ◦f .

(ii) We are going to prove an equivalent version of the statement, i.e.

for f, g ∈ VP. If f 6⊆∗ g, then Cϕ◦f 6≤iso Cϕ◦g. (2.6)

We are going to prove this by contradiction. Assume that Cϕ◦f ≤iso Cϕ◦g and
therefore Cϕ◦f ≤pot Cϕ◦g. Hence there is a polynomial p ∈ N[x] such that
#Cϕ◦f (n) ≤ #Cϕ◦g(p(n)) for all n ∈ N. It su�ces to show that there is a k ∈ N
such that #Cϕ◦f (k) 6≤ #Cϕ◦g(p(k)). For this purpose we choose k such that

g(0) < f(k), f(k) ∈ Im(f) \ Im(g), and p(ϕ(f(k))) < ϕ(f(k) + 1). (2.7)

This is possible because of the assumption in (2.6) and the fact that ϕ grows faster
then every polynomial.
We now compute #Cϕ◦g(p(ϕ(f(k)))) using Lemma 2.3.17 and of Lemma 2.3.15
(ii);

#Cϕ◦g
(
p(ϕ(f(k)))

)
= (ϕ◦g)Σ◦(ϕ◦g)−1

(
p(ϕ(f(k)))

)
= (ϕ◦g)Σ◦(g−1◦ϕ−1)

(
p(ϕ(f(k)))

)
.

Using p(ϕ(f(k))) < ϕ(f(k) + 1) (see 2.7) and the property (ii) of remark 2.3.13 we
get

(ϕ ◦ g)Σ ◦ (g−1 ◦ ϕ−1)
(
p(ϕ(f(k)))

)
≤ (ϕ ◦ g)Σ ◦ g−1

(
f(k)

)
.
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We further simplify using f(k) /∈ im(g) (2.7), Lemma 2.3.16 as well as Lemma
2.3.15 and get

(ϕ◦g)Σ◦g−1
(
f(k)

)
= (ϕ◦g)Σ◦g−1

(
f(k)−1

)
≤ ϕΣ◦g◦g−1

(
f(k)−1

)
≤ ϕΣ

(
f(k)−1

)
.

Now we perform a strict estimate which is also the key part of this proof. By
de�nition of ϕ we get

ϕΣ
(
f(k)− 1

)
< ϕ

(
f(k)

)
and �nally

ϕ
(
f(k)

)
≤ (ϕ ◦ f)Σ ◦ (ϕ ◦ f)−1

(
ϕ(f(k))

)
= #Cϕ◦f (ϕ(f(k))).

This shows us that Cϕ◦f 6≤pot Cϕ◦g, hence Cϕ◦f 6≤iso Cϕ◦g which concludes the
proof. �

2.4 Are the notion of ≤iso and ≤pot distinct?

De�nition 2.4.1 (Double-exponential time)
The complexity classes double-exponential time and nondeterministic double-exponential

time are de�ned as follows:

2EXP :=
⋃
k∈N

DTIME

(
22n

k
)

and N2EXP :=
⋃
k∈N

NTIME

(
22n

k
)
.

The complexity class U2EXP contains precisely those problems Q that are accepted by
double-exponential time bounded unambiguous Turing machines; these are nondetermin-
istic Turing machines which on every input x ∈ Q have at most one accepting run. As
usual we de�ne co-U2EXP := {Σ∗ \Q | Q ∈ U2EXP}.

Theorem 2.4.2 (Separation of ≤iso and ≤pot)
If U2EXP ∩ co-U2EXP 6= 2EXP, then the relations of ≤iso and ≤pot are distinct.

Proof. Let Q ∈ U2EXP ∩ co-U2EXP then there exists a d ≥ 2 and a nondeterministic
turing machine M with the following four properties:

(M1) The set of terminal states of M is given by {′yes′,′ no′,′maybe′}.

(M2) For an input x ∈ Σ∗, every run of M stops after exactly 22|x|
d

steps.

(M3) For x ∈ Q exactly one run stops in ′yes′ and none in ′no′ and vice versa, i.e. for
x /∈ Q exactly one run stops in ′no′ and none in ′yes′.

(M4) In every nonterminal state the machine M has exactly two di�erent choices for the
next step.
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For n ∈ N let l(n) := 22n
d

. For x ∈ Σn, every run of M on input x can uniquely be
identi�ed by a string r ∈ Σl(n) and the other way around. Since there are 2n di�erent
bit-strings we set m(n) := 2n and enumerate all strings of Σn by x1, x2, . . . , xm(n) in
lexicographic ordering. Let s = s1s2 . . . sm(n) be a binary string of length m(n) · l(n),
with |si| = l(n) for 1 ≤ i ≤ m(n). We call such a string s a decision string if every si
corresponds to run of M on xi that ends in either ′yes′ or ′no′. By our assumption (M3)
we get that:

For every n ∈ N, there exists exactly one decision string s of length m(n) · l(n). (2.8)

With every s ∈ Σm(n)·l(n) we associate a structure A(s) over the vocabulary τ =
Zero,One,R, where Zero and One are unary relation symbols and R is a binary re-
lation symbol. For A(s) let

A(s) := [m(n) · l(n)],

RA(s) := {(j, j + 1) | 1 ≤ j ≤ m(n) · l(n)− 1}.

ZeroA(s) :=

{
{j | the jth bit of s is 0}, if s is a decision string

∅, otherwise.

OneA(s) :=

{
{j | the jth bit of s is 1}, if s is a decision string

∅, otherwise.

By this construction of A(s) and (2.8) we get for every s, s′ ∈ Σm(n)·l(n)

A(s) 6∼= A(s′) ⇐⇒ either s or s′ is a decision string. (2.9)

Now let Dn be the class containing, up to isomorphism, the structures A(s) for s ∈
Σm(n)·l(n). It follows from the construction that

(D1) |A| = m(n) · l(n), for all A ∈ Dn, and

(D2) |Dn/∼=| = 2.

We also construct for every n ∈ N the class Cn where every structure in Cn is either
isomorphic to the complete graph Km(n)·l(n) or its complement, i.e. the empty graph
Km(n)·l(n) = ([m(n) · l(n)], ∅) of order m(n) · l(n). Again by construction it is easy to see
that

(C1) |B| = m(n) · l(n), for all B ∈ Cn

(C2) |Cn/∼=| = 2.

Finally, we set
C :=

⋃
n∈N

Cn and D :=
⋃
n∈N

Dn.
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By construction, it is easy to see that C ≤pot D.
Now we claim that if there is a strong isomorphism reduction f : C ≤iso D, then there is
n0 ∈ N such that for all n ≥ n0

f(Cn/∼=) = Dn/∼=

which is supposed to be understood as a map from the isomorphism classes in Cn to the
isomorphism classes of Dn.
To show this, we observe that by (C2) and (D2) it su�ces to show that f(Cn) ⊆ Dn for
large enough n. Since f is computable in polynomial time there is a c ∈ N such that for
all A ∈ Cn

|B| ≤
(

2n · 22n
d
)c
,

where B is the universe of B = f(A).
We now choose n0 ∈ N such that for all n ≥ n0(

2n · 22n
d
)c

< 2n+1 · 22(n+1)d

. (2.10)

To see that such an n0 exists we perform basic algebraic transformations.

(2n · 22n
d

)c < 2n+1 · 22(n+1)d

(2n+2n
d

)c < 2n+1+2(n+1)d | log2

c · n+ c · 2nd < n+ 1 + 2(n+1)d , since d ≥ 2

c · n+ c · 2nd < n+ 1 + 2n
d+2n+1 ≤ n+ 1 + 2(n+1)d

c · n+ c · 2nd < n+ 1 + 22n+1 · 2nd ≤ n+ 1 + 2(n+1)d .

Since c is constant the linear parts become negligible for large n, it is now easy to see
that such an n0 exists.
Hence, for n ≥ n0

f

⋃
k≤n

Ck

 ⊆ ⋃
k≤n

Dk.

Since
⋃
k≤nCk and

⋃
k≤nDk contain, up to isomorphism, the same number of structures,

the claim follows.
Now we have everything to prove the statement of the theorem, so assume that f : C ≤iso
D. We construct an algorithm A that shows that Q ∈ 2EXP. Let n0 be as in (2.10).
Hence for x ∈ Σn, with n ≥ n0 the algorithm A computes

A(s) = f
(
Km(n)·l(n)

)
and A(s′) = f

(
Km(n)·l(n)

)
.
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They are in Dn and nonisomorphic as f preserves isomorphisms as well as nonisomor-
phisms. By (2.9) exactly one of s and s′ is a decision string, i.e. we get a run of M on
input x that ends in ′yes′ or in ′no′. The algorithm A answers accordingly. �

2.5 If ≤iso 6=≤pot, then P 6= #P

In this section we will continue with our analysis of the two reductions ≤iso and ≤pot
de�ned in the previous chapter. The main goal of this section, �rst shown in [3], is
to show that we would get P 6= #P if we could separate the two notions of reduction
without any complexity-theoretic assumption.

De�nition 2.5.1 (Complexity class #P)
The complexity class #P is the set of functions fM : Σ∗ → N such that there exists a
polynomial time nondeterministic turing machine M such that for all x ∈ Σ∗, fM(x) is
the number of accepting paths of M on input x.

In this section we consider equivalence relations on all of Σ∗. We start by a extending
the isomorphism relation to a more general equivalence relation.

De�nition 2.5.2 (Extended isomorphism relation)
For a class C, let E(C) be the equivalence relation on Σ∗ de�ned by

E(C) := {(A,B) | A,B ∈ C and A ∼= B} ∪ {(x, y) | x, y ∈ Σ∗, x /∈ C and y /∈ C}.

Since C is in P, E(C) is clearly in NP.

We de�ne the set

CC(eq) := {E | E equivalence relation on Σ∗, E ∈ CC}

Clearly E(C) ∈ NP(eq) for all classes C and E(LOU) ∈ P(eq).
We generalize the notion of strong isomoprhism reduction to arbitrary equivalence rela-
tions.

De�nition 2.5.3 (Strong equivalence reduction)
Let E and E′ be equivalence relations on Σ∗. We say that E is strongly equivalence

reducible to E′ if there is a function f : Σ∗ → Σ∗ computable in polynomial time such
that for all x, y ∈ Σ∗

xEy ⇐⇒ f(x)E′f(y).

We then write f : E ≤eq E′. If E ≤eq E′ and E′ ≤eq E, we write E ≡eq E′.

Let Prop be the set of all formulas of propositional logic and Taut be the set of tau-
tologies and note that we view all formulas as strings. We de�ne the equivalence relation
Eequiv on Σ∗ induced by logical equivalent formulas

Eequiv := {(α, β) | α, β ∈ Prop and (α↔ β) ∈ Taut} ∪ {(x, y) | x, y /∈ Prop}.
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Note that Eequiv ∈ co-NP(eq) and that there is a correspondence between strong isomor-
phism reduction and strong equivalence reduction, i.e.

C ≤iso D ⇐⇒ E(C) ≤eq E(D).

We will as well generalize the notion of potential reducibility to arbitrary equivalence
relations.

De�nition 2.5.4 (Potential reduction)
Let E,E′ ⊆ Σ∗ × Σ∗ be equivalence relations. We say that E is potential reducible to
E′ (denoted by E ≤pot E′), if there is a polynomial p ∈ N[x] such that |Σ≤n/E| ≤
|Σ≤p(n)/E′|, for all n ∈ N.

We will now show that for classes E(C) as de�ned above this new notion of potential
reduction coincides with the old one.

Proposition 2.5.5 Let C,D be classes. Then

C ≤pot D ⇐⇒ E(C) ≤pot E(D). (2.11)

Proof. Let C be a class of τ -structures and D be a class of µ-structures and let pτ , pµ ∈
N[x] be such that for every τ -structure A and µ-structure B the following holds:

|A| ≤ |pAq| ≤ pτ (|A|) and |B| ≤ |pBq| ≤ pµ(|B|). (2.12)

First assume that C ≤pot D, i.e. there is a polynomial p ∈ N[x] such that #C(n) ≤
#D(p(n)). Then

|Σ≤n/E(C)| ≤ #C(n) + 1 ≤ #D(p(n)) + 1 ≤ |Σ≤pµ(p(n))/E(D)|.

Therefore E(C) ≤pot E(D).

Now assume that E(C) ≤pot E(D), i.e. there is a polynomial p ∈ N[x] such that
|Σ≤n/E(C)| ≤ |Σ≤p(n)/E(D)|. Then

#C(n) + 1 ≤ |Σ≤pτ (n)/E(C)| ≤
∣∣Σp(pτ (n))/E(D)

∣∣ ≤ #D(p(pτ )) + 1.

This concludes the proof. �

Lemma 2.5.6 Let E,E′ be equivalence relations on Σ∗. If E ≤eq E′, then E ≤pot E′.

The proof is analogous to the proof of Lemma 2.2.4.

Corollary 2.5.7 Let E,E′ be equivalence relations on Σ∗. If E 6≤pot E′, then E 6≤eq E′.

We can show that the notions of ≤eq and ≤pot are distinct under weaker assumptions
than in Theorem 2.4.2, in fact the notion of strong equivalence reduction is �ner than
that of potential reducibility.
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Proposition 2.5.8 If P 6=NP, then the relations of ≤eq and ≤pot do not coincide on
NP(eq).

Proof. Let Q ∈ NP\P, we de�ne EQ by

xEQy ⇐⇒
(
x = y ∨

(
x = baz ∧ y = (1− b)az, z ∈ Q, b ∈ Σ

))
.

Since Q ∈ NP\P, we know that EQ ∈ NP(eq). Let id be the identity on Σ∗. It is easy to
see that EQ ≤pot id. Since Q /∈ P, we get EQ 6≤eq id. Otherwise any strong equivalence
reduction f : EQ ≤eq id would yield a polynomial time decision procedure to decide
whether xEQy and therefore Q ∈ P which contradicts our assumption.
Thus the notions of ≤eq and ≤pot are distinct on NP(eq). �

We will now generalize the notion of canonization (and that of the enumeration induced
by a canonization) that we introduced earlier.

De�nition 2.5.9 (Canonization)
A canonization for an equivcalence relation E ∈ CC(eq) is a polynomial time computable
function Can : Σ∗ → Σ∗ such that the following conditions hold:

(i) For all x, y ∈ Σ∗

xEy ⇐⇒ Can(x) = Can(y).

(ii) For all x ∈ Σ∗

xE Can(x)

De�nition 2.5.10 (Enumeration induced by Can)
Let Can be a canonization of E. The enumeration induced by Can is a sequence of strings

x1, x2, . . .

where each xk ∈ Im(Can) and i < j i� xi <lex xj .

Clearly if E has a canonization, then E ∈ P.
A common approach to check whether xEy is to compute Can(x) and Can(y) and check
whether Can(x) = Can(y).

Lemma 2.5.11 If P = NP, then every E ∈ P(eq) has a canonization, more precise, the
mapping sending each x ∈ Σ∗ to the <lex-�rst member of [x] is a canonization.

Proof. Let E ∈ P(eq) and assume P = NP. Then the polynomial hierarchy collapses, i.e.
P = PH. Therefore it su�ces to show that the mapping described above is somewhere in
the polynomial hierarchy. This is easy to show, since there is an alternating polynomial
time algorithm A with a �nite number of alternations, that on input x ∈ Σ∗ guesses
existentially y ∈ Σ∗ such that |y| ≤ |x| and xEy and then A guesses universally z ∈ Σ∗

with |z| ≤ |x| and xEz. Finally A outputs y if y ≤ z and rejects otherwise. �
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Lemma 2.5.12 Let E ∈ P(eq) be an equivalence relation with a canonization Can.
Then the problem de�ned below is in #P:

Index of Can
Instance: x ∈ Σ∗

Problem: Compute i (in binary) such that Can(x) is the ith element in
the enumeration induced by Can.

Proof. Consider a nondeterministic polynomial time algorithm A that runs as follows:
On input x ∈ Σ∗, it �rst computes y := Can(x). Then A guesses existentially z ∈ Σ∗

with |z| ≤ |y|. Finally it accepts if Can(z) = z and z ≤ y. The number of accepting runs
of A on input x is

|{z | z ≤ Can(x) and Can(z) = z}| .

�

Theorem 2.5.13 If the relations of strong equivalence reduction and potential reduction
do not coincide on NP(eq), then P 6= #P.

Proof. Our goal is to show that if P = #P, then the relation of strong equivalence
reduction and potential reduction coincide on NP(eq). To see this start by assuming
that P = #P. Let E,E′ ∈ NP(eq) be equivalence relations and assume that E ≤pot E′,
i.e. there is a polynomial p ∈ N[x] such that |Σ≤n/E| ≤ |Σ≤p(n)/E′| for all n ∈ N. We
show that E ≤eq E′.
Since we assumed P = #P, we have P = NP and therefore E,E′ ∈ P(eq). Thus, by
Lemma 2.5.11, there are canonizations CanE and CanE′ , and there are polynomial time
algorithms A and A′ that solve the problem of Lemma 2.5.12 for E and E′ respectively.
The following nondeterministic polynomial time algorithm computes f : E ≤eq E′:
On input x ∈ Σ∗, it computes CanE(x) and n := |CanE(x)| and guesses a string x′ ∈ Σ∗

with CanE′(x′) = x′. It then simulates A and A′ and checks if CanE(x) and x′ have
the same position in the enumeration induced by CanE and CanE′ respectively. If so, it
outputs x′, otherwise it rejects. Since |Σ≤n/E| ≤ |Σ≤p(n)/E′| such a x′ ∈ Σ≤p(n) with
CanE′(x) = x′ at the same position as CanE(x) exists. Since by assumption P = NP, it
follows that f is computable in polynomial time. �

The existence of a maximum element of P(eq) and NP(eq) with respect to strong eqiva-
lence reduction was studied in [3]. More speci�cally, they proved the following theorem:

Theorem 2.5.14 (Maximum element of P(eq) and NP(eq)) The following hold:

(i) If E=NE, then P(eq) has a maximum element.

(ii) If NP=co-NP, then NP(eq) has a maximum element.
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3 Recognition, Invariant, Canonization and
First Member problems

This chapter follows the contents of [1] and [2]. So far we mostly looked at equivalence
relations 'being in P' or 'having an invariantization/canonization' as a property. In this
chapter we will now turn our attention to the underlying problems of those de�nitions.
We consider the following four problems:
The recognition problem:

P(eq)
Instance: x, y ∈ Σ∗

Problem: Determine if xEy?

The invariant problem:

Inv(eq)
Instance: x ∈ Σ∗

Problem: Calculate InvE(x).

The canonization problem:

Can(eq)
Instance: x,∈ Σ∗

Problem: Calculate CanE(x).

And the �rst member problem:

Lexfirst(eq)
Instance: x ∈ Σ∗

Problem: Calculate y such that xEy and y <lex x and
for all z with xEz we have z 6<lex y.

De�nition 3.0.1 (Invariantizitaion)
For x ∈ Σ∗ and E ⊆ Σ∗ × Σ∗ we de�ne InvE analogously to De�nition 2.1.6, i.e. InvE :
Σ∗ → Σ∗ is a polynomial time computable function such that

xEy ⇐⇒ InvE(x) = InvE(y).

Note that we are only interested in polynomial time solutions for those problems, there-
fore a solution for one of the problem automatically yields a solution for all of the previous
problems, i.e.

Rec(eq) ≤p Inv(eq) ≤p Can(eq) ≤p Lexfirst(eq). (3.1)
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Naturally the question arises whether they are also polynomial time equivalent or if those
problems are of increasing complexity. We showed in Lemma 2.5.11 that P = #P would
yield

Rec(eq) ≡p Inv(eq) ≡p Can(eq) ≡p Lexfirst(eq).

The main goal of the next section is to show that this is not the case in general.

3.1 Nonreducibility

To show that the reductions in (3.1) are strict we will look at a special kind of Turing
machines, namely the so called oracle machines.

De�nition 3.1.1 (Oracle machine)
Let O ⊆ Σ∗ be a problem. An orcale machine with oracle O is a Turing machine M
(later called MO) with an additional work tape, called oracle tape and three additional
states squery, syes, sno. IfM enters the squery state the machine does two things in a single
computational step; it reads the content of the oracle tape and it changes to either the
state syes or sno accordingly.

Before we can prove that main theorem we need the following lemma:

Lemma 3.1.2 Let X be a non empty set of cardinality 2k and let R ⊆ X × X be a
binary relation on X. Suppose that for every x ∈ X there are less than k elements y ∈ X
such that (x, y) ∈ R. Then there exists x̃, ỹ ∈ X, with x̃ 6= ỹ and (x̃, ỹ), (ỹ, x̃) /∈ R.

Proof. This can be seen by a simple counting argument. On the one hand the number of
all two-element subsets of X is given by

∣∣[X]2
∣∣ =

(
2k
2

)
= k(2k− 1) but on the other hand∣∣∣∣∣ ⋃

x∈X

{
{x, y} | (x, y) ∈ R

}∣∣∣∣∣ ≤ 2k · (k − 1) < k · (2k − 1).

Therefore there must be distinct x̃, ỹ ∈ X, such that neither (x̃, ỹ) nor (ỹ, x̃) is in R. �

Theorem 3.1.3 (Nonreducibility)

(i) There is an equivalence relation E on Σ∗ such that the invariant problem is not
polynomial time reducible to the recognition problem, even with an oracle for E.

(ii) There are an equivalence relation E on Σ∗ and a polynomial time computable
solution InvE for its invariant problem, such that there is no polynomial time
algorithm that solves the canonization problem for E even with InvE as an oracle.

(iii) There is an equivalence relation E on Σ∗ and a polynomial time solution CanE for
its canonization problem such that there is no polynomial time reduction from the
�rst member problem to the canonization problem even with CanE as an oracle.
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Proof. Let M0,M1, . . . be the enumeration of all polynomial time oracle machines with
alphabet Σ and for every k let pk ∈ N[x] be the time bound of the machine Mk. We
construct E in steps and at the end we let E :=

⋃
k Ek. We start by letting E0 be

the equality relation on Σ∗ At each step we either set Ek := Ek−1 or Ek := Ek−1 ∪
{(x, y), (y, x)} for some x, y ∈ Σdk , where d0 < d1 < . . . is a strictly increasing sequence.
Thus E has the following properties:

(E1) Each equivalence class has at most two members.

(E2) If an equivalence class has two members, the both have the same length.

(E3) For each length there is at most one equivalence class with two members.

The sequence d0 < d1 < . . . is choosen such that pk(dk) < dk+1 and pk(dk) < 2dk−1.
Thus, the machine Mk on an input of length dk asks fewer than 2dk−1 queries and each
query is shorter than dk+1. At the end of each step we show that Mk (even with an
oracle for the easier problem) cannot correctly solve the harder problem in polynomial
time. Since this is the case for every polynomial time bounded oracle machine M, we get
the desired result.
For the rest of the proof we only need to look at an arbitrary step k and use d = dk,M =
Mk, p = pk as well as E = Ek and E−1 = Ek−1 for better readability.

(i) Let x′ be the result of M on input x with an oracle for E. There are two cases.
Case 1 If there are x, y, with x 6= y but x′ = y′, we just set E := E−1. ME

fails to solve the invariant problem for E because ME(x) = x′ = y′ = ME(y) but
(x, y) /∈ E.
Case 2 Suppose that x′ 6= y′ for all x 6= y. We say that x a�ects y if M queries
E about (x, y) or (y, x) in the computation of y′. Since by assumption each run
of M has at most 2d−1 queries we know that each y can be a�ected by at most
2d−1 elements x. By Lemma 3.1.2 (with X = Σd and R being the �a�ected by�
relation) there are distinct x, y such that neither xRy nor yRx. Now let E := E−1∪
{(x, y), (y, x)}. Since x and y do not a�ect each other, the computation of x′ and
y′ do not change if we use E instead of E−1 as an oracle. But nowME fails to solve
the invariant problem for E because (x, y) ∈ E but ME(x) = x′ 6= y′ = ME(y).

(ii) We will construct the desired invariantization InvE simultaneously with E. At the
begining InvE0(x) = xa1. It is easy to see tat Inv0 indeed is an invariantization for
E0. Again for better readability we will use Inv := InvE and Inv−1 := InvE−1 .
For each x we de�ne

Invx(z) :=

{
0d+1, if z = x

Inv−1(z), otherwise.

Now let x′ be the output of M on input x using Invx as an oracle. As before we
have two cases.
Case 1 If there is an x with x′ 6= x, just set Inv := Invx. Note that this does
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not a�ect the computation of x′. Since Inv : Σd → Σd+1 is injective, we just set
E := E−1. Now (x, x′) /∈ E but MInv fails to solve the canonization problem for E.
Case 2 Suppose that x′ = x for all x. Then by Lemma 3.1.2 we can choose distinct
x, y such that M does not query Invx about y in the computation of x′ and M does
not query Invy about x in the computation of y′. We now set

Inv(z) :=

{
0d+1, if z = x or z = y

Inv−1(z), otherwise.

and E := E−1 ∪ {(x, y), (y, x)}. Now MInv fails to solve the canonization problem
for E because (x, y) ∈ E but MInv(x) = x 6= y = MInv(y).

(iii) We use the same idea as in (ii) and construct Can := CanE alongside E. Initially
CanE0 is the identity on Σ∗. For each x we de�ne

Canx(z) :=

{
1d, if z = x

Can−1(z), otherwise.

Similar as before we let x′ be the result of M with input x using the oracle for
Canx. We will again look at the two cases.
Case 1 If there is an x with x′ 6= x, then we set Can := Canx and E := E−1 ∪
{(x, 1d), (1d, x)}. The �rst member problem is not solvable by MCan because
MCan(x) = 1d 6= x but clearly x is the �rst member in the equivalence class [x].
Case 2 On the other hand, suppose that x′ = x for all x. Therefore in particular
(1d)′ = 1d. Choose x ∈ Σd \ {1d} such that M does not query the oracle about x
in the computation of (1d)′. By our assumption this is possible since M uses fewer
than p(d) < 2d−1 queries. We now set Can := Canx. This does not change the
computations of x′ and (1d)′. Finally let E := E−1 ∪ {(x, 1d), (1d, x)}. Now MCan

fails to solve the �rst member problem of E because MCan(1d) = 1d 6= x but x is
the �rst member of the equivalence class [1d]. �

Remark 3.1.4 Note that the previous proof relies on the fact that the changes we make
to E, Inv and Can at a certain step do not change the computation of any previous step.
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4 Benchmark relations and structural results

This last chapter is largely motivated by [6]. We have already seen in Chapter 2 that
the structure of ≤eq is quite rich even when restricting it to isomorphism relations. In
this chapter we �rst identify some benchmark equivalence relations: id, Eλ and Eσ (see
De�nition 4.1.1) and show that there is even a rich structure of ≤eq between Eλ and id,
more precise we will construct an ini�nite chain and and in�nite antichain between Eλ
and id. We then show that there is an initial segment of the ≤eq-hierarchy consisting
of certain equivalence relations in P. Finally we consider equivalence relations with only
�nitely many non trivial equivalence classes and those whose equivalence classes are all
�nite.

4.1 The Benchmark Equivalence Relations id, Eλ, Eσ

We will start by introducing some canonical examples of equivalence relations, which will
serve us as benchmarks for the hierarchy of strong equivalence reductions. Later we will
even compare how these benchmark equivalence relations relate to those in the previous
chapter.

De�nition 4.1.1 (Benchmark equivalence relations)
Let id, Eλ and Eσ be equivalence relations on Σ∗ de�ned as follows:

(i) Let id be the identity relation, i.e.

(x, y) ∈ id ⇐⇒ x = y.

(ii) We denote by Eλ the equality of length relation, i.e.

(x, y) ∈ Eλ ⇐⇒ |x| = |y|.

(iii) Let Eσ be the equivalence relation such that for all x, y ∈ Σ∗ we have

(x, y) ∈ Eσ ⇐⇒ if lm ≤ |x| < lm+1 and ln ≤ |y| < ln+1, then m = n,

where (lk)k∈N is the super-exponential sequence, i.e. l0 = 0 and for all k ≥ 1,
lk+1 = 2lk .

The relative complexity of those benchmark equivalence relations is strictly increasing.

Lemma 4.1.2 Eσ �eq Eλ �eq id.
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Proof. To see that Eλ ≤eq id it su�ces to de�ne the strong equivalence reduction
function f : Σ∗ → Σ∗ by f(x) = 0|x|. For Eσ ≤eq Eλ we de�ne a strong equivalence
reduction function g : Σ∗ → Σ∗ by g(x) = 0k where k = max{k ∈ N | lk ≤ |x|}.
To see the non-reducibility apply Corollary 2.5.7 to #id(n) ≥ 2n,#Eλ(n) = n, and
#Eσ(n) ≥ logn. �

We can create new equivalence relations En by replacing the sequence lk in the de�nition
of Eσ by �sparser� sequences to obtain an in�nite descending chain of equivalence relations
below Eσ.
We will state the following result without a proof.

Corollary 4.1.3

There is an in�nite sequence (En)n∈N of equivalence relations such that En+1 �eq En �eq

Eσ for all n ∈ N.

4.1.1 The structure between Eλ and id

Using binary encoding, we will view N as a subset of Σ∗. In particular we will speak of
polynomial time computable functions from N to N and subset of N in various di�erent
complexity classes.

De�nition 4.1.4 (Good set)

(i) We call a set A ⊆ N good if A is in�nite, A ∈ P and an 7→ n is computable in
polynomial time for all n ≥ 1 , where (an)n≥1 is the enumeration of A in strictly
increasing order.

(ii) Let A ⊆ N be a good set and (an)n≥1 be the enumeration of A in strictly increasing
order. We de�ne LA : Σ∗ → N by

LA(x) =

{
0, for |x| < a1

n, for an ≤ |x| < an+1.

(iii) Let A ⊆ N be a good set, (an)n≥1 the enumeration of A in strictly increasing order
and let ϕ : N→ N be a polynomial time computable function such that ϕ(n) ≤ an
for all n ≥ 1. We de�ne an equivalence relation Eϕ,A as follows:

Eϕ,A = {(x, y) | LA(x) = LA(y) and

if LA(x) 6= 0, then x and y agree on the �rst ϕ(LA(x)) bits}.

Lemma 4.1.5 If A ⊆ N is a good set, then LA is polynomial time computable.

Proof.

Let A be a good set and (an)n≥1 the enumeration of all elements in A in strictly increasing
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order. Then, by de�nition there are a polynomial time computable function ψ : an 7→ n
and a polynomial time computable function χA : N→ Σ recognising A, i.e.

χA(x) =

{
1, if x ∈ A
0, if x /∈ A.

We compute LA in the following way: Given x ∈ Σ∗, we compute |x|. Then run χA(m)
for m = |x|, |x| − 1, . . . 0 until we �nd the �rst m such that χA(m) = 1. This can clearly
be done in polynomial time in |x|, since we run at most |x| computations of χA on inputs
of size at most |x|. If χA(m) = 1, then m ∈ A and therefore m = an for some n ≥ 1. For
the largest m such that χA(m) = 1 and m = an, we have that |x| < an+1. Now

LA(x) =

{
χA(m), if there is a m as described above

0, if the computation does not return any m with χA(m) = 1.

Not that LA(x) = 0 if and only if |x| < a1. This is exactly the LA from the de�nition
above. �

From the de�nition of Eϕ,A it is easy to see that Eϕ,A ≤eq id. The following theorem
describes the close relation between the complexity of Eϕ,A and the growth rate of ϕ and
n 7→ an, which is the function that enumerates the elements of A.

Theorem 4.1.6

Let A ⊆ N be a good set and (an)n≥1 the enumeration of A in strictly increasing order.
Let ϕ,ψ : N→ N be polynomial time computable functions with ϕ(n), ψ(n) ≤ an for all
n ≥ 1. Then the following hold:

(i) If ϕ(n) ≤ ψ(n) for all n, then Eϕ,A ≤eq Eψ,A.

(ii) If ϕ is increasing, ϕ(n) = Ω(log an) and for any polynomial p ∈ N[x], it holds that

ψ(n) 6= O(ϕ(p(an))),

then Eψ,A 6≤eq Eϕ,A.

(iii) Let B be a good set and let (bn)n≥1 be the enumeration of B in strictly increasing
order. If for all n ≥ 1, an ≤ bn, then Eϕ,B ≤eq Eϕ,A.

Proof.

Let A, (an)n≥1, and ϕ,ψ : N→ N be as in the theorem.

(i) Let ϕ(n) ≤ ψ(n) for all n ∈ N. We de�ne a function f : Σ∗ → Σ∗ and show that
it is a strong equivalence reduction function from Eϕ,A to Eψ,A. Let x ∈ Σ∗. If
|x| < a1 (then LA(x) = 0) and we de�ne f(x) := ε. If on the other hand LA(x) > 0
then we have ϕ(LA(x)) ≤ aLA(x) ≤ |x|. In this case we de�ne f(x) := x′ where
|x′| = |x| and x′ agree on the �rst ϕ(LA(x)) bits with x and is 0 on the remaining
bits.
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We now show that f is the desired function. Let x, y ∈ Σ∗. If (x, y) ∈ Eϕ,A
then, by de�nition, LA(x) = LA(y) and x and y agree on the �rst ϕ(LA(x)) bits
hence by construction f(x) = f(y) and therefore (f(x), f(y)) ∈ Eψ,A. If on the
other hand (x, y) /∈ Eψ,A, then either LA(x) 6= LA(y) or LA(x) = LA(y) > 0
but x and y do not agree on the �rst ϕ(LA(x)) bits. If LA(x) 6= LA(y), then
LA(f(x)) 6= LA(f(y)) and therefore (f(x), f(y)) /∈ Eψ,A. If LA(x) = LA(y) > 0
but they don't agree on the �rst ϕ(LA(x)) bits, then f(x) and f(y) don't agree on
the �rst ϕ(LA(f(x))) = ϕ(LA(x)) bits, which implies that (f(x), f(y)) /∈ Eψ,A.

(ii) Assume Eψ,A ≤eq Eϕ,A. Let f be the strong reduction function from Eψ,A to Eϕ,A.
Fix n ≥ 1. Let Nϕ(n) be the number of Eϕ,A-equivalence classes which consist
of strings x with LA(x) = n and de�ne Nψ(n) analogously . It is easy to see
that Nϕ(n) = 2ϕ(n) and Nψ(n) = 2ψ(n). Since f is a strong reduction function,
f is a one to one function on the equivalence classes of Eψ,A. Thus the Nψ(n)
many distinct Eψ,A-equivalence classes are mapped via f to Nψ(n) many distinct
Eϕ,A-equivalence classes. Let

S(n) := {x ∈ Σ∗ | |x| = an}.

It is easy to see that for each x ∈ S(n) we have LA(x) = n, and for any y ∈ Σ∗

with LA(y) = n, there is x ∈ S(n) with (x, y) ∈ Eψ,A (since ψ(n) ≤ an), i.e. every
Eψ,A-equivalence class contains an element of S(n). Let p ∈ N[x] be the polynomial
time bound of f , i.e. |f(x)| ≤ p(|x|) for all x ∈ Σ∗ Without loss of generality, we
can assume that p and is monotone increasing and p(n) ≥ n for all n. Considering
the Eϕ,A-equivalence classes {[f(x)] | x ∈ S(n)}, we obtain

Nψ(n) ≤
∑

k≤p(an)

Nϕ(k) ≤ p(an)Nϕ(p(an)).

The second inequality follows from the hypothesis that ϕ and p are increasing.
Taking logarithm on both ends yield

ψ(n) ≤ ϕ(p(an)) +O(log an).

Since ϕ(n) = Ω(log an), we have ψ(n) = O(ϕ(p(an))), which contradicts our as-
sumption.

(iii) Suppose that an ≤ bn for all n ≥ 1. Therefore LB(x) ≤ LA(x) for all x ∈ Σ∗ and,
if LB(x) > 0, then aLB(x) ≤ aLA(x) ≤ |x|. We de�ne

f(x) =

{
ε if LB(x) = 0

x � aLB(x) otherwise.

Clearly f is polynomial time computable, since LA(x) and LB(x) are computable
in time polynomial in |x| and we obtain x � aLB(x) by checking on all successive
truncations of x. We only need to verify that f is a strong equivalence reduction
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function. Suppose that (x, y) ∈ Eϕ,B and, therefore LB(x) = LB(y) > 0. Hence
x and y agree on the �rst ϕ(LB(x)) bits. By de�nition of f , f(x) and f(y) both
have length aLB(x). We have LA(f(x)) = LB(x) and LA(f(y)) = LB(y). There-
fore, LA(f(x)) = LA(f(y)) and f(x) and f(y) agree on the �rst ϕ(LA(f(x))) =
ϕ(LB(x)) bits, so (f(x), f(y)) ∈ Eϕ,A.
Suppose on the other hand that (x, y) /∈ Eϕ,B. Then either LB(x) 6= LB(y) or
LB(x) = LB(y) > 0 but x and y do not agree on the �rst ϕ(LB(x)) bits. Assume
that LB(x) 6= LB(y), then we have LA(f(x)) 6= LA(f(y)) since LA(f(x)) = LB(x)
and LA(f(y)) = LB(y). Now assume that LB(x) = LB(y) but x and y do not agree
on the �rst ϕ(LB(x)) bits, then LA(f(x)) = LA(f(y)) > 0 but f(x) and f(y) do not
agree on the �rst ϕ(LA(f(x))) bits, since f(x) = x � aLB(x) and f(y) = y � aLB(x),
and ϕ(LA(f(x))) ≤ ϕ(LB(x)) ≤ aLB(x). In both cases (f(x), f(y)) /∈ Eϕ,A. There-
fore f is a strong equivalence reduction from Eϕ,B to Eϕ,A. �

For the rest of the section we look at applications of Theorem 4.1.6 with a �xed good set
A = N \ {0}. Thus an = n in the enumeration of A and LA(x) = |x| for all x ∈ Σ∗. For
simplicity, let Eϕ := Eϕ,A for this particular A.
To sum it up, let ϕ : N → N be increasing and polynomial time computable such that
ϕ(n) ≤ n for all n ∈ N, and Eϕ the equivalence relation de�ned as follows:

Eϕ = {(x, y) | |x| = |y| and x � ϕ(|x|) = y � ϕ(|x|)}.

It is easy to see from the de�nition that Eλ ≤eq Eϕ ≤eq id. We are now ready to
construct an in�nite ascending chain of equivalence relations between Eλ and id.

Proposition 4.1.7

There is an in�nite sequence (ϕm)m≥1 : Σ∗ → Σ∗ of polynomial time computable func-
tions such that Eϕm �eq Eϕm+1 for all m ≥ 1.

Proof.

De�ne ϕm(n) := min{n, (log n)m} for each m ≥ 1. Then each ϕm is computable in
polynomial time and

log n ≤ ϕm(n) ≤ n ∀n ∈ N.

Since ϕm(n) ≤ ϕm+1(n) for all n we can apply Theorem 4.1.6 (i) and get Eϕm ≤eq Eϕm+1 .
On the other hand ϕm(p(n)) = Θ((log n)m) for every p ∈ N[x]. Since (log n)m+1 6=
O((log n)m), we have that ϕm+1(n) 6= O(ϕ(p(n)). Therefore we can apply Theorem
4.1.6 (2) and get Eϕm+1 6≤eq Eϕm . �

One can easily verify that the construction of ϕm in the above proof can be mod-
i�ed to obtain longer chains, e.g. we could use functions such as log n(log log n)k,
log n(log log n)(log log log n)k, etc. .With this construction one can squeeze more in�-
nite ascending sequences between those in the proof above. As a consequence, one can
even embed the linear order of the ordinal ωk, for any �nite k, into the degree of strong
equivalence reduction between Eλ and id.

To prove the next statement we need a function with certain properties.
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De�nition 4.1.8 (Cantor pairing function)
The function π : N × N → N, 〈m1,m2〉 7→ 1

2(m1 + m2)(m1 + m2 + 1) + m2 is called the
Cantor pairing function.

Remark 4.1.9 The Cantor pairing function π has the following properties:

(i) π is computable in polynomial time.

(ii) π is strictly increasing in both arguments, i.e. π(m1 + 1,m2) > π(m1,m2) and
π(m1,m2 + 1) > π(m1,m2) for all m1,m2 ∈ N

(iii) π is bijective.

(iv) Let k := π(m1,m2). The decoding functions

(·)1 =

{
N→ N
k 7→ m1

and (·)2 =

{
N→ N
k 7→ m2

are computable in polynomial time.

We will now construct an in�nite antichain of equivalence relations between Eλ and id,
i.e. we will construct in�nitely many pairwise incomparable equivalence relations.

Proposition 4.1.10

There is an in�nite sequence (ϕm)m∈N : Σ∗ → Σ∗ of polynomial time computable func-
tions such that Eϕm 6≤eq Eϕm′ for any m 6= m′.

Proof.

To prove the statement we construct a sequence (ϕm)m∈N of functions in a way such
that we can apply Theorem 4.1.6 (ii). Let (Nk)k∈N be an increasing sequence of natural
numbers de�ned by induction as follows:

N0 = 1,

Nk+1 = 21+(log Nk)2

De�ne ϕm for every m ∈ N as follows:

ϕm(n) =

{
min{n, (log n)2} if Nk ≤ n < Nk+1 and (k)1 = m,

min{n, (logNk)
2} if Nk ≤ n < Nk+1 and (k)1 6= m,

(4.1)

where (·)1 is the �rst decoding function of the Cantor pairing function. Clearly, each ϕm
is computable in polynomial time. It is easy to see that each ϕm is increasing since each
ϕm is composed of taking the minimum of (strictly) increasing functions.
To see that ϕm(n) = Ω(log an), �rst note that an = n since A = N \ {0}. Therefore
it su�ces to show that ϕm(n) = Ω(log n). To see this we �x m. In the case that
(k)1 = m, we have ϕm(n) = (log n)2 = Ω(log n) for large enough n. If on the other hand
(k)1 6= m, we have logNk+1 = O(ϕm(Nk)) since asymptotically, ϕm(Nk) = (logNk)

2

40



4.1. THE BENCHMARK EQUIVALENCE RELATIONS ID,Eλ, Eσ

and logNk+1 = 1 + (logNk)
2 (by de�nition of Nk+1).

To complete the proof we need to show that, if m 6= m′, then ϕm(n) 6= O(ϕm′(p(n))) for
any p ∈ N[x]. Let d = deg(p), then

O (ϕm′(p(n))) = O
(
(log p(n))2

)
= O

(
(log nd)2

)
= O

(
d2 · (log n)2

)
= O (ϕm′(n)) .

Therefore it su�ces to show that ϕm(n) 6= O(ϕm′(n)) for m 6= m′. Suppose the con-
traposition, i.e. assume ϕm(n) = O(ϕm′(n)). Then there is some constant C > 0 and
N ∈ N, such that

ϕm(n) ≤ Cϕm′(n) ∀n ≥ N.

Suppose N is large enough that (log n)2 ≤ n for all n ≥ N . It follows that for all k such
that Nk ≥ N ,

ϕm(Nk+1 − 1) ≤ Cϕm′(Nk+1 − 1).

If additionally (k)1 = m, then by (4.1) we have

ϕm(Nk+1 − 1) = (log(Nk+1 − 1))2 ≤ C(logNk)
2.

This would imply that, as a function in k, we have log(Nk+1 − 1) = O(logNk). This is
impossible since there are in�nitely many k with (k)1 = m and

log(Nk+1 − 1) = Θ(logNk+1) = Θ
(
1 + (logNk)

2
)

= Θ
(
(logNk)

2
)
6= O(logNk).

This is a contradiction to ϕm(n) = O(ϕm′(n)) and therefore concludes our proof. �

The functions we constructed in the proof above have an interesting property that we
will now explore.

Corollary 4.1.11

There is an assignment X 7→ EX , from all polynomial time computable subsets of N into
the equivalence relations between Eλ and id such that

X ⊆ Y ⇐⇒ EX ≤eq EY .

Proof.

Let the functions ϕm be as in the previous proof. For each polynomial-time computable
X ⊆ N, we de�ne

ϕX(n) := max{ϕm(n) | m ∈ X} and EX := EϕX .

It is easy to verify that each ϕX is polynomial-time computable, since

ϕX(n) =

{
min{n, (log n)2} if Nk ≤ n < Nk+1 and (k)1 ∈ X,
min{n, (logNk)

2} if Nk ≤ n < Nk+1 and (k)1 6∈ X.

For X ⊆ Y ⊆ N and X,Y ∈ P, we have ϕX(n) ≤ ϕY (n) for all n ∈ N and therefore, by
Theorem 4.1.6 (i), we have EX ≤eq EY . On the other hand if X 6⊆ Y , then there exists
m ∈ X \ Y and therefore Eϕm 6≤eq EY similar as in Proposition 4.1.10.

41



CHAPTER 4. BENCHMARK RELATIONS AND STRUCTURAL RESULTS

Corollary 4.1.12

Any �nite partial order can be embedded into the the relation ≤eq between Eλ and id.

Proof.

We have seen in Corollary 4.1.11 that every �nite partial order can be embedded into
a �nite Boolean algebra. We also showed in Corolarry 4.1.11 that any �nite Boolean
algebra is embeddable into the degrees of strong equivalence reductions between Eλ and
id. Therefore our claim follows. �

4.1.2 The hierarchy of ≤eq

In this section we will look at isomorphism relations for �nite structures as discussed in
Chapter 2 as well as the new established benchmark relations and show how they are
related.
We also discuss another interesting equivalence relation:

De�nition 4.1.13 (Clique relation)
Let x, y ∈ Σ∗ be the encodings of �nite graphs. The clique relation, denoted CLIQ is
de�ned as follows:

(x, y) ∈ CLIQ ⇐⇒ the maximal cliques in x and y have the same size.

It was shown in [11] that CLIQ is DP-complete.

De�nition 4.1.14 (Complexity class DP)
The complexity class DP is de�ned as follows:

DP := {L | L = L1 ∩ L2 such that L1 ∈ NP and L2 ∈ co-NP}.

Note that
P ⊆ NP ∩ co-NP ⊆ NP ∪ co-NP ⊆ DP.

We will collect results from earlier as well as some new ones and then give an overview
of the structure of strong equivalence reduction.

Proposition 4.1.15

(i) Let E be the isomorphism relation of a class of �nite structures, then E ≤eq
GRAPH.

(ii) LOU ≡eq id.

(iii) Let E be the isomorphism relation of one of the following classes

SET,ORD,LOP,ABELIAN,CYCLIC or FIELD,

then E ≡eq Eλ.

Proof.
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(i) See Proposition 2.1.4.

(ii) See Remark 1.3.2.

(iii) Follows from Example 2.2.2(ii), (iii) and Corollary 2.1.15. �

Proposition 4.1.16

(i) BOOLE �eq Eλ �eq GROUP �eq GRAPH.

(ii) id 6≤eq GROUP

(iii) Eσ �eq BOOLE

(iv) Eλ ≤eq CLIQ

(v) id 6≤eq CLIQ

(vi) GRAPH 6≤eq CLIQ

Proof.

(i) Follows from Remark 2.1.14 and Proposition 2.2.6.

(ii) Note that #id(n) =
∑n

k=0 2k = 2n+1 − 1. Therefore by Corollary 2.5.7 the claim
follows.

(iii) Also follows from Corollary 2.5.7 since #BOOLE(n) = blognc = Θ(logn) and
#Eσ(n) < log log n.

(iv) This is witnessed by the strong reduction function x 7→ K|x|, where K|x| is the
complete graph of order |x|.

(v) Note that #CLIQ(n). Thus by Corollary 2.5.7 the claim follows.

(vi) Since id ≤eq GRAPH, it follows that GRAPH 6≤eq CLIQ. �

We summarize the results of reducibility and non-reducibility in Figure 4.1 and use the
convention that
C 99K D if C ≤iso D but it is no known whether D ≤iso C or not,
C 7→ D if C ≤iso D but D 6≤iso C, and
C↔ D if C ≡iso D.
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BOOLE

CLIQ GROUP

GRAPH

Eλ

Eσ

id

...

...

Figure 4.1: Structure of Strong Equivalence Degrees

So far, none of the statements in this chapter required any knowledge on the relations of
P, NP and co-NP.
We will collect some of those statements here:

Proposition 4.1.17 The following are equivalent

(i) P=NP

(ii) CLIQ ≤eq Eλ

(iii) CLIQ ≡eq Eλ

Proof. Clearly (ii) and (iii) are equivalent since we already showed that Eλ ≤eq CLIQ.
To see that (i) ⇒ (ii), we assume that P=NP. Then, given a �nite graph G, there is a

44



4.2. FINITARY EQUIVALENCE RELATIONS

polynomial time algorithm to determine, whether G contains a clique of size k. Let n
be the number of vertices of G. By setting k = 2, . . . , n, we can determine the maximal
k such that G has a clique of size k in polynomial time. By running this algorithm and
outputting a string with length of this maximal k we get a strong reduction function
from CLIQ to Eλ. To show that (ii) ⇒ (i), note that NP⊆DP and that CLIQ is DP-
complete as a set. If there is a polynomial time computable strong reduction function
f : CLIQ ≤eq Eλ, then CLIQ ∈P, as well as every DP set. �

This means if P = NP, then CLIQ is of the same complexity as Eλ and thus not a
separate benchmark as shown above.

Proposition 4.1.18 If P 6= NP, then CLIQ 6≤eq id.

Proof. CLIQ ≤eq id would imply that CLIQ ∈P. �

Proposition 4.1.19 If NP 6= co-NP, then CLIQ 6≤eq GRAPH, and in particular CLIQ 6≤eq
id and CLIQ 6≤eq GROUP.

Proof. CLIQ ≤eq GRAPH would imply that CLIQ ∈NP. Since co-NP ⊆ DP, it would
follow that NP = co-NP = DP. �

Corollary 4.1.20 If P=NP, then E ≤eq id for every E ∈NP.

4.2 Finitary equivalence relations

In this section we show that there is an initial segment of the ≤eq hierarchy consisting
of certain P equivalence relations. We also show that if P 6=NP, then there are NP
equivalence relations strictly above id. We obtain these results by considering a special
class of equivalence relations:

De�nition 4.2.1 (Finitary equivalence relation)
An equivalence relation E is said to be �nitary if E has only �nitely many non-trivial
equivalence classes.

We will state the following proposition without proof:

Proposition 4.2.2 Let E be a �nitary equivalence relation on Σ∗, then the following
are equivalent:

(i) E ∈ P,

(ii) Each equivalence class of E is in P, and

(iii) E ≤eq id.

We will consider two subclasses of �nitary equivalence relations. The �rst class consists of
equivalence relations with only �nitely many equivalence classes. The canonical example
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is the following:
For n ∈ N \ {0} let ≡n denote the congruence relation mod n, i.e.

x ≡n y ⇐⇒ x ≡ y mod n,

for x, y ∈ N.
Clearly ≡n�eq≡n+1�eq id for all n. Moreover, if E ≤eq≡n for any equivalence relation
E, then E ∈P and E has at most n equivalence classes.
We state the following without proof.

Proposition 4.2.3 Let E be an equivalence relation on Σ∗ with exactly n equivalence
classes. Then the following are equivalent:

(i) E ∈ P.

(ii) There is a polynomial time computable equivalence relation F with in�nitely many
equivalence classes such that E ≤eq F .

(iii) For any equivalence relation F with at least n equivalence classes, we have E ≤eq F .

(iv) E ≡eq (≡n).

Therefore the P equivalence relation with �nitely many equivalence classes are an initial
segment of the ≤eq hierarchy.
We now consider the next subclass of �nitary equivalence relations, namely equivalence
relations induced by a single set.

De�nition 4.2.4 For any subset S ⊆ Σ∗, we de�ne an equivalence relation RS on Σ∗ as
follows:

RS := {(x, y) | x = y or x, y ∈ S}.

Equivalence relations that are constructed in this way are clearly �nitary since their only
non-trivial equivalence class is generated by S, more precisely it is the set equivalence
class S × S.
The following lemma is an observation about their mutual reducibility.

Lemma 4.2.5 Let S, T ⊂ Σ∗. If RS ≤eq RT then either S ≤p T as sets or RS ≤eq id.

Proof. Suppose that f : RS ≤eq RT is a srong equivalence reduction. Then for any
x, y ∈ S we have (f(x), f(y)) ∈ RT . There are two cases.
Case 1 For any x ∈ S we have f(x) ∈ T (and of course for x /∈ S, f(x) /∈ T ). Thus f is
polynomial time reduction from S to T .
Case 2 For any x ∈ S we have f(x) /∈ T . In this case f(x) = f(y) for all x, y ∈ S. But
then clearly RS is strong equivalence reducible to id, in fact f : RS ≤eq id. �

Remark 4.2.6

(i) The relation id itself is of the form R∅.
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(ii) There exists a co-in�nite set S ⊆ Σ∗ such that RS �eq id, e.g.

S = {x ∈ Σ∗ | x(i) 6= 0 for some i < |x|}.

Proposition 4.2.7 Let ∅ 6= S ⊆ Σ∗. Then the following hold:

(i) S ∈NP ⇔ RS ∈NP.

(ii) If S is NP-hard, then RS is NP-hard as a set.

(iii) If RT ≤eq RS for all T ⊆ Σ∗ with T ∈NP, then S is NP-hard.

(iv) If P6=NP and S is NP-hard, then RS 6≤eq id.

Proof. The (⇒) direction of (i) follows from the de�nition. For (⇐) of (i) and (ii) we �x
a ∈ S and note that for any x ∈ Σ∗, we have that x ∈ S ⇐⇒ (x, a) ∈ RS . Therefore the
mapping x 7→ (x, a) is a polynomial time reduction from S to RS as sets. This reduction
and RS ∈NP together imply that S ∈ NP while this reduction and the fact that S is
NP-hard imply that RS is NP-hard. Now (iv) follows from (ii), since otherwise id would
be NP-hard which would imply P = NP. Finally, to prove (iii), we assume RT ≤eq RS
for all NP subsets T ⊆ Σ∗. By Remark 4.2.6 we know that id ≤eq RS and it follows
that S is co-in�nite?. We now look at two cases. If P = NP, then any nonempty, proper
subset of Σ∗ is NP-hard. Suppose now that P 6= NP. Since the statement must hold for
all T ∈ NP we can assume that T is NP-hard. Then RT 6≤eq id by (iv). Therefore by
Lemma 4.2.5 there must by a polynomial time reduction from T to S, and hence S is
NP-hard. �

We will de�ne a notation that is dual to the notion of �nitary equivalence relation.

De�nition 4.2.8 (Finite equivalence relation)
We call an equivalence relation E �nite if every equivalence class of E is �nite.

Remark 4.2.9 The isomorphism relation for �nite structures, e.g. GRAPH, and the
relations Eϕ,A that we de�ned earlier are �nite.

We will show that the notion of �nite equivalence relations and the notion of �nitary
equivalence relations are in a sense orthogonal in terms of reducibility.

Proposition 4.2.10 Let E,F be equivalence relations on Σ∗. Furthermore, assume that
E is �nitary and F is �nite. Then the following hold:

(i) If E ≤eq F , then E ≤eq id and E ∈P.

(ii) If F ≤eq E, then F ≤eq id and F ∈P.

Proof. To show (i) we use Proposition 4.2.2. Therefore we only need to show that
every E-equivalence class is in P. Since E ≤eq F , there must be a polynomial time strong
equivalence reduction function which maps the equivalence classes of E to the equivalence
classes of F . Since the latter one are �nite and thus in P, the equivalence classes of E
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also lie in P.
For (ii),let f be the strong equivalence reduction function from F to E. Let

X =
{
x ∈ Σ∗ | [x]E = {x}

}
.

We now de�ne a strong reduction from F to id in the following way: Let g(x) := f(x) if
x ∈ f−1(X) and let g(x) the lexicographical �rst element of the E-equivalence class of
f(x) if x /∈ f−1(X). It is easy to see that g is a strong equivalence reduction function
from F to id. �

We now de�ne a �nite equivalence relation induced by a single set.

De�nition 4.2.11 For any S ⊆ Σ∗, we de�ne an equivalence relation

DS := {(x, y) | x = y or x � (|x| − 1) = y � (|y| − 1) ∈ S}.

Clearly DS is a �nite equivalence relation since Σ is �nite. Note that DS does not have
�nitely many equivalence classes.

Proposition 4.2.12 Let S ⊆ Σ∗. The following are equivalent:

(i) DS ∈ P,

(ii) S ∈ P,

(iii) DS ≤eq id,

(iv) DS ≡eq id.

Proof.

(i) ⇔ (iii) follows from Proposition 4.2.2.
(ii) ⇒ (i) and (iv) ⇒ (iii) is trivial.
(iii)⇒ (iv) follows from the fact that for every S ⊆ Σ∗ the mapping x 7→ xa0 is a strong
reduction from id to DS .
(i) ⇒ (ii) For any x ∈ Σ∗,

x ∈ S ⇐⇒ (xa0, xa1) ∈ DS ,

and therefore if DS ∈ P then S ∈ P.

Corollary 4.2.13 Let S ⊆ Σ∗. Then the following hold:

(i) S ∈ NP⇔ DS ∈ NP.

(ii) If S is NP-hard then DS is NP-hard as a set.

(iii) If P 6= NP and S is NP-hard, then id �eq DS .
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Open Questions

At this time there are still many open questions concerning the relative complexity of
di�erent equivalence relations. We will present a few selected ones related to the content
of this thesis.

It is well known that there is a logic capturing P on �nite ordered structures (Immerman-
Vardi Theorem) but it is a major open problem in descriptive complexity if there is an
analogous logic for all �nite structures.

Open Question 1 Is there a logic capturing P on all �nite structures?

We have seen that the separation of ≤iso and ≤pot would have big consequences in
complexity theory but we were not able to separate them without strong assumptions.

Open Question 2 Is it possible to separate the relations of ≤iso and ≤pot without any
complexity theoretical assumptions.

As we have seen numerous times it is possible to prove reducibility results about ≤eq
without assumptions on the relationship between complexity classes. We call these results
absolute. The following open problems might have absolute answers.

Open Question 3 Does E ≤eq id for all E ∈ P?

Open Question 4 Does E ≤eq GRAPH for all �nite E ∈ NP?
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