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Abstract (EN): 

In this thesis we investigate the effects of inclusion and exclusion of a stock in and from the mid cap 

German index (MDAX). The results of inclusion and exclusion into and out of the index show mixed 

effects on stock returns. We find evidence in support of the anticipating-investors hypothesis, where 

in the case of stock promotions from the small cap German index into the mid-cap German index the 

cumulative abnormal returns of the stocks are significantly positive. On the other hand, we find 

significant positive cumulative abnormal returns in the case of stock demotions from the mid cap 

index into the small cap index, and negative cumulative abnormal returns for stock promotions into 

the big cap index from the mid cap index. The latter results are at odds with most but not all previous 

findings. 

Keywords: inclusion, exclusion, abnormal returns, stock index, event-study, regression 

Abstract (DE): 

In dieser Masterarbeit untersuchen wir die Auswirkungen der Aufnahme und des Ausschlusses einer 

Aktie in und aus dem deutschen Index mit mittlerer Marktkapitalisierung (MDAX). Die Ergebnisse 

der Aufnahme und des Ausschlusses in und aus dem Index zeigen gemischte Auswirkungen auf die 

Aktienrenditen. Wir finden Evidenz für die antizipierende-Investoren-Hypothese. Im Falle von 

Aktienaufstiegen aus dem deutschen sind Index mit geringer Marktkapitalisierung in den deutschen 

Index mit mittlerer Marktkapitalisierung und die kumulierten anormalen Renditen der Aktien 

signifikant positiv. Im Gegensatz dazu finden wir signifikant positive kumulierte anormale Renditen 

im Falle von Aktienherabstufungen aus dem Index für mittlere Marktkapitalisierungen in den Index 

für kleine Marktkapitalisierungen und negative kumulierte anormale Renditen für Aktienaufstiege 

aus dem Index für mittlere Marktkapitalisierungen in den Index für große Marktkapitalisierungen. 

Die letztgenannten Ergebnisse stehen im Widerspruch zu den meisten, aber nicht allen früheren 

Studien. 
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1. Introduction 

Market indices play an important role in finance. Since the introduction of the Dow 

Jones Industrial Average in May 26, 1896 up to today there are 70 times more indices 

than stocks (Authers, 2018). 

The history of the family of German stock indices starts with the introduction of the 

DAX in July, 1988, followed by the introduction of the MDAX and SDAX in 1996 and 

1999 respectively. 

Methodologies of calculating indices do not differ much from each other, some 

available indices are calculated based on the weighted average method and some 

indices are calculated by using the free float market capitalization. The DAX family 

indices, the S&P 500, the Euro Stoxx 50 and the Rusell 2000 are based on the free 

float market capitalization method (Factsheet DAX, 2021). 

Market indices are usually used to follow the movement of a certain market, industry, 

type of securities such as tech securities, health, semiconductor industry, financials 

etc. Indices in modern finance are used as benchmark tools in investment 

management for comparing investment opportunities. 

In this thesis we will examine the effect of inclusion and exclusion of a stock into and 

from the mid-cap German index. The choice of the mid-cap index was not arbitrary. 

We chose to analyze the movement of stock indices into the MDAX for three reasons; 

1) the MDAX sits in the middle of the German index family pyramid, hence the number 

of stocks moving into the MDAX is higher compared to the inclusions and exclusions 

into and from the DAX respectively, 2) there are already studies published on the big-

cap German index (DAX) and 3) we hope to give a new perspective of the intra-index 

stock movement in the German DAX family. 

We need to be careful with how we define an inclusion and exclusion in our case, 

because it has implications in our hypothesis testing. 

The announcement day of an inclusion/exclusion precedes the effective event which is 

the official day a stock becomes part of the index. The inclusion and exclusion from 

the MDAX can have different meanings depending on the direction of a stock’s 

movement in the DAX index family pyramid. If a stock is included into the MDAX it is 
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either considered a promotion, where a stock is promoted from the small-cap German 

index upwards, or it is considered as a demotion where a stock is demoted into the 

MDAX from the big-cap German index. 

We structure the reminder of this thesis as follows. In Section 2, we review the 

literature related to similar studies and results from studies conducted for the US stock 

market indices and other European indices. We discuss studies in favor of the 

hypotheses presented in Section 3 and against them. We will discuss the similarities 

and differences between those results and we will look at the methodologies used to 

conduct those studies. 

In Section 3 of this thesis, we present the theoretical and economic hypotheses which 

serve as basis for the formulation of our null hypotheses and the test statistics we use 

in Section 5. 

Section 4 of the thesis is dedicated to the data sources, the data format, data criteria 

and discussions involving the quality of the data involved in the empirical study. 

In Section 5 we discuss the methodology we use to estimate the abnormal returns. We 

present two similar methods and models of estimating the abnormal returns, we 

define the events and the event lengths. The last subsections of Section 5 introduce the 

empirical null hypotheses along with the corresponding test statistics that we use to 

test for significance in abnormal returns. 

Our results are presented in Section 6 where we discuss and interpret the outcomes of 

the test statistics for every corresponding event and event window lengths. 

The final section is the conclusion and recommendation where we interpret the 

meaning of our results and how our results relate to the theoretical and economic 

hypotheses, we have set in Section 3. We make several suggestions for future research 

on the topic of the inclusion and exclusion of a stock in and from the MDAX and how 

future research can improve some of the difficulties we have faced. 

2. Literature Review 

The key component of determining the event effect on the returns of the stocks’, is the 

construction of abnormal returns. Before defining abnormal returns, we initially need 

to define the actual returns and normal returns. Actual returns are defined as the 

difference between the price observed today and the price observed yesterday which is 

then divided by the price observed yesterday.  
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On the other hand, normal returns are derived by regressing the actual returns on the 

returns of a representative stock market index such as the US S&P 500, the German 

CDAX, or in the case of the Japanese stock market, the Nikkei 225 (Strong, 1992), 

(Bowman, 1983) and (MacKinlay, 1997). The normal returns model is also referred to 

as the market model in this thesis. Abnormal returns are defined as the difference 

between the actual returns and the normal returns (Brown & Warner, 1985). We 

discuss the issue and derivation of abnormal returns in detail in Section 5 of this thesis. 

The earliest study concerning the effect of an event on stocks’ returns can be attributed 

to (Fama, Fisher, Jensen, & Roll, 1969). The study involves the effect of stock splits on 

stocks’ returns and whether the earnings of a stock are related to the abnormal return 

before the stock splits. It is concluded that as companies announce dividends the stock 

price increases as a result of the perceived robustness of the company and its 

management. Usually, stock splits happen in a period of an economic boom and stocks 

which have shown a good price performance in the boom cycle are more likely to split. 

We like to point out that the event study motivation is partly derived from (Fama, 

Fisher, Jensen, & Roll, 1969), however there are substantial differences in our work. 

While the above-mentioned study deals with the event of a stock split, the thesis is 

concerned with the inclusion and exclusion of a stock from an index. The work of 

(Fama, Fisher, Jensen, & Roll, 1969) is based on monthly data as opposed to daily 

returns utilized in this thesis. 

Choosing a normal return generating process model is a big part of the event studies. 

Historically researchers have employed several models of the return generating 

process. Three different types of models are studied by (Brown & Warner, 1980), 

(Brown & Warner, 1985) and (Black, 1972); the mean adjusted returns model, the 

market adjusted returns model and the market and risk adjusted model. In (Brown & 

Warner, 1985) the authors perform an experiment of constructing over 200 samples 

that each contain 50 securities from the database of securities available in the Center 

of Research and Security Prices, and assign a random event date for every security 

selected in the sample. After the derivation of the abnormal returns the authors derive 

the standardized average abnormal returns for every point of time t in the event 

window by dividing them with their variance. An extra 0 to 2% return is added to the 

actual returns for the event day zero for every security, this is done with the intention 

to test how good the normal returns generating models are when compared to each 

other. Testing the power of every model is done by first testing how many times the 

null hypothesis of no abnormal returns is rejected, for every sample of 50 securities 

without the additional 0 to 2% return added to the actual returns. In this case the 
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authors argue that on average there should not be any abnormal returns in the sample 

due to the random selection of the stocks and the random event-day assignment for 

every security. This is called Type I error, rejecting the null hypothesis when it is true. 

The null hypothesis of no abnormal return is tested again after the authors add the 

extra percent of return which makes the null hypothesis of no abnormal return not 

true. Notes are taken on how many times the null hypothesis is not rejected and 

classified as Type II error. The frequency of Type I and Type II errors is measured in 

(Brown & Warner, 1985), where it is concluded that the market model performs 

reasonably well compared to the other models used to generate the normal returns, 

the market model is more likely to detect stocks’ abnormal returns in an event study 

methodology. 

Even though the residual analysis of the market model is the most commonly used 

model to estimate the abnormal market returns, other methods such as the 

multivariate regression model have also been employed extensively. One of the most 

important works discussing the multivariate regression method dated back to the mid 

1980s where (Thompson, 1985) discusses the multivariate regression method (MRM) 

and several tests statistics such as the Wald Statistic, the Lagrange Multiplier, the 

Likelihood Ratio and the F statistic. For the sake of brevity we will discuss the test 

statistics used in this thesis in Section 5 of this thesis. Common event periods such as 

earnings and dividend announcements are considered by (Thompson, 1985) and 

cross-sectional aggregation of the dummy coefficients is used along with linear 

restrictions to test different null hypotheses. Similar works concerning the properties 

of the multivariate market model with added dummy variables and the types of null 

hypothesis that can be tested in the framework of event studies have been done by 

(Karafiath, 1988), (Malatesta, 1986), (Binder J. J., 1985 (b)) and (Smith, Bradley, & 

Jarrell, 1986).  

Estimating the multivariate regression model by the OLS method brings no efficiency 

in its estimation, the efficiency comes from accounting for heteroskedasticity and 

contemporaneous covariances of the residuals in the null hypothesis by estimating the 

variance-covariance matrix of the residuals as introduced by (Binder J. J., 1985).  

A different method of employing the multivariate regression model is done by (Chou, 

2004). The author performs the experiment in three steps. The first step involves 

running an OLS regression and deriving the estimated coefficients of the dummy 

variables, the estimated coefficient of the market returns, the OLS residuals and the 

test statistic (i.e., the Wald test statistic). In the second step the market residuals and 
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the stock returns ( 𝜀𝑡, 𝑟𝑡 ) are sampled 1000 times with replacement and estimates of 

the model are calculated for every sample of residuals drawn. The third step is the 

calculation of the corresponding test statistic (i.e., the Wald test statistic) for every 

draw of the residuals and the calculated estimates of the model. In the fourth step the 

author calculates the percentage of the bootstrapped test statistic that is bigger than 

the statistic calculated in step 1. The bootstrap method applied to the residuals of the 

OLS developed by (Efron, 1979) performs better than the traditional methods as 

concluded by (Chou, 2004).  

Another study that utilizes the bootstrapping method in event studies is conducted by 

(Kramer, 2001). The approach in this study is that of bootstrapping the mean adjusted 

t-statistics of the dummy variable coefficients and randomly sampling these mean 

adjusted t-stats N times, and defining Z-Statistics for each of the samples in order to 

finally create the empirical distribution of the bootstrapped Z-value and reject the null 

hypothesis at the chosen confidence interval. More precisely, if the bootstrapped Z-

statistic at the 5th percentile is bigger than the standardized Z-statistic from the OLS 

or the bootstrapped Z-statistic at the 95th percentile is smaller than the standardized 

Z-statistic from the OLS regression then we reject the two tailed null hypothesis of no 

abnormal returns. A more detailed review of the types of bootstrap technique in event 

studies has been done by (Lefebvre, 2007). 

In a study by (Gurel & Harris, 1986) investigating the price pressure hypothesis and 

the efficient market hypothesis, the authors conclude that changes in the S&P500 

index cause fluctuations in the demand of the stock which are followed by an increase 

in price for the event of addition into the index. Negative returns are observed in the 

post announcement of the addition event period, which is what the price pressure 

hypothesis predicts. 

Another similar study conducted by (Edmister, Graham, & Pirie, 1996) concerning the 

addition of stocks into the S&P500 is conducted by considering liquidity measures 

such as the ratio of the bid-ask spread to the price, trading volume and the open 

interest on trading futures on the stock. The conclusion is that the returns of the stock 

are positively affected after the effective day. However, in this thesis we are not able to 

use the liquidity measures of the bid and ask prices and prices of future contracts on 

the corresponding stocks due to the unavailability of the data. Hence, we use the 

simpler market model to estimate the effects of the events at hand. 

The analysis of the price and volume related to additions and deletions in and from the 

S&P500 has also been conducted by (Lynch & Mendenhall, 1997) where they derive 
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the abnormal returns by utilizing the market model, the authors analyze the abnormal 

returns between the time of after the announcement of the addition or deletion up to 

ten days after the actual (effective day) addition or deletion. The abnormal returns are 

positive for inclusions into the S&P500 and negative for exclusions from the said 

index, the study supports the price pressure hypothesis and the information 

hypothesis. 

The effects of exclusion of stocks from the S&P500 of seven utility companies is 

studied by (Goetzmann & Garry, 1986), where they conclude that the event of a stock 

exiting the index has negative effects on the prices of the securities. The price drop is 

attributed to the future uncertainty in earnings and the future quality of information. 

The short-term effects of addition into the index by studying the excess returns and 

the abnormal volume turnover is conducted by (Chen, Noronha, & Singal, 2004). This 

is a more recent study in comparison to the pre 2000s studies. The results obtained by 

employing the market model for calculating the abnormal volume turnover and excess 

returns provide different results to previous older studies. There exist positive 

statistically significant excess returns in the case of stocks included in the index. 

However, the negative excess returns are statistically insignificant, these results are 

inconsistent with the price pressure hypothesis of the older literature. 

The literature we discussed above is related to the effect of the change in the index on 

the stocks’ returns. However, there is evidence provided that the event of addition and 

deletion of a stock in an index can also affect the derivatives market. In a study 

concerning the effect of inclusion and exclusion from the S&P500, (Sui, 2004) studies 

the mean cumulative abnormal option volume in a period of ten days before the 

announcement of an inclusion or exclusion up to 20 days after the effective addition 

or deletion from the index. The author observes significant changes in the put option 

prices for the addition group and call option prices for the deletion group. The effect 

on the options’ prices is positive for additions and negative for deletions. The effect on 

mean average abnormal volume options is also significantly positive for additions from 

the day of the announcement up to the day of the effective change. The change in 

average abnormal volume for put options for the exclusion event is also positive 

however, it is statistically insignificant. The findings of (Sui, 2004) are in line with the 

investor awareness hypothesis. Studies related to the German index family are not as 

common as studies concerning the US S&P 500 index. We hope that we can give new 

insights and a different perspective regarding the effect of the inclusion and exclusion 

from the German stock index. Overall, security markets across the world operate under 
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the same conditions (with the exception of the Chinese stock market). There are 

however considerable differences between investors from different regions. The myth 

of the homogeneous investor has already been dispelled with the advance of behavioral 

finance. Despite the rich access to information through the help of the internet, 

investing differences still persist among investors from different parts of the world. A 

good summary concerning the biases in investments and the way they arise is 

discussed by (Bachmann, De Giorgi, & Hens, 2018). 

3. Testable Research Hypotheses and Questions 

3.1 Research Question 

There are several ways to frame the research question of this thesis, since we want to 

study the effects of addition and deletion on a stock’s returns, we can frame it as 

follows: 

• How does the addition/removal to/from the German mid-cap index (MDAX) 

affect the added/removed equities’ returns? 

 

3.2 Testable Hypotheses 

The Efficient Market Hypothesis: A market is called efficient if prices in the 

market fully reflect the available information in the market. Since the definition of 

efficient markets does not only apply to the securities’ market, we can also use the 

analogy of the apple markets. If in a certain apple market all types of apples were 

priced according to their quality, then this market is called efficient. It would, however, 

be inefficient if a buyer or a seller possessed information about the quality of the apples 

sold that no one else has and use that information to generate arbitrage. 

The same logic is applied to the securities market, as it is argued by (Malkiel & Fama, 

1970) an efficient market incorporates all the available information in the security 

prices, Fama argues that market inefficiencies can potentially arise from the market 

conditions and frictions such as transaction costs. 

Information Signaling Hypothesis: This hypothesis assumes that the event of 

inclusion (exclusion) of a stock into (from) an index is not an information free event 

and that the event contains information that can change investors perception of the 

stock, for example an inclusion into the S&P500 signals investors that the stock is low 

risk as argued by (Jain, 1987). It can also be argued that stocks that are included in the 
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index can be perceived as companies with a good management which is prone to make 

the company perform better in the future. 

Anticipating-Investors Hypothesis: Sophisticated investors might be able to 

anticipate index changes and take positions before the revision of the index takes 

place. Empirical evidence for this hypothesis come from the AEX Dutch Index 

(Doeswijk, 2005). The predictability of the DAX index composition changes is 

discussed by (Franz, 2020) where abnormal returns were present for all three German 

indices upon inclusion and exclusion. 

4.  Data 

The data for the empirical research part of this thesis is downloaded from the 

Thompson Reuters Datastream (Datastream, Thompson Reuters, 2021) which is made 

available through the Vienna Data Center (Hautsch, 2021). The above-mentioned 

source contains data from 175 countries and 110 markets. The data categories available 

in the database range from equities, equity indices, bonds, constituent lists etc. 

The data relevant for this thesis comprise the daily price data available in the time 

series format which fits the short-term effect on stocks’ returns. The details concerning 

the properties of the time series data are discussed in Section 5 of this thesis. 

We have collected daily equity prices of stocks that have been both, included and 

excluded from the German mid-cap index alias MDAX, the big-cap index DAX and the 

small-cap index SDAX. The rules of inclusion in and out from the index are clearly 

stated in the official rulebook. 

The DAX index comprises the thirty biggest German companies by market 

capitalization in the German stock exchange, and it is considered the blue-chip 

German market index. 

The MDAX is comprised of the sixty ranked below the thirty big-cap stocks in the DAX. 

The SDAX is also a German stock market index which is composed of the seventy 

market-weighted small-capitalization equities ranked below the MDAX index. 

We will use also the CDAX which is also a German market index that incorporates all 

the shares listed in the Frankfurt stock Exchange, General Standard and Prime 

Standard. We use this index as a proxy of the German market index. 
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The inclusion and exclusion of a certain stock from the index is based on four criteria: 

the fast exit and fast entry criteria done every quarter of the calendar year, and two 

semi-annual regular exit and regular entry criteria (Qontigo, 2021). 

The fast exit and fast entry criteria are based on whether a certain equity meets the 

necessary size i.e., the free float market capitalization or the order book volume, which 

is a measure of liquidity, a stock enters or exits the index only if it fulfils the rules in 

Table 4.1.  

For further and more detailed explanations one can check the official rulebook of the 

DB (Qontigo, 2021). 

In this section, we shortly summarize Table 4.1 and the inclusion/exclusion rules for 

the MDAX index which can also be used to infer rules for the big and small cap indices. 

Column number one in Table 4.1 is a list of the three German market indices and the 

exit and entry rules for each index listed below the corresponding index name.  

Column one and its first five rows show the name of the big-cap index (DAX) followed 

by the four rules of inclusion and exclusion. 

Column one and its rows six to ten show the name of the mid-cap index (MDAX) 

followed by the four rules of inclusion and exclusion. The same applies to column one 

and rows eleven to fifteen for the small-cap index (SDAX). 

In the case of the fast and regular exit rule, a candidate stock of a corresponding market 

index represented in column number one that fulfills the criteria in column number 

two is replaced by an alternative candidate stock that fulfills the criteria in column 

number three.   

In the case of the fast and regular entry rule, a candidate stock from one of the market 

indices represented in column number one that fulfills the criteria in column number 

two replaces an alternative candidate stock of the corresponding index that fulfills the 

criteria in column number three.   

To illustrate how we read the table, we take the case of an MDAX candidate stock for 

the fast exit rule which fulfills the criterion in the intersection of column number two 

and row number seven, the candidate stock has to be ranked 105th in both, the free 

float market capitalization and order book volume, i.e., (105/105).  

The aforementioned candidate stock is subsequently substituted with an alternative 

candidate stock that fulfills one of the three criteria in the intersection of row seven 
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and column number three (95/95, 95/100, 95/105), i.e., the alternative candidate 

stock has to be ranked 95th in free float market capitalization and, either 95th, 100th, or 

105th in order book volume so that it substitutes the exiting candidate stock from the 

MDAX index. This rule is implemented quarterly throughout the calendar year as 

shown in Table 4.1, row seven and columns four to seven. 

Columns four to seven represent the rule implementation months of the calendar year, 

the x symbol in every cell of the table under these four columns bears the meaning that 

the corresponding rule has been implemented for that month. The fast exit and entry 

rules apply to the regular revision months (March and September) and irregular 

revision months (June and December), and this is shown by the symbol x in the cells 

formed by the intersection of row seven and columns four to seven. 

 

a) Fast Exit: As shown in Table 4.1, row seven and column two, if a company in 

the MDAX index is ranked in both the market capitalization (size) or the order 

book volume (liquidity) below place 105 then the company exits the index and 

it is replaced with an alternative company as shown in Table 4.1, row seven and 

column three, which fulfills the criteria of being ranked at least 95th in size and 

simultaneously either ranked the 95th, 100th or 105th in order book volume. 

This rule is applied quarterly throughout the calendar year as depicted in Table 

4.1, row seven and columns four to seven. 

 

b) Fast Entry: The intersection cell of column number two and row number eight 

in Table 4.1 shows that a stock is included in the MDAX, if a company is ranked 

85th or above in both market capitalization and order book volume (85/85), 

accordingly it replaces an alternative company that is ranked 95th or below in 

both market capitalization and order book volume as given in the intersection 

cell of row eight and column three (95/95). 

This rule is applied quarterly throughout the calendar year as depicted in Table 

4.1, row seven and columns four to seven. 

 

c) Regular Exit: This rule is similar to the fast exit except for the fact that a 

company exits the mid-cap index when it is ranked 100th or below in both 

market capitalization and order book volume (100/100), and it is 

simultaneously replaced with an alternative company which is ranked 95th and 

above for both criteria (95/95). 
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The regular exit rule is applied semiannually, this is shown in the intersection 

of row nine with the month columns four (March) and six (September). 

 

d) Regular Entry: This rule is similar to the fast entry rule with the only 

discernable difference that the candidate company enters the mid-cap index if 

it is ranked 90th or above in both FF MCap and OB criteria (90/90), and it 

simultaneously replaces a company that is ranked 95th or below in both criteria 

(95/95). The candidate stock criterion is shown in the intersection of column 

number two and row number ten, whereas the alternative candidate stock 

criterion lies in the intersection of column number three and row number ten. 

This rule, just like the regular exit rule, is implemented semiannually. 

 

Table 4.1.: Overview of Rules 

 

 

It is also worth mentioning that, the quality of data affects the statistical inference of 

the research, however the quality of the Thompson Reuters Database platform is good 

for academic research.  

Note: This table was created by Qontigo which is part of the Deutsche Börse Group, Guide to the 

DAX equity indices (p. 32) February 25th 2021 (https://www.dax-

indices.com/document/Resources/Guides/DAX_Equity_Indices.pdf) 
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A wide variety of research has been done based on the data made available in this 

platform, and a study conducted by (Ince & Porter, 2006) concludes that the use of 

non-equity data should be handled with care. 

In a more recent and serious investigation on the quality of the data available in TRD 

concerning the German market by (Brückner, 2013), the author studies the prices, 

returns, volume, number of shares and many other important variables used in 

financial research. The author (Brückner, 2013) compares the data in the TRD 

platform with data obtained from the Frankfurt Stock Exchange and the equities listed 

therein, several serious issues have been discovered in the data quality and coverage 

prior to 1990, the author also finds a considerable mismatch in prices between the 

period of 1990 up to 2000.  

The author recommends, that data for the German market before 1990 should not be 

used due to its low quality (Brückner, 2013). Taking into account the above 

recommendations we will only use data available for the period 08/2001 – 01/2021 in 

order to avoid any problems. The necessary variables for our research will be the stock 

prices of the corresponding equities that make up the mid cap (MDAX) index, market 

prices on the German total Market index (CDAX) in a time series format, and the 

market index MDAX constituent symbols and mnemonics, we use these variables for 

the calculation of equities’ returns and the CDAX index returns. 

It is also worth noting that the CDAX prior to 01/1998 was only composed of 

stocks present in the Amtlicher Markt and the number of equities in the CDAX doubled 

from 

1998 to 2000 after the inclusion of stocks from Geregelter Markt and Neuer Markt. 

Considering the above measures, we have identified 107 removals from the MDAX and 

100 

inclusions. We have also identified that out of all the available removals from up to 

12/2020, 19 of the removals were promotions into the top DAX30 index, 79 removals 

were 

relegations to the bottom SDAX index. On the same note out of all inclusions 15 were 

relegations from the top DAX30 to the MDAX, 59 were promotions from the bottom 

SDAX 

to the midcap MDAX, removals such as bankruptcies, mergers and take overs were 

excluded from the lists. 
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Figure 4.1 

German Index Family 

 

 

Figure 4.2 

Summary of stock inclusions/exclusion from/to the mid-cap index 

 

 

As it can be seen from Figure 4.2, the majority of intra-index movements happens 

mainly between the mid-cap and small-cap, however the flow from the big-cap to the 

mid-cap and vice versa is also significant, fast entry seems to be a more common 

occurrence than fast exit. 

77%

14%
9%

MDAX Removals

MDAX to SDAX

MDAX to DAX

Fast Exit

15%

59%

26%

MDAX Inclusions

DAX to MDAX

SDAX to MDAX

Fast Entry

Note: This image was created by Deutsche Börse Group, DAX-Index – Benchmark und 

Barometer für die deutsche Wirtschaft, March 2021, (https://deutsche-boerse.com/dbg-

de/media/deutsche-boerse-spotlights/spotlight/DAX-Index-Benchmark-und-Barometer-f-r-die-

deutsche-Wirtschaft-148654) 

 

https://deutsche-boerse.com/dbg-de/media/deutsche-boerse-spotlights/spotlight/DAX-Index-Benchmark-und-Barometer-f-r-die-deutsche-Wirtschaft-148654
https://deutsche-boerse.com/dbg-de/media/deutsche-boerse-spotlights/spotlight/DAX-Index-Benchmark-und-Barometer-f-r-die-deutsche-Wirtschaft-148654
https://deutsche-boerse.com/dbg-de/media/deutsche-boerse-spotlights/spotlight/DAX-Index-Benchmark-und-Barometer-f-r-die-deutsche-Wirtschaft-148654
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5.  Methodology 

5.1 The Event Study Method 

The earliest study on record using the event study method can be traced back to a 

highly cited article which has inspired decades long research, an article authored by 

(Fama, Fisher, Jensen, & Roll, 1969) which studies the question of the effect of 

corporate events on firms’ returns/price performance.  

In the work of (Fama, Fisher, Jensen, & Roll, 1969), the authors seek to answer the 

question whether the event of stock splits has a significant impact on a security’s 

returns before and after the split. A list of theoretical hypotheses is tested to check for 

any anticipation effect on the stock’s price performance and the event effect after the 

fact. 

One of the main inspirations for this paper is the meticulous work of (MacKinlay, 

1997), which extends the procedure of the event study method step by step and 

discusses the most commonly used models and techniques. In this thesis we will follow 

the steps laid out by (MacKinlay, 1997) as well. 

There are several reasons for performing an event study, this thesis attempts to answer 

the question of the information content in or during an event and whether markets are 

efficient by using the hypotheses put forth in Section 3. 

It is important that one is aware of the problems and sensitivities of this method, of 

which a good part consists in pinning down the event date. Misidentifications in the 

event date can lead to not being able to observe any significant price changes as 

concluded in a study, looking into mergers, done by (Dodd, 1980). 

In this study we identify two types of events. The first event, the announcement date, 

is related to the information content and will attempt to answer hypotheses concerning 

information around the announcement day. The second event, the inclusion date, is 

the effective event when a stock is admitted or excluded from the mid-cap index, these 

events are clearly defined and taken from the official media outlets of the Deutsche 

Börse as mentioned in Section 4. 

It seems that many event studies suffer from event clustering. Clustering in event 

studies in many cases can be common where more than one firm per event exits or 

enters the index. In this study and in the case of the German mid-cap index substantial 

clustering can be seen in the subsample of demotion from the MDAX to the 
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lower/smaller market-cap index (SDAX) where in the same day nineteen firms are 

relegated. The same happens for the subsample of fast entry where twelve companies 

enter the mid-cap index at the same day, this can be seen in the official media outlet 

of DB (Qontigo, 2021). There are several remedies for this too. Two types of 

adjustments can be done, the first adjustment includes the model specification 

whereas the second one includes the appropriate test statistic. 

Sample size in these type of studies poses a problem. In this study the sample size for 

stocks moving between the mid-cap index and small-cap index will not pose an issue, 

the number of firms in each subsample is above fifteen firms. However, the subsample 

fast exit has only nine firms, one can say that in this case the sample size could be said 

to pose a problem. 

5.2 Event and Estimation window 

The task of establishing an event window differs for different cases. Depending on the 

type of the study and data available the event length is different. In this thesis we 

consider five different event windows. In most cases long term event windows differ 

from short term event studies where the daily prices are utilized. 

 

Figure 5.1: Graphic illustration of the event timeline 

 

 

• The estimation window: 

The estimation window is defined as the period or the number of days before the 

beginning of the event window denoted by tb, and its length is defined as LE = tn – tN. 

The blue rectangle in Figure 5.1 illustrates the estimation window. 

The event window is the set of days before and after the event day, if we denote the 

event as te, then the event window is the number of days before te and after it, this case 

is depicted graphically in figure 5.1, where the set of pre-event days lies to the left of te 

and this set includes only the days between tb and te. In contrast post-event days lie to 

the right of te and it is the set of days between te and T. 

The pre-event period is usually referred to as the anticipation period, whereas the post-

event period is referred to as the impact period. 
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The event timeline can be expressed in two ways. The first way of expressing the event 

timeline is in both positive and negative integer terms, where the event day takes the 

value of zero whereas the days prior to the event take negative values, and the days 

after the event day take positive integer values, i.e.,  

Definition 1: {tN, …,tn,tb, …,te-1} ϵ ℤ- : N‹ n ‹ b ‹ -1 and {te+1,…,T} ϵ ℤ+ : 1 ‹ T  and te is the event 

day where the subscript e stands for the event and the event day takes the value zero and n = 

b-1. 

In this case the length of the estimation window is the difference between the first day 

in the event window and the first day in the event window.  

To illustrate this, we take the length of the whole return timeline, and mark the event 

day as the day zero (i.e., e = 0), then the first day of the estimation window tN  = -140 

and the first day of the event window is tb = -5, then the length of the estimation 

window is LE = tb – tN = -5 - (-140) = 135, where LE is the length of the estimation 

window as depicted in Figure 5.1. 

The second way of depicting the event windows in Figure 5.1 is by utilizing the positive 

integers as follows: 

Definition 2: {tN, …, tn,tb, …,te,…,T} ϵ ℤ+ : N ‹ n ‹ b ‹ e ‹ T : e  is the event, n = b-1 and N=1. 

The same logic applies to Definition 2. If we assume the length of the estimation 

window together with the length of the event window to be 155 such that N = 1, b = 136 

then the length of the estimation window is LE = tb – tN = 136 – 1 = 135. 

 

• The event window: 

The event window in this thesis is depicted in Figure 5.1 by the red rectangle where tb 

signifies the beginning of the event window and T signifies the end of the event 

window. 

The length of the pre-event (before te) period is defined as LB = te – tb, whereas the 

length of the post-event (after te) period is defined as LA= T – te.  By using LA and LB we 

define the length of the whole event window as LW = LB + LA = T – tb. 

In this thesis the length of the whole period of the returns is 150 days where tN is the 

first day of the estimation window and T is the last day of the event window. 
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If the window length (LW) is 10 days, then, the last day of the event window is T = 150th 

day, and the first day of the event window is tb = 140th day, i.e., LW = T – tb = 150 – 140 

= 10. 

The pre-event window LB starts at tb = 140 (day 140) and ends at te = 145 (day 145), 

i.e., LB = te – tb = 145 - 140 = 5 (days). 

The post-event window LA starts at te = 145 (day 145) and ends at T = 150 (day 150), 

i.e., LA = T – te = 150 - 145 = 5 (days). 

We denote the total length of the time series of the stock returns by LT = LE + LW. 

In this thesis we have decided to make use of three window lengths, the first type of 

window is set five days before (LB = 5) the event which in Figure 5.1 is denoted as te. The 

second event window is five days after the event (LA = 5). The third event window is the 

whole event window (LW = 10) that starts at tb = 140 and ends at T = 150, i.e., LW = T- 

tb = 150-140 = 10.  

The empirical work in the thesis is done with the help of the programming language R 

and Excel, more specifically we utilize the ‘systemfit’ package built by (Henningsen & 

Hamann, 2019) which is specifically designed for running a system of equations at the 

same time where there is no need for running single regressions one by one. For more 

information on the use of the package one can visit the online platform of the authors 

and the white-paper of their project for more concise elaborations of the features of 

the algorithm. 

5.3 Model Specifications 

In this thesis we use two different approaches for estimating the market model. The 

justifications for using this model are that the model accounts for the general market 

returns when defining abnormal returns. More specifically, the model assumes a linear 

relationship between a security’s returns and the market returns. 

The actual returns are the simple returns of an equity defined in Equation 1.1; in 

contrast the normal returns are defined in Equation 2. These normal returns are 

calculated for every equity in the sample. The normal returns are calculated by 

regressing the actual equity returns (rit) against the market returns (rmt) throughout 

the estimation window (LE), by following this procedure we have effectively estimated 

the intercept of Equation 1 to be 𝛼𝑖 and the slope of Equation 1 is estimated as βi. 
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The market model is applied to 7 different European common stocks in an early study 

by (Pogue & Solnik, 1974) where it is concluded that the Market efficiency hypothesis 

holds for big countries common stocks such as the United Kingdom, Germany, France 

and Italy. In this thesis we use the market return model which is the one discussed in 

(Brown & Warner, 1985). The market return model has been used as a benchmark in 

the works of  (Fama, Fisher, Jensen, & Roll, 1969) in the effect of stock splits, 

(Thompson, 1985) compares different methods for firm events, (Karafiath, 1988) uses 

the market model in the framework of multivariate regression as well as (Binder J. J., 

1985) discusses how the multivariate regression model is used in hypothesis testing 

and the advantages it brings over the residual analysis method. 

• The traditional univariate market return model: 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡 + 𝜀𝑖𝑡    (1) 

𝑟𝑖𝑡  =  
𝑃𝑖𝑡 − 𝑃𝑖(𝑡−1)

𝑃𝑖(𝑡−1)
     (1.1) 

𝜀𝑖𝑡 = IID error term s.t 𝐸[𝜀𝑖𝑡] = 0, 𝑉𝑎𝑟[𝜀𝑖𝑡]  = 𝜎𝑖 and 𝐶𝑂𝑉[𝜀𝑖𝑡,𝜀𝑖𝑠,] = 0. 

𝛽𝑖 = estimated slope. 

𝛼𝑖 = estimated constant. 

 𝑟𝑚𝑡 = the market index returns. 

The model in Equation (1) is the return generating process which will determine the 

normal returns of the i-th security. 

The estimated market return model from Equation (1) takes the form: 

𝐸[𝑟𝑖𝑡]  = 𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡         (2) 

 The error term (𝜀𝑖𝑡) is also assumed not to be correlated with the market index proxy 

𝑟𝑚𝑡 and with the LHS variable 𝑟𝑖𝑡, equity returns. 

5.3.1 The two-step market return model residual analysis 

Before we define the steps of the method, we need to define the length of the vectors 

used for the estimation of returns. First, in the estimation window which starts from 

tN to tn, these returns form a vector of returns with length LE = tn – tN. We also define 

the pre-event window length as the length of the vector formed by the returns in the 

event window defined by LB = te – tb, we define the post event window as the vector of 



27 
 

length LA = T – te, finally the whole event window which envelopes the event day, is 

defined by the length of LW = T – tb, a visual representation can be seen in Figure 5.1. 

The first step involves calculating the realized returns of the equity over the estimation 

and event window. We use the simple returns of the equity as defined in Equation 1.1. 

The second step in this method makes use of the estimation window defined by LE to 

get the parameters of Equation (1) which will define the normal or predicted returns. 

In this step we use the data from tN to tn. 

The assumptions of the model and remedies to deviations from those assumptions are 

explained in Section 5.5 when we lay out the test statistics. 

5.3.2 The Multivariate regression model with dummy variables 

The multivariate regression model (MRM) which involves the use of dummy variables 

to pick up the event impact during the event window has been extensively discussed 

across different publications in finance. The advantages of using the MRM method do 

not come from the estimation of the dummy variable coefficients and standard errors, 

since the results of the OLS estimation of the MRM model are the same as the 

estimations obtained by using Equation 1. However, (Binder J. J., 1985) argues that 

the advantages of the MRM model come from the incorporation of cross equation 

heteroskedasticity and contemporaneous correlation of the disturbances in the 

hypothesis testing. Briefly put, the coefficients of the dummies in the regressions are 

parameters that signify the abnormal returns inside the equation, the number of 

dummy variables in the equation is the same as the number of days in the event 

window used to calculate the abnormal returns, hence, the number of dummy 

variables will be different for the event post event window (LA) and the entire event 

window (LW).   

The MRM method has been used by (Zellner, 1962) where he makes use of the Feasible 

Generalized least square method (FGLS) for running a number of regression equations 

simultaneously where the disturbance terms across equations are highly correlated. 

We also utilize the FGLS method in cases where we have clustering of event dates and 

see whether there is any improvement in estimation and statistical significance. 

The difference between the traditional method and the MRM is that the parameters 

are estimated in one step by simply just running the regression over the whole time-

line containing the returns. The other and more important difference between the 

traditional method is in the accounting for the difference in the variability of the 
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disturbances and time dependance with one another of the disturbances in the system 

of equations. The MRM method mitigates these two issues by jointly testing the 

hypothesis that we will lay out in Section 5.5. 

We shall now define the MRM precisely: 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡 + ∑ 𝛾𝑖𝑡𝐷𝑖𝑡
𝑡∈[𝑡𝑏,𝑇]

+ 𝜀𝑖𝑡            (3) 

𝑟𝑖𝑡 = the realized returns of security i at t. 

𝛼𝑖 = intercept of the model. 

𝑟𝑚𝑡 = market index returns at t. 

𝛽𝑖 = market index return parameter. 

𝛾𝑖𝑡 = the abnormal return of asset i on day t : t ϵ {tb, …, T} inside the event 

window, w takes values corresponding to the number of event days inside 

the event window. 

𝐷𝑖𝑡 = {
1, 𝑖𝑓 𝑡b ≤ 𝑡 ≤ 𝑡𝑎                                                                                          
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          

 

𝜀𝑖𝑡 = IID error term s.t 𝐸[𝜀𝑖𝑡] = 0, 𝑉𝑎𝑟[𝜀𝑖𝑡]  = 𝜎𝑖 and a covariance of zero 

among error terms. 

𝑖 = 1, … ,𝑁 𝑎𝑛𝑑 𝑡 = 𝑡𝑁 , … , 𝑇  

 

We will represent the matrix form of Equation 3 in Appendix F, sub-section (II) where 

we discuss the structure of the system of equations by partitioning the RHS variables 

in different matrices, however a more comprehensive expanded form of the above 

model is represented in Equation 4. 

[
 
 
 
 
𝑟1𝑡
𝑟2𝑡
𝑟3𝑡
⋮
𝑟𝑛𝑡]
 
 
 
 

 = 

[
 
 
 
 
𝛼1 + 𝛽1𝑟𝑚𝑡 + 𝛾10𝐷10 + 𝛾11𝐷11 + 𝛾12𝐷12 + 𝛾13𝐷13 + 𝛾14𝐷14 + 𝛾15𝐷15 + 𝜀1𝑡

𝛼2 +
𝛼3 +
⋮

𝛼𝑛 +

𝛽2𝑟𝑚𝑡 + 𝛾20𝐷20 + 𝛾21𝐷21 + 𝛾22𝐷22 + 𝛾23𝐷23 + 𝛾24𝐷24 + 𝛾25𝐷25 + 𝜀2𝑡
𝛽3𝑟𝑚𝑡 + 𝛾30𝐷30 + 𝛾31𝐷31 + 𝛾32𝐷32 + 𝛾33𝐷33 + 𝛾34𝐷34 + 𝛾35𝐷35 + 𝜀3𝑡

⋮
𝛽𝑛𝑟𝑚𝑡 + 𝛾𝑛0𝐷𝑛0 + 𝛾𝑛1𝐷𝑛1 + 𝛾𝑛2𝐷𝑛2 + 𝛾𝑛3𝐷𝑛3 + 𝛾𝑛4𝐷𝑛4 + 𝛾𝑛5𝐷𝑛5 + 𝜀𝑛𝑡]

 
 
 
 

       (4) 

The Left-hand side (𝑟1𝑡, 𝑟2𝑡, . . . , 𝑟𝑛𝑡) variables are vectors of security return data; they 

represent one return data point per every time (t) point, the same is valid for 𝑟𝑚𝑡. On 

the other hand, the sequence of 𝐷𝑖𝑡 variables are indicator vectors/dummies which 

take the value of one at a date that is an element of the event window set and zero in 

every other entry. Equation 4 is an expanded representation of the dummy market 

regression estimation, i.e., Equation 3, where the event window corresponds to the five 

days period after the event which is denoted by the number zero in the subscript of the 
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estimated coefficient (𝛾) and the dummy variable (D), i.e. the event window in 

Equation 4 is the post event period LA defined in Section 5.2. 

The matrix notation of Equation 3 and Equation 4 is: 

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + 𝜀𝑖      (4.1) 

𝑌𝑖 is a LE x 1 vector where the elements of the vector are the daily returns of stock i at 

day t (𝑟𝑖𝑡) and it represents the dependent left-hand side of Equation 3 and Equation 

4. 

𝑋𝑖 is a LE x 𝑀𝑖  (𝑀𝑖 is the number of variables or regressors in equation i) matrix 

where the first vector is the constant (𝛼𝑖) in Equation 3 and Equation 4, the second 

vector is the daily mid-cap market index returns 𝑟𝑚𝑡 and n-2 vectors that represent 

dummy variables (𝐷𝑖𝑡) for every day inside the event window where every vector 

consists of zeros and a single number one for the specific day inside the event 

window. 

𝜀𝑖 is a LE x 1 vector representing the error terms of equation i. 

The i individual equations in Equation 4.1 can be stacked and we get the following 

form: 

𝑌∗ = 𝑋∗𝛽∗ + 𝜀∗   (4.2) 

Similarly, the dimensions of the vector 𝑌∗ are N LE x 1, 𝑋∗ is a N LE x 𝑀∗ matrix 

composed of N 𝑋𝑖 matrices where N is the number of equations in the system such 

that every equation represents the returns of a firm as expressed in Equation 3. The 

total number of regressors across all i equations is represented by 𝑀∗ = ∑ 𝑀𝑖
𝑁
𝑖=1 , 𝛽∗ is 

the coefficient stacked vector with dimensions 𝑀∗x1, and 𝜀∗ is the stacked error vector 

with dimensions N LE x 1. 

The system of equations corresponding to Equation 3 and Equation 4 will be run as a 

single equation where the coefficient estimates are defined as (Zellner, 1962): 

𝛽̂∗ = [𝑋∗
′(𝛴−1⊗ 𝐼)𝑋∗]

−1𝑋∗
′(𝛴−1⊗ 𝐼)𝑌∗       (4.3) 

  𝐶𝑜𝑣[𝛽̂∗]  = [𝑋∗
′(𝛴−1⊗ 𝐼)𝑋∗]

−1              (4.4) 

The 𝛽̂∗ in Equation 4.3 is a vector of estimated regression coefficients, 𝑋∗ is a return 

and dummy variable stacked matrix composed of a vector whose inputs are a series of 

ones representing the constant α𝑖 of the regression equation, a vector of the market 

return inputs and depending on the event length X contains six to eleven indicator 
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vectors where the inputs are equal to zeros for non-event days and equal to one on the 

days inside the event window. 

A more concrete and visual representation of Equation 4.1, Equation 4.2, the 

components of Equation 4.3 and Equation 4.4 can be found in Appendix F under 

Section II.i represented by Equations e and Equation e.1. 

The (𝛴−1⊗ 𝐼) represent the inverse covariance matrix which is a matrix of estimated 

variances from the first step OLS estimation, the covariance matrix under the normal 

OLS assumptions takes the form (𝛴 ⊗ 𝐼)  =  𝐸(𝜀𝑖𝑗
2)  =  𝐼𝑁 since (𝜎𝑖 = 𝜎𝑗  ˄ 𝜎𝑖𝑗 = 0;  𝑖 ≠

𝑗) which means no correlation between error terms.  

The operation ⊗, is the tensor product of the variance or the inverse covariance matrix 

with the identity matrix, this product in our case serves the purpose of constructing a 

bigger matrix which is made up of diagonal 𝛴−1 matrices, this product is used in the 

setting of multiple equations where the coefficients of all equations are estimated 

simultaneously. 

The estimated variance matrix (𝛴−1⊗ 𝐼) of Equation 4.4 on the other hand is taken 

from the weighted least square residuals of the system of equations, when the whole 

system is treated as one equation, the estimation of (𝛴−1⊗ 𝐼) can be calculated as 

either one representative average variance for all equations (𝜎̂2𝐼𝑁𝑡 𝑠. 𝑡.  𝜎̂
2 = 𝐸(𝜀𝑖𝑡

2)) 

or one can consider individual variances for each equation within the system where 

(𝛴 ⊗ 𝐼) ↔ (𝐸(𝜀𝑖𝑡
2)  =  𝜎𝑖

2 𝑠. 𝑡.  𝜎𝑖𝑗 = 0 ∀ 𝑖 ≠ 𝑗) , we use the first type of variance when 

running a system of regressions where many firms have a common event date, and the 

latter one for regressions where firms event dates do not overlap with each other. 

The residual covariance matrix can be estimated in the traditional way where we only 

account for the number of observations without correcting for the degrees of freedom, 

another way is if we accounted for the number of degrees of freedom, this method gives 

us unbiased variance estimations, the denominator of the accounts for the number of 

observations as well as for the number of regressors, the formula can be seen in 

Appendix F, sub-section II.ii, Equation (i), this method was developed by (Zellner & 

Huang, 1962). 

The covariance matrix is represented by the operation of the Kronecker Product which 

is another name for the tensor product that combines matrices or vectors of any orders 

as explained by (Pollock, 2013). Every element of the inverse variance matrix 𝛴−1is 

multiplied with the identity matrix where a single block diagonal matrix is produced 
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such that the elements in the diagonal are variance matrices of the corresponding 

equation. 

The expanded matrix form of this model and its visual illustration can be found in 

Appendix F under sub-section (II.i), represented by Equation e, the OLS and SURE 

estimation of Equation 4.3 is drawn out in Appendix F under sub-section (II.ii). For 

an in-depth reading of the setting up, properties and types of methods of estimation 

discussed in this section can be found in (Greene W. H., 2017, pp. 326-371). 

 5.3.3 The Ordinary Least Squares (OLS) and the Seemingly Unrelated 

Regression (SURE) techniques  

It is also worth noting the difference between the traditional OLS and the Seemingly 

Unrelated Regressions methods (SURE) developed by (Zellner, 1962). The OLS 

method can be used in overlapping event dates where several firms have the same 

event dates, this usually happens in regulatory events or the method can be used in 

cases where events are spread throughout different calendar periods, such events are 

stock split announcements, earnings announcements which can be different for 

different firms. This thesis is concerned with both types, in some cases we can see 

event clustering where several firms enter or exit the mid-cap index and in many other 

cases event dates are spread out over time. The clustering in the case of the MDAX is 

not as serious, with the exception of 11th of February 2003 where nineteen equities are 

relegated from the MDAX to the SDAX and the case of 5th of September 2018 where 

fourteen companies enter the MDAX index by the fast entry rules. In these two 

particular cases we can apply the SURE method and see the difference between the 

exit and entry effect on firms’ returns by testing for the statistical difference between 

the two events, the empirical null hypothesis can be found in Section 5.5. 

The significant difference between the SURE and OLS method stands in the way how 

the SURE accounts for the correlation between the error terms across equations by 

using the feasible generalized least square (FGLS) method.  

The estimated values of the coefficients (𝛽̂∗) in Equation 4.3 for the OLS and SURE 

estimation are obtained differently. The OLS estimation method assumes that the 

covariance matrix (𝛴) of the residuals is known and it is 𝜎2 = 𝐸[𝜀𝑖𝑡
2 ], 𝜎𝑖𝑗 = 0 ∀ 𝑖 ≠ 𝑗. 

The SURE estimation method uses the residual’s to consistently estimate the 

covariance matrix (𝛴), where 𝜎𝑖𝑗 = 
𝜀𝑖
′𝜀𝑗

𝑇
  s.t. T is the number of observed returns that 
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corresponds with the number of days in the time series that stretches from tN to T as 

illustrated in Figure 5.1 in Section 5.2. 

Unlike the OLS, the SURE method applies strictly to a system of equations. The 

estimated coefficients (𝛽̂𝑂𝐿𝑆) obtained from implementing the OLS method to the 

system of equations are the same as the estimated coefficients obtained by performing 

the OLS method to individual equations. 

One of the assumptions of the OLS method is that the regressors and the disturbance 

terms of every single equations are uncorrelated (i.e. E[𝜀𝑖
′𝑋𝑖] = 0 ∀ i ), on the other 

hand the SURE method necessitates that all regressors and relevant disturbances are 

uncorrelated across all equations  (i.e. E[𝜀𝑖
′𝑋𝑗] = 0 ∀ i,j ). 

As explained by (Moon & Perron, 2006) the asymptotic distribution (T→∞) of the OLS 

estimators ( 𝛽̂𝑂𝐿𝑆) and the SURE estimators ( 𝛽̂𝑆𝑈𝑅𝐸) are different. 

√𝑇(𝛽̂𝑂𝐿𝑆 − 𝛽) => N(0;[E(𝑋𝑖𝑋𝑖
′)]−1E(𝑋𝑖𝛴𝑋𝑖

′)[E(𝑋𝑖𝑋𝑖
′)]−1)          (4.5) 

√𝑇(𝛽̂𝑆𝑈𝑅𝐸 − 𝛽) => N(0;[E(𝑋𝑖𝛴
−1𝑋𝑖

′)]−1)          (4.6) 

It can be deducted from Equations 4.5 and 4.6 that the SURE estimators have a 

smaller variance than the OLS estimators which is also consistent with the Gauss-

Markov theorem. 

5.4 Defining abnormal returns 

In this section we will define and explain the calculation of abnormal returns for the 

residual analysis technique and dummy regression estimation by first starting with the 

traditional two-step residual model. 

5.4.1 Abnormal Returns from the two-step market model 

The derivation of abnormal returns using residual analysis has been explained in 

almost every article dealing with event studies. Precise and rigorous derivations of 

abnormal returns and the types of abnormal returns can be found in (Binder J. J., 

1998) where a review of the history of event studies developed by different authors 

through the years has been carefully documented. The scrutiny falls on the types of 

statistics used to evaluate the abnormal returns and issues that might arise from them. 

In another similar earlier article (Bowman, 1983) does the same and explains in 

meticulous details the way an event study is conducted. On the same note (McWilliams 

& McWilliams, 2000) and (Pynnönen, 2005) comprehensively review the abnormal 
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return calculations and their derivatives. The most significant work related to this 

analysis and the main source of many event studies can be attributed to what is 

consider to be the bible of Financial Econometrics is the work of (Campbell, Lo, & 

MacKinlay, 1997, pp. 149-180). This work sets the foundations of a well-structured 

procedure, a detailed explanation of the event study procedure and discussion on the 

impacts of an earning’s announcement is added as an illustrative guide for the readers. 

Abnormal returns are calculated as the difference between actual realized simple 

returns and normal returns which in the traditional way are calculated by the formula 

in Equation 2. 

𝐴𝑅𝑖𝑡 =  𝑟𝑖𝑡  − (𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡)  𝑠. 𝑡.  𝑡b ≤ 𝑡 ≤ 𝑇                (5) 

𝛼𝑖 and 𝛽𝑖 are the estimated parameters of Equation 1. 

The assumption about the distribution of the abnormal returns is that they are 

normally distributed. However, it is reasonable to assume that estimated parameters 

are not completely independent and realized returns within the event window would 

have their own special event effect in them which can be either positive or negative. 

This is reasonable to assume this as study itself is looking for the effect of the day of 

the event on stocks’ returns. Hence, the market model for the event window contains 

the effect variable within and the model fit in Equation (1) for the estimation window 

remains as it is whereas the return generating process for the event window will carry 

the event day effect in it: 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝜏𝑖𝑡 + 𝛽𝑖𝑟𝑚𝑡 + 𝜀𝑖𝑡   𝑠. 𝑡.  𝑡b ≤ 𝑡 ≤ 𝑇        (6) 

Equation 6 represents the normal returns inside the event window, these normal 

returns are subtracted from the actual returns as we have depicted in equation 5. We 

can argue that if the event carries a special effect in itself then 𝜏𝑖𝑡 is the real effect of 

the day inside the event window. Theoretically, the normal returns outside the event 

window should be equal to the actual returns, such that there will be no abnormal 

returns in the absence of the event. 

We can derive now the abnormal returns by substituting Equation 6 into Equation 5, 

s.t: 

𝐴𝑅𝑖𝑡  =  𝛼𝑖 + 𝜏𝑖𝑡 + 𝛽𝑖𝑟𝑚𝑡 + 𝜀𝑖𝑡  −  (𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡)  = 𝜏𝑖𝑡+ 𝜀𝑖𝑡          (7) 
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Then the true effect of the event can be estimated to be: 

𝐸(𝐴𝑅𝑖𝑡) = 𝜏𝑖𝑡   ;  𝑉𝑎𝑟(𝐴𝑅𝑖𝑡) =
1

𝐿𝐸
∑ (𝐴𝑅𝑖𝑡)

2
𝑡∈[𝑡𝑁,𝑡𝑛]           (8) 

The variance in Equation 8 is calculated by using the data of abnormal returns in the 

estimation window, the number of abnormal returns is equal to the number of days 

inside the estimation window which in Equation 8 is denoted by 𝐿𝐸. 

Equation 8 can also serve to see how the traditional two-step residual estimation 

model can be interpreted as the MRM with dummies which is illustrated in Equation 

3, essentially, we can simply estimate Equation 1 over the whole period length from te 

to T in Figure 5.1 and use dummy variables for every day in the event window, we will 

demonstrate this in the following sub-section pertaining to the MRM analysis. 

In order to make meaningful statistical inference across sections and firms we need to 

define the cumulative abnormal returns (CAR), these abnormal returns are simply 

aggregations and cumulations across firms and time. 

There are several ways of calculating cumulative abnormal returns. One type of 

cumulative abnormal returns are the simple event window cumulative abnormal 

returns defined as: 

𝐶𝐴𝑅𝑖 = ∑ 𝐴𝑅𝑖𝑡

𝑡=𝑇

𝑡=𝑡𝑏

   ;    𝑉𝑎𝑟(𝐶𝐴𝑅𝑖) = 𝑉𝑎𝑟(𝐴𝑅𝑖𝑡) (𝐿𝑤 +
𝐿𝑤

2

𝐿𝐸
+
∑ 𝑟𝑚𝑡𝑡∈[𝑡𝑏,𝑇]

− 𝐿𝑊(𝑟̅𝑚)
2

∑ (𝑟𝑚𝑡 − 𝑟̅𝑚)
2

𝑡∈[𝑡𝑁,𝑡𝑛]

)            (10) 

The second type of cumulative abnormal returns are the daily cumulative abnormal 

returns that we use to see the movement of the cumulative abnormal returns at every 

single consecutive day inside the event window by first cumulating the abnormal 

returns as defined through Equation 5 to Equation 8 of every single firm separately for 

each day within the event window and then cross-sectionally (across N firms) 

averaging the cumulative abnormal returns for the particular day inside the event 

window. 

We proceed to define the daily cumulative abnormal returns and the average cross 

sectional cumulative abnormal returns as follows: 

𝐷𝐶𝐴𝑅𝑖𝑡 = ∑ 𝐴𝑅𝑖𝑡

𝑡=𝑡

𝑡=𝑡−𝑛

  𝑠. 𝑡.  0 ≤ 𝑛 ≤ 11 𝑎𝑛𝑑 𝑡𝑏 ≤ 𝑡 ≤ 𝑇, 𝐷𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅
𝑡 = 

1

𝑁
 ∑𝐷𝐶𝐴𝑅𝑖𝑡

𝑁

𝑖=1

      (11) 

Cumulative abnormal returns in Equation 10 are calculated for every i firm in the 

sample of firms whereas the variance is the scaled 𝐴𝑅𝑖 variance for equity i and 𝐿𝑊 and 
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𝐿𝐸 in the variance of CARi is the number of days in the event window and estimation 

window, respectively, the variance of CARi is adjusted for the serial correlation in the 

returns as argued by (Mikkelson & Partch, 1988). 

The abnormal returns we have defined in this section will be used for the derivation of 

two types of standardized abnormal returns for the use of hypothesis testing in Section 

5.5 of this thesis. 

5.4.2 Abnormal Returns from the MRM Analysis 

The multivariate regression model (MRM) takes the form of the market model from 

Equation 1 with added dummy variables which take the value of one in the case of the 

event day and zero otherwise. 

We will demonstrate how abnormal returns are derived from the MRM form by using 

a single security case, which can be also applied to the whole system of equations. 

The estimated dummy variables in the MRM setting do not affect β neither α, the 

difference between two slopes of the regression is the dummy coefficient 𝛾𝑖𝑡, which 

captures the effect of a particular day in the event window on the returns of the stock.  

Abnormal returns are defined as the difference between the normal returns defined by 

the market model through the event window, and actual returns calculated through 

the estimation window of length LE. 

We can derive the abnormal returns as follows: 

𝐴𝑅𝑖𝑡 = (𝛼𝑖 + 𝛾𝑖𝑡𝐷𝑖𝑡) + 𝛽𝑖𝑟𝑚𝑡 + 𝜀𝑖𝑡  −  (𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡 + 𝜀𝑖𝑡  ) =  𝛾𝑖𝑡𝐷𝑖𝑡    𝑠. 𝑡.  𝐷𝑖𝑡 = 1 𝑖𝑓 𝑡𝑏 ≤ 𝑡 ≤ 𝑇    (13)  

For a more detailed explanation on indicator-variable regressions one can refer to 

(Fox, 2016), where a whole chapter expands on the use of dummy-variable regression 

along with graphical illustration of the regression slopes. 

The cumulative abnormal returns are defined as the sum of the estimated dummy 

coefficients throughout the event window and across firms (Karafiath, 1988) whereas 

the average abnormal returns are as well the sum of abnormal returns in the event 

window divided by the number of event days , it is also important to note that upon 

testing null hypothesis in the MRM setting there is no need for the standardization of 

the abnormal returns since the hypothesis tests account for cross sectional 

heteroskedasticity and autocorrelation of the error terms. 
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5.5 Null hypotheses and test statistics for significance 

As the choice of test statistics is very important in every empirical work, we will be 

using a combination of different types of test statistics to account for different 

problems in the data. It is well established that usually stock returns are not normally 

distributed, also the problem of serial and cross correlation can be remedied by the 

choice of the test statistic. 

5.5.1 Parametric Tests 

The test statistics for significance involve the calculation of abnormal returns. These 

abnormal returns are simply the standardized form of the abnormal return, we have 

derived in Equations 5, 7 and 8. 

The standardized abnormal returns take into account the variance of the abnormal 

returns as follows: 

𝑆𝐴𝑅𝑖𝑡 = 
𝐴𝑅𝑖𝑡

√𝑉𝑎𝑟(𝐴𝑅𝑖𝑡)
   ;  

 𝑉𝑎𝑟(𝐴𝑅𝑖𝑡)  = 𝑉𝑎𝑟(𝐴𝑅𝑖) (1 +
1

𝐿𝐸
+

(𝑟𝑚𝑡 − 𝑟̅𝑚)
2

∑ (𝑟𝑚𝑡 − 𝑟̅𝑚)2
𝑡𝑛
𝑡𝑁

)      (16) 

𝑽𝒂𝒓(𝑨𝑹𝒊) is the variance of abnormal returns from the regression over the estimation 

window returns for firm i from Equation (8), 𝐿𝐸 is the number of abnormal returns in 

the estimation window as calculated in Section 5.2, r̅m is the average of the market 

returns in the estimation window (LE). The variance in Equation (16) is adjusted for 

the market variance in the estimation window brought about by different exogenous 

factors, the standardized abnormal returns (𝑺𝑨𝑹𝒊𝒕) are adjusted for the out of sample 

estimation since the abnormal returns are estimated out of sample, a more detailed 

derivation and justification for this has been done by (Patell, 1976). 

Equation (16.1) below defines the Cumulative Standardized abnormal returns where 

𝐿𝑤 stands for the event window length or the number of days in the event window as 

we have previously defined in Section 2.5. 

𝐶𝑆𝐴𝑅𝑖  =  
1

√𝐿𝑊
∑ 𝑆𝐴𝑅𝑖𝑡

𝑡=𝑇

𝑡=𝑡𝑏

   ;    𝑉𝑎𝑟(𝐶𝑆𝐴𝑅𝑖)  = 𝑁
𝐿𝐸 − 2

𝐿𝐸 − 4
                    (16.1) 
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5.5.1.1. Adjusted Patell Test statistic 

The derivation of the Adjusted Patell Statistic (APS) has been derived by (Kolari & 

Pynnönen, 2010) which is in turn based on an older statistic developed to make 

inference on share earnings effect on stock prices by (Patell, 1976) where the author 

uses the standard market return model which we have utilized in this thesis as well as 

described in Equation (1). The Patell Test statistic (PS) is defined as:  

𝑇𝑃𝑆 = ∑
𝐶𝑆𝐴𝑅𝑖

√𝑉𝑎𝑟(𝐶𝑆𝐴𝑅𝑖)

𝑁

𝑖 = 1

     (16.2) 

In a setting of a system of equations where the effect of the event is being evaluated 

across firms and time, the APS test can serve as a useful tool where unlike the PS test 

which can be vulnerable to cross sectional correlation and result into rejection of the 

null hypothesis, the APS accounts for the cross correlation in abnormal returns. 

The APS statistics is defined as follows: 

𝑇𝐴𝑃𝑆 = 𝑇𝑃𝑆√
1

1 + (𝑁 − 1)ρ̅
                 (17) 

 

ρ̅ in Equation (17) is the cross-sectional mean correlation as shown in Equation (17.3) 

of the estimation window (LE) abnormal returns, in case of no correlation, as it can be 

seen from the formula the APS is simply the Patell S. 

The average correlation of the sample abnormal returns is calculated in three steps. 

The first step involves the calculation of the Fisher’s Z transformation as derived by 

(Fisher, 1921), the second step involves finding the average Fisher Z-transformation 

and the final third step is calculating the inverse of the average Fisher Z-

Transformation. For a more detailed derivation of the Fisher’s Z transformation 

properties one can also consult the work of (Hotelling, 1953). 

The Fisher Z-transformation of the correlation coefficient (ρ𝑖𝑗) of the abnormal 

returns of stock i and j is defined as: 

𝑧𝑖𝑗  =  
1

2
 𝑙𝑛 (

1 + ρ𝑖𝑗

1 − ρ𝑖𝑗
)      (17.1) 
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The Inverse Fisher Z-Transformation:  

ρ𝑖𝑗  =  (
𝑒2𝑧𝑖𝑗 − 1

𝑒2𝑧𝑖𝑗 + 1
)    (17.2)          ;              ρ̅ =

2

𝑁(𝑁 − 1)
 ∑∑𝜌𝑖𝑗

𝑖≠𝑗

𝑁

𝑖=1

         (17.3)  

ρ𝑖𝑗 is the inverse Fisher Z transformation of the correlation coefficient of the 

abnormal returns of stock i and j. 

The null Hypothesis tested is: 𝐇𝟎
𝟏: CSAR = 0 vs. 𝐇𝐀

𝟏: CSAR ≠ 0 

The hypothesis here states that the cumulative standardized abnormal returns across 

the sample are zero. The standard deviation of the CSAR is shown as in Equation 

(16.1), the variance for CSAR is the scaled variance of the t statistics/SARs in the event 

window (Patell, 1976, p. 256) and (Kolari & Pynnönen, 2010, pp. 3999-4000), and the 

scaled CSAR have a unit variance. 

The Patell test statistic in Equation c.1 in appendix F, sub-section (I.iii) as argued by 

(Kolari & Pynnönen, 2010, p. 4004) should not have an approximate N(0,1) 

distribution because of the cross correlation of abnormal returns, the distribution of 

that rest has a slightly greater variance N(0,1+(n-1) 𝛒̅). 

To fix the deviation of the abnormal returns at a unit deviation, we standardize them 

and the adjusted Patell (𝑻𝑨𝑷𝑺) has a distribution of N(0,1) as a result of the 

standardization. 

5.5.1.2. Adjusted Standardized Cross-Sectional statistic 

The Adjusted Standardized Cross-Sectional statistic (ACS) is a more refined form of 

the standardized cross-sectional statistic (SCS) explained in Appendix F, Equation 

(d.1).  

The standardized cross-sectional statistic in Equation 17.4, is derived in such a way 

that the standard deviation in the denominator is defined as the sample (cross section) 

deviation of the standardized cumulative abnormal returns. 

𝑇𝐶𝑆 = 

1
𝑁
∑ 𝑆𝐶𝐴𝑅𝑖
𝑁
𝑖=1  

√
1

𝑁 − 1
∑ (𝑆𝐶𝐴𝑅𝑖  − 𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

1 − 𝜌̅   

           (17.4) 
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Since the variance of the standardized abnormal returns is biased, the authors (Kolari 

& Pynnönen, 2010, pp. 4002-4003) correct for the correlation by including the 

average correlation of the estimation window (LE) abnormal returns (ARit).  

The adjusted standardized cross-sectional statistics uses the standardized cumulative 

abnormal returns and their mean to test for the event day effect on the mean 

standardized cumulative returns which are defined as: 

𝑆𝐶𝐴𝑅𝑖 =
𝐶𝐴𝑅𝑖

𝑉𝑎𝑟(𝐶𝐴𝑅)𝑖
     ;    𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅ =

1

𝑁
∑𝑆𝐶𝐴𝑅𝑖

𝑁

𝑖=1

    ;     

𝑉𝑎𝑟(𝑆𝐶𝐴𝑅)  =  
1

𝑁−1
∑ (𝑆𝐶𝐴𝑅𝑖  − 𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1          (18) 

 

The variance of cumulative abnormal returns, i.e., 𝑉𝑎𝑟(𝐶𝐴𝑅)𝑖, is defined in Equation 

10. 

The null Hypothesis tested in this case is 𝐇𝟎
𝟐: 𝑺𝑪𝑨𝑹̅̅ ̅̅ ̅̅ ̅̅  = 0 ˄ 𝐇𝐀

𝟐: 𝑺𝑪𝑨𝑹̅̅ ̅̅ ̅̅ ̅̅  ≠ 0 

The hypothesis states that the mean standardized cumulative abnormal returns are 

zero, the standardized cumulative abnormal returns would not have a mean of zero 

across the firm sample if the event had any real impact on the prices and returns of the 

firms’ equities. 

The ACS test accounts for the cross-sectional correlation (𝛒̅) of the errors estimated 

through the estimation window for every firm. The estimated correlations then are 

aggregated from each firm and the average correlation of errors is calculated for all 

firms across the sample, a step-by-step explanation of the test is given by (Kolari & 

Pynnönen, 2010, pp. 3999 - 4001). 

 

The ACS test is also standard normally distributed just like the Adjusted Patell 

Statistic. 

𝑇𝐴𝐶𝑆 = 𝑇𝐶𝑆√
1

1 + (𝑁 − 1)ρ̅
               (18.1) 
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5.5.2. The Non-Parametric GRANK – Z Test 

This test is a non-parametric test which does not depend on the assumed distribution 

of the abnormal returns. Non-parametric tests are usually used when the distribution 

of the test has fat tails as it is usually the case when stock returns tend to be heavy 

tailed.  

The Generalized Rank Test is a modified version of the rank test developed by (Corrado 

& Zivney, 1992). The modification of the rank test accounts for the cross-sectional 

correlation of returns, serial correlation and event induced volatility, the details of this 

test have been explored by (Kolari & Pynnönen, 2011). 

The first step of using this non-parametric test is estimating the market model in 

Equation 1 and obtaining the estimates (i.e., 𝛼 𝑎𝑛𝑑 ꞵ)  in Equation 2. 

The second step involves the calculation of abnormal returns as defined in Equation 5 

for the whole period of available returns, this means that abnormal returns need to be 

calculated for both, the estimation window (LE) and the event window (LW). 

The third step involves the calculation of standard abnormal returns (SAR) defined in 

Equation 16 and calculating the cumulative abnormal returns (CAR) within the event 

window as defined in Equation 10. 

The fourth step is defining the standard cumulative abnormal returns (SCAR) as in 

equation 18 by dividing the cumulative returns (CAR) by its variance, the variance in 

this case is calculated as in (Campbell, Lo, & MacKinlay, 1997, pp. 160-161) which is 

also shown in Equation 10. 

The fifth step in this procedure involves the standardization of the standard 

cumulative abnormal returns (SCAR) across the firm sample, this is done by using the 

cross-sectional variance of the standardized cumulative abnormal returns which has 

been defined in Equation 18. We use the same notation to define the cross sectional 

standardized cumulative returns as in (Kolari & Pynnönen, 2011, p. 955): 

𝑆𝐶𝐴𝑅𝑖
∗ =

𝑆𝐶𝐴𝑅𝑖
𝑉𝑎𝑟(𝑆𝐶𝐴𝑅)𝑖

     (19.1) 
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The sixth step requires the definition of generalized standard abnormal returns 

(GSAR) as defined in (Kolari & Pynnönen, 2011, p. 955): 

𝐺𝑆𝐴𝑅𝑖𝑡 =

{
 

 𝑆𝐶𝐴𝑅𝑖
∗ =

𝑆𝐶𝐴𝑅𝑖
𝑉𝑎𝑟(𝑆𝐶𝐴𝑅)

  𝑓𝑜𝑟 𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 𝐿𝑤                                                                            

𝑆𝐴𝑅𝑖𝑡 =  
𝐴𝑅𝑖𝑡

𝑉𝑎𝑟(𝐴𝑅𝑖𝑡)
  𝑓𝑜𝑟 𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 𝑎𝑛𝑑 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 𝐿𝐸 + 𝐿𝑤                    

      (19.2) 

The calculation of the cumulative returns within the event window is done for the 

purpose of considering the whole duration of the event as one point in time by adding 

the daily abnormal returns, this allows us to calculate the standardized cumulative 

returns within the event window and then re-standardize these same returns (𝑆𝐶𝐴𝑅𝑖
∗) 

to account for the cross-sectional variance. This re-standardized return used in 

Equation (19.2) of the generalized standardized returns give us a single number for the 

whole cross section of standardized cumulative abnormal returns that in itself carries 

the effect of the event day on all firms in comparison to the 𝑆𝐶𝐴𝑅𝑖  defined in formula 

18 which carries in itself the effect of the firm event specific to the i-th firm. 

We will use the same notation for the rank of abnormal returns as in (Kolari & 

Pynnönen, 2011). The event window of day lengths LA, LB and LW are condensed into 

single cumulative event days since the calculation of the GSAR involves the cumulative 

abnormal returns (CAR). The cumulative event day can be considered as one 

observation per firm, the standardized abnormal ranks of the generalized standardized 

abnormal returns (GSAR) are defined as: 

𝑈𝑖𝑡 =
rank(𝐺𝑆𝐴𝑅𝑖𝑡)

𝐿𝐸+2
−
1

2
         (20) 

There is an extensive literature that deals with rank-order statistics and nonparametric 

statistical inference that dates back to (Siotani, 1956) where the author discusses the 

distribution of the largest and smallest values of a discrete random variable, the joint 

distribution of the largest and smallest values of the variable, the mean, variance of 

those values and an application of the order statistics for the binomial case. A more 

recent literature from (Gibbons & Subhabrata, 2014), (David & Nagaraja, 2004) and 

(Lehmann & D'Abrera, 1975) explores order-rank statistics issues and procedures in 

details. 

The returns are ranked through the whole time period from 𝑡𝑁 to T as depicted in 

Figure 5.1. If every daily return was different the highest rank would be 149 which is 

the length of the estimation and event window combined. In the case of two equal daily 

returns the mid-range is taken into account. 
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The theory of rank tests is based on a key assumption that the observed random 

variables follow certain continuous distribution functions, the implication of the 

continuous distribution of a random variable is that the probability of two outcomes 

having the same value is equal to zero. Another implicit assumption made about the 

observed random variable is that if a random variable follows a density function the 

rankings of the outcomes are complete, which in reality does not always hold true. 

If two or more daily prices are equal in value, they make a set of groups and hence in 

this case the ranks cannot be well defined. A more detailed discussion in the treatment 

of ties can be found in the (Pratt & Gibbons, 2012) and (Sidak, Sen, & Hajek, 1999). 

However, this assumption might fall short in practice where the outcome of two or 

more observations with the same value is quite possible. Taking into account the fact 

that this thesis deals with the analysis of the market and stock returns, the possibility 

of two equal consecutive prices is quite likely in situations such as the daily stock prices 

of thinly traded stocks of the small cap German index. Two different day stock prices 

might be the result of the fact that stock prices do not move in a continuous way. The 

stock price movement is limited to the tick size which is the minimum price difference 

that can exists between two consecutive bids which is in turn defined by the stock 

exchange. 

𝑈̅𝑡 = 
1

𝑁
∑𝑈𝑖𝑡

𝑁

𝑖=1

     (20.1) 

The null hypothesis for this test is that there is no mean event effect. This is done by 

first accumulating the ranked returns through the event window for every firm and we 

get the cumulative ranked abnormal returns. We define the null hypothesis as in 

(Kolari & Pynnönen, 2011, p. 956) 

H0
3: E(𝑈̅0) = 0 ˄ HA

3 : E(𝑈̅0)≠ 0 

The null hypothesis here states that the mean cross-section demeaned generalized 

abnormal ranks of the generalized standardized abnormal returns are equal to zero, 

this hypothesis will be rejected if the demeaned ranked generalized abnormal returns 

for the event window are different from zero. 

ZGRANK = 
E(𝑈̅0)

√Var(𝑈̅0)
 =  √

12N(LT + 1)

LT − 1
E(𝑈̅0)  ~  N(0,1)          (20.2) 
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The derivation of Formula 20.2 by (Kolari & Pynnönen, 2011, p. 956) is based on the 

fact that the variance of the ranks (i.e. rank(𝐺𝑆𝐴𝑅𝑖𝑡)) is 
𝐿𝑇
2−1

12
. Hence the variance of the 

standardized ranks in Equation 20 is: 

𝑉𝑎𝑟(𝑈𝑖𝑡) =  
𝐿𝑇 − 1

12(𝐿𝑇 + 1)
            (20.3) 

The Z statistic of the generalized ranked returns is assumed to have a standard normal 

distribution after the standardizations of the abnormal returns we have done above, 

as the number of days in the estimation window approaches infinity or grows large the 

𝐙𝐆𝐑𝐀𝐍𝐊 approaches the standard normal distribution. 

The variance of the average standardized abnormal ranks as defined in Equation 20.1 

is:                                          𝑉𝑎𝑟(𝑈̅𝑖𝑡) =  
𝐿𝑇−1

12𝑁(𝐿𝑇+1)
            (20.4) 

N is the number of firms standardized generalized ranked returns as defined in 

Equation 20 and LT is the length of the returns times series as defined in Section 5.2. 

5.6  Joint Hypothesis testing and restrictions on the MRM 

In the setting of the multivariate regression model, we use the F-test (Greene W. H., 

2018) which has the advantage of incorporating heteroskedasticity and error 

correlation itself.  

The F test is a statistic of comparing two types of variances, since the F test involves 

testing the original model with a restricted model, it effectively addresses 

heteroskedasticity by carefully choosing the right null hypothesis. The F test has an F 

distribution under the null hypothesis with the number of degrees of freedom being 

the number of restrictions denoted by J and the number of equations denoted by N 

multiplied by the number of observations denoted by T minus the total number of 

estimated coefficients denoted by K , i.e., F ~ F (J, N∙T-K).  

The Joint Test Hypothesis starts with the linear Equation 4.2 in Sub-Section 5.3.2 

where linear restrictions across equations take the following form: 

𝑟11𝛽1 + 𝑟12𝛽2 +⋯+ 𝑟1𝐾𝛽𝐾 = 𝑞1 

𝑟21𝛽1 + 𝑟22𝛽2 +⋯+ 𝑟2𝐾𝛽𝐾 = 𝑞2 

                                                                            ↓ 

𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 +⋯+ 𝑟𝐽𝐾𝛽𝐾 = 𝑞𝐽 
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The above can be written in a Matrix and vector form as: 

Rβ = q      (20.5) 

Every single row in the matrix R is a JxK matrix, the vector 𝛽  has Kx1 dimensions 

and q has Jx1 dimensions. 

 

            F-Test: 

𝐹 =  

(𝑅𝛽̂ − 𝑞)
′
(𝑅(𝑋′(𝛴̂ ⊗ 𝐼)−1𝑋)−1𝑅′)−1(𝑅𝛽̂ − 𝑞)

𝐽

 
 𝜀̂′(𝛴̂ ⊗ 𝐼)−1𝜀̂
𝑁 ⋅ 𝑇 − 𝐾

  ~ F (J, 𝑁 ∙ T − K)       (21)  

The capital letter R is the restriction matrix, q is a vector of zeros which is included for 

the sake of notational convenience since the null hypothesis does not always constrain 

the cross-equation coefficients to zero. The vector  𝜷   represents K estimated 

coefficients, J is the number of restrictions and N is the number of equations. The 

notation is the same as in Equation 4.3 and Equation f in Appendix F, II.i. 

The restriction in Equation 20.5 imposes J restrictions on K parameters for N different 

equations in the system of equations where each firms’ returns are represented by 

Equation 3. 

The F test is designed to test whether two population variances are equal. The formula 

in Equation 21 can be further simplified by simply writing the numerator of Equation 

21 in terms of the restricted and unrestricted residuals of the system of Equation 3. 

𝐹 =  

𝜀𝑅𝑆
′ 𝜀𝑅𝑆 − 𝜀

′𝜀
𝐽
𝜀′𝜀

𝑁 ∙ 𝑇 − 𝐾

=

𝑆𝑆𝐸(𝛽𝑅𝑆) −  𝑆𝑆𝐸(𝛽̂)
𝐽

𝑆𝑆𝐸(𝛽̂)
𝑁 ∙ 𝑇 − 𝐾

 ~ F (J, 𝑁 ∙ T − K)        (21.1) 

The restricted residuals (𝜀𝑅𝑆) are obtained by minimizing the sum of squared residuals 

with respect to the constraint imposed by the null hypothesis in Equation 20.5. The 

unrestricted residuals  𝜀′𝜀 are simply obtained by minimizing the sum of squared 

residuals without the imposed constrained from Equation 20.5. In the setting of 

multiple regression equations as defined in Equation 3, the F test compares the 

variance of the restricted and unrestricted system of regression equations. 
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A more detailed derivation of Equation 21 and Equation 21.1 can be found in (Greene 

W. H., 2017) along with a practical example of the analysis of the production cost 

functions of over 145 American electricity generating companies. Another detailed 

derivation of Equations 21 and 21.1 can also be found in (Hallam, 2004 a) and (Hallam, 

2004 b). 

5.6.1  Null Hypothesis for the Multivariate Regression Model 

H0
4: The sum of the dummy coefficients is zero across the sample of N equations and 

over the event window, this represents the joint cumulative abnormal returns (CAR). 

∑ ∑ γit

T3

t=T2

N

i = 1

= 0 

The null hypothesis H0
4 is similar to the null hypothesis H0

1, the difference between H0
4 

hypothesis and hypothesis H0
1 is in the cumulation of the standardized abnormal 

returns for the calculation of the cumulative standardized abnormal returns (CSAR) 

in H0
1. The second difference is in the choice of the test statistics, we use the F-Test to 

test for significance in the case of hypothesis H0
4 whereas we employ the adjusted 

Patell-Test statistic to test for significance in the cumulative standardized abnormal 

returns in hypothesis H0
1. 

H0
5: The dummy coefficients/abnormal returns are jointly equal to zero across firms 

and event window. 

γ1,1 = γ1,2 = γ1,3 = . . . . . . = γN,T3 =  0 

H0
6: Abnormal returns are all equal to each other, this hypothesis tests whether the 

event has an equal/same effect across all firms through the event window. 

γ1,1 = γ1,2 = γ1,3 = . . . . . . = γN,T3 

The mathematical representation of these null hypothesis can be found in Appendix 

F, sub-section (II.iii).  
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6. Results 

In this section we present the results for all four subsamples. We do so by constructing 

two types of tables for every subsample. We use one table to represent the results from 

the univariate market model (see Section 5.3, Equation 1) and, we use another table to 

present the results from the multivariate regression model (see Section 5.3, Equation 

3). 

We create graphical representations of the average cross-sectional cumulative 

abnormal returns as defined in Equation (11) to show the movement of cross-sectional 

average cumulative abnormal returns of every sample around the effective and 

announcement event windows. 

6.1. Promotion (inclusion), SDAX to MDAX 

           6.1.1 SDAX to MDAX univariate model results 

 

There is a slight increase in average cumulative abnormal returns (CAR) from the fifth 

day before the effective event up to the third day before the effective event for stocks 

that moved from the small-cap German index into the mid-cap German index. The 

green curve in Graph 1.a. depicting the effective event day shows a steady decline in 

the average cumulative abnormal returns from the third day before the effective event 

up to the last day after the effective event. This type of negative behavior is at odds with 

Cross-sectional average cumulative abnormal returns as defined in Equation (11) for the period five days 

before and after the announcement event day (yellow line) and effective event day (green line) of stocks that 

are promoted into the MDAX from the smaller SDAX index. 
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findings from the US stock market. Lynch & Mendenhall, 1997 show that the inclusion 

into the S&P500 has a positive effect on a stock’s returns.  

The same positive effect of an inclusion into the S&P500 is also observed by (Chen, 

Noronha, & Singal, 2004). 

The announcement event for the subsample of stocks promoted into the MDAX from 

the SDAX in Graph 1.a. has a different impact on the cumulative abnormal returns as 

opposed to the effective event, stocks moving into the mid-cap index show positive 

CARs in the anticipation period of five days before the announcement event, and a 

reversal (decline) in CARs after the event day marked with the number zero. The 

positive CARs in the anticipation period of five days before the event up to the event 

day zero which is in line with the anticipating-investors hypothesis as reported also by 

(Doeswijk, 2005). The stock price reaction after the announcement event day zero is 

negative which is also in line with the price pressure hypothesis of (Gurel & Harris, 

1986). 

Table 6.1.a: SDAX to MDAX subsample null hypothesis test results for the univariate market model. 

 

Table 6.1.a. exhibits the results for stocks that move from the SDAX to the MDAX for the null hypothesis 

tests from Section 5.5 concerning the traditional univariate market return model, see Equation (1) in Section 

5.3. The abbreviation Ann. Event and Eff. Event stands for Announcement Day Event and Effective Day Event. 

x – no significance, * - significance at the 10% level, ** - significance at the 5% level and *** - significance 

at the 1% level 
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Column number one of Table 6.1.a. shows the event lengths for the two events, i.e., the 

announcement event (Ann. Event) and the effective event (Eff. Event), for which the 

univariate market model method is used. 

The second column marked by N is the number of firms in the sample, the third, sixth 

and ninth columns show respectively the cumulative standardized abnormal returns 

(CSAR) as defined in Equation 16.1, the average standardized cumulative abnormal 

returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) as defined in Equation 18 and the average standardized abnormal 

ranks (𝑈̅0) of the generalized standardized abnormal returns (GSAR) during the event 

period defined in Equation 19.2 and Equation 20. 

Columns four, seven and ten show the Z-scores of the Adjusted-Patell test (AP. Z-

score) defined in Equation 17, the Adjusted Standardized Cross-Sectional statistic  

(AB. Z-score) as defined in Equation 18.1 and the Generalized-Rank test (GR. Z-score) 

as defined in Equation 20.2. Columns number five, eight and eleven represent the p-

values correspondingly.   

Rows marked with the abbreviation Sign. stand for the significance of the 

corresponding Z-score in the rows above them. 

Our results for all three measure types of abnormal returns show no significant 

deviations from zero on the effective event day, i.e., the day of promotion or the day of 

inclusion into the MDAX of a stock, the cross section cumulative standardized 

abnormal returns (CSAR), the cross section average standardized cumulative 

abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) and the demeaned standardized abnormal ranks are all 

negative, however, the results are insignificant for all event window lengths. 

The announcement day event shows significant positive cumulative standardized 

abnormal returns (CSAR) of 16.4 and significant standardized cumulative abnormal 

returns (SCAR) of 0.27 for the anticipation window of five days before the event (L𝐵), 

both significant at the 5% level. The average demeaned standardized abnormal ranks 

across the sample of 0,11 is highly significant at the 1% significance level. 

The post event window period (L𝐴), also shows significant negative CSAR at the 10% 

confidence interval, along with some almost significant (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) whose p-value is very 

close to the 10% confidence interval. 
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The univariate market model appears to support the anticipating-investors hypothesis 

which is in line with findings by (Doeswijk, 2005), (Fernandes & Mergulhão, 2016) 

and also in line with previous findings on the DAX index family done by (Franz, 2020). 

We also find some support regarding the price pressure hypothesis after looking first 

at the reaction of cumulative abnormal returns, CSAR, 𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅ and the average 

demeaned abnormal ranks before the anouncement event (L𝐵) where the CARs are 

positive and a price reversal for the post announcement event window (L𝐴) where the 

CARs, CSAR and 𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅ are negative. 

           6.1.2. SDAX to MDAX multivariate model results 

The second part of the results is utilizing the F statistic of the Wald test to test for 

significance in the dummy coefficients (see section 5.5.3.). 

Table 6.1.b. illustrates the significance of the dummy coefficients by performing an F 

test on the model after we applied the necessary restrictions. 

Table 6.1.b. is divided into two parts; the first upper part depicts the results of the F 

test values and their corresponding p-values obtained from the OLS regression and, 

the second part depicts the F values of the F test statistic from the seemingly unrelated 

regression method (see section 5.3). 

The first row of the table shows the three different null hypothesis we constructed (see 

Section 5.6.1), the null hypotheses on the first row are applied to both event types and 

all the corresponding event window lengths depicted in column one of the table 6.1.a. 
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Table 6.1.b: SDAX to MDAX subsample null hypothesis test results for the multivariate market model   

 

 

 

 

 

 

 

  

 

 

 

The results from the multivariate regression method are not so different from the 

results we obtained by running the traditional univariate market model. 

Hypothesis four (𝐻0
4) implies that the sum of the dummy coefficients across all firms 

is jointly equal to zero, this hypothesis is the equivalent to hypothesis H0
1 that tests for 

significance in the cross-sectional cumulative standardized abnormal returns. 

The F values are insignificant for all three efficient event window lengths for the null 

hypothesis (𝐻0
4)  regardless of the method of estimation of the model (i.e., OLS and 

SURE), these results are in accordance with the previous results from the univariate 

market model regression as shown in Table 6.1.a, even though hypothesis (𝐻0
5) tells us 

that there are some significant abnormal returns, they cancel out in the forecast 

window (event window). 

Table 6.1.b. exhibits the results of the F test statistic as defined in Equation (21) and Equation (21.1) for the 

OLS and SURE regression methods. Results on the table are shown for all three window lengths and for 

both event types (i.e., the announcement event and the effective event). x – no significance, * - significance 

at the 10% level, ** - significance at the 5% level and *** - significance at the 1% level 



51 
 

The announcement day event and the three window lengths associated with it are in 

accord with the previous results from the univariate regression method of the market 

model. 

The anticipatory window (L𝐵) and the post event window (L𝐴) cumulative abnormal 

returns are significant at the 5% and 10% level accordingly, even though, hypothesis 

number five (𝐻0
5) is not rejected for the anticipatory event window, and jointly the 

abnormal returns are not significant from zero, the cumulative abnormal returns 

remain significant and do not cancel out. 

6.2. Demotion (exclusion), MDAX to SDAX 

 6.2.1. MDAX to SDAX univariate model results 

To get a better picture of the demotion of a stock from the mid-cap index (MDAX) 

into the small cap index (SDAX) we can take a look at Graph 1.b. The cross-sectional 

average cumulative abnormal returns as defined in Equation (11) and their 

movement around the effective and announcement event days are depicted by the 

green and yellow lines for both events respectively.  

 

 

Average cumulative abnormal returns for the anticipatory event window (L𝐵) are 

constant and positive, however, there is an upward (positive) movement of the average 

CARs 2 days after the event. 

Cross-sectional average cumulative abnormal returns as defined in Equation (11) five days before and after 

the announcement event day and the effective event day for subsamples MDAX to SDAX. The vertical axis 

depicts the cross-sectional average cumulative abnormal returns, and the horizontal axis depicts the days 

around the event day labeled with the number zero. 
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The demotion effect is stronger for the effective event day where we can see an upward 

movement of the average daily CARs throughout the whole event window. 

 

Table 6.2.a: MDAX to SDAX subsample null hypothesis test results for the univariate market model. 

 

 

The cumulative standardized abnormal returns (CSAR) defined in Equation 16.1, the 

average standardized cumulative abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) defined in Equation 18 

and the average abnormal ranks (𝑼̅𝟎) defined in Equation 20.1 are all positive for the 

announcement event and for all window lengths. With the notable exception of the 

significant average abnormal ranks (𝑼̅𝟎) for the whole event window (LW),  the  Z-

scores of the cumulative standardized abnormal returns (CSAR), the average 

standardized cumulative abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) and the average standardized 

abnormal ranks for the anticipatory event window LB and the after announcement 

event window LA are all insignificant. 

Overall, the announcement of the demotion (deletion) has no effect on the returns of 

the stocks. These results are similar to a study done by (Chen, Noronha, & Singal, 

2004) related to the United States S&P500 index changes. 

The effective event in our case has a positive significant impact (i.e., the null 

hypothesis number one, two and three from section 5.5.1 are rejected) on the CSAR, 

𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅ and 𝑈̅0 especially, for the pre inclusion window (L𝐵) and the combined length 

Table 6.2.a. exhibits the results for stocks that move from the MDAX to the SDAX for the null hypothesis tests from 

Section 5.5 concerning the traditional univariate market return model, see equation (1) in Section 5.3. The 

abbreviation Ann. Event and Eff. Event stands for Announcement Day Event and Effective Day Event.  

x – no significance, * - significance at the 10% level, ** - significance at the 5% level and *** - significance at the 

1% level 
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of the pre-inclusion and after inclusion window (L𝑊). These results are in odds with 

(Lynch & Mendenhall, 1997), (Chen, Noronha, & Singal, 2004) and a study done on 

the S&P SmallCap 600 index of the US market by (Shankar & Miller, 2006), however 

our results are in agreement with the conclusions from the MDAX index study 

conducted by (Steiner & Heinke, 1997). 

Another study run by (Franz, 2020) concludes that there are positive post 

announcement day abnormal returns for the MDAX demotions, however those results 

are statistically insignificant, a similar conclusion is derived by (Vainikka, 2021) which 

shows that the effect of deletion from the DAX shows contradictory stock return effect 

to the studies conducted in previous literature from the US stock market indices. 

6.2.2. MDAX to SDAX multivariate model results 

Table 6.2.b: MDAX to SDAX subsample null hypothesis test results for the multivariate market model. 

            

Table 6.2.b. exhibits the results of the F test statistic for the OLS and SURE regression methods, results on the 

table are shown for all three window lengths and for both event types (i.e., announcement event and effective 

event): x – no significance, * - significance at the 10% level, ** - significance at the 5% level and *** - 

significance at the 1% level 
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The announcement of the exclusion from the MDAX does not have a significant effect 

on the abnormal returns. Hypothesis number four (𝐻0
4) could not be rejected for both 

methods (i.e., OLS and SURE) of estimation, this implies that the dummy coefficients 

representing the cumulative abnormal returns cancel each other in all chosen event 

period lengths. 

However, the null hypothesis number five (𝐻0
5) shows that some abnormal returns are 

significantly different from zero when we utilize the SURE method which accounts for 

residual correlation between equations. 

The only significant results we observe in Table 6.2.b are for the pre-effective event 

day window (L𝐵) of the OLS estimation where the F-test value is significant at the 10% 

level, however this result is not significant when we account for the residual cross-

equation correlation by utilizing the SURE estimation method. 

 The multivariate regression model and its OLS estimation results (Table 6.2.b) 

provide us with very similar results to the univariate market model from Table 6.1.b, 

the overall effective event window (L𝑊) gives us insignificant F-test statistic values, 

however, this can be attributed to the choice of the test statistic, in the case of the 

univariate market model we utilize the cross-section cumulative standardized 

abnormal returns (CSAR) as defined in Equation 16.1 coupled with the Adjusted-

Patell test as defined in Equation 17 to test for their significance, we also use the 

average standardized abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) as shown in Equation 18 in 

conjunction with the Adjusted Standardized Cross-Sectional statistic test as defined 

in Equation 18.1. On the flip side, in the multivariate regression setting we use the 

cumulative abnormal returns as defined in Equation (14) in Section 5.4 and the F-

test to check for any significance in those cumulative abnormal returns throughout 

all three event windows. 
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6.3. Promotion (exclusion), MDAX to DAX 

 

 

The cross-sectional average cumulative abnormal returns for the promotion of a stock 

from the mid-cap index into the big-cap index in both event cases (i.e., announcement 

and effective event) are decreasing as depicted by the green and yellow line in Graph 

2.a. The return reaction is stronger around the announcement event compared to the 

reaction of returns around the effective event. 

Table 6.3.a: MDAX to DAX subsample null hypothesis test results for the univariate market model. 

 

Table 6.3.a. exhibits the results for stocks that move from the MDAX to the DAX for the null hypothesis tests 

from Section 5.5 concerning the traditional univariate market return model, see equation (1) in Section 5.3. The 

abbreviation Ann. Event and Eff. Event stands for Announcement Day Event and Effective Day Event. x – no 

significance, * - significance at the 10% level, ** - significance at the 5% level and *** - significance at the 

1% level 

Cross-sectional average cumulative abnormal returns as defined in Equation (11) five days before and after the 

announcement event day and the effective event day for subsamples MDAX to DAX. The vertical axis depicts 

the cross-sectional average cumulative abnormal returns, and the horizontal axis depicts the days around the 

event day labeled with the number zero. 
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6.3.1. MDAX to DAX univariate model results 

The event of announcement has an overall negative impact on all three types of 

measures of abnormal returns. The overall event window around the announcement 

day (L𝑊) exhibits significant negative cross-sectional cumulative standardized 

abnormal returns (CSAR) and cross-sectional average standardized cumulative 

abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) at the 5% confidence interval. The cross-sectional average 

demeaned ranked returns (𝑈̅0) are negative as well and significant at the 10% 

confidence interval. 

The announcement day results contradict the previous findings by (Chen, Noronha, & 

Singal, 2004), (Fernandes & Mergulhão, 2016) and (Lynch & Mendenhall, 1997) from 

the US stock market concerning the S&P 500 index and the British FTSE 100 index. 

However, our findings for the promotion into the DAX index are in accordance with 

the results by (Vainikka, 2021), (Franz, 2020), (Bennett, Stulz, & Wang, 2020) and 

(Steiner & Heinke, 1997). 

The effective event shows no significant cross-sectional cumulative abnormal returns 

(CSAR) for any of the defined event lengths, but the effective event shows significant 

negative cross-sectional average standardized cumulative returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) at the 5% 

confidence interval for the overall event window (L𝑊), and significant negative cross-

sectional average demeaned ranked abnormal returns at the 10% confidence interval. 

These results demonstrate the power of the Adjusted Standardized Cross-Sectional 

statistic and the Generalized Rank Z test. These tests show that the cross-sectional 

cumulative standardized abnormal returns (CSAR) are not significant because the 

corresponding Adjusted-Patell test assumes that the standardized abnormal returns 

have the same variance; nevertheless, the Adjusted Standardized Cross-Sectional 

statistic and the Generalized Rank Z test account for the event induced volatility. We 

also want to mention that the MDAX to DAX subsample suffers from the small 

sample size. 
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                          6.3.2. MDAX to DAX multivariate model results 

Table 6.3.b: MDAX to DAX subsample null hypothesis test results for the multivariate market model. 

 

            

 

 

 

The significance of the F test values for the announcement event and all three 

window intervals resembles the results from the univariate market model, hypothesis 

number four (𝐻0
4)  which test for the cross-sectional cumulative abnormal returns, 

the overall announcement event window (L𝑊) and the after-announcement event 

window (L𝐴) show that the cumulative abnormal returns are significant at the 5% and 

1% confidence interval for both methods of estimation (i.e., the SURE and the OLS 

methods). 

The overall event window (L𝑊) and the post announcement event window show 

homogeneity in the returns for their respective window lengths, however the 

seemingly unrelated regression estimation (SURE) rejects the hypothesis of cross-

sectional abnormal return homogeneity. This is the result of the SURE method 

Table 6.3.b. exhibits the results of the F test statistic for the OLS and SURE regression 

methods, results on the table are shown for all three window lengths and for both event 

types (i.e., announcement event and effective event): 

x – no significance, * - significance at the 10% level, ** - significance at the 5% level 

and *** - significance at the 1% level 
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accounting for residual covariance such that it improves the estimation of the 

dummy coefficients that represent our abnormal returns. 

The cumulative abnormal returns for the effective event are significant at the 5% 

confidence interval for the overall event window length (L𝑊) and the pre-promotion 

event window (L𝐵) for the OLS estimation method, on the other hand, the SURE 

estimation results differ in significance only for the pre-promotion event window (L𝐵) 

with a significant F-statistic value at the 10% confidence interval. 

Null hypothesis number five concerning the windows around the effective event show 

no significant F-values for neither of the estimation methods (SURE and OLS), 

however even though the joint null hypothesis could not be rejected, we can see that 

the sum of the coefficients is significant, these results are in line with the results from 

the univariate market model where the cross-sectional average standardized 

cumulative abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅)  are significant for the same window lengths (see 

Table 6.3.a). 

The homogeneity of abnormal returns inside the event window hypothesis (i.e., 

hypothesis number six) is also not rejected for the effective event and the 

corresponding window lengths, this implies that the effective event has a similar 

impact on the abnormal returns of the sample firms. 

6.4. Demotion (inclusion), DAX to MDAX 

 

Cross-sectional average cumulative abnormal returns as defined in Equation (11) five days before and after 

the announcement event day and the effective event day for subsamples DAX to MDAX. The vertical axis 

depicts the cross-sectional average cumulative abnormal returns, and the horizontal axis depicts the days 

around the event day labeled with the number zero. 
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                       6.4.1. DAX to MDAX univariate model results 

The demotion of stocks into the mid-cap index from the big-cap index has different 

effects for the announcement event and effective event. 

The cross-sectional average cumulative abnormal returns around the announcement 

event in graph 2.b depicted by the green line are negative in the anticipatory period 

(L𝐵), the announcement of demotion into the MDAX pushes the prices of the securities 

down, the same results have been observed for the US S&P500 by (Jain, 1987), (Brown 

& Warner, Measuring security price performance, 1980) and (Lynch & Mendenhall, 

1997). There is also a stark increase in the abnormal returns starting at exactly the 

event day of announcement marked by zero which marks the start of the post 

announcement event window (L𝐴). This price reversal is consistent with the price 

pressure hypothesis, this type of price reversal has also been observed by (Elliott & 

Warr, 2003). 

The effective event as depicted in Graph 2.b shows the opposite effect on cross-

sectional daily average CARs as defined in Equation 11, unlike the announcement price 

movement where the anticipatory period showed negative cross-sectional average 

CARs, the pre-effective window (L𝐵) shows positive cross-sectional average CARs. 

Graphical representations of the average CARs around both event windows are useful 

however it is hard to determine whether the event had any significant impact on the 

returns of the securities’ prices. 
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Table 6.4.a: DAX to MDAX subsample null hypothesis test results for the univariate market model. 

 

The announcement event measured by the cross-sectional cumulative standardized 

abnormal returns (CSAR) defined in Equation 16.1, the cross-sectional average 

standardized cumulative abnormal returns (𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅) defined in Equation 18 and the 

cross-sectional average ranked abnormal returns (𝑈̅0) defined in Equation 20.1 shows 

no significant effect for none of the test statistics associated with the aforementioned 

abnormal returns and for none of the event lengths. 

The lower half-part of table 6.4.a shows that only the post-exclusion event window (L𝐴) 

shows negative cross-sectional cumulative standardized abnormal returns at the 10% 

confidence interval. We observe significant negative cross-sectional standardized 

cumulative abnormal returns and negative cross-sectional demeaned ranked 

abnormal returns. This result is in accord with other findings from studies in the US 

S&P 500 and Europe such as the FTSE 100 and the AEX Dutch index. 

 

 

 

 

 

 

Table 6.4.a. exhibits the results for stocks that move from the DAX to the MDAX for the null hypothesis tests 

from Section 5.5 concerning the traditional univariate market return model, see Equation (1) in Section 5.3. 

The abbreviation Ann. Event and Eff. Event stands for Announcement Day Event and Effective Day Event. x 

– no significance, * - significance at the 10% level, ** - significance at the 5% level and *** - significance at 

the 1% level 
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                              6.4.2. DAX to MDAX multivariate model results 

Table 6.4.b: DAX to MDAX subsample null hypothesis test results for the multivariate market model. 

           

Table 6.4.b. exhibits the results of the F test statistic for the OLS and SURE regression methods, 

results on the table are shown for all three window lengths and for both event types (i.e., 

announcement event and effective event): 

x – no significance, * - significance at the 10% level, ** - significance at the 5% level and *** - 

significance at the 1% level 

 

The announcement event cross-sectional cumulative abnormal returns for the 

multivariate regression model represented by hypothesis number four shows no 

significant F-statistic values for none of the window lengths regardless of the method 

of estimation, these results coincide with the results from the univariate market model. 

However, hypothesis number five which tests for joint significance of the dummy 

coefficients shows that jointly the cross-sectional abnormal returns are significant, 

hypothesis number six on the other hand shows that the announcement event did not 

have the same impact on all stocks’ abnormal returns and the null hypothesis was not 

rejected, the interesting observation is that the anticipatory event window abnormal 

returns were jointly not significant as well. 
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The announcement event has no effect on abnormal returns, even though hypothesis 

number five is able to detect significant abnormal returns, for the overall event window 

(L𝑊) and the post announcement window (L𝐴), nevertheless, these abnormal returns 

cancel each other out upon cumulation. 

The significant results of the F-statistic values for the effective event and their 

corresponding window lengths reflects the results from the univariate market model, 

the only significant F-statistic value in Table 6.4.b is that of the post-demotion event 

window (L𝐴) represented by an F-Value of 4.001 in the case of the OLS estimation and 

an F-value of 4.087 in the case of the SURE estimation, both values are significant at 

the 1% confidence interval. 

Hypothesis number five implies that there are significant abnormal returns for all 

three effective event window lengths, even though these abnormal returns cancel 

themselves out upon accumulation for the overall effective event window (L𝑊) and the 

pre-demotion window (L𝐵). 

Hypothesis number six also implies that the effective event does not have the same 

impact on all stock returns and, different stocks react differently to the event of 

demotion. 
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7. Conclusions and Recommendations  

This thesis analyzed return data for stocks that entered and exited the mid-cap 

German index for a period of around twenty years. We see that the majority of stocks 

movements into and out of the mid-cap German index takes place between the small-

cap German index and mid-cap German index. Over 77% of MDAX exits are demotions 

into the small-cap German index and 59% of the stocks included into the MDAX are 

promotions from the small-cap index. 

The samples of exclusions from the MDAX into the big-cap German index and 

inclusions from the big-cap into the mid-cap German index are relatively small. This 

small number of firms might induce a small sample size bias. We considered correcting 

the small sample size bias by extending the timeline of our research back to the year 

of 1993. However, we finally decided to simply include price data only for the period 

of 2001-2020. This was done by considering the conclusions of (Ince & Porter, 2006) 

and (Brückner, 2013), namely that the quality of the Thompson Reuters Datastream 

platform suffers from mismatches in prices for the time period of 1990-2000. We 

recommend that future researches collect data from a more reliable source in order to 

alleviate the small sample size bias. 

Our results in this thesis reveal mixed effects for both promotions and demotions into 

and out of the MDAX index. 

The anticipatory period of the inclusions (promotions) into the MDAX from the small-

cap market index (SDAX) show strong positive effects shown in Table 6.1.a. as 

measured by the cross-sectional cumulative standardized abnormal returns, the cross 

sectional average standardized cumulative abnormal returns and the average ranked 

abnormal returns. These results affirm previous findings and literature from the S&P 

500 Index. Also this result is in line with the anticipating-investors hypothesis and the 

price pressure hypothesis and the information signaling hypothesis. On the other hand 

the behavior of the returns upon the announcement of the inclusion is at odds with the 

efficient market hypothesis (EMH). 

The announcement of demotion into the MDAX from the big cap index shows negative 

abnormal returns for the overall window and the anticipatory window, this is in line 

with the price pressure hypothesis, the anticipating-investors hypothesis and at odds 

with the efficient market hypothesis. However, the results related to the 

announcement of demotion of a stock from the DAX into the MDAX are not 

statistically significant. 
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Evidence for negative effects from the demotion of a stock from the DAX into the 

MDAX only comes from the post-effective event day (L𝐴), nevertheless, we cannot 

confidently conclude that any of the theoretical hypothesis indicated in Section 3 are 

confirmed in this case. Moreover, proving the price pressure hypothesis in our case 

would require an appropriate control group, i.e., utilizing supplementary indices as in 

(Jain, 1987). In our case finding or constructing supplementary indices with the 

available data is infeasible. 

We observe opposite negative results for the sample of stocks promoted into the DAX 

from the MDAX, as we already discussed in Section 6.3 we find no support for the 

efficient market hypothesis, the price pressure hypothesis or the anticipating-

investors hypothesis, despite the fact that our results are in line with (Steiner & 

Heinke, 1997), (Vainikka, 2021), (Bennett, Stulz, & Wang, 2020) and (Franz, 2020). 

We want to point out that the model used in our study in Section 5.3 in Equations 1 

and Equation 3 is a simplified form of return modeling. 

Similarly, we observe positive statistically insignificant abnormal returns for stocks 

demoted into the small-cap index from the mid-cap index, which are at odds with 

previous findings from the S&P500, FTSE 100 and AEX indices. 

We recommend future research concerning the question of the stock inclusion or 

exclusion in and from the MDAX to employ data from different platforms in order to 

reduce the errors from the quality of the data available at the Thompson Reuters 

Database. We also want to make a side note, that for future analysis in support of the 

price pressure hypothesis the volume effect needs to be analyzed as well. 

For future research in this subject, we also propose the approach of bootstrapping as 

developed by (Efron, 1979). Two such studies have been conducted by (Chou, 2004) 

and (Kramer, 2001). The first approach is the bootstrapping of the residuals of the OLS 

equations as in the case of Chou, and the second approach is the bootstrapping of the 

standardized Z statistics as in the case of Kramer. These techniques can improve the 

results for the small samples of the stocks that move from the big-cap index (DAX) to 

the mid-cap index (MDAX) and vice versa. 
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8. Appendix F 

I. Univariate Market Model Formulation 

 I.i. Vector model representation of Equation 1 in Section 5.3. 

Observed returns in the estimation window for the i-th firms in the system of N 

equations is represented in a vector and matrix form as follows: 

𝑅𝑖 = 𝑋𝑖𝛽𝑖 + 𝜀𝑖         (𝑎) 

𝛽̂𝑖 = (𝑋𝑖
′𝑋𝑖)

−1𝑋𝑖
′𝑅𝑖    (𝑎. 1) 

𝜎̂𝜀𝑖
2 =

𝜀𝑖̂
′𝜀𝑖̂

𝐿𝐸 − 2
              (𝑎. 2) 

The Abnormal returns as defined in Equation 5 in Section 5.3 can be represented in a 

vector-matrix form as follows: 

𝐴𝑅𝑖 = 𝑅𝑖 − 𝑋𝑖𝛽̂𝑖          (𝑎. 3)  

The vector 𝑅𝑖 = [𝑟𝑖𝑡𝑁 … . 𝑟𝑖𝑡𝑛] in Equation a and Equation a.3 consists of the stock 

returns for firm i. The matrix 𝑋𝑖 = [𝜄 𝑅𝑚] is composed of a column of ones represented 

by 𝜄 and a column of the market returns represented by 𝑅𝑚 = [𝑟𝑚𝑡𝑁 … . . 𝑟𝑚𝑡𝑛]. The 

vectors 𝛽𝑖 = [𝛼𝑖 𝛽𝑖] and 𝛽̂𝑖 = [𝛼̂𝑖  𝛽̂𝑖] in Equation a and Equation a.3 are the parameter 

vectors.  

The derived variance of the abnormal returns given in this matrix-vector 

representation can be found in (Campbell, Lo, & MacKinlay, 1997, pp. 149-180). 

  

II. MRM model Formulation 

II.i. Vector Model Representation 

The description of the model in this section follows the structure and logic depicted in 

several published papers such as (Thompson, 1985), (Karafiath, 1988) and (Zellner, 

1962) which give identical representation of the model in matrix-vector form. 

 

 

 

 



66 
 

OLS of the system: 

 

 

E(ε𝑖ε𝑖
′) = 𝑉𝑎𝑟(ε𝑖) = Σ⊗ 𝐼𝑇    = 𝜎

2𝐼𝑁𝑇  (f) 

The matrix 𝑋∗ is composed of N smaller 𝑋𝑖 matrices with dimension NTx𝑀∗ or it can 

be interpreted as a decomposition into smaller matrices which in turn these smaller Xi 

matrices are composed of a vector of the constant number one which corresponds to 

the intercept 𝛼𝑖 and a vector of the observed market return data points of the 

independent variable rm which are used for the estimation of 𝛽𝑖, its last column is 

composed of a vector of dummy variable vectors which corresponds to the estimation 

of the dummy coefficients 𝛾𝑖𝑡 which is also a vector of dummy coefficients which match 

with corresponding dummy vectors from the matrix X when the dot product operation 

is performed. Matrix 𝐼  in the definition of variance in Equation f is a TxT identity 

matrix where T stands for the number of observed stock and market returns. The 

expected value of the error terms if zero i.e., E(𝜀𝑖) = 0. The matrix Σ is the error 

covariance matrix of dimensions NxN which in the case of the OLS the diagonal of the 
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matrix is the variances of the error terms (𝑖. 𝑒. , Σ = [𝜎𝑖𝑖] = E[𝜀𝑖𝑡𝜀𝑖𝑡] = 𝐸[𝜀𝑖𝑡
2 ]) and the 

off-diagonal elements are the covariances which are assumed to be zero (i.e., Σ =

[𝜎𝑖𝑗] = E[𝜀𝑖𝑡𝜀𝑗𝑡] = 0). 

                  II.ii. SURE vs OLS Estimation 

The variance-covariance matrix of the error terms for the OLS and GLS differ in the 

fact that the GLS method relaxes the assumption in Equation f into 𝑉𝑎𝑟(ε𝑖) = Ω = 𝛴 ⊗

𝐼𝑇. 

The non-spherical form of the error terms in the setting of the GLS is the key difference 

in the estimation of 𝛽𝑂𝐿𝑆 and 𝛽𝐺𝐿𝑆. 

The off-diagonal elements of the positive definite covariance matrix Ω in the setting of 

the GLS and FGLS are not equal to zero (i.e., Σ = [𝜎𝑖𝑗] = E[𝜀𝑖𝑡𝜀𝑗𝑡]  ≠ 0). 

The graphical representation of the variance-covariance equation is presented in 

Equation j of this section. 

o 𝑆𝑈𝑅𝐸 𝑏𝑦 𝑢𝑠𝑖𝑛𝑔 𝐹𝐺𝐿𝑆: 

The non-spherical errors in the GLS setting can be transformed back into spherical 

form as follows: 

There exist a non-singular matrix H such that Ω = HH′  

  Y =  X𝛽 + ε     ;   E(ε𝑖ε𝑖
′) = 𝑉𝑎𝑟(ε𝑖) = Ω =  𝛴 ⊗ 𝐼𝑇            (g) 

We multiply Equation g by the inverse of the H matrix: 

𝐻−1𝑌 =  𝐻−1𝑋𝛽 + 𝐻−1𝜀     

 

 E(𝐻−1ε𝑖ε𝑖
′𝐻−1

′
) = 𝐻−1𝑉𝑎𝑟(ε)𝐻−1

′
= 𝜎2𝐻−1Ω𝐻−1

′
= 𝜎2𝐻−1HH′𝐻−1

′

= 𝜎2𝐼𝑁𝑇                                                                (g. 1) 

 

𝛽̂𝐺𝐿𝑆 = [𝑋
′𝐻−1′𝐻−1𝑋]−1𝑋′𝐻−1′𝐻−1𝑌 = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑌

= [𝑋′(𝛴−1⊗ 𝐼𝑁)𝑋]
−1𝑋′(𝛴−1⊗ 𝐼𝑁)𝑌       (g. 2) 

The matrix form of Equation g.2 is represented by the first part [𝑋′(𝛴−1⊗ 𝐼𝑁)𝑋]
−1 

which is the inverse variance covariance matrix of the residual terms from the OLS 

regression from Equation g.1, the second part  𝑋′(𝛴−1⊗ 𝐼𝑁)𝑌 represents the 
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covariance between the dependent and independent LHS variable, a graphical 

representation of this is represented by (Greene W. H., 2017, pp. 293-305) 

The matrix 𝛴−1at this point is unknown and needs to be estimated. The way matrix 

𝛴−1 is estimated is by applying the FGLS procedure which gives us Equation g.1. First 

we run Equation g which is simply the OLS method applied to the system of equations, 

then the second step is extracting the OLS residuals and using them as the estimated 

variance for the  𝛴 matrix in the variance of Equation g which in turn its inverted form 

is used to estimate the GLS estimators of the system in Equation g.2, this technique 

has also been applied by (Zellner, 1962), where the author expounds the model in full 

details. 

o The estimation of the variance and covariance of the residuals: 

The unbiased variance estimator of the single equation OLS variance (𝜀𝑖
2) is  

𝜀̂𝑖
′𝜀̂𝑖

𝑇−𝑀𝑖
 where 

𝑀𝑖 is the number of estimated independent variables of equation i as explained in 

Section 5.3. 

The derivation of the residual variance covariance is derived by (Zellner & Huang, 

1962) by taking the following expectation: 

E(𝜀𝑖̂
′𝜀𝑗̂) = E(𝜀𝑖̂

′[I - 𝑋𝑖(𝑋𝑖
′𝑋𝑖)

−1𝑋𝑖
′][𝐼- 𝑋𝑗(𝑋𝑗

′𝑋𝑗)
−1𝑋𝑗

′]𝜀𝑗̂) 

= 𝜎𝑖𝑗  𝑡𝑟[𝐼 − (𝑋𝑖𝑋𝑖
′𝑋𝑖)

−1𝑋𝑖
′) − (𝑋𝑗

′𝑋𝑗)
−1𝑋𝑗

′) + (𝑋𝑖
′𝑋𝑖)

−1𝑋𝑖
′)(𝑋𝑗

′𝑋𝑗)
−1𝑋𝑗

′)]               (g.3) 

= 𝜎𝑖𝑗[𝑇 − 𝑀𝑖 −𝑀𝑗 + 𝑡𝑟(𝑋𝑖
′𝑋𝑖)

−1𝑋𝑖
′)(𝑋𝑗

′𝑋𝑗)
−1𝑋𝑗

′)]   

The term notation tr in Equation g.3 denotes the trace of the square matrices 

represented within the equation, the trace is defined as the sum of the diagonal entries 

in the square matrix. The square matrix in our case(𝑋𝑖
′𝑋𝑖)𝑋𝑖

′𝑋𝑗(𝑋𝑗
′𝑋𝑗)𝑋𝑗

′𝑋𝑖 is the square 

of the residual canonical correlation coefficients and  𝑡𝑟[(𝑋𝑖
′𝑋𝑖)𝑋𝑖

′𝑋𝑗(𝑋𝑗
′𝑋𝑗)𝑋𝑗

′𝑋𝑖] is the 

sum of squared canonical coefficients. For a more detailed look into the meaning of 

the derivation in Equation g.3 and canonical correlation analysis one can review the 

work of (Hooper, 1959) and (Zellner & Huang, 1962), the theoretical justifications 

concerning the estimation and derivation of the variance and covariance of the 

residuals is beyond the scope of this thesis. 

 

 



69 
 

 

From the derivation in Equation g.3 we can infer that the estimated residual 

covariance is: 

𝜎̂𝑖𝑗 =
𝜀𝑖̂
′𝜀𝑗̂

𝑇 −𝑀𝑖 −𝑀𝑗 + 𝑡𝑟[(𝑋𝑖
′𝑋𝑖)𝑋𝑖

′𝑋𝑗(𝑋𝑗
′𝑋𝑗)𝑋𝑗

′𝑋𝑖]
         (i) 

T is the number of observations per equation, 𝑀𝑖 is the number of regressors in 

equation i. The detailed derivation of the above formula can be found in (Zellner & 

Huang, 1962, p. 309). 

 

 

 

   II.iii. Defining restrictions 

o Restriction Matrices for the F-test: 

Number of restricted coefficients per equation = v 

Number of unrestricted coefficients = n 

Number of coefficients in any i-th equation = n+v 

Number of equations = N 

H0
4: [01

′ 𝜄1
′ … 0𝑁

′ 𝜄𝑁
′ ]1|((n+v)∙N)

[
 
 
 
 
𝛽1
𝛽2
⋮

𝛽𝑛−1
𝛽𝑁 ]

 
 
 
 

((n+v)∙N)|1

=  0 

The numbers 𝟎𝒊
′ in the transpose vector represent themselves transpose vectors of 

unrestricted coefficients; the inputs of these vectors are zeros which are equal to the 

number of unrestricted coefficients in equation i, the Greek letter 𝜾𝒊
′ represents a vector 

of restrictions, the input of these vectors is the number one whose repetition is equal 
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to the number of restricted coefficients, 𝜷𝒊 is the vector of regression coefficients of i-

th equation. 

The subscript 1|((n + v) ∙ N) in H0
4 denotes the dimensions of the transpose restriction 

matrix which is composed of one row and (n + v) ∙ N columns 

H0
5: 

[
 
 
 
 
0 𝐼 0
0 0 𝐼
0 0 0

0 … 0
0 … 0
𝐼 … 0

0 0 0
0 0 0

0 ⋱ 0
0 … 𝐼]

 
 
 
 

(𝑣∙𝑁)|((𝑛+𝑣)∙𝑁) [
 
 
 
 
𝛽1
𝛽2
𝛽3
⋮
𝛽𝑛]
 
 
 
 

((n+v)∙N)|1

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

(𝑣∙𝑁)|1

 

The Numbers 0 in the above matrix are zero matrices with dimensions v∙n whereas 

every capital letter I is a square identity matrix where the number of ones in the 

diagonal represent the number of restricted coefficients v,  𝛽𝑖 is a vector whose number 

of elements is the number of total estimated coefficients of the i-th equation in the 

system of N equations, the 𝛽𝑖 vector is illustrated in Equation e.1 in this appendix. 

The subscript (𝑣 ∙ 𝑁)|((𝑛 + 𝑣) ∙ 𝑁) in H0
5 denotes the dimensions of the restriction 

matrix. The restriction matrix is composed of (𝑣 ∙ 𝑁) rows and (𝑛 + 𝑣) ∙ 𝑁 columns. 

H0
6:

[
 
 
 
 
 
   0 𝐼 −𝐼
   0 0 𝐼
   0 0 0

   0 0 0 ⋯ 0
−𝐼 0 0 ⋯ 0
   𝐼 −𝐼 0 ⋯ 0

  0 0  0
  0 0  0
  0 0  0

   0 ⋱ ⋱ 0        0
0 0 𝐼 −𝐼      0
0 0 0 𝐼     −𝐼 ]

 
 
 
 
 

((𝑁−1)∙𝑣)|(𝑛+𝑣)∙𝑁 [
 
 
 
 
 
𝛽1
𝛽2
𝛽3
⋮

𝛽𝑛−1
𝛽𝑛 ]

 
 
 
 
 

((n+v)∙N)|1

=

[
 
 
 
 
 
0
0
0
⋮
0
0]
 
 
 
 
 

((𝑁−1)∙𝑣)|1

 

The numbers zero in the above matrix with dimensions ((N-1)∙v)|(n+v)∙N ) represent 

zero matrices which the number of zero rows is equal to the number of restricted 

coefficients and the number of zero columns is equal to the number of unrestricted 

coefficients, the capital letter I is an identity matrix whose the number of rows and 

columns is equal to the number of restricted coefficients and the diagonal contains a 

string of the number one, the same holds for the negative identity matrix with the 

distinction that the diagonal is a string of the number negative one, the 𝛽𝑖 stands for 

vectors made of the number of all variables in Equation i. 
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