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Abstract

The optimization of certain processes is not only a topic in industry, economy and politics — also in
magnetism and magnetic applications it is possible to optimize certain magnetic systems or the methods to
simulate them. In this work, different optimization approaches in computational magnetism are presented.

A new probability-based simulation technique of write and read operations in magnetic recording
media leads to an immense reduction of statistical fluctuation at almost constant computational cost.
Furthermore, a parameter model enables the systematic investigation of the influence of write and material
parameters of magnetic grains on the resulting readout signal. It shows which possible improvements
have the most significant effect on the write quality. The analytical derivation of the magnetic field
of homogeneously magnetized cylindrical tiles allows precise field calculation without any numerical
methods for this geometry. The formulas and their implementation also include all special cases such as
cylinder sectors, cylinder rings and full cylinders. In addition, the challenges of analytical magnetic field
calculations in general are also discussed. By integrating an additional magnet into a magnetic linear
position sensor system, it can become stable against small misalignments in the direction of the air gap.
This idea is confirmed by optimizing the spatial dimensions of the additional magnet for the desired air
gap stability. To optimize arbitrary magnet shapes, the topology optimization approach can be used. We
propose a hybrid optimization algorithm that combines a reasonable global and local optimizer for this
approach. It overcomes the problem of local optima occurrence and finds the global optimum, which
significantly improves the optimization results. Moreover, the conditions for the existence of local and
global optima are discussed at the theoretical level.

In all these examples, we show that the optimization approach always leads to a reduction in computa-
tional effort, an increase in accuracy, or an improvement in the magnetic system.
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Kurzfassung

Die Optimierung bestimmter Prozesse ist nicht nur ein Thema in Industrie, Wirtschaft und Politik —
auch im Magnetismus und bei magnetischen Anwendungen ist es möglich, bestimmte magnetische
Systeme oder die Methoden zu deren Simulation zu optimieren. In dieser Arbeit werden verschiedene
Optimierungsansätze im computergestützten Magnetismus vorgestellt.

Eine neue wahrscheinlichkeitsbasierte Simulationstechnik von Schreib- und Auslesevorgängen in
magnetischen Speichermedien führt zu einer immensen Reduktion statistischer Fluktuation bei na-
hezu gleichbleibendem Rechenaufwand. Darüber hinaus ermöglicht ein Parametermodell die gezielte
Untersuchung des Einflusses von Schreib- und Materialparametern magnetischer Körner auf das res-
ultierende Auslesesignal. Es zeigt, welche möglichen Verbesserungen sich am signifikantesten auf die
Schreibqualität auswirken. Die analytische Herleitung des Magnetfeldes von homogen magnetisier-
ten Zylinderkacheln erlaubt die präzise Feldberechnung ohne jegliche numerische Methoden für diese
Geometrie. Die Formeln und ihre Umsetzung umfassen auch alle Sonderfälle wie Zylindersektoren,
Zylinderringe und Vollzylinder. Darüber hinaus werden auch die Herausforderungen der analytischen
Magnetfeldberechnung im Allgemeinen diskutiert. Durch den Einbau eines zusätzlichen Magneten in ein
magnetisches lineares Positionssensorsystem kann dieses stabil gegenüber kleinen Ausrichtungsfehlern
in Richtung des Luftspalts werden. Diese Idee wird durch Optimierung der räumlichen Abmessungen
des zusätzlichen Magneten für die gewünschte Luftspaltstabilität bestätigt. Um beliebige Magnetformen
zu optimieren, kann der Ansatz der Topologieoptimierung verwendet werden. Wir schlagen einen hy-
briden Optimierungsalgorithmus vor, der einen sinnvollen globalen und lokalen Optimierer für diesen
Ansatz kombiniert. Er überwindet das Problem des Auftretens lokaler Optima und findet das globale
Optimum, was die Optimierungsergebnisse erheblich verbessert. Außerdem werden die Bedingungen für
das Vorhandensein lokaler und globaler Optima auf theoretischer Ebene diskutiert.

In all diesen Beispielen zeigen wir, dass der Optimierungsansatz immer zu einer Verringerung des
Rechenaufwands, einer Erhöhung der Genauigkeit oder einer Verbesserung des magnetischen Systems
führt.

v





Acronyms

App. Appendix.

BEM boundary elements method.

BSA binary search algorithm.

Chap. Chapter.

CSA cuckoo search algorithm.

Eq. Equation.

FEM finite elements method.

Fig. Figure.

FWHM full width at half maximum.

HA hybrid algorithm.

HAMR heat-assisted magnetic recording.

LLB Landau-Lifshitz-Bloch.

LLG Landau-Lifshitz-Gilbert.

NP noise power.

PRBS pseudo random bit series.

Sec. Section.

SNR signal-to-noise ratio.

SP signal power.

Subsec. Subsection.

Tab. Table.

vii





Contents

Acknowledgements i

Abstract iii

Kurzfassung v

List of Tables xiii

List of Figures xv

1. Introduction 1

2. Statistical analysis of read-back signals in magnetic recording on granular media 3
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Switching probability phase diagram for single grains . . . . . . . . . . . . . . . . . . . 4
2.4. Magnetization mapping on grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1. Writing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.2. Read-back process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.3. Statistical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5. Probability mapping on grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.1. Writing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.2. Read-back process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.3. Statistical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Systematic parameterization of HAMR switching probabilities and the consequences
for the resulting SNR 13
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Mathematical model of a phase plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1. Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2. Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3. Reference system and variation of the parameters . . . . . . . . . . . . . . . . . 16

3.3. Bit patterns on granular media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1. SNR curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2. Comparison with theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5. Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Full analytical solution for the magnetic field of uniformly magnetized cylinder tiles 31
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



4.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1. Field calculation with magnetostatic potential . . . . . . . . . . . . . . . . . . . 32
4.2.2. Magnetic surface-charge density . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3. Surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4. Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3. First integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4. Second integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5. Numerical verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1. Implementation and performance . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.2. Comparison to numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.3. Comparison to FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6. Halbach cylinder application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7. Stray-field immunity of rotation sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.1. No current in wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.2. With stray field from wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8. Conclusion & outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5. Designing airgap-stable magnetic linear position systems 51
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2. Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3. Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1. Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2. Scaling invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.3. Reasonable system constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.4. Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6. Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6. Global magnetic topology optimization 63
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4. Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.1. Cuckoo search algorithm (CSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4.2. Binary search algorithm (BSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.3. Hybrid algorithm (HA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5.1. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5.2. Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7. Conclusion 77

A. How to avoid integration singularities 79
A.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



A.2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3. Singularities in the integration constants . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.4. Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.5. Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B. Special functions 83
B.1. Elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2. Angle scaling function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C. Tables 85

D. Variational derivatives 99
D.1. Derivatives of u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
D.2. Derivatives of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.3. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.4. Concavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.5. Examples for objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

E. Local minima 103

F. Example for wrong convergence of the algorithm 107
F.1. No iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
F.2. Unique local minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
F.3. Reduction in one variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

G. Mesh-fineness-dependency of the objective function 111

H. Symmetry of the solution 113

I. Supplementary data 115

J. List of publications 117

Bibliography 119

xi





List of Tables

3.1. Used material parameters in the LLB model. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Reference parameters that are evaluated via least square fit of the simulated phase

diagrams for grain diameters from 4 to 8nm. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Estimated fitting parameter errors of the fit values of Tab. 3.2. . . . . . . . . . . . . . . . 22
3.4. Range of variation for the model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1. All possible values of the three-digits index I = ℓmn and associated special cases. The
general case is I = 235, i.e. z ̸= zk, ϕ j ̸∈ πZ and r,ri > 0,r ̸= ri. . . . . . . . . . . . . . 40

4.2. Example table for I = 211. The field components are computed by summation over all
functions multiplied by coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3. Test geometries for comparison to numerical integration. . . . . . . . . . . . . . . . . . 41
4.4. Position and magnetization of the three cylinder tiles, as illustrated in Fig. 4.4a. . . . . . 43
4.5. Center, radius and rotation axis of the four circles along which the magnetic field is

evaluated as illustrated in Fig. 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1. System parameter names and typical values. . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2. Realistic system parameters and constraints. . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3. Bounds and optimization results of the magnet system parameters shown in Fig. 5.5. . . 58
5.4. Sensitivity S(0,g) for all configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1. Parameter used for the BSA (upper part) and additional parameters for the HA (lower
part). The value of g is taken as the number of iteration steps the BSA needs to converge. 70

6.2. Number of iteration steps, found optimum values and numerical effort for the BSA (see
Subsec. 6.4.2) and HA (see Subsec. 6.4.3). . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3. Optimum values of the objective function J according to the BSA for different random
initial configurations with given seed and cell size 1/10mm. . . . . . . . . . . . . . . . 72

C.1. Required functions and corresponding coefficients for I = 112. . . . . . . . . . . . . . 86
C.2. Required functions and corresponding coefficients for I = 113. . . . . . . . . . . . . . 86
C.3. Required functions and corresponding coefficients for I = 115. . . . . . . . . . . . . . 86
C.4. Required functions and corresponding coefficients for I = 122. . . . . . . . . . . . . . 86
C.5. Required functions and corresponding coefficients for I = 123. . . . . . . . . . . . . . 87
C.6. Required functions and corresponding coefficients for I = 124. . . . . . . . . . . . . . 87
C.7. Required functions and corresponding coefficients for I = 125. . . . . . . . . . . . . . 87
C.8. Required functions and corresponding coefficients for I = 132. . . . . . . . . . . . . . 87
C.9. Required functions and corresponding coefficients for I = 133. . . . . . . . . . . . . . 88
C.10. Required functions and corresponding coefficients for I = 134. . . . . . . . . . . . . . 88
C.11. Required functions and corresponding coefficients for I = 135. . . . . . . . . . . . . . 88
C.12. Required functions and corresponding coefficients for I = 211. . . . . . . . . . . . . . 89
C.13. Required functions and corresponding coefficients for I = 212. . . . . . . . . . . . . . 89
C.14. Required functions and corresponding coefficients for I = 213. . . . . . . . . . . . . . 89
C.15. Required functions and corresponding coefficients for I = 214. . . . . . . . . . . . . . 90

xiii



C.16. Required functions and corresponding coefficients for I = 215. . . . . . . . . . . . . . 91
C.17. Required functions and corresponding coefficients for I = 221. . . . . . . . . . . . . . 91
C.18. Required functions and corresponding coefficients for I = 222. . . . . . . . . . . . . . 92
C.19. Required functions and corresponding coefficients for I = 223. . . . . . . . . . . . . . 92
C.20. Required functions and corresponding coefficients for I = 224. . . . . . . . . . . . . . 93
C.21. Required functions and corresponding coefficients for I = 225. . . . . . . . . . . . . . 94
C.22. Required functions and corresponding coefficients for I = 231. . . . . . . . . . . . . . 94
C.23. Required functions and corresponding coefficients for I = 232. . . . . . . . . . . . . . 95
C.24. Required functions and corresponding coefficients for I = 233. . . . . . . . . . . . . . 95
C.25. Required functions and corresponding coefficients for I = 234. . . . . . . . . . . . . . 96
C.26. Required functions and corresponding coefficients for I = 235. . . . . . . . . . . . . . 97

D.1. Common objective functions in applications with their properties. . . . . . . . . . . . . 102

xiv



List of Figures

2.1. Example for a switching probability phase diagram of one single grain. . . . . . . . . . 5
2.2. Top: Randomly initialized granular medium (500nm×60nm and a thickness of 8nm)

with grain diameter of 4nm and 1nm gap between neighboring grains. Bottom: Granular
medium after the simulated writing process of a pseudo-random bit sequence according
to [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Tree diagram of the different decisions and their corresponding switching probabilities.
The gray background marks the j-th writing step in the case of a down-bit in (a) and
an up-bit in (b). Based on to the previous magnetization of the grain with probabilities
1−Pi

j−1 and Pi
j−1 respectively, the magnetization gets either changed from −1 to +1

or vice versa with switching probability pi
j or remains in its original direction with

probability 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Comparison of the SNR of a pseudo random bit sequence for varied bit curvature calcu-

lated by the methods of Secs. 2.4 and 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1. Simulated switching probability phase diagram for a grain diameter of D = 7nm via LLB
model and material parameters as shown in Tab. 3.1. . . . . . . . . . . . . . . . . . . . 15

3.2. (a) and (b) show the graphs of the help functions h1 and h2. In (c), the final model phase
plot can be observed with detailed impact of the different model parameters of Subsec. 3.2.1. 17

3.3. In contrast to Fig. 3.2c, each picture shows only one changed parameter value. The phase
plot in (a) has a reduced down-track-jitter parameter σd = 0nm, in (b) a reduced off-
track-jitter parameter σo = 0K, in (c) a reduced Pmax = 0.8, in (d) an extended bit-length
of b = 20nm and in (e) a reduced curvature parameter p1 by 60%. . . . . . . . . . . . . 19

3.4. Visualization of a granular medium with approximately equally sized magnetic grains
(here: 4 nm diameter) surrounded by nonmagnetic material separating neighboring grains
by 1 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5. Visualization of the applied Gaussian heat pulse that moves across the granular medium
in the direction of the arrow. Together with an applied magnetic field it performs the
writing process. The red and green curve demonstrate that grains are exposed to different
peak temperatures depending on their off-track position. . . . . . . . . . . . . . . . . . 21

3.6. (a): Contour plot of the z-component of the sensitivity function. The reader width (width
of the 0.5 contour line in off-track direction) is 30.13nm and the reader resolution (width
of the 0.5 contour line in down-track direction) is 13.26nm. (b) Example of a mean
read-back curve of the 31 bit PRBS determined by the reader with sensitivity function in
(a) across granular media as in Fig. 2.2, bottom. . . . . . . . . . . . . . . . . . . . . . . 21

3.7. SNR as a function of: (a) the bit length (with scaled reader), (b) curvature reduction, (c)
Pmax, (d) σd and (e) σo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8. Bit pattern for bit lengths of 4,7 and 12nm (top to bottom). . . . . . . . . . . . . . . . . 24
3.9. Bit pattern for curvature reductions of 0,50 and 100% (top to bottom). . . . . . . . . . . 24
3.10. Bit pattern for Pmax = 0.64,0.81 and 1.00 (top to bottom). . . . . . . . . . . . . . . . . . 25
3.11. Bit pattern for σd = 0.01,2.00 and 4.00nm (top to bottom). . . . . . . . . . . . . . . . . 25
3.12. Bit pattern for σo = 0,25 and 50K (top to bottom). . . . . . . . . . . . . . . . . . . . . 25

xv



3.13. SNR values for simultaneous variation of σd and Pmax for 5nm grain diameter. . . . . . . 26
3.14. Fitting curves of the SNR calculation for various down-track-jitter parameters and con-

stant bit length b = 10nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15. Fitting curves of the SNR calculation for various bit lengths and constant down-track-jitter

parameter σd = 2nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. (a) Dimensions of the cylinder tile in cylinder coordinates and the resulting magnetic
surface charges σ . We assume 0 ≤ r1 < r2, ϕ1 < ϕ2 and z1 < z2. (b) Magnetization
vector M described by the three coordinates M,ϕM and θM. . . . . . . . . . . . . . . . . 33

4.2. Illustration how each cylinder tile (including also all limiting cases as cylinder sectors, cyl-
inder rings and full cylinders) can be perfectly subdivided into smaller cylinder tile cells.
Each cell can have a different magnetization direction, which leads to an inhomogeneous
magnetization of the whole cylinder tile. This allows to simulate demagnetization effects
for instance, where the magnetization directions are aligned according to the demagnetiz-
ation field. Unlike common lattice subdivisions, such as cubes in finite difference and
tetrahedra in finite element approaches, there is no geometry approximation error because
the subdivision perfectly preserves the cylindrical shape. . . . . . . . . . . . . . . . . . 36

4.3. Comparison between the derived analytical solution in Sec. 4.4 (analytic) and the direct
numerical integration of the integrals in Eqs. (4.16)-(4.18) with quadrature (quad). (a) Hr

component as function of radial coordinate r at ϕ = π/8rad and z = 0.0015m for test
geometry 1. (b) Hϕ component as function of angular coordinate ϕ at r = 0.022m and
z = 0.001m for test geometry 2 (c) Hz component as function of angular coordinate z at
r = 0.0249m and ϕ = π/8rad for test geometry 2. . . . . . . . . . . . . . . . . . . . . 41

4.4. (a) Position of the three cylinder tiles in red, amber and green. The blue circles illustrate
the paths, along which the magnetic field is evaluated (see also Tab. 4.5). (b) Cartesian
field components along the inner-circle. (c) Cartesian field components along the inside-
magnet-circle. (d) Cartesian field components along the above-circle. (e) Cartesian field
components along the outside-circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5. (a) Sketch of magnetization M in a Halbach cylinder with perfectly homogeneous field H
inside. (b) Sketch of a discrete Halbach cylinder with n = 12 cylinder tiles. (c) Magnetic
flux density in the discrete Halbach cylinder with a height of 4mm, computed with the
analytical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6. Sketch of quadrupole magnet consisting of four cylinder tile magnets alternately magnet-
ized in the positive and negative radial directions. Its magnetic north poles are colored
red, the south poles in green. The sensor arrays consists of eight 1D Hall sensor elements,
each measuring the field in radial direction that oscillates due to the rotation of the magnet
by the angle α . The current flows in positive z-direction. . . . . . . . . . . . . . . . . . 45

4.7. (a) Signals from the eight sensors s1, . . . ,s8 during a rotation of the magnetic quadrupole
by 180◦ in the absence of additional fields originating from the current wire. In compar-
ison, the graphs of ±B0 cos(2α) and ±B0 sin(2α) show almost perfect agreement. The
errors are calculated as deviation from the perfect harmonic oscillation, i.e. differences
si ∓B0 cos(2α) for odd i and si ∓B0 sin(2α) for even i. (b) The combination of four
sensors each leads to the two main branches of the signal, which approximately follow the
function graphs of 4B0 cos(2α) and 4B0 sin(2α). The errors are calculated as deviation
from the perfect harmonic oscillation, i.e. differences C−4B0 cos(2α) and S−4B0 sin(2α). 47

4.8. Deviation of the sensor output α̂ compared to the real rotation angle α . (a) without
external fields and (b) for different external fields and straight and tilted wire (by 45◦ in
the x-z-plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xvi



5.1. In (a) the moveable magnet system beneath a sensor is illustrated. It may consist of
different magnet assemblies (c)-(e), which all generate an even and an odd component of
the magnetic field as shown in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2. Sketch of the system response. The airgap variation leads to a measurement error ∆x,
which is determined by ∆ζ and the local slope S(x0,g) of the function ζ (x,g). . . . . . . 54

5.3. Airgap dependence of the field (a) and resulting position error ∆xmax for 1D and 2D sensor
schemes (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4. The antiparallel permanent magnet arrangement (a) leads to a beneficial field superposi-
tion (b). For well-chosen dimensions, the sketch in (b) is approximately valid for both Bx

and Bz and all x simultaneously (possibly with reversed sign). . . . . . . . . . . . . . . . 56

5.5. Sketch of the magnet system variation parameters. . . . . . . . . . . . . . . . . . . . . . 56

5.6. Sensor output of optimum configuration in four different cases. . . . . . . . . . . . . . . 59

5.7. Position error ∆x for all four configurations. The red rectangle marks the working area
(±∆g airgap variation) of the sensor system. . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8. Quantitative comparison of weighted position error ∆x and maximal position error ∆xmax
of the four optimized systems with ranges of ±5mm and airgap variations ∆g of ±1mm. 61

6.1. Procedure of our simplified version of the CS algorithm. . . . . . . . . . . . . . . . . . 66

6.2. Sequence of BSA. It starts with an arbitrary initial binary state (ρi ∈ {0,1}) for all i and
ends in finitely many steps. How the sign of the derivative determines the candidates for
modified cells is visualized in the sub-image. Depending on the present value of ρi and
the sign of the derivative dJ/dρi, the cell is either a candidate for a change or not. . . . . 68

6.3. Procedure of the HA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4. Alignment and dimensions of the optimization regions. Ωt denotes the blue target region,
Ωm the red magnetic region and Ωext the gray region representing the additional magnet
whose geometry is left constant and which is not changed during the optimization process.
The numerical values are given in mm. The mesh illustrates a possible subdivision into
cubic cells with a edge length of 0.5mm. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5. Optimum configuration of Ωm in Fig. 6.4 according to the algorithms for the different
cubic cell sizes: (a), (b) for 1/2mm, (c), (d) for 1/6mm, (e), (f) for 1/10mm, (g), (h)
for 1/16mm, (i), (j) for 1/20mm, (k), (l) for 1/22mm, (m), (n) for 1/26mm. The left
pictures depicts the result of the local BSA, the right pictures of the HA. . . . . . . . . . 73

6.6. Optimum configuration of Ωm in Fig. 6.4 according to the BSA for different random
initial configurations and cell size 1/10mm. The corresponding optimum values are
given in Tab. 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1. The upper rectangle represents the integration area [ϕ1,ϕ2]× [z1,z2]. In this case, z1 could
be moved below the horizontal axis without leaving the grayed region, i.e. the sign of z1
could also be changed. However, the lower rectangle would intersect the point (0,0) if
the upper boundary z2 is moved to the positive part of the vertical axis, since ϕ ′

1 = 0. . . 82

B.1. Graph of the angle scaling function Sc as the periodic continuous continuation of the
anti-derivative from (−π,π) to R for three different values of k. . . . . . . . . . . . . . 84

D.1. Illustration of a cuboid domain. The green points indicate that each point, except of the
red corner points, lie always on the line between two other points of the domain. . . . . . 102

xvii



E.1. Alignment of the magnetic region Ωm and the target region Ωt with a simple discretization.
The arrows show the magnetization direction m in Ωm and the relevant field directions for
the objective function in Ωt . The larger arrow in the left part of Ωm indicated a stronger
magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

E.2. Graph of the objective function Eq. (E.2) for H1 = 2A/m,H2 = 1A/m and ∆xyz = 1m3.
We observe two local minima in P2 and P3 for the configurations (ρ1 = 1,ρ2 = 0) and
(ρ1 = 0,ρ2 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

F.1. Graph of the function J1. All four binary states in the corners are local minima in the
sense of the algorithm in Subsec. 6.4.2, since the partial derivatives always indicate a
local increase of the objective function (represented by arrows). . . . . . . . . . . . . . 108

F.2. Graph of the function J2. The global minimum (1,1) in P4 of this function is also the
only local minimum for a good choice of parameters p and f . . . . . . . . . . . . . . . . 109

F.3. Graph of the function J3. Depending on the start value, there are two local minima P2
and P4, where the algorithm tends to finish for p ≥ 0.5. . . . . . . . . . . . . . . . . . . 110

G.1. Cubic target cell with simple discretization by a single cell (a) and eight subcells (b). . . 112

H.1. Alignment of the magnetic region Ωm and the target region Ωt with a simple dicecretiza-
tion. The arrows show the magnetization direction m in Ωm and the target field H0 = H0ex

in Ωt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xviii



1. Introduction

Computational modeling and simulation of magnetic systems has become a very important scientific
discipline. Due to the increasing performance, capacity and availability of powerful computers, simu-
lations have become an essential part of the magnetic device development process [1–4]. Even before
the steps of experimental approval, prototyping and final mass production, they provide a tool to study
physical trends and correlations without material costs and manufacturing difficulties. Both deterministic
and stochastic approaches range from atomistic [5–9] and density functional theory [10–17], over coarse
grained [18–25] and micromagnetic models [26–59] to simulation of the macroscopic Maxwell equation
[47, 60–62] and cover several applications. However, as the complexity of the systems increases, the
computational capabilities also reach certain limits, which is why reasonable modeling of the problems
is of key importance. Focusing on the essentials and neglecting unimportant details is generally easier
said than done and must be carefully weighed for each application. In some cases, however, detailed
mathematical investigation opens up new possibilities and allows even more advantageous ways of
modeling. Such optimizations in computational procedures can reduce the computational cost very
drastically in many cases.

The following work will address the challenge of mathematical optimization in magnetic simulation
methods in detail and present some key improvement approaches in various aspects and applications of
magnetism. They have in common that the underlying investigations allow either a significant reduction in
computational effort, an increase in accuracy for the same computational time, or simply an improvement
of the whole magnetic system. Use cases include simulation of magnetic write and read-back signals in
hard disk devices, magnetic sensing, optimal magnetic shapes, and analytical magnetic field computation.
The focus is on both methodology and implementation.

The structure of the thesis is the following:

• Chapter 2 deals with the simulation of a write and read-back process in magnetic recording.
While conventional techniques are very costly, requiring multiple simulations of an entire granular
medium consisting of many magnetic grains, we show how an efficient combination of a pre-
simulated switching probability phase diagram and probability mapping to the grains can greatly
increase read-back statistics.

• Chapter 3 follows on from the previous one and shows how a mathematical parameterization
of the switching probability phase diagram enables the study of how certain key parameters of
the magnetic recording material change the quality of the read-back signal. This enables the
observation of certain trends and shows which material properties have the greatest influence on
the signal-to-noise ratio.

• Chapter 4 presents the analytical formulas for the magnetic field of the uniformly magnetized
cylinder tile. They allow a fast and very accurate point-wise evaluation of the field, the relevance
of which is also demonstrated by examples of magnetic simulations.

• Chapter 5 shows how a simple state-of-the-art magnetic linear position system can achieve airgap
stability by optimizing an additional magnet and using the resulting stationary points in the magnetic
field profile.
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• Chapter 6 presents an optimization method for magnetic topology optimization based on a hybrid
combination of state-of-the-art global and local optimization algorithms, which allows finding
global optima of magnetic structures with respect to a given objective function in the presence of
multiple local optima.

• Appendix A explains why the occurrence of singularities in the anti-derivatives of integrals is a
serious problem in the analytical solution of magnetic fields for certain geometries and how they
can be avoided.

• Appendix B gives an overview of the special functions used in Chap. 4, e.g. elliptic integrals of all
three kinds.

• Appendix C provides the tables with the results of the analytical calculation of Chap. 4.

• Appendix D shows the computation of the variational derivatives of the objective function in
topology optimization according to Chap. 6 and discusses their role in the solvability of the
optimization problem.

• Appendix E gives a simple toy example showing that local optima can easily arise in magnetic
topology optimization problems in general.

• Appendix F illustrates the behavior of the binary on/off algorithm used for local optimization in
Chap. 6.

• Appendix G discusses the reason why finer mesh refinement does not always lead to better optima
in the optimization problem and why this still does not mean that the geometry found is worse.

• Appendix H discusses the symmetry properties of the solution in topology optimization problems.

• Appendix I refers to the supplementary material of this thesis, the implementation of the formulas
derived in Chap. 4 for the uniformly magnetized cylinder tile.

Each chapter has its own introductory and concluding sections that embed the optimization approach
in its specific physical context and explain all background information and references.
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2. Statistical analysis of read-back signals in
magnetic recording on granular media

The comprehensive simulation of magnetic recording, including the write and read-back process, on
granular media becomes computationally expensive if the magnetization dynamics of each grain are
explicitly computed. In addition, in heat-assisted magnetic recording (HAMR), the writing of a single
track becomes a random process since the temperature must be considered and thermal noise is involved.
Further, varying grain structures of various granular media must also be taken into account to obtain
correct statistics for the final read-back signal. Hence, it requires many repetitions of the write process to
investigate the mean signal as well as the noise.

This chapter presents a method that improves the statistical evaluation of the whole recording process.
The idea is to avoid writing the magnetization to one of its binary states. Instead, we assign each grain
its probability of occupying one of its stable states, which can be calculated in advance in terms of a
switching probability phase diagram. In the read-back process, we combine the probabilities to calculate
a mean signal and its variance. Afterwards, repetitions on different media lead to the final read-back
signal.

Using a recording example, we show that the statistical behavior of the evaluated signal-to-noise
ratio (SNR) can be significantly improved by applying this probability mapping method, while the
computational effort remains low.

Parts of this chapter have been previously published in [63] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by the American Institute of Physics (AIP).

2.1. Introduction

In state-of-the-art hard disk drives, which are used as storage media in personal computers as well as
in server systems, the information is written as a sequence of bits on a granular medium consisting
of magnetic grains. During writing, an applied magnetic field switches the magnetization direction of
the magnetic grains in a specific direction [64]. Afterwards this direction can be detected by a reader
module via the magnetic stray field. Due to the massive amount of data that is permanently produced,
new technologies are required to increase the storage density of hard drives [65–69]. Micromagnetic
simulation of write and read-back processes is therefore a valuable tool for analyzing new ideas [70].
Nevertheless, simulations of the entire write and read cycle are computationally expensive. Additionally,
concepts such as HAMR [67] must consider temperature, which makes the underlying equation of the
magnetization dynamics a stochastic partial differential equation that further increases the required
computational effort [25]. Due to the stochastic nature of the solution obtained, repeated simulations are
required to reduce the statistical error of the observed results to a sufficient low level [71–74]. In this work
we present an efficient calculation method of the SNR based on probability theory. Instead of writing
concrete bit series on granular media, we allocate every grain a certain switching probability. In the
read-back procedure, those probabilities are further processed to obtain the signal and noise value of the
written bit sequence. The goal of this method is a significant improvement of the statistical error within
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the SNR evaluation of a given writing and read-back procedure. This reduces the number of necessary
computation-intensive writing and read-back simulations required, resulting in an accurate SNR value.

2.2. Signal-to-noise ratio

Granular media for magnetic recording consist of single magnetic grains with strong uniaxial anisotropy
perpendicular to the film plane, separated by non-magnetic grain boundaries. Due to the high uniaxial
anisotropy of the grains, the assumption is valid that the magnetization of every single grain points either
in positive or negative z-direction (perpendicular direction). Although each grain can only have two
magnetic states −1 and +1, in reality writing a bit series has a stochastic nature. There are two reasons:
First, in areas at the transitions between different bits, grains can have different states after consecutive
writing processes, despite the fact that the same medium with the same grain pattern is used. Such
grains have the probability to occupy the states −1 and +1 in the range of [0,100]%. Additionally, the
randomized positions of grains in different granular media leads to a further stochastic effect, because
the probability of the magnetization direction of each grain depends on the position of the grain within
the medium during the writing process. A read-back module measures the magnetization of the grains
across the bit pattern and produces a corresponding read-back signal V (x) as a function of the down-track
position x. Since the magnetization of the individual grains is random, V (x) is a random variable with
certain expectation value E[V (x)] and variance V[V (x)]. The signal power (SP) and the noise power (NP)
of the whole bit pattern between the down-track positions xstart and xend can be defined according to e.g.
[71] as

SP =
∫︂ xend

xstart

E[V (x)2] dx, (2.1)

NP =
∫︂ xend

xstart

V[V (x)] dx. (2.2)

The quality criterium for a written bit series is the SNR defined by

SNR =
SP
NP

. (2.3)

The determination of SP and NP via measurement or simulation is an important goal of magnetic
recording as in [71, 72]. In this work we investigate and compare different numerical approaches based
on statistic and probability calculation to determine these values in a computational accurate and non-
expensive way. We further demonstrate the approaches on the example of simulating a writing process
of HAMR, where the switching probability of grains is in particular affected by additional thermal
fluctuation.

2.3. Switching probability phase diagram for single grains

The investigations in this work are based on the concept of switching probability phase diagrams as
presented in [69]. The idea is the calculation of a single grain’s switching probability dependent on its
possible position on the recording track within the writing process. The advantage of this approach is
that the phase diagram has to be computed only once and the switching probability can afterwards be
extracted for an arbitrary amount of magnetic grains with no further computational effort. An example
for the possible shape of such a diagram is given in Fig. 2.1. In the following, we always assume that

4



such a phase diagram is available. Since a sequence of two or more successive down or up bits can be
summed up to one writing operation with multiple bit length, we split the writing process of each bit
pattern to S sequential alternating −1 or +1 mappings of the phase diagram onto the magnetic medium.
The detailed realization of this sequential writing process depends on the different modeling approaches
and will be discussed in the following sections.

Figure 2.1.: Example for a switching probability phase diagram of one single grain.

2.4. Magnetization mapping on grains

2.4.1. Writing process

For each bit pattern containing G magnetic grains, we use the phase diagram to extract the switching
probability pi

j for magnetic grain i,(i = 1, . . . ,G) in the j-th mapping step ( j = 1, . . . ,S) of the bit pattern
according to Sec. 2.3. Due to the assumption of only two possible magnetic states mi =−1 and mi =+1
of grain i, we assume randomized initialization of the grains, i.e.

mi
0 := randi

0(0.5), (2.4)

where rand(p) denotes the outcome of a random experiment with possible outputs −1 and +1 with
probabilities 1− p and p. We then update the magnetization in each writing step j recursively as it
follows:
For given magnetization mi

j−1 from the previous step, we calculate mi
j by differing two cases:

• If the j-th step writes a bit in −1 direction, we set:

– mi
j :=−1, if mi

j−1 =−1
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– mi
j := randi

j(1− pi
j), if mi

j−1 =+1

• If the j-th step writes a bit in +1 direction, we set:

– mi
j := randi

j(pi
j), if mi

j−1 =−1

– mi
j :=+1, if mi

j−1 =+1

Doing S mapping steps, this procedure leads to a sequence of grain magnetization and we receive the
final magnetization of every grain mi := mi

S ∈ {−1,+1}. The result of such a writing procedure is shown
in Fig. 2.2.

Figure 2.2.: Top: Randomly initialized granular medium (500nm×60nm and a thickness of 8nm) with
grain diameter of 4nm and 1nm gap between neighboring grains. Bottom: Granular medium after the
simulated writing process of a pseudo-random bit sequence according to [70].

2.4.2. Read-back process

The reader module is defined via its sensitivity function, as defined in [75]. The voltage V (x) of the
reader in down-track position x is given by the integral in [75, Eq. (1)]

V (x) = c1 ·
∫︂

H ·M dVm (2.5)

with the reader’s sensitivity function H, the magnetization of the media M and a reader dependent
constant c1. Since the magnetization is assumed to have negligible dependence on the z direction and
grains have strong uniaxial anisotropy, it degenerates to an area integral in the form

V (x) = ˜︁c1 ·
∫︂

Hz ·Mz dAm (2.6)

with a constant ˜︁c1, which does not affect the SNR value, because both SP and NP are homogeneous of
degree 2 in V and therefore the constant ˜︁c1 cancels in the ratio SNR = SP/NP. Without loss of generality
we set ˜︁c1 := 1. We further simplify the notation by skipping the z-index and set H := Hz and M := Mz.
The possible values for M are −1,+1 or 0 depending whether the position is located within a grain with
mi =±1 or within the grain boundary. We can therefore rewrite the integral to a sum over the grains

V (x) =
G

∑
i=1

(︃∫︂
graini

H dAm

)︃
⏞ ⏟⏟ ⏞

=:H i
G

·mi =
G

∑
i=1

H i
G ·mi, (2.7)

where H i
G denotes the sensitivity across the grain i for the reader module in position x. Moving the

sensitivity function across the medium gives the detected read-back signal of the whole bit pattern.
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2.4.3. Statistical evaluation

Repeating the previous step on N granular media with different random grain structure and different
outcomes of the random experiment rand(p) (determining the magnetization according to the switching
probabilities) leads to N different signal trajectories Vk (k = 1, . . . ,N). For large N we can assume to
receive a good estimation of SP and NP by substituting the squared expectation value and the variance in
Eqs. (2.1) and (2.2) by their unbiased estimators

E[V (x)2]≈ 1
N

V (x)2, (2.8)

V[V (x)]≈ 1
N −1

N

∑
k=1

(︂
Vk(x)−V (x)

)︂2
. (2.9)

Due to the fact that we deal with two uncertainties, the grain magnetization according to the random
experiment and the position of the grains in each granular medium, the amount of necessary repetitions N
might be relatively large to receive a good statistic for both.

2.5. Probability mapping on grains

2.5.1. Writing process

In contrast to the previous magnetization mapping method, we now avoid setting the magnetic states to
integer numbers −1 or +1 in every writing step. Instead, we use probability analysis calculation laws to
determine the overall probability for the −1 or +1 state after the entire writing process. This approach
allows to calculate the expectation value and variance of the magnetization of each grain and therefore
also for the whole read-back signal afterwards.

As before, we consider the writing process of the entire series as a sequence of S independent mapping
steps of the bits. In the following, we describe in detail how the magnetization probability in the grains
must be updated throughout this process.

In step j, the switching probability of the i-th grain is denoted by pi
j and again extracted from the phase

diagram. We further denote the probability of grain i for magnetization +1 after j mapping steps with Pi
j.

Since we assume only two possible states, the probability for magnetization −1 is therefore 1−Pi
j. We

initialize with random magnetization, i.e. Pi
0 := 0.5 for all i = 1, . . . ,G and update the magnetization in

each writing step j recursively as it follows:
For given magnetization probability Pi

j−1, we calculate Pi
j by differing two cases, which are also illustrated

in Fig. 2.3. Given our convention that Pi
j is the probability of state +1, we aim for this probability in each

case:

• If the j-th step writes a bit in −1 direction, we set Pi
j := Pi

j−1 · (1− pi
j), i.e. the probability that the

grain was already in state +1 after step j−1, times the probability that it is not rewritten to −1 in
step j (see Fig. 2.3a).

• If the j-th step writes a bit in +1 direction, we set Pi
j := Pi

j−1 +(1−Pi
j−1) · pi

j, i.e. the probability
that the grain was already in state +1 after step j−1, plus the probability that it was in state −1
after step j−1, times the probability that it is successfully rewritten to +1 in step j (see Fig. 2.3b).

After writing the whole bit pattern within S steps, we receive the final magnetization probabilities of
the whole writing process Pi := Pi

S. These probabilities allow to further calculate the expectation value
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and variance of the magnetization mi for each grain i = 1, . . . ,G via the formulas

E[mi] =−1 · (1−Pi)+1 ·Pi = 2 ·Pi −1, (2.10)

V[mi] = E[(mi)2]−E[mi]2 = 1− (2 ·Pi −1)2

= 4 ·Pi · (1−Pi).
(2.11)

Note that in contrast to the previous section, mi is here regarded as a random variable and not determined
by random numbers, so we have no statistical error so far.

(a) (b)

Figure 2.3.: Tree diagram of the different decisions and their corresponding switching probabilities.
The gray background marks the j-th writing step in the case of a down-bit in (a) and an up-bit in (b).
Based on to the previous magnetization of the grain with probabilities 1−Pi

j−1 and Pi
j−1 respectively,

the magnetization gets either changed from −1 to +1 or vice versa with switching probability pi
j or

remains in its original direction with probability 1.

2.5.2. Read-back process

The derivation of Eq. (2.7) again holds with the only difference that mi and therefore also V (x) are random
variables in this section. By applying E(·) and V(·) on both sides of the equation and using that H i

G is a
deterministic value, we receive the expressions

E[V (x)] =
G

∑
i=1

H i
G ·E[mi], (2.12)

V[V (x)] =
G

∑
i=1

(︁
H i

G
)︁2 ·V[mi]. (2.13)

Additional, we can also calculate the second moment of V (x) by the well known identity

E[V (x)2] = V[V (x)]+E[V (x)]2. (2.14)

2.5.3. Statistical evaluation

We again repeat the writing and read-back process on N different granular media. The outcome are N
different signal trajectories Vk (k = 1, . . . ,N), where Vk(x) denotes a random variable for every k and
down-track position x. The results of the previous subsection hold for each single medium. To combine
them to a final SNR outcome, we state the following lemma for a discrete random variable in a specified
random experiment:
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Lemma 1. Let Xk be a discrete random variable for all k = 1, . . . ,N with corresponding probability
distributions P(Xk = xkℓ) = pkℓ for all ℓ= 1, . . . ,nk. We consider the two-step random experiment:

• Choose Xk ∈ {X1, . . . ,XN} randomly with probability pk.

• Do the corresponding random experiment with random variable Xk.

The final outcome can be described by an overall random variable X. Then it holds for m ∈ N:

E[Xm] =
N

∑
i=1

pk ·E[Xm
k ] (2.15)

Proof. Per definition for the expected value of Xm (i.e. the m-th moment of X), we have to sum over the
product of all possible outcomes and their corresponding probabilities. In our case, we can write that as

E[Xm] =
N

∑
k=1

nk

∑
ℓ=1

xm
kℓ · pk · pkℓ =

N

∑
k=1

pk ·
nk

∑
ℓ=1

xm
kℓ · pkℓ⏞ ⏟⏟ ⏞

=E[Xm
k ]

=
N

∑
k=1

pk ·E[Xm
k ],

(2.16)

which concludes the proof.

We now assume that the grain pattern of each granular medium has the same probability 1/N. For the
moments of the overall trajectory V (x), we can apply Lemma 1 for m = 1 and m = 2 to get

E[V (x)] =
1
N

N

∑
k=1

E[Vk(x)], (2.17)

E[V (x)2] =
1
N

N

∑
k=1

E[Vk(x)2]. (2.18)

Those values can easily be determined by the results for each trajectory in Eqs. (2.12) and (2.14) and
combination also leads to

V[V (x)] = E[V (x)2]−E[V (x)]2. (2.19)

Finally with Eqs. (2.17) and (2.19), we have two formulas for the integrands in Eqs. (2.1) and (2.2) and
are able calculate the SP and NP.
In contrast to the magnetization mapping method of the previous section, we avoid the statistical error
coming from the "projections" of the probabilities to the −1 and +1 magnetization states. The only
statistical uncertainty probability mapping method comes from the random pattern of the grains in the
different media.

2.6. Results and discussion

We now compare the SNR calculation methods of Secs. 2.4 (magnetization mapping) and 2.5 (probability
mapping) based on a concrete example. Therefore we use the switching probability phase diagram in
Fig. 2.1 and for demonstration purpose we step-wise reduce the curvature of its shape (see [73, 74]).
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For each curvature we calculate the SNR by writing on N = 50 different granular media and determine
the read-back signal V (x) via a Gaussian shaped reader sensitivity function with a full width at half
maximum of 13.26nm in down-track and 30.13nm in off-track direction. The SNR values are plotted in
Fig. 2.4. We clearly observe that for the magnetization mapping method, the statistical variations on 50
different granular media have large impact on the calculated SNR values, so no clear trend of the SNR can
be observed. When we use the probability mapping method, we can massively reduce those variations
and receive a much smoother curve with a clear trend, even though the same number of granular media
was used. The reason for the improvement is the avoided reduction of the magnetization probability
to one of the magnetic end states −1 and +1 for each grain, which leads to a statistical error in the
magnetization mapping method. Since each bit pattern contains a large number of grains, many repeated
writings are necessary to obtain a sufficiently accurate mean read-back signal and its variance. The more
sophisticated probability mapping writing method prevents this statistical issue and leads to very accurate
results with comparatively few repetitions. Furthermore it is important to note that an implementation of
both methods has asymptotically the same computational effort. In the writing process, the allocations of
the magnetization or probabilities bases on similar approaches and have to be done S times for G grains
in both methods. The additional calculation of G times Eqs. (2.10) and (2.11) can be neglected. The
read-back process requires summations over R data points for every down-track position x in both cases.
The only noteworthy difference is that for the probability mapping method, it is unavoidable to calculate
the grain sensitivity H i

G explicitly, since the square is used for the variance formula. This can be achieved
by clever rearrangement of the sum and does not cause additional effort. In the final step the statistical
evaluation in both cases is done via summation over N granular media.

0 20 40 60 80 100
curvature reduction [%]

16.2

16.4

16.6

16.8

17

17.2

S
N

R

magnetization mapping
probability mapping

Figure 2.4.: Comparison of the SNR of a pseudo random bit sequence for varied bit curvature calcu-
lated by the methods of Secs. 2.4 and 2.5.
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2.7. Conclusion and outlook

In this chapter we presented a SNR calculation method based on probability theory. We could show that
for a given switching probability phase diagram and given granular media it is statistically unfavorable
to emulate the procedure of a real write processes in which each grain obtains a certain magnetic state
according to its switching probability. Although it is the more obvious way to receive an estimate for the
SNR, it reduces the switching probability p ∈ [0,100]% to a binary value m ∈ {−1,+1} representing
the direction of the magnetization, which clearly means a loss of information. We were able to show
that a prevention of this loss leads to a more sophisticated evaluation, which significantly improves
the statistic and can furthermore be applied without additional computational effort. Although we
demonstrated our approach as an application for SNR calculation in HAMR, similar ideas could also be
used for conventional recording and other statistical evaluations on granular media. Since we successfully
eliminated the statistical error of the reduction from p to m, the only statistical error in our SNR value
remains from the pattern of different granular media. The question arises whether this error could also be
corrected by a suitable grain size distribution model instead of randomly sampling N different media.
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3. Systematic parameterization of HAMR
switching probabilities and the
consequences for the resulting SNR

The SNR of a bit series written with HAMR on granular media depends on a large number of different
parameters. The choice of material properties is essential for the obtained switching probabilities of single
grains and therefore for the written bits’ quality in terms of SNR. Studies where the effects of different
material compositions on transition jitter and the switching probability are evaluated were done, but it is
not obvious, how significant those improvements will finally change the received SNR. To investigate that
influence, we developed an analytical model of the switching probability phase diagram, which contains
independent parameters for, inter alia, transition width, switching probability and curvature. Different
values lead to corresponding bit patterns on granular media, where a reader model detects the resulting
signal, which is finally converted to a parameter dependent SNR value. For grain diameters between 4
and 8nm, we show an increase of ∼ 10dB for bit lengths between 4 and 12nm, an increase of ∼ 9dB
for maximum switching probabilities between 0.64 and 1.00, a decrease of ∼ 5dB for down-track-jitter
parameters between 0 and 4nm, a decrease of 1 to 3dB for off-track-jitter parameters between 0 and
50K and an increase of ∼ 0.5dB for reduced bit curvature. Those results are furthermore compared to
the theoretical formulas for the SNR. We obtain a good agreement, even though we show slight deviations.

Parts of this chapter have been previously published in [76] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by the American Institute of Physics (AIP).

3.1. Introduction

The quality of a written bit pattern on granular media is mostly determined by the SNR. A high SNR
means low noise and a sharp edge between neighboring bits. The SNR depends either on suitable
magnetic material properties of the grains to provide a good switching probability in the writing process
but also on the size and position distribution of the grains in the granular medium. There are different
methods to calculate the switching probability of a grain model during HAMR, which is subject to a heat
pulse and an external magnetic field [67]. One method is solving the stochastic Landau-Lifshitz-Gilbert
(LLG) equation for each atom of the grain [8], another is solving the stochastic coarse-grained Landau-
Lifshitz-Bloch (LLB) equation [25]. Depending on the down-track position d and off-track position y,
the repetition of switching trajectories for a given parameter set results in the approximate switching
probability of a grain. Calculating the probability for various d and y yields a phase diagram of the
writing process. Instead of the off-track direction y, the peak temperature Tpeak can be used, because
then there is no need to specify the maximum temperature at the track center beforehand. For each peak
temperature Tpeak the off-track direction y can be easily determined under the assumption of a Gaussian
heat pulse via the relation

Tpeak(y) = (Tmax −Tmin) · exp
(︃
− y2

2σ2

)︃
+Tmin, (3.1)

13



where Tmin and Tmax are the overall minimum and maximum temperatures of the whole heat pulse and
σ = FWHM/

√
8ln2 its standard deviation related to its full width at half maximum (FWHM) [69].

The final phase diagrams for the switching probability P(d,Tpeak) as in [69] allow the simulation of
writing processes of bit patterns on granular media as we will describe in Sec. 3.3. The advantage of
this approach is that the phase diagram has to be created only once and the switching probability can
afterwards be extracted for an arbitrary amount of magnetic grains with no further computational effort.
The disadvantage is that every grain is regarded individually and therefore it is not obvious how to take
stray-field interactions into account. This can be done by adjusting the intrinsic distribution of the Curie
temperature as shown in [77]. The phase plots contain much information about the size and characteristics
of the magnetic grains as well as the parameters of the writing process (velocity, external applied field
etc.). In [78] for instance, the shape of the phase diagram depending on the composition of a bi-layer
material is investigated. This information only refers to a single grain but a priori tells very little about the
resulting SNR of the read-back signal of a bit series. Hence, there is need to systematically investigate the
influence of changes of the phase diagram on the final SNR. In this work we will develop a mathematical
model of a phase diagram, which allows to vary certain parameters and perform writing processes with the
resulting diagrams. The read-back signal then gives some indication of the potential SNR-improvement.
The mathematical formulation of the phase plot is presented in Sec. 3.2. In Sec. 3.3, we will describe
the simulation of the writing and read-back processes with the method of Chap. 2 and Sec. 3.4 will
summarize and discuss the results of the received SNR and compare those to theoretical formulas.

3.2. Mathematical model of a phase plot

In HAMR the switching probability of a magnetic grain can be represented as a phase diagram. In contrast
to the previous chapter and Fig. 2.1, we make use of the symmetric heat pulse and replace the off-track
position coordinate by the corresponding peak temperature at that position according to Eq. (3.1). As in
[69], the area of the highest switching probability has a C-like shape in the coordinate plane spanned
by the down-track position d and the peak temperature of the heat pulse Tpeak (see e.g. Fig. 3.1). In the
following we define an analytical function P(d,T ), which allows to fit such a phase plot.

3.2.1. Model parameters

We use eight parameters that fully determine the shape of the phase plot:

• down-track-jitter parameter: σd [nm]

• off-track-jitter parameter: σo [K]

• maximum switching probability: Pmax

• half maximum temperature: F [K]

• bit length: b [nm]

• curvature parameter: p1 [nm/K2]

• position in Tpeak-direction: p2 [K]

• position in d-direction: p3 [nm]

The detailed significance of those values for the model is introduced in Subsec. 3.2.2.

14



Figure 3.1.: Simulated switching probability phase diagram for a grain diameter of D = 7nm via LLB
model and material parameters as shown in Tab. 3.1.
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3.2.2. Mathematical model

We now define the model function P in three steps with two help functions h1 and h2, which depend on
the upper parameters. First the down-track- and off-track-jitter is modeled as the slope of the probability
function graph along a cut through the phase diagram for fixed d and Tpeak, respectively. As in [78] we
use the Gaussian cumulative distribution function

Φ(x,µ,σ) =
1
2

(︄
1+ erf

(︃
x−µ√

2σ

)︃)︄
(3.2)

with the properties

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1,Φ(µ) =
1
2

(3.3)

and σ determining the slope of Φ. We write

h1(d,T ) := Φ(d,0,σd) ·Φ(T,F,σo) (3.4)

and receive a function as in Fig. 3.2a that models the down-track-jitter parameter σd via the vertical and
the off-track-jitter parameter σo via the horizontal contour sharpness. Furthermore, the half maximum
temperature F denotes the temperature at which the function value is reduced to half of its maximum
in a fixed down-track position. When a bit is written, the switching probability should again decrease
after a certain writing distance in down-track direction, therefore we additionally multiply a mirrored and
shifted function h1 in the form

h2(d,T ) := h1(d,T ) ·h1(b−d,T ) (3.5)

and receive a function graph as in Fig. 3.2b. The maximum function value is one, but note that according
to the asymptotic convergence of Φ, this only holds in the limit of large bit lengths b and temperatures T .
Finally we receive the complete model via transformation into a parabolic shape via

P(d,T ) := Pmax ·h2

(︂
d −

(︁
p1(T − p2)

2 − p3
)︁
,T
)︂

(3.6)

to get the C-like curvature as in Fig. 3.2c, which is usually observed [69]. The factor Pmax furthermore
represents the (asymptotic) maximum of the function. If Pmax ≈ 1, the function value at the half maximum
temperature F reaches approximately 0.5. i.e. the probability for each magnetization direction becomes
≈ 50%. Therefore, F can be interpreted as approximately the temperature at which the coercivity of the
material is just compensated by the external field. In literature, this temperature is often referred to as the
write temperature [79, 80]. The impact of the model parameters defined in Subsec. 3.2.1 on the shape of
the model function can also be visually observed in Fig. 3.2c.

3.2.3. Reference system and variation of the parameters

We aim to investigate the influence of the described switching probability phase plots on the resulting
SNR. Of course, it is desirable to start all variations from a realistic basic parameter set. We therefore
compute reference phase plots via LLB model as in [25]. Thereby we use parameters of FePt-like
material according to the Advanced Storage Technology Consortium [81] with bulk Curie temperature
T bulk

C = 708.9K and anisotropy field Hk = 8.2T at room temperature T = 300K that can be seen in
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Figure 3.2.: (a) and (b) show the graphs of the help functions h1 and h2. In (c), the final model phase
plot can be observed with detailed impact of the different model parameters of Subsec. 3.2.1.
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Tab. 3.1. The grain height is 8nm and the external magnetic field is trapezoidal with 0.8T, tilted with
an angle of 22◦ with respect to the z-direction and a duration of 0.67ns including rise and fall times of
0.05ns each. Further a moving Gaussian heat pulse with a velocity of v = 15m/s and a FWHM of 60nm
is assumed. Note that in this simulation step each grain is considered identical, so the uncertainty of the
switching process imposed on the switching probability is an exclusive consequence of thermal effects.
Possible TC and Hk variations could also be considered in this step [77] but are neglected in the context of
this work.

The resulting phase diagram for a grain diameter of D = 7nm is illustrated in Fig. 3.1. The reference
parameters of the plots in Fig. 3.2 are determined via a least square fit of the simulated diagram in
Fig. 3.1. For different grain sizes the eight resulting fitted parameters according to Subsec. 3.2.1 are given
in Tab. 3.2 and the estimated fitting parameter errors in Tab. 3.3.

In Sec. 3.4 we investigate the influence of σd ,σo,Pmax,b and p1 on the read-back SNR. The parameter
variations are taken in the ranges of Tab. 3.4 and in Fig. 3.3a-e their influence on the phase diagram is
visualized.

3.3. Bit patterns on granular media

We aim to use a phase plot, which determines the switching probability of a single cylindrical grain, to
write bit patterns on granular media. In the following, we describe the framework in which this is possible.
Each medium contains approximately equally sized magnetic grains with a diameter of D = 4,5,6,7 or
8nm. The diameter’s standard deviation of about 0.31nm is neglected in the following writing process,
so we assume that each grain within the granular medium has the same size. Nonmagnetic material
separates neighboring grains by B = 1nm (see Fig. 3.4, illustrated for a diameter of 4nm). We assume a
Gaussian heat pulse moving across the medium with a velocity of v = 15m/s, a FWHM of 60nm and a
maximum temperature of TC +60K, which is slightly dependent on the Curie temperature TC for different
grain sizes of about 700K (see Fig. 3.5). This results in a maximum thermal gradient of about 11K/nm.
The writing process is justified due to the assumption that every grain is approximated by a cylinder
with a certain diameter that is subject to the Gaussian heat pulse and trapezoidal magnetic field. The
peak temperature of the heat pulse Tpeak depends on the off-track position y of the grain (see Fig. 3.5) via
Eq. (3.1). We neglect a spatially varying temperature within a single grain and therefore assume, that the
whole grain volume receives the same temperature within the entire grain. The magnetic field is aligned
according to the written pseudo random bit series (PRBS) of [70]:

(-1 +1 +1) -1 -1 -1 -1 -1 +1 +1 +1 -1 -1 +1 -1 -1 -1 +1 -1

+1 -1 +1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 +1 +1 (-1 -1 -1),

K1 [J/m3] 6.6 ·106

Jk,l [J/link] 6.72 ·10−21

µs [µB] 1.6
Js [T] 1.35
a [nm] 0.24

λ 0.02

Table 3.1.: Used material parameters in the LLB model.
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(a) (b)

(c) (d)

(e)

Figure 3.3.: In contrast to Fig. 3.2c, each picture shows only one changed parameter value. The phase
plot in (a) has a reduced down-track-jitter parameter σd = 0nm, in (b) a reduced off-track-jitter para-
meter σo = 0K, in (c) a reduced Pmax = 0.8, in (d) an extended bit-length of b = 20nm and in (e) a
reduced curvature parameter p1 by 60%.
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where -1 represents a down and +1 an up bit (i.e. field in negative, respectively positive direction). A
sequence of two or more successive down respectively up bits is summed up to one writing process
with multiple bit length. The 2×3 bits in the brackets of the are used for padding and the remaining
31 bits in-between represent the desired bit series, the signal is always truncated by three bit lengths on
both sides. The stray-field is not taken into account directly and thus different grains do not influence
the switching probability of each other. Its impact is only considered via an added variation to TC as
discussed in [77]. Under these assumptions, writing is done by mapping the switching probabilities of
the corresponding phase plot to the grains of the granular medium according to their positions. For the
evaluation of the entire writing and read-back process over 50 random granular media we use the method
of Chap. 2 to finally obtain the SNR. The reader module is defined via its sensitivity function as discussed
in [75] and illustrated in Fig. 3.6a. A possible mean reader signal is illustrated in Fig. 3.6b.

Figure 3.4.: Visualization of a granular medium with approximately equally sized magnetic grains
(here: 4 nm diameter) surrounded by nonmagnetic material separating neighboring grains by 1 nm.

grain diameter
4nm 5nm 6nm 7nm 8nm

σd [nm] 2.51 2.03 1.74 1.50 1.37
σo [K] 27.7 22.5 18.0 14.4 13.6
Pmax 0.993 0.995 0.993 0.997 1.000

F [K] 571 602 617 628 639
b [nm] 10.2 10.2 10.3 10.2 10.1

p1 [10−4 nm/K2] 3.28 3.88 4.33 4.89 5.16
p2 [K] 839 839 836 830 832

p3 [nm] 29.5 27.5 26.5 25.8 25.8

Table 3.2.: Reference parameters that are evaluated via least square fit of the simulated phase diagrams
for grain diameters from 4 to 8nm.
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Figure 3.5.: Visualization of the applied Gaussian heat pulse that moves across the granular medium in
the direction of the arrow. Together with an applied magnetic field it performs the writing process. The
red and green curve demonstrate that grains are exposed to different peak temperatures depending on
their off-track position.

(a) (b)

Figure 3.6.: (a): Contour plot of the z-component of the sensitivity function. The reader width (width
of the 0.5 contour line in off-track direction) is 30.13nm and the reader resolution (width of the 0.5
contour line in down-track direction) is 13.26nm. (b) Example of a mean read-back curve of the 31 bit
PRBS determined by the reader with sensitivity function in (a) across granular media as in Fig. 2.2,
bottom.
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3.4. Results and discussion

3.4.1. SNR curves

For various parameter variations, the resulting SNR curves are plotted in Fig. 3.7. For selected values of
the parameters, Figs. 3.8 - 3.12 visualize the corresponding bit pattern. Note that in this subsection, apart
from the varied parameter, the other parameters are fixed and have the values of Tab. 3.2. The impact on
the SNR can clearly be observed. The curves describing the dependence on the bit length, curvature, Pmax,
down-track-jitter σd and off-track-jitter σo demonstrate an increase of ∼ 10dB for bit lengths between 4
and 12nm, an increase of ∼ 0.5dB for reduced curvature, an increase of ∼ 9dB for maximum switching
probabilities between 0.64 and 1.00, a decrease of ∼ 5dB for down-track-jitter parameters between 0
and 4nm and a decrease of 1 to 3dB for off-track-jitter parameters between 0 and 50K. Note that for
small bit lengths the reader needs a better resolution (see Fig. 3.6a) to achieve a suitable read-back signal,
therefore we scale the reader resolution in down-track direction R according to the bit length b in the form

R = R0 ·
b
b0

, (3.7)

where R0 = 13.26nm denotes the initial reader resolution (see Fig. 3.6a) and b0 = 10.2nm is the mean
initial bit length of Tab. 3.2 according to the phase diagram. The results in Fig. 3.7, top show a sharp
decrease of the SNR for low bit lengths, so the possible reachable linear density is limited. Pmax and
σd are clearly two parameters with significant impact on the SNR, so it is recommendable to consider
those values in terms of material optimization as in [78]. Furthermore the variation of two parameters
simultaneously lead to SNR contours as in Fig. 3.13.

3.4.2. Comparison with theory

In [66], the SNR-dependence on the media magnetic transition parameter a, grain size S (S = D+B, i.e.
sum of grain diameter D and nonmagnetic boundary B, see Fig. 3.4), bit length b, read-back pulse width
T50 and reader width W is given by

SNR ∝

(︃
b
a

)︃2

· T50

b
· W

S
. (3.8)

In the following, we avoid other SNR dependencies on the off-track-jitter σo, maximum switching
probability Pmax and the curvature parameter p1 by keeping those parameters constant and associate them

grain diameter
4nm 5nm 6nm 7nm 8nm

∆σd [nm] 0.04 0.02 0.02 0.02 0.02
∆σo [K] 0.6 0.5 0.4 0.3 0.3
∆Pmax 0.007 0.005 0.003 0.003 0.003

∆F [K] 0.5 0.3 0.3 0.2 0.2
∆b [nm] 0.07 0.04 0.03 0.03 0.02

∆p1 [10−4 nm/K2] 0.04 0.05 0.05 0.05 0.05
∆p2 [K] 2 2 1 1 1

∆p3 [nm] 0.1 0.1 0.1 0.1 0.1

Table 3.3.: Estimated fitting parameter errors of the fit values of Tab. 3.2.
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Figure 3.7.: SNR as a function of: (a) the bit length (with scaled reader), (b) curvature reduction, (c)
Pmax, (d) σd and (e) σo.
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parameter min value max value
σd [nm] 0.01 4.00
σo [K] 0 50
Pmax 0.64 1.00

b [nm] 4.0 12.0
curvature reduction [%] 0 100

Table 3.4.: Range of variation for the model parameters.

Figure 3.8.: Bit pattern for bit lengths of 4,7 and 12nm (top to bottom).

Figure 3.9.: Bit pattern for curvature reductions of 0,50 and 100% (top to bottom).
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Figure 3.10.: Bit pattern for Pmax = 0.64,0.81 and 1.00 (top to bottom).

Figure 3.11.: Bit pattern for σd = 0.01,2.00 and 4.00nm (top to bottom).

Figure 3.12.: Bit pattern for σo = 0,25 and 50K (top to bottom).
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Figure 3.13.: SNR values for simultaneous variation of σd and Pmax for 5nm grain diameter.
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to the proportionality constant. As in [65, 82, 83], the media magnetic transition parameter a can be
separated into two independent parts:

• the down-track-jitter parameter σd , that originates from the probability distribution in the phase
diagram

• the grain-jitter parameter σg, that comes from the grain distribution in the granular medium

Whereas σd decreases as the grain diameter increases due to the higher thermal stability of larger grains
(see Tab. 3.2), σg shows the opposite effect. The stochastic independence ensures that the total jitter of
these two parts can be written as

a =
√︂

σ2
d +σ2

g . (3.9)

The grain-jitter parameter σg usually depends on the mean and the variation of the grain sizes. In our
simulations, we assume the distribution to be very sharp, i.e. we neglect the dependence on the variations
and assume all grains to have approximately the same size S. In this case σg only depends on S and a
very simplified model with square grains in [82] shows

σg =
S√
12

. (3.10)

Since the size of the nonmagnetic grain boundary is constant B = 1nm in our media (see Fig. 3.4), the
grain size S = D+B only depends on the grain diameter D. Furthermore, the proportionality in Eq. (3.8)
may only hold, if the read-back pulse width T50 is chosen in a realistic ratio to the bit length b. Otherwise,
one might be able to increase the total SNR value just by increasing T50, which in general is obviously
not true. Therefore, we again scale the reader resolution R (which is proportional to T50) with the bit
length b according to Eq. (3.7) to keep the factor T50/b in Eq. (3.8) constant. Finally, we note that the
reader width W is also kept constant. Under these assumptions, we can write the SNR value as a function
of the remaining variables and a proportionality constant f in the form

SNR( f ,σd ,D,b) = f ·
(︃

σ
2
d +

(D+B)2

12

)︃−1

· (D+B)−1 ·b2. (3.11)

For the given values for σd ∈ [0.01,4.00] nm, b ∈ [4.0,12.0] nm, d ∈ [4,8] nm and the corresponding
calculated SNR values, this function can be fitted with the fitting parameter f . Note that in contrast to the
plots in Fig. 3.7, we now choose a uniform basic parameter set for all grain diameters, namely the values
for 5nm grain diameter in Tab. 3.2. Otherwise, we would additionally have to consider the grain size
dependent variation of parameters, which are not included in the model function in Eq. (3.11). We obtain
the value of the fitting parameter f = 17.9011nm and the results are illustrated in Figs. 3.14 and 3.15.

The plots show that the trend of the fit agrees quite well with the actual SNR curves, however for
σd −→ 4nm and b −→ 4nm we obtain deviations. The square root of the mean squared error over all data
points of the fit is 0.63dB. Taking into account the approximations in both the writing process (neglection
of grain size distribution) and the derivation of the formula in Eq. (3.11) (simple model of square grains
for Eq. (3.10), no dependency on Pmax etc.), those deviations seem acceptable and the model agreement
reasonable.
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Figure 3.14.: Fitting curves of the SNR calculation for various down-track-jitter parameters and con-
stant bit length b = 10nm.
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Figure 3.15.: Fitting curves of the SNR calculation for various bit lengths and constant down-track-
jitter parameter σd = 2nm.
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3.5. Conclusion and remarks

We developed an analytical model for the switching probability phase diagram of a magnetic grain in a
recording medium during HAMR. Such a phase diagram describes the switching probability of the grain
depending on its down-track and off-track position and is thus very valuable to evaluate the performance
of a given recording setup. The proposed model has eight input parameters, determining the bit’s position,
its dimensions, its jitter in down-track and off-track direction, its curvature and the maximum switching
probability in the center of the bit. By mapping the switching probabilities onto a recording medium
and calculating the read-back signal with a given sensitivity function it is possible to model the whole
HAMR write and read cycle with little computational effort. Additionally, due to the possibility of
independent parameter variation in the model, we could investigate the influence of each parameter on the
resulting SNR separately. Our results showed the impact of the bit length, curvature, maximum switching
probability and down-track-jitter on the final SNR of written bit patterns. Whereas the variation of the
bit length, maximum switching probability and down-track-jitter led to differences of 10,9 and 5dB,
respectively, we could only show a gain of about 0.5dB for the reduction of bit curvature and 1 to 3dB for
off-track-jitter variations. Furthermore, the comparison with theoretical equations led to good agreement.

Since there are considerable efforts to optimize the bit quality in HAMR containing material design and
writing techniques, our approach of using an analytical model for the whole recording cycle could provide
a qualitative a priori indication about the cost-benefit ratio of a recording setup in terms of the SNR with
low computational effort. In addition, with the proposed model the effects of individual changes, such
as the down-track-jitter or the transition curvature, on the SNR can be studied separately. This is not
possible with direct simulations of the write process, where only material parameters of the recording
grains or write parameters of the recording head can be changed, which then has an impact on many
aspects of the resulting footprint.

30



4. Full analytical solution for the magnetic
field of uniformly magnetized cylinder tiles

We present an analytical solution for the magnetic field of a homogeneously magnetized cylinder tile
and by extension solutions for full cylinders, rings, cylinder sectors and ring segments. The derivation is
done by direct integration in the magnetic surface charge picture. Results are closed-form expressions
and elliptic integrals. All special cases are treated individually, which enables the field computation
for all possible position arguments r ∈ R3. An implementation is provided in Python together with a
performance analysis. The implementation is tested against numerical solutions and applied to compute
the magnetic field in a discrete Halbach cylinder.

Parts of this chapter have been previously published in [84] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by Elsevier.

4.1. Introduction

Permanent magnets are widely used in numerous technical applications [85–92]. Among all conceivable
geometries, simple magnet shapes such as cuboids or cylinders are especially popular and widespread as
they are mass-produced and available at short notice in various dimensions, magnetization and materials
[93, 94]. When the magnet geometry is simple and the magnetization is homogeneous, it is often possible
to derive analytical expressions for the field generated by such magnets [95–105]. These expressions
provide excellent approximations to the real fields when modern, high-grade magnetic materials, like
SmCo, NdFeB or ferrites with susceptibilities χ < 0.1 are involved [92, 106].

The main advantage over common numerical methods such as finite elements method (FEM) ap-
proaches or direct numerical integration is the fast computation times of the order of microseconds [106,
107], which enables highly efficient multivariate parameter space analysis and solving global optimization
problems for permanent magnet arrangements [108–110].

The analytical formulas for cuboid magnets [92, 98, 111, 112] are particularly useful since cuboids
can be trivially subdivided into smaller cuboid cells to which the formulas are again applicable. This
allows modeling of the material response with the magnetostatic method of moments [113], a common
approach of computing dipole interactions in micromagnetic software [27, 42, 48, 59, 114–116]. In
contrast, the analytical expression of a cylinder [99–104] is not sufficient for such calculations, as the
cylindrical volume element is a cylinder tile, i.e., a cylindrical ring segment. In addition, many geometric
shapes used in magnetic position systems, such as the cylindrical quadrupole [117, 118] or rotary encoder
wheels [119, 120], can be constructed with such tiles, motivating us to find analytical expressions for this
geometry.

Finding an analytical expression for the homogeneously magnetized cylinder tile was attempted in
many previous works [121–126], but to date all solutions contain integral expressions which can only
be solved numerically. In this work we present for the first time a complete analytical solution for the
magnetic field of a homogeneously magnetized cylinder tile. All expressions contain only basic arithmetic
operations, trigonometric functions and special functions like elliptic integrals, which can be computed
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very efficiently [127–135]. In previous works, only the most general case is treated, while indeterminate
forms, that typically appear at surface extensions, are neglected. We provide expressions for all such
cases, which allows us to compute the field at any point in space. In addition, we include the limiting
cases with inner radius r1 = 0 (cylinder sector), constricting sector angles ϕ1 = 0, ϕ2 = 2π (cylinder ring)
and the full cylinder as the combination of the two cases.

The structure of the chapter is as follows: In Sec. 4.2 we establish the notation and describe the surface
charge method, which enables us to express the total magnetic field as the sum of various surface integrals,
and discuss its limitations. The first and second integration steps are shown in Sec. 4.3 and Sec. 4.4,
respectively. In Sec. 4.5 we validate our results by comparison with solutions from numerical integration
and finite element method. A discrete Halbach cylinder application example is demonstrated in Sec. 4.6.
Another application is demonstrated in Sec. 4.7, where a rotation sensor system based on a quadrupole
magnet is simulated and the angle errors calculated analytically. We close with a brief discussion of the
results and outlook in Sec. 4.8.

4.2. Method

It is convenient to describe the problem in cylindrical coordinates (r,ϕ,z) ∈ [0,∞)× [0,2π)× (−∞,∞).
The cylinder tile is defined through six boundaries at r1 < r2, ϕ1 < ϕ2, and z1 < z2, see Fig. 4.1a. We
define the homogeneous magnetization vector M, through its magnitude M, azimuth angle ϕM and polar
angle θM, see Fig. 4.1b.

In Cartesian coordinates the magnetization is then given by

M = M (cosϕM sinθMex + sinϕM sinθMey + cosθMez) . (4.1)

4.2.1. Field calculation with magnetostatic potential

In [136, Sec. 5.9 C], the scalar magnetic potential ΦM is derived for volumes V with homogeneous
magnetization M in the absence of electric currents,

ΦM(r) =
1

4π

∮︂
∂V

σ(r′)
|r− r′|

dA′, (4.2)

with the magnetic surface charge σ given by the inner product of the magnetization vector with the
surface normal vector n,

σ(r′) = M(r′) ·n(r′). (4.3)

The magnetic field H is then given by

H(r) =−∇ΦM(r) =
1

4π

∮︂
∂V

σ(r′)(r− r′)
|r− r′|3

dA′. (4.4)

4.2.2. Magnetic surface-charge density

The tile boundary ∂V includes three types of surfaces. Each type is denoted by its normal vector, see
Fig. 4.1a. We calculate the magnetic surface charge density σ according to Eq. (4.3) in cylindrical
coordinates for each surface type.

σri(ϕ
′) = (−1)iM ·

(︁
cosϕ

′ex + sinϕ
′ey
)︁

= (−1)iM sinθM
(︁
cosϕM cosϕ

′+ sinϕM sinϕ
′)︁

= (−1)iM sinθM cos(ϕM −ϕ
′)

(4.5)
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(a)

(b)

Figure 4.1.: (a) Dimensions of the cylinder tile in cylinder coordinates and the resulting magnetic
surface charges σ . We assume 0 ≤ r1 < r2, ϕ1 < ϕ2 and z1 < z2. (b) Magnetization vector M described
by the three coordinates M,ϕM and θM. 33



σϕ j = (−1) jM · (−sinϕ jex + cosϕ jey)

= (−1) jM sinθM (−cosϕM sinϕ j + sinϕM cosϕ j)

= (−1) jM sinθM sin(ϕM −ϕ j)

(4.6)

σzk = (−1)kM · ez

= (−1)kM cosθM
(4.7)

It will be useful for our derivation to omit magnetization and powers of (−1) and define the dashed
(sign reduced) surface charge densities by

σ
′
ri
(ϕ ′) = sinθM cos(ϕM −ϕ

′), (4.8)

σ
′
ϕ j

= sinθM sin(ϕM −ϕ j), (4.9)

σ
′
zk
= cosθM. (4.10)

4.2.3. Surface integrals

To express the the surface integrals Eq. (4.4) in cylindrical coordinates, we use the usual transformations,

x = r cosϕ, (4.11)

y = r sinϕ, (4.12)

er = cosϕ ex + sinϕ ey, (4.13)

eϕ =−sinϕ ex + cosϕ ey. (4.14)

To simplify the notation, we do not explicitly write the dependency of the coordinates r,ϕ and z, although
almost every term depends on them. With the abbreviation

ξ (r′,ϕ ′,z′) :=
⃓⃓
r− r′

⃓⃓
=
√︂

r2 + r′2 −2rr′ cos(ϕ −ϕ ′)+(z− z′)2, (4.15)

every field component can be expressed as a sum of six terms, each originating from one tile surface, as

Hr =
M
4π

(︄
2

∑
i=1

(−1)i
∫︂

ϕ2

ϕ1

∫︂ z2

z1

σ ′
ri
(ϕ ′)(r− ri cos(ϕ −ϕ ′))

ξ (ri,ϕ ′,z′)3 ri⏞ ⏟⏟ ⏞
=:Hr,ri (ϕ

′,z′)

dz′dϕ
′+

2

∑
j=1

(−1) j
∫︂ r2

r1

∫︂ z2

z1

σ ′
ϕ j
(r− r′ cos(ϕ −ϕ j))

ξ (r′,ϕ j,z′)3⏞ ⏟⏟ ⏞
=:Hr,ϕ j (r

′,z′)

dz′dr′+

2

∑
k=1

(−1)k
∫︂

ϕ2

ϕ1

∫︂ r2

r1

σ ′
zk
(r− r′ cos(ϕ −ϕ ′))

ξ (r′,ϕ ′,zk)3 r′⏞ ⏟⏟ ⏞
=:Hr,zk (r

′,ϕ ′)

dr′dϕ
′

)︄
(4.16)
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Hϕ =
M
4π

(︄
2

∑
i=1

(−1)i
∫︂

ϕ2

ϕ1

∫︂ z2

z1

σri(ϕ
′)r2

i sin(ϕ −ϕ ′)

ξ (ri,ϕ ′,z′)3⏞ ⏟⏟ ⏞
=:Hϕ,ri (ϕ

′,z′)

dz′dϕ
′+

2

∑
j=1

(−1) j
∫︂ r2

r1

∫︂ z2

z1

σϕ j r
′ sin(ϕ −ϕ j)

ξ (r′,ϕ j,z′)3⏞ ⏟⏟ ⏞
=:Hϕ,ϕ j (r

′,z′)

dz′dr′+

2

∑
k=1

(−1)k
∫︂

ϕ2

ϕ1

∫︂ r2

r1

σzk r
′2 sin(ϕ −ϕ ′)

ξ (r′,ϕ ′,zk)3⏞ ⏟⏟ ⏞
=:Hϕ,zk (r

′,ϕ ′)

dr′dϕ
′

)︄
(4.17)

Hz =
M
4π

(︄
2

∑
i=1

(−1)i
∫︂

ϕ2

ϕ1

∫︂ z2

z1

σri(ϕ
′)(z− z′)

ξ (ri,ϕ ′,z′)3 ri⏞ ⏟⏟ ⏞
=:Hz,ri (ϕ

′,z′)

dz′dϕ
′+

2

∑
j=1

(−1) j
∫︂ r2

r1

∫︂ z2

z1

σϕ j(z− z′)
ξ (r′,ϕ j,z′)3⏞ ⏟⏟ ⏞
=:Hz,ϕ j (r

′,z′)

dz′dr′+

2

∑
k=1

(−1)k
∫︂

ϕ2

ϕ1

∫︂ r2

r1

σzk(z− zk)

ξ (r′,ϕ ′,zk)3 r′⏞ ⏟⏟ ⏞
=:Hz,zk (r

′,ϕ ′)

dr′dϕ
′

)︄
(4.18)

In the following sections, we present the analytical solution of the above nine surface integrals. In our
derivations below, we denote the solution to the above integrals using upper indices, e.g.∫︂ z2

z1

Hr,ri(ϕ
′,z′) dz′ = Hz2

r,ri
(ϕ ′)−Hz1

r,ri
(ϕ ′) (4.19)

which allows us to express the final solution in a very compact manner,

Hα =
M
4π

2

∑
i, j,k=1

(−1)i+ j+k(︁Hϕ j,zk
α,ri +Hri,zk

α,ϕ j +Hri,ϕ j
α,zk

)︁
(4.20)

for α ∈ {r,ϕ,z}.

4.2.4. Limitation

The whole derivation in the previous subsection and the final formula in Eq. (4.20) is strongly based
on the assumption of homogeneous magnetization within the cylindrical tile. Due to thermal and
demagnetization effects, this is an idealization that is unattainable in real magnets. However, recent
developments in magnet fabrication show that very high coercive fields of several teslas and thus very
low magnetic susceptibilities χm can be achieved with certain magnetic materials consisting of rare earth
elements even at room temperature [90, 137–139]. When these materials are magnetized in a very strong
homogeneous external field in a particular direction, the resulting magnetization direction remains nearly
homogeneous in that direction even after the external field is removed. For these materials, our formulas
provide an excellent approximation.
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Figure 4.2.: Illustration how each cylinder tile (including also all limiting cases as cylinder sectors,
cylinder rings and full cylinders) can be perfectly subdivided into smaller cylinder tile cells. Each
cell can have a different magnetization direction, which leads to an inhomogeneous magnetization
of the whole cylinder tile. This allows to simulate demagnetization effects for instance, where the
magnetization directions are aligned according to the demagnetization field. Unlike common lattice
subdivisions, such as cubes in finite difference and tetrahedra in finite element approaches, there is no
geometry approximation error because the subdivision perfectly preserves the cylindrical shape.

However, for higher temperatures, poorer material properties, large demagnetization due to very large
ratios between the spatial dimensions of the cylindrical tiles, and high external fields, we naturally expect
deviations from perfect homogeneous magnetization. If this is the case, our formulas can still be used
to simulate the deviations with a subdivision of the whole cylinder tile into smaller pieces, as shown in
Fig. 4.2. Then a method of moment approach [113] can be used to align the magnetization in each subcell
individually, resulting in an inhomogeneous magnetization over the entire geometry. In principle, the
exact magnetization can be approximated with arbitrary accuracy in the limit for very small subcells. The
MagTense software presented in [59] uses the general approach to calculate demagnetization based on
analytical formulas for various homogeneously magnetized geometries [126].
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4.3. First integration

The first integration can be easily achieved with modern computer algebra systems and was demonstrated
in previous works [122]. To simplify the notation, we introduce the following short forms:

ri := r− ri (4.21)

r′ := r− r′ (4.22)

ϕ j := ϕ −ϕ j (4.23)

ϕ
′ := ϕ −ϕ

′ (4.24)

ϕM := ϕM −ϕ (4.25)

ϕ
′
M := ϕM −ϕ

′ (4.26)

ϕM j := ϕM −ϕ j (4.27)

zk := z− zk (4.28)

z′ := z− z′ (4.29)

The first integration then yields:
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Hzk
r,ri
(ϕ ′) =

[︃∫︂
Hr,ri(ϕ

′,z′) dz′
]︃

z′=zk

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−sinθMrizk
cosϕ

′
M(r−ri cosϕ

′)
(r2+r2

i −2rri cosϕ
′)ξ (ri,ϕ ′,zk)

for r ̸= ri and r > 0

− sinθMzk
2

cosϕ
′
M√︂

2r2(1−cosϕ
′)+z2

k

for r = ri and r > 0

sinθMzk√
r2

i +z2
k

cosϕ
′
M cosϕ

′ for r = 0 and ri > 0

0 for ri = 0

(4.30)

Hri
r,ϕ j

(z′) =
[︃∫︂

Hr,ϕ j(r
′,z′) dr′

]︃
r′=ri

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2sinθM sinϕM j
z′2 cosϕ j+rri sin2

ϕ j

(r2+2z′2−r2 cos(2ϕ j))ξ(ri,ϕ j,z′)
for ϕ j ̸∈ πZ and r > 0

sinθM sinϕM j
1√

r2
i +z′2

for ϕ j ∈ 2πZ and r > 0

−sinθM sinϕM j
1√

(r+ri)
2+z′2

for ϕ j ∈ 2πZ+π and r > 0

sinθM sinϕM j
cosϕ j√

r2
i +z′2

for r = 0

(4.31)

Hri
r,zk

(ϕ ′) =

[︃∫︂
Hr,zk(r

′,ϕ ′) dr′
]︃

r′=ri

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosθM

(︄
ri(r2+2z2

k)cosϕ
′−r

(︂
r2+z2

k−(r2+z2
k)cos(2ϕ

′)−rri cos(3ϕ
′)
)︂

(r2+2z2
k−r2 cos(2ϕ

′))ξ (ri,ϕ ′,zk)

−cosϕ
′ log

(︂
ri − r cosϕ

′+ξ (ri,ϕ
′,zk)

)︂)︄
for z ̸= zk and r > 0

cosθM

(︄
2ri cosϕ

′−r√
r2+r2

i −2rri cosϕ
′

−cosϕ
′ log

(︃
ri − r cosϕ

′+
√︂

r2 + r2
i −2rri cosϕ

′
)︃)︄

for z = zk and r > 0

cosθM

(︃
ri√

r2
i +z2

k
− artanh

(︃
ri√

r2
i +z2

k

)︃)︃
cosϕ

′ for z ̸= zk and r = 0

−cosθM logri cosϕ
′ for z = zk and r = 0

(4.32)
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Hzk
ϕ,ri

(ϕ ′) =

[︃∫︂
Hϕ,ri(ϕ

′,z′) dz′
]︃

z′=zk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−sinθMr2
i zk

cosϕ
′
M sinϕ

′

(r2+r2
i −2rri cosϕ

′)ξ (ri,ϕ ′,zk)
for r ̸= ri and r > 0

− sinθM
2

cosϕ
′
M sinϕ

′

(1−cosϕ
′)

zk√︂
2r2(1−cosϕ

′)+z2
k

for r = ri and r > 0 and ϕ j ̸∈ 2πZ for j = 1 and j = 2

− sinθM
2

cosϕ
′
M sinϕ

′

(1−cosϕ
′)

(︄
zk√︂

2r2(1−cosϕ
′)+z2

k

− signzk

)︄
for r = ri and r > 0 and ϕ j ∈ 2πZ for j = 1 or j = 2

− sinθMzk√
r2

i +z2
k

cosϕ
′
M sinϕ

′ for r = 0 and ri > 0

0 for ri = 0
(4.33)

Hzk
ϕ,ϕ j

(r′) =
[︃∫︂

Hϕ,ϕ j(r
′,z′) dz′

]︃
z′=zk

=

{︄
−sinθM sinϕM j sinϕ jzk

r′

(r2+r′2−2rr′ cosϕ j)ξ(r′,ϕ j,zk)
for ϕ j ̸∈ πZ

0 for ϕ j ∈ πZ
(4.34)

Hϕ j
ϕ,zk(r

′) =

[︃∫︂
Hϕ,zk(r

′,ϕ ′) dϕ
′
]︃

ϕ ′=ϕ j

=

⎧⎨⎩
cosθM

r
r′

ξ(r′,ϕ j,zk)
for r > 0

cosθM cosϕ j
r′2√

r′2+z2
k

3 for r = 0
(4.35)

Hzk
z,ri

(ϕ ′) =

[︃∫︂
Hz,ri(ϕ

′,z′) dz′
]︃

z′=zk

= sinθMri
cosϕ

′
M

ξ (ri,ϕ ′,zk)
(4.36)

Hzk
z,ϕ j

(r′) =
[︃∫︂

Hz,ϕ j(r
′,z′) dz′

]︃
z′=zk

= sinθM sinϕM j
1

ξ (r′,ϕ j,zk)
(4.37)

Hri
z,zk

(ϕ ′) =

[︃∫︂
Hϕ,zk(r

′,ϕ ′) dr′
]︃

r′=ri

=

{︄
−2cosθMzk

r2+z2
k−rri cosϕ

′

(r2+2z2
k−r2 cos(2ϕ

′))ξ (ri,ϕ ′,zk)
for z ̸= zk

0 for z = zk

(4.38)

(4.39)
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ℓ m n
1 z = zk ϕ j ∈ 2πZ r = ri = 0
2 z ̸= zk ϕ j ∈ 2πZ+π r = 0,ri > 0
3 ϕ j ̸∈ πZ r > 0,ri = 0
4 r = ri > 0
5 r,ri > 0,r ̸= ri

Table 4.1.: All possible values of the three-digits index I = ℓmn and associated special cases. The
general case is I = 235, i.e. z ̸= zk, ϕ j ̸∈ πZ and r,ri > 0,r ̸= ri.

ϕ j signzk log |zk|
Hri,zk

r,ϕ j 0 −sinθM sinϕM

Hri,ϕ j
z,zk −cosθM signzk 0

Table 4.2.: Example table for I = 211. The field components are computed by summation over all
functions multiplied by coefficients.

The first integration leads to several singularities which must be treated with care within the second
integration step. In App. A we discuss these problems in detail.

4.4. Second integration

With the second integration step, the number of special cases to be distinguished increases massively.
To identify the special cases outlined in Tab. 4.1, a three-digit index I := ℓmn is introduced. For
example, the index I = 213 denotes the case z ̸= zk, ϕ j ∈ 2πZ, r > 0, ri = 0. The special cases
I = 111,114,121,131 are unphysical as they refer to a field evaluation on corners and edges of the tile.

For each case we provide a table with all expressions and coefficients that make up the components of
Eq. (4.20). The special functions used for this are defined in App. B. An individual field component is
computed by summing over all functions multiplied by coefficients given in the tables. An example is
demonstrated for the case I = 211 with Tab. 4.2 from which the field components calculate as

Hri,zk
r,ϕ j = 0 ·ϕ j − sinθM sinϕM · signzk log |zk|, (4.40)

Hri,ϕ j
z,zk =−cosθM signzk ·ϕ j +0 · signzk log |zk|, (4.41)

while all other field components not indicated are equal to zero in this case, i.e.

Hϕ j,zk
r,ri = Hri,ϕ j

r,zk = Hϕ j,zk
ϕ,ri = Hri,zk

ϕ,ϕ j = Hri,ϕ j
ϕ,zk = Hϕ j,zk

z,ri = Hri,zk
z,ϕ j = 0. (4.42)

The tables for all cases can be found in App. C, the implementation in App. I.

4.5. Numerical verification

4.5.1. Implementation and performance

The analytical formulas are lengthy and tedious to implement numerically. For public use, we have
integrated our fully tested and vectorized code into the upcoming version 4 of the open-source package
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r1 [mm] r2 [mm] ϕ1 [rad] ϕ2 [rad] z1 [mm] z2 [mm] µ0M [T] ϕM [rad] θM [rad]
test geometry 1 10 15 0 π/4 0 3 1 9π/8 π/2
test geometry 2 25 30 0 π/4 0 3 1 9π/8 π/2

Table 4.3.: Test geometries for comparison to numerical integration.

(a) (b) (c)

Figure 4.3.: Comparison between the derived analytical solution in Sec. 4.4 (analytic) and the direct
numerical integration of the integrals in Eqs. (4.16)-(4.18) with quadrature (quad). (a) Hr component
as function of radial coordinate r at ϕ = π/8rad and z = 0.0015m for test geometry 1. (b) Hϕ com-
ponent as function of angular coordinate ϕ at r = 0.022m and z = 0.001m for test geometry 2 (c) Hz

component as function of angular coordinate z at r = 0.0249m and ϕ = π/8rad for test geometry 2.

Magpylib [106] under the source name CylinderSegment. Although the program flow of the imple-
mentation is, at this time, not optimal, we still achieve computation times of the order of few milliseconds
(single points) and few tens of microseconds (vectorized evaluation of 2000 points) on mobile CPUs
such as Intel i5-8365U, 1.60 GHZ. In comparison, a computation by numerical integration with the
precision of Subsec. 4.5.2 takes a few tens of seconds (single points, no vectorization possible), while the
performance trimmed finite element code from Subsec. 4.5.3 takes several hours (complete solution) on
the same machine.

4.5.2. Comparison to numerical integration

We demonstrate the correctness of the solution and our implementation by comparing with direct
numerical integration via scipy.integrate.dblquad [140, 141] of the integrals Eqs. (4.16)-(4.18).
The dimensions of the cylinder tiles and field evaluation points are chosen similarly to [122, Figs. 6-8]
and are listed in Tab. 4.3 and the results in Fig. 4.3. All graphs are in perfect agreement.

4.5.3. Comparison to FEM

Finally, we compare our Magpylib implementation with the state-of-the-art FEM computations from
ANSYS Maxwell [142]. To this end, we place three different uniformly magnetized cylinder tiles with
the dimensions given in Tab. 4.4 in a circle, as illustrated in Fig. 4.4a. The field is then computed on four
rings, see Tab. 4.5, above, outside, inside and on the inside of the tiles (blue in the figure) to cover many
different special cases. The agreement between analytical implementation and the numerical evaluation
via FEM can be observed in Fig. 4.4b-e, and is only limited by the numerical stability due to cancellation
effects etc. of the analytical formulas, the numerical precision of the finite element computation and
possible boundary effects in the case of an insufficiently large airbox in the finite element simulation.
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(a)

Figure 4.4.: (a) Position of the three cylinder tiles in red, amber and green. The blue circles illustrate
the paths, along which the magnetic field is evaluated (see also Tab. 4.5). (b) Cartesian field com-
ponents along the inner-circle. (c) Cartesian field components along the inside-magnet-circle. (d)
Cartesian field components along the above-circle. (e) Cartesian field components along the outside-
circle.
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r1 [mm] r2 [mm] ϕ1 [rad] ϕ2 [rad] z1 [mm] z2 [mm] µ0M [T] ϕM [rad] θM [rad]
tile 1 1 2 3π/2 2π −0.5 0.5 1 7π/4 π/2
tile 2 1 2.5 10π/9 25π/18 −0.75 0.75 1 0 0
tile 3 0.75 3 7π/18 π −0.25 0.25 1 π/2 3π/4

Table 4.4.: Position and magnetization of the three cylinder tiles, as illustrated in Fig. 4.4a.

center [mm] radius [mm] rotation axis [mm]
inner-circle (0,0,0) 0.5 (0,0,1)

inside-magnet-circle (0,0,0) 1.5 (0,0,1)
above-circle (0,0,1) 1.5 (0,0,1)

outside-circle (0,0,0) 3.5 (0,0,1)

Table 4.5.: Center, radius and rotation axis of the four circles along which the magnetic field is evalu-
ated as illustrated in Fig. 4.4.

4.6. Halbach cylinder application

The computation of the field of discrete Halbach cylinders is a perfect use-case for our analytical
computation method. Classical Halbach cylinders are magnetized hollow cylinders with a very specific
azimuth angle dependent magnetization pattern,

Mn(ϕ) = Mr
(︁

cos(2mϕ),sin(2mϕ),0
)︁
, m ∈ N (4.43)

that results for the case m = 1 in a perfectly homogeneous field on the inside of the cylinder and no field
on the outside, see Fig. 4.5a. Halbach cylinders and their derivatives are magnetically the most efficient
structures to generate homogeneous fields with large field amplitudes [143]. They are commonly used for
magnetic resonance imaging [144], magnetic refrigeration [145], energy harvesting [146] and many other
modern applications.

For practical purposes, it is very difficult to achieve the magnetization pattern Eq. (4.43). However, a
common approach replaces the continuous magnetization pattern with a discrete one, [144]. In Fig. 4.5b
we show such a discretization, where a discrete Halbach cylinder is constructed from homogeneously
magnetized cylinder tiles.

The analytical formulas presented in this work enable users to quickly compute and test the field of such
discrete Halbach structures for different cylinder radii, cylinder heights, discretizations, magnetization
patterns, target regions and all other variables that come into play when designing or optimizing an
experiment [147–149]. A specific example for a discretization into n = 12 segments is shown in Fig. 4.5c.

4.7. Stray-field immunity of rotation sensors

We apply our analytical method to study the angular error due to the stray field influence of a current wire.
It is inspired by [118, 150], where this error is measured in experimental setups. Thereby we demonstrate,
how the analytical formulas allow to simulate the whole system for different input parameters without
much effort and with very high accuracy, which allows a detailed analysis of its behavior. Therefore, we
choose the arrangement of the sensor system as shown in Fig. 4.6.

The inner and outer diameters of the magnets are 5mm and 14mm, the height is 3.5mm. The
sensor array is aligned below the magnets with an airgap distance of 1.5mm. The sensors are aligned
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(a) (b)

(c)

Figure 4.5.: (a) Sketch of magnetization M in a Halbach cylinder with perfectly homogeneous field H
inside. (b) Sketch of a discrete Halbach cylinder with n = 12 cylinder tiles. (c) Magnetic flux density in
the discrete Halbach cylinder with a height of 4mm, computed with the analytical solution.
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Figure 4.6.: Sketch of quadrupole magnet consisting of four cylinder tile magnets alternately magnet-
ized in the positive and negative radial directions. Its magnetic north poles are colored red, the south
poles in green. The sensor arrays consists of eight 1D Hall sensor elements, each measuring the field
in radial direction that oscillates due to the rotation of the magnet by the angle α . The current flows in
positive z-direction.
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equidistant on a circle with radius 0.25mm and detect the magnetic field in radial direction. We choose
the magnetization so that the maximum measured field is B0 := 8.25mT for one full rotation of the
quadrupole magnet. It is assumed that the straight wire has a distance 30mm from the center of the
magnet. Then the current creates a circular field at the sensor position.

4.7.1. No current in wire

In the current-less ideal case, all sensor signals s1, . . . ,s8 result approximately in the course of a harmonic
oscillation shown in Fig. 4.7a.

The field measured by each of the four sensors with odd and even indices can therefore be combined
into a cosine and sine signal as

C := s1 − s3 + s5 − s7, (4.44)

S := s2 − s4 + s6 − s8, (4.45)

(4.46)

and we receive the signal illustrated in Fig. 4.7b.
Due to the identity

α = arctan2
(︁

cos(α),sin(α)
)︁

(4.47)

for all α ∈ [0◦,360◦), the sensor measured rotation angle α̂ ∈ [0◦,180◦) can be defined as

α̂ :=
arctan2(C,S)

2
. (4.48)

The deviation from the real rotation angle α̂ −α can be seen in Fig. 4.8a. Since the analytical solution
allows to calculate the error exactly, one can observe in detail in which angular positions the largest
errors are to be expected. However, in our case, without the external stray field of the wire, the angle
measurement is very accurate and we observe errors down to only ∼10−4◦.

4.7.2. With stray field from wire

In case of an additional magnetic field caused by the current in the electric wire (see Fig. 4.6), the
symmetry is broken and this leads to a larger but still manageable error of the measured angle α̂ . If the
current line in Fig. 4.6 is additionally tilted by e.g. 45◦ in the x-z-plane, the maximum error is even larger
and reaches even about 0.4◦, which is in very good agreement with the results in [150]. Figure 4.8b shows
the error in the angle measurement for different currents and the respective resulting fields at the sensor
position for a straight and tilted wire. Even with the assumption of very high currents 750 – 3750A that
result in circular fields of 5 – 25mT at the central sensor position in the setup of the straight wire in
Fig. 4.6, we observe that the error is kept within limits.

The analytical solution enables fast and accurate analysis of even more details of the sensor system
(error analysis, error phase diagrams for various system parameters). The details are the subject of more
detailed investigations, which are not presented here for reasons of non-disclosure and may also be
published separately with a detailed discussion of the consequences.

4.8. Conclusion & outlook

In this work, we have presented fully analytical expressions for the magnetic field of a homogeneously
magnetized cylinder tile. The solution was implemented in Python and validated against numerical
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(a)

(b)

Figure 4.7.: (a) Signals from the eight sensors s1, . . . ,s8 during a rotation of the magnetic quadru-
pole by 180◦ in the absence of additional fields originating from the current wire. In comparison,
the graphs of ±B0 cos(2α) and ±B0 sin(2α) show almost perfect agreement. The errors are calcu-
lated as deviation from the perfect harmonic oscillation, i.e. differences si ∓B0 cos(2α) for odd i and
si ∓B0 sin(2α) for even i. (b) The combination of four sensors each leads to the two main branches of
the signal, which approximately follow the function graphs of 4B0 cos(2α) and 4B0 sin(2α). The errors
are calculated as deviation from the perfect harmonic oscillation, i.e. differences C−4B0 cos(2α) and
S−4B0 sin(2α).
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(a)

(b)

Figure 4.8.: Deviation of the sensor output α̂ compared to the real rotation angle α . (a) without ex-
ternal fields and (b) for different external fields and straight and tilted wire (by 45◦ in the x-z-plane).
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computations. The usefulness of this work was demonstrated by computing the field in a discrete Halbach
cylinder and analyzing the angle error of a rotation sensor system. The examples have shown that with
the use of the analytical solution, various application can easily be modeled and analyzed very accurately.
In addition, the limitation of homogeneous magnetization is discussed and a method of moments for
demagnetization effects is proposed.

While the provided formula set is complete from a mathematical point of view, floating point based
implementations still suffer from numerical instabilities in the vicinity of special cases, indeterminate
forms and at large distances. To address this problem, methods of reformulation and series expansion are
planned to provide a higher level of stability.

By including the code in the open-source Python package Magpylib, the benefits of this work are
also immediately accessible to the general public. Future work is dedicated to improve the Magpylib
implementation work flow, stability and computation speed.
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5. Designing airgap-stable magnetic linear
position systems

This work addresses the topic of magnetic linear position detection, a common method used in modern
industries to determine linear displacement by magnetic means. One major shortcoming of this method
is the inherent airgap instability, which puts strong constraints on mechanical construction tolerances
and limits resolution and sensitivity. We propose a method to improve the airgap stability by adding
a second magnet, which makes the field and by extension the system output (locally) independent of
the distance from the source. It is shown that the measurement error for 1D systems can be reduced by
a factor of ∼ 14 and for 2D systems by a factor of ∼ 5 by application of this method for a realistic example.

Parts of this chapter have been previously published in [151] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by IEEE.

5.1. Introduction

Magnetic position and orientation detection systems determine the relative motion of mechanical parts. A
permanent magnet is mounted on one part and a magnetic field sensor on the other, so that the relative
motion can be calculated from the modulation of the magnetic field [94, 125]. Such sensor systems
that are widely used in modern industrial applications due to their excellent properties (cost, robustness,
non-contact) [152–158], are constantly opening new sensing possibilities [92, 159, 160] and have started
to replace existing mechanical, electronic and optical technologies [161–163]. Today there are more than
100 applications for magnetic position sensor systems in the automotive sector alone [93, 164, 165].

Magnetic linear position sensing is one common representative, with prominent applications like
automotive shift forks, gas and brake pedals, detection of shifting shafts, flexible arms, lifting systems, in
the gearbox and many others. In this case, a permanent magnet moves along a straight line with a sensor
mounted centrally above in a distance g termed the airgap. The range of the system is given by the stroke
s with the magnet position x ∈ [−s,s] (see Fig. 5.1a).

The magnetic field at the position of the sensor is given by B(x) and the sensor output β(B) is assumed
to be proportional to it, β ∝ B, which is characteristic for the commonly used linear Hall sensors. The
system output signal ζ (β) is determined from the sensor output, and the position is calculated from it,

x → B → β → ζ ⇒ x. (5.1)

For a typical linear position system, based on the magnet configuration from Fig. 5.1c, the field B(x)
is shown in Fig. 5.1b as a function of the position for a 12× 5× 5mm3 magnet with magnetization
µ0M = 1000mT and an airgap of g = 5mm. Due to the symmetry, there are only two non-zero field
components, Bx(x) with even and Bz(x) with odd behavior. While there are several other ways to choose
magnet configurations (see Fig. 5.1c-e), in each case there is an even and an odd field component, Beve
and Bodd, on which the linear position sensing schemes rely.
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Figure 5.1.: In (a) the moveable magnet system beneath a sensor is illustrated. It may consist of differ-
ent magnet assemblies (c)-(e), which all generate an even and an odd component of the magnetic field
as shown in (b).

52



If only a 1D sensor is available, it must detect Bodd for a linear and unique relation between position
and output,

ζ1D = βodd. (5.2)

The potential range of such a system is then given by the central, monotonous linear part of the curve. A
more sophisticated scheme can be used with a 2D sensor,

ζ2D = atan2(βodd,βeve), (5.3)

where atan2 denotes the common two-argument arctangent function, see [108]. While the 2D method
features a higher level of signal stability, precision and measurement range when compared to the
1D counterpart, the latter is still used for its cost efficiency.

Finally, a sensor system is characterized by its sensitivity S. It is given by the change of the system
output with variation of the observable (here magnet position x),

S(x0,z0) :=
dζ

dx
(x0,z0). (5.4)

A more detailed analysis of 1D and 2D sensing schemes, sensors and systems can be found in [108,
109]. In Tab. 5.1 below, we show a list of system parameters and their typical sizes for state-of-the-art
Hall-based industrial linear position systems.

parameter symbol unit typical size
stroke s mm 5-20

position x mm [-s,s]
airgap g mm 2-8

Magnetization µ0M mT 200-1400
B-field B mT 10-100

sensor output β V 0-5
sensitivity 1D S mT/mm 10-100 / s
sensitivity 2D S rad/mm π / s
system output ζ - -

Table 5.1.: System parameter names and typical values.

5.2. Problem

One of the biggest problems when dealing with linear magnetic position sensing is the inherent instability
with respect to airgap variations ∆g. Industrial and automotive systems are only competitive if they
are cost-efficient, and fabrication tolerances are expensive to control. In automotive shift-fork systems
airgap variations of up to ±20% are common. Such variations are usually calibrated out in an end-of-the-
line process which ultimately results in large variations of the sensitivity. In addition, dynamic airgap
variations of few percent over lifetime and during system operation must also be accounted for.

The sketch in Fig. 5.2 shows how an airgap variation leads to a inaccurate output signal ζ (x0,z) instead
of ζ (x0,g), which further results in a wrong position estimation ˜︁x0 for the real position x0. In first order,
the position error ∆x := x0 −˜︁x0, which results from airgap variation, is directly connected to the system
output error ∆ζ := ζ (x0,g)−ζ (x0,z) through the nominal sensitivity S(x0,g). We can therefore write

∆x(x0,z) =
∆ζ (x0,z)
S(x0,g)

(5.5)
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at position x0. For convenience we have expressed everything through z, which is connected to the airgap
variation through z = g+∆g. Clearly ∆x(x0,g) = 0 for all positions x0 ∈ [−s,s].

Figure 5.2.: Sketch of the system response. The airgap variation leads to a measurement error ∆x,
which is determined by ∆ζ and the local slope S(x0,g) of the function ζ (x,g).

To demonstrate the effects of airgap variations, we show the magnetic field of the example system from
Sec. 5.1 for different airgaps in Fig. 5.3a. The maximal position error ∆xmax := maxx0∈[−s,s] ∆x(x0,z) as a
function of the airgap variation ∆g is given in Fig. 5.3b for s = 5mm. The inherent higher stability of the
2D scheme is clearly visible.

5.3. Proposal

To improve airgap stability in linear position systems, we propose to make the magnetic field B(x,z)
or rather the system output ζ (x,z) locally independent of the airgap by combining the fields of several
simple magnets in the spirit of [108, 166]. A sketch of the main idea is outlined in Fig. 5.4. There, the
quick decay of the magnetic field of a small, close magnet is superposed with the slow decay of a large,
distant magnet with reversed magnetization. By suitable arrangement of the two magnets (or magnet
systems) we can achieve stationary points zs of the field components in airgap direction, dB/dz(x,zs) = 0.
Ideally, this is achieved for both components simultaneously and all positions x so that the system output
becomes locally airgap independent,

dζ

dz
(x,zs) =

dζ

dB
· dB

dz
(x,zs)⏞ ⏟⏟ ⏞
=0

= 0. (5.6)

The system output error is closely connected to the derivative of ζ in z-direction,

∆ζ (x,z) = ζ (x,g)−ζ (x,z)≃ dζ

dz
(x,z) ·∆g, (5.7)
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Figure 5.3.: Airgap dependence of the field (a) and resulting position error ∆xmax for 1D and 2D sensor
schemes (b).

so that the property in Eq. (5.6) translates directly to the position error in Eq. (5.5).
Note that stationary points of field B are sufficient, but in the 2D case not necessary for the desired

stationary points of the system output ζ . While it is difficult to achieve stationarity for all positions x at
the same time, it is enough to sample the "low slope area" near zs to improve stability (see Fig. 5.4b).

5.4. Method

We compare 1-magnet (state-of-the-art) and 2-magnet (proposal) systems with 1D and 2D sensors
respectively. For good magnetic stability the 2-magnet system is constructed as indicated in Fig. 5.5 with
magnet dimensions a1,b1,c1,a2,b2,c2 and distance d. This work is based on a multivariate optimization
of these magnet system parameters to reduce the position error as much as possible. For comparison with
optimal 1-magnet systems a similar optimization with a1 = b1 = c1 = 0 is performed.

One must take care in the optimization process that the sensitivity does not tend to small or even
negative values. This would violate the fundamental requirement that the system output ζ is a bijective
map of the observable of interest.

5.4.1. Cost function

The optimal system is found by global minimization of a cost function F which expresses the desired
system qualities. We choose a weighted position error,

∆x(x0) :=
(︃∫︂ g+∆g

g−∆g
w(z) · |∆x(x0,z)|2 dz

)︃1/2

(5.8)

introducing the Gaussian weight function w(z) with µ = g and σ =∆g/3 to account for realistic stochastic
deviations of industrial systems. A corresponding cost function can then be defined as the maximal
weighted position error over the whole range,

Fp := max
x0∈[−s,s]

∆x(x0). (5.9)
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Figure 5.4.: The antiparallel permanent magnet arrangement (a) leads to a beneficial field superposition
(b). For well-chosen dimensions, the sketch in (b) is approximately valid for both Bx and Bz and all x
simultaneously (possibly with reversed sign).
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Figure 5.5.: Sketch of the magnet system variation parameters.
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At the same time, the quality of a sensor system is strongly related to its sensitivity Eq. (5.4) which can be
represented through another cost function Fs that could, for example, be given by the minimal sensitivity
over the whole range.

A total cost function F can then be written as a convex combination of these two terms, i.e.

F := (1−λ )Fp −λFs (5.10)

with λ ∈ [0,1]. Minimization of F leads to minimized position error and maximized sensitivity at the
same time, where λ specifies the balance between Fp and Fs.

In this work we set λ = 0 and neglect the sensitivity term Fs because the sensitivity must always be
related to sensor resolution and noise behavior and we do not want to focus on one specific sensor type.

5.4.2. Scaling invariance

A system where the sources are only ideal hard magnets is invariant with respect to the scaling of the
spatial dimensions. This means that transformations of the form

(x,y,z) ↦−→ k1 · (x,y,z) (5.11)

with k1 > 0 on the whole system (i.e. stroke, airgap, magnet dimensions) result in the same magnetic
field at the scaled sensor position. Furthermore, the scaling of the magnetization amplitude

M ↦−→ k2 ·M (5.12)

has no influence on the optimization problem, as the fields are directly proportional to it, |B| ∝ M.
The optimization is independent of the scaling, i.e. for different system sizes and materials the same

optimum solution is found up to the scaling factor k1 for geometric parameters and k2 for field and
magnetization. With Eqs. (5.11) and (5.12) we can define a characteristic length l0 and magnetic field M0
and express all spatial variables, magnetizations and fields as dimensionless multiples of these parameters.
Eventually, l0 and M0 can be used after solving the optimization problem, to set a system size and a
material for practical applications.

5.4.3. Reasonable system constraints

When dealing with realistic problems the end-user has specific requirements which must be included in
the optimization process. These “reasonable system constraints” include

• the detection range or length of the stroke s,

• the airgap g and airgap tolerance ∆g,

• a required resolution given by choice of sensor and sensitivity S,

• the construction space with maximal magnet system dimensions xmax,ymax,zmax typically limited
to ∼ s,

• the construction costs reflected in magnet volume V and magnetic material (magnetization M).

For our demonstration in the next section we choose l0 = 1mm, µ0M0 = 1mT and a set of reasonable
constraints in Tab. 5.2 that reflect standard system parameters for a linear position system.
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s g ∆g xmax ymax zmax V M1 M2
[l0] [l0] [l0] [l0] [l0] [l0] [l3

0] [M0] [M0]
5 5 1 12 10 14 300 1000 1000

Table 5.2.: Realistic system parameters and constraints.

5.4.4. Simulation method

The fields are calculated by an analytical method using the magpylib package [106] which is based on
the expressions from [98, 111, 112]. The speed of the analytical solution (effective sub-microsecond
computation times) enables highly efficient multivariate parameter variation which is not feasible with
common numerical methods like FEM or BEM. The error of the analytical solution is below 1% field
amplitude and 1◦ angle for magnet L/D ratios of the order of 1 (cubical magnet dimensions) when
compared to FEM results of hard magnets with linear demagnetization slopes of µr < 1.05 [92].

5.5. Results

The optimization procedure described in the previous section is carried out to find optimal configurations
for 1D and 2D systems with one or two magnets. Optimization bounds and results are given in Tab. 5.3.

magnet 1 magnet 2
parameter bound 1D 2D bound 1D 2D

a1 - - - 12 9.9 8.4
b1 - - - 10 0.7 9.9
c1 - - - 3 3.0 0.2
a2 12 12.0 12.0 12 12.0 12.0
b2 10 4.2 10.0 10 7.8 9.8
c2 6 6.0 2.5 3 3.0 2.4
d 3 3.0 0.0 3 3.0 3.0

Table 5.3.: Bounds and optimization results of the magnet system parameters shown in Fig. 5.5.

For each of the four cases the resulting sensor output is shown in Fig. 5.6. Two effects can be observed
there: On the positive side the 2-magnet systems show increasing airgap stability confirming the original
proposal. However, one has to pay for this stability with reduced field amplitudes and sensitivities. This
is directly visible in the figures and is given quantitatively in Tab. 5.4.

1-magnet 2-magnet
1D 2D 1D 2D

Fp 0.766mm 0.042mm 0.053mm 0.009mm
S(0,g) 3.39 0.26rad/mm 0.65 0.19rad/mm

Table 5.4.: Sensitivity S(0,g) for all configurations.

In Fig. 5.7 we shown the actual position error of the sensor output ∆x as a function of the position x
and the airgap variation ∆g. The lower level of position error within the working area (10mm×2mm
rectangle in the figure) is clearly visible.
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Figure 5.6.: Sensor output of optimum configuration in four different cases.
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Figure 5.7.: Position error ∆x for all four configurations. The red rectangle marks the working area
(±∆g airgap variation) of the sensor system.
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Finally, we compare the weighted position error ∆x(x0) from Eq. (5.8) as well as the maximal position
error ∆x(x0,z) for z ∈ [g−∆g,g+∆g] for all four configurations in Fig. 5.8a and b. The 2-magnet systems
are visibly improved over their 1-magnet counterparts.
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Figure 5.8.: Quantitative comparison of weighted position error ∆x and maximal position error ∆xmax
of the four optimized systems with ranges of ±5mm and airgap variations ∆g of ±1mm.

5.6. Discussion and outlook

In this work we show how to design an airgap stable linear position sensor system by adding a second
magnet which stabilizes the field. Here stabilization means a reduction of the position error resulting
from airgap variation. It was shown that the proposed method works for both, 1D and 2D sensor systems.
For our model problem with airgap variation of ±1mm, 5mm nominal airgap and a range of 10mm, this
can lead to a reduction of the maximal weighted position error by a factor of ∼ 14 for 1D systems and by
a factor of ∼ 5 for 2D systems within our chosen system requirements. It must be noted that these factors
depend on the chosen system. Further improvements are possible which is also visible in Tab. 5.3 by the
fact that the optimization returns boundary values. In general, we find that position error reduction by
one order of magnitude in 1D and a factor of 3-5 in 2D is easily achieved for the typical linear position
systems outlined in Tab. 5.1.

The major downside of the proposed method is the reduction of field amplitude, which translates
directly to the sensitivity and potential resolution. However, our results are just a proof of principle where
we have demonstrated a novel airgap stabilization mechanism for magnetic systems. With additional
constraints and the choice λ > 0 in Eq. (5.10), the balance between stability and field amplitudes can be
adjusted at will.

While the proposed method is based on only two cuboid magnets, it is easily extended to more complex
magnet structures as proposed in [108].

Finally, we note that the odd component of a single magnet’s field already has natural stationary
points with a high level of airgap stability. However, these extrema lie very close to the magnet surface
(assuming cuboids) so that if the system is scaled up to achieve desired airgaps, the magnet size exceeds
our reasonable system constraints. Further investigation and exploitation of this effect is planned.
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6. Global magnetic topology optimization

In this chapter, a global approach to magnetic topology optimization is presented and discussed, which
makes use of a hybrid optimization algorithm that combines the advantages of local and global optimiza-
tion methods. The ideas, advantages and disadvantages of such approaches are discussed in detail and
tested and illustrated on suitable selected model problems. The results show that global approaches are
generally necessary to achieve significantly lower minima of the objective function.

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

6.1. Introduction

In various applications of magnetic materials like sensor systems and motors, the profile of the magnetic
field (in addition to the sensor properties) has a significant influence on the quality of the system.
Therefore, it makes sense to use magnets with optimized shapes that generate fields suitable for the
specific application [168–170].

One possible way to improve the magnetic field in some desired way is magnetic topology optimization,
where the shape of the magnets is adjusted by optimization [171]. In general, there exist many different
approaches to solving the optimization problem [172–180]. Especially recent publications include
interesting modern approaches based on genetic algorithms [181], a level set method [182], clustering
[183], segmentation [184–186], Gaussian networks [187] and deep learning [188]. In the past, several
works have presented possible optimization algorithms that allow the magnets to be optimized with
respect to a predefined objective function that measures the quality of the obtained field [189–193]. The
basic idea is to describe the geometry by a scalar density field that discretizes the presence or absence of
magnetic material in a predefined design region. This may lead to an enormous number of degrees of
freedom, however. Most algorithms in the literature use the adjoint method [194–196], which provides a
computationally cheap and direct way to compute the derivative of the objective function. This allows
the use of common gradient-based optimization algorithms that provide fast convergence in the very
high-dimensional discrete magnetic topology space. It has to be mentioned that besides the adjoint
method focused in this work, other ways of determining the derivatives [197–199] also exist.

Since gradient-based optimization algorithms [200–202] tend to converge to nearby local minima, there
is no guarantee that the minimum reached is global. Even simple toy examples show that, in general,
multiple local minima can occur. This problem has been addressed for instance in [203] and the proposed
solution is a combination of an on/off sensitivity method and a genetic algorithm [204–208]. In contrast
to these approaches, which take into account practically nice looking solutions, we focus more on global
optima and present another hybrid topology optimization algorithm that combines the global cuckoo
search optimization algorithm [209, 210] with a very fast and efficient local binary on/off optimization
algorithm [203, 211]. We discuss why our approach is predestined for optimization problems in the
case of a very high-dimensional domain (number of magnetic cells), only two desirable states (magnetic
material or not), available gradient (adjoint method), and the possible presence of multiple local minima.
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Our algorithm can find significantly better solutions than pure local or global optimization methods
and has fast convergence properties due to the possible parallel computation.

The chapter is organized as follows: The fundamental equation of the hard magnetic stray field
calculation is given in Sec. 6.2 and the formulation of the optimization problem in Sec. 6.3. In Sec. 6.4,
our proposed hybrid optimization algorithm is described and in Sec. 6.5 applied to the example of
optimizing a magnetic sensor system. The main part of the chapter finishes with a conclusion and outlook
on the topic in Sec. 6.6. Moreover, we give a derivation of the variational derivatives of the objective
function in App. D, where we also discuss the existence of local optima. Appendix E presents a toy
example with multiple local minima and App. F discusses the behavior of the used local optimizer. In
App. G we discuss the influence of the mesh-fineness on the optimization and in App. H the symmetry
properties of the solution.

6.2. Theoretical background

The basis of our magnetic optimization are the static and current-free Maxwell equations in vacuum [136]

∇×H = 0, (6.1)

∇ ·B = 0, (6.2)

with the magnetic field H and the magnetic flux density B. Equation (6.1) allows introducing the scalar
magnetic potential u with

−∇u = H. (6.3)

Application of the divergence on both sides of the relation B = µ0(H+M) with magnetization M and
inserting Eq. (6.2) leads to the equation

∆u = ∇ ·M. (6.4)

This formula allows calculating the scalar magnetic potential u for a given magnetization M (i.e.
solution of the magnetic forward problem), which is the basis of the optimization algorithm, which is
presented in the following section.

6.3. Optimization problem

The formulation of the optimization problem follows the already established approach of magnetic
topology optimization [190–193, 212]. Therefore, we divide the whole space into two regions of interest,
the magnetic region Ωm and the target region Ωt . The scalar function ρ : Ωm −→ [0,1] denotes the
magnetic material density within the magnetic region, where ρ(x) = 0 means no magnetic material and
ρ(x) = 1 means full magnetic material at position x. Values in between are in principle allowed and scale
the saturation magnetization Ms in the form

Ms(ρ) = ρMs0, (6.5)

where Ms0 denotes the highest possible saturation magnetization meaning full magnetic material and is
assumed to be constant in Ωm. In the following, a perfectly hard magnetic material is assumed so that the
normalized magnetization direction m is constant throughout the optimization process. This is only a
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simplification in the simulation and the presented theory could be easily generalized to the soft magnetic
case as described in Sec. 6.6. Thus, overall, we obtain the relation

M(ρ) = Ms(ρ)m = ρMs0m = ρM0. (6.6)

The objective function J to be minimized in general depends on the scalar magnetic potential u and its
derivatives (i.e. the magnetic field H and its derivatives) in the target region Ωt , which in turn depends on
the magnetization M and thus on the magnetic material density ρ in the form (H denoting the Hessian
matrix)

J(ρ) =
∫︂

Ωt

F
(︁
u(ρ),∇u(ρ),H u(ρ)

)︁
dx. (6.7)

The function F can in principle be any scalar-valued transformation. However, if the derivative dJ/dρ

is used and computed efficiently by the adjoint method (see [190–193, 195]), the partial derivatives of F
according to its arguments must be computed analytically (see Eqs. (D.2) and (D.8)).

This chapter will now present an efficient optimization algorithm predestined for solving such problems,
i.e., optimizing objective functions under the following conditions:

There are over countable degrees of freedom since arbitrary functions ρ : Ωm −→ [0,1] are possible
as solutions and they modelize the geometric shape of magnets. Any function evaluation of J is very
effortful since it requires the numerical solution of Poisson’s equation in Eq. (6.4), and the computation
of the derivative dJ/dρ by the adjoint method is approximately as effortful. Moreover, depending on the
application, several local minima are possible.

6.4. Optimization algorithm

We propose an algorithm with the following properties that takes into account all the special characteristics
of the topology optimization problem:

To numerically treat the framework of the previous section, it is useful to discretize the (bounded)
regions of interest Ωm and Ωt to make the function spaces discrete. Since the purpose of magnetic
topology optimization is to determine an unknown geometry without specific knowledge of its shape,
we choose the simplest possible partitioning of the space into small cubic cells of identical dimension
and assume that all functions are constant over the individual cells [190]. In particular, ρ in each cell
has a value ρi ∈ [0,1], which must be determined as part of the optimization process. Nevertheless, this
procedure leads to a large (but finite) number of degrees of freedom to achieve a reasonable resolution of
the resulting geometric shapes of the magnets. Based on this finite difference mesh scheme, fast algorithms
for computing the stray magnetic field are available for the necessary solution of the Poisson equation
[44, 116, 190] and GPU acceleration is used [115, 213]. In a fine discretization, the derivative dJ/dρi

still has many components. However, using the adjoint method (see [190–193, 195]), the components
as a whole can be computed with about the same computational effort as the scalar function value of
J. This is a very good reason for using the gradient within the optimization algorithm as in gradient
descent [214], Newton-like methods [215, 216] or similar approaches [217]. In simple applications of
topological optimization with convex objective functions, the objective function J may have only a single
local minimum to which a local optimization algorithm converges regardless of the starting point (see
App. D.3). In the general case, however, it is completely unknown whether the function landscape has
multiple local minima that are not global (see App. E). Therefore, it is useful to use ideas of global
optimization algorithms to find the best solution without getting stuck in local minima.

In the following subsection, we describe the structure of a possible algorithm with the above properties.
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Figure 6.1.: Procedure of our simplified version of the CS algorithm.

6.4.1. Cuckoo search algorithm (CSA)

The CSA is a modern global optimization algorithm that mimics the brooding behavior of cuckoo birds
[209]. Their property of laying their eggs in nests of foreign bird species is emulated in the form of a
group of cuckoos flying around to find the best nest for their eggs to hatch. Once they find a good nest,
there is a quality-dependent probability that the cuckoo egg will be recognized by the host bird and a new
nest will be required. Cuckoos also fly around and compare the quality of surrounding nests to the best
ones they have already found.

Our adapted version of the CSA goes through the steps shown in Fig. 6.1. The original global CSA
[209] on its own behaves very badly for the application of topology optimization, since the parameter
space is high dimensional and the algorithm lacks a fast and efficient way to seek through it. However,
having access to gradient calculation, it is reasonable to use it to determine the flight direction in order to
reduce the function value of the objective function more efficiently. This approach was performed and
studied in [218].

To perform the “flight” in a reasonable way for the approach of magnetic topology optimization, a very
fast convergent algorithm for local optimization is stated in the next section.
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6.4.2. Binary search algorithm (BSA)

In [211], a binary on/off method for topology optimization is presented. It takes advantage of the fact that
the magnetic density ρ should only take the values 0 or 1 for ease of fabrication in the application since
intermediate values ρ ∈ (0,1) are very difficult to realize anyway. So we want to find the optimum within
the finitely many possible states where ρi ∈ {0,1} for all i. Since the total number of configurations
increases exponentially with the number of cells, it is not possible to simply explore all possibilities and
compare the corresponding values. Instead, one could use the algorithm in Fig. 6.2.

Note that because of the discrete binary states, one can no longer speak of a local minimum in the
mathematical sense of a function on a continuous domain. It is clear that even if the gradient indicates
a possible improvement in a cell, this does not mean that the binary change from 0 to 1 or vice versa
will eventually improve the function value of the objective function. In App. F, we therefore analyze the
behavior of the algorithm in more detail. However, to obtain the optimum on the discrete domain with
certainty, we would need to check all states. This is not possible in practice due to the large number of
different combinations, so the second-best requirement for the algorithm is to provide at least a procedure
to obtain a result in a reasonable time frame. Note also that the final local optimum (the configuration in
which the algorithm terminates) depends very much on the value chosen for the renewal probability p
and the “flight” method.

The quick switch between the states ρi = 0 and ρi = 1 makes this algorithm very useful for the purpose
of magnetic topology optimization. However, on its own, it is still a local optimization algorithm and is
therefore limited in seeking global optima.

6.4.3. Hybrid algorithm (HA)

We now combine the two previous algorithms into an HA that basically replaces the “flight” in the CSA
of Subsec. 6.4.1 with a BSA of Subsec. 6.4.2. The detailed procedure is shown in Fig. 6.3.

There, updating j · ℓ steps guarantees that the new agents also have the opportunity to take as many
local iteration steps in total as the current best solution. However, it also has the effect that the number of
iteration steps of the worst agent can reach ∑

g
j=1 j · ℓ= ℓ ·g(g+1)/2 and thus be quadratic in the number

of global iteration steps g, even though the number of local iteration steps of the best solution is at most
ℓ · g. This additional computational effort is invested in searching the entire parameter space and can
contribute to a successful global minimization.

The formulation makes it clear that any other local optimizer besides the BSA could be used. Further-
more, it is also conceivable to “hybridize” other global optimization approaches [219, 220].

6.5. Applications

In the following, we present an application to demonstrate the utility of our presented method HA.

6.5.1. Optimization problem

We apply our algorithm to a model problem with objective function

J(ρ) =
∫︂

Ωt

⃓⃓⃓⃓
−∂ 2u

∂ z2 (ρ)+
∂Hext,z

∂ z

⃓⃓⃓⃓2
dx Eq.(6.3)

=
∫︂

Ωt

⃓⃓⃓⃓
∂ (Hz(ρ)+Hext,z)

∂ z

⃓⃓⃓⃓2
dx −→ min (6.8)

with optimization and target area shown in Fig. 6.4. The additional magnet in the region of Ωext is
included in the optimization process only as a constant magnetic field source renerating Hext. We choose
magnetization m = (1,0,0) and µ0Ms0 = 1T in Ωext and m = (−1,0,0) and µ0Ms0 = 1T in Ωm. Thus,
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Figure 6.2.: Sequence of BSA. It starts with an arbitrary initial binary state (ρi ∈ {0,1}) for all i and
ends in finitely many steps. How the sign of the derivative determines the candidates for modified
cells is visualized in the sub-image. Depending on the present value of ρi and the sign of the derivative
dJ/dρi, the cell is either a candidate for a change or not.
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Figure 6.3.: Procedure of the HA.
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parameter value
p 1
f 0.9
e 10
ρi 1 ∀i
g —
p 0.25
n 8
ℓ 1

Table 6.1.: Parameter used for the BSA (upper part) and additional parameters for the HA (lower part).
The value of g is taken as the number of iteration steps the BSA needs to converge.

the total magnetic field consists of two parts: This constant field generated in Ωext and an overlapping
opposing fields depending on the magnetic material density in Ωm. The idea of this alignment and
optimization is to obtain a minimal z derivative in the total magnetic field to make the system robust to
misalignment in the z direction, which could be interesting in certain sensing applications, as described in
[151].

6.5.2. Symmetry

This optimization problem is symmetric in x and y directions according to the discussion in App. H.
Although it is shown there, that the optimal solution does not necessarily have the same symmetry, we
still allow only symmetric solutions in the optimization by updating just a quarter of the region and copy
it to the remaining parts, because this reduces the degrees of freedom by a factor of four. This allows for
faster optimization and also a solution with high symmetry might have benefits in production processes.
Thus, it is worth mentioning that in the function space of all (even asymmetric) configurations of ρ , the
minimum could in principle also be lower than our result.

6.5.3. Results

The optimization result of the BSA from Subsec. 6.4.2 is compared to the HA in Subsec. 6.4.3 for
different mesh sizes. We use the parameters from the upper part of Tab. 6.1 for the BSA. Under these
circumstances, the local optimization in terms of the algorithm in Fig. 6.2 converges after a certain number
of iterations. This number can vary for different mesh sizes and is used for the maximum iteration steps
of the HA together with the parameters of the full Tab. 6.1 (except for ρi initialization, which is random
for each agent). The number of iterations, the results of each optimum and the numerical effort measured
as the number of required evaluations of J and dJ/dρ (due to the adjoint method, both evaluations have
approximately the same effort) is given in Tab. 6.2 and visualized in Fig. 6.5.

For the mesh size of 1/10mm, we additionally calculate the results of the BSA for different random
start configurations in Tab. 6.3 and visualize the results in Fig. 6.6. It can be observed that although there
are different local solutions, they have certain similarities in certain parts of the magnetic region.

6.5.4. Discussion

Looking at the results in Tab. 6.2, it can be observed that for the model problem, the BSA with initial
value ρi = 1 for all i converges to a solution already in 19–37 iteration steps. When comparing the values
for different mesh resolutions, we have to take into account that for simplicity and to make the stray field
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Figure 6.4.: Alignment and dimensions of the optimization regions. Ωt denotes the blue target region,
Ωm the red magnetic region and Ωext the gray region representing the additional magnet whose geo-
metry is left constant and which is not changed during the optimization process. The numerical values
are given in mm. The mesh illustrates a possible subdivision into cubic cells with a edge length of
0.5mm.

71



cell edge iteration Jmin BSA Jmin HA gain J and dJ/dρ J and dJ/dρ

length [mm] steps [A2/m] [A2/m] [%] evaluations BSA evaluations HA
1/2 20 62.569 31.144 50.2 544 13424
1/4 25 36.852 35.580 3.5 694 20593
1/6 20 55.986 27.958 50.1 606 9470
1/8 24 61.394 32.464 47.1 690 10529
1/10 28 40.206 28.229 29.8 812 28256
1/12 32 42.429 29.918 29.5 890 29932
1/14 31 46.685 34.240 26.7 896 17166
1/16 31 31.487 36.844 −17.0 904 19812
1/18 25 37.878 32.476 14.3 778 21624
1/20 37 53.844 29.178 45.8 1008 63306
1/22 22 41.404 48.550 −17.3 724 16152
1/24 26 44.555 29.099 34.7 798 21685
1/26 19 131.202 30.838 76.5 668 11585

Table 6.2.: Number of iteration steps, found optimum values and numerical effort for the BSA (see
Subsec. 6.4.2) and HA (see Subsec. 6.4.3).

seed Jmin BSA [A2/m]
0 52.725
1 46.164
2 63.728
3 64.291
4 57.503

Table 6.3.: Optimum values of the objective function J according to the BSA for different random
initial configurations with given seed and cell size 1/10mm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 6.5.: Optimum configuration of Ωm in Fig. 6.4 according to the algorithms for the different
cubic cell sizes: (a), (b) for 1/2mm, (c), (d) for 1/6mm, (e), (f) for 1/10mm, (g), (h) for 1/16mm, (i),
(j) for 1/20mm, (k), (l) for 1/22mm, (m), (n) for 1/26mm. The left pictures depicts the result of the
local BSA, the right pictures of the HA.
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(a)

(b)

(c)

(d)

(e)

Figure 6.6.: Optimum configuration of Ωm in Fig. 6.4 according to the BSA for different random initial
configurations and cell size 1/10mm. The corresponding optimum values are given in Tab. 6.3.
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calculation with the Fourier transform [221, 222] easily accessible, we always use the same mesh fineness
for Ωt and Ωm. This leads to a finer resolution of the geometry and the integral in the objective function
Eq. (6.7) sequentially. In particular, fluctuations of the field on a short length scale can then provide an
additional contribution to the integral that can only be detected at a sufficiently fine resolution. This
explains that the found minima vary for different resolutions and do not exhibit monotonic decreasing
behavior for finer resolutions and is explored in detail in App. G.

We can observe that in most cases the HA leads to a much better result with improvements up to
76.5%, even if the computational effort increases by at least a factor of 15. However, there are also two
cases where the BSA already converges to a very good local minimum that cannot be outperformed by
the HA. The comparison of the geometries can be seen in Fig. 6.5g,h,k,l, where the “simple” shapes
in Fig. 6.5g,k surprisingly lead to lower minima than the challenging shapes in Fig. 6.5h,l. In these
cases, the parameters of the HA from Tab. 6.1 can be adjusted to find an even better optimum with more
computational effort.

For different cell sizes Fig. 6.5 illustrated that the HA optimization results tend to converge to a certain
stripe geometry, whereas the BSA with initialization ρi = 1 for all i gets stuck in local optima with a
different shape.

The listed optima of Tab. 6.3 further show that running the BSA with various random initial configur-
ations is not as effective as the HA, since the found minima are larger. This confirms the existence of
several local minima and the importance of global optimization techniques in the search for minima.

6.6. Conclusion and outlook

In this work, we presented a hybrid algorithm for the purpose of magnetic topology optimization. The
combination of two optimization algorithms (cuckoo search algorithm and binary search algorithm)
allowed us to develop a method that is specifically adapted to the requirements and circumstances in the
context of magnetic topology optimization but can also be used for any other application. In doing so, we
addressed various discussion points such as objective function evaluation, gradient-based optimization,
discretization, local minima, accuracy, etc., and demonstrated the behavior of our algorithm. Using an
example, we were able to show that hybrid optimization leads to significantly lower minima compared to
pure local optimization and that the objective function could be lowered by up to an additional 76.5%. The
existence of grids with better performance of the local optimizer only further emphasizes the relevance of
many local minima in the optimization process. Further it indicates that the completely random choice
of the starting values ρi for each agent in the cuckoo search algorithm is not very beneficial. It will be
advantageous to use global optimization algorithms that choose new starting points in a clever way using
the information of the success of already chosen starting values in the past. This also underlines the
necessity of good global optimization approaches with suitably chosen parameters to find the best possible
magnet geometries. The advantage of hybrid optimization lies in the possible parallel computation of
multiple optimization paths (“agents”) that can be immediately compared. Even though the overall
numerical effort of hybrid optimization is higher by a factor between 15 and 63 and also quadratic in
the number of total iteration steps, the additional effort is favorably invested when optimizing along
multiple paths on different positions of the parameter space. Parallel calculations, can, however, reduce
the effective calculation time.

The description of our method was deliberately done using a building block approach – the hybrid idea
could also work with other local and global optimization approaches. Further investigation is possible
and desirable.

Even though our simulations were limited to the pure hard magnetic case, exactly the same approach
can be applied to any soft magnetic case. The only difference in the calculation is a more complex
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calculation of the stray field due to demagnetization effects. The iteration procedure is then exactly the
same, only the individual steps are numerically more complex (see e.g. [193]).

Even though magnetic shapes as in Fig. 6.5 might be difficult to produce with standard magnetic
fabrication methods, recent 3D printing approaches [117, 192, 223–231] combining magnetic and
non-magnetic filament to successfully realize such geometries.

We hope that our work will provide an impulse for work on global and hybrid magnetic topology
optimization in general since many engineering applications are affected by the need to find good magnetic
geometries where global minimization of the cost function is desirable.
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7. Conclusion

Although there is no general recipe for how to optimize and improve models for computational simulation,
we have shown in the examples of magnetic recording, analytical field calculation, and magnetic shape
optimization that there are several anchor points for improvement. They are not obvious to find and
also the mathematical implementation can be challenging, but in many applications the effort can be
worthwhile because the results allow faster and more accurate numerical simulation. This is a particularly
relevant issue in magnet simulation due to the wide application of magnets and magnetic devices in
industry.

We were able to show that a simple simulation of a magnetic writing process is very time consuming,
especially because it has to be repeated many times to obtain meaningful information about the noise
of the signal. Instead, we proposed a systematic simulation technique based on the switching behavior
of a single grain. In contrast to setting the magnetization to one of the two binary states along their
uniaxial anisotropy directions, it was set to its probability value. This switching probability can be
used to calculate the signal-to-noise ratio very quickly and very accurately by using the given data in a
sophisticated way.

Even though magnetic fields of arbitrary geometries can nowadays be calculated very efficiently by
numerical methods, analytical solutions are still of interest since they allow a fast and accurate point-by-
point evaluation of the field, which has already been analyzed for different geometries in previous works.
In particular, since cylindrical tile geometry is found in important sensor applications, we have derived
the formulas and made them available in an open-source Python package for easy and fast use. We have
also discussed the challenges in such analytical approaches and hope to inspire the analytical solution of
other geometries as well.

In the final chapters, we discussed the common approach to the optimization of magnetic geometries.
We were first able to show how an additional magnet can increase the properties of a sensor system.
However, it must have the correct dimensions and position, which we found out by solving a suitable
explained optimization problem. Furthermore, we proposed a hybrid solution algorithm for global
topology optimization that overcomes the problem of multiple local minima in the parameter space.
Using the example, we have shown that global optimization is necessary and can significantly improve
the properties compared to local optimization, because with the wrong optimization algorithm there is a
risk of getting stuck in a local minima, which is not the very best solution.

Although the search for the “optimal” solution is always a matter of perspective, we have shown in
this work that significant improvements are possible in many areas of magnetic simulation with the right
mathematical treatment. Every case is different and we could only present a limited selection, but the
scope of the work hopefully stimulates further development of mathematical methods for magnetic and
physical applications in general.
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A. How to avoid integration singularities

Parts of this chapter have been previously published in [84] and have been reproduced with permission of
the coauthors and in accordance with the publisher’s policy. Content that was not generated by the author
of this thesis is explicitly denoted, copyright is held by Elsevier.

A.1. Motivation

It is not surprising if singularities appear in the magnetic field H when crossing magnetically charged
surfaces. However, it is also possible that single anti-derivatives contributing to the total field Eq. (4.20)
have singularities off-surface. As the field itself must be continuous, these singularities cancel by
summation with the singularities of other anti-derivatives.

For example, if we consider Eq. (4.32) for the special case z = zk,r > 0, the term has a logarithmic
singularity at ϕ = ϕ ′ if r > ri, which disappears after the following integration step. In contrast, for the
case r = ri in Eq. (4.33), the denominator vanishes for ϕ

′ ∈ 2πZ and reveals a significant singularity
that persists even after integration in the case ϕ j ∈ 2πZ, making straight-forward evaluation of this term
impossible.

It is crucial to understand how to eliminate the occurrence of these singularities, especially in the
second integration step. Our study reveals that they are the result of poorly chosen integration constants
by the computer algebra systems. How this happens and how to avoid it will be shown in the following
sections.

A.2. Notation

Let A ⊆ Rn+2 be a domain for the function

f : A −→ R
(x,y, p1, . . . , pn) ↦−→ f (x,y, p1, . . . , pn)

in two variables x,y and n additional parameters p1, . . . , pn. We are looking for an anti-derivative
F : A −→ R satisfying ∂x∂yF = f = ∂y∂xF . It exists if f is continuous and bounded, then F does exist
in the whole domain A but is not unique. Suppose we compute F in two steps (e.g. using a computer
algebra system):

• calculating an x-anti-derivative Fx of f

• calculating an y-anti-derivative Fx,y of Fx

The order of integration is mathematically irrelevant, but it should be noted that it can lead to different
expressions when using computer algebra systems. This is demonstrated and explained in the following
sections.

79



A.3. Singularities in the integration constants

Since in the calculation of Fx =
∫︁

f dx all variables except x are fixed, the integration constant can be an
arbitrary function of (y, p1, . . . , pn). This constant may have any number of singularities in A, so Fx with
integration constant may have a restricted domain A′ ⊂ A. The same problem may arise in the second
integration step, the integration of Fx with integration constant by y. Again, another integration constant
may occur depending on (x, p1, . . . , pn) with possible singularities in the result.

When integrating, computer algebra systems attempt to choose good integration constants. This
possibility, together with the ambition to write results in “simple” and “closed” form, can result in adding
singular integration constants. These unwanted singularities are hidden in the resulting deceptively simple
looking expressions. We illustrate this with examples in the following subsections.

A.4. Example 1

The function

f (x, p) :=
1√︁

x2 + p

on the domain {(x, p) ∈ R2
⃓⃓
p ≥ 0,(x, p) ̸= (0,0)} is continuous and bounded if one removes a small

region around (0,0), so the anti-derivative F must exist for all p in the domain. The integration of f by x
can lead to one of the following three anti-derivatives in computer algebra systems:

Fx,1(x, p) = log
(︂√︁

x2 + p+ x
)︂

Fx,2(x, p) =− log
(︂√︁

x2 + p− x
)︂

Fx,3(x, p) = artanh

(︄
x√︁

x2 + p

)︄

Mathematica version 10.1 [232] for instance produces Fx,1 with its standard integrator. The additionally
loaded Rubi integrator [233] results in Fx,3.

It is easy to see that all three functions are well-defined in the case p > 0 for all x. However, for
p = 0 we see that Fx,1 is defined only for x > 0, Fx,2 is defined only for x < 0 and Fx,3 is not defined
for any x ∈ R since the domain of artanh is (−1,1). Further computations show that the three possible
outputs of a computer algebra system, although looking different at first glance, differ only by a p-
dependent integration constant, which has a singularity at p = 0, i.e. Fx,1(x, p)−Fx,2(x, p) = log(p) and
Fx,3(x, p)−Fx,2(x, p) = log(p)/2. As described above, we observe an implicit integration constant that
reduces the domain for which our anti-derivative can be used. The automatic simplification of the term to
known mathematical function as log,artanh covers this problem.

A.5. Example 2

We now study an example function similar to Hϕ,ri in Eq. (4.17) and its anti-derivative in Eq. (4.33):

f (ϕ,z) :=
sinϕ√︁

1− cosϕ + z23
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on the domain

{(ϕ,z) ∈ [0,2π)×R
⃓⃓
(ϕ,z) ̸= (0,0)}. (A.1)

For z ̸= 0, the function term is obviously well-defined for all ϕ , since (1− cosϕ) ≥ 0. For z = 0,
however, L’Hospital’s rule reveals significant singularities,

lim
ϕ→0

sinϕ
√

1− cosϕ
3 = lim

ϕ→0

cosϕ

3/2
√

1− cosϕ sinϕ
=

1
0
.

An anti-derivative of f by z is given by

Fz,1(ϕ,z) =
zsinϕ

(1− cosϕ)
√︁

1− cosϕ + z2
,

however, the additional factor (1− cosϕ) in the denominator also generates a pole for z ̸= 0 at ϕ = 0,
which again can be seen with L’Hospital’s rule,

lim
ϕ→0

sinϕ

1− cosϕ
= lim

ϕ→0

cosϕ

sinϕ
=

1
0
.

Thus Fz.1 can be used only for the case ϕ ̸= 0. The same applies to the following anti-derivation by ϕ

Fz,ϕ,1(ϕ,z) =−2artanh

(︄
z√︁

1− cosϕ + z2

)︄
,

which is again undefined in the case ϕ = 0 for all z ∈ R. In order to obtain a proper anti-derivative also
for the case ϕ = 0, we first note that our goal is to calculate definite integrals of the form

∫︂
ϕ2

ϕ1

∫︂ z2

z1

f (ϕ,z) dz dϕ.

It is justified to restrict our domain of interest to a rectangular subset of Eq. (A.1). That is, if ϕ = 0 lies
in the interval [ϕ1,ϕ2], then we can assume that z = 0 is not in [z1,z2] since (0,0) is excluded from the
domain, and moreover that z1,z2 are either both positive or both negative, see Fig. A.1.

This argument allows us to add to Fz,1 a sign-dependent integration constant that also depends on ϕ

and compensates the pole for ϕ = 0. We define

Fz,2(ϕ,z) :=
sinϕ

1− cosϕ

(︄
z√︁

1− cosϕ + z2
− signz

)︄
,

where the term in parentheses vanishes for ϕ = 0 and thus compensates the pole of the prefactor.
Integration of this function by ϕ gives

Fz,ϕ,2(ϕ,z) =−2signz log
(︂√︁

1− cosϕ + z2 + |z|
)︂
.

which has no singularity in the case ϕ = 0,z ̸= 0 any more, and can be used to compute the definite
integral when ϕ1 = 0 or ϕ2 = 0.
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Figure A.1.: The upper rectangle represents the integration area [ϕ1,ϕ2]× [z1,z2]. In this case, z1 could
be moved below the horizontal axis without leaving the grayed region, i.e. the sign of z1 could also
be changed. However, the lower rectangle would intersect the point (0,0) if the upper boundary z2 is
moved to the positive part of the vertical axis, since ϕ ′

1 = 0.
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B. Special functions

Parts of this chapter have been previously published in [84] and have been reproduced with permission of
the coauthors and in accordance with the publisher’s policy. Content that was not generated by the author
of this thesis is explicitly denoted, copyright is held by Elsevier.

B.1. Elliptic integrals

In accordance with [234, Chap. 8] we define the elliptic integrals in the angular form:

• First kind:

F(ϕ,m) =
∫︂

ϕ

0

dϕ ′√︂
1−msin2

ϕ ′
(B.1)

• Second kind:

E(ϕ,m) =
∫︂

ϕ

0

√︂
1−msin2

ϕ ′ dϕ
′ (B.2)

• Third kind:

Π(ϕ,n,m) =
∫︂

ϕ

0

dϕ ′(︁
1−nsin2

ϕ ′
)︁√︂

1−msin2
ϕ ′

(B.3)

These integrals exist and yield real numbers for ϕ ∈ R and m,n ∈ (−∞,1). For ϕ = π/2 they are called
complete, otherwise incomplete elliptic integrals. There are several very efficient numerical algorithms
to compute these integrals with effective computation times between 10 ns and 1 µs for single-core
evaluation on state-of-the-art i5 or i7 mobile CPUs [100, 127, 130, 235, 236].

B.2. Angle scaling function

For some results in App. C, we make use of the following angle scaling function

Sc(ϕ,k) := πn+ arctan(k tan(ϕ/2−πn)) ,

where n := [ϕ/2π], i.e. the integer value closest to ϕ/2π , which is a periodic continuation of the
anti-derivative arctan(k tan(ϕ/2)) with k > 0 (see Fig. B.1).
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Figure B.1.: Graph of the angle scaling function Sc as the periodic continuous continuation of the anti-
derivative from (−π,π) to R for three different values of k.
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C. Tables

Parts of this chapter have been previously published in [84] and have been reproduced with permission of
the coauthors and in accordance with the publisher’s policy. Content that was not generated by the author
of this thesis is explicitly denoted, copyright is held by Elsevier.

In Tabs. C.1-C.26 all necessary functions with corresponding coefficients to perform the field calcula-
tion according to Sec. 4.4 are given. How the tables are to be read is shown in Tab. 4.2. All terms with
±-sign must be considered twice, with plus and minus.
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1 logri

Hϕ j,ri
ϕ,zk 0 cosθM

Hzk,ϕ j
z,ri −sinθM sinϕM 0

Hzk,ri
z,ϕ j 0 sinθM sinϕM

Table C.1.: Required functions and corresponding coefficients for I = 112.

logr

Hϕ j,ri
ϕ,zk −cosθM

Hzk,ri
z,ϕ j −sinθM sinϕM

Table C.2.: Required functions and corresponding coefficients for I = 113.

1 signri log |ri| E
(︂

ϕ j
2 ,−4rri

r2
i

)︂
F
(︂

ϕ j
2 ,−4rri

r2
i

)︂
Hri,ϕ j

r,zk 0 0 cosθM |ri|
r − cosθM(r2+r2

i )
r|ri|

Hϕ j,ri
ϕ,zk − cosθM signriri

r −cosθM 0 0

Hzk,ϕ j
z,ri

sinθM sinϕM |ri|
r 0 sinθM cosϕM |ri|

r − sinθM cosϕM(r2+r2
i )

r|ri|
Hzk,ri

z,ϕ j 0 −sinθM sinϕM 0 0

Table C.3.: Required functions and corresponding coefficients for I = 115.

1 logri

Hϕ j,ri
ϕ,zk 0 −cosθM

Hzk,ϕ j
z,ri sinθM sinϕM 0

Hzk,ri
z,ϕ j 0 −sinθM sinϕM

Table C.4.: Required functions and corresponding coefficients for I = 122.
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logr

Hϕ j,ri
ϕ,zk −cosθM

Hzk,ri
z,ϕ j −sinθM sinϕM

Table C.5.: Required functions and corresponding coefficients for I = 123.

1 log2r

Hϕ j,ri
ϕ,zk cosθM −cosθM

Hzk,ϕ j
z,ri 2sinθM sinϕM 0

Hzk,ri
z,ϕ j 0 −sinθM sinϕM

Table C.6.: Required functions and corresponding coefficients for I = 124.

1 log(r+ ri) E
(︂

ϕ j
2 ,−4rri

r2
i

)︂
F
(︂

ϕ j
2 ,−4rri

r2
i

)︂
Hri,ϕ j

r,zk 0 0 cosθM |ri|
r − cosθM(r2+r2

i )
r|ri|

Hϕ j,ri
ϕ,zk

cosθMri
r −cosθM 0 0

Hzk,ϕ j
z,ri

sinθM sinϕM(r+ri)
r 0 sinθM cosϕM |ri|

r − sinθM cosϕM(r2+r2
i )

r|ri|
Hzk,ri

z,ϕ j 0 −sinθM sinϕM 0 0

Table C.7.: Required functions and corresponding coefficients for I = 125.

1 logri

Hri,ϕ j
r,zk 0 cosθM sinϕ j

Hϕ j,ri
ϕ,zk 0 cosθM cosϕ j

Hzk,ϕ j
z,ri −sinθM sinϕM j 0

Hzk,ri
z,ϕ j 0 sinθM sinϕM j

Table C.8.: Required functions and corresponding coefficients for I = 132.87



1 log
(︁
r
(︁
1− cosϕ j

)︁)︁
artanh

(︁
cosϕ j

)︁
Hri,ϕ j

r,zk −cosθM sinϕ j cosθM sinϕ j 0
Hϕ j,ri

ϕ,zk cosθM 0 −cosθM cosϕ j
Hzk,ri

z,ϕ j 0 0 −sinθM sinϕM j

Table C.9.: Required functions and corresponding coefficients for I = 133.

1
√

2
√︁

1− cosϕ j artanh
(︃√︂

1−cosϕ j
2

)︃
artanh

(︃
sinϕ j√

2
√

1−cosϕ j

)︃
−

√
2sinϕ j√

1−cosϕ j
log
(︂

r
(︂

1− cosϕ j +
√

2
√︁

1− cosϕ j

)︂)︂
Hri,ϕ j

r,zk −cosθM sinϕ j 0 0 cosθM cosθM sinϕ j

Hϕ j,ri
ϕ,zk 0 cosθM cosθM cosϕ j 0 0

Hzk,ϕ j
z,ri 0 sinθM sinϕM 0 sinθM cosϕM 0

Hzk,ri
z,ϕ j 0 0 sinθM sinϕM j 0 0

Table C.10.: Required functions and corresponding coefficients for I = 134.

1
√

r2+r2
i −2rri cosϕ j

r log
(︂

ri − r cosϕ j +
√︂

r2 + r2
i −2rri cosϕ j

)︂
artanh

(︃
r cosϕ j−ri√

r2+r2
i −2rri cosϕ j

)︃
E
(︂

ϕ j
2 ,−4rri

r2
i

)︂
F
(︂

ϕ j
2 ,−4rri

r2
i

)︂
Hri,ϕ j

r,zk −cosθM sinϕ j 0 cosθM sinϕ j 0 cosθM |ri|
r − cosθM(r2+r2

i )
r|ri|

Hϕ j,ri
ϕ,zk 0 cosθM 0 −cosθM cosϕ j 0 0

Hzk,ϕ j
z,ri 0 sinθM sinϕM 0 0 sinθM cosϕM |ri|

r − sinθM cosϕM(r2+r2
i )

r|ri|
Hzk,ri

z,ϕ j 0 0 0 −sinθM sinϕM j 0 0

Table C.11.: Required functions and corresponding coefficients for I = 135.
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signzk signzk log |zk|
Hri,zk

r,ϕ j 0 −sinθM sinϕM

Hri,ϕ j
z,zk −cosθMϕ j 0

Table C.12.: Required functions and corresponding coefficients for I = 211.

ri√
r2

i +z2
k

artanh
(︃

ri√
r2

i +z2
k

)︃
zk√

r2
i +z2

k
artanh

(︃
zk√

r2
i +z2

k

)︃
Hzk,ϕ j

r,ri 0 0 sinθM

(︂
cosϕMϕ j

2 − sinϕM
4

)︂
0

Hri,zk
r,ϕ j 0 0 0 −sinθM sinϕM

Hzk,ϕ j
ϕ,ri 0 0 sinθM

(︂
sinϕMϕ j

2 − cosϕM
4

)︂
0

Hϕ j,ri
ϕ,zk −cosθM cosθM 0 0

Hzk,ϕ j
z,ri −sinθM sinϕM 0 0 0

Hzk,ri
z,ϕ j 0 sinθM sinϕM 0 0

Hri,ϕ j
z,zk 0 0 −cosθMϕ j 0

Table C.13.: Required functions and corresponding coefficients for I = 212.

signzk

√
r2+z2

k
r artanh

(︃
r√

r2+z2
k

)︃
artanh

(︃
zk√

r2+z2
k

)︃
Hri,zk

r,ϕ j 0 0 0 −sinθM sinϕM

Hϕ j,ri
ϕ,zk 0 cosθM −cosθM 0

Hzk,ri
z,ϕ j 0 0 −sinθM sinϕM 0

Hri,ϕ j
z,zk cosθMϕ j 0 0 0

Table C.14.: Required functions and corresponding coefficients for I = 213.89



signzk
|zk|
r

signzkz2
k

2r2 signzk log |zk| signzk log
(︂

|zk|√
2r

)︂
E
(︂

ϕ j
2 ,−4r2

z2
k

)︂
F
(︂

ϕ j
2 ,−4r2

z2
k

)︂
· · ·

Hzk,ϕ j
r,ri 0 0 −sinθM sinϕM 0 0 − sinθM cosϕM signzkz2

k
2r2

sinθM cosϕM signzk(2r2+z2
k)

2r2

Hri,zk
r,ϕ j 0 0 0 −sinθM sinϕM 0 0 0

Hri,ϕ j
r,zk 0 0 0 0 0 cosθM |zk|

r − cosθM(2r2+z2
k)

r|zk| · · ·

Hzk,ϕ j
ϕ,ri

sinθM(sinϕMϕ j−cosϕM)
2 0 −sinθM cosϕM 0 −sinθM cosϕM

sinθM sinϕM signzkz2
k

2r2 − sinθM sinϕM signzk(4r2+z2
k)

2r2

Hϕ j,ri
ϕ,zk 0 cosθM 0 0 0 0 0

Hzk,ϕ j
z,ri 0 sinθM sinϕM 0 0 0 sinθM cosϕM |zk|

r − sinθM cosϕM(2r2+z2
k)

r|zk|
Hri,ϕ j

z,zk 0 0 0 0 0 0 0 · · ·

· · · Π

(︃
ϕ j
2 , 2r

r±
√

r2+z2
k
,−4r2

z2
k

)︃
Π

(︄
ϕ j
2 ,1− z4

k

(4r2+z2
k)
(︂

r±
√

r2+z2
k

)︂2 ,
4r2

4r2+z2
k

)︄

Hri,ϕ j
r,zk · · · −

cosθM

(︂√
r2+z2

k∓r
)︂(︂

r±
√

r2+z2
k

)︂2

r|zk|
√

r2+z2
k

± cosθMz4
k

r
√︂
(r2+z2

k)(4r2+z2
k)
(︂

r±
√

r2+z2
k

)︂
Hri,ϕ j

z,zk · · · cosθM signzk 0

Table C.15.: Required functions and corresponding coefficients for I = 214.
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√︂
r2

i + z2
k artanh

(︃
ri√

r2
i +z2

k

)︃
artanh

(︃
zk√

r2
i +z2

k

)︃
E
(︂

ϕ j
2 ,− 4rri

r2
i +z2

k

)︂
F
(︂

ϕ j
2 ,− 4rri

r2
i +z2

k

)︂
Π

(︂
ϕ j
2 ,−4rri

r2
i
,− 4rri

r2
i +z2

k

)︂
· · ·

Hzk,ϕ j
r,ri − sinθM sinϕMzk

2r2 0
sinθM sinϕM(r2−r2

i )
2r2 − sinθM cosϕMzk

√
r2

i +z2
k

2r2
sinθM cosϕMzk(2r2

i +z2
k)

2r2
√

r2
i +z2

k

sinθM cosϕMzk(r2+r2
i )(r+ri)

2r2ri
√

r2
i +z2

k

Hri,zk
r,ϕ j 0 0 −sinθM sinϕM 0 0 0

Hri,ϕ j
r,zk 0 0 0 cosθM

√
r2

i +z2
k

r − cosθM(r2+r2
i +z2

k)
r
√

r2
i +z2

k
0 · · ·

Hzk,ϕ j
ϕ,ri − sinθM cosϕMzk

2r2 0 − sinθM cosϕM(r2+r2
i )

2r2
sinθM sinϕMzk

√
r2

i +z2
k

2r2 − sinθM sinϕMzk(2r2+2r2
i +z2

k)
2r2
√

r2
i +z2

k

sinθM sinϕMzk(r+ri)
2

2r2
√

r2
i +z2

k

Hϕ j,ri
ϕ,zk

cosθM
r −cosθM 0 0 0 0

Hzk,ϕ j
z,ri

sinθM sinϕM
r 0 0 sinθM cosϕM

√
r2

i +z2
k

r − sinθM cosϕM(r2+r2
i +z2

k)
r
√

r2
i +z2

k
0

Hzk,ri
z,ϕ j 0 −sinθM sinϕM 0 0 0 0

Hri,ϕ j
z,zk 0 0 0 0 0 0 · · ·

· · · Π

(︃
ϕ j
2 , 2r

r±
√

r2+z2
k
,− 4rri

r2
i +z2

k

)︃
Π

(︄
ϕ j
2 ,1− z2

k(r2
i +z2

k)

((r+ri)
2+z2

k)
(︂

r±
√

r2+z2
k

)︂2 ,
4rri

(r+ri)
2+z2

k

)︄

Hri,ϕ j
r,zk · · · −

cosθM

(︂√
r2+z2

k∓r
)︂(︂

ri±
√

r2+z2
k

)︂2

r
√︂
(r2+z2

k)(r2
i +z2

k)
± cosθMz2

k(r2
i +z2

k)

r
√︂
(r2+z2

k)((r+ri)
2+z2

k)
(︂

r±
√

r2+z2
k

)︂
Hri,ϕ j

z,zk · · ·
cosθMzk

(︂
ri±

√
r2+z2

k

)︂
√

r2
i +z2

k

(︂
r±
√

r2+z2
k

)︂ 0

Table C.16.: Required functions and corresponding coefficients for I = 215.

signzk signzk log |zk|
Hri,zk

r,ϕ j 0 −sinθM sinϕM

Hri,ϕ j
z,zk −cosθMϕ j 0

Table C.17.: Required functions and corresponding coefficients for I = 221.91



ri√
r2

i +z2
k

artanh
(︃

ri√
r2

i +z2
k

)︃
zk√

r2
i +z2

k
artanh

(︃
zk√

r2
i +z2

k

)︃
Hzk,ϕ j

r,ri 0 0 sinθM

(︂
cosϕMϕ j

2 − sinϕM
4

)︂
0

Hri,zk
r,ϕ j 0 0 0 −sinθM sinϕM

Hzk,ϕ j
ϕ,ri 0 0 sinθM

(︂
sinϕMϕ j

2 − cosϕM
4

)︂
0

Hϕ j,ri
ϕ,zk cosθM −cosθM 0 0

Hzk,ϕ j
z,ri sinθM sinϕM 0 0 0

Hzk,ri
z,ϕ j 0 −sinθM sinϕM 0 0

Hri,ϕ j
z,zk 0 0 −cosθMϕ j 0

Table C.18.: Required functions and corresponding coefficients for I = 222.

signzk

√
r2+z2

k
r artanh

(︃
r√

r2+z2
k

)︃
artanh

(︃
zk√

r2+z2
k

)︃
Hri,zk

r,ϕ j 0 0 0 −sinθM sinϕM

Hϕ j,ri
ϕ,zk 0 cosθM −cosθM 0

Hzk,ri
z,ϕ j 0 0 −sinθM sinϕM 0

Hri,ϕ j
z,zk cosθMϕ j 0 0 0

Table C.19.: Required functions and corresponding coefficients for I = 223.
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√︂
4r2 + z2

k artanh
(︃

2r√
4r2+z2

k

)︃
artanh

(︃
zk√

4r2+z2
k

)︃
E
(︂

ϕ j
2 ,−4r2

z2
k

)︂
F
(︂

ϕ j
2 ,−4r2

z2
k

)︂
Π

(︃
ϕ j
2 , 2r

r±
√

r2+z2
k
,−4r2

z2
k

)︃
· · ·

Hzk,ϕ j
r,ri − sinθM sinϕMzk

2r2 0 0 − sinθM cosϕM signzkz2
k

2r2
sinθM cosϕM signzk(2r2+z2

k)
2r2 0

Hri,zk
r,ϕ j 0 0 −sinθM sinϕM 0 0 0

Hri,ϕ j
r,zk 0 0 0 cosθM |zk|

r − cosθM(2r2+z2
k)

r|zk| −
cosθM

(︂√
r2+z2

k∓r
)︂(︂

r±
√

r2+z2
k

)︂2

r|zk|
√

r2+z2
k

· · ·

Hzk,ϕ j
ϕ,ri − sinθM cosϕMzk

2r2 0 −sinθM cosϕM
sinθM sinϕM signzkz2

k
2r2 − sinθM sinϕM signzk(4r2+z2

k)
2r2 0

Hϕ j,ri
ϕ,zk

cosθM
r −cosθM 0 0 0 0

Hzk,ϕ j
z,ri

sinθM sinϕM
r 0 0 sinθM cosϕM |zk|

r − sinθM cosϕM(2r2+z2
k)

r|zk| 0
Hzk,ri

z,ϕ j 0 −sinθM sinϕM 0 0 0 0
Hri,ϕ j

z,zk 0 0 0 0 0 cosθM signzk

· · · Π

(︄
ϕ j
2 ,1− z4

k

(4r2+z2
k)
(︂

r±
√

r2+z2
k

)︂2 ,
4r2

4r2+z2
k

)︄
Hri,ϕ j

r,zk · · · ± cosθMz4
k

r
√︂
(r2+z2

k)(4r2+z2
k)
(︂

r±
√

r2+z2
k

)︂

Table C.20.: Required functions and corresponding coefficients for I = 224.
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√︂
(r+ ri)2 + z2

k artanh

(︄
r+ri√︂

(r+ri)
2+z2

k

)︄
artanh

(︄
zk√︂

(r+ri)
2+z2

k

)︄
E
(︂

ϕ j
2 ,− 4rri

r2
i +z2

k

)︂
F
(︂

ϕ j
2 ,− 4rri

r2
i +z2

k

)︂
Π

(︂
ϕ j
2 ,−4rri

r2
i
,− 4rri

r2
i +z2

k

)︂
· · ·

Hzk,ϕ j
r,ri − sinθM sinϕMzk

2r2 0
sinθM sinϕM(r2−r2

i )
2r2 − sinθM cosϕMzk

√
r2

i +z2
k

2r2
sinθM cosϕMzk(2r2

i +z2
k)

2r2
√

r2
i +z2

k

sinθM cosϕMzk(r2+r2
i )(r+ri)

2r2ri
√

r2
i +z2

k

Hri,zk
r,ϕ j 0 0 −sinθM sinϕM 0 0 0

Hri,ϕ j
r,zk 0 0 0 cosθM

√
r2

i +z2
k

r − cosθM(r2+r2
i +z2

k)
r
√

r2
i +z2

k
0 · · ·

Hzk,ϕ j
ϕ,ri − sinθM cosϕMzk

2r2 0 − sinθM cosϕM(r2+r2
i )

2r2
sinθM sinϕMzk

√
r2

i +z2
k

2r2 − sinθM sinϕMzk(2r2+2r2
i +z2

k)
2r2
√

r2
i +z2

k

sinθM sinϕMzk(r+ri)
2

2r2
√

r2
i +z2

k

Hϕ j,ri
ϕ,zk

cosθM
r −cosθM 0 0 0 0

Hzk,ϕ j
z,ri

sinθM sinϕM
r 0 0 sinθM cosϕM

√
r2

i +z2
k

r − sinθM cosϕM(r2+r2
i +z2

k)
r
√

r2
i +z2

k
0

Hzk,ri
z,ϕ j 0 −sinθM sinϕM 0 0 0 0

Hri,ϕ j
z,zk 0 0 0 0 0 0 · · ·

· · · Π

(︃
ϕ j
2 , 2r

r±
√

r2+z2
k
,− 4rri

r2
i +z2

k

)︃
Π

(︄
ϕ j
2 ,1− z2

k(r2
i +z2

k)

((r+ri)
2+z2

k)
(︂

r±
√

r2+z2
k

)︂2 ,
4rri

(r+ri)
2+z2

k

)︄

Hri,ϕ j
r,zk · · · −

cosθM

(︂√
r2+z2

k∓r
)︂(︂

ri±
√

r2+z2
k

)︂2

r
√︂
(r2+z2

k)(r2
i +z2

k)
± cosθMz2

k(r2
i +z2

k)

r
√︂
(r2+z2

k)((r+ri)
2+z2

k)
(︂

r±
√

r2+z2
k

)︂
Hri,ϕ j

z,zk · · ·
cosθMzk

(︂
ri±

√
r2+z2

k

)︂
√

r2
i +z2

k

(︂
r±
√

r2+z2
k

)︂ 0

Table C.21.: Required functions and corresponding coefficients for I = 225.

signzk signzk log |zk|
Hri,zk

r,ϕ j 0 −sinθM sinϕM j cosϕ j
Hzk,ri

ϕ,ϕ j 0 sinθM sinϕM j sinϕ j

Hri,ϕ j
z,zk −cosθMϕ j 0

Table C.22.: Required functions and corresponding coefficients for I = 231.
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ri√
r2

i +z2
k

artanh
(︃

ri√
r2

i +z2
k

)︃
zk√

r2
i +z2

k
artanh

(︃
zk√

r2
i +z2

k

)︃
Hzk,ϕ j

r,ri 0 0 sinθM

(︃
cosϕMϕ j

2 − sin(ϕM j+ϕ j)
4

)︃
0

Hri,zk
r,ϕ j 0 0 0 −sinθM sinϕM j cosϕ j

Hri,ϕ j
r,zk −cosθM sinϕ j cosθM sinϕ j 0 0

Hzk,ϕ j
ϕ,ri 0 0 sinθM

(︃
sinϕMϕ j

2 − cos(ϕM j+ϕ j)
4

)︃
0

Hzk,ri
ϕ,ϕ j 0 0 0 sinθM sinϕM j sinϕ j

Hϕ j,ri
ϕ,zk −cosθM cosϕ j cosθM cosϕ j 0 0

Hzk,ϕ j
z,ri −sinθM sinϕM j 0 0 0

Hzk,ri
z,ϕ j 0 sinθM sinϕM j 0 0

Hri,ϕ j
z,zk 0 0 −cosθMϕ j 0

Table C.23.: Required functions and corresponding coefficients for I = 232.

1 log
(︂
−r cosϕ j +

√︂
r2 + z2

k

)︂ √
r2+z2

k
r artanh

(︃
r cosϕ j√

r2+z2
k

)︃
artanh

(︃
zk√

r2+z2
k

)︃
arctan

(︂
r sinϕ j

zk

)︂
arctan

(︃
zk cosϕ j

sinϕ j

√
r2+z2

k

)︃
· · ·

Hri,zk
r,ϕ j 0 0 0 0 −sinθM sinϕM j cosϕ j 0 sinθM sinϕM j sinϕ j

Hri,ϕ j
r,zk −cosθM sinϕ j cosθM sinϕ j 0 0 0 cosθMzk

r 0 · · ·
Hzk,ri

ϕ,ϕ j 0 0 0 0 sinθM sinϕM j sinϕ j 0 sinθM sinϕM j cosϕ j

Hϕ j,ri
ϕ,zk 0 0 cosθM −cosθM cosϕ j 0 0 0

Hzk,ri
z,ϕ j 0 0 0 −sinθM sinϕM j 0 0 0

Hri,ϕ j
z,zk 0 0 0 0 0 0 0 · · ·

· · · Sc
(︃

2ϕ j,

√
r2+z2

k
|zk|

)︃
Sc
(︃

ϕ j,

⃓⃓⃓⃓
zk

r±
√

r2+z2
k

⃓⃓⃓⃓)︃
Hri,ϕ j

r,zk · · · − cosθMzk
r

cosθMzk
r

Hri,ϕ j
z,zk · · · cosθM signzk 0

Table C.24.: Required functions and corresponding coefficients for I = 233.95



1
√︂

2r2
(︁
1− cosϕ j

)︁
+ z2

k log
(︂

r
(︁
1− cosϕ j

)︁
+
√︂

2r2
(︁
1− cosϕ j

)︁
+ z2

k

)︂
artanh

(︄
r(1−cosϕ j)√︂

2r2(1−cosϕ j)+z2
k

)︄
artanh

(︄
zk√︂

2r2(1−cosϕ j)+z2
k

)︄
· · ·

Hzk,ϕ j
r,ri 0 − sinθM sinϕMzk

2r2 0 0 0 · · ·
Hri,zk

r,ϕ j 0 0 0 0 −sinθM sinϕM j cosϕ j · · ·
Hri,ϕ j

r,zk −cosθM sinϕ j 0 cosθM sinϕ j 0 0 · · ·
Hzk,ϕ j

ϕ,ri 0 − sinθM cosϕMzk
2r2 0 0 −sinθM cosϕM · · ·

Hzk,ri
ϕ,ϕ j 0 0 0 0 sinθM sinϕM j sinϕ j · · ·

Hϕ j,ri
ϕ,zk 0 cosθM

r 0 cosθM cosϕ j 0
Hzk,ϕ j

z,ri 0 sinθM sinϕM
r 0 0 0 · · ·
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z,ϕ j 0 0 0 sinθM sinϕM j 0

Hri,ϕ j
z,zk 0 0 0 0 0 · · ·
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(︂

r sinϕ j
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)︂
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(︄
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sinϕ j

√︂
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k
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(︂
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z2
k

)︂
F
(︂

ϕ j
2 ,−4r2

z2
k

)︂
Π

(︃
ϕ j
2 , 2r
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√

r2+z2
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,−4r2

z2
k

)︃
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r,ri · · · 0 0 − sinθM cosϕM signzkz2

k
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sinθM cosϕM signzk(2r2+z2
k)

2r2 0
Hri,zk

r,ϕ j · · · 0 −sinθM sinϕM j sinϕ j 0 0 0

Hri,ϕ j
r,zk · · · cosθMzk

r 0 cosθM |zk|
r − cosθM(2r2+z2

k)
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cosθM

(︂√
r2+z2
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)︂(︂
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√

r2+z2
k

)︂2
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√

r2+z2
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ϕ,ri · · · 0 0 sinθM sinϕM signzkz2

k
2r2 − sinθM sinϕM signzk(4r2+z2

k)
2r2 0

Hzk,ri
ϕ,ϕ j · · · 0 −sinθM sinϕM j cosϕ j 0 0 0

Hzk,ϕ j
z,ri · · · 0 0 sinθM cosϕM |zk|

r − sinθM cosϕM(2r2+z2
k)

r|zk| 0
Hri,ϕ j

z,zk · · · 0 0 0 0 cosθM signzk

· · · Π

(︄
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(︃

ϕ j,

√
4r2+z2

k
|zk|
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(︂
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)︄
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k

r
√︂
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(︂
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k

)︂

Table C.25.: Required functions and corresponding coefficients for I = 234.
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√︂

r2 + r2
i −2rri cosϕ j + z2

k log
(︂

ri − r cosϕ j +
√︂

r2 + r2
i −2rri cosϕ j + z2

k

)︂
artanh

(︃
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(︂

ϕ j
2 ,− 4rri

r2
i +z2

k

)︂
F
(︂
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√
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ϕ,ϕ j · · · sinθM sinϕM j sinϕ j 0 sinθM sinϕM j cosϕ j 0 0

Hzk,ϕ j
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√
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k)
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√
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(︂
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(︃
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√
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Π

(︄
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(︃
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k(r2
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(︂
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√
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)︂2 ,
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k

)︄
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Table C.26.: Required functions and corresponding coefficients for I = 235.
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D. Variational derivatives

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

In general the variational derivative of a function J(ρ) in some direction ρ̃ can be defined via

δJ
δρ

(ρ)ρ̃ := lim
ε→0

1
ε

(︁
J(ρ + ερ̃)− J(ρ)

)︁
. (D.1)

Applying the chain rule for the derivative δJ/δρ in some direction ρ̃ , we get

δJ
δρ

(ρ)ρ̃ =
δJ
δu

(︁
u(ρ)

)︁ δu
δρ

(ρ)ρ̃ (D.2)

and for the second derivative in directions ρ̃ and ρ̂ further

δ 2J
δρ2 (ρ)(ρ̃, ρ̂) =

δ 2J
δu2

(︁
u(ρ)

)︁(︃ δu
δρ

(ρ)ρ̃,
δu
δρ

(ρ)ρ̂

)︃
+

δJ
δu

(︁
u(ρ)

)︁ δ 2u
δρ2 (ρ)(ρ̃, ρ̂) (D.3)

How the two remaining derivatives can be calculated, is shown in the following.

D.1. Derivatives of u

Without boundary conditions, the solution of Eq. (6.4) can be written with the Greens function of the
Poisson equation [136]

G(x) =− 1
4π |x|

(D.4)

as the convolution together the right-hand-side of Eq. (6.4)

u = ∇ ·M∗G = ∇ ·ρM0 ∗G. (D.5)

This representation can be used to calculate the variational derivatives of u explicitly, which are used
to determine the behavior of the objective function J in Eq. (6.7). This calculation can be done in a much
more general context (soft magnetic case and non-constant magnetization) using the adjoint method [193,
195], anyway we present the simple to understand explicit calculation here for our case.

The first variational derivative δu/δρ(ρ) in some direction ρ̃ is then

δu
δρ

(ρ)ρ̃ = lim
ε→0

1
ε

(︁
u(ρ + ερ̃)−u(ρ)

)︁
= lim

ε→0

1
ε

(︁
∇ · (ρM0 + ερ̃M0)∗G−∇ ·ρM0 ∗G

)︁
= lim

ε→0

1
ε
(ε∇ · ρ̃M0 ∗G)

= (∇ · ρ̃M0 ∗G) ,

(D.6)
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and we see that u(ρ) and δu/δρ(ρ)ρ̃ have the same representation via Greens function and therefore u
and δu/δρ(ρ) have to fulfill the same Poisson equation in Eq. (6.4).

The second variational derivative δ 2u/δρ2(ρ) in directions ρ̃ and ρ̂ is given by

δ 2u
δρ2 (ρ)(ρ̃, ρ̂) = lim

ε→0

1
ε

(︃
δu
δρ

(ρ + ερ̂)ρ̃ − δu
δρ

(ρ)ρ̃

)︃
= lim

ε→0

1
ε
(∇ · ρ̃M0 ∗G−∇ · ρ̃M0 ∗G) = 0,

(D.7)

which is clear, since the δu/δρ(ρ) does not depend on ρ .

D.2. Derivatives of J

The derivative of J in Eq. (6.7) after u in direction ũ and can be written as

δJ
δu

(u)ũ =
∫︂ (︃

∂F

∂u
ũ+

∂F

∂∇u
∇ũ+

∂F

∂H u
H ũ

)︃
dx. (D.8)

In the second derivative, all mixed derivatives also have to be considered and we obtain

δ 2J
δu2 (u)(ũ, û) =

∫︂ (︃
∂ 2F

∂u2 (ũ, û)+
∂ 2F

∂∇u2 (∇ũ,∇û)+
∂ 2F

∂H u2 (H ũ,H û)+

∂ 2F

∂u∂∇u
(∇ũ, û)+

∂ 2F

∂∇u∂H u
(H ũ,∇û)+

∂ 2F

∂H u∂u
(ũ,H û)+

∂ 2F

∂∇u∂u
(ũ,∇û)+

∂ 2F

∂H u∂∇u
(∇ũ,H û)+

∂ 2F

∂u∂H u
(H ũ, û)

)︃
dx.

(D.9)

For the usual case that the second derivative is calculated in a single direction, i.e. ũ = û, we obtain

δ 2J
δu2 (u)(ũ, ũ) =

∫︂ (︃
∂ 2F

∂u2 (ũ, ũ)+
∂ 2F

∂∇u2 (∇ũ,∇ũ)+
∂ 2F

∂H u2 (H ũ,H ũ)+

2
∂ 2F

∂∇u∂u
(ũ,∇ũ)+2

∂ 2F

∂H u∂∇u
(∇ũ,H ũ)+2

∂ 2F

∂H u∂u
(ũ,H ũ)

)︃
dx.

(D.10)

D.3. Convexity

For the investigation of local and global minima, the objective function J can be examined about convexity.
It is previously discussed e.g. in [237]. For that, we use the following three mathematical theorems [238]:

Theorem 1. Let J be convex, i.e. its domain is a convex set and for every ρ1,ρ2 and λ ∈ (0,1), it holds

J
(︁
(1−λ )ρ1 +λρ2

)︁
≤ (1−λ )J(ρ1)+λJ(ρ2). (D.11)

Then any local minimum of J is a global minimum.

Theorem 2. Let J be strict convex, i.e. the assumptions of Theorem 1 hold with < instead of ≤ in
Eq. (D.11). Then there exists a unique local minimum of J, which is also a global minimum.
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Theorem 3. Let the domain of J be a convex set and for every ρ and ρ̃ (̸= 0) we assume

δ 2J
δρ2 (ρ)(ρ̃, ρ̃)≥ (>) 0. (D.12)

Then J is (strict) convex.

Since Eq. (D.11) is usually not so easy to directly verify, the circumstances under which Eq. (D.12)
holds can be seen expressing Eq. (D.3) with the results of the previous subsections in the form

δ 2J
δρ2 (ρ)(ρ̃, ρ̃) =

δ 2J
δu2

(︁
u(ρ)

)︁
(∇ · ρ̃M0 ∗G,∇ · ρ̃M0 ∗G) . (D.13)

A sufficient condition for Eq. (D.12) is therefore

δ 2J
δu2 (u)(ũ, ũ)≥ 0 (D.14)

for all u, ũ, what is a reasonable criterion for the investigation of convexity for simple choices of F .

D.4. Concavity

Concavity is in a way exactly the opposite of convexity of the previous subsection, since a function J
is called concave, if and only if −J is convex. The following Theorem also makes this property very
interesting in terms of optimization:

Theorem 4. Let J be concave on a cuboid domain. Then every local minimum of the function lies at a
corner of the domain.

The basis of this theorem is that corners are the only points in the domain, which do not lie on a line
between two other points of the domain (see Fig. D.1). For points on a line, concavity then implies that
the value of the objective function is always smaller in at least one of the endpoints of the line. Therefore
the only local minima could lie in the corners. This result is especially useful after the discretization
of ρ , where the continuous function transforms to finitely many ρi ∈ [0,1] and the domain of J is a
finite-dimensional unit cube.

In the case of a concave objective function, the binary states therefore cover already all local (and
therefore also global) minima of the non-binary case. Therefore a binary algorithm as described in
Subsec. 6.4.2 makes sense, but it is unfortunately still not guaranteed that the global minimum can be
found with the algorithm as discussed in F.1 on the example of the concave objective function Eq. (F.1)
illustrated in Fig. F.1.

D.5. Examples for objective functions

For some common objective functions, the second derivative is calculated and the convexity/concavity is
denoted in Tab. D.1.
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Figure D.1.: Illustration of a cuboid domain. The green points indicate that each point, except of the
red corner points, lie always on the line between two other points of the domain.

use case J(u) δ 2J
δu2 (u)(ũ, ũ) property

max field component −
∫︁

Ωt
∂iu dx 0 convex & concave

max derivative of
field component

−
∫︁

Ωt
∂i∂ ju dx 0 convex & concave

max field strength −
∫︁

Ωt
|∇u|2 dx −2

∫︁
Ωt
|∇ũ|2 dx ≤ 0 concave

target field H0
∫︁

Ωt
|−∇u−H0|2 dx 2

∫︁
Ωt
|∇ũ|2 dx ≥ 0 convex

max field gradient −
∫︁

Ωt
|H u|2 dx −2

∫︁
Ωt
|H ũ|2 dx ≤ 0 concave

max field strength
and gradient

−
∫︁

Ωt
|∇u|2|H u|2 dx

−2
∫︁

Ωt

(︁
|∇u|2|H ũ|2+

|∇ũ|2|H u|2+
4∇u∇ũH uH ũ

)︁
dx ≤ 0

—

Table D.1.: Common objective functions in applications with their properties.
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E. Local minima

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

In this section, we demonstrate that multiple minima in a magnetic topology optimization problem are
easily present in already simple toy examples. Moreover, we discuss assumptions on the problem, that
would in principle avoid the presence of multiple local minima and guarantee a unique local (i.e. global)
minimum.

Therefore we first consider the objective function

J(ρ) =−
∫︂

Ωt

Hx(ρ)
2 dx −→ min. (E.1)

for an alignment of in Fig. E.1.
We assume that the magnets left and right to the target region with magnetic material densities

ρ1,ρ2 result in (mean) field contributions H1(ρ1) = H1ρ1ex and H2(ρ2) =−H2ρ2ex with maximum field
strengths H1 > H2 > 0 in Ωt . Inserting in the objective function Eq. (E.1) yields

J(ρ1,ρ2) =−(H1ρ1 −H2ρ2)
2
∆xyz, (E.2)

with the volume ∆xyz, which is assumed to be sufficiently small so that it is legit to insert just the mean
field contributions. A typical graph of this function is shown in Fig. E.2.

We see that this function has two local minima, in which always one of the cells is fully magnetized
and the other one is empty. This is intuitively clear considering Fig. E.1 since due to the magnetization in
opposite directions, the resulting magnetic field is partly compensating for each other. Since the squared
Hx-component in the objective function in Eq. (E.1) only measures the field direction and not the sign,
both magnets can curse a local minimum, whereas only ρ1 = 1 and ρ2 = 0 yields in a global minimum,
due to the stronger magnetization of the left magnet.

Figure E.1.: Alignment of the magnetic region Ωm and the target region Ωt with a simple discretiza-
tion. The arrows show the magnetization direction m in Ωm and the relevant field directions for the
objective function in Ωt . The larger arrow in the left part of Ωm indicated a stronger magnetization.
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Figure E.2.: Graph of the objective function Eq. (E.2) for H1 = 2A/m,H2 = 1A/m and ∆xyz = 1m3. We
observe two local minima in P2 and P3 for the configurations (ρ1 = 1,ρ2 = 0) and (ρ1 = 0,ρ2 = 1).
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We see that even in this easy geometry, a local optimizing algorithm might probably converge to the
wrong local and therefore miss the global minimum.

105





F. Example for wrong convergence of the
algorithm

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

In this section, we analyze the behavior of the BSA from Subsec. 6.4.2 in more detail. In particular, we
consider the behavior of the gradient-assisted discrete optimization steps illustrated in the sub-image of
Fig. 6.2 and the impact on the resulting “local” minima described in Subsec. 6.4.2.

We therefore assume an example analytic objective function J in only two variables ρ1,ρ2 for all
the following subsections and discuss the convergence behavior of the BSA using these examples. In
the binary framework, only the four different states (ρ1,ρ2) ∈ {(0,0),(1,0),(0,1),(1,1)} are possible.
Depending on the analytical form of the function, the algorithm shows different behavior.

F.1. No iteration

First, we consider the function

J1(ρ1,ρ2) :=−
(︃

ρ1 −
2
3

)︃2

−
(︃

ρ2 −
2
3

)︃2

(F.1)

illustrated in Fig. F.1. Although there is a single global minimum (0,0), every other point is also a local
minimum, and the algorithm would terminate immediately in any of the initial configurations. This
example clearly shows a very serious problem of gradient-based discrete optimization, namely that the
derivative can also indicate the wrong direction due to the unconsidered gap between the boundary values
0 and 1. It is difficult to estimate how likely such configurations are for more complicated objective
functions with more than two variables, however, the global optimization part of the algorithm is also
based on trying new random configurations, so compared to a pure BSA, it is at least ensured that other
initial configurations are also used and their function values are compared. To still overcome this problem,
a tunneling approach within the algorithm could also be considered [219]. Then the agent could also be
configured to continue the search path even if the derivatives indicate degradation.

F.2. Unique local minimum

Consider the function

J2(ρ1,ρ2) :=
(︃

ρ1 −
2
3

)︃4

+

(︃
ρ2 −

2
3

)︃2

(F.2)

illustrated in Fig. F.2.
It is clear that a global minimum is always also a local minimum in the sense of the algorithm in

Subsec. 6.4.2 since in each iteration step the function values are compared and the steps are updated only
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Figure F.1.: Graph of the function J1. All four binary states in the corners are local minima in the sense
of the algorithm in Subsec. 6.4.2, since the partial derivatives always indicate a local increase of the
objective function (represented by arrows).
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Figure F.2.: Graph of the function J2. The global minimum (1,1) in P4 of this function is also the only
local minimum for a good choice of parameters p and f .

when the objection function value decreases. Therefore, the iteration will always end at (1,1) when this
point is reached. Whether this is the case depends on the local optimization parameters chosen. Since p
denotes the ratio of cells ρi that may be changed within the iteration step, only the values p = 1 (both
cells ρ1 and ρ2 may be changed), p = 0.5 (only one cell, with the steeper derivative, may be changed),
and p = 0 (no cell is changed, i.e., the algorithm terminates) come into question in this simple model
example. Looking at the arrows in Fig. F.2, we see that the local behavior in each of the four vertices
indicates a necessary change in the values of the two variables ρ1 and ρ2. When p = 1, a change between
P1 ↔ P4 and P2 ↔ P3 is always sought. However, when comparing the function values, only the change
P1 → P4 and P2 → P3 happens. From P3 on, after the unsuccessful attempt to change to P2, there is still
the possibility that the correction factor 0 < f < 1 has reduced p to a value 1 > p ≥ 0.5, so that only
one variable is changed. In this case, the direction with the steeper derivative is always taken, which is
ρ1 in our test function (see arrows in Fig. F.2). This means that even in this case the algorithm would
eventually reach P4. However, if either f is too small, so that p is reduced too much, or the ρ2 direction
might have had a steeper descent relative to the ρ1 direction (P1 would not be reached anyway because of
the comparison of function values), then P3 would denote another local minimum to the global minimum
P4. If 0.5 ≤ p < 1 is already chosen at the beginning of each iteration step, then the algorithm has two
unique paths: P1 → P3 → P4 and P2 → P4 So in this case there is no local minimum in addition to P4.
However, as above, there would be one in P3 if the direction of ρ1 had a steeper slope. This example
is intended to show how the situation of local minima can change with slightly different optimization
parameters. In a real optimization with many more variables, such unpredictable edge cases can occur
much more frequently, which underlines the importance of using a hybrid optimization approach to start
from different positions and also to choose the local optimization parameters with care. In particular, a
high value of f ≈ 1 can reduce p more slowly and thus provides more chances to achieve a successful
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Figure F.3.: Graph of the function J3. Depending on the start value, there are two local minima P2 and
P4, where the algorithm tends to finish for p ≥ 0.5.

reduction of the objective function. Furthermore, we see that comparing the derivative in different
directions can also be misleading.

F.3. Reduction in one variable

Consider the function

J3(ρ1,ρ2) :=
(︃

ρ1 −
2
3

)︃4

−
(︃

ρ2 −
2
3

)︃2

(F.3)

illustrated in Fig. F.3.
In contrast to the two previous example functions, the saddle form of J3 has only one descending

direction for all vertices. This means that even for p = 1 at most one variable is changed. As seen in
Fig. F.3, the iteration paths are P1 ↔ P2 and P3 ↔ P4. Comparing the function values leads to the local
minima P2 and P4. Similar to App. F.1, in this case, the non-global minimum P4 cannot be avoided by
adjusting the parameters, since a step in a direction where the derivative has the wrong sign is forbidden
in the algorithm. Again, an approach as in [219] would be required.
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G. Mesh-fineness-dependency of the
objective function

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

In this section, we briefly discuss why a finer discretization does not automatically imply a better
global minimum of the objective function J. The reason is the different discretization in the target region
Ωt . This behavior depends on the shape of the objective function, which we will also demonstrate.

For simplicity, we assume a cubic target region as shown in Fig. G.1 with a single-cell discretization
(see Fig. G.1a) and an eight-cell subdivision (see Fig. G.1b).

Assume now to aim a minimum field x-component within this region for any reason. The optimization
functional could be written as

J(ρ) =
∫︂

Ωt

Hx(ρ)
2 dx −→ min. (G.1)

In finite difference codes, the volume integration over a region is usually discretized as a sum over
the individual cells multiplied by the volume of the elements. Therefore, for the different fineness, we
observe

Jcoarse(ρ) = ∆xyz ·Hcoarse
x (ρ)2, (G.2)

Jfine(ρ) =
∆xyz

8
·

8

∑
i=1

Hfine,i
x (ρ)2. (G.3)

Let us now assume for simplicity that the optimal solution of the fine resolution leads to a configuration
where four of the cells have a positive field component H0 > 0 and the other four cells have a negative
field component −H0 < 0, i. e., Hfine,i

x (ρopt) = H0 for i = 1, . . . ,4 and Hfine,i
x (ρopt) =−H0 for i = 5, . . . ,8.

The corresponding minimized objective function then gives Jfine(ρopt) = ∆xyzH2
0 > 0. The same field,

according to the formulas of [239], would lead to Hcoarse
x (ρopt) = 0 and Jcoarse(ρopt) = 0, since the field is

simply averaged over the entire volume.
This shows why a coarse discretization in the target region can also lead to better values of the objective

function, even though the resolution of the geometry in the magnetic region Ωm is worse (see also
Tab. 6.2). This apparent paradox results only from the larger discretization error of the integral in the
objective function and, of course, does not represent a real improvement of the optimized geometry.

Although we have used a somewhat simpler analytic example for illustration, it is also obvious that
especially in the case of gradients in the objective function (see, e.g., Eq. (6.8)), field averaging over
larger volumes also significantly reduces the field oscillations and thus reduces the obtained gradient.
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(a) (b)

Figure G.1.: Cubic target cell with simple discretization by a single cell (a) and eight subcells (b).
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H. Symmetry of the solution

Parts of this chapter have been previously published in [167] and have been reproduced with permission
of the coauthors and in accordance with the publisher’s policy. Content that was not generated by the
author of this thesis is explicitly denoted, copyright is held by SSRN.

In the discrete binary setting, a certain symmetry of the regions and the objective function does not
guarantee the same symmetry in the solution. We show this with a simple example and discuss the
consequences.

To clarify what we mean by some symmetry in the optimization problem: For any choice of ρ , the
symmetry operation (rotation, mirroring, etc.) must not change the value of the objective function J(ρ).

Let us examine the two-dimensional arrangement shown in Fig. H.1. The corresponding objective
function for the optimization on the target field H0 = H0ex can be chosen as.

J(ρ) =
∫︂

Ωt

(︁
Hx(ρ)−H0

)︁2 dx −→ min. (H.1)

It is obvious that this problem is symmetric in the y-direction since any reflection in the y direction
also implies a reflection of Hx in the target region, but the total value of the integral in J is not affected.

However, let us consider the simple two-cell discretization in Ωm and the one-cell discretization of Ωt

in Fig. H.1 and further assume that the magnetization of each cell would produce the (mean) magnetic
field x-component H0 in the target region. Then we observe the following target function values for all
four possible ρ configurations:

J(0,0) = ∆xy(0−H0)
2 = ∆xyH2

0 (H.2)

J(1,0) = ∆xy(H0 −H0)
2 = 0 (H.3)

J(0,1) = ∆xy(H0 −H0)
2 = 0 (H.4)

J(1,1) = ∆xy(2H0 −H0)
2 = ∆xyH2

0 (H.5)

This means that both states where one magnetic cell is filled and one is empty are both global minima,
but both solutions have no reflection symmetry in the y-component.
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Figure H.1.: Alignment of the magnetic region Ωm and the target region Ωt with a simple dicecretiza-
tion. The arrows show the magnetization direction m in Ωm and the target field H0 = H0ex in Ωt .
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I. Supplementary data

We provide a Python3 implementation of the formulas derived in Chap. 4 for calculating the magnetic
field of a cylinder tile as supplementary material of the open-access publication [84].
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